1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallLeafPureNode; 58 class CallNode; 59 class CallRuntimeNode; 60 class CallStaticJavaNode; 61 class CastFFNode; 62 class CastHHNode; 63 class CastDDNode; 64 class CastVVNode; 65 class CastIINode; 66 class CastLLNode; 67 class CastPPNode; 68 class CatchNode; 69 class CatchProjNode; 70 class CheckCastPPNode; 71 class ClearArrayNode; 72 class CmpNode; 73 class CodeBuffer; 74 class ConstraintCastNode; 75 class ConNode; 76 class ConINode; 77 class ConvertNode; 78 class CompareAndSwapNode; 79 class CompareAndExchangeNode; 80 class CountedLoopNode; 81 class CountedLoopEndNode; 82 class DecodeNarrowPtrNode; 83 class DecodeNNode; 84 class DecodeNKlassNode; 85 class EncodeNarrowPtrNode; 86 class EncodePNode; 87 class EncodePKlassNode; 88 class FastLockNode; 89 class FastUnlockNode; 90 class FlatArrayCheckNode; 91 class HaltNode; 92 class IfNode; 93 class IfProjNode; 94 class IfFalseNode; 95 class IfTrueNode; 96 class InitializeNode; 97 class JVMState; 98 class JumpNode; 99 class JumpProjNode; 100 class LoadNode; 101 class LoadStoreNode; 102 class LoadStoreConditionalNode; 103 class LockNode; 104 class LongCountedLoopNode; 105 class LongCountedLoopEndNode; 106 class LoopNode; 107 class LShiftNode; 108 class MachBranchNode; 109 class MachCallDynamicJavaNode; 110 class MachCallJavaNode; 111 class MachCallLeafNode; 112 class MachCallNode; 113 class MachCallRuntimeNode; 114 class MachCallStaticJavaNode; 115 class MachConstantBaseNode; 116 class MachConstantNode; 117 class MachGotoNode; 118 class MachIfNode; 119 class MachJumpNode; 120 class MachNode; 121 class MachNullCheckNode; 122 class MachProjNode; 123 class MachPrologNode; 124 class MachReturnNode; 125 class MachSafePointNode; 126 class MachSpillCopyNode; 127 class MachTempNode; 128 class MachMergeNode; 129 class MachMemBarNode; 130 class MachVEPNode; 131 class Matcher; 132 class MemBarNode; 133 class MemBarStoreStoreNode; 134 class MemNode; 135 class MergeMemNode; 136 class MoveNode; 137 class MulNode; 138 class MultiNode; 139 class MultiBranchNode; 140 class NegNode; 141 class NegVNode; 142 class NeverBranchNode; 143 class Opaque1Node; 144 class OpaqueLoopInitNode; 145 class OpaqueLoopStrideNode; 146 class OpaqueMultiversioningNode; 147 class OpaqueNotNullNode; 148 class OpaqueInitializedAssertionPredicateNode; 149 class OpaqueTemplateAssertionPredicateNode; 150 class OuterStripMinedLoopNode; 151 class OuterStripMinedLoopEndNode; 152 class Node; 153 class Node_Array; 154 class Node_List; 155 class Node_Stack; 156 class OopMap; 157 class ParmNode; 158 class ParsePredicateNode; 159 class PCTableNode; 160 class PhaseCCP; 161 class PhaseGVN; 162 class PhaseIdealLoop; 163 class PhaseIterGVN; 164 class PhaseRegAlloc; 165 class PhaseTransform; 166 class PhaseValues; 167 class PhiNode; 168 class Pipeline; 169 class PopulateIndexNode; 170 class ProjNode; 171 class RangeCheckNode; 172 class ReductionNode; 173 class RegMask; 174 class RegionNode; 175 class RootNode; 176 class SafePointNode; 177 class SafePointScalarObjectNode; 178 class SafePointScalarMergeNode; 179 class SaturatingVectorNode; 180 class StartNode; 181 class State; 182 class StoreNode; 183 class SubNode; 184 class SubTypeCheckNode; 185 class Type; 186 class TypeNode; 187 class UnlockNode; 188 class InlineTypeNode; 189 class VectorNode; 190 class LoadVectorNode; 191 class LoadVectorMaskedNode; 192 class StoreVectorMaskedNode; 193 class LoadVectorGatherNode; 194 class LoadVectorGatherMaskedNode; 195 class StoreVectorNode; 196 class StoreVectorScatterNode; 197 class StoreVectorScatterMaskedNode; 198 class VerifyVectorAlignmentNode; 199 class VectorMaskCmpNode; 200 class VectorUnboxNode; 201 class VectorSet; 202 class VectorReinterpretNode; 203 class ShiftVNode; 204 class MulVLNode; 205 class ExpandVNode; 206 class CompressVNode; 207 class CompressMNode; 208 class C2_MacroAssembler; 209 210 211 #ifndef OPTO_DU_ITERATOR_ASSERT 212 #ifdef ASSERT 213 #define OPTO_DU_ITERATOR_ASSERT 1 214 #else 215 #define OPTO_DU_ITERATOR_ASSERT 0 216 #endif 217 #endif //OPTO_DU_ITERATOR_ASSERT 218 219 #if OPTO_DU_ITERATOR_ASSERT 220 class DUIterator; 221 class DUIterator_Fast; 222 class DUIterator_Last; 223 #else 224 typedef uint DUIterator; 225 typedef Node** DUIterator_Fast; 226 typedef Node** DUIterator_Last; 227 #endif 228 229 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 230 231 // Node Sentinel 232 #define NodeSentinel (Node*)-1 233 234 // Unknown count frequency 235 #define COUNT_UNKNOWN (-1.0f) 236 237 //------------------------------Node------------------------------------------- 238 // Nodes define actions in the program. They create values, which have types. 239 // They are both vertices in a directed graph and program primitives. Nodes 240 // are labeled; the label is the "opcode", the primitive function in the lambda 241 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 242 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 243 // the Node's function. These inputs also define a Type equation for the Node. 244 // Solving these Type equations amounts to doing dataflow analysis. 245 // Control and data are uniformly represented in the graph. Finally, Nodes 246 // have a unique dense integer index which is used to index into side arrays 247 // whenever I have phase-specific information. 248 249 class Node { 250 251 // Lots of restrictions on cloning Nodes 252 NONCOPYABLE(Node); 253 254 public: 255 friend class Compile; 256 #if OPTO_DU_ITERATOR_ASSERT 257 friend class DUIterator_Common; 258 friend class DUIterator; 259 friend class DUIterator_Fast; 260 friend class DUIterator_Last; 261 #endif 262 263 // Because Nodes come and go, I define an Arena of Node structures to pull 264 // from. This should allow fast access to node creation & deletion. This 265 // field is a local cache of a value defined in some "program fragment" for 266 // which these Nodes are just a part of. 267 268 inline void* operator new(size_t x) throw() { 269 Compile* C = Compile::current(); 270 Node* n = (Node*)C->node_arena()->AmallocWords(x); 271 return (void*)n; 272 } 273 274 // Delete is a NOP 275 void operator delete( void *ptr ) {} 276 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 277 void destruct(PhaseValues* phase); 278 279 // Create a new Node. Required is the number is of inputs required for 280 // semantic correctness. 281 Node( uint required ); 282 283 // Create a new Node with given input edges. 284 // This version requires use of the "edge-count" new. 285 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 286 Node( Node *n0 ); 287 Node( Node *n0, Node *n1 ); 288 Node( Node *n0, Node *n1, Node *n2 ); 289 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 290 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 291 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 292 Node( Node *n0, Node *n1, Node *n2, Node *n3, 293 Node *n4, Node *n5, Node *n6 ); 294 295 // Clone an inherited Node given only the base Node type. 296 Node* clone() const; 297 298 // Clone a Node, immediately supplying one or two new edges. 299 // The first and second arguments, if non-null, replace in(1) and in(2), 300 // respectively. 301 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 302 Node* nn = clone(); 303 if (in1 != nullptr) nn->set_req(1, in1); 304 if (in2 != nullptr) nn->set_req(2, in2); 305 return nn; 306 } 307 308 private: 309 // Shared setup for the above constructors. 310 // Handles all interactions with Compile::current. 311 // Puts initial values in all Node fields except _idx. 312 // Returns the initial value for _idx, which cannot 313 // be initialized by assignment. 314 inline int Init(int req); 315 316 //----------------- input edge handling 317 protected: 318 friend class PhaseCFG; // Access to address of _in array elements 319 Node **_in; // Array of use-def references to Nodes 320 Node **_out; // Array of def-use references to Nodes 321 322 // Input edges are split into two categories. Required edges are required 323 // for semantic correctness; order is important and nulls are allowed. 324 // Precedence edges are used to help determine execution order and are 325 // added, e.g., for scheduling purposes. They are unordered and not 326 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 327 // are required, from _cnt to _max-1 are precedence edges. 328 node_idx_t _cnt; // Total number of required Node inputs. 329 330 node_idx_t _max; // Actual length of input array. 331 332 // Output edges are an unordered list of def-use edges which exactly 333 // correspond to required input edges which point from other nodes 334 // to this one. Thus the count of the output edges is the number of 335 // users of this node. 336 node_idx_t _outcnt; // Total number of Node outputs. 337 338 node_idx_t _outmax; // Actual length of output array. 339 340 // Grow the actual input array to the next larger power-of-2 bigger than len. 341 void grow( uint len ); 342 // Grow the output array to the next larger power-of-2 bigger than len. 343 void out_grow( uint len ); 344 // Resize input or output array to grow it to the next larger power-of-2 345 // bigger than len. 346 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing); 347 348 public: 349 // Each Node is assigned a unique small/dense number. This number is used 350 // to index into auxiliary arrays of data and bit vectors. 351 // The value of _idx can be changed using the set_idx() method. 