1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/c2/barrierSetC2.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/allocation.hpp" 39 #include "opto/ad.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/c2_MacroAssembler.hpp" 43 #include "opto/callnode.hpp" 44 #include "opto/cfgnode.hpp" 45 #include "opto/locknode.hpp" 46 #include "opto/machnode.hpp" 47 #include "opto/node.hpp" 48 #include "opto/optoreg.hpp" 49 #include "opto/output.hpp" 50 #include "opto/regalloc.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/type.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/xmlstream.hpp" 59 60 #ifndef PRODUCT 61 #define DEBUG_ARG(x) , x 62 #else 63 #define DEBUG_ARG(x) 64 #endif 65 66 //------------------------------Scheduling---------------------------------- 67 // This class contains all the information necessary to implement instruction 68 // scheduling and bundling. 69 class Scheduling { 70 71 private: 72 // Arena to use 73 Arena *_arena; 74 75 // Control-Flow Graph info 76 PhaseCFG *_cfg; 77 78 // Register Allocation info 79 PhaseRegAlloc *_regalloc; 80 81 // Number of nodes in the method 82 uint _node_bundling_limit; 83 84 // List of scheduled nodes. Generated in reverse order 85 Node_List _scheduled; 86 87 // List of nodes currently available for choosing for scheduling 88 Node_List _available; 89 90 // For each instruction beginning a bundle, the number of following 91 // nodes to be bundled with it. 92 Bundle *_node_bundling_base; 93 94 // Mapping from register to Node 95 Node_List _reg_node; 96 97 // Free list for pinch nodes. 98 Node_List _pinch_free_list; 99 100 // Number of uses of this node within the containing basic block. 101 short *_uses; 102 103 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 104 // front, branch+proj at end. Also skips Catch/CProj (same as 105 // branch-at-end), plus just-prior exception-throwing call. 106 uint _bb_start, _bb_end; 107 108 // Latency from the end of the basic block as scheduled 109 unsigned short *_current_latency; 110 111 // Remember the next node 112 Node *_next_node; 113 114 // Use this for an unconditional branch delay slot 115 Node *_unconditional_delay_slot; 116 117 // Pointer to a Nop 118 MachNopNode *_nop; 119 120 // Length of the current bundle, in instructions 121 uint _bundle_instr_count; 122 123 // Current Cycle number, for computing latencies and bundling 124 uint _bundle_cycle_number; 125 126 // Bundle information 127 Pipeline_Use_Element _bundle_use_elements[resource_count]; 128 Pipeline_Use _bundle_use; 129 130 // Dump the available list 131 void dump_available() const; 132 133 public: 134 Scheduling(Arena *arena, Compile &compile); 135 136 // Destructor 137 NOT_PRODUCT( ~Scheduling(); ) 138 139 // Step ahead "i" cycles 140 void step(uint i); 141 142 // Step ahead 1 cycle, and clear the bundle state (for example, 143 // at a branch target) 144 void step_and_clear(); 145 146 Bundle* node_bundling(const Node *n) { 147 assert(valid_bundle_info(n), "oob"); 148 return (&_node_bundling_base[n->_idx]); 149 } 150 151 bool valid_bundle_info(const Node *n) const { 152 return (_node_bundling_limit > n->_idx); 153 } 154 155 bool starts_bundle(const Node *n) const { 156 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 157 } 158 159 // Do the scheduling 160 void DoScheduling(); 161 162 // Compute the register antidependencies within a basic block 163 void ComputeRegisterAntidependencies(Block *bb); 164 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 165 void verify_good_schedule( Block *b, const char *msg ); 166 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 167 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 168 169 // Add a node to the current bundle 170 void AddNodeToBundle(Node *n, const Block *bb); 171 172 // Return an integer less than, equal to, or greater than zero 173 // if the stack offset of the first argument is respectively 174 // less than, equal to, or greater than the second. 175 int compare_two_spill_nodes(Node* first, Node* second); 176 177 // Add a node to the list of available nodes 178 void AddNodeToAvailableList(Node *n); 179 180 // Compute the local use count for the nodes in a block, and compute 181 // the list of instructions with no uses in the block as available 182 void ComputeUseCount(const Block *bb); 183 184 // Choose an instruction from the available list to add to the bundle 185 Node * ChooseNodeToBundle(); 186 187 // See if this Node fits into the currently accumulating bundle 188 bool NodeFitsInBundle(Node *n); 189 190 // Decrement the use count for a node 191 void DecrementUseCounts(Node *n, const Block *bb); 192 193 // Garbage collect pinch nodes for reuse by other blocks. 194 void garbage_collect_pinch_nodes(); 195 // Clean up a pinch node for reuse (helper for above). 196 void cleanup_pinch( Node *pinch ); 197 198 // Information for statistics gathering 199 #ifndef PRODUCT 200 private: 201 // Gather information on size of nops relative to total 202 uint _branches, _unconditional_delays; 203 204 static uint _total_nop_size, _total_method_size; 205 static uint _total_branches, _total_unconditional_delays; 206 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 207 208 public: 209 static void print_statistics(); 210 211 static void increment_instructions_per_bundle(uint i) { 212 _total_instructions_per_bundle[i]++; 213 } 214 215 static void increment_nop_size(uint s) { 216 _total_nop_size += s; 217 } 218 219 static void increment_method_size(uint s) { 220 _total_method_size += s; 221 } 222 #endif 223 224 }; 225 226 PhaseOutput::PhaseOutput() 227 : Phase(Phase::Output), 228 _code_buffer("Compile::Fill_buffer"), 229 _first_block_size(0), 230 _handler_table(), 231 _inc_table(), 232 _stub_list(), 233 _oop_map_set(nullptr), 234 _scratch_buffer_blob(nullptr), 235 _scratch_locs_memory(nullptr), 236 _scratch_const_size(-1), 237 _in_scratch_emit_size(false), 238 _frame_slots(0), 239 _code_offsets(), 240 _node_bundling_limit(0), 241 _node_bundling_base(nullptr), 242 _orig_pc_slot(0), 243 _orig_pc_slot_offset_in_bytes(0), 244 _buf_sizes(), 245 _block(nullptr), 246 _index(0) { 247 C->set_output(this); 248 if (C->stub_name() == nullptr) { 249 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 250 } 251 } 252 253 PhaseOutput::~PhaseOutput() { 254 C->set_output(nullptr); 255 if (_scratch_buffer_blob != nullptr) { 256 BufferBlob::free(_scratch_buffer_blob); 257 } 258 } 259 260 void PhaseOutput::perform_mach_node_analysis() { 261 // Late barrier analysis must be done after schedule and bundle 262 // Otherwise liveness based spilling will fail 263 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 264 bs->late_barrier_analysis(); 265 266 pd_perform_mach_node_analysis(); 267 268 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 269 } 270 271 // Convert Nodes to instruction bits and pass off to the VM 272 void PhaseOutput::Output() { 273 // RootNode goes 274 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 275 276 // The number of new nodes (mostly MachNop) is proportional to 277 // the number of java calls and inner loops which are aligned. 278 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 279 C->inner_loops()*(OptoLoopAlignment-1)), 280 "out of nodes before code generation" ) ) { 281 return; 282 } 283 // Make sure I can find the Start Node 284 Block *entry = C->cfg()->get_block(1); 285 Block *broot = C->cfg()->get_root_block(); 286 287 const StartNode *start = entry->head()->as_Start(); 288 289 // Replace StartNode with prolog 290 MachPrologNode *prolog = new MachPrologNode(); 291 entry->map_node(prolog, 0); 292 C->cfg()->map_node_to_block(prolog, entry); 293 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 294 295 // Virtual methods need an unverified entry point 296 297 if( C->is_osr_compilation() ) { 298 if( PoisonOSREntry ) { 299 // TODO: Should use a ShouldNotReachHereNode... 300 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 301 } 302 } else { 303 if( C->method() && !C->method()->flags().is_static() ) { 304 // Insert unvalidated entry point 305 C->cfg()->insert( broot, 0, new MachUEPNode() ); 306 } 307 308 } 309 310 // Break before main entry point 311 if ((C->method() && C->directive()->BreakAtExecuteOption) || 312 (OptoBreakpoint && C->is_method_compilation()) || 313 (OptoBreakpointOSR && C->is_osr_compilation()) || 314 (OptoBreakpointC2R && !C->method()) ) { 315 // checking for C->method() means that OptoBreakpoint does not apply to 316 // runtime stubs or frame converters 317 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 318 } 319 320 // Insert epilogs before every return 321 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 322 Block* block = C->cfg()->get_block(i); 323 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 324 Node* m = block->end(); 325 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 326 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 327 block->add_inst(epilog); 328 C->cfg()->map_node_to_block(epilog, block); 329 } 330 } 331 } 332 333 // Keeper of sizing aspects 334 _buf_sizes = BufferSizingData(); 335 336 // Initialize code buffer 337 estimate_buffer_size(_buf_sizes._const); 338 if (C->failing()) return; 339 340 // Pre-compute the length of blocks and replace 341 // long branches with short if machine supports it. 342 // Must be done before ScheduleAndBundle due to SPARC delay slots 343 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 344 blk_starts[0] = 0; 345 shorten_branches(blk_starts); 346 347 ScheduleAndBundle(); 348 if (C->failing()) { 349 return; 350 } 351 352 perform_mach_node_analysis(); 353 354 // Complete sizing of codebuffer 355 CodeBuffer* cb = init_buffer(); 356 if (cb == nullptr || C->failing()) { 357 return; 358 } 359 360 BuildOopMaps(); 361 362 if (C->failing()) { 363 return; 364 } 365 366 C2_MacroAssembler masm(cb); 367 fill_buffer(&masm, blk_starts); 368 } 369 370 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 371 // Determine if we need to generate a stack overflow check. 372 // Do it if the method is not a stub function and 373 // has java calls or has frame size > vm_page_size/8. 374 // The debug VM checks that deoptimization doesn't trigger an 375 // unexpected stack overflow (compiled method stack banging should 376 // guarantee it doesn't happen) so we always need the stack bang in 377 // a debug VM. 378 return (C->stub_function() == nullptr && 379 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 380 DEBUG_ONLY(|| true))); 381 } 382 383 bool PhaseOutput::need_register_stack_bang() const { 384 // Determine if we need to generate a register stack overflow check. 385 // This is only used on architectures which have split register 386 // and memory stacks (ie. IA64). 387 // Bang if the method is not a stub function and has java calls 388 return (C->stub_function() == nullptr && C->has_java_calls()); 389 } 390 391 392 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 393 // of a loop. When aligning a loop we need to provide enough instructions 394 // in cpu's fetch buffer to feed decoders. The loop alignment could be 395 // avoided if we have enough instructions in fetch buffer at the head of a loop. 396 // By default, the size is set to 999999 by Block's constructor so that 397 // a loop will be aligned if the size is not reset here. 398 // 399 // Note: Mach instructions could contain several HW instructions 400 // so the size is estimated only. 401 // 402 void PhaseOutput::compute_loop_first_inst_sizes() { 403 // The next condition is used to gate the loop alignment optimization. 404 // Don't aligned a loop if there are enough instructions at the head of a loop 405 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 406 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 407 // equal to 11 bytes which is the largest address NOP instruction. 408 if (MaxLoopPad < OptoLoopAlignment - 1) { 409 uint last_block = C->cfg()->number_of_blocks() - 1; 410 for (uint i = 1; i <= last_block; i++) { 411 Block* block = C->cfg()->get_block(i); 412 // Check the first loop's block which requires an alignment. 413 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 414 uint sum_size = 0; 415 uint inst_cnt = NumberOfLoopInstrToAlign; 416 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 417 418 // Check subsequent fallthrough blocks if the loop's first 419 // block(s) does not have enough instructions. 420 Block *nb = block; 421 while(inst_cnt > 0 && 422 i < last_block && 423 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 424 !nb->has_successor(block)) { 425 i++; 426 nb = C->cfg()->get_block(i); 427 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 428 } // while( inst_cnt > 0 && i < last_block ) 429 430 block->set_first_inst_size(sum_size); 431 } // f( b->head()->is_Loop() ) 432 } // for( i <= last_block ) 433 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 434 } 435 436 // The architecture description provides short branch variants for some long 437 // branch instructions. Replace eligible long branches with short branches. 438 void PhaseOutput::shorten_branches(uint* blk_starts) { 439 440 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 441 442 // Compute size of each block, method size, and relocation information size 443 uint nblocks = C->cfg()->number_of_blocks(); 444 445 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 446 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 447 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 448 449 // Collect worst case block paddings 450 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 451 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 452 453 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 454 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 455 456 bool has_short_branch_candidate = false; 457 458 // Initialize the sizes to 0 459 int code_size = 0; // Size in bytes of generated code 460 int stub_size = 0; // Size in bytes of all stub entries 461 // Size in bytes of all relocation entries, including those in local stubs. 462 // Start with 2-bytes of reloc info for the unvalidated entry point 463 int reloc_size = 1; // Number of relocation entries 464 465 // Make three passes. The first computes pessimistic blk_starts, 466 // relative jmp_offset and reloc_size information. The second performs 467 // short branch substitution using the pessimistic sizing. The 468 // third inserts nops where needed. 469 470 // Step one, perform a pessimistic sizing pass. 471 uint last_call_adr = max_juint; 472 uint last_avoid_back_to_back_adr = max_juint; 473 uint nop_size = (new MachNopNode())->size(C->regalloc()); 474 for (uint i = 0; i < nblocks; i++) { // For all blocks 475 Block* block = C->cfg()->get_block(i); 476 _block = block; 477 478 // During short branch replacement, we store the relative (to blk_starts) 479 // offset of jump in jmp_offset, rather than the absolute offset of jump. 480 // This is so that we do not need to recompute sizes of all nodes when 481 // we compute correct blk_starts in our next sizing pass. 482 jmp_offset[i] = 0; 483 jmp_size[i] = 0; 484 jmp_nidx[i] = -1; 485 DEBUG_ONLY( jmp_target[i] = 0; ) 486 DEBUG_ONLY( jmp_rule[i] = 0; ) 487 488 // Sum all instruction sizes to compute block size 489 uint last_inst = block->number_of_nodes(); 490 uint blk_size = 0; 491 for (uint j = 0; j < last_inst; j++) { 492 _index = j; 493 Node* nj = block->get_node(_index); 494 // Handle machine instruction nodes 495 if (nj->is_Mach()) { 496 MachNode* mach = nj->as_Mach(); 497 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 498 reloc_size += mach->reloc(); 499 if (mach->is_MachCall()) { 500 // add size information for trampoline stub 501 // class CallStubImpl is platform-specific and defined in the *.ad files. 