1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef SHARE_OPTO_NODE_HPP
27 #define SHARE_OPTO_NODE_HPP
28
29 #include "libadt/vectset.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 #include "utilities/copy.hpp"
33
34 // Portions of code courtesy of Clifford Click
35
36 // Optimization - Graph Style
37
38
39 class AbstractLockNode;
40 class AddNode;
41 class AddPNode;
42 class AliasInfo;
43 class AllocateArrayNode;
44 class AllocateNode;
45 class ArrayCopyNode;
46 class BaseCountedLoopNode;
47 class BaseCountedLoopEndNode;
48 class BlackholeNode;
49 class Block;
50 class BoolNode;
51 class BoxLockNode;
52 class CMoveNode;
53 class CallDynamicJavaNode;
54 class CallJavaNode;
55 class CallLeafNode;
56 class CallLeafNoFPNode;
57 class CallLeafPureNode;
58 class CallNode;
59 class CallRuntimeNode;
60 class CallStaticJavaNode;
61 class CastFFNode;
62 class CastHHNode;
63 class CastDDNode;
64 class CastVVNode;
65 class CastIINode;
66 class CastLLNode;
67 class CastPPNode;
68 class CatchNode;
69 class CatchProjNode;
70 class CheckCastPPNode;
71 class ClearArrayNode;
72 class CmpNode;
73 class CodeBuffer;
74 class ConstraintCastNode;
75 class ConNode;
76 class ConINode;
77 class ConvertNode;
78 class CompareAndSwapNode;
79 class CompareAndExchangeNode;
80 class CountedLoopNode;
81 class CountedLoopEndNode;
82 class DecodeNarrowPtrNode;
83 class DecodeNNode;
84 class DecodeNKlassNode;
85 class EncodeNarrowPtrNode;
86 class EncodePNode;
87 class EncodePKlassNode;
88 class FastLockNode;
89 class FastUnlockNode;
90 class FlatArrayCheckNode;
91 class HaltNode;
92 class IfNode;
93 class IfProjNode;
94 class IfFalseNode;
95 class IfTrueNode;
96 class InitializeNode;
97 class JVMState;
98 class JumpNode;
99 class JumpProjNode;
100 class LoadNode;
101 class LoadStoreNode;
102 class LoadStoreConditionalNode;
103 class LockNode;
104 class LongCountedLoopNode;
105 class LongCountedLoopEndNode;
106 class LoopNode;
107 class LShiftNode;
108 class MachBranchNode;
109 class MachCallDynamicJavaNode;
110 class MachCallJavaNode;
111 class MachCallLeafNode;
112 class MachCallNode;
113 class MachCallRuntimeNode;
114 class MachCallStaticJavaNode;
115 class MachConstantBaseNode;
116 class MachConstantNode;
117 class MachGotoNode;
118 class MachIfNode;
119 class MachJumpNode;
120 class MachNode;
121 class MachNullCheckNode;
122 class MachProjNode;
123 class MachPrologNode;
124 class MachReturnNode;
125 class MachSafePointNode;
126 class MachSpillCopyNode;
127 class MachTempNode;
128 class MachMergeNode;
129 class MachMemBarNode;
130 class MachVEPNode;
131 class Matcher;
132 class MemBarNode;
133 class MemBarStoreStoreNode;
134 class MemNode;
135 class MergeMemNode;
136 class MinMaxNode;
137 class MoveNode;
138 class MulNode;
139 class MultiNode;
140 class MultiBranchNode;
141 class NarrowMemProjNode;
142 class NegNode;
143 class NegVNode;
144 class NeverBranchNode;
145 class Opaque1Node;
146 class OpaqueLoopInitNode;
147 class OpaqueLoopStrideNode;
148 class OpaqueMultiversioningNode;
149 class OpaqueNotNullNode;
150 class OpaqueInitializedAssertionPredicateNode;
151 class OpaqueTemplateAssertionPredicateNode;
152 class OuterStripMinedLoopNode;
153 class OuterStripMinedLoopEndNode;
154 class Node;
155 class Node_Array;
156 class Node_List;
157 class Node_Stack;
158 class OopMap;
159 class ParmNode;
160 class ParsePredicateNode;
161 class PCTableNode;
162 class PhaseCCP;
163 class PhaseGVN;
164 class PhaseIdealLoop;
165 class PhaseIterGVN;
166 class PhaseRegAlloc;
167 class PhaseTransform;
168 class PhaseValues;
169 class PhiNode;
170 class Pipeline;
171 class PopulateIndexNode;
172 class ProjNode;
173 class RangeCheckNode;
174 class ReductionNode;
175 class RegMask;
176 class RegionNode;
177 class RootNode;
178 class SafePointNode;
179 class SafePointScalarObjectNode;
180 class SafePointScalarMergeNode;
181 class SaturatingVectorNode;
182 class StartNode;
183 class State;
184 class StoreNode;
185 class SubNode;
186 class SubTypeCheckNode;
187 class Type;
188 class TypeNode;
189 class UnlockNode;
190 class InlineTypeNode;
191 class LoadFlatNode;
192 class StoreFlatNode;
193 class VectorNode;
194 class LoadVectorNode;
195 class LoadVectorMaskedNode;
196 class StoreVectorMaskedNode;
197 class LoadVectorGatherNode;
198 class LoadVectorGatherMaskedNode;
199 class StoreVectorNode;
200 class StoreVectorScatterNode;
201 class StoreVectorScatterMaskedNode;
202 class VerifyVectorAlignmentNode;
203 class VectorMaskCmpNode;
204 class VectorUnboxNode;
205 class VectorSet;
206 class VectorReinterpretNode;
207 class ShiftVNode;
208 class MulVLNode;
209 class ExpandVNode;
210 class CompressVNode;
211 class CompressMNode;
212 class C2_MacroAssembler;
213
214
215 #ifndef OPTO_DU_ITERATOR_ASSERT
216 #ifdef ASSERT
217 #define OPTO_DU_ITERATOR_ASSERT 1
218 #else
219 #define OPTO_DU_ITERATOR_ASSERT 0
220 #endif
221 #endif //OPTO_DU_ITERATOR_ASSERT
222
223 #if OPTO_DU_ITERATOR_ASSERT
224 class DUIterator;
225 class DUIterator_Fast;
226 class DUIterator_Last;
227 #else
228 typedef uint DUIterator;
229 typedef Node** DUIterator_Fast;
230 typedef Node** DUIterator_Last;
231 #endif
232
233 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
234
235 // Node Sentinel
236 #define NodeSentinel (Node*)-1
237
238 // Unknown count frequency
239 #define COUNT_UNKNOWN (-1.0f)
240
241 //------------------------------Node-------------------------------------------
242 // Nodes define actions in the program. They create values, which have types.
243 // They are both vertices in a directed graph and program primitives. Nodes
244 // are labeled; the label is the "opcode", the primitive function in the lambda
245 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
246 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
247 // the Node's function. These inputs also define a Type equation for the Node.
248 // Solving these Type equations amounts to doing dataflow analysis.
249 // Control and data are uniformly represented in the graph. Finally, Nodes
250 // have a unique dense integer index which is used to index into side arrays
251 // whenever I have phase-specific information.
252
253 class Node {
254
255 // Lots of restrictions on cloning Nodes
256 NONCOPYABLE(Node);
257
258 public:
259 friend class Compile;
260 #if OPTO_DU_ITERATOR_ASSERT
261 friend class DUIterator_Common;
262 friend class DUIterator;
263 friend class DUIterator_Fast;
264 friend class DUIterator_Last;
265 #endif
266
267 // Because Nodes come and go, I define an Arena of Node structures to pull
268 // from. This should allow fast access to node creation & deletion. This
269 // field is a local cache of a value defined in some "program fragment" for
270 // which these Nodes are just a part of.
271
272 inline void* operator new(size_t x) throw() {
273 Compile* C = Compile::current();
274 Node* n = (Node*)C->node_arena()->AmallocWords(x);
275 return (void*)n;
276 }
277
278 // Delete is a NOP
279 void operator delete( void *ptr ) {}
280 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
281 void destruct(PhaseValues* phase);
282
283 // Create a new Node. Required is the number is of inputs required for
284 // semantic correctness.
285 Node( uint required );
286
287 // Create a new Node with given input edges.
288 // This version requires use of the "edge-count" new.
289 // E.g. new (C,3) FooNode( C, nullptr, left, right );
290 Node( Node *n0 );
291 Node( Node *n0, Node *n1 );
292 Node( Node *n0, Node *n1, Node *n2 );
293 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
294 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
295 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
296 Node( Node *n0, Node *n1, Node *n2, Node *n3,
297 Node *n4, Node *n5, Node *n6 );
298
299 // Clone an inherited Node given only the base Node type.
300 Node* clone() const;
301
302 // Clone a Node, immediately supplying one or two new edges.
303 // The first and second arguments, if non-null, replace in(1) and in(2),
304 // respectively.
305 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
306 Node* nn = clone();
307 if (in1 != nullptr) nn->set_req(1, in1);
308 if (in2 != nullptr) nn->set_req(2, in2);
309 return nn;
310 }
311
312 private:
313 // Shared setup for the above constructors.
314 // Handles all interactions with Compile::current.
315 // Puts initial values in all Node fields except _idx.
316 // Returns the initial value for _idx, which cannot
317 // be initialized by assignment.
318 inline int Init(int req);
319
320 //----------------- input edge handling
321 protected:
322 friend class PhaseCFG; // Access to address of _in array elements
323 Node **_in; // Array of use-def references to Nodes
324 Node **_out; // Array of def-use references to Nodes
325
326 // Input edges are split into two categories. Required edges are required
327 // for semantic correctness; order is important and nulls are allowed.
328 // Precedence edges are used to help determine execution order and are
329 // added, e.g., for scheduling purposes. They are unordered and not
330 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1
331 // are required, from _cnt to _max-1 are precedence edges.
