1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_OPTO_NODE_HPP
  27 #define SHARE_OPTO_NODE_HPP
  28 
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "utilities/copy.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 // Optimization - Graph Style
  37 
  38 
  39 class AbstractLockNode;
  40 class AddNode;
  41 class AddPNode;
  42 class AliasInfo;
  43 class AllocateArrayNode;
  44 class AllocateNode;
  45 class ArrayCopyNode;
  46 class BaseCountedLoopNode;
  47 class BaseCountedLoopEndNode;
  48 class BlackholeNode;
  49 class Block;
  50 class BoolNode;
  51 class BoxLockNode;
  52 class CMoveNode;
  53 class CallDynamicJavaNode;
  54 class CallJavaNode;
  55 class CallLeafNode;
  56 class CallLeafNoFPNode;
  57 class CallNode;
  58 class CallRuntimeNode;
  59 class CallStaticJavaNode;
  60 class CastFFNode;
  61 class CastDDNode;
  62 class CastVVNode;
  63 class CastIINode;
  64 class CastLLNode;
  65 class CastPPNode;
  66 class CatchNode;
  67 class CatchProjNode;
  68 class CheckCastPPNode;
  69 class ClearArrayNode;
  70 class CmpNode;
  71 class CodeBuffer;
  72 class ConstraintCastNode;
  73 class ConNode;
  74 class ConINode;
  75 class ConvertNode;
  76 class CompareAndSwapNode;
  77 class CompareAndExchangeNode;
  78 class CountedLoopNode;
  79 class CountedLoopEndNode;
  80 class DecodeNarrowPtrNode;
  81 class DecodeNNode;
  82 class DecodeNKlassNode;
  83 class EncodeNarrowPtrNode;
  84 class EncodePNode;
  85 class EncodePKlassNode;
  86 class FastLockNode;
  87 class FastUnlockNode;
  88 class FlatArrayCheckNode;
  89 class HaltNode;
  90 class IfNode;
  91 class IfProjNode;
  92 class IfFalseNode;
  93 class IfTrueNode;
  94 class InitializeNode;
  95 class JVMState;
  96 class JumpNode;
  97 class JumpProjNode;
  98 class LoadNode;
  99 class LoadStoreNode;
 100 class LoadStoreConditionalNode;
 101 class LockNode;
 102 class LongCountedLoopNode;
 103 class LongCountedLoopEndNode;
 104 class LoopNode;
 105 class LShiftNode;
 106 class MachBranchNode;
 107 class MachCallDynamicJavaNode;
 108 class MachCallJavaNode;
 109 class MachCallLeafNode;
 110 class MachCallNode;
 111 class MachCallRuntimeNode;
 112 class MachCallStaticJavaNode;
 113 class MachConstantBaseNode;
 114 class MachConstantNode;
 115 class MachGotoNode;
 116 class MachIfNode;
 117 class MachJumpNode;
 118 class MachNode;
 119 class MachNullCheckNode;
 120 class MachProjNode;
 121 class MachPrologNode;
 122 class MachReturnNode;
 123 class MachSafePointNode;
 124 class MachSpillCopyNode;
 125 class MachTempNode;
 126 class MachMergeNode;
 127 class MachMemBarNode;
 128 class MachVEPNode;
 129 class Matcher;
 130 class MemBarNode;
 131 class MemBarStoreStoreNode;
 132 class MemNode;
 133 class MergeMemNode;
 134 class MoveNode;
 135 class MulNode;
 136 class MultiNode;
 137 class MultiBranchNode;
 138 class NegNode;
 139 class NegVNode;
 140 class NeverBranchNode;
 141 class Opaque1Node;
 142 class OpaqueLoopInitNode;
 143 class OpaqueLoopStrideNode;
 144 class Opaque4Node;
 145 class OpaqueInitializedAssertionPredicateNode;
 146 class OuterStripMinedLoopNode;
 147 class OuterStripMinedLoopEndNode;
 148 class Node;
 149 class Node_Array;
 150 class Node_List;
 151 class Node_Stack;
 152 class OopMap;
 153 class ParmNode;
 154 class ParsePredicateNode;
 155 class PCTableNode;
 156 class PhaseCCP;
 157 class PhaseGVN;
 158 class PhaseIterGVN;
 159 class PhaseRegAlloc;
 160 class PhaseTransform;
 161 class PhaseValues;
 162 class PhiNode;
 163 class Pipeline;
 164 class PopulateIndexNode;
 165 class ProjNode;
 166 class RangeCheckNode;
 167 class ReductionNode;
 168 class RegMask;
 169 class RegionNode;
 170 class RootNode;
 171 class SafePointNode;
 172 class SafePointScalarObjectNode;
 173 class SafePointScalarMergeNode;
 174 class StartNode;
 175 class State;
 176 class StoreNode;
 177 class SubNode;
 178 class SubTypeCheckNode;
 179 class Type;
 180 class TypeNode;
 181 class UnlockNode;
 182 class InlineTypeNode;
 183 class VectorNode;
 184 class LoadVectorNode;
 185 class LoadVectorMaskedNode;
 186 class StoreVectorMaskedNode;
 187 class LoadVectorGatherNode;
 188 class LoadVectorGatherMaskedNode;
 189 class StoreVectorNode;
 190 class StoreVectorScatterNode;
 191 class StoreVectorScatterMaskedNode;
 192 class VerifyVectorAlignmentNode;
 193 class VectorMaskCmpNode;
 194 class VectorUnboxNode;
 195 class VectorSet;
 196 class VectorReinterpretNode;
 197 class ShiftVNode;
 198 class ExpandVNode;
 199 class CompressVNode;
 200 class CompressMNode;
 201 class C2_MacroAssembler;
 202 
 203 
 204 #ifndef OPTO_DU_ITERATOR_ASSERT
 205 #ifdef ASSERT
 206 #define OPTO_DU_ITERATOR_ASSERT 1
 207 #else
 208 #define OPTO_DU_ITERATOR_ASSERT 0
 209 #endif
 210 #endif //OPTO_DU_ITERATOR_ASSERT
 211 
 212 #if OPTO_DU_ITERATOR_ASSERT
 213 class DUIterator;
 214 class DUIterator_Fast;
 215 class DUIterator_Last;
 216 #else
 217 typedef uint   DUIterator;
 218 typedef Node** DUIterator_Fast;
 219 typedef Node** DUIterator_Last;
 220 #endif
 221 
 222 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
 223 
 224 // Node Sentinel
 225 #define NodeSentinel (Node*)-1
 226 
 227 // Unknown count frequency
 228 #define COUNT_UNKNOWN (-1.0f)
 229 
 230 //------------------------------Node-------------------------------------------
 231 // Nodes define actions in the program.  They create values, which have types.
 232 // They are both vertices in a directed graph and program primitives.  Nodes
 233 // are labeled; the label is the "opcode", the primitive function in the lambda
 234 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 235 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 236 // the Node's function.  These inputs also define a Type equation for the Node.
 237 // Solving these Type equations amounts to doing dataflow analysis.
 238 // Control and data are uniformly represented in the graph.  Finally, Nodes
 239 // have a unique dense integer index which is used to index into side arrays
 240 // whenever I have phase-specific information.
 241 
 242 class Node {
 243   friend class VMStructs;
 244 
 245   // Lots of restrictions on cloning Nodes
 246   NONCOPYABLE(Node);
 247 
 248 public:
 249   friend class Compile;
 250   #if OPTO_DU_ITERATOR_ASSERT
 251   friend class DUIterator_Common;
 252   friend class DUIterator;
 253   friend class DUIterator_Fast;
 254   friend class DUIterator_Last;
 255   #endif
 256 
 257   // Because Nodes come and go, I define an Arena of Node structures to pull
 258   // from.  This should allow fast access to node creation & deletion.  This
 259   // field is a local cache of a value defined in some "program fragment" for
 260   // which these Nodes are just a part of.
 261 
 262   inline void* operator new(size_t x) throw() {
 263     Compile* C = Compile::current();
 264     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 265     return (void*)n;
 266   }
 267 
 268   // Delete is a NOP
 269   void operator delete( void *ptr ) {}
 270   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 271   void destruct(PhaseValues* phase);
 272 
 273   // Create a new Node.  Required is the number is of inputs required for
 274   // semantic correctness.
 275   Node( uint required );
 276 
 277   // Create a new Node with given input edges.
 278   // This version requires use of the "edge-count" new.
 279   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 280   Node( Node *n0 );
 281   Node( Node *n0, Node *n1 );
 282   Node( Node *n0, Node *n1, Node *n2 );
 283   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 284   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 285   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 286   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 287             Node *n4, Node *n5, Node *n6 );
 288 
 289   // Clone an inherited Node given only the base Node type.
 290   Node* clone() const;
 291 
 292   // Clone a Node, immediately supplying one or two new edges.
 293   // The first and second arguments, if non-null, replace in(1) and in(2),
 294   // respectively.
 295   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 296     Node* nn = clone();
 297     if (in1 != nullptr)  nn->set_req(1, in1);
 298     if (in2 != nullptr)  nn->set_req(2, in2);
 299     return nn;
 300   }
 301 
 302 private:
 303   // Shared setup for the above constructors.
 304   // Handles all interactions with Compile::current.
 305   // Puts initial values in all Node fields except _idx.