502 stub_size += CallStubImpl::size_call_trampoline(); 503 reloc_size += CallStubImpl::reloc_call_trampoline(); 504 505 MachCallNode *mcall = mach->as_MachCall(); 506 // This destination address is NOT PC-relative 507 508 mcall->method_set((intptr_t)mcall->entry_point()); 509 510 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 511 stub_size += CompiledDirectCall::to_interp_stub_size(); 512 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 513 } 514 } else if (mach->is_MachSafePoint()) { 515 // If call/safepoint are adjacent, account for possible 516 // nop to disambiguate the two safepoints. 517 // ScheduleAndBundle() can rearrange nodes in a block, 518 // check for all offsets inside this block. 519 if (last_call_adr >= blk_starts[i]) { 520 blk_size += nop_size; 521 } 522 } 523 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 524 // Nop is inserted between "avoid back to back" instructions. 525 // ScheduleAndBundle() can rearrange nodes in a block, 526 // check for all offsets inside this block. 527 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 528 blk_size += nop_size; 529 } 530 } 531 if (mach->may_be_short_branch()) { 532 if (!nj->is_MachBranch()) { 533 #ifndef PRODUCT 534 nj->dump(3); 535 #endif 536 Unimplemented(); 537 } 538 assert(jmp_nidx[i] == -1, "block should have only one branch"); 539 jmp_offset[i] = blk_size; 540 jmp_size[i] = nj->size(C->regalloc()); 541 jmp_nidx[i] = j; 542 has_short_branch_candidate = true; 543 } 544 } 545 blk_size += nj->size(C->regalloc()); 546 // Remember end of call offset 547 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 548 last_call_adr = blk_starts[i]+blk_size; 549 } 550 // Remember end of avoid_back_to_back offset 551 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 552 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 553 } 554 } 555 556 // When the next block starts a loop, we may insert pad NOP 557 // instructions. Since we cannot know our future alignment, 558 // assume the worst. 559 if (i < nblocks - 1) { 560 Block* nb = C->cfg()->get_block(i + 1); 561 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 562 if (max_loop_pad > 0) { 563 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 564 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 565 // If either is the last instruction in this block, bump by 566 // max_loop_pad in lock-step with blk_size, so sizing 567 // calculations in subsequent blocks still can conservatively 568 // detect that it may the last instruction in this block. 569 if (last_call_adr == blk_starts[i]+blk_size) { 570 last_call_adr += max_loop_pad; 571 } 572 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 573 last_avoid_back_to_back_adr += max_loop_pad; 574 } 575 blk_size += max_loop_pad; 576 block_worst_case_pad[i + 1] = max_loop_pad; 577 } 578 } 579 580 // Save block size; update total method size 581 blk_starts[i+1] = blk_starts[i]+blk_size; 582 } 583 584 // Step two, replace eligible long jumps. 585 bool progress = true; 586 uint last_may_be_short_branch_adr = max_juint; 587 while (has_short_branch_candidate && progress) { 588 progress = false; 589 has_short_branch_candidate = false; 590 int adjust_block_start = 0; 591 for (uint i = 0; i < nblocks; i++) { 592 Block* block = C->cfg()->get_block(i); 593 int idx = jmp_nidx[i]; 594 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 595 if (mach != nullptr && mach->may_be_short_branch()) { 596 #ifdef ASSERT 597 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 598 int j; 599 // Find the branch; ignore trailing NOPs. 600 for (j = block->number_of_nodes()-1; j>=0; j--) { 601 Node* n = block->get_node(j); 602 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 603 break; 604 } 605 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 606 #endif 607 int br_size = jmp_size[i]; 608 int br_offs = blk_starts[i] + jmp_offset[i]; 609 610 // This requires the TRUE branch target be in succs[0] 611 uint bnum = block->non_connector_successor(0)->_pre_order; 612 int offset = blk_starts[bnum] - br_offs; 613 if (bnum > i) { // adjust following block's offset 614 offset -= adjust_block_start; 615 } 616 617 // This block can be a loop header, account for the padding 618 // in the previous block. 619 int block_padding = block_worst_case_pad[i]; 620 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 621 // In the following code a nop could be inserted before 622 // the branch which will increase the backward distance. 623 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 624 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 625 626 if (needs_padding && offset <= 0) 627 offset -= nop_size; 628 629 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 630 // We've got a winner. Replace this branch. 631 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 632 633 // Update the jmp_size. 634 int new_size = replacement->size(C->regalloc()); 635 int diff = br_size - new_size; 636 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 637 // Conservatively take into account padding between 638 // avoid_back_to_back branches. Previous branch could be 639 // converted into avoid_back_to_back branch during next 640 // rounds. 641 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 642 jmp_offset[i] += nop_size; 643 diff -= nop_size; 644 } 645 adjust_block_start += diff; 646 block->map_node(replacement, idx); 647 mach->subsume_by(replacement, C); 648 mach = replacement; 649 progress = true; 650 651 jmp_size[i] = new_size; 652 DEBUG_ONLY( jmp_target[i] = bnum; ); 653 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 654 } else { 655 // The jump distance is not short, try again during next iteration. 656 has_short_branch_candidate = true; 657 } 658 } // (mach->may_be_short_branch()) 659 if (mach != nullptr && (mach->may_be_short_branch() || 660 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 661 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 662 } 663 blk_starts[i+1] -= adjust_block_start; 664 } 665 } 666 667 #ifdef ASSERT 668 for (uint i = 0; i < nblocks; i++) { // For all blocks 669 if (jmp_target[i] != 0) { 670 int br_size = jmp_size[i]; 671 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 672 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 673 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 674 } 675 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 676 } 677 } 678 #endif 679 680 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 681 // after ScheduleAndBundle(). 682 683 // ------------------ 684 // Compute size for code buffer 685 code_size = blk_starts[nblocks]; 686 687 // Relocation records 688 reloc_size += 1; // Relo entry for exception handler 689 690 // Adjust reloc_size to number of record of relocation info 691 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 692 // a relocation index. 693 // The CodeBuffer will expand the locs array if this estimate is too low. 694 reloc_size *= 10 / sizeof(relocInfo); 695 696 _buf_sizes._reloc = reloc_size; 697 _buf_sizes._code = code_size; 698 _buf_sizes._stub = stub_size; 699 } 700 701 //------------------------------FillLocArray----------------------------------- 702 // Create a bit of debug info and append it to the array. The mapping is from 703 // Java local or expression stack to constant, register or stack-slot. For 704 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 705 // entry has been taken care of and caller should skip it). 706 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 707 // This should never have accepted Bad before 708 assert(OptoReg::is_valid(regnum), "location must be valid"); 709 return (OptoReg::is_reg(regnum)) 710 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 711 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 712 } 713 714 715 ObjectValue* 716 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 717 for (int i = 0; i < objs->length(); i++) { 718 assert(objs->at(i)->is_object(), "corrupt object cache"); 719 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 720 if (sv->id() == id) { 721 return sv; 722 } 723 } 724 // Otherwise.. 725 return nullptr; 726 } 727 728 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 729 ObjectValue* sv ) { 730 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 731 objs->append(sv); 732 } 733 734 735 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 736 GrowableArray<ScopeValue*> *array, 737 GrowableArray<ScopeValue*> *objs ) { 738 assert( local, "use _top instead of null" ); 739 if (array->length() != idx) { 740 assert(array->length() == idx + 1, "Unexpected array count"); 741 // Old functionality: 742 // return 743 // New functionality: 744 // Assert if the local is not top. In product mode let the new node 745 // override the old entry. 746 assert(local == C->top(), "LocArray collision"); 747 if (local == C->top()) { 748 return; 749 } 750 array->pop(); 751 } 752 const Type *t = local->bottom_type(); 753 754 // Is it a safepoint scalar object node? 755 if (local->is_SafePointScalarObject()) { 756 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 757 758 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 759 if (sv == nullptr) { 760 ciKlass* cik = t->is_oopptr()->exact_klass(); 761 assert(cik->is_instance_klass() || 762 cik->is_array_klass(), "Not supported allocation."); 763 sv = new ObjectValue(spobj->_idx, 764 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 765 set_sv_for_object_node(objs, sv); 766 767 uint first_ind = spobj->first_index(sfpt->jvms()); 768 for (uint i = 0; i < spobj->n_fields(); i++) { 769 Node* fld_node = sfpt->in(first_ind+i); 770 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 771 } 772 } 773 array->append(sv); 774 return; 775 } else if (local->is_SafePointScalarMerge()) { 776 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 777 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 778 779 if (mv == nullptr) { 780 GrowableArray<ScopeValue*> deps; 781 782 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 783 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 784 assert(deps.length() == 1, "missing value"); 785 786 int selector_idx = smerge->selector_idx(sfpt->jvms()); 787 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 788 assert(deps.length() == 2, "missing value"); 789 790 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 791 set_sv_for_object_node(objs, mv); 792 793 for (uint i = 1; i < smerge->req(); i++) { 794 Node* obj_node = smerge->in(i); 795 (void)FillLocArray(mv->possible_objects()->length(), sfpt, obj_node, mv->possible_objects(), objs); 796 } 797 } 798 array->append(mv); 799 return; 800 } 801 802 // Grab the register number for the local 803 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 804 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 805 // Record the double as two float registers. 806 // The register mask for such a value always specifies two adjacent 807 // float registers, with the lower register number even. 808 // Normally, the allocation of high and low words to these registers 809 // is irrelevant, because nearly all operations on register pairs 810 // (e.g., StoreD) treat them as a single unit. 811 // Here, we assume in addition that the words in these two registers 812 // stored "naturally" (by operations like StoreD and double stores 813 // within the interpreter) such that the lower-numbered register 814 // is written to the lower memory address. This may seem like 815 // a machine dependency, but it is not--it is a requirement on 816 // the author of the <arch>.ad file to ensure that, for every 817 // even/odd double-register pair to which a double may be allocated, 818 // the word in the even single-register is stored to the first 819 // memory word. (Note that register numbers are completely 820 // arbitrary, and are not tied to any machine-level encodings.) 821 #ifdef _LP64 822 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 823 array->append(new ConstantIntValue((jint)0)); 824 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 825 } else if ( t->base() == Type::Long ) { 826 array->append(new ConstantIntValue((jint)0)); 827 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 828 } else if ( t->base() == Type::RawPtr ) { 829 // jsr/ret return address which must be restored into the full 830 // width 64-bit stack slot. 831 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 832 } 833 #else //_LP64 834 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 835 // Repack the double/long as two jints. 836 // The convention the interpreter uses is that the second local 837 // holds the first raw word of the native double representation. 838 // This is actually reasonable, since locals and stack arrays 839 // grow downwards in all implementations. 840 // (If, on some machine, the interpreter's Java locals or stack 841 // were to grow upwards, the embedded doubles would be word-swapped.) 842 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 843 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 844 } 845 #endif //_LP64 846 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 847 OptoReg::is_reg(regnum) ) { 848 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 849 ? Location::float_in_dbl : Location::normal )); 850 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 851 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 852 ? Location::int_in_long : Location::normal )); 853 } else if( t->base() == Type::NarrowOop ) { 854 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 855 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 856 t->base() == Type::VectorD || t->base() == Type::VectorX || 857 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 858 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 859 } else if (C->regalloc()->is_oop(local)) { 860 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 861 t->base() == Type::AryPtr, 862 "Unexpected type: %s", t->msg()); 863 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 864 } else { 865 assert(t->base() == Type::Int || t->base() == Type::Half || 866 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 867 "Unexpected type: %s", t->msg()); 868 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 869 } 870 return; 871 } 872 873 // No register. It must be constant data. 874 switch (t->base()) { 875 case Type::Half: // Second half of a double 876 ShouldNotReachHere(); // Caller should skip 2nd halves 877 break; 878 case Type::AnyPtr: 879 array->append(new ConstantOopWriteValue(nullptr)); 880 break; 881 case Type::AryPtr: 882 case Type::InstPtr: // fall through 883 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 884 break; 885 case Type::NarrowOop: 886 if (t == TypeNarrowOop::NULL_PTR) { 887 array->append(new ConstantOopWriteValue(nullptr)); 888 } else { 889 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 890 } 891 break; 892 case Type::Int: 893 array->append(new ConstantIntValue(t->is_int()->get_con())); 894 break; 895 case Type::RawPtr: 896 // A return address (T_ADDRESS). 897 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 898 #ifdef _LP64 899 // Must be restored to the full-width 64-bit stack slot. 900 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 901 #else 902 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 903 #endif 904 break; 905 case Type::FloatCon: { 906 float f = t->is_float_constant()->getf(); 907 array->append(new ConstantIntValue(jint_cast(f))); 908 break; 909 } 910 case Type::DoubleCon: { 911 jdouble d = t->is_double_constant()->getd(); 912 #ifdef _LP64 913 array->append(new ConstantIntValue((jint)0)); 914 array->append(new ConstantDoubleValue(d)); 915 #else 916 // Repack the double as two jints. 