1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_NODE_HPP
  26 #define SHARE_OPTO_NODE_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/type.hpp"
  31 #include "utilities/copy.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 class AbstractLockNode;
  39 class AddNode;
  40 class AddPNode;
  41 class AliasInfo;
  42 class AllocateArrayNode;
  43 class AllocateNode;
  44 class ArrayCopyNode;
  45 class BaseCountedLoopNode;
  46 class BaseCountedLoopEndNode;
  47 class BlackholeNode;
  48 class Block;
  49 class BoolNode;
  50 class BoxLockNode;
  51 class CMoveNode;
  52 class CallDynamicJavaNode;
  53 class CallJavaNode;
  54 class CallLeafNode;
  55 class CallLeafNoFPNode;
  56 class CallNode;
  57 class CallRuntimeNode;
  58 class CallStaticJavaNode;
  59 class CastFFNode;
  60 class CastDDNode;
  61 class CastVVNode;
  62 class CastIINode;
  63 class CastLLNode;
  64 class CatchNode;
  65 class CatchProjNode;
  66 class CheckCastPPNode;
  67 class ClearArrayNode;
  68 class CmpNode;
  69 class CodeBuffer;
  70 class ConstraintCastNode;
  71 class ConNode;
  72 class ConINode;
  73 class ConvertNode;
  74 class CompareAndSwapNode;
  75 class CompareAndExchangeNode;
  76 class CountedLoopNode;
  77 class CountedLoopEndNode;
  78 class DecodeNarrowPtrNode;
  79 class DecodeNNode;
  80 class DecodeNKlassNode;
  81 class EncodeNarrowPtrNode;
  82 class EncodePNode;
  83 class EncodePKlassNode;
  84 class FastLockNode;
  85 class FastUnlockNode;
  86 class FlatArrayCheckNode;
  87 class HaltNode;
  88 class IfNode;
  89 class IfProjNode;
  90 class IfFalseNode;
  91 class IfTrueNode;
  92 class InitializeNode;
  93 class JVMState;
  94 class JumpNode;
  95 class JumpProjNode;
  96 class LoadNode;
  97 class LoadStoreNode;
  98 class LoadStoreConditionalNode;
  99 class LockNode;
 100 class LongCountedLoopNode;
 101 class LongCountedLoopEndNode;
 102 class LoopNode;
 103 class LShiftNode;
 104 class MachBranchNode;
 105 class MachCallDynamicJavaNode;
 106 class MachCallJavaNode;
 107 class MachCallLeafNode;
 108 class MachCallNode;
 109 class MachCallRuntimeNode;
 110 class MachCallStaticJavaNode;
 111 class MachConstantBaseNode;
 112 class MachConstantNode;
 113 class MachGotoNode;
 114 class MachIfNode;
 115 class MachJumpNode;
 116 class MachNode;
 117 class MachNullCheckNode;
 118 class MachProjNode;
 119 class MachPrologNode;
 120 class MachReturnNode;
 121 class MachSafePointNode;
 122 class MachSpillCopyNode;
 123 class MachTempNode;
 124 class MachMergeNode;
 125 class MachMemBarNode;
 126 class MachVEPNode;
 127 class Matcher;
 128 class MemBarNode;
 129 class MemBarStoreStoreNode;
 130 class MemNode;
 131 class MergeMemNode;
 132 class MoveNode;
 133 class MulNode;
 134 class MultiNode;
 135 class MultiBranchNode;
 136 class NegNode;
 137 class NegVNode;
 138 class NeverBranchNode;
 139 class Opaque1Node;
 140 class OuterStripMinedLoopNode;
 141 class OuterStripMinedLoopEndNode;
 142 class Node;
 143 class Node_Array;
 144 class Node_List;
 145 class Node_Stack;
 146 class OopMap;
 147 class ParmNode;
 148 class ParsePredicateNode;
 149 class PCTableNode;
 150 class PhaseCCP;
 151 class PhaseGVN;
 152 class PhaseIterGVN;
 153 class PhaseRegAlloc;
 154 class PhaseTransform;
 155 class PhaseValues;
 156 class PhiNode;
 157 class Pipeline;
 158 class PopulateIndexNode;
 159 class ProjNode;
 160 class RangeCheckNode;
 161 class ReductionNode;
 162 class RegMask;
 163 class RegionNode;
 164 class RootNode;
 165 class SafePointNode;
 166 class SafePointScalarObjectNode;
 167 class SafePointScalarMergeNode;
 168 class StartNode;
 169 class State;
 170 class StoreNode;
 171 class SubNode;
 172 class SubTypeCheckNode;
 173 class Type;
 174 class TypeNode;
 175 class UnlockNode;
 176 class InlineTypeNode;
 177 class UnorderedReductionNode;
 178 class VectorNode;
 179 class LoadVectorNode;
 180 class LoadVectorMaskedNode;
 181 class StoreVectorMaskedNode;
 182 class LoadVectorGatherNode;
 183 class StoreVectorNode;
 184 class StoreVectorScatterNode;
 185 class VerifyVectorAlignmentNode;
 186 class VectorMaskCmpNode;
 187 class VectorUnboxNode;
 188 class VectorSet;
 189 class VectorReinterpretNode;
 190 class ShiftVNode;
 191 class ExpandVNode;
 192 class CompressVNode;
 193 class CompressMNode;
 194 
 195 
 196 #ifndef OPTO_DU_ITERATOR_ASSERT
 197 #ifdef ASSERT
 198 #define OPTO_DU_ITERATOR_ASSERT 1
 199 #else
 200 #define OPTO_DU_ITERATOR_ASSERT 0
 201 #endif
 202 #endif //OPTO_DU_ITERATOR_ASSERT
 203 
 204 #if OPTO_DU_ITERATOR_ASSERT
 205 class DUIterator;
 206 class DUIterator_Fast;
 207 class DUIterator_Last;
 208 #else
 209 typedef uint   DUIterator;
 210 typedef Node** DUIterator_Fast;
 211 typedef Node** DUIterator_Last;
 212 #endif
 213 
 214 // Node Sentinel
 215 #define NodeSentinel (Node*)-1
 216 
 217 // Unknown count frequency
 218 #define COUNT_UNKNOWN (-1.0f)
 219 
 220 //------------------------------Node-------------------------------------------
 221 // Nodes define actions in the program.  They create values, which have types.
 222 // They are both vertices in a directed graph and program primitives.  Nodes
 223 // are labeled; the label is the "opcode", the primitive function in the lambda
 224 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 225 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 226 // the Node's function.  These inputs also define a Type equation for the Node.
 227 // Solving these Type equations amounts to doing dataflow analysis.
 228 // Control and data are uniformly represented in the graph.  Finally, Nodes
 229 // have a unique dense integer index which is used to index into side arrays
 230 // whenever I have phase-specific information.
 231 
 232 class Node {
 233   friend class VMStructs;
 234 
 235   // Lots of restrictions on cloning Nodes
 236   NONCOPYABLE(Node);
 237 
 238 public:
 239   friend class Compile;
 240   #if OPTO_DU_ITERATOR_ASSERT
 241   friend class DUIterator_Common;
 242   friend class DUIterator;
 243   friend class DUIterator_Fast;
 244   friend class DUIterator_Last;
 245   #endif
 246 
 247   // Because Nodes come and go, I define an Arena of Node structures to pull
 248   // from.  This should allow fast access to node creation & deletion.  This
 249   // field is a local cache of a value defined in some "program fragment" for
 250   // which these Nodes are just a part of.
 251 
 252   inline void* operator new(size_t x) throw() {
 253     Compile* C = Compile::current();
 254     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 255     return (void*)n;
 256   }
 257 
 258   // Delete is a NOP
 259   void operator delete( void *ptr ) {}
 260   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 261   void destruct(PhaseValues* phase);
 262 
 263   // Create a new Node.  Required is the number is of inputs required for
 264   // semantic correctness.
 265   Node( uint required );
 266 
 267   // Create a new Node with given input edges.
 268   // This version requires use of the "edge-count" new.
 269   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 270   Node( Node *n0 );
 271   Node( Node *n0, Node *n1 );
 272   Node( Node *n0, Node *n1, Node *n2 );
 273   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 274   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 275   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 276   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 277             Node *n4, Node *n5, Node *n6 );
 278 
 279   // Clone an inherited Node given only the base Node type.
 280   Node* clone() const;
 281 
 282   // Clone a Node, immediately supplying one or two new edges.
 283   // The first and second arguments, if non-null, replace in(1) and in(2),
 284   // respectively.
 285   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 286     Node* nn = clone();
 287     if (in1 != nullptr)  nn->set_req(1, in1);
 288     if (in2 != nullptr)  nn->set_req(2, in2);
 289     return nn;
 290   }
 291 
 292 private:
 293   // Shared setup for the above constructors.
 294   // Handles all interactions with Compile::current.
 295   // Puts initial values in all Node fields except _idx.
 296   // Returns the initial value for _idx, which cannot
 297   // be initialized by assignment.
