1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef SHARE_OPTO_NODE_HPP
27 #define SHARE_OPTO_NODE_HPP
28
29 #include "libadt/vectset.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/type.hpp"
32 #include "utilities/copy.hpp"
33
34 // Portions of code courtesy of Clifford Click
35
36 // Optimization - Graph Style
37
38
39 class AbstractLockNode;
40 class AddNode;
41 class AddPNode;
42 class AliasInfo;
43 class AllocateArrayNode;
44 class AllocateNode;
45 class ArrayCopyNode;
46 class BaseCountedLoopNode;
47 class BaseCountedLoopEndNode;
48 class BlackholeNode;
49 class Block;
50 class BoolNode;
51 class BoxLockNode;
52 class CMoveNode;
53 class CallDynamicJavaNode;
54 class CallJavaNode;
55 class CallLeafNode;
56 class CallLeafNoFPNode;
57 class CallLeafPureNode;
58 class CallNode;
59 class CallRuntimeNode;
60 class CallStaticJavaNode;
61 class CastFFNode;
62 class CastHHNode;
63 class CastDDNode;
64 class CastVVNode;
65 class CastIINode;
66 class CastLLNode;
67 class CastPPNode;
68 class CatchNode;
69 class CatchProjNode;
70 class CheckCastPPNode;
71 class ClearArrayNode;
72 class CmpNode;
73 class CodeBuffer;
74 class ConstraintCastNode;
75 class ConNode;
76 class ConINode;
77 class ConvertNode;
78 class CompareAndSwapNode;
79 class CompareAndExchangeNode;
80 class CountedLoopNode;
81 class CountedLoopEndNode;
82 class DecodeNarrowPtrNode;
83 class DecodeNNode;
84 class DecodeNKlassNode;
85 class EncodeNarrowPtrNode;
86 class EncodePNode;
87 class EncodePKlassNode;
88 class FastLockNode;
89 class FastUnlockNode;
90 class FlatArrayCheckNode;
91 class HaltNode;
92 class IfNode;
93 class IfProjNode;
94 class IfFalseNode;
95 class IfTrueNode;
96 class InitializeNode;
97 class JVMState;
98 class JumpNode;
99 class JumpProjNode;
100 class LoadNode;
101 class LoadStoreNode;
102 class LoadStoreConditionalNode;
103 class LockNode;
104 class LongCountedLoopNode;
105 class LongCountedLoopEndNode;
106 class LoopNode;
107 class LShiftNode;
108 class MachBranchNode;
109 class MachCallDynamicJavaNode;
110 class MachCallJavaNode;
111 class MachCallLeafNode;
112 class MachCallNode;
113 class MachCallRuntimeNode;
114 class MachCallStaticJavaNode;
115 class MachConstantBaseNode;
116 class MachConstantNode;
117 class MachGotoNode;
118 class MachIfNode;
119 class MachJumpNode;
120 class MachNode;
121 class MachNullCheckNode;
122 class MachProjNode;
123 class MachPrologNode;
124 class MachReturnNode;
125 class MachSafePointNode;
126 class MachSpillCopyNode;
127 class MachTempNode;
128 class MachMergeNode;
129 class MachMemBarNode;
130 class MachVEPNode;
131 class Matcher;
132 class MemBarNode;
133 class MemBarStoreStoreNode;
134 class MemNode;
135 class MergeMemNode;
136 class MoveNode;
137 class MulNode;
138 class MultiNode;
139 class MultiBranchNode;
140 class NarrowMemProjNode;
141 class NegNode;
142 class NegVNode;
143 class NeverBranchNode;
144 class Opaque1Node;
145 class OpaqueLoopInitNode;
146 class OpaqueLoopStrideNode;
147 class OpaqueMultiversioningNode;
148 class OpaqueNotNullNode;
149 class OpaqueInitializedAssertionPredicateNode;
150 class OpaqueTemplateAssertionPredicateNode;
151 class OuterStripMinedLoopNode;
152 class OuterStripMinedLoopEndNode;
153 class Node;
154 class Node_Array;
155 class Node_List;
156 class Node_Stack;
157 class OopMap;
158 class ParmNode;
159 class ParsePredicateNode;
160 class PCTableNode;
161 class PhaseCCP;
162 class PhaseGVN;
163 class PhaseIdealLoop;
164 class PhaseIterGVN;
165 class PhaseRegAlloc;
166 class PhaseTransform;
167 class PhaseValues;
168 class PhiNode;
169 class Pipeline;
170 class PopulateIndexNode;
171 class ProjNode;
172 class RangeCheckNode;
173 class ReductionNode;
174 class RegMask;
175 class RegionNode;
176 class RootNode;
177 class SafePointNode;
178 class SafePointScalarObjectNode;
179 class SafePointScalarMergeNode;
180 class SaturatingVectorNode;
181 class StartNode;
182 class State;
183 class StoreNode;
184 class SubNode;
185 class SubTypeCheckNode;
186 class Type;
187 class TypeNode;
188 class UnlockNode;
189 class InlineTypeNode;
190 class LoadFlatNode;
191 class StoreFlatNode;
192 class VectorNode;
193 class LoadVectorNode;
194 class LoadVectorMaskedNode;
195 class StoreVectorMaskedNode;
196 class LoadVectorGatherNode;
197 class LoadVectorGatherMaskedNode;
198 class StoreVectorNode;
199 class StoreVectorScatterNode;
200 class StoreVectorScatterMaskedNode;
201 class VerifyVectorAlignmentNode;
202 class VectorMaskCmpNode;
203 class VectorUnboxNode;
204 class VectorSet;
205 class VectorReinterpretNode;
206 class ShiftVNode;
207 class MulVLNode;
208 class ExpandVNode;
209 class CompressVNode;
210 class CompressMNode;
211 class C2_MacroAssembler;
212
213
214 #ifndef OPTO_DU_ITERATOR_ASSERT
215 #ifdef ASSERT
216 #define OPTO_DU_ITERATOR_ASSERT 1
217 #else
218 #define OPTO_DU_ITERATOR_ASSERT 0
219 #endif
220 #endif //OPTO_DU_ITERATOR_ASSERT
221
222 #if OPTO_DU_ITERATOR_ASSERT
223 class DUIterator;
224 class DUIterator_Fast;
225 class DUIterator_Last;
226 #else
227 typedef uint DUIterator;
228 typedef Node** DUIterator_Fast;
229 typedef Node** DUIterator_Last;
230 #endif
231
232 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
233
234 // Node Sentinel
235 #define NodeSentinel (Node*)-1
236
237 // Unknown count frequency
238 #define COUNT_UNKNOWN (-1.0f)
239
240 //------------------------------Node-------------------------------------------
241 // Nodes define actions in the program. They create values, which have types.
242 // They are both vertices in a directed graph and program primitives. Nodes
243 // are labeled; the label is the "opcode", the primitive function in the lambda
244 // calculus sense that gives meaning to the Node. Node inputs are ordered (so
245 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to
246 // the Node's function. These inputs also define a Type equation for the Node.
247 // Solving these Type equations amounts to doing dataflow analysis.
248 // Control and data are uniformly represented in the graph. Finally, Nodes
249 // have a unique dense integer index which is used to index into side arrays
250 // whenever I have phase-specific information.
251
252 class Node {
253
254 // Lots of restrictions on cloning Nodes
255 NONCOPYABLE(Node);
256
257 public:
258 friend class Compile;
259 #if OPTO_DU_ITERATOR_ASSERT
260 friend class DUIterator_Common;
261 friend class DUIterator;
262 friend class DUIterator_Fast;
263 friend class DUIterator_Last;
264 #endif
265
266 // Because Nodes come and go, I define an Arena of Node structures to pull
267 // from. This should allow fast access to node creation & deletion. This
268 // field is a local cache of a value defined in some "program fragment" for
269 // which these Nodes are just a part of.
270
271 inline void* operator new(size_t x) throw() {
272 Compile* C = Compile::current();
273 Node* n = (Node*)C->node_arena()->AmallocWords(x);
274 return (void*)n;
275 }
276
277 // Delete is a NOP
278 void operator delete( void *ptr ) {}
279 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
280 void destruct(PhaseValues* phase);
281
282 // Create a new Node. Required is the number is of inputs required for
283 // semantic correctness.
284 Node( uint required );
285
286 // Create a new Node with given input edges.
287 // This version requires use of the "edge-count" new.
288 // E.g. new (C,3) FooNode( C, nullptr, left, right );
289 Node( Node *n0 );
290 Node( Node *n0, Node *n1 );
291 Node( Node *n0, Node *n1, Node *n2 );
292 Node( Node *n0, Node *n1, Node *n2, Node *n3 );
293 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
294 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
295 Node( Node *n0, Node *n1, Node *n2, Node *n3,
296 Node *n4, Node *n5, Node *n6 );
297
298 // Clone an inherited Node given only the base Node type.
299 Node* clone() const;
300
301 // Clone a Node, immediately supplying one or two new edges.
302 // The first and second arguments, if non-null, replace in(1) and in(2),
303 // respectively.
304 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
305 Node* nn = clone();
306 if (in1 != nullptr) nn->set_req(1, in1);
307 if (in2 != nullptr) nn->set_req(2, in2);
308 return nn;
309 }
310
311 private:
312 // Shared setup for the above constructors.
313 // Handles all interactions with Compile::current.
314 // Puts initial values in all Node fields except _idx.
315 // Returns the initial value for _idx, which cannot
316 // be initialized by assignment.
317 inline int Init(int req);
318
319 //----------------- input edge handling
320 protected:
321 friend class PhaseCFG; // Access to address of _in array elements
322 Node **_in; // Array of use-def references to Nodes
323 Node **_out; // Array of def-use references to Nodes
324
325 // Input edges are split into two categories. Required edges are required
326 // for semantic correctness; order is important and nulls are allowed.
327 // Precedence edges are used to help determine execution order and are
328 // added, e.g., for scheduling purposes. They are unordered and not
329 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1
330 // are required, from _cnt to _max-1 are precedence edges.
331 node_idx_t _cnt; // Total number of required Node inputs.