917 // The convention the interpreter uses is that the second local 918 // holds the first raw word of the native double representation. 919 // This is actually reasonable, since locals and stack arrays 920 // grow downwards in all implementations. 921 // (If, on some machine, the interpreter's Java locals or stack 922 // were to grow upwards, the embedded doubles would be word-swapped.) 923 jlong_accessor acc; 924 acc.long_value = jlong_cast(d); 925 array->append(new ConstantIntValue(acc.words[1])); 926 array->append(new ConstantIntValue(acc.words[0])); 927 #endif 928 break; 929 } 930 case Type::Long: { 931 jlong d = t->is_long()->get_con(); 932 #ifdef _LP64 933 array->append(new ConstantIntValue((jint)0)); 934 array->append(new ConstantLongValue(d)); 935 #else 936 // Repack the long as two jints. 937 // The convention the interpreter uses is that the second local 938 // holds the first raw word of the native double representation. 939 // This is actually reasonable, since locals and stack arrays 940 // grow downwards in all implementations. 941 // (If, on some machine, the interpreter's Java locals or stack 942 // were to grow upwards, the embedded doubles would be word-swapped.) 943 jlong_accessor acc; 944 acc.long_value = d; 945 array->append(new ConstantIntValue(acc.words[1])); 946 array->append(new ConstantIntValue(acc.words[0])); 947 #endif 948 break; 949 } 950 case Type::Top: // Add an illegal value here 951 array->append(new LocationValue(Location())); 952 break; 953 default: 954 ShouldNotReachHere(); 955 break; 956 } 957 } 958 959 // Determine if this node starts a bundle 960 bool PhaseOutput::starts_bundle(const Node *n) const { 961 return (_node_bundling_limit > n->_idx && 962 _node_bundling_base[n->_idx].starts_bundle()); 963 } 964 965 // Determine if there is a monitor that has 'ov' as its owner. 966 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 967 for (int k = 0; k < monarray->length(); k++) { 968 MonitorValue* mv = monarray->at(k); 969 if (mv->owner() == ov) { 970 return true; 971 } 972 } 973 974 return false; 975 } 976 977 // Determine if there is a scalar replaced object description represented by 'ov'. 978 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 979 GrowableArray<ScopeValue*>* objs, 980 ObjectValue* ov) const { 981 for (int i = 0; i < jvms->scl_size(); i++) { 982 Node* n = sfn->scalarized_obj(jvms, i); 983 // Other kinds of nodes that we may encounter here, for instance constants 984 // representing values of fields of objects scalarized, aren't relevant for 985 // us, since they don't map to ObjectValue. 986 if (!n->is_SafePointScalarObject()) { 987 continue; 988 } 989 990 ObjectValue* other = sv_for_node_id(objs, n->_idx); 991 if (ov == other) { 992 return true; 993 } 994 } 995 return false; 996 } 997 998 //--------------------------Process_OopMap_Node-------------------------------- 999 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1000 // Handle special safepoint nodes for synchronization 1001 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1002 MachCallNode *mcall; 1003 1004 int safepoint_pc_offset = current_offset; 1005 bool is_method_handle_invoke = false; 1006 bool return_oop = false; 1007 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1008 bool arg_escape = false; 1009 1010 // Add the safepoint in the DebugInfoRecorder 1011 if( !mach->is_MachCall() ) { 1012 mcall = nullptr; 1013 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1014 } else { 1015 mcall = mach->as_MachCall(); 1016 1017 // Is the call a MethodHandle call? 1018 if (mcall->is_MachCallJava()) { 1019 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1020 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1021 is_method_handle_invoke = true; 1022 } 1023 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1024 } 1025 1026 // Check if a call returns an object. 1027 if (mcall->returns_pointer()) { 1028 return_oop = true; 1029 } 1030 safepoint_pc_offset += mcall->ret_addr_offset(); 1031 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1032 } 1033 1034 // Loop over the JVMState list to add scope information 1035 // Do not skip safepoints with a null method, they need monitor info 1036 JVMState* youngest_jvms = sfn->jvms(); 1037 int max_depth = youngest_jvms->depth(); 1038 1039 // Allocate the object pool for scalar-replaced objects -- the map from 1040 // small-integer keys (which can be recorded in the local and ostack 1041 // arrays) to descriptions of the object state. 1042 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1043 1044 // Visit scopes from oldest to youngest. 1045 for (int depth = 1; depth <= max_depth; depth++) { 1046 JVMState* jvms = youngest_jvms->of_depth(depth); 1047 int idx; 1048 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1049 // Safepoints that do not have method() set only provide oop-map and monitor info 1050 // to support GC; these do not support deoptimization. 1051 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1052 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1053 int num_mon = jvms->nof_monitors(); 1054 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1055 "JVMS local count must match that of the method"); 1056 1057 // Add Local and Expression Stack Information 1058 1059 // Insert locals into the locarray 1060 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1061 for( idx = 0; idx < num_locs; idx++ ) { 1062 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1063 } 1064 1065 // Insert expression stack entries into the exparray 1066 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1067 for( idx = 0; idx < num_exps; idx++ ) { 1068 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1069 } 1070 1071 // Add in mappings of the monitors 1072 assert( !method || 1073 !method->is_synchronized() || 1074 method->is_native() || 1075 num_mon > 0 || 1076 !GenerateSynchronizationCode, 1077 "monitors must always exist for synchronized methods"); 1078 1079 // Build the growable array of ScopeValues for exp stack 1080 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1081 1082 // Loop over monitors and insert into array 1083 for (idx = 0; idx < num_mon; idx++) { 1084 // Grab the node that defines this monitor 1085 Node* box_node = sfn->monitor_box(jvms, idx); 1086 Node* obj_node = sfn->monitor_obj(jvms, idx); 1087 1088 // Create ScopeValue for object 1089 ScopeValue *scval = nullptr; 1090 1091 if (obj_node->is_SafePointScalarObject()) { 1092 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1093 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1094 if (scval == nullptr) { 1095 const Type *t = spobj->bottom_type(); 1096 ciKlass* cik = t->is_oopptr()->exact_klass(); 1097 assert(cik->is_instance_klass() || 1098 cik->is_array_klass(), "Not supported allocation."); 1099 ObjectValue* sv = new ObjectValue(spobj->_idx, 1100 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1101 PhaseOutput::set_sv_for_object_node(objs, sv); 1102 1103 uint first_ind = spobj->first_index(youngest_jvms); 1104 for (uint i = 0; i < spobj->n_fields(); i++) { 1105 Node* fld_node = sfn->in(first_ind+i); 1106 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1107 } 1108 scval = sv; 1109 } 1110 } else if (obj_node->is_SafePointScalarMerge()) { 1111 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1112 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1113 1114 if (mv == nullptr) { 1115 GrowableArray<ScopeValue*> deps; 1116 1117 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1118 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1119 assert(deps.length() == 1, "missing value"); 1120 1121 int selector_idx = smerge->selector_idx(youngest_jvms); 1122 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1123 assert(deps.length() == 2, "missing value"); 1124 1125 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1126 set_sv_for_object_node(objs, mv); 1127 1128 for (uint i = 1; i < smerge->req(); i++) { 1129 Node* obj_node = smerge->in(i); 1130 FillLocArray(mv->possible_objects()->length(), sfn, obj_node, mv->possible_objects(), objs); 1131 } 1132 } 1133 scval = mv; 1134 } else if (!obj_node->is_Con()) { 1135 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1136 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1137 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1138 } else { 1139 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1140 } 1141 } else { 1142 const TypePtr *tp = obj_node->get_ptr_type(); 1143 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1144 } 1145 1146 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1147 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1148 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1149 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1150 } 1151 1152 // Mark ObjectValue nodes as root nodes if they are directly 1153 // referenced in the JVMS. 1154 for (int i = 0; i < objs->length(); i++) { 1155 ScopeValue* sv = objs->at(i); 1156 if (sv->is_object_merge()) { 1157 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1158 1159 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1160 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1161 bool is_root = locarray->contains(ov) || 1162 exparray->contains(ov) || 1163 contains_as_owner(monarray, ov) || 1164 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1165 ov->set_root(is_root); 1166 } 1167 } 1168 } 1169 1170 // We dump the object pool first, since deoptimization reads it in first. 1171 C->debug_info()->dump_object_pool(objs); 1172 1173 // Build first class objects to pass to scope 1174 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1175 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1176 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1177 1178 // Make method available for all Safepoints 1179 ciMethod* scope_method = method ? method : C->method(); 1180 // Describe the scope here 1181 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1182 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1183 // Now we can describe the scope. 1184 methodHandle null_mh; 1185 bool rethrow_exception = false; 1186 C->debug_info()->describe_scope( 1187 safepoint_pc_offset, 1188 null_mh, 1189 scope_method, 1190 jvms->bci(), 1191 jvms->should_reexecute(), 1192 rethrow_exception, 1193 is_method_handle_invoke, 1194 return_oop, 1195 has_ea_local_in_scope, 1196 arg_escape, 1197 locvals, 1198 expvals, 1199 monvals 1200 ); 1201 } // End jvms loop 1202 1203 // Mark the end of the scope set. 1204 C->debug_info()->end_safepoint(safepoint_pc_offset); 1205 } 1206 1207 1208 1209 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1210 class NonSafepointEmitter { 1211 Compile* C; 1212 JVMState* _pending_jvms; 1213 int _pending_offset; 1214 1215 void emit_non_safepoint(); 1216 1217 public: 1218 NonSafepointEmitter(Compile* compile) { 1219 this->C = compile; 1220 _pending_jvms = nullptr; 1221 _pending_offset = 0; 1222 } 1223 1224 void observe_instruction(Node* n, int pc_offset) { 1225 if (!C->debug_info()->recording_non_safepoints()) return; 1226 1227 Node_Notes* nn = C->node_notes_at(n->_idx); 1228 if (nn == nullptr || nn->jvms() == nullptr) return; 1229 if (_pending_jvms != nullptr && 1230 _pending_jvms->same_calls_as(nn->jvms())) { 1231 // Repeated JVMS? Stretch it up here. 1232 _pending_offset = pc_offset; 1233 } else { 1234 if (_pending_jvms != nullptr && 1235 _pending_offset < pc_offset) { 1236 emit_non_safepoint(); 1237 } 1238 _pending_jvms = nullptr; 1239 if (pc_offset > C->debug_info()->last_pc_offset()) { 1240 // This is the only way _pending_jvms can become non-null: 1241 _pending_jvms = nn->jvms(); 1242 _pending_offset = pc_offset; 1243 } 1244 } 1245 } 1246 1247 // Stay out of the way of real safepoints: 1248 void observe_safepoint(JVMState* jvms, int pc_offset) { 1249 if (_pending_jvms != nullptr && 1250 !_pending_jvms->same_calls_as(jvms) && 1251 _pending_offset < pc_offset) { 1252 emit_non_safepoint(); 1253 } 1254 _pending_jvms = nullptr; 1255 } 1256 1257 void flush_at_end() { 1258 if (_pending_jvms != nullptr) { 1259 emit_non_safepoint(); 1260 } 1261 _pending_jvms = nullptr; 1262 } 1263 }; 1264 1265 void NonSafepointEmitter::emit_non_safepoint() { 1266 JVMState* youngest_jvms = _pending_jvms; 1267 int pc_offset = _pending_offset; 1268 1269 // Clear it now: 1270 _pending_jvms = nullptr; 1271 1272 DebugInformationRecorder* debug_info = C->debug_info(); 1273 assert(debug_info->recording_non_safepoints(), "sanity"); 1274 1275 debug_info->add_non_safepoint(pc_offset); 1276 int max_depth = youngest_jvms->depth(); 1277 1278 // Visit scopes from oldest to youngest. 1279 for (int depth = 1; depth <= max_depth; depth++) { 1280 JVMState* jvms = youngest_jvms->of_depth(depth); 1281 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1282 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1283 methodHandle null_mh; 1284 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1285 } 1286 1287 // Mark the end of the scope set. 1288 debug_info->end_non_safepoint(pc_offset); 1289 } 1290 1291 //------------------------------init_buffer------------------------------------ 1292 void PhaseOutput::estimate_buffer_size(int& const_req) { 1293 1294 // Set the initially allocated size 1295 const_req = initial_const_capacity; 1296 1297 // The extra spacing after the code is necessary on some platforms. 1298 // Sometimes we need to patch in a jump after the last instruction, 1299 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1300 1301 // Compute the byte offset where we can store the deopt pc. 1302 if (C->fixed_slots() != 0) { 1303 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1304 } 1305 1306 // Compute prolog code size 1307 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1308 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1309 1310 if (C->has_mach_constant_base_node()) { 1311 uint add_size = 0; 1312 // Fill the constant table. 1313 // Note: This must happen before shorten_branches. 1314 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1315 Block* b = C->cfg()->get_block(i); 1316 1317 for (uint j = 0; j < b->number_of_nodes(); j++) { 1318 Node* n = b->get_node(j); 1319 1320 // If the node is a MachConstantNode evaluate the constant 1321 // value section. 1322 if (n->is_MachConstant()) { 1323 MachConstantNode* machcon = n->as_MachConstant(); 1324 machcon->eval_constant(C); 1325 } else if (n->is_Mach()) { 1326 // On Power there are more nodes that issue constants. 1327 add_size += (n->as_Mach()->ins_num_consts() * 8); 1328 } 1329 } 1330 } 1331 1332 // Calculate the offsets of the constants and the size of the 1333 // constant table (including the padding to the next section). 1334 constant_table().calculate_offsets_and_size(); 1335 const_req = constant_table().size() + add_size; 1336 } 1337 1338 // Initialize the space for the BufferBlob used to find and verify 1339 // instruction size in MachNode::emit_size() 1340 init_scratch_buffer_blob(const_req); 1341 } 1342 1343 CodeBuffer* PhaseOutput::init_buffer() { 1344 int stub_req = _buf_sizes._stub; 1345 int code_req = _buf_sizes._code; 1346 int const_req = _buf_sizes._const; 1347 1348 int pad_req = NativeCall::byte_size(); 1349 1350 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1351 stub_req += bs->estimate_stub_size(); 1352 1353 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1354 // class HandlerImpl is platform-specific and defined in the *.ad files. 