1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_NODE_HPP 26 #define SHARE_OPTO_NODE_HPP 27 28 #include "libadt/vectset.hpp" 29 #include "opto/compile.hpp" 30 #include "opto/type.hpp" 31 #include "utilities/copy.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 class AbstractLockNode; 39 class AddNode; 40 class AddPNode; 41 class AliasInfo; 42 class AllocateArrayNode; 43 class AllocateNode; 44 class ArrayCopyNode; 45 class BaseCountedLoopNode; 46 class BaseCountedLoopEndNode; 47 class BlackholeNode; 48 class Block; 49 class BoolNode; 50 class BoxLockNode; 51 class CMoveNode; 52 class CallDynamicJavaNode; 53 class CallJavaNode; 54 class CallLeafNode; 55 class CallLeafNoFPNode; 56 class CallNode; 57 class CallRuntimeNode; 58 class CallStaticJavaNode; 59 class CastFFNode; 60 class CastDDNode; 61 class CastVVNode; 62 class CastIINode; 63 class CastLLNode; 64 class CatchNode; 65 class CatchProjNode; 66 class CheckCastPPNode; 67 class ClearArrayNode; 68 class CmpNode; 69 class CodeBuffer; 70 class ConstraintCastNode; 71 class ConNode; 72 class ConINode; 73 class CompareAndSwapNode; 74 class CompareAndExchangeNode; 75 class CountedLoopNode; 76 class CountedLoopEndNode; 77 class DecodeNarrowPtrNode; 78 class DecodeNNode; 79 class DecodeNKlassNode; 80 class EncodeNarrowPtrNode; 81 class EncodePNode; 82 class EncodePKlassNode; 83 class FastLockNode; 84 class FastUnlockNode; 85 class FlatArrayCheckNode; 86 class HaltNode; 87 class IfNode; 88 class IfProjNode; 89 class IfFalseNode; 90 class IfTrueNode; 91 class InitializeNode; 92 class JVMState; 93 class JumpNode; 94 class JumpProjNode; 95 class LoadNode; 96 class LoadStoreNode; 97 class LoadStoreConditionalNode; 98 class LockNode; 99 class LongCountedLoopNode; 100 class LongCountedLoopEndNode; 101 class LoopNode; 102 class LShiftNode; 103 class MachBranchNode; 104 class MachCallDynamicJavaNode; 105 class MachCallJavaNode; 106 class MachCallLeafNode; 107 class MachCallNode; 108 class MachCallRuntimeNode; 109 class MachCallStaticJavaNode; 110 class MachConstantBaseNode; 111 class MachConstantNode; 112 class MachGotoNode; 113 class MachIfNode; 114 class MachJumpNode; 115 class MachNode; 116 class MachNullCheckNode; 117 class MachProjNode; 118 class MachPrologNode; 119 class MachReturnNode; 120 class MachSafePointNode; 121 class MachSpillCopyNode; 122 class MachTempNode; 123 class MachMergeNode; 124 class MachMemBarNode; 125 class MachVEPNode; 126 class Matcher; 127 class MemBarNode; 128 class MemBarStoreStoreNode; 129 class MemNode; 130 class MergeMemNode; 131 class MoveNode; 132 class MulNode; 133 class MultiNode; 134 class MultiBranchNode; 135 class NeverBranchNode; 136 class Opaque1Node; 137 class OuterStripMinedLoopNode; 138 class OuterStripMinedLoopEndNode; 139 class Node; 140 class Node_Array; 141 class Node_List; 142 class Node_Stack; 143 class OopMap; 144 class ParmNode; 145 class ParsePredicateNode; 146 class PCTableNode; 147 class PhaseCCP; 148 class PhaseGVN; 149 class PhaseIterGVN; 150 class PhaseRegAlloc; 151 class PhaseTransform; 152 class PhaseValues; 153 class PhiNode; 154 class Pipeline; 155 class PopulateIndexNode; 156 class ProjNode; 157 class RangeCheckNode; 158 class ReductionNode; 159 class RegMask; 160 class RegionNode; 161 class RootNode; 162 class SafePointNode; 163 class SafePointScalarObjectNode; 164 class SafePointScalarMergeNode; 165 class StartNode; 166 class State; 167 class StoreNode; 168 class SubNode; 169 class SubTypeCheckNode; 170 class Type; 171 class TypeNode; 172 class UnlockNode; 173 class InlineTypeNode; 174 class UnorderedReductionNode; 175 class VectorNode; 176 class LoadVectorNode; 177 class LoadVectorMaskedNode; 178 class StoreVectorMaskedNode; 179 class LoadVectorGatherNode; 180 class StoreVectorNode; 181 class StoreVectorScatterNode; 182 class VectorMaskCmpNode; 183 class VectorUnboxNode; 184 class VectorSet; 185 class VectorReinterpretNode; 186 class ShiftVNode; 187 class ExpandVNode; 188 class CompressVNode; 189 class CompressMNode; 190 191 192 #ifndef OPTO_DU_ITERATOR_ASSERT 193 #ifdef ASSERT 194 #define OPTO_DU_ITERATOR_ASSERT 1 195 #else 196 #define OPTO_DU_ITERATOR_ASSERT 0 197 #endif 198 #endif //OPTO_DU_ITERATOR_ASSERT 199 200 #if OPTO_DU_ITERATOR_ASSERT 201 class DUIterator; 202 class DUIterator_Fast; 203 class DUIterator_Last; 204 #else 205 typedef uint DUIterator; 206 typedef Node** DUIterator_Fast; 207 typedef Node** DUIterator_Last; 208 #endif 209 210 // Node Sentinel 211 #define NodeSentinel (Node*)-1 212 213 // Unknown count frequency 214 #define COUNT_UNKNOWN (-1.0f) 215 216 //------------------------------Node------------------------------------------- 217 // Nodes define actions in the program. They create values, which have types. 218 // They are both vertices in a directed graph and program primitives. Nodes 219 // are labeled; the label is the "opcode", the primitive function in the lambda 220 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 221 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 222 // the Node's function. These inputs also define a Type equation for the Node. 223 // Solving these Type equations amounts to doing dataflow analysis. 224 // Control and data are uniformly represented in the graph. Finally, Nodes 225 // have a unique dense integer index which is used to index into side arrays 226 // whenever I have phase-specific information. 227 228 class Node { 229 friend class VMStructs; 230 231 // Lots of restrictions on cloning Nodes 232 NONCOPYABLE(Node); 233 234 public: 235 friend class Compile; 236 #if OPTO_DU_ITERATOR_ASSERT 237 friend class DUIterator_Common; 238 friend class DUIterator; 239 friend class DUIterator_Fast; 240 friend class DUIterator_Last; 241 #endif 242 243 // Because Nodes come and go, I define an Arena of Node structures to pull 244 // from. This should allow fast access to node creation & deletion. This 245 // field is a local cache of a value defined in some "program fragment" for 246 // which these Nodes are just a part of. 247 248 inline void* operator new(size_t x) throw() { 249 Compile* C = Compile::current(); 250 Node* n = (Node*)C->node_arena()->AmallocWords(x); 251 return (void*)n; 252 } 253 254 // Delete is a NOP 255 void operator delete( void *ptr ) {} 256 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 257 void destruct(PhaseValues* phase); 258 259 // Create a new Node. Required is the number is of inputs required for 260 // semantic correctness. 261 Node( uint required ); 262 263 // Create a new Node with given input edges. 264 // This version requires use of the "edge-count" new. 265 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 266 Node( Node *n0 ); 267 Node( Node *n0, Node *n1 ); 268 Node( Node *n0, Node *n1, Node *n2 ); 269 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 270 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 271 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 272 Node( Node *n0, Node *n1, Node *n2, Node *n3, 273 Node *n4, Node *n5, Node *n6 ); 274 275 // Clone an inherited Node given only the base Node type. 276 Node* clone() const; 277 278 // Clone a Node, immediately supplying one or two new edges. 279 // The first and second arguments, if non-null, replace in(1) and in(2), 280 // respectively. 281 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 282 Node* nn = clone(); 283 if (in1 != nullptr) nn->set_req(1, in1); 284 if (in2 != nullptr) nn->set_req(2, in2); 285 return nn; 286 } 287 288 private: 289 // Shared setup for the above constructors. 290 // Handles all interactions with Compile::current. 291 // Puts initial values in all Node fields except _idx. 292 // Returns the initial value for _idx, which cannot 293 // be initialized by assignment. 294 inline int Init(int req); 295 296 //----------------- input edge handling 297 protected: 298 friend class PhaseCFG; // Access to address of _in array elements 299 Node **_in; // Array of use-def references to Nodes 300 Node **_out; // Array of def-use references to Nodes 301 302 // Input edges are split into two categories. Required edges are required 303 // for semantic correctness; order is important and nulls are allowed. 304 // Precedence edges are used to help determine execution order and are 305 // added, e.g., for scheduling purposes. They are unordered and not 306 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 307 // are required, from _cnt to _max-1 are precedence edges. 308 node_idx_t _cnt; // Total number of required Node inputs. 309 310 node_idx_t _max; // Actual length of input array. 311 312 // Output edges are an unordered list of def-use edges which exactly 313 // correspond to required input edges which point from other nodes 314 // to this one. Thus the count of the output edges is the number of 315 // users of this node. 316 node_idx_t _outcnt; // Total number of Node outputs. 