1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastHHNode; 62 class CastDDNode; 63 class CastVVNode; 64 class CastIINode; 65 class CastLLNode; 66 class CastPPNode; 67 class CatchNode; 68 class CatchProjNode; 69 class CheckCastPPNode; 70 class ClearArrayNode; 71 class CmpNode; 72 class CodeBuffer; 73 class ConstraintCastNode; 74 class ConNode; 75 class ConINode; 76 class ConvertNode; 77 class CompareAndSwapNode; 78 class CompareAndExchangeNode; 79 class CountedLoopNode; 80 class CountedLoopEndNode; 81 class DecodeNarrowPtrNode; 82 class DecodeNNode; 83 class DecodeNKlassNode; 84 class EncodeNarrowPtrNode; 85 class EncodePNode; 86 class EncodePKlassNode; 87 class FastLockNode; 88 class FastUnlockNode; 89 class FlatArrayCheckNode; 90 class HaltNode; 91 class IfNode; 92 class IfProjNode; 93 class IfFalseNode; 94 class IfTrueNode; 95 class InitializeNode; 96 class JVMState; 97 class JumpNode; 98 class JumpProjNode; 99 class LoadNode; 100 class LoadStoreNode; 101 class LoadStoreConditionalNode; 102 class LockNode; 103 class LongCountedLoopNode; 104 class LongCountedLoopEndNode; 105 class LoopNode; 106 class LShiftNode; 107 class MachBranchNode; 108 class MachCallDynamicJavaNode; 109 class MachCallJavaNode; 110 class MachCallLeafNode; 111 class MachCallNode; 112 class MachCallRuntimeNode; 113 class MachCallStaticJavaNode; 114 class MachConstantBaseNode; 115 class MachConstantNode; 116 class MachGotoNode; 117 class MachIfNode; 118 class MachJumpNode; 119 class MachNode; 120 class MachNullCheckNode; 121 class MachProjNode; 122 class MachPrologNode; 123 class MachReturnNode; 124 class MachSafePointNode; 125 class MachSpillCopyNode; 126 class MachTempNode; 127 class MachMergeNode; 128 class MachMemBarNode; 129 class MachVEPNode; 130 class Matcher; 131 class MemBarNode; 132 class MemBarStoreStoreNode; 133 class MemNode; 134 class MergeMemNode; 135 class MoveNode; 136 class MulNode; 137 class MultiNode; 138 class MultiBranchNode; 139 class NegNode; 140 class NegVNode; 141 class NeverBranchNode; 142 class Opaque1Node; 143 class OpaqueLoopInitNode; 144 class OpaqueLoopStrideNode; 145 class OpaqueMultiversioningNode; 146 class OpaqueNotNullNode; 147 class OpaqueInitializedAssertionPredicateNode; 148 class OpaqueTemplateAssertionPredicateNode; 149 class OuterStripMinedLoopNode; 150 class OuterStripMinedLoopEndNode; 151 class Node; 152 class Node_Array; 153 class Node_List; 154 class Node_Stack; 155 class OopMap; 156 class ParmNode; 157 class ParsePredicateNode; 158 class PCTableNode; 159 class PhaseCCP; 160 class PhaseGVN; 161 class PhaseIterGVN; 162 class PhaseRegAlloc; 163 class PhaseTransform; 164 class PhaseValues; 165 class PhiNode; 166 class Pipeline; 167 class PopulateIndexNode; 168 class ProjNode; 169 class RangeCheckNode; 170 class ReductionNode; 171 class RegMask; 172 class RegionNode; 173 class RootNode; 174 class SafePointNode; 175 class SafePointScalarObjectNode; 176 class SafePointScalarMergeNode; 177 class SaturatingVectorNode; 178 class StartNode; 179 class State; 180 class StoreNode; 181 class SubNode; 182 class SubTypeCheckNode; 183 class Type; 184 class TypeNode; 185 class UnlockNode; 186 class InlineTypeNode; 187 class VectorNode; 188 class LoadVectorNode; 189 class LoadVectorMaskedNode; 190 class StoreVectorMaskedNode; 191 class LoadVectorGatherNode; 192 class LoadVectorGatherMaskedNode; 193 class StoreVectorNode; 194 class StoreVectorScatterNode; 195 class StoreVectorScatterMaskedNode; 196 class VerifyVectorAlignmentNode; 197 class VectorMaskCmpNode; 198 class VectorUnboxNode; 199 class VectorSet; 200 class VectorReinterpretNode; 201 class ShiftVNode; 202 class MulVLNode; 203 class ExpandVNode; 204 class CompressVNode; 205 class CompressMNode; 206 class C2_MacroAssembler; 207 208 209 #ifndef OPTO_DU_ITERATOR_ASSERT 210 #ifdef ASSERT 211 #define OPTO_DU_ITERATOR_ASSERT 1 212 #else 213 #define OPTO_DU_ITERATOR_ASSERT 0 214 #endif 215 #endif //OPTO_DU_ITERATOR_ASSERT 216 217 #if OPTO_DU_ITERATOR_ASSERT 218 class DUIterator; 219 class DUIterator_Fast; 220 class DUIterator_Last; 221 #else 222 typedef uint DUIterator; 223 typedef Node** DUIterator_Fast; 224 typedef Node** DUIterator_Last; 225 #endif 226 227 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 228 229 // Node Sentinel 230 #define NodeSentinel (Node*)-1 231 232 // Unknown count frequency 233 #define COUNT_UNKNOWN (-1.0f) 234 235 //------------------------------Node------------------------------------------- 236 // Nodes define actions in the program. They create values, which have types. 237 // They are both vertices in a directed graph and program primitives. Nodes 238 // are labeled; the label is the "opcode", the primitive function in the lambda 239 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 240 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 241 // the Node's function. These inputs also define a Type equation for the Node. 242 // Solving these Type equations amounts to doing dataflow analysis. 243 // Control and data are uniformly represented in the graph. Finally, Nodes 244 // have a unique dense integer index which is used to index into side arrays 245 // whenever I have phase-specific information. 246 247 class Node { 248 249 // Lots of restrictions on cloning Nodes 250 NONCOPYABLE(Node); 251 252 public: 253 friend class Compile; 254 #if OPTO_DU_ITERATOR_ASSERT 255 friend class DUIterator_Common; 256 friend class DUIterator; 257 friend class DUIterator_Fast; 258 friend class DUIterator_Last; 259 #endif 260 261 // Because Nodes come and go, I define an Arena of Node structures to pull 262 // from. This should allow fast access to node creation & deletion. This 263 // field is a local cache of a value defined in some "program fragment" for 264 // which these Nodes are just a part of. 265 266 inline void* operator new(size_t x) throw() { 267 Compile* C = Compile::current(); 268 Node* n = (Node*)C->node_arena()->AmallocWords(x); 269 return (void*)n; 270 } 271 272 // Delete is a NOP 273 void operator delete( void *ptr ) {} 274 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 275 void destruct(PhaseValues* phase); 276 277 // Create a new Node. Required is the number is of inputs required for 278 // semantic correctness. 279 Node( uint required ); 280 281 // Create a new Node with given input edges. 282 // This version requires use of the "edge-count" new. 283 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 284 Node( Node *n0 ); 285 Node( Node *n0, Node *n1 ); 286 Node( Node *n0, Node *n1, Node *n2 ); 287 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 288 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 289 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 290 Node( Node *n0, Node *n1, Node *n2, Node *n3, 291 Node *n4, Node *n5, Node *n6 ); 292 293 // Clone an inherited Node given only the base Node type. 294 Node* clone() const; 295 296 // Clone a Node, immediately supplying one or two new edges. 297 // The first and second arguments, if non-null, replace in(1) and in(2), 298 // respectively. 299 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 300 Node* nn = clone(); 301 if (in1 != nullptr) nn->set_req(1, in1); 302 if (in2 != nullptr) nn->set_req(2, in2); 303 return nn; 304 } 305 306 private: 307 // Shared setup for the above constructors. 308 // Handles all interactions with Compile::current. 309 // Puts initial values in all Node fields except _idx. 310 // Returns the initial value for _idx, which cannot 311 // be initialized by assignment. 312 inline int Init(int req); 313 314 //----------------- input edge handling 315 protected: 316 friend class PhaseCFG; // Access to address of _in array elements 317 Node **_in; // Array of use-def references to Nodes 318 Node **_out; // Array of def-use references to Nodes 319 320 // Input edges are split into two categories. Required edges are required 321 // for semantic correctness; order is important and nulls are allowed. 322 // Precedence edges are used to help determine execution order and are 323 // added, e.g., for scheduling purposes. They are unordered and not 324 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 325 // are required, from _cnt to _max-1 are precedence edges. 326 node_idx_t _cnt; // Total number of required Node inputs. 327 328 node_idx_t _max; // Actual length of input array. 329 330 // Output edges are an unordered list of def-use edges which exactly 331 // correspond to required input edges which point from other nodes 332 // to this one. Thus the count of the output edges is the number of 333 // users of this node. 334 node_idx_t _outcnt; // Total number of Node outputs. 335 336 node_idx_t _outmax; // Actual length of output array. 337 338 // Grow the actual input array to the next larger power-of-2 bigger than len. 339 void grow( uint len ); 340 // Grow the output array to the next larger power-of-2 bigger than len. 341 void out_grow( uint len ); 342 343 public: 344 // Each Node is assigned a unique small/dense number. This number is used 345 // to index into auxiliary arrays of data and bit vectors. 346 // The value of _idx can be changed using the set_idx() method. 