1355 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1356 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1357 stub_req += MAX_stubs_size; // ensure per-stub margin 1358 code_req += MAX_inst_size; // ensure per-instruction margin 1359 1360 if (StressCodeBuffers) 1361 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1362 1363 int total_req = 1364 const_req + 1365 code_req + 1366 pad_req + 1367 stub_req + 1368 exception_handler_req + 1369 deopt_handler_req; // deopt handler 1370 1371 if (C->has_method_handle_invokes()) 1372 total_req += deopt_handler_req; // deopt MH handler 1373 1374 CodeBuffer* cb = code_buffer(); 1375 cb->initialize(total_req, _buf_sizes._reloc); 1376 1377 // Have we run out of code space? 1378 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1379 C->record_failure("CodeCache is full"); 1380 return nullptr; 1381 } 1382 // Configure the code buffer. 1383 cb->initialize_consts_size(const_req); 1384 cb->initialize_stubs_size(stub_req); 1385 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1386 1387 // fill in the nop array for bundling computations 1388 MachNode *_nop_list[Bundle::_nop_count]; 1389 Bundle::initialize_nops(_nop_list); 1390 1391 return cb; 1392 } 1393 1394 //------------------------------fill_buffer------------------------------------ 1395 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1396 // blk_starts[] contains offsets calculated during short branches processing, 1397 // offsets should not be increased during following steps. 1398 1399 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1400 // of a loop. It is used to determine the padding for loop alignment. 1401 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1402 1403 compute_loop_first_inst_sizes(); 1404 1405 // Create oopmap set. 1406 _oop_map_set = new OopMapSet(); 1407 1408 // !!!!! This preserves old handling of oopmaps for now 1409 C->debug_info()->set_oopmaps(_oop_map_set); 1410 1411 uint nblocks = C->cfg()->number_of_blocks(); 1412 // Count and start of implicit null check instructions 1413 uint inct_cnt = 0; 1414 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1415 1416 // Count and start of calls 1417 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1418 1419 uint return_offset = 0; 1420 int nop_size = (new MachNopNode())->size(C->regalloc()); 1421 1422 int previous_offset = 0; 1423 int current_offset = 0; 1424 int last_call_offset = -1; 1425 int last_avoid_back_to_back_offset = -1; 1426 #ifdef ASSERT 1427 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1428 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1429 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1430 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1431 #endif 1432 1433 // Create an array of unused labels, one for each basic block, if printing is enabled 1434 #if defined(SUPPORT_OPTO_ASSEMBLY) 1435 int* node_offsets = nullptr; 1436 uint node_offset_limit = C->unique(); 1437 1438 if (C->print_assembly()) { 1439 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1440 } 1441 if (node_offsets != nullptr) { 1442 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1443 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1444 } 1445 #endif 1446 1447 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1448 1449 // Emit the constant table. 1450 if (C->has_mach_constant_base_node()) { 1451 if (!constant_table().emit(masm)) { 1452 C->record_failure("consts section overflow"); 1453 return; 1454 } 1455 } 1456 1457 // Create an array of labels, one for each basic block 1458 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1459 for (uint i = 0; i <= nblocks; i++) { 1460 blk_labels[i].init(); 1461 } 1462 1463 // Now fill in the code buffer 1464 Node* delay_slot = nullptr; 1465 for (uint i = 0; i < nblocks; i++) { 1466 Block* block = C->cfg()->get_block(i); 1467 _block = block; 1468 Node* head = block->head(); 1469 1470 // If this block needs to start aligned (i.e, can be reached other 1471 // than by falling-thru from the previous block), then force the 1472 // start of a new bundle. 1473 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1474 masm->code()->flush_bundle(true); 1475 } 1476 1477 #ifdef ASSERT 1478 if (!block->is_connector()) { 1479 stringStream st; 1480 block->dump_head(C->cfg(), &st); 1481 masm->block_comment(st.freeze()); 1482 } 1483 jmp_target[i] = 0; 1484 jmp_offset[i] = 0; 1485 jmp_size[i] = 0; 1486 jmp_rule[i] = 0; 1487 #endif 1488 int blk_offset = current_offset; 1489 1490 // Define the label at the beginning of the basic block 1491 masm->bind(blk_labels[block->_pre_order]); 1492 1493 uint last_inst = block->number_of_nodes(); 1494 1495 // Emit block normally, except for last instruction. 1496 // Emit means "dump code bits into code buffer". 1497 for (uint j = 0; j<last_inst; j++) { 1498 _index = j; 1499 1500 // Get the node 1501 Node* n = block->get_node(j); 1502 1503 // See if delay slots are supported 1504 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1505 assert(delay_slot == nullptr, "no use of delay slot node"); 1506 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1507 1508 delay_slot = n; 1509 continue; 1510 } 1511 1512 // If this starts a new instruction group, then flush the current one 1513 // (but allow split bundles) 1514 if (Pipeline::requires_bundling() && starts_bundle(n)) 1515 masm->code()->flush_bundle(false); 1516 1517 // Special handling for SafePoint/Call Nodes 1518 bool is_mcall = false; 1519 if (n->is_Mach()) { 1520 MachNode *mach = n->as_Mach(); 1521 is_mcall = n->is_MachCall(); 1522 bool is_sfn = n->is_MachSafePoint(); 1523 1524 // If this requires all previous instructions be flushed, then do so 1525 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1526 masm->code()->flush_bundle(true); 1527 current_offset = masm->offset(); 1528 } 1529 1530 // A padding may be needed again since a previous instruction 1531 // could be moved to delay slot. 1532 1533 // align the instruction if necessary 1534 int padding = mach->compute_padding(current_offset); 1535 // Make sure safepoint node for polling is distinct from a call's 1536 // return by adding a nop if needed. 1537 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1538 padding = nop_size; 1539 } 1540 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1541 current_offset == last_avoid_back_to_back_offset) { 1542 // Avoid back to back some instructions. 1543 padding = nop_size; 1544 } 1545 1546 if (padding > 0) { 1547 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1548 int nops_cnt = padding / nop_size; 1549 MachNode *nop = new MachNopNode(nops_cnt); 1550 block->insert_node(nop, j++); 1551 last_inst++; 1552 C->cfg()->map_node_to_block(nop, block); 1553 // Ensure enough space. 1554 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1555 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1556 C->record_failure("CodeCache is full"); 1557 return; 1558 } 1559 nop->emit(masm, C->regalloc()); 1560 masm->code()->flush_bundle(true); 1561 current_offset = masm->offset(); 1562 } 1563 1564 bool observe_safepoint = is_sfn; 1565 // Remember the start of the last call in a basic block 1566 if (is_mcall) { 1567 MachCallNode *mcall = mach->as_MachCall(); 1568 1569 // This destination address is NOT PC-relative 1570 mcall->method_set((intptr_t)mcall->entry_point()); 1571 1572 // Save the return address 1573 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1574 1575 observe_safepoint = mcall->guaranteed_safepoint(); 1576 } 1577 1578 // sfn will be valid whenever mcall is valid now because of inheritance 1579 if (observe_safepoint) { 1580 // Handle special safepoint nodes for synchronization 1581 if (!is_mcall) { 1582 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1583 // !!!!! Stubs only need an oopmap right now, so bail out 1584 if (sfn->jvms()->method() == nullptr) { 1585 // Write the oopmap directly to the code blob??!! 1586 continue; 1587 } 1588 } // End synchronization 1589 1590 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1591 current_offset); 1592 Process_OopMap_Node(mach, current_offset); 1593 } // End if safepoint 1594 1595 // If this is a null check, then add the start of the previous instruction to the list 1596 else if( mach->is_MachNullCheck() ) { 1597 inct_starts[inct_cnt++] = previous_offset; 1598 } 1599 1600 // If this is a branch, then fill in the label with the target BB's label 1601 else if (mach->is_MachBranch()) { 1602 // This requires the TRUE branch target be in succs[0] 1603 uint block_num = block->non_connector_successor(0)->_pre_order; 1604 1605 // Try to replace long branch if delay slot is not used, 1606 // it is mostly for back branches since forward branch's 1607 // distance is not updated yet. 1608 bool delay_slot_is_used = valid_bundle_info(n) && 1609 C->output()->node_bundling(n)->use_unconditional_delay(); 1610 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1611 assert(delay_slot == nullptr, "not expecting delay slot node"); 1612 int br_size = n->size(C->regalloc()); 1613 int offset = blk_starts[block_num] - current_offset; 1614 if (block_num >= i) { 1615 // Current and following block's offset are not 1616 // finalized yet, adjust distance by the difference 1617 // between calculated and final offsets of current block. 1618 offset -= (blk_starts[i] - blk_offset); 1619 } 1620 // In the following code a nop could be inserted before 1621 // the branch which will increase the backward distance. 1622 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1623 if (needs_padding && offset <= 0) 1624 offset -= nop_size; 1625 1626 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1627 // We've got a winner. Replace this branch. 1628 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1629 1630 // Update the jmp_size. 1631 int new_size = replacement->size(C->regalloc()); 1632 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1633 // Insert padding between avoid_back_to_back branches. 1634 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1635 MachNode *nop = new MachNopNode(); 1636 block->insert_node(nop, j++); 1637 C->cfg()->map_node_to_block(nop, block); 1638 last_inst++; 1639 nop->emit(masm, C->regalloc()); 1640 masm->code()->flush_bundle(true); 1641 current_offset = masm->offset(); 1642 } 1643 #ifdef ASSERT 1644 jmp_target[i] = block_num; 1645 jmp_offset[i] = current_offset - blk_offset; 1646 jmp_size[i] = new_size; 1647 jmp_rule[i] = mach->rule(); 1648 #endif 1649 block->map_node(replacement, j); 1650 mach->subsume_by(replacement, C); 1651 n = replacement; 1652 mach = replacement; 1653 } 1654 } 1655 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1656 } else if (mach->ideal_Opcode() == Op_Jump) { 1657 for (uint h = 0; h < block->_num_succs; h++) { 1658 Block* succs_block = block->_succs[h]; 1659 for (uint j = 1; j < succs_block->num_preds(); j++) { 1660 Node* jpn = succs_block->pred(j); 1661 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1662 uint block_num = succs_block->non_connector()->_pre_order; 1663 Label *blkLabel = &blk_labels[block_num]; 1664 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1665 } 1666 } 1667 } 1668 } else if (!n->is_Proj()) { 1669 // Remember the beginning of the previous instruction, in case 1670 // it's followed by a flag-kill and a null-check. Happens on 1671 // Intel all the time, with add-to-memory kind of opcodes. 1672 previous_offset = current_offset; 1673 } 1674 1675 // Not an else-if! 1676 // If this is a trap based cmp then add its offset to the list. 1677 if (mach->is_TrapBasedCheckNode()) { 1678 inct_starts[inct_cnt++] = current_offset; 1679 } 1680 } 1681 1682 // Verify that there is sufficient space remaining 1683 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1684 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1685 C->record_failure("CodeCache is full"); 1686 return; 1687 } 1688 1689 // Save the offset for the listing 1690 #if defined(SUPPORT_OPTO_ASSEMBLY) 1691 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1692 node_offsets[n->_idx] = masm->offset(); 1693 } 1694 #endif 1695 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1696 1697 // "Normal" instruction case 1698 DEBUG_ONLY(uint instr_offset = masm->offset()); 1699 n->emit(masm, C->regalloc()); 1700 current_offset = masm->offset(); 1701 1702 // Above we only verified that there is enough space in the instruction section. 1703 // However, the instruction may emit stubs that cause code buffer expansion. 1704 // Bail out here if expansion failed due to a lack of code cache space. 1705 if (C->failing()) { 1706 return; 1707 } 1708 1709 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1710 "ret_addr_offset() not within emitted code"); 1711 1712 #ifdef ASSERT 1713 uint n_size = n->size(C->regalloc()); 1714 if (n_size < (current_offset-instr_offset)) { 1715 MachNode* mach = n->as_Mach(); 1716 n->dump(); 1717 mach->dump_format(C->regalloc(), tty); 1718 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1719 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1720 tty->print_cr(" ------------------- "); 1721 BufferBlob* blob = this->scratch_buffer_blob(); 1722 address blob_begin = blob->content_begin(); 1723 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1724 assert(false, "wrong size of mach node"); 1725 } 1726 #endif 1727 non_safepoints.observe_instruction(n, current_offset); 1728 1729 // mcall is last "call" that can be a safepoint 1730 // record it so we can see if a poll will directly follow it 1731 // in which case we'll need a pad to make the PcDesc sites unique 1732 // see 5010568. This can be slightly inaccurate but conservative 1733 // in the case that return address is not actually at current_offset. 1734 // This is a small price to pay. 1735 1736 if (is_mcall) { 1737 last_call_offset = current_offset; 1738 } 1739 1740 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1741 // Avoid back to back some instructions. 1742 last_avoid_back_to_back_offset = current_offset; 1743 } 1744 1745 // See if this instruction has a delay slot 1746 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1747 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1748 1749 // Back up 1 instruction 1750 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1751 1752 // Save the offset for the listing 1753 #if defined(SUPPORT_OPTO_ASSEMBLY) 1754 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1755 node_offsets[delay_slot->_idx] = masm->offset(); 1756 } 1757 #endif 1758 1759 // Support a SafePoint in the delay slot 1760 if (delay_slot->is_MachSafePoint()) { 1761 MachNode *mach = delay_slot->as_Mach(); 1762 // !!!!! Stubs only need an oopmap right now, so bail out 1763 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1764 // Write the oopmap directly to the code blob??!! 1765 delay_slot = nullptr; 1766 continue; 1767 } 1768 1769 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1770 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1771 adjusted_offset); 1772 // Generate an OopMap entry 1773 Process_OopMap_Node(mach, adjusted_offset); 1774 } 1775 1776 // Insert the delay slot instruction 1777 delay_slot->emit(masm, C->regalloc()); 1778 1779 // Don't reuse it 1780 delay_slot = nullptr; 1781 } 1782 1783 } // End for all instructions in block 1784 1785 // If the next block is the top of a loop, pad this block out to align 1786 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1787 if (i < nblocks-1) { 1788 Block *nb = C->cfg()->get_block(i + 1); 1789 int padding = nb->alignment_padding(current_offset); 1790 if( padding > 0 ) { 1791 MachNode *nop = new MachNopNode(padding / nop_size); 1792 block->insert_node(nop, block->number_of_nodes()); 1793 C->cfg()->map_node_to_block(nop, block); 1794 nop->emit(masm, C->regalloc()); 1795 current_offset = masm->offset(); 1796 } 1797 } 1798 // Verify that the distance for generated before forward 1799 // short branches is still valid. 