 306   // Returns the initial value for _idx, which cannot
 307   // be initialized by assignment.
 308   inline int Init(int req);
 309 
 310 //----------------- input edge handling
 311 protected:
 312   friend class PhaseCFG;        // Access to address of _in array elements
 313   Node **_in;                   // Array of use-def references to Nodes
 314   Node **_out;                  // Array of def-use references to Nodes
 315 
 316   // Input edges are split into two categories.  Required edges are required
 317   // for semantic correctness; order is important and nulls are allowed.
 318   // Precedence edges are used to help determine execution order and are
 319   // added, e.g., for scheduling purposes.  They are unordered and not
 320   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 321   // are required, from _cnt to _max-1 are precedence edges.
 322   node_idx_t _cnt;              // Total number of required Node inputs.
 323 
 324   node_idx_t _max;              // Actual length of input array.
 325 
 326   // Output edges are an unordered list of def-use edges which exactly
 327   // correspond to required input edges which point from other nodes
 328   // to this one.  Thus the count of the output edges is the number of
 329   // users of this node.
 330   node_idx_t _outcnt;           // Total number of Node outputs.
 331 
 332   node_idx_t _outmax;           // Actual length of output array.
 333 
 334   // Grow the actual input array to the next larger power-of-2 bigger than len.
 335   void grow( uint len );
 336   // Grow the output array to the next larger power-of-2 bigger than len.
 337   void out_grow( uint len );
 338 
 339  public:
 340   // Each Node is assigned a unique small/dense number.  This number is used
 341   // to index into auxiliary arrays of data and bit vectors.
 342   // The field _idx is declared constant to defend against inadvertent assignments,
 343   // since it is used by clients as a naked field. However, the field's value can be
 344   // changed using the set_idx() method.
 345   //
 346   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 347   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 348   // preserved in _parse_idx.
 349   const node_idx_t _idx;
 350   DEBUG_ONLY(const node_idx_t _parse_idx;)
 351   // IGV node identifier. Two nodes, possibly in different compilation phases,
 352   // have the same IGV identifier if (and only if) they are the very same node
 353   // (same memory address) or one is "derived" from the other (by e.g.
 354   // renumbering or matching). This identifier makes it possible to follow the
 355   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 356   NOT_PRODUCT(node_idx_t _igv_idx;)
 357 
 358   // Get the (read-only) number of input edges
 359   uint req() const { return _cnt; }
 360   uint len() const { return _max; }
 361   // Get the (read-only) number of output edges
 362   uint outcnt() const { return _outcnt; }
 363 
 364 #if OPTO_DU_ITERATOR_ASSERT
 365   // Iterate over the out-edges of this node.  Deletions are illegal.
 366   inline DUIterator outs() const;
 367   // Use this when the out array might have changed to suppress asserts.
 368   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 369   // Does the node have an out at this position?  (Used for iteration.)
 370   inline bool has_out(DUIterator& i) const;
 371   inline Node*    out(DUIterator& i) const;
 372   // Iterate over the out-edges of this node.  All changes are illegal.
 373   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 374   inline Node*    fast_out(DUIterator_Fast& i) const;
 375   // Iterate over the out-edges of this node, deleting one at a time.
 376   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 377   inline Node*    last_out(DUIterator_Last& i) const;
 378   // The inline bodies of all these methods are after the iterator definitions.
 379 #else
 380   // Iterate over the out-edges of this node.  Deletions are illegal.
 381   // This iteration uses integral indexes, to decouple from array reallocations.
 382   DUIterator outs() const  { return 0; }
 383   // Use this when the out array might have changed to suppress asserts.
 384   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 385 
 386   // Reference to the i'th output Node.  Error if out of bounds.
 387   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 388   // Does the node have an out at this position?  (Used for iteration.)
 389   bool has_out(DUIterator i) const { return i < _outcnt; }
 390 
 391   // Iterate over the out-edges of this node.  All changes are illegal.
 392   // This iteration uses a pointer internal to the out array.
 393   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 394     Node** out = _out;
 395     // Assign a limit pointer to the reference argument:
 396     max = out + (ptrdiff_t)_outcnt;
 397     // Return the base pointer:
 398     return out;
 399   }
 400   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 401   // Iterate over the out-edges of this node, deleting one at a time.
 402   // This iteration uses a pointer internal to the out array.
 403   DUIterator_Last last_outs(DUIterator_Last& min) const {
 404     Node** out = _out;
 405     // Assign a limit pointer to the reference argument:
 406     min = out;
 407     // Return the pointer to the start of the iteration:
 408     return out + (ptrdiff_t)_outcnt - 1;
 409   }
 410   Node*    last_out(DUIterator_Last i) const  { return *i; }
 411 #endif
 412 
 413   // Reference to the i'th input Node.  Error if out of bounds.
 414   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 415   // Reference to the i'th input Node.  null if out of bounds.
 416   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 417   // Reference to the i'th output Node.  Error if out of bounds.
 418   // Use this accessor sparingly.  We are going trying to use iterators instead.
 419   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 420   // Return the unique out edge.
 421   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 422   // Delete out edge at position 'i' by moving last out edge to position 'i'
 423   void  raw_del_out(uint i) {
 424     assert(i < _outcnt,"oob");
 425     assert(_outcnt > 0,"oob");
 426     #if OPTO_DU_ITERATOR_ASSERT
 427     // Record that a change happened here.
 428     debug_only(_last_del = _out[i]; ++_del_tick);
 429     #endif
 430     _out[i] = _out[--_outcnt];
 431     // Smash the old edge so it can't be used accidentally.
 432     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 433   }
 434 
 435 #ifdef ASSERT
 436   bool is_dead() const;
 437   static bool is_not_dead(const Node* n);
 438   bool is_reachable_from_root() const;
 439 #endif
 440   // Check whether node has become unreachable
 441   bool is_unreachable(PhaseIterGVN &igvn) const;
 442 
 443   // Set a required input edge, also updates corresponding output edge
 444   void add_req( Node *n ); // Append a NEW required input
 445   void add_req( Node *n0, Node *n1 ) {
 446     add_req(n0); add_req(n1); }
 447   void add_req( Node *n0, Node *n1, Node *n2 ) {
 448     add_req(n0); add_req(n1); add_req(n2); }
 449   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 450   void del_req( uint idx ); // Delete required edge & compact
 451   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 452   void ins_req( uint i, Node *n ); // Insert a NEW required input
 453   void set_req( uint i, Node *n ) {
 454     assert( is_not_dead(n), "can not use dead node");
 455     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 456     assert( !VerifyHashTableKeys || _hash_lock == 0,
 457             "remove node from hash table before modifying it");
 458     Node** p = &_in[i];    // cache this._in, across the del_out call
 459     if (*p != nullptr)  (*p)->del_out((Node *)this);
 460     (*p) = n;
 461     if (n != nullptr)      n->add_out((Node *)this);
 462     Compile::current()->record_modified_node(this);
 463   }
 464   // Light version of set_req() to init inputs after node creation.
 465   void init_req( uint i, Node *n ) {
 466     assert( (i == 0 && this == n) ||
 467             is_not_dead(n), "can not use dead node");
 468     assert( i < _cnt, "oob");
 469     assert( !VerifyHashTableKeys || _hash_lock == 0,
 470             "remove node from hash table before modifying it");
 471     assert( _in[i] == nullptr, "sanity");
 472     _in[i] = n;
 473     if (n != nullptr)      n->add_out((Node *)this);
 474     Compile::current()->record_modified_node(this);
 475   }
 476   // Find first occurrence of n among my edges:
 477   int find_edge(Node* n);
 478   int find_prec_edge(Node* n) {
 479     for (uint i = req(); i < len(); i++) {
 480       if (_in[i] == n) return i;
 481       if (_in[i] == nullptr) {
 482         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 483         break;
 484       }
 485     }
 486     return -1;
 487   }
 488   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 489   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 490   // null out all inputs to eliminate incoming Def-Use edges.
 491   void disconnect_inputs(Compile* C);
 492 
 493   // Quickly, return true if and only if I am Compile::current()->top().
 494   bool is_top() const {
 495     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 496     return (_out == nullptr);
 497   }
 498   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 499   void setup_is_top();
 500 
 501   // Strip away casting.  (It is depth-limited.)
 502   Node* uncast(bool keep_deps = false) const;
 503   // Return whether two Nodes are equivalent, after stripping casting.
 504   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 505     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 506   }
 507 
 508   // Find out of current node that matches opcode.
 509   Node* find_out_with(int opcode);
 510   // Return true if the current node has an out that matches opcode.
 511   bool has_out_with(int opcode);
 512   // Return true if the current node has an out that matches any of the opcodes.
 513   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 514 
 515 private:
 516   static Node* uncast_helper(const Node* n, bool keep_deps);
 517 
 518   // Add an output edge to the end of the list
 519   void add_out( Node *n ) {
 520     if (is_top())  return;
 521     if( _outcnt == _outmax ) out_grow(_outcnt);
 522     _out[_outcnt++] = n;
 523   }
 524   // Delete an output edge
 525   void del_out( Node *n ) {
 526     if (is_top())  return;
 527     Node** outp = &_out[_outcnt];
 528     // Find and remove n
 529     do {
 530       assert(outp > _out, "Missing Def-Use edge");
 531     } while (*--outp != n);
 532     *outp = _out[--_outcnt];
 533     // Smash the old edge so it can't be used accidentally.
