1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.inline.hpp" 26 #include "code/aotCodeCache.hpp" 27 #include "code/compiledIC.hpp" 28 #include "code/debugInfo.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compilerDirectives.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/c2/barrierSetC2.hpp" 36 #include "gc/shared/gc_globals.hpp" 37 #include "memory/allocation.hpp" 38 #include "opto/ad.hpp" 39 #include "opto/block.hpp" 40 #include "opto/c2_MacroAssembler.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/cfgnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/optoreg.hpp" 48 #include "opto/output.hpp" 49 #include "opto/regalloc.hpp" 50 #include "opto/type.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "utilities/macros.hpp" 53 #include "utilities/powerOfTwo.hpp" 54 #include "utilities/xmlstream.hpp" 55 56 #ifndef PRODUCT 57 #define DEBUG_ARG(x) , x 58 #else 59 #define DEBUG_ARG(x) 60 #endif 61 62 //------------------------------Scheduling---------------------------------- 63 // This class contains all the information necessary to implement instruction 64 // scheduling and bundling. 65 class Scheduling { 66 67 private: 68 // Arena to use 69 Arena *_arena; 70 71 // Control-Flow Graph info 72 PhaseCFG *_cfg; 73 74 // Register Allocation info 75 PhaseRegAlloc *_regalloc; 76 77 // Number of nodes in the method 78 uint _node_bundling_limit; 79 80 // List of scheduled nodes. Generated in reverse order 81 Node_List _scheduled; 82 83 // List of nodes currently available for choosing for scheduling 84 Node_List _available; 85 86 // For each instruction beginning a bundle, the number of following 87 // nodes to be bundled with it. 88 Bundle *_node_bundling_base; 89 90 // Mapping from register to Node 91 Node_List _reg_node; 92 93 // Free list for pinch nodes. 94 Node_List _pinch_free_list; 95 96 // Number of uses of this node within the containing basic block. 97 short *_uses; 98 99 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 100 // front, branch+proj at end. Also skips Catch/CProj (same as 101 // branch-at-end), plus just-prior exception-throwing call. 102 uint _bb_start, _bb_end; 103 104 // Latency from the end of the basic block as scheduled 105 unsigned short *_current_latency; 106 107 // Remember the next node 108 Node *_next_node; 109 110 // Use this for an unconditional branch delay slot 111 Node *_unconditional_delay_slot; 112 113 // Pointer to a Nop 114 MachNopNode *_nop; 115 116 // Length of the current bundle, in instructions 117 uint _bundle_instr_count; 118 119 // Current Cycle number, for computing latencies and bundling 120 uint _bundle_cycle_number; 121 122 // Bundle information 123 Pipeline_Use_Element _bundle_use_elements[resource_count]; 124 Pipeline_Use _bundle_use; 125 126 // Dump the available list 127 void dump_available() const; 128 129 public: 130 Scheduling(Arena *arena, Compile &compile); 131 132 // Destructor 133 NOT_PRODUCT( ~Scheduling(); ) 134 135 // Step ahead "i" cycles 136 void step(uint i); 137 138 // Step ahead 1 cycle, and clear the bundle state (for example, 139 // at a branch target) 140 void step_and_clear(); 141 142 Bundle* node_bundling(const Node *n) { 143 assert(valid_bundle_info(n), "oob"); 144 return (&_node_bundling_base[n->_idx]); 145 } 146 147 bool valid_bundle_info(const Node *n) const { 148 return (_node_bundling_limit > n->_idx); 149 } 150 151 bool starts_bundle(const Node *n) const { 152 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 153 } 154 155 // Do the scheduling 156 void DoScheduling(); 157 158 // Compute the register antidependencies within a basic block 159 void ComputeRegisterAntidependencies(Block *bb); 160 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 161 void verify_good_schedule( Block *b, const char *msg ); 162 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 163 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 164 165 // Add a node to the current bundle 166 void AddNodeToBundle(Node *n, const Block *bb); 167 168 // Return an integer less than, equal to, or greater than zero 169 // if the stack offset of the first argument is respectively 170 // less than, equal to, or greater than the second. 171 int compare_two_spill_nodes(Node* first, Node* second); 172 173 // Add a node to the list of available nodes 174 void AddNodeToAvailableList(Node *n); 175 176 // Compute the local use count for the nodes in a block, and compute 177 // the list of instructions with no uses in the block as available 178 void ComputeUseCount(const Block *bb); 179 180 // Choose an instruction from the available list to add to the bundle 181 Node * ChooseNodeToBundle(); 182 183 // See if this Node fits into the currently accumulating bundle 184 bool NodeFitsInBundle(Node *n); 185 186 // Decrement the use count for a node 187 void DecrementUseCounts(Node *n, const Block *bb); 188 189 // Garbage collect pinch nodes for reuse by other blocks. 190 void garbage_collect_pinch_nodes(); 191 // Clean up a pinch node for reuse (helper for above). 192 void cleanup_pinch( Node *pinch ); 193 194 // Information for statistics gathering 195 #ifndef PRODUCT 196 private: 197 // Gather information on size of nops relative to total 198 uint _branches, _unconditional_delays; 199 200 static uint _total_nop_size, _total_method_size; 201 static uint _total_branches, _total_unconditional_delays; 202 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 203 204 public: 205 static void print_statistics(); 206 207 static void increment_instructions_per_bundle(uint i) { 208 _total_instructions_per_bundle[i]++; 209 } 210 211 static void increment_nop_size(uint s) { 212 _total_nop_size += s; 213 } 214 215 static void increment_method_size(uint s) { 216 _total_method_size += s; 217 } 218 #endif 219 220 }; 221 222 PhaseOutput::PhaseOutput() 223 : Phase(Phase::Output), 224 _code_buffer("Compile::Fill_buffer"), 225 _first_block_size(0), 226 _handler_table(), 227 _inc_table(), 228 _stub_list(), 229 _oop_map_set(nullptr), 230 _scratch_buffer_blob(nullptr), 231 _scratch_locs_memory(nullptr), 232 _scratch_const_size(-1), 233 _in_scratch_emit_size(false), 234 _frame_slots(0), 235 _code_offsets(), 236 _node_bundling_limit(0), 237 _node_bundling_base(nullptr), 238 _orig_pc_slot(0), 239 _orig_pc_slot_offset_in_bytes(0), 240 _buf_sizes(), 241 _block(nullptr), 242 _index(0) { 243 C->set_output(this); 244 if (C->stub_name() == nullptr) { 245 int fixed_slots = C->fixed_slots(); 246 if (C->needs_stack_repair()) { 247 fixed_slots -= 2; 248 } 249 // TODO 8284443 Only reserve extra slot if needed 250 if (InlineTypeReturnedAsFields) { 251 fixed_slots -= 2; 252 } 253 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 254 } 255 } 256 257 PhaseOutput::~PhaseOutput() { 258 C->set_output(nullptr); 259 if (_scratch_buffer_blob != nullptr) { 260 BufferBlob::free(_scratch_buffer_blob); 261 } 262 } 263 264 void PhaseOutput::perform_mach_node_analysis() { 265 // Late barrier analysis must be done after schedule and bundle 266 // Otherwise liveness based spilling will fail 267 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 268 bs->late_barrier_analysis(); 269 270 pd_perform_mach_node_analysis(); 271 272 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 273 } 274 275 // Convert Nodes to instruction bits and pass off to the VM 276 void PhaseOutput::Output() { 277 // RootNode goes 278 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 279 280 // The number of new nodes (mostly MachNop) is proportional to 281 // the number of java calls and inner loops which are aligned. 282 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 283 C->inner_loops()*(OptoLoopAlignment-1)), 284 "out of nodes before code generation" ) ) { 285 return; 286 } 287 // Make sure I can find the Start Node 288 Block *entry = C->cfg()->get_block(1); 289 Block *broot = C->cfg()->get_root_block(); 290 291 const StartNode *start = entry->head()->as_Start(); 292 293 // Replace StartNode with prolog 294 Label verified_entry; 295 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 296 entry->map_node(prolog, 0); 297 C->cfg()->map_node_to_block(prolog, entry); 298 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 299 300 // Virtual methods need an unverified entry point 301 if (C->is_osr_compilation()) { 302 if (PoisonOSREntry) { 303 // TODO: Should use a ShouldNotReachHereNode... 304 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 305 } 306 } else { 307 if (C->method()) { 308 if (C->method()->has_scalarized_args()) { 309 // Add entry point to unpack all inline type arguments 310 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 311 if (!C->method()->is_static()) { 312 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 313 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 314 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 315 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 316 } 317 } else if (!C->method()->is_static()) { 318 // Insert unvalidated entry point 319 C->cfg()->insert(broot, 0, new MachUEPNode()); 320 } 321 } 322 } 323 324 // Break before main entry point 325 if ((C->method() && C->directive()->BreakAtExecuteOption) || 326 (OptoBreakpoint && C->is_method_compilation()) || 327 (OptoBreakpointOSR && C->is_osr_compilation()) || 328 (OptoBreakpointC2R && !C->method()) ) { 329 // checking for C->method() means that OptoBreakpoint does not apply to 330 // runtime stubs or frame converters 331 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 332 } 333 334 // Insert epilogs before every return 335 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 336 Block* block = C->cfg()->get_block(i); 337 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 338 Node* m = block->end(); 339 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 340 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 341 block->add_inst(epilog); 342 C->cfg()->map_node_to_block(epilog, block); 343 } 344 } 345 } 346 347 // Keeper of sizing aspects 348 _buf_sizes = BufferSizingData(); 349 350 // Initialize code buffer 351 estimate_buffer_size(_buf_sizes._const); 352 if (C->failing()) return; 353 354 // Pre-compute the length of blocks and replace 355 // long branches with short if machine supports it. 356 // Must be done before ScheduleAndBundle due to SPARC delay slots 357 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 358 blk_starts[0] = 0; 359 shorten_branches(blk_starts); 360 361 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 362 // Compute the offsets of the entry points required by the inline type calling convention 363 if (!C->method()->is_static()) { 364 // We have entries at the beginning of the method, implemented by the first 4 nodes. 365 // Entry (unverified) @ offset 0 366 // Verified_Inline_Entry_RO 367 // Inline_Entry (unverified) 368 // Verified_Inline_Entry 369 uint offset = 0; 370 _code_offsets.set_value(CodeOffsets::Entry, offset); 371 372 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 373 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 374 375 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 376 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 377 378 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 379 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 380 } else { 381 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 382 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 383 } 384 } 385 386 ScheduleAndBundle(); 387 if (C->failing()) { 388 return; 389 } 390 391 perform_mach_node_analysis(); 392 393 // Complete sizing of codebuffer 394 CodeBuffer* cb = init_buffer(); 395 if (cb == nullptr || C->failing()) { 396 return; 397 } 398 399 BuildOopMaps(); 400 401 if (C->failing()) { 402 return; 403 } 404 405 C2_MacroAssembler masm(cb); 406 fill_buffer(&masm, blk_starts); 407 } 408 409 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 410 // Determine if we need to generate a stack overflow check. 411 // Do it if the method is not a stub function and 412 // has java calls or has frame size > vm_page_size/8. 413 // The debug VM checks that deoptimization doesn't trigger an 414 // unexpected stack overflow (compiled method stack banging should 415 // guarantee it doesn't happen) so we always need the stack bang in 416 // a debug VM. 417 return (C->stub_function() == nullptr && 418 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 419 DEBUG_ONLY(|| true))); 420 } 421 422 bool PhaseOutput::need_register_stack_bang() const { 423 // Determine if we need to generate a register stack overflow check. 424 // This is only used on architectures which have split register 425 // and memory stacks. 426 // Bang if the method is not a stub function and has java calls 427 return (C->stub_function() == nullptr && C->has_java_calls()); 428 } 429 430 431 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 432 // of a loop. When aligning a loop we need to provide enough instructions 433 // in cpu's fetch buffer to feed decoders. The loop alignment could be 434 // avoided if we have enough instructions in fetch buffer at the head of a loop. 435 // By default, the size is set to 999999 by Block's constructor so that 436 // a loop will be aligned if the size is not reset here. 437 // 438 // Note: Mach instructions could contain several HW instructions 439 // so the size is estimated only. 440 // 441 void PhaseOutput::compute_loop_first_inst_sizes() { 442 // The next condition is used to gate the loop alignment optimization. 443 // Don't aligned a loop if there are enough instructions at the head of a loop 444 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 445 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 446 // equal to 11 bytes which is the largest address NOP instruction. 447 if (MaxLoopPad < OptoLoopAlignment - 1) { 448 uint last_block = C->cfg()->number_of_blocks() - 1; 449 for (uint i = 1; i <= last_block; i++) { 450 Block* block = C->cfg()->get_block(i); 451 // Check the first loop's block which requires an alignment. 452 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 453 uint sum_size = 0; 454 uint inst_cnt = NumberOfLoopInstrToAlign; 455 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 456 457 // Check subsequent fallthrough blocks if the loop's first 458 // block(s) does not have enough instructions. 459 Block *nb = block; 460 while(inst_cnt > 0 && 461 i < last_block && 462 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 463 !nb->has_successor(block)) { 464 i++; 465 nb = C->cfg()->get_block(i); 466 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 467 } // while( inst_cnt > 0 && i < last_block ) 468 469 block->set_first_inst_size(sum_size); 470 } // f( b->head()->is_Loop() ) 471 } // for( i <= last_block ) 472 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 473 } 474 475 // The architecture description provides short branch variants for some long 476 // branch instructions. Replace eligible long branches with short branches. 477 void PhaseOutput::shorten_branches(uint* blk_starts) { 478 479 Compile::TracePhase tp(_t_shortenBranches); 480 481 // Compute size of each block, method size, and relocation information size 482 uint nblocks = C->cfg()->number_of_blocks(); 483 484 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 485 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 486 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 487 488 // Collect worst case block paddings 489 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 490 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 491 492 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 493 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 494 495 bool has_short_branch_candidate = false; 496 497 // Initialize the sizes to 0 498 int code_size = 0; // Size in bytes of generated code 499 int stub_size = 0; // Size in bytes of all stub entries 500 // Size in bytes of all relocation entries, including those in local stubs. 501 // Start with 2-bytes of reloc info for the unvalidated entry point 502 int reloc_size = 1; // Number of relocation entries 503 504 // Make three passes. The first computes pessimistic blk_starts, 505 // relative jmp_offset and reloc_size information. The second performs 506 // short branch substitution using the pessimistic sizing. The 507 // third inserts nops where needed. 