1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/debugInfo.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/compilerDirectives.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/gc_globals.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/allocation.hpp"
  40 #include "opto/ad.hpp"
  41 #include "opto/block.hpp"
  42 #include "opto/c2compiler.hpp"
  43 #include "opto/c2_MacroAssembler.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/locknode.hpp"
  47 #include "opto/machnode.hpp"
  48 #include "opto/node.hpp"
  49 #include "opto/optoreg.hpp"
  50 #include "opto/output.hpp"
  51 #include "opto/regalloc.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/subnode.hpp"
  54 #include "opto/type.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "utilities/macros.hpp"
  58 #include "utilities/powerOfTwo.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 
  61 #ifndef PRODUCT
  62 #define DEBUG_ARG(x) , x
  63 #else
  64 #define DEBUG_ARG(x)
  65 #endif
  66 
  67 //------------------------------Scheduling----------------------------------
  68 // This class contains all the information necessary to implement instruction
  69 // scheduling and bundling.
  70 class Scheduling {
  71 
  72 private:
  73   // Arena to use
  74   Arena *_arena;
  75 
  76   // Control-Flow Graph info
  77   PhaseCFG *_cfg;
  78 
  79   // Register Allocation info
  80   PhaseRegAlloc *_regalloc;
  81 
  82   // Number of nodes in the method
  83   uint _node_bundling_limit;
  84 
  85   // List of scheduled nodes. Generated in reverse order
  86   Node_List _scheduled;
  87 
  88   // List of nodes currently available for choosing for scheduling
  89   Node_List _available;
  90 
  91   // For each instruction beginning a bundle, the number of following
  92   // nodes to be bundled with it.
  93   Bundle *_node_bundling_base;
  94 
  95   // Mapping from register to Node
  96   Node_List _reg_node;
  97 
  98   // Free list for pinch nodes.
  99   Node_List _pinch_free_list;
 100 
 101   // Number of uses of this node within the containing basic block.
 102   short *_uses;
 103 
 104   // Schedulable portion of current block.  Skips Region/Phi/CreateEx up
 105   // front, branch+proj at end.  Also skips Catch/CProj (same as
 106   // branch-at-end), plus just-prior exception-throwing call.
 107   uint _bb_start, _bb_end;
 108 
 109   // Latency from the end of the basic block as scheduled
 110   unsigned short *_current_latency;
 111 
 112   // Remember the next node
 113   Node *_next_node;
 114 
 115   // Use this for an unconditional branch delay slot
 116   Node *_unconditional_delay_slot;
 117 
 118   // Pointer to a Nop
 119   MachNopNode *_nop;
 120 
 121   // Length of the current bundle, in instructions
 122   uint _bundle_instr_count;
 123 
 124   // Current Cycle number, for computing latencies and bundling
 125   uint _bundle_cycle_number;
 126 
 127   // Bundle information
 128   Pipeline_Use_Element _bundle_use_elements[resource_count];
 129   Pipeline_Use         _bundle_use;
 130 
 131   // Dump the available list
 132   void dump_available() const;
 133 
 134 public:
 135   Scheduling(Arena *arena, Compile &compile);
 136 
 137   // Destructor
 138   NOT_PRODUCT( ~Scheduling(); )
 139 
 140   // Step ahead "i" cycles
 141   void step(uint i);
 142 
 143   // Step ahead 1 cycle, and clear the bundle state (for example,
 144   // at a branch target)
 145   void step_and_clear();
 146 
 147   Bundle* node_bundling(const Node *n) {
 148     assert(valid_bundle_info(n), "oob");
 149     return (&_node_bundling_base[n->_idx]);
 150   }
 151 
 152   bool valid_bundle_info(const Node *n) const {
 153     return (_node_bundling_limit > n->_idx);
 154   }
 155 
 156   bool starts_bundle(const Node *n) const {
 157     return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
 158   }
 159 
 160   // Do the scheduling
 161   void DoScheduling();
 162 
 163   // Compute the register antidependencies within a basic block
 164   void ComputeRegisterAntidependencies(Block *bb);
 165   void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
 166   void verify_good_schedule( Block *b, const char *msg );
 167   void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
 168   void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
 169 
 170   // Add a node to the current bundle
 171   void AddNodeToBundle(Node *n, const Block *bb);
 172 
 173   // Return an integer less than, equal to, or greater than zero
 174   // if the stack offset of the first argument is respectively
 175   // less than, equal to, or greater than the second.
 176   int compare_two_spill_nodes(Node* first, Node* second);
 177 
 178   // Add a node to the list of available nodes
 179   void AddNodeToAvailableList(Node *n);
 180 
 181   // Compute the local use count for the nodes in a block, and compute
 182   // the list of instructions with no uses in the block as available
 183   void ComputeUseCount(const Block *bb);
 184 
 185   // Choose an instruction from the available list to add to the bundle
 186   Node * ChooseNodeToBundle();
 187 
 188   // See if this Node fits into the currently accumulating bundle
 189   bool NodeFitsInBundle(Node *n);
 190 
 191   // Decrement the use count for a node
 192  void DecrementUseCounts(Node *n, const Block *bb);
 193 
 194   // Garbage collect pinch nodes for reuse by other blocks.
 195   void garbage_collect_pinch_nodes();
 196   // Clean up a pinch node for reuse (helper for above).
 197   void cleanup_pinch( Node *pinch );
 198 
 199   // Information for statistics gathering
 200 #ifndef PRODUCT
 201 private:
 202   // Gather information on size of nops relative to total
 203   uint _branches, _unconditional_delays;
 204 
 205   static uint _total_nop_size, _total_method_size;
 206   static uint _total_branches, _total_unconditional_delays;
 207   static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
 208 
 209 public:
 210   static void print_statistics();
 211 
 212   static void increment_instructions_per_bundle(uint i) {
 213     _total_instructions_per_bundle[i]++;
 214   }
 215 
 216   static void increment_nop_size(uint s) {
 217     _total_nop_size += s;
 218   }
 219 
 220   static void increment_method_size(uint s) {
 221     _total_method_size += s;
 222   }
 223 #endif
 224 
 225 };
 226 
 227 PhaseOutput::PhaseOutput()
 228   : Phase(Phase::Output),
 229     _code_buffer("Compile::Fill_buffer"),
 230     _first_block_size(0),
 231     _handler_table(),
 232     _inc_table(),
 233     _stub_list(),
 234     _oop_map_set(nullptr),
 235     _scratch_buffer_blob(nullptr),
 236     _scratch_locs_memory(nullptr),
 237     _scratch_const_size(-1),
 238     _in_scratch_emit_size(false),
 239     _frame_slots(0),
 240     _code_offsets(),
 241     _node_bundling_limit(0),
 242     _node_bundling_base(nullptr),
 243     _orig_pc_slot(0),
 244     _orig_pc_slot_offset_in_bytes(0),
 245     _buf_sizes(),
 246     _block(nullptr),
 247     _index(0) {
 248   C->set_output(this);
 249   if (C->stub_name() == nullptr) {
 250     int fixed_slots = C->fixed_slots();
 251     if (C->needs_stack_repair()) {
 252       fixed_slots -= 2;
 253     }
 254     // TODO 8284443 Only reserve extra slot if needed
 255     if (InlineTypeReturnedAsFields) {
 256       fixed_slots -= 2;
 257     }
 258     _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size);
 259   }
 260 }
 261 
 262 PhaseOutput::~PhaseOutput() {
 263   C->set_output(nullptr);
 264   if (_scratch_buffer_blob != nullptr) {
 265     BufferBlob::free(_scratch_buffer_blob);
 266   }
 267 }
 268 
 269 void PhaseOutput::perform_mach_node_analysis() {
 270   // Late barrier analysis must be done after schedule and bundle
 271   // Otherwise liveness based spilling will fail
 272   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 273   bs->late_barrier_analysis();
 274 
 275   pd_perform_mach_node_analysis();
 276 
 277   C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3);
 278 }
 279 
 280 // Convert Nodes to instruction bits and pass off to the VM
 281 void PhaseOutput::Output() {
 282   // RootNode goes
 283   assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
 284 
 285   // The number of new nodes (mostly MachNop) is proportional to
 286   // the number of java calls and inner loops which are aligned.
 287   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
 288                             C->inner_loops()*(OptoLoopAlignment-1)),
 289                            "out of nodes before code generation" ) ) {
 290     return;
 291   }
 292   // Make sure I can find the Start Node
 293   Block *entry = C->cfg()->get_block(1);
 294   Block *broot = C->cfg()->get_root_block();
 295 
 296   const StartNode *start = entry->head()->as_Start();
 297 
 298   // Replace StartNode with prolog
 299   Label verified_entry;
 300   MachPrologNode* prolog = new MachPrologNode(&verified_entry);
 301   entry->map_node(prolog, 0);
 302   C->cfg()->map_node_to_block(prolog, entry);
 303   C->cfg()->unmap_node_from_block(start); // start is no longer in any block
 304 
 305   // Virtual methods need an unverified entry point
 306   if (C->is_osr_compilation()) {
 307     if (PoisonOSREntry) {
 308       // TODO: Should use a ShouldNotReachHereNode...
 309       C->cfg()->insert( broot, 0, new MachBreakpointNode() );
 310     }
 311   } else {
 312     if (C->method()) {
 313       if (C->method()->has_scalarized_args()) {
 314         // Add entry point to unpack all inline type arguments
 315         C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false));
 316         if (!C->method()->is_static()) {
 317           // Add verified/unverified entry points to only unpack inline type receiver at interface calls
 318           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false));
 319           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true,  /* receiver_only */ true));
 320           C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true));
 321         }
 322       } else if (!C->method()->is_static()) {
 323         // Insert unvalidated entry point
 324         C->cfg()->insert(broot, 0, new MachUEPNode());
 325       }
 326     }
 327   }
 328 
 329   // Break before main entry point
 330   if ((C->method() && C->directive()->BreakAtExecuteOption) ||
 331       (OptoBreakpoint && C->is_method_compilation())       ||
 332       (OptoBreakpointOSR && C->is_osr_compilation())       ||
 333       (OptoBreakpointC2R && !C->method())                   ) {
 334     // checking for C->method() means that OptoBreakpoint does not apply to
 335     // runtime stubs or frame converters
 336     C->cfg()->insert( entry, 1, new MachBreakpointNode() );
 337   }
 338 
 339   // Insert epilogs before every return
 340   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
 341     Block* block = C->cfg()->get_block(i);
 342     if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
 343       Node* m = block->end();
 344       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 345         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 346         block->add_inst(epilog);
 347         C->cfg()->map_node_to_block(epilog, block);
 348       }
 349     }
 350   }
 351 
 352   // Keeper of sizing aspects
 353   _buf_sizes = BufferSizingData();
 354 
 355   // Initialize code buffer
 356   estimate_buffer_size(_buf_sizes._const);
 357   if (C->failing()) return;
 358 
 359   // Pre-compute the length of blocks and replace
 360   // long branches with short if machine supports it.