 298   inline int Init(int req);
 299 
 300 //----------------- input edge handling
 301 protected:
 302   friend class PhaseCFG;        // Access to address of _in array elements
 303   Node **_in;                   // Array of use-def references to Nodes
 304   Node **_out;                  // Array of def-use references to Nodes
 305 
 306   // Input edges are split into two categories.  Required edges are required
 307   // for semantic correctness; order is important and nulls are allowed.
 308   // Precedence edges are used to help determine execution order and are
 309   // added, e.g., for scheduling purposes.  They are unordered and not
 310   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 311   // are required, from _cnt to _max-1 are precedence edges.
 312   node_idx_t _cnt;              // Total number of required Node inputs.
 313 
 314   node_idx_t _max;              // Actual length of input array.
 315 
 316   // Output edges are an unordered list of def-use edges which exactly
 317   // correspond to required input edges which point from other nodes
 318   // to this one.  Thus the count of the output edges is the number of
 319   // users of this node.
 320   node_idx_t _outcnt;           // Total number of Node outputs.
 321 
 322   node_idx_t _outmax;           // Actual length of output array.
 323 
 324   // Grow the actual input array to the next larger power-of-2 bigger than len.
 325   void grow( uint len );
 326   // Grow the output array to the next larger power-of-2 bigger than len.
 327   void out_grow( uint len );
 328 
 329  public:
 330   // Each Node is assigned a unique small/dense number.  This number is used
 331   // to index into auxiliary arrays of data and bit vectors.
 332   // The field _idx is declared constant to defend against inadvertent assignments,
 333   // since it is used by clients as a naked field. However, the field's value can be
 334   // changed using the set_idx() method.
 335   //
 336   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 337   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 338   // preserved in _parse_idx.
 339   const node_idx_t _idx;
 340   DEBUG_ONLY(const node_idx_t _parse_idx;)
 341   // IGV node identifier. Two nodes, possibly in different compilation phases,
 342   // have the same IGV identifier if (and only if) they are the very same node
 343   // (same memory address) or one is "derived" from the other (by e.g.
 344   // renumbering or matching). This identifier makes it possible to follow the
 345   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 346   NOT_PRODUCT(node_idx_t _igv_idx;)
 347 
 348   // Get the (read-only) number of input edges
 349   uint req() const { return _cnt; }
 350   uint len() const { return _max; }
 351   // Get the (read-only) number of output edges
 352   uint outcnt() const { return _outcnt; }
 353 
 354 #if OPTO_DU_ITERATOR_ASSERT
 355   // Iterate over the out-edges of this node.  Deletions are illegal.
 356   inline DUIterator outs() const;
 357   // Use this when the out array might have changed to suppress asserts.
 358   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 359   // Does the node have an out at this position?  (Used for iteration.)
 360   inline bool has_out(DUIterator& i) const;
 361   inline Node*    out(DUIterator& i) const;
 362   // Iterate over the out-edges of this node.  All changes are illegal.
 363   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 364   inline Node*    fast_out(DUIterator_Fast& i) const;
 365   // Iterate over the out-edges of this node, deleting one at a time.
 366   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 367   inline Node*    last_out(DUIterator_Last& i) const;
 368   // The inline bodies of all these methods are after the iterator definitions.
 369 #else
 370   // Iterate over the out-edges of this node.  Deletions are illegal.
 371   // This iteration uses integral indexes, to decouple from array reallocations.
 372   DUIterator outs() const  { return 0; }
 373   // Use this when the out array might have changed to suppress asserts.
 374   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 375 
 376   // Reference to the i'th output Node.  Error if out of bounds.
 377   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 378   // Does the node have an out at this position?  (Used for iteration.)
 379   bool has_out(DUIterator i) const { return i < _outcnt; }
 380 
 381   // Iterate over the out-edges of this node.  All changes are illegal.
 382   // This iteration uses a pointer internal to the out array.
 383   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 384     Node** out = _out;
 385     // Assign a limit pointer to the reference argument:
 386     max = out + (ptrdiff_t)_outcnt;
 387     // Return the base pointer:
 388     return out;
 389   }
 390   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 391   // Iterate over the out-edges of this node, deleting one at a time.
 392   // This iteration uses a pointer internal to the out array.
 393   DUIterator_Last last_outs(DUIterator_Last& min) const {
 394     Node** out = _out;
 395     // Assign a limit pointer to the reference argument:
 396     min = out;
 397     // Return the pointer to the start of the iteration:
 398     return out + (ptrdiff_t)_outcnt - 1;
 399   }
 400   Node*    last_out(DUIterator_Last i) const  { return *i; }
 401 #endif
 402 
 403   // Reference to the i'th input Node.  Error if out of bounds.
 404   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 405   // Reference to the i'th input Node.  null if out of bounds.
 406   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 407   // Reference to the i'th output Node.  Error if out of bounds.
 408   // Use this accessor sparingly.  We are going trying to use iterators instead.
 409   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 410   // Return the unique out edge.
 411   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 412   // Delete out edge at position 'i' by moving last out edge to position 'i'
 413   void  raw_del_out(uint i) {
 414     assert(i < _outcnt,"oob");
 415     assert(_outcnt > 0,"oob");
 416     #if OPTO_DU_ITERATOR_ASSERT
 417     // Record that a change happened here.
 418     debug_only(_last_del = _out[i]; ++_del_tick);
 419     #endif
 420     _out[i] = _out[--_outcnt];
 421     // Smash the old edge so it can't be used accidentally.
 422     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 423   }
 424 
 425 #ifdef ASSERT
 426   bool is_dead() const;
 427   static bool is_not_dead(const Node* n);
 428   bool is_reachable_from_root() const;
 429 #endif
 430   // Check whether node has become unreachable
 431   bool is_unreachable(PhaseIterGVN &igvn) const;
 432 
 433   // Set a required input edge, also updates corresponding output edge
 434   void add_req( Node *n ); // Append a NEW required input
 435   void add_req( Node *n0, Node *n1 ) {
 436     add_req(n0); add_req(n1); }
 437   void add_req( Node *n0, Node *n1, Node *n2 ) {
 438     add_req(n0); add_req(n1); add_req(n2); }
 439   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 440   void del_req( uint idx ); // Delete required edge & compact
 441   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 442   void ins_req( uint i, Node *n ); // Insert a NEW required input
 443   void set_req( uint i, Node *n ) {
 444     assert( is_not_dead(n), "can not use dead node");
 445     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 446     assert( !VerifyHashTableKeys || _hash_lock == 0,
 447             "remove node from hash table before modifying it");
 448     Node** p = &_in[i];    // cache this._in, across the del_out call
 449     if (*p != nullptr)  (*p)->del_out((Node *)this);
 450     (*p) = n;
 451     if (n != nullptr)      n->add_out((Node *)this);
 452     Compile::current()->record_modified_node(this);
 453   }
 454   // Light version of set_req() to init inputs after node creation.
 455   void init_req( uint i, Node *n ) {
 456     assert( (i == 0 && this == n) ||
 457             is_not_dead(n), "can not use dead node");
 458     assert( i < _cnt, "oob");
 459     assert( !VerifyHashTableKeys || _hash_lock == 0,
 460             "remove node from hash table before modifying it");
 461     assert( _in[i] == nullptr, "sanity");
 462     _in[i] = n;
 463     if (n != nullptr)      n->add_out((Node *)this);
 464     Compile::current()->record_modified_node(this);
 465   }
 466   // Find first occurrence of n among my edges:
 467   int find_edge(Node* n);
 468   int find_prec_edge(Node* n) {
 469     for (uint i = req(); i < len(); i++) {
 470       if (_in[i] == n) return i;
 471       if (_in[i] == nullptr) {
 472         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 473         break;
 474       }
 475     }
 476     return -1;
 477   }
 478   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 479   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 480   // null out all inputs to eliminate incoming Def-Use edges.
 481   void disconnect_inputs(Compile* C);
 482 
 483   // Quickly, return true if and only if I am Compile::current()->top().
 484   bool is_top() const {
 485     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 486     return (_out == nullptr);
 487   }
 488   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 489   void setup_is_top();
 490 
 491   // Strip away casting.  (It is depth-limited.)
 492   Node* uncast(bool keep_deps = false) const;
 493   // Return whether two Nodes are equivalent, after stripping casting.
 494   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 495     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 496   }
 497 
 498   // Find out of current node that matches opcode.
 499   Node* find_out_with(int opcode);
 500   // Return true if the current node has an out that matches opcode.
 501   bool has_out_with(int opcode);
 502   // Return true if the current node has an out that matches any of the opcodes.
 503   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 504 
 505 private:
 506   static Node* uncast_helper(const Node* n, bool keep_deps);
 507 
 508   // Add an output edge to the end of the list
 509   void add_out( Node *n ) {
 510     if (is_top())  return;
 511     if( _outcnt == _outmax ) out_grow(_outcnt);
 512     _out[_outcnt++] = n;
 513   }
 514   // Delete an output edge
 515   void del_out( Node *n ) {
 516     if (is_top())  return;
 517     Node** outp = &_out[_outcnt];
 518     // Find and remove n
 519     do {
 520       assert(outp > _out, "Missing Def-Use edge");
 521     } while (*--outp != n);
 522     *outp = _out[--_outcnt];
 523     // Smash the old edge so it can't be used accidentally.