347 // 348 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 349 // Therefore, it updates the value of the _idx field. The parse-time _idx is 350 // preserved in _parse_idx. 351 node_idx_t _idx; 352 DEBUG_ONLY(const node_idx_t _parse_idx;) 353 // IGV node identifier. Two nodes, possibly in different compilation phases, 354 // have the same IGV identifier if (and only if) they are the very same node 355 // (same memory address) or one is "derived" from the other (by e.g. 356 // renumbering or matching). This identifier makes it possible to follow the 357 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 358 NOT_PRODUCT(node_idx_t _igv_idx;) 359 360 // Get the (read-only) number of input edges 361 uint req() const { return _cnt; } 362 uint len() const { return _max; } 363 // Get the (read-only) number of output edges 364 uint outcnt() const { return _outcnt; } 365 366 #if OPTO_DU_ITERATOR_ASSERT 367 // Iterate over the out-edges of this node. Deletions are illegal. 368 inline DUIterator outs() const; 369 // Use this when the out array might have changed to suppress asserts. 370 inline DUIterator& refresh_out_pos(DUIterator& i) const; 371 // Does the node have an out at this position? (Used for iteration.) 372 inline bool has_out(DUIterator& i) const; 373 inline Node* out(DUIterator& i) const; 374 // Iterate over the out-edges of this node. All changes are illegal. 375 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 376 inline Node* fast_out(DUIterator_Fast& i) const; 377 // Iterate over the out-edges of this node, deleting one at a time. 378 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 379 inline Node* last_out(DUIterator_Last& i) const; 380 // The inline bodies of all these methods are after the iterator definitions. 381 #else 382 // Iterate over the out-edges of this node. Deletions are illegal. 383 // This iteration uses integral indexes, to decouple from array reallocations. 384 DUIterator outs() const { return 0; } 385 // Use this when the out array might have changed to suppress asserts. 386 DUIterator refresh_out_pos(DUIterator i) const { return i; } 387 388 // Reference to the i'th output Node. Error if out of bounds. 389 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 390 // Does the node have an out at this position? (Used for iteration.) 391 bool has_out(DUIterator i) const { return i < _outcnt; } 392 393 // Iterate over the out-edges of this node. All changes are illegal. 394 // This iteration uses a pointer internal to the out array. 395 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 396 Node** out = _out; 397 // Assign a limit pointer to the reference argument: 398 max = out + (ptrdiff_t)_outcnt; 399 // Return the base pointer: 400 return out; 401 } 402 Node* fast_out(DUIterator_Fast i) const { return *i; } 403 // Iterate over the out-edges of this node, deleting one at a time. 404 // This iteration uses a pointer internal to the out array. 405 DUIterator_Last last_outs(DUIterator_Last& min) const { 406 Node** out = _out; 407 // Assign a limit pointer to the reference argument: 408 min = out; 409 // Return the pointer to the start of the iteration: 410 return out + (ptrdiff_t)_outcnt - 1; 411 } 412 Node* last_out(DUIterator_Last i) const { return *i; } 413 #endif 414 415 // Reference to the i'th input Node. Error if out of bounds. 416 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 417 // Reference to the i'th input Node. null if out of bounds. 418 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 419 // Reference to the i'th output Node. Error if out of bounds. 420 // Use this accessor sparingly. We are going trying to use iterators instead. 421 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 422 // Return the unique out edge. 423 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 424 // Delete out edge at position 'i' by moving last out edge to position 'i' 425 void raw_del_out(uint i) { 426 assert(i < _outcnt,"oob"); 427 assert(_outcnt > 0,"oob"); 428 #if OPTO_DU_ITERATOR_ASSERT 429 // Record that a change happened here. 430 debug_only(_last_del = _out[i]; ++_del_tick); 431 #endif 432 _out[i] = _out[--_outcnt]; 433 // Smash the old edge so it can't be used accidentally. 434 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 435 } 436 437 #ifdef ASSERT 438 bool is_dead() const; 439 static bool is_not_dead(const Node* n); 440 bool is_reachable_from_root() const; 441 #endif 442 // Check whether node has become unreachable 443 bool is_unreachable(PhaseIterGVN &igvn) const; 444 445 // Set a required input edge, also updates corresponding output edge 446 void add_req( Node *n ); // Append a NEW required input 447 void add_req( Node *n0, Node *n1 ) { 448 add_req(n0); add_req(n1); } 449 void add_req( Node *n0, Node *n1, Node *n2 ) { 450 add_req(n0); add_req(n1); add_req(n2); } 451 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 452 void del_req( uint idx ); // Delete required edge & compact 453 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 454 void ins_req( uint i, Node *n ); // Insert a NEW required input 455 void set_req( uint i, Node *n ) { 456 assert( is_not_dead(n), "can not use dead node"); 457 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 458 assert( !VerifyHashTableKeys || _hash_lock == 0, 459 "remove node from hash table before modifying it"); 460 Node** p = &_in[i]; // cache this._in, across the del_out call 461 if (*p != nullptr) (*p)->del_out((Node *)this); 462 (*p) = n; 463 if (n != nullptr) n->add_out((Node *)this); 464 Compile::current()->record_modified_node(this); 465 } 466 // Light version of set_req() to init inputs after node creation. 467 void init_req( uint i, Node *n ) { 468 assert( (i == 0 && this == n) || 469 is_not_dead(n), "can not use dead node"); 470 assert( i < _cnt, "oob"); 471 assert( !VerifyHashTableKeys || _hash_lock == 0, 472 "remove node from hash table before modifying it"); 473 assert( _in[i] == nullptr, "sanity"); 474 _in[i] = n; 475 if (n != nullptr) n->add_out((Node *)this); 476 Compile::current()->record_modified_node(this); 477 } 478 // Find first occurrence of n among my edges: 479 int find_edge(Node* n); 480 int find_prec_edge(Node* n) { 481 for (uint i = req(); i < len(); i++) { 482 if (_in[i] == n) return i; 483 if (_in[i] == nullptr) { 484 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 485 break; 486 } 487 } 488 return -1; 489 } 490 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 491 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 492 // null out all inputs to eliminate incoming Def-Use edges. 493 void disconnect_inputs(Compile* C); 494 495 // Quickly, return true if and only if I am Compile::current()->top(). 496 bool is_top() const { 497 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 498 return (_out == nullptr); 499 } 500 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 501 void setup_is_top(); 502 503 // Strip away casting. (It is depth-limited.) 504 Node* uncast(bool keep_deps = false) const; 505 // Return whether two Nodes are equivalent, after stripping casting. 506 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 507 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 508 } 509 510 // Find out of current node that matches opcode. 511 Node* find_out_with(int opcode); 512 // Return true if the current node has an out that matches opcode. 513 bool has_out_with(int opcode); 514 // Return true if the current node has an out that matches any of the opcodes. 515 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 516 517 private: 518 static Node* uncast_helper(const Node* n, bool keep_deps); 519 520 // Add an output edge to the end of the list 521 void add_out( Node *n ) { 522 if (is_top()) return; 523 if( _outcnt == _outmax ) out_grow(_outcnt); 524 _out[_outcnt++] = n; 525 } 526 // Delete an output edge 527 void del_out( Node *n ) { 528 if (is_top()) return; 529 Node** outp = &_out[_outcnt]; 530 // Find and remove n 531 do { 532 assert(outp > _out, "Missing Def-Use edge"); 533 } while (*--outp != n); 534 *outp = _out[--_outcnt]; 535 // Smash the old edge so it can't be used accidentally. 536 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 537 // Record that a change happened here. 538 #if OPTO_DU_ITERATOR_ASSERT 539 debug_only(_last_del = n; ++_del_tick); 540 #endif 541 } 542 // Close gap after removing edge. 543 void close_prec_gap_at(uint gap) { 544 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 545 uint i = gap; 546 Node *last = nullptr; 547 for (; i < _max-1; ++i) { 548 Node *next = _in[i+1]; 549 if (next == nullptr) break; 550 last = next; 551 } 552 _in[gap] = last; // Move last slot to empty one. 553 _in[i] = nullptr; // null out last slot. 554 } 555 556 public: 557 // Globally replace this node by a given new node, updating all uses. 558 void replace_by(Node* new_node); 559 // Globally replace this node by a given new node, updating all uses 560 // and cutting input edges of old node. 561 void subsume_by(Node* new_node, Compile* c) { 562 replace_by(new_node); 563 disconnect_inputs(c); 564 } 565 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 566 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 567 // Find the one non-null required input. RegionNode only 568 Node *nonnull_req() const; 569 // Add or remove precedence edges 570 void add_prec( Node *n ); 571 void rm_prec( uint i ); 572 573 // Note: prec(i) will not necessarily point to n if edge already exists. 