1800 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1801 1802 // Save new block start offset 1803 blk_starts[i] = blk_offset; 1804 } // End of for all blocks 1805 blk_starts[nblocks] = current_offset; 1806 1807 non_safepoints.flush_at_end(); 1808 1809 // Offset too large? 1810 if (C->failing()) return; 1811 1812 // Define a pseudo-label at the end of the code 1813 masm->bind( blk_labels[nblocks] ); 1814 1815 // Compute the size of the first block 1816 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1817 1818 #ifdef ASSERT 1819 for (uint i = 0; i < nblocks; i++) { // For all blocks 1820 if (jmp_target[i] != 0) { 1821 int br_size = jmp_size[i]; 1822 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1823 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1824 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1825 assert(false, "Displacement too large for short jmp"); 1826 } 1827 } 1828 } 1829 #endif 1830 1831 if (!masm->code()->finalize_stubs()) { 1832 C->record_failure("CodeCache is full"); 1833 return; 1834 } 1835 1836 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1837 bs->emit_stubs(*masm->code()); 1838 if (C->failing()) return; 1839 1840 // Fill in stubs. 1841 assert(masm->inst_mark() == nullptr, "should be."); 1842 _stub_list.emit(*masm); 1843 if (C->failing()) return; 1844 1845 #ifndef PRODUCT 1846 // Information on the size of the method, without the extraneous code 1847 Scheduling::increment_method_size(masm->offset()); 1848 #endif 1849 1850 // ------------------ 1851 // Fill in exception table entries. 1852 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1853 1854 // Only java methods have exception handlers and deopt handlers 1855 // class HandlerImpl is platform-specific and defined in the *.ad files. 1856 if (C->method()) { 1857 // Emit the exception handler code. 1858 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1859 if (C->failing()) { 1860 return; // CodeBuffer::expand failed 1861 } 1862 // Emit the deopt handler code. 1863 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1864 1865 // Emit the MethodHandle deopt handler code (if required). 1866 if (C->has_method_handle_invokes() && !C->failing()) { 1867 // We can use the same code as for the normal deopt handler, we 1868 // just need a different entry point address. 1869 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1870 } 1871 } 1872 1873 // One last check for failed CodeBuffer::expand: 1874 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1875 C->record_failure("CodeCache is full"); 1876 return; 1877 } 1878 1879 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1880 if (C->print_assembly()) { 1881 tty->cr(); 1882 tty->print_cr("============================= C2-compiled nmethod =============================="); 1883 } 1884 #endif 1885 1886 #if defined(SUPPORT_OPTO_ASSEMBLY) 1887 // Dump the assembly code, including basic-block numbers 1888 if (C->print_assembly()) { 1889 ttyLocker ttyl; // keep the following output all in one block 1890 if (!VMThread::should_terminate()) { // test this under the tty lock 1891 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1892 // We call them first and write to a stringStream, then we retake the lock to 1893 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1894 ResourceMark rm; 1895 stringStream method_metadata_str; 1896 if (C->method() != nullptr) { 1897 C->method()->print_metadata(&method_metadata_str); 1898 } 1899 stringStream dump_asm_str; 1900 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1901 1902 NoSafepointVerifier nsv; 1903 ttyLocker ttyl2; 1904 // This output goes directly to the tty, not the compiler log. 1905 // To enable tools to match it up with the compilation activity, 1906 // be sure to tag this tty output with the compile ID. 1907 if (xtty != nullptr) { 1908 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1909 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1910 } 1911 if (C->method() != nullptr) { 1912 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1913 tty->print_raw(method_metadata_str.freeze()); 1914 } else if (C->stub_name() != nullptr) { 1915 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1916 } 1917 tty->cr(); 1918 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1919 tty->print_raw(dump_asm_str.freeze()); 1920 tty->print_cr("--------------------------------------------------------------------------------"); 1921 if (xtty != nullptr) { 1922 xtty->tail("opto_assembly"); 1923 } 1924 } 1925 } 1926 #endif 1927 } 1928 1929 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1930 _inc_table.set_size(cnt); 1931 1932 uint inct_cnt = 0; 1933 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1934 Block* block = C->cfg()->get_block(i); 1935 Node *n = nullptr; 1936 int j; 1937 1938 // Find the branch; ignore trailing NOPs. 1939 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1940 n = block->get_node(j); 1941 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1942 break; 1943 } 1944 } 1945 1946 // If we didn't find anything, continue 1947 if (j < 0) { 1948 continue; 1949 } 1950 1951 // Compute ExceptionHandlerTable subtable entry and add it 1952 // (skip empty blocks) 1953 if (n->is_Catch()) { 1954 1955 // Get the offset of the return from the call 1956 uint call_return = call_returns[block->_pre_order]; 1957 #ifdef ASSERT 1958 assert( call_return > 0, "no call seen for this basic block" ); 1959 while (block->get_node(--j)->is_MachProj()) ; 1960 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1961 #endif 1962 // last instruction is a CatchNode, find it's CatchProjNodes 1963 int nof_succs = block->_num_succs; 1964 // allocate space 1965 GrowableArray<intptr_t> handler_bcis(nof_succs); 1966 GrowableArray<intptr_t> handler_pcos(nof_succs); 1967 // iterate through all successors 1968 for (int j = 0; j < nof_succs; j++) { 1969 Block* s = block->_succs[j]; 1970 bool found_p = false; 1971 for (uint k = 1; k < s->num_preds(); k++) { 1972 Node* pk = s->pred(k); 1973 if (pk->is_CatchProj() && pk->in(0) == n) { 1974 const CatchProjNode* p = pk->as_CatchProj(); 1975 found_p = true; 1976 // add the corresponding handler bci & pco information 1977 if (p->_con != CatchProjNode::fall_through_index) { 1978 // p leads to an exception handler (and is not fall through) 1979 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1980 // no duplicates, please 1981 if (!handler_bcis.contains(p->handler_bci())) { 1982 uint block_num = s->non_connector()->_pre_order; 1983 handler_bcis.append(p->handler_bci()); 1984 handler_pcos.append(blk_labels[block_num].loc_pos()); 1985 } 1986 } 1987 } 1988 } 1989 assert(found_p, "no matching predecessor found"); 1990 // Note: Due to empty block removal, one block may have 1991 // several CatchProj inputs, from the same Catch. 1992 } 1993 1994 // Set the offset of the return from the call 1995 assert(handler_bcis.find(-1) != -1, "must have default handler"); 1996 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 1997 continue; 1998 } 1999 2000 // Handle implicit null exception table updates 2001 if (n->is_MachNullCheck()) { 2002 assert(n->in(1)->as_Mach()->barrier_data() == 0, 2003 "Implicit null checks on memory accesses with barriers are not yet supported"); 2004 uint block_num = block->non_connector_successor(0)->_pre_order; 2005 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2006 continue; 2007 } 2008 // Handle implicit exception table updates: trap instructions. 2009 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2010 uint block_num = block->non_connector_successor(0)->_pre_order; 2011 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2012 continue; 2013 } 2014 } // End of for all blocks fill in exception table entries 2015 } 2016 2017 // Static Variables 2018 #ifndef PRODUCT 2019 uint Scheduling::_total_nop_size = 0; 2020 uint Scheduling::_total_method_size = 0; 2021 uint Scheduling::_total_branches = 0; 2022 uint Scheduling::_total_unconditional_delays = 0; 2023 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2024 #endif 2025 2026 // Initializer for class Scheduling 2027 2028 Scheduling::Scheduling(Arena *arena, Compile &compile) 2029 : _arena(arena), 2030 _cfg(compile.cfg()), 2031 _regalloc(compile.regalloc()), 2032 _scheduled(arena), 2033 _available(arena), 2034 _reg_node(arena), 2035 _pinch_free_list(arena), 2036 _next_node(nullptr), 2037 _bundle_instr_count(0), 2038 _bundle_cycle_number(0), 2039 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2040 #ifndef PRODUCT 2041 , _branches(0) 2042 , _unconditional_delays(0) 2043 #endif 2044 { 2045 // Create a MachNopNode 2046 _nop = new MachNopNode(); 2047 2048 // Now that the nops are in the array, save the count 2049 // (but allow entries for the nops) 2050 _node_bundling_limit = compile.unique(); 2051 uint node_max = _regalloc->node_regs_max_index(); 2052 2053 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2054 2055 // This one is persistent within the Compile class 2056 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2057 2058 // Allocate space for fixed-size arrays 2059 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2060 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2061 2062 // Clear the arrays 2063 for (uint i = 0; i < node_max; i++) { 2064 ::new (&_node_bundling_base[i]) Bundle(); 2065 } 2066 memset(_uses, 0, node_max * sizeof(short)); 2067 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2068 2069 // Clear the bundling information 2070 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2071 2072 // Get the last node 2073 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2074 2075 _next_node = block->get_node(block->number_of_nodes() - 1); 2076 } 2077 2078 #ifndef PRODUCT 2079 // Scheduling destructor 2080 Scheduling::~Scheduling() { 2081 _total_branches += _branches; 2082 _total_unconditional_delays += _unconditional_delays; 2083 } 2084 #endif 2085 2086 // Step ahead "i" cycles 2087 void Scheduling::step(uint i) { 2088 2089 Bundle *bundle = node_bundling(_next_node); 2090 bundle->set_starts_bundle(); 2091 2092 // Update the bundle record, but leave the flags information alone 2093 if (_bundle_instr_count > 0) { 2094 bundle->set_instr_count(_bundle_instr_count); 2095 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2096 } 2097 2098 // Update the state information 2099 _bundle_instr_count = 0; 2100 _bundle_cycle_number += i; 2101 _bundle_use.step(i); 2102 } 2103 2104 void Scheduling::step_and_clear() { 2105 Bundle *bundle = node_bundling(_next_node); 2106 bundle->set_starts_bundle(); 2107 2108 // Update the bundle record 2109 if (_bundle_instr_count > 0) { 2110 bundle->set_instr_count(_bundle_instr_count); 2111 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2112 2113 _bundle_cycle_number += 1; 2114 } 2115 2116 // Clear the bundling information 2117 _bundle_instr_count = 0; 2118 _bundle_use.reset(); 2119 2120 memcpy(_bundle_use_elements, 2121 Pipeline_Use::elaborated_elements, 2122 sizeof(Pipeline_Use::elaborated_elements)); 2123 } 2124 2125 // Perform instruction scheduling and bundling over the sequence of 2126 // instructions in backwards order. 2127 void PhaseOutput::ScheduleAndBundle() { 2128 2129 // Don't optimize this if it isn't a method 2130 if (!C->method()) 2131 return; 2132 2133 // Don't optimize this if scheduling is disabled 2134 if (!C->do_scheduling()) 2135 return; 2136 2137 // Scheduling code works only with pairs (8 bytes) maximum. 2138 // And when the scalable vector register is used, we may spill/unspill 2139 // the whole reg regardless of the max vector size. 2140 if (C->max_vector_size() > 8 || 2141 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2142 return; 2143 } 2144 2145 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2146 2147 // Create a data structure for all the scheduling information 2148 Scheduling scheduling(Thread::current()->resource_area(), *C); 2149 2150 // Walk backwards over each basic block, computing the needed alignment 2151 // Walk over all the basic blocks 2152 scheduling.DoScheduling(); 2153 2154 #ifndef PRODUCT 2155 if (C->trace_opto_output()) { 2156 // Buffer and print all at once 2157 ResourceMark rm; 2158 stringStream ss; 2159 ss.print("\n---- After ScheduleAndBundle ----\n"); 2160 print_scheduling(&ss); 2161 tty->print("%s", ss.as_string()); 2162 } 2163 #endif 2164 } 2165 2166 #ifndef PRODUCT 2167 // Separated out so that it can be called directly from debugger 2168 void PhaseOutput::print_scheduling() { 2169 print_scheduling(tty); 2170 } 2171 2172 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2173 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2174 output_stream->print("\nBB#%03d:\n", i); 2175 Block* block = C->cfg()->get_block(i); 2176 for (uint j = 0; j < block->number_of_nodes(); j++) { 2177 Node* n = block->get_node(j); 2178 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2179 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2180 n->dump("\n", false, output_stream); 2181 } 2182 } 2183 } 2184 #endif 2185 2186 // See if this node fits into the present instruction bundle 2187 bool Scheduling::NodeFitsInBundle(Node *n) { 2188 uint n_idx = n->_idx; 2189 2190 // If this is the unconditional delay instruction, then it fits 2191 if (n == _unconditional_delay_slot) { 2192 #ifndef PRODUCT 2193 if (_cfg->C->trace_opto_output()) 2194 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2195 #endif 2196 return (true); 2197 } 2198 2199 // If the node cannot be scheduled this cycle, skip it 2200 if (_current_latency[n_idx] > _bundle_cycle_number) { 2201 #ifndef PRODUCT 2202 if (_cfg->C->trace_opto_output()) 2203 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2204 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2205 #endif 2206 return (false); 2207 } 2208 2209 const Pipeline *node_pipeline = n->pipeline(); 2210 2211 uint instruction_count = node_pipeline->instructionCount(); 2212 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2213 instruction_count = 0; 2214 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2215 instruction_count++; 2216 2217 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2218 #ifndef PRODUCT 2219 if (_cfg->C->trace_opto_output()) 2220 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2221 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2222 #endif 2223 return (false); 2224 } 2225 2226 // Don't allow non-machine nodes to be handled this way 2227 if (!n->is_Mach() && instruction_count == 0) 2228 return (false); 2229 2230 // See if there is any overlap 2231 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2232 2233 if (delay > 0) { 2234 #ifndef PRODUCT 2235 if (_cfg->C->trace_opto_output()) 2236 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2237 #endif 2238 return false; 2239 } 2240 2241 #ifndef PRODUCT 2242 if (_cfg->C->trace_opto_output()) 2243 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2244 #endif 2245 2246 return true; 2247 } 2248 2249 Node * Scheduling::ChooseNodeToBundle() { 2250 uint siz = _available.size(); 2251 2252 if (siz == 0) { 2253 2254 #ifndef PRODUCT 2255 if (_cfg->C->trace_opto_output()) 2256 tty->print("# ChooseNodeToBundle: null\n"); 2257 #endif 2258 return (nullptr); 2259 } 2260 2261 // Fast path, if only 1 instruction in the bundle 2262 if (siz == 1) { 2263 #ifndef PRODUCT 2264 if (_cfg->C->trace_opto_output()) { 2265 tty->print("# ChooseNodeToBundle (only 1): "); 2266 _available[0]->dump(); 2267 } 2268 #endif 2269 return (_available[0]); 2270 } 2271 2272 // Don't bother, if the bundle is already full 2273 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2274 for ( uint i = 0; i < siz; i++ ) { 2275 Node *n = _available[i]; 2276 2277 // Skip projections, we'll handle them another way 2278 if (n->is_Proj()) 2279 continue; 2280 2281 // This presupposed that instructions are inserted into the 2282 // available list in a legality