1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/gc_globals.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/allocation.hpp"
  40 #include "opto/ad.hpp"
  41 #include "opto/block.hpp"
  42 #include "opto/c2compiler.hpp"
  43 #include "opto/c2_MacroAssembler.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/locknode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/node.hpp"
  49 #include "opto/optoreg.hpp"
  50 #include "opto/output.hpp"
  51 #include "opto/regalloc.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/subnode.hpp"
  54 #include "opto/type.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "utilities/macros.hpp"
  58 #include "utilities/powerOfTwo.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 
  61 #ifndef PRODUCT
  62 #define DEBUG_ARG(x) , x
  63 #else
  64 #define DEBUG_ARG(x)
  65 #endif
  66 
  67 //------------------------------Scheduling----------------------------------
  68 // This class contains all the information necessary to implement instruction
  69 // scheduling and bundling.
  70 class Scheduling {
  71 
  72 private:
  73   // Arena to use
  74   Arena *_arena;
  75 
  76   // Control-Flow Graph info
  77   PhaseCFG *_cfg;
  78 
  79   // Register Allocation info
  80   PhaseRegAlloc *_regalloc;
  81 
  82   // Number of nodes in the method
  83   uint _node_bundling_limit;
  84 
  85   // List of scheduled nodes. Generated in reverse order
  86   Node_List _scheduled;
  87 
  88   // List of nodes currently available for choosing for scheduling
  89   Node_List _available;
  90 
  91   // For each instruction beginning a bundle, the number of following
  92   // nodes to be bundled with it.
  93   Bundle *_node_bundling_base;
  94 
  95   // Mapping from register to Node
  96   Node_List _reg_node;
  97 
  98   // Free list for pinch nodes.
  99   Node_List _pinch_free_list;
 100 
 101   // Number of uses of this node within the containing basic block.
 102   short *_uses;
 103 
 104   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 105   // front, branch+proj at end.  Also skips Catch/CProj (same as
 106   // branch-at-end), plus just-prior exception-throwing call.
 107   uint _bb_start, _bb_end;
 108 
 109   // Latency from the end of the basic block as scheduled
 110   unsigned short *_current_latency;
 111 
 112   // Remember the next node
 113   Node *_next_node;
 114 
 115   // Use this for an unconditional branch delay slot
 116   Node *_unconditional_delay_slot;
 117 
 118   // Pointer to a Nop
 119   MachNopNode *_nop;
 120 
 121   // Length of the current bundle, in instructions
 122   uint _bundle_instr_count;
 123 
 124   // Current Cycle number, for computing latencies and bundling
 125   uint _bundle_cycle_number;
 126 
 127   // Bundle information
 128   Pipeline_Use_Element _bundle_use_elements[resource_count];
 129   Pipeline_Use         _bundle_use;
 130 
 131   // Dump the available list
 132   void dump_available() const;
 133 
 134 public:
 135   Scheduling(Arena *arena, Compile &compile);
 136 
 137   // Destructor
 138   NOT_PRODUCT( ~Scheduling(); )
 139 
 140   // Step ahead "i" cycles
 141   void step(uint i);
 142 
 143   // Step ahead 1 cycle, and clear the bundle state (for example,
 144   // at a branch target)
 145   void step_and_clear();
 146 
 147   Bundle* node_bundling(const Node *n) {
 148     assert(valid_bundle_info(n), "oob");
 149     return (&_node_bundling_base[n->_idx]);
 150   }
 151 
 152   bool valid_bundle_info(const Node *n) const {
 153     return (_node_bundling_limit > n->_idx);
 154   }
 155 
 156   bool starts_bundle(const Node *n) const {
 157     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 158   }
 159 
 160   // Do the scheduling
 161   void DoScheduling();
 162 
 163   // Compute the register antidependencies within a basic block
 164   void ComputeRegisterAntidependencies(Block *bb);
 165   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 166   void verify_good_schedule( Block *b, const char *msg );
 167   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 168   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 169 
 170   // Add a node to the current bundle
 171   void AddNodeToBundle(Node *n, const Block *bb);
 172 
 173   // Return an integer less than, equal to, or greater than zero
 174   // if the stack offset of the first argument is respectively
 175   // less than, equal to, or greater than the second.
 176   int compare_two_spill_nodes(Node* first, Node* second);
 177 
 178   // Add a node to the list of available nodes
 179   void AddNodeToAvailableList(Node *n);
 180 
 181   // Compute the local use count for the nodes in a block, and compute
 182   // the list of instructions with no uses in the block as available
 183   void ComputeUseCount(const Block *bb);
 184 
 185   // Choose an instruction from the available list to add to the bundle
 186   Node * ChooseNodeToBundle();
 187 
 188   // See if this Node fits into the currently accumulating bundle
 189   bool NodeFitsInBundle(Node *n);
 190 
 191   // Decrement the use count for a node
 192  void DecrementUseCounts(Node *n, const Block *bb);
 193 
 194   // Garbage collect pinch nodes for reuse by other blocks.
 195   void garbage_collect_pinch_nodes();
 196   // Clean up a pinch node for reuse (helper for above).
 197   void cleanup_pinch( Node *pinch );
 198 
 199   // Information for statistics gathering
 200 #ifndef PRODUCT
 201 private:
 202   // Gather information on size of nops relative to total
 203   uint _branches, _unconditional_delays;
 204 
 205   static uint _total_nop_size, _total_method_size;
 206   static uint _total_branches, _total_unconditional_delays;
 207   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 208 
 209 public:
 210   static void print_statistics();
 211 
 212   static void increment_instructions_per_bundle(uint i) {
 213     _total_instructions_per_bundle[i]++;
 214   }
 215 
 216   static void increment_nop_size(uint s) {
 217     _total_nop_size += s;
 218   }
 219 
 220   static void increment_method_size(uint s) {
 221     _total_method_size += s;
 222   }
 223 #endif
 224 
 225 };
 226 
 227 PhaseOutput::PhaseOutput()
 228   : Phase(Phase::Output),
 229     _code_buffer("Compile::Fill_buffer"),
 230     _first_block_size(0),
 231     _handler_table(),
 232     _inc_table(),
 233     _stub_list(),
 234     _oop_map_set(nullptr),
 235     _scratch_buffer_blob(nullptr),
 236     _scratch_locs_memory(nullptr),
 237     _scratch_const_size(-1),
 238     _in_scratch_emit_size(false),
 239     _frame_slots(0),
 240     _code_offsets(),
 241     _node_bundling_limit(0),
 242     _node_bundling_base(nullptr),
 243     _orig_pc_slot(0),
 244     _orig_pc_slot_offset_in_bytes(0),
 245     _buf_sizes(),
 246     _block(nullptr),
 247     _index(0) {
 248   C->set_output(this);
 249   if (C->stub_name() == nullptr) {
 250     int fixed_slots = C->fixed_slots();
 251     if (C->needs_stack_repair()) {
 252       fixed_slots -= 2;
 253     }
 254     // TODO 8284443 Only reserve extra slot if needed
 255     if (InlineTypeReturnedAsFields) {
 256       fixed_slots -= 2;
 257     }
 258     _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size);
 259   }
 260 }
 261 
 262 PhaseOutput::~PhaseOutput() {
 263   C->set_output(nullptr);
 264   if (_scratch_buffer_blob != nullptr) {
 265     BufferBlob::free(_scratch_buffer_blob);
 266   }
 267 }
 268 
 269 void PhaseOutput::perform_mach_node_analysis() {
 270   // Late barrier analysis must be done after schedule and bundle
 271   // Otherwise liveness based spilling will fail
 272   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 273   bs->late_barrier_analysis();
 274 
 275   pd_perform_mach_node_analysis();
 276 
 277   C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3);
 278 }
 279 
 280 // Convert Nodes to instruction bits and pass off to the VM
 281 void PhaseOutput::Output() {
 282   // RootNode goes
 283   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 284 
 285   // The number of new nodes (mostly MachNop) is proportional to
 286   // the number of java calls and inner loops which are aligned.
 287   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 288                             C->inner_loops()*(OptoLoopAlignment-1)),
 289                            "out of nodes before code generation" ) ) {
 290     return;
 291   }
 292   // Make sure I can find the Start Node
 293   Block *entry = C->cfg()->get_block(1);
 294   Block *broot = C->cfg()->get_root_block();
 295 
 296   const StartNode *start = entry->head()->as_Start();
 297 
 298   // Replace StartNode with prolog
 299   Label verified_entry;
 300   MachPrologNode* prolog = new MachPrologNode(&verified_entry);
 301   entry->map_node(prolog, 0);
 302   C->cfg()->map_node_to_block(prolog, entry);
 303   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 304 
 305   // Virtual methods need an unverified entry point
 306   if (C->is_osr_compilation()) {
 307     if (PoisonOSREntry) {
 308       // TODO: Should use a ShouldNotReachHereNode...
 309       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 310     }
 311   } else {
 312     if (C->method()) {
 313       if (C->method()->has_scalarized_args()) {
 314         // Add entry point to unpack all inline type arguments
 315         C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false));
 316         if (!C->method()->is_static()) {
 317           // Add verified/unverified entry points to only unpack inline type receiver at interface calls
 318           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false));
 319           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true,  /* receiver_only */ true));
 320           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true));
 321         }
 322       } else if (!C->method()->is_static()) {
 323         // Insert unvalidated entry point
 324         C->cfg()->insert(broot, 0, new MachUEPNode());
 325       }
 326     }
 327   }
 328 
 329   // Break before main entry point
 330   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 331       (OptoBreakpoint && C->is_method_compilation())       ||
 332       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 333       (OptoBreakpointC2R && !C->method())                   ) {
 334     // checking for C->method() means that OptoBreakpoint does not apply to
 335     // runtime stubs or frame converters
 336     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 337   }
 338 
 339   // Insert epilogs before every return
 340   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 341     Block* block = C->cfg()->get_block(i);
 342     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 343       Node* m = block->end();
 344       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 345         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 346         block->add_inst(epilog);
 347         C->cfg()->map_node_to_block(epilog, block);
 348       }
 349     }
 350   }
 351 
 352   // Keeper of sizing aspects
 353   _buf_sizes = BufferSizingData();
 354 
 355   // Initialize code buffer
 356   estimate_buffer_size(_buf_sizes._const);
 357   if (C->failing()) return;
 358 
 359   // Pre-compute the length of blocks and replace
 360   // long branches with short if machine supports it.
 361   // Must be done before ScheduleAndBundle due to SPARC delay slots
 362   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 363   blk_starts[0] = 0;
 364   shorten_branches(blk_starts);
 365 
 366   if (!C->is_osr_compilation() && C->has_scalarized_args()) {
 367     // Compute the offsets of the entry points required by the inline type calling convention
 368     if (!C->method()->is_static()) {
 369       // We have entries at the beginning of the method, implemented by the first 4 nodes.
 370       // Entry                     (unverified) @ offset 0
 371       // Verified_Inline_Entry_RO
 372       // Inline_Entry              (unverified)
 373       // Verified_Inline_Entry
 374       uint offset = 0;
 375       _code_offsets.set_value(CodeOffsets::Entry, offset);
 376 
 377       offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc());
 378       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset);
 379 
 380       offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc());
 381       _code_offsets.set_value(CodeOffsets::Inline_Entry, offset);
 382 
 383       offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc());
 384       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset);
 385     } else {
 386       _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later
 387       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0);
 388     }
 389   }
 390 
 391   ScheduleAndBundle();
 392   if (C->failing()) {
 393     return;
 394   }
 395 
 396   perform_mach_node_analysis();
 397 
 398   // Complete sizing of codebuffer
 399   CodeBuffer* cb = init_buffer();
 400   if (cb == nullptr || C->failing()) {
 401     return;
 402   }
 403 
 404   BuildOopMaps();
 405 
 406   if (C->failing())  {
 407     return;
 408   }
 409 
 410   C2_MacroAssembler masm(cb);
 411   fill_buffer(&masm, blk_starts);
 412 }
 413 
 414 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 415   // Determine if we need to generate a stack overflow check.
 416   // Do it if the method is not a stub function and
 417   // has java calls or has frame size > vm_page_size/8.
 418   // The debug VM checks that deoptimization doesn't trigger an
 419   // unexpected stack overflow (compiled method stack banging should
 420   // guarantee it doesn't happen) so we always need the stack bang in
 421   // a debug VM.
 422   return (C->stub_function() == nullptr &&
 423           (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3
 424            DEBUG_ONLY(|| true)));
 425 }
 426 
 427 bool PhaseOutput::need_register_stack_bang() const {
 428   // Determine if we need to generate a register stack overflow check.
 429   // This is only used on architectures which have split register
 430   // and memory stacks (ie. IA64).
 431   // Bang if the method is not a stub function and has java calls
 432   return (C->stub_function() == nullptr && C->has_java_calls());
 433 }
 434 
 435 
 436 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 437 // of a loop. When aligning a loop we need to provide enough instructions
 438 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 439 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 440 // By default, the size is set to 999999 by Block's constructor so that
 441 // a loop will be aligned if the size is not reset here.
 442 //
 443 // Note: Mach instructions could contain several HW instructions
 444 // so the size is estimated only.
 445 //
 446 void PhaseOutput::compute_loop_first_inst_sizes() {
 447   // The next condition is used to gate the loop alignment optimization.
 448   // Don't aligned a loop if there are enough instructions at the head of a loop
 449   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 450   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 451   // equal to 11 bytes which is the largest address NOP instruction.
 452   if (MaxLoopPad < OptoLoopAlignment - 1) {
 453     uint last_block = C->cfg()->number_of_blocks() - 1;
 454     for (uint i = 1; i <= last_block; i++) {
 455       Block* block = C->cfg()->get_block(i);
 456       // Check the first loop's block which requires an alignment.
 457       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 458         uint sum_size = 0;
 459         uint inst_cnt = NumberOfLoopInstrToAlign;
 460         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 461 
 462         // Check subsequent fallthrough blocks if the loop's first
 463         // block(s) does not have enough instructions.
 464         Block *nb = block;
 465         while(inst_cnt > 0 &&
 466               i < last_block &&
 467               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 468               !nb->has_successor(block)) {
 469           i++;
 470           nb = C->cfg()->get_block(i);
 471           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 472         } // while( inst_cnt > 0 && i < last_block  )
 473 
 474         block->set_first_inst_size(sum_size);
 475       } // f( b->head()->is_Loop() )
 476     } // for( i <= last_block )
 477   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 478 }
 479 
 480 // The architecture description provides short branch variants for some long
 481 // branch instructions. Replace eligible long branches with short branches.
 482 void PhaseOutput::shorten_branches(uint* blk_starts) {
 483 
 484   Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]);
 485 
 486   // Compute size of each block, method size, and relocation information size
 487   uint nblocks  = C->cfg()->number_of_blocks();
 488 
 489   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 490   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 491   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 492 
 493   // Collect worst case block paddings
 494   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 495   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 496 
 497   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 498   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 499 
 500   bool has_short_branch_candidate = false;
 501 
 502   // Initialize the sizes to 0
 503   int code_size  = 0;          // Size in bytes of generated code
 504   int stub_size  = 0;          // Size in bytes of all stub entries
 505   // Size in bytes of all relocation entries, including those in local stubs.
 506   // Start with 2-bytes of reloc info for the unvalidated entry point
 507   int reloc_size = 1;          // Number of relocation entries
 508 
 509   // Make three passes.  The first computes pessimistic blk_starts,
 510   // relative jmp_offset and reloc_size information.  The second performs
 511   // short branch substitution using the pessimistic sizing.  The
 512   // third inserts nops where needed.
 513 
 514   // Step one, perform a pessimistic sizing pass.