332 node_idx_t _cnt; // Total number of required Node inputs.
333
334 node_idx_t _max; // Actual length of input array.
335
336 // Output edges are an unordered list of def-use edges which exactly
337 // correspond to required input edges which point from other nodes
338 // to this one. Thus the count of the output edges is the number of
339 // users of this node.
340 node_idx_t _outcnt; // Total number of Node outputs.
341
342 node_idx_t _outmax; // Actual length of output array.
343
344 // Grow the actual input array to the next larger power-of-2 bigger than len.
345 void grow( uint len );
346 // Grow the output array to the next larger power-of-2 bigger than len.
347 void out_grow( uint len );
348 // Resize input or output array to grow it to the next larger power-of-2
349 // bigger than len.
350 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
351
352 public:
353 // Each Node is assigned a unique small/dense number. This number is used
354 // to index into auxiliary arrays of data and bit vectors.
355 // The value of _idx can be changed using the set_idx() method.
356 //
357 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
358 // Therefore, it updates the value of the _idx field. The parse-time _idx is
359 // preserved in _parse_idx.
360 node_idx_t _idx;
361 DEBUG_ONLY(const node_idx_t _parse_idx;)
362 // IGV node identifier. Two nodes, possibly in different compilation phases,
363 // have the same IGV identifier if (and only if) they are the very same node
364 // (same memory address) or one is "derived" from the other (by e.g.
365 // renumbering or matching). This identifier makes it possible to follow the
366 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
367 NOT_PRODUCT(node_idx_t _igv_idx;)
368
369 // Get the (read-only) number of input edges
370 uint req() const { return _cnt; }
371 uint len() const { return _max; }
372 // Get the (read-only) number of output edges
373 uint outcnt() const { return _outcnt; }
374
375 #if OPTO_DU_ITERATOR_ASSERT
376 // Iterate over the out-edges of this node. Deletions are illegal.
377 inline DUIterator outs() const;
378 // Use this when the out array might have changed to suppress asserts.
379 inline DUIterator& refresh_out_pos(DUIterator& i) const;
380 // Does the node have an out at this position? (Used for iteration.)
381 inline bool has_out(DUIterator& i) const;
382 inline Node* out(DUIterator& i) const;
383 // Iterate over the out-edges of this node. All changes are illegal.
384 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
385 inline Node* fast_out(DUIterator_Fast& i) const;
386 // Iterate over the out-edges of this node, deleting one at a time.
387 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
388 inline Node* last_out(DUIterator_Last& i) const;
389 // The inline bodies of all these methods are after the iterator definitions.
390 #else
391 // Iterate over the out-edges of this node. Deletions are illegal.
392 // This iteration uses integral indexes, to decouple from array reallocations.
393 DUIterator outs() const { return 0; }
394 // Use this when the out array might have changed to suppress asserts.
395 DUIterator refresh_out_pos(DUIterator i) const { return i; }
396
397 // Reference to the i'th output Node. Error if out of bounds.
398 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
399 // Does the node have an out at this position? (Used for iteration.)
400 bool has_out(DUIterator i) const { return i < _outcnt; }
401
402 // Iterate over the out-edges of this node. All changes are illegal.
403 // This iteration uses a pointer internal to the out array.
404 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
405 Node** out = _out;
406 // Assign a limit pointer to the reference argument:
407 max = out + (ptrdiff_t)_outcnt;
408 // Return the base pointer:
409 return out;
410 }
411 Node* fast_out(DUIterator_Fast i) const { return *i; }
412 // Iterate over the out-edges of this node, deleting one at a time.
413 // This iteration uses a pointer internal to the out array.
414 DUIterator_Last last_outs(DUIterator_Last& min) const {
415 Node** out = _out;
416 // Assign a limit pointer to the reference argument:
417 min = out;
418 // Return the pointer to the start of the iteration:
419 return out + (ptrdiff_t)_outcnt - 1;
420 }
421 Node* last_out(DUIterator_Last i) const { return *i; }
422 #endif
423
424 // Reference to the i'th input Node. Error if out of bounds.
425 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
426 // Reference to the i'th input Node. null if out of bounds.
427 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
428 // Reference to the i'th output Node. Error if out of bounds.
429 // Use this accessor sparingly. We are going trying to use iterators instead.
430 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
431 // Return the unique out edge.
432 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
433
434 // In some cases, a node n is only used by a single use, but the use may use
435 // n once or multiple times:
436 // use = ConvF2I(this)
437 // use = AddI(this, this)
438 Node* unique_multiple_edges_out_or_null() const;
439
440 // Delete out edge at position 'i' by moving last out edge to position 'i'
441 void raw_del_out(uint i) {
442 assert(i < _outcnt,"oob");
443 assert(_outcnt > 0,"oob");
444 #if OPTO_DU_ITERATOR_ASSERT
445 // Record that a change happened here.
446 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
447 #endif
448 _out[i] = _out[--_outcnt];
449 // Smash the old edge so it can't be used accidentally.
450 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
451 }
452
453 #ifdef ASSERT
454 bool is_dead() const;
455 static bool is_not_dead(const Node* n);
456 bool is_reachable_from_root() const;
457 #endif
458 // Check whether node has become unreachable
459 bool is_unreachable(PhaseIterGVN &igvn) const;
460
461 // Set a required input edge, also updates corresponding output edge
462 void add_req( Node *n ); // Append a NEW required input
463 void add_req( Node *n0, Node *n1 ) {
464 add_req(n0); add_req(n1); }
465 void add_req( Node *n0, Node *n1, Node *n2 ) {
466 add_req(n0); add_req(n1); add_req(n2); }
467 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
468 void del_req( uint idx ); // Delete required edge & compact
469 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
470 void ins_req( uint i, Node *n ); // Insert a NEW required input
471 void set_req( uint i, Node *n ) {
472 assert( is_not_dead(n), "can not use dead node");
473 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
474 assert( !VerifyHashTableKeys || _hash_lock == 0,
475 "remove node from hash table before modifying it");
476 Node** p = &_in[i]; // cache this._in, across the del_out call
477 if (*p != nullptr) (*p)->del_out((Node *)this);
478 (*p) = n;
479 if (n != nullptr) n->add_out((Node *)this);
480 Compile::current()->record_modified_node(this);
481 }
482 // Light version of set_req() to init inputs after node creation.
483 void init_req( uint i, Node *n ) {
484 assert( (i == 0 && this == n) ||
485 is_not_dead(n), "can not use dead node");
486 assert( i < _cnt, "oob");
487 assert( !VerifyHashTableKeys || _hash_lock == 0,
488 "remove node from hash table before modifying it");
489 assert( _in[i] == nullptr, "sanity");
490 _in[i] = n;
491 if (n != nullptr) n->add_out((Node *)this);
492 Compile::current()->record_modified_node(this);
493 }
494 // Find first occurrence of n among my edges:
495 int find_edge(Node* n);
496 int find_prec_edge(Node* n) {
497 for (uint i = req(); i < len(); i++) {
498 if (_in[i] == n) return i;
499 if (_in[i] == nullptr) {
500 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
501 break;
502 }
503 }
504 return -1;
505 }
506 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
507 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
508 // null out all inputs to eliminate incoming Def-Use edges.
509 void disconnect_inputs(Compile* C);
510
511 // Quickly, return true if and only if I am Compile::current()->top().
512 bool is_top() const {
513 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
514 return (_out == nullptr);
515 }
516 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
517 void setup_is_top();
518
519 // Strip away casting. (It is depth-limited.)
520 Node* uncast(bool keep_deps = false) const;
521 // Return whether two Nodes are equivalent, after stripping casting.
522 bool eqv_uncast(const Node* n, bool keep_deps = false) const {
523 return (this->uncast(keep_deps) == n->uncast(keep_deps));
524 }
525
526 // Find out of current node that matches opcode.
527 Node* find_out_with(int opcode);
528 // Return true if the current node has an out that matches opcode.
529 bool has_out_with(int opcode);
530 // Return true if the current node has an out that matches any of the opcodes.
531 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
532
533 private:
534 static Node* uncast_helper(const Node* n, bool keep_deps);
535
536 // Add an output edge to the end of the list
537 void add_out( Node *n ) {
538 if (is_top()) return;
539 if( _outcnt == _outmax ) out_grow(_outcnt);
540 _out[_outcnt++] = n;
541 }
542 // Delete an output edge
543 void del_out( Node *n ) {
544 if (is_top()) return;
545 Node** outp = &_out[_outcnt];
546 // Find and remove n
547 do {
548 assert(outp > _out, "Missing Def-Use edge");
549 } while (*--outp != n);
550 *outp = _out[--_outcnt];
551 // Smash the old edge so it can't be used accidentally.
552 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
553 // Record that a change happened here.
554 #if OPTO_DU_ITERATOR_ASSERT
555 DEBUG_ONLY(_last_del = n; ++_del_tick);
556 #endif
557 }
558 // Close gap after removing edge.
559 void close_prec_gap_at(uint gap) {
560 assert(_cnt <= gap && gap < _max, "no valid prec edge");
561 uint i = gap;
562 Node *last = nullptr;
563 for (; i < _max-1; ++i) {
564 Node *next = _in[i+1];
565 if (next == nullptr) break;
566 last = next;
567 }
568 _in[gap] = last; // Move last slot to empty one.
569 _in[i] = nullptr; // null out last slot.
570 }
571
572 public:
573 // Globally replace this node by a given new node, updating all uses.
574 void replace_by(Node* new_node);
575 // Globally replace this node by a given new node, updating all uses
576 // and cutting input edges of old node.
577 void subsume_by(Node* new_node, Compile* c) {
578 replace_by(new_node);
579 disconnect_inputs(c);
580 }
581 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
582 void set_req_X(uint i, Node *n, PhaseGVN *gvn);
583 // Find the one non-null required input. RegionNode only
584 Node *nonnull_req() const;
585 // Add or remove precedence edges
586 void add_prec( Node *n );
587 void rm_prec( uint i );
588
589 // Note: prec(i) will not necessarily point to n if edge already exists.
