1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_OPTO_NODE_HPP
  27 #define SHARE_OPTO_NODE_HPP
  28 
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "utilities/copy.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 // Optimization - Graph Style
  37 
  38 
  39 class AbstractLockNode;
  40 class AddNode;
  41 class AddPNode;
  42 class AliasInfo;
  43 class AllocateArrayNode;
  44 class AllocateNode;
  45 class ArrayCopyNode;
  46 class BaseCountedLoopNode;
  47 class BaseCountedLoopEndNode;
  48 class BlackholeNode;
  49 class Block;
  50 class BoolNode;
  51 class BoxLockNode;
  52 class CMoveNode;
  53 class CallDynamicJavaNode;
  54 class CallJavaNode;
  55 class CallLeafNode;
  56 class CallLeafNoFPNode;
  57 class CallNode;
  58 class CallRuntimeNode;
  59 class CallStaticJavaNode;
  60 class CastFFNode;
  61 class CastDDNode;
  62 class CastVVNode;
  63 class CastIINode;
  64 class CastLLNode;
  65 class CastPPNode;
  66 class CatchNode;
  67 class CatchProjNode;
  68 class CheckCastPPNode;
  69 class ClearArrayNode;
  70 class CmpNode;
  71 class CodeBuffer;
  72 class ConstraintCastNode;
  73 class ConNode;
  74 class ConINode;
  75 class ConvertNode;
  76 class CompareAndSwapNode;
  77 class CompareAndExchangeNode;
  78 class CountedLoopNode;
  79 class CountedLoopEndNode;
  80 class DecodeNarrowPtrNode;
  81 class DecodeNNode;
  82 class DecodeNKlassNode;
  83 class EncodeNarrowPtrNode;
  84 class EncodePNode;
  85 class EncodePKlassNode;
  86 class FastLockNode;
  87 class FastUnlockNode;
  88 class FlatArrayCheckNode;
  89 class HaltNode;
  90 class IfNode;
  91 class IfProjNode;
  92 class IfFalseNode;
  93 class IfTrueNode;
  94 class InitializeNode;
  95 class JVMState;
  96 class JumpNode;
  97 class JumpProjNode;
  98 class LoadNode;
  99 class LoadStoreNode;
 100 class LoadStoreConditionalNode;
 101 class LockNode;
 102 class LongCountedLoopNode;
 103 class LongCountedLoopEndNode;
 104 class LoopNode;
 105 class LShiftNode;
 106 class MachBranchNode;
 107 class MachCallDynamicJavaNode;
 108 class MachCallJavaNode;
 109 class MachCallLeafNode;
 110 class MachCallNode;
 111 class MachCallRuntimeNode;
 112 class MachCallStaticJavaNode;
 113 class MachConstantBaseNode;
 114 class MachConstantNode;
 115 class MachGotoNode;
 116 class MachIfNode;
 117 class MachJumpNode;
 118 class MachNode;
 119 class MachNullCheckNode;
 120 class MachProjNode;
 121 class MachPrologNode;
 122 class MachReturnNode;
 123 class MachSafePointNode;
 124 class MachSpillCopyNode;
 125 class MachTempNode;
 126 class MachMergeNode;
 127 class MachMemBarNode;
 128 class MachVEPNode;
 129 class Matcher;
 130 class MemBarNode;
 131 class MemBarStoreStoreNode;
 132 class MemNode;
 133 class MergeMemNode;
 134 class MoveNode;
 135 class MulNode;
 136 class MultiNode;
 137 class MultiBranchNode;
 138 class NegNode;
 139 class NegVNode;
 140 class NeverBranchNode;
 141 class Opaque1Node;
 142 class OpaqueLoopInitNode;
 143 class OpaqueLoopStrideNode;
 144 class OpaqueNotNullNode;
 145 class OpaqueInitializedAssertionPredicateNode;
 146 class OpaqueTemplateAssertionPredicateNode;
 147 class OuterStripMinedLoopNode;
 148 class OuterStripMinedLoopEndNode;
 149 class Node;
 150 class Node_Array;
 151 class Node_List;
 152 class Node_Stack;
 153 class OopMap;
 154 class ParmNode;
 155 class ParsePredicateNode;
 156 class PCTableNode;
 157 class PhaseCCP;
 158 class PhaseGVN;
 159 class PhaseIterGVN;
 160 class PhaseRegAlloc;
 161 class PhaseTransform;
 162 class PhaseValues;
 163 class PhiNode;
 164 class Pipeline;
 165 class PopulateIndexNode;
 166 class ProjNode;
 167 class RangeCheckNode;
 168 class ReductionNode;
 169 class RegMask;
 170 class RegionNode;
 171 class RootNode;
 172 class SafePointNode;
 173 class SafePointScalarObjectNode;
 174 class SafePointScalarMergeNode;
 175 class SaturatingVectorNode;
 176 class StartNode;
 177 class State;
 178 class StoreNode;
 179 class SubNode;
 180 class SubTypeCheckNode;
 181 class Type;
 182 class TypeNode;
 183 class UnlockNode;
 184 class InlineTypeNode;
 185 class VectorNode;
 186 class LoadVectorNode;
 187 class LoadVectorMaskedNode;
 188 class StoreVectorMaskedNode;
 189 class LoadVectorGatherNode;
 190 class LoadVectorGatherMaskedNode;
 191 class StoreVectorNode;
 192 class StoreVectorScatterNode;
 193 class StoreVectorScatterMaskedNode;
 194 class VerifyVectorAlignmentNode;
 195 class VectorMaskCmpNode;
 196 class VectorUnboxNode;
 197 class VectorSet;
 198 class VectorReinterpretNode;
 199 class ShiftVNode;
 200 class ExpandVNode;
 201 class CompressVNode;
 202 class CompressMNode;
 203 class C2_MacroAssembler;
 204 
 205 
 206 #ifndef OPTO_DU_ITERATOR_ASSERT
 207 #ifdef ASSERT
 208 #define OPTO_DU_ITERATOR_ASSERT 1
 209 #else
 210 #define OPTO_DU_ITERATOR_ASSERT 0
 211 #endif
 212 #endif //OPTO_DU_ITERATOR_ASSERT
 213 
 214 #if OPTO_DU_ITERATOR_ASSERT
 215 class DUIterator;
 216 class DUIterator_Fast;
 217 class DUIterator_Last;
 218 #else
 219 typedef uint   DUIterator;
 220 typedef Node** DUIterator_Fast;
 221 typedef Node** DUIterator_Last;
 222 #endif
 223 
 224 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
 225 
 226 // Node Sentinel
 227 #define NodeSentinel (Node*)-1
 228 
 229 // Unknown count frequency
 230 #define COUNT_UNKNOWN (-1.0f)
 231 
 232 //------------------------------Node-------------------------------------------
 233 // Nodes define actions in the program.  They create values, which have types.
 234 // They are both vertices in a directed graph and program primitives.  Nodes
 235 // are labeled; the label is the "opcode", the primitive function in the lambda
 236 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 237 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 238 // the Node's function.  These inputs also define a Type equation for the Node.
 239 // Solving these Type equations amounts to doing dataflow analysis.
 240 // Control and data are uniformly represented in the graph.  Finally, Nodes
 241 // have a unique dense integer index which is used to index into side arrays
 242 // whenever I have phase-specific information.
 243 
 244 class Node {
 245   friend class VMStructs;
 246 
 247   // Lots of restrictions on cloning Nodes
 248   NONCOPYABLE(Node);
 249 
 250 public:
 251   friend class Compile;
 252   #if OPTO_DU_ITERATOR_ASSERT
 253   friend class DUIterator_Common;
 254   friend class DUIterator;
 255   friend class DUIterator_Fast;
 256   friend class DUIterator_Last;
 257   #endif
 258 
 259   // Because Nodes come and go, I define an Arena of Node structures to pull
 260   // from.  This should allow fast access to node creation & deletion.  This
 261   // field is a local cache of a value defined in some "program fragment" for
 262   // which these Nodes are just a part of.
 263 
 264   inline void* operator new(size_t x) throw() {
 265     Compile* C = Compile::current();
 266     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 267     return (void*)n;
 268   }
 269 
 270   // Delete is a NOP
 271   void operator delete( void *ptr ) {}
 272   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 273   void destruct(PhaseValues* phase);
 274 
 275   // Create a new Node.  Required is the number is of inputs required for
 276   // semantic correctness.
 277   Node( uint required );
 278 
 279   // Create a new Node with given input edges.
 280   // This version requires use of the "edge-count" new.
 281   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 282   Node( Node *n0 );
 283   Node( Node *n0, Node *n1 );
 284   Node( Node *n0, Node *n1, Node *n2 );
 285   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 286   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 287   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 288   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 289             Node *n4, Node *n5, Node *n6 );
 290 
 291   // Clone an inherited Node given only the base Node type.
 292   Node* clone() const;
 293 
 294   // Clone a Node, immediately supplying one or two new edges.
 295   // The first and second arguments, if non-null, replace in(1) and in(2),
 296   // respectively.
 297   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 298     Node* nn = clone();
 299     if (in1 != nullptr)  nn->set_req(1, in1);
 300     if (in2 != nullptr)  nn->set_req(2, in2);
 301     return nn;
 302   }
 303 
 304 private:
 305   // Shared setup for the above constructors.