 534     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 535     // Record that a change happened here.
 536     #if OPTO_DU_ITERATOR_ASSERT
 537     debug_only(_last_del = n; ++_del_tick);
 538     #endif
 539   }
 540   // Close gap after removing edge.
 541   void close_prec_gap_at(uint gap) {
 542     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 543     uint i = gap;
 544     Node *last = nullptr;
 545     for (; i < _max-1; ++i) {
 546       Node *next = _in[i+1];
 547       if (next == nullptr) break;
 548       last = next;
 549     }
 550     _in[gap] = last;  // Move last slot to empty one.
 551     _in[i] = nullptr; // null out last slot.
 552   }
 553 
 554 public:
 555   // Globally replace this node by a given new node, updating all uses.
 556   void replace_by(Node* new_node);
 557   // Globally replace this node by a given new node, updating all uses
 558   // and cutting input edges of old node.
 559   void subsume_by(Node* new_node, Compile* c) {
 560     replace_by(new_node);
 561     disconnect_inputs(c);
 562   }
 563   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 564   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 565   // Find the one non-null required input.  RegionNode only
 566   Node *nonnull_req() const;
 567   // Add or remove precedence edges
 568   void add_prec( Node *n );
 569   void rm_prec( uint i );
 570 
 571   // Note: prec(i) will not necessarily point to n if edge already exists.
 572   void set_prec( uint i, Node *n ) {
 573     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 574     assert(is_not_dead(n), "can not use dead node");
 575     assert(i >= _cnt, "not a precedence edge");
 576     // Avoid spec violation: duplicated prec edge.
 577     if (_in[i] == n) return;
 578     if (n == nullptr || find_prec_edge(n) != -1) {
 579       rm_prec(i);
 580       return;
 581     }
 582     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 583     _in[i] = n;
 584     n->add_out((Node *)this);
 585     Compile::current()->record_modified_node(this);
 586   }
 587 
 588   // Set this node's index, used by cisc_version to replace current node
 589   void set_idx(uint new_idx) {
 590     const node_idx_t* ref = &_idx;
 591     *(node_idx_t*)ref = new_idx;
 592   }
 593   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 594   void swap_edges(uint i1, uint i2) {
 595     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 596     // Def-Use info is unchanged
 597     Node* n1 = in(i1);
 598     Node* n2 = in(i2);
 599     _in[i1] = n2;
 600     _in[i2] = n1;
 601     // If this node is in the hash table, make sure it doesn't need a rehash.
 602     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 603     // Flip swapped edges flag.
 604     if (has_swapped_edges()) {
 605       remove_flag(Node::Flag_has_swapped_edges);
 606     } else {
 607       add_flag(Node::Flag_has_swapped_edges);
 608     }
 609   }
 610 
 611   // Iterators over input Nodes for a Node X are written as:
 612   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 613   // NOTE: Required edges can contain embedded null pointers.
 614 
 615 //----------------- Other Node Properties
 616 
 617   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 618   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 619   //
 620   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 621   // the type of the node the ID represents; another subset of an ID's bits are reserved
 622   // for the superclasses of the node represented by the ID.
 623   //
 624   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 625   // returns false. A.is_A() returns true.
 626   //
 627   // If two classes, A and B, have the same superclass, a different bit of A's class id
 628   // is reserved for A's type than for B's type. That bit is specified by the third
 629   // parameter in the macro DEFINE_CLASS_ID.
 630   //
 631   // By convention, classes with deeper hierarchy are declared first. Moreover,
 632   // classes with the same hierarchy depth are sorted by usage frequency.
 633   //
 634   // The query method masks the bits to cut off bits of subclasses and then compares
 635   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 636   //
 637   //  Class_MachCall=30, ClassMask_MachCall=31
 638   // 12               8               4               0
 639   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 640   //                                  |   |   |   |
 641   //                                  |   |   |   Bit_Mach=2
 642   //                                  |   |   Bit_MachReturn=4
 643   //                                  |   Bit_MachSafePoint=8
 644   //                                  Bit_MachCall=16
 645   //
 646   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 647   // 12               8               4               0
 648   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 649   //                              |   |   |
 650   //                              |   |   Bit_Region=8
 651   //                              |   Bit_Loop=16
 652   //                              Bit_CountedLoop=32
 653 
 654   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 655   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 656   Class_##cl = Class_##supcl + Bit_##cl , \
 657   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 658 
 659   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 660   // so that its values fit into 32 bits.
 661   enum NodeClasses {
 662     Bit_Node   = 0x00000000,
 663     Class_Node = 0x00000000,
 664     ClassMask_Node = 0xFFFFFFFF,
 665 
 666     DEFINE_CLASS_ID(Multi, Node, 0)
 667       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 668         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 669           DEFINE_CLASS_ID(CallJava,         Call, 0)
 670             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 671             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 672           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 673             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 674               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 675           DEFINE_CLASS_ID(Allocate,         Call, 2)
 676             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 677           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 678             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 679             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 680           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 681       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 682         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 683           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 684           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 685         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 686           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 687             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 688             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 689           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 690           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 691           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 692         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 693       DEFINE_CLASS_ID(Start,       Multi, 2)
 694       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 695         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 696         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 697         DEFINE_CLASS_ID(Blackhole,        MemBar, 2)
 698 
 699     DEFINE_CLASS_ID(Mach,  Node, 1)
 700       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 701         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 702           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 703             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 704               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 705               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 706             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 707               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 708       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 709         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 710         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 711         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 712       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 713       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 714       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 715       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 716         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 717       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 718       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 719       DEFINE_CLASS_ID(MachProlog,       Mach, 8)
 720       DEFINE_CLASS_ID(MachVEP,          Mach, 9)
 721 
 722     DEFINE_CLASS_ID(Type,  Node, 2)
 723       DEFINE_CLASS_ID(Phi,   Type, 0)
 724       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 725         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 726         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 727         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 728         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 729         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 730         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 731         DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
 732       DEFINE_CLASS_ID(CMove, Type, 3)
 733       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 734       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 735         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 736         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 737       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 738         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 739         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 740       DEFINE_CLASS_ID(Vector, Type, 7)
 741         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 742         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 743         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 744         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 745         DEFINE_CLASS_ID(CompressV, Vector, 4)
 746         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 747         DEFINE_CLASS_ID(CompressM, Vector, 6)
 748         DEFINE_CLASS_ID(Reduction, Vector, 7)
 749         DEFINE_CLASS_ID(NegV, Vector, 8)
 750       DEFINE_CLASS_ID(InlineType, Type, 8)
 751       DEFINE_CLASS_ID(Con, Type, 9)
 752           DEFINE_CLASS_ID(ConI, Con, 0)
 753       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
 754       DEFINE_CLASS_ID(Convert, Type, 11)
 755 
 756 
 757     DEFINE_CLASS_ID(Proj,  Node, 3)
 758       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 759       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 760       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 761         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 762         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 763       DEFINE_CLASS_ID(Parm,      Proj, 4)
 764       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 765 
 766     DEFINE_CLASS_ID(Mem, Node, 4)
 767       DEFINE_CLASS_ID(Load, Mem, 0)
 768         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 769           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 770           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 771           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 772       DEFINE_CLASS_ID(Store, Mem, 1)
 773         DEFINE_CLASS_ID(StoreVector, Store, 0)
 774           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 775           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 776           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 777       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 778         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 779           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 780         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 781 
 782     DEFINE_CLASS_ID(Region, Node, 5)
 783       DEFINE_CLASS_ID(Loop, Region, 0)
 784         DEFINE_CLASS_ID(Root,                Loop, 0)
 785         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 786           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 787           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 788         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 789 
 790     DEFINE_CLASS_ID(Sub,   Node, 6)
 791       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 792         DEFINE_CLASS_ID(FastLock,       Cmp, 0)
 793         DEFINE_CLASS_ID(FastUnlock,     Cmp, 1)
 794         DEFINE_CLASS_ID(SubTypeCheck,   Cmp, 2)
 795         DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
 796 
 797     DEFINE_CLASS_ID(MergeMem, Node, 7)
 798     DEFINE_CLASS_ID(Bool,     Node, 8)
 799     DEFINE_CLASS_ID(AddP,     Node, 9)
 800     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 801     DEFINE_CLASS_ID(Add,      Node, 11)
 802     DEFINE_CLASS_ID(Mul,      Node, 12)
 803     DEFINE_CLASS_ID(ClearArray, Node, 14)
 804     DEFINE_CLASS_ID(Halt,     Node, 15)
 805     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 806       DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
 807       DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
 808     DEFINE_CLASS_ID(Opaque4,  Node, 17)
 809     DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate,  Node, 18)
 810     DEFINE_CLASS_ID(Move,     Node, 19)
 811     DEFINE_CLASS_ID(LShift,   Node, 20)
 812     DEFINE_CLASS_ID(Neg,      Node, 21)
 813 
 814     _max_classes  = ClassMask_Neg
 815   };
 816   #undef DEFINE_CLASS_ID
 817 
 818   // Flags are sorted by usage frequency.
