1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastHHNode; 62 class CastDDNode; 63 class CastVVNode; 64 class CastIINode; 65 class CastLLNode; 66 class CastPPNode; 67 class CatchNode; 68 class CatchProjNode; 69 class CheckCastPPNode; 70 class ClearArrayNode; 71 class CmpNode; 72 class CodeBuffer; 73 class ConstraintCastNode; 74 class ConNode; 75 class ConINode; 76 class ConvertNode; 77 class CompareAndSwapNode; 78 class CompareAndExchangeNode; 79 class CountedLoopNode; 80 class CountedLoopEndNode; 81 class DecodeNarrowPtrNode; 82 class DecodeNNode; 83 class DecodeNKlassNode; 84 class EncodeNarrowPtrNode; 85 class EncodePNode; 86 class EncodePKlassNode; 87 class FastLockNode; 88 class FastUnlockNode; 89 class FlatArrayCheckNode; 90 class HaltNode; 91 class IfNode; 92 class IfProjNode; 93 class IfFalseNode; 94 class IfTrueNode; 95 class InitializeNode; 96 class JVMState; 97 class JumpNode; 98 class JumpProjNode; 99 class LoadNode; 100 class LoadStoreNode; 101 class LoadStoreConditionalNode; 102 class LockNode; 103 class LongCountedLoopNode; 104 class LongCountedLoopEndNode; 105 class LoopNode; 106 class LShiftNode; 107 class MachBranchNode; 108 class MachCallDynamicJavaNode; 109 class MachCallJavaNode; 110 class MachCallLeafNode; 111 class MachCallNode; 112 class MachCallRuntimeNode; 113 class MachCallStaticJavaNode; 114 class MachConstantBaseNode; 115 class MachConstantNode; 116 class MachGotoNode; 117 class MachIfNode; 118 class MachJumpNode; 119 class MachNode; 120 class MachNullCheckNode; 121 class MachProjNode; 122 class MachPrologNode; 123 class MachReturnNode; 124 class MachSafePointNode; 125 class MachSpillCopyNode; 126 class MachTempNode; 127 class MachMergeNode; 128 class MachMemBarNode; 129 class MachVEPNode; 130 class Matcher; 131 class MemBarNode; 132 class MemBarStoreStoreNode; 133 class MemNode; 134 class MergeMemNode; 135 class MoveNode; 136 class MulNode; 137 class MultiNode; 138 class MultiBranchNode; 139 class NegNode; 140 class NegVNode; 141 class NeverBranchNode; 142 class Opaque1Node; 143 class OpaqueLoopInitNode; 144 class OpaqueLoopStrideNode; 145 class OpaqueMultiversioningNode; 146 class OpaqueNotNullNode; 147 class OpaqueInitializedAssertionPredicateNode; 148 class OpaqueTemplateAssertionPredicateNode; 149 class OuterStripMinedLoopNode; 150 class OuterStripMinedLoopEndNode; 151 class Node; 152 class Node_Array; 153 class Node_List; 154 class Node_Stack; 155 class OopMap; 156 class ParmNode; 157 class ParsePredicateNode; 158 class PCTableNode; 159 class PhaseCCP; 160 class PhaseGVN; 161 class PhaseIdealLoop; 162 class PhaseIterGVN; 163 class PhaseRegAlloc; 164 class PhaseTransform; 165 class PhaseValues; 166 class PhiNode; 167 class Pipeline; 168 class PopulateIndexNode; 169 class ProjNode; 170 class RangeCheckNode; 171 class ReductionNode; 172 class RegMask; 173 class RegionNode; 174 class RootNode; 175 class SafePointNode; 176 class SafePointScalarObjectNode; 177 class SafePointScalarMergeNode; 178 class SaturatingVectorNode; 179 class StartNode; 180 class State; 181 class StoreNode; 182 class SubNode; 183 class SubTypeCheckNode; 184 class Type; 185 class TypeNode; 186 class UnlockNode; 187 class InlineTypeNode; 188 class VectorNode; 189 class LoadVectorNode; 190 class LoadVectorMaskedNode; 191 class StoreVectorMaskedNode; 192 class LoadVectorGatherNode; 193 class LoadVectorGatherMaskedNode; 194 class StoreVectorNode; 195 class StoreVectorScatterNode; 196 class StoreVectorScatterMaskedNode; 197 class VerifyVectorAlignmentNode; 198 class VectorMaskCmpNode; 199 class VectorUnboxNode; 200 class VectorSet; 201 class VectorReinterpretNode; 202 class ShiftVNode; 203 class MulVLNode; 204 class ExpandVNode; 205 class CompressVNode; 206 class CompressMNode; 207 class C2_MacroAssembler; 208 209 210 #ifndef OPTO_DU_ITERATOR_ASSERT 211 #ifdef ASSERT 212 #define OPTO_DU_ITERATOR_ASSERT 1 213 #else 214 #define OPTO_DU_ITERATOR_ASSERT 0 215 #endif 216 #endif //OPTO_DU_ITERATOR_ASSERT 217 218 #if OPTO_DU_ITERATOR_ASSERT 219 class DUIterator; 220 class DUIterator_Fast; 221 class DUIterator_Last; 222 #else 223 typedef uint DUIterator; 224 typedef Node** DUIterator_Fast; 225 typedef Node** DUIterator_Last; 226 #endif 227 228 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 229 230 // Node Sentinel 231 #define NodeSentinel (Node*)-1 232 233 // Unknown count frequency 234 #define COUNT_UNKNOWN (-1.0f) 235 236 //------------------------------Node------------------------------------------- 237 // Nodes define actions in the program. They create values, which have types. 238 // They are both vertices in a directed graph and program primitives. Nodes 239 // are labeled; the label is the "opcode", the primitive function in the lambda 240 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 241 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 242 // the Node's function. These inputs also define a Type equation for the Node. 243 // Solving these Type equations amounts to doing dataflow analysis. 244 // Control and data are uniformly represented in the graph. Finally, Nodes 245 // have a unique dense integer index which is used to index into side arrays 246 // whenever I have phase-specific information. 247 248 class Node { 249 250 // Lots of restrictions on cloning Nodes 251 NONCOPYABLE(Node); 252 253 public: 254 friend class Compile; 255 #if OPTO_DU_ITERATOR_ASSERT 256 friend class DUIterator_Common; 257 friend class DUIterator; 258 friend class DUIterator_Fast; 259 friend class DUIterator_Last; 260 #endif 261 262 // Because Nodes come and go, I define an Arena of Node structures to pull 263 // from. This should allow fast access to node creation & deletion. This 264 // field is a local cache of a value defined in some "program fragment" for 265 // which these Nodes are just a part of. 266 267 inline void* operator new(size_t x) throw() { 268 Compile* C = Compile::current(); 269 Node* n = (Node*)C->node_arena()->AmallocWords(x); 270 return (void*)n; 271 } 272 273 // Delete is a NOP 274 void operator delete( void *ptr ) {} 275 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 276 void destruct(PhaseValues* phase); 277 278 // Create a new Node. Required is the number is of inputs required for 279 // semantic correctness. 280 Node( uint required ); 281 282 // Create a new Node with given input edges. 283 // This version requires use of the "edge-count" new. 284 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 285 Node( Node *n0 ); 286 Node( Node *n0, Node *n1 ); 287 Node( Node *n0, Node *n1, Node *n2 ); 288 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 289 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 290 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 291 Node( Node *n0, Node *n1, Node *n2, Node *n3, 292 Node *n4, Node *n5, Node *n6 ); 293 294 // Clone an inherited Node given only the base Node type. 295 Node* clone() const; 296 297 // Clone a Node, immediately supplying one or two new edges. 298 // The first and second arguments, if non-null, replace in(1) and in(2), 299 // respectively. 300 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 301 Node* nn = clone(); 302 if (in1 != nullptr) nn->set_req(1, in1); 303 if (in2 != nullptr) nn->set_req(2, in2); 304 return nn; 305 } 306 307 private: 308 // Shared setup for the above constructors. 309 // Handles all interactions with Compile::current. 310 // Puts initial values in all Node fields except _idx. 311 // Returns the initial value for _idx, which cannot 312 // be initialized by assignment. 313 inline int Init(int req); 314 315 //----------------- input edge handling 316 protected: 317 friend class PhaseCFG; // Access to address of _in array elements 318 Node **_in; // Array of use-def references to Nodes 319 Node **_out; // Array of def-use references to Nodes 320 321 // Input edges are split into two categories. Required edges are required 322 // for semantic correctness; order is important and nulls are allowed. 323 // Precedence edges are used to help determine execution order and are 324 // added, e.g., for scheduling purposes. They are unordered and not 325 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 326 // are required, from _cnt to _max-1 are precedence edges. 327 node_idx_t _cnt; // Total number of required Node inputs. 328 329 node_idx_t _max; // Actual length of input array. 330 331 // Output edges are an unordered list of def-use edges which exactly 332 // correspond to required input edges which point from other nodes 333 // to this one. Thus the count of the output edges is the number of 334 // users of this node. 335 node_idx_t _outcnt; // Total number of Node outputs. 336 337 node_idx_t _outmax; // Actual length of output array. 338 339 // Grow the actual input array to the next larger power-of-2 bigger than len. 340 void grow( uint len ); 341 // Grow the output array to the next larger power-of-2 bigger than len. 342 void out_grow( uint len ); 343 // Resize input or output array to grow it to the next larger power-of-2 344 // bigger than len. 345 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing); 346 347 public: 348 // Each Node is assigned a unique small/dense number. This number is used 349 // to index into auxiliary arrays of data and bit vectors. 350 // The value of _idx can be changed using the set_idx() method. 