 306   // Handles all interactions with Compile::current.
 307   // Puts initial values in all Node fields except _idx.
 308   // Returns the initial value for _idx, which cannot
 309   // be initialized by assignment.
 310   inline int Init(int req);
 311 
 312 //----------------- input edge handling
 313 protected:
 314   friend class PhaseCFG;        // Access to address of _in array elements
 315   Node **_in;                   // Array of use-def references to Nodes
 316   Node **_out;                  // Array of def-use references to Nodes
 317 
 318   // Input edges are split into two categories.  Required edges are required
 319   // for semantic correctness; order is important and nulls are allowed.
 320   // Precedence edges are used to help determine execution order and are
 321   // added, e.g., for scheduling purposes.  They are unordered and not
 322   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 323   // are required, from _cnt to _max-1 are precedence edges.
 324   node_idx_t _cnt;              // Total number of required Node inputs.
 325 
 326   node_idx_t _max;              // Actual length of input array.
 327 
 328   // Output edges are an unordered list of def-use edges which exactly
 329   // correspond to required input edges which point from other nodes
 330   // to this one.  Thus the count of the output edges is the number of
 331   // users of this node.
 332   node_idx_t _outcnt;           // Total number of Node outputs.
 333 
 334   node_idx_t _outmax;           // Actual length of output array.
 335 
 336   // Grow the actual input array to the next larger power-of-2 bigger than len.
 337   void grow( uint len );
 338   // Grow the output array to the next larger power-of-2 bigger than len.
 339   void out_grow( uint len );
 340 
 341  public:
 342   // Each Node is assigned a unique small/dense number.  This number is used
 343   // to index into auxiliary arrays of data and bit vectors.
 344   // The field _idx is declared constant to defend against inadvertent assignments,
 345   // since it is used by clients as a naked field. However, the field's value can be
 346   // changed using the set_idx() method.
 347   //
 348   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 349   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 350   // preserved in _parse_idx.
 351   const node_idx_t _idx;
 352   DEBUG_ONLY(const node_idx_t _parse_idx;)
 353   // IGV node identifier. Two nodes, possibly in different compilation phases,
 354   // have the same IGV identifier if (and only if) they are the very same node
 355   // (same memory address) or one is "derived" from the other (by e.g.
 356   // renumbering or matching). This identifier makes it possible to follow the
 357   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 358   NOT_PRODUCT(node_idx_t _igv_idx;)
 359 
 360   // Get the (read-only) number of input edges
 361   uint req() const { return _cnt; }
 362   uint len() const { return _max; }
 363   // Get the (read-only) number of output edges
 364   uint outcnt() const { return _outcnt; }
 365 
 366 #if OPTO_DU_ITERATOR_ASSERT
 367   // Iterate over the out-edges of this node.  Deletions are illegal.
 368   inline DUIterator outs() const;
 369   // Use this when the out array might have changed to suppress asserts.
 370   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 371   // Does the node have an out at this position?  (Used for iteration.)
 372   inline bool has_out(DUIterator& i) const;
 373   inline Node*    out(DUIterator& i) const;
 374   // Iterate over the out-edges of this node.  All changes are illegal.
 375   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 376   inline Node*    fast_out(DUIterator_Fast& i) const;
 377   // Iterate over the out-edges of this node, deleting one at a time.
 378   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 379   inline Node*    last_out(DUIterator_Last& i) const;
 380   // The inline bodies of all these methods are after the iterator definitions.
 381 #else
 382   // Iterate over the out-edges of this node.  Deletions are illegal.
 383   // This iteration uses integral indexes, to decouple from array reallocations.
 384   DUIterator outs() const  { return 0; }
 385   // Use this when the out array might have changed to suppress asserts.
 386   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 387 
 388   // Reference to the i'th output Node.  Error if out of bounds.
 389   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 390   // Does the node have an out at this position?  (Used for iteration.)
 391   bool has_out(DUIterator i) const { return i < _outcnt; }
 392 
 393   // Iterate over the out-edges of this node.  All changes are illegal.
 394   // This iteration uses a pointer internal to the out array.
 395   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 396     Node** out = _out;
 397     // Assign a limit pointer to the reference argument:
 398     max = out + (ptrdiff_t)_outcnt;
 399     // Return the base pointer:
 400     return out;
 401   }
 402   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 403   // Iterate over the out-edges of this node, deleting one at a time.
 404   // This iteration uses a pointer internal to the out array.
 405   DUIterator_Last last_outs(DUIterator_Last& min) const {
 406     Node** out = _out;
 407     // Assign a limit pointer to the reference argument:
 408     min = out;
 409     // Return the pointer to the start of the iteration:
 410     return out + (ptrdiff_t)_outcnt - 1;
 411   }
 412   Node*    last_out(DUIterator_Last i) const  { return *i; }
 413 #endif
 414 
 415   // Reference to the i'th input Node.  Error if out of bounds.
 416   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 417   // Reference to the i'th input Node.  null if out of bounds.
 418   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 419   // Reference to the i'th output Node.  Error if out of bounds.
 420   // Use this accessor sparingly.  We are going trying to use iterators instead.
 421   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 422   // Return the unique out edge.
 423   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 424   // Delete out edge at position 'i' by moving last out edge to position 'i'
 425   void  raw_del_out(uint i) {
 426     assert(i < _outcnt,"oob");
 427     assert(_outcnt > 0,"oob");
 428     #if OPTO_DU_ITERATOR_ASSERT
 429     // Record that a change happened here.
 430     debug_only(_last_del = _out[i]; ++_del_tick);
 431     #endif
 432     _out[i] = _out[--_outcnt];
 433     // Smash the old edge so it can't be used accidentally.
 434     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 435   }
 436 
 437 #ifdef ASSERT
 438   bool is_dead() const;
 439   static bool is_not_dead(const Node* n);
 440   bool is_reachable_from_root() const;
 441 #endif
 442   // Check whether node has become unreachable
 443   bool is_unreachable(PhaseIterGVN &igvn) const;
 444 
 445   // Set a required input edge, also updates corresponding output edge
 446   void add_req( Node *n ); // Append a NEW required input
 447   void add_req( Node *n0, Node *n1 ) {
 448     add_req(n0); add_req(n1); }
 449   void add_req( Node *n0, Node *n1, Node *n2 ) {
 450     add_req(n0); add_req(n1); add_req(n2); }
 451   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 452   void del_req( uint idx ); // Delete required edge & compact
 453   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 454   void ins_req( uint i, Node *n ); // Insert a NEW required input
 455   void set_req( uint i, Node *n ) {
 456     assert( is_not_dead(n), "can not use dead node");
 457     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 458     assert( !VerifyHashTableKeys || _hash_lock == 0,
 459             "remove node from hash table before modifying it");
 460     Node** p = &_in[i];    // cache this._in, across the del_out call
 461     if (*p != nullptr)  (*p)->del_out((Node *)this);
 462     (*p) = n;
 463     if (n != nullptr)      n->add_out((Node *)this);
 464     Compile::current()->record_modified_node(this);
 465   }
 466   // Light version of set_req() to init inputs after node creation.
 467   void init_req( uint i, Node *n ) {
 468     assert( (i == 0 && this == n) ||
 469             is_not_dead(n), "can not use dead node");
 470     assert( i < _cnt, "oob");
 471     assert( !VerifyHashTableKeys || _hash_lock == 0,
 472             "remove node from hash table before modifying it");
 473     assert( _in[i] == nullptr, "sanity");
 474     _in[i] = n;
 475     if (n != nullptr)      n->add_out((Node *)this);
 476     Compile::current()->record_modified_node(this);
 477   }
 478   // Find first occurrence of n among my edges:
 479   int find_edge(Node* n);
 480   int find_prec_edge(Node* n) {
 481     for (uint i = req(); i < len(); i++) {
 482       if (_in[i] == n) return i;
 483       if (_in[i] == nullptr) {
 484         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 485         break;
 486       }
 487     }
 488     return -1;
 489   }
 490   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 491   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 492   // null out all inputs to eliminate incoming Def-Use edges.
 493   void disconnect_inputs(Compile* C);
 494 
 495   // Quickly, return true if and only if I am Compile::current()->top().
 496   bool is_top() const {
 497     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 498     return (_out == nullptr);
 499   }
 500   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 501   void setup_is_top();
 502 
 503   // Strip away casting.  (It is depth-limited.)
 504   Node* uncast(bool keep_deps = false) const;
 505   // Return whether two Nodes are equivalent, after stripping casting.
 506   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 507     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 508   }
 509 
 510   // Find out of current node that matches opcode.
 511   Node* find_out_with(int opcode);
 512   // Return true if the current node has an out that matches opcode.
 513   bool has_out_with(int opcode);
 514   // Return true if the current node has an out that matches any of the opcodes.
 515   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 516 
 517 private:
 518   static Node* uncast_helper(const Node* n, bool keep_deps);
 519 
 520   // Add an output edge to the end of the list
 521   void add_out( Node *n ) {
 522     if (is_top())  return;
 523     if( _outcnt == _outmax ) out_grow(_outcnt);
 524     _out[_outcnt++] = n;
 525   }
 526   // Delete an output edge
 527   void del_out( Node *n ) {
 528     if (is_top())  return;
 529     Node** outp = &_out[_outcnt];
 530     // Find and remove n
 531     do {
 532       assert(outp > _out, "Missing Def-Use edge");
 533     } while (*--outp != n);
 534     *outp = _out[--_outcnt];
 535     // Smash the old edge so it can't be used accidentally.