332
333 node_idx_t _max; // Actual length of input array.
334
335 // Output edges are an unordered list of def-use edges which exactly
336 // correspond to required input edges which point from other nodes
337 // to this one. Thus the count of the output edges is the number of
338 // users of this node.
339 node_idx_t _outcnt; // Total number of Node outputs.
340
341 node_idx_t _outmax; // Actual length of output array.
342
343 // Grow the actual input array to the next larger power-of-2 bigger than len.
344 void grow( uint len );
345 // Grow the output array to the next larger power-of-2 bigger than len.
346 void out_grow( uint len );
347 // Resize input or output array to grow it to the next larger power-of-2
348 // bigger than len.
349 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
350
351 public:
352 // Each Node is assigned a unique small/dense number. This number is used
353 // to index into auxiliary arrays of data and bit vectors.
354 // The value of _idx can be changed using the set_idx() method.
355 //
356 // The PhaseRenumberLive phase renumbers nodes based on liveness information.
357 // Therefore, it updates the value of the _idx field. The parse-time _idx is
358 // preserved in _parse_idx.
359 node_idx_t _idx;
360 DEBUG_ONLY(const node_idx_t _parse_idx;)
361 // IGV node identifier. Two nodes, possibly in different compilation phases,
362 // have the same IGV identifier if (and only if) they are the very same node
363 // (same memory address) or one is "derived" from the other (by e.g.
364 // renumbering or matching). This identifier makes it possible to follow the
365 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
366 NOT_PRODUCT(node_idx_t _igv_idx;)
367
368 // Get the (read-only) number of input edges
369 uint req() const { return _cnt; }
370 uint len() const { return _max; }
371 // Get the (read-only) number of output edges
372 uint outcnt() const { return _outcnt; }
373
374 #if OPTO_DU_ITERATOR_ASSERT
375 // Iterate over the out-edges of this node. Deletions are illegal.
376 inline DUIterator outs() const;
377 // Use this when the out array might have changed to suppress asserts.
378 inline DUIterator& refresh_out_pos(DUIterator& i) const;
379 // Does the node have an out at this position? (Used for iteration.)
380 inline bool has_out(DUIterator& i) const;
381 inline Node* out(DUIterator& i) const;
382 // Iterate over the out-edges of this node. All changes are illegal.
383 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
384 inline Node* fast_out(DUIterator_Fast& i) const;
385 // Iterate over the out-edges of this node, deleting one at a time.
386 inline DUIterator_Last last_outs(DUIterator_Last& min) const;
387 inline Node* last_out(DUIterator_Last& i) const;
388 // The inline bodies of all these methods are after the iterator definitions.
389 #else
390 // Iterate over the out-edges of this node. Deletions are illegal.
391 // This iteration uses integral indexes, to decouple from array reallocations.
392 DUIterator outs() const { return 0; }
393 // Use this when the out array might have changed to suppress asserts.
394 DUIterator refresh_out_pos(DUIterator i) const { return i; }
395
396 // Reference to the i'th output Node. Error if out of bounds.
397 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
398 // Does the node have an out at this position? (Used for iteration.)
399 bool has_out(DUIterator i) const { return i < _outcnt; }
400
401 // Iterate over the out-edges of this node. All changes are illegal.
402 // This iteration uses a pointer internal to the out array.
403 DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
404 Node** out = _out;
405 // Assign a limit pointer to the reference argument:
406 max = out + (ptrdiff_t)_outcnt;
407 // Return the base pointer:
408 return out;
409 }
410 Node* fast_out(DUIterator_Fast i) const { return *i; }
411 // Iterate over the out-edges of this node, deleting one at a time.
412 // This iteration uses a pointer internal to the out array.
413 DUIterator_Last last_outs(DUIterator_Last& min) const {
414 Node** out = _out;
415 // Assign a limit pointer to the reference argument:
416 min = out;
417 // Return the pointer to the start of the iteration:
418 return out + (ptrdiff_t)_outcnt - 1;
419 }
420 Node* last_out(DUIterator_Last i) const { return *i; }
421 #endif
422
423 // Reference to the i'th input Node. Error if out of bounds.
424 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
425 // Reference to the i'th input Node. null if out of bounds.
426 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
427 // Reference to the i'th output Node. Error if out of bounds.
428 // Use this accessor sparingly. We are going trying to use iterators instead.
429 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
430 // Return the unique out edge.
431 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
432
433 // In some cases, a node n is only used by a single use, but the use may use
434 // n once or multiple times:
435 // use = ConvF2I(this)
436 // use = AddI(this, this)
437 Node* unique_multiple_edges_out_or_null() const;
438
439 // Delete out edge at position 'i' by moving last out edge to position 'i'
440 void raw_del_out(uint i) {
441 assert(i < _outcnt,"oob");
442 assert(_outcnt > 0,"oob");
443 #if OPTO_DU_ITERATOR_ASSERT
444 // Record that a change happened here.
445 DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
446 #endif
447 _out[i] = _out[--_outcnt];
448 // Smash the old edge so it can't be used accidentally.
449 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
450 }
451
452 #ifdef ASSERT
453 bool is_dead() const;
454 static bool is_not_dead(const Node* n);
455 bool is_reachable_from_root() const;
456 #endif
457 // Check whether node has become unreachable
458 bool is_unreachable(PhaseIterGVN &igvn) const;
459
460 // Set a required input edge, also updates corresponding output edge
461 void add_req( Node *n ); // Append a NEW required input
462 void add_req( Node *n0, Node *n1 ) {
463 add_req(n0); add_req(n1); }
464 void add_req( Node *n0, Node *n1, Node *n2 ) {
465 add_req(n0); add_req(n1); add_req(n2); }
466 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
467 void del_req( uint idx ); // Delete required edge & compact
468 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
469 void ins_req( uint i, Node *n ); // Insert a NEW required input
470 void set_req( uint i, Node *n ) {
471 assert( is_not_dead(n), "can not use dead node");
472 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
473 assert( !VerifyHashTableKeys || _hash_lock == 0,
474 "remove node from hash table before modifying it");
475 Node** p = &_in[i]; // cache this._in, across the del_out call
476 if (*p != nullptr) (*p)->del_out((Node *)this);
477 (*p) = n;
478 if (n != nullptr) n->add_out((Node *)this);
479 Compile::current()->record_modified_node(this);
480 }
481 // Light version of set_req() to init inputs after node creation.
482 void init_req( uint i, Node *n ) {
483 assert( (i == 0 && this == n) ||
484 is_not_dead(n), "can not use dead node");
485 assert( i < _cnt, "oob");
486 assert( !VerifyHashTableKeys || _hash_lock == 0,
487 "remove node from hash table before modifying it");
488 assert( _in[i] == nullptr, "sanity");
489 _in[i] = n;
490 if (n != nullptr) n->add_out((Node *)this);
491 Compile::current()->record_modified_node(this);
492 }
493 // Find first occurrence of n among my edges:
494 int find_edge(Node* n);
495 int find_prec_edge(Node* n) {
496 for (uint i = req(); i < len(); i++) {
497 if (_in[i] == n) return i;
498 if (_in[i] == nullptr) {
499 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
500 break;
501 }
502 }
503 return -1;
504 }
505 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
506 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
507 // null out all inputs to eliminate incoming Def-Use edges.
508 void disconnect_inputs(Compile* C);
509
510 // Quickly, return true if and only if I am Compile::current()->top().
511 bool is_top() const {
512 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
513 return (_out == nullptr);
514 }
515 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.)
516 void setup_is_top();
517
518 // Strip away casting. (It is depth-limited.)
519 Node* uncast(bool keep_deps = false) const;
520 // Return whether two Nodes are equivalent, after stripping casting.
521 bool eqv_uncast(const Node* n, bool keep_deps = false) const {
522 return (this->uncast(keep_deps) == n->uncast(keep_deps));
523 }
524
525 // Find out of current node that matches opcode.
526 Node* find_out_with(int opcode);
527 // Return true if the current node has an out that matches opcode.
528 bool has_out_with(int opcode);
529 // Return true if the current node has an out that matches any of the opcodes.
530 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
531
532 private:
533 static Node* uncast_helper(const Node* n, bool keep_deps);
534
535 // Add an output edge to the end of the list
536 void add_out( Node *n ) {
537 if (is_top()) return;
538 if( _outcnt == _outmax ) out_grow(_outcnt);
539 _out[_outcnt++] = n;
540 }
541 // Delete an output edge
542 void del_out( Node *n ) {
543 if (is_top()) return;
544 Node** outp = &_out[_outcnt];
545 // Find and remove n
546 do {
547 assert(outp > _out, "Missing Def-Use edge");
548 } while (*--outp != n);
549 *outp = _out[--_outcnt];
550 // Smash the old edge so it can't be used accidentally.
551 DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
552 // Record that a change happened here.
553 #if OPTO_DU_ITERATOR_ASSERT
554 DEBUG_ONLY(_last_del = n; ++_del_tick);
555 #endif
556 }
557 // Close gap after removing edge.
558 void close_prec_gap_at(uint gap) {
559 assert(_cnt <= gap && gap < _max, "no valid prec edge");
560 uint i = gap;
561 Node *last = nullptr;
562 for (; i < _max-1; ++i) {
563 Node *next = _in[i+1];
564 if (next == nullptr) break;
565 last = next;
566 }
567 _in[gap] = last; // Move last slot to empty one.
568 _in[i] = nullptr; // null out last slot.
569 }
570
571 public:
572 // Globally replace this node by a given new node, updating all uses.
573 void replace_by(Node* new_node);
574 // Globally replace this node by a given new node, updating all uses
575 // and cutting input edges of old node.
576 void subsume_by(Node* new_node, Compile* c) {
577 replace_by(new_node);
578 disconnect_inputs(c);
579 }
580 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
581 void set_req_X(uint i, Node *n, PhaseGVN *gvn);
582 // Find the one non-null required input. RegionNode only
583 Node *nonnull_req() const;
584 // Add or remove precedence edges
585 void add_prec( Node *n );
586 void rm_prec( uint i );
587
588 // Note: prec(i) will not necessarily point to n if edge already exists.
