1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastDDNode; 62 class CastVVNode; 63 class CastIINode; 64 class CastLLNode; 65 class CastPPNode; 66 class CatchNode; 67 class CatchProjNode; 68 class CheckCastPPNode; 69 class ClearArrayNode; 70 class CmpNode; 71 class CodeBuffer; 72 class ConstraintCastNode; 73 class ConNode; 74 class ConINode; 75 class ConvertNode; 76 class CompareAndSwapNode; 77 class CompareAndExchangeNode; 78 class CountedLoopNode; 79 class CountedLoopEndNode; 80 class DecodeNarrowPtrNode; 81 class DecodeNNode; 82 class DecodeNKlassNode; 83 class EncodeNarrowPtrNode; 84 class EncodePNode; 85 class EncodePKlassNode; 86 class FastLockNode; 87 class FastUnlockNode; 88 class FlatArrayCheckNode; 89 class HaltNode; 90 class IfNode; 91 class IfProjNode; 92 class IfFalseNode; 93 class IfTrueNode; 94 class InitializeNode; 95 class JVMState; 96 class JumpNode; 97 class JumpProjNode; 98 class LoadNode; 99 class LoadStoreNode; 100 class LoadStoreConditionalNode; 101 class LockNode; 102 class LongCountedLoopNode; 103 class LongCountedLoopEndNode; 104 class LoopNode; 105 class LShiftNode; 106 class MachBranchNode; 107 class MachCallDynamicJavaNode; 108 class MachCallJavaNode; 109 class MachCallLeafNode; 110 class MachCallNode; 111 class MachCallRuntimeNode; 112 class MachCallStaticJavaNode; 113 class MachConstantBaseNode; 114 class MachConstantNode; 115 class MachGotoNode; 116 class MachIfNode; 117 class MachJumpNode; 118 class MachNode; 119 class MachNullCheckNode; 120 class MachProjNode; 121 class MachPrologNode; 122 class MachReturnNode; 123 class MachSafePointNode; 124 class MachSpillCopyNode; 125 class MachTempNode; 126 class MachMergeNode; 127 class MachMemBarNode; 128 class MachVEPNode; 129 class Matcher; 130 class MemBarNode; 131 class MemBarStoreStoreNode; 132 class MemNode; 133 class MergeMemNode; 134 class MoveNode; 135 class MulNode; 136 class MultiNode; 137 class MultiBranchNode; 138 class NegNode; 139 class NegVNode; 140 class NeverBranchNode; 141 class Opaque1Node; 142 class OpaqueLoopInitNode; 143 class OpaqueLoopStrideNode; 144 class Opaque4Node; 145 class OpaqueInitializedAssertionPredicateNode; 146 class OuterStripMinedLoopNode; 147 class OuterStripMinedLoopEndNode; 148 class Node; 149 class Node_Array; 150 class Node_List; 151 class Node_Stack; 152 class OopMap; 153 class ParmNode; 154 class ParsePredicateNode; 155 class PCTableNode; 156 class PhaseCCP; 157 class PhaseGVN; 158 class PhaseIterGVN; 159 class PhaseRegAlloc; 160 class PhaseTransform; 161 class PhaseValues; 162 class PhiNode; 163 class Pipeline; 164 class PopulateIndexNode; 165 class ProjNode; 166 class RangeCheckNode; 167 class ReductionNode; 168 class RegMask; 169 class RegionNode; 170 class RootNode; 171 class SafePointNode; 172 class SafePointScalarObjectNode; 173 class SafePointScalarMergeNode; 174 class StartNode; 175 class State; 176 class StoreNode; 177 class SubNode; 178 class SubTypeCheckNode; 179 class Type; 180 class TypeNode; 181 class UnlockNode; 182 class InlineTypeNode; 183 class VectorNode; 184 class LoadVectorNode; 185 class LoadVectorMaskedNode; 186 class StoreVectorMaskedNode; 187 class LoadVectorGatherNode; 188 class LoadVectorGatherMaskedNode; 189 class StoreVectorNode; 190 class StoreVectorScatterNode; 191 class StoreVectorScatterMaskedNode; 192 class VerifyVectorAlignmentNode; 193 class VectorMaskCmpNode; 194 class VectorUnboxNode; 195 class VectorSet; 196 class VectorReinterpretNode; 197 class ShiftVNode; 198 class ExpandVNode; 199 class CompressVNode; 200 class CompressMNode; 201 class C2_MacroAssembler; 202 203 204 #ifndef OPTO_DU_ITERATOR_ASSERT 205 #ifdef ASSERT 206 #define OPTO_DU_ITERATOR_ASSERT 1 207 #else 208 #define OPTO_DU_ITERATOR_ASSERT 0 209 #endif 210 #endif //OPTO_DU_ITERATOR_ASSERT 211 212 #if OPTO_DU_ITERATOR_ASSERT 213 class DUIterator; 214 class DUIterator_Fast; 215 class DUIterator_Last; 216 #else 217 typedef uint DUIterator; 218 typedef Node** DUIterator_Fast; 219 typedef Node** DUIterator_Last; 220 #endif 221 222 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 223 224 // Node Sentinel 225 #define NodeSentinel (Node*)-1 226 227 // Unknown count frequency 228 #define COUNT_UNKNOWN (-1.0f) 229 230 //------------------------------Node------------------------------------------- 231 // Nodes define actions in the program. They create values, which have types. 232 // They are both vertices in a directed graph and program primitives. Nodes 233 // are labeled; the label is the "opcode", the primitive function in the lambda 234 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 235 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 236 // the Node's function. These inputs also define a Type equation for the Node. 237 // Solving these Type equations amounts to doing dataflow analysis. 238 // Control and data are uniformly represented in the graph. Finally, Nodes 239 // have a unique dense integer index which is used to index into side arrays 240 // whenever I have phase-specific information. 241 242 class Node { 243 friend class VMStructs; 244 245 // Lots of restrictions on cloning Nodes 246 NONCOPYABLE(Node); 247 248 public: 249 friend class Compile; 250 #if OPTO_DU_ITERATOR_ASSERT 251 friend class DUIterator_Common; 252 friend class DUIterator; 253 friend class DUIterator_Fast; 254 friend class DUIterator_Last; 255 #endif 256 257 // Because Nodes come and go, I define an Arena of Node structures to pull 258 // from. This should allow fast access to node creation & deletion. This 259 // field is a local cache of a value defined in some "program fragment" for 260 // which these Nodes are just a part of. 261 262 inline void* operator new(size_t x) throw() { 263 Compile* C = Compile::current(); 264 Node* n = (Node*)C->node_arena()->AmallocWords(x); 265 return (void*)n; 266 } 267 268 // Delete is a NOP 269 void operator delete( void *ptr ) {} 270 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 271 void destruct(PhaseValues* phase); 272 273 // Create a new Node. Required is the number is of inputs required for 274 // semantic correctness. 275 Node( uint required ); 276 277 // Create a new Node with given input edges. 278 // This version requires use of the "edge-count" new. 279 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 280 Node( Node *n0 ); 281 Node( Node *n0, Node *n1 ); 282 Node( Node *n0, Node *n1, Node *n2 ); 283 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 284 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 285 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 286 Node( Node *n0, Node *n1, Node *n2, Node *n3, 287 Node *n4, Node *n5, Node *n6 ); 288 289 // Clone an inherited Node given only the base Node type. 290 Node* clone() const; 291 292 // Clone a Node, immediately supplying one or two new edges. 293 // The first and second arguments, if non-null, replace in(1) and in(2), 294 // respectively. 295 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 296 Node* nn = clone(); 297 if (in1 != nullptr) nn->set_req(1, in1); 298 if (in2 != nullptr) nn->set_req(2, in2); 299 return nn; 300 } 301 302 private: 303 // Shared setup for the above constructors. 304 // Handles all interactions with Compile::current. 305 // Puts initial values in all Node fields except _idx. 306 // Returns the initial value for _idx, which cannot 307 // be initialized by assignment. 308 inline int Init(int req); 309 310 //----------------- input edge handling 311 protected: 312 friend class PhaseCFG; // Access to address of _in array elements 313 Node **_in; // Array of use-def references to Nodes 314 Node **_out; // Array of def-use references to Nodes 315 316 // Input edges are split into two categories. Required edges are required 317 // for semantic correctness; order is important and nulls are allowed. 318 // Precedence edges are used to help determine execution order and are 319 // added, e.g., for scheduling purposes. They are unordered and not 320 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 321 // are required, from _cnt to _max-1 are precedence edges. 322 node_idx_t _cnt; // Total number of required Node inputs. 323 324 node_idx_t _max; // Actual length of input array. 325 326 // Output edges are an unordered list of def-use edges which exactly 327 // correspond to required input edges which point from other nodes 328 // to this one. Thus the count of the output edges is the number of 329 // users of this node. 330 node_idx_t _outcnt; // Total number of Node outputs. 331 332 node_idx_t _outmax; // Actual length of output array. 333 334 // Grow the actual input array to the next larger power-of-2 bigger than len. 335 void grow( uint len ); 336 // Grow the output array to the next larger power-of-2 bigger than len. 337 void out_grow( uint len ); 338 339 public: 340 // Each Node is assigned a unique small/dense number. This number is used 341 // to index into auxiliary arrays of data and bit vectors. 342 // The field _idx is declared constant to defend against inadvertent assignments, 343 // since it is used by clients as a naked field. However, the field's value can be 344 // changed using the set_idx() method. 