352 // 353 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 354 // Therefore, it updates the value of the _idx field. The parse-time _idx is 355 // preserved in _parse_idx. 356 node_idx_t _idx; 357 DEBUG_ONLY(const node_idx_t _parse_idx;) 358 // IGV node identifier. Two nodes, possibly in different compilation phases, 359 // have the same IGV identifier if (and only if) they are the very same node 360 // (same memory address) or one is "derived" from the other (by e.g. 361 // renumbering or matching). This identifier makes it possible to follow the 362 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 363 NOT_PRODUCT(node_idx_t _igv_idx;) 364 365 // Get the (read-only) number of input edges 366 uint req() const { return _cnt; } 367 uint len() const { return _max; } 368 // Get the (read-only) number of output edges 369 uint outcnt() const { return _outcnt; } 370 371 #if OPTO_DU_ITERATOR_ASSERT 372 // Iterate over the out-edges of this node. Deletions are illegal. 373 inline DUIterator outs() const; 374 // Use this when the out array might have changed to suppress asserts. 375 inline DUIterator& refresh_out_pos(DUIterator& i) const; 376 // Does the node have an out at this position? (Used for iteration.) 377 inline bool has_out(DUIterator& i) const; 378 inline Node* out(DUIterator& i) const; 379 // Iterate over the out-edges of this node. All changes are illegal. 380 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 381 inline Node* fast_out(DUIterator_Fast& i) const; 382 // Iterate over the out-edges of this node, deleting one at a time. 383 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 384 inline Node* last_out(DUIterator_Last& i) const; 385 // The inline bodies of all these methods are after the iterator definitions. 386 #else 387 // Iterate over the out-edges of this node. Deletions are illegal. 388 // This iteration uses integral indexes, to decouple from array reallocations. 389 DUIterator outs() const { return 0; } 390 // Use this when the out array might have changed to suppress asserts. 391 DUIterator refresh_out_pos(DUIterator i) const { return i; } 392 393 // Reference to the i'th output Node. Error if out of bounds. 394 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 395 // Does the node have an out at this position? (Used for iteration.) 396 bool has_out(DUIterator i) const { return i < _outcnt; } 397 398 // Iterate over the out-edges of this node. All changes are illegal. 399 // This iteration uses a pointer internal to the out array. 400 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 401 Node** out = _out; 402 // Assign a limit pointer to the reference argument: 403 max = out + (ptrdiff_t)_outcnt; 404 // Return the base pointer: 405 return out; 406 } 407 Node* fast_out(DUIterator_Fast i) const { return *i; } 408 // Iterate over the out-edges of this node, deleting one at a time. 409 // This iteration uses a pointer internal to the out array. 410 DUIterator_Last last_outs(DUIterator_Last& min) const { 411 Node** out = _out; 412 // Assign a limit pointer to the reference argument: 413 min = out; 414 // Return the pointer to the start of the iteration: 415 return out + (ptrdiff_t)_outcnt - 1; 416 } 417 Node* last_out(DUIterator_Last i) const { return *i; } 418 #endif 419 420 // Reference to the i'th input Node. Error if out of bounds. 421 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 422 // Reference to the i'th input Node. null if out of bounds. 423 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 424 // Reference to the i'th output Node. Error if out of bounds. 425 // Use this accessor sparingly. We are going trying to use iterators instead. 426 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 427 // Return the unique out edge. 428 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 429 // Delete out edge at position 'i' by moving last out edge to position 'i' 430 void raw_del_out(uint i) { 431 assert(i < _outcnt,"oob"); 432 assert(_outcnt > 0,"oob"); 433 #if OPTO_DU_ITERATOR_ASSERT 434 // Record that a change happened here. 435 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick); 436 #endif 437 _out[i] = _out[--_outcnt]; 438 // Smash the old edge so it can't be used accidentally. 439 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 440 } 441 442 #ifdef ASSERT 443 bool is_dead() const; 444 static bool is_not_dead(const Node* n); 445 bool is_reachable_from_root() const; 446 #endif 447 // Check whether node has become unreachable 448 bool is_unreachable(PhaseIterGVN &igvn) const; 449 450 // Set a required input edge, also updates corresponding output edge 451 void add_req( Node *n ); // Append a NEW required input 452 void add_req( Node *n0, Node *n1 ) { 453 add_req(n0); add_req(n1); } 454 void add_req( Node *n0, Node *n1, Node *n2 ) { 455 add_req(n0); add_req(n1); add_req(n2); } 456 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 457 void del_req( uint idx ); // Delete required edge & compact 458 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 459 void ins_req( uint i, Node *n ); // Insert a NEW required input 460 void set_req( uint i, Node *n ) { 461 assert( is_not_dead(n), "can not use dead node"); 462 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 463 assert( !VerifyHashTableKeys || _hash_lock == 0, 464 "remove node from hash table before modifying it"); 465 Node** p = &_in[i]; // cache this._in, across the del_out call 466 if (*p != nullptr) (*p)->del_out((Node *)this); 467 (*p) = n; 468 if (n != nullptr) n->add_out((Node *)this); 469 Compile::current()->record_modified_node(this); 470 } 471 // Light version of set_req() to init inputs after node creation. 472 void init_req( uint i, Node *n ) { 473 assert( (i == 0 && this == n) || 474 is_not_dead(n), "can not use dead node"); 475 assert( i < _cnt, "oob"); 476 assert( !VerifyHashTableKeys || _hash_lock == 0, 477 "remove node from hash table before modifying it"); 478 assert( _in[i] == nullptr, "sanity"); 479 _in[i] = n; 480 if (n != nullptr) n->add_out((Node *)this); 481 Compile::current()->record_modified_node(this); 482 } 483 // Find first occurrence of n among my edges: 484 int find_edge(Node* n); 485 int find_prec_edge(Node* n) { 486 for (uint i = req(); i < len(); i++) { 487 if (_in[i] == n) return i; 488 if (_in[i] == nullptr) { 489 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 490 break; 491 } 492 } 493 return -1; 494 } 495 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 496 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 497 // null out all inputs to eliminate incoming Def-Use edges. 498 void disconnect_inputs(Compile* C); 499 500 // Quickly, return true if and only if I am Compile::current()->top(). 501 bool is_top() const { 502 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 503 return (_out == nullptr); 504 } 505 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 506 void setup_is_top(); 507 508 // Strip away casting. (It is depth-limited.) 509 Node* uncast(bool keep_deps = false) const; 510 // Return whether two Nodes are equivalent, after stripping casting. 511 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 512 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 513 } 514 515 // Find out of current node that matches opcode. 516 Node* find_out_with(int opcode); 517 // Return true if the current node has an out that matches opcode. 518 bool has_out_with(int opcode); 519 // Return true if the current node has an out that matches any of the opcodes. 520 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 521 522 private: 523 static Node* uncast_helper(const Node* n, bool keep_deps); 524 525 // Add an output edge to the end of the list 526 void add_out( Node *n ) { 527 if (is_top()) return; 528 if( _outcnt == _outmax ) out_grow(_outcnt); 529 _out[_outcnt++] = n; 530 } 531 // Delete an output edge 532 void del_out( Node *n ) { 533 if (is_top()) return; 534 Node** outp = &_out[_outcnt]; 535 // Find and remove n 536 do { 537 assert(outp > _out, "Missing Def-Use edge"); 538 } while (*--outp != n); 539 *outp = _out[--_outcnt]; 540 // Smash the old edge so it can't be used accidentally. 541 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 542 // Record that a change happened here. 543 #if OPTO_DU_ITERATOR_ASSERT 544 DEBUG_ONLY(_last_del = n; ++_del_tick); 545 #endif 546 } 547 // Close gap after removing edge. 548 void close_prec_gap_at(uint gap) { 549 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 550 uint i = gap; 551 Node *last = nullptr; 552 for (; i < _max-1; ++i) { 553 Node *next = _in[i+1]; 554 if (next == nullptr) break; 555 last = next; 556 } 557 _in[gap] = last; // Move last slot to empty one. 558 _in[i] = nullptr; // null out last slot. 559 } 560 561 public: 562 // Globally replace this node by a given new node, updating all uses. 563 void replace_by(Node* new_node); 564 // Globally replace this node by a given new node, updating all uses 565 // and cutting input edges of old node. 566 void subsume_by(Node* new_node, Compile* c) { 567 replace_by(new_node); 568 disconnect_inputs(c); 569 } 570 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 571 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 572 // Find the one non-null required input. RegionNode only 573 Node *nonnull_req() const; 574 // Add or remove precedence edges 575 void add_prec( Node *n ); 576 void rm_prec( uint i ); 577 578 // Note: prec(i) will not necessarily point to n if edge already exists. 