 515   uint last_call_adr = max_juint;
 516   uint last_avoid_back_to_back_adr = max_juint;
 517   uint nop_size = (new MachNopNode())->size(C->regalloc());
 518   for (uint i = 0; i < nblocks; i++) { // For all blocks
 519     Block* block = C->cfg()->get_block(i);
 520     _block = block;
 521 
 522     // During short branch replacement, we store the relative (to blk_starts)
 523     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 524     // This is so that we do not need to recompute sizes of all nodes when
 525     // we compute correct blk_starts in our next sizing pass.
 526     jmp_offset[i] = 0;
 527     jmp_size[i]   = 0;
 528     jmp_nidx[i]   = -1;
 529     DEBUG_ONLY( jmp_target[i] = 0; )
 530     DEBUG_ONLY( jmp_rule[i]   = 0; )
 531 
 532     // Sum all instruction sizes to compute block size
 533     uint last_inst = block->number_of_nodes();
 534     uint blk_size = 0;
 535     for (uint j = 0; j < last_inst; j++) {
 536       _index = j;
 537       Node* nj = block->get_node(_index);
 538       // Handle machine instruction nodes
 539       if (nj->is_Mach()) {
 540         MachNode* mach = nj->as_Mach();
 541         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 542         reloc_size += mach->reloc();
 543         if (mach->is_MachCall()) {
 544           // add size information for trampoline stub
 545           // class CallStubImpl is platform-specific and defined in the *.ad files.
 546           stub_size  += CallStubImpl::size_call_trampoline();
 547           reloc_size += CallStubImpl::reloc_call_trampoline();
 548 
 549           MachCallNode *mcall = mach->as_MachCall();
 550           // This destination address is NOT PC-relative
 551 
 552           if (mcall->entry_point() != nullptr) {
 553             mcall->method_set((intptr_t)mcall->entry_point());
 554           }
 555 
 556           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 557             stub_size  += CompiledDirectCall::to_interp_stub_size();
 558             reloc_size += CompiledDirectCall::reloc_to_interp_stub();
 559           }
 560         } else if (mach->is_MachSafePoint()) {
 561           // If call/safepoint are adjacent, account for possible
 562           // nop to disambiguate the two safepoints.
 563           // ScheduleAndBundle() can rearrange nodes in a block,
 564           // check for all offsets inside this block.
 565           if (last_call_adr >= blk_starts[i]) {
 566             blk_size += nop_size;
 567           }
 568         }
 569         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 570           // Nop is inserted between "avoid back to back" instructions.
 571           // ScheduleAndBundle() can rearrange nodes in a block,
 572           // check for all offsets inside this block.
 573           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 574             blk_size += nop_size;
 575           }
 576         }
 577         if (mach->may_be_short_branch()) {
 578           if (!nj->is_MachBranch()) {
 579 #ifndef PRODUCT
 580             nj->dump(3);
 581 #endif
 582             Unimplemented();
 583           }
 584           assert(jmp_nidx[i] == -1, "block should have only one branch");
 585           jmp_offset[i] = blk_size;
 586           jmp_size[i]   = nj->size(C->regalloc());
 587           jmp_nidx[i]   = j;
 588           has_short_branch_candidate = true;
 589         }
 590       }
 591       blk_size += nj->size(C->regalloc());
 592       // Remember end of call offset
 593       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 594         last_call_adr = blk_starts[i]+blk_size;
 595       }
 596       // Remember end of avoid_back_to_back offset
 597       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 598         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 599       }
 600     }
 601 
 602     // When the next block starts a loop, we may insert pad NOP
 603     // instructions.  Since we cannot know our future alignment,
 604     // assume the worst.
 605     if (i < nblocks - 1) {
 606       Block* nb = C->cfg()->get_block(i + 1);
 607       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 608       if (max_loop_pad > 0) {
 609         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 610         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 611         // If either is the last instruction in this block, bump by
 612         // max_loop_pad in lock-step with blk_size, so sizing
 613         // calculations in subsequent blocks still can conservatively
 614         // detect that it may the last instruction in this block.
 615         if (last_call_adr == blk_starts[i]+blk_size) {
 616           last_call_adr += max_loop_pad;
 617         }
 618         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 619           last_avoid_back_to_back_adr += max_loop_pad;
 620         }
 621         blk_size += max_loop_pad;
 622         block_worst_case_pad[i + 1] = max_loop_pad;
 623       }
 624     }
 625 
 626     // Save block size; update total method size
 627     blk_starts[i+1] = blk_starts[i]+blk_size;
 628   }
 629 
 630   // Step two, replace eligible long jumps.
 631   bool progress = true;
 632   uint last_may_be_short_branch_adr = max_juint;
 633   while (has_short_branch_candidate && progress) {
 634     progress = false;
 635     has_short_branch_candidate = false;
 636     int adjust_block_start = 0;
 637     for (uint i = 0; i < nblocks; i++) {
 638       Block* block = C->cfg()->get_block(i);
 639       int idx = jmp_nidx[i];
 640       MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
 641       if (mach != nullptr && mach->may_be_short_branch()) {
 642 #ifdef ASSERT
 643         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 644         int j;
 645         // Find the branch; ignore trailing NOPs.
 646         for (j = block->number_of_nodes()-1; j>=0; j--) {
 647           Node* n = block->get_node(j);
 648           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 649             break;
 650         }
 651         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 652 #endif
 653         int br_size = jmp_size[i];
 654         int br_offs = blk_starts[i] + jmp_offset[i];
 655 
 656         // This requires the TRUE branch target be in succs[0]
 657         uint bnum = block->non_connector_successor(0)->_pre_order;
 658         int offset = blk_starts[bnum] - br_offs;
 659         if (bnum > i) { // adjust following block's offset
 660           offset -= adjust_block_start;
 661         }
 662 
 663         // This block can be a loop header, account for the padding
 664         // in the previous block.
 665         int block_padding = block_worst_case_pad[i];
 666         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 667         // In the following code a nop could be inserted before
 668         // the branch which will increase the backward distance.
 669         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 670         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 671 
 672         if (needs_padding && offset <= 0)
 673           offset -= nop_size;
 674 
 675         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 676           // We've got a winner.  Replace this branch.
 677           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 678 
 679           // Update the jmp_size.
 680           int new_size = replacement->size(C->regalloc());
 681           int diff     = br_size - new_size;
 682           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 683           // Conservatively take into account padding between
 684           // avoid_back_to_back branches. Previous branch could be
 685           // converted into avoid_back_to_back branch during next
 686           // rounds.
 687           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 688             jmp_offset[i] += nop_size;
 689             diff -= nop_size;
 690           }
 691           adjust_block_start += diff;
 692           block->map_node(replacement, idx);
 693           mach->subsume_by(replacement, C);
 694           mach = replacement;
 695           progress = true;
 696 
 697           jmp_size[i] = new_size;
 698           DEBUG_ONLY( jmp_target[i] = bnum; );
 699           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 700         } else {
 701           // The jump distance is not short, try again during next iteration.
 702           has_short_branch_candidate = true;
 703         }
 704       } // (mach->may_be_short_branch())
 705       if (mach != nullptr && (mach->may_be_short_branch() ||
 706                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 707         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 708       }
 709       blk_starts[i+1] -= adjust_block_start;
 710     }
 711   }
 712 
 713 #ifdef ASSERT
 714   for (uint i = 0; i < nblocks; i++) { // For all blocks
 715     if (jmp_target[i] != 0) {
 716       int br_size = jmp_size[i];
 717       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 718       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 719         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 720       }
 721       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 722     }
 723   }
 724 #endif
 725 
 726   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 727   // after ScheduleAndBundle().
 728 
 729   // ------------------
 730   // Compute size for code buffer
 731   code_size = blk_starts[nblocks];
 732 
 733   // Relocation records
 734   reloc_size += 1;              // Relo entry for exception handler
 735 
 736   // Adjust reloc_size to number of record of relocation info
 737   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 738   // a relocation index.
 739   // The CodeBuffer will expand the locs array if this estimate is too low.
 740   reloc_size *= 10 / sizeof(relocInfo);
 741 
 742   _buf_sizes._reloc = reloc_size;
 743   _buf_sizes._code  = code_size;
 744   _buf_sizes._stub  = stub_size;
 745 }
 746 
 747 //------------------------------FillLocArray-----------------------------------
 748 // Create a bit of debug info and append it to the array.  The mapping is from
 749 // Java local or expression stack to constant, register or stack-slot.  For
 750 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 751 // entry has been taken care of and caller should skip it).
 752 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 753   // This should never have accepted Bad before
 754   assert(OptoReg::is_valid(regnum), "location must be valid");
 755   return (OptoReg::is_reg(regnum))
 756          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 757          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 758 }
 759 
 760 
 761 ObjectValue*
 762 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 763   for (int i = 0; i < objs->length(); i++) {
 764     assert(objs->at(i)->is_object(), "corrupt object cache");
 765     ObjectValue* sv = objs->at(i)->as_ObjectValue();
 766     if (sv->id() == id) {
 767       return sv;
 768     }
 769   }
 770   // Otherwise..
 771   return nullptr;
 772 }
 773 
 774 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 775                                      ObjectValue* sv ) {
 776   assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
 777   objs->append(sv);
 778 }
 779 
 780 
 781 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 782                             GrowableArray<ScopeValue*> *array,
 783                             GrowableArray<ScopeValue*> *objs ) {
 784   assert( local, "use _top instead of null" );
 785   if (array->length() != idx) {
 786     assert(array->length() == idx + 1, "Unexpected array count");
 787     // Old functionality:
 788     //   return
 789     // New functionality:
 790     //   Assert if the local is not top. In product mode let the new node
 791     //   override the old entry.
 792     assert(local == C->top(), "LocArray collision");
 793     if (local == C->top()) {
 794       return;
 795     }
 796     array->pop();
 797   }
 798   const Type *t = local->bottom_type();
 799 
 800   // Is it a safepoint scalar object node?
 801   if (local->is_SafePointScalarObject()) {
 802     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 803 
 804     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 805     if (sv == nullptr) {
 806       ciKlass* cik = t->is_oopptr()->exact_klass();
 807       assert(cik->is_instance_klass() ||
 808              cik->is_array_klass(), "Not supported allocation.");
 809       uint first_ind = spobj->first_index(sfpt->jvms());
 810       // Nullable, scalarized inline types have an is_init input
 811       // that needs to be checked before using the field values.
 812       ScopeValue* is_init = nullptr;
 813       if (cik->is_inlinetype()) {
 814         Node* init_node = sfpt->in(first_ind++);
 815         assert(init_node != nullptr, "is_init node not found");
 816         if (!init_node->is_top()) {
 817           const TypeInt* init_type = init_node->bottom_type()->is_int();
 818           if (init_node->is_Con()) {
 819             is_init = new ConstantIntValue(init_type->get_con());
 820           } else {
 821             OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node);
 822             is_init = new_loc_value(C->regalloc(), init_reg, Location::normal);
 823           }
 824         }
 825       }
 826       sv = new ObjectValue(spobj->_idx,
 827                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, is_init);
 828       set_sv_for_object_node(objs, sv);
 829 
 830       for (uint i = 0; i < spobj->n_fields(); i++) {
 831         Node* fld_node = sfpt->in(first_ind+i);
 832         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 833       }
 834     }
 835     array->append(sv);
 836     return;
 837   } else if (local->is_SafePointScalarMerge()) {
 838     SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge();
 839     ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
 840 
 841     if (mv == nullptr) {
 842       GrowableArray<ScopeValue*> deps;
 843 
 844       int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms());
 845       (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs);
 846       assert(deps.length() == 1, "missing value");
 847 
 848       int selector_idx = smerge->selector_idx(sfpt->jvms());
 849       (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr);
 850       assert(deps.length() == 2, "missing value");
 851 
 852       mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
 853       set_sv_for_object_node(objs, mv);
 854 
 855       for (uint i = 1; i < smerge->req(); i++) {
 856         Node* obj_node = smerge->in(i);
 857         int idx = mv->possible_objects()->length();
 858         (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs);
 859 
 860         // By default ObjectValues that are in 'possible_objects' are not root objects.
 861         // They will be marked as root later if they are directly referenced in a JVMS.
 862         assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
 863         assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
 864         mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
 865       }
 866     }
 867     array->append(mv);
 868     return;
 869   }
 870 
 871   // Grab the register number for the local
 872   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 873   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 874     // Record the double as two float registers.
 875     // The register mask for such a value always specifies two adjacent
 876     // float registers, with the lower register number even.
 877     // Normally, the allocation of high and low words to these registers
 878     // is irrelevant, because nearly all operations on register pairs
 879     // (e.g., StoreD) treat them as a single unit.
 880     // Here, we assume in addition that the words in these two registers
 881     // stored "naturally" (by operations like StoreD and double stores
 882     // within the interpreter) such that the lower-numbered register
 883     // is written to the lower memory address.  This may seem like
 884     // a machine dependency, but it is not--it is a requirement on
 885     // the author of the <arch>.ad file to ensure that, for every
 886     // even/odd double-register pair to which a double may be allocated,
 887     // the word in the even single-register is stored to the first
 888     // memory word.  (Note that register numbers are completely
 889     // arbitrary, and are not tied to any machine-level encodings.)
 890 #ifdef _LP64
 891     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 892       array->append(new ConstantIntValue((jint)0));
 893       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 894     } else if ( t->base() == Type::Long ) {
 895       array->append(new ConstantIntValue((jint)0));
 896       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 897     } else if ( t->base() == Type::RawPtr ) {
 898       // jsr/ret return address which must be restored into the full
 899       // width 64-bit stack slot.
 900       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 901     }
 902 #else //_LP64
 903     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 904       // Repack the double/long as two jints.
 905       // The convention the interpreter uses is that the second local
 906       // holds the first raw word of the native double representation.
 907       // This is actually reasonable, since locals and stack arrays
 908       // grow downwards in all implementations.
 909       // (If, on some machine, the interpreter's Java locals or stack
 910       // were to grow upwards, the embedded doubles would be word-swapped.)
 911       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 912       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 913     }
 914 #endif //_LP64
 915     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 916              OptoReg::is_reg(regnum) ) {
 917       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 918                                                       ? Location::float_in_dbl : Location::normal ));
 919     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 920       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 921                                                       ? Location::int_in_long : Location::normal ));
 922     } else if( t->base() == Type::NarrowOop ) {
 923       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 924     } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
 925                t->base() == Type::VectorD || t->base() == Type::VectorX ||
 926                t->base() == Type::VectorY || t->base() == Type::VectorZ) {
 927       array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
 928     } else if (C->regalloc()->is_oop(local)) {
 929       assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr ||
 930              t->base() == Type::AryPtr,
 931              "Unexpected type: %s", t->msg());
 932       array->append(new_loc_value( C->regalloc(), regnum, Location::oop ));
 933     } else {
 934       assert(t->base() == Type::Int || t->base() == Type::Half ||
 935              t->base() == Type::FloatCon || t->base() == Type::FloatBot,
 936              "Unexpected type: %s", t->msg());
 937       array->append(new_loc_value( C->regalloc(), regnum, Location::normal ));
 938     }
 939     return;
 940   }
 941 
 942   // No register.  It must be constant data.
 943   switch (t->base()) {
 944     case Type::Half:              // Second half of a double
 945       ShouldNotReachHere();       // Caller should skip 2nd halves
 946       break;
 947     case Type::AnyPtr:
 948       array->append(new ConstantOopWriteValue(nullptr));
 949       break;
 950     case Type::AryPtr:
 951     case Type::InstPtr:          // fall through
 952       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 953       break;
 954     case Type::NarrowOop:
 955       if (t == TypeNarrowOop::NULL_PTR) {
 956         array->append(new ConstantOopWriteValue(nullptr));
 957       } else {
 958         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 959       }
 960       break;
 961     case Type::Int:
 962       array->append(new ConstantIntValue(t->is_int()->get_con()));
 963       break;
 964     case Type::RawPtr:
 965       // A return address (T_ADDRESS).