 819   enum NodeFlags {
 820     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 821     Flag_rematerialize               = 1 << 1,
 822     Flag_needs_anti_dependence_check = 1 << 2,
 823     Flag_is_macro                    = 1 << 3,
 824     Flag_is_Con                      = 1 << 4,
 825     Flag_is_cisc_alternate           = 1 << 5,
 826     Flag_is_dead_loop_safe           = 1 << 6,
 827     Flag_may_be_short_branch         = 1 << 7,
 828     Flag_avoid_back_to_back_before   = 1 << 8,
 829     Flag_avoid_back_to_back_after    = 1 << 9,
 830     Flag_has_call                    = 1 << 10,
 831     Flag_has_swapped_edges           = 1 << 11,
 832     Flag_is_scheduled                = 1 << 12,
 833     Flag_is_expensive                = 1 << 13,
 834     Flag_is_predicated_vector        = 1 << 14,
 835     Flag_for_post_loop_opts_igvn     = 1 << 15,
 836     Flag_is_removed_by_peephole      = 1 << 16,
 837     Flag_is_predicated_using_blend   = 1 << 17,
 838     _last_flag                       = Flag_is_predicated_using_blend
 839   };
 840 
 841   class PD;
 842 
 843 private:
 844   juint _class_id;
 845   juint _flags;
 846 
 847 #ifdef ASSERT
 848   static juint max_flags();
 849 #endif
 850 
 851 protected:
 852   // These methods should be called from constructors only.
 853   void init_class_id(juint c) {
 854     _class_id = c; // cast out const
 855   }
 856   void init_flags(uint fl) {
 857     assert(fl <= max_flags(), "invalid node flag");
 858     _flags |= fl;
 859   }
 860   void clear_flag(uint fl) {
 861     assert(fl <= max_flags(), "invalid node flag");
 862     _flags &= ~fl;
 863   }
 864 
 865 public:
 866   juint class_id() const { return _class_id; }
 867 
 868   juint flags() const { return _flags; }
 869 
 870   void add_flag(juint fl) { init_flags(fl); }
 871 
 872   void remove_flag(juint fl) { clear_flag(fl); }
 873 
 874   // Return a dense integer opcode number
 875   virtual int Opcode() const;
 876 
 877   // Virtual inherited Node size
 878   virtual uint size_of() const;
 879 
 880   // Other interesting Node properties
 881   #define DEFINE_CLASS_QUERY(type)                           \
 882   bool is_##type() const {                                   \
 883     return ((_class_id & ClassMask_##type) == Class_##type); \
 884   }                                                          \
 885   type##Node *as_##type() const {                            \
 886     assert(is_##type(), "invalid node class: %s", Name());   \
 887     return (type##Node*)this;                                \
 888   }                                                          \
 889   type##Node* isa_##type() const {                           \
 890     return (is_##type()) ? as_##type() : nullptr;            \
 891   }
 892 
 893   DEFINE_CLASS_QUERY(AbstractLock)
 894   DEFINE_CLASS_QUERY(Add)
 895   DEFINE_CLASS_QUERY(AddP)
 896   DEFINE_CLASS_QUERY(Allocate)
 897   DEFINE_CLASS_QUERY(AllocateArray)
 898   DEFINE_CLASS_QUERY(ArrayCopy)
 899   DEFINE_CLASS_QUERY(BaseCountedLoop)
 900   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 901   DEFINE_CLASS_QUERY(Blackhole)
 902   DEFINE_CLASS_QUERY(Bool)
 903   DEFINE_CLASS_QUERY(BoxLock)
 904   DEFINE_CLASS_QUERY(Call)
 905   DEFINE_CLASS_QUERY(CallDynamicJava)
 906   DEFINE_CLASS_QUERY(CallJava)
 907   DEFINE_CLASS_QUERY(CallLeaf)
 908   DEFINE_CLASS_QUERY(CallLeafNoFP)
 909   DEFINE_CLASS_QUERY(CallRuntime)
 910   DEFINE_CLASS_QUERY(CallStaticJava)
 911   DEFINE_CLASS_QUERY(Catch)
 912   DEFINE_CLASS_QUERY(CatchProj)
 913   DEFINE_CLASS_QUERY(CheckCastPP)
 914   DEFINE_CLASS_QUERY(CastII)
 915   DEFINE_CLASS_QUERY(CastLL)
 916   DEFINE_CLASS_QUERY(ConI)
 917   DEFINE_CLASS_QUERY(CastPP)
 918   DEFINE_CLASS_QUERY(ConstraintCast)
 919   DEFINE_CLASS_QUERY(ClearArray)
 920   DEFINE_CLASS_QUERY(CMove)
 921   DEFINE_CLASS_QUERY(Cmp)
 922   DEFINE_CLASS_QUERY(Convert)
 923   DEFINE_CLASS_QUERY(CountedLoop)
 924   DEFINE_CLASS_QUERY(CountedLoopEnd)
 925   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 926   DEFINE_CLASS_QUERY(DecodeN)
 927   DEFINE_CLASS_QUERY(DecodeNKlass)
 928   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 929   DEFINE_CLASS_QUERY(EncodeP)
 930   DEFINE_CLASS_QUERY(EncodePKlass)
 931   DEFINE_CLASS_QUERY(FastLock)
 932   DEFINE_CLASS_QUERY(FastUnlock)
 933   DEFINE_CLASS_QUERY(FlatArrayCheck)
 934   DEFINE_CLASS_QUERY(Halt)
 935   DEFINE_CLASS_QUERY(If)
 936   DEFINE_CLASS_QUERY(RangeCheck)
 937   DEFINE_CLASS_QUERY(IfProj)
 938   DEFINE_CLASS_QUERY(IfFalse)
 939   DEFINE_CLASS_QUERY(IfTrue)
 940   DEFINE_CLASS_QUERY(Initialize)
 941   DEFINE_CLASS_QUERY(Jump)
 942   DEFINE_CLASS_QUERY(JumpProj)
 943   DEFINE_CLASS_QUERY(LongCountedLoop)
 944   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 945   DEFINE_CLASS_QUERY(Load)
 946   DEFINE_CLASS_QUERY(LoadStore)
 947   DEFINE_CLASS_QUERY(LoadStoreConditional)
 948   DEFINE_CLASS_QUERY(Lock)
 949   DEFINE_CLASS_QUERY(Loop)
 950   DEFINE_CLASS_QUERY(LShift)
 951   DEFINE_CLASS_QUERY(Mach)
 952   DEFINE_CLASS_QUERY(MachBranch)
 953   DEFINE_CLASS_QUERY(MachCall)
 954   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 955   DEFINE_CLASS_QUERY(MachCallJava)
 956   DEFINE_CLASS_QUERY(MachCallLeaf)
 957   DEFINE_CLASS_QUERY(MachCallRuntime)
 958   DEFINE_CLASS_QUERY(MachCallStaticJava)
 959   DEFINE_CLASS_QUERY(MachConstantBase)
 960   DEFINE_CLASS_QUERY(MachConstant)
 961   DEFINE_CLASS_QUERY(MachGoto)
 962   DEFINE_CLASS_QUERY(MachIf)
 963   DEFINE_CLASS_QUERY(MachJump)
 964   DEFINE_CLASS_QUERY(MachNullCheck)
 965   DEFINE_CLASS_QUERY(MachProj)
 966   DEFINE_CLASS_QUERY(MachProlog)
 967   DEFINE_CLASS_QUERY(MachReturn)
 968   DEFINE_CLASS_QUERY(MachSafePoint)
 969   DEFINE_CLASS_QUERY(MachSpillCopy)
 970   DEFINE_CLASS_QUERY(MachTemp)
 971   DEFINE_CLASS_QUERY(MachMemBar)
 972   DEFINE_CLASS_QUERY(MachMerge)
 973   DEFINE_CLASS_QUERY(MachVEP)
 974   DEFINE_CLASS_QUERY(Mem)
 975   DEFINE_CLASS_QUERY(MemBar)
 976   DEFINE_CLASS_QUERY(MemBarStoreStore)
 977   DEFINE_CLASS_QUERY(MergeMem)
 978   DEFINE_CLASS_QUERY(Move)
 979   DEFINE_CLASS_QUERY(Mul)
 980   DEFINE_CLASS_QUERY(Multi)
 981   DEFINE_CLASS_QUERY(MultiBranch)
 982   DEFINE_CLASS_QUERY(Neg)
 983   DEFINE_CLASS_QUERY(NegV)
 984   DEFINE_CLASS_QUERY(NeverBranch)
 985   DEFINE_CLASS_QUERY(Opaque1)
 986   DEFINE_CLASS_QUERY(Opaque4)
 987   DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
 988   DEFINE_CLASS_QUERY(OpaqueLoopInit)
 989   DEFINE_CLASS_QUERY(OpaqueLoopStride)
 990   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 991   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 992   DEFINE_CLASS_QUERY(Parm)
 993   DEFINE_CLASS_QUERY(ParsePredicate)
 994   DEFINE_CLASS_QUERY(PCTable)
 995   DEFINE_CLASS_QUERY(Phi)
 996   DEFINE_CLASS_QUERY(Proj)
 997   DEFINE_CLASS_QUERY(Reduction)
 998   DEFINE_CLASS_QUERY(Region)
 999   DEFINE_CLASS_QUERY(Root)
1000   DEFINE_CLASS_QUERY(SafePoint)
1001   DEFINE_CLASS_QUERY(SafePointScalarObject)
1002   DEFINE_CLASS_QUERY(SafePointScalarMerge)
1003   DEFINE_CLASS_QUERY(Start)
1004   DEFINE_CLASS_QUERY(Store)
1005   DEFINE_CLASS_QUERY(Sub)
1006   DEFINE_CLASS_QUERY(SubTypeCheck)
1007   DEFINE_CLASS_QUERY(Type)
1008   DEFINE_CLASS_QUERY(InlineType)
1009   DEFINE_CLASS_QUERY(Vector)
1010   DEFINE_CLASS_QUERY(VectorMaskCmp)
1011   DEFINE_CLASS_QUERY(VectorUnbox)
1012   DEFINE_CLASS_QUERY(VectorReinterpret)
1013   DEFINE_CLASS_QUERY(CompressV)
1014   DEFINE_CLASS_QUERY(ExpandV)
1015   DEFINE_CLASS_QUERY(CompressM)
1016   DEFINE_CLASS_QUERY(LoadVector)
1017   DEFINE_CLASS_QUERY(LoadVectorGather)
1018   DEFINE_CLASS_QUERY(LoadVectorMasked)
1019   DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1020   DEFINE_CLASS_QUERY(StoreVector)
1021   DEFINE_CLASS_QUERY(StoreVectorScatter)
1022   DEFINE_CLASS_QUERY(StoreVectorMasked)
1023   DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1024   DEFINE_CLASS_QUERY(ShiftV)
1025   DEFINE_CLASS_QUERY(Unlock)
1026 
1027   #undef DEFINE_CLASS_QUERY
1028 
1029   // duplicate of is_MachSpillCopy()
1030   bool is_SpillCopy () const {
1031     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1032   }
1033 
1034   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1035   // The data node which is safe to leave in dead loop during IGVN optimization.