574 void set_prec( uint i, Node *n ) { 575 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 576 assert(is_not_dead(n), "can not use dead node"); 577 assert(i >= _cnt, "not a precedence edge"); 578 // Avoid spec violation: duplicated prec edge. 579 if (_in[i] == n) return; 580 if (n == nullptr || find_prec_edge(n) != -1) { 581 rm_prec(i); 582 return; 583 } 584 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 585 _in[i] = n; 586 n->add_out((Node *)this); 587 Compile::current()->record_modified_node(this); 588 } 589 590 // Set this node's index, used by cisc_version to replace current node 591 void set_idx(uint new_idx) { 592 _idx = new_idx; 593 } 594 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 595 void swap_edges(uint i1, uint i2) { 596 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 597 // Def-Use info is unchanged 598 Node* n1 = in(i1); 599 Node* n2 = in(i2); 600 _in[i1] = n2; 601 _in[i2] = n1; 602 // If this node is in the hash table, make sure it doesn't need a rehash. 603 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 604 // Flip swapped edges flag. 605 if (has_swapped_edges()) { 606 remove_flag(Node::Flag_has_swapped_edges); 607 } else { 608 add_flag(Node::Flag_has_swapped_edges); 609 } 610 } 611 612 // Iterators over input Nodes for a Node X are written as: 613 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 614 // NOTE: Required edges can contain embedded null pointers. 615 616 //----------------- Other Node Properties 617 618 // Generate class IDs for (some) ideal nodes so that it is possible to determine 619 // the type of a node using a non-virtual method call (the method is_<Node>() below). 620 // 621 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 622 // the type of the node the ID represents; another subset of an ID's bits are reserved 623 // for the superclasses of the node represented by the ID. 624 // 625 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 626 // returns false. A.is_A() returns true. 627 // 628 // If two classes, A and B, have the same superclass, a different bit of A's class id 629 // is reserved for A's type than for B's type. That bit is specified by the third 630 // parameter in the macro DEFINE_CLASS_ID. 631 // 632 // By convention, classes with deeper hierarchy are declared first. Moreover, 633 // classes with the same hierarchy depth are sorted by usage frequency. 634 // 635 // The query method masks the bits to cut off bits of subclasses and then compares 636 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 637 // 638 // Class_MachCall=30, ClassMask_MachCall=31 639 // 12 8 4 0 640 // 0 0 0 0 0 0 0 0 1 1 1 1 0 641 // | | | | 642 // | | | Bit_Mach=2 643 // | | Bit_MachReturn=4 644 // | Bit_MachSafePoint=8 645 // Bit_MachCall=16 646 // 647 // Class_CountedLoop=56, ClassMask_CountedLoop=63 648 // 12 8 4 0 649 // 0 0 0 0 0 0 0 1 1 1 0 0 0 650 // | | | 651 // | | Bit_Region=8 652 // | Bit_Loop=16 653 // Bit_CountedLoop=32 654 655 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 656 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 657 Class_##cl = Class_##supcl + Bit_##cl , \ 658 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 659 660 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 661 // so that its values fit into 32 bits. 662 enum NodeClasses { 663 Bit_Node = 0x00000000, 664 Class_Node = 0x00000000, 665 ClassMask_Node = 0xFFFFFFFF, 666 667 DEFINE_CLASS_ID(Multi, Node, 0) 668 DEFINE_CLASS_ID(SafePoint, Multi, 0) 669 DEFINE_CLASS_ID(Call, SafePoint, 0) 670 DEFINE_CLASS_ID(CallJava, Call, 0) 671 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 672 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 673 DEFINE_CLASS_ID(CallRuntime, Call, 1) 674 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 675 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 676 DEFINE_CLASS_ID(Allocate, Call, 2) 677 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 678 DEFINE_CLASS_ID(AbstractLock, Call, 3) 679 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 680 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 681 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 682 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 683 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 684 DEFINE_CLASS_ID(Catch, PCTable, 0) 685 DEFINE_CLASS_ID(Jump, PCTable, 1) 686 DEFINE_CLASS_ID(If, MultiBranch, 1) 687 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 688 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 689 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 690 DEFINE_CLASS_ID(RangeCheck, If, 1) 691 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 692 DEFINE_CLASS_ID(ParsePredicate, If, 3) 693 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 694 DEFINE_CLASS_ID(Start, Multi, 2) 695 DEFINE_CLASS_ID(MemBar, Multi, 3) 696 DEFINE_CLASS_ID(Initialize, MemBar, 0) 697 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 698 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 699 700 DEFINE_CLASS_ID(Mach, Node, 1) 701 DEFINE_CLASS_ID(MachReturn, Mach, 0) 702 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 703 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 704 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 705 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 706 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 707 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 708 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 709 DEFINE_CLASS_ID(MachBranch, Mach, 1) 710 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 711 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 712 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 713 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 714 DEFINE_CLASS_ID(MachTemp, Mach, 3) 715 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 716 DEFINE_CLASS_ID(MachConstant, Mach, 5) 717 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 718 DEFINE_CLASS_ID(MachMerge, Mach, 6) 719 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 720 DEFINE_CLASS_ID(MachProlog, Mach, 8) 721 DEFINE_CLASS_ID(MachVEP, Mach, 9) 722 723 DEFINE_CLASS_ID(Type, Node, 2) 724 DEFINE_CLASS_ID(Phi, Type, 0) 725 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 726 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 727 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 728 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 729 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 730 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 731 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 732 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 733 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 734 DEFINE_CLASS_ID(CMove, Type, 3) 735 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 736 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 737 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 738 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 739 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 740 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 741 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 742 DEFINE_CLASS_ID(Vector, Type, 7) 743 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 744 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 745 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 746 DEFINE_CLASS_ID(ShiftV, Vector, 3) 747 DEFINE_CLASS_ID(CompressV, Vector, 4) 748 DEFINE_CLASS_ID(ExpandV, Vector, 5) 749 DEFINE_CLASS_ID(CompressM, Vector, 6) 750 DEFINE_CLASS_ID(Reduction, Vector, 7) 751 DEFINE_CLASS_ID(NegV, Vector, 8) 752 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 753 DEFINE_CLASS_ID(MulVL, Vector, 10) 754 DEFINE_CLASS_ID(InlineType, Type, 8) 755 DEFINE_CLASS_ID(Con, Type, 9) 756 DEFINE_CLASS_ID(ConI, Con, 0) 757 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10) 758 DEFINE_CLASS_ID(Convert, Type, 11) 759 760 761 DEFINE_CLASS_ID(Proj, Node, 3) 762 DEFINE_CLASS_ID(CatchProj, Proj, 0) 763 DEFINE_CLASS_ID(JumpProj, Proj, 1) 764 DEFINE_CLASS_ID(IfProj, Proj, 2) 765 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 766 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 767 DEFINE_CLASS_ID(Parm, Proj, 4) 768 DEFINE_CLASS_ID(MachProj, Proj, 5) 769 770 DEFINE_CLASS_ID(Mem, Node, 4) 771 DEFINE_CLASS_ID(Load, Mem, 0) 772 DEFINE_CLASS_ID(LoadVector, Load, 0) 773 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 774 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 775 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 776 DEFINE_CLASS_ID(Store, Mem, 1) 777 DEFINE_CLASS_ID(StoreVector, Store, 0) 778 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 779 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 780 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 781 DEFINE_CLASS_ID(LoadStore, Mem, 2) 782 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 783 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 784 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 785 786 DEFINE_CLASS_ID(Region, Node, 5) 787 DEFINE_CLASS_ID(Loop, Region, 0) 788 DEFINE_CLASS_ID(Root, Loop, 0) 789 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 790 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 791 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 792 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 793 794 DEFINE_CLASS_ID(Sub, Node, 6) 795 DEFINE_CLASS_ID(Cmp, Sub, 0) 796 DEFINE_CLASS_ID(FastLock, Cmp, 0) 797 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 798 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 799 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 800 801 DEFINE_CLASS_ID(MergeMem, Node, 7) 802 DEFINE_CLASS_ID(Bool, Node, 8) 803 DEFINE_CLASS_ID(AddP, Node, 9) 804 DEFINE_CLASS_ID(BoxLock, Node, 10) 805 DEFINE_CLASS_ID(Add, Node, 11) 806 DEFINE_CLASS_ID(Mul, Node, 12) 807 DEFINE_CLASS_ID(ClearArray, Node, 14) 808 DEFINE_CLASS_ID(Halt, Node, 15) 809 DEFINE_CLASS_ID(Opaque1, Node, 16) 810 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 811 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 812 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 813 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 814 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 815 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 816 DEFINE_CLASS_ID(Move, Node, 20) 817 DEFINE_CLASS_ID(LShift, Node, 21) 818 DEFINE_CLASS_ID(Neg, Node, 22) 819 820 _max_classes = ClassMask_Neg 821 }; 822 #undef DEFINE_CLASS_ID 823 824 // Flags are sorted by usage frequency. 