351 // 352 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 353 // Therefore, it updates the value of the _idx field. The parse-time _idx is 354 // preserved in _parse_idx. 355 node_idx_t _idx; 356 DEBUG_ONLY(const node_idx_t _parse_idx;) 357 // IGV node identifier. Two nodes, possibly in different compilation phases, 358 // have the same IGV identifier if (and only if) they are the very same node 359 // (same memory address) or one is "derived" from the other (by e.g. 360 // renumbering or matching). This identifier makes it possible to follow the 361 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 362 NOT_PRODUCT(node_idx_t _igv_idx;) 363 364 // Get the (read-only) number of input edges 365 uint req() const { return _cnt; } 366 uint len() const { return _max; } 367 // Get the (read-only) number of output edges 368 uint outcnt() const { return _outcnt; } 369 370 #if OPTO_DU_ITERATOR_ASSERT 371 // Iterate over the out-edges of this node. Deletions are illegal. 372 inline DUIterator outs() const; 373 // Use this when the out array might have changed to suppress asserts. 374 inline DUIterator& refresh_out_pos(DUIterator& i) const; 375 // Does the node have an out at this position? (Used for iteration.) 376 inline bool has_out(DUIterator& i) const; 377 inline Node* out(DUIterator& i) const; 378 // Iterate over the out-edges of this node. All changes are illegal. 379 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 380 inline Node* fast_out(DUIterator_Fast& i) const; 381 // Iterate over the out-edges of this node, deleting one at a time. 382 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 383 inline Node* last_out(DUIterator_Last& i) const; 384 // The inline bodies of all these methods are after the iterator definitions. 385 #else 386 // Iterate over the out-edges of this node. Deletions are illegal. 387 // This iteration uses integral indexes, to decouple from array reallocations. 388 DUIterator outs() const { return 0; } 389 // Use this when the out array might have changed to suppress asserts. 390 DUIterator refresh_out_pos(DUIterator i) const { return i; } 391 392 // Reference to the i'th output Node. Error if out of bounds. 393 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 394 // Does the node have an out at this position? (Used for iteration.) 395 bool has_out(DUIterator i) const { return i < _outcnt; } 396 397 // Iterate over the out-edges of this node. All changes are illegal. 398 // This iteration uses a pointer internal to the out array. 399 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 400 Node** out = _out; 401 // Assign a limit pointer to the reference argument: 402 max = out + (ptrdiff_t)_outcnt; 403 // Return the base pointer: 404 return out; 405 } 406 Node* fast_out(DUIterator_Fast i) const { return *i; } 407 // Iterate over the out-edges of this node, deleting one at a time. 408 // This iteration uses a pointer internal to the out array. 409 DUIterator_Last last_outs(DUIterator_Last& min) const { 410 Node** out = _out; 411 // Assign a limit pointer to the reference argument: 412 min = out; 413 // Return the pointer to the start of the iteration: 414 return out + (ptrdiff_t)_outcnt - 1; 415 } 416 Node* last_out(DUIterator_Last i) const { return *i; } 417 #endif 418 419 // Reference to the i'th input Node. Error if out of bounds. 420 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 421 // Reference to the i'th input Node. null if out of bounds. 422 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 423 // Reference to the i'th output Node. Error if out of bounds. 424 // Use this accessor sparingly. We are going trying to use iterators instead. 425 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 426 // Return the unique out edge. 427 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 428 // Delete out edge at position 'i' by moving last out edge to position 'i' 429 void raw_del_out(uint i) { 430 assert(i < _outcnt,"oob"); 431 assert(_outcnt > 0,"oob"); 432 #if OPTO_DU_ITERATOR_ASSERT 433 // Record that a change happened here. 434 debug_only(_last_del = _out[i]; ++_del_tick); 435 #endif 436 _out[i] = _out[--_outcnt]; 437 // Smash the old edge so it can't be used accidentally. 438 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 439 } 440 441 #ifdef ASSERT 442 bool is_dead() const; 443 static bool is_not_dead(const Node* n); 444 bool is_reachable_from_root() const; 445 #endif 446 // Check whether node has become unreachable 447 bool is_unreachable(PhaseIterGVN &igvn) const; 448 449 // Set a required input edge, also updates corresponding output edge 450 void add_req( Node *n ); // Append a NEW required input 451 void add_req( Node *n0, Node *n1 ) { 452 add_req(n0); add_req(n1); } 453 void add_req( Node *n0, Node *n1, Node *n2 ) { 454 add_req(n0); add_req(n1); add_req(n2); } 455 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 456 void del_req( uint idx ); // Delete required edge & compact 457 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 458 void ins_req( uint i, Node *n ); // Insert a NEW required input 459 void set_req( uint i, Node *n ) { 460 assert( is_not_dead(n), "can not use dead node"); 461 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 462 assert( !VerifyHashTableKeys || _hash_lock == 0, 463 "remove node from hash table before modifying it"); 464 Node** p = &_in[i]; // cache this._in, across the del_out call 465 if (*p != nullptr) (*p)->del_out((Node *)this); 466 (*p) = n; 467 if (n != nullptr) n->add_out((Node *)this); 468 Compile::current()->record_modified_node(this); 469 } 470 // Light version of set_req() to init inputs after node creation. 471 void init_req( uint i, Node *n ) { 472 assert( (i == 0 && this == n) || 473 is_not_dead(n), "can not use dead node"); 474 assert( i < _cnt, "oob"); 475 assert( !VerifyHashTableKeys || _hash_lock == 0, 476 "remove node from hash table before modifying it"); 477 assert( _in[i] == nullptr, "sanity"); 478 _in[i] = n; 479 if (n != nullptr) n->add_out((Node *)this); 480 Compile::current()->record_modified_node(this); 481 } 482 // Find first occurrence of n among my edges: 483 int find_edge(Node* n); 484 int find_prec_edge(Node* n) { 485 for (uint i = req(); i < len(); i++) { 486 if (_in[i] == n) return i; 487 if (_in[i] == nullptr) { 488 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 489 break; 490 } 491 } 492 return -1; 493 } 494 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 495 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 496 // null out all inputs to eliminate incoming Def-Use edges. 497 void disconnect_inputs(Compile* C); 498 499 // Quickly, return true if and only if I am Compile::current()->top(). 500 bool is_top() const { 501 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 502 return (_out == nullptr); 503 } 504 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 505 void setup_is_top(); 506 507 // Strip away casting. (It is depth-limited.) 508 Node* uncast(bool keep_deps = false) const; 509 // Return whether two Nodes are equivalent, after stripping casting. 510 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 511 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 512 } 513 514 // Find out of current node that matches opcode. 515 Node* find_out_with(int opcode); 516 // Return true if the current node has an out that matches opcode. 517 bool has_out_with(int opcode); 518 // Return true if the current node has an out that matches any of the opcodes. 519 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 520 521 private: 522 static Node* uncast_helper(const Node* n, bool keep_deps); 523 524 // Add an output edge to the end of the list 525 void add_out( Node *n ) { 526 if (is_top()) return; 527 if( _outcnt == _outmax ) out_grow(_outcnt); 528 _out[_outcnt++] = n; 529 } 530 // Delete an output edge 531 void del_out( Node *n ) { 532 if (is_top()) return; 533 Node** outp = &_out[_outcnt]; 534 // Find and remove n 535 do { 536 assert(outp > _out, "Missing Def-Use edge"); 537 } while (*--outp != n); 538 *outp = _out[--_outcnt]; 539 // Smash the old edge so it can't be used accidentally. 540 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 541 // Record that a change happened here. 542 #if OPTO_DU_ITERATOR_ASSERT 543 debug_only(_last_del = n; ++_del_tick); 544 #endif 545 } 546 // Close gap after removing edge. 547 void close_prec_gap_at(uint gap) { 548 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 549 uint i = gap; 550 Node *last = nullptr; 551 for (; i < _max-1; ++i) { 552 Node *next = _in[i+1]; 553 if (next == nullptr) break; 554 last = next; 555 } 556 _in[gap] = last; // Move last slot to empty one. 557 _in[i] = nullptr; // null out last slot. 558 } 559 560 public: 561 // Globally replace this node by a given new node, updating all uses. 562 void replace_by(Node* new_node); 563 // Globally replace this node by a given new node, updating all uses 564 // and cutting input edges of old node. 565 void subsume_by(Node* new_node, Compile* c) { 566 replace_by(new_node); 567 disconnect_inputs(c); 568 } 569 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 570 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 571 // Find the one non-null required input. RegionNode only 572 Node *nonnull_req() const; 573 // Add or remove precedence edges 574 void add_prec( Node *n ); 575 void rm_prec( uint i ); 576 577 // Note: prec(i) will not necessarily point to n if edge already exists. 