1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_OPTO_NODE_HPP
  27 #define SHARE_OPTO_NODE_HPP
  28 
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "utilities/copy.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 // Optimization - Graph Style
  37 
  38 
  39 class AbstractLockNode;
  40 class AddNode;
  41 class AddPNode;
  42 class AliasInfo;
  43 class AllocateArrayNode;
  44 class AllocateNode;
  45 class ArrayCopyNode;
  46 class BaseCountedLoopNode;
  47 class BaseCountedLoopEndNode;
  48 class BlackholeNode;
  49 class Block;
  50 class BoolNode;
  51 class BoxLockNode;
  52 class CMoveNode;
  53 class CallDynamicJavaNode;
  54 class CallJavaNode;
  55 class CallLeafNode;
  56 class CallLeafNoFPNode;
  57 class CallLeafPureNode;
  58 class CallNode;
  59 class CallRuntimeNode;
  60 class CallStaticJavaNode;
  61 class CastFFNode;
  62 class CastHHNode;
  63 class CastDDNode;
  64 class CastVVNode;
  65 class CastIINode;
  66 class CastLLNode;
  67 class CastPPNode;
  68 class CatchNode;
  69 class CatchProjNode;
  70 class CheckCastPPNode;
  71 class ClearArrayNode;
  72 class CmpNode;
  73 class CodeBuffer;
  74 class ConstraintCastNode;
  75 class ConNode;
  76 class ConINode;
  77 class ConvertNode;
  78 class CompareAndSwapNode;
  79 class CompareAndExchangeNode;
  80 class CountedLoopNode;
  81 class CountedLoopEndNode;
  82 class DecodeNarrowPtrNode;
  83 class DecodeNNode;
  84 class DecodeNKlassNode;
  85 class EncodeNarrowPtrNode;
  86 class EncodePNode;
  87 class EncodePKlassNode;
  88 class FastLockNode;
  89 class FastUnlockNode;
  90 class FlatArrayCheckNode;
  91 class HaltNode;
  92 class IfNode;
  93 class IfProjNode;
  94 class IfFalseNode;
  95 class IfTrueNode;
  96 class InitializeNode;
  97 class JVMState;
  98 class JumpNode;
  99 class JumpProjNode;
 100 class LoadNode;
 101 class LoadStoreNode;
 102 class LoadStoreConditionalNode;
 103 class LockNode;
 104 class LongCountedLoopNode;
 105 class LongCountedLoopEndNode;
 106 class LoopNode;
 107 class LShiftNode;
 108 class MachBranchNode;
 109 class MachCallDynamicJavaNode;
 110 class MachCallJavaNode;
 111 class MachCallLeafNode;
 112 class MachCallNode;
 113 class MachCallRuntimeNode;
 114 class MachCallStaticJavaNode;
 115 class MachConstantBaseNode;
 116 class MachConstantNode;
 117 class MachGotoNode;
 118 class MachIfNode;
 119 class MachJumpNode;
 120 class MachNode;
 121 class MachNullCheckNode;
 122 class MachProjNode;
 123 class MachPrologNode;
 124 class MachReturnNode;
 125 class MachSafePointNode;
 126 class MachSpillCopyNode;
 127 class MachTempNode;
 128 class MachMergeNode;
 129 class MachMemBarNode;
 130 class MachVEPNode;
 131 class Matcher;
 132 class MemBarNode;
 133 class MemBarStoreStoreNode;
 134 class MemNode;
 135 class MergeMemNode;
 136 class MoveNode;
 137 class MulNode;
 138 class MultiNode;
 139 class MultiBranchNode;
 140 class NarrowMemProjNode;
 141 class NegNode;
 142 class NegVNode;
 143 class NeverBranchNode;
 144 class Opaque1Node;
 145 class OpaqueLoopInitNode;
 146 class OpaqueLoopStrideNode;
 147 class OpaqueMultiversioningNode;
 148 class OpaqueNotNullNode;
 149 class OpaqueInitializedAssertionPredicateNode;
 150 class OpaqueTemplateAssertionPredicateNode;
 151 class OuterStripMinedLoopNode;
 152 class OuterStripMinedLoopEndNode;
 153 class Node;
 154 class Node_Array;
 155 class Node_List;
 156 class Node_Stack;
 157 class OopMap;
 158 class ParmNode;
 159 class ParsePredicateNode;
 160 class PCTableNode;
 161 class PhaseCCP;
 162 class PhaseGVN;
 163 class PhaseIdealLoop;
 164 class PhaseIterGVN;
 165 class PhaseRegAlloc;
 166 class PhaseTransform;
 167 class PhaseValues;
 168 class PhiNode;
 169 class Pipeline;
 170 class PopulateIndexNode;
 171 class ProjNode;
 172 class RangeCheckNode;
 173 class ReductionNode;
 174 class RegMask;
 175 class RegionNode;
 176 class RootNode;
 177 class SafePointNode;
 178 class SafePointScalarObjectNode;
 179 class SafePointScalarMergeNode;
 180 class SaturatingVectorNode;
 181 class StartNode;
 182 class State;
 183 class StoreNode;
 184 class SubNode;
 185 class SubTypeCheckNode;
 186 class Type;
 187 class TypeNode;
 188 class UnlockNode;
 189 class InlineTypeNode;
 190 class LoadFlatNode;
 191 class StoreFlatNode;
 192 class VectorNode;
 193 class LoadVectorNode;
 194 class LoadVectorMaskedNode;
 195 class StoreVectorMaskedNode;
 196 class LoadVectorGatherNode;
 197 class LoadVectorGatherMaskedNode;
 198 class StoreVectorNode;
 199 class StoreVectorScatterNode;
 200 class StoreVectorScatterMaskedNode;
 201 class VerifyVectorAlignmentNode;
 202 class VectorMaskCmpNode;
 203 class VectorUnboxNode;
 204 class VectorSet;
 205 class VectorReinterpretNode;
 206 class ShiftVNode;
 207 class MulVLNode;
 208 class ExpandVNode;
 209 class CompressVNode;
 210 class CompressMNode;
 211 class C2_MacroAssembler;
 212 
 213 
 214 #ifndef OPTO_DU_ITERATOR_ASSERT
 215 #ifdef ASSERT
 216 #define OPTO_DU_ITERATOR_ASSERT 1
 217 #else
 218 #define OPTO_DU_ITERATOR_ASSERT 0
 219 #endif
 220 #endif //OPTO_DU_ITERATOR_ASSERT
 221 
 222 #if OPTO_DU_ITERATOR_ASSERT
 223 class DUIterator;
 224 class DUIterator_Fast;
 225 class DUIterator_Last;
 226 #else
 227 typedef uint   DUIterator;
 228 typedef Node** DUIterator_Fast;
 229 typedef Node** DUIterator_Last;
 230 #endif
 231 
 232 typedef ResizeableHashTable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
 233 
 234 // Node Sentinel
 235 #define NodeSentinel (Node*)-1
 236 
 237 // Unknown count frequency
 238 #define COUNT_UNKNOWN (-1.0f)
 239 
 240 //------------------------------Node-------------------------------------------
 241 // Nodes define actions in the program.  They create values, which have types.
 242 // They are both vertices in a directed graph and program primitives.  Nodes
 243 // are labeled; the label is the "opcode", the primitive function in the lambda
 244 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 245 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 246 // the Node's function.  These inputs also define a Type equation for the Node.
 247 // Solving these Type equations amounts to doing dataflow analysis.
 248 // Control and data are uniformly represented in the graph.  Finally, Nodes
 249 // have a unique dense integer index which is used to index into side arrays
 250 // whenever I have phase-specific information.
 251 
 252 class Node {
 253 
 254   // Lots of restrictions on cloning Nodes
 255   NONCOPYABLE(Node);
 256 
 257 public:
 258   friend class Compile;
 259   #if OPTO_DU_ITERATOR_ASSERT
 260   friend class DUIterator_Common;
 261   friend class DUIterator;
 262   friend class DUIterator_Fast;
 263   friend class DUIterator_Last;
 264   #endif
 265 
 266   // Because Nodes come and go, I define an Arena of Node structures to pull
 267   // from.  This should allow fast access to node creation & deletion.  This
 268   // field is a local cache of a value defined in some "program fragment" for
 269   // which these Nodes are just a part of.
 270 
 271   inline void* operator new(size_t x) throw() {
 272     Compile* C = Compile::current();
 273     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 274     return (void*)n;
 275   }
 276 
 277   // Delete is a NOP
 278   void operator delete( void *ptr ) {}
 279   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 280   void destruct(PhaseValues* phase);
 281 
 282   // Create a new Node.  Required is the number is of inputs required for
 283   // semantic correctness.
 284   Node( uint required );
 285 
 286   // Create a new Node with given input edges.
 287   // This version requires use of the "edge-count" new.
 288   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 289   Node( Node *n0 );
 290   Node( Node *n0, Node *n1 );
 291   Node( Node *n0, Node *n1, Node *n2 );
 292   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 293   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 294   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 295   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 296             Node *n4, Node *n5, Node *n6 );
 297 
 298   // Clone an inherited Node given only the base Node type.
 299   Node* clone() const;
 300 
 301   // Clone a Node, immediately supplying one or two new edges.
 302   // The first and second arguments, if non-null, replace in(1) and in(2),
 303   // respectively.
 304   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 305     Node* nn = clone();
 306     if (in1 != nullptr)  nn->set_req(1, in1);
 307     if (in2 != nullptr)  nn->set_req(2, in2);
 308     return nn;
 309   }
 310 
 311 private:
 312   // Shared setup for the above constructors.
 313   // Handles all interactions with Compile::current.
 314   // Puts initial values in all Node fields except _idx.
 315   // Returns the initial value for _idx, which cannot
 316   // be initialized by assignment.
