1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_OPTO_NODE_HPP
  27 #define SHARE_OPTO_NODE_HPP
  28 
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "utilities/copy.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 // Optimization - Graph Style
  37 
  38 
  39 class AbstractLockNode;
  40 class AddNode;
  41 class AddPNode;
  42 class AliasInfo;
  43 class AllocateArrayNode;
  44 class AllocateNode;
  45 class ArrayCopyNode;
  46 class BaseCountedLoopNode;
  47 class BaseCountedLoopEndNode;
  48 class BlackholeNode;
  49 class Block;
  50 class BoolNode;
  51 class BoxLockNode;
  52 class CMoveNode;
  53 class CallDynamicJavaNode;
  54 class CallJavaNode;
  55 class CallLeafNode;
  56 class CallLeafNoFPNode;
  57 class CallLeafPureNode;
  58 class CallNode;
  59 class CallRuntimeNode;
  60 class CallStaticJavaNode;
  61 class CastFFNode;
  62 class CastHHNode;
  63 class CastDDNode;
  64 class CastVVNode;
  65 class CastIINode;
  66 class CastLLNode;
  67 class CastPPNode;
  68 class CatchNode;
  69 class CatchProjNode;
  70 class CheckCastPPNode;
  71 class ClearArrayNode;
  72 class CmpNode;
  73 class CodeBuffer;
  74 class ConstraintCastNode;
  75 class ConNode;
  76 class ConINode;
  77 class ConvertNode;
  78 class CompareAndSwapNode;
  79 class CompareAndExchangeNode;
  80 class CountedLoopNode;
  81 class CountedLoopEndNode;
  82 class DecodeNarrowPtrNode;
  83 class DecodeNNode;
  84 class DecodeNKlassNode;
  85 class EncodeNarrowPtrNode;
  86 class EncodePNode;
  87 class EncodePKlassNode;
  88 class FastLockNode;
  89 class FastUnlockNode;
  90 class FlatArrayCheckNode;
  91 class HaltNode;
  92 class IfNode;
  93 class IfProjNode;
  94 class IfFalseNode;
  95 class IfTrueNode;
  96 class InitializeNode;
  97 class JVMState;
  98 class JumpNode;
  99 class JumpProjNode;
 100 class LoadNode;
 101 class LoadStoreNode;
 102 class LoadStoreConditionalNode;
 103 class LockNode;
 104 class LongCountedLoopNode;
 105 class LongCountedLoopEndNode;
 106 class LoopNode;
 107 class LShiftNode;
 108 class MachBranchNode;
 109 class MachCallDynamicJavaNode;
 110 class MachCallJavaNode;
 111 class MachCallLeafNode;
 112 class MachCallNode;
 113 class MachCallRuntimeNode;
 114 class MachCallStaticJavaNode;
 115 class MachConstantBaseNode;
 116 class MachConstantNode;
 117 class MachGotoNode;
 118 class MachIfNode;
 119 class MachJumpNode;
 120 class MachNode;
 121 class MachNullCheckNode;
 122 class MachProjNode;
 123 class MachPrologNode;
 124 class MachReturnNode;
 125 class MachSafePointNode;
 126 class MachSpillCopyNode;
 127 class MachTempNode;
 128 class MachMergeNode;
 129 class MachMemBarNode;
 130 class MachVEPNode;
 131 class Matcher;
 132 class MemBarNode;
 133 class MemBarStoreStoreNode;
 134 class MemNode;
 135 class MergeMemNode;
 136 class MoveNode;
 137 class MulNode;
 138 class MultiNode;
 139 class MultiBranchNode;
 140 class NegNode;
 141 class NegVNode;
 142 class NeverBranchNode;
 143 class Opaque1Node;
 144 class OpaqueLoopInitNode;
 145 class OpaqueLoopStrideNode;
 146 class OpaqueMultiversioningNode;
 147 class OpaqueNotNullNode;
 148 class OpaqueInitializedAssertionPredicateNode;
 149 class OpaqueTemplateAssertionPredicateNode;
 150 class OuterStripMinedLoopNode;
 151 class OuterStripMinedLoopEndNode;
 152 class Node;
 153 class Node_Array;
 154 class Node_List;
 155 class Node_Stack;
 156 class OopMap;
 157 class ParmNode;
 158 class ParsePredicateNode;
 159 class PCTableNode;
 160 class PhaseCCP;
 161 class PhaseGVN;
 162 class PhaseIdealLoop;
 163 class PhaseIterGVN;
 164 class PhaseRegAlloc;
 165 class PhaseTransform;
 166 class PhaseValues;
 167 class PhiNode;
 168 class Pipeline;
 169 class PopulateIndexNode;
 170 class ProjNode;
 171 class RangeCheckNode;
 172 class ReductionNode;
 173 class RegMask;
 174 class RegionNode;
 175 class RootNode;
 176 class SafePointNode;
 177 class SafePointScalarObjectNode;
 178 class SafePointScalarMergeNode;
 179 class SaturatingVectorNode;
 180 class StartNode;
 181 class State;
 182 class StoreNode;
 183 class SubNode;
 184 class SubTypeCheckNode;
 185 class Type;
 186 class TypeNode;
 187 class UnlockNode;
 188 class InlineTypeNode;
 189 class VectorNode;
 190 class LoadVectorNode;
 191 class LoadVectorMaskedNode;
 192 class StoreVectorMaskedNode;
 193 class LoadVectorGatherNode;
 194 class LoadVectorGatherMaskedNode;
 195 class StoreVectorNode;
 196 class StoreVectorScatterNode;
 197 class StoreVectorScatterMaskedNode;
 198 class VerifyVectorAlignmentNode;
 199 class VectorMaskCmpNode;
 200 class VectorUnboxNode;
 201 class VectorSet;
 202 class VectorReinterpretNode;
 203 class ShiftVNode;
 204 class MulVLNode;
 205 class ExpandVNode;
 206 class CompressVNode;
 207 class CompressMNode;
 208 class C2_MacroAssembler;
 209 
 210 
 211 #ifndef OPTO_DU_ITERATOR_ASSERT
 212 #ifdef ASSERT
 213 #define OPTO_DU_ITERATOR_ASSERT 1
 214 #else
 215 #define OPTO_DU_ITERATOR_ASSERT 0
 216 #endif
 217 #endif //OPTO_DU_ITERATOR_ASSERT
 218 
 219 #if OPTO_DU_ITERATOR_ASSERT
 220 class DUIterator;
 221 class DUIterator_Fast;
 222 class DUIterator_Last;
 223 #else
 224 typedef uint   DUIterator;
 225 typedef Node** DUIterator_Fast;
 226 typedef Node** DUIterator_Last;
 227 #endif
 228 
 229 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
 230 
 231 // Node Sentinel
 232 #define NodeSentinel (Node*)-1
 233 
 234 // Unknown count frequency
 235 #define COUNT_UNKNOWN (-1.0f)
 236 
 237 //------------------------------Node-------------------------------------------
 238 // Nodes define actions in the program.  They create values, which have types.
 239 // They are both vertices in a directed graph and program primitives.  Nodes
 240 // are labeled; the label is the "opcode", the primitive function in the lambda
 241 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 242 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 243 // the Node's function.  These inputs also define a Type equation for the Node.
 244 // Solving these Type equations amounts to doing dataflow analysis.
 245 // Control and data are uniformly represented in the graph.  Finally, Nodes
 246 // have a unique dense integer index which is used to index into side arrays
 247 // whenever I have phase-specific information.
 248 
 249 class Node {
 250 
 251   // Lots of restrictions on cloning Nodes
 252   NONCOPYABLE(Node);
 253 
 254 public:
 255   friend class Compile;
 256   #if OPTO_DU_ITERATOR_ASSERT
 257   friend class DUIterator_Common;
 258   friend class DUIterator;
 259   friend class DUIterator_Fast;
 260   friend class DUIterator_Last;
 261   #endif
 262 
 263   // Because Nodes come and go, I define an Arena of Node structures to pull
 264   // from.  This should allow fast access to node creation & deletion.  This
 265   // field is a local cache of a value defined in some "program fragment" for
 266   // which these Nodes are just a part of.
 267 
 268   inline void* operator new(size_t x) throw() {
 269     Compile* C = Compile::current();
 270     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 271     return (void*)n;
 272   }
 273 
 274   // Delete is a NOP
 275   void operator delete( void *ptr ) {}
 276   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 277   void destruct(PhaseValues* phase);
 278 
 279   // Create a new Node.  Required is the number is of inputs required for
 280   // semantic correctness.
 281   Node( uint required );
 282 
 283   // Create a new Node with given input edges.
 284   // This version requires use of the "edge-count" new.
 285   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 286   Node( Node *n0 );
 287   Node( Node *n0, Node *n1 );
 288   Node( Node *n0, Node *n1, Node *n2 );
 289   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 290   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 291   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 292   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 293             Node *n4, Node *n5, Node *n6 );
 294 
 295   // Clone an inherited Node given only the base Node type.
 296   Node* clone() const;
 297 
 298   // Clone a Node, immediately supplying one or two new edges.
 299   // The first and second arguments, if non-null, replace in(1) and in(2),
 300   // respectively.
 301   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 302     Node* nn = clone();
 303     if (in1 != nullptr)  nn->set_req(1, in1);
 304     if (in2 != nullptr)  nn->set_req(2, in2);
 305     return nn;
 306   }
 307 
 308 private:
 309   // Shared setup for the above constructors.
 310   // Handles all interactions with Compile::current.
 311   // Puts initial values in all Node fields except _idx.
 312   // Returns the initial value for _idx, which cannot
 313   // be initialized by assignment.