825 enum NodeFlags { 826 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 827 Flag_rematerialize = 1 << 1, 828 Flag_needs_anti_dependence_check = 1 << 2, 829 Flag_is_macro = 1 << 3, 830 Flag_is_Con = 1 << 4, 831 Flag_is_cisc_alternate = 1 << 5, 832 Flag_is_dead_loop_safe = 1 << 6, 833 Flag_may_be_short_branch = 1 << 7, 834 Flag_avoid_back_to_back_before = 1 << 8, 835 Flag_avoid_back_to_back_after = 1 << 9, 836 Flag_has_call = 1 << 10, 837 Flag_has_swapped_edges = 1 << 11, 838 Flag_is_scheduled = 1 << 12, 839 Flag_is_expensive = 1 << 13, 840 Flag_is_predicated_vector = 1 << 14, 841 Flag_for_post_loop_opts_igvn = 1 << 15, 842 Flag_is_removed_by_peephole = 1 << 16, 843 Flag_is_predicated_using_blend = 1 << 17, 844 _last_flag = Flag_is_predicated_using_blend 845 }; 846 847 class PD; 848 849 private: 850 juint _class_id; 851 juint _flags; 852 853 #ifdef ASSERT 854 static juint max_flags(); 855 #endif 856 857 protected: 858 // These methods should be called from constructors only. 859 void init_class_id(juint c) { 860 _class_id = c; // cast out const 861 } 862 void init_flags(uint fl) { 863 assert(fl <= max_flags(), "invalid node flag"); 864 _flags |= fl; 865 } 866 void clear_flag(uint fl) { 867 assert(fl <= max_flags(), "invalid node flag"); 868 _flags &= ~fl; 869 } 870 871 public: 872 juint class_id() const { return _class_id; } 873 874 juint flags() const { return _flags; } 875 876 void add_flag(juint fl) { init_flags(fl); } 877 878 void remove_flag(juint fl) { clear_flag(fl); } 879 880 // Return a dense integer opcode number 881 virtual int Opcode() const; 882 883 // Virtual inherited Node size 884 virtual uint size_of() const; 885 886 // Other interesting Node properties 887 #define DEFINE_CLASS_QUERY(type) \ 888 bool is_##type() const { \ 889 return ((_class_id & ClassMask_##type) == Class_##type); \ 890 } \ 891 type##Node *as_##type() const { \ 892 assert(is_##type(), "invalid node class: %s", Name()); \ 893 return (type##Node*)this; \ 894 } \ 895 type##Node* isa_##type() const { \ 896 return (is_##type()) ? as_##type() : nullptr; \ 897 } 898 899 DEFINE_CLASS_QUERY(AbstractLock) 900 DEFINE_CLASS_QUERY(Add) 901 DEFINE_CLASS_QUERY(AddP) 902 DEFINE_CLASS_QUERY(Allocate) 903 DEFINE_CLASS_QUERY(AllocateArray) 904 DEFINE_CLASS_QUERY(ArrayCopy) 905 DEFINE_CLASS_QUERY(BaseCountedLoop) 906 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 907 DEFINE_CLASS_QUERY(Blackhole) 908 DEFINE_CLASS_QUERY(Bool) 909 DEFINE_CLASS_QUERY(BoxLock) 910 DEFINE_CLASS_QUERY(Call) 911 DEFINE_CLASS_QUERY(CallDynamicJava) 912 DEFINE_CLASS_QUERY(CallJava) 913 DEFINE_CLASS_QUERY(CallLeaf) 914 DEFINE_CLASS_QUERY(CallLeafNoFP) 915 DEFINE_CLASS_QUERY(CallRuntime) 916 DEFINE_CLASS_QUERY(CallStaticJava) 917 DEFINE_CLASS_QUERY(Catch) 918 DEFINE_CLASS_QUERY(CatchProj) 919 DEFINE_CLASS_QUERY(CheckCastPP) 920 DEFINE_CLASS_QUERY(CastII) 921 DEFINE_CLASS_QUERY(CastLL) 922 DEFINE_CLASS_QUERY(CastFF) 923 DEFINE_CLASS_QUERY(ConI) 924 DEFINE_CLASS_QUERY(CastPP) 925 DEFINE_CLASS_QUERY(ConstraintCast) 926 DEFINE_CLASS_QUERY(ClearArray) 927 DEFINE_CLASS_QUERY(CMove) 928 DEFINE_CLASS_QUERY(Cmp) 929 DEFINE_CLASS_QUERY(Convert) 930 DEFINE_CLASS_QUERY(CountedLoop) 931 DEFINE_CLASS_QUERY(CountedLoopEnd) 932 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 933 DEFINE_CLASS_QUERY(DecodeN) 934 DEFINE_CLASS_QUERY(DecodeNKlass) 935 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 936 DEFINE_CLASS_QUERY(EncodeP) 937 DEFINE_CLASS_QUERY(EncodePKlass) 938 DEFINE_CLASS_QUERY(FastLock) 939 DEFINE_CLASS_QUERY(FastUnlock) 940 DEFINE_CLASS_QUERY(FlatArrayCheck) 941 DEFINE_CLASS_QUERY(Halt) 942 DEFINE_CLASS_QUERY(If) 943 DEFINE_CLASS_QUERY(RangeCheck) 944 DEFINE_CLASS_QUERY(IfProj) 945 DEFINE_CLASS_QUERY(IfFalse) 946 DEFINE_CLASS_QUERY(IfTrue) 947 DEFINE_CLASS_QUERY(Initialize) 948 DEFINE_CLASS_QUERY(Jump) 949 DEFINE_CLASS_QUERY(JumpProj) 950 DEFINE_CLASS_QUERY(LongCountedLoop) 951 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 952 DEFINE_CLASS_QUERY(Load) 953 DEFINE_CLASS_QUERY(LoadStore) 954 DEFINE_CLASS_QUERY(LoadStoreConditional) 955 DEFINE_CLASS_QUERY(Lock) 956 DEFINE_CLASS_QUERY(Loop) 957 DEFINE_CLASS_QUERY(LShift) 958 DEFINE_CLASS_QUERY(Mach) 959 DEFINE_CLASS_QUERY(MachBranch) 960 DEFINE_CLASS_QUERY(MachCall) 961 DEFINE_CLASS_QUERY(MachCallDynamicJava) 962 DEFINE_CLASS_QUERY(MachCallJava) 963 DEFINE_CLASS_QUERY(MachCallLeaf) 964 DEFINE_CLASS_QUERY(MachCallRuntime) 965 DEFINE_CLASS_QUERY(MachCallStaticJava) 966 DEFINE_CLASS_QUERY(MachConstantBase) 967 DEFINE_CLASS_QUERY(MachConstant) 968 DEFINE_CLASS_QUERY(MachGoto) 969 DEFINE_CLASS_QUERY(MachIf) 970 DEFINE_CLASS_QUERY(MachJump) 971 DEFINE_CLASS_QUERY(MachNullCheck) 972 DEFINE_CLASS_QUERY(MachProj) 973 DEFINE_CLASS_QUERY(MachProlog) 974 DEFINE_CLASS_QUERY(MachReturn) 975 DEFINE_CLASS_QUERY(MachSafePoint) 976 DEFINE_CLASS_QUERY(MachSpillCopy) 977 DEFINE_CLASS_QUERY(MachTemp) 978 DEFINE_CLASS_QUERY(MachMemBar) 979 DEFINE_CLASS_QUERY(MachMerge) 980 DEFINE_CLASS_QUERY(MachVEP) 981 DEFINE_CLASS_QUERY(Mem) 982 DEFINE_CLASS_QUERY(MemBar) 983 DEFINE_CLASS_QUERY(MemBarStoreStore) 984 DEFINE_CLASS_QUERY(MergeMem) 985 DEFINE_CLASS_QUERY(Move) 986 DEFINE_CLASS_QUERY(Mul) 987 DEFINE_CLASS_QUERY(Multi) 988 DEFINE_CLASS_QUERY(MultiBranch) 989 DEFINE_CLASS_QUERY(MulVL) 990 DEFINE_CLASS_QUERY(Neg) 991 DEFINE_CLASS_QUERY(NegV) 992 DEFINE_CLASS_QUERY(NeverBranch) 993 DEFINE_CLASS_QUERY(Opaque1) 994 DEFINE_CLASS_QUERY(OpaqueNotNull) 995 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 996 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 997 DEFINE_CLASS_QUERY(OpaqueLoopInit) 998 DEFINE_CLASS_QUERY(OpaqueLoopStride) 999 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 1000 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 1001 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 1002 DEFINE_CLASS_QUERY(Parm) 1003 DEFINE_CLASS_QUERY(ParsePredicate) 1004 DEFINE_CLASS_QUERY(PCTable) 1005 DEFINE_CLASS_QUERY(Phi) 1006 DEFINE_CLASS_QUERY(Proj) 1007 DEFINE_CLASS_QUERY(Reduction) 1008 DEFINE_CLASS_QUERY(Region) 1009 DEFINE_CLASS_QUERY(Root) 1010 DEFINE_CLASS_QUERY(SafePoint) 1011 DEFINE_CLASS_QUERY(SafePointScalarObject) 1012 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1013 DEFINE_CLASS_QUERY(Start) 1014 DEFINE_CLASS_QUERY(Store) 1015 DEFINE_CLASS_QUERY(Sub) 1016 DEFINE_CLASS_QUERY(SubTypeCheck) 1017 DEFINE_CLASS_QUERY(Type) 1018 DEFINE_CLASS_QUERY(InlineType) 1019 DEFINE_CLASS_QUERY(Vector) 1020 DEFINE_CLASS_QUERY(VectorMaskCmp) 1021 DEFINE_CLASS_QUERY(VectorUnbox) 1022 DEFINE_CLASS_QUERY(VectorReinterpret) 1023 DEFINE_CLASS_QUERY(CompressV) 1024 DEFINE_CLASS_QUERY(ExpandV) 1025 DEFINE_CLASS_QUERY(CompressM) 1026 DEFINE_CLASS_QUERY(LoadVector) 1027 DEFINE_CLASS_QUERY(LoadVectorGather) 1028 DEFINE_CLASS_QUERY(LoadVectorMasked) 1029 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1030 DEFINE_CLASS_QUERY(StoreVector) 1031 DEFINE_CLASS_QUERY(StoreVectorScatter) 1032 DEFINE_CLASS_QUERY(StoreVectorMasked) 1033 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1034 DEFINE_CLASS_QUERY(SaturatingVector) 1035 DEFINE_CLASS_QUERY(ShiftV) 1036 DEFINE_CLASS_QUERY(Unlock) 1037 1038 #undef DEFINE_CLASS_QUERY 1039 1040 // duplicate of is_MachSpillCopy() 1041 bool is_SpillCopy () const { 1042 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1043 } 1044 1045 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1046 // The data node which is safe to leave in dead loop during IGVN optimization. 1047 bool is_dead_loop_safe() const; 1048 1049 // is_Copy() returns copied edge index (0 or 1) 1050 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1051 1052 virtual bool is_CFG() const { return false; } 1053 1054 // If this node is control-dependent on a test, can it be 1055 // rerouted to a dominating equivalent test? This is usually 1056 // true of non-CFG nodes, but can be false for operations which 1057 // depend for their correct sequencing on more than one test. 1058 // (In that case, hoisting to a dominating test may silently 1059 // skip some other important test.) 1060 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1061 1062 // When building basic blocks, I need to have a notion of block beginning 1063 // Nodes, next block selector Nodes (block enders), and next block 1064 // projections. These calls need to work on their machine equivalents. The 1065 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1066 bool is_block_start() const { 1067 if ( is_Region() ) 1068 return this == (const Node*)in(0); 1069 else 1070 return is_Start(); 1071 } 1072 1073 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1074 // Goto and Return. This call also returns the block ending Node. 1075 virtual const Node *is_block_proj() const; 1076 1077 // The node is a "macro" node which needs to be expanded before matching 1078 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1079 // The node is expensive: the best control is set during loop opts 1080 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1081 // The node's original edge position is swapped. 