 317   inline int Init(int req);
 318 
 319 //----------------- input edge handling
 320 protected:
 321   friend class PhaseCFG;        // Access to address of _in array elements
 322   Node **_in;                   // Array of use-def references to Nodes
 323   Node **_out;                  // Array of def-use references to Nodes
 324 
 325   // Input edges are split into two categories.  Required edges are required
 326   // for semantic correctness; order is important and nulls are allowed.
 327   // Precedence edges are used to help determine execution order and are
 328   // added, e.g., for scheduling purposes.  They are unordered and not
 329   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 330   // are required, from _cnt to _max-1 are precedence edges.
 331   node_idx_t _cnt;              // Total number of required Node inputs.
 332 
 333   node_idx_t _max;              // Actual length of input array.
 334 
 335   // Output edges are an unordered list of def-use edges which exactly
 336   // correspond to required input edges which point from other nodes
 337   // to this one.  Thus the count of the output edges is the number of
 338   // users of this node.
 339   node_idx_t _outcnt;           // Total number of Node outputs.
 340 
 341   node_idx_t _outmax;           // Actual length of output array.
 342 
 343   // Grow the actual input array to the next larger power-of-2 bigger than len.
 344   void grow( uint len );
 345   // Grow the output array to the next larger power-of-2 bigger than len.
 346   void out_grow( uint len );
 347   // Resize input or output array to grow it to the next larger power-of-2
 348   // bigger than len.
 349   void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
 350 
 351 public:
 352   // Each Node is assigned a unique small/dense number. This number is used
 353   // to index into auxiliary arrays of data and bit vectors.
 354   // The value of _idx can be changed using the set_idx() method.
 355   //
 356   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 357   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 358   // preserved in _parse_idx.
 359   node_idx_t _idx;
 360   DEBUG_ONLY(const node_idx_t _parse_idx;)
 361   // IGV node identifier. Two nodes, possibly in different compilation phases,
 362   // have the same IGV identifier if (and only if) they are the very same node
 363   // (same memory address) or one is "derived" from the other (by e.g.
 364   // renumbering or matching). This identifier makes it possible to follow the
 365   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 366   NOT_PRODUCT(node_idx_t _igv_idx;)
 367 
 368   // Get the (read-only) number of input edges
 369   uint req() const { return _cnt; }
 370   uint len() const { return _max; }
 371   // Get the (read-only) number of output edges
 372   uint outcnt() const { return _outcnt; }
 373 
 374 #if OPTO_DU_ITERATOR_ASSERT
 375   // Iterate over the out-edges of this node.  Deletions are illegal.
 376   inline DUIterator outs() const;
 377   // Use this when the out array might have changed to suppress asserts.
 378   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 379   // Does the node have an out at this position?  (Used for iteration.)
 380   inline bool has_out(DUIterator& i) const;
 381   inline Node*    out(DUIterator& i) const;
 382   // Iterate over the out-edges of this node.  All changes are illegal.
 383   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 384   inline Node*    fast_out(DUIterator_Fast& i) const;
 385   // Iterate over the out-edges of this node, deleting one at a time.
 386   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 387   inline Node*    last_out(DUIterator_Last& i) const;
 388   // The inline bodies of all these methods are after the iterator definitions.
 389 #else
 390   // Iterate over the out-edges of this node.  Deletions are illegal.
 391   // This iteration uses integral indexes, to decouple from array reallocations.
 392   DUIterator outs() const  { return 0; }
 393   // Use this when the out array might have changed to suppress asserts.
 394   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 395 
 396   // Reference to the i'th output Node.  Error if out of bounds.
 397   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 398   // Does the node have an out at this position?  (Used for iteration.)
 399   bool has_out(DUIterator i) const { return i < _outcnt; }
 400 
 401   // Iterate over the out-edges of this node.  All changes are illegal.
 402   // This iteration uses a pointer internal to the out array.
 403   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 404     Node** out = _out;
 405     // Assign a limit pointer to the reference argument:
 406     max = out + (ptrdiff_t)_outcnt;
 407     // Return the base pointer:
 408     return out;
 409   }
 410   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 411   // Iterate over the out-edges of this node, deleting one at a time.
 412   // This iteration uses a pointer internal to the out array.
 413   DUIterator_Last last_outs(DUIterator_Last& min) const {
 414     Node** out = _out;
 415     // Assign a limit pointer to the reference argument:
 416     min = out;
 417     // Return the pointer to the start of the iteration:
 418     return out + (ptrdiff_t)_outcnt - 1;
 419   }
 420   Node*    last_out(DUIterator_Last i) const  { return *i; }
 421 #endif
 422 
 423   // Reference to the i'th input Node.  Error if out of bounds.
 424   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 425   // Reference to the i'th input Node.  null if out of bounds.
 426   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 427   // Reference to the i'th output Node.  Error if out of bounds.
 428   // Use this accessor sparingly.  We are going trying to use iterators instead.
 429   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 430   // Return the unique out edge.
 431   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 432 
 433   // In some cases, a node n is only used by a single use, but the use may use
 434   // n once or multiple times:
 435   //   use = ConvF2I(this)
 436   //   use = AddI(this, this)
 437   Node* unique_multiple_edges_out_or_null() const;
 438 
 439   // Delete out edge at position 'i' by moving last out edge to position 'i'
 440   void  raw_del_out(uint i) {
 441     assert(i < _outcnt,"oob");
 442     assert(_outcnt > 0,"oob");
 443     #if OPTO_DU_ITERATOR_ASSERT
 444     // Record that a change happened here.
 445     DEBUG_ONLY(_last_del = _out[i]; ++_del_tick);
 446     #endif
 447     _out[i] = _out[--_outcnt];
 448     // Smash the old edge so it can't be used accidentally.
 449     DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 450   }
 451 
 452 #ifdef ASSERT
 453   bool is_dead() const;
 454   static bool is_not_dead(const Node* n);
 455   bool is_reachable_from_root() const;
 456 #endif
 457   // Check whether node has become unreachable
 458   bool is_unreachable(PhaseIterGVN &igvn) const;
 459 
 460   // Set a required input edge, also updates corresponding output edge
 461   void add_req( Node *n ); // Append a NEW required input
 462   void add_req( Node *n0, Node *n1 ) {
 463     add_req(n0); add_req(n1); }
 464   void add_req( Node *n0, Node *n1, Node *n2 ) {
 465     add_req(n0); add_req(n1); add_req(n2); }
 466   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 467   void del_req( uint idx ); // Delete required edge & compact
 468   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 469   void ins_req( uint i, Node *n ); // Insert a NEW required input
 470   void set_req( uint i, Node *n ) {
 471     assert( is_not_dead(n), "can not use dead node");
 472     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 473     assert( !VerifyHashTableKeys || _hash_lock == 0,
 474             "remove node from hash table before modifying it");
 475     Node** p = &_in[i];    // cache this._in, across the del_out call
 476     if (*p != nullptr)  (*p)->del_out((Node *)this);
 477     (*p) = n;
 478     if (n != nullptr)      n->add_out((Node *)this);
 479     Compile::current()->record_modified_node(this);
 480   }
 481   // Light version of set_req() to init inputs after node creation.
 482   void init_req( uint i, Node *n ) {
 483     assert( (i == 0 && this == n) ||
 484             is_not_dead(n), "can not use dead node");
 485     assert( i < _cnt, "oob");
 486     assert( !VerifyHashTableKeys || _hash_lock == 0,
 487             "remove node from hash table before modifying it");
 488     assert( _in[i] == nullptr, "sanity");
 489     _in[i] = n;
 490     if (n != nullptr)      n->add_out((Node *)this);
 491     Compile::current()->record_modified_node(this);
 492   }
 493   // Find first occurrence of n among my edges:
 494   int find_edge(Node* n);
 495   int find_prec_edge(Node* n) {
 496     for (uint i = req(); i < len(); i++) {
 497       if (_in[i] == n) return i;
 498       if (_in[i] == nullptr) {
 499         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 500         break;
 501       }
 502     }
 503     return -1;
 504   }
 505   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 506   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 507   // null out all inputs to eliminate incoming Def-Use edges.
 508   void disconnect_inputs(Compile* C);
 509 
 510   // Quickly, return true if and only if I am Compile::current()->top().
 511   bool is_top() const {
 512     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 513     return (_out == nullptr);
 514   }
 515   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 516   void setup_is_top();
 517 
 518   // Strip away casting.  (It is depth-limited.)
 519   Node* uncast(bool keep_deps = false) const;
 520   // Return whether two Nodes are equivalent, after stripping casting.
 521   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 522     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 523   }
 524 
 525   // Find out of current node that matches opcode.
 526   Node* find_out_with(int opcode);
 527   // Return true if the current node has an out that matches opcode.
 528   bool has_out_with(int opcode);
 529   // Return true if the current node has an out that matches any of the opcodes.
 530   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 531 
 532 private:
 533   static Node* uncast_helper(const Node* n, bool keep_deps);
 534 
 535   // Add an output edge to the end of the list
 536   void add_out( Node *n ) {
 537     if (is_top())  return;
 538     if( _outcnt == _outmax ) out_grow(_outcnt);
 539     _out[_outcnt++] = n;
 540   }
 541   // Delete an output edge
 542   void del_out( Node *n ) {
 543     if (is_top())  return;
 544     Node** outp = &_out[_outcnt];
 545     // Find and remove n
 546     do {
 547       assert(outp > _out, "Missing Def-Use edge");
 548     } while (*--outp != n);
 549     *outp = _out[--_outcnt];
 550     // Smash the old edge so it can't be used accidentally.
 551     DEBUG_ONLY(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 552     // Record that a change happened here.
 553     #if OPTO_DU_ITERATOR_ASSERT
 554     DEBUG_ONLY(_last_del = n; ++_del_tick);
 555     #endif
 556   }
 557   // Close gap after removing edge.