 966       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 967 #ifdef _LP64
 968       // Must be restored to the full-width 64-bit stack slot.
 969       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 970 #else
 971       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 972 #endif
 973       break;
 974     case Type::FloatCon: {
 975       float f = t->is_float_constant()->getf();
 976       array->append(new ConstantIntValue(jint_cast(f)));
 977       break;
 978     }
 979     case Type::DoubleCon: {
 980       jdouble d = t->is_double_constant()->getd();
 981 #ifdef _LP64
 982       array->append(new ConstantIntValue((jint)0));
 983       array->append(new ConstantDoubleValue(d));
 984 #else
 985       // Repack the double as two jints.
 986     // The convention the interpreter uses is that the second local
 987     // holds the first raw word of the native double representation.
 988     // This is actually reasonable, since locals and stack arrays
 989     // grow downwards in all implementations.
 990     // (If, on some machine, the interpreter's Java locals or stack
 991     // were to grow upwards, the embedded doubles would be word-swapped.)
 992     jlong_accessor acc;
 993     acc.long_value = jlong_cast(d);
 994     array->append(new ConstantIntValue(acc.words[1]));
 995     array->append(new ConstantIntValue(acc.words[0]));
 996 #endif
 997       break;
 998     }
 999     case Type::Long: {
1000       jlong d = t->is_long()->get_con();
1001 #ifdef _LP64
1002       array->append(new ConstantIntValue((jint)0));
1003       array->append(new ConstantLongValue(d));
1004 #else
1005       // Repack the long as two jints.
1006     // The convention the interpreter uses is that the second local
1007     // holds the first raw word of the native double representation.
1008     // This is actually reasonable, since locals and stack arrays
1009     // grow downwards in all implementations.
1010     // (If, on some machine, the interpreter's Java locals or stack
1011     // were to grow upwards, the embedded doubles would be word-swapped.)
1012     jlong_accessor acc;
1013     acc.long_value = d;
1014     array->append(new ConstantIntValue(acc.words[1]));
1015     array->append(new ConstantIntValue(acc.words[0]));
1016 #endif
1017       break;
1018     }
1019     case Type::Top:               // Add an illegal value here
1020       array->append(new LocationValue(Location()));
1021       break;
1022     default:
1023       ShouldNotReachHere();
1024       break;
1025   }
1026 }
1027 
1028 // Determine if this node starts a bundle
1029 bool PhaseOutput::starts_bundle(const Node *n) const {
1030   return (_node_bundling_limit > n->_idx &&
1031           _node_bundling_base[n->_idx].starts_bundle());
1032 }
1033 
1034 // Determine if there is a monitor that has 'ov' as its owner.
1035 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const {
1036   for (int k = 0; k < monarray->length(); k++) {
1037     MonitorValue* mv = monarray->at(k);
1038     if (mv->owner() == ov) {
1039       return true;
1040     }
1041   }
1042 
1043   return false;
1044 }
1045 
1046 // Determine if there is a scalar replaced object description represented by 'ov'.
1047 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn,
1048                                              GrowableArray<ScopeValue*>* objs,
1049                                              ObjectValue* ov) const {
1050   for (int i = 0; i < jvms->scl_size(); i++) {
1051     Node* n = sfn->scalarized_obj(jvms, i);
1052     // Other kinds of nodes that we may encounter here, for instance constants
1053     // representing values of fields of objects scalarized, aren't relevant for
1054     // us, since they don't map to ObjectValue.
1055     if (!n->is_SafePointScalarObject()) {
1056       continue;
1057     }
1058 
1059     ObjectValue* other = sv_for_node_id(objs, n->_idx);
1060     if (ov == other) {
1061       return true;
1062     }
1063   }
1064   return false;
1065 }
1066 
1067 //--------------------------Process_OopMap_Node--------------------------------
1068 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1069   // Handle special safepoint nodes for synchronization
1070   MachSafePointNode *sfn   = mach->as_MachSafePoint();
1071   MachCallNode      *mcall;
1072 
1073   int safepoint_pc_offset = current_offset;
1074   bool is_method_handle_invoke = false;
1075   bool return_oop = false;
1076   bool return_scalarized = false;
1077   bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1078   bool arg_escape = false;
1079 
1080   // Add the safepoint in the DebugInfoRecorder
1081   if( !mach->is_MachCall() ) {
1082     mcall = nullptr;
1083     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1084   } else {
1085     mcall = mach->as_MachCall();
1086 
1087     // Is the call a MethodHandle call?
1088     if (mcall->is_MachCallJava()) {
1089       if (mcall->as_MachCallJava()->_method_handle_invoke) {
1090         assert(C->has_method_handle_invokes(), "must have been set during call generation");
1091         is_method_handle_invoke = true;
1092       }
1093       arg_escape = mcall->as_MachCallJava()->_arg_escape;
1094     }
1095 
1096     // Check if a call returns an object.
1097     if (mcall->returns_pointer() || mcall->returns_scalarized()) {
1098       return_oop = true;
1099     }
1100     if (mcall->returns_scalarized()) {
1101       return_scalarized = true;
1102     }
1103     safepoint_pc_offset += mcall->ret_addr_offset();
1104     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1105   }
1106 
1107   // Loop over the JVMState list to add scope information
1108   // Do not skip safepoints with a null method, they need monitor info
1109   JVMState* youngest_jvms = sfn->jvms();
1110   int max_depth = youngest_jvms->depth();
1111 
1112   // Allocate the object pool for scalar-replaced objects -- the map from
1113   // small-integer keys (which can be recorded in the local and ostack
1114   // arrays) to descriptions of the object state.
1115   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1116 
1117   // Visit scopes from oldest to youngest.
1118   for (int depth = 1; depth <= max_depth; depth++) {
1119     JVMState* jvms = youngest_jvms->of_depth(depth);
1120     int idx;
1121     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1122     // Safepoints that do not have method() set only provide oop-map and monitor info
1123     // to support GC; these do not support deoptimization.
1124     int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1125     int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1126     int num_mon  = jvms->nof_monitors();
1127     assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1128            "JVMS local count must match that of the method");
1129 
1130     // Add Local and Expression Stack Information
1131 
1132     // Insert locals into the locarray
1133     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1134     for( idx = 0; idx < num_locs; idx++ ) {
1135       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1136     }
1137 
1138     // Insert expression stack entries into the exparray
1139     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1140     for( idx = 0; idx < num_exps; idx++ ) {
1141       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1142     }
1143 
1144     // Add in mappings of the monitors
1145     assert( !method ||
1146             !method->is_synchronized() ||
1147             method->is_native() ||
1148             num_mon > 0 ||
1149             !GenerateSynchronizationCode,
1150             "monitors must always exist for synchronized methods");
1151 
1152     // Build the growable array of ScopeValues for exp stack
1153     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1154 
1155     // Loop over monitors and insert into array
1156     for (idx = 0; idx < num_mon; idx++) {
1157       // Grab the node that defines this monitor
1158       Node* box_node = sfn->monitor_box(jvms, idx);
1159       Node* obj_node = sfn->monitor_obj(jvms, idx);
1160 
1161       // Create ScopeValue for object
1162       ScopeValue *scval = nullptr;
1163 
1164       if (obj_node->is_SafePointScalarObject()) {
1165         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1166         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1167         if (scval == nullptr) {
1168           const Type *t = spobj->bottom_type();
1169           ciKlass* cik = t->is_oopptr()->exact_klass();
1170           assert(cik->is_instance_klass() ||
1171                  cik->is_array_klass(), "Not supported allocation.");
1172           ObjectValue* sv = new ObjectValue(spobj->_idx,
1173                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1174           PhaseOutput::set_sv_for_object_node(objs, sv);
1175 
1176           uint first_ind = spobj->first_index(youngest_jvms);
1177           for (uint i = 0; i < spobj->n_fields(); i++) {
1178             Node* fld_node = sfn->in(first_ind+i);
1179             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1180           }
1181           scval = sv;
1182         }
1183       } else if (obj_node->is_SafePointScalarMerge()) {
1184         SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge();
1185         ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
1186 
1187         if (mv == nullptr) {
1188           GrowableArray<ScopeValue*> deps;
1189 
1190           int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms);
1191           FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs);
1192           assert(deps.length() == 1, "missing value");
1193 
1194           int selector_idx = smerge->selector_idx(youngest_jvms);
1195           FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr);
1196           assert(deps.length() == 2, "missing value");
1197 
1198           mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
1199           set_sv_for_object_node(objs, mv);
1200 
1201           for (uint i = 1; i < smerge->req(); i++) {
1202             Node* obj_node = smerge->in(i);
1203             int idx = mv->possible_objects()->length();
1204             (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs);
1205 
1206             // By default ObjectValues that are in 'possible_objects' are not root objects.
1207             // They will be marked as root later if they are directly referenced in a JVMS.
1208             assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
1209             assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
1210             mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
1211           }
1212         }
1213         scval = mv;
1214       } else if (!obj_node->is_Con()) {
1215         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1216         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1217           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1218         } else {
1219           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1220         }
1221       } else {
1222         const TypePtr *tp = obj_node->get_ptr_type();
1223         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1224       }
1225 
1226       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1227       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1228       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1229       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1230     }
1231 
1232     // Mark ObjectValue nodes as root nodes if they are directly
1233     // referenced in the JVMS.
1234     for (int i = 0; i < objs->length(); i++) {
1235       ScopeValue* sv = objs->at(i);
1236       if (sv->is_object_merge()) {
1237         ObjectMergeValue* merge = sv->as_ObjectMergeValue();
1238 
1239         for (int j = 0; j< merge->possible_objects()->length(); j++) {
1240           ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue();
1241           if (ov->is_root()) {
1242             // Already flagged as 'root' by something else. We shouldn't change it
1243             // to non-root in a younger JVMS because it may need to be alive in
1244             // a younger JVMS.
1245           } else {
1246             bool is_root = locarray->contains(ov) ||
1247                            exparray->contains(ov) ||
1248                            contains_as_owner(monarray, ov) ||
1249                            contains_as_scalarized_obj(jvms, sfn, objs, ov);
1250             ov->set_root(is_root);
1251           }
1252         }
1253       }
1254     }
1255 
1256     // We dump the object pool first, since deoptimization reads it in first.
1257     C->debug_info()->dump_object_pool(objs);
1258 
1259     // Build first class objects to pass to scope
1260     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1261     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1262     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1263 
1264     // Make method available for all Safepoints
1265     ciMethod* scope_method = method ? method : C->method();
1266     // Describe the scope here
1267     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1268     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1269     // Now we can describe the scope.
1270     methodHandle null_mh;
1271     bool rethrow_exception = false;
1272     C->debug_info()->describe_scope(
1273       safepoint_pc_offset,
1274       null_mh,
1275       scope_method,
1276       jvms->bci(),
1277       jvms->should_reexecute(),
1278       rethrow_exception,
1279       is_method_handle_invoke,
1280       return_oop,
1281       return_scalarized,
1282       has_ea_local_in_scope,
1283       arg_escape,
1284       locvals,
1285       expvals,
1286       monvals
1287     );
1288   } // End jvms loop
1289 
1290   // Mark the end of the scope set.
1291   C->debug_info()->end_safepoint(safepoint_pc_offset);
1292 }
1293 
1294 
1295 
1296 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1297 class NonSafepointEmitter {
1298     Compile*  C;
1299     JVMState* _pending_jvms;
1300     int       _pending_offset;
1301 
1302     void emit_non_safepoint();
1303 
1304  public:
1305     NonSafepointEmitter(Compile* compile) {
1306       this->C = compile;
1307       _pending_jvms = nullptr;
1308       _pending_offset = 0;
1309     }
1310 
1311     void observe_instruction(Node* n, int pc_offset) {
1312       if (!C->debug_info()->recording_non_safepoints())  return;
1313 
1314       Node_Notes* nn = C->node_notes_at(n->_idx);
1315       if (nn == nullptr || nn->jvms() == nullptr)  return;
1316       if (_pending_jvms != nullptr &&
1317           _pending_jvms->same_calls_as(nn->jvms())) {
1318         // Repeated JVMS?  Stretch it up here.
1319         _pending_offset = pc_offset;
1320       } else {
1321         if (_pending_jvms != nullptr &&
1322             _pending_offset < pc_offset) {
1323           emit_non_safepoint();
1324         }
1325         _pending_jvms = nullptr;
1326         if (pc_offset > C->debug_info()->last_pc_offset()) {
1327           // This is the only way _pending_jvms can become non-null:
1328           _pending_jvms = nn->jvms();
1329           _pending_offset = pc_offset;
1330         }
1331       }
1332     }
1333 
1334     // Stay out of the way of real safepoints:
1335     void observe_safepoint(JVMState* jvms, int pc_offset) {
1336       if (_pending_jvms != nullptr &&
1337           !_pending_jvms->same_calls_as(jvms) &&
1338           _pending_offset < pc_offset) {
1339         emit_non_safepoint();
1340       }
1341       _pending_jvms = nullptr;
1342     }
1343 
1344     void flush_at_end() {
1345       if (_pending_jvms != nullptr) {
1346         emit_non_safepoint();
1347       }
1348       _pending_jvms = nullptr;
1349     }
1350 };
1351 
1352 void NonSafepointEmitter::emit_non_safepoint() {
1353   JVMState* youngest_jvms = _pending_jvms;
1354   int       pc_offset     = _pending_offset;
1355 
1356   // Clear it now:
1357   _pending_jvms = nullptr;
1358 
1359   DebugInformationRecorder* debug_info = C->debug_info();
1360   assert(debug_info->recording_non_safepoints(), "sanity");
1361 
1362   debug_info->add_non_safepoint(pc_offset);
1363   int max_depth = youngest_jvms->depth();
1364 
1365   // Visit scopes from oldest to youngest.
1366   for (int depth = 1; depth <= max_depth; depth++) {
1367     JVMState* jvms = youngest_jvms->of_depth(depth);
1368     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1369     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1370     methodHandle null_mh;
1371     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1372   }
1373 
1374   // Mark the end of the scope set.
1375   debug_info->end_non_safepoint(pc_offset);
1376 }
1377 
1378 //------------------------------init_buffer------------------------------------
1379 void PhaseOutput::estimate_buffer_size(int& const_req) {
1380 
1381   // Set the initially allocated size
1382   const_req = initial_const_capacity;
1383 
1384   // The extra spacing after the code is necessary on some platforms.
1385   // Sometimes we need to patch in a jump after the last instruction,
1386   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1387 
1388   // Compute the byte offset where we can store the deopt pc.
1389   if (C->fixed_slots() != 0) {
1390     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1391   }
1392 
1393   // Compute prolog code size
1394   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1395   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1396 
1397   if (C->has_mach_constant_base_node()) {
1398     uint add_size = 0;
1399     // Fill the constant table.
1400     // Note:  This must happen before shorten_branches.
1401     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1402       Block* b = C->cfg()->get_block(i);
1403 
1404       for (uint j = 0; j < b->number_of_nodes(); j++) {
1405         Node* n = b->get_node(j);
1406 
1407         // If the node is a MachConstantNode evaluate the constant
1408         // value section.
1409         if (n->is_MachConstant()) {
1410           MachConstantNode* machcon = n->as_MachConstant();
1411           machcon->eval_constant(C);
1412         } else if (n->is_Mach()) {
1413           // On Power there are more nodes that issue constants.