508 509 // Step one, perform a pessimistic sizing pass. 510 uint last_call_adr = max_juint; 511 uint last_avoid_back_to_back_adr = max_juint; 512 uint nop_size = (new MachNopNode())->size(C->regalloc()); 513 for (uint i = 0; i < nblocks; i++) { // For all blocks 514 Block* block = C->cfg()->get_block(i); 515 _block = block; 516 517 // During short branch replacement, we store the relative (to blk_starts) 518 // offset of jump in jmp_offset, rather than the absolute offset of jump. 519 // This is so that we do not need to recompute sizes of all nodes when 520 // we compute correct blk_starts in our next sizing pass. 521 jmp_offset[i] = 0; 522 jmp_size[i] = 0; 523 jmp_nidx[i] = -1; 524 DEBUG_ONLY( jmp_target[i] = 0; ) 525 DEBUG_ONLY( jmp_rule[i] = 0; ) 526 527 // Sum all instruction sizes to compute block size 528 uint last_inst = block->number_of_nodes(); 529 uint blk_size = 0; 530 for (uint j = 0; j < last_inst; j++) { 531 _index = j; 532 Node* nj = block->get_node(_index); 533 // Handle machine instruction nodes 534 if (nj->is_Mach()) { 535 MachNode* mach = nj->as_Mach(); 536 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 537 reloc_size += mach->reloc(); 538 if (mach->is_MachCall()) { 539 // add size information for trampoline stub 540 // class CallStubImpl is platform-specific and defined in the *.ad files. 541 stub_size += CallStubImpl::size_call_trampoline(); 542 reloc_size += CallStubImpl::reloc_call_trampoline(); 543 544 MachCallNode *mcall = mach->as_MachCall(); 545 // This destination address is NOT PC-relative 546 547 if (mcall->entry_point() != nullptr) { 548 mcall->method_set((intptr_t)mcall->entry_point()); 549 } 550 551 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 552 stub_size += CompiledDirectCall::to_interp_stub_size(); 553 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 554 } 555 } else if (mach->is_MachSafePoint()) { 556 // If call/safepoint are adjacent, account for possible 557 // nop to disambiguate the two safepoints. 558 // ScheduleAndBundle() can rearrange nodes in a block, 559 // check for all offsets inside this block. 560 if (last_call_adr >= blk_starts[i]) { 561 blk_size += nop_size; 562 } 563 } 564 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 565 // Nop is inserted between "avoid back to back" instructions. 566 // ScheduleAndBundle() can rearrange nodes in a block, 567 // check for all offsets inside this block. 568 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 569 blk_size += nop_size; 570 } 571 } 572 if (mach->may_be_short_branch()) { 573 if (!nj->is_MachBranch()) { 574 #ifndef PRODUCT 575 nj->dump(3); 576 #endif 577 Unimplemented(); 578 } 579 assert(jmp_nidx[i] == -1, "block should have only one branch"); 580 jmp_offset[i] = blk_size; 581 jmp_size[i] = nj->size(C->regalloc()); 582 jmp_nidx[i] = j; 583 has_short_branch_candidate = true; 584 } 585 } 586 blk_size += nj->size(C->regalloc()); 587 // Remember end of call offset 588 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 589 last_call_adr = blk_starts[i]+blk_size; 590 } 591 // Remember end of avoid_back_to_back offset 592 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 593 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 594 } 595 } 596 597 // When the next block starts a loop, we may insert pad NOP 598 // instructions. Since we cannot know our future alignment, 599 // assume the worst. 600 if (i < nblocks - 1) { 601 Block* nb = C->cfg()->get_block(i + 1); 602 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 603 if (max_loop_pad > 0) { 604 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 605 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 606 // If either is the last instruction in this block, bump by 607 // max_loop_pad in lock-step with blk_size, so sizing 608 // calculations in subsequent blocks still can conservatively 609 // detect that it may the last instruction in this block. 610 if (last_call_adr == blk_starts[i]+blk_size) { 611 last_call_adr += max_loop_pad; 612 } 613 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 614 last_avoid_back_to_back_adr += max_loop_pad; 615 } 616 blk_size += max_loop_pad; 617 block_worst_case_pad[i + 1] = max_loop_pad; 618 } 619 } 620 621 // Save block size; update total method size 622 blk_starts[i+1] = blk_starts[i]+blk_size; 623 } 624 625 // Step two, replace eligible long jumps. 626 bool progress = true; 627 uint last_may_be_short_branch_adr = max_juint; 628 while (has_short_branch_candidate && progress) { 629 progress = false; 630 has_short_branch_candidate = false; 631 int adjust_block_start = 0; 632 for (uint i = 0; i < nblocks; i++) { 633 Block* block = C->cfg()->get_block(i); 634 int idx = jmp_nidx[i]; 635 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 636 if (mach != nullptr && mach->may_be_short_branch()) { 637 #ifdef ASSERT 638 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 639 int j; 640 // Find the branch; ignore trailing NOPs. 641 for (j = block->number_of_nodes()-1; j>=0; j--) { 642 Node* n = block->get_node(j); 643 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 644 break; 645 } 646 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 647 #endif 648 int br_size = jmp_size[i]; 649 int br_offs = blk_starts[i] + jmp_offset[i]; 650 651 // This requires the TRUE branch target be in succs[0] 652 uint bnum = block->non_connector_successor(0)->_pre_order; 653 int offset = blk_starts[bnum] - br_offs; 654 if (bnum > i) { // adjust following block's offset 655 offset -= adjust_block_start; 656 } 657 658 // This block can be a loop header, account for the padding 659 // in the previous block. 660 int block_padding = block_worst_case_pad[i]; 661 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 662 // In the following code a nop could be inserted before 663 // the branch which will increase the backward distance. 664 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 665 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 666 667 if (needs_padding && offset <= 0) 668 offset -= nop_size; 669 670 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 671 // We've got a winner. Replace this branch. 672 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 673 674 // Update the jmp_size. 675 int new_size = replacement->size(C->regalloc()); 676 int diff = br_size - new_size; 677 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 678 // Conservatively take into account padding between 679 // avoid_back_to_back branches. Previous branch could be 680 // converted into avoid_back_to_back branch during next 681 // rounds. 682 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 683 jmp_offset[i] += nop_size; 684 diff -= nop_size; 685 } 686 adjust_block_start += diff; 687 block->map_node(replacement, idx); 688 mach->subsume_by(replacement, C); 689 mach = replacement; 690 progress = true; 691 692 jmp_size[i] = new_size; 693 DEBUG_ONLY( jmp_target[i] = bnum; ); 694 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 695 } else { 696 // The jump distance is not short, try again during next iteration. 697 has_short_branch_candidate = true; 698 } 699 } // (mach->may_be_short_branch()) 700 if (mach != nullptr && (mach->may_be_short_branch() || 701 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 702 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 703 } 704 blk_starts[i+1] -= adjust_block_start; 705 } 706 } 707 708 #ifdef ASSERT 709 for (uint i = 0; i < nblocks; i++) { // For all blocks 710 if (jmp_target[i] != 0) { 711 int br_size = jmp_size[i]; 712 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 713 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 714 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 715 } 716 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 717 } 718 } 719 #endif 720 721 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 722 // after ScheduleAndBundle(). 723 724 // ------------------ 725 // Compute size for code buffer 726 code_size = blk_starts[nblocks]; 727 728 // Relocation records 729 reloc_size += 1; // Relo entry for exception handler 730 731 // Adjust reloc_size to number of record of relocation info 732 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 733 // a relocation index. 734 // The CodeBuffer will expand the locs array if this estimate is too low. 735 reloc_size *= 10 / sizeof(relocInfo); 736 737 _buf_sizes._reloc = reloc_size; 738 _buf_sizes._code = code_size; 739 _buf_sizes._stub = stub_size; 740 } 741 742 //------------------------------FillLocArray----------------------------------- 743 // Create a bit of debug info and append it to the array. The mapping is from 744 // Java local or expression stack to constant, register or stack-slot. For 745 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 746 // entry has been taken care of and caller should skip it). 747 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 748 // This should never have accepted Bad before 749 assert(OptoReg::is_valid(regnum), "location must be valid"); 750 return (OptoReg::is_reg(regnum)) 751 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 752 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 753 } 754 755 756 ObjectValue* 757 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 758 for (int i = 0; i < objs->length(); i++) { 759 assert(objs->at(i)->is_object(), "corrupt object cache"); 760 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 761 if (sv->id() == id) { 762 return sv; 763 } 764 } 765 // Otherwise.. 766 return nullptr; 767 } 768 769 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 770 ObjectValue* sv ) { 771 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 772 objs->append(sv); 773 } 774 775 776 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 777 GrowableArray<ScopeValue*> *array, 778 GrowableArray<ScopeValue*> *objs ) { 779 assert( local, "use _top instead of null" ); 780 if (array->length() != idx) { 781 assert(array->length() == idx + 1, "Unexpected array count"); 782 // Old functionality: 783 // return 784 // New functionality: 785 // Assert if the local is not top. In product mode let the new node 786 // override the old entry. 787 assert(local == C->top(), "LocArray collision"); 788 if (local == C->top()) { 789 return; 790 } 791 array->pop(); 792 } 793 const Type *t = local->bottom_type(); 794 795 // Is it a safepoint scalar object node? 796 if (local->is_SafePointScalarObject()) { 797 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 798 799 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 800 if (sv == nullptr) { 801 ciKlass* cik = t->is_oopptr()->exact_klass(); 802 assert(cik->is_instance_klass() || 803 cik->is_array_klass(), "Not supported allocation."); 804 uint first_ind = spobj->first_index(sfpt->jvms()); 805 // Nullable, scalarized inline types have a null_marker input 806 // that needs to be checked before using the field values. 807 ScopeValue* properties = nullptr; 808 if (cik->is_inlinetype()) { 809 Node* null_marker_node = sfpt->in(first_ind++); 810 assert(null_marker_node != nullptr, "null_marker node not found"); 811 if (!null_marker_node->is_top()) { 812 const TypeInt* null_marker_type = null_marker_node->bottom_type()->is_int(); 813 if (null_marker_node->is_Con()) { 814 properties = new ConstantIntValue(null_marker_type->get_con()); 815 } else { 816 OptoReg::Name null_marker_reg = C->regalloc()->get_reg_first(null_marker_node); 817 properties = new_loc_value(C->regalloc(), null_marker_reg, Location::normal); 818 } 819 } 820 } 821 if (cik->is_array_klass() && !cik->is_type_array_klass()) { 822 jint props = ArrayKlass::ArrayProperties::DEFAULT; 823 if (cik->as_array_klass()->element_klass()->is_inlinetype()) { 824 if (cik->as_array_klass()->is_elem_null_free()) { 825 props |= ArrayKlass::ArrayProperties::NULL_RESTRICTED; 826 } 827 if (!cik->as_array_klass()->is_elem_atomic()) { 828 props |= ArrayKlass::ArrayProperties::NON_ATOMIC; 829 } 830 } 831 properties = new ConstantIntValue(props); 832 } 833 sv = new ObjectValue(spobj->_idx, 834 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, properties); 835 set_sv_for_object_node(objs, sv); 836 837 for (uint i = 0; i < spobj->n_fields(); i++) { 838 Node* fld_node = sfpt->in(first_ind+i); 839 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 840 } 841 } 842 array->append(sv); 843 return; 844 } else if (local->is_SafePointScalarMerge()) { 845 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 846 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 847 848 if (mv == nullptr) { 849 GrowableArray<ScopeValue*> deps; 850 851 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 852 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 853 assert(deps.length() == 1, "missing value"); 854 855 int selector_idx = smerge->selector_idx(sfpt->jvms()); 856 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 857 assert(deps.length() == 2, "missing value"); 858 859 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 860 set_sv_for_object_node(objs, mv); 861 862 for (uint i = 1; i < smerge->req(); i++) { 863 Node* obj_node = smerge->in(i); 864 int idx = mv->possible_objects()->length(); 865 (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs); 866 867 // By default ObjectValues that are in 'possible_objects' are not root objects. 868 // They will be marked as root later if they are directly referenced in a JVMS. 869 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 870 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 871 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 872 } 873 } 874 array->append(mv); 875 return; 876 } 877 878 // Grab the register number for the local 879 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 880 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 881 // Record the double as two float registers. 882 // The register mask for such a value always specifies two adjacent 883 // float registers, with the lower register number even. 884 // Normally, the allocation of high and low words to these registers 885 // is irrelevant, because nearly all operations on register pairs 886 // (e.g., StoreD) treat them as a single unit. 887 // Here, we assume in addition that the words in these two registers 888 // stored "naturally" (by operations like StoreD and double stores 889 // within the interpreter) such that the lower-numbered register 890 // is written to the lower memory address. This may seem like 891 // a machine dependency, but it is not--it is a requirement on 892 // the author of the <arch>.ad file to ensure that, for every 893 // even/odd double-register pair to which a double may be allocated, 894 // the word in the even single-register is stored to the first 895 // memory word. (Note that register numbers are completely 896 // arbitrary, and are not tied to any machine-level encodings.) 897 #ifdef _LP64 898 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 899 array->append(new ConstantIntValue((jint)0)); 900 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 901 } else if ( t->base() == Type::Long ) { 902 array->append(new ConstantIntValue((jint)0)); 903 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 904 } else if ( t->base() == Type::RawPtr ) { 905 // jsr/ret return address which must be restored into the full 906 // width 64-bit stack slot. 907 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 908 } 909 #else //_LP64 910 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 911 // Repack the double/long as two jints. 912 // The convention the interpreter uses is that the second local 913 // holds the first raw word of the native double representation. 914 // This is actually reasonable, since locals and stack arrays 915 // grow downwards in all implementations. 916 // (If, on some machine, the interpreter's Java locals or stack 917 // were to grow upwards, the embedded doubles would be word-swapped.) 