 524     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 525     // Record that a change happened here.
 526     #if OPTO_DU_ITERATOR_ASSERT
 527     debug_only(_last_del = n; ++_del_tick);
 528     #endif
 529   }
 530   // Close gap after removing edge.
 531   void close_prec_gap_at(uint gap) {
 532     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 533     uint i = gap;
 534     Node *last = nullptr;
 535     for (; i < _max-1; ++i) {
 536       Node *next = _in[i+1];
 537       if (next == nullptr) break;
 538       last = next;
 539     }
 540     _in[gap] = last;  // Move last slot to empty one.
 541     _in[i] = nullptr; // null out last slot.
 542   }
 543 
 544 public:
 545   // Globally replace this node by a given new node, updating all uses.
 546   void replace_by(Node* new_node);
 547   // Globally replace this node by a given new node, updating all uses
 548   // and cutting input edges of old node.
 549   void subsume_by(Node* new_node, Compile* c) {
 550     replace_by(new_node);
 551     disconnect_inputs(c);
 552   }
 553   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 554   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 555   // Find the one non-null required input.  RegionNode only
 556   Node *nonnull_req() const;
 557   // Add or remove precedence edges
 558   void add_prec( Node *n );
 559   void rm_prec( uint i );
 560 
 561   // Note: prec(i) will not necessarily point to n if edge already exists.
 562   void set_prec( uint i, Node *n ) {
 563     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 564     assert(is_not_dead(n), "can not use dead node");
 565     assert(i >= _cnt, "not a precedence edge");
 566     // Avoid spec violation: duplicated prec edge.
 567     if (_in[i] == n) return;
 568     if (n == nullptr || find_prec_edge(n) != -1) {
 569       rm_prec(i);
 570       return;
 571     }
 572     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 573     _in[i] = n;
 574     n->add_out((Node *)this);
 575     Compile::current()->record_modified_node(this);
 576   }
 577 
 578   // Set this node's index, used by cisc_version to replace current node
 579   void set_idx(uint new_idx) {
 580     const node_idx_t* ref = &_idx;
 581     *(node_idx_t*)ref = new_idx;
 582   }
 583   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 584   void swap_edges(uint i1, uint i2) {
 585     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 586     // Def-Use info is unchanged
 587     Node* n1 = in(i1);
 588     Node* n2 = in(i2);
 589     _in[i1] = n2;
 590     _in[i2] = n1;
 591     // If this node is in the hash table, make sure it doesn't need a rehash.
 592     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 593     // Flip swapped edges flag.
 594     if (has_swapped_edges()) {
 595       remove_flag(Node::Flag_has_swapped_edges);
 596     } else {
 597       add_flag(Node::Flag_has_swapped_edges);
 598     }
 599   }
 600 
 601   // Iterators over input Nodes for a Node X are written as:
 602   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 603   // NOTE: Required edges can contain embedded null pointers.
 604 
 605 //----------------- Other Node Properties
 606 
 607   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 608   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 609   //
 610   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 611   // the type of the node the ID represents; another subset of an ID's bits are reserved
 612   // for the superclasses of the node represented by the ID.
 613   //
 614   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 615   // returns false. A.is_A() returns true.
 616   //
 617   // If two classes, A and B, have the same superclass, a different bit of A's class id
 618   // is reserved for A's type than for B's type. That bit is specified by the third
 619   // parameter in the macro DEFINE_CLASS_ID.
 620   //
 621   // By convention, classes with deeper hierarchy are declared first. Moreover,
 622   // classes with the same hierarchy depth are sorted by usage frequency.
 623   //
 624   // The query method masks the bits to cut off bits of subclasses and then compares
 625   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 626   //
 627   //  Class_MachCall=30, ClassMask_MachCall=31
 628   // 12               8               4               0
 629   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 630   //                                  |   |   |   |
 631   //                                  |   |   |   Bit_Mach=2
 632   //                                  |   |   Bit_MachReturn=4
 633   //                                  |   Bit_MachSafePoint=8
 634   //                                  Bit_MachCall=16
 635   //
 636   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 637   // 12               8               4               0
 638   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 639   //                              |   |   |
 640   //                              |   |   Bit_Region=8
 641   //                              |   Bit_Loop=16
 642   //                              Bit_CountedLoop=32
 643 
 644   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 645   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 646   Class_##cl = Class_##supcl + Bit_##cl , \
 647   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 648 
 649   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 650   // so that its values fit into 32 bits.
 651   enum NodeClasses {
 652     Bit_Node   = 0x00000000,
 653     Class_Node = 0x00000000,
 654     ClassMask_Node = 0xFFFFFFFF,
 655 
 656     DEFINE_CLASS_ID(Multi, Node, 0)
 657       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 658         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 659           DEFINE_CLASS_ID(CallJava,         Call, 0)
 660             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 661             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 662           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 663             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 664               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 665           DEFINE_CLASS_ID(Allocate,         Call, 2)
 666             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 667           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 668             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 669             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 670           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 671       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 672         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 673           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 674           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 675         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 676           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 677             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 678             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 679           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 680           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 681           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 682         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 683       DEFINE_CLASS_ID(Start,       Multi, 2)
 684       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 685         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 686         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 687         DEFINE_CLASS_ID(Blackhole,        MemBar, 2)
 688 
 689     DEFINE_CLASS_ID(Mach,  Node, 1)
 690       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 691         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 692           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 693             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 694               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 695               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 696             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 697               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 698       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 699         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 700         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 701         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 702       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 703       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 704       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 705       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 706         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 707       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 708       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 709       DEFINE_CLASS_ID(MachProlog,       Mach, 8)
 710       DEFINE_CLASS_ID(MachVEP,          Mach, 9)
 711 
 712     DEFINE_CLASS_ID(Type,  Node, 2)
 713       DEFINE_CLASS_ID(Phi,   Type, 0)
 714       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 715         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 716         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 717         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 718         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 719         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 720         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 721       DEFINE_CLASS_ID(CMove, Type, 3)
 722       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 723       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 724         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 725         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 726       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 727         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 728         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 729       DEFINE_CLASS_ID(Vector, Type, 7)
 730         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 731         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 732         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 733         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 734         DEFINE_CLASS_ID(CompressV, Vector, 4)
 735         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 736         DEFINE_CLASS_ID(CompressM, Vector, 6)
 737         DEFINE_CLASS_ID(Reduction, Vector, 9)
 738           DEFINE_CLASS_ID(UnorderedReduction, Reduction, 0)
 739         DEFINE_CLASS_ID(NegV, Vector, 8)
 740       DEFINE_CLASS_ID(InlineType, Type, 8)
 741       DEFINE_CLASS_ID(Con, Type, 9)
 742           DEFINE_CLASS_ID(ConI, Con, 0)
 743       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
 744       DEFINE_CLASS_ID(Convert, Type, 11)
 745 
 746 
 747     DEFINE_CLASS_ID(Proj,  Node, 3)
 748       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 749       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 750       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 751         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 752         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 753       DEFINE_CLASS_ID(Parm,      Proj, 4)
 754       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 755 
 756     DEFINE_CLASS_ID(Mem, Node, 4)
 757       DEFINE_CLASS_ID(Load, Mem, 0)
 758         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 759           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 760           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 761           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 762       DEFINE_CLASS_ID(Store, Mem, 1)
 763         DEFINE_CLASS_ID(StoreVector, Store, 0)
 764           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 765           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 766           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 767       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 768         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 769           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 770         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 771 
 772     DEFINE_CLASS_ID(Region, Node, 5)
 773       DEFINE_CLASS_ID(Loop, Region, 0)
 774         DEFINE_CLASS_ID(Root,                Loop, 0)
 775         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 776           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 777           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 778         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 779 
 780     DEFINE_CLASS_ID(Sub,   Node, 6)
 781       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 782         DEFINE_CLASS_ID(FastLock,       Cmp, 0)
 783         DEFINE_CLASS_ID(FastUnlock,     Cmp, 1)
 784         DEFINE_CLASS_ID(SubTypeCheck,   Cmp, 2)
 785         DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
 786 
 787     DEFINE_CLASS_ID(MergeMem, Node, 7)
 788     DEFINE_CLASS_ID(Bool,     Node, 8)
 789     DEFINE_CLASS_ID(AddP,     Node, 9)
 790     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 791     DEFINE_CLASS_ID(Add,      Node, 11)
 792     DEFINE_CLASS_ID(Mul,      Node, 12)
 793     DEFINE_CLASS_ID(ClearArray, Node, 14)
 794     DEFINE_CLASS_ID(Halt,     Node, 15)
 795     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 796     DEFINE_CLASS_ID(Move,     Node, 17)
 797     DEFINE_CLASS_ID(LShift,   Node, 18)
 798     DEFINE_CLASS_ID(Neg,      Node, 19)
 799 
 800     _max_classes  = ClassMask_Neg
 801   };
 802   #undef DEFINE_CLASS_ID
 803 
 804   // Flags are sorted by usage frequency.