589 void set_prec( uint i, Node *n ) {
590 assert(i < _max, "oob: i=%d, _max=%d", i, _max);
591 assert(is_not_dead(n), "can not use dead node");
592 assert(i >= _cnt, "not a precedence edge");
593 // Avoid spec violation: duplicated prec edge.
594 if (_in[i] == n) return;
595 if (n == nullptr || find_prec_edge(n) != -1) {
596 rm_prec(i);
597 return;
598 }
599 if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
600 _in[i] = n;
601 n->add_out((Node *)this);
602 Compile::current()->record_modified_node(this);
603 }
604
605 // Set this node's index, used by cisc_version to replace current node
606 void set_idx(uint new_idx) {
607 _idx = new_idx;
608 }
609 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.)
610 void swap_edges(uint i1, uint i2) {
611 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
612 // Def-Use info is unchanged
613 Node* n1 = in(i1);
614 Node* n2 = in(i2);
615 _in[i1] = n2;
616 _in[i2] = n1;
617 // If this node is in the hash table, make sure it doesn't need a rehash.
618 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
619 // Flip swapped edges flag.
620 if (has_swapped_edges()) {
621 remove_flag(Node::Flag_has_swapped_edges);
622 } else {
623 add_flag(Node::Flag_has_swapped_edges);
624 }
625 }
626
627 // Iterators over input Nodes for a Node X are written as:
628 // for( i = 0; i < X.req(); i++ ) ... X[i] ...
629 // NOTE: Required edges can contain embedded null pointers.
630
631 //----------------- Other Node Properties
632
633 // Generate class IDs for (some) ideal nodes so that it is possible to determine
634 // the type of a node using a non-virtual method call (the method is_<Node>() below).
635 //
636 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
637 // the type of the node the ID represents; another subset of an ID's bits are reserved
638 // for the superclasses of the node represented by the ID.
639 //
640 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
641 // returns false. A.is_A() returns true.
642 //
643 // If two classes, A and B, have the same superclass, a different bit of A's class id
644 // is reserved for A's type than for B's type. That bit is specified by the third
645 // parameter in the macro DEFINE_CLASS_ID.
646 //
647 // By convention, classes with deeper hierarchy are declared first. Moreover,
648 // classes with the same hierarchy depth are sorted by usage frequency.
649 //
650 // The query method masks the bits to cut off bits of subclasses and then compares
651 // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
652 //
653 // Class_MachCall=30, ClassMask_MachCall=31
654 // 12 8 4 0
655 // 0 0 0 0 0 0 0 0 1 1 1 1 0
656 // | | | |
657 // | | | Bit_Mach=2
658 // | | Bit_MachReturn=4
659 // | Bit_MachSafePoint=8
660 // Bit_MachCall=16
661 //
662 // Class_CountedLoop=56, ClassMask_CountedLoop=63
663 // 12 8 4 0
664 // 0 0 0 0 0 0 0 1 1 1 0 0 0
665 // | | |
666 // | | Bit_Region=8
667 // | Bit_Loop=16
668 // Bit_CountedLoop=32
669
670 #define DEFINE_CLASS_ID(cl, supcl, subn) \
671 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
672 Class_##cl = Class_##supcl + Bit_##cl , \
673 ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
674
675 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
676 // so that its values fit into 32 bits.
677 enum NodeClasses {
678 Bit_Node = 0x00000000,
679 Class_Node = 0x00000000,
680 ClassMask_Node = 0xFFFFFFFF,
681
682 DEFINE_CLASS_ID(Multi, Node, 0)
683 DEFINE_CLASS_ID(SafePoint, Multi, 0)
684 DEFINE_CLASS_ID(Call, SafePoint, 0)
685 DEFINE_CLASS_ID(CallJava, Call, 0)
686 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0)
687 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1)
688 DEFINE_CLASS_ID(CallRuntime, Call, 1)
689 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0)
690 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0)
691 DEFINE_CLASS_ID(CallLeafPure, CallLeaf, 1)
692 DEFINE_CLASS_ID(Allocate, Call, 2)
693 DEFINE_CLASS_ID(AllocateArray, Allocate, 0)
694 DEFINE_CLASS_ID(AbstractLock, Call, 3)
695 DEFINE_CLASS_ID(Lock, AbstractLock, 0)
696 DEFINE_CLASS_ID(Unlock, AbstractLock, 1)
697 DEFINE_CLASS_ID(ArrayCopy, Call, 4)
698 DEFINE_CLASS_ID(LoadFlat, SafePoint, 1)
699 DEFINE_CLASS_ID(StoreFlat, SafePoint, 2)
700 DEFINE_CLASS_ID(MultiBranch, Multi, 1)
701 DEFINE_CLASS_ID(PCTable, MultiBranch, 0)
702 DEFINE_CLASS_ID(Catch, PCTable, 0)
703 DEFINE_CLASS_ID(Jump, PCTable, 1)
704 DEFINE_CLASS_ID(If, MultiBranch, 1)
705 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0)
706 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0)
707 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1)
708 DEFINE_CLASS_ID(RangeCheck, If, 1)
709 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
710 DEFINE_CLASS_ID(ParsePredicate, If, 3)
711 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
712 DEFINE_CLASS_ID(Start, Multi, 2)
713 DEFINE_CLASS_ID(MemBar, Multi, 3)
714 DEFINE_CLASS_ID(Initialize, MemBar, 0)
715 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
716 DEFINE_CLASS_ID(Blackhole, MemBar, 2)
717
718 DEFINE_CLASS_ID(Mach, Node, 1)
719 DEFINE_CLASS_ID(MachReturn, Mach, 0)
720 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
721 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
722 DEFINE_CLASS_ID(MachCallJava, MachCall, 0)
723 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0)
724 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1)
725 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1)
726 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0)
727 DEFINE_CLASS_ID(MachBranch, Mach, 1)
728 DEFINE_CLASS_ID(MachIf, MachBranch, 0)
729 DEFINE_CLASS_ID(MachGoto, MachBranch, 1)
730 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2)
731 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2)
732 DEFINE_CLASS_ID(MachTemp, Mach, 3)
733 DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
734 DEFINE_CLASS_ID(MachConstant, Mach, 5)
735 DEFINE_CLASS_ID(MachJump, MachConstant, 0)
736 DEFINE_CLASS_ID(MachMerge, Mach, 6)
737 DEFINE_CLASS_ID(MachMemBar, Mach, 7)
738 DEFINE_CLASS_ID(MachProlog, Mach, 8)
739 DEFINE_CLASS_ID(MachVEP, Mach, 9)
740
741 DEFINE_CLASS_ID(Type, Node, 2)
742 DEFINE_CLASS_ID(Phi, Type, 0)
743 DEFINE_CLASS_ID(ConstraintCast, Type, 1)
744 DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
745 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
746 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
747 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
748 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
749 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
750 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
751 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
752 DEFINE_CLASS_ID(CMove, Type, 3)
753 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
754 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
755 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
756 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
757 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
758 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
759 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
760 DEFINE_CLASS_ID(Vector, Type, 7)
761 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
762 DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
763 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
764 DEFINE_CLASS_ID(ShiftV, Vector, 3)
765 DEFINE_CLASS_ID(CompressV, Vector, 4)
766 DEFINE_CLASS_ID(ExpandV, Vector, 5)
767 DEFINE_CLASS_ID(CompressM, Vector, 6)
768 DEFINE_CLASS_ID(Reduction, Vector, 7)
769 DEFINE_CLASS_ID(NegV, Vector, 8)
770 DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
771 DEFINE_CLASS_ID(MulVL, Vector, 10)
772 DEFINE_CLASS_ID(InlineType, Type, 8)
773 DEFINE_CLASS_ID(Con, Type, 9)
774 DEFINE_CLASS_ID(ConI, Con, 0)
775 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
776 DEFINE_CLASS_ID(Convert, Type, 11)
777
778
779 DEFINE_CLASS_ID(Proj, Node, 3)
780 DEFINE_CLASS_ID(CatchProj, Proj, 0)
781 DEFINE_CLASS_ID(JumpProj, Proj, 1)
782 DEFINE_CLASS_ID(IfProj, Proj, 2)
783 DEFINE_CLASS_ID(IfTrue, IfProj, 0)
784 DEFINE_CLASS_ID(IfFalse, IfProj, 1)
785 DEFINE_CLASS_ID(Parm, Proj, 4)
786 DEFINE_CLASS_ID(MachProj, Proj, 5)
787 DEFINE_CLASS_ID(NarrowMemProj, Proj, 6)
788
789 DEFINE_CLASS_ID(Mem, Node, 4)
790 DEFINE_CLASS_ID(Load, Mem, 0)
791 DEFINE_CLASS_ID(LoadVector, Load, 0)
792 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
793 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
794 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
795 DEFINE_CLASS_ID(Store, Mem, 1)
796 DEFINE_CLASS_ID(StoreVector, Store, 0)
797 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
798 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
799 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
800 DEFINE_CLASS_ID(LoadStore, Mem, 2)
801 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
802 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
803 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
804
805 DEFINE_CLASS_ID(Region, Node, 5)
806 DEFINE_CLASS_ID(Loop, Region, 0)
807 DEFINE_CLASS_ID(Root, Loop, 0)
808 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1)
809 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0)
810 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1)
811 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
812
813 DEFINE_CLASS_ID(Sub, Node, 6)
814 DEFINE_CLASS_ID(Cmp, Sub, 0)
815 DEFINE_CLASS_ID(FastLock, Cmp, 0)
816 DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
817 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2)
818 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
819
820 DEFINE_CLASS_ID(MergeMem, Node, 7)
821 DEFINE_CLASS_ID(Bool, Node, 8)
822 DEFINE_CLASS_ID(AddP, Node, 9)
823 DEFINE_CLASS_ID(BoxLock, Node, 10)
824 DEFINE_CLASS_ID(Add, Node, 11)
825 DEFINE_CLASS_ID(Mul, Node, 12)
826 DEFINE_CLASS_ID(ClearArray, Node, 14)
827 DEFINE_CLASS_ID(Halt, Node, 15)
828 DEFINE_CLASS_ID(Opaque1, Node, 16)
829 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
830 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
831 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
832 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17)
833 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18)
834 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19)
835 DEFINE_CLASS_ID(Move, Node, 20)
836 DEFINE_CLASS_ID(LShift, Node, 21)
837 DEFINE_CLASS_ID(Neg, Node, 22)
838
839 _max_classes = ClassMask_Neg
840 };
841 #undef DEFINE_CLASS_ID
842
843 // Flags are sorted by usage frequency.