590 void set_prec( uint i, Node *n ) {
591 assert(i < _max, "oob: i=%d, _max=%d", i, _max);
592 assert(is_not_dead(n), "can not use dead node");
593 assert(i >= _cnt, "not a precedence edge");
594 // Avoid spec violation: duplicated prec edge.
595 if (_in[i] == n) return;
596 if (n == nullptr || find_prec_edge(n) != -1) {
597 rm_prec(i);
598 return;
599 }
600 if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
601 _in[i] = n;
602 n->add_out((Node *)this);
603 Compile::current()->record_modified_node(this);
604 }
605
606 // Set this node's index, used by cisc_version to replace current node
607 void set_idx(uint new_idx) {
608 _idx = new_idx;
609 }
610 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
611 void swap_edges(uint i1, uint i2) {
612 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
613 // Def-Use info is unchanged
614 Node* n1 = in(i1);
615 Node* n2 = in(i2);
616 _in[i1] = n2;
617 _in[i2] = n1;
618 // If this node is in the hash table, make sure it doesn't need a rehash.
619 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
620 // Flip swapped edges flag.
621 if (has_swapped_edges()) {
622 remove_flag(Node::Flag_has_swapped_edges);
623 } else {
624 add_flag(Node::Flag_has_swapped_edges);
625 }
626 }
627
628 // Iterators over input Nodes for a Node X are written as:
629 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
630 // NOTE: Required edges can contain embedded null pointers.
631
632 //----------------- Other Node Properties
633
634 // Generate class IDs for (some) ideal nodes so that it is possible to determine
635 // the type of a node using a non-virtual method call (the method is_<Node>() below).
636 //
637 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
638 // the type of the node the ID represents; another subset of an ID's bits are reserved
639 // for the superclasses of the node represented by the ID.
640 //
641 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
642 // returns false. A.is_A() returns true.
643 //
644 // If two classes, A and B, have the same superclass, a different bit of A's class id
645 // is reserved for A's type than for B's type. That bit is specified by the third
646 // parameter in the macro DEFINE_CLASS_ID.
647 //
648 // By convention, classes with deeper hierarchy are declared first. Moreover,
649 // classes with the same hierarchy depth are sorted by usage frequency.
650 //
651 // The query method masks the bits to cut off bits of subclasses and then compares
652 // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
653 //
654 // Class_MachCall=30, ClassMask_MachCall=31
655 // 12 8 4 0
656 // 0 0 0 0 0 0 0 0 1 1 1 1 0
657 // | | | |
658 // | | | Bit_Mach=2
659 // | | Bit_MachReturn=4
660 // | Bit_MachSafePoint=8
661 // Bit_MachCall=16
662 //
663 // Class_CountedLoop=56, ClassMask_CountedLoop=63
664 // 12 8 4 0
665 // 0 0 0 0 0 0 0 1 1 1 0 0 0
666 // | | |
667 // | | Bit_Region=8
668 // | Bit_Loop=16
669 // Bit_CountedLoop=32
670
671 #define DEFINE_CLASS_ID(cl, supcl, subn) \
672 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
673 Class_##cl = Class_##supcl + Bit_##cl , \
674 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
675
676 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
677 // so that its values fit into 32 bits.
678 enum NodeClasses {
679 Bit_Node = 0x00000000,
680 Class_Node = 0x00000000,
681 ClassMask_Node = 0xFFFFFFFF,
682
683 DEFINE_CLASS_ID(Multi, Node, 0)
684 DEFINE_CLASS_ID(SafePoint, Multi, 0)
685 DEFINE_CLASS_ID(Call, SafePoint, 0)
686 DEFINE_CLASS_ID(CallJava, Call, 0)
687 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
688 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
689 DEFINE_CLASS_ID(CallRuntime, Call, 1)
690 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
691 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0)
692 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1)
693 DEFINE_CLASS_ID(Allocate, Call, 2)
694 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
695 DEFINE_CLASS_ID(AbstractLock, Call, 3)
696 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
697 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
698 DEFINE_CLASS_ID(ArrayCopy, Call, 4)
699 DEFINE_CLASS_ID(LoadFlat, SafePoint, 1)
700 DEFINE_CLASS_ID(StoreFlat, SafePoint, 2)
701 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
702 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
703 DEFINE_CLASS_ID(Catch, PCTable, 0)
704 DEFINE_CLASS_ID(Jump, PCTable, 1)
705 DEFINE_CLASS_ID(If, MultiBranch, 1)
706 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0)
707 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0)
708 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1)
709 DEFINE_CLASS_ID(RangeCheck, If, 1)
710 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
711 DEFINE_CLASS_ID(ParsePredicate, If, 3)
712 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
713 DEFINE_CLASS_ID(Start, Multi, 2)
714 DEFINE_CLASS_ID(MemBar, Multi, 3)
715 DEFINE_CLASS_ID(Initialize, MemBar, 0)
716 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
717 DEFINE_CLASS_ID(Blackhole, MemBar, 2)
718
719 DEFINE_CLASS_ID(Mach, Node, 1)
720 DEFINE_CLASS_ID(MachReturn, Mach, 0)
721 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
722 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
723 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
724 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
725 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
726 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
727 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
728 DEFINE_CLASS_ID(MachBranch, Mach, 1)
729 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
730 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
731 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
732 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
733 DEFINE_CLASS_ID(MachTemp, Mach, 3)
734 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
735 DEFINE_CLASS_ID(MachConstant, Mach, 5)
736 DEFINE_CLASS_ID(MachJump, MachConstant, 0)
737 DEFINE_CLASS_ID(MachMerge, Mach, 6)
738 DEFINE_CLASS_ID(MachMemBar, Mach, 7)
739 DEFINE_CLASS_ID(MachProlog, Mach, 8)
740 DEFINE_CLASS_ID(MachVEP, Mach, 9)
741
742 DEFINE_CLASS_ID(Type, Node, 2)
743 DEFINE_CLASS_ID(Phi, Type, 0)
744 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
745 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
746 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
747 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
748 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
749 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
750 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
751 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
752 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
753 DEFINE_CLASS_ID(CMove, Type, 3)
754 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
755 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
756 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
757 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
758 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
759 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
760 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
761 DEFINE_CLASS_ID(Vector, Type, 7)
762 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
763 DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
764 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
765 DEFINE_CLASS_ID(ShiftV, Vector, 3)
766 DEFINE_CLASS_ID(CompressV, Vector, 4)
767 DEFINE_CLASS_ID(ExpandV, Vector, 5)
768 DEFINE_CLASS_ID(CompressM, Vector, 6)
769 DEFINE_CLASS_ID(Reduction, Vector, 7)
770 DEFINE_CLASS_ID(NegV, Vector, 8)
771 DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
772 DEFINE_CLASS_ID(MulVL, Vector, 10)
773 DEFINE_CLASS_ID(InlineType, Type, 8)
774 DEFINE_CLASS_ID(Con, Type, 9)
775 DEFINE_CLASS_ID(ConI, Con, 0)
776 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
777 DEFINE_CLASS_ID(Convert, Type, 11)
778
779
780 DEFINE_CLASS_ID(Proj, Node, 3)
781 DEFINE_CLASS_ID(CatchProj, Proj, 0)
782 DEFINE_CLASS_ID(JumpProj, Proj, 1)
783 DEFINE_CLASS_ID(IfProj, Proj, 2)
784 DEFINE_CLASS_ID(IfTrue, IfProj, 0)
785 DEFINE_CLASS_ID(IfFalse, IfProj, 1)
786 DEFINE_CLASS_ID(Parm, Proj, 4)
787 DEFINE_CLASS_ID(MachProj, Proj, 5)
788 DEFINE_CLASS_ID(NarrowMemProj, Proj, 6)
789
790 DEFINE_CLASS_ID(Mem, Node, 4)
791 DEFINE_CLASS_ID(Load, Mem, 0)
792 DEFINE_CLASS_ID(LoadVector, Load, 0)
793 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
794 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
795 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
796 DEFINE_CLASS_ID(Store, Mem, 1)
797 DEFINE_CLASS_ID(StoreVector, Store, 0)
798 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
799 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
800 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
801 DEFINE_CLASS_ID(LoadStore, Mem, 2)
802 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
803 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
804 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
805
806 DEFINE_CLASS_ID(Region, Node, 5)
807 DEFINE_CLASS_ID(Loop, Region, 0)
808 DEFINE_CLASS_ID(Root, Loop, 0)
809 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1)
810 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0)
811 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1)
812 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
813
814 DEFINE_CLASS_ID(Sub, Node, 6)
815 DEFINE_CLASS_ID(Cmp, Sub, 0)
816 DEFINE_CLASS_ID(FastLock, Cmp, 0)
817 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
818 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2)
819 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
820
821 DEFINE_CLASS_ID(MergeMem, Node, 7)
822 DEFINE_CLASS_ID(Bool, Node, 8)
823 DEFINE_CLASS_ID(AddP, Node, 9)
824 DEFINE_CLASS_ID(BoxLock, Node, 10)
825 DEFINE_CLASS_ID(Add, Node, 11)
826 DEFINE_CLASS_ID(MinMax, Add, 0)
827 DEFINE_CLASS_ID(Mul, Node, 12)
828 DEFINE_CLASS_ID(ClearArray, Node, 14)
829 DEFINE_CLASS_ID(Halt, Node, 15)
830 DEFINE_CLASS_ID(Opaque1, Node, 16)
831 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
832 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
833 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
834 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17)
835 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18)
836 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19)
837 DEFINE_CLASS_ID(Move, Node, 20)
838 DEFINE_CLASS_ID(LShift, Node, 21)
839 DEFINE_CLASS_ID(Neg, Node, 22)
840
841 _max_classes = ClassMask_Neg
842 };
843 #undef DEFINE_CLASS_ID
844
845 // Flags are sorted by usage frequency.
