1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/assembler.inline.hpp"
  26 #include "code/aotCodeCache.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compilerDirectives.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/gc_globals.hpp"
  36 #include "gc/shared/c2/barrierSetC2.hpp"
  37 #include "memory/allocation.hpp"
  38 #include "opto/ad.hpp"
  39 #include "opto/block.hpp"
  40 #include "opto/c2compiler.hpp"
  41 #include "opto/c2_MacroAssembler.hpp"
  42 #include "opto/callnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/node.hpp"
  47 #include "opto/optoreg.hpp"
  48 #include "opto/output.hpp"
  49 #include "opto/regalloc.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "utilities/macros.hpp"
  53 #include "utilities/powerOfTwo.hpp"
  54 #include "utilities/xmlstream.hpp"
  55 
  56 #ifndef PRODUCT
  57 #define DEBUG_ARG(x) , x
  58 #else
  59 #define DEBUG_ARG(x)
  60 #endif
  61 
  62 //------------------------------Scheduling----------------------------------
  63 // This class contains all the information necessary to implement instruction
  64 // scheduling and bundling.
  65 class Scheduling {
  66 
  67 private:
  68   // Arena to use
  69   Arena *_arena;
  70 
  71   // Control-Flow Graph info
  72   PhaseCFG *_cfg;
  73 
  74   // Register Allocation info
  75   PhaseRegAlloc *_regalloc;
  76 
  77   // Number of nodes in the method
  78   uint _node_bundling_limit;
  79 
  80   // List of scheduled nodes. Generated in reverse order
  81   Node_List _scheduled;
  82 
  83   // List of nodes currently available for choosing for scheduling
  84   Node_List _available;
  85 
  86   // For each instruction beginning a bundle, the number of following
  87   // nodes to be bundled with it.
  88   Bundle *_node_bundling_base;
  89 
  90   // Mapping from register to Node
  91   Node_List _reg_node;
  92 
  93   // Free list for pinch nodes.
  94   Node_List _pinch_free_list;
  95 
  96   // Number of uses of this node within the containing basic block.
  97   short *_uses;
  98 
  99   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 100   // front, branch+proj at end.  Also skips Catch/CProj (same as
 101   // branch-at-end), plus just-prior exception-throwing call.
 102   uint _bb_start, _bb_end;
 103 
 104   // Latency from the end of the basic block as scheduled
 105   unsigned short *_current_latency;
 106 
 107   // Remember the next node
 108   Node *_next_node;
 109 
 110   // Use this for an unconditional branch delay slot
 111   Node *_unconditional_delay_slot;
 112 
 113   // Pointer to a Nop
 114   MachNopNode *_nop;
 115 
 116   // Length of the current bundle, in instructions
 117   uint _bundle_instr_count;
 118 
 119   // Current Cycle number, for computing latencies and bundling
 120   uint _bundle_cycle_number;
 121 
 122   // Bundle information
 123   Pipeline_Use_Element _bundle_use_elements[resource_count];
 124   Pipeline_Use         _bundle_use;
 125 
 126   // Dump the available list
 127   void dump_available() const;
 128 
 129 public:
 130   Scheduling(Arena *arena, Compile &compile);
 131 
 132   // Destructor
 133   NOT_PRODUCT( ~Scheduling(); )
 134 
 135   // Step ahead "i" cycles
 136   void step(uint i);
 137 
 138   // Step ahead 1 cycle, and clear the bundle state (for example,
 139   // at a branch target)
 140   void step_and_clear();
 141 
 142   Bundle* node_bundling(const Node *n) {
 143     assert(valid_bundle_info(n), "oob");
 144     return (&_node_bundling_base[n->_idx]);
 145   }
 146 
 147   bool valid_bundle_info(const Node *n) const {
 148     return (_node_bundling_limit > n->_idx);
 149   }
 150 
 151   bool starts_bundle(const Node *n) const {
 152     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 153   }
 154 
 155   // Do the scheduling
 156   void DoScheduling();
 157 
 158   // Compute the register antidependencies within a basic block
 159   void ComputeRegisterAntidependencies(Block *bb);
 160   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 161   void verify_good_schedule( Block *b, const char *msg );
 162   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 163   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 164 
 165   // Add a node to the current bundle
 166   void AddNodeToBundle(Node *n, const Block *bb);
 167 
 168   // Return an integer less than, equal to, or greater than zero
 169   // if the stack offset of the first argument is respectively
 170   // less than, equal to, or greater than the second.
 171   int compare_two_spill_nodes(Node* first, Node* second);
 172 
 173   // Add a node to the list of available nodes
 174   void AddNodeToAvailableList(Node *n);
 175 
 176   // Compute the local use count for the nodes in a block, and compute
 177   // the list of instructions with no uses in the block as available
 178   void ComputeUseCount(const Block *bb);
 179 
 180   // Choose an instruction from the available list to add to the bundle
 181   Node * ChooseNodeToBundle();
 182 
 183   // See if this Node fits into the currently accumulating bundle
 184   bool NodeFitsInBundle(Node *n);
 185 
 186   // Decrement the use count for a node
 187  void DecrementUseCounts(Node *n, const Block *bb);
 188 
 189   // Garbage collect pinch nodes for reuse by other blocks.
 190   void garbage_collect_pinch_nodes();
 191   // Clean up a pinch node for reuse (helper for above).
 192   void cleanup_pinch( Node *pinch );
 193 
 194   // Information for statistics gathering
 195 #ifndef PRODUCT
 196 private:
 197   // Gather information on size of nops relative to total
 198   uint _branches, _unconditional_delays;
 199 
 200   static uint _total_nop_size, _total_method_size;
 201   static uint _total_branches, _total_unconditional_delays;
 202   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 203 
 204 public:
 205   static void print_statistics();
 206 
 207   static void increment_instructions_per_bundle(uint i) {
 208     _total_instructions_per_bundle[i]++;
 209   }
 210 
 211   static void increment_nop_size(uint s) {
 212     _total_nop_size += s;
 213   }
 214 
 215   static void increment_method_size(uint s) {
 216     _total_method_size += s;
 217   }
 218 #endif
 219 
 220 };
 221 
 222 PhaseOutput::PhaseOutput()
 223   : Phase(Phase::Output),
 224     _code_buffer("Compile::Fill_buffer"),
 225     _first_block_size(0),
 226     _handler_table(),
 227     _inc_table(),
 228     _stub_list(),
 229     _oop_map_set(nullptr),
 230     _scratch_buffer_blob(nullptr),
 231     _scratch_locs_memory(nullptr),
 232     _scratch_const_size(-1),
 233     _in_scratch_emit_size(false),
 234     _frame_slots(0),
 235     _code_offsets(),
 236     _node_bundling_limit(0),
 237     _node_bundling_base(nullptr),
 238     _orig_pc_slot(0),
 239     _orig_pc_slot_offset_in_bytes(0),
 240     _buf_sizes(),
 241     _block(nullptr),
 242     _index(0) {
 243   C->set_output(this);
 244   if (C->stub_name() == nullptr) {
 245     int fixed_slots = C->fixed_slots();
 246     if (C->needs_stack_repair()) {
 247       fixed_slots -= 2;
 248     }
 249     // TODO 8284443 Only reserve extra slot if needed
 250     if (InlineTypeReturnedAsFields) {
 251       fixed_slots -= 2;
 252     }
 253     _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size);
 254   }
 255 }
 256 
 257 PhaseOutput::~PhaseOutput() {
 258   C->set_output(nullptr);
 259   if (_scratch_buffer_blob != nullptr) {
 260     BufferBlob::free(_scratch_buffer_blob);
 261   }
 262 }
 263 
 264 void PhaseOutput::perform_mach_node_analysis() {
 265   // Late barrier analysis must be done after schedule and bundle
 266   // Otherwise liveness based spilling will fail
 267   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 268   bs->late_barrier_analysis();
 269 
 270   pd_perform_mach_node_analysis();
 271 
 272   C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3);
 273 }
 274 
 275 // Convert Nodes to instruction bits and pass off to the VM
 276 void PhaseOutput::Output() {
 277   // RootNode goes
 278   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 279 
 280   // The number of new nodes (mostly MachNop) is proportional to
 281   // the number of java calls and inner loops which are aligned.
 282   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 283                             C->inner_loops()*(OptoLoopAlignment-1)),
 284                            "out of nodes before code generation" ) ) {
 285     return;
 286   }
 287   // Make sure I can find the Start Node
 288   Block *entry = C->cfg()->get_block(1);
 289   Block *broot = C->cfg()->get_root_block();
 290 
 291   const StartNode *start = entry->head()->as_Start();
 292 
 293   // Replace StartNode with prolog
 294   Label verified_entry;
 295   MachPrologNode* prolog = new MachPrologNode(&verified_entry);
 296   entry->map_node(prolog, 0);
 297   C->cfg()->map_node_to_block(prolog, entry);
 298   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 299 
 300   // Virtual methods need an unverified entry point
 301   if (C->is_osr_compilation()) {
 302     if (PoisonOSREntry) {
 303       // TODO: Should use a ShouldNotReachHereNode...
 304       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 305     }
 306   } else {
 307     if (C->method()) {
 308       if (C->method()->has_scalarized_args()) {
 309         // Add entry point to unpack all inline type arguments
 310         C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false));
 311         if (!C->method()->is_static()) {
 312           // Add verified/unverified entry points to only unpack inline type receiver at interface calls
 313           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false));
 314           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true,  /* receiver_only */ true));
 315           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true));
 316         }
 317       } else if (!C->method()->is_static()) {
 318         // Insert unvalidated entry point
 319         C->cfg()->insert(broot, 0, new MachUEPNode());
 320       }
 321     }
 322   }
 323 
 324   // Break before main entry point
 325   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 326       (OptoBreakpoint && C->is_method_compilation())       ||
 327       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 328       (OptoBreakpointC2R && !C->method())                   ) {
 329     // checking for C->method() means that OptoBreakpoint does not apply to
 330     // runtime stubs or frame converters
 331     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 332   }
 333 
 334   // Insert epilogs before every return
 335   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 336     Block* block = C->cfg()->get_block(i);
 337     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 338       Node* m = block->end();
 339       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 340         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 341         block->add_inst(epilog);
 342         C->cfg()->map_node_to_block(epilog, block);
 343       }
 344     }
 345   }
 346 
 347   // Keeper of sizing aspects
 348   _buf_sizes = BufferSizingData();
 349 
 350   // Initialize code buffer
 351   estimate_buffer_size(_buf_sizes._const);
 352   if (C->failing()) return;
 353 
 354   // Pre-compute the length of blocks and replace
 355   // long branches with short if machine supports it.
 356   // Must be done before ScheduleAndBundle due to SPARC delay slots
 357   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 358   blk_starts[0] = 0;
 359   shorten_branches(blk_starts);
 360 
 361   if (!C->is_osr_compilation() && C->has_scalarized_args()) {
 362     // Compute the offsets of the entry points required by the inline type calling convention
 363     if (!C->method()->is_static()) {
 364       // We have entries at the beginning of the method, implemented by the first 4 nodes.
 365       // Entry                     (unverified) @ offset 0
 366       // Verified_Inline_Entry_RO
 367       // Inline_Entry              (unverified)
 368       // Verified_Inline_Entry
 369       uint offset = 0;
 370       _code_offsets.set_value(CodeOffsets::Entry, offset);
 371 
 372       offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc());
 373       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset);
 374 
 375       offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc());
 376       _code_offsets.set_value(CodeOffsets::Inline_Entry, offset);
 377 
 378       offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc());
 379       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset);
 380     } else {
 381       _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later
 382       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0);
 383     }
 384   }
 385 
 386   ScheduleAndBundle();
 387   if (C->failing()) {
 388     return;
 389   }
 390 
 391   perform_mach_node_analysis();
 392 
 393   // Complete sizing of codebuffer
 394   CodeBuffer* cb = init_buffer();
 395   if (cb == nullptr || C->failing()) {
 396     return;
 397   }
 398 
 399   BuildOopMaps();
 400 
 401   if (C->failing())  {
 402     return;
 403   }
 404 
 405   C2_MacroAssembler masm(cb);
 406   fill_buffer(&masm, blk_starts);
 407 }
 408 
 409 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 410   // Determine if we need to generate a stack overflow check.
 411   // Do it if the method is not a stub function and
 412   // has java calls or has frame size > vm_page_size/8.
 413   // The debug VM checks that deoptimization doesn't trigger an
 414   // unexpected stack overflow (compiled method stack banging should
 415   // guarantee it doesn't happen) so we always need the stack bang in
 416   // a debug VM.
 417   return (C->stub_function() == nullptr &&
 418           (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3
 419            DEBUG_ONLY(|| true)));
 420 }
 421 
 422 bool PhaseOutput::need_register_stack_bang() const {
 423   // Determine if we need to generate a register stack overflow check.
 424   // This is only used on architectures which have split register
 425   // and memory stacks.
 426   // Bang if the method is not a stub function and has java calls
 427   return (C->stub_function() == nullptr && C->has_java_calls());
 428 }
 429 
 430 
 431 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 432 // of a loop. When aligning a loop we need to provide enough instructions
 433 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 434 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 435 // By default, the size is set to 999999 by Block's constructor so that
 436 // a loop will be aligned if the size is not reset here.
 437 //
 438 // Note: Mach instructions could contain several HW instructions
 439 // so the size is estimated only.
 440 //
 441 void PhaseOutput::compute_loop_first_inst_sizes() {
 442   // The next condition is used to gate the loop alignment optimization.
 443   // Don't aligned a loop if there are enough instructions at the head of a loop
 444   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 445   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 446   // equal to 11 bytes which is the largest address NOP instruction.
 447   if (MaxLoopPad < OptoLoopAlignment - 1) {
 448     uint last_block = C->cfg()->number_of_blocks() - 1;
 449     for (uint i = 1; i <= last_block; i++) {
 450       Block* block = C->cfg()->get_block(i);
 451       // Check the first loop's block which requires an alignment.
 452       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 453         uint sum_size = 0;
 454         uint inst_cnt = NumberOfLoopInstrToAlign;
 455         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 456 
 457         // Check subsequent fallthrough blocks if the loop's first
 458         // block(s) does not have enough instructions.
 459         Block *nb = block;
 460         while(inst_cnt > 0 &&
 461               i < last_block &&
 462               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 463               !nb->has_successor(block)) {
 464           i++;
 465           nb = C->cfg()->get_block(i);
 466           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 467         } // while( inst_cnt > 0 && i < last_block  )
 468 
 469         block->set_first_inst_size(sum_size);
 470       } // f( b->head()->is_Loop() )
 471     } // for( i <= last_block )
 472   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 473 }
 474 
 475 // The architecture description provides short branch variants for some long
 476 // branch instructions. Replace eligible long branches with short branches.
 477 void PhaseOutput::shorten_branches(uint* blk_starts) {
 478 
 479   Compile::TracePhase tp(_t_shortenBranches);
 480 
 481   // Compute size of each block, method size, and relocation information size
 482   uint nblocks  = C->cfg()->number_of_blocks();
 483 
 484   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 485   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 486   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 487 
 488   // Collect worst case block paddings
 489   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 490   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 491 
 492   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 493   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 494 
 495   bool has_short_branch_candidate = false;
 496 
 497   // Initialize the sizes to 0
 498   int code_size  = 0;          // Size in bytes of generated code
 499   int stub_size  = 0;          // Size in bytes of all stub entries
 500   // Size in bytes of all relocation entries, including those in local stubs.
 501   // Start with 2-bytes of reloc info for the unvalidated entry point
 502   int reloc_size = 1;          // Number of relocation entries
 503 
 504   // Make three passes.  The first computes pessimistic blk_starts,
 505   // relative jmp_offset and reloc_size information.  The second performs
 506   // short branch substitution using the pessimistic sizing.  The
 507   // third inserts nops where needed.