1414           add_size += (n->as_Mach()->ins_num_consts() * 8);
1415         }
1416       }
1417     }
1418 
1419     // Calculate the offsets of the constants and the size of the
1420     // constant table (including the padding to the next section).
1421     constant_table().calculate_offsets_and_size();
1422     const_req = constant_table().size() + add_size;
1423   }
1424 
1425   // Initialize the space for the BufferBlob used to find and verify
1426   // instruction size in MachNode::emit_size()
1427   init_scratch_buffer_blob(const_req);
1428 }
1429 
1430 CodeBuffer* PhaseOutput::init_buffer() {
1431   int stub_req  = _buf_sizes._stub;
1432   int code_req  = _buf_sizes._code;
1433   int const_req = _buf_sizes._const;
1434 
1435   int pad_req   = NativeCall::byte_size();
1436 
1437   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1438   stub_req += bs->estimate_stub_size();
1439 
1440   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1441   // class HandlerImpl is platform-specific and defined in the *.ad files.
1442   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1443   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1444   stub_req += MAX_stubs_size;   // ensure per-stub margin
1445   code_req += MAX_inst_size;    // ensure per-instruction margin
1446 
1447   if (StressCodeBuffers)
1448     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1449 
1450   int total_req =
1451           const_req +
1452           code_req +
1453           pad_req +
1454           stub_req +
1455           exception_handler_req +
1456           deopt_handler_req;               // deopt handler
1457 
1458   if (C->has_method_handle_invokes())
1459     total_req += deopt_handler_req;  // deopt MH handler
1460 
1461   CodeBuffer* cb = code_buffer();
1462   cb->initialize(total_req, _buf_sizes._reloc);
1463 
1464   // Have we run out of code space?
1465   if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1466     C->record_failure("CodeCache is full");
1467     return nullptr;
1468   }
1469   // Configure the code buffer.
1470   cb->initialize_consts_size(const_req);
1471   cb->initialize_stubs_size(stub_req);
1472   cb->initialize_oop_recorder(C->env()->oop_recorder());
1473 
1474   // fill in the nop array for bundling computations
1475   MachNode *_nop_list[Bundle::_nop_count];
1476   Bundle::initialize_nops(_nop_list);
1477 
1478   return cb;
1479 }
1480 
1481 //------------------------------fill_buffer------------------------------------
1482 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) {
1483   // blk_starts[] contains offsets calculated during short branches processing,
1484   // offsets should not be increased during following steps.
1485 
1486   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1487   // of a loop. It is used to determine the padding for loop alignment.
1488   Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]);
1489 
1490   compute_loop_first_inst_sizes();
1491 
1492   // Create oopmap set.
1493   _oop_map_set = new OopMapSet();
1494 
1495   // !!!!! This preserves old handling of oopmaps for now
1496   C->debug_info()->set_oopmaps(_oop_map_set);
1497 
1498   uint nblocks  = C->cfg()->number_of_blocks();
1499   // Count and start of implicit null check instructions
1500   uint inct_cnt = 0;
1501   uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1502 
1503   // Count and start of calls
1504   uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1505 
1506   uint  return_offset = 0;
1507   int nop_size = (new MachNopNode())->size(C->regalloc());
1508 
1509   int previous_offset = 0;
1510   int current_offset  = 0;
1511   int last_call_offset = -1;
1512   int last_avoid_back_to_back_offset = -1;
1513 #ifdef ASSERT
1514   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1515   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1516   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1517   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1518 #endif
1519 
1520   // Create an array of unused labels, one for each basic block, if printing is enabled
1521 #if defined(SUPPORT_OPTO_ASSEMBLY)
1522   int* node_offsets      = nullptr;
1523   uint node_offset_limit = C->unique();
1524 
1525   if (C->print_assembly()) {
1526     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1527   }
1528   if (node_offsets != nullptr) {
1529     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1530     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1531   }
1532 #endif
1533 
1534   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1535 
1536   // Emit the constant table.
1537   if (C->has_mach_constant_base_node()) {
1538     if (!constant_table().emit(masm)) {
1539       C->record_failure("consts section overflow");
1540       return;
1541     }
1542   }
1543 
1544   // Create an array of labels, one for each basic block
1545   Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1546   for (uint i = 0; i <= nblocks; i++) {
1547     blk_labels[i].init();
1548   }
1549 
1550   // Now fill in the code buffer
1551   Node* delay_slot = nullptr;
1552   for (uint i = 0; i < nblocks; i++) {
1553     Block* block = C->cfg()->get_block(i);
1554     _block = block;
1555     Node* head = block->head();
1556 
1557     // If this block needs to start aligned (i.e, can be reached other
1558     // than by falling-thru from the previous block), then force the
1559     // start of a new bundle.
1560     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1561       masm->code()->flush_bundle(true);
1562     }
1563 
1564 #ifdef ASSERT
1565     if (!block->is_connector()) {
1566       stringStream st;
1567       block->dump_head(C->cfg(), &st);
1568       masm->block_comment(st.freeze());
1569     }
1570     jmp_target[i] = 0;
1571     jmp_offset[i] = 0;
1572     jmp_size[i]   = 0;
1573     jmp_rule[i]   = 0;
1574 #endif
1575     int blk_offset = current_offset;
1576 
1577     // Define the label at the beginning of the basic block
1578     masm->bind(blk_labels[block->_pre_order]);
1579 
1580     uint last_inst = block->number_of_nodes();
1581 
1582     // Emit block normally, except for last instruction.
1583     // Emit means "dump code bits into code buffer".
1584     for (uint j = 0; j<last_inst; j++) {
1585       _index = j;
1586 
1587       // Get the node
1588       Node* n = block->get_node(j);
1589 
1590       // See if delay slots are supported
1591       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1592         assert(delay_slot == nullptr, "no use of delay slot node");
1593         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1594 
1595         delay_slot = n;
1596         continue;
1597       }
1598 
1599       // If this starts a new instruction group, then flush the current one
1600       // (but allow split bundles)
1601       if (Pipeline::requires_bundling() && starts_bundle(n))
1602         masm->code()->flush_bundle(false);
1603 
1604       // Special handling for SafePoint/Call Nodes
1605       bool is_mcall = false;
1606       if (n->is_Mach()) {
1607         MachNode *mach = n->as_Mach();
1608         is_mcall = n->is_MachCall();
1609         bool is_sfn = n->is_MachSafePoint();
1610 
1611         // If this requires all previous instructions be flushed, then do so
1612         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1613           masm->code()->flush_bundle(true);
1614           current_offset = masm->offset();
1615         }
1616 
1617         // A padding may be needed again since a previous instruction
1618         // could be moved to delay slot.
1619 
1620         // align the instruction if necessary
1621         int padding = mach->compute_padding(current_offset);
1622         // Make sure safepoint node for polling is distinct from a call's
1623         // return by adding a nop if needed.
1624         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1625           padding = nop_size;
1626         }
1627         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1628             current_offset == last_avoid_back_to_back_offset) {
1629           // Avoid back to back some instructions.
1630           padding = nop_size;
1631         }
1632 
1633         if (padding > 0) {
1634           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1635           int nops_cnt = padding / nop_size;
1636           MachNode *nop = new MachNopNode(nops_cnt);
1637           block->insert_node(nop, j++);
1638           last_inst++;
1639           C->cfg()->map_node_to_block(nop, block);
1640           // Ensure enough space.
1641           masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1642           if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1643             C->record_failure("CodeCache is full");
1644             return;
1645           }
1646           nop->emit(masm, C->regalloc());
1647           masm->code()->flush_bundle(true);
1648           current_offset = masm->offset();
1649         }
1650 
1651         bool observe_safepoint = is_sfn;
1652         // Remember the start of the last call in a basic block
1653         if (is_mcall) {
1654           MachCallNode *mcall = mach->as_MachCall();
1655 
1656           if (mcall->entry_point() != nullptr) {
1657             // This destination address is NOT PC-relative
1658             mcall->method_set((intptr_t)mcall->entry_point());
1659           }
1660 
1661           // Save the return address
1662           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1663 
1664           observe_safepoint = mcall->guaranteed_safepoint();
1665         }
1666 
1667         // sfn will be valid whenever mcall is valid now because of inheritance
1668         if (observe_safepoint) {
1669           // Handle special safepoint nodes for synchronization
1670           if (!is_mcall) {
1671             MachSafePointNode *sfn = mach->as_MachSafePoint();
1672             // !!!!! Stubs only need an oopmap right now, so bail out
1673             if (sfn->jvms()->method() == nullptr) {
1674               // Write the oopmap directly to the code blob??!!
1675               continue;
1676             }
1677           } // End synchronization
1678 
1679           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1680                                            current_offset);
1681           Process_OopMap_Node(mach, current_offset);
1682         } // End if safepoint
1683 
1684           // If this is a null check, then add the start of the previous instruction to the list
1685         else if( mach->is_MachNullCheck() ) {
1686           inct_starts[inct_cnt++] = previous_offset;
1687         }
1688 
1689           // If this is a branch, then fill in the label with the target BB's label
1690         else if (mach->is_MachBranch()) {
1691           // This requires the TRUE branch target be in succs[0]
1692           uint block_num = block->non_connector_successor(0)->_pre_order;
1693 
1694           // Try to replace long branch if delay slot is not used,
1695           // it is mostly for back branches since forward branch's
1696           // distance is not updated yet.
1697           bool delay_slot_is_used = valid_bundle_info(n) &&
1698                                     C->output()->node_bundling(n)->use_unconditional_delay();
1699           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1700             assert(delay_slot == nullptr, "not expecting delay slot node");
1701             int br_size = n->size(C->regalloc());
1702             int offset = blk_starts[block_num] - current_offset;
1703             if (block_num >= i) {
1704               // Current and following block's offset are not
1705               // finalized yet, adjust distance by the difference
1706               // between calculated and final offsets of current block.
1707               offset -= (blk_starts[i] - blk_offset);
1708             }
1709             // In the following code a nop could be inserted before
1710             // the branch which will increase the backward distance.
1711             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1712             if (needs_padding && offset <= 0)
1713               offset -= nop_size;
1714 
1715             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1716               // We've got a winner.  Replace this branch.
1717               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1718 
1719               // Update the jmp_size.
1720               int new_size = replacement->size(C->regalloc());
1721               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1722               // Insert padding between avoid_back_to_back branches.
1723               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1724                 MachNode *nop = new MachNopNode();
1725                 block->insert_node(nop, j++);
1726                 C->cfg()->map_node_to_block(nop, block);
1727                 last_inst++;
1728                 nop->emit(masm, C->regalloc());
1729                 masm->code()->flush_bundle(true);
1730                 current_offset = masm->offset();
1731               }
1732 #ifdef ASSERT
1733               jmp_target[i] = block_num;
1734               jmp_offset[i] = current_offset - blk_offset;
1735               jmp_size[i]   = new_size;
1736               jmp_rule[i]   = mach->rule();
1737 #endif
1738               block->map_node(replacement, j);
1739               mach->subsume_by(replacement, C);
1740               n    = replacement;
1741               mach = replacement;
1742             }
1743           }
1744           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1745         } else if (mach->ideal_Opcode() == Op_Jump) {
1746           for (uint h = 0; h < block->_num_succs; h++) {
1747             Block* succs_block = block->_succs[h];
1748             for (uint j = 1; j < succs_block->num_preds(); j++) {
1749               Node* jpn = succs_block->pred(j);
1750               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1751                 uint block_num = succs_block->non_connector()->_pre_order;
1752                 Label *blkLabel = &blk_labels[block_num];
1753                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1754               }
1755             }
1756           }
1757         } else if (!n->is_Proj()) {
1758           // Remember the beginning of the previous instruction, in case
1759           // it's followed by a flag-kill and a null-check.  Happens on
1760           // Intel all the time, with add-to-memory kind of opcodes.
1761           previous_offset = current_offset;
1762         }
1763 
1764         // Not an else-if!
1765         // If this is a trap based cmp then add its offset to the list.
1766         if (mach->is_TrapBasedCheckNode()) {
1767           inct_starts[inct_cnt++] = current_offset;
1768         }
1769       }
1770 
1771       // Verify that there is sufficient space remaining
1772       masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1773       if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1774         C->record_failure("CodeCache is full");
1775         return;
1776       }
1777 
1778       // Save the offset for the listing
1779 #if defined(SUPPORT_OPTO_ASSEMBLY)
1780       if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1781         node_offsets[n->_idx] = masm->offset();
1782       }
1783 #endif
1784       assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing.");
1785 
1786       // "Normal" instruction case
1787       DEBUG_ONLY(uint instr_offset = masm->offset());
1788       n->emit(masm, C->regalloc());
1789       current_offset = masm->offset();
1790 
1791       // Above we only verified that there is enough space in the instruction section.
1792       // However, the instruction may emit stubs that cause code buffer expansion.
1793       // Bail out here if expansion failed due to a lack of code cache space.
1794       if (C->failing()) {
1795         return;
1796       }
1797 
1798       assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1799              "ret_addr_offset() not within emitted code");
1800 #ifdef ASSERT
1801       uint n_size = n->size(C->regalloc());
1802       if (n_size < (current_offset-instr_offset)) {
1803         MachNode* mach = n->as_Mach();
1804         n->dump();
1805         mach->dump_format(C->regalloc(), tty);
1806         tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1807         Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty);
1808         tty->print_cr(" ------------------- ");
1809         BufferBlob* blob = this->scratch_buffer_blob();
1810         address blob_begin = blob->content_begin();
1811         Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1812         assert(false, "wrong size of mach node");
1813       }
1814 #endif
1815       non_safepoints.observe_instruction(n, current_offset);
1816 
1817       // mcall is last "call" that can be a safepoint
1818       // record it so we can see if a poll will directly follow it
1819       // in which case we'll need a pad to make the PcDesc sites unique
1820       // see  5010568. This can be slightly inaccurate but conservative
1821       // in the case that return address is not actually at current_offset.
1822       // This is a small price to pay.
1823 
1824       if (is_mcall) {
1825         last_call_offset = current_offset;
1826       }
1827 
1828       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1829         // Avoid back to back some instructions.
1830         last_avoid_back_to_back_offset = current_offset;
1831       }
1832 
1833       // See if this instruction has a delay slot
1834       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1835         guarantee(delay_slot != nullptr, "expecting delay slot node");
1836 
1837         // Back up 1 instruction
1838         masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size());
1839 
1840         // Save the offset for the listing
1841 #if defined(SUPPORT_OPTO_ASSEMBLY)
1842         if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) {
1843           node_offsets[delay_slot->_idx] = masm->offset();
1844         }
1845 #endif
1846 
1847         // Support a SafePoint in the delay slot
1848         if (delay_slot->is_MachSafePoint()) {
1849           MachNode *mach = delay_slot->as_Mach();
1850           // !!!!! Stubs only need an oopmap right now, so bail out
1851           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) {
1852             // Write the oopmap directly to the code blob??!!
1853             delay_slot = nullptr;
1854             continue;
1855           }
1856 
1857           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1858           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1859                                            adjusted_offset);
1860           // Generate an OopMap entry
1861           Process_OopMap_Node(mach, adjusted_offset);
1862         }
1863 
1864         // Insert the delay slot instruction
1865         delay_slot->emit(masm, C->regalloc());
1866 
1867         // Don't reuse it
1868         delay_slot = nullptr;
1869       }
1870 
1871     } // End for all instructions in block
1872 
1873     // If the next block is the top of a loop, pad this block out to align
1874     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1875     if (i < nblocks-1) {
1876       Block *nb = C->cfg()->get_block(i + 1);
1877       int padding = nb->alignment_padding(current_offset);
1878       if( padding > 0 ) {
1879         MachNode *nop = new MachNopNode(padding / nop_size);
1880         block->insert_node(nop, block->number_of_nodes());
1881         C->cfg()->map_node_to_block(nop, block);
1882         nop->emit(masm, C->regalloc());
1883         current_offset = masm->offset();
1884       }
1885     }
1886     // Verify that the distance for generated before forward
1887     // short branches is still valid.