345 // 346 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 347 // Therefore, it updates the value of the _idx field. The parse-time _idx is 348 // preserved in _parse_idx. 349 const node_idx_t _idx; 350 DEBUG_ONLY(const node_idx_t _parse_idx;) 351 // IGV node identifier. Two nodes, possibly in different compilation phases, 352 // have the same IGV identifier if (and only if) they are the very same node 353 // (same memory address) or one is "derived" from the other (by e.g. 354 // renumbering or matching). This identifier makes it possible to follow the 355 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 356 NOT_PRODUCT(node_idx_t _igv_idx;) 357 358 // Get the (read-only) number of input edges 359 uint req() const { return _cnt; } 360 uint len() const { return _max; } 361 // Get the (read-only) number of output edges 362 uint outcnt() const { return _outcnt; } 363 364 #if OPTO_DU_ITERATOR_ASSERT 365 // Iterate over the out-edges of this node. Deletions are illegal. 366 inline DUIterator outs() const; 367 // Use this when the out array might have changed to suppress asserts. 368 inline DUIterator& refresh_out_pos(DUIterator& i) const; 369 // Does the node have an out at this position? (Used for iteration.) 370 inline bool has_out(DUIterator& i) const; 371 inline Node* out(DUIterator& i) const; 372 // Iterate over the out-edges of this node. All changes are illegal. 373 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 374 inline Node* fast_out(DUIterator_Fast& i) const; 375 // Iterate over the out-edges of this node, deleting one at a time. 376 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 377 inline Node* last_out(DUIterator_Last& i) const; 378 // The inline bodies of all these methods are after the iterator definitions. 379 #else 380 // Iterate over the out-edges of this node. Deletions are illegal. 381 // This iteration uses integral indexes, to decouple from array reallocations. 382 DUIterator outs() const { return 0; } 383 // Use this when the out array might have changed to suppress asserts. 384 DUIterator refresh_out_pos(DUIterator i) const { return i; } 385 386 // Reference to the i'th output Node. Error if out of bounds. 387 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 388 // Does the node have an out at this position? (Used for iteration.) 389 bool has_out(DUIterator i) const { return i < _outcnt; } 390 391 // Iterate over the out-edges of this node. All changes are illegal. 392 // This iteration uses a pointer internal to the out array. 393 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 394 Node** out = _out; 395 // Assign a limit pointer to the reference argument: 396 max = out + (ptrdiff_t)_outcnt; 397 // Return the base pointer: 398 return out; 399 } 400 Node* fast_out(DUIterator_Fast i) const { return *i; } 401 // Iterate over the out-edges of this node, deleting one at a time. 402 // This iteration uses a pointer internal to the out array. 403 DUIterator_Last last_outs(DUIterator_Last& min) const { 404 Node** out = _out; 405 // Assign a limit pointer to the reference argument: 406 min = out; 407 // Return the pointer to the start of the iteration: 408 return out + (ptrdiff_t)_outcnt - 1; 409 } 410 Node* last_out(DUIterator_Last i) const { return *i; } 411 #endif 412 413 // Reference to the i'th input Node. Error if out of bounds. 414 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 415 // Reference to the i'th input Node. null if out of bounds. 416 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 417 // Reference to the i'th output Node. Error if out of bounds. 418 // Use this accessor sparingly. We are going trying to use iterators instead. 419 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 420 // Return the unique out edge. 421 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 422 // Delete out edge at position 'i' by moving last out edge to position 'i' 423 void raw_del_out(uint i) { 424 assert(i < _outcnt,"oob"); 425 assert(_outcnt > 0,"oob"); 426 #if OPTO_DU_ITERATOR_ASSERT 427 // Record that a change happened here. 428 debug_only(_last_del = _out[i]; ++_del_tick); 429 #endif 430 _out[i] = _out[--_outcnt]; 431 // Smash the old edge so it can't be used accidentally. 432 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 433 } 434 435 #ifdef ASSERT 436 bool is_dead() const; 437 static bool is_not_dead(const Node* n); 438 bool is_reachable_from_root() const; 439 #endif 440 // Check whether node has become unreachable 441 bool is_unreachable(PhaseIterGVN &igvn) const; 442 443 // Set a required input edge, also updates corresponding output edge 444 void add_req( Node *n ); // Append a NEW required input 445 void add_req( Node *n0, Node *n1 ) { 446 add_req(n0); add_req(n1); } 447 void add_req( Node *n0, Node *n1, Node *n2 ) { 448 add_req(n0); add_req(n1); add_req(n2); } 449 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 450 void del_req( uint idx ); // Delete required edge & compact 451 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 452 void ins_req( uint i, Node *n ); // Insert a NEW required input 453 void set_req( uint i, Node *n ) { 454 assert( is_not_dead(n), "can not use dead node"); 455 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 456 assert( !VerifyHashTableKeys || _hash_lock == 0, 457 "remove node from hash table before modifying it"); 458 Node** p = &_in[i]; // cache this._in, across the del_out call 459 if (*p != nullptr) (*p)->del_out((Node *)this); 460 (*p) = n; 461 if (n != nullptr) n->add_out((Node *)this); 462 Compile::current()->record_modified_node(this); 463 } 464 // Light version of set_req() to init inputs after node creation. 465 void init_req( uint i, Node *n ) { 466 assert( (i == 0 && this == n) || 467 is_not_dead(n), "can not use dead node"); 468 assert( i < _cnt, "oob"); 469 assert( !VerifyHashTableKeys || _hash_lock == 0, 470 "remove node from hash table before modifying it"); 471 assert( _in[i] == nullptr, "sanity"); 472 _in[i] = n; 473 if (n != nullptr) n->add_out((Node *)this); 474 Compile::current()->record_modified_node(this); 475 } 476 // Find first occurrence of n among my edges: 477 int find_edge(Node* n); 478 int find_prec_edge(Node* n) { 479 for (uint i = req(); i < len(); i++) { 480 if (_in[i] == n) return i; 481 if (_in[i] == nullptr) { 482 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 483 break; 484 } 485 } 486 return -1; 487 } 488 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 489 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 490 // null out all inputs to eliminate incoming Def-Use edges. 491 void disconnect_inputs(Compile* C); 492 493 // Quickly, return true if and only if I am Compile::current()->top(). 494 bool is_top() const { 495 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 496 return (_out == nullptr); 497 } 498 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 499 void setup_is_top(); 500 501 // Strip away casting. (It is depth-limited.) 502 Node* uncast(bool keep_deps = false) const; 503 // Return whether two Nodes are equivalent, after stripping casting. 504 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 505 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 506 } 507 508 // Find out of current node that matches opcode. 509 Node* find_out_with(int opcode); 510 // Return true if the current node has an out that matches opcode. 511 bool has_out_with(int opcode); 512 // Return true if the current node has an out that matches any of the opcodes. 513 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 514 515 private: 516 static Node* uncast_helper(const Node* n, bool keep_deps); 517 518 // Add an output edge to the end of the list 519 void add_out( Node *n ) { 520 if (is_top()) return; 521 if( _outcnt == _outmax ) out_grow(_outcnt); 522 _out[_outcnt++] = n; 523 } 524 // Delete an output edge 525 void del_out( Node *n ) { 526 if (is_top()) return; 527 Node** outp = &_out[_outcnt]; 528 // Find and remove n 529 do { 530 assert(outp > _out, "Missing Def-Use edge"); 531 } while (*--outp != n); 532 *outp = _out[--_outcnt]; 533 // Smash the old edge so it can't be used accidentally. 534 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 535 // Record that a change happened here. 536 #if OPTO_DU_ITERATOR_ASSERT 537 debug_only(_last_del = n; ++_del_tick); 538 #endif 539 } 540 // Close gap after removing edge. 541 void close_prec_gap_at(uint gap) { 542 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 543 uint i = gap; 544 Node *last = nullptr; 545 for (; i < _max-1; ++i) { 546 Node *next = _in[i+1]; 547 if (next == nullptr) break; 548 last = next; 549 } 550 _in[gap] = last; // Move last slot to empty one. 551 _in[i] = nullptr; // null out last slot. 552 } 553 554 public: 555 // Globally replace this node by a given new node, updating all uses. 556 void replace_by(Node* new_node); 557 // Globally replace this node by a given new node, updating all uses 558 // and cutting input edges of old node. 559 void subsume_by(Node* new_node, Compile* c) { 560 replace_by(new_node); 561 disconnect_inputs(c); 562 } 563 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 564 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 565 // Find the one non-null required input. RegionNode only 566 Node *nonnull_req() const; 567 // Add or remove precedence edges 568 void add_prec( Node *n ); 569 void rm_prec( uint i ); 570 571 // Note: prec(i) will not necessarily point to n if edge already exists. 