317 318 node_idx_t _outmax; // Actual length of output array. 319 320 // Grow the actual input array to the next larger power-of-2 bigger than len. 321 void grow( uint len ); 322 // Grow the output array to the next larger power-of-2 bigger than len. 323 void out_grow( uint len ); 324 325 public: 326 // Each Node is assigned a unique small/dense number. This number is used 327 // to index into auxiliary arrays of data and bit vectors. 328 // The field _idx is declared constant to defend against inadvertent assignments, 329 // since it is used by clients as a naked field. However, the field's value can be 330 // changed using the set_idx() method. 331 // 332 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 333 // Therefore, it updates the value of the _idx field. The parse-time _idx is 334 // preserved in _parse_idx. 335 const node_idx_t _idx; 336 DEBUG_ONLY(const node_idx_t _parse_idx;) 337 // IGV node identifier. Two nodes, possibly in different compilation phases, 338 // have the same IGV identifier if (and only if) they are the very same node 339 // (same memory address) or one is "derived" from the other (by e.g. 340 // renumbering or matching). This identifier makes it possible to follow the 341 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 342 NOT_PRODUCT(node_idx_t _igv_idx;) 343 344 // Get the (read-only) number of input edges 345 uint req() const { return _cnt; } 346 uint len() const { return _max; } 347 // Get the (read-only) number of output edges 348 uint outcnt() const { return _outcnt; } 349 350 #if OPTO_DU_ITERATOR_ASSERT 351 // Iterate over the out-edges of this node. Deletions are illegal. 352 inline DUIterator outs() const; 353 // Use this when the out array might have changed to suppress asserts. 354 inline DUIterator& refresh_out_pos(DUIterator& i) const; 355 // Does the node have an out at this position? (Used for iteration.) 356 inline bool has_out(DUIterator& i) const; 357 inline Node* out(DUIterator& i) const; 358 // Iterate over the out-edges of this node. All changes are illegal. 359 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 360 inline Node* fast_out(DUIterator_Fast& i) const; 361 // Iterate over the out-edges of this node, deleting one at a time. 362 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 363 inline Node* last_out(DUIterator_Last& i) const; 364 // The inline bodies of all these methods are after the iterator definitions. 365 #else 366 // Iterate over the out-edges of this node. Deletions are illegal. 367 // This iteration uses integral indexes, to decouple from array reallocations. 368 DUIterator outs() const { return 0; } 369 // Use this when the out array might have changed to suppress asserts. 370 DUIterator refresh_out_pos(DUIterator i) const { return i; } 371 372 // Reference to the i'th output Node. Error if out of bounds. 373 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 374 // Does the node have an out at this position? (Used for iteration.) 375 bool has_out(DUIterator i) const { return i < _outcnt; } 376 377 // Iterate over the out-edges of this node. All changes are illegal. 378 // This iteration uses a pointer internal to the out array. 379 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 380 Node** out = _out; 381 // Assign a limit pointer to the reference argument: 382 max = out + (ptrdiff_t)_outcnt; 383 // Return the base pointer: 384 return out; 385 } 386 Node* fast_out(DUIterator_Fast i) const { return *i; } 387 // Iterate over the out-edges of this node, deleting one at a time. 388 // This iteration uses a pointer internal to the out array. 389 DUIterator_Last last_outs(DUIterator_Last& min) const { 390 Node** out = _out; 391 // Assign a limit pointer to the reference argument: 392 min = out; 393 // Return the pointer to the start of the iteration: 394 return out + (ptrdiff_t)_outcnt - 1; 395 } 396 Node* last_out(DUIterator_Last i) const { return *i; } 397 #endif 398 399 // Reference to the i'th input Node. Error if out of bounds. 400 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 401 // Reference to the i'th input Node. null if out of bounds. 402 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 403 // Reference to the i'th output Node. Error if out of bounds. 404 // Use this accessor sparingly. We are going trying to use iterators instead. 405 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 406 // Return the unique out edge. 407 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 408 // Delete out edge at position 'i' by moving last out edge to position 'i' 409 void raw_del_out(uint i) { 410 assert(i < _outcnt,"oob"); 411 assert(_outcnt > 0,"oob"); 412 #if OPTO_DU_ITERATOR_ASSERT 413 // Record that a change happened here. 414 debug_only(_last_del = _out[i]; ++_del_tick); 415 #endif 416 _out[i] = _out[--_outcnt]; 417 // Smash the old edge so it can't be used accidentally. 418 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 419 } 420 421 #ifdef ASSERT 422 bool is_dead() const; 423 static bool is_not_dead(const Node* n); 424 bool is_reachable_from_root() const; 425 #endif 426 // Check whether node has become unreachable 427 bool is_unreachable(PhaseIterGVN &igvn) const; 428 429 // Set a required input edge, also updates corresponding output edge 430 void add_req( Node *n ); // Append a NEW required input 431 void add_req( Node *n0, Node *n1 ) { 432 add_req(n0); add_req(n1); } 433 void add_req( Node *n0, Node *n1, Node *n2 ) { 434 add_req(n0); add_req(n1); add_req(n2); } 435 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 436 void del_req( uint idx ); // Delete required edge & compact 437 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 438 void ins_req( uint i, Node *n ); // Insert a NEW required input 439 void set_req( uint i, Node *n ) { 440 assert( is_not_dead(n), "can not use dead node"); 441 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 442 assert( !VerifyHashTableKeys || _hash_lock == 0, 443 "remove node from hash table before modifying it"); 444 Node** p = &_in[i]; // cache this._in, across the del_out call 445 if (*p != nullptr) (*p)->del_out((Node *)this); 446 (*p) = n; 447 if (n != nullptr) n->add_out((Node *)this); 448 Compile::current()->record_modified_node(this); 449 } 450 // Light version of set_req() to init inputs after node creation. 451 void init_req( uint i, Node *n ) { 452 assert( i == 0 && this == n || 453 is_not_dead(n), "can not use dead node"); 454 assert( i < _cnt, "oob"); 455 assert( !VerifyHashTableKeys || _hash_lock == 0, 456 "remove node from hash table before modifying it"); 457 assert( _in[i] == nullptr, "sanity"); 458 _in[i] = n; 459 if (n != nullptr) n->add_out((Node *)this); 460 Compile::current()->record_modified_node(this); 461 } 462 // Find first occurrence of n among my edges: 463 int find_edge(Node* n); 464 int find_prec_edge(Node* n) { 465 for (uint i = req(); i < len(); i++) { 466 if (_in[i] == n) return i; 467 if (_in[i] == nullptr) { 468 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 469 break; 470 } 471 } 472 return -1; 473 } 474 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 475 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 476 // null out all inputs to eliminate incoming Def-Use edges. 477 void disconnect_inputs(Compile* C); 478 479 // Quickly, return true if and only if I am Compile::current()->top(). 480 bool is_top() const { 481 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 482 return (_out == nullptr); 483 } 484 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 485 void setup_is_top(); 486 487 // Strip away casting. (It is depth-limited.) 488 Node* uncast(bool keep_deps = false) const; 489 // Return whether two Nodes are equivalent, after stripping casting. 490 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 491 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 492 } 493 494 // Find out of current node that matches opcode. 495 Node* find_out_with(int opcode); 496 // Return true if the current node has an out that matches opcode. 497 bool has_out_with(int opcode); 498 // Return true if the current node has an out that matches any of the opcodes. 499 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 500 501 private: 502 static Node* uncast_helper(const Node* n, bool keep_deps); 503 504 // Add an output edge to the end of the list 505 void add_out( Node *n ) { 506 if (is_top()) return; 507 if( _outcnt == _outmax ) out_grow(_outcnt); 508 _out[_outcnt++] = n; 509 } 510 // Delete an output edge 511 void del_out( Node *n ) { 512 if (is_top()) return; 513 Node** outp = &_out[_outcnt]; 514 // Find and remove n 515 do { 516 assert(outp > _out, "Missing Def-Use edge"); 517 } while (*--outp != n); 518 *outp = _out[--_outcnt]; 519 // Smash the old edge so it can't be used accidentally. 