 314   inline int Init(int req);
 315 
 316 //----------------- input edge handling
 317 protected:
 318   friend class PhaseCFG;        // Access to address of _in array elements
 319   Node **_in;                   // Array of use-def references to Nodes
 320   Node **_out;                  // Array of def-use references to Nodes
 321 
 322   // Input edges are split into two categories.  Required edges are required
 323   // for semantic correctness; order is important and nulls are allowed.
 324   // Precedence edges are used to help determine execution order and are
 325   // added, e.g., for scheduling purposes.  They are unordered and not
 326   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 327   // are required, from _cnt to _max-1 are precedence edges.
 328   node_idx_t _cnt;              // Total number of required Node inputs.
 329 
 330   node_idx_t _max;              // Actual length of input array.
 331 
 332   // Output edges are an unordered list of def-use edges which exactly
 333   // correspond to required input edges which point from other nodes
 334   // to this one.  Thus the count of the output edges is the number of
 335   // users of this node.
 336   node_idx_t _outcnt;           // Total number of Node outputs.
 337 
 338   node_idx_t _outmax;           // Actual length of output array.
 339 
 340   // Grow the actual input array to the next larger power-of-2 bigger than len.
 341   void grow( uint len );
 342   // Grow the output array to the next larger power-of-2 bigger than len.
 343   void out_grow( uint len );
 344   // Resize input or output array to grow it to the next larger power-of-2
 345   // bigger than len.
 346   void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
 347 
 348 public:
 349   // Each Node is assigned a unique small/dense number. This number is used
 350   // to index into auxiliary arrays of data and bit vectors.
 351   // The value of _idx can be changed using the set_idx() method.
 352   //
 353   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 354   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 355   // preserved in _parse_idx.
 356   node_idx_t _idx;
 357   DEBUG_ONLY(const node_idx_t _parse_idx;)
 358   // IGV node identifier. Two nodes, possibly in different compilation phases,
 359   // have the same IGV identifier if (and only if) they are the very same node
 360   // (same memory address) or one is "derived" from the other (by e.g.
 361   // renumbering or matching). This identifier makes it possible to follow the
 362   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 363   NOT_PRODUCT(node_idx_t _igv_idx;)
 364 
 365   // Get the (read-only) number of input edges
 366   uint req() const { return _cnt; }
 367   uint len() const { return _max; }
 368   // Get the (read-only) number of output edges
 369   uint outcnt() const { return _outcnt; }
 370 
 371 #if OPTO_DU_ITERATOR_ASSERT
 372   // Iterate over the out-edges of this node.  Deletions are illegal.
 373   inline DUIterator outs() const;
 374   // Use this when the out array might have changed to suppress asserts.
 375   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 376   // Does the node have an out at this position?  (Used for iteration.)
 377   inline bool has_out(DUIterator& i) const;
 378   inline Node*    out(DUIterator& i) const;
 379   // Iterate over the out-edges of this node.  All changes are illegal.
 380   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 381   inline Node*    fast_out(DUIterator_Fast& i) const;
 382   // Iterate over the out-edges of this node, deleting one at a time.
 383   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 384   inline Node*    last_out(DUIterator_Last& i) const;
 385   // The inline bodies of all these methods are after the iterator definitions.
 386 #else
 387   // Iterate over the out-edges of this node.  Deletions are illegal.
 388   // This iteration uses integral indexes, to decouple from array reallocations.
 389   DUIterator outs() const  { return 0; }
 390   // Use this when the out array might have changed to suppress asserts.
 391   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 392 
 393   // Reference to the i'th output Node.  Error if out of bounds.
 394   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 395   // Does the node have an out at this position?  (Used for iteration.)
 396   bool has_out(DUIterator i) const { return i < _outcnt; }
 397 
 398   // Iterate over the out-edges of this node.  All changes are illegal.
 399   // This iteration uses a pointer internal to the out array.
 400   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 401     Node** out = _out;
 402     // Assign a limit pointer to the reference argument:
 403     max = out + (ptrdiff_t)_outcnt;
 404     // Return the base pointer:
 405     return out;
 406   }
 407   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 408   // Iterate over the out-edges of this node, deleting one at a time.
 409   // This iteration uses a pointer internal to the out array.
 410   DUIterator_Last last_outs(DUIterator_Last& min) const {
 411     Node** out = _out;
 412     // Assign a limit pointer to the reference argument:
 413     min = out;
 414     // Return the pointer to the start of the iteration:
 415     return out + (ptrdiff_t)_outcnt - 1;
 416   }
 417   Node*    last_out(DUIterator_Last i) const  { return *i; }
 418 #endif
 419 
 420   // Reference to the i'th input Node.  Error if out of bounds.
 421   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 422   // Reference to the i'th input Node.  null if out of bounds.
 423   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 424   // Reference to the i'th output Node.  Error if out of bounds.
 425   // Use this accessor sparingly.  We are going trying to use iterators instead.
 426   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 427   // Return the unique out edge.
 428   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 429   // Delete out edge at position 'i' by moving last out edge to position 'i'
 430   void  raw_del_out(uint i) {
 431     assert(i < _outcnt,"oob");
 432     assert(_outcnt > 0,"oob");
 433     #if OPTO_DU_ITERATOR_ASSERT
 434     // Record that a change happened here.
 435     DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
 436     #endif
 437     _out[i] = _out[--_outcnt];
 438     // Smash the old edge so it can't be used accidentally.
 439     DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 440   }
 441 
 442 #ifdef ASSERT
 443   bool is_dead() const;
 444   static bool is_not_dead(const Node* n);
 445   bool is_reachable_from_root() const;
 446 #endif
 447   // Check whether node has become unreachable
 448   bool is_unreachable(PhaseIterGVN &igvn) const;
 449 
 450   // Set a required input edge, also updates corresponding output edge
 451   void add_req( Node *n ); // Append a NEW required input
 452   void add_req( Node *n0, Node *n1 ) {
 453     add_req(n0); add_req(n1); }
 454   void add_req( Node *n0, Node *n1, Node *n2 ) {
 455     add_req(n0); add_req(n1); add_req(n2); }
 456   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 457   void del_req( uint idx ); // Delete required edge & compact
 458   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 459   void ins_req( uint i, Node *n ); // Insert a NEW required input
 460   void set_req( uint i, Node *n ) {
 461     assert( is_not_dead(n), "can not use dead node");
 462     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 463     assert( !VerifyHashTableKeys || _hash_lock == 0,
 464             "remove node from hash table before modifying it");
 465     Node** p = &_in[i];    // cache this._in, across the del_out call
 466     if (*p != nullptr)  (*p)->del_out((Node *)this);
 467     (*p) = n;
 468     if (n != nullptr)      n->add_out((Node *)this);
 469     Compile::current()->record_modified_node(this);
 470   }
 471   // Light version of set_req() to init inputs after node creation.
 472   void init_req( uint i, Node *n ) {
 473     assert( (i == 0 && this == n) ||
 474             is_not_dead(n), "can not use dead node");
 475     assert( i < _cnt, "oob");
 476     assert( !VerifyHashTableKeys || _hash_lock == 0,
 477             "remove node from hash table before modifying it");
 478     assert( _in[i] == nullptr, "sanity");
 479     _in[i] = n;
 480     if (n != nullptr)      n->add_out((Node *)this);
 481     Compile::current()->record_modified_node(this);
 482   }
 483   // Find first occurrence of n among my edges:
 484   int find_edge(Node* n);
 485   int find_prec_edge(Node* n) {
 486     for (uint i = req(); i < len(); i++) {
 487       if (_in[i] == n) return i;
 488       if (_in[i] == nullptr) {
 489         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 490         break;
 491       }
 492     }
 493     return -1;
 494   }
 495   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 496   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 497   // null out all inputs to eliminate incoming Def-Use edges.
 498   void disconnect_inputs(Compile* C);
 499 
 500   // Quickly, return true if and only if I am Compile::current()->top().
 501   bool is_top() const {
 502     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 503     return (_out == nullptr);
 504   }
 505   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 506   void setup_is_top();
 507 
 508   // Strip away casting.  (It is depth-limited.)
 509   Node* uncast(bool keep_deps = false) const;
 510   // Return whether two Nodes are equivalent, after stripping casting.
 511   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 512     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 513   }
 514 
 515   // Find out of current node that matches opcode.
 516   Node* find_out_with(int opcode);
 517   // Return true if the current node has an out that matches opcode.
 518   bool has_out_with(int opcode);
 519   // Return true if the current node has an out that matches any of the opcodes.
 520   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 521 
 522 private:
 523   static Node* uncast_helper(const Node* n, bool keep_deps);
 524 
 525   // Add an output edge to the end of the list
 526   void add_out( Node *n ) {
 527     if (is_top())  return;
 528     if( _outcnt == _outmax ) out_grow(_outcnt);
 529     _out[_outcnt++] = n;
 530   }
 531   // Delete an output edge
 532   void del_out( Node *n ) {
 533     if (is_top())  return;
 534     Node** outp = &_out[_outcnt];
 535     // Find and remove n
 536     do {
 537       assert(outp > _out, "Missing Def-Use edge");
 538     } while (*--outp != n);
 539     *outp = _out[--_outcnt];
 540     // Smash the old edge so it can't be used accidentally.
 541     DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 542     // Record that a change happened here.
 543     #if OPTO_DU_ITERATOR_ASSERT
 544     DEBUG_ONLY(_last_del = n; ++_del_tick);
 545     #endif
 546   }
 547   // Close gap after removing edge.
 548   void close_prec_gap_at(uint gap) {
 549     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 550     uint i = gap;
 551     Node *last = nullptr;
 552     for (; i < _max-1; ++i) {
 553       Node *next = _in[i+1];
 554       if (next == nullptr) break;
 555       last = next;
 556     }
 557     _in[gap] = last;  // Move last slot to empty one.