572 void set_prec( uint i, Node *n ) { 573 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 574 assert(is_not_dead(n), "can not use dead node"); 575 assert(i >= _cnt, "not a precedence edge"); 576 // Avoid spec violation: duplicated prec edge. 577 if (_in[i] == n) return; 578 if (n == nullptr || find_prec_edge(n) != -1) { 579 rm_prec(i); 580 return; 581 } 582 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 583 _in[i] = n; 584 n->add_out((Node *)this); 585 Compile::current()->record_modified_node(this); 586 } 587 588 // Set this node's index, used by cisc_version to replace current node 589 void set_idx(uint new_idx) { 590 const node_idx_t* ref = &_idx; 591 *(node_idx_t*)ref = new_idx; 592 } 593 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 594 void swap_edges(uint i1, uint i2) { 595 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 596 // Def-Use info is unchanged 597 Node* n1 = in(i1); 598 Node* n2 = in(i2); 599 _in[i1] = n2; 600 _in[i2] = n1; 601 // If this node is in the hash table, make sure it doesn't need a rehash. 602 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 603 // Flip swapped edges flag. 604 if (has_swapped_edges()) { 605 remove_flag(Node::Flag_has_swapped_edges); 606 } else { 607 add_flag(Node::Flag_has_swapped_edges); 608 } 609 } 610 611 // Iterators over input Nodes for a Node X are written as: 612 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 613 // NOTE: Required edges can contain embedded null pointers. 614 615 //----------------- Other Node Properties 616 617 // Generate class IDs for (some) ideal nodes so that it is possible to determine 618 // the type of a node using a non-virtual method call (the method is_<Node>() below). 619 // 620 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 621 // the type of the node the ID represents; another subset of an ID's bits are reserved 622 // for the superclasses of the node represented by the ID. 623 // 624 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 625 // returns false. A.is_A() returns true. 626 // 627 // If two classes, A and B, have the same superclass, a different bit of A's class id 628 // is reserved for A's type than for B's type. That bit is specified by the third 629 // parameter in the macro DEFINE_CLASS_ID. 630 // 631 // By convention, classes with deeper hierarchy are declared first. Moreover, 632 // classes with the same hierarchy depth are sorted by usage frequency. 633 // 634 // The query method masks the bits to cut off bits of subclasses and then compares 635 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 636 // 637 // Class_MachCall=30, ClassMask_MachCall=31 638 // 12 8 4 0 639 // 0 0 0 0 0 0 0 0 1 1 1 1 0 640 // | | | | 641 // | | | Bit_Mach=2 642 // | | Bit_MachReturn=4 643 // | Bit_MachSafePoint=8 644 // Bit_MachCall=16 645 // 646 // Class_CountedLoop=56, ClassMask_CountedLoop=63 647 // 12 8 4 0 648 // 0 0 0 0 0 0 0 1 1 1 0 0 0 649 // | | | 650 // | | Bit_Region=8 651 // | Bit_Loop=16 652 // Bit_CountedLoop=32 653 654 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 655 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 656 Class_##cl = Class_##supcl + Bit_##cl , \ 657 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 658 659 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 660 // so that its values fit into 32 bits. 661 enum NodeClasses { 662 Bit_Node = 0x00000000, 663 Class_Node = 0x00000000, 664 ClassMask_Node = 0xFFFFFFFF, 665 666 DEFINE_CLASS_ID(Multi, Node, 0) 667 DEFINE_CLASS_ID(SafePoint, Multi, 0) 668 DEFINE_CLASS_ID(Call, SafePoint, 0) 669 DEFINE_CLASS_ID(CallJava, Call, 0) 670 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 671 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 672 DEFINE_CLASS_ID(CallRuntime, Call, 1) 673 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 674 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 675 DEFINE_CLASS_ID(Allocate, Call, 2) 676 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 677 DEFINE_CLASS_ID(AbstractLock, Call, 3) 678 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 679 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 680 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 681 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 682 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 683 DEFINE_CLASS_ID(Catch, PCTable, 0) 684 DEFINE_CLASS_ID(Jump, PCTable, 1) 685 DEFINE_CLASS_ID(If, MultiBranch, 1) 686 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 687 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 688 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 689 DEFINE_CLASS_ID(RangeCheck, If, 1) 690 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 691 DEFINE_CLASS_ID(ParsePredicate, If, 3) 692 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 693 DEFINE_CLASS_ID(Start, Multi, 2) 694 DEFINE_CLASS_ID(MemBar, Multi, 3) 695 DEFINE_CLASS_ID(Initialize, MemBar, 0) 696 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 697 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 698 699 DEFINE_CLASS_ID(Mach, Node, 1) 700 DEFINE_CLASS_ID(MachReturn, Mach, 0) 701 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 702 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 703 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 704 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 705 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 706 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 707 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 708 DEFINE_CLASS_ID(MachBranch, Mach, 1) 709 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 710 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 711 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 712 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 713 DEFINE_CLASS_ID(MachTemp, Mach, 3) 714 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 715 DEFINE_CLASS_ID(MachConstant, Mach, 5) 716 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 717 DEFINE_CLASS_ID(MachMerge, Mach, 6) 718 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 719 DEFINE_CLASS_ID(MachProlog, Mach, 8) 720 DEFINE_CLASS_ID(MachVEP, Mach, 9) 721 722 DEFINE_CLASS_ID(Type, Node, 2) 723 DEFINE_CLASS_ID(Phi, Type, 0) 724 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 725 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 726 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 727 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 728 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 729 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 730 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 731 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 732 DEFINE_CLASS_ID(CMove, Type, 3) 733 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 734 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 735 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 736 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 737 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 738 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 739 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 740 DEFINE_CLASS_ID(Vector, Type, 7) 741 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 742 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 743 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 744 DEFINE_CLASS_ID(ShiftV, Vector, 3) 745 DEFINE_CLASS_ID(CompressV, Vector, 4) 746 DEFINE_CLASS_ID(ExpandV, Vector, 5) 747 DEFINE_CLASS_ID(CompressM, Vector, 6) 748 DEFINE_CLASS_ID(Reduction, Vector, 7) 749 DEFINE_CLASS_ID(NegV, Vector, 8) 750 DEFINE_CLASS_ID(InlineType, Type, 8) 751 DEFINE_CLASS_ID(Con, Type, 9) 752 DEFINE_CLASS_ID(ConI, Con, 0) 753 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10) 754 DEFINE_CLASS_ID(Convert, Type, 11) 755 756 757 DEFINE_CLASS_ID(Proj, Node, 3) 758 DEFINE_CLASS_ID(CatchProj, Proj, 0) 759 DEFINE_CLASS_ID(JumpProj, Proj, 1) 760 DEFINE_CLASS_ID(IfProj, Proj, 2) 761 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 762 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 763 DEFINE_CLASS_ID(Parm, Proj, 4) 764 DEFINE_CLASS_ID(MachProj, Proj, 5) 765 766 DEFINE_CLASS_ID(Mem, Node, 4) 767 DEFINE_CLASS_ID(Load, Mem, 0) 768 DEFINE_CLASS_ID(LoadVector, Load, 0) 769 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 770 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 771 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 772 DEFINE_CLASS_ID(Store, Mem, 1) 773 DEFINE_CLASS_ID(StoreVector, Store, 0) 774 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 775 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 776 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 777 DEFINE_CLASS_ID(LoadStore, Mem, 2) 778 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 779 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 780 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 781 782 DEFINE_CLASS_ID(Region, Node, 5) 783 DEFINE_CLASS_ID(Loop, Region, 0) 784 DEFINE_CLASS_ID(Root, Loop, 0) 785 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 786 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 787 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 788 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 789 790 DEFINE_CLASS_ID(Sub, Node, 6) 791 DEFINE_CLASS_ID(Cmp, Sub, 0) 792 DEFINE_CLASS_ID(FastLock, Cmp, 0) 793 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 794 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 795 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 796 797 DEFINE_CLASS_ID(MergeMem, Node, 7) 798 DEFINE_CLASS_ID(Bool, Node, 8) 799 DEFINE_CLASS_ID(AddP, Node, 9) 800 DEFINE_CLASS_ID(BoxLock, Node, 10) 801 DEFINE_CLASS_ID(Add, Node, 11) 802 DEFINE_CLASS_ID(Mul, Node, 12) 803 DEFINE_CLASS_ID(ClearArray, Node, 14) 804 DEFINE_CLASS_ID(Halt, Node, 15) 805 DEFINE_CLASS_ID(Opaque1, Node, 16) 806 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 807 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 808 DEFINE_CLASS_ID(Opaque4, Node, 17) 809 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 810 DEFINE_CLASS_ID(Move, Node, 19) 811 DEFINE_CLASS_ID(LShift, Node, 20) 812 DEFINE_CLASS_ID(Neg, Node, 21) 813 814 _max_classes = ClassMask_Neg 815 }; 816 #undef DEFINE_CLASS_ID 817 818 // Flags are sorted by usage frequency. 