520 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 521 // Record that a change happened here. 522 #if OPTO_DU_ITERATOR_ASSERT 523 debug_only(_last_del = n; ++_del_tick); 524 #endif 525 } 526 // Close gap after removing edge. 527 void close_prec_gap_at(uint gap) { 528 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 529 uint i = gap; 530 Node *last = nullptr; 531 for (; i < _max-1; ++i) { 532 Node *next = _in[i+1]; 533 if (next == nullptr) break; 534 last = next; 535 } 536 _in[gap] = last; // Move last slot to empty one. 537 _in[i] = nullptr; // null out last slot. 538 } 539 540 public: 541 // Globally replace this node by a given new node, updating all uses. 542 void replace_by(Node* new_node); 543 // Globally replace this node by a given new node, updating all uses 544 // and cutting input edges of old node. 545 void subsume_by(Node* new_node, Compile* c) { 546 replace_by(new_node); 547 disconnect_inputs(c); 548 } 549 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 550 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 551 // Find the one non-null required input. RegionNode only 552 Node *nonnull_req() const; 553 // Add or remove precedence edges 554 void add_prec( Node *n ); 555 void rm_prec( uint i ); 556 557 // Note: prec(i) will not necessarily point to n if edge already exists. 558 void set_prec( uint i, Node *n ) { 559 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 560 assert(is_not_dead(n), "can not use dead node"); 561 assert(i >= _cnt, "not a precedence edge"); 562 // Avoid spec violation: duplicated prec edge. 563 if (_in[i] == n) return; 564 if (n == nullptr || find_prec_edge(n) != -1) { 565 rm_prec(i); 566 return; 567 } 568 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 569 _in[i] = n; 570 n->add_out((Node *)this); 571 Compile::current()->record_modified_node(this); 572 } 573 574 // Set this node's index, used by cisc_version to replace current node 575 void set_idx(uint new_idx) { 576 const node_idx_t* ref = &_idx; 577 *(node_idx_t*)ref = new_idx; 578 } 579 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 580 void swap_edges(uint i1, uint i2) { 581 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 582 // Def-Use info is unchanged 583 Node* n1 = in(i1); 584 Node* n2 = in(i2); 585 _in[i1] = n2; 586 _in[i2] = n1; 587 // If this node is in the hash table, make sure it doesn't need a rehash. 588 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 589 // Flip swapped edges flag. 590 if (has_swapped_edges()) { 591 remove_flag(Node::Flag_has_swapped_edges); 592 } else { 593 add_flag(Node::Flag_has_swapped_edges); 594 } 595 } 596 597 // Iterators over input Nodes for a Node X are written as: 598 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 599 // NOTE: Required edges can contain embedded null pointers. 600 601 //----------------- Other Node Properties 602 603 // Generate class IDs for (some) ideal nodes so that it is possible to determine 604 // the type of a node using a non-virtual method call (the method is_<Node>() below). 605 // 606 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 607 // the type of the node the ID represents; another subset of an ID's bits are reserved 608 // for the superclasses of the node represented by the ID. 609 // 610 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 611 // returns false. A.is_A() returns true. 612 // 613 // If two classes, A and B, have the same superclass, a different bit of A's class id 614 // is reserved for A's type than for B's type. That bit is specified by the third 615 // parameter in the macro DEFINE_CLASS_ID. 616 // 617 // By convention, classes with deeper hierarchy are declared first. Moreover, 618 // classes with the same hierarchy depth are sorted by usage frequency. 619 // 620 // The query method masks the bits to cut off bits of subclasses and then compares 621 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 622 // 623 // Class_MachCall=30, ClassMask_MachCall=31 624 // 12 8 4 0 625 // 0 0 0 0 0 0 0 0 1 1 1 1 0 626 // | | | | 627 // | | | Bit_Mach=2 628 // | | Bit_MachReturn=4 629 // | Bit_MachSafePoint=8 630 // Bit_MachCall=16 631 // 632 // Class_CountedLoop=56, ClassMask_CountedLoop=63 633 // 12 8 4 0 634 // 0 0 0 0 0 0 0 1 1 1 0 0 0 635 // | | | 636 // | | Bit_Region=8 637 // | Bit_Loop=16 638 // Bit_CountedLoop=32 639 640 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 641 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 642 Class_##cl = Class_##supcl + Bit_##cl , \ 643 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 644 645 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 646 // so that its values fit into 32 bits. 647 enum NodeClasses { 648 Bit_Node = 0x00000000, 649 Class_Node = 0x00000000, 650 ClassMask_Node = 0xFFFFFFFF, 651 652 DEFINE_CLASS_ID(Multi, Node, 0) 653 DEFINE_CLASS_ID(SafePoint, Multi, 0) 654 DEFINE_CLASS_ID(Call, SafePoint, 0) 655 DEFINE_CLASS_ID(CallJava, Call, 0) 656 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 657 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 658 DEFINE_CLASS_ID(CallRuntime, Call, 1) 659 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 660 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 661 DEFINE_CLASS_ID(Allocate, Call, 2) 662 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 663 DEFINE_CLASS_ID(AbstractLock, Call, 3) 664 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 665 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 666 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 667 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 668 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 669 DEFINE_CLASS_ID(Catch, PCTable, 0) 670 DEFINE_CLASS_ID(Jump, PCTable, 1) 671 DEFINE_CLASS_ID(If, MultiBranch, 1) 672 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 673 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 674 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 675 DEFINE_CLASS_ID(RangeCheck, If, 1) 676 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 677 DEFINE_CLASS_ID(ParsePredicate, If, 3) 678 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 679 DEFINE_CLASS_ID(Start, Multi, 2) 680 DEFINE_CLASS_ID(MemBar, Multi, 3) 681 DEFINE_CLASS_ID(Initialize, MemBar, 0) 682 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 683 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 684 685 DEFINE_CLASS_ID(Mach, Node, 1) 686 DEFINE_CLASS_ID(MachReturn, Mach, 0) 687 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 688 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 689 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 690 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 691 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 692 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 693 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 694 DEFINE_CLASS_ID(MachBranch, Mach, 1) 695 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 696 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 697 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 698 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 699 DEFINE_CLASS_ID(MachTemp, Mach, 3) 700 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 701 DEFINE_CLASS_ID(MachConstant, Mach, 5) 702 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 703 DEFINE_CLASS_ID(MachMerge, Mach, 6) 704 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 705 DEFINE_CLASS_ID(MachProlog, Mach, 8) 706 DEFINE_CLASS_ID(MachVEP, Mach, 9) 707 708 DEFINE_CLASS_ID(Type, Node, 2) 709 DEFINE_CLASS_ID(Phi, Type, 0) 710 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 711 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 712 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 713 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 714 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 715 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 716 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 717 DEFINE_CLASS_ID(CMove, Type, 3) 718 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 719 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 720 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 721 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 722 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 723 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 724 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 725 DEFINE_CLASS_ID(Vector, Type, 7) 726 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 727 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 728 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 729 DEFINE_CLASS_ID(ShiftV, Vector, 3) 730 DEFINE_CLASS_ID(CompressV, Vector, 4) 731 DEFINE_CLASS_ID(ExpandV, Vector, 5) 