918 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 919 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 920 } 921 #endif //_LP64 922 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 923 OptoReg::is_reg(regnum) ) { 924 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 925 ? Location::float_in_dbl : Location::normal )); 926 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 927 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 928 ? Location::int_in_long : Location::normal )); 929 } else if( t->base() == Type::NarrowOop ) { 930 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 931 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 932 t->base() == Type::VectorD || t->base() == Type::VectorX || 933 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 934 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 935 } else if (C->regalloc()->is_oop(local)) { 936 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 937 t->base() == Type::AryPtr, 938 "Unexpected type: %s", t->msg()); 939 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 940 } else { 941 assert(t->base() == Type::Int || t->base() == Type::Half || 942 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 943 "Unexpected type: %s", t->msg()); 944 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 945 } 946 return; 947 } 948 949 // No register. It must be constant data. 950 switch (t->base()) { 951 case Type::Half: // Second half of a double 952 ShouldNotReachHere(); // Caller should skip 2nd halves 953 break; 954 case Type::AnyPtr: 955 array->append(new ConstantOopWriteValue(nullptr)); 956 break; 957 case Type::AryPtr: 958 case Type::InstPtr: // fall through 959 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 960 break; 961 case Type::NarrowOop: 962 if (t == TypeNarrowOop::NULL_PTR) { 963 array->append(new ConstantOopWriteValue(nullptr)); 964 } else { 965 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 966 } 967 break; 968 case Type::Int: 969 array->append(new ConstantIntValue(t->is_int()->get_con())); 970 break; 971 case Type::RawPtr: 972 // A return address (T_ADDRESS). 973 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 974 #ifdef _LP64 975 // Must be restored to the full-width 64-bit stack slot. 976 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 977 #else 978 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 979 #endif 980 break; 981 case Type::FloatCon: { 982 float f = t->is_float_constant()->getf(); 983 array->append(new ConstantIntValue(jint_cast(f))); 984 break; 985 } 986 case Type::DoubleCon: { 987 jdouble d = t->is_double_constant()->getd(); 988 #ifdef _LP64 989 array->append(new ConstantIntValue((jint)0)); 990 array->append(new ConstantDoubleValue(d)); 991 #else 992 // Repack the double as two jints. 993 // The convention the interpreter uses is that the second local 994 // holds the first raw word of the native double representation. 995 // This is actually reasonable, since locals and stack arrays 996 // grow downwards in all implementations. 997 // (If, on some machine, the interpreter's Java locals or stack 998 // were to grow upwards, the embedded doubles would be word-swapped.) 999 jlong_accessor acc; 1000 acc.long_value = jlong_cast(d); 1001 array->append(new ConstantIntValue(acc.words[1])); 1002 array->append(new ConstantIntValue(acc.words[0])); 1003 #endif 1004 break; 1005 } 1006 case Type::Long: { 1007 jlong d = t->is_long()->get_con(); 1008 #ifdef _LP64 1009 array->append(new ConstantIntValue((jint)0)); 1010 array->append(new ConstantLongValue(d)); 1011 #else 1012 // Repack the long as two jints. 1013 // The convention the interpreter uses is that the second local 1014 // holds the first raw word of the native double representation. 1015 // This is actually reasonable, since locals and stack arrays 1016 // grow downwards in all implementations. 1017 // (If, on some machine, the interpreter's Java locals or stack 1018 // were to grow upwards, the embedded doubles would be word-swapped.) 1019 jlong_accessor acc; 1020 acc.long_value = d; 1021 array->append(new ConstantIntValue(acc.words[1])); 1022 array->append(new ConstantIntValue(acc.words[0])); 1023 #endif 1024 break; 1025 } 1026 case Type::Top: // Add an illegal value here 1027 array->append(new LocationValue(Location())); 1028 break; 1029 default: 1030 ShouldNotReachHere(); 1031 break; 1032 } 1033 } 1034 1035 // Determine if this node starts a bundle 1036 bool PhaseOutput::starts_bundle(const Node *n) const { 1037 return (_node_bundling_limit > n->_idx && 1038 _node_bundling_base[n->_idx].starts_bundle()); 1039 } 1040 1041 // Determine if there is a monitor that has 'ov' as its owner. 1042 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 1043 for (int k = 0; k < monarray->length(); k++) { 1044 MonitorValue* mv = monarray->at(k); 1045 if (mv->owner() == ov) { 1046 return true; 1047 } 1048 } 1049 1050 return false; 1051 } 1052 1053 // Determine if there is a scalar replaced object description represented by 'ov'. 1054 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 1055 GrowableArray<ScopeValue*>* objs, 1056 ObjectValue* ov) const { 1057 for (int i = 0; i < jvms->scl_size(); i++) { 1058 Node* n = sfn->scalarized_obj(jvms, i); 1059 // Other kinds of nodes that we may encounter here, for instance constants 1060 // representing values of fields of objects scalarized, aren't relevant for 1061 // us, since they don't map to ObjectValue. 1062 if (!n->is_SafePointScalarObject()) { 1063 continue; 1064 } 1065 1066 ObjectValue* other = sv_for_node_id(objs, n->_idx); 1067 if (ov == other) { 1068 return true; 1069 } 1070 } 1071 return false; 1072 } 1073 1074 //--------------------------Process_OopMap_Node-------------------------------- 1075 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1076 // Handle special safepoint nodes for synchronization 1077 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1078 MachCallNode *mcall; 1079 1080 int safepoint_pc_offset = current_offset; 1081 bool is_method_handle_invoke = false; 1082 bool return_oop = false; 1083 bool return_scalarized = false; 1084 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1085 bool arg_escape = false; 1086 1087 // Add the safepoint in the DebugInfoRecorder 1088 if( !mach->is_MachCall() ) { 1089 mcall = nullptr; 1090 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1091 } else { 1092 mcall = mach->as_MachCall(); 1093 1094 // Is the call a MethodHandle call? 1095 if (mcall->is_MachCallJava()) { 1096 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1097 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1098 is_method_handle_invoke = true; 1099 } 1100 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1101 } 1102 1103 // Check if a call returns an object. 1104 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1105 return_oop = true; 1106 } 1107 if (mcall->returns_scalarized()) { 1108 return_scalarized = true; 1109 } 1110 safepoint_pc_offset += mcall->ret_addr_offset(); 1111 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1112 } 1113 1114 // Loop over the JVMState list to add scope information 1115 // Do not skip safepoints with a null method, they need monitor info 1116 JVMState* youngest_jvms = sfn->jvms(); 1117 int max_depth = youngest_jvms->depth(); 1118 1119 // Allocate the object pool for scalar-replaced objects -- the map from 1120 // small-integer keys (which can be recorded in the local and ostack 1121 // arrays) to descriptions of the object state. 1122 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1123 1124 // Visit scopes from oldest to youngest. 1125 for (int depth = 1; depth <= max_depth; depth++) { 1126 JVMState* jvms = youngest_jvms->of_depth(depth); 1127 int idx; 1128 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1129 // Safepoints that do not have method() set only provide oop-map and monitor info 1130 // to support GC; these do not support deoptimization. 1131 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1132 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1133 int num_mon = jvms->nof_monitors(); 1134 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1135 "JVMS local count must match that of the method"); 1136 1137 // Add Local and Expression Stack Information 1138 1139 // Insert locals into the locarray 1140 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1141 for( idx = 0; idx < num_locs; idx++ ) { 1142 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1143 } 1144 1145 // Insert expression stack entries into the exparray 1146 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1147 for( idx = 0; idx < num_exps; idx++ ) { 1148 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1149 } 1150 1151 // Add in mappings of the monitors 1152 assert( !method || 1153 !method->is_synchronized() || 1154 method->is_native() || 1155 num_mon > 0, 1156 "monitors must always exist for synchronized methods"); 1157 1158 // Build the growable array of ScopeValues for exp stack 1159 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1160 1161 // Loop over monitors and insert into array 1162 for (idx = 0; idx < num_mon; idx++) { 1163 // Grab the node that defines this monitor 1164 Node* box_node = sfn->monitor_box(jvms, idx); 1165 Node* obj_node = sfn->monitor_obj(jvms, idx); 1166 1167 // Create ScopeValue for object 1168 ScopeValue *scval = nullptr; 1169 1170 if (obj_node->is_SafePointScalarObject()) { 1171 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1172 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1173 if (scval == nullptr) { 1174 const Type *t = spobj->bottom_type(); 1175 ciKlass* cik = t->is_oopptr()->exact_klass(); 1176 assert(cik->is_instance_klass() || 1177 cik->is_array_klass(), "Not supported allocation."); 1178 assert(!cik->is_inlinetype(), "Synchronization on value object?"); 1179 ScopeValue* properties = nullptr; 1180 if (cik->is_array_klass() && !cik->is_type_array_klass()) { 1181 jint props = ArrayKlass::ArrayProperties::DEFAULT; 1182 if (cik->as_array_klass()->element_klass()->is_inlinetype()) { 1183 if (cik->as_array_klass()->is_elem_null_free()) { 1184 props |= ArrayKlass::ArrayProperties::NULL_RESTRICTED; 1185 } 1186 if (!cik->as_array_klass()->is_elem_atomic()) { 1187 props |= ArrayKlass::ArrayProperties::NON_ATOMIC; 1188 } 1189 } 1190 properties = new ConstantIntValue(props); 1191 } 1192 ObjectValue* sv = new ObjectValue(spobj->_idx, 1193 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, properties); 1194 PhaseOutput::set_sv_for_object_node(objs, sv); 1195 1196 uint first_ind = spobj->first_index(youngest_jvms); 1197 for (uint i = 0; i < spobj->n_fields(); i++) { 1198 Node* fld_node = sfn->in(first_ind+i); 1199 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1200 } 1201 scval = sv; 1202 } 1203 } else if (obj_node->is_SafePointScalarMerge()) { 1204 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1205 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1206 1207 if (mv == nullptr) { 1208 GrowableArray<ScopeValue*> deps; 1209 1210 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1211 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1212 assert(deps.length() == 1, "missing value"); 1213 1214 int selector_idx = smerge->selector_idx(youngest_jvms); 1215 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1216 assert(deps.length() == 2, "missing value"); 1217 1218 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1219 set_sv_for_object_node(objs, mv); 1220 1221 for (uint i = 1; i < smerge->req(); i++) { 1222 Node* obj_node = smerge->in(i); 1223 int idx = mv->possible_objects()->length(); 1224 (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs); 1225 1226 // By default ObjectValues that are in 'possible_objects' are not root objects. 1227 // They will be marked as root later if they are directly referenced in a JVMS. 1228 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 1229 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 1230 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 1231 } 1232 } 1233 scval = mv; 1234 } else if (!obj_node->is_Con()) { 1235 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1236 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1237 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1238 } else { 1239 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1240 } 1241 } else { 1242 const TypePtr *tp = obj_node->get_ptr_type(); 1243 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1244 } 1245 1246 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1247 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1248 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1249 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1250 } 1251 1252 // Mark ObjectValue nodes as root nodes if they are directly 1253 // referenced in the JVMS. 1254 for (int i = 0; i < objs->length(); i++) { 1255 ScopeValue* sv = objs->at(i); 1256 if (sv->is_object_merge()) { 1257 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1258 1259 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1260 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1261 if (ov->is_root()) { 1262 // Already flagged as 'root' by something else. We shouldn't change it 1263 // to non-root in a younger JVMS because it may need to be alive in 1264 // a younger JVMS. 1265 } else { 1266 bool is_root = locarray->contains(ov) || 1267 exparray->contains(ov) || 1268 contains_as_owner(monarray, ov) || 1269 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1270 ov->set_root(is_root); 1271 } 1272 } 1273 } 1274 } 1275 1276 // We dump the object pool first, since deoptimization reads it in first. 1277 C->debug_info()->dump_object_pool(objs); 1278 1279 // Build first class objects to pass to scope 1280 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1281 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1282 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1283 1284 // Make method available for all Safepoints 1285 ciMethod* scope_method = method ? method : C->method(); 1286 // Describe the scope here 1287 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1288 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1289 // Now we can describe the scope. 1290 methodHandle null_mh; 1291 bool rethrow_exception = false; 1292 C->debug_info()->describe_scope( 1293 safepoint_pc_offset, 1294 null_mh, 1295 scope_method, 1296 jvms->bci(), 1297 jvms->should_reexecute(), 1298 rethrow_exception, 1299 is_method_handle_invoke, 1300 return_oop, 1301 return_scalarized, 1302 has_ea_local_in_scope, 1303 arg_escape, 1304 locvals, 1305 expvals, 1306 monvals 1307 ); 1308 } // End jvms loop 1309 1310 // Mark the end of the scope set. 1311 C->debug_info()->end_safepoint(safepoint_pc_offset); 1312 } 1313 1314 1315 1316 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1317 class NonSafepointEmitter { 1318 Compile* C; 1319 JVMState* _pending_jvms; 1320 int _pending_offset; 1321 1322 void emit_non_safepoint(); 1323 1324 public: 1325 NonSafepointEmitter(Compile* compile) { 1326 this->C = compile; 1327 _pending_jvms = nullptr; 1328 _pending_offset = 0; 1329 } 1330 1331 void observe_instruction(Node* n, int pc_offset) { 1332 if (!C->debug_info()->recording_non_safepoints()) return; 1333 1334 Node_Notes* nn = C->node_notes_at(n->_idx); 1335 if (nn == nullptr || nn->jvms() == nullptr) return; 1336 if (_pending_jvms != nullptr && 1337 _pending_jvms->same_calls_as(nn->jvms())) { 1338 // Repeated JVMS? Stretch it up here. 1339 _pending_offset = pc_offset; 1340 } else { 1341 if (_pending_jvms != nullptr && 1342 _pending_offset < pc_offset) { 1343 emit_non_safepoint(); 1344 } 1345 _pending_jvms = nullptr; 1346 if (pc_offset > C->debug_info()->last_pc_offset()) { 1347 // This is the only way _pending_jvms can become non-null: 1348 _pending_jvms = nn->jvms(); 1349 _pending_offset = pc_offset; 1350 } 1351 } 1352 } 1353 1354 // Stay out of the way of real safepoints: 1355 void observe_safepoint(JVMState* jvms, int pc_offset) { 1356 if (_pending_jvms != nullptr && 1357 !_pending_jvms->same_calls_as(jvms) && 1358 _pending_offset < pc_offset) { 1359 emit_non_safepoint(); 1360 } 1361 _pending_jvms = nullptr; 1362 } 1363 1364 void flush_at_end() { 1365 if (_pending_jvms != nullptr) { 1366 emit_non_safepoint(); 1367 } 1368 _pending_jvms = nullptr; 1369 } 1370 }; 1371 1372 void NonSafepointEmitter::emit_non_safepoint() { 1373 JVMState* youngest_jvms = _pending_jvms; 1374 int pc_offset = _pending_offset; 1375 1376 // Clear it now: 1377 _pending_jvms = nullptr; 1378 1379 DebugInformationRecorder* debug_info = C->debug_info(); 1380 assert(debug_info->recording_non_safepoints(), "sanity"); 1381 1382 debug_info->add_non_safepoint(pc_offset); 1383 int max_depth = youngest_jvms->depth(); 1384 1385 // Visit scopes from oldest to youngest. 1386 for (int depth = 1; depth <= max_depth; depth++) { 1387 JVMState* jvms = youngest_jvms->of_depth(depth); 1388 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1389 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1390 methodHandle null_mh; 1391 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1392 } 1393 1394 // Mark the end of the scope set. 1395 debug_info->end_non_safepoint(pc_offset); 1396 } 1397 1398 //------------------------------init_buffer------------------------------------ 1399 void PhaseOutput::estimate_buffer_size(int& const_req) { 1400 1401 // Set the initially allocated size 1402 const_req = initial_const_capacity; 1403 1404 // The extra spacing after the code is necessary on some platforms. 