846 enum NodeFlags : uint64_t {
847 Flag_is_Copy = 1ULL << 0, // should be first bit to avoid shift
848 Flag_rematerialize = 1ULL << 1,
849 Flag_needs_anti_dependence_check = 1ULL << 2,
850 Flag_is_macro = 1ULL << 3,
851 Flag_is_Con = 1ULL << 4,
852 Flag_is_cisc_alternate = 1ULL << 5,
853 Flag_is_dead_loop_safe = 1ULL << 6,
854 Flag_may_be_short_branch = 1ULL << 7,
855 Flag_avoid_back_to_back_before = 1ULL << 8,
856 Flag_avoid_back_to_back_after = 1ULL << 9,
857 Flag_has_call = 1ULL << 10,
858 Flag_has_swapped_edges = 1ULL << 11,
859 Flag_is_scheduled = 1ULL << 12,
860 Flag_is_expensive = 1ULL << 13,
861 Flag_is_predicated_vector = 1ULL << 14, // Marked on a vector node that has an additional
862 // mask input controlling the lane operations.
863 Flag_for_post_loop_opts_igvn = 1ULL << 15,
864 Flag_for_merge_stores_igvn = 1ULL << 16,
865 Flag_is_removed_by_peephole = 1ULL << 17,
866 Flag_is_predicated_using_blend = 1ULL << 18,
867 _last_flag = Flag_is_predicated_using_blend
868 };
869
870 class PD;
871
872 private:
873 juint _class_id;
874 juint _flags;
875
876 #ifdef ASSERT
877 static juint max_flags();
878 #endif
879
880 protected:
881 // These methods should be called from constructors only.
882 void init_class_id(juint c) {
883 _class_id = c; // cast out const
884 }
885 void init_flags(uint fl) {
886 assert(fl <= max_flags(), "invalid node flag");
887 _flags |= fl;
888 }
889 void clear_flag(uint fl) {
890 assert(fl <= max_flags(), "invalid node flag");
891 _flags &= ~fl;
892 }
893
894 public:
895 juint class_id() const { return _class_id; }
896
897 juint flags() const { return _flags; }
898
899 void add_flag(juint fl) { init_flags(fl); }
900
901 void remove_flag(juint fl) { clear_flag(fl); }
902
903 // Return a dense integer opcode number
904 virtual int Opcode() const;
905
906 // Virtual inherited Node size
907 virtual uint size_of() const;
908
909 // Other interesting Node properties
910 #define DEFINE_CLASS_QUERY(type) \
911 bool is_##type() const { \
912 return ((_class_id & ClassMask_##type) == Class_##type); \
913 } \
914 type##Node *as_##type() const { \
915 assert(is_##type(), "invalid node class: %s", Name()); \
916 return (type##Node*)this; \
917 } \
918 type##Node* isa_##type() const { \
919 return (is_##type()) ? as_##type() : nullptr; \
920 }
921
922 DEFINE_CLASS_QUERY(AbstractLock)
923 DEFINE_CLASS_QUERY(Add)
924 DEFINE_CLASS_QUERY(AddP)
925 DEFINE_CLASS_QUERY(Allocate)
926 DEFINE_CLASS_QUERY(AllocateArray)
927 DEFINE_CLASS_QUERY(ArrayCopy)
928 DEFINE_CLASS_QUERY(BaseCountedLoop)
929 DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
930 DEFINE_CLASS_QUERY(Blackhole)
931 DEFINE_CLASS_QUERY(Bool)
932 DEFINE_CLASS_QUERY(BoxLock)
933 DEFINE_CLASS_QUERY(Call)
934 DEFINE_CLASS_QUERY(CallDynamicJava)
935 DEFINE_CLASS_QUERY(CallJava)
936 DEFINE_CLASS_QUERY(CallLeaf)
937 DEFINE_CLASS_QUERY(CallLeafNoFP)
938 DEFINE_CLASS_QUERY(CallLeafPure)
939 DEFINE_CLASS_QUERY(CallRuntime)
940 DEFINE_CLASS_QUERY(CallStaticJava)
941 DEFINE_CLASS_QUERY(Catch)
942 DEFINE_CLASS_QUERY(CatchProj)
943 DEFINE_CLASS_QUERY(CheckCastPP)
944 DEFINE_CLASS_QUERY(CastII)
945 DEFINE_CLASS_QUERY(CastLL)
946 DEFINE_CLASS_QUERY(CastFF)
947 DEFINE_CLASS_QUERY(ConI)
948 DEFINE_CLASS_QUERY(CastPP)
949 DEFINE_CLASS_QUERY(ConstraintCast)
950 DEFINE_CLASS_QUERY(ClearArray)
951 DEFINE_CLASS_QUERY(CMove)
952 DEFINE_CLASS_QUERY(Cmp)
953 DEFINE_CLASS_QUERY(Convert)
954 DEFINE_CLASS_QUERY(CountedLoop)
955 DEFINE_CLASS_QUERY(CountedLoopEnd)
956 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
957 DEFINE_CLASS_QUERY(DecodeN)
958 DEFINE_CLASS_QUERY(DecodeNKlass)
959 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
960 DEFINE_CLASS_QUERY(EncodeP)
961 DEFINE_CLASS_QUERY(EncodePKlass)
962 DEFINE_CLASS_QUERY(FastLock)
963 DEFINE_CLASS_QUERY(FastUnlock)
964 DEFINE_CLASS_QUERY(FlatArrayCheck)
965 DEFINE_CLASS_QUERY(Halt)
966 DEFINE_CLASS_QUERY(If)
967 DEFINE_CLASS_QUERY(RangeCheck)
968 DEFINE_CLASS_QUERY(IfProj)
969 DEFINE_CLASS_QUERY(IfFalse)
970 DEFINE_CLASS_QUERY(IfTrue)
971 DEFINE_CLASS_QUERY(Initialize)
972 DEFINE_CLASS_QUERY(Jump)
973 DEFINE_CLASS_QUERY(JumpProj)
974 DEFINE_CLASS_QUERY(LongCountedLoop)
975 DEFINE_CLASS_QUERY(LongCountedLoopEnd)
976 DEFINE_CLASS_QUERY(Load)
977 DEFINE_CLASS_QUERY(LoadStore)
978 DEFINE_CLASS_QUERY(LoadStoreConditional)
979 DEFINE_CLASS_QUERY(Lock)
980 DEFINE_CLASS_QUERY(Loop)
981 DEFINE_CLASS_QUERY(LShift)
982 DEFINE_CLASS_QUERY(Mach)
983 DEFINE_CLASS_QUERY(MachBranch)
984 DEFINE_CLASS_QUERY(MachCall)
985 DEFINE_CLASS_QUERY(MachCallDynamicJava)
986 DEFINE_CLASS_QUERY(MachCallJava)
987 DEFINE_CLASS_QUERY(MachCallLeaf)
988 DEFINE_CLASS_QUERY(MachCallRuntime)
989 DEFINE_CLASS_QUERY(MachCallStaticJava)
990 DEFINE_CLASS_QUERY(MachConstantBase)
991 DEFINE_CLASS_QUERY(MachConstant)
992 DEFINE_CLASS_QUERY(MachGoto)
993 DEFINE_CLASS_QUERY(MachIf)
994 DEFINE_CLASS_QUERY(MachJump)
995 DEFINE_CLASS_QUERY(MachNullCheck)
996 DEFINE_CLASS_QUERY(MachProj)
997 DEFINE_CLASS_QUERY(MachProlog)
998 DEFINE_CLASS_QUERY(MachReturn)
999 DEFINE_CLASS_QUERY(MachSafePoint)
1000 DEFINE_CLASS_QUERY(MachSpillCopy)
1001 DEFINE_CLASS_QUERY(MachTemp)
1002 DEFINE_CLASS_QUERY(MachMemBar)
1003 DEFINE_CLASS_QUERY(MachMerge)
1004 DEFINE_CLASS_QUERY(MachVEP)
1005 DEFINE_CLASS_QUERY(Mem)
1006 DEFINE_CLASS_QUERY(MemBar)
1007 DEFINE_CLASS_QUERY(MemBarStoreStore)
1008 DEFINE_CLASS_QUERY(MergeMem)
1009 DEFINE_CLASS_QUERY(MinMax)
1010 DEFINE_CLASS_QUERY(Move)
1011 DEFINE_CLASS_QUERY(Mul)
1012 DEFINE_CLASS_QUERY(Multi)
1013 DEFINE_CLASS_QUERY(MultiBranch)
1014 DEFINE_CLASS_QUERY(MulVL)
1015 DEFINE_CLASS_QUERY(NarrowMemProj)
1016 DEFINE_CLASS_QUERY(Neg)
1017 DEFINE_CLASS_QUERY(NegV)
1018 DEFINE_CLASS_QUERY(NeverBranch)
1019 DEFINE_CLASS_QUERY(Opaque1)
1020 DEFINE_CLASS_QUERY(OpaqueNotNull)
1021 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1022 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1023 DEFINE_CLASS_QUERY(OpaqueLoopInit)
1024 DEFINE_CLASS_QUERY(OpaqueLoopStride)
1025 DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1026 DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1027 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1028 DEFINE_CLASS_QUERY(Parm)
1029 DEFINE_CLASS_QUERY(ParsePredicate)
1030 DEFINE_CLASS_QUERY(PCTable)
1031 DEFINE_CLASS_QUERY(Phi)
1032 DEFINE_CLASS_QUERY(Proj)
1033 DEFINE_CLASS_QUERY(Reduction)
1034 DEFINE_CLASS_QUERY(Region)
1035 DEFINE_CLASS_QUERY(Root)
1036 DEFINE_CLASS_QUERY(SafePoint)
1037 DEFINE_CLASS_QUERY(SafePointScalarObject)
1038 DEFINE_CLASS_QUERY(SafePointScalarMerge)
1039 DEFINE_CLASS_QUERY(Start)
1040 DEFINE_CLASS_QUERY(Store)
1041 DEFINE_CLASS_QUERY(Sub)
1042 DEFINE_CLASS_QUERY(SubTypeCheck)
1043 DEFINE_CLASS_QUERY(Type)
1044 DEFINE_CLASS_QUERY(InlineType)
1045 DEFINE_CLASS_QUERY(LoadFlat)
1046 DEFINE_CLASS_QUERY(StoreFlat)
1047 DEFINE_CLASS_QUERY(Vector)
1048 DEFINE_CLASS_QUERY(VectorMaskCmp)
1049 DEFINE_CLASS_QUERY(VectorUnbox)
1050 DEFINE_CLASS_QUERY(VectorReinterpret)
1051 DEFINE_CLASS_QUERY(CompressV)
1052 DEFINE_CLASS_QUERY(ExpandV)
1053 DEFINE_CLASS_QUERY(CompressM)
1054 DEFINE_CLASS_QUERY(LoadVector)
1055 DEFINE_CLASS_QUERY(LoadVectorGather)
1056 DEFINE_CLASS_QUERY(LoadVectorMasked)
1057 DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1058 DEFINE_CLASS_QUERY(StoreVector)
1059 DEFINE_CLASS_QUERY(StoreVectorScatter)
1060 DEFINE_CLASS_QUERY(StoreVectorMasked)
1061 DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1062 DEFINE_CLASS_QUERY(SaturatingVector)
1063 DEFINE_CLASS_QUERY(ShiftV)
1064 DEFINE_CLASS_QUERY(Unlock)
1065
1066 #undef DEFINE_CLASS_QUERY
1067
1068 // duplicate of is_MachSpillCopy()
1069 bool is_SpillCopy () const {
1070 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1071 }
1072
1073 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1074 // The data node which is safe to leave in dead loop during IGVN optimization.