 558     _in[i] = nullptr; // null out last slot.
 559   }
 560 
 561 public:
 562   // Globally replace this node by a given new node, updating all uses.
 563   void replace_by(Node* new_node);
 564   // Globally replace this node by a given new node, updating all uses
 565   // and cutting input edges of old node.
 566   void subsume_by(Node* new_node, Compile* c) {
 567     replace_by(new_node);
 568     disconnect_inputs(c);
 569   }
 570   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 571   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 572   // Find the one non-null required input.  RegionNode only
 573   Node *nonnull_req() const;
 574   // Add or remove precedence edges
 575   void add_prec( Node *n );
 576   void rm_prec( uint i );
 577 
 578   // Note: prec(i) will not necessarily point to n if edge already exists.
 579   void set_prec( uint i, Node *n ) {
 580     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 581     assert(is_not_dead(n), "can not use dead node");
 582     assert(i >= _cnt, "not a precedence edge");
 583     // Avoid spec violation: duplicated prec edge.
 584     if (_in[i] == n) return;
 585     if (n == nullptr || find_prec_edge(n) != -1) {
 586       rm_prec(i);
 587       return;
 588     }
 589     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 590     _in[i] = n;
 591     n->add_out((Node *)this);
 592     Compile::current()->record_modified_node(this);
 593   }
 594 
 595   // Set this node's index, used by cisc_version to replace current node
 596   void set_idx(uint new_idx) {
 597     _idx = new_idx;
 598   }
 599   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 600   void swap_edges(uint i1, uint i2) {
 601     DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 602     // Def-Use info is unchanged
 603     Node* n1 = in(i1);
 604     Node* n2 = in(i2);
 605     _in[i1] = n2;
 606     _in[i2] = n1;
 607     // If this node is in the hash table, make sure it doesn't need a rehash.
 608     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 609     // Flip swapped edges flag.
 610     if (has_swapped_edges()) {
 611       remove_flag(Node::Flag_has_swapped_edges);
 612     } else {
 613       add_flag(Node::Flag_has_swapped_edges);
 614     }
 615   }
 616 
 617   // Iterators over input Nodes for a Node X are written as:
 618   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 619   // NOTE: Required edges can contain embedded null pointers.
 620 
 621 //----------------- Other Node Properties
 622 
 623   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 624   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 625   //
 626   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 627   // the type of the node the ID represents; another subset of an ID's bits are reserved
 628   // for the superclasses of the node represented by the ID.
 629   //
 630   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 631   // returns false. A.is_A() returns true.
 632   //
 633   // If two classes, A and B, have the same superclass, a different bit of A's class id
 634   // is reserved for A's type than for B's type. That bit is specified by the third
 635   // parameter in the macro DEFINE_CLASS_ID.
 636   //
 637   // By convention, classes with deeper hierarchy are declared first. Moreover,
 638   // classes with the same hierarchy depth are sorted by usage frequency.
 639   //
 640   // The query method masks the bits to cut off bits of subclasses and then compares
 641   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 642   //
 643   //  Class_MachCall=30, ClassMask_MachCall=31
 644   // 12               8               4               0
 645   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 646   //                                  |   |   |   |
 647   //                                  |   |   |   Bit_Mach=2
 648   //                                  |   |   Bit_MachReturn=4
 649   //                                  |   Bit_MachSafePoint=8
 650   //                                  Bit_MachCall=16
 651   //
 652   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 653   // 12               8               4               0
 654   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 655   //                              |   |   |
 656   //                              |   |   Bit_Region=8
 657   //                              |   Bit_Loop=16
 658   //                              Bit_CountedLoop=32
 659 
 660   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 661   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 662   Class_##cl = Class_##supcl + Bit_##cl , \
 663   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 664 
 665   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 666   // so that its values fit into 32 bits.
 667   enum NodeClasses {
 668     Bit_Node   = 0x00000000,
 669     Class_Node = 0x00000000,
 670     ClassMask_Node = 0xFFFFFFFF,
 671 
 672     DEFINE_CLASS_ID(Multi, Node, 0)
 673       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 674         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 675           DEFINE_CLASS_ID(CallJava,         Call, 0)
 676             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 677             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 678           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 679             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 680               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 681               DEFINE_CLASS_ID(CallLeafPure,     CallLeaf, 1)
 682           DEFINE_CLASS_ID(Allocate,         Call, 2)
 683             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 684           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 685             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 686             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 687           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 688       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 689         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 690           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 691           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 692         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 693           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 694             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 695             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 696           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 697           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 698           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 699         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 700       DEFINE_CLASS_ID(Start,       Multi, 2)
 701       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 702         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 703         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 704         DEFINE_CLASS_ID(Blackhole,        MemBar, 2)
 705 
 706     DEFINE_CLASS_ID(Mach,  Node, 1)
 707       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 708         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 709           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 710             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 711               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 712               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 713             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 714               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 715       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 716         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 717         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 718         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 719       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 720       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 721       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 722       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 723         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 724       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 725       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 726       DEFINE_CLASS_ID(MachProlog,       Mach, 8)
 727       DEFINE_CLASS_ID(MachVEP,          Mach, 9)
 728 
 729     DEFINE_CLASS_ID(Type,  Node, 2)
 730       DEFINE_CLASS_ID(Phi,   Type, 0)
 731       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 732         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 733         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 734         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 735         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 736         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 737         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 738         DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
 739         DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
 740       DEFINE_CLASS_ID(CMove, Type, 3)
 741       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 742       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 743         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 744         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 745       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 746         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 747         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 748       DEFINE_CLASS_ID(Vector, Type, 7)
 749         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 750         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 751         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 752         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 753         DEFINE_CLASS_ID(CompressV, Vector, 4)
 754         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 755         DEFINE_CLASS_ID(CompressM, Vector, 6)
 756         DEFINE_CLASS_ID(Reduction, Vector, 7)
 757         DEFINE_CLASS_ID(NegV, Vector, 8)
 758         DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
 759         DEFINE_CLASS_ID(MulVL, Vector, 10)
 760       DEFINE_CLASS_ID(InlineType, Type, 8)
 761       DEFINE_CLASS_ID(Con, Type, 9)
 762           DEFINE_CLASS_ID(ConI, Con, 0)
 763       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
 764       DEFINE_CLASS_ID(Convert, Type, 11)
 765 
 766 
 767     DEFINE_CLASS_ID(Proj,  Node, 3)
 768       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 769       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 770       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 771         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 772         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 773       DEFINE_CLASS_ID(Parm,      Proj, 4)
 774       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 775 
 776     DEFINE_CLASS_ID(Mem, Node, 4)
 777       DEFINE_CLASS_ID(Load, Mem, 0)
 778         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 779           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 780           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 781           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 782       DEFINE_CLASS_ID(Store, Mem, 1)
 783         DEFINE_CLASS_ID(StoreVector, Store, 0)
 784           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 785           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 786           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 787       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 788         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 789           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 790         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 791 
 792     DEFINE_CLASS_ID(Region, Node, 5)
 793       DEFINE_CLASS_ID(Loop, Region, 0)
 794         DEFINE_CLASS_ID(Root,                Loop, 0)
 795         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 796           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 797           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 798         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 799 
 800     DEFINE_CLASS_ID(Sub,   Node, 6)
 801       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 802         DEFINE_CLASS_ID(FastLock,       Cmp, 0)
 803         DEFINE_CLASS_ID(FastUnlock,     Cmp, 1)
 804         DEFINE_CLASS_ID(SubTypeCheck,   Cmp, 2)
 805         DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
 806 
 807     DEFINE_CLASS_ID(MergeMem, Node, 7)
 808     DEFINE_CLASS_ID(Bool,     Node, 8)
 809     DEFINE_CLASS_ID(AddP,     Node, 9)
 810     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 811     DEFINE_CLASS_ID(Add,      Node, 11)
 812     DEFINE_CLASS_ID(Mul,      Node, 12)
 813     DEFINE_CLASS_ID(ClearArray, Node, 14)
 814     DEFINE_CLASS_ID(Halt,     Node, 15)
 815     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 816       DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
 817       DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
 818       DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
 819     DEFINE_CLASS_ID(OpaqueNotNull,  Node, 17)
 820     DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate,  Node, 18)
 821     DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate,  Node, 19)
 822     DEFINE_CLASS_ID(Move,     Node, 20)
 823     DEFINE_CLASS_ID(LShift,   Node, 21)
 824     DEFINE_CLASS_ID(Neg,      Node, 22)
 825 
 826     _max_classes  = ClassMask_Neg
 827   };
 828   #undef DEFINE_CLASS_ID
 829 
 830   // Flags are sorted by usage frequency.
 831   enum NodeFlags {
 832     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 833     Flag_rematerialize               = 1 << 1,
 834     Flag_needs_anti_dependence_check = 1 << 2,
 835     Flag_is_macro                    = 1 << 3,
 836     Flag_is_Con                      = 1 << 4,
 837     Flag_is_cisc_alternate           = 1 << 5,
 838     Flag_is_dead_loop_safe           = 1 << 6,
 839     Flag_may_be_short_branch         = 1 << 7,
 840     Flag_avoid_back_to_back_before   = 1 << 8,
 841     Flag_avoid_back_to_back_after    = 1 << 9,
 842     Flag_has_call                    = 1 << 10,
 843     Flag_has_swapped_edges           = 1 << 11,
 844     Flag_is_scheduled                = 1 << 12,
 845     Flag_is_expensive                = 1 << 13,
 846     Flag_is_predicated_vector        = 1 << 14,
 847     Flag_for_post_loop_opts_igvn     = 1 << 15,
 848     Flag_for_merge_stores_igvn       = 1 << 16,
 849     Flag_is_removed_by_peephole      = 1 << 17,
 850     Flag_is_predicated_using_blend   = 1 << 18,
 851     _last_flag                       = Flag_is_predicated_using_blend
 852   };
 853 
 854   class PD;
 855 
 856 private:
 857   juint _class_id;
 858   juint _flags;
 859 
 860 #ifdef ASSERT
 861   static juint max_flags();
 862 #endif
 863 
 864 protected:
 865   // These methods should be called from constructors only.