579 void set_prec( uint i, Node *n ) { 580 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 581 assert(is_not_dead(n), "can not use dead node"); 582 assert(i >= _cnt, "not a precedence edge"); 583 // Avoid spec violation: duplicated prec edge. 584 if (_in[i] == n) return; 585 if (n == nullptr || find_prec_edge(n) != -1) { 586 rm_prec(i); 587 return; 588 } 589 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 590 _in[i] = n; 591 n->add_out((Node *)this); 592 Compile::current()->record_modified_node(this); 593 } 594 595 // Set this node's index, used by cisc_version to replace current node 596 void set_idx(uint new_idx) { 597 _idx = new_idx; 598 } 599 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 600 void swap_edges(uint i1, uint i2) { 601 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 602 // Def-Use info is unchanged 603 Node* n1 = in(i1); 604 Node* n2 = in(i2); 605 _in[i1] = n2; 606 _in[i2] = n1; 607 // If this node is in the hash table, make sure it doesn't need a rehash. 608 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 609 // Flip swapped edges flag. 610 if (has_swapped_edges()) { 611 remove_flag(Node::Flag_has_swapped_edges); 612 } else { 613 add_flag(Node::Flag_has_swapped_edges); 614 } 615 } 616 617 // Iterators over input Nodes for a Node X are written as: 618 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 619 // NOTE: Required edges can contain embedded null pointers. 620 621 //----------------- Other Node Properties 622 623 // Generate class IDs for (some) ideal nodes so that it is possible to determine 624 // the type of a node using a non-virtual method call (the method is_<Node>() below). 625 // 626 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 627 // the type of the node the ID represents; another subset of an ID's bits are reserved 628 // for the superclasses of the node represented by the ID. 629 // 630 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 631 // returns false. A.is_A() returns true. 632 // 633 // If two classes, A and B, have the same superclass, a different bit of A's class id 634 // is reserved for A's type than for B's type. That bit is specified by the third 635 // parameter in the macro DEFINE_CLASS_ID. 636 // 637 // By convention, classes with deeper hierarchy are declared first. Moreover, 638 // classes with the same hierarchy depth are sorted by usage frequency. 639 // 640 // The query method masks the bits to cut off bits of subclasses and then compares 641 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 642 // 643 // Class_MachCall=30, ClassMask_MachCall=31 644 // 12 8 4 0 645 // 0 0 0 0 0 0 0 0 1 1 1 1 0 646 // | | | | 647 // | | | Bit_Mach=2 648 // | | Bit_MachReturn=4 649 // | Bit_MachSafePoint=8 650 // Bit_MachCall=16 651 // 652 // Class_CountedLoop=56, ClassMask_CountedLoop=63 653 // 12 8 4 0 654 // 0 0 0 0 0 0 0 1 1 1 0 0 0 655 // | | | 656 // | | Bit_Region=8 657 // | Bit_Loop=16 658 // Bit_CountedLoop=32 659 660 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 661 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 662 Class_##cl = Class_##supcl + Bit_##cl , \ 663 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 664 665 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 666 // so that its values fit into 32 bits. 667 enum NodeClasses { 668 Bit_Node = 0x00000000, 669 Class_Node = 0x00000000, 670 ClassMask_Node = 0xFFFFFFFF, 671 672 DEFINE_CLASS_ID(Multi, Node, 0) 673 DEFINE_CLASS_ID(SafePoint, Multi, 0) 674 DEFINE_CLASS_ID(Call, SafePoint, 0) 675 DEFINE_CLASS_ID(CallJava, Call, 0) 676 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 677 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 678 DEFINE_CLASS_ID(CallRuntime, Call, 1) 679 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 680 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 681 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1) 682 DEFINE_CLASS_ID(Allocate, Call, 2) 683 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 684 DEFINE_CLASS_ID(AbstractLock, Call, 3) 685 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 686 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 687 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 688 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 689 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 690 DEFINE_CLASS_ID(Catch, PCTable, 0) 691 DEFINE_CLASS_ID(Jump, PCTable, 1) 692 DEFINE_CLASS_ID(If, MultiBranch, 1) 693 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 694 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 695 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 696 DEFINE_CLASS_ID(RangeCheck, If, 1) 697 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 698 DEFINE_CLASS_ID(ParsePredicate, If, 3) 699 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 700 DEFINE_CLASS_ID(Start, Multi, 2) 701 DEFINE_CLASS_ID(MemBar, Multi, 3) 702 DEFINE_CLASS_ID(Initialize, MemBar, 0) 703 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 704 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 705 706 DEFINE_CLASS_ID(Mach, Node, 1) 707 DEFINE_CLASS_ID(MachReturn, Mach, 0) 708 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 709 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 710 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 711 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 712 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 713 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 714 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 715 DEFINE_CLASS_ID(MachBranch, Mach, 1) 716 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 717 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 718 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 719 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 720 DEFINE_CLASS_ID(MachTemp, Mach, 3) 721 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 722 DEFINE_CLASS_ID(MachConstant, Mach, 5) 723 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 724 DEFINE_CLASS_ID(MachMerge, Mach, 6) 725 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 726 DEFINE_CLASS_ID(MachProlog, Mach, 8) 727 DEFINE_CLASS_ID(MachVEP, Mach, 9) 728 729 DEFINE_CLASS_ID(Type, Node, 2) 730 DEFINE_CLASS_ID(Phi, Type, 0) 731 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 732 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 733 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 734 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 735 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 736 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 737 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 738 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 739 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 740 DEFINE_CLASS_ID(CMove, Type, 3) 741 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 742 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 743 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 744 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 745 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 746 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 747 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 748 DEFINE_CLASS_ID(Vector, Type, 7) 749 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 750 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 751 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 752 DEFINE_CLASS_ID(ShiftV, Vector, 3) 753 DEFINE_CLASS_ID(CompressV, Vector, 4) 754 DEFINE_CLASS_ID(ExpandV, Vector, 5) 755 DEFINE_CLASS_ID(CompressM, Vector, 6) 756 DEFINE_CLASS_ID(Reduction, Vector, 7) 757 DEFINE_CLASS_ID(NegV, Vector, 8) 758 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 759 DEFINE_CLASS_ID(MulVL, Vector, 10) 760 DEFINE_CLASS_ID(InlineType, Type, 8) 761 DEFINE_CLASS_ID(Con, Type, 9) 762 DEFINE_CLASS_ID(ConI, Con, 0) 763 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10) 764 DEFINE_CLASS_ID(Convert, Type, 11) 765 766 767 DEFINE_CLASS_ID(Proj, Node, 3) 768 DEFINE_CLASS_ID(CatchProj, Proj, 0) 769 DEFINE_CLASS_ID(JumpProj, Proj, 1) 770 DEFINE_CLASS_ID(IfProj, Proj, 2) 771 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 772 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 773 DEFINE_CLASS_ID(Parm, Proj, 4) 774 DEFINE_CLASS_ID(MachProj, Proj, 5) 775 776 DEFINE_CLASS_ID(Mem, Node, 4) 777 DEFINE_CLASS_ID(Load, Mem, 0) 778 DEFINE_CLASS_ID(LoadVector, Load, 0) 779 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 780 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 781 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 782 DEFINE_CLASS_ID(Store, Mem, 1) 783 DEFINE_CLASS_ID(StoreVector, Store, 0) 784 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 785 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 786 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 787 DEFINE_CLASS_ID(LoadStore, Mem, 2) 788 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 789 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 790 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 791 792 DEFINE_CLASS_ID(Region, Node, 5) 793 DEFINE_CLASS_ID(Loop, Region, 0) 794 DEFINE_CLASS_ID(Root, Loop, 0) 795 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 796 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 797 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 798 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 799 800 DEFINE_CLASS_ID(Sub, Node, 6) 801 DEFINE_CLASS_ID(Cmp, Sub, 0) 802 DEFINE_CLASS_ID(FastLock, Cmp, 0) 803 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 804 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 805 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 806 807 DEFINE_CLASS_ID(MergeMem, Node, 7) 808 DEFINE_CLASS_ID(Bool, Node, 8) 809 DEFINE_CLASS_ID(AddP, Node, 9) 810 DEFINE_CLASS_ID(BoxLock, Node, 10) 811 DEFINE_CLASS_ID(Add, Node, 11) 812 DEFINE_CLASS_ID(Mul, Node, 12) 813 DEFINE_CLASS_ID(ClearArray, Node, 14) 814 DEFINE_CLASS_ID(Halt, Node, 15) 815 DEFINE_CLASS_ID(Opaque1, Node, 16) 816 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 817 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 818 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 819 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 820 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 821 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 822 DEFINE_CLASS_ID(Move, Node, 20) 823 DEFINE_CLASS_ID(LShift, Node, 21) 824 DEFINE_CLASS_ID(Neg, Node, 22) 825 826 _max_classes = ClassMask_Neg 827 }; 828 #undef DEFINE_CLASS_ID 829 830 // Flags are sorted by usage frequency. 