 805   enum NodeFlags {
 806     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 807     Flag_rematerialize               = 1 << 1,
 808     Flag_needs_anti_dependence_check = 1 << 2,
 809     Flag_is_macro                    = 1 << 3,
 810     Flag_is_Con                      = 1 << 4,
 811     Flag_is_cisc_alternate           = 1 << 5,
 812     Flag_is_dead_loop_safe           = 1 << 6,
 813     Flag_may_be_short_branch         = 1 << 7,
 814     Flag_avoid_back_to_back_before   = 1 << 8,
 815     Flag_avoid_back_to_back_after    = 1 << 9,
 816     Flag_has_call                    = 1 << 10,
 817     Flag_has_swapped_edges           = 1 << 11,
 818     Flag_is_scheduled                = 1 << 12,
 819     Flag_is_expensive                = 1 << 13,
 820     Flag_is_predicated_vector        = 1 << 14,
 821     Flag_for_post_loop_opts_igvn     = 1 << 15,
 822     Flag_is_removed_by_peephole      = 1 << 16,
 823     Flag_is_predicated_using_blend   = 1 << 17,
 824     _last_flag                       = Flag_is_predicated_using_blend
 825   };
 826 
 827   class PD;
 828 
 829 private:
 830   juint _class_id;
 831   juint _flags;
 832 
 833   static juint max_flags();
 834 
 835 protected:
 836   // These methods should be called from constructors only.
 837   void init_class_id(juint c) {
 838     _class_id = c; // cast out const
 839   }
 840   void init_flags(uint fl) {
 841     assert(fl <= max_flags(), "invalid node flag");
 842     _flags |= fl;
 843   }
 844   void clear_flag(uint fl) {
 845     assert(fl <= max_flags(), "invalid node flag");
 846     _flags &= ~fl;
 847   }
 848 
 849 public:
 850   juint class_id() const { return _class_id; }
 851 
 852   juint flags() const { return _flags; }
 853 
 854   void add_flag(juint fl) { init_flags(fl); }
 855 
 856   void remove_flag(juint fl) { clear_flag(fl); }
 857 
 858   // Return a dense integer opcode number
 859   virtual int Opcode() const;
 860 
 861   // Virtual inherited Node size
 862   virtual uint size_of() const;
 863 
 864   // Other interesting Node properties
 865   #define DEFINE_CLASS_QUERY(type)                           \
 866   bool is_##type() const {                                   \
 867     return ((_class_id & ClassMask_##type) == Class_##type); \
 868   }                                                          \
 869   type##Node *as_##type() const {                            \
 870     assert(is_##type(), "invalid node class: %s", Name());   \
 871     return (type##Node*)this;                                \
 872   }                                                          \
 873   type##Node* isa_##type() const {                           \
 874     return (is_##type()) ? as_##type() : nullptr;            \
 875   }
 876 
 877   DEFINE_CLASS_QUERY(AbstractLock)
 878   DEFINE_CLASS_QUERY(Add)
 879   DEFINE_CLASS_QUERY(AddP)
 880   DEFINE_CLASS_QUERY(Allocate)
 881   DEFINE_CLASS_QUERY(AllocateArray)
 882   DEFINE_CLASS_QUERY(ArrayCopy)
 883   DEFINE_CLASS_QUERY(BaseCountedLoop)
 884   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 885   DEFINE_CLASS_QUERY(Blackhole)
 886   DEFINE_CLASS_QUERY(Bool)
 887   DEFINE_CLASS_QUERY(BoxLock)
 888   DEFINE_CLASS_QUERY(Call)
 889   DEFINE_CLASS_QUERY(CallDynamicJava)
 890   DEFINE_CLASS_QUERY(CallJava)
 891   DEFINE_CLASS_QUERY(CallLeaf)
 892   DEFINE_CLASS_QUERY(CallLeafNoFP)
 893   DEFINE_CLASS_QUERY(CallRuntime)
 894   DEFINE_CLASS_QUERY(CallStaticJava)
 895   DEFINE_CLASS_QUERY(Catch)
 896   DEFINE_CLASS_QUERY(CatchProj)
 897   DEFINE_CLASS_QUERY(CheckCastPP)
 898   DEFINE_CLASS_QUERY(CastII)
 899   DEFINE_CLASS_QUERY(CastLL)
 900   DEFINE_CLASS_QUERY(ConI)
 901   DEFINE_CLASS_QUERY(ConstraintCast)
 902   DEFINE_CLASS_QUERY(ClearArray)
 903   DEFINE_CLASS_QUERY(CMove)
 904   DEFINE_CLASS_QUERY(Cmp)
 905   DEFINE_CLASS_QUERY(Convert)
 906   DEFINE_CLASS_QUERY(CountedLoop)
 907   DEFINE_CLASS_QUERY(CountedLoopEnd)
 908   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 909   DEFINE_CLASS_QUERY(DecodeN)
 910   DEFINE_CLASS_QUERY(DecodeNKlass)
 911   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 912   DEFINE_CLASS_QUERY(EncodeP)
 913   DEFINE_CLASS_QUERY(EncodePKlass)
 914   DEFINE_CLASS_QUERY(FastLock)
 915   DEFINE_CLASS_QUERY(FastUnlock)
 916   DEFINE_CLASS_QUERY(FlatArrayCheck)
 917   DEFINE_CLASS_QUERY(Halt)
 918   DEFINE_CLASS_QUERY(If)
 919   DEFINE_CLASS_QUERY(RangeCheck)
 920   DEFINE_CLASS_QUERY(IfProj)
 921   DEFINE_CLASS_QUERY(IfFalse)
 922   DEFINE_CLASS_QUERY(IfTrue)
 923   DEFINE_CLASS_QUERY(Initialize)
 924   DEFINE_CLASS_QUERY(Jump)
 925   DEFINE_CLASS_QUERY(JumpProj)
 926   DEFINE_CLASS_QUERY(LongCountedLoop)
 927   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 928   DEFINE_CLASS_QUERY(Load)
 929   DEFINE_CLASS_QUERY(LoadStore)
 930   DEFINE_CLASS_QUERY(LoadStoreConditional)
 931   DEFINE_CLASS_QUERY(Lock)
 932   DEFINE_CLASS_QUERY(Loop)
 933   DEFINE_CLASS_QUERY(LShift)
 934   DEFINE_CLASS_QUERY(Mach)
 935   DEFINE_CLASS_QUERY(MachBranch)
 936   DEFINE_CLASS_QUERY(MachCall)
 937   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 938   DEFINE_CLASS_QUERY(MachCallJava)
 939   DEFINE_CLASS_QUERY(MachCallLeaf)
 940   DEFINE_CLASS_QUERY(MachCallRuntime)
 941   DEFINE_CLASS_QUERY(MachCallStaticJava)
 942   DEFINE_CLASS_QUERY(MachConstantBase)
 943   DEFINE_CLASS_QUERY(MachConstant)
 944   DEFINE_CLASS_QUERY(MachGoto)
 945   DEFINE_CLASS_QUERY(MachIf)
 946   DEFINE_CLASS_QUERY(MachJump)
 947   DEFINE_CLASS_QUERY(MachNullCheck)
 948   DEFINE_CLASS_QUERY(MachProj)
 949   DEFINE_CLASS_QUERY(MachProlog)
 950   DEFINE_CLASS_QUERY(MachReturn)
 951   DEFINE_CLASS_QUERY(MachSafePoint)
 952   DEFINE_CLASS_QUERY(MachSpillCopy)
 953   DEFINE_CLASS_QUERY(MachTemp)
 954   DEFINE_CLASS_QUERY(MachMemBar)
 955   DEFINE_CLASS_QUERY(MachMerge)
 956   DEFINE_CLASS_QUERY(MachVEP)
 957   DEFINE_CLASS_QUERY(Mem)
 958   DEFINE_CLASS_QUERY(MemBar)
 959   DEFINE_CLASS_QUERY(MemBarStoreStore)
 960   DEFINE_CLASS_QUERY(MergeMem)
 961   DEFINE_CLASS_QUERY(Move)
 962   DEFINE_CLASS_QUERY(Mul)
 963   DEFINE_CLASS_QUERY(Multi)
 964   DEFINE_CLASS_QUERY(MultiBranch)
 965   DEFINE_CLASS_QUERY(Neg)
 966   DEFINE_CLASS_QUERY(NegV)
 967   DEFINE_CLASS_QUERY(NeverBranch)
 968   DEFINE_CLASS_QUERY(Opaque1)
 969   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 970   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 971   DEFINE_CLASS_QUERY(Parm)
 972   DEFINE_CLASS_QUERY(ParsePredicate)
 973   DEFINE_CLASS_QUERY(PCTable)
 974   DEFINE_CLASS_QUERY(Phi)
 975   DEFINE_CLASS_QUERY(Proj)
 976   DEFINE_CLASS_QUERY(Reduction)
 977   DEFINE_CLASS_QUERY(Region)
 978   DEFINE_CLASS_QUERY(Root)
 979   DEFINE_CLASS_QUERY(SafePoint)
 980   DEFINE_CLASS_QUERY(SafePointScalarObject)
 981   DEFINE_CLASS_QUERY(SafePointScalarMerge)
 982   DEFINE_CLASS_QUERY(Start)
 983   DEFINE_CLASS_QUERY(Store)
 984   DEFINE_CLASS_QUERY(Sub)
 985   DEFINE_CLASS_QUERY(SubTypeCheck)
 986   DEFINE_CLASS_QUERY(Type)
 987   DEFINE_CLASS_QUERY(InlineType)
 988   DEFINE_CLASS_QUERY(UnorderedReduction)
 989   DEFINE_CLASS_QUERY(Vector)
 990   DEFINE_CLASS_QUERY(VectorMaskCmp)
 991   DEFINE_CLASS_QUERY(VectorUnbox)
 992   DEFINE_CLASS_QUERY(VectorReinterpret)
 993   DEFINE_CLASS_QUERY(CompressV)
 994   DEFINE_CLASS_QUERY(ExpandV)
 995   DEFINE_CLASS_QUERY(CompressM)
 996   DEFINE_CLASS_QUERY(LoadVector)
 997   DEFINE_CLASS_QUERY(LoadVectorGather)
 998   DEFINE_CLASS_QUERY(StoreVector)
 999   DEFINE_CLASS_QUERY(StoreVectorScatter)
1000   DEFINE_CLASS_QUERY(ShiftV)
1001   DEFINE_CLASS_QUERY(Unlock)
1002 
1003   #undef DEFINE_CLASS_QUERY
1004 
1005   // duplicate of is_MachSpillCopy()
1006   bool is_SpillCopy () const {
1007     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1008   }
1009 
1010   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1011   // The data node which is safe to leave in dead loop during IGVN optimization.