 866   void init_class_id(juint c) {
 867     _class_id = c; // cast out const
 868   }
 869   void init_flags(uint fl) {
 870     assert(fl <= max_flags(), "invalid node flag");
 871     _flags |= fl;
 872   }
 873   void clear_flag(uint fl) {
 874     assert(fl <= max_flags(), "invalid node flag");
 875     _flags &= ~fl;
 876   }
 877 
 878 public:
 879   juint class_id() const { return _class_id; }
 880 
 881   juint flags() const { return _flags; }
 882 
 883   void add_flag(juint fl) { init_flags(fl); }
 884 
 885   void remove_flag(juint fl) { clear_flag(fl); }
 886 
 887   // Return a dense integer opcode number
 888   virtual int Opcode() const;
 889 
 890   // Virtual inherited Node size
 891   virtual uint size_of() const;
 892 
 893   // Other interesting Node properties
 894   #define DEFINE_CLASS_QUERY(type)                           \
 895   bool is_##type() const {                                   \
 896     return ((_class_id & ClassMask_##type) == Class_##type); \
 897   }                                                          \
 898   type##Node *as_##type() const {                            \
 899     assert(is_##type(), "invalid node class: %s", Name());   \
 900     return (type##Node*)this;                                \
 901   }                                                          \
 902   type##Node* isa_##type() const {                           \
 903     return (is_##type()) ? as_##type() : nullptr;            \
 904   }
 905 
 906   DEFINE_CLASS_QUERY(AbstractLock)
 907   DEFINE_CLASS_QUERY(Add)
 908   DEFINE_CLASS_QUERY(AddP)
 909   DEFINE_CLASS_QUERY(Allocate)
 910   DEFINE_CLASS_QUERY(AllocateArray)
 911   DEFINE_CLASS_QUERY(ArrayCopy)
 912   DEFINE_CLASS_QUERY(BaseCountedLoop)
 913   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 914   DEFINE_CLASS_QUERY(Blackhole)
 915   DEFINE_CLASS_QUERY(Bool)
 916   DEFINE_CLASS_QUERY(BoxLock)
 917   DEFINE_CLASS_QUERY(Call)
 918   DEFINE_CLASS_QUERY(CallDynamicJava)
 919   DEFINE_CLASS_QUERY(CallJava)
 920   DEFINE_CLASS_QUERY(CallLeaf)
 921   DEFINE_CLASS_QUERY(CallLeafNoFP)
 922   DEFINE_CLASS_QUERY(CallLeafPure)
 923   DEFINE_CLASS_QUERY(CallRuntime)
 924   DEFINE_CLASS_QUERY(CallStaticJava)
 925   DEFINE_CLASS_QUERY(Catch)
 926   DEFINE_CLASS_QUERY(CatchProj)
 927   DEFINE_CLASS_QUERY(CheckCastPP)
 928   DEFINE_CLASS_QUERY(CastII)
 929   DEFINE_CLASS_QUERY(CastLL)
 930   DEFINE_CLASS_QUERY(CastFF)
 931   DEFINE_CLASS_QUERY(ConI)
 932   DEFINE_CLASS_QUERY(CastPP)
 933   DEFINE_CLASS_QUERY(ConstraintCast)
 934   DEFINE_CLASS_QUERY(ClearArray)
 935   DEFINE_CLASS_QUERY(CMove)
 936   DEFINE_CLASS_QUERY(Cmp)
 937   DEFINE_CLASS_QUERY(Convert)
 938   DEFINE_CLASS_QUERY(CountedLoop)
 939   DEFINE_CLASS_QUERY(CountedLoopEnd)
 940   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 941   DEFINE_CLASS_QUERY(DecodeN)
 942   DEFINE_CLASS_QUERY(DecodeNKlass)
 943   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 944   DEFINE_CLASS_QUERY(EncodeP)
 945   DEFINE_CLASS_QUERY(EncodePKlass)
 946   DEFINE_CLASS_QUERY(FastLock)
 947   DEFINE_CLASS_QUERY(FastUnlock)
 948   DEFINE_CLASS_QUERY(FlatArrayCheck)
 949   DEFINE_CLASS_QUERY(Halt)
 950   DEFINE_CLASS_QUERY(If)
 951   DEFINE_CLASS_QUERY(RangeCheck)
 952   DEFINE_CLASS_QUERY(IfProj)
 953   DEFINE_CLASS_QUERY(IfFalse)
 954   DEFINE_CLASS_QUERY(IfTrue)
 955   DEFINE_CLASS_QUERY(Initialize)
 956   DEFINE_CLASS_QUERY(Jump)
 957   DEFINE_CLASS_QUERY(JumpProj)
 958   DEFINE_CLASS_QUERY(LongCountedLoop)
 959   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 960   DEFINE_CLASS_QUERY(Load)
 961   DEFINE_CLASS_QUERY(LoadStore)
 962   DEFINE_CLASS_QUERY(LoadStoreConditional)
 963   DEFINE_CLASS_QUERY(Lock)
 964   DEFINE_CLASS_QUERY(Loop)
 965   DEFINE_CLASS_QUERY(LShift)
 966   DEFINE_CLASS_QUERY(Mach)
 967   DEFINE_CLASS_QUERY(MachBranch)
 968   DEFINE_CLASS_QUERY(MachCall)
 969   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 970   DEFINE_CLASS_QUERY(MachCallJava)
 971   DEFINE_CLASS_QUERY(MachCallLeaf)
 972   DEFINE_CLASS_QUERY(MachCallRuntime)
 973   DEFINE_CLASS_QUERY(MachCallStaticJava)
 974   DEFINE_CLASS_QUERY(MachConstantBase)
 975   DEFINE_CLASS_QUERY(MachConstant)
 976   DEFINE_CLASS_QUERY(MachGoto)
 977   DEFINE_CLASS_QUERY(MachIf)
 978   DEFINE_CLASS_QUERY(MachJump)
 979   DEFINE_CLASS_QUERY(MachNullCheck)
 980   DEFINE_CLASS_QUERY(MachProj)
 981   DEFINE_CLASS_QUERY(MachProlog)
 982   DEFINE_CLASS_QUERY(MachReturn)
 983   DEFINE_CLASS_QUERY(MachSafePoint)
 984   DEFINE_CLASS_QUERY(MachSpillCopy)
 985   DEFINE_CLASS_QUERY(MachTemp)
 986   DEFINE_CLASS_QUERY(MachMemBar)
 987   DEFINE_CLASS_QUERY(MachMerge)
 988   DEFINE_CLASS_QUERY(MachVEP)
 989   DEFINE_CLASS_QUERY(Mem)
 990   DEFINE_CLASS_QUERY(MemBar)
 991   DEFINE_CLASS_QUERY(MemBarStoreStore)
 992   DEFINE_CLASS_QUERY(MergeMem)
 993   DEFINE_CLASS_QUERY(Move)
 994   DEFINE_CLASS_QUERY(Mul)
 995   DEFINE_CLASS_QUERY(Multi)
 996   DEFINE_CLASS_QUERY(MultiBranch)
 997   DEFINE_CLASS_QUERY(MulVL)
 998   DEFINE_CLASS_QUERY(Neg)
 999   DEFINE_CLASS_QUERY(NegV)
1000   DEFINE_CLASS_QUERY(NeverBranch)
1001   DEFINE_CLASS_QUERY(Opaque1)
1002   DEFINE_CLASS_QUERY(OpaqueNotNull)
1003   DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1004   DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1005   DEFINE_CLASS_QUERY(OpaqueLoopInit)
1006   DEFINE_CLASS_QUERY(OpaqueLoopStride)
1007   DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1008   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1009   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1010   DEFINE_CLASS_QUERY(Parm)
1011   DEFINE_CLASS_QUERY(ParsePredicate)
1012   DEFINE_CLASS_QUERY(PCTable)
1013   DEFINE_CLASS_QUERY(Phi)
1014   DEFINE_CLASS_QUERY(Proj)
1015   DEFINE_CLASS_QUERY(Reduction)
1016   DEFINE_CLASS_QUERY(Region)
1017   DEFINE_CLASS_QUERY(Root)
1018   DEFINE_CLASS_QUERY(SafePoint)
1019   DEFINE_CLASS_QUERY(SafePointScalarObject)
1020   DEFINE_CLASS_QUERY(SafePointScalarMerge)
1021   DEFINE_CLASS_QUERY(Start)
1022   DEFINE_CLASS_QUERY(Store)
1023   DEFINE_CLASS_QUERY(Sub)
1024   DEFINE_CLASS_QUERY(SubTypeCheck)
1025   DEFINE_CLASS_QUERY(Type)
1026   DEFINE_CLASS_QUERY(InlineType)
1027   DEFINE_CLASS_QUERY(Vector)
1028   DEFINE_CLASS_QUERY(VectorMaskCmp)
1029   DEFINE_CLASS_QUERY(VectorUnbox)
1030   DEFINE_CLASS_QUERY(VectorReinterpret)
1031   DEFINE_CLASS_QUERY(CompressV)
1032   DEFINE_CLASS_QUERY(ExpandV)
1033   DEFINE_CLASS_QUERY(CompressM)
1034   DEFINE_CLASS_QUERY(LoadVector)
1035   DEFINE_CLASS_QUERY(LoadVectorGather)
1036   DEFINE_CLASS_QUERY(LoadVectorMasked)
1037   DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1038   DEFINE_CLASS_QUERY(StoreVector)
1039   DEFINE_CLASS_QUERY(StoreVectorScatter)
1040   DEFINE_CLASS_QUERY(StoreVectorMasked)
1041   DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1042   DEFINE_CLASS_QUERY(SaturatingVector)
1043   DEFINE_CLASS_QUERY(ShiftV)
1044   DEFINE_CLASS_QUERY(Unlock)
1045 
1046   #undef DEFINE_CLASS_QUERY
1047 
1048   // duplicate of is_MachSpillCopy()
1049   bool is_SpillCopy () const {
1050     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1051   }
1052 
1053   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1054   // The data node which is safe to leave in dead loop during IGVN optimization.