order; i.e. instructions that 2283 // must be inserted first are at the head of the list 2284 if (NodeFitsInBundle(n)) { 2285 #ifndef PRODUCT 2286 if (_cfg->C->trace_opto_output()) { 2287 tty->print("# ChooseNodeToBundle: "); 2288 n->dump(); 2289 } 2290 #endif 2291 return (n); 2292 } 2293 } 2294 } 2295 2296 // Nothing fits in this bundle, choose the highest priority 2297 #ifndef PRODUCT 2298 if (_cfg->C->trace_opto_output()) { 2299 tty->print("# ChooseNodeToBundle: "); 2300 _available[0]->dump(); 2301 } 2302 #endif 2303 2304 return _available[0]; 2305 } 2306 2307 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2308 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2309 2310 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2311 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2312 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2313 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2314 2315 // Comparison between stack -> reg and stack -> reg 2316 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2317 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2318 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2319 } 2320 2321 // Comparison between reg -> stack and reg -> stack 2322 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2323 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2324 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2325 } 2326 2327 return 0; // Not comparable 2328 } 2329 2330 void Scheduling::AddNodeToAvailableList(Node *n) { 2331 assert( !n->is_Proj(), "projections never directly made available" ); 2332 #ifndef PRODUCT 2333 if (_cfg->C->trace_opto_output()) { 2334 tty->print("# AddNodeToAvailableList: "); 2335 n->dump(); 2336 } 2337 #endif 2338 2339 int latency = _current_latency[n->_idx]; 2340 2341 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2342 // for stack spilling or unspilling have the same latency, we sort 2343 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2344 // have more opportunities to do ld/st merging 2345 uint i; 2346 for (i = 0; i < _available.size(); i++) { 2347 if (_current_latency[_available[i]->_idx] > latency) { 2348 break; 2349 } else if (_current_latency[_available[i]->_idx] == latency && 2350 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2351 compare_two_spill_nodes(n, _available[i]) > 0) { 2352 break; 2353 } 2354 } 2355 2356 // Special Check for compares following branches 2357 if( n->is_Mach() && _scheduled.size() > 0 ) { 2358 int op = n->as_Mach()->ideal_Opcode(); 2359 Node *last = _scheduled[0]; 2360 if( last->is_MachIf() && last->in(1) == n && 2361 ( op == Op_CmpI || 2362 op == Op_CmpU || 2363 op == Op_CmpUL || 2364 op == Op_CmpP || 2365 op == Op_CmpF || 2366 op == Op_CmpD || 2367 op == Op_CmpL ) ) { 2368 2369 // Recalculate position, moving to front of same latency 2370 for ( i=0 ; i < _available.size(); i++ ) 2371 if (_current_latency[_available[i]->_idx] >= latency) 2372 break; 2373 } 2374 } 2375 2376 // Insert the node in the available list 2377 _available.insert(i, n); 2378 2379 #ifndef PRODUCT 2380 if (_cfg->C->trace_opto_output()) 2381 dump_available(); 2382 #endif 2383 } 2384 2385 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2386 for ( uint i=0; i < n->len(); i++ ) { 2387 Node *def = n->in(i); 2388 if (!def) continue; 2389 if( def->is_Proj() ) // If this is a machine projection, then 2390 def = def->in(0); // propagate usage thru to the base instruction 2391 2392 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2393 continue; 2394 } 2395 2396 // Compute the latency 2397 uint l = _bundle_cycle_number + n->latency(i); 2398 if (_current_latency[def->_idx] < l) 2399 _current_latency[def->_idx] = l; 2400 2401 // If this does not have uses then schedule it 2402 if ((--_uses[def->_idx]) == 0) 2403 AddNodeToAvailableList(def); 2404 } 2405 } 2406 2407 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2408 #ifndef PRODUCT 2409 if (_cfg->C->trace_opto_output()) { 2410 tty->print("# AddNodeToBundle: "); 2411 n->dump(); 2412 } 2413 #endif 2414 2415 // Remove this from the available list 2416 uint i; 2417 for (i = 0; i < _available.size(); i++) 2418 if (_available[i] == n) 2419 break; 2420 assert(i < _available.size(), "entry in _available list not found"); 2421 _available.remove(i); 2422 2423 // See if this fits in the current bundle 2424 const Pipeline *node_pipeline = n->pipeline(); 2425 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2426 2427 // Check for instructions to be placed in the delay slot. We 2428 // do this before we actually schedule the current instruction, 2429 // because the delay slot follows the current instruction. 2430 if (Pipeline::_branch_has_delay_slot && 2431 node_pipeline->hasBranchDelay() && 2432 !_unconditional_delay_slot) { 2433 2434 uint siz = _available.size(); 2435 2436 // Conditional branches can support an instruction that 2437 // is unconditionally executed and not dependent by the 2438 // branch, OR a conditionally executed instruction if 2439 // the branch is taken. In practice, this means that 2440 // the first instruction at the branch target is 2441 // copied to the delay slot, and the branch goes to 2442 // the instruction after that at the branch target 2443 if ( n->is_MachBranch() ) { 2444 2445 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2446 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2447 2448 #ifndef PRODUCT 2449 _branches++; 2450 #endif 2451 2452 // At least 1 instruction is on the available list 2453 // that is not dependent on the branch 2454 for (uint i = 0; i < siz; i++) { 2455 Node *d = _available[i]; 2456 const Pipeline *avail_pipeline = d->pipeline(); 2457 2458 // Don't allow safepoints in the branch shadow, that will 2459 // cause a number of difficulties 2460 if ( avail_pipeline->instructionCount() == 1 && 2461 !avail_pipeline->hasMultipleBundles() && 2462 !avail_pipeline->hasBranchDelay() && 2463 Pipeline::instr_has_unit_size() && 2464 d->size(_regalloc) == Pipeline::instr_unit_size() && 2465 NodeFitsInBundle(d) && 2466 !node_bundling(d)->used_in_delay()) { 2467 2468 if (d->is_Mach() && !d->is_MachSafePoint()) { 2469 // A node that fits in the delay slot was found, so we need to 2470 // set the appropriate bits in the bundle pipeline information so 2471 // that it correctly indicates resource usage. Later, when we 2472 // attempt to add this instruction to the bundle, we will skip 2473 // setting the resource usage. 2474 _unconditional_delay_slot = d; 2475 node_bundling(n)->set_use_unconditional_delay(); 2476 node_bundling(d)->set_used_in_unconditional_delay(); 2477 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2478 _current_latency[d->_idx] = _bundle_cycle_number; 2479 _next_node = d; 2480 ++_bundle_instr_count; 2481 #ifndef PRODUCT 2482 _unconditional_delays++; 2483 #endif 2484 break; 2485 } 2486 } 2487 } 2488 } 2489 2490 // No delay slot, add a nop to the usage 2491 if (!_unconditional_delay_slot) { 2492 // See if adding an instruction in the delay slot will overflow 2493 // the bundle. 2494 if (!NodeFitsInBundle(_nop)) { 2495 #ifndef PRODUCT 2496 if (_cfg->C->trace_opto_output()) 2497 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2498 #endif 2499 step(1); 2500 } 2501 2502 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2503 _next_node = _nop; 2504 ++_bundle_instr_count; 2505 } 2506 2507 // See if the instruction in the delay slot requires a 2508 // step of the bundles 2509 if (!NodeFitsInBundle(n)) { 2510 #ifndef PRODUCT 2511 if (_cfg->C->trace_opto_output()) 2512 tty->print("# *** STEP(branch won't fit) ***\n"); 2513 #endif 2514 // Update the state information 2515 _bundle_instr_count = 0; 2516 _bundle_cycle_number += 1; 2517 _bundle_use.step(1); 2518 } 2519 } 2520 2521 // Get the number of instructions 2522 uint instruction_count = node_pipeline->instructionCount(); 2523 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2524 instruction_count = 0; 2525 2526 // Compute the latency information 2527 uint delay = 0; 2528 2529 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2530 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2531 if (relative_latency < 0) 2532 relative_latency = 0; 2533 2534 delay = _bundle_use.full_latency(relative_latency, node_usage); 2535 2536 // Does not fit in this bundle, start a new one 2537 if (delay > 0) { 2538 step(delay); 2539 2540 #ifndef PRODUCT 2541 if (_cfg->C->trace_opto_output()) 2542 tty->print("# *** STEP(%d) ***\n", delay); 2543 #endif 2544 } 2545 } 2546 2547 // If this was placed in the delay slot, ignore it 2548 if (n != _unconditional_delay_slot) { 2549 2550 if (delay == 0) { 2551 if (node_pipeline->hasMultipleBundles()) { 2552 #ifndef PRODUCT 2553 if (_cfg->C->trace_opto_output()) 2554 tty->print("# *** STEP(multiple instructions) ***\n"); 2555 #endif 2556 step(1); 2557 } 2558 2559 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2560 #ifndef PRODUCT 2561 if (_cfg->C->trace_opto_output()) 2562 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2563 instruction_count + _bundle_instr_count, 2564 Pipeline::_max_instrs_per_cycle); 2565 #endif 2566 step(1); 2567 } 2568 } 2569 2570 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2571 _bundle_instr_count++; 2572 2573 // Set the node's latency 2574 _current_latency[n->_idx] = _bundle_cycle_number; 2575 2576 // Now merge the functional unit information 2577 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2578 _bundle_use.add_usage(node_usage); 2579 2580 // Increment the number of instructions in this bundle 2581 _bundle_instr_count += instruction_count; 2582 2583 // Remember this node for later 2584 if (n->is_Mach()) 2585 _next_node = n; 2586 } 2587 2588 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2589 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2590 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2591 // into the block. All other scheduled nodes get put in the schedule here. 2592 int op = n->Opcode(); 2593 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2594 (op != Op_Node && // Not an unused antidepedence node and 2595 // not an unallocated boxlock 2596 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2597 2598 // Push any trailing projections 2599 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2600 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2601 Node *foi = n->fast_out(i); 2602 if( foi->is_Proj() ) 2603 _scheduled.push(foi); 2604 } 2605 } 2606 2607 // Put the instruction in the schedule list 2608 _scheduled.push(n); 2609 } 2610 2611 #ifndef PRODUCT 2612 if (_cfg->C->trace_opto_output()) 2613 dump_available(); 2614 #endif 2615 2616 // Walk all the definitions, decrementing use counts, and 2617 // if a definition has a 0 use count, place it in the available list. 2618 DecrementUseCounts(n,bb); 2619 } 2620 2621 // This method sets the use count within a basic block. We will ignore all 2622 // uses outside the current basic block. As we are doing a backwards walk, 2623 // any node we reach that has a use count of 0 may be scheduled. This also 2624 // avoids the problem of cyclic references from phi nodes, as long as phi 2625 // nodes are at the front of the basic block. This method also initializes 2626 // the available list to the set of instructions that have no uses within this 2627 // basic block. 2628 void Scheduling::ComputeUseCount(const Block *bb) { 2629 #ifndef PRODUCT 2630 if (_cfg->C->trace_opto_output()) 2631 tty->print("# -> ComputeUseCount\n"); 2632 #endif 2633 2634 // Clear the list of available and scheduled instructions, just in case 2635 _available.clear(); 2636 _scheduled.clear(); 2637 2638 // No delay slot specified 2639 _unconditional_delay_slot = nullptr; 2640 2641 #ifdef ASSERT 2642 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2643 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2644 #endif 2645 2646 // Force the _uses count to never go to zero for unscheduable pieces 2647 // of the block 2648 for( uint k = 0; k < _bb_start; k++ ) 2649 _uses[bb->get_node(k)->_idx] = 1; 2650 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2651 _uses[bb->get_node(l)->_idx] = 1; 2652 2653 // Iterate backwards over the instructions in the block. Don't count the 2654 // branch projections at end or the block header instructions. 2655 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2656 Node *n = bb->get_node(j); 2657 if( n->is_Proj() ) continue; // Projections handled another way 2658 2659 // Account for all uses 2660 for ( uint k = 0; k < n->len(); k++ ) { 2661 Node *inp = n->in(k); 2662 if (!inp) continue; 2663 assert(inp != n, "no cycles allowed" ); 2664 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2665 if (inp->is_Proj()) { // Skip through Proj's 2666 inp = inp->in(0); 2667 } 2668 ++_uses[inp->_idx]; // Count 1 block-local use 2669 } 2670 } 2671 2672 // If this instruction has a 0 use count, then it is available 2673 if (!_uses[n->_idx]) { 2674 _current_latency[n->_idx] = _bundle_cycle_number; 2675 AddNodeToAvailableList(n); 2676 } 2677 2678 #ifndef PRODUCT 2679 if (_cfg->C->trace_opto_output()) { 2680 tty->print("# uses: %3d: ", _uses[n->_idx]); 2681 n->dump(); 2682 } 2683 #endif 2684 } 2685 2686 #ifndef PRODUCT 2687 if (_cfg->C->trace_opto_output()) 2688 tty->print("# <- ComputeUseCount\n"); 2689 #endif 2690 } 2691 2692 // This routine performs scheduling on each basic block in reverse order, 2693 // using instruction latencies and taking into account function unit 2694 // availability. 2695 void Scheduling::DoScheduling() { 2696 #ifndef PRODUCT 2697 if (_cfg->C->trace_opto_output()) 2698 tty->print("# -> DoScheduling\n"); 2699 #endif 2700 2701 Block *succ_bb = nullptr; 2702 Block *bb; 2703 Compile* C = Compile::current(); 2704 2705 // Walk over all the basic blocks in reverse order 2706 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2707 bb = _cfg->get_block(i); 2708 2709 #ifndef PRODUCT 2710 if (_cfg->C->trace_opto_output()) { 2711 tty->print("# Schedule BB#%03d (initial)\n", i); 2712 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2713 bb->get_node(j)->dump(); 2714 } 2715 } 2716 #endif 2717 2718 // On the head node, skip processing 2719 if (bb == _cfg->get_root_block()) { 2720 continue; 2721 } 2722 2723 // Skip empty, connector blocks 2724 if (bb->is_connector()) 2725 continue; 2726 2727 // If the following block is not the sole successor of 2728 // this one, then reset the pipeline information 2729 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2730 #ifndef PRODUCT 2731 if (_cfg->C->trace_opto_output()) { 2732 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2733 _next_node->_idx, _bundle_instr_count); 2734 } 2735 #endif 2736 step_and_clear(); 2737 } 2738 2739 // Leave untouched the starting instruction, any Phis, a CreateEx node 2740 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2741 _bb_end = bb->number_of_nodes()-1; 2742 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2743 Node *n = bb->get_node(_bb_start); 2744 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2745 // Also, MachIdealNodes do not get scheduled 2746 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2747 MachNode *mach = n->as_Mach(); 2748 int iop = mach->ideal_Opcode(); 2749 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2750 if( iop == Op_Con ) continue; // Do not schedule Top 2751 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2752 mach->pipeline() == MachNode::pipeline_class() && 2753 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2754 continue; 2755 break; // Funny loop structure to be sure... 2756 } 2757 // Compute last "interesting" instruction in block - last instruction we 2758 // might schedule. _bb_end points just after last schedulable inst. We 2759 // normally schedule conditional branches (despite them being forced last 2760 // in the block), because they have delay slots we can fill. Calls all 2761 // have their delay slots filled in the template expansions, so we don't 2762 // bother scheduling them. 2763 Node *last = bb->get_node(_bb_end); 2764 // Ignore trailing NOPs. 2765 while (_bb_end > 0 && last->is_Mach() && 2766 last->as_Mach()->ideal_Opcode() == Op_Con) { 2767 last = bb->get_node(--_bb_end); 2768 } 2769 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2770 if( last->is_Catch() || 2771 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2772 // There might be a prior call. Skip it. 2773 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2774 } else if( last->is_MachNullCheck() ) { 2775 // Backup so the last null-checked memory instruction is 2776 // outside the schedulable range. Skip over the nullcheck, 2777 // projection, and the memory nodes. 