 361   // Must be done before ScheduleAndBundle due to SPARC delay slots
 362   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
 363   blk_starts[0] = 0;
 364   shorten_branches(blk_starts);
 365 
 366   if (!C->is_osr_compilation() && C->has_scalarized_args()) {
 367     // Compute the offsets of the entry points required by the inline type calling convention
 368     if (!C->method()->is_static()) {
 369       // We have entries at the beginning of the method, implemented by the first 4 nodes.
 370       // Entry                     (unverified) @ offset 0
 371       // Verified_Inline_Entry_RO
 372       // Inline_Entry              (unverified)
 373       // Verified_Inline_Entry
 374       uint offset = 0;
 375       _code_offsets.set_value(CodeOffsets::Entry, offset);
 376 
 377       offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc());
 378       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset);
 379 
 380       offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc());
 381       _code_offsets.set_value(CodeOffsets::Inline_Entry, offset);
 382 
 383       offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc());
 384       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset);
 385     } else {
 386       _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later
 387       _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0);
 388     }
 389   }
 390 
 391   ScheduleAndBundle();
 392   if (C->failing()) {
 393     return;
 394   }
 395 
 396   perform_mach_node_analysis();
 397 
 398   // Complete sizing of codebuffer
 399   CodeBuffer* cb = init_buffer();
 400   if (cb == nullptr || C->failing()) {
 401     return;
 402   }
 403 
 404   BuildOopMaps();
 405 
 406   if (C->failing())  {
 407     return;
 408   }
 409 
 410   fill_buffer(cb, blk_starts);
 411 }
 412 
 413 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
 414   // Determine if we need to generate a stack overflow check.
 415   // Do it if the method is not a stub function and
 416   // has java calls or has frame size > vm_page_size/8.
 417   // The debug VM checks that deoptimization doesn't trigger an
 418   // unexpected stack overflow (compiled method stack banging should
 419   // guarantee it doesn't happen) so we always need the stack bang in
 420   // a debug VM.
 421   return (C->stub_function() == nullptr &&
 422           (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3
 423            DEBUG_ONLY(|| true)));
 424 }
 425 
 426 bool PhaseOutput::need_register_stack_bang() const {
 427   // Determine if we need to generate a register stack overflow check.
 428   // This is only used on architectures which have split register
 429   // and memory stacks (ie. IA64).
 430   // Bang if the method is not a stub function and has java calls
 431   return (C->stub_function() == nullptr && C->has_java_calls());
 432 }
 433 
 434 
 435 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 436 // of a loop. When aligning a loop we need to provide enough instructions
 437 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 438 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 439 // By default, the size is set to 999999 by Block's constructor so that
 440 // a loop will be aligned if the size is not reset here.
 441 //
 442 // Note: Mach instructions could contain several HW instructions
 443 // so the size is estimated only.
 444 //
 445 void PhaseOutput::compute_loop_first_inst_sizes() {
 446   // The next condition is used to gate the loop alignment optimization.
 447   // Don't aligned a loop if there are enough instructions at the head of a loop
 448   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 449   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 450   // equal to 11 bytes which is the largest address NOP instruction.
 451   if (MaxLoopPad < OptoLoopAlignment - 1) {
 452     uint last_block = C->cfg()->number_of_blocks() - 1;
 453     for (uint i = 1; i <= last_block; i++) {
 454       Block* block = C->cfg()->get_block(i);
 455       // Check the first loop's block which requires an alignment.
 456       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 457         uint sum_size = 0;
 458         uint inst_cnt = NumberOfLoopInstrToAlign;
 459         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 460 
 461         // Check subsequent fallthrough blocks if the loop's first
 462         // block(s) does not have enough instructions.
 463         Block *nb = block;
 464         while(inst_cnt > 0 &&
 465               i < last_block &&
 466               !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
 467               !nb->has_successor(block)) {
 468           i++;
 469           nb = C->cfg()->get_block(i);
 470           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
 471         } // while( inst_cnt > 0 && i < last_block  )
 472 
 473         block->set_first_inst_size(sum_size);
 474       } // f( b->head()->is_Loop() )
 475     } // for( i <= last_block )
 476   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 477 }
 478 
 479 // The architecture description provides short branch variants for some long
 480 // branch instructions. Replace eligible long branches with short branches.
 481 void PhaseOutput::shorten_branches(uint* blk_starts) {
 482 
 483   Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]);
 484 
 485   // Compute size of each block, method size, and relocation information size
 486   uint nblocks  = C->cfg()->number_of_blocks();
 487 
 488   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 489   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 490   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 491 
 492   // Collect worst case block paddings
 493   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 494   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 495 
 496   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 497   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 498 
 499   bool has_short_branch_candidate = false;
 500 
 501   // Initialize the sizes to 0
 502   int code_size  = 0;          // Size in bytes of generated code
 503   int stub_size  = 0;          // Size in bytes of all stub entries
 504   // Size in bytes of all relocation entries, including those in local stubs.
 505   // Start with 2-bytes of reloc info for the unvalidated entry point
 506   int reloc_size = 1;          // Number of relocation entries
 507 
 508   // Make three passes.  The first computes pessimistic blk_starts,
 509   // relative jmp_offset and reloc_size information.  The second performs
 510   // short branch substitution using the pessimistic sizing.  The
 511   // third inserts nops where needed.
 512 
 513   // Step one, perform a pessimistic sizing pass.
 514   uint last_call_adr = max_juint;
 515   uint last_avoid_back_to_back_adr = max_juint;
 516   uint nop_size = (new MachNopNode())->size(C->regalloc());
 517   for (uint i = 0; i < nblocks; i++) { // For all blocks
 518     Block* block = C->cfg()->get_block(i);
 519     _block = block;
 520 
 521     // During short branch replacement, we store the relative (to blk_starts)
 522     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 523     // This is so that we do not need to recompute sizes of all nodes when
 524     // we compute correct blk_starts in our next sizing pass.
 525     jmp_offset[i] = 0;
 526     jmp_size[i]   = 0;
 527     jmp_nidx[i]   = -1;
 528     DEBUG_ONLY( jmp_target[i] = 0; )
 529     DEBUG_ONLY( jmp_rule[i]   = 0; )
 530 
 531     // Sum all instruction sizes to compute block size
 532     uint last_inst = block->number_of_nodes();
 533     uint blk_size = 0;
 534     for (uint j = 0; j < last_inst; j++) {
 535       _index = j;
 536       Node* nj = block->get_node(_index);
 537       // Handle machine instruction nodes
 538       if (nj->is_Mach()) {
 539         MachNode* mach = nj->as_Mach();
 540         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 541         reloc_size += mach->reloc();
 542         if (mach->is_MachCall()) {
 543           // add size information for trampoline stub
 544           // class CallStubImpl is platform-specific and defined in the *.ad files.
 545           stub_size  += CallStubImpl::size_call_trampoline();
 546           reloc_size += CallStubImpl::reloc_call_trampoline();
 547 
 548           MachCallNode *mcall = mach->as_MachCall();
 549           // This destination address is NOT PC-relative
 550 
 551           if (mcall->entry_point() != nullptr) {
 552             mcall->method_set((intptr_t)mcall->entry_point());
 553           }
 554 
 555           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 556             stub_size  += CompiledStaticCall::to_interp_stub_size();
 557             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 558           }
 559         } else if (mach->is_MachSafePoint()) {
 560           // If call/safepoint are adjacent, account for possible
 561           // nop to disambiguate the two safepoints.
 562           // ScheduleAndBundle() can rearrange nodes in a block,
 563           // check for all offsets inside this block.
 564           if (last_call_adr >= blk_starts[i]) {
 565             blk_size += nop_size;
 566           }
 567         }
 568         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 569           // Nop is inserted between "avoid back to back" instructions.
 570           // ScheduleAndBundle() can rearrange nodes in a block,
 571           // check for all offsets inside this block.
 572           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 573             blk_size += nop_size;
 574           }
 575         }
 576         if (mach->may_be_short_branch()) {
 577           if (!nj->is_MachBranch()) {
 578 #ifndef PRODUCT
 579             nj->dump(3);
 580 #endif
 581             Unimplemented();
 582           }
 583           assert(jmp_nidx[i] == -1, "block should have only one branch");
 584           jmp_offset[i] = blk_size;
 585           jmp_size[i]   = nj->size(C->regalloc());
 586           jmp_nidx[i]   = j;
 587           has_short_branch_candidate = true;
 588         }
 589       }
 590       blk_size += nj->size(C->regalloc());
 591       // Remember end of call offset
 592       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 593         last_call_adr = blk_starts[i]+blk_size;
 594       }
 595       // Remember end of avoid_back_to_back offset
 596       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 597         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 598       }
 599     }
 600 
 601     // When the next block starts a loop, we may insert pad NOP
 602     // instructions.  Since we cannot know our future alignment,
 603     // assume the worst.
 604     if (i < nblocks - 1) {
 605       Block* nb = C->cfg()->get_block(i + 1);
 606       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 607       if (max_loop_pad > 0) {
 608         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 609         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 610         // If either is the last instruction in this block, bump by
 611         // max_loop_pad in lock-step with blk_size, so sizing
 612         // calculations in subsequent blocks still can conservatively
 613         // detect that it may the last instruction in this block.
 614         if (last_call_adr == blk_starts[i]+blk_size) {
 615           last_call_adr += max_loop_pad;
 616         }
 617         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 618           last_avoid_back_to_back_adr += max_loop_pad;
 619         }
 620         blk_size += max_loop_pad;
 621         block_worst_case_pad[i + 1] = max_loop_pad;
 622       }
 623     }
 624 
 625     // Save block size; update total method size
 626     blk_starts[i+1] = blk_starts[i]+blk_size;
 627   }
 628 
 629   // Step two, replace eligible long jumps.
 630   bool progress = true;
 631   uint last_may_be_short_branch_adr = max_juint;
 632   while (has_short_branch_candidate && progress) {
 633     progress = false;
 634     has_short_branch_candidate = false;
 635     int adjust_block_start = 0;
 636     for (uint i = 0; i < nblocks; i++) {
 637       Block* block = C->cfg()->get_block(i);
 638       int idx = jmp_nidx[i];
 639       MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
 640       if (mach != nullptr && mach->may_be_short_branch()) {
 641 #ifdef ASSERT
 642         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 643         int j;
 644         // Find the branch; ignore trailing NOPs.
 645         for (j = block->number_of_nodes()-1; j>=0; j--) {
 646           Node* n = block->get_node(j);
 647           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 648             break;
 649         }
 650         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 651 #endif
 652         int br_size = jmp_size[i];
 653         int br_offs = blk_starts[i] + jmp_offset[i];
 654 
 655         // This requires the TRUE branch target be in succs[0]
 656         uint bnum = block->non_connector_successor(0)->_pre_order;
 657         int offset = blk_starts[bnum] - br_offs;
 658         if (bnum > i) { // adjust following block's offset
 659           offset -= adjust_block_start;
 660         }
 661 
 662         // This block can be a loop header, account for the padding
 663         // in the previous block.
 664         int block_padding = block_worst_case_pad[i];
 665         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 666         // In the following code a nop could be inserted before
 667         // the branch which will increase the backward distance.