819 enum NodeFlags { 820 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 821 Flag_rematerialize = 1 << 1, 822 Flag_needs_anti_dependence_check = 1 << 2, 823 Flag_is_macro = 1 << 3, 824 Flag_is_Con = 1 << 4, 825 Flag_is_cisc_alternate = 1 << 5, 826 Flag_is_dead_loop_safe = 1 << 6, 827 Flag_may_be_short_branch = 1 << 7, 828 Flag_avoid_back_to_back_before = 1 << 8, 829 Flag_avoid_back_to_back_after = 1 << 9, 830 Flag_has_call = 1 << 10, 831 Flag_has_swapped_edges = 1 << 11, 832 Flag_is_scheduled = 1 << 12, 833 Flag_is_expensive = 1 << 13, 834 Flag_is_predicated_vector = 1 << 14, 835 Flag_for_post_loop_opts_igvn = 1 << 15, 836 Flag_is_removed_by_peephole = 1 << 16, 837 Flag_is_predicated_using_blend = 1 << 17, 838 _last_flag = Flag_is_predicated_using_blend 839 }; 840 841 class PD; 842 843 private: 844 juint _class_id; 845 juint _flags; 846 847 #ifdef ASSERT 848 static juint max_flags(); 849 #endif 850 851 protected: 852 // These methods should be called from constructors only. 853 void init_class_id(juint c) { 854 _class_id = c; // cast out const 855 } 856 void init_flags(uint fl) { 857 assert(fl <= max_flags(), "invalid node flag"); 858 _flags |= fl; 859 } 860 void clear_flag(uint fl) { 861 assert(fl <= max_flags(), "invalid node flag"); 862 _flags &= ~fl; 863 } 864 865 public: 866 juint class_id() const { return _class_id; } 867 868 juint flags() const { return _flags; } 869 870 void add_flag(juint fl) { init_flags(fl); } 871 872 void remove_flag(juint fl) { clear_flag(fl); } 873 874 // Return a dense integer opcode number 875 virtual int Opcode() const; 876 877 // Virtual inherited Node size 878 virtual uint size_of() const; 879 880 // Other interesting Node properties 881 #define DEFINE_CLASS_QUERY(type) \ 882 bool is_##type() const { \ 883 return ((_class_id & ClassMask_##type) == Class_##type); \ 884 } \ 885 type##Node *as_##type() const { \ 886 assert(is_##type(), "invalid node class: %s", Name()); \ 887 return (type##Node*)this; \ 888 } \ 889 type##Node* isa_##type() const { \ 890 return (is_##type()) ? as_##type() : nullptr; \ 891 } 892 893 DEFINE_CLASS_QUERY(AbstractLock) 894 DEFINE_CLASS_QUERY(Add) 895 DEFINE_CLASS_QUERY(AddP) 896 DEFINE_CLASS_QUERY(Allocate) 897 DEFINE_CLASS_QUERY(AllocateArray) 898 DEFINE_CLASS_QUERY(ArrayCopy) 899 DEFINE_CLASS_QUERY(BaseCountedLoop) 900 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 901 DEFINE_CLASS_QUERY(Blackhole) 902 DEFINE_CLASS_QUERY(Bool) 903 DEFINE_CLASS_QUERY(BoxLock) 904 DEFINE_CLASS_QUERY(Call) 905 DEFINE_CLASS_QUERY(CallDynamicJava) 906 DEFINE_CLASS_QUERY(CallJava) 907 DEFINE_CLASS_QUERY(CallLeaf) 908 DEFINE_CLASS_QUERY(CallLeafNoFP) 909 DEFINE_CLASS_QUERY(CallRuntime) 910 DEFINE_CLASS_QUERY(CallStaticJava) 911 DEFINE_CLASS_QUERY(Catch) 912 DEFINE_CLASS_QUERY(CatchProj) 913 DEFINE_CLASS_QUERY(CheckCastPP) 914 DEFINE_CLASS_QUERY(CastII) 915 DEFINE_CLASS_QUERY(CastLL) 916 DEFINE_CLASS_QUERY(ConI) 917 DEFINE_CLASS_QUERY(CastPP) 918 DEFINE_CLASS_QUERY(ConstraintCast) 919 DEFINE_CLASS_QUERY(ClearArray) 920 DEFINE_CLASS_QUERY(CMove) 921 DEFINE_CLASS_QUERY(Cmp) 922 DEFINE_CLASS_QUERY(Convert) 923 DEFINE_CLASS_QUERY(CountedLoop) 924 DEFINE_CLASS_QUERY(CountedLoopEnd) 925 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 926 DEFINE_CLASS_QUERY(DecodeN) 927 DEFINE_CLASS_QUERY(DecodeNKlass) 928 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 929 DEFINE_CLASS_QUERY(EncodeP) 930 DEFINE_CLASS_QUERY(EncodePKlass) 931 DEFINE_CLASS_QUERY(FastLock) 932 DEFINE_CLASS_QUERY(FastUnlock) 933 DEFINE_CLASS_QUERY(FlatArrayCheck) 934 DEFINE_CLASS_QUERY(Halt) 935 DEFINE_CLASS_QUERY(If) 936 DEFINE_CLASS_QUERY(RangeCheck) 937 DEFINE_CLASS_QUERY(IfProj) 938 DEFINE_CLASS_QUERY(IfFalse) 939 DEFINE_CLASS_QUERY(IfTrue) 940 DEFINE_CLASS_QUERY(Initialize) 941 DEFINE_CLASS_QUERY(Jump) 942 DEFINE_CLASS_QUERY(JumpProj) 943 DEFINE_CLASS_QUERY(LongCountedLoop) 944 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 945 DEFINE_CLASS_QUERY(Load) 946 DEFINE_CLASS_QUERY(LoadStore) 947 DEFINE_CLASS_QUERY(LoadStoreConditional) 948 DEFINE_CLASS_QUERY(Lock) 949 DEFINE_CLASS_QUERY(Loop) 950 DEFINE_CLASS_QUERY(LShift) 951 DEFINE_CLASS_QUERY(Mach) 952 DEFINE_CLASS_QUERY(MachBranch) 953 DEFINE_CLASS_QUERY(MachCall) 954 DEFINE_CLASS_QUERY(MachCallDynamicJava) 955 DEFINE_CLASS_QUERY(MachCallJava) 956 DEFINE_CLASS_QUERY(MachCallLeaf) 957 DEFINE_CLASS_QUERY(MachCallRuntime) 958 DEFINE_CLASS_QUERY(MachCallStaticJava) 959 DEFINE_CLASS_QUERY(MachConstantBase) 960 DEFINE_CLASS_QUERY(MachConstant) 961 DEFINE_CLASS_QUERY(MachGoto) 962 DEFINE_CLASS_QUERY(MachIf) 963 DEFINE_CLASS_QUERY(MachJump) 964 DEFINE_CLASS_QUERY(MachNullCheck) 965 DEFINE_CLASS_QUERY(MachProj) 966 DEFINE_CLASS_QUERY(MachProlog) 967 DEFINE_CLASS_QUERY(MachReturn) 968 DEFINE_CLASS_QUERY(MachSafePoint) 969 DEFINE_CLASS_QUERY(MachSpillCopy) 970 DEFINE_CLASS_QUERY(MachTemp) 971 DEFINE_CLASS_QUERY(MachMemBar) 972 DEFINE_CLASS_QUERY(MachMerge) 973 DEFINE_CLASS_QUERY(MachVEP) 974 DEFINE_CLASS_QUERY(Mem) 975 DEFINE_CLASS_QUERY(MemBar) 976 DEFINE_CLASS_QUERY(MemBarStoreStore) 977 DEFINE_CLASS_QUERY(MergeMem) 978 DEFINE_CLASS_QUERY(Move) 979 DEFINE_CLASS_QUERY(Mul) 980 DEFINE_CLASS_QUERY(Multi) 981 DEFINE_CLASS_QUERY(MultiBranch) 982 DEFINE_CLASS_QUERY(Neg) 983 DEFINE_CLASS_QUERY(NegV) 984 DEFINE_CLASS_QUERY(NeverBranch) 985 DEFINE_CLASS_QUERY(Opaque1) 986 DEFINE_CLASS_QUERY(Opaque4) 987 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 988 DEFINE_CLASS_QUERY(OpaqueLoopInit) 989 DEFINE_CLASS_QUERY(OpaqueLoopStride) 990 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 991 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 992 DEFINE_CLASS_QUERY(Parm) 993 DEFINE_CLASS_QUERY(ParsePredicate) 994 DEFINE_CLASS_QUERY(PCTable) 995 DEFINE_CLASS_QUERY(Phi) 996 DEFINE_CLASS_QUERY(Proj) 997 DEFINE_CLASS_QUERY(Reduction) 998 DEFINE_CLASS_QUERY(Region) 999 DEFINE_CLASS_QUERY(Root) 1000 DEFINE_CLASS_QUERY(SafePoint) 1001 DEFINE_CLASS_QUERY(SafePointScalarObject) 1002 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1003 DEFINE_CLASS_QUERY(Start) 1004 DEFINE_CLASS_QUERY(Store) 1005 DEFINE_CLASS_QUERY(Sub) 1006 DEFINE_CLASS_QUERY(SubTypeCheck) 1007 DEFINE_CLASS_QUERY(Type) 1008 DEFINE_CLASS_QUERY(InlineType) 1009 DEFINE_CLASS_QUERY(Vector) 1010 DEFINE_CLASS_QUERY(VectorMaskCmp) 1011 DEFINE_CLASS_QUERY(VectorUnbox) 1012 DEFINE_CLASS_QUERY(VectorReinterpret) 1013 DEFINE_CLASS_QUERY(CompressV) 1014 DEFINE_CLASS_QUERY(ExpandV) 1015 DEFINE_CLASS_QUERY(CompressM) 1016 DEFINE_CLASS_QUERY(LoadVector) 1017 DEFINE_CLASS_QUERY(LoadVectorGather) 1018 DEFINE_CLASS_QUERY(LoadVectorMasked) 1019 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1020 DEFINE_CLASS_QUERY(StoreVector) 1021 DEFINE_CLASS_QUERY(StoreVectorScatter) 1022 DEFINE_CLASS_QUERY(StoreVectorMasked) 1023 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1024 DEFINE_CLASS_QUERY(ShiftV) 1025 DEFINE_CLASS_QUERY(Unlock) 1026 1027 #undef DEFINE_CLASS_QUERY 1028 1029 // duplicate of is_MachSpillCopy() 1030 bool is_SpillCopy () const { 1031 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1032 } 1033 1034 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1035 // The data node which is safe to leave in dead loop during IGVN optimization. 1036 bool is_dead_loop_safe() const; 1037 1038 // is_Copy() returns copied edge index (0 or 1) 1039 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1040 1041 virtual bool is_CFG() const { return false; } 1042 1043 // If this node is control-dependent on a test, can it be 1044 // rerouted to a dominating equivalent test? This is usually 1045 // true of non-CFG nodes, but can be false for operations which 1046 // depend for their correct sequencing on more than one test. 1047 // (In that case, hoisting to a dominating test may silently 1048 // skip some other important test.) 1049 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1050 1051 // When building basic blocks, I need to have a notion of block beginning 1052 // Nodes, next block selector Nodes (block enders), and next block 1053 // projections. These calls need to work on their machine equivalents. The 1054 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1055 bool is_block_start() const { 1056 if ( is_Region() ) 1057 return this == (const Node*)in(0); 1058 else 1059 return is_Start(); 1060 } 1061 1062 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1063 // Goto and Return. This call also returns the block ending Node. 1064 virtual const Node *is_block_proj() const; 1065 1066 // The node is a "macro" node which needs to be expanded before matching 1067 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1068 // The node is expensive: the best control is set during loop opts 1069 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1070 // The node's original edge position is swapped. 