 508 
 509   // Step one, perform a pessimistic sizing pass.
 510   uint last_call_adr = max_juint;
 511   uint last_avoid_back_to_back_adr = max_juint;
 512   uint nop_size = (new MachNopNode())->size(C->regalloc());
 513   for (uint i = 0; i < nblocks; i++) { // For all blocks
 514     Block* block = C->cfg()->get_block(i);
 515     _block = block;
 516 
 517     // During short branch replacement, we store the relative (to blk_starts)
 518     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 519     // This is so that we do not need to recompute sizes of all nodes when
 520     // we compute correct blk_starts in our next sizing pass.
 521     jmp_offset[i] = 0;
 522     jmp_size[i]   = 0;
 523     jmp_nidx[i]   = -1;
 524     DEBUG_ONLY( jmp_target[i] = 0; )
 525     DEBUG_ONLY( jmp_rule[i]   = 0; )
 526 
 527     // Sum all instruction sizes to compute block size
 528     uint last_inst = block->number_of_nodes();
 529     uint blk_size = 0;
 530     for (uint j = 0; j < last_inst; j++) {
 531       _index = j;
 532       Node* nj = block->get_node(_index);
 533       // Handle machine instruction nodes
 534       if (nj->is_Mach()) {
 535         MachNode* mach = nj->as_Mach();
 536         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 537         reloc_size += mach->reloc();
 538         if (mach->is_MachCall()) {
 539           // add size information for trampoline stub
 540           // class CallStubImpl is platform-specific and defined in the *.ad files.
 541           stub_size  += CallStubImpl::size_call_trampoline();
 542           reloc_size += CallStubImpl::reloc_call_trampoline();
 543 
 544           MachCallNode *mcall = mach->as_MachCall();
 545           // This destination address is NOT PC-relative
 546 
 547           if (mcall->entry_point() != nullptr) {
 548             mcall->method_set((intptr_t)mcall->entry_point());
 549           }
 550 
 551           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 552             stub_size  += CompiledDirectCall::to_interp_stub_size();
 553             reloc_size += CompiledDirectCall::reloc_to_interp_stub();
 554           }
 555         } else if (mach->is_MachSafePoint()) {
 556           // If call/safepoint are adjacent, account for possible
 557           // nop to disambiguate the two safepoints.
 558           // ScheduleAndBundle() can rearrange nodes in a block,
 559           // check for all offsets inside this block.
 560           if (last_call_adr >= blk_starts[i]) {
 561             blk_size += nop_size;
 562           }
 563         }
 564         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 565           // Nop is inserted between "avoid back to back" instructions.
 566           // ScheduleAndBundle() can rearrange nodes in a block,
 567           // check for all offsets inside this block.
 568           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 569             blk_size += nop_size;
 570           }
 571         }
 572         if (mach->may_be_short_branch()) {
 573           if (!nj->is_MachBranch()) {
 574 #ifndef PRODUCT
 575             nj->dump(3);
 576 #endif
 577             Unimplemented();
 578           }
 579           assert(jmp_nidx[i] == -1, "block should have only one branch");
 580           jmp_offset[i] = blk_size;
 581           jmp_size[i]   = nj->size(C->regalloc());
 582           jmp_nidx[i]   = j;
 583           has_short_branch_candidate = true;
 584         }
 585       }
 586       blk_size += nj->size(C->regalloc());
 587       // Remember end of call offset
 588       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 589         last_call_adr = blk_starts[i]+blk_size;
 590       }
 591       // Remember end of avoid_back_to_back offset
 592       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 593         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 594       }
 595     }
 596 
 597     // When the next block starts a loop, we may insert pad NOP
 598     // instructions.  Since we cannot know our future alignment,
 599     // assume the worst.
 600     if (i < nblocks - 1) {
 601       Block* nb = C->cfg()->get_block(i + 1);
 602       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 603       if (max_loop_pad > 0) {
 604         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 605         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 606         // If either is the last instruction in this block, bump by
 607         // max_loop_pad in lock-step with blk_size, so sizing
 608         // calculations in subsequent blocks still can conservatively
 609         // detect that it may the last instruction in this block.
 610         if (last_call_adr == blk_starts[i]+blk_size) {
 611           last_call_adr += max_loop_pad;
 612         }
 613         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 614           last_avoid_back_to_back_adr += max_loop_pad;
 615         }
 616         blk_size += max_loop_pad;
 617         block_worst_case_pad[i + 1] = max_loop_pad;
 618       }
 619     }
 620 
 621     // Save block size; update total method size
 622     blk_starts[i+1] = blk_starts[i]+blk_size;
 623   }
 624 
 625   // Step two, replace eligible long jumps.
 626   bool progress = true;
 627   uint last_may_be_short_branch_adr = max_juint;
 628   while (has_short_branch_candidate && progress) {
 629     progress = false;
 630     has_short_branch_candidate = false;
 631     int adjust_block_start = 0;
 632     for (uint i = 0; i < nblocks; i++) {
 633       Block* block = C->cfg()->get_block(i);
 634       int idx = jmp_nidx[i];
 635       MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
 636       if (mach != nullptr && mach->may_be_short_branch()) {
 637 #ifdef ASSERT
 638         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 639         int j;
 640         // Find the branch; ignore trailing NOPs.
 641         for (j = block->number_of_nodes()-1; j>=0; j--) {
 642           Node* n = block->get_node(j);
 643           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 644             break;
 645         }
 646         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 647 #endif
 648         int br_size = jmp_size[i];
 649         int br_offs = blk_starts[i] + jmp_offset[i];
 650 
 651         // This requires the TRUE branch target be in succs[0]
 652         uint bnum = block->non_connector_successor(0)->_pre_order;
 653         int offset = blk_starts[bnum] - br_offs;
 654         if (bnum > i) { // adjust following block's offset
 655           offset -= adjust_block_start;
 656         }
 657 
 658         // This block can be a loop header, account for the padding
 659         // in the previous block.
 660         int block_padding = block_worst_case_pad[i];
 661         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 662         // In the following code a nop could be inserted before
 663         // the branch which will increase the backward distance.
 664         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 665         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 666 
 667         if (needs_padding && offset <= 0)
 668           offset -= nop_size;
 669 
 670         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 671           // We've got a winner.  Replace this branch.
 672           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 673 
 674           // Update the jmp_size.
 675           int new_size = replacement->size(C->regalloc());
 676           int diff     = br_size - new_size;
 677           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 678           // Conservatively take into account padding between
 679           // avoid_back_to_back branches. Previous branch could be
 680           // converted into avoid_back_to_back branch during next
 681           // rounds.
 682           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 683             jmp_offset[i] += nop_size;
 684             diff -= nop_size;
 685           }
 686           adjust_block_start += diff;
 687           block->map_node(replacement, idx);
 688           mach->subsume_by(replacement, C);
 689           mach = replacement;
 690           progress = true;
 691 
 692           jmp_size[i] = new_size;
 693           DEBUG_ONLY( jmp_target[i] = bnum; );
 694           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 695         } else {
 696           // The jump distance is not short, try again during next iteration.
 697           has_short_branch_candidate = true;
 698         }
 699       } // (mach->may_be_short_branch())
 700       if (mach != nullptr && (mach->may_be_short_branch() ||
 701                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 702         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 703       }
 704       blk_starts[i+1] -= adjust_block_start;
 705     }
 706   }
 707 
 708 #ifdef ASSERT
 709   for (uint i = 0; i < nblocks; i++) { // For all blocks
 710     if (jmp_target[i] != 0) {
 711       int br_size = jmp_size[i];
 712       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 713       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 714         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 715       }
 716       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 717     }
 718   }
 719 #endif
 720 
 721   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 722   // after ScheduleAndBundle().
 723 
 724   // ------------------
 725   // Compute size for code buffer
 726   code_size = blk_starts[nblocks];
 727 
 728   // Relocation records
 729   reloc_size += 1;              // Relo entry for exception handler
 730 
 731   // Adjust reloc_size to number of record of relocation info
 732   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 733   // a relocation index.
 734   // The CodeBuffer will expand the locs array if this estimate is too low.
 735   reloc_size *= 10 / sizeof(relocInfo);
 736 
 737   _buf_sizes._reloc = reloc_size;
 738   _buf_sizes._code  = code_size;
 739   _buf_sizes._stub  = stub_size;
 740 }
 741 
 742 //------------------------------FillLocArray-----------------------------------
 743 // Create a bit of debug info and append it to the array.  The mapping is from
 744 // Java local or expression stack to constant, register or stack-slot.  For
 745 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 746 // entry has been taken care of and caller should skip it).
 747 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 748   // This should never have accepted Bad before
 749   assert(OptoReg::is_valid(regnum), "location must be valid");
 750   return (OptoReg::is_reg(regnum))
 751          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 752          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 753 }
 754 
 755 
 756 ObjectValue*
 757 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 758   for (int i = 0; i < objs->length(); i++) {
 759     assert(objs->at(i)->is_object(), "corrupt object cache");
 760     ObjectValue* sv = objs->at(i)->as_ObjectValue();
 761     if (sv->id() == id) {
 762       return sv;
 763     }
 764   }
 765   // Otherwise..
 766   return nullptr;
 767 }
 768 
 769 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 770                                      ObjectValue* sv ) {
 771   assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
 772   objs->append(sv);
 773 }
 774 
 775 
 776 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 777                             GrowableArray<ScopeValue*> *array,
 778                             GrowableArray<ScopeValue*> *objs ) {
 779   assert( local, "use _top instead of null" );
 780   if (array->length() != idx) {
 781     assert(array->length() == idx + 1, "Unexpected array count");
 782     // Old functionality:
 783     //   return
 784     // New functionality:
 785     //   Assert if the local is not top. In product mode let the new node
 786     //   override the old entry.
 787     assert(local == C->top(), "LocArray collision");
 788     if (local == C->top()) {
 789       return;
 790     }
 791     array->pop();
 792   }
 793   const Type *t = local->bottom_type();
 794 
 795   // Is it a safepoint scalar object node?
 796   if (local->is_SafePointScalarObject()) {
 797     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 798 
 799     ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
 800     if (sv == nullptr) {
 801       ciKlass* cik = t->is_oopptr()->exact_klass();
 802       assert(cik->is_instance_klass() ||
 803              cik->is_array_klass(), "Not supported allocation.");
 804       uint first_ind = spobj->first_index(sfpt->jvms());
 805       // Nullable, scalarized inline types have a null_marker input
 806       // that needs to be checked before using the field values.
 807       ScopeValue* null_marker = nullptr;
 808       if (cik->is_inlinetype()) {
 809         Node* null_marker_node = sfpt->in(first_ind++);
 810         assert(null_marker_node != nullptr, "null_marker node not found");
 811         if (!null_marker_node->is_top()) {
 812           const TypeInt* null_marker_type = null_marker_node->bottom_type()->is_int();
 813           if (null_marker_node->is_Con()) {
 814             null_marker = new ConstantIntValue(null_marker_type->get_con());
 815           } else {
 816             OptoReg::Name null_marker_reg = C->regalloc()->get_reg_first(null_marker_node);
 817             null_marker = new_loc_value(C->regalloc(), null_marker_reg, Location::normal);
 818           }
 819         }
 820       }
 821       sv = new ObjectValue(spobj->_idx,
 822                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, null_marker);
 823       set_sv_for_object_node(objs, sv);
 824 
 825       for (uint i = 0; i < spobj->n_fields(); i++) {
 826         Node* fld_node = sfpt->in(first_ind+i);
 827         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 828       }
 829     }
 830     array->append(sv);
 831     return;
 832   } else if (local->is_SafePointScalarMerge()) {
 833     SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge();
 834     ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
 835 
 836     if (mv == nullptr) {
 837       GrowableArray<ScopeValue*> deps;
 838 
 839       int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms());
 840       (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs);
 841       assert(deps.length() == 1, "missing value");
 842 
 843       int selector_idx = smerge->selector_idx(sfpt->jvms());
 844       (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr);
 845       assert(deps.length() == 2, "missing value");
 846 
 847       mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
 848       set_sv_for_object_node(objs, mv);
 849 
 850       for (uint i = 1; i < smerge->req(); i++) {
 851         Node* obj_node = smerge->in(i);
 852         int idx = mv->possible_objects()->length();
 853         (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs);
 854 
 855         // By default ObjectValues that are in 'possible_objects' are not root objects.
 856         // They will be marked as root later if they are directly referenced in a JVMS.
 857         assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
 858         assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
 859         mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
 860       }
 861     }
 862     array->append(mv);
 863     return;
 864   }
 865 
 866   // Grab the register number for the local
 867   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 868   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 869     // Record the double as two float registers.
 870     // The register mask for such a value always specifies two adjacent
 871     // float registers, with the lower register number even.
 872     // Normally, the allocation of high and low words to these registers
 873     // is irrelevant, because nearly all operations on register pairs
 874     // (e.g., StoreD) treat them as a single unit.
 875     // Here, we assume in addition that the words in these two registers
 876     // stored "naturally" (by operations like StoreD and double stores
 877     // within the interpreter) such that the lower-numbered register
 878     // is written to the lower memory address.  This may seem like
 879     // a machine dependency, but it is not--it is a requirement on
 880     // the author of the <arch>.ad file to ensure that, for every
 881     // even/odd double-register pair to which a double may be allocated,
 882     // the word in the even single-register is stored to the first
 883     // memory word.  (Note that register numbers are completely
 884     // arbitrary, and are not tied to any machine-level encodings.)
 885 #ifdef _LP64
 886     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 887       array->append(new ConstantIntValue((jint)0));
 888       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 889     } else if ( t->base() == Type::Long ) {
 890       array->append(new ConstantIntValue((jint)0));
 891       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 892     } else if ( t->base() == Type::RawPtr ) {
 893       // jsr/ret return address which must be restored into the full
 894       // width 64-bit stack slot.
 895       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 896     }
 897 #else //_LP64
 898     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 899       // Repack the double/long as two jints.
 900       // The convention the interpreter uses is that the second local
 901       // holds the first raw word of the native double representation.
 902       // This is actually reasonable, since locals and stack arrays
 903       // grow downwards in all implementations.
 904       // (If, on some machine, the interpreter's Java locals or stack
 905       // were to grow upwards, the embedded doubles would be word-swapped.)
 906       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 907       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 908     }
 909 #endif //_LP64
 910     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 911              OptoReg::is_reg(regnum) ) {
 912       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 913                                                       ? Location::float_in_dbl : Location::normal ));
 914     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 915       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 916                                                       ? Location::int_in_long : Location::normal ));
 917     } else if( t->base() == Type::NarrowOop ) {
 918       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 919     } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
 920                t->base() == Type::VectorD || t->base() == Type::VectorX ||
 921                t->base() == Type::VectorY || t->base() == Type::VectorZ) {
 922       array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
 923     } else if (C->regalloc()->is_oop(local)) {
 924       assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr ||
 925              t->base() == Type::AryPtr,
 926              "Unexpected type: %s", t->msg());
 927       array->append(new_loc_value( C->regalloc(), regnum, Location::oop ));
 928     } else {
 929       assert(t->base() == Type::Int || t->base() == Type::Half ||
 930              t->base() == Type::FloatCon || t->base() == Type::FloatBot,
 931              "Unexpected type: %s", t->msg());
 932       array->append(new_loc_value( C->regalloc(), regnum, Location::normal ));
 933     }
 934     return;
 935   }
 936 
 937   // No register.  It must be constant data.