844 enum NodeFlags {
845 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift
846 Flag_rematerialize = 1 << 1,
847 Flag_needs_anti_dependence_check = 1 << 2,
848 Flag_is_macro = 1 << 3,
849 Flag_is_Con = 1 << 4,
850 Flag_is_cisc_alternate = 1 << 5,
851 Flag_is_dead_loop_safe = 1 << 6,
852 Flag_may_be_short_branch = 1 << 7,
853 Flag_avoid_back_to_back_before = 1 << 8,
854 Flag_avoid_back_to_back_after = 1 << 9,
855 Flag_has_call = 1 << 10,
856 Flag_has_swapped_edges = 1 << 11,
857 Flag_is_scheduled = 1 << 12,
858 Flag_is_expensive = 1 << 13,
859 Flag_is_predicated_vector = 1 << 14,
860 Flag_for_post_loop_opts_igvn = 1 << 15,
861 Flag_for_merge_stores_igvn = 1 << 16,
862 Flag_is_removed_by_peephole = 1 << 17,
863 Flag_is_predicated_using_blend = 1 << 18,
864 _last_flag = Flag_is_predicated_using_blend
865 };
866
867 class PD;
868
869 private:
870 juint _class_id;
871 juint _flags;
872
873 #ifdef ASSERT
874 static juint max_flags();
875 #endif
876
877 protected:
878 // These methods should be called from constructors only.
879 void init_class_id(juint c) {
880 _class_id = c; // cast out const
881 }
882 void init_flags(uint fl) {
883 assert(fl <= max_flags(), "invalid node flag");
884 _flags |= fl;
885 }
886 void clear_flag(uint fl) {
887 assert(fl <= max_flags(), "invalid node flag");
888 _flags &= ~fl;
889 }
890
891 public:
892 juint class_id() const { return _class_id; }
893
894 juint flags() const { return _flags; }
895
896 void add_flag(juint fl) { init_flags(fl); }
897
898 void remove_flag(juint fl) { clear_flag(fl); }
899
900 // Return a dense integer opcode number
901 virtual int Opcode() const;
902
903 // Virtual inherited Node size
904 virtual uint size_of() const;
905
906 // Other interesting Node properties
907 #define DEFINE_CLASS_QUERY(type) \
908 bool is_##type() const { \
909 return ((_class_id & ClassMask_##type) == Class_##type); \
910 } \
911 type##Node *as_##type() const { \
912 assert(is_##type(), "invalid node class: %s", Name()); \
913 return (type##Node*)this; \
914 } \
915 type##Node* isa_##type() const { \
916 return (is_##type()) ? as_##type() : nullptr; \
917 }
918
919 DEFINE_CLASS_QUERY(AbstractLock)
920 DEFINE_CLASS_QUERY(Add)
921 DEFINE_CLASS_QUERY(AddP)
922 DEFINE_CLASS_QUERY(Allocate)
923 DEFINE_CLASS_QUERY(AllocateArray)
924 DEFINE_CLASS_QUERY(ArrayCopy)
925 DEFINE_CLASS_QUERY(BaseCountedLoop)
926 DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
927 DEFINE_CLASS_QUERY(Blackhole)
928 DEFINE_CLASS_QUERY(Bool)
929 DEFINE_CLASS_QUERY(BoxLock)
930 DEFINE_CLASS_QUERY(Call)
931 DEFINE_CLASS_QUERY(CallDynamicJava)
932 DEFINE_CLASS_QUERY(CallJava)
933 DEFINE_CLASS_QUERY(CallLeaf)
934 DEFINE_CLASS_QUERY(CallLeafNoFP)
935 DEFINE_CLASS_QUERY(CallLeafPure)
936 DEFINE_CLASS_QUERY(CallRuntime)
937 DEFINE_CLASS_QUERY(CallStaticJava)
938 DEFINE_CLASS_QUERY(Catch)
939 DEFINE_CLASS_QUERY(CatchProj)
940 DEFINE_CLASS_QUERY(CheckCastPP)
941 DEFINE_CLASS_QUERY(CastII)
942 DEFINE_CLASS_QUERY(CastLL)
943 DEFINE_CLASS_QUERY(CastFF)
944 DEFINE_CLASS_QUERY(ConI)
945 DEFINE_CLASS_QUERY(CastPP)
946 DEFINE_CLASS_QUERY(ConstraintCast)
947 DEFINE_CLASS_QUERY(ClearArray)
948 DEFINE_CLASS_QUERY(CMove)
949 DEFINE_CLASS_QUERY(Cmp)
950 DEFINE_CLASS_QUERY(Convert)
951 DEFINE_CLASS_QUERY(CountedLoop)
952 DEFINE_CLASS_QUERY(CountedLoopEnd)
953 DEFINE_CLASS_QUERY(DecodeNarrowPtr)
954 DEFINE_CLASS_QUERY(DecodeN)
955 DEFINE_CLASS_QUERY(DecodeNKlass)
956 DEFINE_CLASS_QUERY(EncodeNarrowPtr)
957 DEFINE_CLASS_QUERY(EncodeP)
958 DEFINE_CLASS_QUERY(EncodePKlass)
959 DEFINE_CLASS_QUERY(FastLock)
960 DEFINE_CLASS_QUERY(FastUnlock)
961 DEFINE_CLASS_QUERY(FlatArrayCheck)
962 DEFINE_CLASS_QUERY(Halt)
963 DEFINE_CLASS_QUERY(If)
964 DEFINE_CLASS_QUERY(RangeCheck)
965 DEFINE_CLASS_QUERY(IfProj)
966 DEFINE_CLASS_QUERY(IfFalse)
967 DEFINE_CLASS_QUERY(IfTrue)
968 DEFINE_CLASS_QUERY(Initialize)
969 DEFINE_CLASS_QUERY(Jump)
970 DEFINE_CLASS_QUERY(JumpProj)
971 DEFINE_CLASS_QUERY(LongCountedLoop)
972 DEFINE_CLASS_QUERY(LongCountedLoopEnd)
973 DEFINE_CLASS_QUERY(Load)
974 DEFINE_CLASS_QUERY(LoadStore)
975 DEFINE_CLASS_QUERY(LoadStoreConditional)
976 DEFINE_CLASS_QUERY(Lock)
977 DEFINE_CLASS_QUERY(Loop)
978 DEFINE_CLASS_QUERY(LShift)
979 DEFINE_CLASS_QUERY(Mach)
980 DEFINE_CLASS_QUERY(MachBranch)
981 DEFINE_CLASS_QUERY(MachCall)
982 DEFINE_CLASS_QUERY(MachCallDynamicJava)
983 DEFINE_CLASS_QUERY(MachCallJava)
984 DEFINE_CLASS_QUERY(MachCallLeaf)
985 DEFINE_CLASS_QUERY(MachCallRuntime)
986 DEFINE_CLASS_QUERY(MachCallStaticJava)
987 DEFINE_CLASS_QUERY(MachConstantBase)
988 DEFINE_CLASS_QUERY(MachConstant)
989 DEFINE_CLASS_QUERY(MachGoto)
990 DEFINE_CLASS_QUERY(MachIf)
991 DEFINE_CLASS_QUERY(MachJump)
992 DEFINE_CLASS_QUERY(MachNullCheck)
993 DEFINE_CLASS_QUERY(MachProj)
994 DEFINE_CLASS_QUERY(MachProlog)
995 DEFINE_CLASS_QUERY(MachReturn)
996 DEFINE_CLASS_QUERY(MachSafePoint)
997 DEFINE_CLASS_QUERY(MachSpillCopy)
998 DEFINE_CLASS_QUERY(MachTemp)
999 DEFINE_CLASS_QUERY(MachMemBar)
1000 DEFINE_CLASS_QUERY(MachMerge)
1001 DEFINE_CLASS_QUERY(MachVEP)
1002 DEFINE_CLASS_QUERY(Mem)
1003 DEFINE_CLASS_QUERY(MemBar)
1004 DEFINE_CLASS_QUERY(MemBarStoreStore)
1005 DEFINE_CLASS_QUERY(MergeMem)
1006 DEFINE_CLASS_QUERY(Move)
1007 DEFINE_CLASS_QUERY(Mul)
1008 DEFINE_CLASS_QUERY(Multi)
1009 DEFINE_CLASS_QUERY(MultiBranch)
1010 DEFINE_CLASS_QUERY(MulVL)
1011 DEFINE_CLASS_QUERY(NarrowMemProj)
1012 DEFINE_CLASS_QUERY(Neg)
1013 DEFINE_CLASS_QUERY(NegV)
1014 DEFINE_CLASS_QUERY(NeverBranch)
1015 DEFINE_CLASS_QUERY(Opaque1)
1016 DEFINE_CLASS_QUERY(OpaqueNotNull)
1017 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1018 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1019 DEFINE_CLASS_QUERY(OpaqueLoopInit)
1020 DEFINE_CLASS_QUERY(OpaqueLoopStride)
1021 DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1022 DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1023 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1024 DEFINE_CLASS_QUERY(Parm)
1025 DEFINE_CLASS_QUERY(ParsePredicate)
1026 DEFINE_CLASS_QUERY(PCTable)
1027 DEFINE_CLASS_QUERY(Phi)
1028 DEFINE_CLASS_QUERY(Proj)
1029 DEFINE_CLASS_QUERY(Reduction)
1030 DEFINE_CLASS_QUERY(Region)
1031 DEFINE_CLASS_QUERY(Root)
1032 DEFINE_CLASS_QUERY(SafePoint)
1033 DEFINE_CLASS_QUERY(SafePointScalarObject)
1034 DEFINE_CLASS_QUERY(SafePointScalarMerge)
1035 DEFINE_CLASS_QUERY(Start)
1036 DEFINE_CLASS_QUERY(Store)
1037 DEFINE_CLASS_QUERY(Sub)
1038 DEFINE_CLASS_QUERY(SubTypeCheck)
1039 DEFINE_CLASS_QUERY(Type)
1040 DEFINE_CLASS_QUERY(InlineType)
1041 DEFINE_CLASS_QUERY(LoadFlat)
1042 DEFINE_CLASS_QUERY(StoreFlat)
1043 DEFINE_CLASS_QUERY(Vector)
1044 DEFINE_CLASS_QUERY(VectorMaskCmp)
1045 DEFINE_CLASS_QUERY(VectorUnbox)
1046 DEFINE_CLASS_QUERY(VectorReinterpret)
1047 DEFINE_CLASS_QUERY(CompressV)
1048 DEFINE_CLASS_QUERY(ExpandV)
1049 DEFINE_CLASS_QUERY(CompressM)
1050 DEFINE_CLASS_QUERY(LoadVector)
1051 DEFINE_CLASS_QUERY(LoadVectorGather)
1052 DEFINE_CLASS_QUERY(LoadVectorMasked)
1053 DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1054 DEFINE_CLASS_QUERY(StoreVector)
1055 DEFINE_CLASS_QUERY(StoreVectorScatter)
1056 DEFINE_CLASS_QUERY(StoreVectorMasked)
1057 DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1058 DEFINE_CLASS_QUERY(SaturatingVector)
1059 DEFINE_CLASS_QUERY(ShiftV)
1060 DEFINE_CLASS_QUERY(Unlock)
1061
1062 #undef DEFINE_CLASS_QUERY
1063
1064 // duplicate of is_MachSpillCopy()
1065 bool is_SpillCopy () const {
1066 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1067 }
1068
1069 bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1070 // The data node which is safe to leave in dead loop during IGVN optimization.