1012   bool is_dead_loop_safe() const;
1013 
1014   // is_Copy() returns copied edge index (0 or 1)
1015   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1016 
1017   virtual bool is_CFG() const { return false; }
1018 
1019   // If this node is control-dependent on a test, can it be
1020   // rerouted to a dominating equivalent test?  This is usually
1021   // true of non-CFG nodes, but can be false for operations which
1022   // depend for their correct sequencing on more than one test.
1023   // (In that case, hoisting to a dominating test may silently
1024   // skip some other important test.)
1025   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1026 
1027   // When building basic blocks, I need to have a notion of block beginning
1028   // Nodes, next block selector Nodes (block enders), and next block
1029   // projections.  These calls need to work on their machine equivalents.  The
1030   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1031   bool is_block_start() const {
1032     if ( is_Region() )
1033       return this == (const Node*)in(0);
1034     else
1035       return is_Start();
1036   }
1037 
1038   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1039   // Goto and Return.  This call also returns the block ending Node.
1040   virtual const Node *is_block_proj() const;
1041 
1042   // The node is a "macro" node which needs to be expanded before matching
1043   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1044   // The node is expensive: the best control is set during loop opts
1045   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1046   // The node's original edge position is swapped.
1047   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1048 
1049   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1050 
1051   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1052 
1053   // Used in lcm to mark nodes that have scheduled
1054   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1055 
1056   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1057 
1058   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1059   static bool may_be_loop_entry(Node* n) {
1060     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1061   }
1062 
1063 //----------------- Optimization
1064 
1065   // Get the worst-case Type output for this Node.
1066   virtual const class Type *bottom_type() const;
1067 
1068   // If we find a better type for a node, try to record it permanently.
1069   // Return true if this node actually changed.
1070   // Be sure to do the hash_delete game in the "rehash" variant.
1071   void raise_bottom_type(const Type* new_type);
1072 
1073   // Get the address type with which this node uses and/or defs memory,
1074   // or null if none.  The address type is conservatively wide.
1075   // Returns non-null for calls, membars, loads, stores, etc.
1076   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1077   virtual const class TypePtr *adr_type() const { return nullptr; }
1078 
1079   // Return an existing node which computes the same function as this node.
1080   // The optimistic combined algorithm requires this to return a Node which
1081   // is a small number of steps away (e.g., one of my inputs).
1082   virtual Node* Identity(PhaseGVN* phase);
1083 
1084   // Return the set of values this Node can take on at runtime.
1085   virtual const Type* Value(PhaseGVN* phase) const;
1086 
1087   // Return a node which is more "ideal" than the current node.
1088   // The invariants on this call are subtle.  If in doubt, read the
1089   // treatise in node.cpp above the default implementation AND TEST WITH
1090   // -XX:VerifyIterativeGVN=1
1091   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1092 
1093   // Some nodes have specific Ideal subgraph transformations only if they are
1094   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1095   // for the transformations to happen.
1096   bool has_special_unique_user() const;
1097 
1098   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1099   Node* find_exact_control(Node* ctrl);
1100 
1101   // Check if 'this' node dominates or equal to 'sub'.
1102   bool dominates(Node* sub, Node_List &nlist);
1103 
1104 protected:
1105   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1106 public:
1107 
1108   // See if there is valid pipeline info
1109   static  const Pipeline *pipeline_class();
1110   virtual const Pipeline *pipeline() const;
1111 
1112   // Compute the latency from the def to this instruction of the ith input node
1113   uint latency(uint i);
1114 
1115   // Hash & compare functions, for pessimistic value numbering
1116 
1117   // If the hash function returns the special sentinel value NO_HASH,
1118   // the node is guaranteed never to compare equal to any other node.
1119   // If we accidentally generate a hash with value NO_HASH the node
1120   // won't go into the table and we'll lose a little optimization.
1121   static const uint NO_HASH = 0;
1122   virtual uint hash() const;
1123   virtual bool cmp( const Node &n ) const;
1124 
1125   // Operation appears to be iteratively computed (such as an induction variable)
1126   // It is possible for this operation to return false for a loop-varying
1127   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1128   bool is_iteratively_computed();
1129 
1130   // Determine if a node is a counted loop induction variable.
1131   // NOTE: The method is defined in "loopnode.cpp".
1132   bool is_cloop_ind_var() const;
1133 
1134   // Return a node with opcode "opc" and same inputs as "this" if one can
1135   // be found; Otherwise return null;
1136   Node* find_similar(int opc);
1137 
1138   // Return the unique control out if only one. Null if none or more than one.
1139   Node* unique_ctrl_out_or_null() const;
1140   // Return the unique control out. Asserts if none or more than one control out.
1141   Node* unique_ctrl_out() const;
1142 
1143   // Set control or add control as precedence edge
1144   void ensure_control_or_add_prec(Node* c);
1145 
1146   // Visit boundary uses of the node and apply a callback function for each.
1147   // Recursively traverse uses, stopping and applying the callback when
1148   // reaching a boundary node, defined by is_boundary. Note: the function
1149   // definition appears after the complete type definition of Node_List.
1150   template <typename Callback, typename Check>
1151   void visit_uses(Callback callback, Check is_boundary) const;
1152 
1153   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1154   // (Load and range check CastII nodes).
1155   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1156   virtual Node* pin_array_access_node() const {
1157     return nullptr;
1158   }
1159 
1160   //----------------- Code Generation
1161 
1162   // Ideal register class for Matching.  Zero means unmatched instruction
1163   // (these are cloned instead of converted to machine nodes).
1164   virtual uint ideal_reg() const;
1165 
1166   static const uint NotAMachineReg;   // must be > max. machine register
1167 
1168   // Do we Match on this edge index or not?  Generally false for Control
1169   // and true for everything else.  Weird for calls & returns.
1170   virtual uint match_edge(uint idx) const;
1171 
1172   // Register class output is returned in
1173   virtual const RegMask &out_RegMask() const;
1174   // Register class input is expected in
1175   virtual const RegMask &in_RegMask(uint) const;
1176   // Should we clone rather than spill this instruction?
1177   bool rematerialize() const;
1178 
1179   // Return JVM State Object if this Node carries debug info, or null otherwise
1180   virtual JVMState* jvms() const;
1181 
1182   // Print as assembly
1183   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1184   // Emit bytes starting at parameter 'ptr'
1185   // Bump 'ptr' by the number of output bytes
1186   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
1187   // Size of instruction in bytes
1188   virtual uint size(PhaseRegAlloc *ra_) const;
1189 
1190   // Convenience function to extract an integer constant from a node.
1191   // If it is not an integer constant (either Con, CastII, or Mach),
1192   // return value_if_unknown.
1193   jint find_int_con(jint value_if_unknown) const {
1194     const TypeInt* t = find_int_type();
1195     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1196   }
1197   // Return the constant, knowing it is an integer constant already
1198   jint get_int() const {
1199     const TypeInt* t = find_int_type();
1200     guarantee(t != nullptr, "must be con");
1201     return t->get_con();
1202   }
1203   // Here's where the work is done.  Can produce non-constant int types too.