1036   bool is_dead_loop_safe() const;
1037 
1038   // is_Copy() returns copied edge index (0 or 1)
1039   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1040 
1041   virtual bool is_CFG() const { return false; }
1042 
1043   // If this node is control-dependent on a test, can it be
1044   // rerouted to a dominating equivalent test?  This is usually
1045   // true of non-CFG nodes, but can be false for operations which
1046   // depend for their correct sequencing on more than one test.
1047   // (In that case, hoisting to a dominating test may silently
1048   // skip some other important test.)
1049   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1050 
1051   // When building basic blocks, I need to have a notion of block beginning
1052   // Nodes, next block selector Nodes (block enders), and next block
1053   // projections.  These calls need to work on their machine equivalents.  The
1054   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1055   bool is_block_start() const {
1056     if ( is_Region() )
1057       return this == (const Node*)in(0);
1058     else
1059       return is_Start();
1060   }
1061 
1062   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1063   // Goto and Return.  This call also returns the block ending Node.
1064   virtual const Node *is_block_proj() const;
1065 
1066   // The node is a "macro" node which needs to be expanded before matching
1067   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1068   // The node is expensive: the best control is set during loop opts
1069   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1070   // The node's original edge position is swapped.
1071   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1072 
1073   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1074 
1075   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1076 
1077   // Used in lcm to mark nodes that have scheduled
1078   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1079 
1080   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1081 
1082   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1083   static bool may_be_loop_entry(Node* n) {
1084     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1085   }
1086 
1087 //----------------- Optimization
1088 
1089   // Get the worst-case Type output for this Node.
1090   virtual const class Type *bottom_type() const;
1091 
1092   // If we find a better type for a node, try to record it permanently.
1093   // Return true if this node actually changed.
1094   // Be sure to do the hash_delete game in the "rehash" variant.
1095   void raise_bottom_type(const Type* new_type);
1096 
1097   // Get the address type with which this node uses and/or defs memory,
1098   // or null if none.  The address type is conservatively wide.
1099   // Returns non-null for calls, membars, loads, stores, etc.
1100   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1101   virtual const class TypePtr *adr_type() const { return nullptr; }
1102 
1103   // Return an existing node which computes the same function as this node.
1104   // The optimistic combined algorithm requires this to return a Node which
1105   // is a small number of steps away (e.g., one of my inputs).
1106   virtual Node* Identity(PhaseGVN* phase);
1107 
1108   // Return the set of values this Node can take on at runtime.
1109   virtual const Type* Value(PhaseGVN* phase) const;
1110 
1111   // Return a node which is more "ideal" than the current node.
1112   // The invariants on this call are subtle.  If in doubt, read the
1113   // treatise in node.cpp above the default implementation AND TEST WITH
1114   // -XX:VerifyIterativeGVN=1
1115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1116 
1117   // Some nodes have specific Ideal subgraph transformations only if they are
1118   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1119   // for the transformations to happen.
1120   bool has_special_unique_user() const;
1121 
1122   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1123   Node* find_exact_control(Node* ctrl);
1124 
1125   // Results of the dominance analysis.
1126   enum class DomResult {
1127     NotDominate,         // 'this' node does not dominate 'sub'.
1128     Dominate,            // 'this' node dominates or is equal to 'sub'.
1129     EncounteredDeadCode  // Result is undefined due to encountering dead code.
1130   };
1131   // Check if 'this' node dominates or equal to 'sub'.
1132   DomResult dominates(Node* sub, Node_List &nlist);
1133 
1134 protected:
1135   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1136 public:
1137 
1138   // See if there is valid pipeline info
1139   static  const Pipeline *pipeline_class();
1140   virtual const Pipeline *pipeline() const;
1141 
1142   // Compute the latency from the def to this instruction of the ith input node
1143   uint latency(uint i);
1144 
1145   // Hash & compare functions, for pessimistic value numbering
1146 
1147   // If the hash function returns the special sentinel value NO_HASH,
1148   // the node is guaranteed never to compare equal to any other node.
1149   // If we accidentally generate a hash with value NO_HASH the node
1150   // won't go into the table and we'll lose a little optimization.
1151   static const uint NO_HASH = 0;
1152   virtual uint hash() const;
1153   virtual bool cmp( const Node &n ) const;
1154 
1155   // Operation appears to be iteratively computed (such as an induction variable)
1156   // It is possible for this operation to return false for a loop-varying
1157   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1158   bool is_iteratively_computed();
1159 
1160   // Determine if a node is a counted loop induction variable.
1161   // NOTE: The method is defined in "loopnode.cpp".
1162   bool is_cloop_ind_var() const;
1163 
1164   // Return a node with opcode "opc" and same inputs as "this" if one can
1165   // be found; Otherwise return null;
1166   Node* find_similar(int opc);
1167 
1168   // Return the unique control out if only one. Null if none or more than one.
1169   Node* unique_ctrl_out_or_null() const;
1170   // Return the unique control out. Asserts if none or more than one control out.
1171   Node* unique_ctrl_out() const;
1172 
1173   // Set control or add control as precedence edge
1174   void ensure_control_or_add_prec(Node* c);
1175 
1176   // Visit boundary uses of the node and apply a callback function for each.
1177   // Recursively traverse uses, stopping and applying the callback when
1178   // reaching a boundary node, defined by is_boundary. Note: the function
1179   // definition appears after the complete type definition of Node_List.
1180   template <typename Callback, typename Check>
1181   void visit_uses(Callback callback, Check is_boundary) const;
1182 
1183   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1184   // (Load and range check CastII nodes).
1185   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1186   virtual Node* pin_array_access_node() const {
1187     return nullptr;
1188   }
1189 
1190   //----------------- Code Generation
1191 
1192   // Ideal register class for Matching.  Zero means unmatched instruction
1193   // (these are cloned instead of converted to machine nodes).
1194   virtual uint ideal_reg() const;
1195 
1196   static const uint NotAMachineReg;   // must be > max. machine register
1197 
1198   // Do we Match on this edge index or not?  Generally false for Control
1199   // and true for everything else.  Weird for calls & returns.
1200   virtual uint match_edge(uint idx) const;
1201 
1202   // Register class output is returned in
1203   virtual const RegMask &out_RegMask() const;
1204   // Register class input is expected in
1205   virtual const RegMask &in_RegMask(uint) const;
1206   // Should we clone rather than spill this instruction?
1207   bool rematerialize() const;
1208 
1209   // Return JVM State Object if this Node carries debug info, or null otherwise
1210   virtual JVMState* jvms() const;
1211 
1212   // Print as assembly
1213   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1214   // Emit bytes using C2_MacroAssembler
1215   virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1216   // Size of instruction in bytes
1217   virtual uint size(PhaseRegAlloc *ra_) const;
1218 
1219   // Convenience function to extract an integer constant from a node.
1220   // If it is not an integer constant (either Con, CastII, or Mach),
1221   // return value_if_unknown.
1222   jint find_int_con(jint value_if_unknown) const {
1223     const TypeInt* t = find_int_type();
1224     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1225   }
1226   // Return the constant, knowing it is an integer constant already
1227   jint get_int() const {
1228     const TypeInt* t = find_int_type();
1229     guarantee(t != nullptr, "must be con");
1230     return t->get_con();
1231   }
1232   // Here's where the work is done.  Can produce non-constant int types too.