 938   switch (t->base()) {
 939     case Type::Half:              // Second half of a double
 940       ShouldNotReachHere();       // Caller should skip 2nd halves
 941       break;
 942     case Type::AnyPtr:
 943       array->append(new ConstantOopWriteValue(nullptr));
 944       break;
 945     case Type::AryPtr:
 946     case Type::InstPtr:          // fall through
 947       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 948       break;
 949     case Type::NarrowOop:
 950       if (t == TypeNarrowOop::NULL_PTR) {
 951         array->append(new ConstantOopWriteValue(nullptr));
 952       } else {
 953         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 954       }
 955       break;
 956     case Type::Int:
 957       array->append(new ConstantIntValue(t->is_int()->get_con()));
 958       break;
 959     case Type::RawPtr:
 960       // A return address (T_ADDRESS).
 961       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 962 #ifdef _LP64
 963       // Must be restored to the full-width 64-bit stack slot.
 964       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 965 #else
 966       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 967 #endif
 968       break;
 969     case Type::FloatCon: {
 970       float f = t->is_float_constant()->getf();
 971       array->append(new ConstantIntValue(jint_cast(f)));
 972       break;
 973     }
 974     case Type::DoubleCon: {
 975       jdouble d = t->is_double_constant()->getd();
 976 #ifdef _LP64
 977       array->append(new ConstantIntValue((jint)0));
 978       array->append(new ConstantDoubleValue(d));
 979 #else
 980       // Repack the double as two jints.
 981     // The convention the interpreter uses is that the second local
 982     // holds the first raw word of the native double representation.
 983     // This is actually reasonable, since locals and stack arrays
 984     // grow downwards in all implementations.
 985     // (If, on some machine, the interpreter's Java locals or stack
 986     // were to grow upwards, the embedded doubles would be word-swapped.)
 987     jlong_accessor acc;
 988     acc.long_value = jlong_cast(d);
 989     array->append(new ConstantIntValue(acc.words[1]));
 990     array->append(new ConstantIntValue(acc.words[0]));
 991 #endif
 992       break;
 993     }
 994     case Type::Long: {
 995       jlong d = t->is_long()->get_con();
 996 #ifdef _LP64
 997       array->append(new ConstantIntValue((jint)0));
 998       array->append(new ConstantLongValue(d));
 999 #else
1000       // Repack the long as two jints.
1001     // The convention the interpreter uses is that the second local
1002     // holds the first raw word of the native double representation.
1003     // This is actually reasonable, since locals and stack arrays
1004     // grow downwards in all implementations.
1005     // (If, on some machine, the interpreter's Java locals or stack
1006     // were to grow upwards, the embedded doubles would be word-swapped.)
1007     jlong_accessor acc;
1008     acc.long_value = d;
1009     array->append(new ConstantIntValue(acc.words[1]));
1010     array->append(new ConstantIntValue(acc.words[0]));
1011 #endif
1012       break;
1013     }
1014     case Type::Top:               // Add an illegal value here
1015       array->append(new LocationValue(Location()));
1016       break;
1017     default:
1018       ShouldNotReachHere();
1019       break;
1020   }
1021 }
1022 
1023 // Determine if this node starts a bundle
1024 bool PhaseOutput::starts_bundle(const Node *n) const {
1025   return (_node_bundling_limit > n->_idx &&
1026           _node_bundling_base[n->_idx].starts_bundle());
1027 }
1028 
1029 // Determine if there is a monitor that has 'ov' as its owner.
1030 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const {
1031   for (int k = 0; k < monarray->length(); k++) {
1032     MonitorValue* mv = monarray->at(k);
1033     if (mv->owner() == ov) {
1034       return true;
1035     }
1036   }
1037 
1038   return false;
1039 }
1040 
1041 // Determine if there is a scalar replaced object description represented by 'ov'.
1042 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn,
1043                                              GrowableArray<ScopeValue*>* objs,
1044                                              ObjectValue* ov) const {
1045   for (int i = 0; i < jvms->scl_size(); i++) {
1046     Node* n = sfn->scalarized_obj(jvms, i);
1047     // Other kinds of nodes that we may encounter here, for instance constants
1048     // representing values of fields of objects scalarized, aren't relevant for
1049     // us, since they don't map to ObjectValue.
1050     if (!n->is_SafePointScalarObject()) {
1051       continue;
1052     }
1053 
1054     ObjectValue* other = sv_for_node_id(objs, n->_idx);
1055     if (ov == other) {
1056       return true;
1057     }
1058   }
1059   return false;
1060 }
1061 
1062 //--------------------------Process_OopMap_Node--------------------------------
1063 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1064   // Handle special safepoint nodes for synchronization
1065   MachSafePointNode *sfn   = mach->as_MachSafePoint();
1066   MachCallNode      *mcall;
1067 
1068   int safepoint_pc_offset = current_offset;
1069   bool is_method_handle_invoke = false;
1070   bool return_oop = false;
1071   bool return_scalarized = false;
1072   bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1073   bool arg_escape = false;
1074 
1075   // Add the safepoint in the DebugInfoRecorder
1076   if( !mach->is_MachCall() ) {
1077     mcall = nullptr;
1078     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1079   } else {
1080     mcall = mach->as_MachCall();
1081 
1082     // Is the call a MethodHandle call?
1083     if (mcall->is_MachCallJava()) {
1084       if (mcall->as_MachCallJava()->_method_handle_invoke) {
1085         assert(C->has_method_handle_invokes(), "must have been set during call generation");
1086         is_method_handle_invoke = true;
1087       }
1088       arg_escape = mcall->as_MachCallJava()->_arg_escape;
1089     }
1090 
1091     // Check if a call returns an object.
1092     if (mcall->returns_pointer() || mcall->returns_scalarized()) {
1093       return_oop = true;
1094     }
1095     if (mcall->returns_scalarized()) {
1096       return_scalarized = true;
1097     }
1098     safepoint_pc_offset += mcall->ret_addr_offset();
1099     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1100   }
1101 
1102   // Loop over the JVMState list to add scope information
1103   // Do not skip safepoints with a null method, they need monitor info
1104   JVMState* youngest_jvms = sfn->jvms();
1105   int max_depth = youngest_jvms->depth();
1106 
1107   // Allocate the object pool for scalar-replaced objects -- the map from
1108   // small-integer keys (which can be recorded in the local and ostack
1109   // arrays) to descriptions of the object state.
1110   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1111 
1112   // Visit scopes from oldest to youngest.
1113   for (int depth = 1; depth <= max_depth; depth++) {
1114     JVMState* jvms = youngest_jvms->of_depth(depth);
1115     int idx;
1116     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1117     // Safepoints that do not have method() set only provide oop-map and monitor info
1118     // to support GC; these do not support deoptimization.
1119     int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1120     int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1121     int num_mon  = jvms->nof_monitors();
1122     assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1123            "JVMS local count must match that of the method");
1124 
1125     // Add Local and Expression Stack Information
1126 
1127     // Insert locals into the locarray
1128     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1129     for( idx = 0; idx < num_locs; idx++ ) {
1130       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1131     }
1132 
1133     // Insert expression stack entries into the exparray
1134     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1135     for( idx = 0; idx < num_exps; idx++ ) {
1136       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1137     }
1138 
1139     // Add in mappings of the monitors
1140     assert( !method ||
1141             !method->is_synchronized() ||
1142             method->is_native() ||
1143             num_mon > 0 ||
1144             !GenerateSynchronizationCode,
1145             "monitors must always exist for synchronized methods");
1146 
1147     // Build the growable array of ScopeValues for exp stack
1148     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1149 
1150     // Loop over monitors and insert into array
1151     for (idx = 0; idx < num_mon; idx++) {
1152       // Grab the node that defines this monitor
1153       Node* box_node = sfn->monitor_box(jvms, idx);
1154       Node* obj_node = sfn->monitor_obj(jvms, idx);
1155 
1156       // Create ScopeValue for object
1157       ScopeValue *scval = nullptr;
1158 
1159       if (obj_node->is_SafePointScalarObject()) {
1160         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1161         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1162         if (scval == nullptr) {
1163           const Type *t = spobj->bottom_type();
1164           ciKlass* cik = t->is_oopptr()->exact_klass();
1165           assert(cik->is_instance_klass() ||
1166                  cik->is_array_klass(), "Not supported allocation.");
1167           ObjectValue* sv = new ObjectValue(spobj->_idx,
1168                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1169           PhaseOutput::set_sv_for_object_node(objs, sv);
1170 
1171           uint first_ind = spobj->first_index(youngest_jvms);
1172           for (uint i = 0; i < spobj->n_fields(); i++) {
1173             Node* fld_node = sfn->in(first_ind+i);
1174             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1175           }
1176           scval = sv;
1177         }
1178       } else if (obj_node->is_SafePointScalarMerge()) {
1179         SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge();
1180         ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
1181 
1182         if (mv == nullptr) {
1183           GrowableArray<ScopeValue*> deps;
1184 
1185           int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms);
1186           FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs);
1187           assert(deps.length() == 1, "missing value");
1188 
1189           int selector_idx = smerge->selector_idx(youngest_jvms);
1190           FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr);
1191           assert(deps.length() == 2, "missing value");
1192 
1193           mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
1194           set_sv_for_object_node(objs, mv);
1195 
1196           for (uint i = 1; i < smerge->req(); i++) {
1197             Node* obj_node = smerge->in(i);
1198             int idx = mv->possible_objects()->length();
1199             (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs);
1200 
1201             // By default ObjectValues that are in 'possible_objects' are not root objects.
1202             // They will be marked as root later if they are directly referenced in a JVMS.
1203             assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
1204             assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
1205             mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
1206           }
1207         }
1208         scval = mv;
1209       } else if (!obj_node->is_Con()) {
1210         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1211         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1212           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1213         } else {
1214           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1215         }
1216       } else {
1217         const TypePtr *tp = obj_node->get_ptr_type();
1218         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1219       }
1220 
1221       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1222       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1223       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1224       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1225     }
1226 
1227     // Mark ObjectValue nodes as root nodes if they are directly
1228     // referenced in the JVMS.
1229     for (int i = 0; i < objs->length(); i++) {
1230       ScopeValue* sv = objs->at(i);
1231       if (sv->is_object_merge()) {
1232         ObjectMergeValue* merge = sv->as_ObjectMergeValue();
1233 
1234         for (int j = 0; j< merge->possible_objects()->length(); j++) {
1235           ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue();
1236           if (ov->is_root()) {
1237             // Already flagged as 'root' by something else. We shouldn't change it
1238             // to non-root in a younger JVMS because it may need to be alive in
1239             // a younger JVMS.
1240           } else {
1241             bool is_root = locarray->contains(ov) ||
1242                            exparray->contains(ov) ||
1243                            contains_as_owner(monarray, ov) ||
1244                            contains_as_scalarized_obj(jvms, sfn, objs, ov);
1245             ov->set_root(is_root);
1246           }
1247         }
1248       }
1249     }
1250 
1251     // We dump the object pool first, since deoptimization reads it in first.
1252     C->debug_info()->dump_object_pool(objs);
1253 
1254     // Build first class objects to pass to scope
1255     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1256     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1257     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1258 
1259     // Make method available for all Safepoints
1260     ciMethod* scope_method = method ? method : C->method();
1261     // Describe the scope here
1262     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1263     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1264     // Now we can describe the scope.
1265     methodHandle null_mh;
1266     bool rethrow_exception = false;
1267     C->debug_info()->describe_scope(
1268       safepoint_pc_offset,
1269       null_mh,
1270       scope_method,
1271       jvms->bci(),
1272       jvms->should_reexecute(),
1273       rethrow_exception,
1274       is_method_handle_invoke,
1275       return_oop,
1276       return_scalarized,
1277       has_ea_local_in_scope,
1278       arg_escape,
1279       locvals,
1280       expvals,
1281       monvals
1282     );
1283   } // End jvms loop
1284 
1285   // Mark the end of the scope set.
1286   C->debug_info()->end_safepoint(safepoint_pc_offset);
1287 }
1288 
1289 
1290 
1291 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1292 class NonSafepointEmitter {
1293     Compile*  C;
1294     JVMState* _pending_jvms;
1295     int       _pending_offset;
1296 
1297     void emit_non_safepoint();
1298 
1299  public:
1300     NonSafepointEmitter(Compile* compile) {
1301       this->C = compile;
1302       _pending_jvms = nullptr;
1303       _pending_offset = 0;
1304     }
1305 
1306     void observe_instruction(Node* n, int pc_offset) {
1307       if (!C->debug_info()->recording_non_safepoints())  return;
1308 
1309       Node_Notes* nn = C->node_notes_at(n->_idx);
1310       if (nn == nullptr || nn->jvms() == nullptr)  return;
1311       if (_pending_jvms != nullptr &&
1312           _pending_jvms->same_calls_as(nn->jvms())) {
1313         // Repeated JVMS?  Stretch it up here.
1314         _pending_offset = pc_offset;
1315       } else {
1316         if (_pending_jvms != nullptr &&
1317             _pending_offset < pc_offset) {
1318           emit_non_safepoint();
1319         }
1320         _pending_jvms = nullptr;
1321         if (pc_offset > C->debug_info()->last_pc_offset()) {
1322           // This is the only way _pending_jvms can become non-null:
1323           _pending_jvms = nn->jvms();
1324           _pending_offset = pc_offset;
1325         }
1326       }
1327     }
1328 
1329     // Stay out of the way of real safepoints:
1330     void observe_safepoint(JVMState* jvms, int pc_offset) {
1331       if (_pending_jvms != nullptr &&
1332           !_pending_jvms->same_calls_as(jvms) &&
1333           _pending_offset < pc_offset) {
1334         emit_non_safepoint();
1335       }
1336       _pending_jvms = nullptr;
1337     }
1338 
1339     void flush_at_end() {
1340       if (_pending_jvms != nullptr) {
1341         emit_non_safepoint();
1342       }
1343       _pending_jvms = nullptr;
1344     }
1345 };
1346 
1347 void NonSafepointEmitter::emit_non_safepoint() {
1348   JVMState* youngest_jvms = _pending_jvms;
1349   int       pc_offset     = _pending_offset;
1350 
1351   // Clear it now:
1352   _pending_jvms = nullptr;
1353 
1354   DebugInformationRecorder* debug_info = C->debug_info();
1355   assert(debug_info->recording_non_safepoints(), "sanity");
1356 
1357   debug_info->add_non_safepoint(pc_offset);
1358   int max_depth = youngest_jvms->depth();
1359 
1360   // Visit scopes from oldest to youngest.
1361   for (int depth = 1; depth <= max_depth; depth++) {
1362     JVMState* jvms = youngest_jvms->of_depth(depth);
1363     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1364     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1365     methodHandle null_mh;
1366     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1367   }
1368 
1369   // Mark the end of the scope set.
1370   debug_info->end_non_safepoint(pc_offset);
1371 }
1372 
1373 //------------------------------init_buffer------------------------------------
1374 void PhaseOutput::estimate_buffer_size(int& const_req) {
1375 
1376   // Set the initially allocated size
1377   const_req = initial_const_capacity;
1378 
1379   // The extra spacing after the code is necessary on some platforms.
1380   // Sometimes we need to patch in a jump after the last instruction,
1381   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1382 
1383   // Compute the byte offset where we can store the deopt pc.
1384   if (C->fixed_slots() != 0) {
1385     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1386   }
1387 
1388   // Compute prolog code size
1389   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1390   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1391 
1392   if (C->has_mach_constant_base_node()) {
1393     uint add_size = 0;
1394     // Fill the constant table.
1395     // Note:  This must happen before shorten_branches.
1396     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1397       Block* b = C->cfg()->get_block(i);
1398 
1399       for (uint j = 0; j < b->number_of_nodes(); j++) {
1400         Node* n = b->get_node(j);
1401 
1402         // If the node is a MachConstantNode evaluate the constant
1403         // value section.
1404         if (n->is_MachConstant()) {
1405           MachConstantNode* machcon = n->as_MachConstant();
1406           machcon->eval_constant(C);
1407         } else if (n->is_Mach()) {
1408           // On Power there are more nodes that issue constants.