578 void set_prec( uint i, Node *n ) { 579 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 580 assert(is_not_dead(n), "can not use dead node"); 581 assert(i >= _cnt, "not a precedence edge"); 582 // Avoid spec violation: duplicated prec edge. 583 if (_in[i] == n) return; 584 if (n == nullptr || find_prec_edge(n) != -1) { 585 rm_prec(i); 586 return; 587 } 588 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 589 _in[i] = n; 590 n->add_out((Node *)this); 591 Compile::current()->record_modified_node(this); 592 } 593 594 // Set this node's index, used by cisc_version to replace current node 595 void set_idx(uint new_idx) { 596 _idx = new_idx; 597 } 598 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 599 void swap_edges(uint i1, uint i2) { 600 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 601 // Def-Use info is unchanged 602 Node* n1 = in(i1); 603 Node* n2 = in(i2); 604 _in[i1] = n2; 605 _in[i2] = n1; 606 // If this node is in the hash table, make sure it doesn't need a rehash. 607 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 608 // Flip swapped edges flag. 609 if (has_swapped_edges()) { 610 remove_flag(Node::Flag_has_swapped_edges); 611 } else { 612 add_flag(Node::Flag_has_swapped_edges); 613 } 614 } 615 616 // Iterators over input Nodes for a Node X are written as: 617 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 618 // NOTE: Required edges can contain embedded null pointers. 619 620 //----------------- Other Node Properties 621 622 // Generate class IDs for (some) ideal nodes so that it is possible to determine 623 // the type of a node using a non-virtual method call (the method is_<Node>() below). 624 // 625 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 626 // the type of the node the ID represents; another subset of an ID's bits are reserved 627 // for the superclasses of the node represented by the ID. 628 // 629 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 630 // returns false. A.is_A() returns true. 631 // 632 // If two classes, A and B, have the same superclass, a different bit of A's class id 633 // is reserved for A's type than for B's type. That bit is specified by the third 634 // parameter in the macro DEFINE_CLASS_ID. 635 // 636 // By convention, classes with deeper hierarchy are declared first. Moreover, 637 // classes with the same hierarchy depth are sorted by usage frequency. 638 // 639 // The query method masks the bits to cut off bits of subclasses and then compares 640 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 641 // 642 // Class_MachCall=30, ClassMask_MachCall=31 643 // 12 8 4 0 644 // 0 0 0 0 0 0 0 0 1 1 1 1 0 645 // | | | | 646 // | | | Bit_Mach=2 647 // | | Bit_MachReturn=4 648 // | Bit_MachSafePoint=8 649 // Bit_MachCall=16 650 // 651 // Class_CountedLoop=56, ClassMask_CountedLoop=63 652 // 12 8 4 0 653 // 0 0 0 0 0 0 0 1 1 1 0 0 0 654 // | | | 655 // | | Bit_Region=8 656 // | Bit_Loop=16 657 // Bit_CountedLoop=32 658 659 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 660 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 661 Class_##cl = Class_##supcl + Bit_##cl , \ 662 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 663 664 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 665 // so that its values fit into 32 bits. 666 enum NodeClasses { 667 Bit_Node = 0x00000000, 668 Class_Node = 0x00000000, 669 ClassMask_Node = 0xFFFFFFFF, 670 671 DEFINE_CLASS_ID(Multi, Node, 0) 672 DEFINE_CLASS_ID(SafePoint, Multi, 0) 673 DEFINE_CLASS_ID(Call, SafePoint, 0) 674 DEFINE_CLASS_ID(CallJava, Call, 0) 675 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 676 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 677 DEFINE_CLASS_ID(CallRuntime, Call, 1) 678 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 679 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 680 DEFINE_CLASS_ID(Allocate, Call, 2) 681 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 682 DEFINE_CLASS_ID(AbstractLock, Call, 3) 683 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 684 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 685 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 686 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 687 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 688 DEFINE_CLASS_ID(Catch, PCTable, 0) 689 DEFINE_CLASS_ID(Jump, PCTable, 1) 690 DEFINE_CLASS_ID(If, MultiBranch, 1) 691 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 692 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 693 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 694 DEFINE_CLASS_ID(RangeCheck, If, 1) 695 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 696 DEFINE_CLASS_ID(ParsePredicate, If, 3) 697 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 698 DEFINE_CLASS_ID(Start, Multi, 2) 699 DEFINE_CLASS_ID(MemBar, Multi, 3) 700 DEFINE_CLASS_ID(Initialize, MemBar, 0) 701 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 702 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 703 704 DEFINE_CLASS_ID(Mach, Node, 1) 705 DEFINE_CLASS_ID(MachReturn, Mach, 0) 706 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 707 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 708 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 709 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 710 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 711 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 712 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 713 DEFINE_CLASS_ID(MachBranch, Mach, 1) 714 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 715 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 716 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 717 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 718 DEFINE_CLASS_ID(MachTemp, Mach, 3) 719 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 720 DEFINE_CLASS_ID(MachConstant, Mach, 5) 721 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 722 DEFINE_CLASS_ID(MachMerge, Mach, 6) 723 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 724 DEFINE_CLASS_ID(MachProlog, Mach, 8) 725 DEFINE_CLASS_ID(MachVEP, Mach, 9) 726 727 DEFINE_CLASS_ID(Type, Node, 2) 728 DEFINE_CLASS_ID(Phi, Type, 0) 729 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 730 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 731 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 732 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 733 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 734 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 735 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 736 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 737 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 738 DEFINE_CLASS_ID(CMove, Type, 3) 739 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 740 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 741 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 742 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 743 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 744 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 745 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 746 DEFINE_CLASS_ID(Vector, Type, 7) 747 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 748 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 749 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 750 DEFINE_CLASS_ID(ShiftV, Vector, 3) 751 DEFINE_CLASS_ID(CompressV, Vector, 4) 752 DEFINE_CLASS_ID(ExpandV, Vector, 5) 753 DEFINE_CLASS_ID(CompressM, Vector, 6) 754 DEFINE_CLASS_ID(Reduction, Vector, 7) 755 DEFINE_CLASS_ID(NegV, Vector, 8) 756 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 757 DEFINE_CLASS_ID(MulVL, Vector, 10) 758 DEFINE_CLASS_ID(InlineType, Type, 8) 759 DEFINE_CLASS_ID(Con, Type, 9) 760 DEFINE_CLASS_ID(ConI, Con, 0) 761 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10) 762 DEFINE_CLASS_ID(Convert, Type, 11) 763 764 765 DEFINE_CLASS_ID(Proj, Node, 3) 766 DEFINE_CLASS_ID(CatchProj, Proj, 0) 767 DEFINE_CLASS_ID(JumpProj, Proj, 1) 768 DEFINE_CLASS_ID(IfProj, Proj, 2) 769 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 770 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 771 DEFINE_CLASS_ID(Parm, Proj, 4) 772 DEFINE_CLASS_ID(MachProj, Proj, 5) 773 774 DEFINE_CLASS_ID(Mem, Node, 4) 775 DEFINE_CLASS_ID(Load, Mem, 0) 776 DEFINE_CLASS_ID(LoadVector, Load, 0) 777 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 778 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 779 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 780 DEFINE_CLASS_ID(Store, Mem, 1) 781 DEFINE_CLASS_ID(StoreVector, Store, 0) 782 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 783 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 784 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 785 DEFINE_CLASS_ID(LoadStore, Mem, 2) 786 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 787 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 788 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 789 790 DEFINE_CLASS_ID(Region, Node, 5) 791 DEFINE_CLASS_ID(Loop, Region, 0) 792 DEFINE_CLASS_ID(Root, Loop, 0) 793 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 794 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 795 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 796 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 797 798 DEFINE_CLASS_ID(Sub, Node, 6) 799 DEFINE_CLASS_ID(Cmp, Sub, 0) 800 DEFINE_CLASS_ID(FastLock, Cmp, 0) 801 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 802 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 803 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 804 805 DEFINE_CLASS_ID(MergeMem, Node, 7) 806 DEFINE_CLASS_ID(Bool, Node, 8) 807 DEFINE_CLASS_ID(AddP, Node, 9) 808 DEFINE_CLASS_ID(BoxLock, Node, 10) 809 DEFINE_CLASS_ID(Add, Node, 11) 810 DEFINE_CLASS_ID(Mul, Node, 12) 811 DEFINE_CLASS_ID(ClearArray, Node, 14) 812 DEFINE_CLASS_ID(Halt, Node, 15) 813 DEFINE_CLASS_ID(Opaque1, Node, 16) 814 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 815 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 816 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 817 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 818 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 819 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 820 DEFINE_CLASS_ID(Move, Node, 20) 821 DEFINE_CLASS_ID(LShift, Node, 21) 822 DEFINE_CLASS_ID(Neg, Node, 22) 823 824 _max_classes = ClassMask_Neg 825 }; 826 #undef DEFINE_CLASS_ID 827 828 // Flags are sorted by usage frequency. 