1075 bool is_dead_loop_safe() const;
1076
1077 // is_Copy() returns copied edge index (0 or 1)
1078 uint is_Copy() const { return (_flags & Flag_is_Copy); }
1079
1080 virtual bool is_CFG() const { return false; }
1081
1082 // If this node is control-dependent on a test, can it be
1083 // rerouted to a dominating equivalent test? This is usually
1084 // true of non-CFG nodes, but can be false for operations which
1085 // depend for their correct sequencing on more than one test.
1086 // (In that case, hoisting to a dominating test may silently
1087 // skip some other important test.)
1088 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1089
1090 // When building basic blocks, I need to have a notion of block beginning
1091 // Nodes, next block selector Nodes (block enders), and next block
1092 // projections. These calls need to work on their machine equivalents. The
1093 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1094 bool is_block_start() const {
1095 if ( is_Region() )
1096 return this == (const Node*)in(0);
1097 else
1098 return is_Start();
1099 }
1100
1101 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1102 // Goto and Return. This call also returns the block ending Node.
1103 virtual const Node *is_block_proj() const;
1104
1105 // The node is a "macro" node which needs to be expanded before matching
1106 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1107 // The node is expensive: the best control is set during loop opts
1108 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1109 // The node's original edge position is swapped.
1110 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1111
1112 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1113
1114 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1115
1116 // Used in lcm to mark nodes that have scheduled
1117 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1118
1119 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1120 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1121
1122 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1123 static bool may_be_loop_entry(Node* n) {
1124 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1125 }
1126
1127 //----------------- Optimization
1128
1129 // Get the worst-case Type output for this Node.
1130 virtual const class Type *bottom_type() const;
1131
1132 // If we find a better type for a node, try to record it permanently.
1133 // Return true if this node actually changed.
1134 // Be sure to do the hash_delete game in the "rehash" variant.
1135 void raise_bottom_type(const Type* new_type);
1136
1137 // Get the address type with which this node uses and/or defs memory,
1138 // or null if none. The address type is conservatively wide.
1139 // Returns non-null for calls, membars, loads, stores, etc.
1140 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1141 virtual const class TypePtr *adr_type() const { return nullptr; }
1142
1143 // Return an existing node which computes the same function as this node.
1144 // The optimistic combined algorithm requires this to return a Node which
1145 // is a small number of steps away (e.g., one of my inputs).
1146 virtual Node* Identity(PhaseGVN* phase);
1147
1148 // Return the set of values this Node can take on at runtime.
1149 virtual const Type* Value(PhaseGVN* phase) const;
1150
1151 // Return a node which is more "ideal" than the current node.
1152 // The invariants on this call are subtle. If in doubt, read the
1153 // treatise in node.cpp above the default implementation AND TEST WITH
1154 // -XX:VerifyIterativeGVN=1
1155 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1156
1157 // Some nodes have specific Ideal subgraph transformations only if they are
1158 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1159 // for the transformations to happen.
1160 bool has_special_unique_user() const;
1161
1162 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1163 Node* find_exact_control(Node* ctrl);
1164
1165 // Results of the dominance analysis.
1166 enum class DomResult {
1167 NotDominate, // 'this' node does not dominate 'sub'.
1168 Dominate, // 'this' node dominates or is equal to 'sub'.
1169 EncounteredDeadCode // Result is undefined due to encountering dead code.
1170 };
1171 // Check if 'this' node dominates or equal to 'sub'.
1172 DomResult dominates(Node* sub, Node_List &nlist);
1173
1174 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1175 public:
1176
1177 // See if there is valid pipeline info
1178 static const Pipeline *pipeline_class();
1179 virtual const Pipeline *pipeline() const;
1180
1181 // Compute the latency from the def to this instruction of the ith input node
1182 uint latency(uint i);
1183
1184 // Hash & compare functions, for pessimistic value numbering
1185
1186 // If the hash function returns the special sentinel value NO_HASH,
1187 // the node is guaranteed never to compare equal to any other node.
1188 // If we accidentally generate a hash with value NO_HASH the node
1189 // won't go into the table and we'll lose a little optimization.
1190 static const uint NO_HASH = 0;
1191 virtual uint hash() const;
1192 virtual bool cmp( const Node &n ) const;
1193
1194 // Operation appears to be iteratively computed (such as an induction variable)
1195 // It is possible for this operation to return false for a loop-varying
1196 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1197 bool is_iteratively_computed();
1198
1199 // Determine if a node is a counted loop induction variable.
1200 // NOTE: The method is defined in "loopnode.cpp".
1201 bool is_cloop_ind_var() const;
1202
1203 // Return a node with opcode "opc" and same inputs as "this" if one can
1204 // be found; Otherwise return null;
1205 Node* find_similar(int opc);
1206 bool has_same_inputs_as(const Node* other) const;
1207
1208 // Return the unique control out if only one. Null if none or more than one.
1209 Node* unique_ctrl_out_or_null() const;
1210 // Return the unique control out. Asserts if none or more than one control out.
1211 Node* unique_ctrl_out() const;
1212
1213 // Set control or add control as precedence edge
1214 void ensure_control_or_add_prec(Node* c);
1215 void add_prec_from(Node* n);
1216
1217 // Visit boundary uses of the node and apply a callback function for each.
1218 // Recursively traverse uses, stopping and applying the callback when
1219 // reaching a boundary node, defined by is_boundary. Note: the function
1220 // definition appears after the complete type definition of Node_List.
1221 template <typename Callback, typename Check>
1222 void visit_uses(Callback callback, Check is_boundary) const;
1223
1224 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1225 // (Load and range check CastII nodes).
1226 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1227 virtual Node* pin_array_access_node() const {
1228 return nullptr;
1229 }
1230
1231 //----------------- Code Generation
1232
1233 // Ideal register class for Matching. Zero means unmatched instruction
1234 // (these are cloned instead of converted to machine nodes).
1235 virtual uint ideal_reg() const;
1236
1237 static const uint NotAMachineReg; // must be > max. machine register
1238
1239 // Do we Match on this edge index or not? Generally false for Control
1240 // and true for everything else. Weird for calls & returns.
1241 virtual uint match_edge(uint idx) const;
1242
1243 // Register class output is returned in
1244 virtual const RegMask &out_RegMask() const;
1245 // Register class input is expected in
1246 virtual const RegMask &in_RegMask(uint) const;
1247 // Should we clone rather than spill this instruction?
1248 bool rematerialize() const;
1249
1250 // Return JVM State Object if this Node carries debug info, or null otherwise
1251 virtual JVMState* jvms() const;
1252
1253 // Print as assembly
1254 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1255 // Emit bytes using C2_MacroAssembler
1256 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1257 // Size of instruction in bytes
1258 virtual uint size(PhaseRegAlloc *ra_) const;
1259
1260 // Convenience function to extract an integer constant from a node.
1261 // If it is not an integer constant (either Con, CastII, or Mach),
1262 // return value_if_unknown.
1263 jint find_int_con(jint value_if_unknown) const {
1264 const TypeInt* t = find_int_type();
1265 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1266 }
1267 // Return the constant, knowing it is an integer constant already
1268 jint get_int() const {
1269 const TypeInt* t = find_int_type();
1270 guarantee(t != nullptr, "must be con");
1271 return t->get_con();
1272 }
1273 // Here's where the work is done. Can produce non-constant int types too.