1233   const TypeInt* find_int_type() const;
1234   const TypeInteger* find_integer_type(BasicType bt) const;
1235 
1236   // Same thing for long (and intptr_t, via type.hpp):
1237   jlong get_long() const {
1238     const TypeLong* t = find_long_type();
1239     guarantee(t != nullptr, "must be con");
1240     return t->get_con();
1241   }
1242   jlong find_long_con(jint value_if_unknown) const {
1243     const TypeLong* t = find_long_type();
1244     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1245   }
1246   const TypeLong* find_long_type() const;
1247 
1248   jlong get_integer_as_long(BasicType bt) const {
1249     const TypeInteger* t = find_integer_type(bt);
1250     guarantee(t != nullptr && t->is_con(), "must be con");
1251     return t->get_con_as_long(bt);
1252   }
1253   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1254     const TypeInteger* t = find_integer_type(bt);
1255     if (t == nullptr || !t->is_con())  return value_if_unknown;
1256     return t->get_con_as_long(bt);
1257   }
1258   const TypePtr* get_ptr_type() const;
1259 
1260   // These guys are called by code generated by ADLC:
1261   intptr_t get_ptr() const;
1262   intptr_t get_narrowcon() const;
1263   jdouble getd() const;
1264   jfloat getf() const;
1265 
1266   // Nodes which are pinned into basic blocks
1267   virtual bool pinned() const { return false; }
1268 
1269   // Nodes which use memory without consuming it, hence need antidependences
1270   // More specifically, needs_anti_dependence_check returns true iff the node
1271   // (a) does a load, and (b) does not perform a store (except perhaps to a
1272   // stack slot or some other unaliased location).
1273   bool needs_anti_dependence_check() const;
1274 
1275   // Return which operand this instruction may cisc-spill. In other words,
1276   // return operand position that can convert from reg to memory access
1277   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1278   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1279 
1280   // Whether this is a memory-writing machine node.
1281   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1282 
1283   // Whether this is a memory phi node
1284   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1285 
1286 //----------------- Printing, etc
1287 #ifndef PRODUCT
1288  public:
1289   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1290   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1291   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const;
1292   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1293   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1294   class DumpConfig {
1295    public:
1296     // overridden to implement coloring of node idx
1297     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1298     virtual void post_dump(outputStream *st) = 0;
1299   };
1300   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1301   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1302   void dump() const; // print node with newline
1303   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1304   void dump(int depth) const;        // Print this node, recursively to depth d
1305   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1306   void dump_comp() const;            // Print this node in compact representation.
1307   // Print this node in compact representation.
1308   void dump_comp(const char* suffix, outputStream *st = tty) const;
1309  private:
1310   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1311   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1312   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1313  public:
1314   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1315   // Print compact per-node info
1316   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1317 
1318   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1319 
1320   // This call defines a class-unique string used to identify class instances
1321   virtual const char *Name() const;
1322 
1323   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1324   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1325 #endif
1326 #ifdef ASSERT
1327   void verify_construction();
1328   bool verify_jvms(const JVMState* jvms) const;
1329 
1330   Node* _debug_orig;                   // Original version of this, if any.
1331   Node*  debug_orig() const            { return _debug_orig; }
1332   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1333   void   dump_orig(outputStream *st, bool print_key = true) const;
1334 
1335   uint64_t _debug_idx;                 // Unique value assigned to every node.
1336   uint64_t debug_idx() const           { return _debug_idx; }
1337   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1338 
1339   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1340   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1341   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1342 
1343   static void init_NodeProperty();
1344 
1345   #if OPTO_DU_ITERATOR_ASSERT
1346   const Node* _last_del;               // The last deleted node.
1347   uint        _del_tick;               // Bumped when a deletion happens..
1348   #endif
1349 #endif
1350 };
1351 
1352 inline bool not_a_node(const Node* n) {
1353   if (n == nullptr)                return true;
1354   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1355   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1356   return false;
1357 }
1358 
1359 //-----------------------------------------------------------------------------
1360 // Iterators over DU info, and associated Node functions.
1361 
1362 #if OPTO_DU_ITERATOR_ASSERT
1363 
1364 // Common code for assertion checking on DU iterators.
1365 class DUIterator_Common {
1366 #ifdef ASSERT
1367  protected:
1368   bool         _vdui;               // cached value of VerifyDUIterators
1369   const Node*  _node;               // the node containing the _out array
1370   uint         _outcnt;             // cached node->_outcnt
1371   uint         _del_tick;           // cached node->_del_tick
1372   Node*        _last;               // last value produced by the iterator
1373 
1374   void sample(const Node* node);    // used by c'tor to set up for verifies
1375   void verify(const Node* node, bool at_end_ok = false);
1376   void verify_resync();
1377   void reset(const DUIterator_Common& that);
1378 
1379 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1380   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1381 #else
1382   #define I_VDUI_ONLY(i,x) { }
1383 #endif //ASSERT
1384 };
1385 
1386 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1387 
1388 // Default DU iterator.  Allows appends onto the out array.
1389 // Allows deletion from the out array only at the current point.
1390 // Usage:
1391 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1392 //    Node* y = x->out(i);
1393 //    ...
1394 //  }
1395 // Compiles in product mode to a unsigned integer index, which indexes
1396 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1397 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1398 // before continuing the loop.  You must delete only the last-produced
1399 // edge.  You must delete only a single copy of the last-produced edge,
1400 // or else you must delete all copies at once (the first time the edge
1401 // is produced by the iterator).
1402 class DUIterator : public DUIterator_Common {
1403   friend class Node;
1404 
1405   // This is the index which provides the product-mode behavior.
1406   // Whatever the product-mode version of the system does to the
1407   // DUI index is done to this index.  All other fields in
1408   // this class are used only for assertion checking.
1409   uint         _idx;
1410 
1411   #ifdef ASSERT
1412   uint         _refresh_tick;    // Records the refresh activity.
1413 
1414   void sample(const Node* node); // Initialize _refresh_tick etc.
1415   void verify(const Node* node, bool at_end_ok = false);
1416   void verify_increment();       // Verify an increment operation.
1417   void verify_resync();          // Verify that we can back up over a deletion.
1418   void verify_finish();          // Verify that the loop terminated properly.
1419   void refresh();                // Resample verification info.
1420   void reset(const DUIterator& that);  // Resample after assignment.
1421   #endif
1422 
1423   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1424     { _idx = 0;                         debug_only(sample(node)); }
1425 
1426  public:
1427   // initialize to garbage; clear _vdui to disable asserts
1428   DUIterator()
1429     { /*initialize to garbage*/         debug_only(_vdui = false); }
1430 
1431   DUIterator(const DUIterator& that)
1432     { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }
1433 
1434   void operator++(int dummy_to_specify_postfix_op)
1435     { _idx++;                           VDUI_ONLY(verify_increment()); }
1436 
1437   void operator--()
1438     { VDUI_ONLY(verify_resync());       --_idx; }
1439 
1440   ~DUIterator()
1441     { VDUI_ONLY(verify_finish()); }
1442 
1443   void operator=(const DUIterator& that)
1444     { _idx = that._idx;                 debug_only(reset(that)); }
1445 };
1446 
1447 DUIterator Node::outs() const
1448   { return DUIterator(this, 0); }
1449 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1450   { I_VDUI_ONLY(i, i.refresh());        return i; }
1451 bool Node::has_out(DUIterator& i) const
1452   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1453 Node*    Node::out(DUIterator& i) const
1454   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1455 
1456 
1457 // Faster DU iterator.  Disallows insertions into the out array.
1458 // Allows deletion from the out array only at the current point.
1459 // Usage:
1460 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1461 //    Node* y = x->fast_out(i);
1462 //    ...
1463 //  }
1464 // Compiles in product mode to raw Node** pointer arithmetic, with
1465 // no reloading of pointers from the original node x.  If you delete,
1466 // you must perform "--i; --imax" just before continuing the loop.
1467 // If you delete multiple copies of the same edge, you must decrement
1468 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1469 class DUIterator_Fast : public DUIterator_Common {
1470   friend class Node;
1471   friend class DUIterator_Last;
1472 
1473   // This is the pointer which provides the product-mode behavior.
1474   // Whatever the product-mode version of the system does to the
1475   // DUI pointer is done to this pointer.  All other fields in
1476   // this class are used only for assertion checking.
1477   Node**       _outp;
1478 
1479   #ifdef ASSERT
1480   void verify(const Node* node, bool at_end_ok = false);
1481   void verify_limit();
1482   void verify_resync();
1483   void verify_relimit(uint n);
1484   void reset(const DUIterator_Fast& that);
1485   #endif
1486 
1487   // Note:  offset must be signed, since -1 is sometimes passed
1488   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1489     { _outp = node->_out + offset;      debug_only(sample(node)); }
1490 
1491  public:
1492   // initialize to garbage; clear _vdui to disable asserts
1493   DUIterator_Fast()
1494     { /*initialize to garbage*/         debug_only(_vdui = false); }
1495 
1496   DUIterator_Fast(const DUIterator_Fast& that)
1497     { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }
1498 
1499   void operator++(int dummy_to_specify_postfix_op)
1500     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1501 
1502   void operator--()
1503     { VDUI_ONLY(verify_resync());       --_outp; }
1504 
1505   void operator-=(uint n)   // applied to the limit only
1506     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1507 
1508   bool operator<(DUIterator_Fast& limit) {
1509     I_VDUI_ONLY(*this, this->verify(_node, true));
1510     I_VDUI_ONLY(limit, limit.verify_limit());
1511     return _outp < limit._outp;
1512   }
1513 
1514   void operator=(const DUIterator_Fast& that)
1515     { _outp = that._outp;               debug_only(reset(that)); }
1516 };
1517 
1518 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1519   // Assign a limit pointer to the reference argument:
1520   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1521   // Return the base pointer:
1522   return DUIterator_Fast(this, 0);
1523 }
1524 Node* Node::fast_out(DUIterator_Fast& i) const {
1525   I_VDUI_ONLY(i, i.verify(this));
1526   return debug_only(i._last=) *i._outp;
1527 }
1528 
1529 
1530 // Faster DU iterator.  Requires each successive edge to be removed.