 536     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 537     // Record that a change happened here.
 538     #if OPTO_DU_ITERATOR_ASSERT
 539     debug_only(_last_del = n; ++_del_tick);
 540     #endif
 541   }
 542   // Close gap after removing edge.
 543   void close_prec_gap_at(uint gap) {
 544     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 545     uint i = gap;
 546     Node *last = nullptr;
 547     for (; i < _max-1; ++i) {
 548       Node *next = _in[i+1];
 549       if (next == nullptr) break;
 550       last = next;
 551     }
 552     _in[gap] = last;  // Move last slot to empty one.
 553     _in[i] = nullptr; // null out last slot.
 554   }
 555 
 556 public:
 557   // Globally replace this node by a given new node, updating all uses.
 558   void replace_by(Node* new_node);
 559   // Globally replace this node by a given new node, updating all uses
 560   // and cutting input edges of old node.
 561   void subsume_by(Node* new_node, Compile* c) {
 562     replace_by(new_node);
 563     disconnect_inputs(c);
 564   }
 565   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 566   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 567   // Find the one non-null required input.  RegionNode only
 568   Node *nonnull_req() const;
 569   // Add or remove precedence edges
 570   void add_prec( Node *n );
 571   void rm_prec( uint i );
 572 
 573   // Note: prec(i) will not necessarily point to n if edge already exists.
 574   void set_prec( uint i, Node *n ) {
 575     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 576     assert(is_not_dead(n), "can not use dead node");
 577     assert(i >= _cnt, "not a precedence edge");
 578     // Avoid spec violation: duplicated prec edge.
 579     if (_in[i] == n) return;
 580     if (n == nullptr || find_prec_edge(n) != -1) {
 581       rm_prec(i);
 582       return;
 583     }
 584     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 585     _in[i] = n;
 586     n->add_out((Node *)this);
 587     Compile::current()->record_modified_node(this);
 588   }
 589 
 590   // Set this node's index, used by cisc_version to replace current node
 591   void set_idx(uint new_idx) {
 592     const node_idx_t* ref = &_idx;
 593     *(node_idx_t*)ref = new_idx;
 594   }
 595   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 596   void swap_edges(uint i1, uint i2) {
 597     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 598     // Def-Use info is unchanged
 599     Node* n1 = in(i1);
 600     Node* n2 = in(i2);
 601     _in[i1] = n2;
 602     _in[i2] = n1;
 603     // If this node is in the hash table, make sure it doesn't need a rehash.
 604     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 605     // Flip swapped edges flag.
 606     if (has_swapped_edges()) {
 607       remove_flag(Node::Flag_has_swapped_edges);
 608     } else {
 609       add_flag(Node::Flag_has_swapped_edges);
 610     }
 611   }
 612 
 613   // Iterators over input Nodes for a Node X are written as:
 614   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 615   // NOTE: Required edges can contain embedded null pointers.
 616 
 617 //----------------- Other Node Properties
 618 
 619   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 620   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 621   //
 622   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 623   // the type of the node the ID represents; another subset of an ID's bits are reserved
 624   // for the superclasses of the node represented by the ID.
 625   //
 626   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 627   // returns false. A.is_A() returns true.
 628   //
 629   // If two classes, A and B, have the same superclass, a different bit of A's class id
 630   // is reserved for A's type than for B's type. That bit is specified by the third
 631   // parameter in the macro DEFINE_CLASS_ID.
 632   //
 633   // By convention, classes with deeper hierarchy are declared first. Moreover,
 634   // classes with the same hierarchy depth are sorted by usage frequency.
 635   //
 636   // The query method masks the bits to cut off bits of subclasses and then compares
 637   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 638   //
 639   //  Class_MachCall=30, ClassMask_MachCall=31
 640   // 12               8               4               0
 641   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 642   //                                  |   |   |   |
 643   //                                  |   |   |   Bit_Mach=2
 644   //                                  |   |   Bit_MachReturn=4
 645   //                                  |   Bit_MachSafePoint=8
 646   //                                  Bit_MachCall=16
 647   //
 648   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 649   // 12               8               4               0
 650   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 651   //                              |   |   |
 652   //                              |   |   Bit_Region=8
 653   //                              |   Bit_Loop=16
 654   //                              Bit_CountedLoop=32
 655 
 656   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 657   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 658   Class_##cl = Class_##supcl + Bit_##cl , \
 659   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 660 
 661   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 662   // so that its values fit into 32 bits.
 663   enum NodeClasses {
 664     Bit_Node   = 0x00000000,
 665     Class_Node = 0x00000000,
 666     ClassMask_Node = 0xFFFFFFFF,
 667 
 668     DEFINE_CLASS_ID(Multi, Node, 0)
 669       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 670         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 671           DEFINE_CLASS_ID(CallJava,         Call, 0)
 672             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 673             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 674           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 675             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 676               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 677           DEFINE_CLASS_ID(Allocate,         Call, 2)
 678             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 679           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 680             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 681             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 682           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 683       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 684         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 685           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 686           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 687         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 688           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 689             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 690             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 691           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 692           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 693           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 694         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 695       DEFINE_CLASS_ID(Start,       Multi, 2)
 696       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 697         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 698         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 699         DEFINE_CLASS_ID(Blackhole,        MemBar, 2)
 700 
 701     DEFINE_CLASS_ID(Mach,  Node, 1)
 702       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 703         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 704           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 705             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 706               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 707               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 708             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 709               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 710       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 711         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 712         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 713         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 714       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 715       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 716       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 717       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 718         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 719       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 720       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 721       DEFINE_CLASS_ID(MachProlog,       Mach, 8)
 722       DEFINE_CLASS_ID(MachVEP,          Mach, 9)
 723 
 724     DEFINE_CLASS_ID(Type,  Node, 2)
 725       DEFINE_CLASS_ID(Phi,   Type, 0)
 726       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 727         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 728         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 729         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 730         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 731         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 732         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 733         DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
 734       DEFINE_CLASS_ID(CMove, Type, 3)
 735       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 736       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 737         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 738         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 739       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 740         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 741         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 742       DEFINE_CLASS_ID(Vector, Type, 7)
 743         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 744         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 745         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 746         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 747         DEFINE_CLASS_ID(CompressV, Vector, 4)
 748         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 749         DEFINE_CLASS_ID(CompressM, Vector, 6)
 750         DEFINE_CLASS_ID(Reduction, Vector, 7)
 751         DEFINE_CLASS_ID(NegV, Vector, 8)
 752         DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
 753       DEFINE_CLASS_ID(InlineType, Type, 8)
 754       DEFINE_CLASS_ID(Con, Type, 9)
 755           DEFINE_CLASS_ID(ConI, Con, 0)
 756       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
 757       DEFINE_CLASS_ID(Convert, Type, 11)
 758 
 759 
 760     DEFINE_CLASS_ID(Proj,  Node, 3)
 761       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 762       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 763       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 764         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 765         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 766       DEFINE_CLASS_ID(Parm,      Proj, 4)
 767       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 768 
 769     DEFINE_CLASS_ID(Mem, Node, 4)
 770       DEFINE_CLASS_ID(Load, Mem, 0)
 771         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 772           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 773           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 774           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 775       DEFINE_CLASS_ID(Store, Mem, 1)
 776         DEFINE_CLASS_ID(StoreVector, Store, 0)
 777           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 778           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 779           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 780       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 781         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 782           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 783         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 784 
 785     DEFINE_CLASS_ID(Region, Node, 5)
 786       DEFINE_CLASS_ID(Loop, Region, 0)
 787         DEFINE_CLASS_ID(Root,                Loop, 0)
 788         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 789           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 790           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 791         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 792 
 793     DEFINE_CLASS_ID(Sub,   Node, 6)
 794       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 795         DEFINE_CLASS_ID(FastLock,       Cmp, 0)
 796         DEFINE_CLASS_ID(FastUnlock,     Cmp, 1)
 797         DEFINE_CLASS_ID(SubTypeCheck,   Cmp, 2)
 798         DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
 799 
 800     DEFINE_CLASS_ID(MergeMem, Node, 7)
 801     DEFINE_CLASS_ID(Bool,     Node, 8)
 802     DEFINE_CLASS_ID(AddP,     Node, 9)
 803     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 804     DEFINE_CLASS_ID(Add,      Node, 11)
 805     DEFINE_CLASS_ID(Mul,      Node, 12)
 806     DEFINE_CLASS_ID(ClearArray, Node, 14)
 807     DEFINE_CLASS_ID(Halt,     Node, 15)
 808     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 809       DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
 810       DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
 811     DEFINE_CLASS_ID(OpaqueNotNull,  Node, 17)
 812     DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate,  Node, 18)
 813     DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate,  Node, 19)
 814     DEFINE_CLASS_ID(Move,     Node, 20)
 815     DEFINE_CLASS_ID(LShift,   Node, 21)
 816     DEFINE_CLASS_ID(Neg,      Node, 22)
 817 
 818     _max_classes  = ClassMask_Neg
 819   };
 820   #undef DEFINE_CLASS_ID
 821 
 822   // Flags are sorted by usage frequency.