1082 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1083 1084 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1085 1086 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1087 1088 // Used in lcm to mark nodes that have scheduled 1089 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1090 1091 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1092 1093 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1094 static bool may_be_loop_entry(Node* n) { 1095 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1096 } 1097 1098 //----------------- Optimization 1099 1100 // Get the worst-case Type output for this Node. 1101 virtual const class Type *bottom_type() const; 1102 1103 // If we find a better type for a node, try to record it permanently. 1104 // Return true if this node actually changed. 1105 // Be sure to do the hash_delete game in the "rehash" variant. 1106 void raise_bottom_type(const Type* new_type); 1107 1108 // Get the address type with which this node uses and/or defs memory, 1109 // or null if none. The address type is conservatively wide. 1110 // Returns non-null for calls, membars, loads, stores, etc. 1111 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1112 virtual const class TypePtr *adr_type() const { return nullptr; } 1113 1114 // Return an existing node which computes the same function as this node. 1115 // The optimistic combined algorithm requires this to return a Node which 1116 // is a small number of steps away (e.g., one of my inputs). 1117 virtual Node* Identity(PhaseGVN* phase); 1118 1119 // Return the set of values this Node can take on at runtime. 1120 virtual const Type* Value(PhaseGVN* phase) const; 1121 1122 // Return a node which is more "ideal" than the current node. 1123 // The invariants on this call are subtle. If in doubt, read the 1124 // treatise in node.cpp above the default implementation AND TEST WITH 1125 // -XX:VerifyIterativeGVN=1 1126 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1127 1128 // Some nodes have specific Ideal subgraph transformations only if they are 1129 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1130 // for the transformations to happen. 1131 bool has_special_unique_user() const; 1132 1133 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1134 Node* find_exact_control(Node* ctrl); 1135 1136 // Results of the dominance analysis. 1137 enum class DomResult { 1138 NotDominate, // 'this' node does not dominate 'sub'. 1139 Dominate, // 'this' node dominates or is equal to 'sub'. 1140 EncounteredDeadCode // Result is undefined due to encountering dead code. 1141 }; 1142 // Check if 'this' node dominates or equal to 'sub'. 1143 DomResult dominates(Node* sub, Node_List &nlist); 1144 1145 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1146 public: 1147 1148 // See if there is valid pipeline info 1149 static const Pipeline *pipeline_class(); 1150 virtual const Pipeline *pipeline() const; 1151 1152 // Compute the latency from the def to this instruction of the ith input node 1153 uint latency(uint i); 1154 1155 // Hash & compare functions, for pessimistic value numbering 1156 1157 // If the hash function returns the special sentinel value NO_HASH, 1158 // the node is guaranteed never to compare equal to any other node. 1159 // If we accidentally generate a hash with value NO_HASH the node 1160 // won't go into the table and we'll lose a little optimization. 1161 static const uint NO_HASH = 0; 1162 virtual uint hash() const; 1163 virtual bool cmp( const Node &n ) const; 1164 1165 // Operation appears to be iteratively computed (such as an induction variable) 1166 // It is possible for this operation to return false for a loop-varying 1167 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1168 bool is_iteratively_computed(); 1169 1170 // Determine if a node is a counted loop induction variable. 1171 // NOTE: The method is defined in "loopnode.cpp". 1172 bool is_cloop_ind_var() const; 1173 1174 // Return a node with opcode "opc" and same inputs as "this" if one can 1175 // be found; Otherwise return null; 1176 Node* find_similar(int opc); 1177 1178 // Return the unique control out if only one. Null if none or more than one. 1179 Node* unique_ctrl_out_or_null() const; 1180 // Return the unique control out. Asserts if none or more than one control out. 1181 Node* unique_ctrl_out() const; 1182 1183 // Set control or add control as precedence edge 1184 void ensure_control_or_add_prec(Node* c); 1185 void add_prec_from(Node* n); 1186 1187 // Visit boundary uses of the node and apply a callback function for each. 1188 // Recursively traverse uses, stopping and applying the callback when 1189 // reaching a boundary node, defined by is_boundary. Note: the function 1190 // definition appears after the complete type definition of Node_List. 1191 template <typename Callback, typename Check> 1192 void visit_uses(Callback callback, Check is_boundary) const; 1193 1194 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1195 // (Load and range check CastII nodes). 1196 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1197 virtual Node* pin_array_access_node() const { 1198 return nullptr; 1199 } 1200 1201 //----------------- Code Generation 1202 1203 // Ideal register class for Matching. Zero means unmatched instruction 1204 // (these are cloned instead of converted to machine nodes). 1205 virtual uint ideal_reg() const; 1206 1207 static const uint NotAMachineReg; // must be > max. machine register 1208 1209 // Do we Match on this edge index or not? Generally false for Control 1210 // and true for everything else. Weird for calls & returns. 1211 virtual uint match_edge(uint idx) const; 1212 1213 // Register class output is returned in 1214 virtual const RegMask &out_RegMask() const; 1215 // Register class input is expected in 1216 virtual const RegMask &in_RegMask(uint) const; 1217 // Should we clone rather than spill this instruction? 1218 bool rematerialize() const; 1219 1220 // Return JVM State Object if this Node carries debug info, or null otherwise 1221 virtual JVMState* jvms() const; 1222 1223 // Print as assembly 1224 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1225 // Emit bytes using C2_MacroAssembler 1226 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1227 // Size of instruction in bytes 1228 virtual uint size(PhaseRegAlloc *ra_) const; 1229 1230 // Convenience function to extract an integer constant from a node. 1231 // If it is not an integer constant (either Con, CastII, or Mach), 1232 // return value_if_unknown. 1233 jint find_int_con(jint value_if_unknown) const { 1234 const TypeInt* t = find_int_type(); 1235 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1236 } 1237 // Return the constant, knowing it is an integer constant already 1238 jint get_int() const { 1239 const TypeInt* t = find_int_type(); 1240 guarantee(t != nullptr, "must be con"); 1241 return t->get_con(); 1242 } 1243 // Here's where the work is done. Can produce non-constant int types too. 1244 const TypeInt* find_int_type() const; 1245 const TypeInteger* find_integer_type(BasicType bt) const; 1246 1247 // Same thing for long (and intptr_t, via type.hpp): 1248 jlong get_long() const { 1249 const TypeLong* t = find_long_type(); 1250 guarantee(t != nullptr, "must be con"); 1251 return t->get_con(); 1252 } 1253 jlong find_long_con(jint value_if_unknown) const { 1254 const TypeLong* t = find_long_type(); 1255 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1256 } 1257 const TypeLong* find_long_type() const; 1258 1259 jlong get_integer_as_long(BasicType bt) const { 1260 const TypeInteger* t = find_integer_type(bt); 1261 guarantee(t != nullptr && t->is_con(), "must be con"); 1262 return t->get_con_as_long(bt); 1263 } 1264 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1265 const TypeInteger* t = find_integer_type(bt); 1266 if (t == nullptr || !t->is_con()) return value_if_unknown; 1267 return t->get_con_as_long(bt); 1268 } 1269 const TypePtr* get_ptr_type() const; 1270 1271 // These guys are called by code generated by ADLC: 1272 intptr_t get_ptr() const; 1273 intptr_t get_narrowcon() const; 1274 jdouble getd() const; 1275 jfloat getf() const; 1276 jshort geth() const; 1277 1278 // Nodes which are pinned into basic blocks 1279 virtual bool pinned() const { return false; } 1280 1281 // Nodes which use memory without consuming it, hence need antidependences 1282 // More specifically, needs_anti_dependence_check returns true iff the node 1283 // (a) does a load, and (b) does not perform a store (except perhaps to a 1284 // stack slot or some other unaliased location). 1285 bool needs_anti_dependence_check() const; 1286 1287 // Return which operand this instruction may cisc-spill. In other words, 1288 // return operand position that can convert from reg to memory access 1289 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1290 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1291 1292 // Whether this is a memory-writing machine node. 1293 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1294 1295 // Whether this is a memory phi node 1296 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1297 1298 bool is_div_or_mod(BasicType bt) const; 1299 1300 bool is_pure_function() const; 1301 1302 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1303 1304 //----------------- Printing, etc 1305 #ifndef PRODUCT 1306 public: 1307 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1308 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1309 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1310 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1311 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1312 class DumpConfig { 1313 public: 1314 // overridden to implement coloring of node idx 1315 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1316 virtual void post_dump(outputStream *st) = 0; 1317 }; 1318 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1319 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1320 void dump() const; // print node with newline 1321 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1322 void dump(int depth) const; // Print this node, recursively to depth d 1323 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1324 void dump_comp() const; // Print this node in compact representation. 