 668         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 669         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 670 
 671         if (needs_padding && offset <= 0)
 672           offset -= nop_size;
 673 
 674         if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
 675           // We've got a winner.  Replace this branch.
 676           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 677 
 678           // Update the jmp_size.
 679           int new_size = replacement->size(C->regalloc());
 680           int diff     = br_size - new_size;
 681           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 682           // Conservatively take into account padding between
 683           // avoid_back_to_back branches. Previous branch could be
 684           // converted into avoid_back_to_back branch during next
 685           // rounds.
 686           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 687             jmp_offset[i] += nop_size;
 688             diff -= nop_size;
 689           }
 690           adjust_block_start += diff;
 691           block->map_node(replacement, idx);
 692           mach->subsume_by(replacement, C);
 693           mach = replacement;
 694           progress = true;
 695 
 696           jmp_size[i] = new_size;
 697           DEBUG_ONLY( jmp_target[i] = bnum; );
 698           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 699         } else {
 700           // The jump distance is not short, try again during next iteration.
 701           has_short_branch_candidate = true;
 702         }
 703       } // (mach->may_be_short_branch())
 704       if (mach != nullptr && (mach->may_be_short_branch() ||
 705                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 706         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 707       }
 708       blk_starts[i+1] -= adjust_block_start;
 709     }
 710   }
 711 
 712 #ifdef ASSERT
 713   for (uint i = 0; i < nblocks; i++) { // For all blocks
 714     if (jmp_target[i] != 0) {
 715       int br_size = jmp_size[i];
 716       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 717       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 718         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 719       }
 720       assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 721     }
 722   }
 723 #endif
 724 
 725   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 726   // after ScheduleAndBundle().
 727 
 728   // ------------------
 729   // Compute size for code buffer
 730   code_size = blk_starts[nblocks];
 731 
 732   // Relocation records
 733   reloc_size += 1;              // Relo entry for exception handler
 734 
 735   // Adjust reloc_size to number of record of relocation info
 736   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 737   // a relocation index.
 738   // The CodeBuffer will expand the locs array if this estimate is too low.
 739   reloc_size *= 10 / sizeof(relocInfo);
 740 
 741   _buf_sizes._reloc = reloc_size;
 742   _buf_sizes._code  = code_size;
 743   _buf_sizes._stub  = stub_size;
 744 }
 745 
 746 //------------------------------FillLocArray-----------------------------------
 747 // Create a bit of debug info and append it to the array.  The mapping is from
 748 // Java local or expression stack to constant, register or stack-slot.  For
 749 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 750 // entry has been taken care of and caller should skip it).
 751 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 752   // This should never have accepted Bad before
 753   assert(OptoReg::is_valid(regnum), "location must be valid");
 754   return (OptoReg::is_reg(regnum))
 755          ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 756          : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 757 }
 758 
 759 
 760 ObjectValue*
 761 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 762   for (int i = 0; i < objs->length(); i++) {
 763     assert(objs->at(i)->is_object(), "corrupt object cache");
 764     ObjectValue* sv = (ObjectValue*) objs->at(i);
 765     if (sv->id() == id) {
 766       return sv;
 767     }
 768   }
 769   // Otherwise..
 770   return nullptr;
 771 }
 772 
 773 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 774                                      ObjectValue* sv ) {
 775   assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
 776   objs->append(sv);
 777 }
 778 
 779 
 780 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 781                             GrowableArray<ScopeValue*> *array,
 782                             GrowableArray<ScopeValue*> *objs ) {
 783   assert( local, "use _top instead of null" );
 784   if (array->length() != idx) {
 785     assert(array->length() == idx + 1, "Unexpected array count");
 786     // Old functionality:
 787     //   return
 788     // New functionality:
 789     //   Assert if the local is not top. In product mode let the new node
 790     //   override the old entry.
 791     assert(local == C->top(), "LocArray collision");
 792     if (local == C->top()) {
 793       return;
 794     }
 795     array->pop();
 796   }
 797   const Type *t = local->bottom_type();
 798 
 799   // Is it a safepoint scalar object node?
 800   if (local->is_SafePointScalarObject()) {
 801     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 802 
 803     ObjectValue* sv = (ObjectValue*) sv_for_node_id(objs, spobj->_idx);
 804     if (sv == nullptr) {
 805       ciKlass* cik = t->is_oopptr()->exact_klass();
 806       assert(cik->is_instance_klass() ||
 807              cik->is_array_klass(), "Not supported allocation.");
 808       uint first_ind = spobj->first_index(sfpt->jvms());
 809       // Nullable, scalarized inline types have an is_init input
 810       // that needs to be checked before using the field values.
 811       ScopeValue* is_init = nullptr;
 812       if (cik->is_inlinetype()) {
 813         Node* init_node = sfpt->in(first_ind++);
 814         assert(init_node != nullptr, "is_init node not found");
 815         if (!init_node->is_top()) {
 816           const TypeInt* init_type = init_node->bottom_type()->is_int();
 817           if (init_node->is_Con()) {
 818             is_init = new ConstantIntValue(init_type->get_con());
 819           } else {
 820             OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node);
 821             is_init = new_loc_value(C->regalloc(), init_reg, Location::normal);
 822           }
 823         }
 824       }
 825       sv = new ObjectValue(spobj->_idx,
 826                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), is_init);
 827       set_sv_for_object_node(objs, sv);
 828 
 829       for (uint i = 0; i < spobj->n_fields(); i++) {
 830         Node* fld_node = sfpt->in(first_ind+i);
 831         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 832       }
 833     }
 834     array->append(sv);
 835     return;
 836   } else if (local->is_SafePointScalarMerge()) {
 837     SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge();
 838     ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
 839 
 840     if (mv == NULL) {
 841       GrowableArray<ScopeValue*> deps;
 842 
 843       int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms());
 844       (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs);
 845       assert(deps.length() == 1, "missing value");
 846 
 847       int selector_idx = smerge->selector_idx(sfpt->jvms());
 848       (void)FillLocArray(1, NULL, sfpt->in(selector_idx), &deps, NULL);
 849       assert(deps.length() == 2, "missing value");
 850 
 851       mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
 852       set_sv_for_object_node(objs, mv);
 853 
 854       for (uint i = 1; i < smerge->req(); i++) {
 855         Node* obj_node = smerge->in(i);
 856         (void)FillLocArray(mv->possible_objects()->length(), sfpt, obj_node, mv->possible_objects(), objs);
 857       }
 858     }
 859     array->append(mv);
 860     return;
 861   }
 862 
 863   // Grab the register number for the local
 864   OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
 865   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 866     // Record the double as two float registers.
 867     // The register mask for such a value always specifies two adjacent
 868     // float registers, with the lower register number even.
 869     // Normally, the allocation of high and low words to these registers
 870     // is irrelevant, because nearly all operations on register pairs
 871     // (e.g., StoreD) treat them as a single unit.
 872     // Here, we assume in addition that the words in these two registers
 873     // stored "naturally" (by operations like StoreD and double stores
 874     // within the interpreter) such that the lower-numbered register
 875     // is written to the lower memory address.  This may seem like
 876     // a machine dependency, but it is not--it is a requirement on
 877     // the author of the <arch>.ad file to ensure that, for every
 878     // even/odd double-register pair to which a double may be allocated,
 879     // the word in the even single-register is stored to the first
 880     // memory word.  (Note that register numbers are completely
 881     // arbitrary, and are not tied to any machine-level encodings.)
 882 #ifdef _LP64
 883     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 884       array->append(new ConstantIntValue((jint)0));
 885       array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
 886     } else if ( t->base() == Type::Long ) {
 887       array->append(new ConstantIntValue((jint)0));
 888       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 889     } else if ( t->base() == Type::RawPtr ) {
 890       // jsr/ret return address which must be restored into the full
 891       // width 64-bit stack slot.
 892       array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
 893     }
 894 #else //_LP64
 895     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 896       // Repack the double/long as two jints.
 897       // The convention the interpreter uses is that the second local
 898       // holds the first raw word of the native double representation.
 899       // This is actually reasonable, since locals and stack arrays
 900       // grow downwards in all implementations.
 901       // (If, on some machine, the interpreter's Java locals or stack
 902       // were to grow upwards, the embedded doubles would be word-swapped.)
 903       array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
 904       array->append(new_loc_value( C->regalloc(),              regnum   , Location::normal ));
 905     }
 906 #endif //_LP64
 907     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 908              OptoReg::is_reg(regnum) ) {
 909       array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
 910                                                       ? Location::float_in_dbl : Location::normal ));
 911     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 912       array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
 913                                                       ? Location::int_in_long : Location::normal ));
 914     } else if( t->base() == Type::NarrowOop ) {
 915       array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
 916     } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
 917                t->base() == Type::VectorD || t->base() == Type::VectorX ||
 918                t->base() == Type::VectorY || t->base() == Type::VectorZ) {
 919       array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
 920     } else if (C->regalloc()->is_oop(local)) {
 921       assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr ||
 922              t->base() == Type::AryPtr,
 923              "Unexpected type: %s", t->msg());
 924       array->append(new_loc_value( C->regalloc(), regnum, Location::oop ));
 925     } else {
 926       assert(t->base() == Type::Int || t->base() == Type::Half ||
 927              t->base() == Type::FloatCon || t->base() == Type::FloatBot,
 928              "Unexpected type: %s", t->msg());
 929       array->append(new_loc_value( C->regalloc(), regnum, Location::normal ));
 930     }
 931     return;
 932   }
 933 
 934   // No register.  It must be constant data.
 935   switch (t->base()) {
 936     case Type::Half:              // Second half of a double
 937       ShouldNotReachHere();       // Caller should skip 2nd halves
 938       break;
 939     case Type::AnyPtr:
 940       array->append(new ConstantOopWriteValue(nullptr));
 941       break;
 942     case Type::AryPtr:
 943     case Type::InstPtr:          // fall through
 944       array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 945       break;
 946     case Type::NarrowOop:
 947       if (t == TypeNarrowOop::NULL_PTR) {
 948         array->append(new ConstantOopWriteValue(nullptr));
 949       } else {
 950         array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 951       }
 952       break;
 953     case Type::Int:
 954       array->append(new ConstantIntValue(t->is_int()->get_con()));
 955       break;
 956     case Type::RawPtr:
 957       // A return address (T_ADDRESS).
 958       assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 959 #ifdef _LP64
 960       // Must be restored to the full-width 64-bit stack slot.
 961       array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 962 #else
 963       array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 964 #endif
 965       break;
 966     case Type::FloatCon: {
 967       float f = t->is_float_constant()->getf();
 968       array->append(new ConstantIntValue(jint_cast(f)));
 969       break;
 970     }
 971     case Type::DoubleCon: {
 972       jdouble d = t->is_double_constant()->getd();
 973 #ifdef _LP64
 974       array->append(new ConstantIntValue((jint)0));
 975       array->append(new ConstantDoubleValue(d));
 976 #else
 977       // Repack the double as two jints.
 978     // The convention the interpreter uses is that the second local
 979     // holds the first raw word of the native double representation.
 980     // This is actually reasonable, since locals and stack arrays
 981     // grow downwards in all implementations.