1204   const TypeInt* find_int_type() const;
1205   const TypeInteger* find_integer_type(BasicType bt) const;
1206 
1207   // Same thing for long (and intptr_t, via type.hpp):
1208   jlong get_long() const {
1209     const TypeLong* t = find_long_type();
1210     guarantee(t != nullptr, "must be con");
1211     return t->get_con();
1212   }
1213   jlong find_long_con(jint value_if_unknown) const {
1214     const TypeLong* t = find_long_type();
1215     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1216   }
1217   const TypeLong* find_long_type() const;
1218 
1219   jlong get_integer_as_long(BasicType bt) const {
1220     const TypeInteger* t = find_integer_type(bt);
1221     guarantee(t != nullptr && t->is_con(), "must be con");
1222     return t->get_con_as_long(bt);
1223   }
1224   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1225     const TypeInteger* t = find_integer_type(bt);
1226     if (t == nullptr || !t->is_con())  return value_if_unknown;
1227     return t->get_con_as_long(bt);
1228   }
1229   const TypePtr* get_ptr_type() const;
1230 
1231   // These guys are called by code generated by ADLC:
1232   intptr_t get_ptr() const;
1233   intptr_t get_narrowcon() const;
1234   jdouble getd() const;
1235   jfloat getf() const;
1236 
1237   // Nodes which are pinned into basic blocks
1238   virtual bool pinned() const { return false; }
1239 
1240   // Nodes which use memory without consuming it, hence need antidependences
1241   // More specifically, needs_anti_dependence_check returns true iff the node
1242   // (a) does a load, and (b) does not perform a store (except perhaps to a
1243   // stack slot or some other unaliased location).
1244   bool needs_anti_dependence_check() const;
1245 
1246   // Return which operand this instruction may cisc-spill. In other words,
1247   // return operand position that can convert from reg to memory access
1248   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1249   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1250 
1251   // Whether this is a memory-writing machine node.
1252   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1253 
1254   // Whether this is a memory phi node
1255   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1256 
1257 //----------------- Printing, etc
1258 #ifndef PRODUCT
1259  public:
1260   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1261   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1262   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const;
1263   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1264   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1265   class DumpConfig {
1266    public:
1267     // overridden to implement coloring of node idx
1268     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1269     virtual void post_dump(outputStream *st) = 0;
1270   };
1271   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1272   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1273   void dump() const; // print node with newline
1274   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1275   void dump(int depth) const;        // Print this node, recursively to depth d
1276   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1277   void dump_comp() const;            // Print this node in compact representation.
1278   // Print this node in compact representation.
1279   void dump_comp(const char* suffix, outputStream *st = tty) const;
1280  private:
1281   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1282   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1283   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1284  public:
1285   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1286   // Print compact per-node info
1287   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1288 
1289   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1290 
1291   // This call defines a class-unique string used to identify class instances
1292   virtual const char *Name() const;
1293 
1294   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1295   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1296 #endif
1297 #ifdef ASSERT
1298   void verify_construction();
1299   bool verify_jvms(const JVMState* jvms) const;
1300 
1301   Node* _debug_orig;                   // Original version of this, if any.
1302   Node*  debug_orig() const            { return _debug_orig; }
1303   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1304   void   dump_orig(outputStream *st, bool print_key = true) const;
1305 
1306   uint64_t _debug_idx;                 // Unique value assigned to every node.
1307   uint64_t debug_idx() const           { return _debug_idx; }
1308   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1309 
1310   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1311   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1312   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1313 
1314   static void init_NodeProperty();
1315 
1316   #if OPTO_DU_ITERATOR_ASSERT
1317   const Node* _last_del;               // The last deleted node.
1318   uint        _del_tick;               // Bumped when a deletion happens..
1319   #endif
1320 #endif
1321 };
1322 
1323 inline bool not_a_node(const Node* n) {
1324   if (n == nullptr)                return true;
1325   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1326   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1327   return false;
1328 }
1329 
1330 //-----------------------------------------------------------------------------
1331 // Iterators over DU info, and associated Node functions.
1332 
1333 #if OPTO_DU_ITERATOR_ASSERT
1334 
1335 // Common code for assertion checking on DU iterators.
1336 class DUIterator_Common {
1337 #ifdef ASSERT
1338  protected:
1339   bool         _vdui;               // cached value of VerifyDUIterators
1340   const Node*  _node;               // the node containing the _out array
1341   uint         _outcnt;             // cached node->_outcnt
1342   uint         _del_tick;           // cached node->_del_tick
1343   Node*        _last;               // last value produced by the iterator
1344 
1345   void sample(const Node* node);    // used by c'tor to set up for verifies
1346   void verify(const Node* node, bool at_end_ok = false);
1347   void verify_resync();
1348   void reset(const DUIterator_Common& that);
1349 
1350 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1351   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1352 #else
1353   #define I_VDUI_ONLY(i,x) { }
1354 #endif //ASSERT
1355 };
1356 
1357 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1358 
1359 // Default DU iterator.  Allows appends onto the out array.
1360 // Allows deletion from the out array only at the current point.
1361 // Usage:
1362 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1363 //    Node* y = x->out(i);
1364 //    ...
1365 //  }
1366 // Compiles in product mode to a unsigned integer index, which indexes
1367 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1368 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1369 // before continuing the loop.  You must delete only the last-produced
1370 // edge.  You must delete only a single copy of the last-produced edge,
1371 // or else you must delete all copies at once (the first time the edge
1372 // is produced by the iterator).
1373 class DUIterator : public DUIterator_Common {
1374   friend class Node;
1375 
1376   // This is the index which provides the product-mode behavior.
1377   // Whatever the product-mode version of the system does to the
1378   // DUI index is done to this index.  All other fields in
1379   // this class are used only for assertion checking.
1380   uint         _idx;
1381 
1382   #ifdef ASSERT
1383   uint         _refresh_tick;    // Records the refresh activity.
1384 
1385   void sample(const Node* node); // Initialize _refresh_tick etc.
1386   void verify(const Node* node, bool at_end_ok = false);
1387   void verify_increment();       // Verify an increment operation.
1388   void verify_resync();          // Verify that we can back up over a deletion.
1389   void verify_finish();          // Verify that the loop terminated properly.
1390   void refresh();                // Resample verification info.
1391   void reset(const DUIterator& that);  // Resample after assignment.
1392   #endif
1393 
1394   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1395     { _idx = 0;                         debug_only(sample(node)); }
1396 
1397  public:
1398   // initialize to garbage; clear _vdui to disable asserts
1399   DUIterator()
1400     { /*initialize to garbage*/         debug_only(_vdui = false); }
1401 
1402   DUIterator(const DUIterator& that)
1403     { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }
1404 
1405   void operator++(int dummy_to_specify_postfix_op)
1406     { _idx++;                           VDUI_ONLY(verify_increment()); }
1407 
1408   void operator--()
1409     { VDUI_ONLY(verify_resync());       --_idx; }
1410 
1411   ~DUIterator()
1412     { VDUI_ONLY(verify_finish()); }
1413 
1414   void operator=(const DUIterator& that)
1415     { _idx = that._idx;                 debug_only(reset(that)); }
1416 };
1417 
1418 DUIterator Node::outs() const
1419   { return DUIterator(this, 0); }
1420 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1421   { I_VDUI_ONLY(i, i.refresh());        return i; }
1422 bool Node::has_out(DUIterator& i) const
1423   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1424 Node*    Node::out(DUIterator& i) const
1425   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1426 
1427 
1428 // Faster DU iterator.  Disallows insertions into the out array.
1429 // Allows deletion from the out array only at the current point.
1430 // Usage:
1431 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1432 //    Node* y = x->fast_out(i);
1433 //    ...
1434 //  }
1435 // Compiles in product mode to raw Node** pointer arithmetic, with
1436 // no reloading of pointers from the original node x.  If you delete,
1437 // you must perform "--i; --imax" just before continuing the loop.
1438 // If you delete multiple copies of the same edge, you must decrement
1439 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1440 class DUIterator_Fast : public DUIterator_Common {
1441   friend class Node;
1442   friend class DUIterator_Last;
1443 
1444   // This is the pointer which provides the product-mode behavior.
1445   // Whatever the product-mode version of the system does to the
1446   // DUI pointer is done to this pointer.  All other fields in
1447   // this class are used only for assertion checking.