1325 // Print this node in compact representation. 1326 void dump_comp(const char* suffix, outputStream *st = tty) const; 1327 private: 1328 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1329 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1330 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1331 public: 1332 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1333 // Print compact per-node info 1334 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1335 1336 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1337 1338 // This call defines a class-unique string used to identify class instances 1339 virtual const char *Name() const; 1340 1341 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1342 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1343 #endif 1344 #ifdef ASSERT 1345 void verify_construction(); 1346 bool verify_jvms(const JVMState* jvms) const; 1347 1348 Node* _debug_orig; // Original version of this, if any. 1349 Node* debug_orig() const { return _debug_orig; } 1350 void set_debug_orig(Node* orig); // _debug_orig = orig 1351 void dump_orig(outputStream *st, bool print_key = true) const; 1352 1353 uint64_t _debug_idx; // Unique value assigned to every node. 1354 uint64_t debug_idx() const { return _debug_idx; } 1355 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1356 1357 int _hash_lock; // Barrier to modifications of nodes in the hash table 1358 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1359 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1360 1361 static void init_NodeProperty(); 1362 1363 #if OPTO_DU_ITERATOR_ASSERT 1364 const Node* _last_del; // The last deleted node. 1365 uint _del_tick; // Bumped when a deletion happens.. 1366 #endif 1367 #endif 1368 }; 1369 1370 inline bool not_a_node(const Node* n) { 1371 if (n == nullptr) return true; 1372 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1373 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1374 return false; 1375 } 1376 1377 //----------------------------------------------------------------------------- 1378 // Iterators over DU info, and associated Node functions. 1379 1380 #if OPTO_DU_ITERATOR_ASSERT 1381 1382 // Common code for assertion checking on DU iterators. 1383 class DUIterator_Common { 1384 #ifdef ASSERT 1385 protected: 1386 bool _vdui; // cached value of VerifyDUIterators 1387 const Node* _node; // the node containing the _out array 1388 uint _outcnt; // cached node->_outcnt 1389 uint _del_tick; // cached node->_del_tick 1390 Node* _last; // last value produced by the iterator 1391 1392 void sample(const Node* node); // used by c'tor to set up for verifies 1393 void verify(const Node* node, bool at_end_ok = false); 1394 void verify_resync(); 1395 void reset(const DUIterator_Common& that); 1396 1397 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1398 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1399 #else 1400 #define I_VDUI_ONLY(i,x) { } 1401 #endif //ASSERT 1402 }; 1403 1404 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1405 1406 // Default DU iterator. Allows appends onto the out array. 1407 // Allows deletion from the out array only at the current point. 1408 // Usage: 1409 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1410 // Node* y = x->out(i); 1411 // ... 1412 // } 1413 // Compiles in product mode to a unsigned integer index, which indexes 1414 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1415 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1416 // before continuing the loop. You must delete only the last-produced 1417 // edge. You must delete only a single copy of the last-produced edge, 1418 // or else you must delete all copies at once (the first time the edge 1419 // is produced by the iterator). 1420 class DUIterator : public DUIterator_Common { 1421 friend class Node; 1422 1423 // This is the index which provides the product-mode behavior. 1424 // Whatever the product-mode version of the system does to the 1425 // DUI index is done to this index. All other fields in 1426 // this class are used only for assertion checking. 1427 uint _idx; 1428 1429 #ifdef ASSERT 1430 uint _refresh_tick; // Records the refresh activity. 1431 1432 void sample(const Node* node); // Initialize _refresh_tick etc. 1433 void verify(const Node* node, bool at_end_ok = false); 1434 void verify_increment(); // Verify an increment operation. 1435 void verify_resync(); // Verify that we can back up over a deletion. 1436 void verify_finish(); // Verify that the loop terminated properly. 1437 void refresh(); // Resample verification info. 1438 void reset(const DUIterator& that); // Resample after assignment. 1439 #endif 1440 1441 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1442 { _idx = 0; debug_only(sample(node)); } 1443 1444 public: 1445 // initialize to garbage; clear _vdui to disable asserts 1446 DUIterator() 1447 { /*initialize to garbage*/ debug_only(_vdui = false); } 1448 1449 DUIterator(const DUIterator& that) 1450 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1451 1452 void operator++(int dummy_to_specify_postfix_op) 1453 { _idx++; VDUI_ONLY(verify_increment()); } 1454 1455 void operator--() 1456 { VDUI_ONLY(verify_resync()); --_idx; } 1457 1458 ~DUIterator() 1459 { VDUI_ONLY(verify_finish()); } 1460 1461 void operator=(const DUIterator& that) 1462 { _idx = that._idx; debug_only(reset(that)); } 1463 }; 1464 1465 DUIterator Node::outs() const 1466 { return DUIterator(this, 0); } 1467 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1468 { I_VDUI_ONLY(i, i.refresh()); return i; } 1469 bool Node::has_out(DUIterator& i) const 1470 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1471 Node* Node::out(DUIterator& i) const 1472 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1473 1474 1475 // Faster DU iterator. Disallows insertions into the out array. 1476 // Allows deletion from the out array only at the current point. 1477 // Usage: 1478 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1479 // Node* y = x->fast_out(i); 1480 // ... 1481 // } 1482 // Compiles in product mode to raw Node** pointer arithmetic, with 1483 // no reloading of pointers from the original node x. If you delete, 1484 // you must perform "--i; --imax" just before continuing the loop. 1485 // If you delete multiple copies of the same edge, you must decrement 1486 // imax, but not i, multiple times: "--i, imax -= num_edges". 1487 class DUIterator_Fast : public DUIterator_Common { 1488 friend class Node; 1489 friend class DUIterator_Last; 1490 1491 // This is the pointer which provides the product-mode behavior. 1492 // Whatever the product-mode version of the system does to the 1493 // DUI pointer is done to this pointer. All other fields in 1494 // this class are used only for assertion checking. 1495 Node** _outp; 1496 1497 #ifdef ASSERT 1498 void verify(const Node* node, bool at_end_ok = false); 1499 void verify_limit(); 1500 void verify_resync(); 1501 void verify_relimit(uint n); 1502 void reset(const DUIterator_Fast& that); 1503 #endif 1504 1505 // Note: offset must be signed, since -1 is sometimes passed 1506 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1507 { _outp = node->_out + offset; debug_only(sample(node)); } 1508 1509 public: 1510 // initialize to garbage; clear _vdui to disable asserts 1511 DUIterator_Fast() 1512 { /*initialize to garbage*/ debug_only(_vdui = false); } 1513 1514 DUIterator_Fast(const DUIterator_Fast& that) 1515 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1516 1517 void operator++(int dummy_to_specify_postfix_op) 1518 { _outp++; VDUI_ONLY(verify(_node, true)); } 1519 1520 void operator--() 1521 { VDUI_ONLY(verify_resync()); --_outp; } 1522 1523 void operator-=(uint n) // applied to the limit only 1524 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1525 1526 bool operator<(DUIterator_Fast& limit) { 1527 I_VDUI_ONLY(*this, this->verify(_node, true)); 1528 I_VDUI_ONLY(limit, limit.verify_limit()); 1529 return _outp < limit._outp; 1530 } 1531 1532 void operator=(const DUIterator_Fast& that) 1533 { _outp = that._outp; debug_only(reset(that)); } 1534 }; 1535 1536 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1537 // Assign a limit pointer to the reference argument: 1538 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1539 // Return the base pointer: 1540 return DUIterator_Fast(this, 0); 1541 } 1542 Node* Node::fast_out(DUIterator_Fast& i) const { 1543 I_VDUI_ONLY(i, i.verify(this)); 1544 return debug_only(i._last=) *i._outp; 1545 } 1546 1547 1548 // Faster DU iterator. Requires each successive edge to be removed. 1549 // Does not allow insertion of any edges. 1550 // Usage: 1551 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1552 // Node* y = x->last_out(i); 1553 // ... 