 558   void close_prec_gap_at(uint gap) {
 559     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 560     uint i = gap;
 561     Node *last = nullptr;
 562     for (; i < _max-1; ++i) {
 563       Node *next = _in[i+1];
 564       if (next == nullptr) break;
 565       last = next;
 566     }
 567     _in[gap] = last;  // Move last slot to empty one.
 568     _in[i] = nullptr; // null out last slot.
 569   }
 570 
 571 public:
 572   // Globally replace this node by a given new node, updating all uses.
 573   void replace_by(Node* new_node);
 574   // Globally replace this node by a given new node, updating all uses
 575   // and cutting input edges of old node.
 576   void subsume_by(Node* new_node, Compile* c) {
 577     replace_by(new_node);
 578     disconnect_inputs(c);
 579   }
 580   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 581   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 582   // Find the one non-null required input.  RegionNode only
 583   Node *nonnull_req() const;
 584   // Add or remove precedence edges
 585   void add_prec( Node *n );
 586   void rm_prec( uint i );
 587 
 588   // Note: prec(i) will not necessarily point to n if edge already exists.
 589   void set_prec( uint i, Node *n ) {
 590     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 591     assert(is_not_dead(n), "can not use dead node");
 592     assert(i >= _cnt, "not a precedence edge");
 593     // Avoid spec violation: duplicated prec edge.
 594     if (_in[i] == n) return;
 595     if (n == nullptr || find_prec_edge(n) != -1) {
 596       rm_prec(i);
 597       return;
 598     }
 599     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 600     _in[i] = n;
 601     n->add_out((Node *)this);
 602     Compile::current()->record_modified_node(this);
 603   }
 604 
 605   // Set this node's index, used by cisc_version to replace current node
 606   void set_idx(uint new_idx) {
 607     _idx = new_idx;
 608   }
 609   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 610   void swap_edges(uint i1, uint i2) {
 611     DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 612     // Def-Use info is unchanged
 613     Node* n1 = in(i1);
 614     Node* n2 = in(i2);
 615     _in[i1] = n2;
 616     _in[i2] = n1;
 617     // If this node is in the hash table, make sure it doesn't need a rehash.
 618     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 619     // Flip swapped edges flag.
 620     if (has_swapped_edges()) {
 621       remove_flag(Node::Flag_has_swapped_edges);
 622     } else {
 623       add_flag(Node::Flag_has_swapped_edges);
 624     }
 625   }
 626 
 627   // Iterators over input Nodes for a Node X are written as:
 628   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 629   // NOTE: Required edges can contain embedded null pointers.
 630 
 631 //----------------- Other Node Properties
 632 
 633   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 634   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 635   //
 636   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 637   // the type of the node the ID represents; another subset of an ID's bits are reserved
 638   // for the superclasses of the node represented by the ID.
 639   //
 640   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 641   // returns false. A.is_A() returns true.
 642   //
 643   // If two classes, A and B, have the same superclass, a different bit of A's class id
 644   // is reserved for A's type than for B's type. That bit is specified by the third
 645   // parameter in the macro DEFINE_CLASS_ID.
 646   //
 647   // By convention, classes with deeper hierarchy are declared first. Moreover,
 648   // classes with the same hierarchy depth are sorted by usage frequency.
 649   //
 650   // The query method masks the bits to cut off bits of subclasses and then compares
 651   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 652   //
 653   //  Class_MachCall=30, ClassMask_MachCall=31
 654   // 12               8               4               0
 655   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 656   //                                  |   |   |   |
 657   //                                  |   |   |   Bit_Mach=2
 658   //                                  |   |   Bit_MachReturn=4
 659   //                                  |   Bit_MachSafePoint=8
 660   //                                  Bit_MachCall=16
 661   //
 662   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 663   // 12               8               4               0
 664   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 665   //                              |   |   |
 666   //                              |   |   Bit_Region=8
 667   //                              |   Bit_Loop=16
 668   //                              Bit_CountedLoop=32
 669 
 670   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 671   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 672   Class_##cl = Class_##supcl + Bit_##cl , \
 673   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 674 
 675   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 676   // so that its values fit into 32 bits.
 677   enum NodeClasses {
 678     Bit_Node   = 0x00000000,
 679     Class_Node = 0x00000000,
 680     ClassMask_Node = 0xFFFFFFFF,
 681 
 682     DEFINE_CLASS_ID(Multi, Node, 0)
 683       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 684         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 685           DEFINE_CLASS_ID(CallJava,         Call, 0)
 686             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 687             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 688           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 689             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 690               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 691               DEFINE_CLASS_ID(CallLeafPure,     CallLeaf, 1)
 692           DEFINE_CLASS_ID(Allocate,         Call, 2)
 693             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 694           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 695             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 696             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 697           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 698         DEFINE_CLASS_ID(LoadFlat,  SafePoint, 1)
 699         DEFINE_CLASS_ID(StoreFlat, SafePoint, 2)
 700       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 701         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 702           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 703           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 704         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 705           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 706             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 707             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 708           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 709           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 710           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 711         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 712       DEFINE_CLASS_ID(Start,       Multi, 2)
 713       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 714         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 715         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 716         DEFINE_CLASS_ID(Blackhole,        MemBar, 2)
 717 
 718     DEFINE_CLASS_ID(Mach,  Node, 1)
 719       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 720         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 721           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 722             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 723               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 724               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 725             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 726               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 727       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 728         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 729         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 730         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 731       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 732       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 733       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 734       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 735         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 736       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 737       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 738       DEFINE_CLASS_ID(MachProlog,       Mach, 8)
 739       DEFINE_CLASS_ID(MachVEP,          Mach, 9)
 740 
 741     DEFINE_CLASS_ID(Type,  Node, 2)
 742       DEFINE_CLASS_ID(Phi,   Type, 0)
 743       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 744         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 745         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 746         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 747         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 748         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 749         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 750         DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
 751         DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
 752       DEFINE_CLASS_ID(CMove, Type, 3)
 753       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 754       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 755         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 756         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 757       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 758         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 759         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 760       DEFINE_CLASS_ID(Vector, Type, 7)
 761         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 762         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 763         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 764         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 765         DEFINE_CLASS_ID(CompressV, Vector, 4)
 766         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 767         DEFINE_CLASS_ID(CompressM, Vector, 6)
 768         DEFINE_CLASS_ID(Reduction, Vector, 7)
 769         DEFINE_CLASS_ID(NegV, Vector, 8)
 770         DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
 771         DEFINE_CLASS_ID(MulVL, Vector, 10)
 772       DEFINE_CLASS_ID(InlineType, Type, 8)
 773       DEFINE_CLASS_ID(Con, Type, 9)
 774           DEFINE_CLASS_ID(ConI, Con, 0)
 775       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10)
 776       DEFINE_CLASS_ID(Convert, Type, 11)
 777 
 778 
 779     DEFINE_CLASS_ID(Proj,  Node, 3)
 780       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 781       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 782       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 783         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 784         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 785       DEFINE_CLASS_ID(Parm,      Proj, 4)
 786       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 787       DEFINE_CLASS_ID(NarrowMemProj, Proj, 6)
 788 
 789     DEFINE_CLASS_ID(Mem, Node, 4)
 790       DEFINE_CLASS_ID(Load, Mem, 0)
 791         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 792           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 793           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 794           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 795       DEFINE_CLASS_ID(Store, Mem, 1)
 796         DEFINE_CLASS_ID(StoreVector, Store, 0)
 797           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 798           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 799           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 800       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 801         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 802           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 803         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 804 
 805     DEFINE_CLASS_ID(Region, Node, 5)
 806       DEFINE_CLASS_ID(Loop, Region, 0)
 807         DEFINE_CLASS_ID(Root,                Loop, 0)
 808         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 809           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 810           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 811         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 812 
 813     DEFINE_CLASS_ID(Sub,   Node, 6)
 814       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 815         DEFINE_CLASS_ID(FastLock,       Cmp, 0)
 816         DEFINE_CLASS_ID(FastUnlock,     Cmp, 1)
 817         DEFINE_CLASS_ID(SubTypeCheck,   Cmp, 2)
 818         DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3)
 819 
 820     DEFINE_CLASS_ID(MergeMem, Node, 7)
 821     DEFINE_CLASS_ID(Bool,     Node, 8)
 822     DEFINE_CLASS_ID(AddP,     Node, 9)
 823     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 824     DEFINE_CLASS_ID(Add,      Node, 11)
 825     DEFINE_CLASS_ID(Mul,      Node, 12)
 826     DEFINE_CLASS_ID(ClearArray, Node, 14)
 827     DEFINE_CLASS_ID(Halt,     Node, 15)
 828     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 829       DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
 830       DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
 831       DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
 832     DEFINE_CLASS_ID(OpaqueNotNull,  Node, 17)
 833     DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate,  Node, 18)
 834     DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate,  Node, 19)
 835     DEFINE_CLASS_ID(Move,     Node, 20)
 836     DEFINE_CLASS_ID(LShift,   Node, 21)
 837     DEFINE_CLASS_ID(Neg,      Node, 22)
 838 
 839     _max_classes  = ClassMask_Neg
 840   };
 841   #undef DEFINE_CLASS_ID
 842 
 843   // Flags are sorted by usage frequency.
 844   enum NodeFlags {
 845     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 846     Flag_rematerialize               = 1 << 1,
 847     Flag_needs_anti_dependence_check = 1 << 2,
 848     Flag_is_macro                    = 1 << 3,
 849     Flag_is_Con                      = 1 << 4,
 850     Flag_is_cisc_alternate           = 1 << 5,
 851     Flag_is_dead_loop_safe           = 1 << 6,
 852     Flag_may_be_short_branch         = 1 << 7,
 853     Flag_avoid_back_to_back_before   = 1 << 8,
 854     Flag_avoid_back_to_back_after    = 1 << 9,
 855     Flag_has_call                    = 1 << 10,
 856     Flag_has_swapped_edges           = 1 << 11,
 857     Flag_is_scheduled                = 1 << 12,
 858     Flag_is_expensive                = 1 << 13,
 859     Flag_is_predicated_vector        = 1 << 14,
 860     Flag_for_post_loop_opts_igvn     = 1 << 15,
 861     Flag_for_merge_stores_igvn       = 1 << 16,
 862     Flag_is_removed_by_peephole      = 1 << 17,
 863     Flag_is_predicated_using_blend   = 1 << 18,
 864     _last_flag                       = Flag_is_predicated_using_blend
 865   };
 866 
 867   class PD;
 868 
 869 private:
 870   juint _class_id;
 871   juint _flags;
 872 
 873 #ifdef ASSERT
 874   static juint max_flags();
 875 #endif
 876 
 877 protected:
 878   // These methods should be called from constructors only.