1888     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1889 
1890     // Save new block start offset
1891     blk_starts[i] = blk_offset;
1892   } // End of for all blocks
1893   blk_starts[nblocks] = current_offset;
1894 
1895   non_safepoints.flush_at_end();
1896 
1897   // Offset too large?
1898   if (C->failing())  return;
1899 
1900   // Define a pseudo-label at the end of the code
1901   masm->bind( blk_labels[nblocks] );
1902 
1903   // Compute the size of the first block
1904   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1905 
1906 #ifdef ASSERT
1907   for (uint i = 0; i < nblocks; i++) { // For all blocks
1908     if (jmp_target[i] != 0) {
1909       int br_size = jmp_size[i];
1910       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1911       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1912         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1913         assert(false, "Displacement too large for short jmp");
1914       }
1915     }
1916   }
1917 #endif
1918 
1919   if (!masm->code()->finalize_stubs()) {
1920     C->record_failure("CodeCache is full");
1921     return;
1922   }
1923 
1924   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1925   bs->emit_stubs(*masm->code());
1926   if (C->failing())  return;
1927 
1928   // Fill in stubs.
1929   assert(masm->inst_mark() == nullptr, "should be.");
1930   _stub_list.emit(*masm);
1931   if (C->failing())  return;
1932 
1933 #ifndef PRODUCT
1934   // Information on the size of the method, without the extraneous code
1935   Scheduling::increment_method_size(masm->offset());
1936 #endif
1937 
1938   // ------------------
1939   // Fill in exception table entries.
1940   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1941 
1942   // Only java methods have exception handlers and deopt handlers
1943   // class HandlerImpl is platform-specific and defined in the *.ad files.
1944   if (C->method()) {
1945     // Emit the exception handler code.
1946     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm));
1947     if (C->failing()) {
1948       return; // CodeBuffer::expand failed
1949     }
1950     // Emit the deopt handler code.
1951     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm));
1952 
1953     // Emit the MethodHandle deopt handler code (if required).
1954     if (C->has_method_handle_invokes() && !C->failing()) {
1955       // We can use the same code as for the normal deopt handler, we
1956       // just need a different entry point address.
1957       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm));
1958     }
1959   }
1960 
1961   // One last check for failed CodeBuffer::expand:
1962   if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1963     C->record_failure("CodeCache is full");
1964     return;
1965   }
1966 
1967 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1968   if (C->print_assembly()) {
1969     tty->cr();
1970     tty->print_cr("============================= C2-compiled nmethod ==============================");
1971   }
1972 #endif
1973 
1974 #if defined(SUPPORT_OPTO_ASSEMBLY)
1975   // Dump the assembly code, including basic-block numbers
1976   if (C->print_assembly()) {
1977     ttyLocker ttyl;  // keep the following output all in one block
1978     if (!VMThread::should_terminate()) {  // test this under the tty lock
1979       // print_metadata and dump_asm may safepoint which makes us loose the ttylock.
1980       // We call them first and write to a stringStream, then we retake the lock to
1981       // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe.
1982       ResourceMark rm;
1983       stringStream method_metadata_str;
1984       if (C->method() != nullptr) {
1985         C->method()->print_metadata(&method_metadata_str);
1986       }
1987       stringStream dump_asm_str;
1988       dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit);
1989 
1990       NoSafepointVerifier nsv;
1991       ttyLocker ttyl2;
1992       // This output goes directly to the tty, not the compiler log.
1993       // To enable tools to match it up with the compilation activity,
1994       // be sure to tag this tty output with the compile ID.
1995       if (xtty != nullptr) {
1996         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1997                    C->is_osr_compilation() ? " compile_kind='osr'" : "");
1998       }
1999       if (C->method() != nullptr) {
2000         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
2001         tty->print_raw(method_metadata_str.freeze());
2002       } else if (C->stub_name() != nullptr) {
2003         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
2004       }
2005       tty->cr();
2006       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
2007       tty->print_raw(dump_asm_str.freeze());
2008       tty->print_cr("--------------------------------------------------------------------------------");
2009       if (xtty != nullptr) {
2010         xtty->tail("opto_assembly");
2011       }
2012     }
2013   }
2014 #endif
2015 }
2016 
2017 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
2018   _inc_table.set_size(cnt);
2019 
2020   uint inct_cnt = 0;
2021   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2022     Block* block = C->cfg()->get_block(i);
2023     Node *n = nullptr;
2024     int j;
2025 
2026     // Find the branch; ignore trailing NOPs.
2027     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
2028       n = block->get_node(j);
2029       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
2030         break;
2031       }
2032     }
2033 
2034     // If we didn't find anything, continue
2035     if (j < 0) {
2036       continue;
2037     }
2038 
2039     // Compute ExceptionHandlerTable subtable entry and add it
2040     // (skip empty blocks)
2041     if (n->is_Catch()) {
2042 
2043       // Get the offset of the return from the call
2044       uint call_return = call_returns[block->_pre_order];
2045 #ifdef ASSERT
2046       assert( call_return > 0, "no call seen for this basic block" );
2047       while (block->get_node(--j)->is_MachProj()) ;
2048       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
2049 #endif
2050       // last instruction is a CatchNode, find it's CatchProjNodes
2051       int nof_succs = block->_num_succs;
2052       // allocate space
2053       GrowableArray<intptr_t> handler_bcis(nof_succs);
2054       GrowableArray<intptr_t> handler_pcos(nof_succs);
2055       // iterate through all successors
2056       for (int j = 0; j < nof_succs; j++) {
2057         Block* s = block->_succs[j];
2058         bool found_p = false;
2059         for (uint k = 1; k < s->num_preds(); k++) {
2060           Node* pk = s->pred(k);
2061           if (pk->is_CatchProj() && pk->in(0) == n) {
2062             const CatchProjNode* p = pk->as_CatchProj();
2063             found_p = true;
2064             // add the corresponding handler bci & pco information
2065             if (p->_con != CatchProjNode::fall_through_index) {
2066               // p leads to an exception handler (and is not fall through)
2067               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
2068               // no duplicates, please
2069               if (!handler_bcis.contains(p->handler_bci())) {
2070                 uint block_num = s->non_connector()->_pre_order;
2071                 handler_bcis.append(p->handler_bci());
2072                 handler_pcos.append(blk_labels[block_num].loc_pos());
2073               }
2074             }
2075           }
2076         }
2077         assert(found_p, "no matching predecessor found");
2078         // Note:  Due to empty block removal, one block may have
2079         // several CatchProj inputs, from the same Catch.
2080       }
2081 
2082       // Set the offset of the return from the call
2083       assert(handler_bcis.find(-1) != -1, "must have default handler");
2084       _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
2085       continue;
2086     }
2087 
2088     // Handle implicit null exception table updates
2089     if (n->is_MachNullCheck()) {
2090       assert(n->in(1)->as_Mach()->barrier_data() == 0,
2091              "Implicit null checks on memory accesses with barriers are not yet supported");
2092       uint block_num = block->non_connector_successor(0)->_pre_order;
2093       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2094       continue;
2095     }
2096     // Handle implicit exception table updates: trap instructions.
2097     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
2098       uint block_num = block->non_connector_successor(0)->_pre_order;
2099       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2100       continue;
2101     }
2102   } // End of for all blocks fill in exception table entries
2103 }
2104 
2105 // Static Variables
2106 #ifndef PRODUCT
2107 uint Scheduling::_total_nop_size = 0;
2108 uint Scheduling::_total_method_size = 0;
2109 uint Scheduling::_total_branches = 0;
2110 uint Scheduling::_total_unconditional_delays = 0;
2111 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
2112 #endif
2113 
2114 // Initializer for class Scheduling
2115 
2116 Scheduling::Scheduling(Arena *arena, Compile &compile)
2117         : _arena(arena),
2118           _cfg(compile.cfg()),
2119           _regalloc(compile.regalloc()),
2120           _scheduled(arena),
2121           _available(arena),
2122           _reg_node(arena),
2123           _pinch_free_list(arena),
2124           _next_node(nullptr),
2125           _bundle_instr_count(0),
2126           _bundle_cycle_number(0),
2127           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2128 #ifndef PRODUCT
2129         , _branches(0)
2130         , _unconditional_delays(0)
2131 #endif
2132 {
2133   // Create a MachNopNode
2134   _nop = new MachNopNode();
2135 
2136   // Now that the nops are in the array, save the count
2137   // (but allow entries for the nops)
2138   _node_bundling_limit = compile.unique();
2139   uint node_max = _regalloc->node_regs_max_index();
2140 
2141   compile.output()->set_node_bundling_limit(_node_bundling_limit);
2142 
2143   // This one is persistent within the Compile class
2144   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2145 
2146   // Allocate space for fixed-size arrays
2147   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
2148   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2149 
2150   // Clear the arrays
2151   for (uint i = 0; i < node_max; i++) {
2152     ::new (&_node_bundling_base[i]) Bundle();
2153   }
2154   memset(_uses,               0, node_max * sizeof(short));
2155   memset(_current_latency,    0, node_max * sizeof(unsigned short));
2156 
2157   // Clear the bundling information
2158   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2159 
2160   // Get the last node
2161   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2162 
2163   _next_node = block->get_node(block->number_of_nodes() - 1);
2164 }
2165 
2166 #ifndef PRODUCT
2167 // Scheduling destructor
2168 Scheduling::~Scheduling() {
2169   _total_branches             += _branches;
2170   _total_unconditional_delays += _unconditional_delays;
2171 }
2172 #endif
2173 
2174 // Step ahead "i" cycles
2175 void Scheduling::step(uint i) {
2176 
2177   Bundle *bundle = node_bundling(_next_node);
2178   bundle->set_starts_bundle();
2179 
2180   // Update the bundle record, but leave the flags information alone
2181   if (_bundle_instr_count > 0) {
2182     bundle->set_instr_count(_bundle_instr_count);
2183     bundle->set_resources_used(_bundle_use.resourcesUsed());
2184   }
2185 
2186   // Update the state information
2187   _bundle_instr_count = 0;
2188   _bundle_cycle_number += i;
2189   _bundle_use.step(i);
2190 }
2191 
2192 void Scheduling::step_and_clear() {
2193   Bundle *bundle = node_bundling(_next_node);
2194   bundle->set_starts_bundle();
2195 
2196   // Update the bundle record
2197   if (_bundle_instr_count > 0) {
2198     bundle->set_instr_count(_bundle_instr_count);
2199     bundle->set_resources_used(_bundle_use.resourcesUsed());
2200 
2201     _bundle_cycle_number += 1;
2202   }
2203 
2204   // Clear the bundling information
2205   _bundle_instr_count = 0;
2206   _bundle_use.reset();
2207 
2208   memcpy(_bundle_use_elements,
2209          Pipeline_Use::elaborated_elements,
2210          sizeof(Pipeline_Use::elaborated_elements));
2211 }
2212 
2213 // Perform instruction scheduling and bundling over the sequence of
2214 // instructions in backwards order.
2215 void PhaseOutput::ScheduleAndBundle() {
2216 
2217   // Don't optimize this if it isn't a method
2218   if (!C->method())
2219     return;
2220 
2221   // Don't optimize this if scheduling is disabled
2222   if (!C->do_scheduling())
2223     return;
2224 
2225   // Scheduling code works only with pairs (8 bytes) maximum.
2226   // And when the scalable vector register is used, we may spill/unspill
2227   // the whole reg regardless of the max vector size.