1554 // } 1555 // Compiles in product mode to raw Node** pointer arithmetic, with 1556 // no reloading of pointers from the original node x. 1557 class DUIterator_Last : private DUIterator_Fast { 1558 friend class Node; 1559 1560 #ifdef ASSERT 1561 void verify(const Node* node, bool at_end_ok = false); 1562 void verify_limit(); 1563 void verify_step(uint num_edges); 1564 #endif 1565 1566 // Note: offset must be signed, since -1 is sometimes passed 1567 DUIterator_Last(const Node* node, ptrdiff_t offset) 1568 : DUIterator_Fast(node, offset) { } 1569 1570 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1571 void operator<(int) {} // do not use 1572 1573 public: 1574 DUIterator_Last() { } 1575 // initialize to garbage 1576 1577 DUIterator_Last(const DUIterator_Last& that) = default; 1578 1579 void operator--() 1580 { _outp--; VDUI_ONLY(verify_step(1)); } 1581 1582 void operator-=(uint n) 1583 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1584 1585 bool operator>=(DUIterator_Last& limit) { 1586 I_VDUI_ONLY(*this, this->verify(_node, true)); 1587 I_VDUI_ONLY(limit, limit.verify_limit()); 1588 return _outp >= limit._outp; 1589 } 1590 1591 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1592 }; 1593 1594 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1595 // Assign a limit pointer to the reference argument: 1596 imin = DUIterator_Last(this, 0); 1597 // Return the initial pointer: 1598 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1599 } 1600 Node* Node::last_out(DUIterator_Last& i) const { 1601 I_VDUI_ONLY(i, i.verify(this)); 1602 return debug_only(i._last=) *i._outp; 1603 } 1604 1605 #endif //OPTO_DU_ITERATOR_ASSERT 1606 1607 #undef I_VDUI_ONLY 1608 #undef VDUI_ONLY 1609 1610 // An Iterator that truly follows the iterator pattern. Doesn't 1611 // support deletion but could be made to. 1612 // 1613 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1614 // Node* m = i.get(); 1615 // 1616 class SimpleDUIterator : public StackObj { 1617 private: 1618 Node* node; 1619 DUIterator_Fast imax; 1620 DUIterator_Fast i; 1621 public: 1622 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1623 bool has_next() { return i < imax; } 1624 void next() { i++; } 1625 Node* get() { return node->fast_out(i); } 1626 }; 1627 1628 1629 //----------------------------------------------------------------------------- 1630 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1631 // Abstractly provides an infinite array of Node*'s, initialized to null. 1632 // Note that the constructor just zeros things, and since I use Arena 1633 // allocation I do not need a destructor to reclaim storage. 1634 class Node_Array : public AnyObj { 1635 protected: 1636 Arena* _a; // Arena to allocate in 1637 uint _max; 1638 Node** _nodes; 1639 ReallocMark _nesting; // Safety checks for arena reallocation 1640 1641 // Grow array to required capacity 1642 void maybe_grow(uint i) { 1643 if (i >= _max) { 1644 grow(i); 1645 } 1646 } 1647 void grow(uint i); 1648 1649 public: 1650 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1651 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1652 clear(); 1653 } 1654 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1655 1656 NONCOPYABLE(Node_Array); 1657 Node_Array& operator=(Node_Array&&) = delete; 1658 // Allow move constructor for && (eg. capture return of function) 1659 Node_Array(Node_Array&&) = default; 1660 1661 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1662 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1663 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1664 Node** adr() { return _nodes; } 1665 // Extend the mapping: index i maps to Node *n. 1666 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1667 void insert( uint i, Node *n ); 1668 void remove( uint i ); // Remove, preserving order 1669 // Clear all entries in _nodes to null but keep storage 1670 void clear() { 1671 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1672 } 1673 1674 uint max() const { return _max; } 1675 void dump() const; 1676 }; 1677 1678 class Node_List : public Node_Array { 1679 uint _cnt; 1680 public: 1681 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1682 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1683 1684 NONCOPYABLE(Node_List); 1685 Node_List& operator=(Node_List&&) = delete; 1686 // Allow move constructor for && (eg. capture return of function) 1687 Node_List(Node_List&&) = default; 1688 1689 bool contains(const Node* n) const { 1690 for (uint e = 0; e < size(); e++) { 1691 if (at(e) == n) return true; 1692 } 1693 return false; 1694 } 1695 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1696 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1697 void push( Node *b ) { map(_cnt++,b); } 1698 void yank( Node *n ); // Find and remove 1699 Node *pop() { return _nodes[--_cnt]; } 1700 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1701 void copy(const Node_List& from) { 1702 if (from._max > _max) { 1703 grow(from._max); 1704 } 1705 _cnt = from._cnt; 1706 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1707 } 1708 1709 uint size() const { return _cnt; } 1710 void dump() const; 1711 void dump_simple() const; 1712 }; 1713 1714 // Definition must appear after complete type definition of Node_List 1715 template <typename Callback, typename Check> 1716 void Node::visit_uses(Callback callback, Check is_boundary) const { 1717 ResourceMark rm; 1718 VectorSet visited; 1719 Node_List worklist; 1720 1721 // The initial worklist consists of the direct uses 1722 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1723 Node* out = fast_out(k); 1724 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1725 } 1726 1727 while (worklist.size() > 0) { 1728 Node* use = worklist.pop(); 1729 // Apply callback on boundary nodes 1730 if (is_boundary(use)) { 1731 callback(use); 1732 } else { 1733 // Not a boundary node, continue search 1734 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1735 Node* out = use->fast_out(k); 1736 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1737 } 1738 } 1739 } 1740 } 1741 1742 1743 //------------------------------Unique_Node_List------------------------------- 1744 class Unique_Node_List : public Node_List { 1745 VectorSet _in_worklist; 1746 uint _clock_index; // Index in list where to pop from next 1747 public: 1748 Unique_Node_List() : Node_List(), _clock_index(0) {} 1749 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1750 1751 NONCOPYABLE(Unique_Node_List); 1752 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1753 // Allow move constructor for && (eg. capture return of function) 1754 Unique_Node_List(Unique_Node_List&&) = default; 1755 1756 void remove( Node *n ); 1757 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1758 VectorSet& member_set(){ return _in_worklist; } 1759 1760 void push(Node* b) { 1761 if( !_in_worklist.test_set(b->_idx) ) 1762 Node_List::push(b); 1763 } 1764 void push_non_cfg_inputs_of(const Node* node) { 1765 for (uint i = 1; i < node->req(); i++) { 1766 Node* input = node->in(i); 1767 if (input != nullptr && !input->is_CFG()) { 1768 push(input); 1769 } 1770 } 1771 } 1772 1773 void push_outputs_of(const Node* node) { 1774 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1775 Node* output = node->fast_out(i); 1776 push(output); 1777 } 1778 } 1779 1780 Node *pop() { 1781 if( _clock_index >= size() ) _clock_index = 0; 1782 Node *b = at(_clock_index); 1783 map( _clock_index, Node_List::pop()); 1784 if (size() != 0) _clock_index++; // Always start from 0 1785 _in_worklist.remove(b->_idx); 1786 return b; 1787 } 1788 Node *remove(uint i) { 1789 Node *b = Node_List::at(i); 1790 _in_worklist.remove(b->_idx); 1791 map(i,Node_List::pop()); 1792 return b; 1793 } 1794 void yank(Node *n) { 1795 _in_worklist.remove(n->_idx); 1796 Node_List::yank(n); 1797 } 1798 void clear() { 1799 _in_worklist.clear(); // Discards storage but grows automatically 1800 Node_List::clear(); 1801 _clock_index = 0; 1802 } 1803 void ensure_empty() { 1804 assert(size() == 0, "must be empty"); 1805 clear(); // just in case 1806 } 1807 1808 // Used after parsing to remove useless nodes before Iterative GVN 1809 void remove_useless_nodes(VectorSet& useful); 1810 1811 // If the idx of the Nodes change, we must recompute the VectorSet 1812 void recompute_idx_set() { 1813 _in_worklist.clear(); 1814 for (uint i = 0; i < size(); i++) { 1815 Node* n = at(i); 1816 _in_worklist.set(n->_idx); 1817 } 1818 } 1819 1820 #ifdef ASSERT 1821 bool is_subset_of(Unique_Node_List& other) { 1822 for (uint i = 0; i < size(); i++) { 1823 Node* n = at(i); 1824 if (!other.member(n)) { 1825 return false; 1826 } 1827 } 1828 return true; 1829 } 1830 #endif 1831 1832 bool contains(const Node* n) const { 1833 fatal("use faster member() instead"); 1834 return false; 1835 } 1836 1837 #ifndef PRODUCT 1838 void print_set() const { _in_worklist.print(); } 1839 #endif 1840 }; 1841 1842 // Unique_Mixed_Node_List 1843 // unique: nodes are added only once 1844 // mixed: allow new and old nodes 1845 class Unique_Mixed_Node_List : public ResourceObj { 1846 public: 1847 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1848 1849 void add(Node* node) { 1850 if (not_a_node(node)) { 1851 return; // Gracefully handle null, -1, 0xabababab, etc. 1852 } 1853 if (_visited_set[node] == nullptr) { 1854 _visited_set.Insert(node, node); 1855 _worklist.push(node); 1856 } 1857 } 1858 1859 Node* operator[] (uint i) const { 1860 return _worklist[i]; 1861 } 1862 1863 size_t size() { 1864 