 823   enum NodeFlags {
 824     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 825     Flag_rematerialize               = 1 << 1,
 826     Flag_needs_anti_dependence_check = 1 << 2,
 827     Flag_is_macro                    = 1 << 3,
 828     Flag_is_Con                      = 1 << 4,
 829     Flag_is_cisc_alternate           = 1 << 5,
 830     Flag_is_dead_loop_safe           = 1 << 6,
 831     Flag_may_be_short_branch         = 1 << 7,
 832     Flag_avoid_back_to_back_before   = 1 << 8,
 833     Flag_avoid_back_to_back_after    = 1 << 9,
 834     Flag_has_call                    = 1 << 10,
 835     Flag_has_swapped_edges           = 1 << 11,
 836     Flag_is_scheduled                = 1 << 12,
 837     Flag_is_expensive                = 1 << 13,
 838     Flag_is_predicated_vector        = 1 << 14,
 839     Flag_for_post_loop_opts_igvn     = 1 << 15,
 840     Flag_is_removed_by_peephole      = 1 << 16,
 841     Flag_is_predicated_using_blend   = 1 << 17,
 842     _last_flag                       = Flag_is_predicated_using_blend
 843   };
 844 
 845   class PD;
 846 
 847 private:
 848   juint _class_id;
 849   juint _flags;
 850 
 851 #ifdef ASSERT
 852   static juint max_flags();
 853 #endif
 854 
 855 protected:
 856   // These methods should be called from constructors only.
 857   void init_class_id(juint c) {
 858     _class_id = c; // cast out const
 859   }
 860   void init_flags(uint fl) {
 861     assert(fl <= max_flags(), "invalid node flag");
 862     _flags |= fl;
 863   }
 864   void clear_flag(uint fl) {
 865     assert(fl <= max_flags(), "invalid node flag");
 866     _flags &= ~fl;
 867   }
 868 
 869 public:
 870   juint class_id() const { return _class_id; }
 871 
 872   juint flags() const { return _flags; }
 873 
 874   void add_flag(juint fl) { init_flags(fl); }
 875 
 876   void remove_flag(juint fl) { clear_flag(fl); }
 877 
 878   // Return a dense integer opcode number
 879   virtual int Opcode() const;
 880 
 881   // Virtual inherited Node size
 882   virtual uint size_of() const;
 883 
 884   // Other interesting Node properties
 885   #define DEFINE_CLASS_QUERY(type)                           \
 886   bool is_##type() const {                                   \
 887     return ((_class_id & ClassMask_##type) == Class_##type); \
 888   }                                                          \
 889   type##Node *as_##type() const {                            \
 890     assert(is_##type(), "invalid node class: %s", Name());   \
 891     return (type##Node*)this;                                \
 892   }                                                          \
 893   type##Node* isa_##type() const {                           \
 894     return (is_##type()) ? as_##type() : nullptr;            \
 895   }
 896 
 897   DEFINE_CLASS_QUERY(AbstractLock)
 898   DEFINE_CLASS_QUERY(Add)
 899   DEFINE_CLASS_QUERY(AddP)
 900   DEFINE_CLASS_QUERY(Allocate)
 901   DEFINE_CLASS_QUERY(AllocateArray)
 902   DEFINE_CLASS_QUERY(ArrayCopy)
 903   DEFINE_CLASS_QUERY(BaseCountedLoop)
 904   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 905   DEFINE_CLASS_QUERY(Blackhole)
 906   DEFINE_CLASS_QUERY(Bool)
 907   DEFINE_CLASS_QUERY(BoxLock)
 908   DEFINE_CLASS_QUERY(Call)
 909   DEFINE_CLASS_QUERY(CallDynamicJava)
 910   DEFINE_CLASS_QUERY(CallJava)
 911   DEFINE_CLASS_QUERY(CallLeaf)
 912   DEFINE_CLASS_QUERY(CallLeafNoFP)
 913   DEFINE_CLASS_QUERY(CallRuntime)
 914   DEFINE_CLASS_QUERY(CallStaticJava)
 915   DEFINE_CLASS_QUERY(Catch)
 916   DEFINE_CLASS_QUERY(CatchProj)
 917   DEFINE_CLASS_QUERY(CheckCastPP)
 918   DEFINE_CLASS_QUERY(CastII)
 919   DEFINE_CLASS_QUERY(CastLL)
 920   DEFINE_CLASS_QUERY(ConI)
 921   DEFINE_CLASS_QUERY(CastPP)
 922   DEFINE_CLASS_QUERY(ConstraintCast)
 923   DEFINE_CLASS_QUERY(ClearArray)
 924   DEFINE_CLASS_QUERY(CMove)
 925   DEFINE_CLASS_QUERY(Cmp)
 926   DEFINE_CLASS_QUERY(Convert)
 927   DEFINE_CLASS_QUERY(CountedLoop)
 928   DEFINE_CLASS_QUERY(CountedLoopEnd)
 929   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 930   DEFINE_CLASS_QUERY(DecodeN)
 931   DEFINE_CLASS_QUERY(DecodeNKlass)
 932   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 933   DEFINE_CLASS_QUERY(EncodeP)
 934   DEFINE_CLASS_QUERY(EncodePKlass)
 935   DEFINE_CLASS_QUERY(FastLock)
 936   DEFINE_CLASS_QUERY(FastUnlock)
 937   DEFINE_CLASS_QUERY(FlatArrayCheck)
 938   DEFINE_CLASS_QUERY(Halt)
 939   DEFINE_CLASS_QUERY(If)
 940   DEFINE_CLASS_QUERY(RangeCheck)
 941   DEFINE_CLASS_QUERY(IfProj)
 942   DEFINE_CLASS_QUERY(IfFalse)
 943   DEFINE_CLASS_QUERY(IfTrue)
 944   DEFINE_CLASS_QUERY(Initialize)
 945   DEFINE_CLASS_QUERY(Jump)
 946   DEFINE_CLASS_QUERY(JumpProj)
 947   DEFINE_CLASS_QUERY(LongCountedLoop)
 948   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 949   DEFINE_CLASS_QUERY(Load)
 950   DEFINE_CLASS_QUERY(LoadStore)
 951   DEFINE_CLASS_QUERY(LoadStoreConditional)
 952   DEFINE_CLASS_QUERY(Lock)
 953   DEFINE_CLASS_QUERY(Loop)
 954   DEFINE_CLASS_QUERY(LShift)
 955   DEFINE_CLASS_QUERY(Mach)
 956   DEFINE_CLASS_QUERY(MachBranch)
 957   DEFINE_CLASS_QUERY(MachCall)
 958   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 959   DEFINE_CLASS_QUERY(MachCallJava)
 960   DEFINE_CLASS_QUERY(MachCallLeaf)
 961   DEFINE_CLASS_QUERY(MachCallRuntime)
 962   DEFINE_CLASS_QUERY(MachCallStaticJava)
 963   DEFINE_CLASS_QUERY(MachConstantBase)
 964   DEFINE_CLASS_QUERY(MachConstant)
 965   DEFINE_CLASS_QUERY(MachGoto)
 966   DEFINE_CLASS_QUERY(MachIf)
 967   DEFINE_CLASS_QUERY(MachJump)
 968   DEFINE_CLASS_QUERY(MachNullCheck)
 969   DEFINE_CLASS_QUERY(MachProj)
 970   DEFINE_CLASS_QUERY(MachProlog)
 971   DEFINE_CLASS_QUERY(MachReturn)
 972   DEFINE_CLASS_QUERY(MachSafePoint)
 973   DEFINE_CLASS_QUERY(MachSpillCopy)
 974   DEFINE_CLASS_QUERY(MachTemp)
 975   DEFINE_CLASS_QUERY(MachMemBar)
 976   DEFINE_CLASS_QUERY(MachMerge)
 977   DEFINE_CLASS_QUERY(MachVEP)
 978   DEFINE_CLASS_QUERY(Mem)
 979   DEFINE_CLASS_QUERY(MemBar)
 980   DEFINE_CLASS_QUERY(MemBarStoreStore)
 981   DEFINE_CLASS_QUERY(MergeMem)
 982   DEFINE_CLASS_QUERY(Move)
 983   DEFINE_CLASS_QUERY(Mul)
 984   DEFINE_CLASS_QUERY(Multi)
 985   DEFINE_CLASS_QUERY(MultiBranch)
 986   DEFINE_CLASS_QUERY(Neg)
 987   DEFINE_CLASS_QUERY(NegV)
 988   DEFINE_CLASS_QUERY(NeverBranch)
 989   DEFINE_CLASS_QUERY(Opaque1)
 990   DEFINE_CLASS_QUERY(OpaqueNotNull)
 991   DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
 992   DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
 993   DEFINE_CLASS_QUERY(OpaqueLoopInit)
 994   DEFINE_CLASS_QUERY(OpaqueLoopStride)
 995   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 996   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 997   DEFINE_CLASS_QUERY(Parm)
 998   DEFINE_CLASS_QUERY(ParsePredicate)
 999   DEFINE_CLASS_QUERY(PCTable)
1000   DEFINE_CLASS_QUERY(Phi)
1001   DEFINE_CLASS_QUERY(Proj)
1002   DEFINE_CLASS_QUERY(Reduction)
1003   DEFINE_CLASS_QUERY(Region)
1004   DEFINE_CLASS_QUERY(Root)
1005   DEFINE_CLASS_QUERY(SafePoint)
1006   DEFINE_CLASS_QUERY(SafePointScalarObject)
1007   DEFINE_CLASS_QUERY(SafePointScalarMerge)
1008   DEFINE_CLASS_QUERY(Start)
1009   DEFINE_CLASS_QUERY(Store)
1010   DEFINE_CLASS_QUERY(Sub)
1011   DEFINE_CLASS_QUERY(SubTypeCheck)
1012   DEFINE_CLASS_QUERY(Type)
1013   DEFINE_CLASS_QUERY(InlineType)
1014   DEFINE_CLASS_QUERY(Vector)
1015   DEFINE_CLASS_QUERY(VectorMaskCmp)
1016   DEFINE_CLASS_QUERY(VectorUnbox)
1017   DEFINE_CLASS_QUERY(VectorReinterpret)
1018   DEFINE_CLASS_QUERY(CompressV)
1019   DEFINE_CLASS_QUERY(ExpandV)
1020   DEFINE_CLASS_QUERY(CompressM)
1021   DEFINE_CLASS_QUERY(LoadVector)
1022   DEFINE_CLASS_QUERY(LoadVectorGather)
1023   DEFINE_CLASS_QUERY(LoadVectorMasked)
1024   DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1025   DEFINE_CLASS_QUERY(StoreVector)
1026   DEFINE_CLASS_QUERY(StoreVectorScatter)
1027   DEFINE_CLASS_QUERY(StoreVectorMasked)
1028   DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1029   DEFINE_CLASS_QUERY(SaturatingVector)
1030   DEFINE_CLASS_QUERY(ShiftV)
1031   DEFINE_CLASS_QUERY(Unlock)
1032 
1033   #undef DEFINE_CLASS_QUERY
1034 
1035   // duplicate of is_MachSpillCopy()
1036   bool is_SpillCopy () const {
1037     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1038   }
1039 
1040   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1041   // The data node which is safe to leave in dead loop during IGVN optimization.