831 enum NodeFlags { 832 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 833 Flag_rematerialize = 1 << 1, 834 Flag_needs_anti_dependence_check = 1 << 2, 835 Flag_is_macro = 1 << 3, 836 Flag_is_Con = 1 << 4, 837 Flag_is_cisc_alternate = 1 << 5, 838 Flag_is_dead_loop_safe = 1 << 6, 839 Flag_may_be_short_branch = 1 << 7, 840 Flag_avoid_back_to_back_before = 1 << 8, 841 Flag_avoid_back_to_back_after = 1 << 9, 842 Flag_has_call = 1 << 10, 843 Flag_has_swapped_edges = 1 << 11, 844 Flag_is_scheduled = 1 << 12, 845 Flag_is_expensive = 1 << 13, 846 Flag_is_predicated_vector = 1 << 14, 847 Flag_for_post_loop_opts_igvn = 1 << 15, 848 Flag_for_merge_stores_igvn = 1 << 16, 849 Flag_is_removed_by_peephole = 1 << 17, 850 Flag_is_predicated_using_blend = 1 << 18, 851 _last_flag = Flag_is_predicated_using_blend 852 }; 853 854 class PD; 855 856 private: 857 juint _class_id; 858 juint _flags; 859 860 #ifdef ASSERT 861 static juint max_flags(); 862 #endif 863 864 protected: 865 // These methods should be called from constructors only. 866 void init_class_id(juint c) { 867 _class_id = c; // cast out const 868 } 869 void init_flags(uint fl) { 870 assert(fl <= max_flags(), "invalid node flag"); 871 _flags |= fl; 872 } 873 void clear_flag(uint fl) { 874 assert(fl <= max_flags(), "invalid node flag"); 875 _flags &= ~fl; 876 } 877 878 public: 879 juint class_id() const { return _class_id; } 880 881 juint flags() const { return _flags; } 882 883 void add_flag(juint fl) { init_flags(fl); } 884 885 void remove_flag(juint fl) { clear_flag(fl); } 886 887 // Return a dense integer opcode number 888 virtual int Opcode() const; 889 890 // Virtual inherited Node size 891 virtual uint size_of() const; 892 893 // Other interesting Node properties 894 #define DEFINE_CLASS_QUERY(type) \ 895 bool is_##type() const { \ 896 return ((_class_id & ClassMask_##type) == Class_##type); \ 897 } \ 898 type##Node *as_##type() const { \ 899 assert(is_##type(), "invalid node class: %s", Name()); \ 900 return (type##Node*)this; \ 901 } \ 902 type##Node* isa_##type() const { \ 903 return (is_##type()) ? as_##type() : nullptr; \ 904 } 905 906 DEFINE_CLASS_QUERY(AbstractLock) 907 DEFINE_CLASS_QUERY(Add) 908 DEFINE_CLASS_QUERY(AddP) 909 DEFINE_CLASS_QUERY(Allocate) 910 DEFINE_CLASS_QUERY(AllocateArray) 911 DEFINE_CLASS_QUERY(ArrayCopy) 912 DEFINE_CLASS_QUERY(BaseCountedLoop) 913 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 914 DEFINE_CLASS_QUERY(Blackhole) 915 DEFINE_CLASS_QUERY(Bool) 916 DEFINE_CLASS_QUERY(BoxLock) 917 DEFINE_CLASS_QUERY(Call) 918 DEFINE_CLASS_QUERY(CallDynamicJava) 919 DEFINE_CLASS_QUERY(CallJava) 920 DEFINE_CLASS_QUERY(CallLeaf) 921 DEFINE_CLASS_QUERY(CallLeafNoFP) 922 DEFINE_CLASS_QUERY(CallLeafPure) 923 DEFINE_CLASS_QUERY(CallRuntime) 924 DEFINE_CLASS_QUERY(CallStaticJava) 925 DEFINE_CLASS_QUERY(Catch) 926 DEFINE_CLASS_QUERY(CatchProj) 927 DEFINE_CLASS_QUERY(CheckCastPP) 928 DEFINE_CLASS_QUERY(CastII) 929 DEFINE_CLASS_QUERY(CastLL) 930 DEFINE_CLASS_QUERY(CastFF) 931 DEFINE_CLASS_QUERY(ConI) 932 DEFINE_CLASS_QUERY(CastPP) 933 DEFINE_CLASS_QUERY(ConstraintCast) 934 DEFINE_CLASS_QUERY(ClearArray) 935 DEFINE_CLASS_QUERY(CMove) 936 DEFINE_CLASS_QUERY(Cmp) 937 DEFINE_CLASS_QUERY(Convert) 938 DEFINE_CLASS_QUERY(CountedLoop) 939 DEFINE_CLASS_QUERY(CountedLoopEnd) 940 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 941 DEFINE_CLASS_QUERY(DecodeN) 942 DEFINE_CLASS_QUERY(DecodeNKlass) 943 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 944 DEFINE_CLASS_QUERY(EncodeP) 945 DEFINE_CLASS_QUERY(EncodePKlass) 946 DEFINE_CLASS_QUERY(FastLock) 947 DEFINE_CLASS_QUERY(FastUnlock) 948 DEFINE_CLASS_QUERY(FlatArrayCheck) 949 DEFINE_CLASS_QUERY(Halt) 950 DEFINE_CLASS_QUERY(If) 951 DEFINE_CLASS_QUERY(RangeCheck) 952 DEFINE_CLASS_QUERY(IfProj) 953 DEFINE_CLASS_QUERY(IfFalse) 954 DEFINE_CLASS_QUERY(IfTrue) 955 DEFINE_CLASS_QUERY(Initialize) 956 DEFINE_CLASS_QUERY(Jump) 957 DEFINE_CLASS_QUERY(JumpProj) 958 DEFINE_CLASS_QUERY(LongCountedLoop) 959 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 960 DEFINE_CLASS_QUERY(Load) 961 DEFINE_CLASS_QUERY(LoadStore) 962 DEFINE_CLASS_QUERY(LoadStoreConditional) 963 DEFINE_CLASS_QUERY(Lock) 964 DEFINE_CLASS_QUERY(Loop) 965 DEFINE_CLASS_QUERY(LShift) 966 DEFINE_CLASS_QUERY(Mach) 967 DEFINE_CLASS_QUERY(MachBranch) 968 DEFINE_CLASS_QUERY(MachCall) 969 DEFINE_CLASS_QUERY(MachCallDynamicJava) 970 DEFINE_CLASS_QUERY(MachCallJava) 971 DEFINE_CLASS_QUERY(MachCallLeaf) 972 DEFINE_CLASS_QUERY(MachCallRuntime) 973 DEFINE_CLASS_QUERY(MachCallStaticJava) 974 DEFINE_CLASS_QUERY(MachConstantBase) 975 DEFINE_CLASS_QUERY(MachConstant) 976 DEFINE_CLASS_QUERY(MachGoto) 977 DEFINE_CLASS_QUERY(MachIf) 978 DEFINE_CLASS_QUERY(MachJump) 979 DEFINE_CLASS_QUERY(MachNullCheck) 980 DEFINE_CLASS_QUERY(MachProj) 981 DEFINE_CLASS_QUERY(MachProlog) 982 DEFINE_CLASS_QUERY(MachReturn) 983 DEFINE_CLASS_QUERY(MachSafePoint) 984 DEFINE_CLASS_QUERY(MachSpillCopy) 985 DEFINE_CLASS_QUERY(MachTemp) 986 DEFINE_CLASS_QUERY(MachMemBar) 987 DEFINE_CLASS_QUERY(MachMerge) 988 DEFINE_CLASS_QUERY(MachVEP) 989 DEFINE_CLASS_QUERY(Mem) 990 DEFINE_CLASS_QUERY(MemBar) 991 DEFINE_CLASS_QUERY(MemBarStoreStore) 992 DEFINE_CLASS_QUERY(MergeMem) 993 DEFINE_CLASS_QUERY(Move) 994 DEFINE_CLASS_QUERY(Mul) 995 DEFINE_CLASS_QUERY(Multi) 996 DEFINE_CLASS_QUERY(MultiBranch) 997 DEFINE_CLASS_QUERY(MulVL) 998 DEFINE_CLASS_QUERY(Neg) 999 DEFINE_CLASS_QUERY(NegV) 1000 DEFINE_CLASS_QUERY(NeverBranch) 1001 DEFINE_CLASS_QUERY(Opaque1) 1002 DEFINE_CLASS_QUERY(OpaqueNotNull) 1003 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 1004 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 1005 DEFINE_CLASS_QUERY(OpaqueLoopInit) 1006 DEFINE_CLASS_QUERY(OpaqueLoopStride) 1007 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 1008 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 1009 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 1010 DEFINE_CLASS_QUERY(Parm) 1011 DEFINE_CLASS_QUERY(ParsePredicate) 1012 DEFINE_CLASS_QUERY(PCTable) 1013 DEFINE_CLASS_QUERY(Phi) 1014 DEFINE_CLASS_QUERY(Proj) 1015 DEFINE_CLASS_QUERY(Reduction) 1016 DEFINE_CLASS_QUERY(Region) 1017 DEFINE_CLASS_QUERY(Root) 1018 DEFINE_CLASS_QUERY(SafePoint) 1019 DEFINE_CLASS_QUERY(SafePointScalarObject) 1020 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1021 DEFINE_CLASS_QUERY(Start) 1022 DEFINE_CLASS_QUERY(Store) 1023 DEFINE_CLASS_QUERY(Sub) 1024 DEFINE_CLASS_QUERY(SubTypeCheck) 1025 DEFINE_CLASS_QUERY(Type) 1026 DEFINE_CLASS_QUERY(InlineType) 1027 DEFINE_CLASS_QUERY(Vector) 1028 DEFINE_CLASS_QUERY(VectorMaskCmp) 1029 DEFINE_CLASS_QUERY(VectorUnbox) 1030 DEFINE_CLASS_QUERY(VectorReinterpret) 1031 DEFINE_CLASS_QUERY(CompressV) 1032 DEFINE_CLASS_QUERY(ExpandV) 1033 DEFINE_CLASS_QUERY(CompressM) 1034 DEFINE_CLASS_QUERY(LoadVector) 1035 DEFINE_CLASS_QUERY(LoadVectorGather) 1036 DEFINE_CLASS_QUERY(LoadVectorMasked) 1037 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1038 DEFINE_CLASS_QUERY(StoreVector) 1039 DEFINE_CLASS_QUERY(StoreVectorScatter) 1040 DEFINE_CLASS_QUERY(StoreVectorMasked) 1041 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1042 DEFINE_CLASS_QUERY(SaturatingVector) 1043 DEFINE_CLASS_QUERY(ShiftV) 1044 DEFINE_CLASS_QUERY(Unlock) 1045 1046 #undef DEFINE_CLASS_QUERY 1047 1048 // duplicate of is_MachSpillCopy() 1049 bool is_SpillCopy () const { 1050 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1051 } 1052 1053 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1054 // The data node which is safe to leave in dead loop during IGVN optimization. 1055 bool is_dead_loop_safe() const; 1056 1057 // is_Copy() returns copied edge index (0 or 1) 1058 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1059 1060 virtual bool is_CFG() const { return false; } 1061 1062 // If this node is control-dependent on a test, can it be 1063 // rerouted to a dominating equivalent test? This is usually 1064 // true of non-CFG nodes, but can be false for operations which 1065 // depend for their correct sequencing on more than one test. 1066 // (In that case, hoisting to a dominating test may silently 1067 // skip some other important test.) 1068 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1069 1070 // When building basic blocks, I need to have a notion of block beginning 1071 // Nodes, next block selector Nodes (block enders), and next block 1072 // projections. These calls need to work on their machine equivalents. The 1073 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1074 bool is_block_start() const { 1075 if ( is_Region() ) 1076 return this == (const Node*)in(0); 1077 else 1078 return is_Start(); 1079 } 1080 1081 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1082 // Goto and Return. This call also returns the block ending Node. 1083 virtual const Node *is_block_proj() const; 1084 1085 // The node is a "macro" node which needs to be expanded before matching 1086 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1087 // The node is expensive: the best control is set during loop opts 1088 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1089 // The node's original edge position is swapped. 