1071 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1072 1073 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1074 1075 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1076 1077 // Used in lcm to mark nodes that have scheduled 1078 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1079 1080 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1081 1082 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1083 static bool may_be_loop_entry(Node* n) { 1084 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1085 } 1086 1087 //----------------- Optimization 1088 1089 // Get the worst-case Type output for this Node. 1090 virtual const class Type *bottom_type() const; 1091 1092 // If we find a better type for a node, try to record it permanently. 1093 // Return true if this node actually changed. 1094 // Be sure to do the hash_delete game in the "rehash" variant. 1095 void raise_bottom_type(const Type* new_type); 1096 1097 // Get the address type with which this node uses and/or defs memory, 1098 // or null if none. The address type is conservatively wide. 1099 // Returns non-null for calls, membars, loads, stores, etc. 1100 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1101 virtual const class TypePtr *adr_type() const { return nullptr; } 1102 1103 // Return an existing node which computes the same function as this node. 1104 // The optimistic combined algorithm requires this to return a Node which 1105 // is a small number of steps away (e.g., one of my inputs). 1106 virtual Node* Identity(PhaseGVN* phase); 1107 1108 // Return the set of values this Node can take on at runtime. 1109 virtual const Type* Value(PhaseGVN* phase) const; 1110 1111 // Return a node which is more "ideal" than the current node. 1112 // The invariants on this call are subtle. If in doubt, read the 1113 // treatise in node.cpp above the default implementation AND TEST WITH 1114 // -XX:VerifyIterativeGVN=1 1115 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1116 1117 // Some nodes have specific Ideal subgraph transformations only if they are 1118 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1119 // for the transformations to happen. 1120 bool has_special_unique_user() const; 1121 1122 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1123 Node* find_exact_control(Node* ctrl); 1124 1125 // Results of the dominance analysis. 1126 enum class DomResult { 1127 NotDominate, // 'this' node does not dominate 'sub'. 1128 Dominate, // 'this' node dominates or is equal to 'sub'. 1129 EncounteredDeadCode // Result is undefined due to encountering dead code. 1130 }; 1131 // Check if 'this' node dominates or equal to 'sub'. 1132 DomResult dominates(Node* sub, Node_List &nlist); 1133 1134 protected: 1135 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1136 public: 1137 1138 // See if there is valid pipeline info 1139 static const Pipeline *pipeline_class(); 1140 virtual const Pipeline *pipeline() const; 1141 1142 // Compute the latency from the def to this instruction of the ith input node 1143 uint latency(uint i); 1144 1145 // Hash & compare functions, for pessimistic value numbering 1146 1147 // If the hash function returns the special sentinel value NO_HASH, 1148 // the node is guaranteed never to compare equal to any other node. 1149 // If we accidentally generate a hash with value NO_HASH the node 1150 // won't go into the table and we'll lose a little optimization. 1151 static const uint NO_HASH = 0; 1152 virtual uint hash() const; 1153 virtual bool cmp( const Node &n ) const; 1154 1155 // Operation appears to be iteratively computed (such as an induction variable) 1156 // It is possible for this operation to return false for a loop-varying 1157 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1158 bool is_iteratively_computed(); 1159 1160 // Determine if a node is a counted loop induction variable. 1161 // NOTE: The method is defined in "loopnode.cpp". 1162 bool is_cloop_ind_var() const; 1163 1164 // Return a node with opcode "opc" and same inputs as "this" if one can 1165 // be found; Otherwise return null; 1166 Node* find_similar(int opc); 1167 1168 // Return the unique control out if only one. Null if none or more than one. 1169 Node* unique_ctrl_out_or_null() const; 1170 // Return the unique control out. Asserts if none or more than one control out. 1171 Node* unique_ctrl_out() const; 1172 1173 // Set control or add control as precedence edge 1174 void ensure_control_or_add_prec(Node* c); 1175 1176 // Visit boundary uses of the node and apply a callback function for each. 1177 // Recursively traverse uses, stopping and applying the callback when 1178 // reaching a boundary node, defined by is_boundary. Note: the function 1179 // definition appears after the complete type definition of Node_List. 1180 template <typename Callback, typename Check> 1181 void visit_uses(Callback callback, Check is_boundary) const; 1182 1183 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1184 // (Load and range check CastII nodes). 1185 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1186 virtual Node* pin_array_access_node() const { 1187 return nullptr; 1188 } 1189 1190 //----------------- Code Generation 1191 1192 // Ideal register class for Matching. Zero means unmatched instruction 1193 // (these are cloned instead of converted to machine nodes). 1194 virtual uint ideal_reg() const; 1195 1196 static const uint NotAMachineReg; // must be > max. machine register 1197 1198 // Do we Match on this edge index or not? Generally false for Control 1199 // and true for everything else. Weird for calls & returns. 1200 virtual uint match_edge(uint idx) const; 1201 1202 // Register class output is returned in 1203 virtual const RegMask &out_RegMask() const; 1204 // Register class input is expected in 1205 virtual const RegMask &in_RegMask(uint) const; 1206 // Should we clone rather than spill this instruction? 1207 bool rematerialize() const; 1208 1209 // Return JVM State Object if this Node carries debug info, or null otherwise 1210 virtual JVMState* jvms() const; 1211 1212 // Print as assembly 1213 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1214 // Emit bytes using C2_MacroAssembler 1215 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1216 // Size of instruction in bytes 1217 virtual uint size(PhaseRegAlloc *ra_) const; 1218 1219 // Convenience function to extract an integer constant from a node. 1220 // If it is not an integer constant (either Con, CastII, or Mach), 1221 // return value_if_unknown. 1222 jint find_int_con(jint value_if_unknown) const { 1223 const TypeInt* t = find_int_type(); 1224 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1225 } 1226 // Return the constant, knowing it is an integer constant already 1227 jint get_int() const { 1228 const TypeInt* t = find_int_type(); 1229 guarantee(t != nullptr, "must be con"); 1230 return t->get_con(); 1231 } 1232 // Here's where the work is done. Can produce non-constant int types too. 1233 const TypeInt* find_int_type() const; 1234 const TypeInteger* find_integer_type(BasicType bt) const; 1235 1236 // Same thing for long (and intptr_t, via type.hpp): 1237 jlong get_long() const { 1238 const TypeLong* t = find_long_type(); 1239 guarantee(t != nullptr, "must be con"); 1240 return t->get_con(); 1241 } 1242 jlong find_long_con(jint value_if_unknown) const { 1243 const TypeLong* t = find_long_type(); 1244 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1245 } 1246 const TypeLong* find_long_type() const; 1247 1248 jlong get_integer_as_long(BasicType bt) const { 1249 const TypeInteger* t = find_integer_type(bt); 1250 guarantee(t != nullptr && t->is_con(), "must be con"); 1251 return t->get_con_as_long(bt); 1252 } 1253 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1254 const TypeInteger* t = find_integer_type(bt); 1255 if (t == nullptr || !t->is_con()) return value_if_unknown; 1256 return t->get_con_as_long(bt); 1257 } 1258 const TypePtr* get_ptr_type() const; 1259 1260 // These guys are called by code generated by ADLC: 1261 intptr_t get_ptr() const; 1262 intptr_t get_narrowcon() const; 1263 jdouble getd() const; 1264 jfloat getf() const; 1265 1266 // Nodes which are pinned into basic blocks 1267 virtual bool pinned() const { return false; } 1268 1269 // Nodes which use memory without consuming it, hence need antidependences 1270 // More specifically, needs_anti_dependence_check returns true iff the node 1271 // (a) does a load, and (b) does not perform a store (except perhaps to a 1272 // stack slot or some other unaliased location). 