1531 // Does not allow insertion of any edges.
1532 // Usage:
1533 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1534 //    Node* y = x->last_out(i);
1535 //    ...
1536 //  }
1537 // Compiles in product mode to raw Node** pointer arithmetic, with
1538 // no reloading of pointers from the original node x.
1539 class DUIterator_Last : private DUIterator_Fast {
1540   friend class Node;
1541 
1542   #ifdef ASSERT
1543   void verify(const Node* node, bool at_end_ok = false);
1544   void verify_limit();
1545   void verify_step(uint num_edges);
1546   #endif
1547 
1548   // Note:  offset must be signed, since -1 is sometimes passed
1549   DUIterator_Last(const Node* node, ptrdiff_t offset)
1550     : DUIterator_Fast(node, offset) { }
1551 
1552   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1553   void operator<(int)                              {} // do not use
1554 
1555  public:
1556   DUIterator_Last() { }
1557   // initialize to garbage
1558 
1559   DUIterator_Last(const DUIterator_Last& that) = default;
1560 
1561   void operator--()
1562     { _outp--;              VDUI_ONLY(verify_step(1));  }
1563 
1564   void operator-=(uint n)
1565     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1566 
1567   bool operator>=(DUIterator_Last& limit) {
1568     I_VDUI_ONLY(*this, this->verify(_node, true));
1569     I_VDUI_ONLY(limit, limit.verify_limit());
1570     return _outp >= limit._outp;
1571   }
1572 
1573   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1574 };
1575 
1576 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1577   // Assign a limit pointer to the reference argument:
1578   imin = DUIterator_Last(this, 0);
1579   // Return the initial pointer:
1580   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1581 }
1582 Node* Node::last_out(DUIterator_Last& i) const {
1583   I_VDUI_ONLY(i, i.verify(this));
1584   return debug_only(i._last=) *i._outp;
1585 }
1586 
1587 #endif //OPTO_DU_ITERATOR_ASSERT
1588 
1589 #undef I_VDUI_ONLY
1590 #undef VDUI_ONLY
1591 
1592 // An Iterator that truly follows the iterator pattern.  Doesn't
1593 // support deletion but could be made to.
1594 //
1595 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1596 //     Node* m = i.get();
1597 //
1598 class SimpleDUIterator : public StackObj {
1599  private:
1600   Node* node;
1601   DUIterator_Fast imax;
1602   DUIterator_Fast i;
1603  public:
1604   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1605   bool has_next() { return i < imax; }
1606   void next() { i++; }
1607   Node* get() { return node->fast_out(i); }
1608 };
1609 
1610 
1611 //-----------------------------------------------------------------------------
1612 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1613 // Abstractly provides an infinite array of Node*'s, initialized to null.
1614 // Note that the constructor just zeros things, and since I use Arena
1615 // allocation I do not need a destructor to reclaim storage.
1616 class Node_Array : public AnyObj {
1617   friend class VMStructs;
1618 protected:
1619   Arena* _a;                    // Arena to allocate in
1620   uint   _max;
1621   Node** _nodes;
1622   ReallocMark _nesting;         // Safety checks for arena reallocation
1623 
1624   void   grow( uint i );        // Grow array node to fit
1625 public:
1626   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1627     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1628     clear();
1629   }
1630   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1631 
1632   NONCOPYABLE(Node_Array);
1633   Node_Array& operator=(Node_Array&&) = delete;
1634   // Allow move constructor for && (eg. capture return of function)
1635   Node_Array(Node_Array&&) = default;
1636 
1637   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1638   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1639   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1640   Node** adr() { return _nodes; }
1641   // Extend the mapping: index i maps to Node *n.
1642   void map( uint i, Node *n ) { grow(i); _nodes[i] = n; }
1643   void insert( uint i, Node *n );
1644   void remove( uint i );        // Remove, preserving order
1645   // Clear all entries in _nodes to null but keep storage
1646   void clear() {
1647     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1648   }
1649 
1650   uint max() const { return _max; }
1651   void dump() const;
1652 };
1653 
1654 class Node_List : public Node_Array {
1655   friend class VMStructs;
1656   uint _cnt;
1657 public:
1658   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1659   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1660 
1661   NONCOPYABLE(Node_List);
1662   Node_List& operator=(Node_List&&) = delete;
1663   // Allow move constructor for && (eg. capture return of function)
1664   Node_List(Node_List&&) = default;
1665 
1666   bool contains(const Node* n) const {
1667     for (uint e = 0; e < size(); e++) {
1668       if (at(e) == n) return true;
1669     }
1670     return false;
1671   }
1672   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1673   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1674   void push( Node *b ) { map(_cnt++,b); }
1675   void yank( Node *n );         // Find and remove
1676   Node *pop() { return _nodes[--_cnt]; }
1677   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1678   void copy(const Node_List& from) {
1679     if (from._max > _max) {
1680       grow(from._max);
1681     }
1682     _cnt = from._cnt;
1683     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1684   }
1685 
1686   uint size() const { return _cnt; }
1687   void dump() const;
1688   void dump_simple() const;
1689 };
1690 
1691 // Definition must appear after complete type definition of Node_List
1692 template <typename Callback, typename Check>
1693 void Node::visit_uses(Callback callback, Check is_boundary) const {
1694   ResourceMark rm;
1695   VectorSet visited;
1696   Node_List worklist;
1697 
1698   // The initial worklist consists of the direct uses
1699   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1700     Node* out = fast_out(k);
1701     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1702   }
1703 
1704   while (worklist.size() > 0) {
1705     Node* use = worklist.pop();
1706     // Apply callback on boundary nodes
1707     if (is_boundary(use)) {
1708       callback(use);
1709     } else {
1710       // Not a boundary node, continue search
1711       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1712         Node* out = use->fast_out(k);
1713         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1714       }
1715     }
1716   }
1717 }
1718 
1719 
1720 //------------------------------Unique_Node_List-------------------------------
1721 class Unique_Node_List : public Node_List {
1722   friend class VMStructs;
1723   VectorSet _in_worklist;
1724   uint _clock_index;            // Index in list where to pop from next
1725 public:
1726   Unique_Node_List() : Node_List(), _clock_index(0) {}
1727   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1728 
1729   NONCOPYABLE(Unique_Node_List);
1730   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1731   // Allow move constructor for && (eg. capture return of function)
1732   Unique_Node_List(Unique_Node_List&&) = default;
1733 
1734   void remove( Node *n );
1735   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1736   VectorSet& member_set(){ return _in_worklist; }
1737 
1738   void push(Node* b) {
1739     if( !_in_worklist.test_set(b->_idx) )
1740       Node_List::push(b);
1741   }
1742   void push_non_cfg_inputs_of(const Node* node) {
1743     for (uint i = 1; i < node->req(); i++) {
1744       Node* input = node->in(i);
1745       if (input != nullptr && !input->is_CFG()) {
1746         push(input);
1747       }
1748     }
1749   }
1750 
1751   void push_outputs_of(const Node* node) {
1752     for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1753       Node* output = node->fast_out(i);
1754       push(output);
1755     }
1756   }
1757 
1758   Node *pop() {
1759     if( _clock_index >= size() ) _clock_index = 0;
1760     Node *b = at(_clock_index);
1761     map( _clock_index, Node_List::pop());
1762     if (size() != 0) _clock_index++; // Always start from 0
1763     _in_worklist.remove(b->_idx);
1764     return b;
1765   }
1766   Node *remove(uint i) {
1767     Node *b = Node_List::at(i);
1768     _in_worklist.remove(b->_idx);
1769     map(i,Node_List::pop());
1770     return b;
1771   }
1772   void yank(Node *n) {
1773     _in_worklist.remove(n->_idx);
1774     Node_List::yank(n);
1775   }
1776   void  clear() {
1777     _in_worklist.clear();        // Discards storage but grows automatically
1778     Node_List::clear();
1779     _clock_index = 0;
1780   }
1781   void ensure_empty() {
1782     assert(size() == 0, "must be empty");
1783     clear(); // just in case
1784   }
1785 
1786   // Used after parsing to remove useless nodes before Iterative GVN
1787   void remove_useless_nodes(VectorSet& useful);
1788 
1789   // If the idx of the Nodes change, we must recompute the VectorSet
1790   void recompute_idx_set() {
1791     _in_worklist.clear();
1792     for (uint i = 0; i < size(); i++) {
1793       Node* n = at(i);
1794       _in_worklist.set(n->_idx);
1795     }
1796   }
1797 
1798 #ifdef ASSERT
1799   bool is_subset_of(Unique_Node_List& other) {
1800     for (uint i = 0; i < size(); i++) {
1801       Node* n = at(i);
1802       if (!other.member(n)) {
1803         return false;
1804       }
1805     }
1806     return true;
1807   }
1808 #endif
1809 
1810   bool contains(const Node* n) const {
1811     fatal("use faster member() instead");
1812     return false;
1813   }
1814 
1815 #ifndef PRODUCT
1816   void print_set() const { _in_worklist.print(); }
1817 #endif
1818 };
1819 
1820 // Unique_Mixed_Node_List
1821 // unique: nodes are added only once
1822 // mixed: allow new and old nodes
1823 class Unique_Mixed_Node_List : public ResourceObj {
1824 public:
1825   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1826 
1827   void add(Node* node) {
1828     if (not_a_node(node)) {
1829       return; // Gracefully handle null, -1, 0xabababab, etc.