1090 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1091 1092 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1093 1094 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1095 1096 // Used in lcm to mark nodes that have scheduled 1097 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1098 1099 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1100 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; } 1101 1102 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1103 static bool may_be_loop_entry(Node* n) { 1104 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1105 } 1106 1107 //----------------- Optimization 1108 1109 // Get the worst-case Type output for this Node. 1110 virtual const class Type *bottom_type() const; 1111 1112 // If we find a better type for a node, try to record it permanently. 1113 // Return true if this node actually changed. 1114 // Be sure to do the hash_delete game in the "rehash" variant. 1115 void raise_bottom_type(const Type* new_type); 1116 1117 // Get the address type with which this node uses and/or defs memory, 1118 // or null if none. The address type is conservatively wide. 1119 // Returns non-null for calls, membars, loads, stores, etc. 1120 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1121 virtual const class TypePtr *adr_type() const { return nullptr; } 1122 1123 // Return an existing node which computes the same function as this node. 1124 // The optimistic combined algorithm requires this to return a Node which 1125 // is a small number of steps away (e.g., one of my inputs). 1126 virtual Node* Identity(PhaseGVN* phase); 1127 1128 // Return the set of values this Node can take on at runtime. 1129 virtual const Type* Value(PhaseGVN* phase) const; 1130 1131 // Return a node which is more "ideal" than the current node. 1132 // The invariants on this call are subtle. If in doubt, read the 1133 // treatise in node.cpp above the default implementation AND TEST WITH 1134 // -XX:VerifyIterativeGVN=1 1135 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1136 1137 // Some nodes have specific Ideal subgraph transformations only if they are 1138 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1139 // for the transformations to happen. 1140 bool has_special_unique_user() const; 1141 1142 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1143 Node* find_exact_control(Node* ctrl); 1144 1145 // Results of the dominance analysis. 1146 enum class DomResult { 1147 NotDominate, // 'this' node does not dominate 'sub'. 1148 Dominate, // 'this' node dominates or is equal to 'sub'. 1149 EncounteredDeadCode // Result is undefined due to encountering dead code. 1150 }; 1151 // Check if 'this' node dominates or equal to 'sub'. 1152 DomResult dominates(Node* sub, Node_List &nlist); 1153 1154 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1155 public: 1156 1157 // See if there is valid pipeline info 1158 static const Pipeline *pipeline_class(); 1159 virtual const Pipeline *pipeline() const; 1160 1161 // Compute the latency from the def to this instruction of the ith input node 1162 uint latency(uint i); 1163 1164 // Hash & compare functions, for pessimistic value numbering 1165 1166 // If the hash function returns the special sentinel value NO_HASH, 1167 // the node is guaranteed never to compare equal to any other node. 1168 // If we accidentally generate a hash with value NO_HASH the node 1169 // won't go into the table and we'll lose a little optimization. 1170 static const uint NO_HASH = 0; 1171 virtual uint hash() const; 1172 virtual bool cmp( const Node &n ) const; 1173 1174 // Operation appears to be iteratively computed (such as an induction variable) 1175 // It is possible for this operation to return false for a loop-varying 1176 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1177 bool is_iteratively_computed(); 1178 1179 // Determine if a node is a counted loop induction variable. 1180 // NOTE: The method is defined in "loopnode.cpp". 1181 bool is_cloop_ind_var() const; 1182 1183 // Return a node with opcode "opc" and same inputs as "this" if one can 1184 // be found; Otherwise return null; 1185 Node* find_similar(int opc); 1186 1187 // Return the unique control out if only one. Null if none or more than one. 1188 Node* unique_ctrl_out_or_null() const; 1189 // Return the unique control out. Asserts if none or more than one control out. 1190 Node* unique_ctrl_out() const; 1191 1192 // Set control or add control as precedence edge 1193 void ensure_control_or_add_prec(Node* c); 1194 void add_prec_from(Node* n); 1195 1196 // Visit boundary uses of the node and apply a callback function for each. 1197 // Recursively traverse uses, stopping and applying the callback when 1198 // reaching a boundary node, defined by is_boundary. Note: the function 1199 // definition appears after the complete type definition of Node_List. 1200 template <typename Callback, typename Check> 1201 void visit_uses(Callback callback, Check is_boundary) const; 1202 1203 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1204 // (Load and range check CastII nodes). 1205 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1206 virtual Node* pin_array_access_node() const { 1207 return nullptr; 1208 } 1209 1210 //----------------- Code Generation 1211 1212 // Ideal register class for Matching. Zero means unmatched instruction 1213 // (these are cloned instead of converted to machine nodes). 1214 virtual uint ideal_reg() const; 1215 1216 static const uint NotAMachineReg; // must be > max. machine register 1217 1218 // Do we Match on this edge index or not? Generally false for Control 1219 // and true for everything else. Weird for calls & returns. 1220 virtual uint match_edge(uint idx) const; 1221 1222 // Register class output is returned in 1223 virtual const RegMask &out_RegMask() const; 1224 // Register class input is expected in 1225 virtual const RegMask &in_RegMask(uint) const; 1226 // Should we clone rather than spill this instruction? 1227 bool rematerialize() const; 1228 1229 // Return JVM State Object if this Node carries debug info, or null otherwise 1230 virtual JVMState* jvms() const; 1231 1232 // Print as assembly 1233 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1234 // Emit bytes using C2_MacroAssembler 1235 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1236 // Size of instruction in bytes 1237 virtual uint size(PhaseRegAlloc *ra_) const; 1238 1239 // Convenience function to extract an integer constant from a node. 1240 // If it is not an integer constant (either Con, CastII, or Mach), 1241 // return value_if_unknown. 1242 jint find_int_con(jint value_if_unknown) const { 1243 const TypeInt* t = find_int_type(); 1244 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1245 } 1246 // Return the constant, knowing it is an integer constant already 1247 jint get_int() const { 1248 const TypeInt* t = find_int_type(); 1249 guarantee(t != nullptr, "must be con"); 1250 return t->get_con(); 1251 } 1252 // Here's where the work is done. Can produce non-constant int types too. 1253 const TypeInt* find_int_type() const; 1254 const TypeInteger* find_integer_type(BasicType bt) const; 1255 1256 // Same thing for long (and intptr_t, via type.hpp): 1257 jlong get_long() const { 1258 const TypeLong* t = find_long_type(); 1259 guarantee(t != nullptr, "must be con"); 1260 return t->get_con(); 1261 } 1262 jlong find_long_con(jint value_if_unknown) const { 1263 const TypeLong* t = find_long_type(); 1264 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1265 } 1266 const TypeLong* find_long_type() const; 1267 1268 jlong get_integer_as_long(BasicType bt) const { 1269 const TypeInteger* t = find_integer_type(bt); 1270 guarantee(t != nullptr && t->is_con(), "must be con"); 1271 return t->get_con_as_long(bt); 1272 } 1273 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1274 const TypeInteger* t = find_integer_type(bt); 1275 if (t == nullptr || !t->is_con()) return value_if_unknown; 1276 return t->get_con_as_long(bt); 1277 } 1278 const TypePtr* get_ptr_type() const; 1279 1280 // These guys are called by code generated by ADLC: 1281 intptr_t get_ptr() const; 1282 intptr_t get_narrowcon() const; 1283 jdouble getd() const; 1284 jfloat getf() const; 1285 jshort geth() const; 1286 1287 // Nodes which are pinned into basic blocks 1288 virtual bool pinned() const { return false; } 1289 1290 // Nodes which use memory without consuming it, hence need antidependences 1291 // More specifically, needs_anti_dependence_check returns true iff the node 1292 // (a) does a load, and (b) does not perform a store (except perhaps to a 1293 // stack slot or some other unaliased location). 1294 bool needs_anti_dependence_check() const; 1295 1296 // Return which operand this instruction may cisc-spill. In other words, 1297 // return operand position that can convert from reg to memory access 1298 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1299 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1300 1301 // Whether this is a memory-writing machine node. 1302 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1303 1304 // Whether this is a memory phi node 1305 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1306 1307 bool is_div_or_mod(BasicType bt) const; 1308 1309 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1310 1311 //----------------- Printing, etc 1312 #ifndef PRODUCT 1313 public: 1314 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1315 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1316 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const; 1317 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1318 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1319 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const; 1320 class DumpConfig { 1321 public: 1322 // overridden to implement coloring of node idx 1323 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1324 virtual void post_dump(outputStream *st) = 0; 1325 }; 1326 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1327 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1328 void dump() const; // print node with newline 1329 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1330 void dump(int depth) const; // Print this node, recursively to depth d 1331 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1332 void dump_comp() const; // Print this node in compact representation. 