1274 const TypeInt* find_int_type() const;
1275 const TypeInteger* find_integer_type(BasicType bt) const;
1276
1277 // Same thing for long (and intptr_t, via type.hpp):
1278 jlong get_long() const {
1279 const TypeLong* t = find_long_type();
1280 guarantee(t != nullptr, "must be con");
1281 return t->get_con();
1282 }
1283 jlong find_long_con(jint value_if_unknown) const {
1284 const TypeLong* t = find_long_type();
1285 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1286 }
1287 const TypeLong* find_long_type() const;
1288
1289 jlong get_integer_as_long(BasicType bt) const {
1290 const TypeInteger* t = find_integer_type(bt);
1291 guarantee(t != nullptr && t->is_con(), "must be con");
1292 return t->get_con_as_long(bt);
1293 }
1294 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1295 const TypeInteger* t = find_integer_type(bt);
1296 if (t == nullptr || !t->is_con()) return value_if_unknown;
1297 return t->get_con_as_long(bt);
1298 }
1299 const TypePtr* get_ptr_type() const;
1300
1301 // These guys are called by code generated by ADLC:
1302 intptr_t get_ptr() const;
1303 intptr_t get_narrowcon() const;
1304 jdouble getd() const;
1305 jfloat getf() const;
1306 jshort geth() const;
1307
1308 // Nodes which are pinned into basic blocks
1309 virtual bool pinned() const { return false; }
1310
1311 // Nodes which use memory without consuming it, hence need antidependences
1312 // More specifically, needs_anti_dependence_check returns true iff the node
1313 // (a) does a load, and (b) does not perform a store (except perhaps to a
1314 // stack slot or some other unaliased location).
1315 bool needs_anti_dependence_check() const;
1316
1317 // Return which operand this instruction may cisc-spill. In other words,
1318 // return operand position that can convert from reg to memory access
1319 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1320 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1321
1322 // Whether this is a memory-writing machine node.
1323 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1324
1325 // Whether this is a memory phi node
1326 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1327
1328 bool is_div_or_mod(BasicType bt) const;
1329
1330 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1331
1332 //----------------- Printing, etc
1333 #ifndef PRODUCT
1334 public:
1335 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1336 Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1337 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1338 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1339 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1340 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1341 class DumpConfig {
1342 public:
1343 // overridden to implement coloring of node idx
1344 virtual void pre_dump(outputStream *st, const Node* n) = 0;
1345 virtual void post_dump(outputStream *st) = 0;
1346 };
1347 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1348 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1349 void dump() const; // print node with newline
1350 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1351 void dump(int depth) const; // Print this node, recursively to depth d
1352 void dump_ctrl(int depth) const; // Print control nodes, to depth d
1353 void dump_comp() const; // Print this node in compact representation.
1354 // Print this node in compact representation.
1355 void dump_comp(const char* suffix, outputStream *st = tty) const;
1356 private:
1357 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info
1358 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info
1359 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info
1360 public:
1361 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1362 // Print compact per-node info
1363 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1364
1365 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1366
1367 // This call defines a class-unique string used to identify class instances
1368 virtual const char *Name() const;
1369
1370 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1371 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1372 #endif
1373 #ifdef ASSERT
1374 void verify_construction();
1375 bool verify_jvms(const JVMState* jvms) const;
1376
1377 Node* _debug_orig; // Original version of this, if any.
1378 Node* debug_orig() const { return _debug_orig; }
1379 void set_debug_orig(Node* orig); // _debug_orig = orig
1380 void dump_orig(outputStream *st, bool print_key = true) const;
1381
1382 uint64_t _debug_idx; // Unique value assigned to every node.
1383 uint64_t debug_idx() const { return _debug_idx; }
1384 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1385
1386 int _hash_lock; // Barrier to modifications of nodes in the hash table
1387 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1388 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1389
1390 static void init_NodeProperty();
1391
1392 #if OPTO_DU_ITERATOR_ASSERT
1393 const Node* _last_del; // The last deleted node.
1394 uint _del_tick; // Bumped when a deletion happens..
1395 #endif
1396 #endif
1397 };
1398
1399 inline bool not_a_node(const Node* n) {
1400 if (n == nullptr) return true;
1401 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
1402 if (*(address*)n == badAddress) return true; // kill by Node::destruct
1403 return false;
1404 }
1405
1406 //-----------------------------------------------------------------------------
1407 // Iterators over DU info, and associated Node functions.
1408
1409 #if OPTO_DU_ITERATOR_ASSERT
1410
1411 // Common code for assertion checking on DU iterators.
1412 class DUIterator_Common {
1413 #ifdef ASSERT
1414 protected:
1415 bool _vdui; // cached value of VerifyDUIterators
1416 const Node* _node; // the node containing the _out array
1417 uint _outcnt; // cached node->_outcnt
1418 uint _del_tick; // cached node->_del_tick
1419 Node* _last; // last value produced by the iterator
1420
1421 void sample(const Node* node); // used by c'tor to set up for verifies
1422 void verify(const Node* node, bool at_end_ok = false);
1423 void verify_resync();
1424 void reset(const DUIterator_Common& that);
1425
1426 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1427 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1428 #else
1429 #define I_VDUI_ONLY(i,x) { }
1430 #endif //ASSERT
1431 };
1432
1433 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1434
1435 // Default DU iterator. Allows appends onto the out array.
1436 // Allows deletion from the out array only at the current point.
1437 // Usage:
1438 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
1439 // Node* y = x->out(i);
1440 // ...
1441 // }
1442 // Compiles in product mode to a unsigned integer index, which indexes
1443 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1444 // also reloads x->_outcnt. If you delete, you must perform "--i" just
1445 // before continuing the loop. You must delete only the last-produced
1446 // edge. You must delete only a single copy of the last-produced edge,
1447 // or else you must delete all copies at once (the first time the edge
1448 // is produced by the iterator).
1449 class DUIterator : public DUIterator_Common {
1450 friend class Node;
1451
1452 // This is the index which provides the product-mode behavior.
1453 // Whatever the product-mode version of the system does to the
1454 // DUI index is done to this index. All other fields in
1455 // this class are used only for assertion checking.
1456 uint _idx;
1457
1458 #ifdef ASSERT
1459 uint _refresh_tick; // Records the refresh activity.
1460
1461 void sample(const Node* node); // Initialize _refresh_tick etc.
1462 void verify(const Node* node, bool at_end_ok = false);
1463 void verify_increment(); // Verify an increment operation.
1464 void verify_resync(); // Verify that we can back up over a deletion.
1465 void verify_finish(); // Verify that the loop terminated properly.
1466 void refresh(); // Resample verification info.
1467 void reset(const DUIterator& that); // Resample after assignment.
1468 #endif
1469
1470 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1471 { _idx = 0; DEBUG_ONLY(sample(node)); }
1472
1473 public:
1474 // initialize to garbage; clear _vdui to disable asserts
1475 DUIterator()
1476 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1477
1478 DUIterator(const DUIterator& that)
1479 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); }
1480
1481 void operator++(int dummy_to_specify_postfix_op)
1482 { _idx++; VDUI_ONLY(verify_increment()); }
1483
1484 void operator--()
1485 { VDUI_ONLY(verify_resync()); --_idx; }
1486
1487 ~DUIterator()
1488 { VDUI_ONLY(verify_finish()); }
1489
1490 void operator=(const DUIterator& that)
1491 { _idx = that._idx; DEBUG_ONLY(reset(that)); }
1492 };
1493
1494 DUIterator Node::outs() const
1495 { return DUIterator(this, 0); }
1496 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1497 { I_VDUI_ONLY(i, i.refresh()); return i; }
1498 bool Node::has_out(DUIterator& i) const
1499 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1500 Node* Node::out(DUIterator& i) const
1501 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; }
1502
1503
1504 // Faster DU iterator. Disallows insertions into the out array.
1505 // Allows deletion from the out array only at the current point.
1506 // Usage:
1507 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1508 // Node* y = x->fast_out(i);
1509 // ...
1510 // }
1511 // Compiles in product mode to raw Node** pointer arithmetic, with
1512 // no reloading of pointers from the original node x. If you delete,
1513 // you must perform "--i; --imax" just before continuing the loop.
1514 // If you delete multiple copies of the same edge, you must decrement
1515 // imax, but not i, multiple times: "--i, imax -= num_edges".
1516 class DUIterator_Fast : public DUIterator_Common {
1517 friend class Node;
1518 friend class DUIterator_Last;
1519
1520 // This is the pointer which provides the product-mode behavior.
1521 // Whatever the product-mode version of the system does to the
1522 // DUI pointer is done to this pointer. All other fields in
1523 // this class are used only for assertion checking.
1524 Node** _outp;
1525
1526 #ifdef ASSERT
1527 void verify(const Node* node, bool at_end_ok = false);
1528 void verify_limit();
1529 void verify_resync();
1530 void verify_relimit(uint n);
1531 void reset(const DUIterator_Fast& that);
1532 #endif
1533
1534 // Note: offset must be signed, since -1 is sometimes passed
1535 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1536 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); }
1537
1538 public:
1539 // initialize to garbage; clear _vdui to disable asserts
1540 DUIterator_Fast()
1541 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1542
1543 DUIterator_Fast(const DUIterator_Fast& that)
1544 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); }
1545
1546 void operator++(int dummy_to_specify_postfix_op)
1547 { _outp++; VDUI_ONLY(verify(_node, true)); }
1548
1549 void operator--()
1550 { VDUI_ONLY(verify_resync()); --_outp; }
1551
1552 void operator-=(uint n) // applied to the limit only
1553 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1554
1555 bool operator<(DUIterator_Fast& limit) {
1556 I_VDUI_ONLY(*this, this->verify(_node, true));
1557 I_VDUI_ONLY(limit, limit.verify_limit());
1558 return _outp < limit._outp;
1559 }
1560
1561 void operator=(const DUIterator_Fast& that)
1562 { _outp = that._outp; DEBUG_ONLY(reset(that)); }
1563 };
1564
1565 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1566 // Assign a limit pointer to the reference argument:
1567 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1568 // Return the base pointer:
1569 return DUIterator_Fast(this, 0);
1570 }
1571 Node* Node::fast_out(DUIterator_Fast& i) const {
1572 I_VDUI_ONLY(i, i.verify(this));
1573 return DEBUG_ONLY(i._last=) *i._outp;
1574 }
1575
1576
1577 // Faster DU iterator. Requires each successive edge to be removed.