732 DEFINE_CLASS_ID(CompressM, Vector, 6) 733 DEFINE_CLASS_ID(InlineType, Type, 8) 734 DEFINE_CLASS_ID(Reduction, Vector, 9) 735 DEFINE_CLASS_ID(UnorderedReduction, Reduction, 0) 736 DEFINE_CLASS_ID(Con, Type, 10) 737 DEFINE_CLASS_ID(ConI, Con, 0) 738 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9) 739 740 741 DEFINE_CLASS_ID(Proj, Node, 3) 742 DEFINE_CLASS_ID(CatchProj, Proj, 0) 743 DEFINE_CLASS_ID(JumpProj, Proj, 1) 744 DEFINE_CLASS_ID(IfProj, Proj, 2) 745 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 746 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 747 DEFINE_CLASS_ID(Parm, Proj, 4) 748 DEFINE_CLASS_ID(MachProj, Proj, 5) 749 750 DEFINE_CLASS_ID(Mem, Node, 4) 751 DEFINE_CLASS_ID(Load, Mem, 0) 752 DEFINE_CLASS_ID(LoadVector, Load, 0) 753 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 754 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 755 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 756 DEFINE_CLASS_ID(Store, Mem, 1) 757 DEFINE_CLASS_ID(StoreVector, Store, 0) 758 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 759 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 760 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 761 DEFINE_CLASS_ID(LoadStore, Mem, 2) 762 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 763 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 764 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 765 766 DEFINE_CLASS_ID(Region, Node, 5) 767 DEFINE_CLASS_ID(Loop, Region, 0) 768 DEFINE_CLASS_ID(Root, Loop, 0) 769 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 770 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 771 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 772 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 773 774 DEFINE_CLASS_ID(Sub, Node, 6) 775 DEFINE_CLASS_ID(Cmp, Sub, 0) 776 DEFINE_CLASS_ID(FastLock, Cmp, 0) 777 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 778 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 779 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 780 781 DEFINE_CLASS_ID(MergeMem, Node, 7) 782 DEFINE_CLASS_ID(Bool, Node, 8) 783 DEFINE_CLASS_ID(AddP, Node, 9) 784 DEFINE_CLASS_ID(BoxLock, Node, 10) 785 DEFINE_CLASS_ID(Add, Node, 11) 786 DEFINE_CLASS_ID(Mul, Node, 12) 787 DEFINE_CLASS_ID(ClearArray, Node, 14) 788 DEFINE_CLASS_ID(Halt, Node, 15) 789 DEFINE_CLASS_ID(Opaque1, Node, 16) 790 DEFINE_CLASS_ID(Move, Node, 17) 791 DEFINE_CLASS_ID(LShift, Node, 18) 792 793 _max_classes = ClassMask_LShift 794 }; 795 #undef DEFINE_CLASS_ID 796 797 // Flags are sorted by usage frequency. 798 enum NodeFlags { 799 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 800 Flag_rematerialize = 1 << 1, 801 Flag_needs_anti_dependence_check = 1 << 2, 802 Flag_is_macro = 1 << 3, 803 Flag_is_Con = 1 << 4, 804 Flag_is_cisc_alternate = 1 << 5, 805 Flag_is_dead_loop_safe = 1 << 6, 806 Flag_may_be_short_branch = 1 << 7, 807 Flag_avoid_back_to_back_before = 1 << 8, 808 Flag_avoid_back_to_back_after = 1 << 9, 809 Flag_has_call = 1 << 10, 810 Flag_has_swapped_edges = 1 << 11, 811 Flag_is_scheduled = 1 << 12, 812 Flag_is_expensive = 1 << 13, 813 Flag_is_predicated_vector = 1 << 14, 814 Flag_for_post_loop_opts_igvn = 1 << 15, 815 Flag_is_removed_by_peephole = 1 << 16, 816 Flag_is_predicated_using_blend = 1 << 17, 817 _last_flag = Flag_is_predicated_using_blend 818 }; 819 820 class PD; 821 822 private: 823 juint _class_id; 824 juint _flags; 825 826 static juint max_flags(); 827 828 protected: 829 // These methods should be called from constructors only. 830 void init_class_id(juint c) { 831 _class_id = c; // cast out const 832 } 833 void init_flags(uint fl) { 834 assert(fl <= max_flags(), "invalid node flag"); 835 _flags |= fl; 836 } 837 void clear_flag(uint fl) { 838 assert(fl <= max_flags(), "invalid node flag"); 839 _flags &= ~fl; 840 } 841 842 public: 843 juint class_id() const { return _class_id; } 844 845 juint flags() const { return _flags; } 846 847 void add_flag(juint fl) { init_flags(fl); } 848 849 void remove_flag(juint fl) { clear_flag(fl); } 850 851 // Return a dense integer opcode number 852 virtual int Opcode() const; 853 854 // Virtual inherited Node size 855 virtual uint size_of() const; 856 857 // Other interesting Node properties 858 #define DEFINE_CLASS_QUERY(type) \ 859 bool is_##type() const { \ 860 return ((_class_id & ClassMask_##type) == Class_##type); \ 861 } \ 862 type##Node *as_##type() const { \ 863 assert(is_##type(), "invalid node class: %s", Name()); \ 864 return (type##Node*)this; \ 865 } \ 866 type##Node* isa_##type() const { \ 867 return (is_##type()) ? as_##type() : nullptr; \ 868 } 869 870 DEFINE_CLASS_QUERY(AbstractLock) 871 DEFINE_CLASS_QUERY(Add) 872 DEFINE_CLASS_QUERY(AddP) 873 DEFINE_CLASS_QUERY(Allocate) 874 DEFINE_CLASS_QUERY(AllocateArray) 875 DEFINE_CLASS_QUERY(ArrayCopy) 876 DEFINE_CLASS_QUERY(BaseCountedLoop) 877 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 878 DEFINE_CLASS_QUERY(Blackhole) 879 DEFINE_CLASS_QUERY(Bool) 880 DEFINE_CLASS_QUERY(BoxLock) 881 DEFINE_CLASS_QUERY(Call) 882 DEFINE_CLASS_QUERY(CallDynamicJava) 883 DEFINE_CLASS_QUERY(CallJava) 884 DEFINE_CLASS_QUERY(CallLeaf) 885 DEFINE_CLASS_QUERY(CallLeafNoFP) 886 DEFINE_CLASS_QUERY(CallRuntime) 887 DEFINE_CLASS_QUERY(CallStaticJava) 888 DEFINE_CLASS_QUERY(Catch) 889 DEFINE_CLASS_QUERY(CatchProj) 890 DEFINE_CLASS_QUERY(CheckCastPP) 891 DEFINE_CLASS_QUERY(CastII) 892 DEFINE_CLASS_QUERY(CastLL) 893 DEFINE_CLASS_QUERY(ConI) 894 DEFINE_CLASS_QUERY(ConstraintCast) 895 DEFINE_CLASS_QUERY(ClearArray) 896 DEFINE_CLASS_QUERY(CMove) 897 DEFINE_CLASS_QUERY(Cmp) 898 DEFINE_CLASS_QUERY(CountedLoop) 899 DEFINE_CLASS_QUERY(CountedLoopEnd) 900 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 901 DEFINE_CLASS_QUERY(DecodeN) 902 DEFINE_CLASS_QUERY(DecodeNKlass) 903 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 904 DEFINE_CLASS_QUERY(EncodeP) 905 DEFINE_CLASS_QUERY(EncodePKlass) 906 DEFINE_CLASS_QUERY(FastLock) 907 DEFINE_CLASS_QUERY(FastUnlock) 908 DEFINE_CLASS_QUERY(FlatArrayCheck) 909 DEFINE_CLASS_QUERY(Halt) 910 DEFINE_CLASS_QUERY(If) 911 DEFINE_CLASS_QUERY(RangeCheck) 912 DEFINE_CLASS_QUERY(IfProj) 913 DEFINE_CLASS_QUERY(IfFalse) 914 DEFINE_CLASS_QUERY(IfTrue) 915 DEFINE_CLASS_QUERY(Initialize) 916 DEFINE_CLASS_QUERY(Jump) 917 DEFINE_CLASS_QUERY(JumpProj) 918 DEFINE_CLASS_QUERY(LongCountedLoop) 919 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 920 DEFINE_CLASS_QUERY(Load) 921 DEFINE_CLASS_QUERY(LoadStore) 922 DEFINE_CLASS_QUERY(LoadStoreConditional) 923 DEFINE_CLASS_QUERY(Lock) 924 DEFINE_CLASS_QUERY(Loop) 925 DEFINE_CLASS_QUERY(LShift) 926 DEFINE_CLASS_QUERY(Mach) 927 DEFINE_CLASS_QUERY(MachBranch) 928 DEFINE_CLASS_QUERY(MachCall) 929 DEFINE_CLASS_QUERY(MachCallDynamicJava) 930 DEFINE_CLASS_QUERY(MachCallJava) 931 DEFINE_CLASS_QUERY(MachCallLeaf) 932 DEFINE_CLASS_QUERY(MachCallRuntime) 933 DEFINE_CLASS_QUERY(MachCallStaticJava) 934 DEFINE_CLASS_QUERY(MachConstantBase) 935 DEFINE_CLASS_QUERY(MachConstant) 936 DEFINE_CLASS_QUERY(MachGoto) 937 DEFINE_CLASS_QUERY(MachIf) 938 DEFINE_CLASS_QUERY(MachJump) 939 DEFINE_CLASS_QUERY(MachNullCheck) 940 DEFINE_CLASS_QUERY(MachProj) 941 DEFINE_CLASS_QUERY(MachProlog) 942 DEFINE_CLASS_QUERY(MachReturn) 943 DEFINE_CLASS_QUERY(MachSafePoint) 944 DEFINE_CLASS_QUERY(MachSpillCopy) 945 DEFINE_CLASS_QUERY(MachTemp) 946 DEFINE_CLASS_QUERY(MachMemBar) 947 DEFINE_CLASS_QUERY(MachMerge) 948 DEFINE_CLASS_QUERY(MachVEP) 949 DEFINE_CLASS_QUERY(Mem) 950 DEFINE_CLASS_QUERY(MemBar) 951 DEFINE_CLASS_QUERY(MemBarStoreStore) 952 DEFINE_CLASS_QUERY(MergeMem) 953 DEFINE_CLASS_QUERY(Move) 954 DEFINE_CLASS_QUERY(Mul) 955 DEFINE_CLASS_QUERY(Multi) 956 DEFINE_CLASS_QUERY(MultiBranch) 957 DEFINE_CLASS_QUERY(NeverBranch) 958 DEFINE_CLASS_QUERY(Opaque1) 959 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 960 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 961 DEFINE_CLASS_QUERY(Parm) 962 DEFINE_CLASS_QUERY(ParsePredicate) 963 DEFINE_CLASS_QUERY(PCTable) 964 DEFINE_CLASS_QUERY(Phi) 965 DEFINE_CLASS_QUERY(Proj) 966 DEFINE_CLASS_QUERY(Reduction) 967 DEFINE_CLASS_QUERY(Region) 968 DEFINE_CLASS_QUERY(Root) 969 DEFINE_CLASS_QUERY(SafePoint) 970 DEFINE_CLASS_QUERY(SafePointScalarObject) 971 DEFINE_CLASS_QUERY(SafePointScalarMerge) 972 DEFINE_CLASS_QUERY(Start) 973 DEFINE_CLASS_QUERY(Store) 974 DEFINE_CLASS_QUERY(Sub) 975 DEFINE_CLASS_QUERY(SubTypeCheck) 976 DEFINE_CLASS_QUERY(Type) 977 DEFINE_CLASS_QUERY(InlineType) 978 DEFINE_CLASS_QUERY(UnorderedReduction) 979 DEFINE_CLASS_QUERY(Vector) 980 DEFINE_CLASS_QUERY(VectorMaskCmp) 981 DEFINE_CLASS_QUERY(VectorUnbox) 982 DEFINE_CLASS_QUERY(VectorReinterpret) 983 DEFINE_CLASS_QUERY(CompressV) 984 DEFINE_CLASS_QUERY(ExpandV) 985 DEFINE_CLASS_QUERY(CompressM) 986 DEFINE_CLASS_QUERY(LoadVector) 987 DEFINE_CLASS_QUERY(LoadVectorGather) 988 DEFINE_CLASS_QUERY(StoreVector) 989 DEFINE_CLASS_QUERY(StoreVectorScatter) 990 DEFINE_CLASS_QUERY(ShiftV) 991 DEFINE_CLASS_QUERY(Unlock) 992 993 #undef DEFINE_CLASS_QUERY 994 995 // duplicate of is_MachSpillCopy() 996 bool is_SpillCopy () const { 997 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 998 } 999 1000 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1001 // The data node which is safe to leave in dead loop during IGVN optimization. 