 982     // (If, on some machine, the interpreter's Java locals or stack
 983     // were to grow upwards, the embedded doubles would be word-swapped.)
 984     jlong_accessor acc;
 985     acc.long_value = jlong_cast(d);
 986     array->append(new ConstantIntValue(acc.words[1]));
 987     array->append(new ConstantIntValue(acc.words[0]));
 988 #endif
 989       break;
 990     }
 991     case Type::Long: {
 992       jlong d = t->is_long()->get_con();
 993 #ifdef _LP64
 994       array->append(new ConstantIntValue((jint)0));
 995       array->append(new ConstantLongValue(d));
 996 #else
 997       // Repack the long as two jints.
 998     // The convention the interpreter uses is that the second local
 999     // holds the first raw word of the native double representation.
1000     // This is actually reasonable, since locals and stack arrays
1001     // grow downwards in all implementations.
1002     // (If, on some machine, the interpreter's Java locals or stack
1003     // were to grow upwards, the embedded doubles would be word-swapped.)
1004     jlong_accessor acc;
1005     acc.long_value = d;
1006     array->append(new ConstantIntValue(acc.words[1]));
1007     array->append(new ConstantIntValue(acc.words[0]));
1008 #endif
1009       break;
1010     }
1011     case Type::Top:               // Add an illegal value here
1012       array->append(new LocationValue(Location()));
1013       break;
1014     default:
1015       ShouldNotReachHere();
1016       break;
1017   }
1018 }
1019 
1020 // Determine if this node starts a bundle
1021 bool PhaseOutput::starts_bundle(const Node *n) const {
1022   return (_node_bundling_limit > n->_idx &&
1023           _node_bundling_base[n->_idx].starts_bundle());
1024 }
1025 
1026 // Determine if there is a monitor that has 'ov' as its owner.
1027 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const {
1028   for (int k = 0; k < monarray->length(); k++) {
1029     MonitorValue* mv = monarray->at(k);
1030     if (mv->owner() == ov) {
1031       return true;
1032     }
1033   }
1034 
1035   return false;
1036 }
1037 
1038 //--------------------------Process_OopMap_Node--------------------------------
1039 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1040   // Handle special safepoint nodes for synchronization
1041   MachSafePointNode *sfn   = mach->as_MachSafePoint();
1042   MachCallNode      *mcall;
1043 
1044   int safepoint_pc_offset = current_offset;
1045   bool is_method_handle_invoke = false;
1046   bool return_oop = false;
1047   bool return_scalarized = false;
1048   bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1049   bool arg_escape = false;
1050 
1051   // Add the safepoint in the DebugInfoRecorder
1052   if( !mach->is_MachCall() ) {
1053     mcall = nullptr;
1054     C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1055   } else {
1056     mcall = mach->as_MachCall();
1057 
1058     // Is the call a MethodHandle call?
1059     if (mcall->is_MachCallJava()) {
1060       if (mcall->as_MachCallJava()->_method_handle_invoke) {
1061         assert(C->has_method_handle_invokes(), "must have been set during call generation");
1062         is_method_handle_invoke = true;
1063       }
1064       arg_escape = mcall->as_MachCallJava()->_arg_escape;
1065     }
1066 
1067     // Check if a call returns an object.
1068     if (mcall->returns_pointer() || mcall->returns_scalarized()) {
1069       return_oop = true;
1070     }
1071     if (mcall->returns_scalarized()) {
1072       return_scalarized = true;
1073     }
1074     safepoint_pc_offset += mcall->ret_addr_offset();
1075     C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1076   }
1077 
1078   // Loop over the JVMState list to add scope information
1079   // Do not skip safepoints with a null method, they need monitor info
1080   JVMState* youngest_jvms = sfn->jvms();
1081   int max_depth = youngest_jvms->depth();
1082 
1083   // Allocate the object pool for scalar-replaced objects -- the map from
1084   // small-integer keys (which can be recorded in the local and ostack
1085   // arrays) to descriptions of the object state.
1086   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1087 
1088   // Visit scopes from oldest to youngest.
1089   for (int depth = 1; depth <= max_depth; depth++) {
1090     JVMState* jvms = youngest_jvms->of_depth(depth);
1091     int idx;
1092     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1093     // Safepoints that do not have method() set only provide oop-map and monitor info
1094     // to support GC; these do not support deoptimization.
1095     int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1096     int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1097     int num_mon  = jvms->nof_monitors();
1098     assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1099            "JVMS local count must match that of the method");
1100 
1101     // Add Local and Expression Stack Information
1102 
1103     // Insert locals into the locarray
1104     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1105     for( idx = 0; idx < num_locs; idx++ ) {
1106       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1107     }
1108 
1109     // Insert expression stack entries into the exparray
1110     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1111     for( idx = 0; idx < num_exps; idx++ ) {
1112       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
1113     }
1114 
1115     // Add in mappings of the monitors
1116     assert( !method ||
1117             !method->is_synchronized() ||
1118             method->is_native() ||
1119             num_mon > 0 ||
1120             !GenerateSynchronizationCode,
1121             "monitors must always exist for synchronized methods");
1122 
1123     // Build the growable array of ScopeValues for exp stack
1124     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1125 
1126     // Loop over monitors and insert into array
1127     for (idx = 0; idx < num_mon; idx++) {
1128       // Grab the node that defines this monitor
1129       Node* box_node = sfn->monitor_box(jvms, idx);
1130       Node* obj_node = sfn->monitor_obj(jvms, idx);
1131 
1132       // Create ScopeValue for object
1133       ScopeValue *scval = nullptr;
1134 
1135       if (obj_node->is_SafePointScalarObject()) {
1136         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1137         scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1138         if (scval == nullptr) {
1139           const Type *t = spobj->bottom_type();
1140           ciKlass* cik = t->is_oopptr()->exact_klass();
1141           assert(cik->is_instance_klass() ||
1142                  cik->is_array_klass(), "Not supported allocation.");
1143           ObjectValue* sv = new ObjectValue(spobj->_idx,
1144                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
1145           PhaseOutput::set_sv_for_object_node(objs, sv);
1146 
1147           uint first_ind = spobj->first_index(youngest_jvms);
1148           for (uint i = 0; i < spobj->n_fields(); i++) {
1149             Node* fld_node = sfn->in(first_ind+i);
1150             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1151           }
1152           scval = sv;
1153         }
1154       } else if (!obj_node->is_Con()) {
1155         OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1156         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1157           scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1158         } else {
1159           scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1160         }
1161       } else {
1162         const TypePtr *tp = obj_node->get_ptr_type();
1163         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1164       }
1165 
1166       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1167       Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1168       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1169       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1170     }
1171 
1172     // Mark ObjectValue nodes as root nodes if they are directly
1173     // referenced in the JVMS.
1174     for (int i = 0; i < objs->length(); i++) {
1175       ScopeValue* sv = objs->at(i);
1176       if (sv->is_object_merge()) {
1177         ObjectMergeValue* merge = sv->as_ObjectMergeValue();
1178 
1179         for (int j = 0; j< merge->possible_objects()->length(); j++) {
1180           ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue();
1181           bool is_root = locarray->contains(ov) || exparray->contains(ov) || contains_as_owner(monarray, ov);
1182           ov->set_root(is_root);
1183         }
1184       }
1185     }
1186 
1187     // We dump the object pool first, since deoptimization reads it in first.
1188     C->debug_info()->dump_object_pool(objs);
1189 
1190     // Build first class objects to pass to scope
1191     DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1192     DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1193     DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1194 
1195     // Make method available for all Safepoints
1196     ciMethod* scope_method = method ? method : C->method();
1197     // Describe the scope here
1198     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1199     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1200     // Now we can describe the scope.
1201     methodHandle null_mh;
1202     bool rethrow_exception = false;
1203     C->debug_info()->describe_scope(
1204       safepoint_pc_offset,
1205       null_mh,
1206       scope_method,
1207       jvms->bci(),
1208       jvms->should_reexecute(),
1209       rethrow_exception,
1210       is_method_handle_invoke,
1211       return_oop,
1212       return_scalarized,
1213       has_ea_local_in_scope,
1214       arg_escape,
1215       locvals,
1216       expvals,
1217       monvals
1218     );
1219   } // End jvms loop
1220 
1221   // Mark the end of the scope set.
1222   C->debug_info()->end_safepoint(safepoint_pc_offset);
1223 }
1224 
1225 
1226 
1227 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1228 class NonSafepointEmitter {
1229     Compile*  C;
1230     JVMState* _pending_jvms;
1231     int       _pending_offset;
1232 
1233     void emit_non_safepoint();
1234 
1235  public:
1236     NonSafepointEmitter(Compile* compile) {
1237       this->C = compile;
1238       _pending_jvms = nullptr;
1239       _pending_offset = 0;
1240     }
1241 
1242     void observe_instruction(Node* n, int pc_offset) {
1243       if (!C->debug_info()->recording_non_safepoints())  return;
1244 
1245       Node_Notes* nn = C->node_notes_at(n->_idx);
1246       if (nn == nullptr || nn->jvms() == nullptr)  return;
1247       if (_pending_jvms != nullptr &&
1248           _pending_jvms->same_calls_as(nn->jvms())) {
1249         // Repeated JVMS?  Stretch it up here.
1250         _pending_offset = pc_offset;
1251       } else {
1252         if (_pending_jvms != nullptr &&
1253             _pending_offset < pc_offset) {
1254           emit_non_safepoint();
1255         }
1256         _pending_jvms = nullptr;
1257         if (pc_offset > C->debug_info()->last_pc_offset()) {
1258           // This is the only way _pending_jvms can become non-null:
1259           _pending_jvms = nn->jvms();
1260           _pending_offset = pc_offset;
1261         }
1262       }
1263     }
1264 
1265     // Stay out of the way of real safepoints:
1266     void observe_safepoint(JVMState* jvms, int pc_offset) {
1267       if (_pending_jvms != nullptr &&
1268           !_pending_jvms->same_calls_as(jvms) &&
1269           _pending_offset < pc_offset) {
1270         emit_non_safepoint();
1271       }
1272       _pending_jvms = nullptr;
1273     }
1274 
1275     void flush_at_end() {
1276       if (_pending_jvms != nullptr) {
1277         emit_non_safepoint();
1278       }
1279       _pending_jvms = nullptr;
1280     }
1281 };
1282 
1283 void NonSafepointEmitter::emit_non_safepoint() {
1284   JVMState* youngest_jvms = _pending_jvms;
1285   int       pc_offset     = _pending_offset;
1286 
1287   // Clear it now:
1288   _pending_jvms = nullptr;
1289 
1290   DebugInformationRecorder* debug_info = C->debug_info();
1291   assert(debug_info->recording_non_safepoints(), "sanity");
1292 
1293   debug_info->add_non_safepoint(pc_offset);
1294   int max_depth = youngest_jvms->depth();
1295 
1296   // Visit scopes from oldest to youngest.
1297   for (int depth = 1; depth <= max_depth; depth++) {
1298     JVMState* jvms = youngest_jvms->of_depth(depth);
1299     ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1300     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1301     methodHandle null_mh;
1302     debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1303   }
1304 
1305   // Mark the end of the scope set.