2778 Node *mem = last->in(1); 2779 do { 2780 _bb_end--; 2781 } while (mem != bb->get_node(_bb_end)); 2782 } else { 2783 // Set _bb_end to point after last schedulable inst. 2784 _bb_end++; 2785 } 2786 2787 assert( _bb_start <= _bb_end, "inverted block ends" ); 2788 2789 // Compute the register antidependencies for the basic block 2790 ComputeRegisterAntidependencies(bb); 2791 if (C->failing()) return; // too many D-U pinch points 2792 2793 // Compute the usage within the block, and set the list of all nodes 2794 // in the block that have no uses within the block. 2795 ComputeUseCount(bb); 2796 2797 // Schedule the remaining instructions in the block 2798 while ( _available.size() > 0 ) { 2799 Node *n = ChooseNodeToBundle(); 2800 guarantee(n != nullptr, "no nodes available"); 2801 AddNodeToBundle(n,bb); 2802 } 2803 2804 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2805 #ifdef ASSERT 2806 for( uint l = _bb_start; l < _bb_end; l++ ) { 2807 Node *n = bb->get_node(l); 2808 uint m; 2809 for( m = 0; m < _bb_end-_bb_start; m++ ) 2810 if( _scheduled[m] == n ) 2811 break; 2812 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2813 } 2814 #endif 2815 2816 // Now copy the instructions (in reverse order) back to the block 2817 for ( uint k = _bb_start; k < _bb_end; k++ ) 2818 bb->map_node(_scheduled[_bb_end-k-1], k); 2819 2820 #ifndef PRODUCT 2821 if (_cfg->C->trace_opto_output()) { 2822 tty->print("# Schedule BB#%03d (final)\n", i); 2823 uint current = 0; 2824 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2825 Node *n = bb->get_node(j); 2826 if( valid_bundle_info(n) ) { 2827 Bundle *bundle = node_bundling(n); 2828 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2829 tty->print("*** Bundle: "); 2830 bundle->dump(); 2831 } 2832 n->dump(); 2833 } 2834 } 2835 } 2836 #endif 2837 #ifdef ASSERT 2838 verify_good_schedule(bb,"after block local scheduling"); 2839 #endif 2840 } 2841 2842 #ifndef PRODUCT 2843 if (_cfg->C->trace_opto_output()) 2844 tty->print("# <- DoScheduling\n"); 2845 #endif 2846 2847 // Record final node-bundling array location 2848 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2849 2850 } // end DoScheduling 2851 2852 // Verify that no live-range used in the block is killed in the block by a 2853 // wrong DEF. This doesn't verify live-ranges that span blocks. 2854 2855 // Check for edge existence. Used to avoid adding redundant precedence edges. 2856 static bool edge_from_to( Node *from, Node *to ) { 2857 for( uint i=0; i<from->len(); i++ ) 2858 if( from->in(i) == to ) 2859 return true; 2860 return false; 2861 } 2862 2863 #ifdef ASSERT 2864 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2865 // Check for bad kills 2866 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2867 Node *prior_use = _reg_node[def]; 2868 if( prior_use && !edge_from_to(prior_use,n) ) { 2869 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2870 n->dump(); 2871 tty->print_cr("..."); 2872 prior_use->dump(); 2873 assert(edge_from_to(prior_use,n), "%s", msg); 2874 } 2875 _reg_node.map(def,nullptr); // Kill live USEs 2876 } 2877 } 2878 2879 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2880 2881 // Zap to something reasonable for the verify code 2882 _reg_node.clear(); 2883 2884 // Walk over the block backwards. Check to make sure each DEF doesn't 2885 // kill a live value (other than the one it's supposed to). Add each 2886 // USE to the live set. 2887 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2888 Node *n = b->get_node(i); 2889 int n_op = n->Opcode(); 2890 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2891 // Fat-proj kills a slew of registers 2892 RegMaskIterator rmi(n->out_RegMask()); 2893 while (rmi.has_next()) { 2894 OptoReg::Name kill = rmi.next(); 2895 verify_do_def(n, kill, msg); 2896 } 2897 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2898 // Get DEF'd registers the normal way 2899 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2900 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2901 } 2902 2903 // Now make all USEs live 2904 for( uint i=1; i<n->req(); i++ ) { 2905 Node *def = n->in(i); 2906 assert(def != nullptr, "input edge required"); 2907 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2908 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2909 if( OptoReg::is_valid(reg_lo) ) { 2910 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2911 _reg_node.map(reg_lo,n); 2912 } 2913 if( OptoReg::is_valid(reg_hi) ) { 2914 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2915 _reg_node.map(reg_hi,n); 2916 } 2917 } 2918 2919 } 2920 2921 // Zap to something reasonable for the Antidependence code 2922 _reg_node.clear(); 2923 } 2924 #endif 2925 2926 // Conditionally add precedence edges. Avoid putting edges on Projs. 2927 static void add_prec_edge_from_to( Node *from, Node *to ) { 2928 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2929 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 2930 from = from->in(0); 2931 } 2932 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2933 !edge_from_to( from, to ) ) // Avoid duplicate edge 2934 from->add_prec(to); 2935 } 2936 2937 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2938 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2939 return; 2940 2941 if (OptoReg::is_reg(def_reg)) { 2942 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2943 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2944 // This is one of the high slots of a vector register. 2945 // ScheduleAndBundle already checked there are no live wide 2946 // vectors in this method so it can be safely ignored. 2947 return; 2948 } 2949 } 2950 2951 Node *pinch = _reg_node[def_reg]; // Get pinch point 2952 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2953 is_def ) { // Check for a true def (not a kill) 2954 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2955 return; 2956 } 2957 2958 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2959 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2960 2961 // After some number of kills there _may_ be a later def 2962 Node *later_def = nullptr; 2963 2964 Compile* C = Compile::current(); 2965 2966 // Finding a kill requires a real pinch-point. 2967 // Check for not already having a pinch-point. 2968 // Pinch points are Op_Node's. 2969 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2970 later_def = pinch; // Must be def/kill as optimistic pinch-point 2971 if ( _pinch_free_list.size() > 0) { 2972 pinch = _pinch_free_list.pop(); 2973 } else { 2974 pinch = new Node(1); // Pinch point to-be 2975 } 2976 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2977 DEBUG_ONLY( pinch->dump(); ); 2978 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 2979 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2980 return; 2981 } 2982 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2983 _reg_node.map(def_reg,pinch); // Record pinch-point 2984 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2985 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2986 pinch->init_req(0, C->top()); // set not null for the next call 2987 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2988 later_def = nullptr; // and no later def 2989 } 2990 pinch->set_req(0,later_def); // Hook later def so we can find it 2991 } else { // Else have valid pinch point 2992 if( pinch->in(0) ) // If there is a later-def 2993 later_def = pinch->in(0); // Get it 2994 } 2995 2996 // Add output-dependence edge from later def to kill 2997 if( later_def ) // If there is some original def 2998 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2999 3000 // See if current kill is also a use, and so is forced to be the pinch-point. 3001 if( pinch->Opcode() == Op_Node ) { 3002 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3003 for( uint i=1; i<uses->req(); i++ ) { 3004 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3005 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3006 // Yes, found a use/kill pinch-point 3007 pinch->set_req(0,nullptr); // 3008 pinch->replace_by(kill); // Move anti-dep edges up 3009 pinch = kill; 3010 _reg_node.map(def_reg,pinch); 3011 return; 3012 } 3013 } 3014 } 3015 3016 // Add edge from kill to pinch-point 3017 add_prec_edge_from_to(kill,pinch); 3018 } 3019 3020 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3021 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3022 return; 3023 Node *pinch = _reg_node[use_reg]; // Get pinch point 3024 // Check for no later def_reg/kill in block 3025 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3026 // Use has to be block-local as well 3027 _cfg->get_block_for_node(use) == b) { 3028 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3029 pinch->req() == 1 ) { // pinch not yet in block? 3030 pinch->del_req(0); // yank pointer to later-def, also set flag 3031 // Insert the pinch-point in the block just after the last use 3032 b->insert_node(pinch, b->find_node(use) + 1); 3033 _bb_end++; // Increase size scheduled region in block 3034 } 3035 3036 add_prec_edge_from_to(pinch,use); 3037 } 3038 } 3039 3040 // We insert antidependences between the reads and following write of 3041 // allocated registers to prevent illegal code motion. Hopefully, the 3042 // number of added references should be fairly small, especially as we 3043 // are only adding references within the current basic block. 3044 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3045 3046 #ifdef ASSERT 3047 verify_good_schedule(b,"before block local scheduling"); 3048 #endif 3049 3050 // A valid schedule, for each register independently, is an endless cycle 3051 // of: a def, then some uses (connected to the def by true dependencies), 3052 // then some kills (defs with no uses), finally the cycle repeats with a new 3053 // def. The uses are allowed to float relative to each other, as are the 3054 // kills. No use is allowed to slide past a kill (or def). This requires 3055 // antidependencies between all uses of a single def and all kills that 3056 // follow, up to the next def. More edges are redundant, because later defs 3057 // & kills are already serialized with true or antidependencies. To keep 3058 // the edge count down, we add a 'pinch point' node if there's more than 3059 // one use or more than one kill/def. 3060 3061 // We add dependencies in one bottom-up pass. 3062 3063 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3064 3065 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3066 // register. If not, we record the DEF/KILL in _reg_node, the 3067 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3068 // "pinch point", a new Node that's in the graph but not in the block. 3069 // We put edges from the prior and current DEF/KILLs to the pinch point. 3070 // We put the pinch point in _reg_node. If there's already a pinch point 3071 // we merely add an edge from the current DEF/KILL to the pinch point. 3072 3073 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3074 // put an edge from the pinch point to the USE. 3075 3076 // To be expedient, the _reg_node array is pre-allocated for the whole 3077 // compilation. _reg_node is lazily initialized; it either contains a null, 3078 // or a valid def/kill/pinch-point, or a leftover node from some prior 3079 // block. Leftover node from some prior block is treated like a null (no 3080 // prior def, so no anti-dependence needed). Valid def is distinguished by 3081 // it being in the current block. 3082 bool fat_proj_seen = false; 3083 uint last_safept = _bb_end-1; 3084 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3085 Node* last_safept_node = end_node; 3086 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3087 Node *n = b->get_node(i); 3088 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3089 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3090 // Fat-proj kills a slew of registers 3091 // This can add edges to 'n' and obscure whether or not it was a def, 3092 // hence the is_def flag. 3093 fat_proj_seen = true; 3094 RegMaskIterator rmi(n->out_RegMask()); 3095 while (rmi.has_next()) { 3096 OptoReg::Name kill = rmi.next(); 3097 anti_do_def(b, n, kill, is_def); 3098 } 3099 } else { 3100 // Get DEF'd registers the normal way 3101 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3102 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3103 } 3104 3105 // Kill projections on a branch should appear to occur on the 3106 // branch, not afterwards, so grab the masks from the projections 3107 // and process them. 3108 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3109 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3110 Node* use = n->fast_out(i); 3111 if (use->is_Proj()) { 3112 RegMaskIterator rmi(use->out_RegMask()); 3113 while (rmi.has_next()) { 3114 OptoReg::Name kill = rmi.next(); 3115 anti_do_def(b, n, kill, false); 3116 } 3117 } 3118 } 3119 } 3120 3121 // Check each register used by this instruction for a following DEF/KILL 3122 // that must occur afterward and requires an anti-dependence edge. 3123 for( uint j=0; j<n->req(); j++ ) { 3124 Node *def = n->in(j); 3125 if( def ) { 3126 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3127 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3128 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3129 } 3130 } 3131 // Do not allow defs of new derived values to float above GC 3132 // points unless the base is definitely available at the GC point. 3133 3134 Node *m = b->get_node(i); 3135 3136 // Add precedence edge from following safepoint to use of derived pointer 3137 if( last_safept_node != end_node && 3138 m != last_safept_node) { 3139 for (uint k = 1; k < m->req(); k++) { 3140 const Type *t = m->in(k)->bottom_type(); 3141 if( t->isa_oop_ptr() && 3142 t->is_ptr()->offset() != 0 ) { 3143 last_safept_node->add_prec( m ); 3144 break; 3145 } 3146 } 3147 } 3148 3149 if( n->jvms() ) { // Precedence edge from derived to safept 3150 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3151 if( b->get_node(last_safept) != last_safept_node ) { 3152 last_safept = b->find_node(last_safept_node); 3153 } 3154 for( uint j=last_safept; j > i; j-- ) { 3155 Node *mach = b->get_node(j); 3156 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3157 mach->add_prec( n ); 3158 } 3159 last_safept = i; 3160 last_safept_node = m; 3161 } 3162 } 3163 3164 if (fat_proj_seen) { 3165 // Garbage collect pinch nodes that were not consumed. 3166 // They are usually created by a fat kill MachProj for a call. 3167 garbage_collect_pinch_nodes(); 3168 } 3169 } 3170 3171 // Garbage collect pinch nodes for reuse by other blocks. 