829 enum NodeFlags { 830 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 831 Flag_rematerialize = 1 << 1, 832 Flag_needs_anti_dependence_check = 1 << 2, 833 Flag_is_macro = 1 << 3, 834 Flag_is_Con = 1 << 4, 835 Flag_is_cisc_alternate = 1 << 5, 836 Flag_is_dead_loop_safe = 1 << 6, 837 Flag_may_be_short_branch = 1 << 7, 838 Flag_avoid_back_to_back_before = 1 << 8, 839 Flag_avoid_back_to_back_after = 1 << 9, 840 Flag_has_call = 1 << 10, 841 Flag_has_swapped_edges = 1 << 11, 842 Flag_is_scheduled = 1 << 12, 843 Flag_is_expensive = 1 << 13, 844 Flag_is_predicated_vector = 1 << 14, 845 Flag_for_post_loop_opts_igvn = 1 << 15, 846 Flag_for_merge_stores_igvn = 1 << 16, 847 Flag_is_removed_by_peephole = 1 << 17, 848 Flag_is_predicated_using_blend = 1 << 18, 849 _last_flag = Flag_is_predicated_using_blend 850 }; 851 852 class PD; 853 854 private: 855 juint _class_id; 856 juint _flags; 857 858 #ifdef ASSERT 859 static juint max_flags(); 860 #endif 861 862 protected: 863 // These methods should be called from constructors only. 864 void init_class_id(juint c) { 865 _class_id = c; // cast out const 866 } 867 void init_flags(uint fl) { 868 assert(fl <= max_flags(), "invalid node flag"); 869 _flags |= fl; 870 } 871 void clear_flag(uint fl) { 872 assert(fl <= max_flags(), "invalid node flag"); 873 _flags &= ~fl; 874 } 875 876 public: 877 juint class_id() const { return _class_id; } 878 879 juint flags() const { return _flags; } 880 881 void add_flag(juint fl) { init_flags(fl); } 882 883 void remove_flag(juint fl) { clear_flag(fl); } 884 885 // Return a dense integer opcode number 886 virtual int Opcode() const; 887 888 // Virtual inherited Node size 889 virtual uint size_of() const; 890 891 // Other interesting Node properties 892 #define DEFINE_CLASS_QUERY(type) \ 893 bool is_##type() const { \ 894 return ((_class_id & ClassMask_##type) == Class_##type); \ 895 } \ 896 type##Node *as_##type() const { \ 897 assert(is_##type(), "invalid node class: %s", Name()); \ 898 return (type##Node*)this; \ 899 } \ 900 type##Node* isa_##type() const { \ 901 return (is_##type()) ? as_##type() : nullptr; \ 902 } 903 904 DEFINE_CLASS_QUERY(AbstractLock) 905 DEFINE_CLASS_QUERY(Add) 906 DEFINE_CLASS_QUERY(AddP) 907 DEFINE_CLASS_QUERY(Allocate) 908 DEFINE_CLASS_QUERY(AllocateArray) 909 DEFINE_CLASS_QUERY(ArrayCopy) 910 DEFINE_CLASS_QUERY(BaseCountedLoop) 911 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 912 DEFINE_CLASS_QUERY(Blackhole) 913 DEFINE_CLASS_QUERY(Bool) 914 DEFINE_CLASS_QUERY(BoxLock) 915 DEFINE_CLASS_QUERY(Call) 916 DEFINE_CLASS_QUERY(CallDynamicJava) 917 DEFINE_CLASS_QUERY(CallJava) 918 DEFINE_CLASS_QUERY(CallLeaf) 919 DEFINE_CLASS_QUERY(CallLeafNoFP) 920 DEFINE_CLASS_QUERY(CallRuntime) 921 DEFINE_CLASS_QUERY(CallStaticJava) 922 DEFINE_CLASS_QUERY(Catch) 923 DEFINE_CLASS_QUERY(CatchProj) 924 DEFINE_CLASS_QUERY(CheckCastPP) 925 DEFINE_CLASS_QUERY(CastII) 926 DEFINE_CLASS_QUERY(CastLL) 927 DEFINE_CLASS_QUERY(CastFF) 928 DEFINE_CLASS_QUERY(ConI) 929 DEFINE_CLASS_QUERY(CastPP) 930 DEFINE_CLASS_QUERY(ConstraintCast) 931 DEFINE_CLASS_QUERY(ClearArray) 932 DEFINE_CLASS_QUERY(CMove) 933 DEFINE_CLASS_QUERY(Cmp) 934 DEFINE_CLASS_QUERY(Convert) 935 DEFINE_CLASS_QUERY(CountedLoop) 936 DEFINE_CLASS_QUERY(CountedLoopEnd) 937 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 938 DEFINE_CLASS_QUERY(DecodeN) 939 DEFINE_CLASS_QUERY(DecodeNKlass) 940 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 941 DEFINE_CLASS_QUERY(EncodeP) 942 DEFINE_CLASS_QUERY(EncodePKlass) 943 DEFINE_CLASS_QUERY(FastLock) 944 DEFINE_CLASS_QUERY(FastUnlock) 945 DEFINE_CLASS_QUERY(FlatArrayCheck) 946 DEFINE_CLASS_QUERY(Halt) 947 DEFINE_CLASS_QUERY(If) 948 DEFINE_CLASS_QUERY(RangeCheck) 949 DEFINE_CLASS_QUERY(IfProj) 950 DEFINE_CLASS_QUERY(IfFalse) 951 DEFINE_CLASS_QUERY(IfTrue) 952 DEFINE_CLASS_QUERY(Initialize) 953 DEFINE_CLASS_QUERY(Jump) 954 DEFINE_CLASS_QUERY(JumpProj) 955 DEFINE_CLASS_QUERY(LongCountedLoop) 956 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 957 DEFINE_CLASS_QUERY(Load) 958 DEFINE_CLASS_QUERY(LoadStore) 959 DEFINE_CLASS_QUERY(LoadStoreConditional) 960 DEFINE_CLASS_QUERY(Lock) 961 DEFINE_CLASS_QUERY(Loop) 962 DEFINE_CLASS_QUERY(LShift) 963 DEFINE_CLASS_QUERY(Mach) 964 DEFINE_CLASS_QUERY(MachBranch) 965 DEFINE_CLASS_QUERY(MachCall) 966 DEFINE_CLASS_QUERY(MachCallDynamicJava) 967 DEFINE_CLASS_QUERY(MachCallJava) 968 DEFINE_CLASS_QUERY(MachCallLeaf) 969 DEFINE_CLASS_QUERY(MachCallRuntime) 970 DEFINE_CLASS_QUERY(MachCallStaticJava) 971 DEFINE_CLASS_QUERY(MachConstantBase) 972 DEFINE_CLASS_QUERY(MachConstant) 973 DEFINE_CLASS_QUERY(MachGoto) 974 DEFINE_CLASS_QUERY(MachIf) 975 DEFINE_CLASS_QUERY(MachJump) 976 DEFINE_CLASS_QUERY(MachNullCheck) 977 DEFINE_CLASS_QUERY(MachProj) 978 DEFINE_CLASS_QUERY(MachProlog) 979 DEFINE_CLASS_QUERY(MachReturn) 980 DEFINE_CLASS_QUERY(MachSafePoint) 981 DEFINE_CLASS_QUERY(MachSpillCopy) 982 DEFINE_CLASS_QUERY(MachTemp) 983 DEFINE_CLASS_QUERY(MachMemBar) 984 DEFINE_CLASS_QUERY(MachMerge) 985 DEFINE_CLASS_QUERY(MachVEP) 986 DEFINE_CLASS_QUERY(Mem) 987 DEFINE_CLASS_QUERY(MemBar) 988 DEFINE_CLASS_QUERY(MemBarStoreStore) 989 DEFINE_CLASS_QUERY(MergeMem) 990 DEFINE_CLASS_QUERY(Move) 991 DEFINE_CLASS_QUERY(Mul) 992 DEFINE_CLASS_QUERY(Multi) 993 DEFINE_CLASS_QUERY(MultiBranch) 994 DEFINE_CLASS_QUERY(MulVL) 995 DEFINE_CLASS_QUERY(Neg) 996 DEFINE_CLASS_QUERY(NegV) 997 DEFINE_CLASS_QUERY(NeverBranch) 998 DEFINE_CLASS_QUERY(Opaque1) 999 DEFINE_CLASS_QUERY(OpaqueNotNull) 1000 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 1001 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 1002 DEFINE_CLASS_QUERY(OpaqueLoopInit) 1003 DEFINE_CLASS_QUERY(OpaqueLoopStride) 1004 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 1005 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 1006 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 1007 DEFINE_CLASS_QUERY(Parm) 1008 DEFINE_CLASS_QUERY(ParsePredicate) 1009 DEFINE_CLASS_QUERY(PCTable) 1010 DEFINE_CLASS_QUERY(Phi) 1011 DEFINE_CLASS_QUERY(Proj) 1012 DEFINE_CLASS_QUERY(Reduction) 1013 DEFINE_CLASS_QUERY(Region) 1014 DEFINE_CLASS_QUERY(Root) 1015 DEFINE_CLASS_QUERY(SafePoint) 1016 DEFINE_CLASS_QUERY(SafePointScalarObject) 1017 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1018 DEFINE_CLASS_QUERY(Start) 1019 DEFINE_CLASS_QUERY(Store) 1020 DEFINE_CLASS_QUERY(Sub) 1021 DEFINE_CLASS_QUERY(SubTypeCheck) 1022 DEFINE_CLASS_QUERY(Type) 1023 DEFINE_CLASS_QUERY(InlineType) 1024 DEFINE_CLASS_QUERY(Vector) 1025 DEFINE_CLASS_QUERY(VectorMaskCmp) 1026 DEFINE_CLASS_QUERY(VectorUnbox) 1027 DEFINE_CLASS_QUERY(VectorReinterpret) 1028 DEFINE_CLASS_QUERY(CompressV) 1029 DEFINE_CLASS_QUERY(ExpandV) 1030 DEFINE_CLASS_QUERY(CompressM) 1031 DEFINE_CLASS_QUERY(LoadVector) 1032 DEFINE_CLASS_QUERY(LoadVectorGather) 1033 DEFINE_CLASS_QUERY(LoadVectorMasked) 1034 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1035 DEFINE_CLASS_QUERY(StoreVector) 1036 DEFINE_CLASS_QUERY(StoreVectorScatter) 1037 DEFINE_CLASS_QUERY(StoreVectorMasked) 1038 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1039 DEFINE_CLASS_QUERY(SaturatingVector) 1040 DEFINE_CLASS_QUERY(ShiftV) 1041 DEFINE_CLASS_QUERY(Unlock) 1042 1043 #undef DEFINE_CLASS_QUERY 1044 1045 // duplicate of is_MachSpillCopy() 1046 bool is_SpillCopy () const { 1047 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1048 } 1049 1050 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1051 // The data node which is safe to leave in dead loop during IGVN optimization. 1052 bool is_dead_loop_safe() const; 1053 1054 // is_Copy() returns copied edge index (0 or 1) 1055 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1056 1057 virtual bool is_CFG() const { return false; } 1058 1059 // If this node is control-dependent on a test, can it be 1060 // rerouted to a dominating equivalent test? This is usually 1061 // true of non-CFG nodes, but can be false for operations which 1062 // depend for their correct sequencing on more than one test. 1063 // (In that case, hoisting to a dominating test may silently 1064 // skip some other important test.) 1065 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1066 1067 // When building basic blocks, I need to have a notion of block beginning 1068 // Nodes, next block selector Nodes (block enders), and next block 1069 // projections. These calls need to work on their machine equivalents. The 1070 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1071 bool is_block_start() const { 1072 if ( is_Region() ) 1073 return this == (const Node*)in(0); 1074 else 1075 return is_Start(); 1076 } 1077 1078 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1079 // Goto and Return. This call also returns the block ending Node. 1080 virtual const Node *is_block_proj() const; 1081 1082 // The node is a "macro" node which needs to be expanded before matching 1083 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1084 // The node is expensive: the best control is set during loop opts 1085 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1086 // The node's original edge position is swapped. 