1409           add_size += (n->as_Mach()->ins_num_consts() * 8);
1410         }
1411       }
1412     }
1413 
1414     // Calculate the offsets of the constants and the size of the
1415     // constant table (including the padding to the next section).
1416     constant_table().calculate_offsets_and_size();
1417     const_req = constant_table().alignment() + constant_table().size() + add_size;
1418   }
1419 
1420   // Initialize the space for the BufferBlob used to find and verify
1421   // instruction size in MachNode::emit_size()
1422   init_scratch_buffer_blob(const_req);
1423 }
1424 
1425 CodeBuffer* PhaseOutput::init_buffer() {
1426   int stub_req  = _buf_sizes._stub;
1427   int code_req  = _buf_sizes._code;
1428   int const_req = _buf_sizes._const;
1429 
1430   int pad_req   = NativeCall::byte_size();
1431 
1432   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1433   stub_req += bs->estimate_stub_size();
1434 
1435   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1436   // class HandlerImpl is platform-specific and defined in the *.ad files.
1437   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1438   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1439   stub_req += MAX_stubs_size;   // ensure per-stub margin
1440   code_req += MAX_inst_size;    // ensure per-instruction margin
1441 
1442   if (StressCodeBuffers)
1443     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1444 
1445   int total_req =
1446           const_req +
1447           code_req +
1448           pad_req +
1449           stub_req +
1450           exception_handler_req +
1451           deopt_handler_req;               // deopt handler
1452 
1453   if (C->has_method_handle_invokes())
1454     total_req += deopt_handler_req;  // deopt MH handler
1455 
1456   CodeBuffer* cb = code_buffer();
1457   cb->set_const_section_alignment(constant_table().alignment());
1458   cb->initialize(total_req, _buf_sizes._reloc);
1459 
1460   // Have we run out of code space?
1461   if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1462     C->record_failure("CodeCache is full");
1463     return nullptr;
1464   }
1465   // Configure the code buffer.
1466   cb->initialize_consts_size(const_req);
1467   cb->initialize_stubs_size(stub_req);
1468   cb->initialize_oop_recorder(C->env()->oop_recorder());
1469 
1470   // fill in the nop array for bundling computations
1471   MachNode *_nop_list[Bundle::_nop_count];
1472   Bundle::initialize_nops(_nop_list);
1473 
1474   return cb;
1475 }
1476 
1477 //------------------------------fill_buffer------------------------------------
1478 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) {
1479   // blk_starts[] contains offsets calculated during short branches processing,
1480   // offsets should not be increased during following steps.
1481 
1482   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1483   // of a loop. It is used to determine the padding for loop alignment.
1484   Compile::TracePhase tp(_t_fillBuffer);
1485 
1486   compute_loop_first_inst_sizes();
1487 
1488   // Create oopmap set.
1489   _oop_map_set = new OopMapSet();
1490 
1491   // !!!!! This preserves old handling of oopmaps for now
1492   C->debug_info()->set_oopmaps(_oop_map_set);
1493 
1494   uint nblocks  = C->cfg()->number_of_blocks();
1495   // Count and start of implicit null check instructions
1496   uint inct_cnt = 0;
1497   uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1498 
1499   // Count and start of calls
1500   uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1501 
1502   uint  return_offset = 0;
1503   int nop_size = (new MachNopNode())->size(C->regalloc());
1504 
1505   int previous_offset = 0;
1506   int current_offset  = 0;
1507   int last_call_offset = -1;
1508   int last_avoid_back_to_back_offset = -1;
1509 #ifdef ASSERT
1510   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1511   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1512   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1513   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1514 #endif
1515 
1516   // Create an array of unused labels, one for each basic block, if printing is enabled
1517 #if defined(SUPPORT_OPTO_ASSEMBLY)
1518   int* node_offsets      = nullptr;
1519   uint node_offset_limit = C->unique();
1520 
1521   if (C->print_assembly()) {
1522     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1523   }
1524   if (node_offsets != nullptr) {
1525     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1526     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1527   }
1528 #endif
1529 
1530   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1531 
1532   // Emit the constant table.
1533   if (C->has_mach_constant_base_node()) {
1534     if (!constant_table().emit(masm)) {
1535       C->record_failure("consts section overflow");
1536       return;
1537     }
1538   }
1539 
1540   // Create an array of labels, one for each basic block
1541   Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1542   for (uint i = 0; i <= nblocks; i++) {
1543     blk_labels[i].init();
1544   }
1545 
1546   // Now fill in the code buffer
1547   Node* delay_slot = nullptr;
1548   for (uint i = 0; i < nblocks; i++) {
1549     Block* block = C->cfg()->get_block(i);
1550     _block = block;
1551     Node* head = block->head();
1552 
1553     // If this block needs to start aligned (i.e, can be reached other
1554     // than by falling-thru from the previous block), then force the
1555     // start of a new bundle.
1556     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1557       masm->code()->flush_bundle(true);
1558     }
1559 
1560 #ifdef ASSERT
1561     if (!block->is_connector()) {
1562       stringStream st;
1563       block->dump_head(C->cfg(), &st);
1564       masm->block_comment(st.freeze());
1565     }
1566     jmp_target[i] = 0;
1567     jmp_offset[i] = 0;
1568     jmp_size[i]   = 0;
1569     jmp_rule[i]   = 0;
1570 #endif
1571     int blk_offset = current_offset;
1572 
1573     // Define the label at the beginning of the basic block
1574     masm->bind(blk_labels[block->_pre_order]);
1575 
1576     uint last_inst = block->number_of_nodes();
1577 
1578     // Emit block normally, except for last instruction.
1579     // Emit means "dump code bits into code buffer".
1580     for (uint j = 0; j<last_inst; j++) {
1581       _index = j;
1582 
1583       // Get the node
1584       Node* n = block->get_node(j);
1585 
1586       // See if delay slots are supported
1587       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1588         assert(delay_slot == nullptr, "no use of delay slot node");
1589         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1590 
1591         delay_slot = n;
1592         continue;
1593       }
1594 
1595       // If this starts a new instruction group, then flush the current one
1596       // (but allow split bundles)
1597       if (Pipeline::requires_bundling() && starts_bundle(n))
1598         masm->code()->flush_bundle(false);
1599 
1600       // Special handling for SafePoint/Call Nodes
1601       bool is_mcall = false;
1602       if (n->is_Mach()) {
1603         MachNode *mach = n->as_Mach();
1604         is_mcall = n->is_MachCall();
1605         bool is_sfn = n->is_MachSafePoint();
1606 
1607         // If this requires all previous instructions be flushed, then do so
1608         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1609           masm->code()->flush_bundle(true);
1610           current_offset = masm->offset();
1611         }
1612 
1613         // A padding may be needed again since a previous instruction
1614         // could be moved to delay slot.
1615 
1616         // align the instruction if necessary
1617         int padding = mach->compute_padding(current_offset);
1618         // Make sure safepoint node for polling is distinct from a call's
1619         // return by adding a nop if needed.
1620         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1621           padding = nop_size;
1622         }
1623         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1624             current_offset == last_avoid_back_to_back_offset) {
1625           // Avoid back to back some instructions.
1626           padding = nop_size;
1627         }
1628 
1629         if (padding > 0) {
1630           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1631           int nops_cnt = padding / nop_size;
1632           MachNode *nop = new MachNopNode(nops_cnt);
1633           block->insert_node(nop, j++);
1634           last_inst++;
1635           C->cfg()->map_node_to_block(nop, block);
1636           // Ensure enough space.
1637           masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1638           if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1639             C->record_failure("CodeCache is full");
1640             return;
1641           }
1642           nop->emit(masm, C->regalloc());
1643           masm->code()->flush_bundle(true);
1644           current_offset = masm->offset();
1645         }
1646 
1647         bool observe_safepoint = is_sfn;
1648         // Remember the start of the last call in a basic block
1649         if (is_mcall) {
1650           MachCallNode *mcall = mach->as_MachCall();
1651 
1652           if (mcall->entry_point() != nullptr) {
1653             // This destination address is NOT PC-relative
1654             mcall->method_set((intptr_t)mcall->entry_point());
1655           }
1656 
1657           // Save the return address
1658           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1659 
1660           observe_safepoint = mcall->guaranteed_safepoint();
1661         }
1662 
1663         // sfn will be valid whenever mcall is valid now because of inheritance
1664         if (observe_safepoint) {
1665           // Handle special safepoint nodes for synchronization
1666           if (!is_mcall) {
1667             MachSafePointNode *sfn = mach->as_MachSafePoint();
1668             // !!!!! Stubs only need an oopmap right now, so bail out
1669             if (sfn->jvms()->method() == nullptr) {
1670               // Write the oopmap directly to the code blob??!!
1671               continue;
1672             }
1673           } // End synchronization
1674 
1675           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1676                                            current_offset);
1677           Process_OopMap_Node(mach, current_offset);
1678         } // End if safepoint
1679 
1680           // If this is a null check, then add the start of the previous instruction to the list
1681         else if( mach->is_MachNullCheck() ) {
1682           inct_starts[inct_cnt++] = previous_offset;
1683         }
1684 
1685           // If this is a branch, then fill in the label with the target BB's label
1686         else if (mach->is_MachBranch()) {
1687           // This requires the TRUE branch target be in succs[0]
1688           uint block_num = block->non_connector_successor(0)->_pre_order;
1689 
1690           // Try to replace long branch if delay slot is not used,
1691           // it is mostly for back branches since forward branch's
1692           // distance is not updated yet.
1693           bool delay_slot_is_used = valid_bundle_info(n) &&
1694                                     C->output()->node_bundling(n)->use_unconditional_delay();
1695           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1696             assert(delay_slot == nullptr, "not expecting delay slot node");
1697             int br_size = n->size(C->regalloc());
1698             int offset = blk_starts[block_num] - current_offset;
1699             if (block_num >= i) {
1700               // Current and following block's offset are not
1701               // finalized yet, adjust distance by the difference
1702               // between calculated and final offsets of current block.
1703               offset -= (blk_starts[i] - blk_offset);
1704             }
1705             // In the following code a nop could be inserted before
1706             // the branch which will increase the backward distance.
1707             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1708             if (needs_padding && offset <= 0)
1709               offset -= nop_size;
1710 
1711             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1712               // We've got a winner.  Replace this branch.
1713               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1714 
1715               // Update the jmp_size.
1716               int new_size = replacement->size(C->regalloc());
1717               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1718               // Insert padding between avoid_back_to_back branches.
1719               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1720                 MachNode *nop = new MachNopNode();
1721                 block->insert_node(nop, j++);
1722                 C->cfg()->map_node_to_block(nop, block);
1723                 last_inst++;
1724                 nop->emit(masm, C->regalloc());
1725                 masm->code()->flush_bundle(true);
1726                 current_offset = masm->offset();
1727               }
1728 #ifdef ASSERT
1729               jmp_target[i] = block_num;
1730               jmp_offset[i] = current_offset - blk_offset;
1731               jmp_size[i]   = new_size;
1732               jmp_rule[i]   = mach->rule();
1733 #endif
1734               block->map_node(replacement, j);
1735               mach->subsume_by(replacement, C);
1736               n    = replacement;
1737               mach = replacement;
1738             }
1739           }
1740           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1741         } else if (mach->ideal_Opcode() == Op_Jump) {
1742           for (uint h = 0; h < block->_num_succs; h++) {
1743             Block* succs_block = block->_succs[h];
1744             for (uint j = 1; j < succs_block->num_preds(); j++) {
1745               Node* jpn = succs_block->pred(j);
1746               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1747                 uint block_num = succs_block->non_connector()->_pre_order;
1748                 Label *blkLabel = &blk_labels[block_num];
1749                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1750               }
1751             }
1752           }
1753         } else if (!n->is_Proj()) {
1754           // Remember the beginning of the previous instruction, in case
1755           // it's followed by a flag-kill and a null-check.  Happens on
1756           // Intel all the time, with add-to-memory kind of opcodes.
1757           previous_offset = current_offset;
1758         }
1759 
1760         // Not an else-if!
1761         // If this is a trap based cmp then add its offset to the list.
1762         if (mach->is_TrapBasedCheckNode()) {
1763           inct_starts[inct_cnt++] = current_offset;
1764         }
1765       }
1766 
1767       // Verify that there is sufficient space remaining
1768       masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1769       if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1770         C->record_failure("CodeCache is full");
1771         return;
1772       }
1773 
1774       // Save the offset for the listing
1775 #if defined(SUPPORT_OPTO_ASSEMBLY)
1776       if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1777         node_offsets[n->_idx] = masm->offset();
1778       }
1779 #endif
1780       assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing.");
1781 
1782       // "Normal" instruction case
1783       DEBUG_ONLY(uint instr_offset = masm->offset());
1784       n->emit(masm, C->regalloc());
1785       current_offset = masm->offset();
1786 
1787       // Above we only verified that there is enough space in the instruction section.
1788       // However, the instruction may emit stubs that cause code buffer expansion.
1789       // Bail out here if expansion failed due to a lack of code cache space.
1790       if (C->failing()) {
1791         return;
1792       }
1793 
1794       assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1795              "ret_addr_offset() not within emitted code");
1796 #ifdef ASSERT
1797       uint n_size = n->size(C->regalloc());
1798       if (n_size < (current_offset-instr_offset)) {
1799         MachNode* mach = n->as_Mach();
1800         n->dump();
1801         mach->dump_format(C->regalloc(), tty);
1802         tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1803         Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty);
1804         tty->print_cr(" ------------------- ");
1805         BufferBlob* blob = this->scratch_buffer_blob();
1806         address blob_begin = blob->content_begin();
1807         Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1808         assert(false, "wrong size of mach node");
1809       }
1810 #endif
1811       non_safepoints.observe_instruction(n, current_offset);
1812 
1813       // mcall is last "call" that can be a safepoint
1814       // record it so we can see if a poll will directly follow it
1815       // in which case we'll need a pad to make the PcDesc sites unique
1816       // see  5010568. This can be slightly inaccurate but conservative
1817       // in the case that return address is not actually at current_offset.
1818       // This is a small price to pay.
1819 
1820       if (is_mcall) {
1821         last_call_offset = current_offset;
1822       }
1823 
1824       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1825         // Avoid back to back some instructions.
1826         last_avoid_back_to_back_offset = current_offset;
1827       }
1828 
1829       // See if this instruction has a delay slot
1830       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1831         guarantee(delay_slot != nullptr, "expecting delay slot node");
1832 
1833         // Back up 1 instruction
1834         masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size());
1835 
1836         // Save the offset for the listing
1837 #if defined(SUPPORT_OPTO_ASSEMBLY)
1838         if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) {
1839           node_offsets[delay_slot->_idx] = masm->offset();
1840         }
1841 #endif
1842 
1843         // Support a SafePoint in the delay slot
1844         if (delay_slot->is_MachSafePoint()) {
1845           MachNode *mach = delay_slot->as_Mach();
1846           // !!!!! Stubs only need an oopmap right now, so bail out
1847           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) {
1848             // Write the oopmap directly to the code blob??!!
1849             delay_slot = nullptr;
1850             continue;
1851           }
1852 
1853           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1854           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1855                                            adjusted_offset);
1856           // Generate an OopMap entry
1857           Process_OopMap_Node(mach, adjusted_offset);
1858         }
1859 
1860         // Insert the delay slot instruction
1861         delay_slot->emit(masm, C->regalloc());
1862 
1863         // Don't reuse it
1864         delay_slot = nullptr;
1865       }
1866 
1867     } // End for all instructions in block
1868 
1869     // If the next block is the top of a loop, pad this block out to align
1870     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1871     if (i < nblocks-1) {
1872       Block *nb = C->cfg()->get_block(i + 1);
1873       int padding = nb->alignment_padding(current_offset);
1874       if( padding > 0 ) {
1875         MachNode *nop = new MachNopNode(padding / nop_size);
1876         block->insert_node(nop, block->number_of_nodes());
1877         C->cfg()->map_node_to_block(nop, block);
1878         nop->emit(masm, C->regalloc());
1879         current_offset = masm->offset();
1880       }
1881     }
1882     // Verify that the distance for generated before forward
1883     // short branches is still valid.