1055   bool is_dead_loop_safe() const;
1056 
1057   // is_Copy() returns copied edge index (0 or 1)
1058   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1059 
1060   virtual bool is_CFG() const { return false; }
1061 
1062   // If this node is control-dependent on a test, can it be
1063   // rerouted to a dominating equivalent test?  This is usually
1064   // true of non-CFG nodes, but can be false for operations which
1065   // depend for their correct sequencing on more than one test.
1066   // (In that case, hoisting to a dominating test may silently
1067   // skip some other important test.)
1068   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1069 
1070   // When building basic blocks, I need to have a notion of block beginning
1071   // Nodes, next block selector Nodes (block enders), and next block
1072   // projections.  These calls need to work on their machine equivalents.  The
1073   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1074   bool is_block_start() const {
1075     if ( is_Region() )
1076       return this == (const Node*)in(0);
1077     else
1078       return is_Start();
1079   }
1080 
1081   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1082   // Goto and Return.  This call also returns the block ending Node.
1083   virtual const Node *is_block_proj() const;
1084 
1085   // The node is a "macro" node which needs to be expanded before matching
1086   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1087   // The node is expensive: the best control is set during loop opts
1088   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1089   // The node's original edge position is swapped.
1090   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1091 
1092   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1093 
1094   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1095 
1096   // Used in lcm to mark nodes that have scheduled
1097   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1098 
1099   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1100   bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1101 
1102   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1103   static bool may_be_loop_entry(Node* n) {
1104     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1105   }
1106 
1107 //----------------- Optimization
1108 
1109   // Get the worst-case Type output for this Node.
1110   virtual const class Type *bottom_type() const;
1111 
1112   // If we find a better type for a node, try to record it permanently.
1113   // Return true if this node actually changed.
1114   // Be sure to do the hash_delete game in the "rehash" variant.
1115   void raise_bottom_type(const Type* new_type);
1116 
1117   // Get the address type with which this node uses and/or defs memory,
1118   // or null if none.  The address type is conservatively wide.
1119   // Returns non-null for calls, membars, loads, stores, etc.
1120   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1121   virtual const class TypePtr *adr_type() const { return nullptr; }
1122 
1123   // Return an existing node which computes the same function as this node.
1124   // The optimistic combined algorithm requires this to return a Node which
1125   // is a small number of steps away (e.g., one of my inputs).
1126   virtual Node* Identity(PhaseGVN* phase);
1127 
1128   // Return the set of values this Node can take on at runtime.
1129   virtual const Type* Value(PhaseGVN* phase) const;
1130 
1131   // Return a node which is more "ideal" than the current node.
1132   // The invariants on this call are subtle.  If in doubt, read the
1133   // treatise in node.cpp above the default implementation AND TEST WITH
1134   // -XX:VerifyIterativeGVN=1
1135   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1136 
1137   // Some nodes have specific Ideal subgraph transformations only if they are
1138   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1139   // for the transformations to happen.
1140   bool has_special_unique_user() const;
1141 
1142   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1143   Node* find_exact_control(Node* ctrl);
1144 
1145   // Results of the dominance analysis.
1146   enum class DomResult {
1147     NotDominate,         // 'this' node does not dominate 'sub'.
1148     Dominate,            // 'this' node dominates or is equal to 'sub'.
1149     EncounteredDeadCode  // Result is undefined due to encountering dead code.
1150   };
1151   // Check if 'this' node dominates or equal to 'sub'.
1152   DomResult dominates(Node* sub, Node_List &nlist);
1153 
1154   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1155 public:
1156 
1157   // See if there is valid pipeline info
1158   static  const Pipeline *pipeline_class();
1159   virtual const Pipeline *pipeline() const;
1160 
1161   // Compute the latency from the def to this instruction of the ith input node
1162   uint latency(uint i);
1163 
1164   // Hash & compare functions, for pessimistic value numbering
1165 
1166   // If the hash function returns the special sentinel value NO_HASH,
1167   // the node is guaranteed never to compare equal to any other node.
1168   // If we accidentally generate a hash with value NO_HASH the node
1169   // won't go into the table and we'll lose a little optimization.
1170   static const uint NO_HASH = 0;
1171   virtual uint hash() const;
1172   virtual bool cmp( const Node &n ) const;
1173 
1174   // Operation appears to be iteratively computed (such as an induction variable)
1175   // It is possible for this operation to return false for a loop-varying
1176   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1177   bool is_iteratively_computed();
1178 
1179   // Determine if a node is a counted loop induction variable.
1180   // NOTE: The method is defined in "loopnode.cpp".
1181   bool is_cloop_ind_var() const;
1182 
1183   // Return a node with opcode "opc" and same inputs as "this" if one can
1184   // be found; Otherwise return null;
1185   Node* find_similar(int opc);
1186 
1187   // Return the unique control out if only one. Null if none or more than one.
1188   Node* unique_ctrl_out_or_null() const;
1189   // Return the unique control out. Asserts if none or more than one control out.
1190   Node* unique_ctrl_out() const;
1191 
1192   // Set control or add control as precedence edge
1193   void ensure_control_or_add_prec(Node* c);
1194   void add_prec_from(Node* n);
1195 
1196   // Visit boundary uses of the node and apply a callback function for each.
1197   // Recursively traverse uses, stopping and applying the callback when
1198   // reaching a boundary node, defined by is_boundary. Note: the function
1199   // definition appears after the complete type definition of Node_List.
1200   template <typename Callback, typename Check>
1201   void visit_uses(Callback callback, Check is_boundary) const;
1202 
1203   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1204   // (Load and range check CastII nodes).
1205   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1206   virtual Node* pin_array_access_node() const {
1207     return nullptr;
1208   }
1209 
1210   //----------------- Code Generation
1211 
1212   // Ideal register class for Matching.  Zero means unmatched instruction
1213   // (these are cloned instead of converted to machine nodes).
1214   virtual uint ideal_reg() const;
1215 
1216   static const uint NotAMachineReg;   // must be > max. machine register
1217 
1218   // Do we Match on this edge index or not?  Generally false for Control
1219   // and true for everything else.  Weird for calls & returns.
1220   virtual uint match_edge(uint idx) const;
1221 
1222   // Register class output is returned in
1223   virtual const RegMask &out_RegMask() const;
1224   // Register class input is expected in
1225   virtual const RegMask &in_RegMask(uint) const;
1226   // Should we clone rather than spill this instruction?
1227   bool rematerialize() const;
1228 
1229   // Return JVM State Object if this Node carries debug info, or null otherwise
1230   virtual JVMState* jvms() const;
1231 
1232   // Print as assembly
1233   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1234   // Emit bytes using C2_MacroAssembler
1235   virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1236   // Size of instruction in bytes
1237   virtual uint size(PhaseRegAlloc *ra_) const;
1238 
1239   // Convenience function to extract an integer constant from a node.
1240   // If it is not an integer constant (either Con, CastII, or Mach),
1241   // return value_if_unknown.
1242   jint find_int_con(jint value_if_unknown) const {
1243     const TypeInt* t = find_int_type();
1244     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1245   }
1246   // Return the constant, knowing it is an integer constant already
1247   jint get_int() const {
1248     const TypeInt* t = find_int_type();
1249     guarantee(t != nullptr, "must be con");
1250     return t->get_con();
1251   }
1252   // Here's where the work is done.  Can produce non-constant int types too.
1253   const TypeInt* find_int_type() const;
1254   const TypeInteger* find_integer_type(BasicType bt) const;
1255 
1256   // Same thing for long (and intptr_t, via type.hpp):
1257   jlong get_long() const {
1258     const TypeLong* t = find_long_type();
1259     guarantee(t != nullptr, "must be con");
1260     return t->get_con();
1261   }
1262   jlong find_long_con(jint value_if_unknown) const {
1263     const TypeLong* t = find_long_type();
1264     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1265   }
1266   const TypeLong* find_long_type() const;
1267 
1268   jlong get_integer_as_long(BasicType bt) const {
1269     const TypeInteger* t = find_integer_type(bt);
1270     guarantee(t != nullptr && t->is_con(), "must be con");
1271     return t->get_con_as_long(bt);
1272   }
1273   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1274     const TypeInteger* t = find_integer_type(bt);
1275     if (t == nullptr || !t->is_con())  return value_if_unknown;
1276     return t->get_con_as_long(bt);
1277   }
1278   const TypePtr* get_ptr_type() const;
1279 
1280   // These guys are called by code generated by ADLC:
1281   intptr_t get_ptr() const;
1282   intptr_t get_narrowcon() const;
1283   jdouble getd() const;
1284   jfloat getf() const;
1285   jshort geth() const;
1286 
1287   // Nodes which are pinned into basic blocks
1288   virtual bool pinned() const { return false; }
1289 
1290   // Nodes which use memory without consuming it, hence need antidependences
1291   // More specifically, needs_anti_dependence_check returns true iff the node
1292   // (a) does a load, and (b) does not perform a store (except perhaps to a
1293   // stack slot or some other unaliased location).