1087 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1088 1089 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1090 1091 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1092 1093 // Used in lcm to mark nodes that have scheduled 1094 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1095 1096 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1097 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; } 1098 1099 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1100 static bool may_be_loop_entry(Node* n) { 1101 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1102 } 1103 1104 //----------------- Optimization 1105 1106 // Get the worst-case Type output for this Node. 1107 virtual const class Type *bottom_type() const; 1108 1109 // If we find a better type for a node, try to record it permanently. 1110 // Return true if this node actually changed. 1111 // Be sure to do the hash_delete game in the "rehash" variant. 1112 void raise_bottom_type(const Type* new_type); 1113 1114 // Get the address type with which this node uses and/or defs memory, 1115 // or null if none. The address type is conservatively wide. 1116 // Returns non-null for calls, membars, loads, stores, etc. 1117 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1118 virtual const class TypePtr *adr_type() const { return nullptr; } 1119 1120 // Return an existing node which computes the same function as this node. 1121 // The optimistic combined algorithm requires this to return a Node which 1122 // is a small number of steps away (e.g., one of my inputs). 1123 virtual Node* Identity(PhaseGVN* phase); 1124 1125 // Return the set of values this Node can take on at runtime. 1126 virtual const Type* Value(PhaseGVN* phase) const; 1127 1128 // Return a node which is more "ideal" than the current node. 1129 // The invariants on this call are subtle. If in doubt, read the 1130 // treatise in node.cpp above the default implementation AND TEST WITH 1131 // -XX:VerifyIterativeGVN=1 1132 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1133 1134 // Some nodes have specific Ideal subgraph transformations only if they are 1135 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1136 // for the transformations to happen. 1137 bool has_special_unique_user() const; 1138 1139 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1140 Node* find_exact_control(Node* ctrl); 1141 1142 // Results of the dominance analysis. 1143 enum class DomResult { 1144 NotDominate, // 'this' node does not dominate 'sub'. 1145 Dominate, // 'this' node dominates or is equal to 'sub'. 1146 EncounteredDeadCode // Result is undefined due to encountering dead code. 1147 }; 1148 // Check if 'this' node dominates or equal to 'sub'. 1149 DomResult dominates(Node* sub, Node_List &nlist); 1150 1151 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1152 public: 1153 1154 // See if there is valid pipeline info 1155 static const Pipeline *pipeline_class(); 1156 virtual const Pipeline *pipeline() const; 1157 1158 // Compute the latency from the def to this instruction of the ith input node 1159 uint latency(uint i); 1160 1161 // Hash & compare functions, for pessimistic value numbering 1162 1163 // If the hash function returns the special sentinel value NO_HASH, 1164 // the node is guaranteed never to compare equal to any other node. 1165 // If we accidentally generate a hash with value NO_HASH the node 1166 // won't go into the table and we'll lose a little optimization. 1167 static const uint NO_HASH = 0; 1168 virtual uint hash() const; 1169 virtual bool cmp( const Node &n ) const; 1170 1171 // Operation appears to be iteratively computed (such as an induction variable) 1172 // It is possible for this operation to return false for a loop-varying 1173 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1174 bool is_iteratively_computed(); 1175 1176 // Determine if a node is a counted loop induction variable. 1177 // NOTE: The method is defined in "loopnode.cpp". 1178 bool is_cloop_ind_var() const; 1179 1180 // Return a node with opcode "opc" and same inputs as "this" if one can 1181 // be found; Otherwise return null; 1182 Node* find_similar(int opc); 1183 1184 // Return the unique control out if only one. Null if none or more than one. 1185 Node* unique_ctrl_out_or_null() const; 1186 // Return the unique control out. Asserts if none or more than one control out. 1187 Node* unique_ctrl_out() const; 1188 1189 // Set control or add control as precedence edge 1190 void ensure_control_or_add_prec(Node* c); 1191 void add_prec_from(Node* n); 1192 1193 // Visit boundary uses of the node and apply a callback function for each. 1194 // Recursively traverse uses, stopping and applying the callback when 1195 // reaching a boundary node, defined by is_boundary. Note: the function 1196 // definition appears after the complete type definition of Node_List. 1197 template <typename Callback, typename Check> 1198 void visit_uses(Callback callback, Check is_boundary) const; 1199 1200 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1201 // (Load and range check CastII nodes). 1202 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1203 virtual Node* pin_array_access_node() const { 1204 return nullptr; 1205 } 1206 1207 //----------------- Code Generation 1208 1209 // Ideal register class for Matching. Zero means unmatched instruction 1210 // (these are cloned instead of converted to machine nodes). 1211 virtual uint ideal_reg() const; 1212 1213 static const uint NotAMachineReg; // must be > max. machine register 1214 1215 // Do we Match on this edge index or not? Generally false for Control 1216 // and true for everything else. Weird for calls & returns. 1217 virtual uint match_edge(uint idx) const; 1218 1219 // Register class output is returned in 1220 virtual const RegMask &out_RegMask() const; 1221 // Register class input is expected in 1222 virtual const RegMask &in_RegMask(uint) const; 1223 // Should we clone rather than spill this instruction? 1224 bool rematerialize() const; 1225 1226 // Return JVM State Object if this Node carries debug info, or null otherwise 1227 virtual JVMState* jvms() const; 1228 1229 // Print as assembly 1230 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1231 // Emit bytes using C2_MacroAssembler 1232 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1233 // Size of instruction in bytes 1234 virtual uint size(PhaseRegAlloc *ra_) const; 1235 1236 // Convenience function to extract an integer constant from a node. 1237 // If it is not an integer constant (either Con, CastII, or Mach), 1238 // return value_if_unknown. 1239 jint find_int_con(jint value_if_unknown) const { 1240 const TypeInt* t = find_int_type(); 1241 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1242 } 1243 // Return the constant, knowing it is an integer constant already 1244 jint get_int() const { 1245 const TypeInt* t = find_int_type(); 1246 guarantee(t != nullptr, "must be con"); 1247 return t->get_con(); 1248 } 1249 // Here's where the work is done. Can produce non-constant int types too. 1250 const TypeInt* find_int_type() const; 1251 const TypeInteger* find_integer_type(BasicType bt) const; 1252 1253 // Same thing for long (and intptr_t, via type.hpp): 1254 jlong get_long() const { 1255 const TypeLong* t = find_long_type(); 1256 guarantee(t != nullptr, "must be con"); 1257 return t->get_con(); 1258 } 1259 jlong find_long_con(jint value_if_unknown) const { 1260 const TypeLong* t = find_long_type(); 1261 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1262 } 1263 const TypeLong* find_long_type() const; 1264 1265 jlong get_integer_as_long(BasicType bt) const { 1266 const TypeInteger* t = find_integer_type(bt); 1267 guarantee(t != nullptr && t->is_con(), "must be con"); 1268 return t->get_con_as_long(bt); 1269 } 1270 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1271 const TypeInteger* t = find_integer_type(bt); 1272 if (t == nullptr || !t->is_con()) return value_if_unknown; 1273 return t->get_con_as_long(bt); 1274 } 1275 const TypePtr* get_ptr_type() const; 1276 1277 // These guys are called by code generated by ADLC: 1278 intptr_t get_ptr() const; 1279 intptr_t get_narrowcon() const; 1280 jdouble getd() const; 1281 jfloat getf() const; 1282 jshort geth() const; 1283 1284 // Nodes which are pinned into basic blocks 1285 virtual bool pinned() const { return false; } 1286 1287 // Nodes which use memory without consuming it, hence need antidependences 1288 // More specifically, needs_anti_dependence_check returns true iff the node 1289 // (a) does a load, and (b) does not perform a store (except perhaps to a 1290 // stack slot or some other unaliased location). 1291 bool needs_anti_dependence_check() const; 1292 1293 // Return which operand this instruction may cisc-spill. In other words, 1294 // return operand position that can convert from reg to memory access 1295 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1296 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1297 1298 // Whether this is a memory-writing machine node. 1299 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1300 1301 // Whether this is a memory phi node 1302 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1303 1304 bool is_div_or_mod(BasicType bt) const; 1305 1306 bool is_pure_function() const; 1307 1308 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1309 1310 //----------------- Printing, etc 1311 #ifndef PRODUCT 1312 public: 1313 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1314 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1315 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1316 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1317 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1318 class DumpConfig { 1319 public: 1320 // overridden to implement coloring of node idx 1321 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1322 virtual void post_dump(outputStream *st) = 0; 1323 }; 1324 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1325 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1326 void dump() const; // print node with newline 1327 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1328 void dump(int depth) const; // Print this node, recursively to depth d 1329 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1330 void dump_comp() const; // Print this node in compact representation. 