2228   if (C->max_vector_size() > 8 ||
2229       (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) {
2230     return;
2231   }
2232 
2233   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2234 
2235   // Create a data structure for all the scheduling information
2236   Scheduling scheduling(Thread::current()->resource_area(), *C);
2237 
2238   // Walk backwards over each basic block, computing the needed alignment
2239   // Walk over all the basic blocks
2240   scheduling.DoScheduling();
2241 
2242 #ifndef PRODUCT
2243   if (C->trace_opto_output()) {
2244     // Buffer and print all at once
2245     ResourceMark rm;
2246     stringStream ss;
2247     ss.print("\n---- After ScheduleAndBundle ----\n");
2248     print_scheduling(&ss);
2249     tty->print("%s", ss.as_string());
2250   }
2251 #endif
2252 }
2253 
2254 #ifndef PRODUCT
2255 // Separated out so that it can be called directly from debugger
2256 void PhaseOutput::print_scheduling() {
2257   print_scheduling(tty);
2258 }
2259 
2260 void PhaseOutput::print_scheduling(outputStream* output_stream) {
2261   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2262     output_stream->print("\nBB#%03d:\n", i);
2263     Block* block = C->cfg()->get_block(i);
2264     for (uint j = 0; j < block->number_of_nodes(); j++) {
2265       Node* n = block->get_node(j);
2266       OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2267       output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2268       n->dump("\n", false, output_stream);
2269     }
2270   }
2271 }
2272 #endif
2273 
2274 // See if this node fits into the present instruction bundle
2275 bool Scheduling::NodeFitsInBundle(Node *n) {
2276   uint n_idx = n->_idx;
2277 
2278   // If this is the unconditional delay instruction, then it fits
2279   if (n == _unconditional_delay_slot) {
2280 #ifndef PRODUCT
2281     if (_cfg->C->trace_opto_output())
2282       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2283 #endif
2284     return (true);
2285   }
2286 
2287   // If the node cannot be scheduled this cycle, skip it
2288   if (_current_latency[n_idx] > _bundle_cycle_number) {
2289 #ifndef PRODUCT
2290     if (_cfg->C->trace_opto_output())
2291       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2292                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2293 #endif
2294     return (false);
2295   }
2296 
2297   const Pipeline *node_pipeline = n->pipeline();
2298 
2299   uint instruction_count = node_pipeline->instructionCount();
2300   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2301     instruction_count = 0;
2302   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2303     instruction_count++;
2304 
2305   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2306 #ifndef PRODUCT
2307     if (_cfg->C->trace_opto_output())
2308       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2309                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2310 #endif
2311     return (false);
2312   }
2313 
2314   // Don't allow non-machine nodes to be handled this way
2315   if (!n->is_Mach() && instruction_count == 0)
2316     return (false);
2317 
2318   // See if there is any overlap
2319   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2320 
2321   if (delay > 0) {
2322 #ifndef PRODUCT
2323     if (_cfg->C->trace_opto_output())
2324       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2325 #endif
2326     return false;
2327   }
2328 
2329 #ifndef PRODUCT
2330   if (_cfg->C->trace_opto_output())
2331     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2332 #endif
2333 
2334   return true;
2335 }
2336 
2337 Node * Scheduling::ChooseNodeToBundle() {
2338   uint siz = _available.size();
2339 
2340   if (siz == 0) {
2341 
2342 #ifndef PRODUCT
2343     if (_cfg->C->trace_opto_output())
2344       tty->print("#   ChooseNodeToBundle: null\n");
2345 #endif
2346     return (nullptr);
2347   }
2348 
2349   // Fast path, if only 1 instruction in the bundle
2350   if (siz == 1) {
2351 #ifndef PRODUCT
2352     if (_cfg->C->trace_opto_output()) {
2353       tty->print("#   ChooseNodeToBundle (only 1): ");
2354       _available[0]->dump();
2355     }
2356 #endif
2357     return (_available[0]);
2358   }
2359 
2360   // Don't bother, if the bundle is already full
2361   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2362     for ( uint i = 0; i < siz; i++ ) {
2363       Node *n = _available[i];
2364 
2365       // Skip projections, we'll handle them another way
2366       if (n->is_Proj())
2367         continue;
2368 
2369       // This presupposed that instructions are inserted into the
2370       // available list in a legality order; i.e. instructions that
2371       // must be inserted first are at the head of the list
2372       if (NodeFitsInBundle(n)) {
2373 #ifndef PRODUCT
2374         if (_cfg->C->trace_opto_output()) {
2375           tty->print("#   ChooseNodeToBundle: ");
2376           n->dump();
2377         }
2378 #endif
2379         return (n);
2380       }
2381     }
2382   }
2383 
2384   // Nothing fits in this bundle, choose the highest priority
2385 #ifndef PRODUCT
2386   if (_cfg->C->trace_opto_output()) {
2387     tty->print("#   ChooseNodeToBundle: ");
2388     _available[0]->dump();
2389   }
2390 #endif
2391 
2392   return _available[0];
2393 }
2394 
2395 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) {
2396   assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), "");
2397 
2398   OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1));
2399   OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first);
2400   OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1));
2401   OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second);
2402 
2403   // Comparison between stack -> reg and stack -> reg
2404   if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) &&
2405       OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) {
2406     return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo);
2407   }
2408 
2409   // Comparison between reg -> stack and reg -> stack
2410   if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) &&
2411       OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) {
2412     return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo);
2413   }
2414 
2415   return 0; // Not comparable
2416 }
2417 
2418 void Scheduling::AddNodeToAvailableList(Node *n) {
2419   assert( !n->is_Proj(), "projections never directly made available" );
2420 #ifndef PRODUCT
2421   if (_cfg->C->trace_opto_output()) {
2422     tty->print("#   AddNodeToAvailableList: ");
2423     n->dump();
2424   }
2425 #endif
2426 
2427   int latency = _current_latency[n->_idx];
2428 
2429   // Insert in latency order (insertion sort). If two MachSpillCopyNodes
2430   // for stack spilling or unspilling have the same latency, we sort
2431   // them in the order of stack offset. Some ports (e.g. aarch64) may also
2432   // have more opportunities to do ld/st merging
2433   uint i;
2434   for (i = 0; i < _available.size(); i++) {
2435     if (_current_latency[_available[i]->_idx] > latency) {
2436       break;
2437     } else if (_current_latency[_available[i]->_idx] == latency &&
2438                n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() &&
2439                compare_two_spill_nodes(n, _available[i]) > 0) {
2440       break;
2441     }
2442   }
2443 
2444   // Special Check for compares following branches
2445   if( n->is_Mach() && _scheduled.size() > 0 ) {
2446     int op = n->as_Mach()->ideal_Opcode();
2447     Node *last = _scheduled[0];
2448     if( last->is_MachIf() && last->in(1) == n &&
2449         ( op == Op_CmpI ||
2450           op == Op_CmpU ||
2451           op == Op_CmpUL ||
2452           op == Op_CmpP ||
2453           op == Op_CmpF ||
2454           op == Op_CmpD ||
2455           op == Op_CmpL ) ) {
2456 
2457       // Recalculate position, moving to front of same latency
2458       for ( i=0 ; i < _available.size(); i++ )
2459         if (_current_latency[_available[i]->_idx] >= latency)
2460           break;
2461     }
2462   }
2463 
2464   // Insert the node in the available list
2465   _available.insert(i, n);
2466 
2467 #ifndef PRODUCT
2468   if (_cfg->C->trace_opto_output())
2469     dump_available();
2470 #endif
2471 }
2472 
2473 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2474   for ( uint i=0; i < n->len(); i++ ) {
2475     Node *def = n->in(i);
2476     if (!def) continue;
2477     if( def->is_Proj() )        // If this is a machine projection, then
2478       def = def->in(0);         // propagate usage thru to the base instruction
2479 
2480     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2481       continue;
2482     }
2483 
2484     // Compute the latency
2485     uint l = _bundle_cycle_number + n->latency(i);
2486     if (_current_latency[def->_idx] < l)
2487       _current_latency[def->_idx] = l;
2488 
2489     // If this does not have uses then schedule it
2490     if ((--_uses[def->_idx]) == 0)
2491       AddNodeToAvailableList(def);
2492   }
2493 }
2494 
2495 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2496 #ifndef PRODUCT
2497   if (_cfg->C->trace_opto_output()) {
2498     tty->print("#   AddNodeToBundle: ");
2499     n->dump();
2500   }
2501 #endif
2502 
2503   // Remove this from the available list
2504   uint i;
2505   for (i = 0; i < _available.size(); i++)
2506     if (_available[i] == n)
2507       break;
2508   assert(i < _available.size(), "entry in _available list not found");
2509   _available.remove(i);
2510 
2511   // See if this fits in the current bundle
2512   const Pipeline *node_pipeline = n->pipeline();
2513   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2514 
2515   // Check for instructions to be placed in the delay slot. We
2516   // do this before we actually schedule the current instruction,
2517   // because the delay slot follows the current instruction.
2518   if (Pipeline::_branch_has_delay_slot &&
2519       node_pipeline->hasBranchDelay() &&
2520       !_unconditional_delay_slot) {
2521 
2522     uint siz = _available.size();
2523 
2524     // Conditional branches can support an instruction that
2525     // is unconditionally executed and not dependent by the
2526     // branch, OR a conditionally executed instruction if
2527     // the branch is taken.  In practice, this means that
2528     // the first instruction at the branch target is
2529     // copied to the delay slot, and the branch goes to
2530     // the instruction after that at the branch target
2531     if ( n->is_MachBranch() ) {
2532 
2533       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2534       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2535 
2536 #ifndef PRODUCT
2537       _branches++;
2538 #endif
2539 
2540       // At least 1 instruction is on the available list
2541       // that is not dependent on the branch
2542       for (uint i = 0; i < siz; i++) {
2543         Node *d = _available[i];
2544         const Pipeline *avail_pipeline = d->pipeline();
2545 
2546         // Don't allow safepoints in the branch shadow, that will
2547         // cause a number of difficulties
2548         if ( avail_pipeline->instructionCount() == 1 &&
2549              !avail_pipeline->hasMultipleBundles() &&
2550              !avail_pipeline->hasBranchDelay() &&
2551              Pipeline::instr_has_unit_size() &&
2552              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2553              NodeFitsInBundle(d) &&
2554              !node_bundling(d)->used_in_delay()) {
2555 
2556           if (d->is_Mach() && !d->is_MachSafePoint()) {
2557             // A node that fits in the delay slot was found, so we need to
2558             // set the appropriate bits in the bundle pipeline information so
2559             // that it correctly indicates resource usage.  Later, when we
2560             // attempt to add this instruction to the bundle, we will skip
2561             // setting the resource usage.
2562             _unconditional_delay_slot = d;
2563             node_bundling(n)->set_use_unconditional_delay();
2564             node_bundling(d)->set_used_in_unconditional_delay();
2565             _bundle_use.add_usage(avail_pipeline->resourceUse());
2566             _current_latency[d->_idx] = _bundle_cycle_number;
2567             _next_node = d;
2568             ++_bundle_instr_count;
2569 #ifndef PRODUCT
2570             _unconditional_delays++;
2571 #endif
2572             break;
2573           }
2574         }
2575       }
2576     }
2577 
2578     // No delay slot, add a nop to the usage
2579     if (!_unconditional_delay_slot) {
2580       // See if adding an instruction in the delay slot will overflow
2581       // the bundle.
2582       if (!NodeFitsInBundle(_nop)) {
2583 #ifndef PRODUCT
2584         if (_cfg->C->trace_opto_output())
2585           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2586 #endif
2587         step(1);
2588       }
2589 
2590       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2591       _next_node = _nop;
2592       ++_bundle_instr_count;
2593     }
2594 
2595     // See if the instruction in the delay slot requires a
2596     // step of the bundles
2597     if (!NodeFitsInBundle(n)) {
2598 #ifndef PRODUCT
2599       if (_cfg->C->trace_opto_output())
2600         tty->print("#  *** STEP(branch won't fit) ***\n");
2601 #endif
2602       // Update the state information
2603       _bundle_instr_count = 0;
2604       _bundle_cycle_number += 1;
2605       _bundle_use.step(1);
2606     }
2607   }
2608 
2609   // Get the number of instructions
2610   uint instruction_count = node_pipeline->instructionCount();
2611   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2612     instruction_count = 0;
2613 
2614   // Compute the latency information
2615   uint delay = 0;
2616 
2617   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2618     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2619     if (relative_latency < 0)
2620       relative_latency = 0;
2621 
2622     delay = _bundle_use.full_latency(relative_latency, node_usage);
2623 
2624     // Does not fit in this bundle, start a new one
2625     if (delay > 0) {
2626       step(delay);
2627 
2628 #ifndef PRODUCT
2629       if (_cfg->C->trace_opto_output())
2630         tty->print("#  *** STEP(%d) ***\n", delay);
2631 #endif
2632     }
2633   }
2634 
2635   // If this was placed in the delay slot, ignore it
2636   if (n != _unconditional_delay_slot) {
2637 
2638     if (delay == 0) {
2639       if (node_pipeline->hasMultipleBundles()) {
2640 #ifndef PRODUCT
2641         if (_cfg->C->trace_opto_output())
2642           tty->print("#  *** STEP(multiple instructions) ***\n");
2643 #endif
2644         step(1);
2645       }
2646 
2647       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2648 #ifndef PRODUCT
2649         if (_cfg->C->trace_opto_output())
2650           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2651                      instruction_count + _bundle_instr_count,
2652                      Pipeline::_max_instrs_per_cycle);
2653 #endif
2654         step(1);
2655       }
2656     }
2657 
2658     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2659       _bundle_instr_count++;
2660 
2661     // Set the node's latency
2662     _current_latency[n->_idx] = _bundle_cycle_number;
2663 
2664     // Now merge the functional unit information
2665     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2666       _bundle_use.add_usage(node_usage);
2667 
2668     // Increment the number of instructions in this bundle
2669     _bundle_instr_count += instruction_count;
2670 
2671     // Remember this node for later
2672     if (n->is_Mach())
2673       _next_node = n;
2674   }
2675 
2676   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2677   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2678   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2679   // into the block.  All other scheduled nodes get put in the schedule here.
2680   int op = n->Opcode();
2681   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2682       (op != Op_Node &&         // Not an unused antidepedence node and
2683        // not an unallocated boxlock
2684        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2685 
2686     // Push any trailing projections
2687     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2688       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2689         Node *foi = n->fast_out(i);
2690         if( foi->is_Proj() )
2691           _scheduled.push(foi);
2692       }
2693     }
2694 
2695     // Put the instruction in the schedule list
2696     _scheduled.push(n);
2697   }
2698 
2699 #ifndef PRODUCT
2700   if (_cfg->C->trace_opto_output())
2701     dump_available();
2702 #endif
2703 
2704   // Walk all the definitions, decrementing use counts, and
2705   // if a definition has a 0 use count, place it in the available list.
2706   DecrementUseCounts(n,bb);
2707 }
2708 
2709 // This method sets the use count within a basic block.  We will ignore all
2710 // uses outside the current basic block.  As we are doing a backwards walk,
2711 // any node we reach that has a use count of 0 may be scheduled.  This also
2712 // avoids the problem of cyclic references from phi nodes, as long as phi
2713 // nodes are at the front of the basic block.  This method also initializes
2714 // the available list to the set of instructions that have no uses within this
2715 // basic block.
2716 void Scheduling::ComputeUseCount(const Block *bb) {
2717 #ifndef PRODUCT
2718   if (_cfg->C->trace_opto_output())
2719     tty->print("# -> ComputeUseCount\n");
2720 #endif
2721 
2722   // Clear the list of available and scheduled instructions, just in case
2723   _available.clear();
2724   _scheduled.clear();
2725 
2726   // No delay slot specified
2727   _unconditional_delay_slot = nullptr;
2728 
2729 #ifdef ASSERT
2730   for( uint i=0; i < bb->number_of_nodes(); i++ )
2731     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2732 #endif
2733 
2734   // Force the _uses count to never go to zero for unscheduable pieces
2735   // of the block
2736   for( uint k = 0; k < _bb_start; k++ )
2737     _uses[bb->get_node(k)->_idx] = 1;
2738   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2739     _uses[bb->get_node(l)->_idx] = 1;
2740 
2741   // Iterate backwards over the instructions in the block.  Don't count the
2742   // branch projections at end or the block header instructions.
2743   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2744     Node *n = bb->get_node(j);
2745     if( n->is_Proj() ) continue; // Projections handled another way
2746 
2747     // Account for all uses
2748     for ( uint k = 0; k < n->len(); k++ ) {
2749       Node *inp = n->in(k);
2750       if (!inp) continue;
2751       assert(inp != n, "no cycles allowed" );
2752       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2753         if (inp->is_Proj()) { // Skip through Proj's
2754           inp = inp->in(0);
2755         }
2756         ++_uses[inp->_idx];     // Count 1 block-local use
2757       }
2758     }
2759 
2760     // If this instruction has a 0 use count, then it is available
2761     if (!_uses[n->_idx]) {
2762       _current_latency[n->_idx] = _bundle_cycle_number;
2763       AddNodeToAvailableList(n);
2764     }
2765 
2766 #ifndef PRODUCT
2767     if (_cfg->C->trace_opto_output()) {
2768       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2769       n->dump();
2770     }
2771 #endif
2772   }
2773 
2774 #ifndef PRODUCT
2775   if (_cfg->C->trace_opto_output())
2776     tty->print("# <- ComputeUseCount\n");
2777 #endif
2778 }
2779 
2780 // This routine performs scheduling on each basic block in reverse order,
2781 // using instruction latencies and taking into account function unit
2782 // availability.
2783 void Scheduling::DoScheduling() {
2784 #ifndef PRODUCT
2785   if (_cfg->C->trace_opto_output())
2786     tty->print("# -> DoScheduling\n");
2787 #endif
2788 
2789   Block *succ_bb = nullptr;
2790   Block *bb;
2791   Compile* C = Compile::current();
2792 
2793   // Walk over all the basic blocks in reverse order
2794   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2795     bb = _cfg->get_block(i);
2796 
2797 #ifndef PRODUCT
2798     if (_cfg->C->trace_opto_output()) {
2799       tty->print("#  Schedule BB#%03d (initial)\n", i);
2800       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2801         bb->get_node(j)->dump();
2802       }
2803     }
2804 #endif
2805 
2806     // On the head node, skip processing
2807     if (bb == _cfg->get_root_block()) {
2808       continue;
2809     }
2810 
2811     // Skip empty, connector blocks
2812     if (bb->is_connector())
2813       continue;
2814 
2815     // If the following block is not the sole successor of
2816     // this one, then reset the pipeline information
2817     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2818 #ifndef PRODUCT
2819       if (_cfg->C->trace_opto_output()) {
2820         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2821                    _next_node->_idx, _bundle_instr_count);
2822       }
2823 #endif
2824       step_and_clear();
2825     }
2826 
2827     // Leave untouched the starting instruction, any Phis, a CreateEx node
2828     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2829     _bb_end = bb->number_of_nodes()-1;
2830     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2831       Node *n = bb->get_node(_bb_start);
2832       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2833       // Also, MachIdealNodes do not get scheduled
2834       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2835       MachNode *mach = n->as_Mach();
2836       int iop = mach->ideal_Opcode();
2837       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2838       if( iop == Op_Con ) continue;      // Do not schedule Top
2839       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2840           mach->pipeline() == MachNode::pipeline_class() &&
2841           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2842         continue;
2843       break;                    // Funny loop structure to be sure...