1273 bool needs_anti_dependence_check() const; 1274 1275 // Return which operand this instruction may cisc-spill. In other words, 1276 // return operand position that can convert from reg to memory access 1277 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1278 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1279 1280 // Whether this is a memory-writing machine node. 1281 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1282 1283 // Whether this is a memory phi node 1284 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1285 1286 //----------------- Printing, etc 1287 #ifndef PRODUCT 1288 public: 1289 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1290 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1291 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1292 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1293 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1294 class DumpConfig { 1295 public: 1296 // overridden to implement coloring of node idx 1297 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1298 virtual void post_dump(outputStream *st) = 0; 1299 }; 1300 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1301 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1302 void dump() const; // print node with newline 1303 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1304 void dump(int depth) const; // Print this node, recursively to depth d 1305 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1306 void dump_comp() const; // Print this node in compact representation. 1307 // Print this node in compact representation. 1308 void dump_comp(const char* suffix, outputStream *st = tty) const; 1309 private: 1310 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1311 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1312 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1313 public: 1314 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1315 // Print compact per-node info 1316 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1317 1318 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1319 1320 // This call defines a class-unique string used to identify class instances 1321 virtual const char *Name() const; 1322 1323 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1324 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1325 #endif 1326 #ifdef ASSERT 1327 void verify_construction(); 1328 bool verify_jvms(const JVMState* jvms) const; 1329 1330 Node* _debug_orig; // Original version of this, if any. 1331 Node* debug_orig() const { return _debug_orig; } 1332 void set_debug_orig(Node* orig); // _debug_orig = orig 1333 void dump_orig(outputStream *st, bool print_key = true) const; 1334 1335 uint64_t _debug_idx; // Unique value assigned to every node. 1336 uint64_t debug_idx() const { return _debug_idx; } 1337 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1338 1339 int _hash_lock; // Barrier to modifications of nodes in the hash table 1340 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1341 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1342 1343 static void init_NodeProperty(); 1344 1345 #if OPTO_DU_ITERATOR_ASSERT 1346 const Node* _last_del; // The last deleted node. 1347 uint _del_tick; // Bumped when a deletion happens.. 1348 #endif 1349 #endif 1350 }; 1351 1352 inline bool not_a_node(const Node* n) { 1353 if (n == nullptr) return true; 1354 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1355 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1356 return false; 1357 } 1358 1359 //----------------------------------------------------------------------------- 1360 // Iterators over DU info, and associated Node functions. 1361 1362 #if OPTO_DU_ITERATOR_ASSERT 1363 1364 // Common code for assertion checking on DU iterators. 1365 class DUIterator_Common { 1366 #ifdef ASSERT 1367 protected: 1368 bool _vdui; // cached value of VerifyDUIterators 1369 const Node* _node; // the node containing the _out array 1370 uint _outcnt; // cached node->_outcnt 1371 uint _del_tick; // cached node->_del_tick 1372 Node* _last; // last value produced by the iterator 1373 1374 void sample(const Node* node); // used by c'tor to set up for verifies 1375 void verify(const Node* node, bool at_end_ok = false); 1376 void verify_resync(); 1377 void reset(const DUIterator_Common& that); 1378 1379 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1380 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1381 #else 1382 #define I_VDUI_ONLY(i,x) { } 1383 #endif //ASSERT 1384 }; 1385 1386 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1387 1388 // Default DU iterator. Allows appends onto the out array. 1389 // Allows deletion from the out array only at the current point. 1390 // Usage: 1391 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1392 // Node* y = x->out(i); 1393 // ... 1394 // } 1395 // Compiles in product mode to a unsigned integer index, which indexes 1396 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1397 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1398 // before continuing the loop. You must delete only the last-produced 1399 // edge. You must delete only a single copy of the last-produced edge, 1400 // or else you must delete all copies at once (the first time the edge 1401 // is produced by the iterator). 1402 class DUIterator : public DUIterator_Common { 1403 friend class Node; 1404 1405 // This is the index which provides the product-mode behavior. 1406 // Whatever the product-mode version of the system does to the 1407 // DUI index is done to this index. All other fields in 1408 // this class are used only for assertion checking. 1409 uint _idx; 1410 1411 #ifdef ASSERT 1412 uint _refresh_tick; // Records the refresh activity. 1413 1414 void sample(const Node* node); // Initialize _refresh_tick etc. 1415 void verify(const Node* node, bool at_end_ok = false); 1416 void verify_increment(); // Verify an increment operation. 1417 void verify_resync(); // Verify that we can back up over a deletion. 1418 void verify_finish(); // Verify that the loop terminated properly. 1419 void refresh(); // Resample verification info. 1420 void reset(const DUIterator& that); // Resample after assignment. 1421 #endif 1422 1423 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1424 { _idx = 0; debug_only(sample(node)); } 1425 1426 public: 1427 // initialize to garbage; clear _vdui to disable asserts 1428 DUIterator() 1429 { /*initialize to garbage*/ debug_only(_vdui = false); } 1430 1431 DUIterator(const DUIterator& that) 1432 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1433 1434 void operator++(int dummy_to_specify_postfix_op) 1435 { _idx++; VDUI_ONLY(verify_increment()); } 1436 1437 void operator--() 1438 { VDUI_ONLY(verify_resync()); --_idx; } 1439 1440 ~DUIterator() 1441 { VDUI_ONLY(verify_finish()); } 1442 1443 void operator=(const DUIterator& that) 1444 { _idx = that._idx; debug_only(reset(that)); } 1445 }; 1446 1447 DUIterator Node::outs() const 1448 { return DUIterator(this, 0); } 1449 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1450 { I_VDUI_ONLY(i, i.refresh()); return i; } 1451 bool Node::has_out(DUIterator& i) const 1452 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1453 Node* Node::out(DUIterator& i) const 1454 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1455 1456 1457 // Faster DU iterator. Disallows insertions into the out array. 1458 // Allows deletion from the out array only at the current point. 1459 // Usage: 1460 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1461 // Node* y = x->fast_out(i); 1462 // ... 1463 // } 1464 // Compiles in product mode to raw Node** pointer arithmetic, with 1465 // no reloading of pointers from the original node x. If you delete, 1466 // you must perform "--i; --imax" just before continuing the loop. 1467 // If you delete multiple copies of the same edge, you must decrement 1468 // imax, but not i, multiple times: "--i, imax -= num_edges". 1469 class DUIterator_Fast : public DUIterator_Common { 1470 friend class Node; 1471 friend class DUIterator_Last; 1472 1473 // This is the pointer which provides the product-mode behavior. 1474 // Whatever the product-mode version of the system does to the 1475 // DUI pointer is done to this pointer. All other fields in 1476 // this class are used only for assertion checking. 