1306   debug_info->end_non_safepoint(pc_offset);
1307 }
1308 
1309 //------------------------------init_buffer------------------------------------
1310 void PhaseOutput::estimate_buffer_size(int& const_req) {
1311 
1312   // Set the initially allocated size
1313   const_req = initial_const_capacity;
1314 
1315   // The extra spacing after the code is necessary on some platforms.
1316   // Sometimes we need to patch in a jump after the last instruction,
1317   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1318 
1319   // Compute the byte offset where we can store the deopt pc.
1320   if (C->fixed_slots() != 0) {
1321     _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1322   }
1323 
1324   // Compute prolog code size
1325   _method_size = 0;
1326   _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1327   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1328 
1329   if (C->has_mach_constant_base_node()) {
1330     uint add_size = 0;
1331     // Fill the constant table.
1332     // Note:  This must happen before shorten_branches.
1333     for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1334       Block* b = C->cfg()->get_block(i);
1335 
1336       for (uint j = 0; j < b->number_of_nodes(); j++) {
1337         Node* n = b->get_node(j);
1338 
1339         // If the node is a MachConstantNode evaluate the constant
1340         // value section.
1341         if (n->is_MachConstant()) {
1342           MachConstantNode* machcon = n->as_MachConstant();
1343           machcon->eval_constant(C);
1344         } else if (n->is_Mach()) {
1345           // On Power there are more nodes that issue constants.
1346           add_size += (n->as_Mach()->ins_num_consts() * 8);
1347         }
1348       }
1349     }
1350 
1351     // Calculate the offsets of the constants and the size of the
1352     // constant table (including the padding to the next section).
1353     constant_table().calculate_offsets_and_size();
1354     const_req = constant_table().size() + add_size;
1355   }
1356 
1357   // Initialize the space for the BufferBlob used to find and verify
1358   // instruction size in MachNode::emit_size()
1359   init_scratch_buffer_blob(const_req);
1360 }
1361 
1362 CodeBuffer* PhaseOutput::init_buffer() {
1363   int stub_req  = _buf_sizes._stub;
1364   int code_req  = _buf_sizes._code;
1365   int const_req = _buf_sizes._const;
1366 
1367   int pad_req   = NativeCall::instruction_size;
1368 
1369   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1370   stub_req += bs->estimate_stub_size();
1371 
1372   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1373   // class HandlerImpl is platform-specific and defined in the *.ad files.
1374   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1375   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1376   stub_req += MAX_stubs_size;   // ensure per-stub margin
1377   code_req += MAX_inst_size;    // ensure per-instruction margin
1378 
1379   if (StressCodeBuffers)
1380     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1381 
1382   int total_req =
1383           const_req +
1384           code_req +
1385           pad_req +
1386           stub_req +
1387           exception_handler_req +
1388           deopt_handler_req;               // deopt handler
1389 
1390   if (C->has_method_handle_invokes())
1391     total_req += deopt_handler_req;  // deopt MH handler
1392 
1393   CodeBuffer* cb = code_buffer();
1394   cb->initialize(total_req, _buf_sizes._reloc);
1395 
1396   // Have we run out of code space?
1397   if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1398     C->record_failure("CodeCache is full");
1399     return nullptr;
1400   }
1401   // Configure the code buffer.
1402   cb->initialize_consts_size(const_req);
1403   cb->initialize_stubs_size(stub_req);
1404   cb->initialize_oop_recorder(C->env()->oop_recorder());
1405 
1406   // fill in the nop array for bundling computations
1407   MachNode *_nop_list[Bundle::_nop_count];
1408   Bundle::initialize_nops(_nop_list);
1409 
1410   return cb;
1411 }
1412 
1413 //------------------------------fill_buffer------------------------------------
1414 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1415   // blk_starts[] contains offsets calculated during short branches processing,
1416   // offsets should not be increased during following steps.
1417 
1418   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1419   // of a loop. It is used to determine the padding for loop alignment.
1420   Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]);
1421 
1422   compute_loop_first_inst_sizes();
1423 
1424   // Create oopmap set.
1425   _oop_map_set = new OopMapSet();
1426 
1427   // !!!!! This preserves old handling of oopmaps for now
1428   C->debug_info()->set_oopmaps(_oop_map_set);
1429 
1430   uint nblocks  = C->cfg()->number_of_blocks();
1431   // Count and start of implicit null check instructions
1432   uint inct_cnt = 0;
1433   uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1434 
1435   // Count and start of calls
1436   uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1437 
1438   uint  return_offset = 0;
1439   int nop_size = (new MachNopNode())->size(C->regalloc());
1440 
1441   int previous_offset = 0;
1442   int current_offset  = 0;
1443   int last_call_offset = -1;
1444   int last_avoid_back_to_back_offset = -1;
1445 #ifdef ASSERT
1446   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1447   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1448   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1449   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1450 #endif
1451 
1452   // Create an array of unused labels, one for each basic block, if printing is enabled
1453 #if defined(SUPPORT_OPTO_ASSEMBLY)
1454   int* node_offsets      = nullptr;
1455   uint node_offset_limit = C->unique();
1456 
1457   if (C->print_assembly()) {
1458     node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1459   }
1460   if (node_offsets != nullptr) {
1461     // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1462     memset(node_offsets, 0, node_offset_limit*sizeof(int));
1463   }
1464 #endif
1465 
1466   NonSafepointEmitter non_safepoints(C);  // emit non-safepoints lazily
1467 
1468   // Emit the constant table.
1469   if (C->has_mach_constant_base_node()) {
1470     if (!constant_table().emit(*cb)) {
1471       C->record_failure("consts section overflow");
1472       return;
1473     }
1474   }
1475 
1476   // Create an array of labels, one for each basic block
1477   Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1478   for (uint i = 0; i <= nblocks; i++) {
1479     blk_labels[i].init();
1480   }
1481 
1482   // Now fill in the code buffer
1483   Node* delay_slot = nullptr;
1484   for (uint i = 0; i < nblocks; i++) {
1485     Block* block = C->cfg()->get_block(i);
1486     _block = block;
1487     Node* head = block->head();
1488 
1489     // If this block needs to start aligned (i.e, can be reached other
1490     // than by falling-thru from the previous block), then force the
1491     // start of a new bundle.
1492     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1493       cb->flush_bundle(true);
1494     }
1495 
1496 #ifdef ASSERT
1497     if (!block->is_connector()) {
1498       stringStream st;
1499       block->dump_head(C->cfg(), &st);
1500       MacroAssembler(cb).block_comment(st.freeze());
1501     }
1502     jmp_target[i] = 0;
1503     jmp_offset[i] = 0;
1504     jmp_size[i]   = 0;
1505     jmp_rule[i]   = 0;
1506 #endif
1507     int blk_offset = current_offset;
1508 
1509     // Define the label at the beginning of the basic block
1510     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1511 
1512     uint last_inst = block->number_of_nodes();
1513 
1514     // Emit block normally, except for last instruction.
1515     // Emit means "dump code bits into code buffer".
1516     for (uint j = 0; j<last_inst; j++) {
1517       _index = j;
1518 
1519       // Get the node
1520       Node* n = block->get_node(j);
1521 
1522       // See if delay slots are supported
1523       if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1524         assert(delay_slot == nullptr, "no use of delay slot node");
1525         assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1526 
1527         delay_slot = n;
1528         continue;
1529       }
1530 
1531       // If this starts a new instruction group, then flush the current one
1532       // (but allow split bundles)
1533       if (Pipeline::requires_bundling() && starts_bundle(n))
1534         cb->flush_bundle(false);
1535 
1536       // Special handling for SafePoint/Call Nodes
1537       bool is_mcall = false;
1538       if (n->is_Mach()) {
1539         MachNode *mach = n->as_Mach();
1540         is_mcall = n->is_MachCall();
1541         bool is_sfn = n->is_MachSafePoint();
1542 
1543         // If this requires all previous instructions be flushed, then do so
1544         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1545           cb->flush_bundle(true);
1546           current_offset = cb->insts_size();
1547         }
1548 
1549         // A padding may be needed again since a previous instruction
1550         // could be moved to delay slot.
1551 
1552         // align the instruction if necessary
1553         int padding = mach->compute_padding(current_offset);
1554         // Make sure safepoint node for polling is distinct from a call's
1555         // return by adding a nop if needed.
1556         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1557           padding = nop_size;
1558         }
1559         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1560             current_offset == last_avoid_back_to_back_offset) {
1561           // Avoid back to back some instructions.
1562           padding = nop_size;
1563         }
1564 
1565         if (padding > 0) {
1566           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1567           int nops_cnt = padding / nop_size;
1568           MachNode *nop = new MachNopNode(nops_cnt);
1569           block->insert_node(nop, j++);
1570           last_inst++;
1571           C->cfg()->map_node_to_block(nop, block);
1572           // Ensure enough space.
1573           cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1574           if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1575             C->record_failure("CodeCache is full");
1576             return;
1577           }
1578           nop->emit(*cb, C->regalloc());
1579           cb->flush_bundle(true);
1580           current_offset = cb->insts_size();
1581         }
1582 
1583         bool observe_safepoint = is_sfn;
1584         // Remember the start of the last call in a basic block
1585         if (is_mcall) {
1586           MachCallNode *mcall = mach->as_MachCall();
1587 
1588           if (mcall->entry_point() != nullptr) {
1589             // This destination address is NOT PC-relative
1590             mcall->method_set((intptr_t)mcall->entry_point());
1591           }
1592 
1593           // Save the return address
1594           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1595 
1596           observe_safepoint = mcall->guaranteed_safepoint();
1597         }
1598 
1599         // sfn will be valid whenever mcall is valid now because of inheritance
1600         if (observe_safepoint) {
1601           // Handle special safepoint nodes for synchronization
1602           if (!is_mcall) {
1603             MachSafePointNode *sfn = mach->as_MachSafePoint();
1604             // !!!!! Stubs only need an oopmap right now, so bail out
1605             if (sfn->jvms()->method() == nullptr) {
1606               // Write the oopmap directly to the code blob??!!
1607               continue;
1608             }
1609           } // End synchronization
1610 
1611           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1612                                            current_offset);
1613           Process_OopMap_Node(mach, current_offset);
1614         } // End if safepoint
1615 
1616           // If this is a null check, then add the start of the previous instruction to the list
1617         else if( mach->is_MachNullCheck() ) {
1618           inct_starts[inct_cnt++] = previous_offset;
1619         }
1620 
1621           // If this is a branch, then fill in the label with the target BB's label
1622         else if (mach->is_MachBranch()) {
1623           // This requires the TRUE branch target be in succs[0]
1624           uint block_num = block->non_connector_successor(0)->_pre_order;
1625 
1626           // Try to replace long branch if delay slot is not used,
1627           // it is mostly for back branches since forward branch's
1628           // distance is not updated yet.