2844     }
2845     // Compute last "interesting" instruction in block - last instruction we
2846     // might schedule.  _bb_end points just after last schedulable inst.  We
2847     // normally schedule conditional branches (despite them being forced last
2848     // in the block), because they have delay slots we can fill.  Calls all
2849     // have their delay slots filled in the template expansions, so we don't
2850     // bother scheduling them.
2851     Node *last = bb->get_node(_bb_end);
2852     // Ignore trailing NOPs.
2853     while (_bb_end > 0 && last->is_Mach() &&
2854            last->as_Mach()->ideal_Opcode() == Op_Con) {
2855       last = bb->get_node(--_bb_end);
2856     }
2857     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2858     if( last->is_Catch() ||
2859         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2860       // There might be a prior call.  Skip it.
2861       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2862     } else if( last->is_MachNullCheck() ) {
2863       // Backup so the last null-checked memory instruction is
2864       // outside the schedulable range. Skip over the nullcheck,
2865       // projection, and the memory nodes.
2866       Node *mem = last->in(1);
2867       do {
2868         _bb_end--;
2869       } while (mem != bb->get_node(_bb_end));
2870     } else {
2871       // Set _bb_end to point after last schedulable inst.
2872       _bb_end++;
2873     }
2874 
2875     assert( _bb_start <= _bb_end, "inverted block ends" );
2876 
2877     // Compute the register antidependencies for the basic block
2878     ComputeRegisterAntidependencies(bb);
2879     if (C->failing())  return;  // too many D-U pinch points
2880 
2881     // Compute the usage within the block, and set the list of all nodes
2882     // in the block that have no uses within the block.
2883     ComputeUseCount(bb);
2884 
2885     // Schedule the remaining instructions in the block
2886     while ( _available.size() > 0 ) {
2887       Node *n = ChooseNodeToBundle();
2888       guarantee(n != nullptr, "no nodes available");
2889       AddNodeToBundle(n,bb);
2890     }
2891 
2892     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2893 #ifdef ASSERT
2894     for( uint l = _bb_start; l < _bb_end; l++ ) {
2895       Node *n = bb->get_node(l);
2896       uint m;
2897       for( m = 0; m < _bb_end-_bb_start; m++ )
2898         if( _scheduled[m] == n )
2899           break;
2900       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2901     }
2902 #endif
2903 
2904     // Now copy the instructions (in reverse order) back to the block
2905     for ( uint k = _bb_start; k < _bb_end; k++ )
2906       bb->map_node(_scheduled[_bb_end-k-1], k);
2907 
2908 #ifndef PRODUCT
2909     if (_cfg->C->trace_opto_output()) {
2910       tty->print("#  Schedule BB#%03d (final)\n", i);
2911       uint current = 0;
2912       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2913         Node *n = bb->get_node(j);
2914         if( valid_bundle_info(n) ) {
2915           Bundle *bundle = node_bundling(n);
2916           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2917             tty->print("*** Bundle: ");
2918             bundle->dump();
2919           }
2920           n->dump();
2921         }
2922       }
2923     }
2924 #endif
2925 #ifdef ASSERT
2926     verify_good_schedule(bb,"after block local scheduling");
2927 #endif
2928   }
2929 
2930 #ifndef PRODUCT
2931   if (_cfg->C->trace_opto_output())
2932     tty->print("# <- DoScheduling\n");
2933 #endif
2934 
2935   // Record final node-bundling array location
2936   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2937 
2938 } // end DoScheduling
2939 
2940 // Verify that no live-range used in the block is killed in the block by a
2941 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2942 
2943 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2944 static bool edge_from_to( Node *from, Node *to ) {
2945   for( uint i=0; i<from->len(); i++ )
2946     if( from->in(i) == to )
2947       return true;
2948   return false;
2949 }
2950 
2951 #ifdef ASSERT
2952 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2953   // Check for bad kills
2954   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2955     Node *prior_use = _reg_node[def];
2956     if( prior_use && !edge_from_to(prior_use,n) ) {
2957       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2958       n->dump();
2959       tty->print_cr("...");
2960       prior_use->dump();
2961       assert(edge_from_to(prior_use,n), "%s", msg);
2962     }
2963     _reg_node.map(def,nullptr); // Kill live USEs
2964   }
2965 }
2966 
2967 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2968 
2969   // Zap to something reasonable for the verify code
2970   _reg_node.clear();
2971 
2972   // Walk over the block backwards.  Check to make sure each DEF doesn't
2973   // kill a live value (other than the one it's supposed to).  Add each
2974   // USE to the live set.
2975   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2976     Node *n = b->get_node(i);
2977     int n_op = n->Opcode();
2978     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2979       // Fat-proj kills a slew of registers
2980       RegMaskIterator rmi(n->out_RegMask());
2981       while (rmi.has_next()) {
2982         OptoReg::Name kill = rmi.next();
2983         verify_do_def(n, kill, msg);
2984       }
2985     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2986       // Get DEF'd registers the normal way
2987       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2988       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2989     }
2990 
2991     // Now make all USEs live
2992     for( uint i=1; i<n->req(); i++ ) {
2993       Node *def = n->in(i);
2994       assert(def != nullptr, "input edge required");
2995       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2996       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2997       if( OptoReg::is_valid(reg_lo) ) {
2998         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2999         _reg_node.map(reg_lo,n);
3000       }
3001       if( OptoReg::is_valid(reg_hi) ) {
3002         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
3003         _reg_node.map(reg_hi,n);
3004       }
3005     }
3006 
3007   }
3008 
3009   // Zap to something reasonable for the Antidependence code
3010   _reg_node.clear();
3011 }
3012 #endif
3013 
3014 // Conditionally add precedence edges.  Avoid putting edges on Projs.
3015 static void add_prec_edge_from_to( Node *from, Node *to ) {
3016   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
3017     assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" );
3018     from = from->in(0);
3019   }
3020   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
3021       !edge_from_to( from, to ) ) // Avoid duplicate edge
3022     from->add_prec(to);
3023 }
3024 
3025 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
3026   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
3027     return;
3028 
3029   if (OptoReg::is_reg(def_reg)) {
3030     VMReg vmreg = OptoReg::as_VMReg(def_reg);
3031     if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
3032       // This is one of the high slots of a vector register.
3033       // ScheduleAndBundle already checked there are no live wide
3034       // vectors in this method so it can be safely ignored.
3035       return;
3036     }
3037   }
3038 
3039   Node *pinch = _reg_node[def_reg]; // Get pinch point
3040   if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
3041       is_def ) {    // Check for a true def (not a kill)
3042     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
3043     return;
3044   }
3045 
3046   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
3047   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
3048 
3049   // After some number of kills there _may_ be a later def
3050   Node *later_def = nullptr;
3051 
3052   Compile* C = Compile::current();
3053 
3054   // Finding a kill requires a real pinch-point.
3055   // Check for not already having a pinch-point.
3056   // Pinch points are Op_Node's.
3057   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
3058     later_def = pinch;            // Must be def/kill as optimistic pinch-point
3059     if ( _pinch_free_list.size() > 0) {
3060       pinch = _pinch_free_list.pop();
3061     } else {
3062       pinch = new Node(1); // Pinch point to-be
3063     }
3064     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
3065       DEBUG_ONLY( pinch->dump(); );
3066       assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index());
3067       _cfg->C->record_method_not_compilable("too many D-U pinch points");
3068       return;
3069     }
3070     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
3071     _reg_node.map(def_reg,pinch); // Record pinch-point
3072     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
3073     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
3074       pinch->init_req(0, C->top());     // set not null for the next call
3075       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
3076       later_def = nullptr;           // and no later def
3077     }
3078     pinch->set_req(0,later_def);  // Hook later def so we can find it
3079   } else {                        // Else have valid pinch point
3080     if( pinch->in(0) )            // If there is a later-def
3081       later_def = pinch->in(0);   // Get it
3082   }
3083 
3084   // Add output-dependence edge from later def to kill
3085   if( later_def )               // If there is some original def
3086     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
3087 
3088   // See if current kill is also a use, and so is forced to be the pinch-point.
3089   if( pinch->Opcode() == Op_Node ) {
3090     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
3091     for( uint i=1; i<uses->req(); i++ ) {
3092       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
3093           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
3094         // Yes, found a use/kill pinch-point
3095         pinch->set_req(0,nullptr);  //
3096         pinch->replace_by(kill); // Move anti-dep edges up
3097         pinch = kill;
3098         _reg_node.map(def_reg,pinch);
3099         return;
3100       }
3101     }
3102   }
3103 
3104   // Add edge from kill to pinch-point
3105   add_prec_edge_from_to(kill,pinch);
3106 }
3107 
3108 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
3109   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
3110     return;
3111   Node *pinch = _reg_node[use_reg]; // Get pinch point
3112   // Check for no later def_reg/kill in block
3113   if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
3114       // Use has to be block-local as well
3115       _cfg->get_block_for_node(use) == b) {
3116     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
3117         pinch->req() == 1 ) {   // pinch not yet in block?
3118       pinch->del_req(0);        // yank pointer to later-def, also set flag
3119       // Insert the pinch-point in the block just after the last use
3120       b->insert_node(pinch, b->find_node(use) + 1);
3121       _bb_end++;                // Increase size scheduled region in block
3122     }
3123 
3124     add_prec_edge_from_to(pinch,use);
3125   }
3126 }
3127 
3128 // We insert antidependences between the reads and following write of
3129 // allocated registers to prevent illegal code motion. Hopefully, the
3130 // number of added references should be fairly small, especially as we
3131 // are only adding references within the current basic block.
3132 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
3133 
3134 #ifdef ASSERT
3135   verify_good_schedule(b,"before block local scheduling");
3136 #endif
3137 
3138   // A valid schedule, for each register independently, is an endless cycle
3139   // of: a def, then some uses (connected to the def by true dependencies),
3140   // then some kills (defs with no uses), finally the cycle repeats with a new
3141   // def.  The uses are allowed to float relative to each other, as are the
3142   // kills.  No use is allowed to slide past a kill (or def).  This requires
3143   // antidependencies between all uses of a single def and all kills that
3144   // follow, up to the next def.  More edges are redundant, because later defs
3145   // & kills are already serialized with true or antidependencies.  To keep
3146   // the edge count down, we add a 'pinch point' node if there's more than
3147   // one use or more than one kill/def.
3148 
3149   // We add dependencies in one bottom-up pass.
3150 
3151   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
3152 
3153   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
3154   // register.  If not, we record the DEF/KILL in _reg_node, the
3155   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
3156   // "pinch point", a new Node that's in the graph but not in the block.
3157   // We put edges from the prior and current DEF/KILLs to the pinch point.
3158   // We put the pinch point in _reg_node.  If there's already a pinch point
3159   // we merely add an edge from the current DEF/KILL to the pinch point.
3160 
3161   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
3162   // put an edge from the pinch point to the USE.
3163 
3164   // To be expedient, the _reg_node array is pre-allocated for the whole
3165   // compilation.  _reg_node is lazily initialized; it either contains a null,
3166   // or a valid def/kill/pinch-point, or a leftover node from some prior
3167   // block.  Leftover node from some prior block is treated like a null (no
3168   // prior def, so no anti-dependence needed).  Valid def is distinguished by
3169   // it being in the current block.
3170   bool fat_proj_seen = false;
3171   uint last_safept = _bb_end-1;
3172   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
3173   Node* last_safept_node = end_node;
3174   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
3175     Node *n = b->get_node(i);
3176     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
3177     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
3178       // Fat-proj kills a slew of registers
3179       // This can add edges to 'n' and obscure whether or not it was a def,
3180       // hence the is_def flag.
3181       fat_proj_seen = true;
3182       RegMaskIterator rmi(n->out_RegMask());
3183       while (rmi.has_next()) {
3184         OptoReg::Name kill = rmi.next();
3185         anti_do_def(b, n, kill, is_def);
3186       }
3187     } else {
3188       // Get DEF'd registers the normal way
3189       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
3190       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
3191     }
3192 
3193     // Kill projections on a branch should appear to occur on the
3194     // branch, not afterwards, so grab the masks from the projections
3195     // and process them.
3196     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
3197       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3198         Node* use = n->fast_out(i);
3199         if (use->is_Proj()) {
3200           RegMaskIterator rmi(use->out_RegMask());
3201           while (rmi.has_next()) {
3202             OptoReg::Name kill = rmi.next();
3203             anti_do_def(b, n, kill, false);
3204           }
3205         }
3206       }
3207     }
3208 
3209     // Check each register used by this instruction for a following DEF/KILL
3210     // that must occur afterward and requires an anti-dependence edge.
3211     for( uint j=0; j<n->req(); j++ ) {
3212       Node *def = n->in(j);
3213       if( def ) {
3214         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3215         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3216         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3217       }
3218     }
3219     // Do not allow defs of new derived values to float above GC
3220     // points unless the base is definitely available at the GC point.
3221 
3222     Node *m = b->get_node(i);
3223 
3224     // Add precedence edge from following safepoint to use of derived pointer
3225     if( last_safept_node != end_node &&
3226         m != last_safept_node) {
3227       for (uint k = 1; k < m->req(); k++) {
3228         const Type *t = m->in(k)->bottom_type();
3229         if( t->isa_oop_ptr() &&
3230             t->is_ptr()->offset() != 0 ) {
3231           last_safept_node->add_prec( m );
3232           break;
3233         }
3234       }
3235 
3236       // Do not allow a CheckCastPP node whose input is a raw pointer to
3237       // float past a safepoint.  This can occur when a buffered inline
3238       // type is allocated in a loop and the CheckCastPP from that
3239       // allocation is reused outside the loop.  If the use inside the
3240       // loop is scalarized the CheckCastPP will no longer be connected
3241       // to the loop safepoint.  See JDK-8264340.
3242       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) {
3243         Node *def = m->in(1);
3244         if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
3245           last_safept_node->add_prec(m);
3246         }
3247       }
3248     }
3249 
3250     if( n->jvms() ) {           // Precedence edge from derived to safept
3251       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3252       if( b->get_node(last_safept) != last_safept_node ) {
3253         last_safept = b->find_node(last_safept_node);
3254       }
3255       for( uint j=last_safept; j > i; j-- ) {
3256         Node *mach = b->get_node(j);
3257         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3258           mach->add_prec( n );
3259       }
3260       last_safept = i;
3261       last_safept_node = m;
3262     }
3263   }
3264 
3265   if (fat_proj_seen) {
3266     // Garbage collect pinch nodes that were not consumed.
3267     // They are usually created by a fat kill MachProj for a call.
3268     garbage_collect_pinch_nodes();
3269   }
3270 }
3271 
3272 // Garbage collect pinch nodes for reuse by other blocks.
3273 //
3274 // The block scheduler's insertion of anti-dependence
3275 // edges creates many pinch nodes when the block contains
3276 // 2 or more Calls.  A pinch node is used to prevent a
3277 // combinatorial explosion of edges.  If a set of kills for a
3278 // register is anti-dependent on a set of uses (or defs), rather
3279 // than adding an edge in the graph between each pair of kill
3280 // and use (or def), a pinch is inserted between them:
3281 //
3282 //            use1   use2  use3
3283 //                \   |   /
3284 //                 \  |  /
3285 //                  pinch
3286 //                 /  |  \
3287 //                /   |   \
3288 //            kill1 kill2 kill3
3289 //
3290 // One pinch node is created per register killed when
3291 // the second call is encountered during a backwards pass
3292 // over the block.  Most of these pinch nodes are never
3293 // wired into the graph because the register is never
3294 // used or def'ed in the block.