1333 // Print this node in compact representation. 1334 void dump_comp(const char* suffix, outputStream *st = tty) const; 1335 private: 1336 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1337 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1338 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1339 public: 1340 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1341 // Print compact per-node info 1342 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1343 1344 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1345 1346 // This call defines a class-unique string used to identify class instances 1347 virtual const char *Name() const; 1348 1349 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1350 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1351 #endif 1352 #ifdef ASSERT 1353 void verify_construction(); 1354 bool verify_jvms(const JVMState* jvms) const; 1355 1356 Node* _debug_orig; // Original version of this, if any. 1357 Node* debug_orig() const { return _debug_orig; } 1358 void set_debug_orig(Node* orig); // _debug_orig = orig 1359 void dump_orig(outputStream *st, bool print_key = true) const; 1360 1361 uint64_t _debug_idx; // Unique value assigned to every node. 1362 uint64_t debug_idx() const { return _debug_idx; } 1363 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1364 1365 int _hash_lock; // Barrier to modifications of nodes in the hash table 1366 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1367 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1368 1369 static void init_NodeProperty(); 1370 1371 #if OPTO_DU_ITERATOR_ASSERT 1372 const Node* _last_del; // The last deleted node. 1373 uint _del_tick; // Bumped when a deletion happens.. 1374 #endif 1375 #endif 1376 }; 1377 1378 inline bool not_a_node(const Node* n) { 1379 if (n == nullptr) return true; 1380 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1381 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1382 return false; 1383 } 1384 1385 //----------------------------------------------------------------------------- 1386 // Iterators over DU info, and associated Node functions. 1387 1388 #if OPTO_DU_ITERATOR_ASSERT 1389 1390 // Common code for assertion checking on DU iterators. 1391 class DUIterator_Common { 1392 #ifdef ASSERT 1393 protected: 1394 bool _vdui; // cached value of VerifyDUIterators 1395 const Node* _node; // the node containing the _out array 1396 uint _outcnt; // cached node->_outcnt 1397 uint _del_tick; // cached node->_del_tick 1398 Node* _last; // last value produced by the iterator 1399 1400 void sample(const Node* node); // used by c'tor to set up for verifies 1401 void verify(const Node* node, bool at_end_ok = false); 1402 void verify_resync(); 1403 void reset(const DUIterator_Common& that); 1404 1405 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1406 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1407 #else 1408 #define I_VDUI_ONLY(i,x) { } 1409 #endif //ASSERT 1410 }; 1411 1412 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1413 1414 // Default DU iterator. Allows appends onto the out array. 1415 // Allows deletion from the out array only at the current point. 1416 // Usage: 1417 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1418 // Node* y = x->out(i); 1419 // ... 1420 // } 1421 // Compiles in product mode to a unsigned integer index, which indexes 1422 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1423 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1424 // before continuing the loop. You must delete only the last-produced 1425 // edge. You must delete only a single copy of the last-produced edge, 1426 // or else you must delete all copies at once (the first time the edge 1427 // is produced by the iterator). 1428 class DUIterator : public DUIterator_Common { 1429 friend class Node; 1430 1431 // This is the index which provides the product-mode behavior. 1432 // Whatever the product-mode version of the system does to the 1433 // DUI index is done to this index. All other fields in 1434 // this class are used only for assertion checking. 1435 uint _idx; 1436 1437 #ifdef ASSERT 1438 uint _refresh_tick; // Records the refresh activity. 1439 1440 void sample(const Node* node); // Initialize _refresh_tick etc. 1441 void verify(const Node* node, bool at_end_ok = false); 1442 void verify_increment(); // Verify an increment operation. 1443 void verify_resync(); // Verify that we can back up over a deletion. 1444 void verify_finish(); // Verify that the loop terminated properly. 1445 void refresh(); // Resample verification info. 1446 void reset(const DUIterator& that); // Resample after assignment. 1447 #endif 1448 1449 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1450 { _idx = 0; DEBUG_ONLY(sample(node)); } 1451 1452 public: 1453 // initialize to garbage; clear _vdui to disable asserts 1454 DUIterator() 1455 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); } 1456 1457 DUIterator(const DUIterator& that) 1458 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); } 1459 1460 void operator++(int dummy_to_specify_postfix_op) 1461 { _idx++; VDUI_ONLY(verify_increment()); } 1462 1463 void operator--() 1464 { VDUI_ONLY(verify_resync()); --_idx; } 1465 1466 ~DUIterator() 1467 { VDUI_ONLY(verify_finish()); } 1468 1469 void operator=(const DUIterator& that) 1470 { _idx = that._idx; DEBUG_ONLY(reset(that)); } 1471 }; 1472 1473 DUIterator Node::outs() const 1474 { return DUIterator(this, 0); } 1475 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1476 { I_VDUI_ONLY(i, i.refresh()); return i; } 1477 bool Node::has_out(DUIterator& i) const 1478 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1479 Node* Node::out(DUIterator& i) const 1480 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; } 1481 1482 1483 // Faster DU iterator. Disallows insertions into the out array. 1484 // Allows deletion from the out array only at the current point. 1485 // Usage: 1486 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1487 // Node* y = x->fast_out(i); 1488 // ... 1489 // } 1490 // Compiles in product mode to raw Node** pointer arithmetic, with 1491 // no reloading of pointers from the original node x. If you delete, 1492 // you must perform "--i; --imax" just before continuing the loop. 1493 // If you delete multiple copies of the same edge, you must decrement 1494 // imax, but not i, multiple times: "--i, imax -= num_edges". 1495 class DUIterator_Fast : public DUIterator_Common { 1496 friend class Node; 1497 friend class DUIterator_Last; 1498 1499 // This is the pointer which provides the product-mode behavior. 1500 // Whatever the product-mode version of the system does to the 1501 // DUI pointer is done to this pointer. All other fields in 1502 // this class are used only for assertion checking. 1503 Node** _outp; 1504 1505 #ifdef ASSERT 1506 void verify(const Node* node, bool at_end_ok = false); 1507 void verify_limit(); 1508 void verify_resync(); 1509 void verify_relimit(uint n); 1510 void reset(const DUIterator_Fast& that); 1511 #endif 1512 1513 // Note: offset must be signed, since -1 is sometimes passed 1514 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1515 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); } 1516 1517 public: 1518 // initialize to garbage; clear _vdui to disable asserts 1519 DUIterator_Fast() 1520 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); } 1521 1522 DUIterator_Fast(const DUIterator_Fast& that) 1523 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); } 1524 1525 void operator++(int dummy_to_specify_postfix_op) 1526 { _outp++; VDUI_ONLY(verify(_node, true)); } 1527 1528 void operator--() 1529 { VDUI_ONLY(verify_resync()); --_outp; } 1530 1531 void operator-=(uint n) // applied to the limit only 1532 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1533 1534 bool operator<(DUIterator_Fast& limit) { 1535 I_VDUI_ONLY(*this, this->verify(_node, true)); 1536 I_VDUI_ONLY(limit, limit.verify_limit()); 1537 return _outp < limit._outp; 1538 } 1539 1540 void operator=(const DUIterator_Fast& that) 1541 { _outp = that._outp; DEBUG_ONLY(reset(that)); } 1542 }; 1543 1544 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1545 // Assign a limit pointer to the reference argument: 1546 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1547 // Return the base pointer: 1548 return DUIterator_Fast(this, 0); 1549 } 1550 Node* Node::fast_out(DUIterator_Fast& i) const { 1551 I_VDUI_ONLY(i, i.verify(this)); 1552 return DEBUG_ONLY(i._last=) *i._outp; 1553 } 1554 1555 1556 // Faster DU iterator. Requires each successive edge to be removed. 1557 // Does not allow insertion of any edges. 1558 // Usage: 1559 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1560 // Node* y = x->last_out(i); 1561 // ... 