1405 // Sometimes we need to patch in a jump after the last instruction, 1406 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1407 1408 // Compute the byte offset where we can store the deopt pc. 1409 if (C->fixed_slots() != 0) { 1410 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1411 } 1412 1413 // Compute prolog code size 1414 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1415 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1416 1417 if (C->has_mach_constant_base_node()) { 1418 uint add_size = 0; 1419 // Fill the constant table. 1420 // Note: This must happen before shorten_branches. 1421 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1422 Block* b = C->cfg()->get_block(i); 1423 1424 for (uint j = 0; j < b->number_of_nodes(); j++) { 1425 Node* n = b->get_node(j); 1426 1427 // If the node is a MachConstantNode evaluate the constant 1428 // value section. 1429 if (n->is_MachConstant()) { 1430 MachConstantNode* machcon = n->as_MachConstant(); 1431 machcon->eval_constant(C); 1432 } else if (n->is_Mach()) { 1433 // On Power there are more nodes that issue constants. 1434 add_size += (n->as_Mach()->ins_num_consts() * 8); 1435 } 1436 } 1437 } 1438 1439 // Calculate the offsets of the constants and the size of the 1440 // constant table (including the padding to the next section). 1441 constant_table().calculate_offsets_and_size(); 1442 const_req = constant_table().alignment() + constant_table().size() + add_size; 1443 } 1444 1445 // Initialize the space for the BufferBlob used to find and verify 1446 // instruction size in MachNode::emit_size() 1447 init_scratch_buffer_blob(const_req); 1448 } 1449 1450 CodeBuffer* PhaseOutput::init_buffer() { 1451 int stub_req = _buf_sizes._stub; 1452 int code_req = _buf_sizes._code; 1453 int const_req = _buf_sizes._const; 1454 1455 int pad_req = NativeCall::byte_size(); 1456 1457 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1458 stub_req += bs->estimate_stub_size(); 1459 1460 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1461 // class HandlerImpl is platform-specific and defined in the *.ad files. 1462 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1463 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1464 stub_req += MAX_stubs_size; // ensure per-stub margin 1465 code_req += MAX_inst_size; // ensure per-instruction margin 1466 1467 if (StressCodeBuffers) 1468 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1469 1470 int total_req = 1471 const_req + 1472 code_req + 1473 pad_req + 1474 stub_req + 1475 exception_handler_req + 1476 deopt_handler_req; // deopt handler 1477 1478 if (C->has_method_handle_invokes()) 1479 total_req += deopt_handler_req; // deopt MH handler 1480 1481 CodeBuffer* cb = code_buffer(); 1482 cb->set_const_section_alignment(constant_table().alignment()); 1483 cb->initialize(total_req, _buf_sizes._reloc); 1484 1485 // Have we run out of code space? 1486 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1487 C->record_failure("CodeCache is full"); 1488 return nullptr; 1489 } 1490 // Configure the code buffer. 1491 cb->initialize_consts_size(const_req); 1492 cb->initialize_stubs_size(stub_req); 1493 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1494 1495 // fill in the nop array for bundling computations 1496 MachNode *_nop_list[Bundle::_nop_count]; 1497 Bundle::initialize_nops(_nop_list); 1498 1499 return cb; 1500 } 1501 1502 //------------------------------fill_buffer------------------------------------ 1503 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1504 // blk_starts[] contains offsets calculated during short branches processing, 1505 // offsets should not be increased during following steps. 1506 1507 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1508 // of a loop. It is used to determine the padding for loop alignment. 1509 Compile::TracePhase tp(_t_fillBuffer); 1510 1511 compute_loop_first_inst_sizes(); 1512 1513 // Create oopmap set. 1514 _oop_map_set = new OopMapSet(); 1515 1516 // !!!!! This preserves old handling of oopmaps for now 1517 C->debug_info()->set_oopmaps(_oop_map_set); 1518 1519 uint nblocks = C->cfg()->number_of_blocks(); 1520 // Count and start of implicit null check instructions 1521 uint inct_cnt = 0; 1522 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1523 1524 // Count and start of calls 1525 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1526 1527 uint return_offset = 0; 1528 int nop_size = (new MachNopNode())->size(C->regalloc()); 1529 1530 int previous_offset = 0; 1531 int current_offset = 0; 1532 int last_call_offset = -1; 1533 int last_avoid_back_to_back_offset = -1; 1534 #ifdef ASSERT 1535 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1536 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1537 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1538 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1539 #endif 1540 1541 // Create an array of unused labels, one for each basic block, if printing is enabled 1542 #if defined(SUPPORT_OPTO_ASSEMBLY) 1543 int* node_offsets = nullptr; 1544 uint node_offset_limit = C->unique(); 1545 1546 if (C->print_assembly()) { 1547 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1548 } 1549 if (node_offsets != nullptr) { 1550 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1551 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1552 } 1553 #endif 1554 1555 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1556 1557 // Emit the constant table. 1558 if (C->has_mach_constant_base_node()) { 1559 if (!constant_table().emit(masm)) { 1560 C->record_failure("consts section overflow"); 1561 return; 1562 } 1563 } 1564 1565 // Create an array of labels, one for each basic block 1566 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1567 for (uint i = 0; i <= nblocks; i++) { 1568 blk_labels[i].init(); 1569 } 1570 1571 // Now fill in the code buffer 1572 Node* delay_slot = nullptr; 1573 for (uint i = 0; i < nblocks; i++) { 1574 Block* block = C->cfg()->get_block(i); 1575 _block = block; 1576 Node* head = block->head(); 1577 1578 // If this block needs to start aligned (i.e, can be reached other 1579 // than by falling-thru from the previous block), then force the 1580 // start of a new bundle. 1581 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1582 masm->code()->flush_bundle(true); 1583 } 1584 1585 #ifdef ASSERT 1586 if (!block->is_connector()) { 1587 stringStream st; 1588 block->dump_head(C->cfg(), &st); 1589 masm->block_comment(st.freeze()); 1590 } 1591 jmp_target[i] = 0; 1592 jmp_offset[i] = 0; 1593 jmp_size[i] = 0; 1594 jmp_rule[i] = 0; 1595 #endif 1596 int blk_offset = current_offset; 1597 1598 // Define the label at the beginning of the basic block 1599 masm->bind(blk_labels[block->_pre_order]); 1600 1601 uint last_inst = block->number_of_nodes(); 1602 1603 // Emit block normally, except for last instruction. 1604 // Emit means "dump code bits into code buffer". 1605 for (uint j = 0; j<last_inst; j++) { 1606 _index = j; 1607 1608 // Get the node 1609 Node* n = block->get_node(j); 1610 1611 // See if delay slots are supported 1612 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1613 assert(delay_slot == nullptr, "no use of delay slot node"); 1614 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1615 1616 delay_slot = n; 1617 continue; 1618 } 1619 1620 // If this starts a new instruction group, then flush the current one 1621 // (but allow split bundles) 1622 if (Pipeline::requires_bundling() && starts_bundle(n)) 1623 masm->code()->flush_bundle(false); 1624 1625 // Special handling for SafePoint/Call Nodes 1626 bool is_mcall = false; 1627 if (n->is_Mach()) { 1628 MachNode *mach = n->as_Mach(); 1629 is_mcall = n->is_MachCall(); 1630 bool is_sfn = n->is_MachSafePoint(); 1631 1632 // If this requires all previous instructions be flushed, then do so 1633 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1634 masm->code()->flush_bundle(true); 1635 current_offset = masm->offset(); 1636 } 1637 1638 // A padding may be needed again since a previous instruction 1639 // could be moved to delay slot. 1640 1641 // align the instruction if necessary 1642 int padding = mach->compute_padding(current_offset); 1643 // Make sure safepoint node for polling is distinct from a call's 1644 // return by adding a nop if needed. 1645 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1646 padding = nop_size; 1647 } 1648 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1649 current_offset == last_avoid_back_to_back_offset) { 1650 // Avoid back to back some instructions. 1651 padding = nop_size; 1652 } 1653 1654 if (padding > 0) { 1655 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1656 int nops_cnt = padding / nop_size; 1657 MachNode *nop = new MachNopNode(nops_cnt); 1658 block->insert_node(nop, j++); 1659 last_inst++; 1660 C->cfg()->map_node_to_block(nop, block); 1661 // Ensure enough space. 1662 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1663 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1664 C->record_failure("CodeCache is full"); 1665 return; 1666 } 1667 nop->emit(masm, C->regalloc()); 1668 masm->code()->flush_bundle(true); 1669 current_offset = masm->offset(); 1670 } 1671 1672 bool observe_safepoint = is_sfn; 1673 // Remember the start of the last call in a basic block 1674 if (is_mcall) { 1675 MachCallNode *mcall = mach->as_MachCall(); 1676 1677 if (mcall->entry_point() != nullptr) { 1678 // This destination address is NOT PC-relative 1679 mcall->method_set((intptr_t)mcall->entry_point()); 1680 } 1681 1682 // Save the return address 1683 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1684 1685 observe_safepoint = mcall->guaranteed_safepoint(); 1686 } 1687 1688 // sfn will be valid whenever mcall is valid now because of inheritance 1689 if (observe_safepoint) { 1690 // Handle special safepoint nodes for synchronization 1691 if (!is_mcall) { 1692 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1693 // !!!!! Stubs only need an oopmap right now, so bail out 1694 if (sfn->jvms()->method() == nullptr) { 1695 // Write the oopmap directly to the code blob??!! 1696 continue; 1697 } 1698 } // End synchronization 1699 1700 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1701 current_offset); 1702 Process_OopMap_Node(mach, current_offset); 1703 } // End if safepoint 1704 1705 // If this is a null check, then add the start of the previous instruction to the list 1706 else if( mach->is_MachNullCheck() ) { 1707 inct_starts[inct_cnt++] = previous_offset; 1708 } 1709 1710 // If this is a branch, then fill in the label with the target BB's label 1711 else if (mach->is_MachBranch()) { 1712 // This requires the TRUE branch target be in succs[0] 1713 uint block_num = block->non_connector_successor(0)->_pre_order; 1714 1715 // Try to replace long branch if delay slot is not used, 1716 // it is mostly for back branches since forward branch's 1717 // distance is not updated yet. 1718 bool delay_slot_is_used = valid_bundle_info(n) && 1719 C->output()->node_bundling(n)->use_unconditional_delay(); 1720 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1721 assert(delay_slot == nullptr, "not expecting delay slot node"); 1722 int br_size = n->size(C->regalloc()); 1723 int offset = blk_starts[block_num] - current_offset; 1724 if (block_num >= i) { 1725 // Current and following block's offset are not 1726 // finalized yet, adjust distance by the difference 1727 // between calculated and final offsets of current block. 1728 offset -= (blk_starts[i] - blk_offset); 1729 } 1730 // In the following code a nop could be inserted before 1731 // the branch which will increase the backward distance. 1732 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1733 if (needs_padding && offset <= 0) 1734 offset -= nop_size; 1735 1736 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1737 // We've got a winner. Replace this branch. 1738 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1739 1740 // Update the jmp_size. 1741 int new_size = replacement->size(C->regalloc()); 1742 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1743 // Insert padding between avoid_back_to_back branches. 1744 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1745 MachNode *nop = new MachNopNode(); 1746 block->insert_node(nop, j++); 1747 C->cfg()->map_node_to_block(nop, block); 1748 last_inst++; 1749 nop->emit(masm, C->regalloc()); 1750 masm->code()->flush_bundle(true); 1751 current_offset = masm->offset(); 1752 } 1753 #ifdef ASSERT 1754 jmp_target[i] = block_num; 1755 jmp_offset[i] = current_offset - blk_offset; 1756 jmp_size[i] = new_size; 1757 jmp_rule[i] = mach->rule(); 1758 #endif 1759 block->map_node(replacement, j); 1760 mach->subsume_by(replacement, C); 1761 n = replacement; 1762 mach = replacement; 1763 } 1764 } 1765 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1766 } else if (mach->ideal_Opcode() == Op_Jump) { 1767 for (uint h = 0; h < block->_num_succs; h++) { 1768 Block* succs_block = block->_succs[h]; 1769 for (uint j = 1; j < succs_block->num_preds(); j++) { 1770 Node* jpn = succs_block->pred(j); 1771 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1772 uint block_num = succs_block->non_connector()->_pre_order; 1773 Label *blkLabel = &blk_labels[block_num]; 1774 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1775 } 1776 } 1777 } 1778 } else if (!n->is_Proj()) { 1779 // Remember the beginning of the previous instruction, in case 1780 // it's followed by a flag-kill and a null-check. Happens on 1781 // Intel all the time, with add-to-memory kind of opcodes. 1782 previous_offset = current_offset; 1783 } 1784 1785 // Not an else-if! 1786 // If this is a trap based cmp then add its offset to the list. 1787 if (mach->is_TrapBasedCheckNode()) { 1788 inct_starts[inct_cnt++] = current_offset; 1789 } 1790 } 1791 1792 // Verify that there is sufficient space remaining 1793 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1794 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1795 C->record_failure("CodeCache is full"); 1796 return; 1797 } 1798 1799 // Save the offset for the listing 1800 #if defined(SUPPORT_OPTO_ASSEMBLY) 1801 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1802 node_offsets[n->_idx] = masm->offset(); 1803 } 1804 #endif 1805 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1806 1807 // "Normal" instruction case 1808 DEBUG_ONLY(uint instr_offset = masm->offset()); 1809 n->emit(masm, C->regalloc()); 1810 current_offset = masm->offset(); 1811 1812 // Above we only verified that there is enough space in the instruction section. 1813 // However, the instruction may emit stubs that cause code buffer expansion. 1814 // Bail out here if expansion failed due to a lack of code cache space. 1815 if (C->failing()) { 1816 return; 1817 } 1818 1819 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1820 "ret_addr_offset() not within emitted code"); 1821 #ifdef ASSERT 1822 uint n_size = n->size(C->regalloc()); 1823 if (n_size < (current_offset-instr_offset)) { 1824 MachNode* mach = n->as_Mach(); 1825 n->dump(); 1826 mach->dump_format(C->regalloc(), tty); 1827 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1828 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1829 tty->print_cr(" ------------------- "); 1830 BufferBlob* blob = this->scratch_buffer_blob(); 1831 address blob_begin = blob->content_begin(); 1832 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1833 assert(false, "wrong size of mach node"); 1834 } 1835 #endif 1836 non_safepoints.observe_instruction(n, current_offset); 1837 1838 // mcall is last "call" that can be a safepoint 1839 // record it so we can see if a poll will directly follow it 1840 // in which case we'll need a pad to make the PcDesc sites unique 1841 // see 5010568. This can be slightly inaccurate but conservative 1842 // in the case that return address is not actually at current_offset. 1843 // This is a small price to pay. 1844 1845 if (is_mcall) { 1846 last_call_offset = current_offset; 1847 } 1848 1849 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1850 // Avoid back to back some instructions. 