 879   void init_class_id(juint c) {
 880     _class_id = c; // cast out const
 881   }
 882   void init_flags(uint fl) {
 883     assert(fl <= max_flags(), "invalid node flag");
 884     _flags |= fl;
 885   }
 886   void clear_flag(uint fl) {
 887     assert(fl <= max_flags(), "invalid node flag");
 888     _flags &= ~fl;
 889   }
 890 
 891 public:
 892   juint class_id() const { return _class_id; }
 893 
 894   juint flags() const { return _flags; }
 895 
 896   void add_flag(juint fl) { init_flags(fl); }
 897 
 898   void remove_flag(juint fl) { clear_flag(fl); }
 899 
 900   // Return a dense integer opcode number
 901   virtual int Opcode() const;
 902 
 903   // Virtual inherited Node size
 904   virtual uint size_of() const;
 905 
 906   // Other interesting Node properties
 907   #define DEFINE_CLASS_QUERY(type)                           \
 908   bool is_##type() const {                                   \
 909     return ((_class_id & ClassMask_##type) == Class_##type); \
 910   }                                                          \
 911   type##Node *as_##type() const {                            \
 912     assert(is_##type(), "invalid node class: %s", Name());   \
 913     return (type##Node*)this;                                \
 914   }                                                          \
 915   type##Node* isa_##type() const {                           \
 916     return (is_##type()) ? as_##type() : nullptr;            \
 917   }
 918 
 919   DEFINE_CLASS_QUERY(AbstractLock)
 920   DEFINE_CLASS_QUERY(Add)
 921   DEFINE_CLASS_QUERY(AddP)
 922   DEFINE_CLASS_QUERY(Allocate)
 923   DEFINE_CLASS_QUERY(AllocateArray)
 924   DEFINE_CLASS_QUERY(ArrayCopy)
 925   DEFINE_CLASS_QUERY(BaseCountedLoop)
 926   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 927   DEFINE_CLASS_QUERY(Blackhole)
 928   DEFINE_CLASS_QUERY(Bool)
 929   DEFINE_CLASS_QUERY(BoxLock)
 930   DEFINE_CLASS_QUERY(Call)
 931   DEFINE_CLASS_QUERY(CallDynamicJava)
 932   DEFINE_CLASS_QUERY(CallJava)
 933   DEFINE_CLASS_QUERY(CallLeaf)
 934   DEFINE_CLASS_QUERY(CallLeafNoFP)
 935   DEFINE_CLASS_QUERY(CallLeafPure)
 936   DEFINE_CLASS_QUERY(CallRuntime)
 937   DEFINE_CLASS_QUERY(CallStaticJava)
 938   DEFINE_CLASS_QUERY(Catch)
 939   DEFINE_CLASS_QUERY(CatchProj)
 940   DEFINE_CLASS_QUERY(CheckCastPP)
 941   DEFINE_CLASS_QUERY(CastII)
 942   DEFINE_CLASS_QUERY(CastLL)
 943   DEFINE_CLASS_QUERY(CastFF)
 944   DEFINE_CLASS_QUERY(ConI)
 945   DEFINE_CLASS_QUERY(CastPP)
 946   DEFINE_CLASS_QUERY(ConstraintCast)
 947   DEFINE_CLASS_QUERY(ClearArray)
 948   DEFINE_CLASS_QUERY(CMove)
 949   DEFINE_CLASS_QUERY(Cmp)
 950   DEFINE_CLASS_QUERY(Convert)
 951   DEFINE_CLASS_QUERY(CountedLoop)
 952   DEFINE_CLASS_QUERY(CountedLoopEnd)
 953   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 954   DEFINE_CLASS_QUERY(DecodeN)
 955   DEFINE_CLASS_QUERY(DecodeNKlass)
 956   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 957   DEFINE_CLASS_QUERY(EncodeP)
 958   DEFINE_CLASS_QUERY(EncodePKlass)
 959   DEFINE_CLASS_QUERY(FastLock)
 960   DEFINE_CLASS_QUERY(FastUnlock)
 961   DEFINE_CLASS_QUERY(FlatArrayCheck)
 962   DEFINE_CLASS_QUERY(Halt)
 963   DEFINE_CLASS_QUERY(If)
 964   DEFINE_CLASS_QUERY(RangeCheck)
 965   DEFINE_CLASS_QUERY(IfProj)
 966   DEFINE_CLASS_QUERY(IfFalse)
 967   DEFINE_CLASS_QUERY(IfTrue)
 968   DEFINE_CLASS_QUERY(Initialize)
 969   DEFINE_CLASS_QUERY(Jump)
 970   DEFINE_CLASS_QUERY(JumpProj)
 971   DEFINE_CLASS_QUERY(LongCountedLoop)
 972   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 973   DEFINE_CLASS_QUERY(Load)
 974   DEFINE_CLASS_QUERY(LoadStore)
 975   DEFINE_CLASS_QUERY(LoadStoreConditional)
 976   DEFINE_CLASS_QUERY(Lock)
 977   DEFINE_CLASS_QUERY(Loop)
 978   DEFINE_CLASS_QUERY(LShift)
 979   DEFINE_CLASS_QUERY(Mach)
 980   DEFINE_CLASS_QUERY(MachBranch)
 981   DEFINE_CLASS_QUERY(MachCall)
 982   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 983   DEFINE_CLASS_QUERY(MachCallJava)
 984   DEFINE_CLASS_QUERY(MachCallLeaf)
 985   DEFINE_CLASS_QUERY(MachCallRuntime)
 986   DEFINE_CLASS_QUERY(MachCallStaticJava)
 987   DEFINE_CLASS_QUERY(MachConstantBase)
 988   DEFINE_CLASS_QUERY(MachConstant)
 989   DEFINE_CLASS_QUERY(MachGoto)
 990   DEFINE_CLASS_QUERY(MachIf)
 991   DEFINE_CLASS_QUERY(MachJump)
 992   DEFINE_CLASS_QUERY(MachNullCheck)
 993   DEFINE_CLASS_QUERY(MachProj)
 994   DEFINE_CLASS_QUERY(MachProlog)
 995   DEFINE_CLASS_QUERY(MachReturn)
 996   DEFINE_CLASS_QUERY(MachSafePoint)
 997   DEFINE_CLASS_QUERY(MachSpillCopy)
 998   DEFINE_CLASS_QUERY(MachTemp)
 999   DEFINE_CLASS_QUERY(MachMemBar)
1000   DEFINE_CLASS_QUERY(MachMerge)
1001   DEFINE_CLASS_QUERY(MachVEP)
1002   DEFINE_CLASS_QUERY(Mem)
1003   DEFINE_CLASS_QUERY(MemBar)
1004   DEFINE_CLASS_QUERY(MemBarStoreStore)
1005   DEFINE_CLASS_QUERY(MergeMem)
1006   DEFINE_CLASS_QUERY(Move)
1007   DEFINE_CLASS_QUERY(Mul)
1008   DEFINE_CLASS_QUERY(Multi)
1009   DEFINE_CLASS_QUERY(MultiBranch)
1010   DEFINE_CLASS_QUERY(MulVL)
1011   DEFINE_CLASS_QUERY(NarrowMemProj)
1012   DEFINE_CLASS_QUERY(Neg)
1013   DEFINE_CLASS_QUERY(NegV)
1014   DEFINE_CLASS_QUERY(NeverBranch)
1015   DEFINE_CLASS_QUERY(Opaque1)
1016   DEFINE_CLASS_QUERY(OpaqueNotNull)
1017   DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
1018   DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
1019   DEFINE_CLASS_QUERY(OpaqueLoopInit)
1020   DEFINE_CLASS_QUERY(OpaqueLoopStride)
1021   DEFINE_CLASS_QUERY(OpaqueMultiversioning)
1022   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
1023   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
1024   DEFINE_CLASS_QUERY(Parm)
1025   DEFINE_CLASS_QUERY(ParsePredicate)
1026   DEFINE_CLASS_QUERY(PCTable)
1027   DEFINE_CLASS_QUERY(Phi)
1028   DEFINE_CLASS_QUERY(Proj)
1029   DEFINE_CLASS_QUERY(Reduction)
1030   DEFINE_CLASS_QUERY(Region)
1031   DEFINE_CLASS_QUERY(Root)
1032   DEFINE_CLASS_QUERY(SafePoint)
1033   DEFINE_CLASS_QUERY(SafePointScalarObject)
1034   DEFINE_CLASS_QUERY(SafePointScalarMerge)
1035   DEFINE_CLASS_QUERY(Start)
1036   DEFINE_CLASS_QUERY(Store)
1037   DEFINE_CLASS_QUERY(Sub)
1038   DEFINE_CLASS_QUERY(SubTypeCheck)
1039   DEFINE_CLASS_QUERY(Type)
1040   DEFINE_CLASS_QUERY(InlineType)
1041   DEFINE_CLASS_QUERY(LoadFlat)
1042   DEFINE_CLASS_QUERY(StoreFlat)
1043   DEFINE_CLASS_QUERY(Vector)
1044   DEFINE_CLASS_QUERY(VectorMaskCmp)
1045   DEFINE_CLASS_QUERY(VectorUnbox)
1046   DEFINE_CLASS_QUERY(VectorReinterpret)
1047   DEFINE_CLASS_QUERY(CompressV)
1048   DEFINE_CLASS_QUERY(ExpandV)
1049   DEFINE_CLASS_QUERY(CompressM)
1050   DEFINE_CLASS_QUERY(LoadVector)
1051   DEFINE_CLASS_QUERY(LoadVectorGather)
1052   DEFINE_CLASS_QUERY(LoadVectorMasked)
1053   DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1054   DEFINE_CLASS_QUERY(StoreVector)
1055   DEFINE_CLASS_QUERY(StoreVectorScatter)
1056   DEFINE_CLASS_QUERY(StoreVectorMasked)
1057   DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1058   DEFINE_CLASS_QUERY(SaturatingVector)
1059   DEFINE_CLASS_QUERY(ShiftV)
1060   DEFINE_CLASS_QUERY(Unlock)
1061 
1062   #undef DEFINE_CLASS_QUERY
1063 
1064   // duplicate of is_MachSpillCopy()
1065   bool is_SpillCopy () const {
1066     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1067   }
1068 
1069   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1070   // The data node which is safe to leave in dead loop during IGVN optimization.