1629           bool delay_slot_is_used = valid_bundle_info(n) &&
1630                                     C->output()->node_bundling(n)->use_unconditional_delay();
1631           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1632             assert(delay_slot == nullptr, "not expecting delay slot node");
1633             int br_size = n->size(C->regalloc());
1634             int offset = blk_starts[block_num] - current_offset;
1635             if (block_num >= i) {
1636               // Current and following block's offset are not
1637               // finalized yet, adjust distance by the difference
1638               // between calculated and final offsets of current block.
1639               offset -= (blk_starts[i] - blk_offset);
1640             }
1641             // In the following code a nop could be inserted before
1642             // the branch which will increase the backward distance.
1643             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1644             if (needs_padding && offset <= 0)
1645               offset -= nop_size;
1646 
1647             if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1648               // We've got a winner.  Replace this branch.
1649               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1650 
1651               // Update the jmp_size.
1652               int new_size = replacement->size(C->regalloc());
1653               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1654               // Insert padding between avoid_back_to_back branches.
1655               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1656                 MachNode *nop = new MachNopNode();
1657                 block->insert_node(nop, j++);
1658                 C->cfg()->map_node_to_block(nop, block);
1659                 last_inst++;
1660                 nop->emit(*cb, C->regalloc());
1661                 cb->flush_bundle(true);
1662                 current_offset = cb->insts_size();
1663               }
1664 #ifdef ASSERT
1665               jmp_target[i] = block_num;
1666               jmp_offset[i] = current_offset - blk_offset;
1667               jmp_size[i]   = new_size;
1668               jmp_rule[i]   = mach->rule();
1669 #endif
1670               block->map_node(replacement, j);
1671               mach->subsume_by(replacement, C);
1672               n    = replacement;
1673               mach = replacement;
1674             }
1675           }
1676           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1677         } else if (mach->ideal_Opcode() == Op_Jump) {
1678           for (uint h = 0; h < block->_num_succs; h++) {
1679             Block* succs_block = block->_succs[h];
1680             for (uint j = 1; j < succs_block->num_preds(); j++) {
1681               Node* jpn = succs_block->pred(j);
1682               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1683                 uint block_num = succs_block->non_connector()->_pre_order;
1684                 Label *blkLabel = &blk_labels[block_num];
1685                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1686               }
1687             }
1688           }
1689         }
1690 #ifdef ASSERT
1691           // Check that oop-store precedes the card-mark
1692         else if (mach->ideal_Opcode() == Op_StoreCM) {
1693           uint storeCM_idx = j;
1694           int count = 0;
1695           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1696             Node *oop_store = mach->in(prec);  // Precedence edge
1697             if (oop_store == nullptr) continue;
1698             count++;
1699             uint i4;
1700             for (i4 = 0; i4 < last_inst; ++i4) {
1701               if (block->get_node(i4) == oop_store) {
1702                 break;
1703               }
1704             }
1705             // Note: This test can provide a false failure if other precedence
1706             // edges have been added to the storeCMNode.
1707             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1708           }
1709           assert(count > 0, "storeCM expects at least one precedence edge");
1710         }
1711 #endif
1712         else if (!n->is_Proj()) {
1713           // Remember the beginning of the previous instruction, in case
1714           // it's followed by a flag-kill and a null-check.  Happens on
1715           // Intel all the time, with add-to-memory kind of opcodes.
1716           previous_offset = current_offset;
1717         }
1718 
1719         // Not an else-if!
1720         // If this is a trap based cmp then add its offset to the list.
1721         if (mach->is_TrapBasedCheckNode()) {
1722           inct_starts[inct_cnt++] = current_offset;
1723         }
1724       }
1725 
1726       // Verify that there is sufficient space remaining
1727       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1728       if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1729         C->record_failure("CodeCache is full");
1730         return;
1731       }
1732 
1733       // Save the offset for the listing
1734 #if defined(SUPPORT_OPTO_ASSEMBLY)
1735       if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1736         node_offsets[n->_idx] = cb->insts_size();
1737       }
1738 #endif
1739       assert(!C->failing(), "Should not reach here if failing.");
1740 
1741       // "Normal" instruction case
1742       DEBUG_ONLY(uint instr_offset = cb->insts_size());
1743       n->emit(*cb, C->regalloc());
1744       current_offset = cb->insts_size();
1745 
1746       // Above we only verified that there is enough space in the instruction section.
1747       // However, the instruction may emit stubs that cause code buffer expansion.
1748       // Bail out here if expansion failed due to a lack of code cache space.
1749       if (C->failing()) {
1750         return;
1751       }
1752 
1753       assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1754              "ret_addr_offset() not within emitted code");
1755 #ifdef ASSERT
1756       uint n_size = n->size(C->regalloc());
1757       if (n_size < (current_offset-instr_offset)) {
1758         MachNode* mach = n->as_Mach();
1759         n->dump();
1760         mach->dump_format(C->regalloc(), tty);
1761         tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1762         Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty);
1763         tty->print_cr(" ------------------- ");
1764         BufferBlob* blob = this->scratch_buffer_blob();
1765         address blob_begin = blob->content_begin();
1766         Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1767         assert(false, "wrong size of mach node");
1768       }
1769 #endif
1770       non_safepoints.observe_instruction(n, current_offset);
1771 
1772       // mcall is last "call" that can be a safepoint
1773       // record it so we can see if a poll will directly follow it
1774       // in which case we'll need a pad to make the PcDesc sites unique
1775       // see  5010568. This can be slightly inaccurate but conservative
1776       // in the case that return address is not actually at current_offset.
1777       // This is a small price to pay.
1778 
1779       if (is_mcall) {
1780         last_call_offset = current_offset;
1781       }
1782 
1783       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1784         // Avoid back to back some instructions.
1785         last_avoid_back_to_back_offset = current_offset;
1786       }
1787 
1788       // See if this instruction has a delay slot
1789       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1790         guarantee(delay_slot != nullptr, "expecting delay slot node");
1791 
1792         // Back up 1 instruction
1793         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1794 
1795         // Save the offset for the listing
1796 #if defined(SUPPORT_OPTO_ASSEMBLY)
1797         if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) {
1798           node_offsets[delay_slot->_idx] = cb->insts_size();
1799         }
1800 #endif
1801 
1802         // Support a SafePoint in the delay slot
1803         if (delay_slot->is_MachSafePoint()) {
1804           MachNode *mach = delay_slot->as_Mach();
1805           // !!!!! Stubs only need an oopmap right now, so bail out
1806           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) {
1807             // Write the oopmap directly to the code blob??!!
1808             delay_slot = nullptr;
1809             continue;
1810           }
1811 
1812           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1813           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1814                                            adjusted_offset);
1815           // Generate an OopMap entry
1816           Process_OopMap_Node(mach, adjusted_offset);
1817         }
1818 
1819         // Insert the delay slot instruction
1820         delay_slot->emit(*cb, C->regalloc());
1821 
1822         // Don't reuse it
1823         delay_slot = nullptr;
1824       }
1825 
1826     } // End for all instructions in block
1827 
1828     // If the next block is the top of a loop, pad this block out to align
1829     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1830     if (i < nblocks-1) {
1831       Block *nb = C->cfg()->get_block(i + 1);
1832       int padding = nb->alignment_padding(current_offset);
1833       if( padding > 0 ) {
1834         MachNode *nop = new MachNopNode(padding / nop_size);
1835         block->insert_node(nop, block->number_of_nodes());
1836         C->cfg()->map_node_to_block(nop, block);
1837         nop->emit(*cb, C->regalloc());
1838         current_offset = cb->insts_size();
1839       }
1840     }
1841     // Verify that the distance for generated before forward
1842     // short branches is still valid.
1843     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1844 
1845     // Save new block start offset
1846     blk_starts[i] = blk_offset;
1847   } // End of for all blocks
1848   blk_starts[nblocks] = current_offset;
1849 
1850   non_safepoints.flush_at_end();
1851 
1852   // Offset too large?
1853   if (C->failing())  return;
1854 
1855   // Define a pseudo-label at the end of the code
1856   MacroAssembler(cb).bind( blk_labels[nblocks] );
1857 
1858   // Compute the size of the first block
1859   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1860 
1861 #ifdef ASSERT
1862   for (uint i = 0; i < nblocks; i++) { // For all blocks
1863     if (jmp_target[i] != 0) {
1864       int br_size = jmp_size[i];
1865       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1866       if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1867         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1868         assert(false, "Displacement too large for short jmp");
1869       }
1870     }
1871   }
1872 #endif
1873 
1874   if (!cb->finalize_stubs()) {
1875     C->record_failure("CodeCache is full");
1876     return;
1877   }
1878 
1879   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1880   bs->emit_stubs(*cb);
1881   if (C->failing())  return;
1882 
1883   // Fill in stubs.
1884   _stub_list.emit(*cb);
1885   if (C->failing())  return;
1886 
1887 #ifndef PRODUCT
1888   // Information on the size of the method, without the extraneous code
1889   Scheduling::increment_method_size(cb->insts_size());
1890 #endif
1891 
1892   // ------------------
1893   // Fill in exception table entries.
1894   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1895 
1896   // Only java methods have exception handlers and deopt handlers
1897   // class HandlerImpl is platform-specific and defined in the *.ad files.
1898   if (C->method()) {
1899     // Emit the exception handler code.
1900     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1901     if (C->failing()) {
1902       return; // CodeBuffer::expand failed
1903     }
1904     // Emit the deopt handler code.
1905     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1906 
1907     // Emit the MethodHandle deopt handler code (if required).
1908     if (C->has_method_handle_invokes() && !C->failing()) {
1909       // We can use the same code as for the normal deopt handler, we
1910       // just need a different entry point address.
1911       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1912     }
1913   }
1914 
1915   // One last check for failed CodeBuffer::expand:
1916   if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1917     C->record_failure("CodeCache is full");
1918     return;
1919   }
1920 
1921 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1922   if (C->print_assembly()) {
1923     tty->cr();
1924     tty->print_cr("============================= C2-compiled nmethod ==============================");
1925   }
1926 #endif
1927 
1928 #if defined(SUPPORT_OPTO_ASSEMBLY)
1929   // Dump the assembly code, including basic-block numbers
1930   if (C->print_assembly()) {
1931     ttyLocker ttyl;  // keep the following output all in one block
1932     if (!VMThread::should_terminate()) {  // test this under the tty lock
1933       // print_metadata and dump_asm may safepoint which makes us loose the ttylock.
1934       // We call them first and write to a stringStream, then we retake the lock to
1935       // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe.
1936       ResourceMark rm;
1937       stringStream method_metadata_str;
1938       if (C->method() != nullptr) {
1939         C->method()->print_metadata(&method_metadata_str);
1940       }
1941       stringStream dump_asm_str;
1942       dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit);
1943 
1944       NoSafepointVerifier nsv;
1945       ttyLocker ttyl2;
1946       // This output goes directly to the tty, not the compiler log.
1947       // To enable tools to match it up with the compilation activity,
1948       // be sure to tag this tty output with the compile ID.