1851 last_avoid_back_to_back_offset = current_offset; 1852 } 1853 1854 // See if this instruction has a delay slot 1855 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1856 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1857 1858 // Back up 1 instruction 1859 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1860 1861 // Save the offset for the listing 1862 #if defined(SUPPORT_OPTO_ASSEMBLY) 1863 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1864 node_offsets[delay_slot->_idx] = masm->offset(); 1865 } 1866 #endif 1867 1868 // Support a SafePoint in the delay slot 1869 if (delay_slot->is_MachSafePoint()) { 1870 MachNode *mach = delay_slot->as_Mach(); 1871 // !!!!! Stubs only need an oopmap right now, so bail out 1872 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1873 // Write the oopmap directly to the code blob??!! 1874 delay_slot = nullptr; 1875 continue; 1876 } 1877 1878 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1879 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1880 adjusted_offset); 1881 // Generate an OopMap entry 1882 Process_OopMap_Node(mach, adjusted_offset); 1883 } 1884 1885 // Insert the delay slot instruction 1886 delay_slot->emit(masm, C->regalloc()); 1887 1888 // Don't reuse it 1889 delay_slot = nullptr; 1890 } 1891 1892 } // End for all instructions in block 1893 1894 // If the next block is the top of a loop, pad this block out to align 1895 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1896 if (i < nblocks-1) { 1897 Block *nb = C->cfg()->get_block(i + 1); 1898 int padding = nb->alignment_padding(current_offset); 1899 if( padding > 0 ) { 1900 MachNode *nop = new MachNopNode(padding / nop_size); 1901 block->insert_node(nop, block->number_of_nodes()); 1902 C->cfg()->map_node_to_block(nop, block); 1903 nop->emit(masm, C->regalloc()); 1904 current_offset = masm->offset(); 1905 } 1906 } 1907 // Verify that the distance for generated before forward 1908 // short branches is still valid. 1909 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1910 1911 // Save new block start offset 1912 blk_starts[i] = blk_offset; 1913 } // End of for all blocks 1914 blk_starts[nblocks] = current_offset; 1915 1916 non_safepoints.flush_at_end(); 1917 1918 // Offset too large? 1919 if (C->failing()) return; 1920 1921 // Define a pseudo-label at the end of the code 1922 masm->bind( blk_labels[nblocks] ); 1923 1924 // Compute the size of the first block 1925 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1926 1927 #ifdef ASSERT 1928 for (uint i = 0; i < nblocks; i++) { // For all blocks 1929 if (jmp_target[i] != 0) { 1930 int br_size = jmp_size[i]; 1931 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1932 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1933 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1934 assert(false, "Displacement too large for short jmp"); 1935 } 1936 } 1937 } 1938 #endif 1939 1940 if (!masm->code()->finalize_stubs()) { 1941 C->record_failure("CodeCache is full"); 1942 return; 1943 } 1944 1945 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1946 bs->emit_stubs(*masm->code()); 1947 if (C->failing()) return; 1948 1949 // Fill in stubs. 1950 assert(masm->inst_mark() == nullptr, "should be."); 1951 _stub_list.emit(*masm); 1952 if (C->failing()) return; 1953 1954 #ifndef PRODUCT 1955 // Information on the size of the method, without the extraneous code 1956 Scheduling::increment_method_size(masm->offset()); 1957 #endif 1958 1959 // ------------------ 1960 // Fill in exception table entries. 1961 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1962 1963 // Only java methods have exception handlers and deopt handlers 1964 // class HandlerImpl is platform-specific and defined in the *.ad files. 1965 if (C->method()) { 1966 // Emit the exception handler code. 1967 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1968 if (C->failing()) { 1969 return; // CodeBuffer::expand failed 1970 } 1971 // Emit the deopt handler code. 1972 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1973 1974 // Emit the MethodHandle deopt handler code (if required). 1975 if (C->has_method_handle_invokes() && !C->failing()) { 1976 // We can use the same code as for the normal deopt handler, we 1977 // just need a different entry point address. 1978 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1979 } 1980 } 1981 1982 // One last check for failed CodeBuffer::expand: 1983 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1984 C->record_failure("CodeCache is full"); 1985 return; 1986 } 1987 1988 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1989 if (C->print_assembly()) { 1990 tty->cr(); 1991 tty->print_cr("============================= C2-compiled nmethod =============================="); 1992 } 1993 #endif 1994 1995 #if defined(SUPPORT_OPTO_ASSEMBLY) 1996 // Dump the assembly code, including basic-block numbers 1997 if (C->print_assembly()) { 1998 ttyLocker ttyl; // keep the following output all in one block 1999 if (!VMThread::should_terminate()) { // test this under the tty lock 2000 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 2001 // We call them first and write to a stringStream, then we retake the lock to 2002 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 2003 ResourceMark rm; 2004 stringStream method_metadata_str; 2005 if (C->method() != nullptr) { 2006 C->method()->print_metadata(&method_metadata_str); 2007 } 2008 stringStream dump_asm_str; 2009 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 2010 2011 NoSafepointVerifier nsv; 2012 ttyLocker ttyl2; 2013 // This output goes directly to the tty, not the compiler log. 2014 // To enable tools to match it up with the compilation activity, 2015 // be sure to tag this tty output with the compile ID. 2016 if (xtty != nullptr) { 2017 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 2018 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 2019 } 2020 if (C->method() != nullptr) { 2021 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 2022 tty->print_raw(method_metadata_str.freeze()); 2023 } else if (C->stub_name() != nullptr) { 2024 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 2025 } 2026 tty->cr(); 2027 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 2028 tty->print_raw(dump_asm_str.freeze()); 2029 tty->print_cr("--------------------------------------------------------------------------------"); 2030 if (xtty != nullptr) { 2031 xtty->tail("opto_assembly"); 2032 } 2033 } 2034 } 2035 #endif 2036 } 2037 2038 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 2039 _inc_table.set_size(cnt); 2040 2041 uint inct_cnt = 0; 2042 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2043 Block* block = C->cfg()->get_block(i); 2044 Node *n = nullptr; 2045 int j; 2046 2047 // Find the branch; ignore trailing NOPs. 2048 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 2049 n = block->get_node(j); 2050 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 2051 break; 2052 } 2053 } 2054 2055 // If we didn't find anything, continue 2056 if (j < 0) { 2057 continue; 2058 } 2059 2060 // Compute ExceptionHandlerTable subtable entry and add it 2061 // (skip empty blocks) 2062 if (n->is_Catch()) { 2063 2064 // Get the offset of the return from the call 2065 uint call_return = call_returns[block->_pre_order]; 2066 #ifdef ASSERT 2067 assert( call_return > 0, "no call seen for this basic block" ); 2068 while (block->get_node(--j)->is_MachProj()) ; 2069 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 2070 #endif 2071 // last instruction is a CatchNode, find it's CatchProjNodes 2072 int nof_succs = block->_num_succs; 2073 // allocate space 2074 GrowableArray<intptr_t> handler_bcis(nof_succs); 2075 GrowableArray<intptr_t> handler_pcos(nof_succs); 2076 // iterate through all successors 2077 for (int j = 0; j < nof_succs; j++) { 2078 Block* s = block->_succs[j]; 2079 bool found_p = false; 2080 for (uint k = 1; k < s->num_preds(); k++) { 2081 Node* pk = s->pred(k); 2082 if (pk->is_CatchProj() && pk->in(0) == n) { 2083 const CatchProjNode* p = pk->as_CatchProj(); 2084 found_p = true; 2085 // add the corresponding handler bci & pco information 2086 if (p->_con != CatchProjNode::fall_through_index) { 2087 // p leads to an exception handler (and is not fall through) 2088 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 2089 // no duplicates, please 2090 if (!handler_bcis.contains(p->handler_bci())) { 2091 uint block_num = s->non_connector()->_pre_order; 2092 handler_bcis.append(p->handler_bci()); 2093 handler_pcos.append(blk_labels[block_num].loc_pos()); 2094 } 2095 } 2096 } 2097 } 2098 assert(found_p, "no matching predecessor found"); 2099 // Note: Due to empty block removal, one block may have 2100 // several CatchProj inputs, from the same Catch. 2101 } 2102 2103 // Set the offset of the return from the call 2104 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2105 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2106 continue; 2107 } 2108 2109 // Handle implicit null exception table updates 2110 if (n->is_MachNullCheck()) { 2111 MachNode* access = n->in(1)->as_Mach(); 2112 assert(access->barrier_data() == 0 || 2113 access->is_late_expanded_null_check_candidate(), 2114 "Implicit null checks on memory accesses with barriers are only supported on nodes explicitly marked as null-check candidates"); 2115 uint block_num = block->non_connector_successor(0)->_pre_order; 2116 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2117 continue; 2118 } 2119 // Handle implicit exception table updates: trap instructions. 2120 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2121 uint block_num = block->non_connector_successor(0)->_pre_order; 2122 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2123 continue; 2124 } 2125 } // End of for all blocks fill in exception table entries 2126 } 2127 2128 // Static Variables 2129 #ifndef PRODUCT 2130 uint Scheduling::_total_nop_size = 0; 2131 uint Scheduling::_total_method_size = 0; 2132 uint Scheduling::_total_branches = 0; 2133 uint Scheduling::_total_unconditional_delays = 0; 2134 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2135 #endif 2136 2137 // Initializer for class Scheduling 2138 2139 Scheduling::Scheduling(Arena *arena, Compile &compile) 2140 : _arena(arena), 2141 _cfg(compile.cfg()), 2142 _regalloc(compile.regalloc()), 2143 _scheduled(arena), 2144 _available(arena), 2145 _reg_node(arena), 2146 _pinch_free_list(arena), 2147 _next_node(nullptr), 2148 _bundle_instr_count(0), 2149 _bundle_cycle_number(0), 2150 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2151 #ifndef PRODUCT 2152 , _branches(0) 2153 , _unconditional_delays(0) 2154 #endif 2155 { 2156 // Create a MachNopNode 2157 _nop = new MachNopNode(); 2158 2159 // Now that the nops are in the array, save the count 2160 // (but allow entries for the nops) 2161 _node_bundling_limit = compile.unique(); 2162 uint node_max = _regalloc->node_regs_max_index(); 2163 2164 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2165 2166 // This one is persistent within the Compile class 2167 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2168 2169 // Allocate space for fixed-size arrays 2170 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2171 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2172 2173 // Clear the arrays 2174 for (uint i = 0; i < node_max; i++) { 2175 ::new (&_node_bundling_base[i]) Bundle(); 2176 } 2177 memset(_uses, 0, node_max * sizeof(short)); 2178 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2179 2180 // Clear the bundling information 2181 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2182 2183 // Get the last node 2184 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2185 2186 _next_node = block->get_node(block->number_of_nodes() - 1); 2187 } 2188 2189 #ifndef PRODUCT 2190 // Scheduling destructor 2191 Scheduling::~Scheduling() { 2192 _total_branches += _branches; 2193 _total_unconditional_delays += _unconditional_delays; 2194 } 2195 #endif 2196 2197 // Step ahead "i" cycles 2198 void Scheduling::step(uint i) { 2199 2200 Bundle *bundle = node_bundling(_next_node); 2201 bundle->set_starts_bundle(); 2202 2203 // Update the bundle record, but leave the flags information alone 2204 if (_bundle_instr_count > 0) { 2205 bundle->set_instr_count(_bundle_instr_count); 2206 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2207 } 2208 2209 // Update the state information 2210 _bundle_instr_count = 0; 2211 _bundle_cycle_number += i; 2212 _bundle_use.step(i); 2213 } 2214 2215 void Scheduling::step_and_clear() { 2216 Bundle *bundle = node_bundling(_next_node); 2217 bundle->set_starts_bundle(); 2218 2219 // Update the bundle record 2220 if (_bundle_instr_count > 0) { 2221 bundle->set_instr_count(_bundle_instr_count); 2222 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2223 2224 _bundle_cycle_number += 1; 2225 } 2226 2227 // Clear the bundling information 2228 _bundle_instr_count = 0; 2229 _bundle_use.reset(); 2230 2231 memcpy(_bundle_use_elements, 2232 Pipeline_Use::elaborated_elements, 2233 sizeof(Pipeline_Use::elaborated_elements)); 2234 } 2235 2236 // Perform instruction scheduling and bundling over the sequence of 2237 // instructions in backwards order. 2238 void PhaseOutput::ScheduleAndBundle() { 2239 2240 // Don't optimize this if it isn't a method 2241 if (!C->method()) 2242 return; 2243 2244 // Don't optimize this if scheduling is disabled 2245 if (!C->do_scheduling()) 2246 return; 2247 2248 // Scheduling code works only with pairs (8 bytes) maximum. 2249 // And when the scalable vector register is used, we may spill/unspill 2250 // the whole reg regardless of the max vector size. 2251 if (C->max_vector_size() > 8 || 2252 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2253 return; 2254 } 2255 2256 Compile::TracePhase tp(_t_instrSched); 2257 2258 // Create a data structure for all the scheduling information 2259 Scheduling scheduling(Thread::current()->resource_area(), *C); 2260 2261 // Walk backwards over each basic block, computing the needed alignment 2262 // Walk over all the basic blocks 2263 scheduling.DoScheduling(); 2264 2265 #ifndef PRODUCT 2266 if (C->trace_opto_output()) { 2267 // Buffer and print all at once 2268 ResourceMark rm; 2269 stringStream ss; 2270 ss.print("\n---- After ScheduleAndBundle ----\n"); 2271 print_scheduling(&ss); 2272 tty->print("%s", ss.as_string()); 2273 } 2274 #endif 2275 } 2276 2277 #ifndef PRODUCT 2278 // Separated out so that it can be called directly from debugger 2279 void PhaseOutput::print_scheduling() { 2280 print_scheduling(tty); 2281 } 2282 2283 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2284 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2285 output_stream->print("\nBB#%03d:\n", i); 2286 Block* block = C->cfg()->get_block(i); 2287 for (uint j = 0; j < block->number_of_nodes(); j++) { 2288 Node* n = block->get_node(j); 2289 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2290 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2291 n->dump("\n", false, output_stream); 2292 } 2293 } 2294 } 2295 #endif 2296 2297 // See if this node fits into the present instruction bundle 2298 bool Scheduling::NodeFitsInBundle(Node *n) { 2299 uint n_idx = n->_idx; 2300 2301 // If this is the unconditional delay instruction, then it fits 2302 if (n == _unconditional_delay_slot) { 2303 #ifndef PRODUCT 2304 if (_cfg->C->trace_opto_output()) 2305 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2306 #endif 2307 return (true); 2308 } 2309 2310 // If the node cannot be scheduled this cycle, skip it 2311 if (_current_latency[n_idx] > _bundle_cycle_number) { 2312 #ifndef PRODUCT 2313 if (_cfg->C->trace_opto_output()) 2314 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2315 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2316 #endif 2317 return (false); 2318 } 2319 2320 const Pipeline *node_pipeline = n->pipeline(); 2321 2322 uint instruction_count = node_pipeline->instructionCount(); 2323 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2324 instruction_count = 0; 2325 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2326 instruction_count++; 2327 2328 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2329 #ifndef PRODUCT 2330 if (_cfg->C->trace_opto_output()) 2331 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2332 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2333 #endif 2334 return (false); 2335 } 2336 2337 // Don't allow non-machine nodes to be handled this way 2338 if (!n->is_Mach() && instruction_count == 0) 2339 return (false); 2340 2341 // See if there is any overlap 2342 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2343 2344 if (delay > 0) { 2345 #ifndef PRODUCT 2346 if (_cfg->C->trace_opto_output()) 2347 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2348 #endif 2349 return false; 2350 } 2351 2352 #ifndef PRODUCT 2353 if (_cfg->C->trace_opto_output()) 2354 