1071   bool is_dead_loop_safe() const;
1072 
1073   // is_Copy() returns copied edge index (0 or 1)
1074   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1075 
1076   virtual bool is_CFG() const { return false; }
1077 
1078   // If this node is control-dependent on a test, can it be
1079   // rerouted to a dominating equivalent test?  This is usually
1080   // true of non-CFG nodes, but can be false for operations which
1081   // depend for their correct sequencing on more than one test.
1082   // (In that case, hoisting to a dominating test may silently
1083   // skip some other important test.)
1084   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1085 
1086   // When building basic blocks, I need to have a notion of block beginning
1087   // Nodes, next block selector Nodes (block enders), and next block
1088   // projections.  These calls need to work on their machine equivalents.  The
1089   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1090   bool is_block_start() const {
1091     if ( is_Region() )
1092       return this == (const Node*)in(0);
1093     else
1094       return is_Start();
1095   }
1096 
1097   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1098   // Goto and Return.  This call also returns the block ending Node.
1099   virtual const Node *is_block_proj() const;
1100 
1101   // The node is a "macro" node which needs to be expanded before matching
1102   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1103   // The node is expensive: the best control is set during loop opts
1104   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1105   // The node's original edge position is swapped.
1106   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1107 
1108   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1109 
1110   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1111 
1112   // Used in lcm to mark nodes that have scheduled
1113   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1114 
1115   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1116   bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1117 
1118   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1119   static bool may_be_loop_entry(Node* n) {
1120     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1121   }
1122 
1123 //----------------- Optimization
1124 
1125   // Get the worst-case Type output for this Node.
1126   virtual const class Type *bottom_type() const;
1127 
1128   // If we find a better type for a node, try to record it permanently.
1129   // Return true if this node actually changed.
1130   // Be sure to do the hash_delete game in the "rehash" variant.
1131   void raise_bottom_type(const Type* new_type);
1132 
1133   // Get the address type with which this node uses and/or defs memory,
1134   // or null if none.  The address type is conservatively wide.
1135   // Returns non-null for calls, membars, loads, stores, etc.
1136   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1137   virtual const class TypePtr *adr_type() const { return nullptr; }
1138 
1139   // Return an existing node which computes the same function as this node.
1140   // The optimistic combined algorithm requires this to return a Node which
1141   // is a small number of steps away (e.g., one of my inputs).
1142   virtual Node* Identity(PhaseGVN* phase);
1143 
1144   // Return the set of values this Node can take on at runtime.
1145   virtual const Type* Value(PhaseGVN* phase) const;
1146 
1147   // Return a node which is more "ideal" than the current node.
1148   // The invariants on this call are subtle.  If in doubt, read the
1149   // treatise in node.cpp above the default implementation AND TEST WITH
1150   // -XX:VerifyIterativeGVN=1
1151   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1152 
1153   // Some nodes have specific Ideal subgraph transformations only if they are
1154   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1155   // for the transformations to happen.
1156   bool has_special_unique_user() const;
1157 
1158   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1159   Node* find_exact_control(Node* ctrl);
1160 
1161   // Results of the dominance analysis.
1162   enum class DomResult {
1163     NotDominate,         // 'this' node does not dominate 'sub'.
1164     Dominate,            // 'this' node dominates or is equal to 'sub'.
1165     EncounteredDeadCode  // Result is undefined due to encountering dead code.
1166   };
1167   // Check if 'this' node dominates or equal to 'sub'.
1168   DomResult dominates(Node* sub, Node_List &nlist);
1169 
1170   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1171 public:
1172 
1173   // See if there is valid pipeline info
1174   static  const Pipeline *pipeline_class();
1175   virtual const Pipeline *pipeline() const;
1176 
1177   // Compute the latency from the def to this instruction of the ith input node
1178   uint latency(uint i);
1179 
1180   // Hash & compare functions, for pessimistic value numbering
1181 
1182   // If the hash function returns the special sentinel value NO_HASH,
1183   // the node is guaranteed never to compare equal to any other node.
1184   // If we accidentally generate a hash with value NO_HASH the node
1185   // won't go into the table and we'll lose a little optimization.
1186   static const uint NO_HASH = 0;
1187   virtual uint hash() const;
1188   virtual bool cmp( const Node &n ) const;
1189 
1190   // Operation appears to be iteratively computed (such as an induction variable)
1191   // It is possible for this operation to return false for a loop-varying
1192   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1193   bool is_iteratively_computed();
1194 
1195   // Determine if a node is a counted loop induction variable.
1196   // NOTE: The method is defined in "loopnode.cpp".
1197   bool is_cloop_ind_var() const;
1198 
1199   // Return a node with opcode "opc" and same inputs as "this" if one can
1200   // be found; Otherwise return null;
1201   Node* find_similar(int opc);
1202 
1203   // Return the unique control out if only one. Null if none or more than one.
1204   Node* unique_ctrl_out_or_null() const;
1205   // Return the unique control out. Asserts if none or more than one control out.
1206   Node* unique_ctrl_out() const;
1207 
1208   // Set control or add control as precedence edge
1209   void ensure_control_or_add_prec(Node* c);
1210   void add_prec_from(Node* n);
1211 
1212   // Visit boundary uses of the node and apply a callback function for each.
1213   // Recursively traverse uses, stopping and applying the callback when
1214   // reaching a boundary node, defined by is_boundary. Note: the function
1215   // definition appears after the complete type definition of Node_List.
1216   template <typename Callback, typename Check>
1217   void visit_uses(Callback callback, Check is_boundary) const;
1218 
1219   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1220   // (Load and range check CastII nodes).
1221   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1222   virtual Node* pin_array_access_node() const {
1223     return nullptr;
1224   }
1225 
1226   //----------------- Code Generation
1227 
1228   // Ideal register class for Matching.  Zero means unmatched instruction
1229   // (these are cloned instead of converted to machine nodes).
1230   virtual uint ideal_reg() const;
1231 
1232   static const uint NotAMachineReg;   // must be > max. machine register
1233 
1234   // Do we Match on this edge index or not?  Generally false for Control
1235   // and true for everything else.  Weird for calls & returns.
1236   virtual uint match_edge(uint idx) const;
1237 
1238   // Register class output is returned in
1239   virtual const RegMask &out_RegMask() const;
1240   // Register class input is expected in
1241   virtual const RegMask &in_RegMask(uint) const;
1242   // Should we clone rather than spill this instruction?
1243   bool rematerialize() const;
1244 
1245   // Return JVM State Object if this Node carries debug info, or null otherwise
1246   virtual JVMState* jvms() const;
1247 
1248   // Print as assembly
1249   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1250   // Emit bytes using C2_MacroAssembler
1251   virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1252   // Size of instruction in bytes
1253   virtual uint size(PhaseRegAlloc *ra_) const;
1254 
1255   // Convenience function to extract an integer constant from a node.
1256   // If it is not an integer constant (either Con, CastII, or Mach),
1257   // return value_if_unknown.
1258   jint find_int_con(jint value_if_unknown) const {
1259     const TypeInt* t = find_int_type();
1260     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1261   }
1262   // Return the constant, knowing it is an integer constant already
1263   jint get_int() const {
1264     const TypeInt* t = find_int_type();
1265     guarantee(t != nullptr, "must be con");
1266     return t->get_con();
1267   }
1268   // Here's where the work is done.  Can produce non-constant int types too.
1269   const TypeInt* find_int_type() const;
1270   const TypeInteger* find_integer_type(BasicType bt) const;
1271 
1272   // Same thing for long (and intptr_t, via type.hpp):
1273   jlong get_long() const {
1274     const TypeLong* t = find_long_type();
1275     guarantee(t != nullptr, "must be con");
1276     return t->get_con();
1277   }
1278   jlong find_long_con(jint value_if_unknown) const {
1279     const TypeLong* t = find_long_type();
1280     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1281   }
1282   const TypeLong* find_long_type() const;
1283 
1284   jlong get_integer_as_long(BasicType bt) const {
1285     const TypeInteger* t = find_integer_type(bt);
1286     guarantee(t != nullptr && t->is_con(), "must be con");
1287     return t->get_con_as_long(bt);
1288   }
1289   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1290     const TypeInteger* t = find_integer_type(bt);
1291     if (t == nullptr || !t->is_con())  return value_if_unknown;
1292     return t->get_con_as_long(bt);
1293   }
1294   const TypePtr* get_ptr_type() const;
1295 
1296   // These guys are called by code generated by ADLC:
1297   intptr_t get_ptr() const;
1298   intptr_t get_narrowcon() const;
1299   jdouble getd() const;
1300   jfloat getf() const;
1301   jshort geth() const;
1302 
1303   // Nodes which are pinned into basic blocks
1304   virtual bool pinned() const { return false; }
1305 
1306   // Nodes which use memory without consuming it, hence need antidependences
1307   // More specifically, needs_anti_dependence_check returns true iff the node
1308   // (a) does a load, and (b) does not perform a store (except perhaps to a
1309   // stack slot or some other unaliased location).