1578 // Does not allow insertion of any edges.
1579 // Usage:
1580 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1581 // Node* y = x->last_out(i);
1582 // ...
1583 // }
1584 // Compiles in product mode to raw Node** pointer arithmetic, with
1585 // no reloading of pointers from the original node x.
1586 class DUIterator_Last : private DUIterator_Fast {
1587 friend class Node;
1588
1589 #ifdef ASSERT
1590 void verify(const Node* node, bool at_end_ok = false);
1591 void verify_limit();
1592 void verify_step(uint num_edges);
1593 #endif
1594
1595 // Note: offset must be signed, since -1 is sometimes passed
1596 DUIterator_Last(const Node* node, ptrdiff_t offset)
1597 : DUIterator_Fast(node, offset) { }
1598
1599 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1600 void operator<(int) {} // do not use
1601
1602 public:
1603 DUIterator_Last() { }
1604 // initialize to garbage
1605
1606 DUIterator_Last(const DUIterator_Last& that) = default;
1607
1608 void operator--()
1609 { _outp--; VDUI_ONLY(verify_step(1)); }
1610
1611 void operator-=(uint n)
1612 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1613
1614 bool operator>=(DUIterator_Last& limit) {
1615 I_VDUI_ONLY(*this, this->verify(_node, true));
1616 I_VDUI_ONLY(limit, limit.verify_limit());
1617 return _outp >= limit._outp;
1618 }
1619
1620 DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1621 };
1622
1623 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1624 // Assign a limit pointer to the reference argument:
1625 imin = DUIterator_Last(this, 0);
1626 // Return the initial pointer:
1627 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1628 }
1629 Node* Node::last_out(DUIterator_Last& i) const {
1630 I_VDUI_ONLY(i, i.verify(this));
1631 return DEBUG_ONLY(i._last=) *i._outp;
1632 }
1633
1634 #endif //OPTO_DU_ITERATOR_ASSERT
1635
1636 #undef I_VDUI_ONLY
1637 #undef VDUI_ONLY
1638
1639 // An Iterator that truly follows the iterator pattern. Doesn't
1640 // support deletion but could be made to.
1641 //
1642 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1643 // Node* m = i.get();
1644 //
1645 class SimpleDUIterator : public StackObj {
1646 private:
1647 Node* node;
1648 DUIterator_Fast imax;
1649 DUIterator_Fast i;
1650 public:
1651 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1652 bool has_next() { return i < imax; }
1653 void next() { i++; }
1654 Node* get() { return node->fast_out(i); }
1655 };
1656
1657
1658 //-----------------------------------------------------------------------------
1659 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
1660 // Abstractly provides an infinite array of Node*'s, initialized to null.
1661 // Note that the constructor just zeros things, and since I use Arena
1662 // allocation I do not need a destructor to reclaim storage.
1663 class Node_Array : public AnyObj {
1664 protected:
1665 Arena* _a; // Arena to allocate in
1666 uint _max;
1667 Node** _nodes;
1668 ReallocMark _nesting; // Safety checks for arena reallocation
1669
1670 // Grow array to required capacity
1671 void maybe_grow(uint i) {
1672 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1673 if (i >= _max) {
1674 grow(i);
1675 }
1676 }
1677 void grow(uint i);
1678
1679 public:
1680 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1681 _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1682 clear();
1683 }
1684 Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1685
1686 NONCOPYABLE(Node_Array);
1687 Node_Array& operator=(Node_Array&&) = delete;
1688 // Allow move constructor for && (eg. capture return of function)
1689 Node_Array(Node_Array&&) = default;
1690
1691 Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1692 { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1693 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1694 Node** adr() { return _nodes; }
1695 // Extend the mapping: index i maps to Node *n.
1696 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1697 void insert( uint i, Node *n );
1698 void remove( uint i ); // Remove, preserving order
1699 // Clear all entries in _nodes to null but keep storage
1700 void clear() {
1701 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1702 }
1703
1704 uint max() const { return _max; }
1705 void dump() const;
1706 };
1707
1708 class Node_List : public Node_Array {
1709 uint _cnt;
1710 public:
1711 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1712 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1713
1714 NONCOPYABLE(Node_List);
1715 Node_List& operator=(Node_List&&) = delete;
1716 // Allow move constructor for && (eg. capture return of function)
1717 Node_List(Node_List&&) = default;
1718
1719 bool contains(const Node* n) const {
1720 for (uint e = 0; e < size(); e++) {
1721 if (at(e) == n) return true;
1722 }
1723 return false;
1724 }
1725 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1726 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1727 void push( Node *b ) { map(_cnt++,b); }
1728 void yank( Node *n ); // Find and remove
1729 Node *pop() { return _nodes[--_cnt]; }
1730 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1731 void copy(const Node_List& from) {
1732 if (from._max > _max) {
1733 grow(from._max);
1734 }
1735 _cnt = from._cnt;
1736 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1737 }
1738
1739 uint size() const { return _cnt; }
1740 void dump() const;
1741 void dump_simple() const;
1742 };
1743
1744 // Definition must appear after complete type definition of Node_List
1745 template <typename Callback, typename Check>
1746 void Node::visit_uses(Callback callback, Check is_boundary) const {
1747 ResourceMark rm;
1748 VectorSet visited;
1749 Node_List worklist;
1750
1751 // The initial worklist consists of the direct uses
1752 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1753 Node* out = fast_out(k);
1754 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1755 }
1756
1757 while (worklist.size() > 0) {
1758 Node* use = worklist.pop();
1759 // Apply callback on boundary nodes
1760 if (is_boundary(use)) {
1761 callback(use);
1762 } else {
1763 // Not a boundary node, continue search
1764 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1765 Node* out = use->fast_out(k);
1766 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1767 }
1768 }
1769 }
1770 }
1771
1772
1773 //------------------------------Unique_Node_List-------------------------------
1774 class Unique_Node_List : public Node_List {
1775 VectorSet _in_worklist;
1776 uint _clock_index; // Index in list where to pop from next
1777 public:
1778 Unique_Node_List() : Node_List(), _clock_index(0) {}
1779 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1780
1781 NONCOPYABLE(Unique_Node_List);
1782 Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1783 // Allow move constructor for && (eg. capture return of function)
1784 Unique_Node_List(Unique_Node_List&&) = default;
1785
1786 void remove( Node *n );
1787 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1788 VectorSet& member_set(){ return _in_worklist; }
1789
1790 void push(Node* b) {
1791 if( !_in_worklist.test_set(b->_idx) )
1792 Node_List::push(b);
1793 }
1794 void push_non_cfg_inputs_of(const Node* node) {
1795 for (uint i = 1; i < node->req(); i++) {
1796 Node* input = node->in(i);
1797 if (input != nullptr && !input->is_CFG()) {
1798 push(input);
1799 }
1800 }
1801 }
1802
1803 void push_outputs_of(const Node* node) {
1804 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1805 Node* output = node->fast_out(i);
1806 push(output);
1807 }
1808 }
1809
1810 Node *pop() {
1811 if( _clock_index >= size() ) _clock_index = 0;
1812 Node *b = at(_clock_index);
1813 map( _clock_index, Node_List::pop());
1814 if (size() != 0) _clock_index++; // Always start from 0
1815 _in_worklist.remove(b->_idx);
1816 return b;
1817 }
1818 Node *remove(uint i) {
1819 Node *b = Node_List::at(i);
1820 _in_worklist.remove(b->_idx);
1821 map(i,Node_List::pop());
1822 return b;
1823 }
1824 void yank(Node *n) {
1825 _in_worklist.remove(n->_idx);
1826 Node_List::yank(n);
1827 }
1828 void clear() {
1829 _in_worklist.clear(); // Discards storage but grows automatically
1830 Node_List::clear();
1831 _clock_index = 0;
1832 }
1833 void ensure_empty() {
1834 assert(size() == 0, "must be empty");
1835 clear(); // just in case
1836 }
1837
1838 // Used after parsing to remove useless nodes before Iterative GVN
1839 void remove_useless_nodes(VectorSet& useful);
1840
1841 // If the idx of the Nodes change, we must recompute the VectorSet
1842 void recompute_idx_set() {
1843 _in_worklist.clear();
1844 for (uint i = 0; i < size(); i++) {
1845 Node* n = at(i);
1846 _in_worklist.set(n->_idx);
1847 }
1848 }
1849
1850 #ifdef ASSERT
1851 bool is_subset_of(Unique_Node_List& other) {
1852 for (uint i = 0; i < size(); i++) {
1853 Node* n = at(i);
1854 if (!other.member(n)) {
1855 return false;
1856 }
1857 }
1858 return true;
1859 }
1860 #endif
1861
1862 bool contains(const Node* n) const {
1863 fatal("use faster member() instead");
1864 return false;
1865 }
1866
1867 #ifndef PRODUCT
1868 void print_set() const { _in_worklist.print(); }
1869 #endif
1870 };
1871
1872 // Unique_Mixed_Node_List
1873 // unique: nodes are added only once
1874 // mixed: allow new and old nodes
1875 class Unique_Mixed_Node_List : public ResourceObj {
1876 public:
1877 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1878
1879 void add(Node* node) {
1880 if (not_a_node(node)) {
1881 return; // Gracefully handle null, -1, 0xabababab, etc.