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2355 #endif 2356 2357 return true; 2358 } 2359 2360 Node * Scheduling::ChooseNodeToBundle() { 2361 uint siz = _available.size(); 2362 2363 if (siz == 0) { 2364 2365 #ifndef PRODUCT 2366 if (_cfg->C->trace_opto_output()) 2367 tty->print("# ChooseNodeToBundle: null\n"); 2368 #endif 2369 return (nullptr); 2370 } 2371 2372 // Fast path, if only 1 instruction in the bundle 2373 if (siz == 1) { 2374 #ifndef PRODUCT 2375 if (_cfg->C->trace_opto_output()) { 2376 tty->print("# ChooseNodeToBundle (only 1): "); 2377 _available[0]->dump(); 2378 } 2379 #endif 2380 return (_available[0]); 2381 } 2382 2383 // Don't bother, if the bundle is already full 2384 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2385 for ( uint i = 0; i < siz; i++ ) { 2386 Node *n = _available[i]; 2387 2388 // Skip projections, we'll handle them another way 2389 if (n->is_Proj()) 2390 continue; 2391 2392 // This presupposed that instructions are inserted into the 2393 // available list in a legality order; i.e. instructions that 2394 // must be inserted first are at the head of the list 2395 if (NodeFitsInBundle(n)) { 2396 #ifndef PRODUCT 2397 if (_cfg->C->trace_opto_output()) { 2398 tty->print("# ChooseNodeToBundle: "); 2399 n->dump(); 2400 } 2401 #endif 2402 return (n); 2403 } 2404 } 2405 } 2406 2407 // Nothing fits in this bundle, choose the highest priority 2408 #ifndef PRODUCT 2409 if (_cfg->C->trace_opto_output()) { 2410 tty->print("# ChooseNodeToBundle: "); 2411 _available[0]->dump(); 2412 } 2413 #endif 2414 2415 return _available[0]; 2416 } 2417 2418 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2419 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2420 2421 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2422 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2423 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2424 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2425 2426 // Comparison between stack -> reg and stack -> reg 2427 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2428 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2429 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2430 } 2431 2432 // Comparison between reg -> stack and reg -> stack 2433 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2434 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2435 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2436 } 2437 2438 return 0; // Not comparable 2439 } 2440 2441 void Scheduling::AddNodeToAvailableList(Node *n) { 2442 assert( !n->is_Proj(), "projections never directly made available" ); 2443 #ifndef PRODUCT 2444 if (_cfg->C->trace_opto_output()) { 2445 tty->print("# AddNodeToAvailableList: "); 2446 n->dump(); 2447 } 2448 #endif 2449 2450 int latency = _current_latency[n->_idx]; 2451 2452 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2453 // for stack spilling or unspilling have the same latency, we sort 2454 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2455 // have more opportunities to do ld/st merging 2456 uint i; 2457 for (i = 0; i < _available.size(); i++) { 2458 if (_current_latency[_available[i]->_idx] > latency) { 2459 break; 2460 } else if (_current_latency[_available[i]->_idx] == latency && 2461 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2462 compare_two_spill_nodes(n, _available[i]) > 0) { 2463 break; 2464 } 2465 } 2466 2467 // Special Check for compares following branches 2468 if( n->is_Mach() && _scheduled.size() > 0 ) { 2469 int op = n->as_Mach()->ideal_Opcode(); 2470 Node *last = _scheduled[0]; 2471 if( last->is_MachIf() && last->in(1) == n && 2472 ( op == Op_CmpI || 2473 op == Op_CmpU || 2474 op == Op_CmpUL || 2475 op == Op_CmpP || 2476 op == Op_CmpF || 2477 op == Op_CmpD || 2478 op == Op_CmpL ) ) { 2479 2480 // Recalculate position, moving to front of same latency 2481 for ( i=0 ; i < _available.size(); i++ ) 2482 if (_current_latency[_available[i]->_idx] >= latency) 2483 break; 2484 } 2485 } 2486 2487 // Insert the node in the available list 2488 _available.insert(i, n); 2489 2490 #ifndef PRODUCT 2491 if (_cfg->C->trace_opto_output()) 2492 dump_available(); 2493 #endif 2494 } 2495 2496 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2497 for ( uint i=0; i < n->len(); i++ ) { 2498 Node *def = n->in(i); 2499 if (!def) continue; 2500 if( def->is_Proj() ) // If this is a machine projection, then 2501 def = def->in(0); // propagate usage thru to the base instruction 2502 2503 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2504 continue; 2505 } 2506 2507 // Compute the latency 2508 uint l = _bundle_cycle_number + n->latency(i); 2509 if (_current_latency[def->_idx] < l) 2510 _current_latency[def->_idx] = l; 2511 2512 // If this does not have uses then schedule it 2513 if ((--_uses[def->_idx]) == 0) 2514 AddNodeToAvailableList(def); 2515 } 2516 } 2517 2518 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2519 #ifndef PRODUCT 2520 if (_cfg->C->trace_opto_output()) { 2521 tty->print("# AddNodeToBundle: "); 2522 n->dump(); 2523 } 2524 #endif 2525 2526 // Remove this from the available list 2527 uint i; 2528 for (i = 0; i < _available.size(); i++) 2529 if (_available[i] == n) 2530 break; 2531 assert(i < _available.size(), "entry in _available list not found"); 2532 _available.remove(i); 2533 2534 // See if this fits in the current bundle 2535 const Pipeline *node_pipeline = n->pipeline(); 2536 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2537 2538 // Check for instructions to be placed in the delay slot. We 2539 // do this before we actually schedule the current instruction, 2540 // because the delay slot follows the current instruction. 2541 if (Pipeline::_branch_has_delay_slot && 2542 node_pipeline->hasBranchDelay() && 2543 !_unconditional_delay_slot) { 2544 2545 uint siz = _available.size(); 2546 2547 // Conditional branches can support an instruction that 2548 // is unconditionally executed and not dependent by the 2549 // branch, OR a conditionally executed instruction if 2550 // the branch is taken. In practice, this means that 2551 // the first instruction at the branch target is 2552 // copied to the delay slot, and the branch goes to 2553 // the instruction after that at the branch target 2554 if ( n->is_MachBranch() ) { 2555 2556 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2557 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2558 2559 #ifndef PRODUCT 2560 _branches++; 2561 #endif 2562 2563 // At least 1 instruction is on the available list 2564 // that is not dependent on the branch 2565 for (uint i = 0; i < siz; i++) { 2566 Node *d = _available[i]; 2567 const Pipeline *avail_pipeline = d->pipeline(); 2568 2569 // Don't allow safepoints in the branch shadow, that will 2570 // cause a number of difficulties 2571 if ( avail_pipeline->instructionCount() == 1 && 2572 !avail_pipeline->hasMultipleBundles() && 2573 !avail_pipeline->hasBranchDelay() && 2574 Pipeline::instr_has_unit_size() && 2575 d->size(_regalloc) == Pipeline::instr_unit_size() && 2576 NodeFitsInBundle(d) && 2577 !node_bundling(d)->used_in_delay()) { 2578 2579 if (d->is_Mach() && !d->is_MachSafePoint()) { 2580 // A node that fits in the delay slot was found, so we need to 2581 // set the appropriate bits in the bundle pipeline information so 2582 // that it correctly indicates resource usage. Later, when we 2583 // attempt to add this instruction to the bundle, we will skip 2584 // setting the resource usage. 2585 _unconditional_delay_slot = d; 2586 node_bundling(n)->set_use_unconditional_delay(); 2587 node_bundling(d)->set_used_in_unconditional_delay(); 2588 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2589 _current_latency[d->_idx] = _bundle_cycle_number; 2590 _next_node = d; 2591 ++_bundle_instr_count; 2592 #ifndef PRODUCT 2593 _unconditional_delays++; 2594 #endif 2595 break; 2596 } 2597 } 2598 } 2599 } 2600 2601 // No delay slot, add a nop to the usage 2602 if (!_unconditional_delay_slot) { 2603 // See if adding an instruction in the delay slot will overflow 2604 // the bundle. 2605 if (!NodeFitsInBundle(_nop)) { 2606 #ifndef PRODUCT 2607 if (_cfg->C->trace_opto_output()) 2608 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2609 #endif 2610 step(1); 2611 } 2612 2613 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2614 _next_node = _nop; 2615 ++_bundle_instr_count; 2616 } 2617 2618 // See if the instruction in the delay slot requires a 2619 // step of the bundles 2620 if (!NodeFitsInBundle(n)) { 2621 #ifndef PRODUCT 2622 if (_cfg->C->trace_opto_output()) 2623 tty->print("# *** STEP(branch won't fit) ***\n"); 2624 #endif 2625 // Update the state information 2626 _bundle_instr_count = 0; 2627 _bundle_cycle_number += 1; 2628 _bundle_use.step(1); 2629 } 2630 } 2631 2632 // Get the number of instructions 2633 uint instruction_count = node_pipeline->instructionCount(); 2634 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2635 instruction_count = 0; 2636 2637 // Compute the latency information 2638 uint delay = 0; 2639 2640 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2641 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2642 if (relative_latency < 0) 2643 relative_latency = 0; 2644 2645 delay = _bundle_use.full_latency(relative_latency, node_usage); 2646 2647 // Does not fit in this bundle, start a new one 2648 if (delay > 0) { 2649 step(delay); 2650 2651 #ifndef PRODUCT 2652 if (_cfg->C->trace_opto_output()) 2653 tty->print("# *** STEP(%d) ***\n", delay); 2654 #endif 2655 } 2656 } 2657 2658 // If this was placed in the delay slot, ignore it 2659 if (n != _unconditional_delay_slot) { 2660 2661 if (delay == 0) { 2662 if (node_pipeline->hasMultipleBundles()) { 2663 #ifndef PRODUCT 2664 if (_cfg->C->trace_opto_output()) 2665 tty->print("# *** STEP(multiple instructions) ***\n"); 2666 #endif 2667 step(1); 2668 } 2669 2670 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2671 #ifndef PRODUCT 2672 if (_cfg->C->trace_opto_output()) 2673 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2674 instruction_count + _bundle_instr_count, 2675 Pipeline::_max_instrs_per_cycle); 2676 #endif 2677 step(1); 2678 } 2679 } 2680 2681 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2682 _bundle_instr_count++; 2683 2684 // Set the node's latency 2685 _current_latency[n->_idx] = _bundle_cycle_number; 2686 2687 // Now merge the functional unit information 2688 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2689 _bundle_use.add_usage(node_usage); 2690 2691 // Increment the number of instructions in this bundle 2692 _bundle_instr_count += instruction_count; 2693 2694 // Remember this node for later 2695 if (n->is_Mach()) 2696 _next_node = n; 2697 } 2698 2699 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2700 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2701 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2702 // into the block. All other scheduled nodes get put in the schedule here. 2703 int op = n->Opcode(); 2704 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2705 (op != Op_Node && // Not an unused antidepedence node and 2706 // not an unallocated boxlock 2707 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2708 2709 // Push any trailing projections 2710 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2711 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2712 Node *foi = n->fast_out(i); 2713 if( foi->is_Proj() ) 2714 _scheduled.push(foi); 2715 } 2716 } 2717 2718 // Put the instruction in the schedule list 2719 _scheduled.push(n); 2720 } 2721 2722 #ifndef PRODUCT 2723 if (_cfg->C->trace_opto_output()) 2724 dump_available(); 2725 #endif 2726 2727 // Walk all the definitions, decrementing use counts, and 2728 // if a definition has a 0 use count, place it in the available list. 2729 DecrementUseCounts(n,bb); 2730 } 2731 2732 // This method sets the use count within a basic block. We will ignore all 2733 // uses outside the current basic block. As we are doing a backwards walk, 2734 // any node we reach that has a use count of 0 may be scheduled. This also 2735 // avoids the problem of cyclic references from phi nodes, as long as phi 2736 // nodes are at the front of the basic block. This method also initializes 2737 // the available list to the set of instructions that have no uses within this 2738 // basic block. 2739 void Scheduling::ComputeUseCount(const Block *bb) { 2740 #ifndef PRODUCT 2741 if (_cfg->C->trace_opto_output()) 2742 tty->print("# -> ComputeUseCount\n"); 2743 #endif 2744 2745 // Clear the list of available and scheduled instructions, just in case 2746 _available.clear(); 2747 _scheduled.clear(); 2748 2749 // No delay slot specified 2750 _unconditional_delay_slot = nullptr; 2751 2752 #ifdef ASSERT 2753 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2754 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2755 #endif 2756 2757 // Force the _uses count to never go to zero for unscheduable pieces 2758 // of the block 2759 for( uint k = 0; k < _bb_start; k++ ) 2760 _uses[bb->get_node(k)->_idx] = 1; 2761 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2762 _uses[bb->get_node(l)->_idx] = 1; 2763 2764 // Iterate backwards over the instructions in the block. Don't count the 2765 // branch projections at end or the block header instructions. 2766 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2767 Node *n = bb->get_node(j); 2768 if( n->is_Proj() ) continue; // Projections handled another way 2769 2770 // Account for all uses 2771 for ( uint k = 0; k < n->len(); k++ ) { 2772 Node *inp = n->in(k); 2773 if (!inp) continue; 2774 assert(inp != n, "no cycles allowed" ); 2775 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2776 if (inp->is_Proj()) { // Skip through Proj's 2777 inp = inp->in(0); 2778 } 2779 ++_uses[inp->_idx]; // Count 1 block-local use 2780 } 2781 } 2782 2783 // If this instruction has a 0 use count, then it is available 2784 if (!_uses[n->_idx]) { 2785 _current_latency[n->_idx] = _bundle_cycle_number; 2786 AddNodeToAvailableList(n); 2787 } 2788 2789 #ifndef PRODUCT 2790 if (_cfg->C->trace_opto_output()) { 2791 tty->print("# uses: %3d: ", _uses[n->_idx]); 2792 n->dump(); 2793 } 2794 #endif 2795 } 2796 2797 #ifndef PRODUCT 2798 if (_cfg->C->trace_opto_output()) 2799 tty->print("# <- ComputeUseCount\n"); 2800 #endif 2801 } 2802 2803 // This routine performs scheduling on each basic block in reverse order, 2804 // using instruction latencies and taking into account function unit 2805 // availability. 2806 void Scheduling::DoScheduling() { 2807 #ifndef PRODUCT 2808 if (_cfg->C->trace_opto_output()) 2809 tty->print("# -> DoScheduling\n"); 2810 #endif 2811 2812 Block *succ_bb = nullptr; 2813 Block *bb; 2814 Compile* C = Compile::current(); 2815 2816 // Walk over all the basic blocks in reverse order 2817 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2818 bb = _cfg->get_block(i); 2819 2820 #ifndef PRODUCT 2821 if (_cfg->C->trace_opto_output()) { 2822 tty->print("# Schedule BB#%03d (initial)\n", i); 2823 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2824 bb->get_node(j)->dump(); 2825 } 2826 } 2827 #endif 2828 2829 // On the head node, skip processing 2830 if (bb == _cfg->get_root_block()) { 2831 continue; 2832 } 2833 2834 // Skip empty, connector blocks 2835 if (bb->is_connector()) 2836 continue; 2837 2838 // If the following block is not the sole successor of 2839 // this one, then reset the pipeline information 2840 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2841 #ifndef PRODUCT 2842 if (_cfg->C->trace_opto_output()) { 2843 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2844 _next_node->_idx, _bundle_instr_count); 2845 } 2846 #endif 2847 step_and_clear(); 2848 } 2849 2850 // Leave untouched the starting instruction, any Phis, a CreateEx node 2851 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2852 _bb_end = bb->number_of_nodes()-1; 2853 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2854 Node *n = bb->get_node(_bb_start); 2855 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2856 // Also, MachIdealNodes do not get scheduled 2857 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2858 MachNode *mach = n->as_Mach(); 2859 int iop = mach->ideal_Opcode(); 2860 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2861 if( iop == Op_Con ) continue; // Do not schedule Top 2862 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2863 mach->pipeline() == MachNode::pipeline_class() && 2864 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2865 continue; 2866 break; // Funny loop structure to be sure... 2867 } 2868 // Compute last "interesting" instruction in block - last instruction we 2869 // might schedule. _bb_end points just after last schedulable inst. We 2870 // normally schedule conditional branches (despite them being forced last 2871 // in the block), because they have delay slots we can fill. Calls all 2872 // have their delay slots filled in the template expansions, so we don't 2873 // bother scheduling them. 2874 Node *last = bb->get_node(_bb_end); 2875 // Ignore trailing NOPs. 2876 while (_bb_end > 0 && last->is_Mach() && 2877 last->as_Mach()->ideal_Opcode() == Op_Con) { 2878 last = bb->get_node(--_bb_end); 2879 } 2880 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2881 if( last->is_Catch() || 2882 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2883 // There might be a prior call. Skip it. 2884 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2885 } else if( last->is_MachNullCheck() ) { 2886 // Backup so the last null-checked memory instruction is 2887 // outside the schedulable range. Skip over the nullcheck, 2888 // projection, and the memory nodes. 