1310   bool needs_anti_dependence_check() const;
1311 
1312   // Return which operand this instruction may cisc-spill. In other words,
1313   // return operand position that can convert from reg to memory access
1314   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1315   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1316 
1317   // Whether this is a memory-writing machine node.
1318   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1319 
1320   // Whether this is a memory phi node
1321   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1322 
1323   bool is_div_or_mod(BasicType bt) const;
1324 
1325   bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1326 
1327 //----------------- Printing, etc
1328 #ifndef PRODUCT
1329  public:
1330   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1331   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1332   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st, const frame* fr = nullptr) const;
1333   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1334   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1335   void dump_bfs(const int max_distance, Node* target, const char* options, void* sp, void* fp, void* pc) const;
1336   class DumpConfig {
1337    public:
1338     // overridden to implement coloring of node idx
1339     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1340     virtual void post_dump(outputStream *st) = 0;
1341   };
1342   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1343   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1344   void dump() const; // print node with newline
1345   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1346   void dump(int depth) const;        // Print this node, recursively to depth d
1347   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1348   void dump_comp() const;            // Print this node in compact representation.
1349   // Print this node in compact representation.
1350   void dump_comp(const char* suffix, outputStream *st = tty) const;
1351  private:
1352   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1353   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1354   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1355  public:
1356   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1357   // Print compact per-node info
1358   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1359 
1360   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1361 
1362   // This call defines a class-unique string used to identify class instances
1363   virtual const char *Name() const;
1364 
1365   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1366   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1367 #endif
1368 #ifdef ASSERT
1369   void verify_construction();
1370   bool verify_jvms(const JVMState* jvms) const;
1371 
1372   Node* _debug_orig;                   // Original version of this, if any.
1373   Node*  debug_orig() const            { return _debug_orig; }
1374   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1375   void   dump_orig(outputStream *st, bool print_key = true) const;
1376 
1377   uint64_t _debug_idx;                 // Unique value assigned to every node.
1378   uint64_t debug_idx() const           { return _debug_idx; }
1379   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1380 
1381   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1382   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1383   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1384 
1385   static void init_NodeProperty();
1386 
1387   #if OPTO_DU_ITERATOR_ASSERT
1388   const Node* _last_del;               // The last deleted node.
1389   uint        _del_tick;               // Bumped when a deletion happens..
1390   #endif
1391 #endif
1392 };
1393 
1394 inline bool not_a_node(const Node* n) {
1395   if (n == nullptr)                return true;
1396   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1397   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1398   return false;
1399 }
1400 
1401 //-----------------------------------------------------------------------------
1402 // Iterators over DU info, and associated Node functions.
1403 
1404 #if OPTO_DU_ITERATOR_ASSERT
1405 
1406 // Common code for assertion checking on DU iterators.
1407 class DUIterator_Common {
1408 #ifdef ASSERT
1409  protected:
1410   bool         _vdui;               // cached value of VerifyDUIterators
1411   const Node*  _node;               // the node containing the _out array
1412   uint         _outcnt;             // cached node->_outcnt
1413   uint         _del_tick;           // cached node->_del_tick
1414   Node*        _last;               // last value produced by the iterator
1415 
1416   void sample(const Node* node);    // used by c'tor to set up for verifies
1417   void verify(const Node* node, bool at_end_ok = false);
1418   void verify_resync();
1419   void reset(const DUIterator_Common& that);
1420 
1421 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1422   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1423 #else
1424   #define I_VDUI_ONLY(i,x) { }
1425 #endif //ASSERT
1426 };
1427 
1428 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1429 
1430 // Default DU iterator.  Allows appends onto the out array.
1431 // Allows deletion from the out array only at the current point.
1432 // Usage:
1433 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1434 //    Node* y = x->out(i);
1435 //    ...
1436 //  }
1437 // Compiles in product mode to a unsigned integer index, which indexes
1438 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1439 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1440 // before continuing the loop.  You must delete only the last-produced
1441 // edge.  You must delete only a single copy of the last-produced edge,
1442 // or else you must delete all copies at once (the first time the edge
1443 // is produced by the iterator).
1444 class DUIterator : public DUIterator_Common {
1445   friend class Node;
1446 
1447   // This is the index which provides the product-mode behavior.
1448   // Whatever the product-mode version of the system does to the
1449   // DUI index is done to this index.  All other fields in
1450   // this class are used only for assertion checking.
1451   uint         _idx;
1452 
1453   #ifdef ASSERT
1454   uint         _refresh_tick;    // Records the refresh activity.
1455 
1456   void sample(const Node* node); // Initialize _refresh_tick etc.
1457   void verify(const Node* node, bool at_end_ok = false);
1458   void verify_increment();       // Verify an increment operation.
1459   void verify_resync();          // Verify that we can back up over a deletion.
1460   void verify_finish();          // Verify that the loop terminated properly.
1461   void refresh();                // Resample verification info.
1462   void reset(const DUIterator& that);  // Resample after assignment.
1463   #endif
1464 
1465   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1466     { _idx = 0;                         DEBUG_ONLY(sample(node)); }
1467 
1468  public:
1469   // initialize to garbage; clear _vdui to disable asserts
1470   DUIterator()
1471     { /*initialize to garbage*/         DEBUG_ONLY(_vdui = false); }
1472 
1473   DUIterator(const DUIterator& that)
1474     { _idx = that._idx;                 DEBUG_ONLY(_vdui = false; reset(that)); }
1475 
1476   void operator++(int dummy_to_specify_postfix_op)
1477     { _idx++;                           VDUI_ONLY(verify_increment()); }
1478 
1479   void operator--()
1480     { VDUI_ONLY(verify_resync());       --_idx; }
1481 
1482   ~DUIterator()
1483     { VDUI_ONLY(verify_finish()); }
1484 
1485   void operator=(const DUIterator& that)
1486     { _idx = that._idx;                 DEBUG_ONLY(reset(that)); }
1487 };
1488 
1489 DUIterator Node::outs() const
1490   { return DUIterator(this, 0); }
1491 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1492   { I_VDUI_ONLY(i, i.refresh());        return i; }
1493 bool Node::has_out(DUIterator& i) const
1494   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1495 Node*    Node::out(DUIterator& i) const
1496   { I_VDUI_ONLY(i, i.verify(this));     return DEBUG_ONLY(i._last=) _out[i._idx]; }
1497 
1498 
1499 // Faster DU iterator.  Disallows insertions into the out array.
1500 // Allows deletion from the out array only at the current point.
1501 // Usage:
1502 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1503 //    Node* y = x->fast_out(i);
1504 //    ...
1505 //  }
1506 // Compiles in product mode to raw Node** pointer arithmetic, with
1507 // no reloading of pointers from the original node x.  If you delete,
1508 // you must perform "--i; --imax" just before continuing the loop.
1509 // If you delete multiple copies of the same edge, you must decrement
1510 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1511 class DUIterator_Fast : public DUIterator_Common {
1512   friend class Node;
1513   friend class DUIterator_Last;
1514 
1515   // This is the pointer which provides the product-mode behavior.
1516   // Whatever the product-mode version of the system does to the
1517   // DUI pointer is done to this pointer.  All other fields in
1518   // this class are used only for assertion checking.
1519   Node**       _outp;
1520 
1521   #ifdef ASSERT
1522   void verify(const Node* node, bool at_end_ok = false);
1523   void verify_limit();
1524   void verify_resync();
1525   void verify_relimit(uint n);
1526   void reset(const DUIterator_Fast& that);
1527   #endif
1528 
1529   // Note:  offset must be signed, since -1 is sometimes passed
1530   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1531     { _outp = node->_out + offset;      DEBUG_ONLY(sample(node)); }
1532 
1533  public:
1534   // initialize to garbage; clear _vdui to disable asserts
1535   DUIterator_Fast()
1536     { /*initialize to garbage*/         DEBUG_ONLY(_vdui = false); }
1537 
1538   DUIterator_Fast(const DUIterator_Fast& that)
1539     { _outp = that._outp;               DEBUG_ONLY(_vdui = false; reset(that)); }
1540 
1541   void operator++(int dummy_to_specify_postfix_op)
1542     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1543 
1544   void operator--()
1545     { VDUI_ONLY(verify_resync());       --_outp; }
1546 
1547   void operator-=(uint n)   // applied to the limit only
1548     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1549 
1550   bool operator<(DUIterator_Fast& limit) {
1551     I_VDUI_ONLY(*this, this->verify(_node, true));
1552     I_VDUI_ONLY(limit, limit.verify_limit());
1553     return _outp < limit._outp;
1554   }
1555 
1556   void operator=(const DUIterator_Fast& that)
1557     { _outp = that._outp;               DEBUG_ONLY(reset(that)); }
1558 };
1559 
1560 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1561   // Assign a limit pointer to the reference argument:
1562   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1563   // Return the base pointer:
1564   return DUIterator_Fast(this, 0);
1565 }
1566 Node* Node::fast_out(DUIterator_Fast& i) const {
1567   I_VDUI_ONLY(i, i.verify(this));
1568   return DEBUG_ONLY(i._last=) *i._outp;
1569 }
1570 
1571 
1572 // Faster DU iterator.  Requires each successive edge to be removed.
1573 // Does not allow insertion of any edges.
1574 // Usage:
1575 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1576 //    Node* y = x->last_out(i);
1577 //    ...
1578 //  }
1579 // Compiles in product mode to raw Node** pointer arithmetic, with
1580 // no reloading of pointers from the original node x.