3295 //
3296 void Scheduling::garbage_collect_pinch_nodes() {
3297 #ifndef PRODUCT
3298   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3299 #endif
3300   int trace_cnt = 0;
3301   for (uint k = 0; k < _reg_node.max(); k++) {
3302     Node* pinch = _reg_node[k];
3303     if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3304         // no predecence input edges
3305         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3306       cleanup_pinch(pinch);
3307       _pinch_free_list.push(pinch);
3308       _reg_node.map(k, nullptr);
3309 #ifndef PRODUCT
3310       if (_cfg->C->trace_opto_output()) {
3311         trace_cnt++;
3312         if (trace_cnt > 40) {
3313           tty->print("\n");
3314           trace_cnt = 0;
3315         }
3316         tty->print(" %d", pinch->_idx);
3317       }
3318 #endif
3319     }
3320   }
3321 #ifndef PRODUCT
3322   if (_cfg->C->trace_opto_output()) tty->print("\n");
3323 #endif
3324 }
3325 
3326 // Clean up a pinch node for reuse.
3327 void Scheduling::cleanup_pinch( Node *pinch ) {
3328   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3329 
3330   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3331     Node* use = pinch->last_out(i);
3332     uint uses_found = 0;
3333     for (uint j = use->req(); j < use->len(); j++) {
3334       if (use->in(j) == pinch) {
3335         use->rm_prec(j);
3336         uses_found++;
3337       }
3338     }
3339     assert(uses_found > 0, "must be a precedence edge");
3340     i -= uses_found;    // we deleted 1 or more copies of this edge
3341   }
3342   // May have a later_def entry
3343   pinch->set_req(0, nullptr);
3344 }
3345 
3346 #ifndef PRODUCT
3347 
3348 void Scheduling::dump_available() const {
3349   tty->print("#Availist  ");
3350   for (uint i = 0; i < _available.size(); i++)
3351     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3352   tty->cr();
3353 }
3354 
3355 // Print Scheduling Statistics
3356 void Scheduling::print_statistics() {
3357   // Print the size added by nops for bundling
3358   tty->print("Nops added %d bytes to total of %d bytes",
3359              _total_nop_size, _total_method_size);
3360   if (_total_method_size > 0)
3361     tty->print(", for %.2f%%",
3362                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3363   tty->print("\n");
3364 
3365   // Print the number of branch shadows filled
3366   if (Pipeline::_branch_has_delay_slot) {
3367     tty->print("Of %d branches, %d had unconditional delay slots filled",
3368                _total_branches, _total_unconditional_delays);
3369     if (_total_branches > 0)
3370       tty->print(", for %.2f%%",
3371                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3372     tty->print("\n");
3373   }
3374 
3375   uint total_instructions = 0, total_bundles = 0;
3376 
3377   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3378     uint bundle_count   = _total_instructions_per_bundle[i];
3379     total_instructions += bundle_count * i;
3380     total_bundles      += bundle_count;
3381   }
3382 
3383   if (total_bundles > 0)
3384     tty->print("Average ILP (excluding nops) is %.2f\n",
3385                ((double)total_instructions) / ((double)total_bundles));
3386 }
3387 #endif
3388 
3389 //-----------------------init_scratch_buffer_blob------------------------------
3390 // Construct a temporary BufferBlob and cache it for this compile.
3391 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3392   // If there is already a scratch buffer blob allocated and the
3393   // constant section is big enough, use it.  Otherwise free the
3394   // current and allocate a new one.
3395   BufferBlob* blob = scratch_buffer_blob();
3396   if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3397     // Use the current blob.
3398   } else {
3399     if (blob != nullptr) {
3400       BufferBlob::free(blob);
3401     }
3402 
3403     ResourceMark rm;
3404     _scratch_const_size = const_size;
3405     int size = C2Compiler::initial_code_buffer_size(const_size);
3406     if (C->has_scalarized_args()) {
3407       // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification
3408       // when loading object fields from the buffered argument. Increase scratch buffer size accordingly.
3409       ciMethod* method = C->method();
3410       int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37));
3411       int arg_num = 0;
3412       if (!method->is_static()) {
3413         if (method->is_scalarized_arg(arg_num)) {
3414           size += method->holder()->as_inline_klass()->oop_count() * barrier_size;
3415         }
3416         arg_num++;
3417       }
3418       for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) {
3419         if (method->is_scalarized_arg(arg_num)) {
3420           size += str.type()->as_inline_klass()->oop_count() * barrier_size;
3421         }
3422         arg_num++;
3423       }
3424     }
3425     blob = BufferBlob::create("Compile::scratch_buffer", size);
3426     // Record the buffer blob for next time.
3427     set_scratch_buffer_blob(blob);
3428     // Have we run out of code space?
3429     if (scratch_buffer_blob() == nullptr) {
3430       // Let CompilerBroker disable further compilations.
3431       C->record_failure("Not enough space for scratch buffer in CodeCache");
3432       return;
3433     }
3434   }
3435 
3436   // Initialize the relocation buffers
3437   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3438   set_scratch_locs_memory(locs_buf);
3439 }
3440 
3441 
3442 //-----------------------scratch_emit_size-------------------------------------
3443 // Helper function that computes size by emitting code
3444 uint PhaseOutput::scratch_emit_size(const Node* n) {
3445   // Start scratch_emit_size section.
3446   set_in_scratch_emit_size(true);
3447 
3448   // Emit into a trash buffer and count bytes emitted.
3449   // This is a pretty expensive way to compute a size,
3450   // but it works well enough if seldom used.
3451   // All common fixed-size instructions are given a size
3452   // method by the AD file.
3453   // Note that the scratch buffer blob and locs memory are
3454   // allocated at the beginning of the compile task, and
3455   // may be shared by several calls to scratch_emit_size.
3456   // The allocation of the scratch buffer blob is particularly
3457   // expensive, since it has to grab the code cache lock.
3458   BufferBlob* blob = this->scratch_buffer_blob();
3459   assert(blob != nullptr, "Initialize BufferBlob at start");
3460   assert(blob->size() > MAX_inst_size, "sanity");
3461   relocInfo* locs_buf = scratch_locs_memory();
3462   address blob_begin = blob->content_begin();
3463   address blob_end   = (address)locs_buf;
3464   assert(blob->contains(blob_end), "sanity");
3465   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3466   buf.initialize_consts_size(_scratch_const_size);
3467   buf.initialize_stubs_size(MAX_stubs_size);
3468   assert(locs_buf != nullptr, "sanity");
3469   int lsize = MAX_locs_size / 3;
3470   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3471   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3472   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3473   // Mark as scratch buffer.
3474   buf.consts()->set_scratch_emit();
3475   buf.insts()->set_scratch_emit();
3476   buf.stubs()->set_scratch_emit();
3477 
3478   // Do the emission.
3479 
3480   Label fakeL; // Fake label for branch instructions.
3481   Label*   saveL = nullptr;
3482   uint save_bnum = 0;
3483   bool is_branch = n->is_MachBranch();
3484   C2_MacroAssembler masm(&buf);
3485   masm.bind(fakeL);
3486   if (is_branch) {
3487     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3488     n->as_MachBranch()->label_set(&fakeL, 0);
3489   }
3490   n->emit(&masm, C->regalloc());
3491 
3492   // Emitting into the scratch buffer should not fail
3493   assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3494 
3495   // Restore label.
3496   if (is_branch) {
3497     n->as_MachBranch()->label_set(saveL, save_bnum);
3498   }
3499 
3500   // End scratch_emit_size section.
3501   set_in_scratch_emit_size(false);
3502 
3503   return buf.insts_size();
3504 }
3505 
3506 void PhaseOutput::install() {
3507   if (!C->should_install_code()) {
3508     return;
3509   } else if (C->stub_function() != nullptr) {
3510     install_stub(C->stub_name());
3511   } else {
3512     install_code(C->method(),
3513                  C->entry_bci(),
3514                  CompileBroker::compiler2(),
3515                  C->has_unsafe_access(),
3516                  SharedRuntime::is_wide_vector(C->max_vector_size()));
3517   }
3518 }
3519 
3520 void PhaseOutput::install_code(ciMethod*         target,
3521                                int               entry_bci,
3522                                AbstractCompiler* compiler,
3523                                bool              has_unsafe_access,
3524                                bool              has_wide_vectors) {
3525   // Check if we want to skip execution of all compiled code.
3526   {
3527 #ifndef PRODUCT
3528     if (OptoNoExecute) {
3529       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3530       return;
3531     }
3532 #endif
3533     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3534 
3535     if (C->is_osr_compilation()) {
3536       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3537       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3538     } else {
3539       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3540       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) {
3541         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size);
3542       }
3543       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) {
3544         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size);
3545       }
3546       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
3547         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
3548       }
3549       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3550     }
3551 
3552     C->env()->register_method(target,
3553                               entry_bci,
3554                               &_code_offsets,
3555                               _orig_pc_slot_offset_in_bytes,
3556                               code_buffer(),
3557                               frame_size_in_words(),
3558                               _oop_map_set,
3559                               &_handler_table,
3560                               inc_table(),
3561                               compiler,
3562                               has_unsafe_access,
3563                               SharedRuntime::is_wide_vector(C->max_vector_size()),
3564                               C->has_monitors(),
3565                               C->has_scoped_access(),
3566                               0);
3567 
3568     if (C->log() != nullptr) { // Print code cache state into compiler log
3569       C->log()->code_cache_state();
3570     }
3571   }
3572 }
3573 void PhaseOutput::install_stub(const char* stub_name) {
3574   // Entry point will be accessed using stub_entry_point();
3575   if (code_buffer() == nullptr) {
3576     Matcher::soft_match_failure();
3577   } else {
3578     if (PrintAssembly && (WizardMode || Verbose))
3579       tty->print_cr("### Stub::%s", stub_name);
3580 
3581     if (!C->failing()) {
3582       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3583 
3584       // Make the NMethod
3585       // For now we mark the frame as never safe for profile stackwalking
3586       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3587                                                       code_buffer(),
3588                                                       CodeOffsets::frame_never_safe,
3589                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3590                                                       frame_size_in_words(),
3591                                                       oop_map_set(),
3592                                                       false);
3593       assert(rs != nullptr && rs->is_runtime_stub(), "sanity check");
3594 
3595       C->set_stub_entry_point(rs->entry_point());
3596     }
3597   }
3598 }
3599 
3600 // Support for bundling info
3601 Bundle* PhaseOutput::node_bundling(const Node *n) {
3602   assert(valid_bundle_info(n), "oob");
3603   return &_node_bundling_base[n->_idx];
3604 }
3605 
3606 bool PhaseOutput::valid_bundle_info(const Node *n) {
3607   return (_node_bundling_limit > n->_idx);
3608 }
3609 
3610 //------------------------------frame_size_in_words-----------------------------
3611 // frame_slots in units of words
3612 int PhaseOutput::frame_size_in_words() const {
3613   // shift is 0 in LP32 and 1 in LP64
3614   const int shift = (LogBytesPerWord - LogBytesPerInt);
3615   int words = _frame_slots >> shift;
3616   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3617   return words;
3618 }
3619 
3620 // To bang the stack of this compiled method we use the stack size
3621 // that the interpreter would need in case of a deoptimization. This
3622 // removes the need to bang the stack in the deoptimization blob which
3623 // in turn simplifies stack overflow handling.
3624 int PhaseOutput::bang_size_in_bytes() const {
3625   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3626 }
3627 
3628 //------------------------------dump_asm---------------------------------------
3629 // Dump formatted assembly
3630 #if defined(SUPPORT_OPTO_ASSEMBLY)
3631 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3632 
3633   int pc_digits = 3; // #chars required for pc
3634   int sb_chars  = 3; // #chars for "start bundle" indicator
3635   int tab_size  = 8;
3636   if (pcs != nullptr) {
3637     int max_pc = 0;
3638     for (uint i = 0; i < pc_limit; i++) {
3639       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3640     }
3641     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3642   }
3643   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3644 
3645   bool cut_short = false;
3646   st->print_cr("#");
3647   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3648   st->print_cr("#");
3649 
3650   // For all blocks
3651   int pc = 0x0;                 // Program counter
3652   char starts_bundle = ' ';
3653   C->regalloc()->dump_frame();
3654 
3655   Node *n = nullptr;
3656   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3657     if (VMThread::should_terminate()) {
3658       cut_short = true;
3659       break;
3660     }
3661     Block* block = C->cfg()->get_block(i);
3662     if (block->is_connector() && !Verbose) {
3663       continue;
3664     }
3665     n = block->head();
3666     if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3667       pc = pcs[n->_idx];
3668       st->print("%*.*x", pc_digits, pc_digits, pc);
3669     }
3670     st->fill_to(prefix_len);
3671     block->dump_head(C->cfg(), st);
3672     if (block->is_connector()) {
3673       st->fill_to(prefix_len);
3674       st->print_cr("# Empty connector block");
3675     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3676       st->fill_to(prefix_len);
3677       st->print_cr("# Block is sole successor of call");
3678     }
3679 
3680     // For all instructions
3681     Node *delay = nullptr;
3682     for (uint j = 0; j < block->number_of_nodes(); j++) {
3683       if (VMThread::should_terminate()) {
3684         cut_short = true;
3685         break;
3686       }
3687       n = block->get_node(j);
3688       if (valid_bundle_info(n)) {
3689         Bundle* bundle = node_bundling(n);
3690         if (bundle->used_in_unconditional_delay()) {
3691           delay = n;
3692           continue;
3693         }
3694         if (bundle->starts_bundle()) {
3695           starts_bundle = '+';
3696         }
3697       }
3698 
3699       if (WizardMode) {
3700         n->dump();
3701       }
3702 
3703       if( !n->is_Region() &&    // Dont print in the Assembly
3704           !n->is_Phi() &&       // a few noisely useless nodes
3705           !n->is_Proj() &&
3706           !n->is_MachTemp() &&
3707           !n->is_SafePointScalarObject() &&
3708           !n->is_Catch() &&     // Would be nice to print exception table targets
3709           !n->is_MergeMem() &&  // Not very interesting
3710           !n->is_top() &&       // Debug info table constants
3711           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3712           ) {
3713         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3714           pc = pcs[n->_idx];
3715           st->print("%*.*x", pc_digits, pc_digits, pc);
3716         } else {
3717           st->fill_to(pc_digits);
3718         }
3719         st->print(" %c ", starts_bundle);
3720         starts_bundle = ' ';
3721         st->fill_to(prefix_len);
3722         n->format(C->regalloc(), st);
3723         st->cr();
3724       }
3725 
3726       // If we have an instruction with a delay slot, and have seen a delay,
3727       // then back up and print it
3728       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3729         // Coverity finding - Explicit null dereferenced.
3730         guarantee(delay != nullptr, "no unconditional delay instruction");
3731         if (WizardMode) delay->dump();
3732 
3733         if (node_bundling(delay)->starts_bundle())
3734           starts_bundle = '+';
3735         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3736           pc = pcs[n->_idx];
3737           st->print("%*.*x", pc_digits, pc_digits, pc);
3738         } else {
3739           st->fill_to(pc_digits);
3740         }
3741         st->print(" %c ", starts_bundle);
3742         starts_bundle = ' ';
3743         st->fill_to(prefix_len);
3744         delay->format(C->regalloc(), st);
3745         st->cr();
3746         delay = nullptr;
3747       }
3748 
3749       // Dump the exception table as well
3750       if( n->is_Catch() && (Verbose || WizardMode) ) {
3751         // Print the exception table for this offset
3752         _handler_table.print_subtable_for(pc);
3753       }
3754       st->bol(); // Make sure we start on a new line
3755     }
3756     st->cr(); // one empty line between blocks
3757     assert(cut_short || delay == nullptr, "no unconditional delay branch");
3758   } // End of per-block dump
3759 
3760   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3761 }
3762 #endif
3763 
3764 #ifndef PRODUCT
3765 void PhaseOutput::print_statistics() {
3766   Scheduling::print_statistics();
3767 }
3768 #endif