1448   Node**       _outp;
1449 
1450   #ifdef ASSERT
1451   void verify(const Node* node, bool at_end_ok = false);
1452   void verify_limit();
1453   void verify_resync();
1454   void verify_relimit(uint n);
1455   void reset(const DUIterator_Fast& that);
1456   #endif
1457 
1458   // Note:  offset must be signed, since -1 is sometimes passed
1459   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1460     { _outp = node->_out + offset;      debug_only(sample(node)); }
1461 
1462  public:
1463   // initialize to garbage; clear _vdui to disable asserts
1464   DUIterator_Fast()
1465     { /*initialize to garbage*/         debug_only(_vdui = false); }
1466 
1467   DUIterator_Fast(const DUIterator_Fast& that)
1468     { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }
1469 
1470   void operator++(int dummy_to_specify_postfix_op)
1471     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1472 
1473   void operator--()
1474     { VDUI_ONLY(verify_resync());       --_outp; }
1475 
1476   void operator-=(uint n)   // applied to the limit only
1477     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1478 
1479   bool operator<(DUIterator_Fast& limit) {
1480     I_VDUI_ONLY(*this, this->verify(_node, true));
1481     I_VDUI_ONLY(limit, limit.verify_limit());
1482     return _outp < limit._outp;
1483   }
1484 
1485   void operator=(const DUIterator_Fast& that)
1486     { _outp = that._outp;               debug_only(reset(that)); }
1487 };
1488 
1489 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1490   // Assign a limit pointer to the reference argument:
1491   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1492   // Return the base pointer:
1493   return DUIterator_Fast(this, 0);
1494 }
1495 Node* Node::fast_out(DUIterator_Fast& i) const {
1496   I_VDUI_ONLY(i, i.verify(this));
1497   return debug_only(i._last=) *i._outp;
1498 }
1499 
1500 
1501 // Faster DU iterator.  Requires each successive edge to be removed.
1502 // Does not allow insertion of any edges.
1503 // Usage:
1504 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1505 //    Node* y = x->last_out(i);
1506 //    ...
1507 //  }
1508 // Compiles in product mode to raw Node** pointer arithmetic, with
1509 // no reloading of pointers from the original node x.
1510 class DUIterator_Last : private DUIterator_Fast {
1511   friend class Node;
1512 
1513   #ifdef ASSERT
1514   void verify(const Node* node, bool at_end_ok = false);
1515   void verify_limit();
1516   void verify_step(uint num_edges);
1517   #endif
1518 
1519   // Note:  offset must be signed, since -1 is sometimes passed
1520   DUIterator_Last(const Node* node, ptrdiff_t offset)
1521     : DUIterator_Fast(node, offset) { }
1522 
1523   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1524   void operator<(int)                              {} // do not use
1525 
1526  public:
1527   DUIterator_Last() { }
1528   // initialize to garbage
1529 
1530   DUIterator_Last(const DUIterator_Last& that) = default;
1531 
1532   void operator--()
1533     { _outp--;              VDUI_ONLY(verify_step(1));  }
1534 
1535   void operator-=(uint n)
1536     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1537 
1538   bool operator>=(DUIterator_Last& limit) {
1539     I_VDUI_ONLY(*this, this->verify(_node, true));
1540     I_VDUI_ONLY(limit, limit.verify_limit());
1541     return _outp >= limit._outp;
1542   }
1543 
1544   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1545 };
1546 
1547 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1548   // Assign a limit pointer to the reference argument:
1549   imin = DUIterator_Last(this, 0);
1550   // Return the initial pointer:
1551   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1552 }
1553 Node* Node::last_out(DUIterator_Last& i) const {
1554   I_VDUI_ONLY(i, i.verify(this));
1555   return debug_only(i._last=) *i._outp;
1556 }
1557 
1558 #endif //OPTO_DU_ITERATOR_ASSERT
1559 
1560 #undef I_VDUI_ONLY
1561 #undef VDUI_ONLY
1562 
1563 // An Iterator that truly follows the iterator pattern.  Doesn't
1564 // support deletion but could be made to.
1565 //
1566 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1567 //     Node* m = i.get();
1568 //
1569 class SimpleDUIterator : public StackObj {
1570  private:
1571   Node* node;
1572   DUIterator_Fast i;
1573   DUIterator_Fast imax;
1574  public:
1575   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1576   bool has_next() { return i < imax; }
1577   void next() { i++; }
1578   Node* get() { return node->fast_out(i); }
1579 };
1580 
1581 
1582 //-----------------------------------------------------------------------------
1583 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1584 // Abstractly provides an infinite array of Node*'s, initialized to null.
1585 // Note that the constructor just zeros things, and since I use Arena
1586 // allocation I do not need a destructor to reclaim storage.
1587 class Node_Array : public AnyObj {
1588   friend class VMStructs;
1589 protected:
1590   Arena* _a;                    // Arena to allocate in
1591   uint   _max;
1592   Node** _nodes;
1593   void   grow( uint i );        // Grow array node to fit
1594 public:
1595   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1596     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1597     clear();
1598   }
1599   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1600 
1601   NONCOPYABLE(Node_Array);
1602   Node_Array& operator=(Node_Array&&) = delete;
1603   // Allow move constructor for && (eg. capture return of function)
1604   Node_Array(Node_Array&&) = default;
1605 
1606   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1607   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1608   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1609   Node** adr() { return _nodes; }
1610   // Extend the mapping: index i maps to Node *n.
1611   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
1612   void insert( uint i, Node *n );
1613   void remove( uint i );        // Remove, preserving order
1614   // Clear all entries in _nodes to null but keep storage
1615   void clear() {
1616     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1617   }
1618 
1619   uint max() const { return _max; }
1620   void dump() const;
1621 };
1622 
1623 class Node_List : public Node_Array {
1624   friend class VMStructs;
1625   uint _cnt;
1626 public:
1627   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1628   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1629 
1630   NONCOPYABLE(Node_List);
1631   Node_List& operator=(Node_List&&) = delete;
1632   // Allow move constructor for && (eg. capture return of function)
1633   Node_List(Node_List&&) = default;
1634 
1635   bool contains(const Node* n) const {
1636     for (uint e = 0; e < size(); e++) {
1637       if (at(e) == n) return true;
1638     }
1639     return false;
1640   }
1641   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1642   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1643   void push( Node *b ) { map(_cnt++,b); }
1644   void yank( Node *n );         // Find and remove
1645   Node *pop() { return _nodes[--_cnt]; }
1646   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1647   void copy(const Node_List& from) {
1648     if (from._max > _max) {
1649       grow(from._max);
1650     }
1651     _cnt = from._cnt;
1652     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1653   }
1654 
1655   uint size() const { return _cnt; }
1656   void dump() const;
1657   void dump_simple() const;
1658 };
1659 
1660 // Definition must appear after complete type definition of Node_List
1661 template <typename Callback, typename Check>
1662 void Node::visit_uses(Callback callback, Check is_boundary) const {
1663   ResourceMark rm;
1664   VectorSet visited;
1665   Node_List worklist;
1666 
1667   // The initial worklist consists of the direct uses
1668   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1669     Node* out = fast_out(k);
1670     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1671   }
1672 
1673   while (worklist.size() > 0) {
1674     Node* use = worklist.pop();
1675     // Apply callback on boundary nodes
1676     if (is_boundary(use)) {
1677       callback(use);
1678     } else {
1679       // Not a boundary node, continue search
1680       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1681         Node* out = use->fast_out(k);
1682         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1683       }
1684     }
1685   }
1686 }
1687 
1688 
1689 //------------------------------Unique_Node_List-------------------------------
1690 class Unique_Node_List : public Node_List {
1691   friend class VMStructs;
1692   VectorSet _in_worklist;
1693   uint _clock_index;            // Index in list where to pop from next
1694 public:
1695   Unique_Node_List() : Node_List(), _clock_index(0) {}
1696   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1697 
1698   NONCOPYABLE(Unique_Node_List);
1699   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1700   // Allow move constructor for && (eg. capture return of function)
1701   Unique_Node_List(Unique_Node_List&&) = default;
1702 
1703   void remove( Node *n );
1704   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
1705   VectorSet& member_set(){ return _in_worklist; }
1706 
1707   void push(Node* b) {
1708     if( !_in_worklist.test_set(b->_idx) )
1709       Node_List::push(b);
1710   }
1711   Node *pop() {
1712     if( _clock_index >= size() ) _clock_index = 0;
1713     Node *b = at(_clock_index);
1714     map( _clock_index, Node_List::pop());
1715     if (size() != 0) _clock_index++; // Always start from 0
1716     _in_worklist.remove(b->_idx);
1717     return b;
1718   }
1719   Node *remove(uint i) {
1720     Node *b = Node_List::at(i);
1721     _in_worklist.remove(b->_idx);
1722     map(i,Node_List::pop());
1723     return b;
1724   }
1725   void yank(Node *n) {
1726     _in_worklist.remove(n->_idx);
1727     Node_List::yank(n);
1728   }
1729   void  clear() {
1730     _in_worklist.clear();        // Discards storage but grows automatically
1731     Node_List::clear();
1732     _clock_index = 0;
1733   }
1734   void ensure_empty() {
1735     assert(size() == 0, "must be empty");
1736     clear(); // just in case
1737   }
1738 
1739   // Used after parsing to remove useless nodes before Iterative GVN
1740   void remove_useless_nodes(VectorSet& useful);
1741 
1742   // If the idx of the Nodes change, we must recompute the VectorSet
1743   void recompute_idx_set() {
1744     _in_worklist.clear();
1745     for (uint i = 0; i < size(); i++) {
1746       Node* n = at(i);
1747       _in_worklist.set(n->_idx);
1748     }
1749   }
1750 
1751 #ifdef ASSERT
1752   bool is_subset_of(Unique_Node_List& other) {
1753     for (uint i = 0; i < size(); i++) {
1754       Node* n = at(i);
1755       if (!other.member(n)) {
1756         return false;
1757       }
1758     }
1759     return true;
1760   }
1761 #endif
1762 
1763   bool contains(const Node* n) const {
1764     fatal("use faster member() instead");
1765     return false;
1766   }
1767 
1768 #ifndef PRODUCT
1769   void print_set() const { _in_worklist.print(); }
1770 #endif
1771 };
1772 
1773 // Unique_Mixed_Node_List
1774 // unique: nodes are added only once
1775 // mixed: allow new and old nodes
1776 class Unique_Mixed_Node_List : public ResourceObj {
1777 public:
1778   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1779 
1780   void add(Node* node) {
1781     if (not_a_node(node)) {
1782       return; // Gracefully handle null, -1, 0xabababab, etc.