1884     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1885 
1886     // Save new block start offset
1887     blk_starts[i] = blk_offset;
1888   } // End of for all blocks
1889   blk_starts[nblocks] = current_offset;
1890 
1891   non_safepoints.flush_at_end();
1892 
1893   // Offset too large?
1894   if (C->failing())  return;
1895 
1896   // Define a pseudo-label at the end of the code
1897   masm->bind( blk_labels[nblocks] );
1898 
1899   // Compute the size of the first block
1900   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1901 
1902 #ifdef ASSERT
1903   for (uint i = 0; i < nblocks; i++) { // For all blocks
1904     if (jmp_target[i] != 0) {
1905       int br_size = jmp_size[i];
1906       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1907       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1908         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1909         assert(false, "Displacement too large for short jmp");
1910       }
1911     }
1912   }
1913 #endif
1914 
1915   if (!masm->code()->finalize_stubs()) {
1916     C->record_failure("CodeCache is full");
1917     return;
1918   }
1919 
1920   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1921   bs->emit_stubs(*masm->code());
1922   if (C->failing())  return;
1923 
1924   // Fill in stubs.
1925   assert(masm->inst_mark() == nullptr, "should be.");
1926   _stub_list.emit(*masm);
1927   if (C->failing())  return;
1928 
1929 #ifndef PRODUCT
1930   // Information on the size of the method, without the extraneous code
1931   Scheduling::increment_method_size(masm->offset());
1932 #endif
1933 
1934   // ------------------
1935   // Fill in exception table entries.
1936   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1937 
1938   // Only java methods have exception handlers and deopt handlers
1939   // class HandlerImpl is platform-specific and defined in the *.ad files.
1940   if (C->method()) {
1941     // Emit the exception handler code.
1942     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm));
1943     if (C->failing()) {
1944       return; // CodeBuffer::expand failed
1945     }
1946     // Emit the deopt handler code.
1947     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm));
1948 
1949     // Emit the MethodHandle deopt handler code (if required).
1950     if (C->has_method_handle_invokes() && !C->failing()) {
1951       // We can use the same code as for the normal deopt handler, we
1952       // just need a different entry point address.
1953       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm));
1954     }
1955   }
1956 
1957   // One last check for failed CodeBuffer::expand:
1958   if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1959     C->record_failure("CodeCache is full");
1960     return;
1961   }
1962 
1963 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1964   if (C->print_assembly()) {
1965     tty->cr();
1966     tty->print_cr("============================= C2-compiled nmethod ==============================");
1967   }
1968 #endif
1969 
1970 #if defined(SUPPORT_OPTO_ASSEMBLY)
1971   // Dump the assembly code, including basic-block numbers
1972   if (C->print_assembly()) {
1973     ttyLocker ttyl;  // keep the following output all in one block
1974     if (!VMThread::should_terminate()) {  // test this under the tty lock
1975       // print_metadata and dump_asm may safepoint which makes us loose the ttylock.
1976       // We call them first and write to a stringStream, then we retake the lock to
1977       // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe.
1978       ResourceMark rm;
1979       stringStream method_metadata_str;
1980       if (C->method() != nullptr) {
1981         C->method()->print_metadata(&method_metadata_str);
1982       }
1983       stringStream dump_asm_str;
1984       dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit);
1985 
1986       NoSafepointVerifier nsv;
1987       ttyLocker ttyl2;
1988       // This output goes directly to the tty, not the compiler log.
1989       // To enable tools to match it up with the compilation activity,
1990       // be sure to tag this tty output with the compile ID.
1991       if (xtty != nullptr) {
1992         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1993                    C->is_osr_compilation() ? " compile_kind='osr'" : "");
1994       }
1995       if (C->method() != nullptr) {
1996         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1997         tty->print_raw(method_metadata_str.freeze());
1998       } else if (C->stub_name() != nullptr) {
1999         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
2000       }
2001       tty->cr();
2002       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
2003       tty->print_raw(dump_asm_str.freeze());
2004       tty->print_cr("--------------------------------------------------------------------------------");
2005       if (xtty != nullptr) {
2006         xtty->tail("opto_assembly");
2007       }
2008     }
2009   }
2010 #endif
2011 }
2012 
2013 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
2014   _inc_table.set_size(cnt);
2015 
2016   uint inct_cnt = 0;
2017   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2018     Block* block = C->cfg()->get_block(i);
2019     Node *n = nullptr;
2020     int j;
2021 
2022     // Find the branch; ignore trailing NOPs.
2023     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
2024       n = block->get_node(j);
2025       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
2026         break;
2027       }
2028     }
2029 
2030     // If we didn't find anything, continue
2031     if (j < 0) {
2032       continue;
2033     }
2034 
2035     // Compute ExceptionHandlerTable subtable entry and add it
2036     // (skip empty blocks)
2037     if (n->is_Catch()) {
2038 
2039       // Get the offset of the return from the call
2040       uint call_return = call_returns[block->_pre_order];
2041 #ifdef ASSERT
2042       assert( call_return > 0, "no call seen for this basic block" );
2043       while (block->get_node(--j)->is_MachProj()) ;
2044       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
2045 #endif
2046       // last instruction is a CatchNode, find it's CatchProjNodes
2047       int nof_succs = block->_num_succs;
2048       // allocate space
2049       GrowableArray<intptr_t> handler_bcis(nof_succs);
2050       GrowableArray<intptr_t> handler_pcos(nof_succs);
2051       // iterate through all successors
2052       for (int j = 0; j < nof_succs; j++) {
2053         Block* s = block->_succs[j];
2054         bool found_p = false;
2055         for (uint k = 1; k < s->num_preds(); k++) {
2056           Node* pk = s->pred(k);
2057           if (pk->is_CatchProj() && pk->in(0) == n) {
2058             const CatchProjNode* p = pk->as_CatchProj();
2059             found_p = true;
2060             // add the corresponding handler bci & pco information
2061             if (p->_con != CatchProjNode::fall_through_index) {
2062               // p leads to an exception handler (and is not fall through)
2063               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
2064               // no duplicates, please
2065               if (!handler_bcis.contains(p->handler_bci())) {
2066                 uint block_num = s->non_connector()->_pre_order;
2067                 handler_bcis.append(p->handler_bci());
2068                 handler_pcos.append(blk_labels[block_num].loc_pos());
2069               }
2070             }
2071           }
2072         }
2073         assert(found_p, "no matching predecessor found");
2074         // Note:  Due to empty block removal, one block may have
2075         // several CatchProj inputs, from the same Catch.
2076       }
2077 
2078       // Set the offset of the return from the call
2079       assert(handler_bcis.find(-1) != -1, "must have default handler");
2080       _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
2081       continue;
2082     }
2083 
2084     // Handle implicit null exception table updates
2085     if (n->is_MachNullCheck()) {
2086       assert(n->in(1)->as_Mach()->barrier_data() == 0,
2087              "Implicit null checks on memory accesses with barriers are not yet supported");
2088       uint block_num = block->non_connector_successor(0)->_pre_order;
2089       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2090       continue;
2091     }
2092     // Handle implicit exception table updates: trap instructions.
2093     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
2094       uint block_num = block->non_connector_successor(0)->_pre_order;
2095       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2096       continue;
2097     }
2098   } // End of for all blocks fill in exception table entries
2099 }
2100 
2101 // Static Variables
2102 #ifndef PRODUCT
2103 uint Scheduling::_total_nop_size = 0;
2104 uint Scheduling::_total_method_size = 0;
2105 uint Scheduling::_total_branches = 0;
2106 uint Scheduling::_total_unconditional_delays = 0;
2107 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
2108 #endif
2109 
2110 // Initializer for class Scheduling
2111 
2112 Scheduling::Scheduling(Arena *arena, Compile &compile)
2113         : _arena(arena),
2114           _cfg(compile.cfg()),
2115           _regalloc(compile.regalloc()),
2116           _scheduled(arena),
2117           _available(arena),
2118           _reg_node(arena),
2119           _pinch_free_list(arena),
2120           _next_node(nullptr),
2121           _bundle_instr_count(0),
2122           _bundle_cycle_number(0),
2123           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2124 #ifndef PRODUCT
2125         , _branches(0)
2126         , _unconditional_delays(0)
2127 #endif
2128 {
2129   // Create a MachNopNode
2130   _nop = new MachNopNode();
2131 
2132   // Now that the nops are in the array, save the count
2133   // (but allow entries for the nops)
2134   _node_bundling_limit = compile.unique();
2135   uint node_max = _regalloc->node_regs_max_index();
2136 
2137   compile.output()->set_node_bundling_limit(_node_bundling_limit);
2138 
2139   // This one is persistent within the Compile class
2140   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2141 
2142   // Allocate space for fixed-size arrays
2143   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
2144   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2145 
2146   // Clear the arrays
2147   for (uint i = 0; i < node_max; i++) {
2148     ::new (&_node_bundling_base[i]) Bundle();
2149   }
2150   memset(_uses,               0, node_max * sizeof(short));
2151   memset(_current_latency,    0, node_max * sizeof(unsigned short));
2152 
2153   // Clear the bundling information
2154   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2155 
2156   // Get the last node
2157   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2158 
2159   _next_node = block->get_node(block->number_of_nodes() - 1);
2160 }
2161 
2162 #ifndef PRODUCT
2163 // Scheduling destructor
2164 Scheduling::~Scheduling() {
2165   _total_branches             += _branches;
2166   _total_unconditional_delays += _unconditional_delays;
2167 }
2168 #endif
2169 
2170 // Step ahead "i" cycles
2171 void Scheduling::step(uint i) {
2172 
2173   Bundle *bundle = node_bundling(_next_node);
2174   bundle->set_starts_bundle();
2175 
2176   // Update the bundle record, but leave the flags information alone
2177   if (_bundle_instr_count > 0) {
2178     bundle->set_instr_count(_bundle_instr_count);
2179     bundle->set_resources_used(_bundle_use.resourcesUsed());
2180   }
2181 
2182   // Update the state information
2183   _bundle_instr_count = 0;
2184   _bundle_cycle_number += i;
2185   _bundle_use.step(i);
2186 }
2187 
2188 void Scheduling::step_and_clear() {
2189   Bundle *bundle = node_bundling(_next_node);
2190   bundle->set_starts_bundle();
2191 
2192   // Update the bundle record
2193   if (_bundle_instr_count > 0) {
2194     bundle->set_instr_count(_bundle_instr_count);
2195     bundle->set_resources_used(_bundle_use.resourcesUsed());
2196 
2197     _bundle_cycle_number += 1;
2198   }
2199 
2200   // Clear the bundling information
2201   _bundle_instr_count = 0;
2202   _bundle_use.reset();
2203 
2204   memcpy(_bundle_use_elements,
2205          Pipeline_Use::elaborated_elements,
2206          sizeof(Pipeline_Use::elaborated_elements));
2207 }
2208 
2209 // Perform instruction scheduling and bundling over the sequence of
2210 // instructions in backwards order.
2211 void PhaseOutput::ScheduleAndBundle() {
2212 
2213   // Don't optimize this if it isn't a method
2214   if (!C->method())
2215     return;
2216 
2217   // Don't optimize this if scheduling is disabled
2218   if (!C->do_scheduling())
2219     return;
2220 
2221   // Scheduling code works only with pairs (8 bytes) maximum.
2222   // And when the scalable vector register is used, we may spill/unspill
2223   // the whole reg regardless of the max vector size.