1294   bool needs_anti_dependence_check() const;
1295 
1296   // Return which operand this instruction may cisc-spill. In other words,
1297   // return operand position that can convert from reg to memory access
1298   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1299   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1300 
1301   // Whether this is a memory-writing machine node.
1302   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1303 
1304   // Whether this is a memory phi node
1305   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1306 
1307   bool is_div_or_mod(BasicType bt) const;
1308 
1309   bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1310 
1311 //----------------- Printing, etc
1312 #ifndef PRODUCT
1313  public:
1314   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1315   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1316   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1317   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1318   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1319   void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1320   class DumpConfig {
1321    public:
1322     // overridden to implement coloring of node idx
1323     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1324     virtual void post_dump(outputStream *st) = 0;
1325   };
1326   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1327   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1328   void dump() const; // print node with newline
1329   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1330   void dump(int depth) const;        // Print this node, recursively to depth d
1331   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1332   void dump_comp() const;            // Print this node in compact representation.
1333   // Print this node in compact representation.
1334   void dump_comp(const char* suffix, outputStream *st = tty) const;
1335  private:
1336   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1337   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1338   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1339  public:
1340   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1341   // Print compact per-node info
1342   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1343 
1344   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1345 
1346   // This call defines a class-unique string used to identify class instances
1347   virtual const char *Name() const;
1348 
1349   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1350   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1351 #endif
1352 #ifdef ASSERT
1353   void verify_construction();
1354   bool verify_jvms(const JVMState* jvms) const;
1355 
1356   Node* _debug_orig;                   // Original version of this, if any.
1357   Node*  debug_orig() const            { return _debug_orig; }
1358   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1359   void   dump_orig(outputStream *st, bool print_key = true) const;
1360 
1361   uint64_t _debug_idx;                 // Unique value assigned to every node.
1362   uint64_t debug_idx() const           { return _debug_idx; }
1363   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1364 
1365   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1366   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1367   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1368 
1369   static void init_NodeProperty();
1370 
1371   #if OPTO_DU_ITERATOR_ASSERT
1372   const Node* _last_del;               // The last deleted node.
1373   uint        _del_tick;               // Bumped when a deletion happens..
1374   #endif
1375 #endif
1376 };
1377 
1378 inline bool not_a_node(const Node* n) {
1379   if (n == nullptr)                return true;
1380   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1381   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1382   return false;
1383 }
1384 
1385 //-----------------------------------------------------------------------------
1386 // Iterators over DU info, and associated Node functions.
1387 
1388 #if OPTO_DU_ITERATOR_ASSERT
1389 
1390 // Common code for assertion checking on DU iterators.
1391 class DUIterator_Common {
1392 #ifdef ASSERT
1393  protected:
1394   bool         _vdui;               // cached value of VerifyDUIterators
1395   const Node*  _node;               // the node containing the _out array
1396   uint         _outcnt;             // cached node->_outcnt
1397   uint         _del_tick;           // cached node->_del_tick
1398   Node*        _last;               // last value produced by the iterator
1399 
1400   void sample(const Node* node);    // used by c'tor to set up for verifies
1401   void verify(const Node* node, bool at_end_ok = false);
1402   void verify_resync();
1403   void reset(const DUIterator_Common& that);
1404 
1405 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1406   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1407 #else
1408   #define I_VDUI_ONLY(i,x) { }
1409 #endif //ASSERT
1410 };
1411 
1412 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1413 
1414 // Default DU iterator.  Allows appends onto the out array.
1415 // Allows deletion from the out array only at the current point.
1416 // Usage:
1417 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1418 //    Node* y = x->out(i);
1419 //    ...
1420 //  }
1421 // Compiles in product mode to a unsigned integer index, which indexes
1422 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1423 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1424 // before continuing the loop.  You must delete only the last-produced
1425 // edge.  You must delete only a single copy of the last-produced edge,
1426 // or else you must delete all copies at once (the first time the edge
1427 // is produced by the iterator).
1428 class DUIterator : public DUIterator_Common {
1429   friend class Node;
1430 
1431   // This is the index which provides the product-mode behavior.
1432   // Whatever the product-mode version of the system does to the
1433   // DUI index is done to this index.  All other fields in
1434   // this class are used only for assertion checking.
1435   uint         _idx;
1436 
1437   #ifdef ASSERT
1438   uint         _refresh_tick;    // Records the refresh activity.
1439 
1440   void sample(const Node* node); // Initialize _refresh_tick etc.
1441   void verify(const Node* node, bool at_end_ok = false);
1442   void verify_increment();       // Verify an increment operation.
1443   void verify_resync();          // Verify that we can back up over a deletion.
1444   void verify_finish();          // Verify that the loop terminated properly.
1445   void refresh();                // Resample verification info.
1446   void reset(const DUIterator& that);  // Resample after assignment.
1447   #endif
1448 
1449   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1450     { _idx = 0;                         DEBUG_ONLY(sample(node)); }
1451 
1452  public:
1453   // initialize to garbage; clear _vdui to disable asserts
1454   DUIterator()
1455     { /*initialize to garbage*/         DEBUG_ONLY(_vdui = false); }
1456 
1457   DUIterator(const DUIterator& that)
1458     { _idx = that._idx;                 DEBUG_ONLY(_vdui = false; reset(that)); }
1459 
1460   void operator++(int dummy_to_specify_postfix_op)
1461     { _idx++;                           VDUI_ONLY(verify_increment()); }
1462 
1463   void operator--()
1464     { VDUI_ONLY(verify_resync());       --_idx; }
1465 
1466   ~DUIterator()
1467     { VDUI_ONLY(verify_finish()); }
1468 
1469   void operator=(const DUIterator& that)
1470     { _idx = that._idx;                 DEBUG_ONLY(reset(that)); }
1471 };
1472 
1473 DUIterator Node::outs() const
1474   { return DUIterator(this, 0); }
1475 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1476   { I_VDUI_ONLY(i, i.refresh());        return i; }
1477 bool Node::has_out(DUIterator& i) const
1478   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1479 Node*    Node::out(DUIterator& i) const
1480   { I_VDUI_ONLY(i, i.verify(this));     return DEBUG_ONLY(i._last=) _out[i._idx]; }
1481 
1482 
1483 // Faster DU iterator.  Disallows insertions into the out array.
1484 // Allows deletion from the out array only at the current point.
1485 // Usage:
1486 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1487 //    Node* y = x->fast_out(i);
1488 //    ...
1489 //  }
1490 // Compiles in product mode to raw Node** pointer arithmetic, with
1491 // no reloading of pointers from the original node x.  If you delete,
1492 // you must perform "--i; --imax" just before continuing the loop.
1493 // If you delete multiple copies of the same edge, you must decrement
1494 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1495 class DUIterator_Fast : public DUIterator_Common {
1496   friend class Node;
1497   friend class DUIterator_Last;
1498 
1499   // This is the pointer which provides the product-mode behavior.
1500   // Whatever the product-mode version of the system does to the
1501   // DUI pointer is done to this pointer.  All other fields in
1502   // this class are used only for assertion checking.
1503   Node**       _outp;
1504 
1505   #ifdef ASSERT
1506   void verify(const Node* node, bool at_end_ok = false);
1507   void verify_limit();
1508   void verify_resync();
1509   void verify_relimit(uint n);
1510   void reset(const DUIterator_Fast& that);
1511   #endif
1512 
1513   // Note:  offset must be signed, since -1 is sometimes passed
1514   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1515     { _outp = node->_out + offset;      DEBUG_ONLY(sample(node)); }
1516 
1517  public:
1518   // initialize to garbage; clear _vdui to disable asserts
1519   DUIterator_Fast()
1520     { /*initialize to garbage*/         DEBUG_ONLY(_vdui = false); }
1521 
1522   DUIterator_Fast(const DUIterator_Fast& that)
1523     { _outp = that._outp;               DEBUG_ONLY(_vdui = false; reset(that)); }
1524 
1525   void operator++(int dummy_to_specify_postfix_op)
1526     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1527 
1528   void operator--()
1529     { VDUI_ONLY(verify_resync());       --_outp; }
1530 
1531   void operator-=(uint n)   // applied to the limit only
1532     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1533 
1534   bool operator<(DUIterator_Fast& limit) {
1535     I_VDUI_ONLY(*this, this->verify(_node, true));
1536     I_VDUI_ONLY(limit, limit.verify_limit());
1537     return _outp < limit._outp;
1538   }
1539 
1540   void operator=(const DUIterator_Fast& that)
1541     { _outp = that._outp;               DEBUG_ONLY(reset(that)); }
1542 };
1543 
1544 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1545   // Assign a limit pointer to the reference argument:
1546   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1547   // Return the base pointer:
1548   return DUIterator_Fast(this, 0);
1549 }
1550 Node* Node::fast_out(DUIterator_Fast& i) const {
1551   I_VDUI_ONLY(i, i.verify(this));
1552   return DEBUG_ONLY(i._last=) *i._outp;
1553 }
1554 
1555 
1556 // Faster DU iterator.  Requires each successive edge to be removed.
1557 // Does not allow insertion of any edges.
1558 // Usage:
1559 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1560 //    Node* y = x->last_out(i);
1561 //    ...
1562 //  }
1563 // Compiles in product mode to raw Node** pointer arithmetic, with
1564 // no reloading of pointers from the original node x.