1071 bool is_dead_loop_safe() const;
1072
1073 // is_Copy() returns copied edge index (0 or 1)
1074 uint is_Copy() const { return (_flags & Flag_is_Copy); }
1075
1076 virtual bool is_CFG() const { return false; }
1077
1078 // If this node is control-dependent on a test, can it be
1079 // rerouted to a dominating equivalent test? This is usually
1080 // true of non-CFG nodes, but can be false for operations which
1081 // depend for their correct sequencing on more than one test.
1082 // (In that case, hoisting to a dominating test may silently
1083 // skip some other important test.)
1084 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1085
1086 // When building basic blocks, I need to have a notion of block beginning
1087 // Nodes, next block selector Nodes (block enders), and next block
1088 // projections. These calls need to work on their machine equivalents. The
1089 // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1090 bool is_block_start() const {
1091 if ( is_Region() )
1092 return this == (const Node*)in(0);
1093 else
1094 return is_Start();
1095 }
1096
1097 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1098 // Goto and Return. This call also returns the block ending Node.
1099 virtual const Node *is_block_proj() const;
1100
1101 // The node is a "macro" node which needs to be expanded before matching
1102 bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1103 // The node is expensive: the best control is set during loop opts
1104 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1105 // The node's original edge position is swapped.
1106 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1107
1108 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1109
1110 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1111
1112 // Used in lcm to mark nodes that have scheduled
1113 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1114
1115 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1116 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1117
1118 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1119 static bool may_be_loop_entry(Node* n) {
1120 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1121 }
1122
1123 //----------------- Optimization
1124
1125 // Get the worst-case Type output for this Node.
1126 virtual const class Type *bottom_type() const;
1127
1128 // If we find a better type for a node, try to record it permanently.
1129 // Return true if this node actually changed.
1130 // Be sure to do the hash_delete game in the "rehash" variant.
1131 void raise_bottom_type(const Type* new_type);
1132
1133 // Get the address type with which this node uses and/or defs memory,
1134 // or null if none. The address type is conservatively wide.
1135 // Returns non-null for calls, membars, loads, stores, etc.
1136 // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1137 virtual const class TypePtr *adr_type() const { return nullptr; }
1138
1139 // Return an existing node which computes the same function as this node.
1140 // The optimistic combined algorithm requires this to return a Node which
1141 // is a small number of steps away (e.g., one of my inputs).
1142 virtual Node* Identity(PhaseGVN* phase);
1143
1144 // Return the set of values this Node can take on at runtime.
1145 virtual const Type* Value(PhaseGVN* phase) const;
1146
1147 // Return a node which is more "ideal" than the current node.
1148 // The invariants on this call are subtle. If in doubt, read the
1149 // treatise in node.cpp above the default implementation AND TEST WITH
1150 // -XX:VerifyIterativeGVN=1
1151 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1152
1153 // Some nodes have specific Ideal subgraph transformations only if they are
1154 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1155 // for the transformations to happen.
1156 bool has_special_unique_user() const;
1157
1158 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1159 Node* find_exact_control(Node* ctrl);
1160
1161 // Results of the dominance analysis.
1162 enum class DomResult {
1163 NotDominate, // 'this' node does not dominate 'sub'.
1164 Dominate, // 'this' node dominates or is equal to 'sub'.
1165 EncounteredDeadCode // Result is undefined due to encountering dead code.
1166 };
1167 // Check if 'this' node dominates or equal to 'sub'.
1168 DomResult dominates(Node* sub, Node_List &nlist);
1169
1170 bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1171 public:
1172
1173 // See if there is valid pipeline info
1174 static const Pipeline *pipeline_class();
1175 virtual const Pipeline *pipeline() const;
1176
1177 // Compute the latency from the def to this instruction of the ith input node
1178 uint latency(uint i);
1179
1180 // Hash & compare functions, for pessimistic value numbering
1181
1182 // If the hash function returns the special sentinel value NO_HASH,
1183 // the node is guaranteed never to compare equal to any other node.
1184 // If we accidentally generate a hash with value NO_HASH the node
1185 // won't go into the table and we'll lose a little optimization.
1186 static const uint NO_HASH = 0;
1187 virtual uint hash() const;
1188 virtual bool cmp( const Node &n ) const;
1189
1190 // Operation appears to be iteratively computed (such as an induction variable)
1191 // It is possible for this operation to return false for a loop-varying
1192 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1193 bool is_iteratively_computed();
1194
1195 // Determine if a node is a counted loop induction variable.
1196 // NOTE: The method is defined in "loopnode.cpp".
1197 bool is_cloop_ind_var() const;
1198
1199 // Return a node with opcode "opc" and same inputs as "this" if one can
1200 // be found; Otherwise return null;
1201 Node* find_similar(int opc);
1202
1203 // Return the unique control out if only one. Null if none or more than one.
1204 Node* unique_ctrl_out_or_null() const;
1205 // Return the unique control out. Asserts if none or more than one control out.
1206 Node* unique_ctrl_out() const;
1207
1208 // Set control or add control as precedence edge
1209 void ensure_control_or_add_prec(Node* c);
1210 void add_prec_from(Node* n);
1211
1212 // Visit boundary uses of the node and apply a callback function for each.
1213 // Recursively traverse uses, stopping and applying the callback when
1214 // reaching a boundary node, defined by is_boundary. Note: the function
1215 // definition appears after the complete type definition of Node_List.
1216 template <typename Callback, typename Check>
1217 void visit_uses(Callback callback, Check is_boundary) const;
1218
1219 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1220 // (Load and range check CastII nodes).
1221 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1222 virtual Node* pin_array_access_node() const {
1223 return nullptr;
1224 }
1225
1226 //----------------- Code Generation
1227
1228 // Ideal register class for Matching. Zero means unmatched instruction
1229 // (these are cloned instead of converted to machine nodes).
1230 virtual uint ideal_reg() const;
1231
1232 static const uint NotAMachineReg; // must be > max. machine register
1233
1234 // Do we Match on this edge index or not? Generally false for Control
1235 // and true for everything else. Weird for calls & returns.
1236 virtual uint match_edge(uint idx) const;
1237
1238 // Register class output is returned in
1239 virtual const RegMask &out_RegMask() const;
1240 // Register class input is expected in
1241 virtual const RegMask &in_RegMask(uint) const;
1242 // Should we clone rather than spill this instruction?
1243 bool rematerialize() const;
1244
1245 // Return JVM State Object if this Node carries debug info, or null otherwise
1246 virtual JVMState* jvms() const;
1247
1248 // Print as assembly
1249 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1250 // Emit bytes using C2_MacroAssembler
1251 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1252 // Size of instruction in bytes
1253 virtual uint size(PhaseRegAlloc *ra_) const;
1254
1255 // Convenience function to extract an integer constant from a node.
1256 // If it is not an integer constant (either Con, CastII, or Mach),
1257 // return value_if_unknown.
1258 jint find_int_con(jint value_if_unknown) const {
1259 const TypeInt* t = find_int_type();
1260 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1261 }
1262 // Return the constant, knowing it is an integer constant already
1263 jint get_int() const {
1264 const TypeInt* t = find_int_type();
1265 guarantee(t != nullptr, "must be con");
1266 return t->get_con();
1267 }
1268 // Here's where the work is done. Can produce non-constant int types too.