return _worklist.size(); 1865 } 1866 1867 private: 1868 Dict _visited_set; 1869 Node_List _worklist; 1870 }; 1871 1872 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1873 inline void Compile::record_for_igvn(Node* n) { 1874 _igvn_worklist->push(n); 1875 } 1876 1877 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1878 inline void Compile::remove_for_igvn(Node* n) { 1879 _igvn_worklist->remove(n); 1880 } 1881 1882 //------------------------------Node_Stack------------------------------------- 1883 class Node_Stack { 1884 protected: 1885 struct INode { 1886 Node *node; // Processed node 1887 uint indx; // Index of next node's child 1888 }; 1889 INode *_inode_top; // tos, stack grows up 1890 INode *_inode_max; // End of _inodes == _inodes + _max 1891 INode *_inodes; // Array storage for the stack 1892 Arena *_a; // Arena to allocate in 1893 ReallocMark _nesting; // Safety checks for arena reallocation 1894 void grow(); 1895 public: 1896 Node_Stack(int size) { 1897 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1898 _a = Thread::current()->resource_area(); 1899 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1900 _inode_max = _inodes + max; 1901 _inode_top = _inodes - 1; // stack is empty 1902 } 1903 1904 Node_Stack(Arena *a, int size) : _a(a) { 1905 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1906 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1907 _inode_max = _inodes + max; 1908 _inode_top = _inodes - 1; // stack is empty 1909 } 1910 1911 void pop() { 1912 assert(_inode_top >= _inodes, "node stack underflow"); 1913 --_inode_top; 1914 } 1915 void push(Node *n, uint i) { 1916 ++_inode_top; 1917 grow(); 1918 INode *top = _inode_top; // optimization 1919 top->node = n; 1920 top->indx = i; 1921 } 1922 Node *node() const { 1923 return _inode_top->node; 1924 } 1925 Node* node_at(uint i) const { 1926 assert(_inodes + i <= _inode_top, "in range"); 1927 return _inodes[i].node; 1928 } 1929 uint index() const { 1930 return _inode_top->indx; 1931 } 1932 uint index_at(uint i) const { 1933 assert(_inodes + i <= _inode_top, "in range"); 1934 return _inodes[i].indx; 1935 } 1936 void set_node(Node *n) { 1937 _inode_top->node = n; 1938 } 1939 void set_index(uint i) { 1940 _inode_top->indx = i; 1941 } 1942 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1943 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1944 bool is_nonempty() const { return (_inode_top >= _inodes); } 1945 bool is_empty() const { return (_inode_top < _inodes); } 1946 void clear() { _inode_top = _inodes - 1; } // retain storage 1947 1948 // Node_Stack is used to map nodes. 1949 Node* find(uint idx) const; 1950 1951 NONCOPYABLE(Node_Stack); 1952 }; 1953 1954 1955 //-----------------------------Node_Notes-------------------------------------- 1956 // Debugging or profiling annotations loosely and sparsely associated 1957 // with some nodes. See Compile::node_notes_at for the accessor. 1958 class Node_Notes { 1959 JVMState* _jvms; 1960 1961 public: 1962 Node_Notes(JVMState* jvms = nullptr) { 1963 _jvms = jvms; 1964 } 1965 1966 JVMState* jvms() { return _jvms; } 1967 void set_jvms(JVMState* x) { _jvms = x; } 1968 1969 // True if there is nothing here. 1970 bool is_clear() { 1971 return (_jvms == nullptr); 1972 } 1973 1974 // Make there be nothing here. 1975 void clear() { 1976 _jvms = nullptr; 1977 } 1978 1979 // Make a new, clean node notes. 1980 static Node_Notes* make(Compile* C) { 1981 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1982 nn->clear(); 1983 return nn; 1984 } 1985 1986 Node_Notes* clone(Compile* C) { 1987 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1988 (*nn) = (*this); 1989 return nn; 1990 } 1991 1992 // Absorb any information from source. 1993 bool update_from(Node_Notes* source) { 1994 bool changed = false; 1995 if (source != nullptr) { 1996 if (source->jvms() != nullptr) { 1997 set_jvms(source->jvms()); 1998 changed = true; 1999 } 2000 } 2001 return changed; 2002 } 2003 }; 2004 2005 // Inlined accessors for Compile::node_nodes that require the preceding class: 2006 inline Node_Notes* 2007 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 2008 int idx, bool can_grow) { 2009 assert(idx >= 0, "oob"); 2010 int block_idx = (idx >> _log2_node_notes_block_size); 2011 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2012 if (grow_by >= 0) { 2013 if (!can_grow) return nullptr; 2014 grow_node_notes(arr, grow_by + 1); 2015 } 2016 if (arr == nullptr) return nullptr; 2017 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2018 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2019 } 2020 2021 inline Node_Notes* Compile::node_notes_at(int idx) { 2022 return locate_node_notes(_node_note_array, idx, false); 2023 } 2024 2025 inline bool 2026 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2027 if (value == nullptr || value->is_clear()) 2028 return false; // nothing to write => write nothing 2029 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2030 assert(loc != nullptr, ""); 2031 return loc->update_from(value); 2032 } 2033 2034 2035 //------------------------------TypeNode--------------------------------------- 2036 // Node with a Type constant. 2037 class TypeNode : public Node { 2038 protected: 2039 virtual uint hash() const; // Check the type 2040 virtual bool cmp( const Node &n ) const; 2041 virtual uint size_of() const; // Size is bigger 2042 const Type* const _type; 2043 public: 2044 void set_type(const Type* t) { 2045 assert(t != nullptr, "sanity"); 2046 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2047 *(const Type**)&_type = t; // cast away const-ness 2048 // If this node is in the hash table, make sure it doesn't need a rehash. 2049 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2050 } 2051 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2052 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2053 init_class_id(Class_Type); 2054 } 2055 virtual const Type* Value(PhaseGVN* phase) const; 2056 virtual const Type *bottom_type() const; 2057 virtual uint ideal_reg() const; 2058 #ifndef PRODUCT 2059 virtual void dump_spec(outputStream *st) const; 2060 virtual void dump_compact_spec(outputStream *st) const; 2061 #endif 2062 }; 2063 2064 #include "opto/opcodes.hpp" 2065 2066 #define Op_IL(op) \ 2067 inline int Op_ ## op(BasicType bt) { \ 2068 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2069 if (bt == T_INT) { \ 2070 return Op_## op ## I; \ 2071 } \ 2072 return Op_## op ## L; \ 2073 } 2074 2075 Op_IL(Add) 2076 Op_IL(Sub) 2077 Op_IL(Mul) 2078 Op_IL(URShift) 2079 Op_IL(LShift) 2080 Op_IL(Xor) 2081 Op_IL(Cmp) 2082 Op_IL(Div) 2083 Op_IL(Mod) 2084 Op_IL(UDiv) 2085 Op_IL(UMod) 2086 2087 inline int Op_ConIL(BasicType bt) { 2088 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2089 if (bt == T_INT) { 2090 return Op_ConI; 2091 } 2092 return Op_ConL; 2093 } 2094 2095 inline int Op_Cmp_unsigned(BasicType bt) { 2096 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2097 if (bt == T_INT) { 2098 return Op_CmpU; 2099 } 2100 return Op_CmpUL; 2101 } 2102 2103 inline int Op_Cast(BasicType bt) { 2104 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2105 if (bt == T_INT) { 2106 return Op_CastII; 2107 } 2108 return Op_CastLL; 2109 } 2110 2111 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2112 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2113 if (bt == T_INT) { 2114 if (is_unsigned) { 2115 return Op_UDivI; 2116 } else { 2117 return Op_DivI; 2118 } 2119 } 2120 if (is_unsigned) { 2121 return Op_UDivL; 2122 } else { 2123 return Op_DivL; 2124 } 2125 } 2126 2127 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2128 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2129 if (bt == T_INT) { 2130 if (is_unsigned) { 2131 return Op_UDivModI; 2132 } else { 2133 return Op_DivModI; 2134 } 2135 } 2136 if (is_unsigned) { 2137 return Op_UDivModL; 2138 } else { 2139 return Op_DivModL; 2140 } 2141 } 2142 2143 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2144 // a customized BFS. 2145 class BFSActions : public StackObj { 2146 public: 2147 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2148 // method to provide a custom filter. 2149 virtual bool should_visit(Node* node) const { 2150 // By default, visit all inputs. 2151 return true; 2152 }; 2153 2154 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2155 // but the BFS will continue to visit all unvisited nodes in the queue. 2156 virtual bool is_target_node(Node* node) const = 0; 2157 2158 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2159 virtual void target_node_action(Node* target_node) = 0; 2160 }; 2161 2162 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2163 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2164 class DataNodeBFS : public StackObj { 2165 BFSActions& _bfs_actions; 2166 2167 public: 2168 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2169 2170 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2171 void run(Node* start_node) { 2172 ResourceMark rm; 2173 Unique_Node_List _nodes_to_visit; 2174 _nodes_to_visit.push(start_node); 2175 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2176 Node* next = _nodes_to_visit[i]; 2177 for (uint j = 1; j < next->req(); j++) { 2178 Node* input = next->in(j); 2179 if (_bfs_actions.is_target_node(input)) { 2180 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2181 _bfs_actions.target_node_action(input); 2182 } else if (_bfs_actions.should_visit(input)) { 2183 _nodes_to_visit.push(input); 2184 } 2185 } 2186 } 2187 } 2188 }; 2189 2190 #endif // SHARE_OPTO_NODE_HPP