1331 // Print this node in compact representation. 1332 void dump_comp(const char* suffix, outputStream *st = tty) const; 1333 private: 1334 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1335 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1336 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1337 public: 1338 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1339 // Print compact per-node info 1340 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1341 1342 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1343 1344 // This call defines a class-unique string used to identify class instances 1345 virtual const char *Name() const; 1346 1347 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1348 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1349 #endif 1350 #ifdef ASSERT 1351 void verify_construction(); 1352 bool verify_jvms(const JVMState* jvms) const; 1353 1354 Node* _debug_orig; // Original version of this, if any. 1355 Node* debug_orig() const { return _debug_orig; } 1356 void set_debug_orig(Node* orig); // _debug_orig = orig 1357 void dump_orig(outputStream *st, bool print_key = true) const; 1358 1359 uint64_t _debug_idx; // Unique value assigned to every node. 1360 uint64_t debug_idx() const { return _debug_idx; } 1361 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1362 1363 int _hash_lock; // Barrier to modifications of nodes in the hash table 1364 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1365 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1366 1367 static void init_NodeProperty(); 1368 1369 #if OPTO_DU_ITERATOR_ASSERT 1370 const Node* _last_del; // The last deleted node. 1371 uint _del_tick; // Bumped when a deletion happens.. 1372 #endif 1373 #endif 1374 }; 1375 1376 inline bool not_a_node(const Node* n) { 1377 if (n == nullptr) return true; 1378 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1379 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1380 return false; 1381 } 1382 1383 //----------------------------------------------------------------------------- 1384 // Iterators over DU info, and associated Node functions. 1385 1386 #if OPTO_DU_ITERATOR_ASSERT 1387 1388 // Common code for assertion checking on DU iterators. 1389 class DUIterator_Common { 1390 #ifdef ASSERT 1391 protected: 1392 bool _vdui; // cached value of VerifyDUIterators 1393 const Node* _node; // the node containing the _out array 1394 uint _outcnt; // cached node->_outcnt 1395 uint _del_tick; // cached node->_del_tick 1396 Node* _last; // last value produced by the iterator 1397 1398 void sample(const Node* node); // used by c'tor to set up for verifies 1399 void verify(const Node* node, bool at_end_ok = false); 1400 void verify_resync(); 1401 void reset(const DUIterator_Common& that); 1402 1403 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1404 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1405 #else 1406 #define I_VDUI_ONLY(i,x) { } 1407 #endif //ASSERT 1408 }; 1409 1410 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1411 1412 // Default DU iterator. Allows appends onto the out array. 1413 // Allows deletion from the out array only at the current point. 1414 // Usage: 1415 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1416 // Node* y = x->out(i); 1417 // ... 1418 // } 1419 // Compiles in product mode to a unsigned integer index, which indexes 1420 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1421 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1422 // before continuing the loop. You must delete only the last-produced 1423 // edge. You must delete only a single copy of the last-produced edge, 1424 // or else you must delete all copies at once (the first time the edge 1425 // is produced by the iterator). 1426 class DUIterator : public DUIterator_Common { 1427 friend class Node; 1428 1429 // This is the index which provides the product-mode behavior. 1430 // Whatever the product-mode version of the system does to the 1431 // DUI index is done to this index. All other fields in 1432 // this class are used only for assertion checking. 1433 uint _idx; 1434 1435 #ifdef ASSERT 1436 uint _refresh_tick; // Records the refresh activity. 1437 1438 void sample(const Node* node); // Initialize _refresh_tick etc. 1439 void verify(const Node* node, bool at_end_ok = false); 1440 void verify_increment(); // Verify an increment operation. 1441 void verify_resync(); // Verify that we can back up over a deletion. 1442 void verify_finish(); // Verify that the loop terminated properly. 1443 void refresh(); // Resample verification info. 1444 void reset(const DUIterator& that); // Resample after assignment. 1445 #endif 1446 1447 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1448 { _idx = 0; debug_only(sample(node)); } 1449 1450 public: 1451 // initialize to garbage; clear _vdui to disable asserts 1452 DUIterator() 1453 { /*initialize to garbage*/ debug_only(_vdui = false); } 1454 1455 DUIterator(const DUIterator& that) 1456 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1457 1458 void operator++(int dummy_to_specify_postfix_op) 1459 { _idx++; VDUI_ONLY(verify_increment()); } 1460 1461 void operator--() 1462 { VDUI_ONLY(verify_resync()); --_idx; } 1463 1464 ~DUIterator() 1465 { VDUI_ONLY(verify_finish()); } 1466 1467 void operator=(const DUIterator& that) 1468 { _idx = that._idx; debug_only(reset(that)); } 1469 }; 1470 1471 DUIterator Node::outs() const 1472 { return DUIterator(this, 0); } 1473 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1474 { I_VDUI_ONLY(i, i.refresh()); return i; } 1475 bool Node::has_out(DUIterator& i) const 1476 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1477 Node* Node::out(DUIterator& i) const 1478 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1479 1480 1481 // Faster DU iterator. Disallows insertions into the out array. 1482 // Allows deletion from the out array only at the current point. 1483 // Usage: 1484 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1485 // Node* y = x->fast_out(i); 1486 // ... 1487 // } 1488 // Compiles in product mode to raw Node** pointer arithmetic, with 1489 // no reloading of pointers from the original node x. If you delete, 1490 // you must perform "--i; --imax" just before continuing the loop. 1491 // If you delete multiple copies of the same edge, you must decrement 1492 // imax, but not i, multiple times: "--i, imax -= num_edges". 1493 class DUIterator_Fast : public DUIterator_Common { 1494 friend class Node; 1495 friend class DUIterator_Last; 1496 1497 // This is the pointer which provides the product-mode behavior. 1498 // Whatever the product-mode version of the system does to the 1499 // DUI pointer is done to this pointer. All other fields in 1500 // this class are used only for assertion checking. 1501 Node** _outp; 1502 1503 #ifdef ASSERT 1504 void verify(const Node* node, bool at_end_ok = false); 1505 void verify_limit(); 1506 void verify_resync(); 1507 void verify_relimit(uint n); 1508 void reset(const DUIterator_Fast& that); 1509 #endif 1510 1511 // Note: offset must be signed, since -1 is sometimes passed 1512 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1513 { _outp = node->_out + offset; debug_only(sample(node)); } 1514 1515 public: 1516 // initialize to garbage; clear _vdui to disable asserts 1517 DUIterator_Fast() 1518 { /*initialize to garbage*/ debug_only(_vdui = false); } 1519 1520 DUIterator_Fast(const DUIterator_Fast& that) 1521 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1522 1523 void operator++(int dummy_to_specify_postfix_op) 1524 { _outp++; VDUI_ONLY(verify(_node, true)); } 1525 1526 void operator--() 1527 { VDUI_ONLY(verify_resync()); --_outp; } 1528 1529 void operator-=(uint n) // applied to the limit only 1530 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1531 1532 bool operator<(DUIterator_Fast& limit) { 1533 I_VDUI_ONLY(*this, this->verify(_node, true)); 1534 I_VDUI_ONLY(limit, limit.verify_limit()); 1535 return _outp < limit._outp; 1536 } 1537 1538 void operator=(const DUIterator_Fast& that) 1539 { _outp = that._outp; debug_only(reset(that)); } 1540 }; 1541 1542 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1543 // Assign a limit pointer to the reference argument: 1544 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1545 // Return the base pointer: 1546 return DUIterator_Fast(this, 0); 1547 } 1548 Node* Node::fast_out(DUIterator_Fast& i) const { 1549 I_VDUI_ONLY(i, i.verify(this)); 1550 return debug_only(i._last=) *i._outp; 1551 } 1552 1553 1554 // Faster DU iterator. Requires each successive edge to be removed. 1555 // Does not allow insertion of any edges. 1556 // Usage: 1557 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1558 // Node* y = x->last_out(i); 1559 // ... 