2889 Node *mem = last->in(1); 2890 do { 2891 _bb_end--; 2892 } while (mem != bb->get_node(_bb_end)); 2893 } else { 2894 // Set _bb_end to point after last schedulable inst. 2895 _bb_end++; 2896 } 2897 2898 assert( _bb_start <= _bb_end, "inverted block ends" ); 2899 2900 // Compute the register antidependencies for the basic block 2901 ComputeRegisterAntidependencies(bb); 2902 if (C->failing()) return; // too many D-U pinch points 2903 2904 // Compute the usage within the block, and set the list of all nodes 2905 // in the block that have no uses within the block. 2906 ComputeUseCount(bb); 2907 2908 // Schedule the remaining instructions in the block 2909 while ( _available.size() > 0 ) { 2910 Node *n = ChooseNodeToBundle(); 2911 guarantee(n != nullptr, "no nodes available"); 2912 AddNodeToBundle(n,bb); 2913 } 2914 2915 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2916 #ifdef ASSERT 2917 for( uint l = _bb_start; l < _bb_end; l++ ) { 2918 Node *n = bb->get_node(l); 2919 uint m; 2920 for( m = 0; m < _bb_end-_bb_start; m++ ) 2921 if( _scheduled[m] == n ) 2922 break; 2923 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2924 } 2925 #endif 2926 2927 // Now copy the instructions (in reverse order) back to the block 2928 for ( uint k = _bb_start; k < _bb_end; k++ ) 2929 bb->map_node(_scheduled[_bb_end-k-1], k); 2930 2931 #ifndef PRODUCT 2932 if (_cfg->C->trace_opto_output()) { 2933 tty->print("# Schedule BB#%03d (final)\n", i); 2934 uint current = 0; 2935 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2936 Node *n = bb->get_node(j); 2937 if( valid_bundle_info(n) ) { 2938 Bundle *bundle = node_bundling(n); 2939 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2940 tty->print("*** Bundle: "); 2941 bundle->dump(); 2942 } 2943 n->dump(); 2944 } 2945 } 2946 } 2947 #endif 2948 #ifdef ASSERT 2949 verify_good_schedule(bb,"after block local scheduling"); 2950 #endif 2951 } 2952 2953 #ifndef PRODUCT 2954 if (_cfg->C->trace_opto_output()) 2955 tty->print("# <- DoScheduling\n"); 2956 #endif 2957 2958 // Record final node-bundling array location 2959 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2960 2961 } // end DoScheduling 2962 2963 // Verify that no live-range used in the block is killed in the block by a 2964 // wrong DEF. This doesn't verify live-ranges that span blocks. 2965 2966 // Check for edge existence. Used to avoid adding redundant precedence edges. 2967 static bool edge_from_to( Node *from, Node *to ) { 2968 for( uint i=0; i<from->len(); i++ ) 2969 if( from->in(i) == to ) 2970 return true; 2971 return false; 2972 } 2973 2974 #ifdef ASSERT 2975 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2976 // Check for bad kills 2977 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2978 Node *prior_use = _reg_node[def]; 2979 if( prior_use && !edge_from_to(prior_use,n) ) { 2980 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2981 n->dump(); 2982 tty->print_cr("..."); 2983 prior_use->dump(); 2984 assert(edge_from_to(prior_use,n), "%s", msg); 2985 } 2986 _reg_node.map(def,nullptr); // Kill live USEs 2987 } 2988 } 2989 2990 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2991 2992 // Zap to something reasonable for the verify code 2993 _reg_node.clear(); 2994 2995 // Walk over the block backwards. Check to make sure each DEF doesn't 2996 // kill a live value (other than the one it's supposed to). Add each 2997 // USE to the live set. 2998 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2999 Node *n = b->get_node(i); 3000 int n_op = n->Opcode(); 3001 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 3002 // Fat-proj kills a slew of registers 3003 RegMaskIterator rmi(n->out_RegMask()); 3004 while (rmi.has_next()) { 3005 OptoReg::Name kill = rmi.next(); 3006 verify_do_def(n, kill, msg); 3007 } 3008 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 3009 // Get DEF'd registers the normal way 3010 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 3011 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 3012 } 3013 3014 // Now make all USEs live 3015 for( uint i=1; i<n->req(); i++ ) { 3016 Node *def = n->in(i); 3017 assert(def != nullptr, "input edge required"); 3018 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 3019 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 3020 if( OptoReg::is_valid(reg_lo) ) { 3021 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 3022 _reg_node.map(reg_lo,n); 3023 } 3024 if( OptoReg::is_valid(reg_hi) ) { 3025 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 3026 _reg_node.map(reg_hi,n); 3027 } 3028 } 3029 3030 } 3031 3032 // Zap to something reasonable for the Antidependence code 3033 _reg_node.clear(); 3034 } 3035 #endif 3036 3037 // Conditionally add precedence edges. Avoid putting edges on Projs. 3038 static void add_prec_edge_from_to( Node *from, Node *to ) { 3039 if( from->is_Proj() ) { // Put precedence edge on Proj's input 3040 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 3041 from = from->in(0); 3042 } 3043 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 3044 !edge_from_to( from, to ) ) // Avoid duplicate edge 3045 from->add_prec(to); 3046 } 3047 3048 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 3049 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 3050 return; 3051 3052 if (OptoReg::is_reg(def_reg)) { 3053 VMReg vmreg = OptoReg::as_VMReg(def_reg); 3054 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 3055 // This is one of the high slots of a vector register. 3056 // ScheduleAndBundle already checked there are no live wide 3057 // vectors in this method so it can be safely ignored. 3058 return; 3059 } 3060 } 3061 3062 Node *pinch = _reg_node[def_reg]; // Get pinch point 3063 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 3064 is_def ) { // Check for a true def (not a kill) 3065 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 3066 return; 3067 } 3068 3069 Node *kill = def; // Rename 'def' to more descriptive 'kill' 3070 DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); ) 3071 3072 // After some number of kills there _may_ be a later def 3073 Node *later_def = nullptr; 3074 3075 Compile* C = Compile::current(); 3076 3077 // Finding a kill requires a real pinch-point. 3078 // Check for not already having a pinch-point. 3079 // Pinch points are Op_Node's. 3080 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 3081 later_def = pinch; // Must be def/kill as optimistic pinch-point 3082 if ( _pinch_free_list.size() > 0) { 3083 pinch = _pinch_free_list.pop(); 3084 } else { 3085 pinch = new Node(1); // Pinch point to-be 3086 } 3087 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 3088 DEBUG_ONLY( pinch->dump(); ); 3089 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 3090 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 3091 return; 3092 } 3093 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 3094 _reg_node.map(def_reg,pinch); // Record pinch-point 3095 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 3096 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 3097 pinch->init_req(0, C->top()); // set not null for the next call 3098 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 3099 later_def = nullptr; // and no later def 3100 } 3101 pinch->set_req(0,later_def); // Hook later def so we can find it 3102 } else { // Else have valid pinch point 3103 if( pinch->in(0) ) // If there is a later-def 3104 later_def = pinch->in(0); // Get it 3105 } 3106 3107 // Add output-dependence edge from later def to kill 3108 if( later_def ) // If there is some original def 3109 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3110 3111 // See if current kill is also a use, and so is forced to be the pinch-point. 3112 if( pinch->Opcode() == Op_Node ) { 3113 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3114 for( uint i=1; i<uses->req(); i++ ) { 3115 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3116 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3117 // Yes, found a use/kill pinch-point 3118 pinch->set_req(0,nullptr); // 3119 pinch->replace_by(kill); // Move anti-dep edges up 3120 pinch = kill; 3121 _reg_node.map(def_reg,pinch); 3122 return; 3123 } 3124 } 3125 } 3126 3127 // Add edge from kill to pinch-point 3128 add_prec_edge_from_to(kill,pinch); 3129 } 3130 3131 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3132 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3133 return; 3134 Node *pinch = _reg_node[use_reg]; // Get pinch point 3135 // Check for no later def_reg/kill in block 3136 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3137 // Use has to be block-local as well 3138 _cfg->get_block_for_node(use) == b) { 3139 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3140 pinch->req() == 1 ) { // pinch not yet in block? 3141 pinch->del_req(0); // yank pointer to later-def, also set flag 3142 // Insert the pinch-point in the block just after the last use 3143 b->insert_node(pinch, b->find_node(use) + 1); 3144 _bb_end++; // Increase size scheduled region in block 3145 } 3146 3147 add_prec_edge_from_to(pinch,use); 3148 } 3149 } 3150 3151 // We insert antidependences between the reads and following write of 3152 // allocated registers to prevent illegal code motion. Hopefully, the 3153 // number of added references should be fairly small, especially as we 3154 // are only adding references within the current basic block. 3155 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3156 3157 #ifdef ASSERT 3158 verify_good_schedule(b,"before block local scheduling"); 3159 #endif 3160 3161 // A valid schedule, for each register independently, is an endless cycle 3162 // of: a def, then some uses (connected to the def by true dependencies), 3163 // then some kills (defs with no uses), finally the cycle repeats with a new 3164 // def. The uses are allowed to float relative to each other, as are the 3165 // kills. No use is allowed to slide past a kill (or def). This requires 3166 // antidependencies between all uses of a single def and all kills that 3167 // follow, up to the next def. More edges are redundant, because later defs 3168 // & kills are already serialized with true or antidependencies. To keep 3169 // the edge count down, we add a 'pinch point' node if there's more than 3170 // one use or more than one kill/def. 3171 3172 // We add dependencies in one bottom-up pass. 3173 3174 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3175 3176 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3177 // register. If not, we record the DEF/KILL in _reg_node, the 3178 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3179 // "pinch point", a new Node that's in the graph but not in the block. 3180 // We put edges from the prior and current DEF/KILLs to the pinch point. 3181 // We put the pinch point in _reg_node. If there's already a pinch point 3182 // we merely add an edge from the current DEF/KILL to the pinch point. 3183 3184 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3185 // put an edge from the pinch point to the USE. 3186 3187 // To be expedient, the _reg_node array is pre-allocated for the whole 3188 // compilation. _reg_node is lazily initialized; it either contains a null, 3189 // or a valid def/kill/pinch-point, or a leftover node from some prior 3190 // block. Leftover node from some prior block is treated like a null (no 3191 // prior def, so no anti-dependence needed). Valid def is distinguished by 3192 // it being in the current block. 3193 bool fat_proj_seen = false; 3194 uint last_safept = _bb_end-1; 3195 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3196 Node* last_safept_node = end_node; 3197 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3198 Node *n = b->get_node(i); 3199 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3200 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3201 // Fat-proj kills a slew of registers 3202 // This can add edges to 'n' and obscure whether or not it was a def, 3203 // hence the is_def flag. 3204 fat_proj_seen = true; 3205 RegMaskIterator rmi(n->out_RegMask()); 3206 while (rmi.has_next()) { 3207 OptoReg::Name kill = rmi.next(); 3208 anti_do_def(b, n, kill, is_def); 3209 } 3210 } else { 3211 // Get DEF'd registers the normal way 3212 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3213 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3214 } 3215 3216 // Kill projections on a branch should appear to occur on the 3217 // branch, not afterwards, so grab the masks from the projections 3218 // and process them. 3219 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3220 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3221 Node* use = n->fast_out(i); 3222 if (use->is_Proj()) { 3223 RegMaskIterator rmi(use->out_RegMask()); 3224 while (rmi.has_next()) { 3225 OptoReg::Name kill = rmi.next(); 3226 anti_do_def(b, n, kill, false); 3227 } 3228 } 3229 } 3230 } 3231 3232 // Check each register used by this instruction for a following DEF/KILL 3233 // that must occur afterward and requires an anti-dependence edge. 3234 for( uint j=0; j<n->req(); j++ ) { 3235 Node *def = n->in(j); 3236 if( def ) { 3237 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3238 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3239 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3240 } 3241 } 3242 // Do not allow defs of new derived values to float above GC 3243 // points unless the base is definitely available at the GC point. 3244 3245 Node *m = b->get_node(i); 3246 3247 // Add precedence edge from following safepoint to use of derived pointer 3248 if( last_safept_node != end_node && 3249 m != last_safept_node) { 3250 for (uint k = 1; k < m->req(); k++) { 3251 const Type *t = m->in(k)->bottom_type(); 3252 if( t->isa_oop_ptr() && 3253 t->is_ptr()->offset() != 0 ) { 3254 last_safept_node->add_prec( m ); 3255 break; 3256 } 3257 } 3258 3259 // Do not allow a CheckCastPP node whose input is a raw pointer to 3260 // float past a safepoint. This can occur when a buffered inline 3261 // type is allocated in a loop and the CheckCastPP from that 3262 // allocation is reused outside the loop. If the use inside the 3263 // loop is scalarized the CheckCastPP will no longer be connected 3264 // to the loop safepoint. See JDK-8264340. 3265 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3266 Node *def = m->in(1); 3267 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 3268 last_safept_node->add_prec(m); 3269 } 3270 } 3271 } 3272 3273 if( n->jvms() ) { // Precedence edge from derived to safept 3274 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3275 if( b->get_node(last_safept) != last_safept_node ) { 3276 last_safept = b->find_node(last_safept_node); 3277 } 3278 for( uint j=last_safept; j > i; j-- ) { 3279 Node *mach = b->get_node(j); 3280 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3281 mach->add_prec( n ); 3282 } 3283 last_safept = i; 3284 last_safept_node = m; 3285 } 3286 } 3287 3288 if (fat_proj_seen) { 3289 // Garbage collect pinch nodes that were not consumed. 3290 // They are usually created by a fat kill MachProj for a call. 3291 garbage_collect_pinch_nodes(); 3292 } 3293 } 3294 3295 // Garbage collect pinch nodes for reuse by other blocks. 