1581 class DUIterator_Last : private DUIterator_Fast {
1582   friend class Node;
1583 
1584   #ifdef ASSERT
1585   void verify(const Node* node, bool at_end_ok = false);
1586   void verify_limit();
1587   void verify_step(uint num_edges);
1588   #endif
1589 
1590   // Note:  offset must be signed, since -1 is sometimes passed
1591   DUIterator_Last(const Node* node, ptrdiff_t offset)
1592     : DUIterator_Fast(node, offset) { }
1593 
1594   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1595   void operator<(int)                              {} // do not use
1596 
1597  public:
1598   DUIterator_Last() { }
1599   // initialize to garbage
1600 
1601   DUIterator_Last(const DUIterator_Last& that) = default;
1602 
1603   void operator--()
1604     { _outp--;              VDUI_ONLY(verify_step(1));  }
1605 
1606   void operator-=(uint n)
1607     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1608 
1609   bool operator>=(DUIterator_Last& limit) {
1610     I_VDUI_ONLY(*this, this->verify(_node, true));
1611     I_VDUI_ONLY(limit, limit.verify_limit());
1612     return _outp >= limit._outp;
1613   }
1614 
1615   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1616 };
1617 
1618 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1619   // Assign a limit pointer to the reference argument:
1620   imin = DUIterator_Last(this, 0);
1621   // Return the initial pointer:
1622   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1623 }
1624 Node* Node::last_out(DUIterator_Last& i) const {
1625   I_VDUI_ONLY(i, i.verify(this));
1626   return DEBUG_ONLY(i._last=) *i._outp;
1627 }
1628 
1629 #endif //OPTO_DU_ITERATOR_ASSERT
1630 
1631 #undef I_VDUI_ONLY
1632 #undef VDUI_ONLY
1633 
1634 // An Iterator that truly follows the iterator pattern.  Doesn't
1635 // support deletion but could be made to.
1636 //
1637 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1638 //     Node* m = i.get();
1639 //
1640 class SimpleDUIterator : public StackObj {
1641  private:
1642   Node* node;
1643   DUIterator_Fast imax;
1644   DUIterator_Fast i;
1645  public:
1646   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1647   bool has_next() { return i < imax; }
1648   void next() { i++; }
1649   Node* get() { return node->fast_out(i); }
1650 };
1651 
1652 
1653 //-----------------------------------------------------------------------------
1654 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1655 // Abstractly provides an infinite array of Node*'s, initialized to null.
1656 // Note that the constructor just zeros things, and since I use Arena
1657 // allocation I do not need a destructor to reclaim storage.
1658 class Node_Array : public AnyObj {
1659 protected:
1660   Arena* _a;                    // Arena to allocate in
1661   uint   _max;
1662   Node** _nodes;
1663   ReallocMark _nesting;         // Safety checks for arena reallocation
1664 
1665   // Grow array to required capacity
1666   void maybe_grow(uint i) {
1667     _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1668     if (i >= _max) {
1669       grow(i);
1670     }
1671   }
1672   void grow(uint i);
1673 
1674 public:
1675   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1676     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1677     clear();
1678   }
1679   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1680 
1681   NONCOPYABLE(Node_Array);
1682   Node_Array& operator=(Node_Array&&) = delete;
1683   // Allow move constructor for && (eg. capture return of function)
1684   Node_Array(Node_Array&&) = default;
1685 
1686   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1687   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1688   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1689   Node** adr() { return _nodes; }
1690   // Extend the mapping: index i maps to Node *n.
1691   void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1692   void insert( uint i, Node *n );
1693   void remove( uint i );        // Remove, preserving order
1694   // Clear all entries in _nodes to null but keep storage
1695   void clear() {
1696     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1697   }
1698 
1699   uint max() const { return _max; }
1700   void dump() const;
1701 };
1702 
1703 class Node_List : public Node_Array {
1704   uint _cnt;
1705 public:
1706   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1707   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1708 
1709   NONCOPYABLE(Node_List);
1710   Node_List& operator=(Node_List&&) = delete;
1711   // Allow move constructor for && (eg. capture return of function)
1712   Node_List(Node_List&&) = default;
1713 
1714   bool contains(const Node* n) const {
1715     for (uint e = 0; e < size(); e++) {
1716       if (at(e) == n) return true;
1717     }
1718     return false;
1719   }
1720   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1721   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1722   void push( Node *b ) { map(_cnt++,b); }
1723   void yank( Node *n );         // Find and remove
1724   Node *pop() { return _nodes[--_cnt]; }
1725   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1726   void copy(const Node_List& from) {
1727     if (from._max > _max) {
1728       grow(from._max);
1729     }
1730     _cnt = from._cnt;
1731     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1732   }
1733 
1734   uint size() const { return _cnt; }
1735   void dump() const;
1736   void dump_simple() const;
1737 };
1738 
1739 // Definition must appear after complete type definition of Node_List
1740 template <typename Callback, typename Check>
1741 void Node::visit_uses(Callback callback, Check is_boundary) const {
1742   ResourceMark rm;
1743   VectorSet visited;
1744   Node_List worklist;
1745 
1746   // The initial worklist consists of the direct uses
1747   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1748     Node* out = fast_out(k);
1749     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1750   }
1751 
1752   while (worklist.size() > 0) {
1753     Node* use = worklist.pop();
1754     // Apply callback on boundary nodes
1755     if (is_boundary(use)) {
1756       callback(use);
1757     } else {
1758       // Not a boundary node, continue search
1759       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1760         Node* out = use->fast_out(k);
1761         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1762       }
1763     }
1764   }
1765 }
1766 
1767 
1768 //------------------------------Unique_Node_List-------------------------------
1769 class Unique_Node_List : public Node_List {
1770   VectorSet _in_worklist;
1771   uint _clock_index;            // Index in list where to pop from next
1772 public:
1773   Unique_Node_List() : Node_List(), _clock_index(0) {}
1774   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1775 
1776   NONCOPYABLE(Unique_Node_List);
1777   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1778   // Allow move constructor for && (eg. capture return of function)
1779   Unique_Node_List(Unique_Node_List&&) = default;
1780 
1781   void remove( Node *n );
1782   bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1783   VectorSet& member_set(){ return _in_worklist; }
1784 
1785   void push(Node* b) {
1786     if( !_in_worklist.test_set(b->_idx) )
1787       Node_List::push(b);
1788   }
1789   void push_non_cfg_inputs_of(const Node* node) {
1790     for (uint i = 1; i < node->req(); i++) {
1791       Node* input = node->in(i);
1792       if (input != nullptr && !input->is_CFG()) {
1793         push(input);
1794       }
1795     }
1796   }
1797 
1798   void push_outputs_of(const Node* node) {
1799     for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1800       Node* output = node->fast_out(i);
1801       push(output);
1802     }
1803   }
1804 
1805   Node *pop() {
1806     if( _clock_index >= size() ) _clock_index = 0;
1807     Node *b = at(_clock_index);
1808     map( _clock_index, Node_List::pop());
1809     if (size() != 0) _clock_index++; // Always start from 0
1810     _in_worklist.remove(b->_idx);
1811     return b;
1812   }
1813   Node *remove(uint i) {
1814     Node *b = Node_List::at(i);
1815     _in_worklist.remove(b->_idx);
1816     map(i,Node_List::pop());
1817     return b;
1818   }
1819   void yank(Node *n) {
1820     _in_worklist.remove(n->_idx);
1821     Node_List::yank(n);
1822   }
1823   void  clear() {
1824     _in_worklist.clear();        // Discards storage but grows automatically
1825     Node_List::clear();
1826     _clock_index = 0;
1827   }
1828   void ensure_empty() {
1829     assert(size() == 0, "must be empty");
1830     clear(); // just in case
1831   }
1832 
1833   // Used after parsing to remove useless nodes before Iterative GVN
1834   void remove_useless_nodes(VectorSet& useful);
1835 
1836   // If the idx of the Nodes change, we must recompute the VectorSet
1837   void recompute_idx_set() {
1838     _in_worklist.clear();
1839     for (uint i = 0; i < size(); i++) {
1840       Node* n = at(i);
1841       _in_worklist.set(n->_idx);
1842     }
1843   }
1844 
1845 #ifdef ASSERT
1846   bool is_subset_of(Unique_Node_List& other) {
1847     for (uint i = 0; i < size(); i++) {
1848       Node* n = at(i);
1849       if (!other.member(n)) {
1850         return false;
1851       }
1852     }
1853     return true;
1854   }
1855 #endif
1856 
1857   bool contains(const Node* n) const {
1858     fatal("use faster member() instead");
1859     return false;
1860   }
1861 
1862 #ifndef PRODUCT
1863   void print_set() const { _in_worklist.print(); }
1864 #endif
1865 };
1866 
1867 // Unique_Mixed_Node_List
1868 // unique: nodes are added only once
1869 // mixed: allow new and old nodes
1870 class Unique_Mixed_Node_List : public ResourceObj {
1871 public:
1872   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1873 
1874   void add(Node* node) {
1875     if (not_a_node(node)) {
1876       return; // Gracefully handle null, -1, 0xabababab, etc.