1477 Node** _outp; 1478 1479 #ifdef ASSERT 1480 void verify(const Node* node, bool at_end_ok = false); 1481 void verify_limit(); 1482 void verify_resync(); 1483 void verify_relimit(uint n); 1484 void reset(const DUIterator_Fast& that); 1485 #endif 1486 1487 // Note: offset must be signed, since -1 is sometimes passed 1488 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1489 { _outp = node->_out + offset; debug_only(sample(node)); } 1490 1491 public: 1492 // initialize to garbage; clear _vdui to disable asserts 1493 DUIterator_Fast() 1494 { /*initialize to garbage*/ debug_only(_vdui = false); } 1495 1496 DUIterator_Fast(const DUIterator_Fast& that) 1497 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1498 1499 void operator++(int dummy_to_specify_postfix_op) 1500 { _outp++; VDUI_ONLY(verify(_node, true)); } 1501 1502 void operator--() 1503 { VDUI_ONLY(verify_resync()); --_outp; } 1504 1505 void operator-=(uint n) // applied to the limit only 1506 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1507 1508 bool operator<(DUIterator_Fast& limit) { 1509 I_VDUI_ONLY(*this, this->verify(_node, true)); 1510 I_VDUI_ONLY(limit, limit.verify_limit()); 1511 return _outp < limit._outp; 1512 } 1513 1514 void operator=(const DUIterator_Fast& that) 1515 { _outp = that._outp; debug_only(reset(that)); } 1516 }; 1517 1518 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1519 // Assign a limit pointer to the reference argument: 1520 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1521 // Return the base pointer: 1522 return DUIterator_Fast(this, 0); 1523 } 1524 Node* Node::fast_out(DUIterator_Fast& i) const { 1525 I_VDUI_ONLY(i, i.verify(this)); 1526 return debug_only(i._last=) *i._outp; 1527 } 1528 1529 1530 // Faster DU iterator. Requires each successive edge to be removed. 1531 // Does not allow insertion of any edges. 1532 // Usage: 1533 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1534 // Node* y = x->last_out(i); 1535 // ... 1536 // } 1537 // Compiles in product mode to raw Node** pointer arithmetic, with 1538 // no reloading of pointers from the original node x. 1539 class DUIterator_Last : private DUIterator_Fast { 1540 friend class Node; 1541 1542 #ifdef ASSERT 1543 void verify(const Node* node, bool at_end_ok = false); 1544 void verify_limit(); 1545 void verify_step(uint num_edges); 1546 #endif 1547 1548 // Note: offset must be signed, since -1 is sometimes passed 1549 DUIterator_Last(const Node* node, ptrdiff_t offset) 1550 : DUIterator_Fast(node, offset) { } 1551 1552 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1553 void operator<(int) {} // do not use 1554 1555 public: 1556 DUIterator_Last() { } 1557 // initialize to garbage 1558 1559 DUIterator_Last(const DUIterator_Last& that) = default; 1560 1561 void operator--() 1562 { _outp--; VDUI_ONLY(verify_step(1)); } 1563 1564 void operator-=(uint n) 1565 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1566 1567 bool operator>=(DUIterator_Last& limit) { 1568 I_VDUI_ONLY(*this, this->verify(_node, true)); 1569 I_VDUI_ONLY(limit, limit.verify_limit()); 1570 return _outp >= limit._outp; 1571 } 1572 1573 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1574 }; 1575 1576 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1577 // Assign a limit pointer to the reference argument: 1578 imin = DUIterator_Last(this, 0); 1579 // Return the initial pointer: 1580 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1581 } 1582 Node* Node::last_out(DUIterator_Last& i) const { 1583 I_VDUI_ONLY(i, i.verify(this)); 1584 return debug_only(i._last=) *i._outp; 1585 } 1586 1587 #endif //OPTO_DU_ITERATOR_ASSERT 1588 1589 #undef I_VDUI_ONLY 1590 #undef VDUI_ONLY 1591 1592 // An Iterator that truly follows the iterator pattern. Doesn't 1593 // support deletion but could be made to. 1594 // 1595 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1596 // Node* m = i.get(); 1597 // 1598 class SimpleDUIterator : public StackObj { 1599 private: 1600 Node* node; 1601 DUIterator_Fast imax; 1602 DUIterator_Fast i; 1603 public: 1604 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1605 bool has_next() { return i < imax; } 1606 void next() { i++; } 1607 Node* get() { return node->fast_out(i); } 1608 }; 1609 1610 1611 //----------------------------------------------------------------------------- 1612 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1613 // Abstractly provides an infinite array of Node*'s, initialized to null. 1614 // Note that the constructor just zeros things, and since I use Arena 1615 // allocation I do not need a destructor to reclaim storage. 1616 class Node_Array : public AnyObj { 1617 friend class VMStructs; 1618 protected: 1619 Arena* _a; // Arena to allocate in 1620 uint _max; 1621 Node** _nodes; 1622 ReallocMark _nesting; // Safety checks for arena reallocation 1623 1624 void grow( uint i ); // Grow array node to fit 1625 public: 1626 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1627 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1628 clear(); 1629 } 1630 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1631 1632 NONCOPYABLE(Node_Array); 1633 Node_Array& operator=(Node_Array&&) = delete; 1634 // Allow move constructor for && (eg. capture return of function) 1635 Node_Array(Node_Array&&) = default; 1636 1637 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1638 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1639 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1640 Node** adr() { return _nodes; } 1641 // Extend the mapping: index i maps to Node *n. 1642 void map( uint i, Node *n ) { grow(i); _nodes[i] = n; } 1643 void insert( uint i, Node *n ); 1644 void remove( uint i ); // Remove, preserving order 1645 // Clear all entries in _nodes to null but keep storage 1646 void clear() { 1647 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1648 } 1649 1650 uint max() const { return _max; } 1651 void dump() const; 1652 }; 1653 1654 class Node_List : public Node_Array { 1655 friend class VMStructs; 1656 uint _cnt; 1657 public: 1658 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1659 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1660 1661 NONCOPYABLE(Node_List); 1662 Node_List& operator=(Node_List&&) = delete; 1663 // Allow move constructor for && (eg. capture return of function) 1664 Node_List(Node_List&&) = default; 1665 1666 bool contains(const Node* n) const { 1667 for (uint e = 0; e < size(); e++) { 1668 if (at(e) == n) return true; 1669 } 1670 return false; 1671 } 1672 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1673 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1674 void push( Node *b ) { map(_cnt++,b); } 1675 void yank( Node *n ); // Find and remove 1676 Node *pop() { return _nodes[--_cnt]; } 1677 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1678 void copy(const Node_List& from) { 1679 if (from._max > _max) { 1680 grow(from._max); 1681 } 1682 _cnt = from._cnt; 1683 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1684 } 1685 1686 uint size() const { return _cnt; } 1687 void dump() const; 1688 void dump_simple() const; 1689 }; 1690 1691 // Definition must appear after complete type definition of Node_List 1692 template <typename Callback, typename Check> 1693 void Node::visit_uses(Callback callback, Check is_boundary) const { 1694 ResourceMark rm; 1695 VectorSet visited; 1696 Node_List worklist; 1697 1698 // The initial worklist consists of the direct uses 1699 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1700 Node* out = fast_out(k); 1701 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1702 } 1703 1704 while (worklist.size() > 0) { 1705 Node* use = worklist.pop(); 1706 // Apply callback on boundary nodes 1707 if (is_boundary(use)) { 1708 callback(use); 1709 } else { 1710 // Not a boundary node, continue search 1711 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1712 Node* out = use->fast_out(k); 1713 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1714 } 1715 } 1716 } 1717 } 1718 1719 1720 //------------------------------Unique_Node_List------------------------------- 1721 class Unique_Node_List : public Node_List { 1722 friend class VMStructs; 1723 VectorSet _in_worklist; 1724 uint _clock_index; // Index in list where to pop from next 1725 public: 1726 Unique_Node_List() : Node_List(), _clock_index(0) {} 1727 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1728 1729 NONCOPYABLE(Unique_Node_List); 1730 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1731 // Allow move constructor for && (eg. capture return of function) 1732 Unique_Node_List(Unique_Node_List&&) = default; 1733 1734 void remove( Node *n ); 1735 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1736 VectorSet& member_set(){ return _in_worklist; } 1737 1738 void push(Node* b) { 1739 if( !