3296 // 3297 // The block scheduler's insertion of anti-dependence 3298 // edges creates many pinch nodes when the block contains 3299 // 2 or more Calls. A pinch node is used to prevent a 3300 // combinatorial explosion of edges. If a set of kills for a 3301 // register is anti-dependent on a set of uses (or defs), rather 3302 // than adding an edge in the graph between each pair of kill 3303 // and use (or def), a pinch is inserted between them: 3304 // 3305 // use1 use2 use3 3306 // \ | / 3307 // \ | / 3308 // pinch 3309 // / | \ 3310 // / | \ 3311 // kill1 kill2 kill3 3312 // 3313 // One pinch node is created per register killed when 3314 // the second call is encountered during a backwards pass 3315 // over the block. Most of these pinch nodes are never 3316 // wired into the graph because the register is never 3317 // used or def'ed in the block. 3318 // 3319 void Scheduling::garbage_collect_pinch_nodes() { 3320 #ifndef PRODUCT 3321 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3322 #endif 3323 int trace_cnt = 0; 3324 for (uint k = 0; k < _reg_node.max(); k++) { 3325 Node* pinch = _reg_node[k]; 3326 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3327 // no predecence input edges 3328 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3329 cleanup_pinch(pinch); 3330 _pinch_free_list.push(pinch); 3331 _reg_node.map(k, nullptr); 3332 #ifndef PRODUCT 3333 if (_cfg->C->trace_opto_output()) { 3334 trace_cnt++; 3335 if (trace_cnt > 40) { 3336 tty->print("\n"); 3337 trace_cnt = 0; 3338 } 3339 tty->print(" %d", pinch->_idx); 3340 } 3341 #endif 3342 } 3343 } 3344 #ifndef PRODUCT 3345 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3346 #endif 3347 } 3348 3349 // Clean up a pinch node for reuse. 3350 void Scheduling::cleanup_pinch( Node *pinch ) { 3351 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3352 3353 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3354 Node* use = pinch->last_out(i); 3355 uint uses_found = 0; 3356 for (uint j = use->req(); j < use->len(); j++) { 3357 if (use->in(j) == pinch) { 3358 use->rm_prec(j); 3359 uses_found++; 3360 } 3361 } 3362 assert(uses_found > 0, "must be a precedence edge"); 3363 i -= uses_found; // we deleted 1 or more copies of this edge 3364 } 3365 // May have a later_def entry 3366 pinch->set_req(0, nullptr); 3367 } 3368 3369 #ifndef PRODUCT 3370 3371 void Scheduling::dump_available() const { 3372 tty->print("#Availist "); 3373 for (uint i = 0; i < _available.size(); i++) 3374 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3375 tty->cr(); 3376 } 3377 3378 // Print Scheduling Statistics 3379 void Scheduling::print_statistics() { 3380 // Print the size added by nops for bundling 3381 tty->print("Nops added %d bytes to total of %d bytes", 3382 _total_nop_size, _total_method_size); 3383 if (_total_method_size > 0) 3384 tty->print(", for %.2f%%", 3385 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3386 tty->print("\n"); 3387 3388 // Print the number of branch shadows filled 3389 if (Pipeline::_branch_has_delay_slot) { 3390 tty->print("Of %d branches, %d had unconditional delay slots filled", 3391 _total_branches, _total_unconditional_delays); 3392 if (_total_branches > 0) 3393 tty->print(", for %.2f%%", 3394 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3395 tty->print("\n"); 3396 } 3397 3398 uint total_instructions = 0, total_bundles = 0; 3399 3400 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3401 uint bundle_count = _total_instructions_per_bundle[i]; 3402 total_instructions += bundle_count * i; 3403 total_bundles += bundle_count; 3404 } 3405 3406 if (total_bundles > 0) 3407 tty->print("Average ILP (excluding nops) is %.2f\n", 3408 ((double)total_instructions) / ((double)total_bundles)); 3409 } 3410 #endif 3411 3412 //-----------------------init_scratch_buffer_blob------------------------------ 3413 // Construct a temporary BufferBlob and cache it for this compile. 3414 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3415 // If there is already a scratch buffer blob allocated and the 3416 // constant section is big enough, use it. Otherwise free the 3417 // current and allocate a new one. 3418 BufferBlob* blob = scratch_buffer_blob(); 3419 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3420 // Use the current blob. 3421 } else { 3422 if (blob != nullptr) { 3423 BufferBlob::free(blob); 3424 } 3425 3426 ResourceMark rm; 3427 _scratch_const_size = const_size; 3428 int size = C2Compiler::initial_code_buffer_size(const_size); 3429 if (C->has_scalarized_args()) { 3430 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3431 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3432 ciMethod* method = C->method(); 3433 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3434 int arg_num = 0; 3435 if (!method->is_static()) { 3436 if (method->is_scalarized_arg(arg_num)) { 3437 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3438 } 3439 arg_num++; 3440 } 3441 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3442 if (method->is_scalarized_arg(arg_num)) { 3443 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3444 } 3445 arg_num++; 3446 } 3447 } 3448 blob = BufferBlob::create("Compile::scratch_buffer", size); 3449 // Record the buffer blob for next time. 3450 set_scratch_buffer_blob(blob); 3451 // Have we run out of code space? 3452 if (scratch_buffer_blob() == nullptr) { 3453 // Let CompilerBroker disable further compilations. 3454 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3455 return; 3456 } 3457 } 3458 3459 // Initialize the relocation buffers 3460 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3461 set_scratch_locs_memory(locs_buf); 3462 } 3463 3464 3465 //-----------------------scratch_emit_size------------------------------------- 3466 // Helper function that computes size by emitting code 3467 uint PhaseOutput::scratch_emit_size(const Node* n) { 3468 // Start scratch_emit_size section. 3469 set_in_scratch_emit_size(true); 3470 3471 // Emit into a trash buffer and count bytes emitted. 3472 // This is a pretty expensive way to compute a size, 3473 // but it works well enough if seldom used. 3474 // All common fixed-size instructions are given a size 3475 // method by the AD file. 3476 // Note that the scratch buffer blob and locs memory are 3477 // allocated at the beginning of the compile task, and 3478 // may be shared by several calls to scratch_emit_size. 3479 // The allocation of the scratch buffer blob is particularly 3480 // expensive, since it has to grab the code cache lock. 3481 BufferBlob* blob = this->scratch_buffer_blob(); 3482 assert(blob != nullptr, "Initialize BufferBlob at start"); 3483 assert(blob->size() > MAX_inst_size, "sanity"); 3484 relocInfo* locs_buf = scratch_locs_memory(); 3485 address blob_begin = blob->content_begin(); 3486 address blob_end = (address)locs_buf; 3487 assert(blob->contains(blob_end), "sanity"); 3488 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3489 buf.initialize_consts_size(_scratch_const_size); 3490 buf.initialize_stubs_size(MAX_stubs_size); 3491 assert(locs_buf != nullptr, "sanity"); 3492 int lsize = MAX_locs_size / 3; 3493 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3494 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3495 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3496 // Mark as scratch buffer. 3497 buf.consts()->set_scratch_emit(); 3498 buf.insts()->set_scratch_emit(); 3499 buf.stubs()->set_scratch_emit(); 3500 3501 // Do the emission. 3502 3503 Label fakeL; // Fake label for branch instructions. 3504 Label* saveL = nullptr; 3505 uint save_bnum = 0; 3506 bool is_branch = n->is_MachBranch(); 3507 C2_MacroAssembler masm(&buf); 3508 masm.bind(fakeL); 3509 if (is_branch) { 3510 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3511 n->as_MachBranch()->label_set(&fakeL, 0); 3512 } 3513 n->emit(&masm, C->regalloc()); 3514 3515 // Emitting into the scratch buffer should not fail 3516 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3517 3518 // Restore label. 3519 if (is_branch) { 3520 n->as_MachBranch()->label_set(saveL, save_bnum); 3521 } 3522 3523 // End scratch_emit_size section. 3524 set_in_scratch_emit_size(false); 3525 3526 return buf.insts_size(); 3527 } 3528 3529 void PhaseOutput::install() { 3530 if (!C->should_install_code()) { 3531 return; 3532 } else if (C->stub_function() != nullptr) { 3533 install_stub(C->stub_name()); 3534 } else { 3535 install_code(C->method(), 3536 C->entry_bci(), 3537 CompileBroker::compiler2(), 3538 C->has_unsafe_access(), 3539 SharedRuntime::is_wide_vector(C->max_vector_size())); 3540 } 3541 } 3542 3543 void PhaseOutput::install_code(ciMethod* target, 3544 int entry_bci, 3545 AbstractCompiler* compiler, 3546 bool has_unsafe_access, 3547 bool has_wide_vectors) { 3548 // Check if we want to skip execution of all compiled code. 3549 { 3550 #ifndef PRODUCT 3551 if (OptoNoExecute) { 3552 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3553 return; 3554 } 3555 #endif 3556 Compile::TracePhase tp(_t_registerMethod); 3557 3558 if (C->is_osr_compilation()) { 3559 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3560 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3561 } else { 3562 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3563 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3564 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3565 } 3566 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3567 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3568 } 3569 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3570 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3571 } 3572 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3573 } 3574 3575 C->env()->register_method(target, 3576 entry_bci, 3577 &_code_offsets, 3578 _orig_pc_slot_offset_in_bytes, 3579 code_buffer(), 3580 frame_size_in_words(), 3581 _oop_map_set, 3582 &_handler_table, 3583 inc_table(), 3584 compiler, 3585 has_unsafe_access, 3586 SharedRuntime::is_wide_vector(C->max_vector_size()), 3587 C->has_monitors(), 3588 C->has_scoped_access(), 3589 0); 3590 3591 if (C->log() != nullptr) { // Print code cache state into compiler log 3592 C->log()->code_cache_state(); 3593 } 3594 } 3595 } 3596 void PhaseOutput::install_stub(const char* stub_name) { 3597 // Entry point will be accessed using stub_entry_point(); 3598 if (code_buffer() == nullptr) { 3599 Matcher::soft_match_failure(); 3600 } else { 3601 if (PrintAssembly && (WizardMode || Verbose)) 3602 tty->print_cr("### Stub::%s", stub_name); 3603 3604 if (!C->failing()) { 3605 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3606 3607 // Make the NMethod 3608 // For now we mark the frame as never safe for profile stackwalking 3609 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3610 code_buffer(), 3611 CodeOffsets::frame_never_safe, 3612 // _code_offsets.value(CodeOffsets::Frame_Complete), 3613 frame_size_in_words(), 3614 oop_map_set(), 3615 false, 3616 false); 3617 3618 if (rs == nullptr) { 3619 C->record_failure("CodeCache is full"); 3620 } else { 3621 assert(rs->is_runtime_stub(), "sanity check"); 3622 C->set_stub_entry_point(rs->entry_point()); 3623 BlobId blob_id = StubInfo::blob(C->stub_id()); 3624 AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, blob_id); 3625 } 3626 } 3627 } 3628 } 3629 3630 // Support for bundling info 3631 Bundle* PhaseOutput::node_bundling(const Node *n) { 3632 assert(valid_bundle_info(n), "oob"); 3633 return &_node_bundling_base[n->_idx]; 3634 } 3635 3636 bool PhaseOutput::valid_bundle_info(const Node *n) { 3637 return (_node_bundling_limit > n->_idx); 3638 } 3639 3640 //------------------------------frame_size_in_words----------------------------- 3641 // frame_slots in units of words 3642 int PhaseOutput::frame_size_in_words() const { 3643 // shift is 0 in LP32 and 1 in LP64 3644 const int shift = (LogBytesPerWord - LogBytesPerInt); 3645 int words = _frame_slots >> shift; 3646 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3647 return words; 3648 } 3649 3650 // To bang the stack of this compiled method we use the stack size 3651 // that the interpreter would need in case of a deoptimization. This 3652 // removes the need to bang the stack in the deoptimization blob which 3653 // in turn simplifies stack overflow handling. 3654 int PhaseOutput::bang_size_in_bytes() const { 3655 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3656 } 3657 3658 //------------------------------dump_asm--------------------------------------- 3659 // Dump formatted assembly 3660 #if defined(SUPPORT_OPTO_ASSEMBLY) 3661 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3662 3663 int pc_digits = 3; // #chars required for pc 3664 int sb_chars = 3; // #chars for "start bundle" indicator 3665 int tab_size = 8; 3666 if (pcs != nullptr) { 3667 int max_pc = 0; 3668 for (uint i = 0; i < pc_limit; i++) { 3669 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3670 } 3671 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3672 } 3673 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3674 3675 bool cut_short = false; 3676 st->print_cr("#"); 3677 st->print("# "); C->tf()->dump_on(st); st->cr(); 3678 st->print_cr("#"); 3679 3680 // For all blocks 3681 int pc = 0x0; // Program counter 3682 char starts_bundle = ' '; 3683 C->regalloc()->dump_frame(); 3684 3685 Node *n = nullptr; 3686 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3687 if (VMThread::should_terminate()) { 3688 cut_short = true; 3689 break; 3690 } 3691 Block* block = C->cfg()->get_block(i); 3692 if (block->is_connector() && !Verbose) { 3693 continue; 3694 } 3695 n = block->head(); 3696 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3697 pc = pcs[n->_idx]; 3698 st->print("%*.*x", pc_digits, pc_digits, pc); 3699 } 3700 st->fill_to(prefix_len); 3701 block->dump_head(C->cfg(), st); 3702 if (block->is_connector()) { 3703 st->fill_to(prefix_len); 3704 st->print_cr("# Empty connector block"); 3705 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3706 st->fill_to(prefix_len); 3707 st->print_cr("# Block is sole successor of call"); 3708 } 3709 3710 // For all instructions 3711 Node *delay = nullptr; 3712 for (uint j = 0; j < block->number_of_nodes(); j++) { 3713 if (VMThread::should_terminate()) { 3714 cut_short = true; 3715 break; 3716 } 3717 n = block->get_node(j); 3718 if (valid_bundle_info(n)) { 3719 Bundle* bundle = node_bundling(n); 3720 if (bundle->used_in_unconditional_delay()) { 3721 delay = n; 3722 continue; 3723 } 3724 if (bundle->starts_bundle()) { 3725 starts_bundle = '+'; 3726 } 3727 } 3728 3729 if (WizardMode) { 3730 n->dump(); 3731 } 3732 3733 if( !n->is_Region() && // Dont print in the Assembly 3734 !n->is_Phi() && // a few noisely useless nodes 3735 !n->is_Proj() && 3736 !n->is_MachTemp() && 3737 !n->is_SafePointScalarObject() && 3738 !n->is_Catch() && // Would be nice to print exception table targets 3739 !n->is_MergeMem() && // Not very interesting 3740 !n->is_top() && // Debug info table constants 3741 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3742 ) { 3743 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3744 pc = pcs[n->_idx]; 3745 st->print("%*.*x", pc_digits, pc_digits, pc); 3746 } else { 3747 st->fill_to(pc_digits); 3748 } 3749 st->print(" %c ", starts_bundle); 3750 starts_bundle = ' '; 3751 st->fill_to(prefix_len); 3752 n->format(C->regalloc(), st); 3753 st->cr(); 3754 } 3755 3756 // If we have an instruction with a delay slot, and have seen a delay, 3757 // then back up and print it 3758 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3759 // Coverity finding - Explicit null dereferenced. 3760 guarantee(delay != nullptr, "no unconditional delay instruction"); 3761 if (WizardMode) delay->dump(); 3762 3763 if (node_bundling(delay)->starts_bundle()) 3764 starts_bundle = '+'; 3765 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3766 pc = pcs[n->_idx]; 3767 st->print("%*.*x", pc_digits, pc_digits, pc); 3768 } else { 3769 st->fill_to(pc_digits); 3770 } 3771 st->print(" %c ", starts_bundle); 3772 starts_bundle = ' '; 3773 st->fill_to(prefix_len); 3774 delay->format(C->regalloc(), st); 3775 st->cr(); 3776 delay = nullptr; 3777 } 3778 3779 // Dump the exception table as well 3780 if( n->is_Catch() && (Verbose || WizardMode) ) { 3781 // Print the exception table for this offset 3782 _handler_table.print_subtable_for(pc); 3783 } 3784 st->bol(); // Make sure we start on a new line 3785 } 3786 st->cr(); // one empty line between blocks 3787 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3788 } // End of per-block dump 3789 3790 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3791 } 3792 #endif 3793 3794 #ifndef PRODUCT 3795 void PhaseOutput::print_statistics() { 3796 Scheduling::print_statistics(); 3797 } 3798 #endif