1042   bool is_dead_loop_safe() const;
1043 
1044   // is_Copy() returns copied edge index (0 or 1)
1045   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1046 
1047   virtual bool is_CFG() const { return false; }
1048 
1049   // If this node is control-dependent on a test, can it be
1050   // rerouted to a dominating equivalent test?  This is usually
1051   // true of non-CFG nodes, but can be false for operations which
1052   // depend for their correct sequencing on more than one test.
1053   // (In that case, hoisting to a dominating test may silently
1054   // skip some other important test.)
1055   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1056 
1057   // When building basic blocks, I need to have a notion of block beginning
1058   // Nodes, next block selector Nodes (block enders), and next block
1059   // projections.  These calls need to work on their machine equivalents.  The
1060   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1061   bool is_block_start() const {
1062     if ( is_Region() )
1063       return this == (const Node*)in(0);
1064     else
1065       return is_Start();
1066   }
1067 
1068   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1069   // Goto and Return.  This call also returns the block ending Node.
1070   virtual const Node *is_block_proj() const;
1071 
1072   // The node is a "macro" node which needs to be expanded before matching
1073   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1074   // The node is expensive: the best control is set during loop opts
1075   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1076   // The node's original edge position is swapped.
1077   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1078 
1079   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1080 
1081   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1082 
1083   // Used in lcm to mark nodes that have scheduled
1084   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1085 
1086   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1087 
1088   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1089   static bool may_be_loop_entry(Node* n) {
1090     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1091   }
1092 
1093 //----------------- Optimization
1094 
1095   // Get the worst-case Type output for this Node.
1096   virtual const class Type *bottom_type() const;
1097 
1098   // If we find a better type for a node, try to record it permanently.
1099   // Return true if this node actually changed.
1100   // Be sure to do the hash_delete game in the "rehash" variant.
1101   void raise_bottom_type(const Type* new_type);
1102 
1103   // Get the address type with which this node uses and/or defs memory,
1104   // or null if none.  The address type is conservatively wide.
1105   // Returns non-null for calls, membars, loads, stores, etc.
1106   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1107   virtual const class TypePtr *adr_type() const { return nullptr; }
1108 
1109   // Return an existing node which computes the same function as this node.
1110   // The optimistic combined algorithm requires this to return a Node which
1111   // is a small number of steps away (e.g., one of my inputs).
1112   virtual Node* Identity(PhaseGVN* phase);
1113 
1114   // Return the set of values this Node can take on at runtime.
1115   virtual const Type* Value(PhaseGVN* phase) const;
1116 
1117   // Return a node which is more "ideal" than the current node.
1118   // The invariants on this call are subtle.  If in doubt, read the
1119   // treatise in node.cpp above the default implementation AND TEST WITH
1120   // -XX:VerifyIterativeGVN=1
1121   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1122 
1123   // Some nodes have specific Ideal subgraph transformations only if they are
1124   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1125   // for the transformations to happen.
1126   bool has_special_unique_user() const;
1127 
1128   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1129   Node* find_exact_control(Node* ctrl);
1130 
1131   // Results of the dominance analysis.
1132   enum class DomResult {
1133     NotDominate,         // 'this' node does not dominate 'sub'.
1134     Dominate,            // 'this' node dominates or is equal to 'sub'.
1135     EncounteredDeadCode  // Result is undefined due to encountering dead code.
1136   };
1137   // Check if 'this' node dominates or equal to 'sub'.
1138   DomResult dominates(Node* sub, Node_List &nlist);
1139 
1140 protected:
1141   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1142 public:
1143 
1144   // See if there is valid pipeline info
1145   static  const Pipeline *pipeline_class();
1146   virtual const Pipeline *pipeline() const;
1147 
1148   // Compute the latency from the def to this instruction of the ith input node
1149   uint latency(uint i);
1150 
1151   // Hash & compare functions, for pessimistic value numbering
1152 
1153   // If the hash function returns the special sentinel value NO_HASH,
1154   // the node is guaranteed never to compare equal to any other node.
1155   // If we accidentally generate a hash with value NO_HASH the node
1156   // won't go into the table and we'll lose a little optimization.
1157   static const uint NO_HASH = 0;
1158   virtual uint hash() const;
1159   virtual bool cmp( const Node &n ) const;
1160 
1161   // Operation appears to be iteratively computed (such as an induction variable)
1162   // It is possible for this operation to return false for a loop-varying
1163   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1164   bool is_iteratively_computed();
1165 
1166   // Determine if a node is a counted loop induction variable.
1167   // NOTE: The method is defined in "loopnode.cpp".
1168   bool is_cloop_ind_var() const;
1169 
1170   // Return a node with opcode "opc" and same inputs as "this" if one can
1171   // be found; Otherwise return null;
1172   Node* find_similar(int opc);
1173 
1174   // Return the unique control out if only one. Null if none or more than one.
1175   Node* unique_ctrl_out_or_null() const;
1176   // Return the unique control out. Asserts if none or more than one control out.
1177   Node* unique_ctrl_out() const;
1178 
1179   // Set control or add control as precedence edge
1180   void ensure_control_or_add_prec(Node* c);
1181 
1182   // Visit boundary uses of the node and apply a callback function for each.
1183   // Recursively traverse uses, stopping and applying the callback when
1184   // reaching a boundary node, defined by is_boundary. Note: the function
1185   // definition appears after the complete type definition of Node_List.
1186   template <typename Callback, typename Check>
1187   void visit_uses(Callback callback, Check is_boundary) const;
1188 
1189   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1190   // (Load and range check CastII nodes).
1191   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1192   virtual Node* pin_array_access_node() const {
1193     return nullptr;
1194   }
1195 
1196   //----------------- Code Generation
1197 
1198   // Ideal register class for Matching.  Zero means unmatched instruction
1199   // (these are cloned instead of converted to machine nodes).
1200   virtual uint ideal_reg() const;
1201 
1202   static const uint NotAMachineReg;   // must be > max. machine register
1203 
1204   // Do we Match on this edge index or not?  Generally false for Control
1205   // and true for everything else.  Weird for calls & returns.
1206   virtual uint match_edge(uint idx) const;
1207 
1208   // Register class output is returned in
1209   virtual const RegMask &out_RegMask() const;
1210   // Register class input is expected in
1211   virtual const RegMask &in_RegMask(uint) const;
1212   // Should we clone rather than spill this instruction?
1213   bool rematerialize() const;
1214 
1215   // Return JVM State Object if this Node carries debug info, or null otherwise
1216   virtual JVMState* jvms() const;
1217 
1218   // Print as assembly
1219   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1220   // Emit bytes using C2_MacroAssembler
1221   virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1222   // Size of instruction in bytes
1223   virtual uint size(PhaseRegAlloc *ra_) const;
1224 
1225   // Convenience function to extract an integer constant from a node.
1226   // If it is not an integer constant (either Con, CastII, or Mach),
1227   // return value_if_unknown.
1228   jint find_int_con(jint value_if_unknown) const {
1229     const TypeInt* t = find_int_type();
1230     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1231   }
1232   // Return the constant, knowing it is an integer constant already
1233   jint get_int() const {
1234     const TypeInt* t = find_int_type();
1235     guarantee(t != nullptr, "must be con");
1236     return t->get_con();
1237   }
1238   // Here's where the work is done.  Can produce non-constant int types too.