1877     }
1878     if (_visited_set[node] == nullptr) {
1879       _visited_set.Insert(node, node);
1880       _worklist.push(node);
1881     }
1882   }
1883 
1884   Node* operator[] (uint i) const {
1885     return _worklist[i];
1886   }
1887 
1888   size_t size() {
1889     return _worklist.size();
1890   }
1891 
1892 private:
1893   Dict _visited_set;
1894   Node_List _worklist;
1895 };
1896 
1897 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1898 inline void Compile::record_for_igvn(Node* n) {
1899   _igvn_worklist->push(n);
1900 }
1901 
1902 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1903 inline void Compile::remove_for_igvn(Node* n) {
1904   _igvn_worklist->remove(n);
1905 }
1906 
1907 //------------------------------Node_Stack-------------------------------------
1908 class Node_Stack {
1909 protected:
1910   struct INode {
1911     Node *node; // Processed node
1912     uint  indx; // Index of next node's child
1913   };
1914   INode *_inode_top; // tos, stack grows up
1915   INode *_inode_max; // End of _inodes == _inodes + _max
1916   INode *_inodes;    // Array storage for the stack
1917   Arena *_a;         // Arena to allocate in
1918   ReallocMark _nesting; // Safety checks for arena reallocation
1919 
1920   void maybe_grow() {
1921     _nesting.check(_a); // Check if a potential reallocation in the arena is safe
1922     if (_inode_top >= _inode_max) {
1923       grow();
1924     }
1925   }
1926   void grow();
1927 
1928 public:
1929   Node_Stack(int size) {
1930     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1931     _a = Thread::current()->resource_area();
1932     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1933     _inode_max = _inodes + max;
1934     _inode_top = _inodes - 1; // stack is empty
1935   }
1936 
1937   Node_Stack(Arena *a, int size) : _a(a) {
1938     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1939     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1940     _inode_max = _inodes + max;
1941     _inode_top = _inodes - 1; // stack is empty
1942   }
1943 
1944   void pop() {
1945     assert(_inode_top >= _inodes, "node stack underflow");
1946     --_inode_top;
1947   }
1948   void push(Node *n, uint i) {
1949     ++_inode_top;
1950     maybe_grow();
1951     INode *top = _inode_top; // optimization
1952     top->node = n;
1953     top->indx = i;
1954   }
1955   Node *node() const {
1956     return _inode_top->node;
1957   }
1958   Node* node_at(uint i) const {
1959     assert(_inodes + i <= _inode_top, "in range");
1960     return _inodes[i].node;
1961   }
1962   uint index() const {
1963     return _inode_top->indx;
1964   }
1965   uint index_at(uint i) const {
1966     assert(_inodes + i <= _inode_top, "in range");
1967     return _inodes[i].indx;
1968   }
1969   void set_node(Node *n) {
1970     _inode_top->node = n;
1971   }
1972   void set_index(uint i) {
1973     _inode_top->indx = i;
1974   }
1975   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1976   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1977   bool is_nonempty() const { return (_inode_top >= _inodes); }
1978   bool is_empty() const { return (_inode_top < _inodes); }
1979   void clear() { _inode_top = _inodes - 1; } // retain storage
1980 
1981   // Node_Stack is used to map nodes.
1982   Node* find(uint idx) const;
1983 
1984   NONCOPYABLE(Node_Stack);
1985 };
1986 
1987 
1988 //-----------------------------Node_Notes--------------------------------------
1989 // Debugging or profiling annotations loosely and sparsely associated
1990 // with some nodes.  See Compile::node_notes_at for the accessor.
1991 class Node_Notes {
1992   JVMState* _jvms;
1993 
1994 public:
1995   Node_Notes(JVMState* jvms = nullptr) {
1996     _jvms = jvms;
1997   }
1998 
1999   JVMState* jvms()            { return _jvms; }
2000   void  set_jvms(JVMState* x) {        _jvms = x; }
2001 
2002   // True if there is nothing here.
2003   bool is_clear() {
2004     return (_jvms == nullptr);
2005   }
2006 
2007   // Make there be nothing here.
2008   void clear() {
2009     _jvms = nullptr;
2010   }
2011 
2012   // Make a new, clean node notes.
2013   static Node_Notes* make(Compile* C) {
2014     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2015     nn->clear();
2016     return nn;
2017   }
2018 
2019   Node_Notes* clone(Compile* C) {
2020     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
2021     (*nn) = (*this);
2022     return nn;
2023   }
2024 
2025   // Absorb any information from source.
2026   bool update_from(Node_Notes* source) {
2027     bool changed = false;
2028     if (source != nullptr) {
2029       if (source->jvms() != nullptr) {
2030         set_jvms(source->jvms());
2031         changed = true;
2032       }
2033     }
2034     return changed;
2035   }
2036 };
2037 
2038 // Inlined accessors for Compile::node_nodes that require the preceding class:
2039 inline Node_Notes*
2040 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
2041                            int idx, bool can_grow) {
2042   assert(idx >= 0, "oob");
2043   int block_idx = (idx >> _log2_node_notes_block_size);
2044   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2045   if (grow_by >= 0) {
2046     if (!can_grow) return nullptr;
2047     grow_node_notes(arr, grow_by + 1);
2048   }
2049   if (arr == nullptr) return nullptr;
2050   // (Every element of arr is a sub-array of length _node_notes_block_size.)
2051   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2052 }
2053 
2054 inline Node_Notes* Compile::node_notes_at(int idx) {
2055   return locate_node_notes(_node_note_array, idx, false);
2056 }
2057 
2058 inline bool
2059 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2060   if (value == nullptr || value->is_clear())
2061     return false;  // nothing to write => write nothing
2062   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2063   assert(loc != nullptr, "");
2064   return loc->update_from(value);
2065 }
2066 
2067 
2068 //------------------------------TypeNode---------------------------------------
2069 // Node with a Type constant.
2070 class TypeNode : public Node {
2071 protected:
2072   virtual uint hash() const;    // Check the type
2073   virtual bool cmp( const Node &n ) const;
2074   virtual uint size_of() const; // Size is bigger
2075   const Type* const _type;
2076 public:
2077   void set_type(const Type* t) {
2078     assert(t != nullptr, "sanity");
2079     DEBUG_ONLY(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2080     *(const Type**)&_type = t;   // cast away const-ness
2081     // If this node is in the hash table, make sure it doesn't need a rehash.
2082     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2083   }
2084   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2085   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2086     init_class_id(Class_Type);
2087   }
2088   virtual const Type* Value(PhaseGVN* phase) const;
2089   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
2090   virtual const Type *bottom_type() const;
2091   virtual       uint  ideal_reg() const;
2092 
2093   void make_path_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, Node* ctrl_use, uint j, const char* phase_str);
2094 #ifndef PRODUCT
2095   virtual void dump_spec(outputStream *st) const;
2096   virtual void dump_compact_spec(outputStream *st) const;
2097 #endif
2098   void make_paths_from_here_dead(PhaseIterGVN* igvn, PhaseIdealLoop* loop, const char* phase_str);
2099   void create_halt_path(PhaseIterGVN* igvn, Node* c, PhaseIdealLoop* loop, const char* phase_str) const;
2100 };
2101 
2102 #include "opto/opcodes.hpp"
2103 
2104 #define Op_IL(op) \
2105   inline int Op_ ## op(BasicType bt) { \
2106   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2107   if (bt == T_INT) { \
2108     return Op_## op ## I; \
2109   } \
2110   return Op_## op ## L; \
2111 }
2112 
2113 Op_IL(Add)
2114 Op_IL(And)
2115 Op_IL(Sub)
2116 Op_IL(Mul)
2117 Op_IL(URShift)
2118 Op_IL(LShift)
2119 Op_IL(RShift)
2120 Op_IL(Xor)
2121 Op_IL(Cmp)
2122 Op_IL(Div)
2123 Op_IL(Mod)
2124 Op_IL(UDiv)
2125 Op_IL(UMod)
2126 
2127 inline int Op_ConIL(BasicType bt) {
2128   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2129   if (bt == T_INT) {
2130     return Op_ConI;
2131   }
2132   return Op_ConL;
2133 }
2134 
2135 inline int Op_Cmp_unsigned(BasicType bt) {
2136   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2137   if (bt == T_INT) {
2138     return Op_CmpU;
2139   }
2140   return Op_CmpUL;
2141 }
2142 
2143 inline int Op_Cast(BasicType bt) {
2144   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2145   if (bt == T_INT) {
2146     return Op_CastII;
2147   }
2148   return Op_CastLL;
2149 }
2150 
2151 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2152   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2153   if (bt == T_INT) {
2154     if (is_unsigned) {
2155       return Op_UDivI;
2156     } else {
2157       return Op_DivI;
2158     }
2159   }
2160   if (is_unsigned) {
2161     return Op_UDivL;
2162   } else {
2163     return Op_DivL;
2164   }
2165 }
2166 
2167 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2168   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2169   if (bt == T_INT) {
2170     if (is_unsigned) {
2171       return Op_UDivModI;
2172     } else {
2173       return Op_DivModI;
2174     }
2175   }
2176   if (is_unsigned) {
2177     return Op_UDivModL;
2178   } else {
2179     return Op_DivModL;
2180   }
2181 }
2182 
2183 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2184 // a customized BFS.
2185 class BFSActions : public StackObj {
2186  public:
2187   // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2188   // method to provide a custom filter.
2189   virtual bool should_visit(Node* node) const {
2190     // By default, visit all inputs.
2191     return true;
2192   };
2193 
2194   // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2195   // but the BFS will continue to visit all unvisited nodes in the queue.
2196   virtual bool is_target_node(Node* node) const = 0;
2197 
2198   // Defines an action that should be taken when we visit a target node in the BFS traversal.
2199   virtual void target_node_action(Node* target_node) = 0;
2200 };
2201 
2202 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2203 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2204 class DataNodeBFS : public StackObj {
2205   BFSActions& _bfs_actions;
2206 
2207  public:
2208   explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2209 
2210   // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2211   void run(Node* start_node) {
2212     ResourceMark rm;
2213     Unique_Node_List _nodes_to_visit;
2214     _nodes_to_visit.push(start_node);
2215     for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2216       Node* next = _nodes_to_visit[i];
2217       for (uint j = 1; j < next->req(); j++) {
2218         Node* input = next->in(j);
2219         if (_bfs_actions.is_target_node(input)) {
2220           assert(_bfs_actions.should_visit(input), "must also pass node filter");
2221           _bfs_actions.target_node_action(input);
2222         } else if (_bfs_actions.should_visit(input)) {
2223           _nodes_to_visit.push(input);
2224         }
2225       }
2226     }
2227   }
2228 };
2229 
2230 #endif // SHARE_OPTO_NODE_HPP