2224   if (C->max_vector_size() > 8 ||
2225       (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) {
2226     return;
2227   }
2228 
2229   Compile::TracePhase tp(_t_instrSched);
2230 
2231   // Create a data structure for all the scheduling information
2232   Scheduling scheduling(Thread::current()->resource_area(), *C);
2233 
2234   // Walk backwards over each basic block, computing the needed alignment
2235   // Walk over all the basic blocks
2236   scheduling.DoScheduling();
2237 
2238 #ifndef PRODUCT
2239   if (C->trace_opto_output()) {
2240     // Buffer and print all at once
2241     ResourceMark rm;
2242     stringStream ss;
2243     ss.print("\n---- After ScheduleAndBundle ----\n");
2244     print_scheduling(&ss);
2245     tty->print("%s", ss.as_string());
2246   }
2247 #endif
2248 }
2249 
2250 #ifndef PRODUCT
2251 // Separated out so that it can be called directly from debugger
2252 void PhaseOutput::print_scheduling() {
2253   print_scheduling(tty);
2254 }
2255 
2256 void PhaseOutput::print_scheduling(outputStream* output_stream) {
2257   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2258     output_stream->print("\nBB#%03d:\n", i);
2259     Block* block = C->cfg()->get_block(i);
2260     for (uint j = 0; j < block->number_of_nodes(); j++) {
2261       Node* n = block->get_node(j);
2262       OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2263       output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2264       n->dump("\n", false, output_stream);
2265     }
2266   }
2267 }
2268 #endif
2269 
2270 // See if this node fits into the present instruction bundle
2271 bool Scheduling::NodeFitsInBundle(Node *n) {
2272   uint n_idx = n->_idx;
2273 
2274   // If this is the unconditional delay instruction, then it fits
2275   if (n == _unconditional_delay_slot) {
2276 #ifndef PRODUCT
2277     if (_cfg->C->trace_opto_output())
2278       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2279 #endif
2280     return (true);
2281   }
2282 
2283   // If the node cannot be scheduled this cycle, skip it
2284   if (_current_latency[n_idx] > _bundle_cycle_number) {
2285 #ifndef PRODUCT
2286     if (_cfg->C->trace_opto_output())
2287       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2288                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2289 #endif
2290     return (false);
2291   }
2292 
2293   const Pipeline *node_pipeline = n->pipeline();
2294 
2295   uint instruction_count = node_pipeline->instructionCount();
2296   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2297     instruction_count = 0;
2298   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2299     instruction_count++;
2300 
2301   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2302 #ifndef PRODUCT
2303     if (_cfg->C->trace_opto_output())
2304       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2305                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2306 #endif
2307     return (false);
2308   }
2309 
2310   // Don't allow non-machine nodes to be handled this way
2311   if (!n->is_Mach() && instruction_count == 0)
2312     return (false);
2313 
2314   // See if there is any overlap
2315   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2316 
2317   if (delay > 0) {
2318 #ifndef PRODUCT
2319     if (_cfg->C->trace_opto_output())
2320       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2321 #endif
2322     return false;
2323   }
2324 
2325 #ifndef PRODUCT
2326   if (_cfg->C->trace_opto_output())
2327     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2328 #endif
2329 
2330   return true;
2331 }
2332 
2333 Node * Scheduling::ChooseNodeToBundle() {
2334   uint siz = _available.size();
2335 
2336   if (siz == 0) {
2337 
2338 #ifndef PRODUCT
2339     if (_cfg->C->trace_opto_output())
2340       tty->print("#   ChooseNodeToBundle: null\n");
2341 #endif
2342     return (nullptr);
2343   }
2344 
2345   // Fast path, if only 1 instruction in the bundle
2346   if (siz == 1) {
2347 #ifndef PRODUCT
2348     if (_cfg->C->trace_opto_output()) {
2349       tty->print("#   ChooseNodeToBundle (only 1): ");
2350       _available[0]->dump();
2351     }
2352 #endif
2353     return (_available[0]);
2354   }
2355 
2356   // Don't bother, if the bundle is already full
2357   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2358     for ( uint i = 0; i < siz; i++ ) {
2359       Node *n = _available[i];
2360 
2361       // Skip projections, we'll handle them another way
2362       if (n->is_Proj())
2363         continue;
2364 
2365       // This presupposed that instructions are inserted into the
2366       // available list in a legality order; i.e. instructions that
2367       // must be inserted first are at the head of the list
2368       if (NodeFitsInBundle(n)) {
2369 #ifndef PRODUCT
2370         if (_cfg->C->trace_opto_output()) {
2371           tty->print("#   ChooseNodeToBundle: ");
2372           n->dump();
2373         }
2374 #endif
2375         return (n);
2376       }
2377     }
2378   }
2379 
2380   // Nothing fits in this bundle, choose the highest priority
2381 #ifndef PRODUCT
2382   if (_cfg->C->trace_opto_output()) {
2383     tty->print("#   ChooseNodeToBundle: ");
2384     _available[0]->dump();
2385   }
2386 #endif
2387 
2388   return _available[0];
2389 }
2390 
2391 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) {
2392   assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), "");
2393 
2394   OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1));
2395   OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first);
2396   OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1));
2397   OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second);
2398 
2399   // Comparison between stack -> reg and stack -> reg
2400   if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) &&
2401       OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) {
2402     return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo);
2403   }
2404 
2405   // Comparison between reg -> stack and reg -> stack
2406   if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) &&
2407       OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) {
2408     return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo);
2409   }
2410 
2411   return 0; // Not comparable
2412 }
2413 
2414 void Scheduling::AddNodeToAvailableList(Node *n) {
2415   assert( !n->is_Proj(), "projections never directly made available" );
2416 #ifndef PRODUCT
2417   if (_cfg->C->trace_opto_output()) {
2418     tty->print("#   AddNodeToAvailableList: ");
2419     n->dump();
2420   }
2421 #endif
2422 
2423   int latency = _current_latency[n->_idx];
2424 
2425   // Insert in latency order (insertion sort). If two MachSpillCopyNodes
2426   // for stack spilling or unspilling have the same latency, we sort
2427   // them in the order of stack offset. Some ports (e.g. aarch64) may also
2428   // have more opportunities to do ld/st merging
2429   uint i;
2430   for (i = 0; i < _available.size(); i++) {
2431     if (_current_latency[_available[i]->_idx] > latency) {
2432       break;
2433     } else if (_current_latency[_available[i]->_idx] == latency &&
2434                n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() &&
2435                compare_two_spill_nodes(n, _available[i]) > 0) {
2436       break;
2437     }
2438   }
2439 
2440   // Special Check for compares following branches
2441   if( n->is_Mach() && _scheduled.size() > 0 ) {
2442     int op = n->as_Mach()->ideal_Opcode();
2443     Node *last = _scheduled[0];
2444     if( last->is_MachIf() && last->in(1) == n &&
2445         ( op == Op_CmpI ||
2446           op == Op_CmpU ||
2447           op == Op_CmpUL ||
2448           op == Op_CmpP ||
2449           op == Op_CmpF ||
2450           op == Op_CmpD ||
2451           op == Op_CmpL ) ) {
2452 
2453       // Recalculate position, moving to front of same latency
2454       for ( i=0 ; i < _available.size(); i++ )
2455         if (_current_latency[_available[i]->_idx] >= latency)
2456           break;
2457     }
2458   }
2459 
2460   // Insert the node in the available list
2461   _available.insert(i, n);
2462 
2463 #ifndef PRODUCT
2464   if (_cfg->C->trace_opto_output())
2465     dump_available();
2466 #endif
2467 }
2468 
2469 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2470   for ( uint i=0; i < n->len(); i++ ) {
2471     Node *def = n->in(i);
2472     if (!def) continue;
2473     if( def->is_Proj() )        // If this is a machine projection, then
2474       def = def->in(0);         // propagate usage thru to the base instruction
2475 
2476     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2477       continue;
2478     }
2479 
2480     // Compute the latency
2481     uint l = _bundle_cycle_number + n->latency(i);
2482     if (_current_latency[def->_idx] < l)
2483       _current_latency[def->_idx] = l;
2484 
2485     // If this does not have uses then schedule it
2486     if ((--_uses[def->_idx]) == 0)
2487       AddNodeToAvailableList(def);
2488   }
2489 }
2490 
2491 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2492 #ifndef PRODUCT
2493   if (_cfg->C->trace_opto_output()) {
2494     tty->print("#   AddNodeToBundle: ");
2495     n->dump();
2496   }
2497 #endif
2498 
2499   // Remove this from the available list
2500   uint i;
2501   for (i = 0; i < _available.size(); i++)
2502     if (_available[i] == n)
2503       break;
2504   assert(i < _available.size(), "entry in _available list not found");
2505   _available.remove(i);
2506 
2507   // See if this fits in the current bundle
2508   const Pipeline *node_pipeline = n->pipeline();
2509   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2510 
2511   // Check for instructions to be placed in the delay slot. We
2512   // do this before we actually schedule the current instruction,
2513   // because the delay slot follows the current instruction.
2514   if (Pipeline::_branch_has_delay_slot &&
2515       node_pipeline->hasBranchDelay() &&
2516       !_unconditional_delay_slot) {
2517 
2518     uint siz = _available.size();
2519 
2520     // Conditional branches can support an instruction that
2521     // is unconditionally executed and not dependent by the
2522     // branch, OR a conditionally executed instruction if
2523     // the branch is taken.  In practice, this means that
2524     // the first instruction at the branch target is
2525     // copied to the delay slot, and the branch goes to
2526     // the instruction after that at the branch target
2527     if ( n->is_MachBranch() ) {
2528 
2529       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2530       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2531 
2532 #ifndef PRODUCT
2533       _branches++;
2534 #endif
2535 
2536       // At least 1 instruction is on the available list
2537       // that is not dependent on the branch
2538       for (uint i = 0; i < siz; i++) {
2539         Node *d = _available[i];
2540         const Pipeline *avail_pipeline = d->pipeline();
2541 
2542         // Don't allow safepoints in the branch shadow, that will
2543         // cause a number of difficulties
2544         if ( avail_pipeline->instructionCount() == 1 &&
2545              !avail_pipeline->hasMultipleBundles() &&
2546              !avail_pipeline->hasBranchDelay() &&
2547              Pipeline::instr_has_unit_size() &&
2548              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2549              NodeFitsInBundle(d) &&
2550              !node_bundling(d)->used_in_delay()) {
2551 
2552           if (d->is_Mach() && !d->is_MachSafePoint()) {
2553             // A node that fits in the delay slot was found, so we need to
2554             // set the appropriate bits in the bundle pipeline information so
2555             // that it correctly indicates resource usage.  Later, when we
2556             // attempt to add this instruction to the bundle, we will skip
2557             // setting the resource usage.
2558             _unconditional_delay_slot = d;
2559             node_bundling(n)->set_use_unconditional_delay();
2560             node_bundling(d)->set_used_in_unconditional_delay();
2561             _bundle_use.add_usage(avail_pipeline->resourceUse());
2562             _current_latency[d->_idx] = _bundle_cycle_number;
2563             _next_node = d;
2564             ++_bundle_instr_count;
2565 #ifndef PRODUCT
2566             _unconditional_delays++;
2567 #endif
2568             break;
2569           }
2570         }
2571       }
2572     }
2573 
2574     // No delay slot, add a nop to the usage
2575     if (!_unconditional_delay_slot) {
2576       // See if adding an instruction in the delay slot will overflow
2577       // the bundle.
2578       if (!NodeFitsInBundle(_nop)) {
2579 #ifndef PRODUCT
2580         if (_cfg->C->trace_opto_output())
2581           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2582 #endif
2583         step(1);
2584       }
2585 
2586       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2587       _next_node = _nop;
2588       ++_bundle_instr_count;
2589     }
2590 
2591     // See if the instruction in the delay slot requires a
2592     // step of the bundles
2593     if (!NodeFitsInBundle(n)) {
2594 #ifndef PRODUCT
2595       if (_cfg->C->trace_opto_output())
2596         tty->print("#  *** STEP(branch won't fit) ***\n");
2597 #endif
2598       // Update the state information
2599       _bundle_instr_count = 0;
2600       _bundle_cycle_number += 1;
2601       _bundle_use.step(1);
2602     }
2603   }
2604 
2605   // Get the number of instructions
2606   uint instruction_count = node_pipeline->instructionCount();
2607   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2608     instruction_count = 0;
2609 
2610   // Compute the latency information
2611   uint delay = 0;
2612 
2613   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2614     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2615     if (relative_latency < 0)
2616       relative_latency = 0;
2617 
2618     delay = _bundle_use.full_latency(relative_latency, node_usage);
2619 
2620     // Does not fit in this bundle, start a new one
2621     if (delay > 0) {
2622       step(delay);
2623 
2624 #ifndef PRODUCT
2625       if (_cfg->C->trace_opto_output())
2626         tty->print("#  *** STEP(%d) ***\n", delay);
2627 #endif
2628     }
2629   }
2630 
2631   // If this was placed in the delay slot, ignore it
2632   if (n != _unconditional_delay_slot) {
2633 
2634     if (delay == 0) {
2635       if (node_pipeline->hasMultipleBundles()) {
2636 #ifndef PRODUCT
2637         if (_cfg->C->trace_opto_output())
2638           tty->print("#  *** STEP(multiple instructions) ***\n");
2639 #endif
2640         step(1);
2641       }
2642 
2643       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2644 #ifndef PRODUCT
2645         if (_cfg->C->trace_opto_output())
2646           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2647                      instruction_count + _bundle_instr_count,
2648                      Pipeline::_max_instrs_per_cycle);
2649 #endif
2650         step(1);
2651       }
2652     }
2653 
2654     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2655       _bundle_instr_count++;
2656 
2657     // Set the node's latency
2658     _current_latency[n->_idx] = _bundle_cycle_number;
2659 
2660     // Now merge the functional unit information
2661     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2662       _bundle_use.add_usage(node_usage);
2663 
2664     // Increment the number of instructions in this bundle
2665     _bundle_instr_count += instruction_count;
2666 
2667     // Remember this node for later
2668     if (n->is_Mach())
2669       _next_node = n;
2670   }
2671 
2672   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2673   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2674   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2675   // into the block.  All other scheduled nodes get put in the schedule here.
2676   int op = n->Opcode();
2677   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2678       (op != Op_Node &&         // Not an unused antidepedence node and
2679        // not an unallocated boxlock
2680        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2681 
2682     // Push any trailing projections
2683     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2684       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2685         Node *foi = n->fast_out(i);
2686         if( foi->is_Proj() )
2687           _scheduled.push(foi);
2688       }
2689     }
2690 
2691     // Put the instruction in the schedule list
2692     _scheduled.push(n);
2693   }
2694 
2695 #ifndef PRODUCT
2696   if (_cfg->C->trace_opto_output())
2697     dump_available();
2698 #endif
2699 
2700   // Walk all the definitions, decrementing use counts, and
2701   // if a definition has a 0 use count, place it in the available list.
2702   DecrementUseCounts(n,bb);
2703 }
2704 
2705 // This method sets the use count within a basic block.  We will ignore all
2706 // uses outside the current basic block.  As we are doing a backwards walk,
2707 // any node we reach that has a use count of 0 may be scheduled.  This also
2708 // avoids the problem of cyclic references from phi nodes, as long as phi
2709 // nodes are at the front of the basic block.  This method also initializes
2710 // the available list to the set of instructions that have no uses within this
2711 // basic block.
2712 void Scheduling::ComputeUseCount(const Block *bb) {
2713 #ifndef PRODUCT
2714   if (_cfg->C->trace_opto_output())
2715     tty->print("# -> ComputeUseCount\n");
2716 #endif
2717 
2718   // Clear the list of available and scheduled instructions, just in case
2719   _available.clear();
2720   _scheduled.clear();
2721 
2722   // No delay slot specified
2723   _unconditional_delay_slot = nullptr;
2724 
2725 #ifdef ASSERT
2726   for( uint i=0; i < bb->number_of_nodes(); i++ )
2727     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2728 #endif
2729 
2730   // Force the _uses count to never go to zero for unscheduable pieces
2731   // of the block
2732   for( uint k = 0; k < _bb_start; k++ )
2733     _uses[bb->get_node(k)->_idx] = 1;
2734   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2735     _uses[bb->get_node(l)->_idx] = 1;
2736 
2737   // Iterate backwards over the instructions in the block.  Don't count the
2738   // branch projections at end or the block header instructions.
2739   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2740     Node *n = bb->get_node(j);
2741     if( n->is_Proj() ) continue; // Projections handled another way
2742 
2743     // Account for all uses
2744     for ( uint k = 0; k < n->len(); k++ ) {
2745       Node *inp = n->in(k);
2746       if (!inp) continue;
2747       assert(inp != n, "no cycles allowed" );
2748       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2749         if (inp->is_Proj()) { // Skip through Proj's
2750           inp = inp->in(0);
2751         }
2752         ++_uses[inp->_idx];     // Count 1 block-local use
2753       }
2754     }
2755 
2756     // If this instruction has a 0 use count, then it is available
2757     if (!_uses[n->_idx]) {
2758       _current_latency[n->_idx] = _bundle_cycle_number;
2759       AddNodeToAvailableList(n);
2760     }
2761 
2762 #ifndef PRODUCT
2763     if (_cfg->C->trace_opto_output()) {
2764       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2765       n->dump();
2766     }
2767 #endif
2768   }
2769 
2770 #ifndef PRODUCT
2771   if (_cfg->C->trace_opto_output())
2772     tty->print("# <- ComputeUseCount\n");
2773 #endif
2774 }
2775 
2776 // This routine performs scheduling on each basic block in reverse order,
2777 // using instruction latencies and taking into account function unit
2778 // availability.
2779 void Scheduling::DoScheduling() {
2780 #ifndef PRODUCT
2781   if (_cfg->C->trace_opto_output())
2782     tty->print("# -> DoScheduling\n");
2783 #endif
2784 
2785   Block *succ_bb = nullptr;
2786   Block *bb;
2787   Compile* C = Compile::current();
2788 
2789   // Walk over all the basic blocks in reverse order
2790   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2791     bb = _cfg->get_block(i);
2792 
2793 #ifndef PRODUCT
2794     if (_cfg->C->trace_opto_output()) {
2795       tty->print("#  Schedule BB#%03d (initial)\n", i);
2796       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2797         bb->get_node(j)->dump();
2798       }
2799     }
2800 #endif
2801 
2802     // On the head node, skip processing
2803     if (bb == _cfg->get_root_block()) {
2804       continue;
2805     }
2806 
2807     // Skip empty, connector blocks
2808     if (bb->is_connector())
2809       continue;
2810 
2811     // If the following block is not the sole successor of
2812     // this one, then reset the pipeline information
2813     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2814 #ifndef PRODUCT
2815       if (_cfg->C->trace_opto_output()) {
2816         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2817                    _next_node->_idx, _bundle_instr_count);
2818       }
2819 #endif
2820       step_and_clear();
2821     }
2822 
2823     // Leave untouched the starting instruction, any Phis, a CreateEx node
2824     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2825     _bb_end = bb->number_of_nodes()-1;
2826     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2827       Node *n = bb->get_node(_bb_start);
2828       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2829       // Also, MachIdealNodes do not get scheduled
2830       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2831       MachNode *mach = n->as_Mach();
2832       int iop = mach->ideal_Opcode();
2833       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2834       if( iop == Op_Con ) continue;      // Do not schedule Top
2835       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2836           mach->pipeline() == MachNode::pipeline_class() &&
2837           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2838         continue;
2839       break;                    // Funny loop structure to be sure...