1949       if (xtty != nullptr) {
1950         xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1951                    C->is_osr_compilation() ? " compile_kind='osr'" : "");
1952       }
1953       if (C->method() != nullptr) {
1954         tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1955         tty->print_raw(method_metadata_str.freeze());
1956       } else if (C->stub_name() != nullptr) {
1957         tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1958       }
1959       tty->cr();
1960       tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1961       tty->print_raw(dump_asm_str.freeze());
1962       tty->print_cr("--------------------------------------------------------------------------------");
1963       if (xtty != nullptr) {
1964         xtty->tail("opto_assembly");
1965       }
1966     }
1967   }
1968 #endif
1969 }
1970 
1971 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1972   _inc_table.set_size(cnt);
1973 
1974   uint inct_cnt = 0;
1975   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1976     Block* block = C->cfg()->get_block(i);
1977     Node *n = nullptr;
1978     int j;
1979 
1980     // Find the branch; ignore trailing NOPs.
1981     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1982       n = block->get_node(j);
1983       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1984         break;
1985       }
1986     }
1987 
1988     // If we didn't find anything, continue
1989     if (j < 0) {
1990       continue;
1991     }
1992 
1993     // Compute ExceptionHandlerTable subtable entry and add it
1994     // (skip empty blocks)
1995     if (n->is_Catch()) {
1996 
1997       // Get the offset of the return from the call
1998       uint call_return = call_returns[block->_pre_order];
1999 #ifdef ASSERT
2000       assert( call_return > 0, "no call seen for this basic block" );
2001       while (block->get_node(--j)->is_MachProj()) ;
2002       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
2003 #endif
2004       // last instruction is a CatchNode, find it's CatchProjNodes
2005       int nof_succs = block->_num_succs;
2006       // allocate space
2007       GrowableArray<intptr_t> handler_bcis(nof_succs);
2008       GrowableArray<intptr_t> handler_pcos(nof_succs);
2009       // iterate through all successors
2010       for (int j = 0; j < nof_succs; j++) {
2011         Block* s = block->_succs[j];
2012         bool found_p = false;
2013         for (uint k = 1; k < s->num_preds(); k++) {
2014           Node* pk = s->pred(k);
2015           if (pk->is_CatchProj() && pk->in(0) == n) {
2016             const CatchProjNode* p = pk->as_CatchProj();
2017             found_p = true;
2018             // add the corresponding handler bci & pco information
2019             if (p->_con != CatchProjNode::fall_through_index) {
2020               // p leads to an exception handler (and is not fall through)
2021               assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
2022               // no duplicates, please
2023               if (!handler_bcis.contains(p->handler_bci())) {
2024                 uint block_num = s->non_connector()->_pre_order;
2025                 handler_bcis.append(p->handler_bci());
2026                 handler_pcos.append(blk_labels[block_num].loc_pos());
2027               }
2028             }
2029           }
2030         }
2031         assert(found_p, "no matching predecessor found");
2032         // Note:  Due to empty block removal, one block may have
2033         // several CatchProj inputs, from the same Catch.
2034       }
2035 
2036       // Set the offset of the return from the call
2037       assert(handler_bcis.find(-1) != -1, "must have default handler");
2038       _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
2039       continue;
2040     }
2041 
2042     // Handle implicit null exception table updates
2043     if (n->is_MachNullCheck()) {
2044       uint block_num = block->non_connector_successor(0)->_pre_order;
2045       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2046       continue;
2047     }
2048     // Handle implicit exception table updates: trap instructions.
2049     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
2050       uint block_num = block->non_connector_successor(0)->_pre_order;
2051       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2052       continue;
2053     }
2054   } // End of for all blocks fill in exception table entries
2055 }
2056 
2057 // Static Variables
2058 #ifndef PRODUCT
2059 uint Scheduling::_total_nop_size = 0;
2060 uint Scheduling::_total_method_size = 0;
2061 uint Scheduling::_total_branches = 0;
2062 uint Scheduling::_total_unconditional_delays = 0;
2063 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
2064 #endif
2065 
2066 // Initializer for class Scheduling
2067 
2068 Scheduling::Scheduling(Arena *arena, Compile &compile)
2069         : _arena(arena),
2070           _cfg(compile.cfg()),
2071           _regalloc(compile.regalloc()),
2072           _scheduled(arena),
2073           _available(arena),
2074           _reg_node(arena),
2075           _pinch_free_list(arena),
2076           _next_node(nullptr),
2077           _bundle_instr_count(0),
2078           _bundle_cycle_number(0),
2079           _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2080 #ifndef PRODUCT
2081         , _branches(0)
2082         , _unconditional_delays(0)
2083 #endif
2084 {
2085   // Create a MachNopNode
2086   _nop = new MachNopNode();
2087 
2088   // Now that the nops are in the array, save the count
2089   // (but allow entries for the nops)
2090   _node_bundling_limit = compile.unique();
2091   uint node_max = _regalloc->node_regs_max_index();
2092 
2093   compile.output()->set_node_bundling_limit(_node_bundling_limit);
2094 
2095   // This one is persistent within the Compile class
2096   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2097 
2098   // Allocate space for fixed-size arrays
2099   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
2100   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2101 
2102   // Clear the arrays
2103   for (uint i = 0; i < node_max; i++) {
2104     ::new (&_node_bundling_base[i]) Bundle();
2105   }
2106   memset(_uses,               0, node_max * sizeof(short));
2107   memset(_current_latency,    0, node_max * sizeof(unsigned short));
2108 
2109   // Clear the bundling information
2110   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2111 
2112   // Get the last node
2113   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2114 
2115   _next_node = block->get_node(block->number_of_nodes() - 1);
2116 }
2117 
2118 #ifndef PRODUCT
2119 // Scheduling destructor
2120 Scheduling::~Scheduling() {
2121   _total_branches             += _branches;
2122   _total_unconditional_delays += _unconditional_delays;
2123 }
2124 #endif
2125 
2126 // Step ahead "i" cycles
2127 void Scheduling::step(uint i) {
2128 
2129   Bundle *bundle = node_bundling(_next_node);
2130   bundle->set_starts_bundle();
2131 
2132   // Update the bundle record, but leave the flags information alone
2133   if (_bundle_instr_count > 0) {
2134     bundle->set_instr_count(_bundle_instr_count);
2135     bundle->set_resources_used(_bundle_use.resourcesUsed());
2136   }
2137 
2138   // Update the state information
2139   _bundle_instr_count = 0;
2140   _bundle_cycle_number += i;
2141   _bundle_use.step(i);
2142 }
2143 
2144 void Scheduling::step_and_clear() {
2145   Bundle *bundle = node_bundling(_next_node);
2146   bundle->set_starts_bundle();
2147 
2148   // Update the bundle record
2149   if (_bundle_instr_count > 0) {
2150     bundle->set_instr_count(_bundle_instr_count);
2151     bundle->set_resources_used(_bundle_use.resourcesUsed());
2152 
2153     _bundle_cycle_number += 1;
2154   }
2155 
2156   // Clear the bundling information
2157   _bundle_instr_count = 0;
2158   _bundle_use.reset();
2159 
2160   memcpy(_bundle_use_elements,
2161          Pipeline_Use::elaborated_elements,
2162          sizeof(Pipeline_Use::elaborated_elements));
2163 }
2164 
2165 // Perform instruction scheduling and bundling over the sequence of
2166 // instructions in backwards order.
2167 void PhaseOutput::ScheduleAndBundle() {
2168 
2169   // Don't optimize this if it isn't a method
2170   if (!C->method())
2171     return;
2172 
2173   // Don't optimize this if scheduling is disabled
2174   if (!C->do_scheduling())
2175     return;
2176 
2177   // Scheduling code works only with pairs (8 bytes) maximum.
2178   // And when the scalable vector register is used, we may spill/unspill
2179   // the whole reg regardless of the max vector size.
2180   if (C->max_vector_size() > 8 ||
2181       (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) {
2182     return;
2183   }
2184 
2185   Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2186 
2187   // Create a data structure for all the scheduling information
2188   Scheduling scheduling(Thread::current()->resource_area(), *C);
2189 
2190   // Walk backwards over each basic block, computing the needed alignment
2191   // Walk over all the basic blocks
2192   scheduling.DoScheduling();
2193 
2194 #ifndef PRODUCT
2195   if (C->trace_opto_output()) {
2196     // Buffer and print all at once
2197     ResourceMark rm;
2198     stringStream ss;
2199     ss.print("\n---- After ScheduleAndBundle ----\n");
2200     print_scheduling(&ss);
2201     tty->print("%s", ss.as_string());
2202   }
2203 #endif
2204 }
2205 
2206 #ifndef PRODUCT
2207 // Separated out so that it can be called directly from debugger
2208 void PhaseOutput::print_scheduling() {
2209   print_scheduling(tty);
2210 }
2211 
2212 void PhaseOutput::print_scheduling(outputStream* output_stream) {
2213   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2214     output_stream->print("\nBB#%03d:\n", i);
2215     Block* block = C->cfg()->get_block(i);
2216     for (uint j = 0; j < block->number_of_nodes(); j++) {
2217       Node* n = block->get_node(j);
2218       OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2219       output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2220       n->dump("\n", false, output_stream);
2221     }
2222   }
2223 }
2224 #endif
2225 
2226 // See if this node fits into the present instruction bundle
2227 bool Scheduling::NodeFitsInBundle(Node *n) {
2228   uint n_idx = n->_idx;
2229 
2230   // If this is the unconditional delay instruction, then it fits
2231   if (n == _unconditional_delay_slot) {
2232 #ifndef PRODUCT
2233     if (_cfg->C->trace_opto_output())
2234       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2235 #endif
2236     return (true);
2237   }
2238 
2239   // If the node cannot be scheduled this cycle, skip it
2240   if (_current_latency[n_idx] > _bundle_cycle_number) {
2241 #ifndef PRODUCT
2242     if (_cfg->C->trace_opto_output())
2243       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2244                  n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2245 #endif
2246     return (false);
2247   }
2248 
2249   const Pipeline *node_pipeline = n->pipeline();
2250 
2251   uint instruction_count = node_pipeline->instructionCount();
2252   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2253     instruction_count = 0;
2254   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2255     instruction_count++;
2256 
2257   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2258 #ifndef PRODUCT
2259     if (_cfg->C->trace_opto_output())
2260       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2261                  n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2262 #endif
2263     return (false);
2264   }
2265 
2266   // Don't allow non-machine nodes to be handled this way
2267   if (!n->is_Mach() && instruction_count == 0)
2268     return (false);
2269 
2270   // See if there is any overlap
2271   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2272 
2273   if (delay > 0) {
2274 #ifndef PRODUCT
2275     if (_cfg->C->trace_opto_output())
2276       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2277 #endif
2278     return false;
2279   }
2280 
2281 #ifndef PRODUCT
2282   if (_cfg->C->trace_opto_output())
2283     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2284 #endif
2285 
2286   return true;
2287 }
2288 
2289 Node * Scheduling::ChooseNodeToBundle() {
2290   uint siz = _available.size();
2291 
2292   if (siz == 0) {
2293 
2294 #ifndef PRODUCT
2295     if (_cfg->C->trace_opto_output())
2296       tty->print("#   ChooseNodeToBundle: null\n");
2297 #endif
2298     return (nullptr);
2299   }
2300 
2301   // Fast path, if only 1 instruction in the bundle