1562 // } 1563 // Compiles in product mode to raw Node** pointer arithmetic, with 1564 // no reloading of pointers from the original node x. 1565 class DUIterator_Last : private DUIterator_Fast { 1566 friend class Node; 1567 1568 #ifdef ASSERT 1569 void verify(const Node* node, bool at_end_ok = false); 1570 void verify_limit(); 1571 void verify_step(uint num_edges); 1572 #endif 1573 1574 // Note: offset must be signed, since -1 is sometimes passed 1575 DUIterator_Last(const Node* node, ptrdiff_t offset) 1576 : DUIterator_Fast(node, offset) { } 1577 1578 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1579 void operator<(int) {} // do not use 1580 1581 public: 1582 DUIterator_Last() { } 1583 // initialize to garbage 1584 1585 DUIterator_Last(const DUIterator_Last& that) = default; 1586 1587 void operator--() 1588 { _outp--; VDUI_ONLY(verify_step(1)); } 1589 1590 void operator-=(uint n) 1591 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1592 1593 bool operator>=(DUIterator_Last& limit) { 1594 I_VDUI_ONLY(*this, this->verify(_node, true)); 1595 I_VDUI_ONLY(limit, limit.verify_limit()); 1596 return _outp >= limit._outp; 1597 } 1598 1599 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1600 }; 1601 1602 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1603 // Assign a limit pointer to the reference argument: 1604 imin = DUIterator_Last(this, 0); 1605 // Return the initial pointer: 1606 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1607 } 1608 Node* Node::last_out(DUIterator_Last& i) const { 1609 I_VDUI_ONLY(i, i.verify(this)); 1610 return DEBUG_ONLY(i._last=) *i._outp; 1611 } 1612 1613 #endif //OPTO_DU_ITERATOR_ASSERT 1614 1615 #undef I_VDUI_ONLY 1616 #undef VDUI_ONLY 1617 1618 // An Iterator that truly follows the iterator pattern. Doesn't 1619 // support deletion but could be made to. 1620 // 1621 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1622 // Node* m = i.get(); 1623 // 1624 class SimpleDUIterator : public StackObj { 1625 private: 1626 Node* node; 1627 DUIterator_Fast imax; 1628 DUIterator_Fast i; 1629 public: 1630 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1631 bool has_next() { return i < imax; } 1632 void next() { i++; } 1633 Node* get() { return node->fast_out(i); } 1634 }; 1635 1636 1637 //----------------------------------------------------------------------------- 1638 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1639 // Abstractly provides an infinite array of Node*'s, initialized to null. 1640 // Note that the constructor just zeros things, and since I use Arena 1641 // allocation I do not need a destructor to reclaim storage. 1642 class Node_Array : public AnyObj { 1643 protected: 1644 Arena* _a; // Arena to allocate in 1645 uint _max; 1646 Node** _nodes; 1647 ReallocMark _nesting; // Safety checks for arena reallocation 1648 1649 // Grow array to required capacity 1650 void maybe_grow(uint i) { 1651 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 1652 if (i >= _max) { 1653 grow(i); 1654 } 1655 } 1656 void grow(uint i); 1657 1658 public: 1659 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1660 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1661 clear(); 1662 } 1663 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1664 1665 NONCOPYABLE(Node_Array); 1666 Node_Array& operator=(Node_Array&&) = delete; 1667 // Allow move constructor for && (eg. capture return of function) 1668 Node_Array(Node_Array&&) = default; 1669 1670 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1671 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1672 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1673 Node** adr() { return _nodes; } 1674 // Extend the mapping: index i maps to Node *n. 1675 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1676 void insert( uint i, Node *n ); 1677 void remove( uint i ); // Remove, preserving order 1678 // Clear all entries in _nodes to null but keep storage 1679 void clear() { 1680 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1681 } 1682 1683 uint max() const { return _max; } 1684 void dump() const; 1685 }; 1686 1687 class Node_List : public Node_Array { 1688 uint _cnt; 1689 public: 1690 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1691 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1692 1693 NONCOPYABLE(Node_List); 1694 Node_List& operator=(Node_List&&) = delete; 1695 // Allow move constructor for && (eg. capture return of function) 1696 Node_List(Node_List&&) = default; 1697 1698 bool contains(const Node* n) const { 1699 for (uint e = 0; e < size(); e++) { 1700 if (at(e) == n) return true; 1701 } 1702 return false; 1703 } 1704 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1705 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1706 void push( Node *b ) { map(_cnt++,b); } 1707 void yank( Node *n ); // Find and remove 1708 Node *pop() { return _nodes[--_cnt]; } 1709 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1710 void copy(const Node_List& from) { 1711 if (from._max > _max) { 1712 grow(from._max); 1713 } 1714 _cnt = from._cnt; 1715 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1716 } 1717 1718 uint size() const { return _cnt; } 1719 void dump() const; 1720 void dump_simple() const; 1721 }; 1722 1723 // Definition must appear after complete type definition of Node_List 1724 template <typename Callback, typename Check> 1725 void Node::visit_uses(Callback callback, Check is_boundary) const { 1726 ResourceMark rm; 1727 VectorSet visited; 1728 Node_List worklist; 1729 1730 // The initial worklist consists of the direct uses 1731 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1732 Node* out = fast_out(k); 1733 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1734 } 1735 1736 while (worklist.size() > 0) { 1737 Node* use = worklist.pop(); 1738 // Apply callback on boundary nodes 1739 if (is_boundary(use)) { 1740 callback(use); 1741 } else { 1742 // Not a boundary node, continue search 1743 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1744 Node* out = use->fast_out(k); 1745 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1746 } 1747 } 1748 } 1749 } 1750 1751 1752 //------------------------------Unique_Node_List------------------------------- 1753 class Unique_Node_List : public Node_List { 1754 VectorSet _in_worklist; 1755 uint _clock_index; // Index in list where to pop from next 1756 public: 1757 Unique_Node_List() : Node_List(), _clock_index(0) {} 1758 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1759 1760 NONCOPYABLE(Unique_Node_List); 1761 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1762 // Allow move constructor for && (eg. capture return of function) 1763 Unique_Node_List(Unique_Node_List&&) = default; 1764 1765 void remove( Node *n ); 1766 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; } 1767 VectorSet& member_set(){ return _in_worklist; } 1768 1769 void push(Node* b) { 1770 if( !_in_worklist.test_set(b->_idx) ) 1771 Node_List::push(b); 1772 } 1773 void push_non_cfg_inputs_of(const Node* node) { 1774 for (uint i = 1; i < node->req(); i++) { 1775 Node* input = node->in(i); 1776 if (input != nullptr && !input->is_CFG()) { 1777 push(input); 1778 } 1779 } 1780 } 1781 1782 void push_outputs_of(const Node* node) { 1783 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1784 Node* output = node->fast_out(i); 1785 push(output); 1786 } 1787 } 1788 1789 Node *pop() { 1790 if( _clock_index >= size() ) _clock_index = 0; 1791 Node *b = at(_clock_index); 1792 map( _clock_index, Node_List::pop()); 1793 if (size() != 0) _clock_index++; // Always start from 0 1794 _in_worklist.remove(b->_idx); 1795 return b; 1796 } 1797 Node *remove(uint i) { 1798 Node *b = Node_List::at(i); 1799 _in_worklist.remove(b->_idx); 1800 map(i,Node_List::pop()); 1801 return b; 1802 } 1803 void yank(Node *n) { 1804 _in_worklist.remove(n->_idx); 1805 Node_List::yank(n); 1806 } 1807 void clear() { 1808 _in_worklist.clear(); // Discards storage but grows automatically 1809 Node_List::clear(); 1810 _clock_index = 0; 1811 } 1812 void ensure_empty() { 1813 assert(size() == 0, "must be empty"); 1814 clear(); // just in case 1815 } 1816 1817 // Used after parsing to remove useless nodes before Iterative GVN 1818 void remove_useless_nodes(VectorSet& useful); 1819 1820 // If the idx of the Nodes change, we must recompute the VectorSet 1821 void recompute_idx_set() { 1822 _in_worklist.clear(); 1823 for (uint i = 0; i < size(); i++) { 1824 Node* n = at(i); 1825 _in_worklist.set(n->_idx); 1826 } 1827 } 1828 1829 #ifdef ASSERT 1830 bool is_subset_of(Unique_Node_List& other) { 1831 for (uint i = 0; i < size(); i++) { 1832 Node* n = at(i); 1833 if (!other.member(n)) { 1834 return false; 1835 } 1836 } 1837 return true; 1838 } 1839 #endif 1840 1841 bool contains(const Node* n) const { 1842 fatal("use faster member() instead"); 1843 return false; 1844 } 1845 1846 #ifndef PRODUCT 1847 void print_set() const { _in_worklist.print(); } 1848 #endif 1849 }; 1850 1851 // Unique_Mixed_Node_List 1852 // unique: nodes are added only once 1853 // mixed: allow new and old nodes 1854 class Unique_Mixed_Node_List : public ResourceObj { 1855 public: 1856 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1857 1858 void add(Node* node) { 1859 if (not_a_node(node)) { 1860 return; // Gracefully handle null, -1, 0xabababab, etc. 1861 } 1862 if (_visited_set[node] == nullptr) { 1863 _visited_set.Insert(node, node); 1864 _worklist.push(node); 1865 } 1866 } 1867 1868 Node* operator[] (uint i) const { 1869 return _worklist[i]; 1870 } 1871 1872 size_t size() { 1873 return _worklist.size(); 1874 } 1875 1876 private: 1877 Dict _visited_set; 1878 Node_List _worklist; 1879 }; 1880 1881 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1882 inline void Compile::record_for_igvn(Node* n) { 1883 _igvn_worklist->push(n); 1884 } 1885 1886 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1887 