2840     }
2841     // Compute last "interesting" instruction in block - last instruction we
2842     // might schedule.  _bb_end points just after last schedulable inst.  We
2843     // normally schedule conditional branches (despite them being forced last
2844     // in the block), because they have delay slots we can fill.  Calls all
2845     // have their delay slots filled in the template expansions, so we don't
2846     // bother scheduling them.
2847     Node *last = bb->get_node(_bb_end);
2848     // Ignore trailing NOPs.
2849     while (_bb_end > 0 && last->is_Mach() &&
2850            last->as_Mach()->ideal_Opcode() == Op_Con) {
2851       last = bb->get_node(--_bb_end);
2852     }
2853     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2854     if( last->is_Catch() ||
2855         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2856       // There might be a prior call.  Skip it.
2857       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2858     } else if( last->is_MachNullCheck() ) {
2859       // Backup so the last null-checked memory instruction is
2860       // outside the schedulable range. Skip over the nullcheck,
2861       // projection, and the memory nodes.
2862       Node *mem = last->in(1);
2863       do {
2864         _bb_end--;
2865       } while (mem != bb->get_node(_bb_end));
2866     } else {
2867       // Set _bb_end to point after last schedulable inst.
2868       _bb_end++;
2869     }
2870 
2871     assert( _bb_start <= _bb_end, "inverted block ends" );
2872 
2873     // Compute the register antidependencies for the basic block
2874     ComputeRegisterAntidependencies(bb);
2875     if (C->failing())  return;  // too many D-U pinch points
2876 
2877     // Compute the usage within the block, and set the list of all nodes
2878     // in the block that have no uses within the block.
2879     ComputeUseCount(bb);
2880 
2881     // Schedule the remaining instructions in the block
2882     while ( _available.size() > 0 ) {
2883       Node *n = ChooseNodeToBundle();
2884       guarantee(n != nullptr, "no nodes available");
2885       AddNodeToBundle(n,bb);
2886     }
2887 
2888     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2889 #ifdef ASSERT
2890     for( uint l = _bb_start; l < _bb_end; l++ ) {
2891       Node *n = bb->get_node(l);
2892       uint m;
2893       for( m = 0; m < _bb_end-_bb_start; m++ )
2894         if( _scheduled[m] == n )
2895           break;
2896       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2897     }
2898 #endif
2899 
2900     // Now copy the instructions (in reverse order) back to the block
2901     for ( uint k = _bb_start; k < _bb_end; k++ )
2902       bb->map_node(_scheduled[_bb_end-k-1], k);
2903 
2904 #ifndef PRODUCT
2905     if (_cfg->C->trace_opto_output()) {
2906       tty->print("#  Schedule BB#%03d (final)\n", i);
2907       uint current = 0;
2908       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2909         Node *n = bb->get_node(j);
2910         if( valid_bundle_info(n) ) {
2911           Bundle *bundle = node_bundling(n);
2912           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2913             tty->print("*** Bundle: ");
2914             bundle->dump();
2915           }
2916           n->dump();
2917         }
2918       }
2919     }
2920 #endif
2921 #ifdef ASSERT
2922     verify_good_schedule(bb,"after block local scheduling");
2923 #endif
2924   }
2925 
2926 #ifndef PRODUCT
2927   if (_cfg->C->trace_opto_output())
2928     tty->print("# <- DoScheduling\n");
2929 #endif
2930 
2931   // Record final node-bundling array location
2932   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2933 
2934 } // end DoScheduling
2935 
2936 // Verify that no live-range used in the block is killed in the block by a
2937 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2938 
2939 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2940 static bool edge_from_to( Node *from, Node *to ) {
2941   for( uint i=0; i<from->len(); i++ )
2942     if( from->in(i) == to )
2943       return true;
2944   return false;
2945 }
2946 
2947 #ifdef ASSERT
2948 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2949   // Check for bad kills
2950   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2951     Node *prior_use = _reg_node[def];
2952     if( prior_use && !edge_from_to(prior_use,n) ) {
2953       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2954       n->dump();
2955       tty->print_cr("...");
2956       prior_use->dump();
2957       assert(edge_from_to(prior_use,n), "%s", msg);
2958     }
2959     _reg_node.map(def,nullptr); // Kill live USEs
2960   }
2961 }
2962 
2963 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2964 
2965   // Zap to something reasonable for the verify code
2966   _reg_node.clear();
2967 
2968   // Walk over the block backwards.  Check to make sure each DEF doesn't
2969   // kill a live value (other than the one it's supposed to).  Add each
2970   // USE to the live set.
2971   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2972     Node *n = b->get_node(i);
2973     int n_op = n->Opcode();
2974     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2975       // Fat-proj kills a slew of registers
2976       RegMaskIterator rmi(n->out_RegMask());
2977       while (rmi.has_next()) {
2978         OptoReg::Name kill = rmi.next();
2979         verify_do_def(n, kill, msg);
2980       }
2981     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2982       // Get DEF'd registers the normal way
2983       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2984       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2985     }
2986 
2987     // Now make all USEs live
2988     for( uint i=1; i<n->req(); i++ ) {
2989       Node *def = n->in(i);
2990       assert(def != nullptr, "input edge required");
2991       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2992       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2993       if( OptoReg::is_valid(reg_lo) ) {
2994         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2995         _reg_node.map(reg_lo,n);
2996       }
2997       if( OptoReg::is_valid(reg_hi) ) {
2998         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2999         _reg_node.map(reg_hi,n);
3000       }
3001     }
3002 
3003   }
3004 
3005   // Zap to something reasonable for the Antidependence code
3006   _reg_node.clear();
3007 }
3008 #endif
3009 
3010 // Conditionally add precedence edges.  Avoid putting edges on Projs.
3011 static void add_prec_edge_from_to( Node *from, Node *to ) {
3012   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
3013     assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" );
3014     from = from->in(0);
3015   }
3016   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
3017       !edge_from_to( from, to ) ) // Avoid duplicate edge
3018     from->add_prec(to);
3019 }
3020 
3021 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
3022   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
3023     return;
3024 
3025   if (OptoReg::is_reg(def_reg)) {
3026     VMReg vmreg = OptoReg::as_VMReg(def_reg);
3027     if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
3028       // This is one of the high slots of a vector register.
3029       // ScheduleAndBundle already checked there are no live wide
3030       // vectors in this method so it can be safely ignored.
3031       return;
3032     }
3033   }
3034 
3035   Node *pinch = _reg_node[def_reg]; // Get pinch point
3036   if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
3037       is_def ) {    // Check for a true def (not a kill)
3038     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
3039     return;
3040   }
3041 
3042   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
3043   DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); )
3044 
3045   // After some number of kills there _may_ be a later def
3046   Node *later_def = nullptr;
3047 
3048   Compile* C = Compile::current();
3049 
3050   // Finding a kill requires a real pinch-point.
3051   // Check for not already having a pinch-point.
3052   // Pinch points are Op_Node's.
3053   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
3054     later_def = pinch;            // Must be def/kill as optimistic pinch-point
3055     if ( _pinch_free_list.size() > 0) {
3056       pinch = _pinch_free_list.pop();
3057     } else {
3058       pinch = new Node(1); // Pinch point to-be
3059     }
3060     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
3061       DEBUG_ONLY( pinch->dump(); );
3062       assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index());
3063       _cfg->C->record_method_not_compilable("too many D-U pinch points");
3064       return;
3065     }
3066     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
3067     _reg_node.map(def_reg,pinch); // Record pinch-point
3068     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
3069     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
3070       pinch->init_req(0, C->top());     // set not null for the next call
3071       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
3072       later_def = nullptr;           // and no later def
3073     }
3074     pinch->set_req(0,later_def);  // Hook later def so we can find it
3075   } else {                        // Else have valid pinch point
3076     if( pinch->in(0) )            // If there is a later-def
3077       later_def = pinch->in(0);   // Get it
3078   }
3079 
3080   // Add output-dependence edge from later def to kill
3081   if( later_def )               // If there is some original def
3082     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
3083 
3084   // See if current kill is also a use, and so is forced to be the pinch-point.
3085   if( pinch->Opcode() == Op_Node ) {
3086     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
3087     for( uint i=1; i<uses->req(); i++ ) {
3088       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
3089           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
3090         // Yes, found a use/kill pinch-point
3091         pinch->set_req(0,nullptr);  //
3092         pinch->replace_by(kill); // Move anti-dep edges up
3093         pinch = kill;
3094         _reg_node.map(def_reg,pinch);
3095         return;
3096       }
3097     }
3098   }
3099 
3100   // Add edge from kill to pinch-point
3101   add_prec_edge_from_to(kill,pinch);
3102 }
3103 
3104 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
3105   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
3106     return;
3107   Node *pinch = _reg_node[use_reg]; // Get pinch point
3108   // Check for no later def_reg/kill in block
3109   if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
3110       // Use has to be block-local as well
3111       _cfg->get_block_for_node(use) == b) {
3112     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
3113         pinch->req() == 1 ) {   // pinch not yet in block?
3114       pinch->del_req(0);        // yank pointer to later-def, also set flag
3115       // Insert the pinch-point in the block just after the last use
3116       b->insert_node(pinch, b->find_node(use) + 1);
3117       _bb_end++;                // Increase size scheduled region in block
3118     }
3119 
3120     add_prec_edge_from_to(pinch,use);
3121   }
3122 }
3123 
3124 // We insert antidependences between the reads and following write of
3125 // allocated registers to prevent illegal code motion. Hopefully, the
3126 // number of added references should be fairly small, especially as we
3127 // are only adding references within the current basic block.
3128 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
3129 
3130 #ifdef ASSERT
3131   verify_good_schedule(b,"before block local scheduling");
3132 #endif
3133 
3134   // A valid schedule, for each register independently, is an endless cycle
3135   // of: a def, then some uses (connected to the def by true dependencies),
3136   // then some kills (defs with no uses), finally the cycle repeats with a new
3137   // def.  The uses are allowed to float relative to each other, as are the
3138   // kills.  No use is allowed to slide past a kill (or def).  This requires
3139   // antidependencies between all uses of a single def and all kills that
3140   // follow, up to the next def.  More edges are redundant, because later defs
3141   // & kills are already serialized with true or antidependencies.  To keep
3142   // the edge count down, we add a 'pinch point' node if there's more than
3143   // one use or more than one kill/def.
3144 
3145   // We add dependencies in one bottom-up pass.
3146 
3147   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
3148 
3149   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
3150   // register.  If not, we record the DEF/KILL in _reg_node, the
3151   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
3152   // "pinch point", a new Node that's in the graph but not in the block.
3153   // We put edges from the prior and current DEF/KILLs to the pinch point.
3154   // We put the pinch point in _reg_node.  If there's already a pinch point
3155   // we merely add an edge from the current DEF/KILL to the pinch point.
3156 
3157   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
3158   // put an edge from the pinch point to the USE.
3159 
3160   // To be expedient, the _reg_node array is pre-allocated for the whole
3161   // compilation.  _reg_node is lazily initialized; it either contains a null,
3162   // or a valid def/kill/pinch-point, or a leftover node from some prior
3163   // block.  Leftover node from some prior block is treated like a null (no
3164   // prior def, so no anti-dependence needed).  Valid def is distinguished by
3165   // it being in the current block.
3166   bool fat_proj_seen = false;
3167   uint last_safept = _bb_end-1;
3168   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
3169   Node* last_safept_node = end_node;
3170   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
3171     Node *n = b->get_node(i);
3172     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
3173     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
3174       // Fat-proj kills a slew of registers
3175       // This can add edges to 'n' and obscure whether or not it was a def,
3176       // hence the is_def flag.
3177       fat_proj_seen = true;
3178       RegMaskIterator rmi(n->out_RegMask());
3179       while (rmi.has_next()) {
3180         OptoReg::Name kill = rmi.next();
3181         anti_do_def(b, n, kill, is_def);
3182       }
3183     } else {
3184       // Get DEF'd registers the normal way
3185       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
3186       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
3187     }
3188 
3189     // Kill projections on a branch should appear to occur on the
3190     // branch, not afterwards, so grab the masks from the projections
3191     // and process them.
3192     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
3193       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3194         Node* use = n->fast_out(i);
3195         if (use->is_Proj()) {
3196           RegMaskIterator rmi(use->out_RegMask());
3197           while (rmi.has_next()) {
3198             OptoReg::Name kill = rmi.next();
3199             anti_do_def(b, n, kill, false);
3200           }
3201         }
3202       }
3203     }
3204 
3205     // Check each register used by this instruction for a following DEF/KILL
3206     // that must occur afterward and requires an anti-dependence edge.
3207     for( uint j=0; j<n->req(); j++ ) {
3208       Node *def = n->in(j);
3209       if( def ) {
3210         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3211         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3212         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3213       }
3214     }
3215     // Do not allow defs of new derived values to float above GC
3216     // points unless the base is definitely available at the GC point.
3217 
3218     Node *m = b->get_node(i);
3219 
3220     // Add precedence edge from following safepoint to use of derived pointer
3221     if( last_safept_node != end_node &&
3222         m != last_safept_node) {
3223       for (uint k = 1; k < m->req(); k++) {
3224         const Type *t = m->in(k)->bottom_type();
3225         if( t->isa_oop_ptr() &&
3226             t->is_ptr()->offset() != 0 ) {
3227           last_safept_node->add_prec( m );
3228           break;
3229         }
3230       }
3231 
3232       // Do not allow a CheckCastPP node whose input is a raw pointer to
3233       // float past a safepoint.  This can occur when a buffered inline
3234       // type is allocated in a loop and the CheckCastPP from that
3235       // allocation is reused outside the loop.  If the use inside the
3236       // loop is scalarized the CheckCastPP will no longer be connected
3237       // to the loop safepoint.  See JDK-8264340.
3238       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) {
3239         Node *def = m->in(1);
3240         if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
3241           last_safept_node->add_prec(m);
3242         }
3243       }
3244     }
3245 
3246     if( n->jvms() ) {           // Precedence edge from derived to safept
3247       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3248       if( b->get_node(last_safept) != last_safept_node ) {
3249         last_safept = b->find_node(last_safept_node);
3250       }
3251       for( uint j=last_safept; j > i; j-- ) {
3252         Node *mach = b->get_node(j);
3253         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3254           mach->add_prec( n );
3255       }
3256       last_safept = i;
3257       last_safept_node = m;
3258     }
3259   }
3260 
3261   if (fat_proj_seen) {
3262     // Garbage collect pinch nodes that were not consumed.
3263     // They are usually created by a fat kill MachProj for a call.
3264     garbage_collect_pinch_nodes();
3265   }
3266 }
3267 
3268 // Garbage collect pinch nodes for reuse by other blocks.
3269 //
3270 // The block scheduler's insertion of anti-dependence
3271 // edges creates many pinch nodes when the block contains
3272 // 2 or more Calls.  A pinch node is used to prevent a
3273 // combinatorial explosion of edges.  If a set of kills for a
3274 // register is anti-dependent on a set of uses (or defs), rather
3275 // than adding an edge in the graph between each pair of kill
3276 // and use (or def), a pinch is inserted between them:
3277 //
3278 //            use1   use2  use3
3279 //                \   |   /
3280 //                 \  |  /
3281 //                  pinch
3282 //                 /  |  \
3283 //                /   |   \
3284 //            kill1 kill2 kill3
3285 //
3286 // One pinch node is created per register killed when
3287 // the second call is encountered during a backwards pass
3288 // over the block.  Most of these pinch nodes are never
3289 // wired into the graph because the register is never
3290 // used or def'ed in the block.