1269 const TypeInt* find_int_type() const;
1270 const TypeInteger* find_integer_type(BasicType bt) const;
1271
1272 // Same thing for long (and intptr_t, via type.hpp):
1273 jlong get_long() const {
1274 const TypeLong* t = find_long_type();
1275 guarantee(t != nullptr, "must be con");
1276 return t->get_con();
1277 }
1278 jlong find_long_con(jint value_if_unknown) const {
1279 const TypeLong* t = find_long_type();
1280 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1281 }
1282 const TypeLong* find_long_type() const;
1283
1284 jlong get_integer_as_long(BasicType bt) const {
1285 const TypeInteger* t = find_integer_type(bt);
1286 guarantee(t != nullptr && t->is_con(), "must be con");
1287 return t->get_con_as_long(bt);
1288 }
1289 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1290 const TypeInteger* t = find_integer_type(bt);
1291 if (t == nullptr || !t->is_con()) return value_if_unknown;
1292 return t->get_con_as_long(bt);
1293 }
1294 const TypePtr* get_ptr_type() const;
1295
1296 // These guys are called by code generated by ADLC:
1297 intptr_t get_ptr() const;
1298 intptr_t get_narrowcon() const;
1299 jdouble getd() const;
1300 jfloat getf() const;
1301 jshort geth() const;
1302
1303 // Nodes which are pinned into basic blocks
1304 virtual bool pinned() const { return false; }
1305
1306 // Nodes which use memory without consuming it, hence need antidependences
1307 // More specifically, needs_anti_dependence_check returns true iff the node
1308 // (a) does a load, and (b) does not perform a store (except perhaps to a
1309 // stack slot or some other unaliased location).
1310 bool needs_anti_dependence_check() const;
1311
1312 // Return which operand this instruction may cisc-spill. In other words,
1313 // return operand position that can convert from reg to memory access
1314 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1315 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1316
1317 // Whether this is a memory-writing machine node.
1318 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1319
1320 // Whether this is a memory phi node
1321 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1322
1323 bool is_div_or_mod(BasicType bt) const;
1324
1325 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1326
1327 //----------------- Printing, etc
1328 #ifndef PRODUCT
1329 public:
1330 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1331 Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1332 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1333 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1334 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1335 void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1336 class DumpConfig {
1337 public:
1338 // overridden to implement coloring of node idx
1339 virtual void pre_dump(outputStream *st, const Node* n) = 0;
1340 virtual void post_dump(outputStream *st) = 0;
1341 };
1342 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1343 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1344 void dump() const; // print node with newline
1345 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1346 void dump(int depth) const; // Print this node, recursively to depth d
1347 void dump_ctrl(int depth) const; // Print control nodes, to depth d
1348 void dump_comp() const; // Print this node in compact representation.
1349 // Print this node in compact representation.
1350 void dump_comp(const char* suffix, outputStream *st = tty) const;
1351 private:
1352 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info
1353 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info
1354 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info
1355 public:
1356 virtual void dump_spec(outputStream *st) const {}; // Print per-node info
1357 // Print compact per-node info
1358 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1359
1360 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1361
1362 // This call defines a class-unique string used to identify class instances
1363 virtual const char *Name() const;
1364
1365 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1366 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1367 #endif
1368 #ifdef ASSERT
1369 void verify_construction();
1370 bool verify_jvms(const JVMState* jvms) const;
1371
1372 Node* _debug_orig; // Original version of this, if any.
1373 Node* debug_orig() const { return _debug_orig; }
1374 void set_debug_orig(Node* orig); // _debug_orig = orig
1375 void dump_orig(outputStream *st, bool print_key = true) const;
1376
1377 uint64_t _debug_idx; // Unique value assigned to every node.
1378 uint64_t debug_idx() const { return _debug_idx; }
1379 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1380
1381 int _hash_lock; // Barrier to modifications of nodes in the hash table
1382 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1383 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1384
1385 static void init_NodeProperty();
1386
1387 #if OPTO_DU_ITERATOR_ASSERT
1388 const Node* _last_del; // The last deleted node.
1389 uint _del_tick; // Bumped when a deletion happens..
1390 #endif
1391 #endif
1392 };
1393
1394 inline bool not_a_node(const Node* n) {
1395 if (n == nullptr) return true;
1396 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
1397 if (*(address*)n == badAddress) return true; // kill by Node::destruct
1398 return false;
1399 }
1400
1401 //-----------------------------------------------------------------------------
1402 // Iterators over DU info, and associated Node functions.
1403
1404 #if OPTO_DU_ITERATOR_ASSERT
1405
1406 // Common code for assertion checking on DU iterators.
1407 class DUIterator_Common {
1408 #ifdef ASSERT
1409 protected:
1410 bool _vdui; // cached value of VerifyDUIterators
1411 const Node* _node; // the node containing the _out array
1412 uint _outcnt; // cached node->_outcnt
1413 uint _del_tick; // cached node->_del_tick
1414 Node* _last; // last value produced by the iterator
1415
1416 void sample(const Node* node); // used by c'tor to set up for verifies
1417 void verify(const Node* node, bool at_end_ok = false);
1418 void verify_resync();
1419 void reset(const DUIterator_Common& that);
1420
1421 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1422 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1423 #else
1424 #define I_VDUI_ONLY(i,x) { }
1425 #endif //ASSERT
1426 };
1427
1428 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x)
1429
1430 // Default DU iterator. Allows appends onto the out array.
1431 // Allows deletion from the out array only at the current point.
1432 // Usage:
1433 // for (DUIterator i = x->outs(); x->has_out(i); i++) {
1434 // Node* y = x->out(i);
1435 // ...
1436 // }
1437 // Compiles in product mode to a unsigned integer index, which indexes
1438 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate
1439 // also reloads x->_outcnt. If you delete, you must perform "--i" just
1440 // before continuing the loop. You must delete only the last-produced
1441 // edge. You must delete only a single copy of the last-produced edge,
1442 // or else you must delete all copies at once (the first time the edge
1443 // is produced by the iterator).
1444 class DUIterator : public DUIterator_Common {
1445 friend class Node;
1446
1447 // This is the index which provides the product-mode behavior.
1448 // Whatever the product-mode version of the system does to the
1449 // DUI index is done to this index. All other fields in
1450 // this class are used only for assertion checking.
1451 uint _idx;
1452
1453 #ifdef ASSERT
1454 uint _refresh_tick; // Records the refresh activity.
1455
1456 void sample(const Node* node); // Initialize _refresh_tick etc.
1457 void verify(const Node* node, bool at_end_ok = false);
1458 void verify_increment(); // Verify an increment operation.
1459 void verify_resync(); // Verify that we can back up over a deletion.
1460 void verify_finish(); // Verify that the loop terminated properly.
1461 void refresh(); // Resample verification info.
1462 void reset(const DUIterator& that); // Resample after assignment.
1463 #endif
1464
1465 DUIterator(const Node* node, int dummy_to_avoid_conversion)
1466 { _idx = 0; DEBUG_ONLY(sample(node)); }
1467
1468 public:
1469 // initialize to garbage; clear _vdui to disable asserts
1470 DUIterator()
1471 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1472
1473 DUIterator(const DUIterator& that)
1474 { _idx = that._idx; DEBUG_ONLY(_vdui = false; reset(that)); }
1475
1476 void operator++(int dummy_to_specify_postfix_op)
1477 { _idx++; VDUI_ONLY(verify_increment()); }
1478
1479 void operator--()
1480 { VDUI_ONLY(verify_resync()); --_idx; }
1481
1482 ~DUIterator()
1483 { VDUI_ONLY(verify_finish()); }
1484
1485 void operator=(const DUIterator& that)
1486 { _idx = that._idx; DEBUG_ONLY(reset(that)); }
1487 };
1488
1489 DUIterator Node::outs() const
1490 { return DUIterator(this, 0); }
1491 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1492 { I_VDUI_ONLY(i, i.refresh()); return i; }
1493 bool Node::has_out(DUIterator& i) const
1494 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1495 Node* Node::out(DUIterator& i) const
1496 { I_VDUI_ONLY(i, i.verify(this)); return DEBUG_ONLY(i._last=) _out[i._idx]; }
1497
1498
1499 // Faster DU iterator. Disallows insertions into the out array.
1500 // Allows deletion from the out array only at the current point.
1501 // Usage:
1502 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1503 // Node* y = x->fast_out(i);
1504 // ...
1505 // }
1506 // Compiles in product mode to raw Node** pointer arithmetic, with
1507 // no reloading of pointers from the original node x. If you delete,
1508 // you must perform "--i; --imax" just before continuing the loop.
1509 // If you delete multiple copies of the same edge, you must decrement
1510 // imax, but not i, multiple times: "--i, imax -= num_edges".
1511 class DUIterator_Fast : public DUIterator_Common {
1512 friend class Node;
1513 friend class DUIterator_Last;
1514
1515 // This is the pointer which provides the product-mode behavior.
1516 // Whatever the product-mode version of the system does to the
1517 // DUI pointer is done to this pointer. All other fields in
1518 // this class are used only for assertion checking.
1519 Node** _outp;
1520
1521 #ifdef ASSERT
1522 void verify(const Node* node, bool at_end_ok = false);
1523 void verify_limit();
1524 void verify_resync();
1525 void verify_relimit(uint n);
1526 void reset(const DUIterator_Fast& that);
1527 #endif
1528
1529 // Note: offset must be signed, since -1 is sometimes passed
1530 DUIterator_Fast(const Node* node, ptrdiff_t offset)
1531 { _outp = node->_out + offset; DEBUG_ONLY(sample(node)); }
1532
1533 public:
1534 // initialize to garbage; clear _vdui to disable asserts
1535 DUIterator_Fast()
1536 { /*initialize to garbage*/ DEBUG_ONLY(_vdui = false); }
1537
1538 DUIterator_Fast(const DUIterator_Fast& that)
1539 { _outp = that._outp; DEBUG_ONLY(_vdui = false; reset(that)); }
1540
1541 void operator++(int dummy_to_specify_postfix_op)
1542 { _outp++; VDUI_ONLY(verify(_node, true)); }
1543
1544 void operator--()
1545 { VDUI_ONLY(verify_resync()); --_outp; }
1546
1547 void operator-=(uint n) // applied to the limit only
1548 { _outp -= n; VDUI_ONLY(verify_relimit(n)); }
1549
1550 bool operator<(DUIterator_Fast& limit) {
1551 I_VDUI_ONLY(*this, this->verify(_node, true));
1552 I_VDUI_ONLY(limit, limit.verify_limit());
1553 return _outp < limit._outp;
1554 }
1555
1556 void operator=(const DUIterator_Fast& that)
1557 { _outp = that._outp; DEBUG_ONLY(reset(that)); }
1558 };
1559
1560 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1561 // Assign a limit pointer to the reference argument:
1562 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1563 // Return the base pointer:
1564 return DUIterator_Fast(this, 0);
1565 }
1566 Node* Node::fast_out(DUIterator_Fast& i) const {
1567 I_VDUI_ONLY(i, i.verify(this));
1568 return DEBUG_ONLY(i._last=) *i._outp;
1569 }
1570
1571
1572 // Faster DU iterator. Requires each successive edge to be removed.