1002 bool is_dead_loop_safe() const; 1003 1004 // is_Copy() returns copied edge index (0 or 1) 1005 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1006 1007 virtual bool is_CFG() const { return false; } 1008 1009 // If this node is control-dependent on a test, can it be 1010 // rerouted to a dominating equivalent test? This is usually 1011 // true of non-CFG nodes, but can be false for operations which 1012 // depend for their correct sequencing on more than one test. 1013 // (In that case, hoisting to a dominating test may silently 1014 // skip some other important test.) 1015 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1016 1017 // When building basic blocks, I need to have a notion of block beginning 1018 // Nodes, next block selector Nodes (block enders), and next block 1019 // projections. These calls need to work on their machine equivalents. The 1020 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1021 bool is_block_start() const { 1022 if ( is_Region() ) 1023 return this == (const Node*)in(0); 1024 else 1025 return is_Start(); 1026 } 1027 1028 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1029 // Goto and Return. This call also returns the block ending Node. 1030 virtual const Node *is_block_proj() const; 1031 1032 // The node is a "macro" node which needs to be expanded before matching 1033 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1034 // The node is expensive: the best control is set during loop opts 1035 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1036 // The node's original edge position is swapped. 1037 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1038 1039 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1040 1041 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1042 1043 // Used in lcm to mark nodes that have scheduled 1044 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1045 1046 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1047 1048 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1049 static bool may_be_loop_entry(Node* n) { 1050 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1051 } 1052 1053 //----------------- Optimization 1054 1055 // Get the worst-case Type output for this Node. 1056 virtual const class Type *bottom_type() const; 1057 1058 // If we find a better type for a node, try to record it permanently. 1059 // Return true if this node actually changed. 1060 // Be sure to do the hash_delete game in the "rehash" variant. 1061 void raise_bottom_type(const Type* new_type); 1062 1063 // Get the address type with which this node uses and/or defs memory, 1064 // or null if none. The address type is conservatively wide. 1065 // Returns non-null for calls, membars, loads, stores, etc. 1066 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1067 virtual const class TypePtr *adr_type() const { return nullptr; } 1068 1069 // Return an existing node which computes the same function as this node. 1070 // The optimistic combined algorithm requires this to return a Node which 1071 // is a small number of steps away (e.g., one of my inputs). 1072 virtual Node* Identity(PhaseGVN* phase); 1073 1074 // Return the set of values this Node can take on at runtime. 1075 virtual const Type* Value(PhaseGVN* phase) const; 1076 1077 // Return a node which is more "ideal" than the current node. 1078 // The invariants on this call are subtle. If in doubt, read the 1079 // treatise in node.cpp above the default implementation AND TEST WITH 1080 // -XX:VerifyIterativeGVN=1 1081 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1082 1083 // Some nodes have specific Ideal subgraph transformations only if they are 1084 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1085 // for the transformations to happen. 1086 bool has_special_unique_user() const; 1087 1088 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1089 Node* find_exact_control(Node* ctrl); 1090 1091 // Check if 'this' node dominates or equal to 'sub'. 1092 bool dominates(Node* sub, Node_List &nlist); 1093 1094 protected: 1095 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1096 public: 1097 1098 // See if there is valid pipeline info 1099 static const Pipeline *pipeline_class(); 1100 virtual const Pipeline *pipeline() const; 1101 1102 // Compute the latency from the def to this instruction of the ith input node 1103 uint latency(uint i); 1104 1105 // Hash & compare functions, for pessimistic value numbering 1106 1107 // If the hash function returns the special sentinel value NO_HASH, 1108 // the node is guaranteed never to compare equal to any other node. 1109 // If we accidentally generate a hash with value NO_HASH the node 1110 // won't go into the table and we'll lose a little optimization. 1111 static const uint NO_HASH = 0; 1112 virtual uint hash() const; 1113 virtual bool cmp( const Node &n ) const; 1114 1115 // Operation appears to be iteratively computed (such as an induction variable) 1116 // It is possible for this operation to return false for a loop-varying 1117 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1118 bool is_iteratively_computed(); 1119 1120 // Determine if a node is a counted loop induction variable. 1121 // NOTE: The method is defined in "loopnode.cpp". 1122 bool is_cloop_ind_var() const; 1123 1124 // Return a node with opcode "opc" and same inputs as "this" if one can 1125 // be found; Otherwise return null; 1126 Node* find_similar(int opc); 1127 1128 // Return the unique control out if only one. Null if none or more than one. 1129 Node* unique_ctrl_out_or_null() const; 1130 // Return the unique control out. Asserts if none or more than one control out. 1131 Node* unique_ctrl_out() const; 1132 1133 // Set control or add control as precedence edge 1134 void ensure_control_or_add_prec(Node* c); 1135 1136 //----------------- Code Generation 1137 1138 // Ideal register class for Matching. Zero means unmatched instruction 1139 // (these are cloned instead of converted to machine nodes). 1140 virtual uint ideal_reg() const; 1141 1142 static const uint NotAMachineReg; // must be > max. machine register 1143 1144 // Do we Match on this edge index or not? Generally false for Control 1145 // and true for everything else. Weird for calls & returns. 1146 virtual uint match_edge(uint idx) const; 1147 1148 // Register class output is returned in 1149 virtual const RegMask &out_RegMask() const; 1150 // Register class input is expected in 1151 virtual const RegMask &in_RegMask(uint) const; 1152 // Should we clone rather than spill this instruction? 1153 bool rematerialize() const; 1154 1155 // Return JVM State Object if this Node carries debug info, or null otherwise 1156 virtual JVMState* jvms() const; 1157 1158 // Print as assembly 1159 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1160 // Emit bytes starting at parameter 'ptr' 1161 // Bump 'ptr' by the number of output bytes 1162 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; 1163 // Size of instruction in bytes 1164 virtual uint size(PhaseRegAlloc *ra_) const; 1165 1166 // Convenience function to extract an integer constant from a node. 1167 // If it is not an integer constant (either Con, CastII, or Mach), 1168 // return value_if_unknown. 1169 jint find_int_con(jint value_if_unknown) const { 1170 const TypeInt* t = find_int_type(); 1171 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1172 } 1173 // Return the constant, knowing it is an integer constant already 1174 jint get_int() const { 1175 const TypeInt* t = find_int_type(); 1176 guarantee(t != nullptr, "must be con"); 1177 return t->get_con(); 1178 } 1179 // Here's where the work is done. Can produce non-constant int types too. 1180 const TypeInt* find_int_type() const; 1181 const TypeInteger* find_integer_type(BasicType bt) const; 1182 1183 // Same thing for long (and intptr_t, via type.hpp): 1184 jlong get_long() const { 1185 const TypeLong* t = find_long_type(); 1186 guarantee(t != nullptr, "must be con"); 1187 return t->get_con(); 1188 } 1189 jlong find_long_con(jint value_if_unknown) const { 1190 const TypeLong* t = find_long_type(); 1191 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1192 } 1193 const TypeLong* find_long_type() const; 1194 1195 jlong get_integer_as_long(BasicType bt) const { 1196 const TypeInteger* t = find_integer_type(bt); 1197 guarantee(t != nullptr && t->is_con(), "must be con"); 1198 return t->get_con_as_long(bt); 1199 } 1200 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1201 const TypeInteger* t = find_integer_type(bt); 1202 if (t == nullptr || !t->is_con()) return value_if_unknown; 1203 return t->get_con_as_long(bt); 1204 } 1205 const TypePtr* get_ptr_type() const; 1206 1207 // These guys are called by code generated by ADLC: 1208 intptr_t get_ptr() const; 1209 intptr_t get_narrowcon() const; 1210 jdouble getd() const; 1211 jfloat getf() const; 1212 1213 // Nodes which are pinned into basic blocks 1214 virtual bool pinned() const { return false; } 1215 1216 // Nodes which use memory without consuming it, hence need antidependences 1217 // More specifically, needs_anti_dependence_check returns true iff the node 1218 // (a) does a load, and (b) does not perform a store (except perhaps to a 1219 // stack slot or some other unaliased location). 