1783     }
1784     if (_visited_set[node] == nullptr) {
1785       _visited_set.Insert(node, node);
1786       _worklist.push(node);
1787     }
1788   }
1789 
1790   Node* operator[] (uint i) const {
1791     return _worklist[i];
1792   }
1793 
1794   size_t size() {
1795     return _worklist.size();
1796   }
1797 
1798 private:
1799   Dict _visited_set;
1800   Node_List _worklist;
1801 };
1802 
1803 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1804 inline void Compile::record_for_igvn(Node* n) {
1805   _igvn_worklist->push(n);
1806 }
1807 
1808 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1809 inline void Compile::remove_for_igvn(Node* n) {
1810   _igvn_worklist->remove(n);
1811 }
1812 
1813 //------------------------------Node_Stack-------------------------------------
1814 class Node_Stack {
1815   friend class VMStructs;
1816 protected:
1817   struct INode {
1818     Node *node; // Processed node
1819     uint  indx; // Index of next node's child
1820   };
1821   INode *_inode_top; // tos, stack grows up
1822   INode *_inode_max; // End of _inodes == _inodes + _max
1823   INode *_inodes;    // Array storage for the stack
1824   Arena *_a;         // Arena to allocate in
1825   void grow();
1826 public:
1827   Node_Stack(int size) {
1828     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1829     _a = Thread::current()->resource_area();
1830     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1831     _inode_max = _inodes + max;
1832     _inode_top = _inodes - 1; // stack is empty
1833   }
1834 
1835   Node_Stack(Arena *a, int size) : _a(a) {
1836     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1837     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1838     _inode_max = _inodes + max;
1839     _inode_top = _inodes - 1; // stack is empty
1840   }
1841 
1842   void pop() {
1843     assert(_inode_top >= _inodes, "node stack underflow");
1844     --_inode_top;
1845   }
1846   void push(Node *n, uint i) {
1847     ++_inode_top;
1848     if (_inode_top >= _inode_max) grow();
1849     INode *top = _inode_top; // optimization
1850     top->node = n;
1851     top->indx = i;
1852   }
1853   Node *node() const {
1854     return _inode_top->node;
1855   }
1856   Node* node_at(uint i) const {
1857     assert(_inodes + i <= _inode_top, "in range");
1858     return _inodes[i].node;
1859   }
1860   uint index() const {
1861     return _inode_top->indx;
1862   }
1863   uint index_at(uint i) const {
1864     assert(_inodes + i <= _inode_top, "in range");
1865     return _inodes[i].indx;
1866   }
1867   void set_node(Node *n) {
1868     _inode_top->node = n;
1869   }
1870   void set_index(uint i) {
1871     _inode_top->indx = i;
1872   }
1873   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1874   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1875   bool is_nonempty() const { return (_inode_top >= _inodes); }
1876   bool is_empty() const { return (_inode_top < _inodes); }
1877   void clear() { _inode_top = _inodes - 1; } // retain storage
1878 
1879   // Node_Stack is used to map nodes.
1880   Node* find(uint idx) const;
1881 
1882   NONCOPYABLE(Node_Stack);
1883 };
1884 
1885 
1886 //-----------------------------Node_Notes--------------------------------------
1887 // Debugging or profiling annotations loosely and sparsely associated
1888 // with some nodes.  See Compile::node_notes_at for the accessor.
1889 class Node_Notes {
1890   friend class VMStructs;
1891   JVMState* _jvms;
1892 
1893 public:
1894   Node_Notes(JVMState* jvms = nullptr) {
1895     _jvms = jvms;
1896   }
1897 
1898   JVMState* jvms()            { return _jvms; }
1899   void  set_jvms(JVMState* x) {        _jvms = x; }
1900 
1901   // True if there is nothing here.
1902   bool is_clear() {
1903     return (_jvms == nullptr);
1904   }
1905 
1906   // Make there be nothing here.
1907   void clear() {
1908     _jvms = nullptr;
1909   }
1910 
1911   // Make a new, clean node notes.
1912   static Node_Notes* make(Compile* C) {
1913     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1914     nn->clear();
1915     return nn;
1916   }
1917 
1918   Node_Notes* clone(Compile* C) {
1919     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1920     (*nn) = (*this);
1921     return nn;
1922   }
1923 
1924   // Absorb any information from source.
1925   bool update_from(Node_Notes* source) {
1926     bool changed = false;
1927     if (source != nullptr) {
1928       if (source->jvms() != nullptr) {
1929         set_jvms(source->jvms());
1930         changed = true;
1931       }
1932     }
1933     return changed;
1934   }
1935 };
1936 
1937 // Inlined accessors for Compile::node_nodes that require the preceding class:
1938 inline Node_Notes*
1939 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1940                            int idx, bool can_grow) {
1941   assert(idx >= 0, "oob");
1942   int block_idx = (idx >> _log2_node_notes_block_size);
1943   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
1944   if (grow_by >= 0) {
1945     if (!can_grow) return nullptr;
1946     grow_node_notes(arr, grow_by + 1);
1947   }
1948   if (arr == nullptr) return nullptr;
1949   // (Every element of arr is a sub-array of length _node_notes_block_size.)
1950   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
1951 }
1952 
1953 inline bool
1954 Compile::set_node_notes_at(int idx, Node_Notes* value) {
1955   if (value == nullptr || value->is_clear())
1956     return false;  // nothing to write => write nothing
1957   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
1958   assert(loc != nullptr, "");
1959   return loc->update_from(value);
1960 }
1961 
1962 
1963 //------------------------------TypeNode---------------------------------------
1964 // Node with a Type constant.
1965 class TypeNode : public Node {
1966 protected:
1967   virtual uint hash() const;    // Check the type
1968   virtual bool cmp( const Node &n ) const;
1969   virtual uint size_of() const; // Size is bigger
1970   const Type* const _type;
1971 public:
1972   void set_type(const Type* t) {
1973     assert(t != nullptr, "sanity");
1974     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
1975     *(const Type**)&_type = t;   // cast away const-ness
1976     // If this node is in the hash table, make sure it doesn't need a rehash.
1977     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
1978   }
1979   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
1980   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
1981     init_class_id(Class_Type);
1982   }
1983   virtual const Type* Value(PhaseGVN* phase) const;
1984   virtual const Type *bottom_type() const;
1985   virtual       uint  ideal_reg() const;
1986 #ifndef PRODUCT
1987   virtual void dump_spec(outputStream *st) const;
1988   virtual void dump_compact_spec(outputStream *st) const;
1989 #endif
1990 };
1991 
1992 #include "opto/opcodes.hpp"
1993 
1994 #define Op_IL(op) \
1995   inline int Op_ ## op(BasicType bt) { \
1996   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
1997   if (bt == T_INT) { \
1998     return Op_## op ## I; \
1999   } \
2000   return Op_## op ## L; \
2001 }
2002 
2003 Op_IL(Add)
2004 Op_IL(Sub)
2005 Op_IL(Mul)
2006 Op_IL(URShift)
2007 Op_IL(LShift)
2008 Op_IL(Xor)
2009 Op_IL(Cmp)
2010 
2011 inline int Op_ConIL(BasicType bt) {
2012   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2013   if (bt == T_INT) {
2014     return Op_ConI;
2015   }
2016   return Op_ConL;
2017 }
2018 
2019 inline int Op_Cmp_unsigned(BasicType bt) {
2020   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2021   if (bt == T_INT) {
2022     return Op_CmpU;
2023   }
2024   return Op_CmpUL;
2025 }
2026 
2027 inline int Op_Cast(BasicType bt) {
2028   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2029   if (bt == T_INT) {
2030     return Op_CastII;
2031   }
2032   return Op_CastLL;
2033 }
2034 
2035 #endif // SHARE_OPTO_NODE_HPP