1573 // Does not allow insertion of any edges.
1574 // Usage:
1575 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1576 // Node* y = x->last_out(i);
1577 // ...
1578 // }
1579 // Compiles in product mode to raw Node** pointer arithmetic, with
1580 // no reloading of pointers from the original node x.
1581 class DUIterator_Last : private DUIterator_Fast {
1582 friend class Node;
1583
1584 #ifdef ASSERT
1585 void verify(const Node* node, bool at_end_ok = false);
1586 void verify_limit();
1587 void verify_step(uint num_edges);
1588 #endif
1589
1590 // Note: offset must be signed, since -1 is sometimes passed
1591 DUIterator_Last(const Node* node, ptrdiff_t offset)
1592 : DUIterator_Fast(node, offset) { }
1593
1594 void operator++(int dummy_to_specify_postfix_op) {} // do not use
1595 void operator<(int) {} // do not use
1596
1597 public:
1598 DUIterator_Last() { }
1599 // initialize to garbage
1600
1601 DUIterator_Last(const DUIterator_Last& that) = default;
1602
1603 void operator--()
1604 { _outp--; VDUI_ONLY(verify_step(1)); }
1605
1606 void operator-=(uint n)
1607 { _outp -= n; VDUI_ONLY(verify_step(n)); }
1608
1609 bool operator>=(DUIterator_Last& limit) {
1610 I_VDUI_ONLY(*this, this->verify(_node, true));
1611 I_VDUI_ONLY(limit, limit.verify_limit());
1612 return _outp >= limit._outp;
1613 }
1614
1615 DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1616 };
1617
1618 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1619 // Assign a limit pointer to the reference argument:
1620 imin = DUIterator_Last(this, 0);
1621 // Return the initial pointer:
1622 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1623 }
1624 Node* Node::last_out(DUIterator_Last& i) const {
1625 I_VDUI_ONLY(i, i.verify(this));
1626 return DEBUG_ONLY(i._last=) *i._outp;
1627 }
1628
1629 #endif //OPTO_DU_ITERATOR_ASSERT
1630
1631 #undef I_VDUI_ONLY
1632 #undef VDUI_ONLY
1633
1634 // An Iterator that truly follows the iterator pattern. Doesn't
1635 // support deletion but could be made to.
1636 //
1637 // for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1638 // Node* m = i.get();
1639 //
1640 class SimpleDUIterator : public StackObj {
1641 private:
1642 Node* node;
1643 DUIterator_Fast imax;
1644 DUIterator_Fast i;
1645 public:
1646 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1647 bool has_next() { return i < imax; }
1648 void next() { i++; }
1649 Node* get() { return node->fast_out(i); }
1650 };
1651
1652
1653 //-----------------------------------------------------------------------------
1654 // Map dense integer indices to Nodes. Uses classic doubling-array trick.
1655 // Abstractly provides an infinite array of Node*'s, initialized to null.
1656 // Note that the constructor just zeros things, and since I use Arena
1657 // allocation I do not need a destructor to reclaim storage.
1658 class Node_Array : public AnyObj {
1659 protected:
1660 Arena* _a; // Arena to allocate in
1661 uint _max;
1662 Node** _nodes;
1663 ReallocMark _nesting; // Safety checks for arena reallocation
1664
1665 // Grow array to required capacity
1666 void maybe_grow(uint i) {
1667 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1668 if (i >= _max) {
1669 grow(i);
1670 }
1671 }
1672 void grow(uint i);
1673
1674 public:
1675 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1676 _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1677 clear();
1678 }
1679 Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1680
1681 NONCOPYABLE(Node_Array);
1682 Node_Array& operator=(Node_Array&&) = delete;
1683 // Allow move constructor for && (eg. capture return of function)
1684 Node_Array(Node_Array&&) = default;
1685
1686 Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1687 { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1688 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1689 Node** adr() { return _nodes; }
1690 // Extend the mapping: index i maps to Node *n.
1691 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1692 void insert( uint i, Node *n );
1693 void remove( uint i ); // Remove, preserving order
1694 // Clear all entries in _nodes to null but keep storage
1695 void clear() {
1696 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1697 }
1698
1699 uint max() const { return _max; }
1700 void dump() const;
1701 };
1702
1703 class Node_List : public Node_Array {
1704 uint _cnt;
1705 public:
1706 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1707 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1708
1709 NONCOPYABLE(Node_List);
1710 Node_List& operator=(Node_List&&) = delete;
1711 // Allow move constructor for && (eg. capture return of function)
1712 Node_List(Node_List&&) = default;
1713
1714 bool contains(const Node* n) const {
1715 for (uint e = 0; e < size(); e++) {
1716 if (at(e) == n) return true;
1717 }
1718 return false;
1719 }
1720 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1721 void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1722 void push( Node *b ) { map(_cnt++,b); }
1723 void yank( Node *n ); // Find and remove
1724 Node *pop() { return _nodes[--_cnt]; }
1725 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1726 void copy(const Node_List& from) {
1727 if (from._max > _max) {
1728 grow(from._max);
1729 }
1730 _cnt = from._cnt;
1731 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1732 }
1733
1734 uint size() const { return _cnt; }
1735 void dump() const;
1736 void dump_simple() const;
1737 };
1738
1739 // Definition must appear after complete type definition of Node_List
1740 template <typename Callback, typename Check>
1741 void Node::visit_uses(Callback callback, Check is_boundary) const {
1742 ResourceMark rm;
1743 VectorSet visited;
1744 Node_List worklist;
1745
1746 // The initial worklist consists of the direct uses
1747 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1748 Node* out = fast_out(k);
1749 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1750 }
1751
1752 while (worklist.size() > 0) {
1753 Node* use = worklist.pop();
1754 // Apply callback on boundary nodes
1755 if (is_boundary(use)) {
1756 callback(use);
1757 } else {
1758 // Not a boundary node, continue search
1759 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1760 Node* out = use->fast_out(k);
1761 if (!visited.test_set(out->_idx)) { worklist.push(out); }
1762 }
1763 }
1764 }
1765 }
1766
1767
1768 //------------------------------Unique_Node_List-------------------------------
1769 class Unique_Node_List : public Node_List {
1770 VectorSet _in_worklist;
1771 uint _clock_index; // Index in list where to pop from next
1772 public:
1773 Unique_Node_List() : Node_List(), _clock_index(0) {}
1774 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1775
1776 NONCOPYABLE(Unique_Node_List);
1777 Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1778 // Allow move constructor for && (eg. capture return of function)
1779 Unique_Node_List(Unique_Node_List&&) = default;
1780
1781 void remove( Node *n );
1782 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1783 VectorSet& member_set(){ return _in_worklist; }
1784
1785 void push(Node* b) {
1786 if( !_in_worklist.test_set(b->_idx) )
1787 Node_List::push(b);
1788 }
1789 void push_non_cfg_inputs_of(const Node* node) {
1790 for (uint i = 1; i < node->req(); i++) {
1791 Node* input = node->in(i);
1792 if (input != nullptr && !input->is_CFG()) {
1793 push(input);
1794 }
1795 }
1796 }
1797
1798 void push_outputs_of(const Node* node) {
1799 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1800 Node* output = node->fast_out(i);
1801 push(output);
1802 }
1803 }
1804
1805 Node *pop() {
1806 if( _clock_index >= size() ) _clock_index = 0;
1807 Node *b = at(_clock_index);
1808 map( _clock_index, Node_List::pop());
1809 if (size() != 0) _clock_index++; // Always start from 0
1810 _in_worklist.remove(b->_idx);
1811 return b;
1812 }
1813 Node *remove(uint i) {
1814 Node *b = Node_List::at(i);
1815 _in_worklist.remove(b->_idx);
1816 map(i,Node_List::pop());
1817 return b;
1818 }
1819 void yank(Node *n) {
1820 _in_worklist.remove(n->_idx);
1821 Node_List::yank(n);
1822 }
1823 void clear() {
1824 _in_worklist.clear(); // Discards storage but grows automatically
1825 Node_List::clear();
1826 _clock_index = 0;
1827 }
1828 void ensure_empty() {
1829 assert(size() == 0, "must be empty");
1830 clear(); // just in case
1831 }
1832
1833 // Used after parsing to remove useless nodes before Iterative GVN
1834 void remove_useless_nodes(VectorSet& useful);
1835
1836 // If the idx of the Nodes change, we must recompute the VectorSet
1837 void recompute_idx_set() {
1838 _in_worklist.clear();
1839 for (uint i = 0; i < size(); i++) {
1840 Node* n = at(i);
1841 _in_worklist.set(n->_idx);
1842 }
1843 }
1844
1845 #ifdef ASSERT
1846 bool is_subset_of(Unique_Node_List& other) {
1847 for (uint i = 0; i < size(); i++) {
1848 Node* n = at(i);
1849 if (!other.member(n)) {
1850 return false;
1851 }
1852 }
1853 return true;
1854 }
1855 #endif
1856
1857 bool contains(const Node* n) const {
1858 fatal("use faster member() instead");
1859 return false;
1860 }
1861
1862 #ifndef PRODUCT
1863 void print_set() const { _in_worklist.print(); }
1864 #endif
1865 };
1866
1867 // Unique_Mixed_Node_List
1868 // unique: nodes are added only once
1869 // mixed: allow new and old nodes
1870 class Unique_Mixed_Node_List : public ResourceObj {
1871 public:
1872 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1873
1874 void add(Node* node) {
1875 if (not_a_node(node)) {
1876 return; // Gracefully handle null, -1, 0xabababab, etc.