1560 // } 1561 // Compiles in product mode to raw Node** pointer arithmetic, with 1562 // no reloading of pointers from the original node x. 1563 class DUIterator_Last : private DUIterator_Fast { 1564 friend class Node; 1565 1566 #ifdef ASSERT 1567 void verify(const Node* node, bool at_end_ok = false); 1568 void verify_limit(); 1569 void verify_step(uint num_edges); 1570 #endif 1571 1572 // Note: offset must be signed, since -1 is sometimes passed 1573 DUIterator_Last(const Node* node, ptrdiff_t offset) 1574 : DUIterator_Fast(node, offset) { } 1575 1576 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1577 void operator<(int) {} // do not use 1578 1579 public: 1580 DUIterator_Last() { } 1581 // initialize to garbage 1582 1583 DUIterator_Last(const DUIterator_Last& that) = default; 1584 1585 void operator--() 1586 { _outp--; VDUI_ONLY(verify_step(1)); } 1587 1588 void operator-=(uint n) 1589 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1590 1591 bool operator>=(DUIterator_Last& limit) { 1592 I_VDUI_ONLY(*this, this->verify(_node, true)); 1593 I_VDUI_ONLY(limit, limit.verify_limit()); 1594 return _outp >= limit._outp; 1595 } 1596 1597 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1598 }; 1599 1600 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1601 // Assign a limit pointer to the reference argument: 1602 imin = DUIterator_Last(this, 0); 1603 // Return the initial pointer: 1604 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1605 } 1606 Node* Node::last_out(DUIterator_Last& i) const { 1607 I_VDUI_ONLY(i, i.verify(this)); 1608 return debug_only(i._last=) *i._outp; 1609 } 1610 1611 #endif //OPTO_DU_ITERATOR_ASSERT 1612 1613 #undef I_VDUI_ONLY 1614 #undef VDUI_ONLY 1615 1616 // An Iterator that truly follows the iterator pattern. Doesn't 1617 // support deletion but could be made to. 1618 // 1619 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1620 // Node* m = i.get(); 1621 // 1622 class SimpleDUIterator : public StackObj { 1623 private: 1624 Node* node; 1625 DUIterator_Fast imax; 1626 DUIterator_Fast i; 1627 public: 1628 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1629 bool has_next() { return i < imax; } 1630 void next() { i++; } 1631 Node* get() { return node->fast_out(i); } 1632 }; 1633 1634 1635 //----------------------------------------------------------------------------- 1636 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1637 // Abstractly provides an infinite array of Node*'s, initialized to null. 1638 // Note that the constructor just zeros things, and since I use Arena 1639 // allocation I do not need a destructor to reclaim storage. 1640 class Node_Array : public AnyObj { 1641 protected: 1642 Arena* _a; // Arena to allocate in 1643 uint _max; 1644 Node** _nodes; 1645 ReallocMark _nesting; // Safety checks for arena reallocation 1646 1647 // Grow array to required capacity 1648 void maybe_grow(uint i) { 1649 if (i >= _max) { 1650 grow(i); 1651 } 1652 } 1653 void grow(uint i); 1654 1655 public: 1656 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1657 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1658 clear(); 1659 } 1660 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1661 1662 NONCOPYABLE(Node_Array); 1663 Node_Array& operator=(Node_Array&&) = delete; 1664 // Allow move constructor for && (eg. capture return of function) 1665 Node_Array(Node_Array&&) = default; 1666 1667 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1668 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1669 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1670 Node** adr() { return _nodes; } 1671 // Extend the mapping: index i maps to Node *n. 1672 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1673 void insert( uint i, Node *n ); 1674 void remove( uint i ); // Remove, preserving order 1675 // Clear all entries in _nodes to null but keep storage 1676 void clear() { 1677 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1678 } 1679 1680 uint max() const { return _max; } 1681 void dump() const; 1682 }; 1683 1684 class Node_List : public Node_Array { 1685 uint _cnt; 1686 public: 1687 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1688 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1689 1690 NONCOPYABLE(Node_List); 1691 Node_List& operator=(Node_List&&) = delete; 1692 // Allow move constructor for && (eg. capture return of function) 1693 Node_List(Node_List&&) = default; 1694 1695 bool contains(const Node* n) const { 1696 for (uint e = 0; e < size(); e++) { 1697 if (at(e) == n) return true; 1698 } 1699 return false; 1700 } 1701 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1702 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1703 void push( Node *b ) { map(_cnt++,b); } 1704 void yank( Node *n ); // Find and remove 1705 Node *pop() { return _nodes[--_cnt]; } 1706 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1707 void copy(const Node_List& from) { 1708 if (from._max > _max) { 1709 grow(from._max); 1710 } 1711 _cnt = from._cnt; 1712 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1713 } 1714 1715 uint size() const { return _cnt; } 1716 void dump() const; 1717 void dump_simple() const; 1718 }; 1719 1720 // Definition must appear after complete type definition of Node_List 1721 template <typename Callback, typename Check> 1722 void Node::visit_uses(Callback callback, Check is_boundary) const { 1723 ResourceMark rm; 1724 VectorSet visited; 1725 Node_List worklist; 1726 1727 // The initial worklist consists of the direct uses 1728 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1729 Node* out = fast_out(k); 1730 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1731 } 1732 1733 while (worklist.size() > 0) { 1734 Node* use = worklist.pop(); 1735 // Apply callback on boundary nodes 1736 if (is_boundary(use)) { 1737 callback(use); 1738 } else { 1739 // Not a boundary node, continue search 1740 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1741 Node* out = use->fast_out(k); 1742 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1743 } 1744 } 1745 } 1746 } 1747 1748 1749 //------------------------------Unique_Node_List------------------------------- 1750 class Unique_Node_List : public Node_List { 1751 VectorSet _in_worklist; 1752 uint _clock_index; // Index in list where to pop from next 1753 public: 1754 Unique_Node_List() : Node_List(), _clock_index(0) {} 1755 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1756 1757 NONCOPYABLE(Unique_Node_List); 1758 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1759 // Allow move constructor for && (eg. capture return of function) 1760 Unique_Node_List(Unique_Node_List&&) = default; 1761 1762 void remove( Node *n ); 1763 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; } 1764 VectorSet& member_set(){ return _in_worklist; } 1765 1766 void push(Node* b) { 1767 if( !_in_worklist.test_set(b->_idx) ) 1768 Node_List::push(b); 1769 } 1770 void push_non_cfg_inputs_of(const Node* node) { 1771 for (uint i = 1; i < node->req(); i++) { 1772 Node* input = node->in(i); 1773 if (input != nullptr && !input->is_CFG()) { 1774 push(input); 1775 } 1776 } 1777 } 1778 1779 void push_outputs_of(const Node* node) { 1780 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1781 Node* output = node->fast_out(i); 1782 push(output); 1783 } 1784 } 1785 1786 Node *pop() { 1787 if( _clock_index >= size() ) _clock_index = 0; 1788 Node *b = at(_clock_index); 1789 map( _clock_index, Node_List::pop()); 1790 if (size() != 0) _clock_index++; // Always start from 0 1791 _in_worklist.remove(b->_idx); 1792 return b; 1793 } 1794 Node *remove(uint i) { 1795 Node *b = Node_List::at(i); 1796 _in_worklist.remove(b->_idx); 1797 map(i,Node_List::pop()); 1798 return b; 1799 } 1800 void yank(Node *n) { 1801 _in_worklist.remove(n->_idx); 1802 Node_List::yank(n); 1803 } 1804 void clear() { 1805 _in_worklist.clear(); // Discards storage but grows automatically 1806 Node_List::clear(); 1807 _clock_index = 0; 1808 } 1809 void ensure_empty() { 1810 assert(size() == 0, "must be empty"); 1811 clear(); // just in case 1812 } 1813 1814 // Used after parsing to remove useless nodes before Iterative GVN 1815 void remove_useless_nodes(VectorSet& useful); 1816 1817 // If the idx of the Nodes change, we must recompute the VectorSet 1818 void recompute_idx_set() { 1819 _in_worklist.clear(); 1820 for (uint i = 0; i < size(); i++) { 1821 Node* n = at(i); 1822 _in_worklist.set(n->_idx); 1823 } 1824 } 1825 1826 #ifdef ASSERT 1827 bool is_subset_of(Unique_Node_List& other) { 1828 for (uint i = 0; i < size(); i++) { 1829 Node* n = at(i); 1830 if (!other.member(n)) { 1831 return false; 1832 } 1833 } 1834 return true; 1835 } 1836 #endif 1837 1838 bool contains(const Node* n) const { 1839 fatal("use faster member() instead"); 1840 return false; 1841 } 1842 1843 #ifndef PRODUCT 1844 void print_set() const { _in_worklist.print(); } 1845 #endif 1846 }; 1847 1848 // Unique_Mixed_Node_List 1849 // unique: nodes are added only once 1850 // mixed: allow new and old nodes 1851 class Unique_Mixed_Node_List : public ResourceObj { 1852 public: 1853 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1854 1855 void add(Node* node) { 1856 if (not_a_node(node)) { 1857 return; // Gracefully handle null, -1, 0xabababab, etc. 1858 } 1859 if (_visited_set[node] == nullptr) { 1860 _visited_set.Insert(node, node); 1861 _worklist.push(node); 1862 } 1863 } 1864 1865 Node* operator[] (uint i) const { 1866 return _worklist[i]; 1867 } 1868 1869 size_t size() { 1870 return _worklist.size(); 1871 } 1872 1873 private: 1874 Dict _visited_set; 1875 Node_List _worklist; 1876 }; 1877 1878 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1879 inline void