1565 class DUIterator_Last : private DUIterator_Fast {
1566   friend class Node;
1567 
1568   #ifdef ASSERT
1569   void verify(const Node* node, bool at_end_ok = false);
1570   void verify_limit();
1571   void verify_step(uint num_edges);
1572   #endif
1573 
1574   // Note:  offset must be signed, since -1 is sometimes passed
1575   DUIterator_Last(const Node* node, ptrdiff_t offset)
1576     : DUIterator_Fast(node, offset) { }
1577 
1578   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1579   void operator<(int)                              {} // do not use
1580 
1581  public:
1582   DUIterator_Last() { }
1583   // initialize to garbage
1584 
1585   DUIterator_Last(const DUIterator_Last& that) = default;
1586 
1587   void operator--()
1588     { _outp--;              VDUI_ONLY(verify_step(1));  }
1589 
1590   void operator-=(uint n)
1591     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1592 
1593   bool operator>=(DUIterator_Last& limit) {
1594     I_VDUI_ONLY(*this, this->verify(_node, true));
1595     I_VDUI_ONLY(limit, limit.verify_limit());
1596     return _outp >= limit._outp;
1597   }
1598 
1599   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1600 };
1601 
1602 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1603   // Assign a limit pointer to the reference argument:
1604   imin = DUIterator_Last(this, 0);
1605   // Return the initial pointer:
1606   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1607 }
1608 Node* Node::last_out(DUIterator_Last& i) const {
1609   I_VDUI_ONLY(i, i.verify(this));
1610   return DEBUG_ONLY(i._last=) *i._outp;
1611 }
1612 
1613 #endif //OPTO_DU_ITERATOR_ASSERT
1614 
1615 #undef I_VDUI_ONLY
1616 #undef VDUI_ONLY
1617 
1618 // An Iterator that truly follows the iterator pattern.  Doesn't
1619 // support deletion but could be made to.
1620 //
1621 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1622 //     Node* m = i.get();
1623 //
1624 class SimpleDUIterator : public StackObj {
1625  private:
1626   Node* node;
1627   DUIterator_Fast imax;
1628   DUIterator_Fast i;
1629  public:
1630   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1631   bool has_next() { return i < imax; }
1632   void next() { i++; }
1633   Node* get() { return node->fast_out(i); }
1634 };
1635 
1636 
1637 //-----------------------------------------------------------------------------
1638 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1639 // Abstractly provides an infinite array of Node*'s, initialized to null.
1640 // Note that the constructor just zeros things, and since I use Arena
1641 // allocation I do not need a destructor to reclaim storage.
1642 class Node_Array : public AnyObj {
1643 protected:
1644   Arena* _a;                    // Arena to allocate in
1645   uint   _max;
1646   Node** _nodes;
1647   ReallocMark _nesting;         // Safety checks for arena reallocation
1648 
1649   // Grow array to required capacity
1650   void maybe_grow(uint i) {
1651     _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1652     if (i >= _max) {
1653       grow(i);
1654     }
1655   }
1656   void grow(uint i);
1657 
1658 public:
1659   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1660     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1661     clear();
1662   }
1663   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1664 
1665   NONCOPYABLE(Node_Array);
1666   Node_Array& operator=(Node_Array&&) = delete;
1667   // Allow move constructor for && (eg. capture return of function)
1668   Node_Array(Node_Array&&) = default;
1669 
1670   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1671   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1672   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1673   Node** adr() { return _nodes; }
1674   // Extend the mapping: index i maps to Node *n.
1675   void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1676   void insert( uint i, Node *n );
1677   void remove( uint i );        // Remove, preserving order
1678   // Clear all entries in _nodes to null but keep storage
1679   void clear() {
1680     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1681   }
1682 
1683   uint max() const { return _max; }
1684   void dump() const;
1685 };
1686 
1687 class Node_List : public Node_Array {
1688   uint _cnt;
1689 public:
1690   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1691   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1692 
1693   NONCOPYABLE(Node_List);
1694   Node_List& operator=(Node_List&&) = delete;
1695   // Allow move constructor for && (eg. capture return of function)
1696   Node_List(Node_List&&) = default;
1697 
1698   bool contains(const Node* n) const {
1699     for (uint e = 0; e < size(); e++) {
1700       if (at(e) == n) return true;
1701     }
1702     return false;
1703   }
1704   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1705   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1706   void push( Node *b ) { map(_cnt++,b); }
1707   void yank( Node *n );         // Find and remove
1708   Node *pop() { return _nodes[--_cnt]; }
1709   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1710   void copy(const Node_List& from) {
1711     if (from._max > _max) {
1712       grow(from._max);
1713     }
1714     _cnt = from._cnt;
1715     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1716   }
1717 
1718   uint size() const { return _cnt; }
1719   void dump() const;
1720   void dump_simple() const;
1721 };
1722 
1723 // Definition must appear after complete type definition of Node_List
1724 template <typename Callback, typename Check>
1725 void Node::visit_uses(Callback callback, Check is_boundary) const {
1726   ResourceMark rm;
1727   VectorSet visited;
1728   Node_List worklist;
1729 
1730   // The initial worklist consists of the direct uses
1731   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1732     Node* out = fast_out(k);
1733     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1734   }
1735 
1736   while (worklist.size() > 0) {
1737     Node* use = worklist.pop();
1738     // Apply callback on boundary nodes
1739     if (is_boundary(use)) {
1740       callback(use);
1741     } else {
1742       // Not a boundary node, continue search
1743       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1744         Node* out = use->fast_out(k);
1745         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1746       }
1747     }
1748   }
1749 }
1750 
1751 
1752 //------------------------------Unique_Node_List-------------------------------
1753 class Unique_Node_List : public Node_List {
1754   VectorSet _in_worklist;
1755   uint _clock_index;            // Index in list where to pop from next
1756 public:
1757   Unique_Node_List() : Node_List(), _clock_index(0) {}
1758   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1759 
1760   NONCOPYABLE(Unique_Node_List);
1761   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1762   // Allow move constructor for && (eg. capture return of function)
1763   Unique_Node_List(Unique_Node_List&&) = default;
1764 
1765   void remove( Node *n );
1766   bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1767   VectorSet& member_set(){ return _in_worklist; }
1768 
1769   void push(Node* b) {
1770     if( !_in_worklist.test_set(b->_idx) )
1771       Node_List::push(b);
1772   }
1773   void push_non_cfg_inputs_of(const Node* node) {
1774     for (uint i = 1; i < node->req(); i++) {
1775       Node* input = node->in(i);
1776       if (input != nullptr && !input->is_CFG()) {
1777         push(input);
1778       }
1779     }
1780   }
1781 
1782   void push_outputs_of(const Node* node) {
1783     for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1784       Node* output = node->fast_out(i);
1785       push(output);
1786     }
1787   }
1788 
1789   Node *pop() {
1790     if( _clock_index >= size() ) _clock_index = 0;
1791     Node *b = at(_clock_index);
1792     map( _clock_index, Node_List::pop());
1793     if (size() != 0) _clock_index++; // Always start from 0
1794     _in_worklist.remove(b->_idx);
1795     return b;
1796   }
1797   Node *remove(uint i) {
1798     Node *b = Node_List::at(i);
1799     _in_worklist.remove(b->_idx);
1800     map(i,Node_List::pop());
1801     return b;
1802   }
1803   void yank(Node *n) {
1804     _in_worklist.remove(n->_idx);
1805     Node_List::yank(n);
1806   }
1807   void  clear() {
1808     _in_worklist.clear();        // Discards storage but grows automatically
1809     Node_List::clear();
1810     _clock_index = 0;
1811   }
1812   void ensure_empty() {
1813     assert(size() == 0, "must be empty");
1814     clear(); // just in case
1815   }
1816 
1817   // Used after parsing to remove useless nodes before Iterative GVN
1818   void remove_useless_nodes(VectorSet& useful);
1819 
1820   // If the idx of the Nodes change, we must recompute the VectorSet
1821   void recompute_idx_set() {
1822     _in_worklist.clear();
1823     for (uint i = 0; i < size(); i++) {
1824       Node* n = at(i);
1825       _in_worklist.set(n->_idx);
1826     }
1827   }
1828 
1829 #ifdef ASSERT
1830   bool is_subset_of(Unique_Node_List& other) {
1831     for (uint i = 0; i < size(); i++) {
1832       Node* n = at(i);
1833       if (!other.member(n)) {
1834         return false;
1835       }
1836     }
1837     return true;
1838   }
1839 #endif
1840 
1841   bool contains(const Node* n) const {
1842     fatal("use faster member() instead");
1843     return false;
1844   }
1845 
1846 #ifndef PRODUCT
1847   void print_set() const { _in_worklist.print(); }
1848 #endif
1849 };
1850 
1851 // Unique_Mixed_Node_List
1852 // unique: nodes are added only once
1853 // mixed: allow new and old nodes
1854 class Unique_Mixed_Node_List : public ResourceObj {
1855 public:
1856   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1857 
1858   void add(Node* node) {
1859     if (not_a_node(node)) {
1860       return; // Gracefully handle null, -1, 0xabababab, etc.