3172 // 3173 // The block scheduler's insertion of anti-dependence 3174 // edges creates many pinch nodes when the block contains 3175 // 2 or more Calls. A pinch node is used to prevent a 3176 // combinatorial explosion of edges. If a set of kills for a 3177 // register is anti-dependent on a set of uses (or defs), rather 3178 // than adding an edge in the graph between each pair of kill 3179 // and use (or def), a pinch is inserted between them: 3180 // 3181 // use1 use2 use3 3182 // \ | / 3183 // \ | / 3184 // pinch 3185 // / | \ 3186 // / | \ 3187 // kill1 kill2 kill3 3188 // 3189 // One pinch node is created per register killed when 3190 // the second call is encountered during a backwards pass 3191 // over the block. Most of these pinch nodes are never 3192 // wired into the graph because the register is never 3193 // used or def'ed in the block. 3194 // 3195 void Scheduling::garbage_collect_pinch_nodes() { 3196 #ifndef PRODUCT 3197 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3198 #endif 3199 int trace_cnt = 0; 3200 for (uint k = 0; k < _reg_node.max(); k++) { 3201 Node* pinch = _reg_node[k]; 3202 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3203 // no predecence input edges 3204 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3205 cleanup_pinch(pinch); 3206 _pinch_free_list.push(pinch); 3207 _reg_node.map(k, nullptr); 3208 #ifndef PRODUCT 3209 if (_cfg->C->trace_opto_output()) { 3210 trace_cnt++; 3211 if (trace_cnt > 40) { 3212 tty->print("\n"); 3213 trace_cnt = 0; 3214 } 3215 tty->print(" %d", pinch->_idx); 3216 } 3217 #endif 3218 } 3219 } 3220 #ifndef PRODUCT 3221 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3222 #endif 3223 } 3224 3225 // Clean up a pinch node for reuse. 3226 void Scheduling::cleanup_pinch( Node *pinch ) { 3227 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3228 3229 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3230 Node* use = pinch->last_out(i); 3231 uint uses_found = 0; 3232 for (uint j = use->req(); j < use->len(); j++) { 3233 if (use->in(j) == pinch) { 3234 use->rm_prec(j); 3235 uses_found++; 3236 } 3237 } 3238 assert(uses_found > 0, "must be a precedence edge"); 3239 i -= uses_found; // we deleted 1 or more copies of this edge 3240 } 3241 // May have a later_def entry 3242 pinch->set_req(0, nullptr); 3243 } 3244 3245 #ifndef PRODUCT 3246 3247 void Scheduling::dump_available() const { 3248 tty->print("#Availist "); 3249 for (uint i = 0; i < _available.size(); i++) 3250 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3251 tty->cr(); 3252 } 3253 3254 // Print Scheduling Statistics 3255 void Scheduling::print_statistics() { 3256 // Print the size added by nops for bundling 3257 tty->print("Nops added %d bytes to total of %d bytes", 3258 _total_nop_size, _total_method_size); 3259 if (_total_method_size > 0) 3260 tty->print(", for %.2f%%", 3261 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3262 tty->print("\n"); 3263 3264 // Print the number of branch shadows filled 3265 if (Pipeline::_branch_has_delay_slot) { 3266 tty->print("Of %d branches, %d had unconditional delay slots filled", 3267 _total_branches, _total_unconditional_delays); 3268 if (_total_branches > 0) 3269 tty->print(", for %.2f%%", 3270 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3271 tty->print("\n"); 3272 } 3273 3274 uint total_instructions = 0, total_bundles = 0; 3275 3276 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3277 uint bundle_count = _total_instructions_per_bundle[i]; 3278 total_instructions += bundle_count * i; 3279 total_bundles += bundle_count; 3280 } 3281 3282 if (total_bundles > 0) 3283 tty->print("Average ILP (excluding nops) is %.2f\n", 3284 ((double)total_instructions) / ((double)total_bundles)); 3285 } 3286 #endif 3287 3288 //-----------------------init_scratch_buffer_blob------------------------------ 3289 // Construct a temporary BufferBlob and cache it for this compile. 3290 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3291 // If there is already a scratch buffer blob allocated and the 3292 // constant section is big enough, use it. Otherwise free the 3293 // current and allocate a new one. 3294 BufferBlob* blob = scratch_buffer_blob(); 3295 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3296 // Use the current blob. 3297 } else { 3298 if (blob != nullptr) { 3299 BufferBlob::free(blob); 3300 } 3301 3302 ResourceMark rm; 3303 _scratch_const_size = const_size; 3304 int size = C2Compiler::initial_code_buffer_size(const_size); 3305 blob = BufferBlob::create("Compile::scratch_buffer", size); 3306 // Record the buffer blob for next time. 3307 set_scratch_buffer_blob(blob); 3308 // Have we run out of code space? 3309 if (scratch_buffer_blob() == nullptr) { 3310 // Let CompilerBroker disable further compilations. 3311 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3312 return; 3313 } 3314 } 3315 3316 // Initialize the relocation buffers 3317 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3318 set_scratch_locs_memory(locs_buf); 3319 } 3320 3321 3322 //-----------------------scratch_emit_size------------------------------------- 3323 // Helper function that computes size by emitting code 3324 uint PhaseOutput::scratch_emit_size(const Node* n) { 3325 // Start scratch_emit_size section. 3326 set_in_scratch_emit_size(true); 3327 3328 // Emit into a trash buffer and count bytes emitted. 3329 // This is a pretty expensive way to compute a size, 3330 // but it works well enough if seldom used. 3331 // All common fixed-size instructions are given a size 3332 // method by the AD file. 3333 // Note that the scratch buffer blob and locs memory are 3334 // allocated at the beginning of the compile task, and 3335 // may be shared by several calls to scratch_emit_size. 3336 // The allocation of the scratch buffer blob is particularly 3337 // expensive, since it has to grab the code cache lock. 3338 BufferBlob* blob = this->scratch_buffer_blob(); 3339 assert(blob != nullptr, "Initialize BufferBlob at start"); 3340 assert(blob->size() > MAX_inst_size, "sanity"); 3341 relocInfo* locs_buf = scratch_locs_memory(); 3342 address blob_begin = blob->content_begin(); 3343 address blob_end = (address)locs_buf; 3344 assert(blob->contains(blob_end), "sanity"); 3345 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3346 buf.initialize_consts_size(_scratch_const_size); 3347 buf.initialize_stubs_size(MAX_stubs_size); 3348 assert(locs_buf != nullptr, "sanity"); 3349 int lsize = MAX_locs_size / 3; 3350 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3351 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3352 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3353 // Mark as scratch buffer. 3354 buf.consts()->set_scratch_emit(); 3355 buf.insts()->set_scratch_emit(); 3356 buf.stubs()->set_scratch_emit(); 3357 3358 // Do the emission. 3359 3360 Label fakeL; // Fake label for branch instructions. 3361 Label* saveL = nullptr; 3362 uint save_bnum = 0; 3363 bool is_branch = n->is_MachBranch(); 3364 C2_MacroAssembler masm(&buf); 3365 masm.bind(fakeL); 3366 if (is_branch) { 3367 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3368 n->as_MachBranch()->label_set(&fakeL, 0); 3369 } 3370 n->emit(&masm, C->regalloc()); 3371 3372 // Emitting into the scratch buffer should not fail 3373 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3374 3375 if (is_branch) // Restore label. 3376 n->as_MachBranch()->label_set(saveL, save_bnum); 3377 3378 // End scratch_emit_size section. 3379 set_in_scratch_emit_size(false); 3380 3381 return buf.insts_size(); 3382 } 3383 3384 void PhaseOutput::install() { 3385 if (!C->should_install_code()) { 3386 return; 3387 } else if (C->stub_function() != nullptr) { 3388 install_stub(C->stub_name()); 3389 } else { 3390 install_code(C->method(), 3391 C->entry_bci(), 3392 CompileBroker::compiler2(), 3393 C->has_unsafe_access(), 3394 SharedRuntime::is_wide_vector(C->max_vector_size())); 3395 } 3396 } 3397 3398 void PhaseOutput::install_code(ciMethod* target, 3399 int entry_bci, 3400 AbstractCompiler* compiler, 3401 bool has_unsafe_access, 3402 bool has_wide_vectors) { 3403 // Check if we want to skip execution of all compiled code. 3404 { 3405 #ifndef PRODUCT 3406 if (OptoNoExecute) { 3407 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3408 return; 3409 } 3410 #endif 3411 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3412 3413 if (C->is_osr_compilation()) { 3414 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3415 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3416 } else { 3417 if (!target->is_static()) { 3418 // The UEP of an nmethod ensures that the VEP is padded. However, the padding of the UEP is placed 3419 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 3420 // through the UEP, yet we can ensure that the VEP is aligned appropriately. 3421 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size - MacroAssembler::ic_check_size()); 3422 } 3423 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3424 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3425 } 3426 3427 C->env()->register_method(target, 3428 entry_bci, 3429 &_code_offsets, 3430 _orig_pc_slot_offset_in_bytes, 3431 code_buffer(), 3432 frame_size_in_words(), 3433 oop_map_set(), 3434 &_handler_table, 3435 inc_table(), 3436 compiler, 3437 has_unsafe_access, 3438 SharedRuntime::is_wide_vector(C->max_vector_size()), 3439 C->has_monitors(), 3440 C->has_scoped_access(), 3441 0); 3442 3443 if (C->log() != nullptr) { // Print code cache state into compiler log 3444 C->log()->code_cache_state(); 3445 } 3446 } 3447 } 3448 void PhaseOutput::install_stub(const char* stub_name) { 3449 // Entry point will be accessed using stub_entry_point(); 3450 if (code_buffer() == nullptr) { 3451 Matcher::soft_match_failure(); 3452 } else { 3453 if (PrintAssembly && (WizardMode || Verbose)) 3454 tty->print_cr("### Stub::%s", stub_name); 3455 3456 if (!C->failing()) { 3457 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3458 3459 // Make the NMethod 3460 // For now we mark the frame as never safe for profile stackwalking 3461 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3462 code_buffer(), 3463 CodeOffsets::frame_never_safe, 3464 // _code_offsets.value(CodeOffsets::Frame_Complete), 3465 frame_size_in_words(), 3466 oop_map_set(), 3467 false); 3468 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check"); 3469 3470 C->set_stub_entry_point(rs->entry_point()); 3471 } 3472 } 3473 } 3474 3475 // Support for bundling info 3476 Bundle* PhaseOutput::node_bundling(const Node *n) { 3477 assert(valid_bundle_info(n), "oob"); 3478 return &_node_bundling_base[n->_idx]; 3479 } 3480 3481 bool PhaseOutput::valid_bundle_info(const Node *n) { 3482 return (_node_bundling_limit > n->_idx); 3483 } 3484 3485 //------------------------------frame_size_in_words----------------------------- 3486 // frame_slots in units of words 3487 int PhaseOutput::frame_size_in_words() const { 3488 // shift is 0 in LP32 and 1 in LP64 3489 const int shift = (LogBytesPerWord - LogBytesPerInt); 3490 int words = _frame_slots >> shift; 3491 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3492 return words; 3493 } 3494 3495 // To bang the stack of this compiled method we use the stack size 3496 // that the interpreter would need in case of a deoptimization. This 3497 // removes the need to bang the stack in the deoptimization blob which 3498 // in turn simplifies stack overflow handling. 3499 int PhaseOutput::bang_size_in_bytes() const { 3500 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3501 } 3502 3503 //------------------------------dump_asm--------------------------------------- 3504 // Dump formatted assembly 3505 #if defined(SUPPORT_OPTO_ASSEMBLY) 3506 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3507 3508 int pc_digits = 3; // #chars required for pc 3509 int sb_chars = 3; // #chars for "start bundle" indicator 3510 int tab_size = 8; 3511 if (pcs != nullptr) { 3512 int max_pc = 0; 3513 for (uint i = 0; i < pc_limit; i++) { 3514 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3515 } 3516 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3517 } 3518 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3519 3520 bool cut_short = false; 3521 st->print_cr("#"); 3522 st->print("# "); C->tf()->dump_on(st); st->cr(); 3523 st->print_cr("#"); 3524 3525 // For all blocks 3526 int pc = 0x0; // Program counter 3527 char starts_bundle = ' '; 3528 C->regalloc()->dump_frame(); 3529 3530 Node *n = nullptr; 3531 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3532 if (VMThread::should_terminate()) { 3533 cut_short = true; 3534 break; 3535 } 3536 Block* block = C->cfg()->get_block(i); 3537 if (block->is_connector() && !Verbose) { 3538 continue; 3539 } 3540 n = block->head(); 3541 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3542 pc = pcs[n->_idx]; 3543 st->print("%*.*x", pc_digits, pc_digits, pc); 3544 } 3545 st->fill_to(prefix_len); 3546 block->dump_head(C->cfg(), st); 3547 if (block->is_connector()) { 3548 st->fill_to(prefix_len); 3549 st->print_cr("# Empty connector block"); 3550 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3551 st->fill_to(prefix_len); 3552 st->print_cr("# Block is sole successor of call"); 3553 } 3554 3555 // For all instructions 3556 Node *delay = nullptr; 3557 for (uint j = 0; j < block->number_of_nodes(); j++) { 3558 if (VMThread::should_terminate()) { 3559 cut_short = true; 3560 break; 3561 } 3562 n = block->get_node(j); 3563 if (valid_bundle_info(n)) { 3564 Bundle* bundle = node_bundling(n); 3565 if (bundle->used_in_unconditional_delay()) { 3566 delay = n; 3567 continue; 3568 } 3569 if (bundle->starts_bundle()) { 3570 starts_bundle = '+'; 3571 } 3572 } 3573 3574 if (WizardMode) { 3575 n->dump(); 3576 } 3577 3578 if( !n->is_Region() && // Dont print in the Assembly 3579 !n->is_Phi() && // a few noisely useless nodes 3580 !n->is_Proj() && 3581 !n->is_MachTemp() && 3582 !n->is_SafePointScalarObject() && 3583 !n->is_Catch() && // Would be nice to print exception table targets 3584 !n->is_MergeMem() && // Not very interesting 3585 !n->is_top() && // Debug info table constants 3586 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3587 ) { 3588 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3589 pc = pcs[n->_idx]; 3590 st->print("%*.*x", pc_digits, pc_digits, pc); 3591 } else { 3592 st->fill_to(pc_digits); 3593 } 3594 st->print(" %c ", starts_bundle); 3595 starts_bundle = ' '; 3596 st->fill_to(prefix_len); 3597 n->format(C->regalloc(), st); 3598 st->cr(); 3599 } 3600 3601 // If we have an instruction with a delay slot, and have seen a delay, 3602 // then back up and print it 3603 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3604 // Coverity finding - Explicit null dereferenced. 3605 guarantee(delay != nullptr, "no unconditional delay instruction"); 3606 if (WizardMode) delay->dump(); 3607 3608 if (node_bundling(delay)->starts_bundle()) 3609 starts_bundle = '+'; 3610 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3611 pc = pcs[n->_idx]; 3612 st->print("%*.*x", pc_digits, pc_digits, pc); 3613 } else { 3614 st->fill_to(pc_digits); 3615 } 3616 st->print(" %c ", starts_bundle); 3617 starts_bundle = ' '; 3618 st->fill_to(prefix_len); 3619 delay->format(C->regalloc(), st); 3620 st->cr(); 3621 delay = nullptr; 3622 } 3623 3624 // Dump the exception table as well 3625 if( n->is_Catch() && (Verbose || WizardMode) ) { 3626 // Print the exception table for this offset 3627 _handler_table.print_subtable_for(pc); 3628 } 3629 st->bol(); // Make sure we start on a new line 3630 } 3631 st->cr(); // one empty line between blocks 3632 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3633 } // End of per-block dump 3634 3635 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3636 } 3637 #endif 3638 3639 #ifndef PRODUCT 3640 void PhaseOutput::print_statistics() { 3641 Scheduling::print_statistics(); 3642 } 3643 #endif