1239   const TypeInt* find_int_type() const;
1240   const TypeInteger* find_integer_type(BasicType bt) const;
1241 
1242   // Same thing for long (and intptr_t, via type.hpp):
1243   jlong get_long() const {
1244     const TypeLong* t = find_long_type();
1245     guarantee(t != nullptr, "must be con");
1246     return t->get_con();
1247   }
1248   jlong find_long_con(jint value_if_unknown) const {
1249     const TypeLong* t = find_long_type();
1250     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1251   }
1252   const TypeLong* find_long_type() const;
1253 
1254   jlong get_integer_as_long(BasicType bt) const {
1255     const TypeInteger* t = find_integer_type(bt);
1256     guarantee(t != nullptr && t->is_con(), "must be con");
1257     return t->get_con_as_long(bt);
1258   }
1259   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1260     const TypeInteger* t = find_integer_type(bt);
1261     if (t == nullptr || !t->is_con())  return value_if_unknown;
1262     return t->get_con_as_long(bt);
1263   }
1264   const TypePtr* get_ptr_type() const;
1265 
1266   // These guys are called by code generated by ADLC:
1267   intptr_t get_ptr() const;
1268   intptr_t get_narrowcon() const;
1269   jdouble getd() const;
1270   jfloat getf() const;
1271 
1272   // Nodes which are pinned into basic blocks
1273   virtual bool pinned() const { return false; }
1274 
1275   // Nodes which use memory without consuming it, hence need antidependences
1276   // More specifically, needs_anti_dependence_check returns true iff the node
1277   // (a) does a load, and (b) does not perform a store (except perhaps to a
1278   // stack slot or some other unaliased location).
1279   bool needs_anti_dependence_check() const;
1280 
1281   // Return which operand this instruction may cisc-spill. In other words,
1282   // return operand position that can convert from reg to memory access
1283   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1284   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1285 
1286   // Whether this is a memory-writing machine node.
1287   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1288 
1289   // Whether this is a memory phi node
1290   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1291 
1292 //----------------- Printing, etc
1293 #ifndef PRODUCT
1294  public:
1295   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1296   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1297   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const;
1298   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1299   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1300   class DumpConfig {
1301    public:
1302     // overridden to implement coloring of node idx
1303     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1304     virtual void post_dump(outputStream *st) = 0;
1305   };
1306   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1307   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1308   void dump() const; // print node with newline
1309   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1310   void dump(int depth) const;        // Print this node, recursively to depth d
1311   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1312   void dump_comp() const;            // Print this node in compact representation.
1313   // Print this node in compact representation.
1314   void dump_comp(const char* suffix, outputStream *st = tty) const;
1315  private:
1316   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1317   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1318   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1319  public:
1320   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1321   // Print compact per-node info
1322   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1323 
1324   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1325 
1326   // This call defines a class-unique string used to identify class instances
1327   virtual const char *Name() const;
1328 
1329   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1330   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1331 #endif
1332 #ifdef ASSERT
1333   void verify_construction();
1334   bool verify_jvms(const JVMState* jvms) const;
1335 
1336   Node* _debug_orig;                   // Original version of this, if any.
1337   Node*  debug_orig() const            { return _debug_orig; }
1338   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1339   void   dump_orig(outputStream *st, bool print_key = true) const;
1340 
1341   uint64_t _debug_idx;                 // Unique value assigned to every node.
1342   uint64_t debug_idx() const           { return _debug_idx; }
1343   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1344 
1345   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1346   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1347   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1348 
1349   static void init_NodeProperty();
1350 
1351   #if OPTO_DU_ITERATOR_ASSERT
1352   const Node* _last_del;               // The last deleted node.
1353   uint        _del_tick;               // Bumped when a deletion happens..
1354   #endif
1355 #endif
1356 };
1357 
1358 inline bool not_a_node(const Node* n) {
1359   if (n == nullptr)                return true;
1360   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1361   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1362   return false;
1363 }
1364 
1365 //-----------------------------------------------------------------------------
1366 // Iterators over DU info, and associated Node functions.
1367 
1368 #if OPTO_DU_ITERATOR_ASSERT
1369 
1370 // Common code for assertion checking on DU iterators.
1371 class DUIterator_Common {
1372 #ifdef ASSERT
1373  protected:
1374   bool         _vdui;               // cached value of VerifyDUIterators
1375   const Node*  _node;               // the node containing the _out array
1376   uint         _outcnt;             // cached node->_outcnt
1377   uint         _del_tick;           // cached node->_del_tick
1378   Node*        _last;               // last value produced by the iterator
1379 
1380   void sample(const Node* node);    // used by c'tor to set up for verifies
1381   void verify(const Node* node, bool at_end_ok = false);
1382   void verify_resync();
1383   void reset(const DUIterator_Common& that);
1384 
1385 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1386   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1387 #else
1388   #define I_VDUI_ONLY(i,x) { }
1389 #endif //ASSERT
1390 };
1391 
1392 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1393 
1394 // Default DU iterator.  Allows appends onto the out array.
1395 // Allows deletion from the out array only at the current point.
1396 // Usage:
1397 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1398 //    Node* y = x->out(i);
1399 //    ...
1400 //  }
1401 // Compiles in product mode to a unsigned integer index, which indexes
1402 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1403 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1404 // before continuing the loop.  You must delete only the last-produced
1405 // edge.  You must delete only a single copy of the last-produced edge,
1406 // or else you must delete all copies at once (the first time the edge
1407 // is produced by the iterator).
1408 class DUIterator : public DUIterator_Common {
1409   friend class Node;
1410 
1411   // This is the index which provides the product-mode behavior.
1412   // Whatever the product-mode version of the system does to the
1413   // DUI index is done to this index.  All other fields in
1414   // this class are used only for assertion checking.
1415   uint         _idx;
1416 
1417   #ifdef ASSERT
1418   uint         _refresh_tick;    // Records the refresh activity.
1419 
1420   void sample(const Node* node); // Initialize _refresh_tick etc.
1421   void verify(const Node* node, bool at_end_ok = false);
1422   void verify_increment();       // Verify an increment operation.
1423   void verify_resync();          // Verify that we can back up over a deletion.
1424   void verify_finish();          // Verify that the loop terminated properly.
1425   void refresh();                // Resample verification info.
1426   void reset(const DUIterator& that);  // Resample after assignment.
1427   #endif
1428 
1429   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1430     { _idx = 0;                         debug_only(sample(node)); }
1431 
1432  public:
1433   // initialize to garbage; clear _vdui to disable asserts
1434   DUIterator()
1435     { /*initialize to garbage*/         debug_only(_vdui = false); }
1436 
1437   DUIterator(const DUIterator& that)
1438     { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }
1439 
1440   void operator++(int dummy_to_specify_postfix_op)
1441     { _idx++;                           VDUI_ONLY(verify_increment()); }
1442 
1443   void operator--()
1444     { VDUI_ONLY(verify_resync());       --_idx; }
1445 
1446   ~DUIterator()
1447     { VDUI_ONLY(verify_finish()); }
1448 
1449   void operator=(const DUIterator& that)
1450     { _idx = that._idx;                 debug_only(reset(that)); }
1451 };
1452 
1453 DUIterator Node::outs() const
1454   { return DUIterator(this, 0); }
1455 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1456   { I_VDUI_ONLY(i, i.refresh());        return i; }
1457 bool Node::has_out(DUIterator& i) const
1458   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1459 Node*    Node::out(DUIterator& i) const
1460   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1461 
1462 
1463 // Faster DU iterator.  Disallows insertions into the out array.
1464 // Allows deletion from the out array only at the current point.
1465 // Usage:
1466 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1467 //    Node* y = x->fast_out(i);
1468 //    ...
1469 //  }
1470 // Compiles in product mode to raw Node** pointer arithmetic, with
1471 // no reloading of pointers from the original node x.  If you delete,
1472 // you must perform "--i; --imax" just before continuing the loop.
1473 // If you delete multiple copies of the same edge, you must decrement
1474 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1475 class DUIterator_Fast : public DUIterator_Common {
1476   friend class Node;
1477   friend class DUIterator_Last;
1478 
1479   // This is the pointer which provides the product-mode behavior.
1480   // Whatever the product-mode version of the system does to the
1481   // DUI pointer is done to this pointer.  All other fields in
1482   // this class are used only for assertion checking.
1483   Node**       _outp;
1484 
1485   #ifdef ASSERT
1486   void verify(const Node* node, bool at_end_ok = false);
1487   void verify_limit();
1488   void verify_resync();
1489   void verify_relimit(uint n);
1490   void reset(const DUIterator_Fast& that);
1491   #endif
1492 
1493   // Note:  offset must be signed, since -1 is sometimes passed
1494   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1495     { _outp = node->_out + offset;      debug_only(sample(node)); }
1496 
1497  public:
1498   // initialize to garbage; clear _vdui to disable asserts
1499   DUIterator_Fast()
1500     { /*initialize to garbage*/         debug_only(_vdui = false); }
1501 
1502   DUIterator_Fast(const DUIterator_Fast& that)
1503     { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }
1504 
1505   void operator++(int dummy_to_specify_postfix_op)
1506     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1507 
1508   void operator--()
1509     { VDUI_ONLY(verify_resync());       --_outp; }
1510 
1511   void operator-=(uint n)   // applied to the limit only
1512     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1513 
1514   bool operator<(DUIterator_Fast& limit) {
1515     I_VDUI_ONLY(*this, this->verify(_node, true));
1516     I_VDUI_ONLY(limit, limit.verify_limit());
1517     return _outp < limit._outp;
1518   }
1519 
1520   void operator=(const DUIterator_Fast& that)
1521     { _outp = that._outp;               debug_only(reset(that)); }
1522 };
1523 
1524 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1525   // Assign a limit pointer to the reference argument:
1526   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1527   // Return the base pointer:
1528   return DUIterator_Fast(this, 0);
1529 }
1530 Node* Node::fast_out(DUIterator_Fast& i) const {
1531   I_VDUI_ONLY(i, i.verify(this));
1532   return debug_only(i._last=) *i._outp;
1533 }
1534 
1535 
1536 // Faster DU iterator.  Requires each successive edge to be removed.