1220 bool needs_anti_dependence_check() const; 1221 1222 // Return which operand this instruction may cisc-spill. In other words, 1223 // return operand position that can convert from reg to memory access 1224 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1225 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1226 1227 // Whether this is a memory-writing machine node. 1228 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1229 1230 //----------------- Printing, etc 1231 #ifndef PRODUCT 1232 public: 1233 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1234 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1235 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1236 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1237 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1238 class DumpConfig { 1239 public: 1240 // overridden to implement coloring of node idx 1241 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1242 virtual void post_dump(outputStream *st) = 0; 1243 }; 1244 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1245 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1246 void dump() const; // print node with newline 1247 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1248 void dump(int depth) const; // Print this node, recursively to depth d 1249 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1250 void dump_comp() const; // Print this node in compact representation. 1251 // Print this node in compact representation. 1252 void dump_comp(const char* suffix, outputStream *st = tty) const; 1253 private: 1254 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1255 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1256 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1257 public: 1258 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1259 // Print compact per-node info 1260 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1261 1262 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1263 1264 // This call defines a class-unique string used to identify class instances 1265 virtual const char *Name() const; 1266 1267 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1268 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1269 #endif 1270 #ifdef ASSERT 1271 void verify_construction(); 1272 bool verify_jvms(const JVMState* jvms) const; 1273 1274 Node* _debug_orig; // Original version of this, if any. 1275 Node* debug_orig() const { return _debug_orig; } 1276 void set_debug_orig(Node* orig); // _debug_orig = orig 1277 void dump_orig(outputStream *st, bool print_key = true) const; 1278 1279 uint64_t _debug_idx; // Unique value assigned to every node. 1280 uint64_t debug_idx() const { return _debug_idx; } 1281 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1282 1283 int _hash_lock; // Barrier to modifications of nodes in the hash table 1284 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1285 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1286 1287 static void init_NodeProperty(); 1288 1289 #if OPTO_DU_ITERATOR_ASSERT 1290 const Node* _last_del; // The last deleted node. 1291 uint _del_tick; // Bumped when a deletion happens.. 1292 #endif 1293 #endif 1294 }; 1295 1296 inline bool not_a_node(const Node* n) { 1297 if (n == nullptr) return true; 1298 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1299 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1300 return false; 1301 } 1302 1303 //----------------------------------------------------------------------------- 1304 // Iterators over DU info, and associated Node functions. 1305 1306 #if OPTO_DU_ITERATOR_ASSERT 1307 1308 // Common code for assertion checking on DU iterators. 1309 class DUIterator_Common { 1310 #ifdef ASSERT 1311 protected: 1312 bool _vdui; // cached value of VerifyDUIterators 1313 const Node* _node; // the node containing the _out array 1314 uint _outcnt; // cached node->_outcnt 1315 uint _del_tick; // cached node->_del_tick 1316 Node* _last; // last value produced by the iterator 1317 1318 void sample(const Node* node); // used by c'tor to set up for verifies 1319 void verify(const Node* node, bool at_end_ok = false); 1320 void verify_resync(); 1321 void reset(const DUIterator_Common& that); 1322 1323 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1324 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1325 #else 1326 #define I_VDUI_ONLY(i,x) { } 1327 #endif //ASSERT 1328 }; 1329 1330 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1331 1332 // Default DU iterator. Allows appends onto the out array. 1333 // Allows deletion from the out array only at the current point. 1334 // Usage: 1335 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1336 // Node* y = x->out(i); 1337 // ... 1338 // } 1339 // Compiles in product mode to a unsigned integer index, which indexes 1340 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1341 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1342 // before continuing the loop. You must delete only the last-produced 1343 // edge. You must delete only a single copy of the last-produced edge, 1344 // or else you must delete all copies at once (the first time the edge 1345 // is produced by the iterator). 1346 class DUIterator : public DUIterator_Common { 1347 friend class Node; 1348 1349 // This is the index which provides the product-mode behavior. 1350 // Whatever the product-mode version of the system does to the 1351 // DUI index is done to this index. All other fields in 1352 // this class are used only for assertion checking. 1353 uint _idx; 1354 1355 #ifdef ASSERT 1356 uint _refresh_tick; // Records the refresh activity. 1357 1358 void sample(const Node* node); // Initialize _refresh_tick etc. 1359 void verify(const Node* node, bool at_end_ok = false); 1360 void verify_increment(); // Verify an increment operation. 1361 void verify_resync(); // Verify that we can back up over a deletion. 1362 void verify_finish(); // Verify that the loop terminated properly. 1363 void refresh(); // Resample verification info. 1364 void reset(const DUIterator& that); // Resample after assignment. 1365 #endif 1366 1367 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1368 { _idx = 0; debug_only(sample(node)); } 1369 1370 public: 1371 // initialize to garbage; clear _vdui to disable asserts 1372 DUIterator() 1373 { /*initialize to garbage*/ debug_only(_vdui = false); } 1374 1375 DUIterator(const DUIterator& that) 1376 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1377 1378 void operator++(int dummy_to_specify_postfix_op) 1379 { _idx++; VDUI_ONLY(verify_increment()); } 1380 1381 void operator--() 1382 { VDUI_ONLY(verify_resync()); --_idx; } 1383 1384 ~DUIterator() 1385 { VDUI_ONLY(verify_finish()); } 1386 1387 void operator=(const DUIterator& that) 1388 { _idx = that._idx; debug_only(reset(that)); } 1389 }; 1390 1391 DUIterator Node::outs() const 1392 { return DUIterator(this, 0); } 1393 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1394 { I_VDUI_ONLY(i, i.refresh()); return i; } 1395 bool Node::has_out(DUIterator& i) const 1396 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1397 Node* Node::out(DUIterator& i) const 1398 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1399 1400 1401 // Faster DU iterator. Disallows insertions into the out array. 1402 // Allows deletion from the out array only at the current point. 1403 // Usage: 1404 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1405 // Node* y = x->fast_out(i); 1406 // ... 1407 // } 1408 // Compiles in product mode to raw Node** pointer arithmetic, with 1409 // no reloading of pointers from the original node x. If you delete, 1410 // you must perform "--i; --imax" just before continuing the loop. 1411 // If you delete multiple copies of the same edge, you must decrement 1412 // imax, but not i, multiple times: "--i, imax -= num_edges". 