inline void Compile::remove_for_igvn(Node* n) { 1888 _igvn_worklist->remove(n); 1889 } 1890 1891 //------------------------------Node_Stack------------------------------------- 1892 class Node_Stack { 1893 protected: 1894 struct INode { 1895 Node *node; // Processed node 1896 uint indx; // Index of next node's child 1897 }; 1898 INode *_inode_top; // tos, stack grows up 1899 INode *_inode_max; // End of _inodes == _inodes + _max 1900 INode *_inodes; // Array storage for the stack 1901 Arena *_a; // Arena to allocate in 1902 ReallocMark _nesting; // Safety checks for arena reallocation 1903 1904 void maybe_grow() { 1905 _nesting.check(_a); // Check if a potential reallocation in the arena is safe 1906 if (_inode_top >= _inode_max) { 1907 grow(); 1908 } 1909 } 1910 void grow(); 1911 1912 public: 1913 Node_Stack(int size) { 1914 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1915 _a = Thread::current()->resource_area(); 1916 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1917 _inode_max = _inodes + max; 1918 _inode_top = _inodes - 1; // stack is empty 1919 } 1920 1921 Node_Stack(Arena *a, int size) : _a(a) { 1922 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1923 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1924 _inode_max = _inodes + max; 1925 _inode_top = _inodes - 1; // stack is empty 1926 } 1927 1928 void pop() { 1929 assert(_inode_top >= _inodes, "node stack underflow"); 1930 --_inode_top; 1931 } 1932 void push(Node *n, uint i) { 1933 ++_inode_top; 1934 maybe_grow(); 1935 INode *top = _inode_top; // optimization 1936 top->node = n; 1937 top->indx = i; 1938 } 1939 Node *node() const { 1940 return _inode_top->node; 1941 } 1942 Node* node_at(uint i) const { 1943 assert(_inodes + i <= _inode_top, "in range"); 1944 return _inodes[i].node; 1945 } 1946 uint index() const { 1947 return _inode_top->indx; 1948 } 1949 uint index_at(uint i) const { 1950 assert(_inodes + i <= _inode_top, "in range"); 1951 return _inodes[i].indx; 1952 } 1953 void set_node(Node *n) { 1954 _inode_top->node = n; 1955 } 1956 void set_index(uint i) { 1957 _inode_top->indx = i; 1958 } 1959 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1960 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1961 bool is_nonempty() const { return (_inode_top >= _inodes); } 1962 bool is_empty() const { return (_inode_top < _inodes); } 1963 void clear() { _inode_top = _inodes - 1; } // retain storage 1964 1965 // Node_Stack is used to map nodes. 1966 Node* find(uint idx) const; 1967 1968 NONCOPYABLE(Node_Stack); 1969 }; 1970 1971 1972 //-----------------------------Node_Notes-------------------------------------- 1973 // Debugging or profiling annotations loosely and sparsely associated 1974 // with some nodes. See Compile::node_notes_at for the accessor. 1975 class Node_Notes { 1976 JVMState* _jvms; 1977 1978 public: 1979 Node_Notes(JVMState* jvms = nullptr) { 1980 _jvms = jvms; 1981 } 1982 1983 JVMState* jvms() { return _jvms; } 1984 void set_jvms(JVMState* x) { _jvms = x; } 1985 1986 // True if there is nothing here. 1987 bool is_clear() { 1988 return (_jvms == nullptr); 1989 } 1990 1991 // Make there be nothing here. 1992 void clear() { 1993 _jvms = nullptr; 1994 } 1995 1996 // Make a new, clean node notes. 1997 static Node_Notes* make(Compile* C) { 1998 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1999 nn->clear(); 2000 return nn; 2001 } 2002 2003 Node_Notes* clone(Compile* C) { 2004 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 2005 (*nn) = (*this); 2006 return nn; 2007 } 2008 2009 // Absorb any information from source. 2010 bool update_from(Node_Notes* source) { 2011 bool changed = false; 2012 if (source != nullptr) { 2013 if (source->jvms() != nullptr) { 2014 set_jvms(source->jvms()); 2015 changed = true; 2016 } 2017 } 2018 return changed; 2019 } 2020 }; 2021 2022 // Inlined accessors for Compile::node_nodes that require the preceding class: 2023 inline Node_Notes* 2024 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 2025 int idx, bool can_grow) { 2026 assert(idx >= 0, "oob"); 2027 int block_idx = (idx >> _log2_node_notes_block_size); 2028 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2029 if (grow_by >= 0) { 2030 if (!can_grow) return nullptr; 2031 grow_node_notes(arr, grow_by + 1); 2032 } 2033 if (arr == nullptr) return nullptr; 2034 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2035 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2036 } 2037 2038 inline Node_Notes* Compile::node_notes_at(int idx) { 2039 return locate_node_notes(_node_note_array, idx, false); 2040 } 2041 2042 inline bool 2043 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2044 if (value == nullptr || value->is_clear()) 2045 return false; // nothing to write => write nothing 2046 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2047 assert(loc != nullptr, ""); 2048 return loc->update_from(value); 2049 } 2050 2051 2052 //------------------------------TypeNode--------------------------------------- 2053 // Node with a Type constant. 2054 class TypeNode : public Node { 2055 protected: 2056 virtual uint hash() const; // Check the type 2057 virtual bool cmp( const Node &n ) const; 2058 virtual uint size_of() const; // Size is bigger 2059 const Type* const _type; 2060 public: 2061 void set_type(const Type* t) { 2062 assert(t != nullptr, "sanity"); 2063 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2064 *(const Type**)&_type = t; // cast away const-ness 2065 // If this node is in the hash table, make sure it doesn't need a rehash. 2066 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2067 } 2068 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2069 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2070 init_class_id(Class_Type); 2071 } 2072 virtual const Type* Value(PhaseGVN* phase) const; 2073 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape); 2074 virtual const Type *bottom_type() const; 2075 virtual uint ideal_reg() const; 2076 2077 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str); 2078 #ifndef PRODUCT 2079 virtual void dump_spec(outputStream *st) const; 2080 virtual void dump_compact_spec(outputStream *st) const; 2081 #endif 2082 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str); 2083 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const; 2084 }; 2085 2086 #include "opto/opcodes.hpp" 2087 2088 #define Op_IL(op) \ 2089 inline int Op_ ## op(BasicType bt) { \ 2090 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2091 if (bt == T_INT) { \ 2092 return Op_## op ## I; \ 2093 } \ 2094 return Op_## op ## L; \ 2095 } 2096 2097 Op_IL(Add) 2098 Op_IL(And) 2099 Op_IL(Sub) 2100 Op_IL(Mul) 2101 Op_IL(URShift) 2102 Op_IL(LShift) 2103 Op_IL(Xor) 2104 Op_IL(Cmp) 2105 Op_IL(Div) 2106 Op_IL(Mod) 2107 Op_IL(UDiv) 2108 Op_IL(UMod) 2109 2110 inline int Op_ConIL(BasicType bt) { 2111 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2112 if (bt == T_INT) { 2113 return Op_ConI; 2114 } 2115 return Op_ConL; 2116 } 2117 2118 inline int Op_Cmp_unsigned(BasicType bt) { 2119 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2120 if (bt == T_INT) { 2121 return Op_CmpU; 2122 } 2123 return Op_CmpUL; 2124 } 2125 2126 inline int Op_Cast(BasicType bt) { 2127 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2128 if (bt == T_INT) { 2129 return Op_CastII; 2130 } 2131 return Op_CastLL; 2132 } 2133 2134 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2135 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2136 if (bt == T_INT) { 2137 if (is_unsigned) { 2138 return Op_UDivI; 2139 } else { 2140 return Op_DivI; 2141 } 2142 } 2143 if (is_unsigned) { 2144 return Op_UDivL; 2145 } else { 2146 return Op_DivL; 2147 } 2148 } 2149 2150 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2151 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2152 if (bt == T_INT) { 2153 if (is_unsigned) { 2154 return Op_UDivModI; 2155 } else { 2156 return Op_DivModI; 2157 } 2158 } 2159 if (is_unsigned) { 2160 return Op_UDivModL; 2161 } else { 2162 return Op_DivModL; 2163 } 2164 } 2165 2166 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2167 // a customized BFS. 2168 class BFSActions : public StackObj { 2169 public: 2170 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2171 // method to provide a custom filter. 2172 virtual bool should_visit(Node* node) const { 2173 // By default, visit all inputs. 2174 return true; 2175 }; 2176 2177 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2178 // but the BFS will continue to visit all unvisited nodes in the queue. 2179 virtual bool is_target_node(Node* node) const = 0; 2180 2181 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2182 virtual void target_node_action(Node* target_node) = 0; 2183 }; 2184 2185 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2186 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2187 class DataNodeBFS : public StackObj { 2188 BFSActions& _bfs_actions; 2189 2190 public: 2191 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2192 2193 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2194 void run(Node* start_node) { 2195 ResourceMark rm; 2196 Unique_Node_List _nodes_to_visit; 2197 _nodes_to_visit.push(start_node); 2198 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2199 Node* next = _nodes_to_visit[i]; 2200 for (uint j = 1; j < next->req(); j++) { 2201 Node* input = next->in(j); 2202 if (_bfs_actions.is_target_node(input)) { 2203 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2204 _bfs_actions.target_node_action(input); 2205 } else if (_bfs_actions.should_visit(input)) { 2206 _nodes_to_visit.push(input); 2207 } 2208 } 2209 } 2210 } 2211 }; 2212 2213 #endif // SHARE_OPTO_NODE_HPP