1537 // Does not allow insertion of any edges.
1538 // Usage:
1539 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1540 //    Node* y = x->last_out(i);
1541 //    ...
1542 //  }
1543 // Compiles in product mode to raw Node** pointer arithmetic, with
1544 // no reloading of pointers from the original node x.
1545 class DUIterator_Last : private DUIterator_Fast {
1546   friend class Node;
1547 
1548   #ifdef ASSERT
1549   void verify(const Node* node, bool at_end_ok = false);
1550   void verify_limit();
1551   void verify_step(uint num_edges);
1552   #endif
1553 
1554   // Note:  offset must be signed, since -1 is sometimes passed
1555   DUIterator_Last(const Node* node, ptrdiff_t offset)
1556     : DUIterator_Fast(node, offset) { }
1557 
1558   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1559   void operator<(int)                              {} // do not use
1560 
1561  public:
1562   DUIterator_Last() { }
1563   // initialize to garbage
1564 
1565   DUIterator_Last(const DUIterator_Last& that) = default;
1566 
1567   void operator--()
1568     { _outp--;              VDUI_ONLY(verify_step(1));  }
1569 
1570   void operator-=(uint n)
1571     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1572 
1573   bool operator>=(DUIterator_Last& limit) {
1574     I_VDUI_ONLY(*this, this->verify(_node, true));
1575     I_VDUI_ONLY(limit, limit.verify_limit());
1576     return _outp >= limit._outp;
1577   }
1578 
1579   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1580 };
1581 
1582 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1583   // Assign a limit pointer to the reference argument:
1584   imin = DUIterator_Last(this, 0);
1585   // Return the initial pointer:
1586   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1587 }
1588 Node* Node::last_out(DUIterator_Last& i) const {
1589   I_VDUI_ONLY(i, i.verify(this));
1590   return debug_only(i._last=) *i._outp;
1591 }
1592 
1593 #endif //OPTO_DU_ITERATOR_ASSERT
1594 
1595 #undef I_VDUI_ONLY
1596 #undef VDUI_ONLY
1597 
1598 // An Iterator that truly follows the iterator pattern.  Doesn't
1599 // support deletion but could be made to.
1600 //
1601 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1602 //     Node* m = i.get();
1603 //
1604 class SimpleDUIterator : public StackObj {
1605  private:
1606   Node* node;
1607   DUIterator_Fast imax;
1608   DUIterator_Fast i;
1609  public:
1610   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1611   bool has_next() { return i < imax; }
1612   void next() { i++; }
1613   Node* get() { return node->fast_out(i); }
1614 };
1615 
1616 
1617 //-----------------------------------------------------------------------------
1618 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1619 // Abstractly provides an infinite array of Node*'s, initialized to null.
1620 // Note that the constructor just zeros things, and since I use Arena
1621 // allocation I do not need a destructor to reclaim storage.
1622 class Node_Array : public AnyObj {
1623   friend class VMStructs;
1624 protected:
1625   Arena* _a;                    // Arena to allocate in
1626   uint   _max;
1627   Node** _nodes;
1628   ReallocMark _nesting;         // Safety checks for arena reallocation
1629 
1630   // Grow array to required capacity
1631   void maybe_grow(uint i) {
1632     if (i >= _max) {
1633       grow(i);
1634     }
1635   }
1636   void grow(uint i);
1637 
1638 public:
1639   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1640     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1641     clear();
1642   }
1643   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1644 
1645   NONCOPYABLE(Node_Array);
1646   Node_Array& operator=(Node_Array&&) = delete;
1647   // Allow move constructor for && (eg. capture return of function)
1648   Node_Array(Node_Array&&) = default;
1649 
1650   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1651   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1652   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1653   Node** adr() { return _nodes; }
1654   // Extend the mapping: index i maps to Node *n.
1655   void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1656   void insert( uint i, Node *n );
1657   void remove( uint i );        // Remove, preserving order
1658   // Clear all entries in _nodes to null but keep storage
1659   void clear() {
1660     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1661   }
1662 
1663   uint max() const { return _max; }
1664   void dump() const;
1665 };
1666 
1667 class Node_List : public Node_Array {
1668   friend class VMStructs;
1669   uint _cnt;
1670 public:
1671   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1672   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1673 
1674   NONCOPYABLE(Node_List);
1675   Node_List& operator=(Node_List&&) = delete;
1676   // Allow move constructor for && (eg. capture return of function)
1677   Node_List(Node_List&&) = default;
1678 
1679   bool contains(const Node* n) const {
1680     for (uint e = 0; e < size(); e++) {
1681       if (at(e) == n) return true;
1682     }
1683     return false;
1684   }
1685   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1686   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1687   void push( Node *b ) { map(_cnt++,b); }
1688   void yank( Node *n );         // Find and remove
1689   Node *pop() { return _nodes[--_cnt]; }
1690   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1691   void copy(const Node_List& from) {
1692     if (from._max > _max) {
1693       grow(from._max);
1694     }
1695     _cnt = from._cnt;
1696     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1697   }
1698 
1699   uint size() const { return _cnt; }
1700   void dump() const;
1701   void dump_simple() const;
1702 };
1703 
1704 // Definition must appear after complete type definition of Node_List
1705 template <typename Callback, typename Check>
1706 void Node::visit_uses(Callback callback, Check is_boundary) const {
1707   ResourceMark rm;
1708   VectorSet visited;
1709   Node_List worklist;
1710 
1711   // The initial worklist consists of the direct uses
1712   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1713     Node* out = fast_out(k);
1714     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1715   }
1716 
1717   while (worklist.size() > 0) {
1718     Node* use = worklist.pop();
1719     // Apply callback on boundary nodes
1720     if (is_boundary(use)) {
1721       callback(use);
1722     } else {
1723       // Not a boundary node, continue search
1724       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1725         Node* out = use->fast_out(k);
1726         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1727       }
1728     }
1729   }
1730 }
1731 
1732 
1733 //------------------------------Unique_Node_List-------------------------------
1734 class Unique_Node_List : public Node_List {
1735   friend class VMStructs;
1736   VectorSet _in_worklist;
1737   uint _clock_index;            // Index in list where to pop from next
1738 public:
1739   Unique_Node_List() : Node_List(), _clock_index(0) {}
1740   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1741 
1742   NONCOPYABLE(Unique_Node_List);
1743   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1744   // Allow move constructor for && (eg. capture return of function)
1745   Unique_Node_List(Unique_Node_List&&) = default;
1746 
1747   void remove( Node *n );
1748   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1749   VectorSet& member_set(){ return _in_worklist; }
1750 
1751   void push(Node* b) {
1752     if( !_in_worklist.test_set(b->_idx) )
1753       Node_List::push(b);
1754   }
1755   void push_non_cfg_inputs_of(const Node* node) {
1756     for (uint i = 1; i < node->req(); i++) {
1757       Node* input = node->in(i);
1758       if (input != nullptr && !input->is_CFG()) {
1759         push(input);
1760       }
1761     }
1762   }
1763 
1764   void push_outputs_of(const Node* node) {
1765     for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1766       Node* output = node->fast_out(i);
1767       push(output);
1768     }
1769   }
1770 
1771   Node *pop() {
1772     if( _clock_index >= size() ) _clock_index = 0;
1773     Node *b = at(_clock_index);
1774     map( _clock_index, Node_List::pop());
1775     if (size() != 0) _clock_index++; // Always start from 0
1776     _in_worklist.remove(b->_idx);
1777     return b;
1778   }
1779   Node *remove(uint i) {
1780     Node *b = Node_List::at(i);
1781     _in_worklist.remove(b->_idx);
1782     map(i,Node_List::pop());
1783     return b;
1784   }
1785   void yank(Node *n) {
1786     _in_worklist.remove(n->_idx);
1787     Node_List::yank(n);
1788   }
1789   void  clear() {
1790     _in_worklist.clear();        // Discards storage but grows automatically
1791     Node_List::clear();
1792     _clock_index = 0;
1793   }
1794   void ensure_empty() {
1795     assert(size() == 0, "must be empty");
1796     clear(); // just in case
1797   }
1798 
1799   // Used after parsing to remove useless nodes before Iterative GVN
1800   void remove_useless_nodes(VectorSet& useful);
1801 
1802   // If the idx of the Nodes change, we must recompute the VectorSet
1803   void recompute_idx_set() {
1804     _in_worklist.clear();
1805     for (uint i = 0; i < size(); i++) {
1806       Node* n = at(i);
1807       _in_worklist.set(n->_idx);
1808     }
1809   }
1810 
1811 #ifdef ASSERT
1812   bool is_subset_of(Unique_Node_List& other) {
1813     for (uint i = 0; i < size(); i++) {
1814       Node* n = at(i);
1815       if (!other.member(n)) {
1816         return false;
1817       }
1818     }
1819     return true;
1820   }
1821 #endif
1822 
1823   bool contains(const Node* n) const {
1824     fatal("use faster member() instead");
1825     return false;
1826   }
1827 
1828 #ifndef PRODUCT
1829   void print_set() const { _in_worklist.print(); }
1830 #endif
1831 };
1832 
1833 // Unique_Mixed_Node_List
1834 // unique: nodes are added only once
1835 // mixed: allow new and old nodes
1836 class Unique_Mixed_Node_List : public ResourceObj {
1837 public:
1838   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1839 
1840   void add(Node* node) {
1841     if (not_a_node(node)) {
1842       return; // Gracefully handle null, -1, 0xabababab, etc.