1882 }
1883 if (_visited_set[node] == nullptr) {
1884 _visited_set.Insert(node, node);
1885 _worklist.push(node);
1886 }
1887 }
1888
1889 Node* operator[] (uint i) const {
1890 return _worklist[i];
1891 }
1892
1893 size_t size() {
1894 return _worklist.size();
1895 }
1896
1897 private:
1898 Dict _visited_set;
1899 Node_List _worklist;
1900 };
1901
1902 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1903 inline void Compile::record_for_igvn(Node* n) {
1904 _igvn_worklist->push(n);
1905 }
1906
1907 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1908 inline void Compile::remove_for_igvn(Node* n) {
1909 _igvn_worklist->remove(n);
1910 }
1911
1912 //------------------------------Node_Stack-------------------------------------
1913 class Node_Stack {
1914 protected:
1915 struct INode {
1916 Node *node; // Processed node
1917 uint indx; // Index of next node's child
1918 };
1919 INode *_inode_top; // tos, stack grows up
1920 INode *_inode_max; // End of _inodes == _inodes + _max
1921 INode *_inodes; // Array storage for the stack
1922 Arena *_a; // Arena to allocate in
1923 ReallocMark _nesting; // Safety checks for arena reallocation
1924
1925 void maybe_grow() {
1926 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1927 if (_inode_top >= _inode_max) {
1928 grow();
1929 }
1930 }
1931 void grow();
1932
1933 public:
1934 Node_Stack(int size) {
1935 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1936 _a = Thread::current()->resource_area();
1937 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1938 _inode_max = _inodes + max;
1939 _inode_top = _inodes - 1; // stack is empty
1940 }
1941
1942 Node_Stack(Arena *a, int size) : _a(a) {
1943 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1944 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1945 _inode_max = _inodes + max;
1946 _inode_top = _inodes - 1; // stack is empty
1947 }
1948
1949 void pop() {
1950 assert(_inode_top >= _inodes, "node stack underflow");
1951 --_inode_top;
1952 }
1953 void push(Node *n, uint i) {
1954 ++_inode_top;
1955 maybe_grow();
1956 INode *top = _inode_top; // optimization
1957 top->node = n;
1958 top->indx = i;
1959 }
1960 Node *node() const {
1961 return _inode_top->node;
1962 }
1963 Node* node_at(uint i) const {
1964 assert(_inodes + i <= _inode_top, "in range");
1965 return _inodes[i].node;
1966 }
1967 uint index() const {
1968 return _inode_top->indx;
1969 }
1970 uint index_at(uint i) const {
1971 assert(_inodes + i <= _inode_top, "in range");
1972 return _inodes[i].indx;
1973 }
1974 void set_node(Node *n) {
1975 _inode_top->node = n;
1976 }
1977 void set_index(uint i) {
1978 _inode_top->indx = i;
1979 }
1980 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1981 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
1982 bool is_nonempty() const { return (_inode_top >= _inodes); }
1983 bool is_empty() const { return (_inode_top < _inodes); }
1984 void clear() { _inode_top = _inodes - 1; } // retain storage
1985
1986 // Node_Stack is used to map nodes.
1987 Node* find(uint idx) const;
1988
1989 NONCOPYABLE(Node_Stack);
1990 };
1991
1992
1993 //-----------------------------Node_Notes--------------------------------------
1994 // Debugging or profiling annotations loosely and sparsely associated
1995 // with some nodes. See Compile::node_notes_at for the accessor.
1996 class Node_Notes {
1997 JVMState* _jvms;
1998
1999 public:
2000 Node_Notes(JVMState* jvms = nullptr) {
2001 _jvms = jvms;
2002 }
2003
2004 JVMState* jvms() { return _jvms; }
2005 void set_jvms(JVMState* x) { _jvms = x; }
2006
2007 // True if there is nothing here.
2008 bool is_clear() {
2009 return (_jvms == nullptr);
2010 }
2011
2012 // Make there be nothing here.
2013 void clear() {
2014 _jvms = nullptr;
2015 }
2016
2017 // Make a new, clean node notes.
2018 static Node_Notes* make(Compile* C) {
2019 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2020 nn->clear();
2021 return nn;
2022 }
2023
2024 Node_Notes* clone(Compile* C) {
2025 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2026 (*nn) = (*this);
2027 return nn;
2028 }
2029
2030 // Absorb any information from source.
2031 bool update_from(Node_Notes* source) {
2032 bool changed = false;
2033 if (source != nullptr) {
2034 if (source->jvms() != nullptr) {
2035 set_jvms(source->jvms());
2036 changed = true;
2037 }
2038 }
2039 return changed;
2040 }
2041 };
2042
2043 // Inlined accessors for Compile::node_nodes that require the preceding class:
2044 inline Node_Notes*
2045 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2046 int idx, bool can_grow) {
2047 assert(idx >= 0, "oob");
2048 int block_idx = (idx >> _log2_node_notes_block_size);
2049 int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2050 if (grow_by >= 0) {
2051 if (!can_grow) return nullptr;
2052 grow_node_notes(arr, grow_by + 1);
2053 }
2054 if (arr == nullptr) return nullptr;
2055 // (Every element of arr is a sub-array of length _node_notes_block_size.)
2056 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2057 }
2058
2059 inline Node_Notes* Compile::node_notes_at(int idx) {
2060 return locate_node_notes(_node_note_array, idx, false);
2061 }
2062
2063 inline bool
2064 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2065 if (value == nullptr || value->is_clear())
2066 return false; // nothing to write => write nothing
2067 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2068 assert(loc != nullptr, "");
2069 return loc->update_from(value);
2070 }
2071
2072
2073 //------------------------------TypeNode---------------------------------------
2074 // Node with a Type constant.
2075 class TypeNode : public Node {
2076 protected:
2077 virtual uint hash() const; // Check the type
2078 virtual bool cmp( const Node &n ) const;
2079 virtual uint size_of() const; // Size is bigger
2080 const Type* const _type;
2081 public:
2082 void set_type(const Type* t) {
2083 assert(t != nullptr, "sanity");
2084 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2085 *(const Type**)&_type = t; // cast away const-ness
2086 // If this node is in the hash table, make sure it doesn't need a rehash.
2087 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2088 }
2089 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2090 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2091 init_class_id(Class_Type);
2092 }
2093 virtual const Type* Value(PhaseGVN* phase) const;
2094 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2095 virtual const Type *bottom_type() const;
2096 virtual uint ideal_reg() const;
2097
2098 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2099 #ifndef PRODUCT
2100 virtual void dump_spec(outputStream *st) const;
2101 virtual void dump_compact_spec(outputStream *st) const;
2102 #endif
2103 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2104 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2105 };
2106
2107 #include "opto/opcodes.hpp"
2108
2109 #define Op_IL(op) \
2110 inline int Op_ ## op(BasicType bt) { \
2111 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2112 if (bt == T_INT) { \
2113 return Op_## op ## I; \
2114 } \
2115 return Op_## op ## L; \
2116 }
2117
2118 Op_IL(Add)
2119 Op_IL(And)
2120 Op_IL(Sub)
2121 Op_IL(Mul)
2122 Op_IL(URShift)
2123 Op_IL(LShift)
2124 Op_IL(RShift)
2125 Op_IL(Xor)
2126 Op_IL(Cmp)
2127 Op_IL(Div)
2128 Op_IL(Mod)
2129 Op_IL(UDiv)
2130 Op_IL(UMod)
2131
2132 inline int Op_ConIL(BasicType bt) {
2133 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2134 if (bt == T_INT) {
2135 return Op_ConI;
2136 }
2137 return Op_ConL;
2138 }
2139
2140 inline int Op_Cmp_unsigned(BasicType bt) {
2141 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2142 if (bt == T_INT) {
2143 return Op_CmpU;
2144 }
2145 return Op_CmpUL;
2146 }
2147
2148 inline int Op_Cast(BasicType bt) {
2149 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2150 if (bt == T_INT) {
2151 return Op_CastII;
2152 }
2153 return Op_CastLL;
2154 }
2155
2156 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2157 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2158 if (bt == T_INT) {
2159 if (is_unsigned) {
2160 return Op_UDivI;
2161 } else {
2162 return Op_DivI;
2163 }
2164 }
2165 if (is_unsigned) {
2166 return Op_UDivL;
2167 } else {
2168 return Op_DivL;
2169 }
2170 }
2171
2172 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2173 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2174 if (bt == T_INT) {
2175 if (is_unsigned) {
2176 return Op_UDivModI;
2177 } else {
2178 return Op_DivModI;
2179 }
2180 }
2181 if (is_unsigned) {
2182 return Op_UDivModL;
2183 } else {
2184 return Op_DivModL;
2185 }
2186 }
2187
2188 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2189 // a customized BFS.
2190 class BFSActions : public StackObj {
2191 public:
2192 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2193 // method to provide a custom filter.
2194 virtual bool should_visit(Node* node) const {
2195 // By default, visit all inputs.
2196 return true;
2197 };
2198
2199 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2200 // but the BFS will continue to visit all unvisited nodes in the queue.
2201 virtual bool is_target_node(Node* node) const = 0;
2202
2203 // Defines an action that should be taken when we visit a target node in the BFS traversal.
2204 // To give more freedom, we pass the direct child node to the target node such that
2205 // child->in(i) == target node. This allows to also directly replace the target node instead
2206 // of only updating its inputs.
2207 virtual void target_node_action(Node* child, uint i) = 0;
2208 };
2209
2210 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2211 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2212 class DataNodeBFS : public StackObj {
2213 BFSActions& _bfs_actions;
2214
2215 public:
2216 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2217
2218 // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2219 void run(Node* start_node) {
2220 ResourceMark rm;
2221 Unique_Node_List _nodes_to_visit;
2222 _nodes_to_visit.push(start_node);
2223 for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2224 Node* next = _nodes_to_visit[i];
2225 for (uint j = 1; j < next->req(); j++) {
2226 Node* input = next->in(j);
2227 if (_bfs_actions.is_target_node(input)) {
2228 assert(_bfs_actions.should_visit(input), "must also pass node filter");
2229 _bfs_actions.target_node_action(next, j);
2230 } else if (_bfs_actions.should_visit(input)) {
2231 _nodes_to_visit.push(input);
2232 }
2233 }
2234 }
2235 }
2236 };
2237
2238 #endif // SHARE_OPTO_NODE_HPP