1413 class DUIterator_Fast : public DUIterator_Common { 1414 friend class Node; 1415 friend class DUIterator_Last; 1416 1417 // This is the pointer which provides the product-mode behavior. 1418 // Whatever the product-mode version of the system does to the 1419 // DUI pointer is done to this pointer. All other fields in 1420 // this class are used only for assertion checking. 1421 Node** _outp; 1422 1423 #ifdef ASSERT 1424 void verify(const Node* node, bool at_end_ok = false); 1425 void verify_limit(); 1426 void verify_resync(); 1427 void verify_relimit(uint n); 1428 void reset(const DUIterator_Fast& that); 1429 #endif 1430 1431 // Note: offset must be signed, since -1 is sometimes passed 1432 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1433 { _outp = node->_out + offset; debug_only(sample(node)); } 1434 1435 public: 1436 // initialize to garbage; clear _vdui to disable asserts 1437 DUIterator_Fast() 1438 { /*initialize to garbage*/ debug_only(_vdui = false); } 1439 1440 DUIterator_Fast(const DUIterator_Fast& that) 1441 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1442 1443 void operator++(int dummy_to_specify_postfix_op) 1444 { _outp++; VDUI_ONLY(verify(_node, true)); } 1445 1446 void operator--() 1447 { VDUI_ONLY(verify_resync()); --_outp; } 1448 1449 void operator-=(uint n) // applied to the limit only 1450 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1451 1452 bool operator<(DUIterator_Fast& limit) { 1453 I_VDUI_ONLY(*this, this->verify(_node, true)); 1454 I_VDUI_ONLY(limit, limit.verify_limit()); 1455 return _outp < limit._outp; 1456 } 1457 1458 void operator=(const DUIterator_Fast& that) 1459 { _outp = that._outp; debug_only(reset(that)); } 1460 }; 1461 1462 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1463 // Assign a limit pointer to the reference argument: 1464 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1465 // Return the base pointer: 1466 return DUIterator_Fast(this, 0); 1467 } 1468 Node* Node::fast_out(DUIterator_Fast& i) const { 1469 I_VDUI_ONLY(i, i.verify(this)); 1470 return debug_only(i._last=) *i._outp; 1471 } 1472 1473 1474 // Faster DU iterator. Requires each successive edge to be removed. 1475 // Does not allow insertion of any edges. 1476 // Usage: 1477 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1478 // Node* y = x->last_out(i); 1479 // ... 1480 // } 1481 // Compiles in product mode to raw Node** pointer arithmetic, with 1482 // no reloading of pointers from the original node x. 1483 class DUIterator_Last : private DUIterator_Fast { 1484 friend class Node; 1485 1486 #ifdef ASSERT 1487 void verify(const Node* node, bool at_end_ok = false); 1488 void verify_limit(); 1489 void verify_step(uint num_edges); 1490 #endif 1491 1492 // Note: offset must be signed, since -1 is sometimes passed 1493 DUIterator_Last(const Node* node, ptrdiff_t offset) 1494 : DUIterator_Fast(node, offset) { } 1495 1496 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1497 void operator<(int) {} // do not use 1498 1499 public: 1500 DUIterator_Last() { } 1501 // initialize to garbage 1502 1503 DUIterator_Last(const DUIterator_Last& that) = default; 1504 1505 void operator--() 1506 { _outp--; VDUI_ONLY(verify_step(1)); } 1507 1508 void operator-=(uint n) 1509 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1510 1511 bool operator>=(DUIterator_Last& limit) { 1512 I_VDUI_ONLY(*this, this->verify(_node, true)); 1513 I_VDUI_ONLY(limit, limit.verify_limit()); 1514 return _outp >= limit._outp; 1515 } 1516 1517 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1518 }; 1519 1520 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1521 // Assign a limit pointer to the reference argument: 1522 imin = DUIterator_Last(this, 0); 1523 // Return the initial pointer: 1524 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1525 } 1526 Node* Node::last_out(DUIterator_Last& i) const { 1527 I_VDUI_ONLY(i, i.verify(this)); 1528 return debug_only(i._last=) *i._outp; 1529 } 1530 1531 #endif //OPTO_DU_ITERATOR_ASSERT 1532 1533 #undef I_VDUI_ONLY 1534 #undef VDUI_ONLY 1535 1536 // An Iterator that truly follows the iterator pattern. Doesn't 1537 // support deletion but could be made to. 1538 // 1539 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1540 // Node* m = i.get(); 1541 // 1542 class SimpleDUIterator : public StackObj { 1543 private: 1544 Node* node; 1545 DUIterator_Fast i; 1546 DUIterator_Fast imax; 1547 public: 1548 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1549 bool has_next() { return i < imax; } 1550 void next() { i++; } 1551 Node* get() { return node->fast_out(i); } 1552 }; 1553 1554 1555 //----------------------------------------------------------------------------- 1556 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1557 // Abstractly provides an infinite array of Node*'s, initialized to null. 1558 // Note that the constructor just zeros things, and since I use Arena 1559 // allocation I do not need a destructor to reclaim storage. 1560 class Node_Array : public AnyObj { 1561 friend class VMStructs; 1562 protected: 1563 Arena* _a; // Arena to allocate in 1564 uint _max; 1565 Node** _nodes; 1566 void grow( uint i ); // Grow array node to fit 1567 public: 1568 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1569 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1570 clear(); 1571 } 1572 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1573 1574 NONCOPYABLE(Node_Array); 1575 Node_Array& operator=(Node_Array&&) = delete; 1576 // Allow move constructor for && (eg. capture return of function) 1577 Node_Array(Node_Array&&) = default; 1578 1579 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1580 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1581 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1582 Node** adr() { return _nodes; } 1583 // Extend the mapping: index i maps to Node *n. 1584 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } 1585 void insert( uint i, Node *n ); 1586 void remove( uint i ); // Remove, preserving order 1587 // Clear all entries in _nodes to null but keep storage 1588 void clear() { 1589 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1590 } 1591 1592 uint max() const { return _max; } 1593 void dump() const; 1594 }; 1595 1596 class Node_List : public Node_Array { 1597 friend class VMStructs; 1598 uint _cnt; 1599 public: 1600 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1601 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1602 1603 NONCOPYABLE(Node_List); 1604 Node_List& operator=(Node_List&&) = delete; 1605 // Allow move constructor for && (eg. capture return of function) 1606 Node_List(Node_List&&) = default; 1607 1608 bool contains(const Node* n) const { 1609 for (uint e = 0; e < size(); e++) { 1610 if (at(e) == n) return true; 1611 } 1612 return false; 1613 } 1614 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1615 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1616 void push( Node *b ) { map(_cnt++,b); } 1617 void yank( Node *n ); // Find and remove 1618 Node *pop() { return _nodes[--_cnt]; } 1619 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1620 void copy(const Node_List& from) { 1621 if (from._max > _max) { 1622 grow(from._max); 1623 } 1624 _cnt = from._cnt; 1625 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1626 } 1627 1628 uint size() const { return _cnt; } 1629 void dump() const; 1630 void dump_simple() const; 1631 }; 1632 1633 //------------------------------Unique_Node_List------------------------------- 1634 class Unique_Node_List : public Node_List { 1635 friend class VMStructs; 1636 VectorSet _in_worklist; 1637 uint _clock_index; // Index in list where to pop from next 1638 public: 1639 Unique_Node_List() : Node_List(), _clock_index(0) {} 1640 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1641 1642 NONCOPYABLE(Unique_Node_List); 1643 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1644 // Allow move constructor for && (eg. capture return of function) 1645 Unique_Node_List(Unique_Node_List&&) = default; 1646 1647 void remove( Node *n ); 1648 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1649 VectorSet& member_set(){ return _in_worklist; } 1650 1651 void push(Node* b) { 1652 if( !