1843     }
1844     if (_visited_set[node] == nullptr) {
1845       _visited_set.Insert(node, node);
1846       _worklist.push(node);
1847     }
1848   }
1849 
1850   Node* operator[] (uint i) const {
1851     return _worklist[i];
1852   }
1853 
1854   size_t size() {
1855     return _worklist.size();
1856   }
1857 
1858 private:
1859   Dict _visited_set;
1860   Node_List _worklist;
1861 };
1862 
1863 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1864 inline void Compile::record_for_igvn(Node* n) {
1865   _igvn_worklist->push(n);
1866 }
1867 
1868 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1869 inline void Compile::remove_for_igvn(Node* n) {
1870   _igvn_worklist->remove(n);
1871 }
1872 
1873 //------------------------------Node_Stack-------------------------------------
1874 class Node_Stack {
1875   friend class VMStructs;
1876 protected:
1877   struct INode {
1878     Node *node; // Processed node
1879     uint  indx; // Index of next node's child
1880   };
1881   INode *_inode_top; // tos, stack grows up
1882   INode *_inode_max; // End of _inodes == _inodes + _max
1883   INode *_inodes;    // Array storage for the stack
1884   Arena *_a;         // Arena to allocate in
1885   ReallocMark _nesting; // Safety checks for arena reallocation
1886   void grow();
1887 public:
1888   Node_Stack(int size) {
1889     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1890     _a = Thread::current()->resource_area();
1891     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1892     _inode_max = _inodes + max;
1893     _inode_top = _inodes - 1; // stack is empty
1894   }
1895 
1896   Node_Stack(Arena *a, int size) : _a(a) {
1897     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1898     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1899     _inode_max = _inodes + max;
1900     _inode_top = _inodes - 1; // stack is empty
1901   }
1902 
1903   void pop() {
1904     assert(_inode_top >= _inodes, "node stack underflow");
1905     --_inode_top;
1906   }
1907   void push(Node *n, uint i) {
1908     ++_inode_top;
1909     grow();
1910     INode *top = _inode_top; // optimization
1911     top->node = n;
1912     top->indx = i;
1913   }
1914   Node *node() const {
1915     return _inode_top->node;
1916   }
1917   Node* node_at(uint i) const {
1918     assert(_inodes + i <= _inode_top, "in range");
1919     return _inodes[i].node;
1920   }
1921   uint index() const {
1922     return _inode_top->indx;
1923   }
1924   uint index_at(uint i) const {
1925     assert(_inodes + i <= _inode_top, "in range");
1926     return _inodes[i].indx;
1927   }
1928   void set_node(Node *n) {
1929     _inode_top->node = n;
1930   }
1931   void set_index(uint i) {
1932     _inode_top->indx = i;
1933   }
1934   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1935   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1936   bool is_nonempty() const { return (_inode_top >= _inodes); }
1937   bool is_empty() const { return (_inode_top < _inodes); }
1938   void clear() { _inode_top = _inodes - 1; } // retain storage
1939 
1940   // Node_Stack is used to map nodes.
1941   Node* find(uint idx) const;
1942 
1943   NONCOPYABLE(Node_Stack);
1944 };
1945 
1946 
1947 //-----------------------------Node_Notes--------------------------------------
1948 // Debugging or profiling annotations loosely and sparsely associated
1949 // with some nodes.  See Compile::node_notes_at for the accessor.
1950 class Node_Notes {
1951   friend class VMStructs;
1952   JVMState* _jvms;
1953 
1954 public:
1955   Node_Notes(JVMState* jvms = nullptr) {
1956     _jvms = jvms;
1957   }
1958 
1959   JVMState* jvms()            { return _jvms; }
1960   void  set_jvms(JVMState* x) {        _jvms = x; }
1961 
1962   // True if there is nothing here.
1963   bool is_clear() {
1964     return (_jvms == nullptr);
1965   }
1966 
1967   // Make there be nothing here.
1968   void clear() {
1969     _jvms = nullptr;
1970   }
1971 
1972   // Make a new, clean node notes.
1973   static Node_Notes* make(Compile* C) {
1974     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1975     nn->clear();
1976     return nn;
1977   }
1978 
1979   Node_Notes* clone(Compile* C) {
1980     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1981     (*nn) = (*this);
1982     return nn;
1983   }
1984 
1985   // Absorb any information from source.
1986   bool update_from(Node_Notes* source) {
1987     bool changed = false;
1988     if (source != nullptr) {
1989       if (source->jvms() != nullptr) {
1990         set_jvms(source->jvms());
1991         changed = true;
1992       }
1993     }
1994     return changed;
1995   }
1996 };
1997 
1998 // Inlined accessors for Compile::node_nodes that require the preceding class:
1999 inline Node_Notes*
2000 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2001                            int idx, bool can_grow) {
2002   assert(idx >= 0, "oob");
2003   int block_idx = (idx >> _log2_node_notes_block_size);
2004   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2005   if (grow_by >= 0) {
2006     if (!can_grow) return nullptr;
2007     grow_node_notes(arr, grow_by + 1);
2008   }
2009   if (arr == nullptr) return nullptr;
2010   // (Every element of arr is a sub-array of length _node_notes_block_size.)
2011   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2012 }
2013 
2014 inline bool
2015 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2016   if (value == nullptr || value->is_clear())
2017     return false;  // nothing to write => write nothing
2018   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2019   assert(loc != nullptr, "");
2020   return loc->update_from(value);
2021 }
2022 
2023 
2024 //------------------------------TypeNode---------------------------------------
2025 // Node with a Type constant.
2026 class TypeNode : public Node {
2027 protected:
2028   virtual uint hash() const;    // Check the type
2029   virtual bool cmp( const Node &n ) const;
2030   virtual uint size_of() const; // Size is bigger
2031   const Type* const _type;
2032 public:
2033   void set_type(const Type* t) {
2034     assert(t != nullptr, "sanity");
2035     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2036     *(const Type**)&_type = t;   // cast away const-ness
2037     // If this node is in the hash table, make sure it doesn't need a rehash.
2038     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2039   }
2040   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2041   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2042     init_class_id(Class_Type);
2043   }
2044   virtual const Type* Value(PhaseGVN* phase) const;
2045   virtual const Type *bottom_type() const;
2046   virtual       uint  ideal_reg() const;
2047 #ifndef PRODUCT
2048   virtual void dump_spec(outputStream *st) const;
2049   virtual void dump_compact_spec(outputStream *st) const;
2050 #endif
2051 };
2052 
2053 #include "opto/opcodes.hpp"
2054 
2055 #define Op_IL(op) \
2056   inline int Op_ ## op(BasicType bt) { \
2057   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2058   if (bt == T_INT) { \
2059     return Op_## op ## I; \
2060   } \
2061   return Op_## op ## L; \
2062 }
2063 
2064 Op_IL(Add)
2065 Op_IL(Sub)
2066 Op_IL(Mul)
2067 Op_IL(URShift)
2068 Op_IL(LShift)
2069 Op_IL(Xor)
2070 Op_IL(Cmp)
2071 
2072 inline int Op_ConIL(BasicType bt) {
2073   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2074   if (bt == T_INT) {
2075     return Op_ConI;
2076   }
2077   return Op_ConL;
2078 }
2079 
2080 inline int Op_Cmp_unsigned(BasicType bt) {
2081   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2082   if (bt == T_INT) {
2083     return Op_CmpU;
2084   }
2085   return Op_CmpUL;
2086 }
2087 
2088 inline int Op_Cast(BasicType bt) {
2089   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2090   if (bt == T_INT) {
2091     return Op_CastII;
2092   }
2093   return Op_CastLL;
2094 }
2095 
2096 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2097   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2098   if (bt == T_INT) {
2099     if (is_unsigned) {
2100       return Op_UDivI;
2101     } else {
2102       return Op_DivI;
2103     }
2104   }
2105   if (is_unsigned) {
2106     return Op_UDivL;
2107   } else {
2108     return Op_DivL;
2109   }
2110 }
2111 
2112 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2113   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2114   if (bt == T_INT) {
2115     if (is_unsigned) {
2116       return Op_UDivModI;
2117     } else {
2118       return Op_DivModI;
2119     }
2120   }
2121   if (is_unsigned) {
2122     return Op_UDivModL;
2123   } else {
2124     return Op_DivModL;
2125   }
2126 }
2127 
2128 #endif // SHARE_OPTO_NODE_HPP