1830     }
1831     if (_visited_set[node] == nullptr) {
1832       _visited_set.Insert(node, node);
1833       _worklist.push(node);
1834     }
1835   }
1836 
1837   Node* operator[] (uint i) const {
1838     return _worklist[i];
1839   }
1840 
1841   size_t size() {
1842     return _worklist.size();
1843   }
1844 
1845 private:
1846   Dict _visited_set;
1847   Node_List _worklist;
1848 };
1849 
1850 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1851 inline void Compile::record_for_igvn(Node* n) {
1852   _igvn_worklist->push(n);
1853 }
1854 
1855 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1856 inline void Compile::remove_for_igvn(Node* n) {
1857   _igvn_worklist->remove(n);
1858 }
1859 
1860 //------------------------------Node_Stack-------------------------------------
1861 class Node_Stack {
1862   friend class VMStructs;
1863 protected:
1864   struct INode {
1865     Node *node; // Processed node
1866     uint  indx; // Index of next node's child
1867   };
1868   INode *_inode_top; // tos, stack grows up
1869   INode *_inode_max; // End of _inodes == _inodes + _max
1870   INode *_inodes;    // Array storage for the stack
1871   Arena *_a;         // Arena to allocate in
1872   ReallocMark _nesting; // Safety checks for arena reallocation
1873   void grow();
1874 public:
1875   Node_Stack(int size) {
1876     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1877     _a = Thread::current()->resource_area();
1878     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1879     _inode_max = _inodes + max;
1880     _inode_top = _inodes - 1; // stack is empty
1881   }
1882 
1883   Node_Stack(Arena *a, int size) : _a(a) {
1884     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1885     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1886     _inode_max = _inodes + max;
1887     _inode_top = _inodes - 1; // stack is empty
1888   }
1889 
1890   void pop() {
1891     assert(_inode_top >= _inodes, "node stack underflow");
1892     --_inode_top;
1893   }
1894   void push(Node *n, uint i) {
1895     ++_inode_top;
1896     grow();
1897     INode *top = _inode_top; // optimization
1898     top->node = n;
1899     top->indx = i;
1900   }
1901   Node *node() const {
1902     return _inode_top->node;
1903   }
1904   Node* node_at(uint i) const {
1905     assert(_inodes + i <= _inode_top, "in range");
1906     return _inodes[i].node;
1907   }
1908   uint index() const {
1909     return _inode_top->indx;
1910   }
1911   uint index_at(uint i) const {
1912     assert(_inodes + i <= _inode_top, "in range");
1913     return _inodes[i].indx;
1914   }
1915   void set_node(Node *n) {
1916     _inode_top->node = n;
1917   }
1918   void set_index(uint i) {
1919     _inode_top->indx = i;
1920   }
1921   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1922   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1923   bool is_nonempty() const { return (_inode_top >= _inodes); }
1924   bool is_empty() const { return (_inode_top < _inodes); }
1925   void clear() { _inode_top = _inodes - 1; } // retain storage
1926 
1927   // Node_Stack is used to map nodes.
1928   Node* find(uint idx) const;
1929 
1930   NONCOPYABLE(Node_Stack);
1931 };
1932 
1933 
1934 //-----------------------------Node_Notes--------------------------------------
1935 // Debugging or profiling annotations loosely and sparsely associated
1936 // with some nodes.  See Compile::node_notes_at for the accessor.
1937 class Node_Notes {
1938   friend class VMStructs;
1939   JVMState* _jvms;
1940 
1941 public:
1942   Node_Notes(JVMState* jvms = nullptr) {
1943     _jvms = jvms;
1944   }
1945 
1946   JVMState* jvms()            { return _jvms; }
1947   void  set_jvms(JVMState* x) {        _jvms = x; }
1948 
1949   // True if there is nothing here.
1950   bool is_clear() {
1951     return (_jvms == nullptr);
1952   }
1953 
1954   // Make there be nothing here.
1955   void clear() {
1956     _jvms = nullptr;
1957   }
1958 
1959   // Make a new, clean node notes.
1960   static Node_Notes* make(Compile* C) {
1961     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1962     nn->clear();
1963     return nn;
1964   }
1965 
1966   Node_Notes* clone(Compile* C) {
1967     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1968     (*nn) = (*this);
1969     return nn;
1970   }
1971 
1972   // Absorb any information from source.
1973   bool update_from(Node_Notes* source) {
1974     bool changed = false;
1975     if (source != nullptr) {
1976       if (source->jvms() != nullptr) {
1977         set_jvms(source->jvms());
1978         changed = true;
1979       }
1980     }
1981     return changed;
1982   }
1983 };
1984 
1985 // Inlined accessors for Compile::node_nodes that require the preceding class:
1986 inline Node_Notes*
1987 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1988                            int idx, bool can_grow) {
1989   assert(idx >= 0, "oob");
1990   int block_idx = (idx >> _log2_node_notes_block_size);
1991   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
1992   if (grow_by >= 0) {
1993     if (!can_grow) return nullptr;
1994     grow_node_notes(arr, grow_by + 1);
1995   }
1996   if (arr == nullptr) return nullptr;
1997   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1998   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1999 }
2000 
2001 inline bool
2002 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2003   if (value == nullptr || value->is_clear())
2004     return false;  // nothing to write => write nothing
2005   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2006   assert(loc != nullptr, "");
2007   return loc->update_from(value);
2008 }
2009 
2010 
2011 //------------------------------TypeNode---------------------------------------
2012 // Node with a Type constant.
2013 class TypeNode : public Node {
2014 protected:
2015   virtual uint hash() const;    // Check the type
2016   virtual bool cmp( const Node &n ) const;
2017   virtual uint size_of() const; // Size is bigger
2018   const Type* const _type;
2019 public:
2020   void set_type(const Type* t) {
2021     assert(t != nullptr, "sanity");
2022     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2023     *(const Type**)&_type = t;   // cast away const-ness
2024     // If this node is in the hash table, make sure it doesn't need a rehash.
2025     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2026   }
2027   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2028   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2029     init_class_id(Class_Type);
2030   }
2031   virtual const Type* Value(PhaseGVN* phase) const;
2032   virtual const Type *bottom_type() const;
2033   virtual       uint  ideal_reg() const;
2034 #ifndef PRODUCT
2035   virtual void dump_spec(outputStream *st) const;
2036   virtual void dump_compact_spec(outputStream *st) const;
2037 #endif
2038 };
2039 
2040 #include "opto/opcodes.hpp"
2041 
2042 #define Op_IL(op) \
2043   inline int Op_ ## op(BasicType bt) { \
2044   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2045   if (bt == T_INT) { \
2046     return Op_## op ## I; \
2047   } \
2048   return Op_## op ## L; \
2049 }
2050 
2051 Op_IL(Add)
2052 Op_IL(Sub)
2053 Op_IL(Mul)
2054 Op_IL(URShift)
2055 Op_IL(LShift)
2056 Op_IL(Xor)
2057 Op_IL(Cmp)
2058 
2059 inline int Op_ConIL(BasicType bt) {
2060   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2061   if (bt == T_INT) {
2062     return Op_ConI;
2063   }
2064   return Op_ConL;
2065 }
2066 
2067 inline int Op_Cmp_unsigned(BasicType bt) {
2068   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2069   if (bt == T_INT) {
2070     return Op_CmpU;
2071   }
2072   return Op_CmpUL;
2073 }
2074 
2075 inline int Op_Cast(BasicType bt) {
2076   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2077   if (bt == T_INT) {
2078     return Op_CastII;
2079   }
2080   return Op_CastLL;
2081 }
2082 
2083 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2084   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2085   if (bt == T_INT) {
2086     if (is_unsigned) {
2087       return Op_UDivI;
2088     } else {
2089       return Op_DivI;
2090     }
2091   }
2092   if (is_unsigned) {
2093     return Op_UDivL;
2094   } else {
2095     return Op_DivL;
2096   }
2097 }
2098 
2099 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2100   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2101   if (bt == T_INT) {
2102     if (is_unsigned) {
2103       return Op_UDivModI;
2104     } else {
2105       return Op_DivModI;
2106     }
2107   }
2108   if (is_unsigned) {
2109     return Op_UDivModL;
2110   } else {
2111     return Op_DivModL;
2112   }
2113 }
2114 
2115 #endif // SHARE_OPTO_NODE_HPP