1877 }
1878 if (_visited_set[node] == nullptr) {
1879 _visited_set.Insert(node, node);
1880 _worklist.push(node);
1881 }
1882 }
1883
1884 Node* operator[] (uint i) const {
1885 return _worklist[i];
1886 }
1887
1888 size_t size() {
1889 return _worklist.size();
1890 }
1891
1892 private:
1893 Dict _visited_set;
1894 Node_List _worklist;
1895 };
1896
1897 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1898 inline void Compile::record_for_igvn(Node* n) {
1899 _igvn_worklist->push(n);
1900 }
1901
1902 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1903 inline void Compile::remove_for_igvn(Node* n) {
1904 _igvn_worklist->remove(n);
1905 }
1906
1907 //------------------------------Node_Stack-------------------------------------
1908 class Node_Stack {
1909 protected:
1910 struct INode {
1911 Node *node; // Processed node
1912 uint indx; // Index of next node's child
1913 };
1914 INode *_inode_top; // tos, stack grows up
1915 INode *_inode_max; // End of _inodes == _inodes + _max
1916 INode *_inodes; // Array storage for the stack
1917 Arena *_a; // Arena to allocate in
1918 ReallocMark _nesting; // Safety checks for arena reallocation
1919
1920 void maybe_grow() {
1921 _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1922 if (_inode_top >= _inode_max) {
1923 grow();
1924 }
1925 }
1926 void grow();
1927
1928 public:
1929 Node_Stack(int size) {
1930 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1931 _a = Thread::current()->resource_area();
1932 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1933 _inode_max = _inodes + max;
1934 _inode_top = _inodes - 1; // stack is empty
1935 }
1936
1937 Node_Stack(Arena *a, int size) : _a(a) {
1938 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1939 _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1940 _inode_max = _inodes + max;
1941 _inode_top = _inodes - 1; // stack is empty
1942 }
1943
1944 void pop() {
1945 assert(_inode_top >= _inodes, "node stack underflow");
1946 --_inode_top;
1947 }
1948 void push(Node *n, uint i) {
1949 ++_inode_top;
1950 maybe_grow();
1951 INode *top = _inode_top; // optimization
1952 top->node = n;
1953 top->indx = i;
1954 }
1955 Node *node() const {
1956 return _inode_top->node;
1957 }
1958 Node* node_at(uint i) const {
1959 assert(_inodes + i <= _inode_top, "in range");
1960 return _inodes[i].node;
1961 }
1962 uint index() const {
1963 return _inode_top->indx;
1964 }
1965 uint index_at(uint i) const {
1966 assert(_inodes + i <= _inode_top, "in range");
1967 return _inodes[i].indx;
1968 }
1969 void set_node(Node *n) {
1970 _inode_top->node = n;
1971 }
1972 void set_index(uint i) {
1973 _inode_top->indx = i;
1974 }
1975 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size
1976 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size
1977 bool is_nonempty() const { return (_inode_top >= _inodes); }
1978 bool is_empty() const { return (_inode_top < _inodes); }
1979 void clear() { _inode_top = _inodes - 1; } // retain storage
1980
1981 // Node_Stack is used to map nodes.
1982 Node* find(uint idx) const;
1983
1984 NONCOPYABLE(Node_Stack);
1985 };
1986
1987
1988 //-----------------------------Node_Notes--------------------------------------
1989 // Debugging or profiling annotations loosely and sparsely associated
1990 // with some nodes. See Compile::node_notes_at for the accessor.
1991 class Node_Notes {
1992 JVMState* _jvms;
1993
1994 public:
1995 Node_Notes(JVMState* jvms = nullptr) {
1996 _jvms = jvms;
1997 }
1998
1999 JVMState* jvms() { return _jvms; }
2000 void set_jvms(JVMState* x) { _jvms = x; }
2001
2002 // True if there is nothing here.
2003 bool is_clear() {
2004 return (_jvms == nullptr);
2005 }
2006
2007 // Make there be nothing here.
2008 void clear() {
2009 _jvms = nullptr;
2010 }
2011
2012 // Make a new, clean node notes.
2013 static Node_Notes* make(Compile* C) {
2014 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2015 nn->clear();
2016 return nn;
2017 }
2018
2019 Node_Notes* clone(Compile* C) {
2020 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2021 (*nn) = (*this);
2022 return nn;
2023 }
2024
2025 // Absorb any information from source.
2026 bool update_from(Node_Notes* source) {
2027 bool changed = false;
2028 if (source != nullptr) {
2029 if (source->jvms() != nullptr) {
2030 set_jvms(source->jvms());
2031 changed = true;
2032 }
2033 }
2034 return changed;
2035 }
2036 };
2037
2038 // Inlined accessors for Compile::node_nodes that require the preceding class:
2039 inline Node_Notes*
2040 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2041 int idx, bool can_grow) {
2042 assert(idx >= 0, "oob");
2043 int block_idx = (idx >> _log2_node_notes_block_size);
2044 int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2045 if (grow_by >= 0) {
2046 if (!can_grow) return nullptr;
2047 grow_node_notes(arr, grow_by + 1);
2048 }
2049 if (arr == nullptr) return nullptr;
2050 // (Every element of arr is a sub-array of length _node_notes_block_size.)
2051 return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2052 }
2053
2054 inline Node_Notes* Compile::node_notes_at(int idx) {
2055 return locate_node_notes(_node_note_array, idx, false);
2056 }
2057
2058 inline bool
2059 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2060 if (value == nullptr || value->is_clear())
2061 return false; // nothing to write => write nothing
2062 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2063 assert(loc != nullptr, "");
2064 return loc->update_from(value);
2065 }
2066
2067
2068 //------------------------------TypeNode---------------------------------------
2069 // Node with a Type constant.
2070 class TypeNode : public Node {
2071 protected:
2072 virtual uint hash() const; // Check the type
2073 virtual bool cmp( const Node &n ) const;
2074 virtual uint size_of() const; // Size is bigger
2075 const Type* const _type;
2076 public:
2077 void set_type(const Type* t) {
2078 assert(t != nullptr, "sanity");
2079 DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2080 *(const Type**)&_type = t; // cast away const-ness
2081 // If this node is in the hash table, make sure it doesn't need a rehash.
2082 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2083 }
2084 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2085 TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2086 init_class_id(Class_Type);
2087 }
2088 virtual const Type* Value(PhaseGVN* phase) const;
2089 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2090 virtual const Type *bottom_type() const;
2091 virtual uint ideal_reg() const;
2092
2093 void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2094 #ifndef PRODUCT
2095 virtual void dump_spec(outputStream *st) const;
2096 virtual void dump_compact_spec(outputStream *st) const;
2097 #endif
2098 void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2099 void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2100 };
2101
2102 #include "opto/opcodes.hpp"
2103
2104 #define Op_IL(op) \
2105 inline int Op_ ## op(BasicType bt) { \
2106 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2107 if (bt == T_INT) { \
2108 return Op_## op ## I; \
2109 } \
2110 return Op_## op ## L; \
2111 }
2112
2113 Op_IL(Add)
2114 Op_IL(And)
2115 Op_IL(Sub)
2116 Op_IL(Mul)
2117 Op_IL(URShift)
2118 Op_IL(LShift)
2119 Op_IL(RShift)
2120 Op_IL(Xor)
2121 Op_IL(Cmp)
2122 Op_IL(Div)
2123 Op_IL(Mod)
2124 Op_IL(UDiv)
2125 Op_IL(UMod)
2126
2127 inline int Op_ConIL(BasicType bt) {
2128 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2129 if (bt == T_INT) {
2130 return Op_ConI;
2131 }
2132 return Op_ConL;
2133 }
2134
2135 inline int Op_Cmp_unsigned(BasicType bt) {
2136 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2137 if (bt == T_INT) {
2138 return Op_CmpU;
2139 }
2140 return Op_CmpUL;
2141 }
2142
2143 inline int Op_Cast(BasicType bt) {
2144 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2145 if (bt == T_INT) {
2146 return Op_CastII;
2147 }
2148 return Op_CastLL;
2149 }
2150
2151 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2152 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2153 if (bt == T_INT) {
2154 if (is_unsigned) {
2155 return Op_UDivI;
2156 } else {
2157 return Op_DivI;
2158 }
2159 }
2160 if (is_unsigned) {
2161 return Op_UDivL;
2162 } else {
2163 return Op_DivL;
2164 }
2165 }
2166
2167 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2168 assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2169 if (bt == T_INT) {
2170 if (is_unsigned) {
2171 return Op_UDivModI;
2172 } else {
2173 return Op_DivModI;
2174 }
2175 }
2176 if (is_unsigned) {
2177 return Op_UDivModL;
2178 } else {
2179 return Op_DivModL;
2180 }
2181 }
2182
2183 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2184 // a customized BFS.
2185 class BFSActions : public StackObj {
2186 public:
2187 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2188 // method to provide a custom filter.
2189 virtual bool should_visit(Node* node) const {
2190 // By default, visit all inputs.
2191 return true;
2192 };
2193
2194 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2195 // but the BFS will continue to visit all unvisited nodes in the queue.
2196 virtual bool is_target_node(Node* node) const = 0;
2197
2198 // Defines an action that should be taken when we visit a target node in the BFS traversal.
2199 virtual void target_node_action(Node* target_node) = 0;
2200 };
2201
2202 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2203 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2204 class DataNodeBFS : public StackObj {
2205 BFSActions& _bfs_actions;
2206
2207 public:
2208 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2209
2210 // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2211 void run(Node* start_node) {
2212 ResourceMark rm;
2213 Unique_Node_List _nodes_to_visit;
2214 _nodes_to_visit.push(start_node);
2215 for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2216 Node* next = _nodes_to_visit[i];
2217 for (uint j = 1; j < next->req(); j++) {
2218 Node* input = next->in(j);
2219 if (_bfs_actions.is_target_node(input)) {
2220 assert(_bfs_actions.should_visit(input), "must also pass node filter");
2221 _bfs_actions.target_node_action(input);
2222 } else if (_bfs_actions.should_visit(input)) {
2223 _nodes_to_visit.push(input);
2224 }
2225 }
2226 }
2227 }
2228 };
2229
2230 #endif // SHARE_OPTO_NODE_HPP