Compile::record_for_igvn(Node* n) { 1880 _igvn_worklist->push(n); 1881 } 1882 1883 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1884 inline void Compile::remove_for_igvn(Node* n) { 1885 _igvn_worklist->remove(n); 1886 } 1887 1888 //------------------------------Node_Stack------------------------------------- 1889 class Node_Stack { 1890 protected: 1891 struct INode { 1892 Node *node; // Processed node 1893 uint indx; // Index of next node's child 1894 }; 1895 INode *_inode_top; // tos, stack grows up 1896 INode *_inode_max; // End of _inodes == _inodes + _max 1897 INode *_inodes; // Array storage for the stack 1898 Arena *_a; // Arena to allocate in 1899 ReallocMark _nesting; // Safety checks for arena reallocation 1900 void grow(); 1901 public: 1902 Node_Stack(int size) { 1903 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1904 _a = Thread::current()->resource_area(); 1905 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1906 _inode_max = _inodes + max; 1907 _inode_top = _inodes - 1; // stack is empty 1908 } 1909 1910 Node_Stack(Arena *a, int size) : _a(a) { 1911 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1912 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1913 _inode_max = _inodes + max; 1914 _inode_top = _inodes - 1; // stack is empty 1915 } 1916 1917 void pop() { 1918 assert(_inode_top >= _inodes, "node stack underflow"); 1919 --_inode_top; 1920 } 1921 void push(Node *n, uint i) { 1922 ++_inode_top; 1923 grow(); 1924 INode *top = _inode_top; // optimization 1925 top->node = n; 1926 top->indx = i; 1927 } 1928 Node *node() const { 1929 return _inode_top->node; 1930 } 1931 Node* node_at(uint i) const { 1932 assert(_inodes + i <= _inode_top, "in range"); 1933 return _inodes[i].node; 1934 } 1935 uint index() const { 1936 return _inode_top->indx; 1937 } 1938 uint index_at(uint i) const { 1939 assert(_inodes + i <= _inode_top, "in range"); 1940 return _inodes[i].indx; 1941 } 1942 void set_node(Node *n) { 1943 _inode_top->node = n; 1944 } 1945 void set_index(uint i) { 1946 _inode_top->indx = i; 1947 } 1948 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1949 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1950 bool is_nonempty() const { return (_inode_top >= _inodes); } 1951 bool is_empty() const { return (_inode_top < _inodes); } 1952 void clear() { _inode_top = _inodes - 1; } // retain storage 1953 1954 // Node_Stack is used to map nodes. 1955 Node* find(uint idx) const; 1956 1957 NONCOPYABLE(Node_Stack); 1958 }; 1959 1960 1961 //-----------------------------Node_Notes-------------------------------------- 1962 // Debugging or profiling annotations loosely and sparsely associated 1963 // with some nodes. See Compile::node_notes_at for the accessor. 1964 class Node_Notes { 1965 JVMState* _jvms; 1966 1967 public: 1968 Node_Notes(JVMState* jvms = nullptr) { 1969 _jvms = jvms; 1970 } 1971 1972 JVMState* jvms() { return _jvms; } 1973 void set_jvms(JVMState* x) { _jvms = x; } 1974 1975 // True if there is nothing here. 1976 bool is_clear() { 1977 return (_jvms == nullptr); 1978 } 1979 1980 // Make there be nothing here. 1981 void clear() { 1982 _jvms = nullptr; 1983 } 1984 1985 // Make a new, clean node notes. 1986 static Node_Notes* make(Compile* C) { 1987 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1988 nn->clear(); 1989 return nn; 1990 } 1991 1992 Node_Notes* clone(Compile* C) { 1993 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1994 (*nn) = (*this); 1995 return nn; 1996 } 1997 1998 // Absorb any information from source. 1999 bool update_from(Node_Notes* source) { 2000 bool changed = false; 2001 if (source != nullptr) { 2002 if (source->jvms() != nullptr) { 2003 set_jvms(source->jvms()); 2004 changed = true; 2005 } 2006 } 2007 return changed; 2008 } 2009 }; 2010 2011 // Inlined accessors for Compile::node_nodes that require the preceding class: 2012 inline Node_Notes* 2013 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 2014 int idx, bool can_grow) { 2015 assert(idx >= 0, "oob"); 2016 int block_idx = (idx >> _log2_node_notes_block_size); 2017 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2018 if (grow_by >= 0) { 2019 if (!can_grow) return nullptr; 2020 grow_node_notes(arr, grow_by + 1); 2021 } 2022 if (arr == nullptr) return nullptr; 2023 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2024 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2025 } 2026 2027 inline Node_Notes* Compile::node_notes_at(int idx) { 2028 return locate_node_notes(_node_note_array, idx, false); 2029 } 2030 2031 inline bool 2032 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2033 if (value == nullptr || value->is_clear()) 2034 return false; // nothing to write => write nothing 2035 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2036 assert(loc != nullptr, ""); 2037 return loc->update_from(value); 2038 } 2039 2040 2041 //------------------------------TypeNode--------------------------------------- 2042 // Node with a Type constant. 2043 class TypeNode : public Node { 2044 protected: 2045 virtual uint hash() const; // Check the type 2046 virtual bool cmp( const Node &n ) const; 2047 virtual uint size_of() const; // Size is bigger 2048 const Type* const _type; 2049 public: 2050 void set_type(const Type* t) { 2051 assert(t != nullptr, "sanity"); 2052 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2053 *(const Type**)&_type = t; // cast away const-ness 2054 // If this node is in the hash table, make sure it doesn't need a rehash. 2055 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2056 } 2057 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2058 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2059 init_class_id(Class_Type); 2060 } 2061 virtual const Type* Value(PhaseGVN* phase) const; 2062 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 2063 virtual const Type *bottom_type() const; 2064 virtual uint ideal_reg() const; 2065 2066 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str); 2067 #ifndef PRODUCT 2068 virtual void dump_spec(outputStream *st) const; 2069 virtual void dump_compact_spec(outputStream *st) const; 2070 #endif 2071 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str); 2072 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const; 2073 }; 2074 2075 #include "opto/opcodes.hpp" 2076 2077 #define Op_IL(op) \ 2078 inline int Op_ ## op(BasicType bt) { \ 2079 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2080 if (bt == T_INT) { \ 2081 return Op_## op ## I; \ 2082 } \ 2083 return Op_## op ## L; \ 2084 } 2085 2086 Op_IL(Add) 2087 Op_IL(And) 2088 Op_IL(Sub) 2089 Op_IL(Mul) 2090 Op_IL(URShift) 2091 Op_IL(LShift) 2092 Op_IL(Xor) 2093 Op_IL(Cmp) 2094 Op_IL(Div) 2095 Op_IL(Mod) 2096 Op_IL(UDiv) 2097 Op_IL(UMod) 2098 2099 inline int Op_ConIL(BasicType bt) { 2100 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2101 if (bt == T_INT) { 2102 return Op_ConI; 2103 } 2104 return Op_ConL; 2105 } 2106 2107 inline int Op_Cmp_unsigned(BasicType bt) { 2108 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2109 if (bt == T_INT) { 2110 return Op_CmpU; 2111 } 2112 return Op_CmpUL; 2113 } 2114 2115 inline int Op_Cast(BasicType bt) { 2116 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2117 if (bt == T_INT) { 2118 return Op_CastII; 2119 } 2120 return Op_CastLL; 2121 } 2122 2123 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2124 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2125 if (bt == T_INT) { 2126 if (is_unsigned) { 2127 return Op_UDivI; 2128 } else { 2129 return Op_DivI; 2130 } 2131 } 2132 if (is_unsigned) { 2133 return Op_UDivL; 2134 } else { 2135 return Op_DivL; 2136 } 2137 } 2138 2139 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2140 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2141 if (bt == T_INT) { 2142 if (is_unsigned) { 2143 return Op_UDivModI; 2144 } else { 2145 return Op_DivModI; 2146 } 2147 } 2148 if (is_unsigned) { 2149 return Op_UDivModL; 2150 } else { 2151 return Op_DivModL; 2152 } 2153 } 2154 2155 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2156 // a customized BFS. 2157 class BFSActions : public StackObj { 2158 public: 2159 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2160 // method to provide a custom filter. 2161 virtual bool should_visit(Node* node) const { 2162 // By default, visit all inputs. 2163 return true; 2164 }; 2165 2166 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2167 // but the BFS will continue to visit all unvisited nodes in the queue. 2168 virtual bool is_target_node(Node* node) const = 0; 2169 2170 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2171 virtual void target_node_action(Node* target_node) = 0; 2172 }; 2173 2174 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2175 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2176 class DataNodeBFS : public StackObj { 2177 BFSActions& _bfs_actions; 2178 2179 public: 2180 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2181 2182 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2183 void run(Node* start_node) { 2184 ResourceMark rm; 2185 Unique_Node_List _nodes_to_visit; 2186 _nodes_to_visit.push(start_node); 2187 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2188 Node* next = _nodes_to_visit[i]; 2189 for (uint j = 1; j < next->req(); j++) { 2190 Node* input = next->in(j); 2191 if (_bfs_actions.is_target_node(input)) { 2192 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2193 _bfs_actions.target_node_action(input); 2194 } else if (_bfs_actions.should_visit(input)) { 2195 _nodes_to_visit.push(input); 2196 } 2197 } 2198 } 2199 } 2200 }; 2201 2202 #endif // SHARE_OPTO_NODE_HPP