3291 //
3292 void Scheduling::garbage_collect_pinch_nodes() {
3293 #ifndef PRODUCT
3294   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3295 #endif
3296   int trace_cnt = 0;
3297   for (uint k = 0; k < _reg_node.max(); k++) {
3298     Node* pinch = _reg_node[k];
3299     if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3300         // no predecence input edges
3301         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3302       cleanup_pinch(pinch);
3303       _pinch_free_list.push(pinch);
3304       _reg_node.map(k, nullptr);
3305 #ifndef PRODUCT
3306       if (_cfg->C->trace_opto_output()) {
3307         trace_cnt++;
3308         if (trace_cnt > 40) {
3309           tty->print("\n");
3310           trace_cnt = 0;
3311         }
3312         tty->print(" %d", pinch->_idx);
3313       }
3314 #endif
3315     }
3316   }
3317 #ifndef PRODUCT
3318   if (_cfg->C->trace_opto_output()) tty->print("\n");
3319 #endif
3320 }
3321 
3322 // Clean up a pinch node for reuse.
3323 void Scheduling::cleanup_pinch( Node *pinch ) {
3324   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3325 
3326   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3327     Node* use = pinch->last_out(i);
3328     uint uses_found = 0;
3329     for (uint j = use->req(); j < use->len(); j++) {
3330       if (use->in(j) == pinch) {
3331         use->rm_prec(j);
3332         uses_found++;
3333       }
3334     }
3335     assert(uses_found > 0, "must be a precedence edge");
3336     i -= uses_found;    // we deleted 1 or more copies of this edge
3337   }
3338   // May have a later_def entry
3339   pinch->set_req(0, nullptr);
3340 }
3341 
3342 #ifndef PRODUCT
3343 
3344 void Scheduling::dump_available() const {
3345   tty->print("#Availist  ");
3346   for (uint i = 0; i < _available.size(); i++)
3347     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3348   tty->cr();
3349 }
3350 
3351 // Print Scheduling Statistics
3352 void Scheduling::print_statistics() {
3353   // Print the size added by nops for bundling
3354   tty->print("Nops added %d bytes to total of %d bytes",
3355              _total_nop_size, _total_method_size);
3356   if (_total_method_size > 0)
3357     tty->print(", for %.2f%%",
3358                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3359   tty->print("\n");
3360 
3361   // Print the number of branch shadows filled
3362   if (Pipeline::_branch_has_delay_slot) {
3363     tty->print("Of %d branches, %d had unconditional delay slots filled",
3364                _total_branches, _total_unconditional_delays);
3365     if (_total_branches > 0)
3366       tty->print(", for %.2f%%",
3367                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3368     tty->print("\n");
3369   }
3370 
3371   uint total_instructions = 0, total_bundles = 0;
3372 
3373   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3374     uint bundle_count   = _total_instructions_per_bundle[i];
3375     total_instructions += bundle_count * i;
3376     total_bundles      += bundle_count;
3377   }
3378 
3379   if (total_bundles > 0)
3380     tty->print("Average ILP (excluding nops) is %.2f\n",
3381                ((double)total_instructions) / ((double)total_bundles));
3382 }
3383 #endif
3384 
3385 //-----------------------init_scratch_buffer_blob------------------------------
3386 // Construct a temporary BufferBlob and cache it for this compile.
3387 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3388   // If there is already a scratch buffer blob allocated and the
3389   // constant section is big enough, use it.  Otherwise free the
3390   // current and allocate a new one.
3391   BufferBlob* blob = scratch_buffer_blob();
3392   if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3393     // Use the current blob.
3394   } else {
3395     if (blob != nullptr) {
3396       BufferBlob::free(blob);
3397     }
3398 
3399     ResourceMark rm;
3400     _scratch_const_size = const_size;
3401     int size = C2Compiler::initial_code_buffer_size(const_size);
3402     if (C->has_scalarized_args()) {
3403       // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification
3404       // when loading object fields from the buffered argument. Increase scratch buffer size accordingly.
3405       ciMethod* method = C->method();
3406       int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37));
3407       int arg_num = 0;
3408       if (!method->is_static()) {
3409         if (method->is_scalarized_arg(arg_num)) {
3410           size += method->holder()->as_inline_klass()->oop_count() * barrier_size;
3411         }
3412         arg_num++;
3413       }
3414       for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) {
3415         if (method->is_scalarized_arg(arg_num)) {
3416           size += str.type()->as_inline_klass()->oop_count() * barrier_size;
3417         }
3418         arg_num++;
3419       }
3420     }
3421     blob = BufferBlob::create("Compile::scratch_buffer", size);
3422     // Record the buffer blob for next time.
3423     set_scratch_buffer_blob(blob);
3424     // Have we run out of code space?
3425     if (scratch_buffer_blob() == nullptr) {
3426       // Let CompilerBroker disable further compilations.
3427       C->record_failure("Not enough space for scratch buffer in CodeCache");
3428       return;
3429     }
3430   }
3431 
3432   // Initialize the relocation buffers
3433   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3434   set_scratch_locs_memory(locs_buf);
3435 }
3436 
3437 
3438 //-----------------------scratch_emit_size-------------------------------------
3439 // Helper function that computes size by emitting code
3440 uint PhaseOutput::scratch_emit_size(const Node* n) {
3441   // Start scratch_emit_size section.
3442   set_in_scratch_emit_size(true);
3443 
3444   // Emit into a trash buffer and count bytes emitted.
3445   // This is a pretty expensive way to compute a size,
3446   // but it works well enough if seldom used.
3447   // All common fixed-size instructions are given a size
3448   // method by the AD file.
3449   // Note that the scratch buffer blob and locs memory are
3450   // allocated at the beginning of the compile task, and
3451   // may be shared by several calls to scratch_emit_size.
3452   // The allocation of the scratch buffer blob is particularly
3453   // expensive, since it has to grab the code cache lock.
3454   BufferBlob* blob = this->scratch_buffer_blob();
3455   assert(blob != nullptr, "Initialize BufferBlob at start");
3456   assert(blob->size() > MAX_inst_size, "sanity");
3457   relocInfo* locs_buf = scratch_locs_memory();
3458   address blob_begin = blob->content_begin();
3459   address blob_end   = (address)locs_buf;
3460   assert(blob->contains(blob_end), "sanity");
3461   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3462   buf.initialize_consts_size(_scratch_const_size);
3463   buf.initialize_stubs_size(MAX_stubs_size);
3464   assert(locs_buf != nullptr, "sanity");
3465   int lsize = MAX_locs_size / 3;
3466   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3467   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3468   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3469   // Mark as scratch buffer.
3470   buf.consts()->set_scratch_emit();
3471   buf.insts()->set_scratch_emit();
3472   buf.stubs()->set_scratch_emit();
3473 
3474   // Do the emission.
3475 
3476   Label fakeL; // Fake label for branch instructions.
3477   Label*   saveL = nullptr;
3478   uint save_bnum = 0;
3479   bool is_branch = n->is_MachBranch();
3480   C2_MacroAssembler masm(&buf);
3481   masm.bind(fakeL);
3482   if (is_branch) {
3483     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3484     n->as_MachBranch()->label_set(&fakeL, 0);
3485   }
3486   n->emit(&masm, C->regalloc());
3487 
3488   // Emitting into the scratch buffer should not fail
3489   assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3490 
3491   // Restore label.
3492   if (is_branch) {
3493     n->as_MachBranch()->label_set(saveL, save_bnum);
3494   }
3495 
3496   // End scratch_emit_size section.
3497   set_in_scratch_emit_size(false);
3498 
3499   return buf.insts_size();
3500 }
3501 
3502 void PhaseOutput::install() {
3503   if (!C->should_install_code()) {
3504     return;
3505   } else if (C->stub_function() != nullptr) {
3506     install_stub(C->stub_name());
3507   } else {
3508     install_code(C->method(),
3509                  C->entry_bci(),
3510                  CompileBroker::compiler2(),
3511                  C->has_unsafe_access(),
3512                  SharedRuntime::is_wide_vector(C->max_vector_size()));
3513   }
3514 }
3515 
3516 void PhaseOutput::install_code(ciMethod*         target,
3517                                int               entry_bci,
3518                                AbstractCompiler* compiler,
3519                                bool              has_unsafe_access,
3520                                bool              has_wide_vectors) {
3521   // Check if we want to skip execution of all compiled code.
3522   {
3523 #ifndef PRODUCT
3524     if (OptoNoExecute) {
3525       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3526       return;
3527     }
3528 #endif
3529     Compile::TracePhase tp(_t_registerMethod);
3530 
3531     if (C->is_osr_compilation()) {
3532       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3533       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3534     } else {
3535       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3536       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) {
3537         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size);
3538       }
3539       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) {
3540         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size);
3541       }
3542       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
3543         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
3544       }
3545       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3546     }
3547 
3548     C->env()->register_method(target,
3549                               entry_bci,
3550                               &_code_offsets,
3551                               _orig_pc_slot_offset_in_bytes,
3552                               code_buffer(),
3553                               frame_size_in_words(),
3554                               _oop_map_set,
3555                               &_handler_table,
3556                               inc_table(),
3557                               compiler,
3558                               has_unsafe_access,
3559                               SharedRuntime::is_wide_vector(C->max_vector_size()),
3560                               C->has_monitors(),
3561                               C->has_scoped_access(),
3562                               0);
3563 
3564     if (C->log() != nullptr) { // Print code cache state into compiler log
3565       C->log()->code_cache_state();
3566     }
3567   }
3568 }
3569 void PhaseOutput::install_stub(const char* stub_name) {
3570   // Entry point will be accessed using stub_entry_point();
3571   if (code_buffer() == nullptr) {
3572     Matcher::soft_match_failure();
3573   } else {
3574     if (PrintAssembly && (WizardMode || Verbose))
3575       tty->print_cr("### Stub::%s", stub_name);
3576 
3577     if (!C->failing()) {
3578       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3579 
3580       // Make the NMethod
3581       // For now we mark the frame as never safe for profile stackwalking
3582       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3583                                                       code_buffer(),
3584                                                       CodeOffsets::frame_never_safe,
3585                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3586                                                       frame_size_in_words(),
3587                                                       oop_map_set(),
3588                                                       false,
3589                                                       false);
3590 
3591       if (rs == nullptr) {
3592         C->record_failure("CodeCache is full");
3593       } else {
3594         assert(rs->is_runtime_stub(), "sanity check");
3595         C->set_stub_entry_point(rs->entry_point());
3596         AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, C->stub_id(), stub_name);
3597       }
3598     }
3599   }
3600 }
3601 
3602 // Support for bundling info
3603 Bundle* PhaseOutput::node_bundling(const Node *n) {
3604   assert(valid_bundle_info(n), "oob");
3605   return &_node_bundling_base[n->_idx];
3606 }
3607 
3608 bool PhaseOutput::valid_bundle_info(const Node *n) {
3609   return (_node_bundling_limit > n->_idx);
3610 }
3611 
3612 //------------------------------frame_size_in_words-----------------------------
3613 // frame_slots in units of words
3614 int PhaseOutput::frame_size_in_words() const {
3615   // shift is 0 in LP32 and 1 in LP64
3616   const int shift = (LogBytesPerWord - LogBytesPerInt);
3617   int words = _frame_slots >> shift;
3618   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3619   return words;
3620 }
3621 
3622 // To bang the stack of this compiled method we use the stack size
3623 // that the interpreter would need in case of a deoptimization. This
3624 // removes the need to bang the stack in the deoptimization blob which
3625 // in turn simplifies stack overflow handling.
3626 int PhaseOutput::bang_size_in_bytes() const {
3627   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3628 }
3629 
3630 //------------------------------dump_asm---------------------------------------
3631 // Dump formatted assembly
3632 #if defined(SUPPORT_OPTO_ASSEMBLY)
3633 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3634 
3635   int pc_digits = 3; // #chars required for pc
3636   int sb_chars  = 3; // #chars for "start bundle" indicator
3637   int tab_size  = 8;
3638   if (pcs != nullptr) {
3639     int max_pc = 0;
3640     for (uint i = 0; i < pc_limit; i++) {
3641       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3642     }
3643     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3644   }
3645   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3646 
3647   bool cut_short = false;
3648   st->print_cr("#");
3649   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3650   st->print_cr("#");
3651 
3652   // For all blocks
3653   int pc = 0x0;                 // Program counter
3654   char starts_bundle = ' ';
3655   C->regalloc()->dump_frame();
3656 
3657   Node *n = nullptr;
3658   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3659     if (VMThread::should_terminate()) {
3660       cut_short = true;
3661       break;
3662     }
3663     Block* block = C->cfg()->get_block(i);
3664     if (block->is_connector() && !Verbose) {
3665       continue;
3666     }
3667     n = block->head();
3668     if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3669       pc = pcs[n->_idx];
3670       st->print("%*.*x", pc_digits, pc_digits, pc);
3671     }
3672     st->fill_to(prefix_len);
3673     block->dump_head(C->cfg(), st);
3674     if (block->is_connector()) {
3675       st->fill_to(prefix_len);
3676       st->print_cr("# Empty connector block");
3677     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3678       st->fill_to(prefix_len);
3679       st->print_cr("# Block is sole successor of call");
3680     }
3681 
3682     // For all instructions
3683     Node *delay = nullptr;
3684     for (uint j = 0; j < block->number_of_nodes(); j++) {
3685       if (VMThread::should_terminate()) {
3686         cut_short = true;
3687         break;
3688       }
3689       n = block->get_node(j);
3690       if (valid_bundle_info(n)) {
3691         Bundle* bundle = node_bundling(n);
3692         if (bundle->used_in_unconditional_delay()) {
3693           delay = n;
3694           continue;
3695         }
3696         if (bundle->starts_bundle()) {
3697           starts_bundle = '+';
3698         }
3699       }
3700 
3701       if (WizardMode) {
3702         n->dump();
3703       }
3704 
3705       if( !n->is_Region() &&    // Dont print in the Assembly
3706           !n->is_Phi() &&       // a few noisely useless nodes
3707           !n->is_Proj() &&
3708           !n->is_MachTemp() &&
3709           !n->is_SafePointScalarObject() &&
3710           !n->is_Catch() &&     // Would be nice to print exception table targets
3711           !n->is_MergeMem() &&  // Not very interesting
3712           !n->is_top() &&       // Debug info table constants
3713           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3714           ) {
3715         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3716           pc = pcs[n->_idx];
3717           st->print("%*.*x", pc_digits, pc_digits, pc);
3718         } else {
3719           st->fill_to(pc_digits);
3720         }
3721         st->print(" %c ", starts_bundle);
3722         starts_bundle = ' ';
3723         st->fill_to(prefix_len);
3724         n->format(C->regalloc(), st);
3725         st->cr();
3726       }
3727 
3728       // If we have an instruction with a delay slot, and have seen a delay,
3729       // then back up and print it
3730       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3731         // Coverity finding - Explicit null dereferenced.
3732         guarantee(delay != nullptr, "no unconditional delay instruction");
3733         if (WizardMode) delay->dump();
3734 
3735         if (node_bundling(delay)->starts_bundle())
3736           starts_bundle = '+';
3737         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3738           pc = pcs[n->_idx];
3739           st->print("%*.*x", pc_digits, pc_digits, pc);
3740         } else {
3741           st->fill_to(pc_digits);
3742         }
3743         st->print(" %c ", starts_bundle);
3744         starts_bundle = ' ';
3745         st->fill_to(prefix_len);
3746         delay->format(C->regalloc(), st);
3747         st->cr();
3748         delay = nullptr;
3749       }
3750 
3751       // Dump the exception table as well
3752       if( n->is_Catch() && (Verbose || WizardMode) ) {
3753         // Print the exception table for this offset
3754         _handler_table.print_subtable_for(pc);
3755       }
3756       st->bol(); // Make sure we start on a new line
3757     }
3758     st->cr(); // one empty line between blocks
3759     assert(cut_short || delay == nullptr, "no unconditional delay branch");
3760   } // End of per-block dump
3761 
3762   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3763 }
3764 #endif
3765 
3766 #ifndef PRODUCT
3767 void PhaseOutput::print_statistics() {
3768   Scheduling::print_statistics();
3769 }
3770 #endif