1861     }
1862     if (_visited_set[node] == nullptr) {
1863       _visited_set.Insert(node, node);
1864       _worklist.push(node);
1865     }
1866   }
1867 
1868   Node* operator[] (uint i) const {
1869     return _worklist[i];
1870   }
1871 
1872   size_t size() {
1873     return _worklist.size();
1874   }
1875 
1876 private:
1877   Dict _visited_set;
1878   Node_List _worklist;
1879 };
1880 
1881 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1882 inline void Compile::record_for_igvn(Node* n) {
1883   _igvn_worklist->push(n);
1884 }
1885 
1886 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1887 inline void Compile::remove_for_igvn(Node* n) {
1888   _igvn_worklist->remove(n);
1889 }
1890 
1891 //------------------------------Node_Stack-------------------------------------
1892 class Node_Stack {
1893 protected:
1894   struct INode {
1895     Node *node; // Processed node
1896     uint  indx; // Index of next node's child
1897   };
1898   INode *_inode_top; // tos, stack grows up
1899   INode *_inode_max; // End of _inodes == _inodes + _max
1900   INode *_inodes;    // Array storage for the stack
1901   Arena *_a;         // Arena to allocate in
1902   ReallocMark _nesting; // Safety checks for arena reallocation
1903 
1904   void maybe_grow() {
1905     _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1906     if (_inode_top >= _inode_max) {
1907       grow();
1908     }
1909   }
1910   void grow();
1911 
1912 public:
1913   Node_Stack(int size) {
1914     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1915     _a = Thread::current()->resource_area();
1916     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1917     _inode_max = _inodes + max;
1918     _inode_top = _inodes - 1; // stack is empty
1919   }
1920 
1921   Node_Stack(Arena *a, int size) : _a(a) {
1922     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1923     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1924     _inode_max = _inodes + max;
1925     _inode_top = _inodes - 1; // stack is empty
1926   }
1927 
1928   void pop() {
1929     assert(_inode_top >= _inodes, "node stack underflow");
1930     --_inode_top;
1931   }
1932   void push(Node *n, uint i) {
1933     ++_inode_top;
1934     maybe_grow();
1935     INode *top = _inode_top; // optimization
1936     top->node = n;
1937     top->indx = i;
1938   }
1939   Node *node() const {
1940     return _inode_top->node;
1941   }
1942   Node* node_at(uint i) const {
1943     assert(_inodes + i <= _inode_top, "in range");
1944     return _inodes[i].node;
1945   }
1946   uint index() const {
1947     return _inode_top->indx;
1948   }
1949   uint index_at(uint i) const {
1950     assert(_inodes + i <= _inode_top, "in range");
1951     return _inodes[i].indx;
1952   }
1953   void set_node(Node *n) {
1954     _inode_top->node = n;
1955   }
1956   void set_index(uint i) {
1957     _inode_top->indx = i;
1958   }
1959   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1960   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1961   bool is_nonempty() const { return (_inode_top >= _inodes); }
1962   bool is_empty() const { return (_inode_top < _inodes); }
1963   void clear() { _inode_top = _inodes - 1; } // retain storage
1964 
1965   // Node_Stack is used to map nodes.
1966   Node* find(uint idx) const;
1967 
1968   NONCOPYABLE(Node_Stack);
1969 };
1970 
1971 
1972 //-----------------------------Node_Notes--------------------------------------
1973 // Debugging or profiling annotations loosely and sparsely associated
1974 // with some nodes.  See Compile::node_notes_at for the accessor.
1975 class Node_Notes {
1976   JVMState* _jvms;
1977 
1978 public:
1979   Node_Notes(JVMState* jvms = nullptr) {
1980     _jvms = jvms;
1981   }
1982 
1983   JVMState* jvms()            { return _jvms; }
1984   void  set_jvms(JVMState* x) {        _jvms = x; }
1985 
1986   // True if there is nothing here.
1987   bool is_clear() {
1988     return (_jvms == nullptr);
1989   }
1990 
1991   // Make there be nothing here.
1992   void clear() {
1993     _jvms = nullptr;
1994   }
1995 
1996   // Make a new, clean node notes.
1997   static Node_Notes* make(Compile* C) {
1998     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1999     nn->clear();
2000     return nn;
2001   }
2002 
2003   Node_Notes* clone(Compile* C) {
2004     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2005     (*nn) = (*this);
2006     return nn;
2007   }
2008 
2009   // Absorb any information from source.
2010   bool update_from(Node_Notes* source) {
2011     bool changed = false;
2012     if (source != nullptr) {
2013       if (source->jvms() != nullptr) {
2014         set_jvms(source->jvms());
2015         changed = true;
2016       }
2017     }
2018     return changed;
2019   }
2020 };
2021 
2022 // Inlined accessors for Compile::node_nodes that require the preceding class:
2023 inline Node_Notes*
2024 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2025                            int idx, bool can_grow) {
2026   assert(idx >= 0, "oob");
2027   int block_idx = (idx >> _log2_node_notes_block_size);
2028   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2029   if (grow_by >= 0) {
2030     if (!can_grow) return nullptr;
2031     grow_node_notes(arr, grow_by + 1);
2032   }
2033   if (arr == nullptr) return nullptr;
2034   // (Every element of arr is a sub-array of length _node_notes_block_size.)
2035   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2036 }
2037 
2038 inline Node_Notes* Compile::node_notes_at(int idx) {
2039   return locate_node_notes(_node_note_array, idx, false);
2040 }
2041 
2042 inline bool
2043 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2044   if (value == nullptr || value->is_clear())
2045     return false;  // nothing to write => write nothing
2046   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2047   assert(loc != nullptr, "");
2048   return loc->update_from(value);
2049 }
2050 
2051 
2052 //------------------------------TypeNode---------------------------------------
2053 // Node with a Type constant.
2054 class TypeNode : public Node {
2055 protected:
2056   virtual uint hash() const;    // Check the type
2057   virtual bool cmp( const Node &n ) const;
2058   virtual uint size_of() const; // Size is bigger
2059   const Type* const _type;
2060 public:
2061   void set_type(const Type* t) {
2062     assert(t != nullptr, "sanity");
2063     DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2064     *(const Type**)&_type = t;   // cast away const-ness
2065     // If this node is in the hash table, make sure it doesn't need a rehash.
2066     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2067   }
2068   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2069   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2070     init_class_id(Class_Type);
2071   }
2072   virtual const Type* Value(PhaseGVN* phase) const;
2073   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2074   virtual const Type *bottom_type() const;
2075   virtual       uint  ideal_reg() const;
2076 
2077   void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2078 #ifndef PRODUCT
2079   virtual void dump_spec(outputStream *st) const;
2080   virtual void dump_compact_spec(outputStream *st) const;
2081 #endif
2082   void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2083   void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2084 };
2085 
2086 #include "opto/opcodes.hpp"
2087 
2088 #define Op_IL(op) \
2089   inline int Op_ ## op(BasicType bt) { \
2090   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2091   if (bt == T_INT) { \
2092     return Op_## op ## I; \
2093   } \
2094   return Op_## op ## L; \
2095 }
2096 
2097 Op_IL(Add)
2098 Op_IL(And)
2099 Op_IL(Sub)
2100 Op_IL(Mul)
2101 Op_IL(URShift)
2102 Op_IL(LShift)
2103 Op_IL(Xor)
2104 Op_IL(Cmp)
2105 Op_IL(Div)
2106 Op_IL(Mod)
2107 Op_IL(UDiv)
2108 Op_IL(UMod)
2109 
2110 inline int Op_ConIL(BasicType bt) {
2111   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2112   if (bt == T_INT) {
2113     return Op_ConI;
2114   }
2115   return Op_ConL;
2116 }
2117 
2118 inline int Op_Cmp_unsigned(BasicType bt) {
2119   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2120   if (bt == T_INT) {
2121     return Op_CmpU;
2122   }
2123   return Op_CmpUL;
2124 }
2125 
2126 inline int Op_Cast(BasicType bt) {
2127   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2128   if (bt == T_INT) {
2129     return Op_CastII;
2130   }
2131   return Op_CastLL;
2132 }
2133 
2134 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2135   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2136   if (bt == T_INT) {
2137     if (is_unsigned) {
2138       return Op_UDivI;
2139     } else {
2140       return Op_DivI;
2141     }
2142   }
2143   if (is_unsigned) {
2144     return Op_UDivL;
2145   } else {
2146     return Op_DivL;
2147   }
2148 }
2149 
2150 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2151   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2152   if (bt == T_INT) {
2153     if (is_unsigned) {
2154       return Op_UDivModI;
2155     } else {
2156       return Op_DivModI;
2157     }
2158   }
2159   if (is_unsigned) {
2160     return Op_UDivModL;
2161   } else {
2162     return Op_DivModL;
2163   }
2164 }
2165 
2166 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2167 // a customized BFS.
2168 class BFSActions : public StackObj {
2169  public:
2170   // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2171   // method to provide a custom filter.
2172   virtual bool should_visit(Node* node) const {
2173     // By default, visit all inputs.
2174     return true;
2175   };
2176 
2177   // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2178   // but the BFS will continue to visit all unvisited nodes in the queue.
2179   virtual bool is_target_node(Node* node) const = 0;
2180 
2181   // Defines an action that should be taken when we visit a target node in the BFS traversal.
2182   virtual void target_node_action(Node* target_node) = 0;
2183 };
2184 
2185 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2186 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2187 class DataNodeBFS : public StackObj {
2188   BFSActions& _bfs_actions;
2189 
2190  public:
2191   explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2192 
2193   // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2194   void run(Node* start_node) {
2195     ResourceMark rm;
2196     Unique_Node_List _nodes_to_visit;
2197     _nodes_to_visit.push(start_node);
2198     for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2199       Node* next = _nodes_to_visit[i];
2200       for (uint j = 1; j < next->req(); j++) {
2201         Node* input = next->in(j);
2202         if (_bfs_actions.is_target_node(input)) {
2203           assert(_bfs_actions.should_visit(input), "must also pass node filter");
2204           _bfs_actions.target_node_action(input);
2205         } else if (_bfs_actions.should_visit(input)) {
2206           _nodes_to_visit.push(input);
2207         }
2208       }
2209     }
2210   }
2211 };
2212 
2213 #endif // SHARE_OPTO_NODE_HPP