_in_worklist.test_set(b->_idx) ) 1740 Node_List::push(b); 1741 } 1742 void push_non_cfg_inputs_of(const Node* node) { 1743 for (uint i = 1; i < node->req(); i++) { 1744 Node* input = node->in(i); 1745 if (input != nullptr && !input->is_CFG()) { 1746 push(input); 1747 } 1748 } 1749 } 1750 1751 void push_outputs_of(const Node* node) { 1752 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1753 Node* output = node->fast_out(i); 1754 push(output); 1755 } 1756 } 1757 1758 Node *pop() { 1759 if( _clock_index >= size() ) _clock_index = 0; 1760 Node *b = at(_clock_index); 1761 map( _clock_index, Node_List::pop()); 1762 if (size() != 0) _clock_index++; // Always start from 0 1763 _in_worklist.remove(b->_idx); 1764 return b; 1765 } 1766 Node *remove(uint i) { 1767 Node *b = Node_List::at(i); 1768 _in_worklist.remove(b->_idx); 1769 map(i,Node_List::pop()); 1770 return b; 1771 } 1772 void yank(Node *n) { 1773 _in_worklist.remove(n->_idx); 1774 Node_List::yank(n); 1775 } 1776 void clear() { 1777 _in_worklist.clear(); // Discards storage but grows automatically 1778 Node_List::clear(); 1779 _clock_index = 0; 1780 } 1781 void ensure_empty() { 1782 assert(size() == 0, "must be empty"); 1783 clear(); // just in case 1784 } 1785 1786 // Used after parsing to remove useless nodes before Iterative GVN 1787 void remove_useless_nodes(VectorSet& useful); 1788 1789 // If the idx of the Nodes change, we must recompute the VectorSet 1790 void recompute_idx_set() { 1791 _in_worklist.clear(); 1792 for (uint i = 0; i < size(); i++) { 1793 Node* n = at(i); 1794 _in_worklist.set(n->_idx); 1795 } 1796 } 1797 1798 #ifdef ASSERT 1799 bool is_subset_of(Unique_Node_List& other) { 1800 for (uint i = 0; i < size(); i++) { 1801 Node* n = at(i); 1802 if (!other.member(n)) { 1803 return false; 1804 } 1805 } 1806 return true; 1807 } 1808 #endif 1809 1810 bool contains(const Node* n) const { 1811 fatal("use faster member() instead"); 1812 return false; 1813 } 1814 1815 #ifndef PRODUCT 1816 void print_set() const { _in_worklist.print(); } 1817 #endif 1818 }; 1819 1820 // Unique_Mixed_Node_List 1821 // unique: nodes are added only once 1822 // mixed: allow new and old nodes 1823 class Unique_Mixed_Node_List : public ResourceObj { 1824 public: 1825 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1826 1827 void add(Node* node) { 1828 if (not_a_node(node)) { 1829 return; // Gracefully handle null, -1, 0xabababab, etc. 1830 } 1831 if (_visited_set[node] == nullptr) { 1832 _visited_set.Insert(node, node); 1833 _worklist.push(node); 1834 } 1835 } 1836 1837 Node* operator[] (uint i) const { 1838 return _worklist[i]; 1839 } 1840 1841 size_t size() { 1842 return _worklist.size(); 1843 } 1844 1845 private: 1846 Dict _visited_set; 1847 Node_List _worklist; 1848 }; 1849 1850 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1851 inline void Compile::record_for_igvn(Node* n) { 1852 _igvn_worklist->push(n); 1853 } 1854 1855 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1856 inline void Compile::remove_for_igvn(Node* n) { 1857 _igvn_worklist->remove(n); 1858 } 1859 1860 //------------------------------Node_Stack------------------------------------- 1861 class Node_Stack { 1862 friend class VMStructs; 1863 protected: 1864 struct INode { 1865 Node *node; // Processed node 1866 uint indx; // Index of next node's child 1867 }; 1868 INode *_inode_top; // tos, stack grows up 1869 INode *_inode_max; // End of _inodes == _inodes + _max 1870 INode *_inodes; // Array storage for the stack 1871 Arena *_a; // Arena to allocate in 1872 ReallocMark _nesting; // Safety checks for arena reallocation 1873 void grow(); 1874 public: 1875 Node_Stack(int size) { 1876 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1877 _a = Thread::current()->resource_area(); 1878 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1879 _inode_max = _inodes + max; 1880 _inode_top = _inodes - 1; // stack is empty 1881 } 1882 1883 Node_Stack(Arena *a, int size) : _a(a) { 1884 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1885 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1886 _inode_max = _inodes + max; 1887 _inode_top = _inodes - 1; // stack is empty 1888 } 1889 1890 void pop() { 1891 assert(_inode_top >= _inodes, "node stack underflow"); 1892 --_inode_top; 1893 } 1894 void push(Node *n, uint i) { 1895 ++_inode_top; 1896 grow(); 1897 INode *top = _inode_top; // optimization 1898 top->node = n; 1899 top->indx = i; 1900 } 1901 Node *node() const { 1902 return _inode_top->node; 1903 } 1904 Node* node_at(uint i) const { 1905 assert(_inodes + i <= _inode_top, "in range"); 1906 return _inodes[i].node; 1907 } 1908 uint index() const { 1909 return _inode_top->indx; 1910 } 1911 uint index_at(uint i) const { 1912 assert(_inodes + i <= _inode_top, "in range"); 1913 return _inodes[i].indx; 1914 } 1915 void set_node(Node *n) { 1916 _inode_top->node = n; 1917 } 1918 void set_index(uint i) { 1919 _inode_top->indx = i; 1920 } 1921 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1922 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1923 bool is_nonempty() const { return (_inode_top >= _inodes); } 1924 bool is_empty() const { return (_inode_top < _inodes); } 1925 void clear() { _inode_top = _inodes - 1; } // retain storage 1926 1927 // Node_Stack is used to map nodes. 1928 Node* find(uint idx) const; 1929 1930 NONCOPYABLE(Node_Stack); 1931 }; 1932 1933 1934 //-----------------------------Node_Notes-------------------------------------- 1935 // Debugging or profiling annotations loosely and sparsely associated 1936 // with some nodes. See Compile::node_notes_at for the accessor. 1937 class Node_Notes { 1938 friend class VMStructs; 1939 JVMState* _jvms; 1940 1941 public: 1942 Node_Notes(JVMState* jvms = nullptr) { 1943 _jvms = jvms; 1944 } 1945 1946 JVMState* jvms() { return _jvms; } 1947 void set_jvms(JVMState* x) { _jvms = x; } 1948 1949 // True if there is nothing here. 1950 bool is_clear() { 1951 return (_jvms == nullptr); 1952 } 1953 1954 // Make there be nothing here. 1955 void clear() { 1956 _jvms = nullptr; 1957 } 1958 1959 // Make a new, clean node notes. 1960 static Node_Notes* make(Compile* C) { 1961 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1962 nn->clear(); 1963 return nn; 1964 } 1965 1966 Node_Notes* clone(Compile* C) { 1967 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1968 (*nn) = (*this); 1969 return nn; 1970 } 1971 1972 // Absorb any information from source. 1973 bool update_from(Node_Notes* source) { 1974 bool changed = false; 1975 if (source != nullptr) { 1976 if (source->jvms() != nullptr) { 1977 set_jvms(source->jvms()); 1978 changed = true; 1979 } 1980 } 1981 return changed; 1982 } 1983 }; 1984 1985 // Inlined accessors for Compile::node_nodes that require the preceding class: 1986 inline Node_Notes* 1987 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1988 int idx, bool can_grow) { 1989 assert(idx >= 0, "oob"); 1990 int block_idx = (idx >> _log2_node_notes_block_size); 1991 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 1992 if (grow_by >= 0) { 1993 if (!can_grow) return nullptr; 1994 grow_node_notes(arr, grow_by + 1); 1995 } 1996 if (arr == nullptr) return nullptr; 1997 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1998 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1999 } 2000 2001 inline bool 2002 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2003 if (value == nullptr || value->is_clear()) 2004 return false; // nothing to write => write nothing 2005 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2006 assert(loc != nullptr, ""); 2007 return loc->update_from(value); 2008 } 2009 2010 2011 //------------------------------TypeNode--------------------------------------- 2012 // Node with a Type constant. 2013 class TypeNode : public Node { 2014 protected: 2015 virtual uint hash() const; // Check the type 2016 virtual bool cmp( const Node &n ) const; 2017 virtual uint size_of() const; // Size is bigger 2018 const Type* const _type; 2019 public: 2020 void set_type(const Type* t) { 2021 assert(t != nullptr, "sanity"); 2022 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2023 *(const Type**)&_type = t; // cast away const-ness 2024 // If this node is in the hash table, make sure it doesn't need a rehash. 2025 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2026 } 2027 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2028 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2029 init_class_id(Class_Type); 2030 } 2031 virtual const Type* Value(PhaseGVN* phase) const; 2032 virtual const Type *bottom_type() const; 2033 virtual uint ideal_reg() const; 2034 #ifndef PRODUCT 2035 virtual void dump_spec(outputStream *st) const; 2036 virtual void dump_compact_spec(outputStream *st) const; 2037 #endif 2038 }; 2039 2040 #include "opto/opcodes.hpp" 2041 2042 #define Op_IL(op) \ 2043 inline int Op_ ## op(BasicType bt) { \ 2044 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2045 if (bt == T_INT) { \ 2046 return Op_## op ## I; \ 2047 } \ 2048 return Op_## op ## L; \ 2049 } 2050 2051 Op_IL(Add) 2052 Op_IL(Sub) 2053 Op_IL(Mul) 2054 Op_IL(URShift) 2055 Op_IL(LShift) 2056 Op_IL(Xor) 2057 Op_IL(Cmp) 2058 2059 inline int Op_ConIL(BasicType bt) { 2060 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2061 if (bt == T_INT) { 2062 return Op_ConI; 2063 } 2064 return Op_ConL; 2065 } 2066 2067 inline int Op_Cmp_unsigned(BasicType bt) { 2068 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2069 if (bt == T_INT) { 2070 return Op_CmpU; 2071 } 2072 return Op_CmpUL; 2073 } 2074 2075 inline int Op_Cast(BasicType bt) { 2076 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2077 if (bt == T_INT) { 2078 return Op_CastII; 2079 } 2080 return Op_CastLL; 2081 } 2082 2083 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2084 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2085 if (bt == T_INT) { 2086 if (is_unsigned) { 2087 return Op_UDivI; 2088 } else { 2089 return Op_DivI; 2090 } 2091 } 2092 if (is_unsigned) { 2093 return Op_UDivL; 2094 } else { 2095 return Op_DivL; 2096 } 2097 } 2098 2099 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2100 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2101 if (bt == T_INT) { 2102 if (is_unsigned) { 2103 return Op_UDivModI; 2104 } else { 2105 return Op_DivModI; 2106 } 2107 } 2108 if (is_unsigned) { 2109 return Op_UDivModL; 2110 } else { 2111 return Op_DivModL; 2112 } 2113 } 2114 2115 #endif // SHARE_OPTO_NODE_HPP