_in_worklist.test_set(b->_idx) ) 1653 Node_List::push(b); 1654 } 1655 Node *pop() { 1656 if( _clock_index >= size() ) _clock_index = 0; 1657 Node *b = at(_clock_index); 1658 map( _clock_index, Node_List::pop()); 1659 if (size() != 0) _clock_index++; // Always start from 0 1660 _in_worklist.remove(b->_idx); 1661 return b; 1662 } 1663 Node *remove(uint i) { 1664 Node *b = Node_List::at(i); 1665 _in_worklist.remove(b->_idx); 1666 map(i,Node_List::pop()); 1667 return b; 1668 } 1669 void yank(Node *n) { 1670 _in_worklist.remove(n->_idx); 1671 Node_List::yank(n); 1672 } 1673 void clear() { 1674 _in_worklist.clear(); // Discards storage but grows automatically 1675 Node_List::clear(); 1676 _clock_index = 0; 1677 } 1678 void ensure_empty() { 1679 assert(size() == 0, "must be empty"); 1680 clear(); // just in case 1681 } 1682 1683 // Used after parsing to remove useless nodes before Iterative GVN 1684 void remove_useless_nodes(VectorSet& useful); 1685 1686 // If the idx of the Nodes change, we must recompute the VectorSet 1687 void recompute_idx_set() { 1688 _in_worklist.clear(); 1689 for (uint i = 0; i < size(); i++) { 1690 Node* n = at(i); 1691 _in_worklist.set(n->_idx); 1692 } 1693 } 1694 1695 #ifdef ASSERT 1696 bool is_subset_of(Unique_Node_List& other) { 1697 for (uint i = 0; i < size(); i++) { 1698 Node* n = at(i); 1699 if (!other.member(n)) { 1700 return false; 1701 } 1702 } 1703 return true; 1704 } 1705 #endif 1706 1707 bool contains(const Node* n) const { 1708 fatal("use faster member() instead"); 1709 return false; 1710 } 1711 1712 #ifndef PRODUCT 1713 void print_set() const { _in_worklist.print(); } 1714 #endif 1715 }; 1716 1717 // Unique_Mixed_Node_List 1718 // unique: nodes are added only once 1719 // mixed: allow new and old nodes 1720 class Unique_Mixed_Node_List : public ResourceObj { 1721 public: 1722 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1723 1724 void add(Node* node) { 1725 if (not_a_node(node)) { 1726 return; // Gracefully handle null, -1, 0xabababab, etc. 1727 } 1728 if (_visited_set[node] == nullptr) { 1729 _visited_set.Insert(node, node); 1730 _worklist.push(node); 1731 } 1732 } 1733 1734 Node* operator[] (uint i) const { 1735 return _worklist[i]; 1736 } 1737 1738 size_t size() { 1739 return _worklist.size(); 1740 } 1741 1742 private: 1743 Dict _visited_set; 1744 Node_List _worklist; 1745 }; 1746 1747 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1748 inline void Compile::record_for_igvn(Node* n) { 1749 _igvn_worklist->push(n); 1750 } 1751 1752 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1753 inline void Compile::remove_for_igvn(Node* n) { 1754 _igvn_worklist->remove(n); 1755 } 1756 1757 //------------------------------Node_Stack------------------------------------- 1758 class Node_Stack { 1759 friend class VMStructs; 1760 protected: 1761 struct INode { 1762 Node *node; // Processed node 1763 uint indx; // Index of next node's child 1764 }; 1765 INode *_inode_top; // tos, stack grows up 1766 INode *_inode_max; // End of _inodes == _inodes + _max 1767 INode *_inodes; // Array storage for the stack 1768 Arena *_a; // Arena to allocate in 1769 void grow(); 1770 public: 1771 Node_Stack(int size) { 1772 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1773 _a = Thread::current()->resource_area(); 1774 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1775 _inode_max = _inodes + max; 1776 _inode_top = _inodes - 1; // stack is empty 1777 } 1778 1779 Node_Stack(Arena *a, int size) : _a(a) { 1780 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1781 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1782 _inode_max = _inodes + max; 1783 _inode_top = _inodes - 1; // stack is empty 1784 } 1785 1786 void pop() { 1787 assert(_inode_top >= _inodes, "node stack underflow"); 1788 --_inode_top; 1789 } 1790 void push(Node *n, uint i) { 1791 ++_inode_top; 1792 if (_inode_top >= _inode_max) grow(); 1793 INode *top = _inode_top; // optimization 1794 top->node = n; 1795 top->indx = i; 1796 } 1797 Node *node() const { 1798 return _inode_top->node; 1799 } 1800 Node* node_at(uint i) const { 1801 assert(_inodes + i <= _inode_top, "in range"); 1802 return _inodes[i].node; 1803 } 1804 uint index() const { 1805 return _inode_top->indx; 1806 } 1807 uint index_at(uint i) const { 1808 assert(_inodes + i <= _inode_top, "in range"); 1809 return _inodes[i].indx; 1810 } 1811 void set_node(Node *n) { 1812 _inode_top->node = n; 1813 } 1814 void set_index(uint i) { 1815 _inode_top->indx = i; 1816 } 1817 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1818 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1819 bool is_nonempty() const { return (_inode_top >= _inodes); } 1820 bool is_empty() const { return (_inode_top < _inodes); } 1821 void clear() { _inode_top = _inodes - 1; } // retain storage 1822 1823 // Node_Stack is used to map nodes. 1824 Node* find(uint idx) const; 1825 1826 NONCOPYABLE(Node_Stack); 1827 }; 1828 1829 1830 //-----------------------------Node_Notes-------------------------------------- 1831 // Debugging or profiling annotations loosely and sparsely associated 1832 // with some nodes. See Compile::node_notes_at for the accessor. 1833 class Node_Notes { 1834 friend class VMStructs; 1835 JVMState* _jvms; 1836 1837 public: 1838 Node_Notes(JVMState* jvms = nullptr) { 1839 _jvms = jvms; 1840 } 1841 1842 JVMState* jvms() { return _jvms; } 1843 void set_jvms(JVMState* x) { _jvms = x; } 1844 1845 // True if there is nothing here. 1846 bool is_clear() { 1847 return (_jvms == nullptr); 1848 } 1849 1850 // Make there be nothing here. 1851 void clear() { 1852 _jvms = nullptr; 1853 } 1854 1855 // Make a new, clean node notes. 1856 static Node_Notes* make(Compile* C) { 1857 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1858 nn->clear(); 1859 return nn; 1860 } 1861 1862 Node_Notes* clone(Compile* C) { 1863 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1864 (*nn) = (*this); 1865 return nn; 1866 } 1867 1868 // Absorb any information from source. 1869 bool update_from(Node_Notes* source) { 1870 bool changed = false; 1871 if (source != nullptr) { 1872 if (source->jvms() != nullptr) { 1873 set_jvms(source->jvms()); 1874 changed = true; 1875 } 1876 } 1877 return changed; 1878 } 1879 }; 1880 1881 // Inlined accessors for Compile::node_nodes that require the preceding class: 1882 inline Node_Notes* 1883 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1884 int idx, bool can_grow) { 1885 assert(idx >= 0, "oob"); 1886 int block_idx = (idx >> _log2_node_notes_block_size); 1887 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 1888 if (grow_by >= 0) { 1889 if (!can_grow) return nullptr; 1890 grow_node_notes(arr, grow_by + 1); 1891 } 1892 if (arr == nullptr) return nullptr; 1893 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1894 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1895 } 1896 1897 inline bool 1898 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1899 if (value == nullptr || value->is_clear()) 1900 return false; // nothing to write => write nothing 1901 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1902 assert(loc != nullptr, ""); 1903 return loc->update_from(value); 1904 } 1905 1906 1907 //------------------------------TypeNode--------------------------------------- 1908 // Node with a Type constant. 1909 class TypeNode : public Node { 1910 protected: 1911 virtual uint hash() const; // Check the type 1912 virtual bool cmp( const Node &n ) const; 1913 virtual uint size_of() const; // Size is bigger 1914 const Type* const _type; 1915 public: 1916 void set_type(const Type* t) { 1917 assert(t != nullptr, "sanity"); 1918 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 1919 *(const Type**)&_type = t; // cast away const-ness 1920 // If this node is in the hash table, make sure it doesn't need a rehash. 1921 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 1922 } 1923 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 1924 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 1925 init_class_id(Class_Type); 1926 } 1927 virtual const Type* Value(PhaseGVN* phase) const; 1928 virtual const Type *bottom_type() const; 1929 virtual uint ideal_reg() const; 1930 #ifndef PRODUCT 1931 virtual void dump_spec(outputStream *st) const; 1932 virtual void dump_compact_spec(outputStream *st) const; 1933 #endif 1934 }; 1935 1936 #include "opto/opcodes.hpp" 1937 1938 #define Op_IL(op) \ 1939 inline int Op_ ## op(BasicType bt) { \ 1940 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 1941 if (bt == T_INT) { \ 1942 return Op_## op ## I; \ 1943 } \ 1944 return Op_## op ## L; \ 1945 } 1946 1947 Op_IL(Add) 1948 Op_IL(Sub) 1949 Op_IL(Mul) 1950 Op_IL(URShift) 1951 Op_IL(LShift) 1952 Op_IL(Xor) 1953 Op_IL(Cmp) 1954 1955 inline int Op_ConIL(BasicType bt) { 1956 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1957 if (bt == T_INT) { 1958 return Op_ConI; 1959 } 1960 return Op_ConL; 1961 } 1962 1963 inline int Op_Cmp_unsigned(BasicType bt) { 1964 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1965 if (bt == T_INT) { 1966 return Op_CmpU; 1967 } 1968 return Op_CmpUL; 1969 } 1970 1971 inline int Op_Cast(BasicType bt) { 1972 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 1973 if (bt == T_INT) { 1974 return Op_CastII; 1975 } 1976 return Op_CastLL; 1977 } 1978 1979 #endif // SHARE_OPTO_NODE_HPP