2302   if (siz == 1) {
2303 #ifndef PRODUCT
2304     if (_cfg->C->trace_opto_output()) {
2305       tty->print("#   ChooseNodeToBundle (only 1): ");
2306       _available[0]->dump();
2307     }
2308 #endif
2309     return (_available[0]);
2310   }
2311 
2312   // Don't bother, if the bundle is already full
2313   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2314     for ( uint i = 0; i < siz; i++ ) {
2315       Node *n = _available[i];
2316 
2317       // Skip projections, we'll handle them another way
2318       if (n->is_Proj())
2319         continue;
2320 
2321       // This presupposed that instructions are inserted into the
2322       // available list in a legality order; i.e. instructions that
2323       // must be inserted first are at the head of the list
2324       if (NodeFitsInBundle(n)) {
2325 #ifndef PRODUCT
2326         if (_cfg->C->trace_opto_output()) {
2327           tty->print("#   ChooseNodeToBundle: ");
2328           n->dump();
2329         }
2330 #endif
2331         return (n);
2332       }
2333     }
2334   }
2335 
2336   // Nothing fits in this bundle, choose the highest priority
2337 #ifndef PRODUCT
2338   if (_cfg->C->trace_opto_output()) {
2339     tty->print("#   ChooseNodeToBundle: ");
2340     _available[0]->dump();
2341   }
2342 #endif
2343 
2344   return _available[0];
2345 }
2346 
2347 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) {
2348   assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), "");
2349 
2350   OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1));
2351   OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first);
2352   OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1));
2353   OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second);
2354 
2355   // Comparison between stack -> reg and stack -> reg
2356   if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) &&
2357       OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) {
2358     return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo);
2359   }
2360 
2361   // Comparison between reg -> stack and reg -> stack
2362   if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) &&
2363       OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) {
2364     return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo);
2365   }
2366 
2367   return 0; // Not comparable
2368 }
2369 
2370 void Scheduling::AddNodeToAvailableList(Node *n) {
2371   assert( !n->is_Proj(), "projections never directly made available" );
2372 #ifndef PRODUCT
2373   if (_cfg->C->trace_opto_output()) {
2374     tty->print("#   AddNodeToAvailableList: ");
2375     n->dump();
2376   }
2377 #endif
2378 
2379   int latency = _current_latency[n->_idx];
2380 
2381   // Insert in latency order (insertion sort). If two MachSpillCopyNodes
2382   // for stack spilling or unspilling have the same latency, we sort
2383   // them in the order of stack offset. Some ports (e.g. aarch64) may also
2384   // have more opportunities to do ld/st merging
2385   uint i;
2386   for (i = 0; i < _available.size(); i++) {
2387     if (_current_latency[_available[i]->_idx] > latency) {
2388       break;
2389     } else if (_current_latency[_available[i]->_idx] == latency &&
2390                n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() &&
2391                compare_two_spill_nodes(n, _available[i]) > 0) {
2392       break;
2393     }
2394   }
2395 
2396   // Special Check for compares following branches
2397   if( n->is_Mach() && _scheduled.size() > 0 ) {
2398     int op = n->as_Mach()->ideal_Opcode();
2399     Node *last = _scheduled[0];
2400     if( last->is_MachIf() && last->in(1) == n &&
2401         ( op == Op_CmpI ||
2402           op == Op_CmpU ||
2403           op == Op_CmpUL ||
2404           op == Op_CmpP ||
2405           op == Op_CmpF ||
2406           op == Op_CmpD ||
2407           op == Op_CmpL ) ) {
2408 
2409       // Recalculate position, moving to front of same latency
2410       for ( i=0 ; i < _available.size(); i++ )
2411         if (_current_latency[_available[i]->_idx] >= latency)
2412           break;
2413     }
2414   }
2415 
2416   // Insert the node in the available list
2417   _available.insert(i, n);
2418 
2419 #ifndef PRODUCT
2420   if (_cfg->C->trace_opto_output())
2421     dump_available();
2422 #endif
2423 }
2424 
2425 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2426   for ( uint i=0; i < n->len(); i++ ) {
2427     Node *def = n->in(i);
2428     if (!def) continue;
2429     if( def->is_Proj() )        // If this is a machine projection, then
2430       def = def->in(0);         // propagate usage thru to the base instruction
2431 
2432     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2433       continue;
2434     }
2435 
2436     // Compute the latency
2437     uint l = _bundle_cycle_number + n->latency(i);
2438     if (_current_latency[def->_idx] < l)
2439       _current_latency[def->_idx] = l;
2440 
2441     // If this does not have uses then schedule it
2442     if ((--_uses[def->_idx]) == 0)
2443       AddNodeToAvailableList(def);
2444   }
2445 }
2446 
2447 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2448 #ifndef PRODUCT
2449   if (_cfg->C->trace_opto_output()) {
2450     tty->print("#   AddNodeToBundle: ");
2451     n->dump();
2452   }
2453 #endif
2454 
2455   // Remove this from the available list
2456   uint i;
2457   for (i = 0; i < _available.size(); i++)
2458     if (_available[i] == n)
2459       break;
2460   assert(i < _available.size(), "entry in _available list not found");
2461   _available.remove(i);
2462 
2463   // See if this fits in the current bundle
2464   const Pipeline *node_pipeline = n->pipeline();
2465   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2466 
2467   // Check for instructions to be placed in the delay slot. We
2468   // do this before we actually schedule the current instruction,
2469   // because the delay slot follows the current instruction.
2470   if (Pipeline::_branch_has_delay_slot &&
2471       node_pipeline->hasBranchDelay() &&
2472       !_unconditional_delay_slot) {
2473 
2474     uint siz = _available.size();
2475 
2476     // Conditional branches can support an instruction that
2477     // is unconditionally executed and not dependent by the
2478     // branch, OR a conditionally executed instruction if
2479     // the branch is taken.  In practice, this means that
2480     // the first instruction at the branch target is
2481     // copied to the delay slot, and the branch goes to
2482     // the instruction after that at the branch target
2483     if ( n->is_MachBranch() ) {
2484 
2485       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2486       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2487 
2488 #ifndef PRODUCT
2489       _branches++;
2490 #endif
2491 
2492       // At least 1 instruction is on the available list
2493       // that is not dependent on the branch
2494       for (uint i = 0; i < siz; i++) {
2495         Node *d = _available[i];
2496         const Pipeline *avail_pipeline = d->pipeline();
2497 
2498         // Don't allow safepoints in the branch shadow, that will
2499         // cause a number of difficulties
2500         if ( avail_pipeline->instructionCount() == 1 &&
2501              !avail_pipeline->hasMultipleBundles() &&
2502              !avail_pipeline->hasBranchDelay() &&
2503              Pipeline::instr_has_unit_size() &&
2504              d->size(_regalloc) == Pipeline::instr_unit_size() &&
2505              NodeFitsInBundle(d) &&
2506              !node_bundling(d)->used_in_delay()) {
2507 
2508           if (d->is_Mach() && !d->is_MachSafePoint()) {
2509             // A node that fits in the delay slot was found, so we need to
2510             // set the appropriate bits in the bundle pipeline information so
2511             // that it correctly indicates resource usage.  Later, when we
2512             // attempt to add this instruction to the bundle, we will skip
2513             // setting the resource usage.
2514             _unconditional_delay_slot = d;
2515             node_bundling(n)->set_use_unconditional_delay();
2516             node_bundling(d)->set_used_in_unconditional_delay();
2517             _bundle_use.add_usage(avail_pipeline->resourceUse());
2518             _current_latency[d->_idx] = _bundle_cycle_number;
2519             _next_node = d;
2520             ++_bundle_instr_count;
2521 #ifndef PRODUCT
2522             _unconditional_delays++;
2523 #endif
2524             break;
2525           }
2526         }
2527       }
2528     }
2529 
2530     // No delay slot, add a nop to the usage
2531     if (!_unconditional_delay_slot) {
2532       // See if adding an instruction in the delay slot will overflow
2533       // the bundle.
2534       if (!NodeFitsInBundle(_nop)) {
2535 #ifndef PRODUCT
2536         if (_cfg->C->trace_opto_output())
2537           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2538 #endif
2539         step(1);
2540       }
2541 
2542       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2543       _next_node = _nop;
2544       ++_bundle_instr_count;
2545     }
2546 
2547     // See if the instruction in the delay slot requires a
2548     // step of the bundles
2549     if (!NodeFitsInBundle(n)) {
2550 #ifndef PRODUCT
2551       if (_cfg->C->trace_opto_output())
2552         tty->print("#  *** STEP(branch won't fit) ***\n");
2553 #endif
2554       // Update the state information
2555       _bundle_instr_count = 0;
2556       _bundle_cycle_number += 1;
2557       _bundle_use.step(1);
2558     }
2559   }
2560 
2561   // Get the number of instructions
2562   uint instruction_count = node_pipeline->instructionCount();
2563   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2564     instruction_count = 0;
2565 
2566   // Compute the latency information
2567   uint delay = 0;
2568 
2569   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2570     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2571     if (relative_latency < 0)
2572       relative_latency = 0;
2573 
2574     delay = _bundle_use.full_latency(relative_latency, node_usage);
2575 
2576     // Does not fit in this bundle, start a new one
2577     if (delay > 0) {
2578       step(delay);
2579 
2580 #ifndef PRODUCT
2581       if (_cfg->C->trace_opto_output())
2582         tty->print("#  *** STEP(%d) ***\n", delay);
2583 #endif
2584     }
2585   }
2586 
2587   // If this was placed in the delay slot, ignore it
2588   if (n != _unconditional_delay_slot) {
2589 
2590     if (delay == 0) {
2591       if (node_pipeline->hasMultipleBundles()) {
2592 #ifndef PRODUCT
2593         if (_cfg->C->trace_opto_output())
2594           tty->print("#  *** STEP(multiple instructions) ***\n");
2595 #endif
2596         step(1);
2597       }
2598 
2599       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2600 #ifndef PRODUCT
2601         if (_cfg->C->trace_opto_output())
2602           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2603                      instruction_count + _bundle_instr_count,
2604                      Pipeline::_max_instrs_per_cycle);
2605 #endif
2606         step(1);
2607       }
2608     }
2609 
2610     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2611       _bundle_instr_count++;
2612 
2613     // Set the node's latency
2614     _current_latency[n->_idx] = _bundle_cycle_number;
2615 
2616     // Now merge the functional unit information
2617     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2618       _bundle_use.add_usage(node_usage);
2619 
2620     // Increment the number of instructions in this bundle
2621     _bundle_instr_count += instruction_count;
2622 
2623     // Remember this node for later
2624     if (n->is_Mach())
2625       _next_node = n;
2626   }
2627 
2628   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2629   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2630   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2631   // into the block.  All other scheduled nodes get put in the schedule here.
2632   int op = n->Opcode();
2633   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2634       (op != Op_Node &&         // Not an unused antidepedence node and
2635        // not an unallocated boxlock
2636        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2637 
2638     // Push any trailing projections
2639     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2640       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2641         Node *foi = n->fast_out(i);
2642         if( foi->is_Proj() )
2643           _scheduled.push(foi);
2644       }
2645     }
2646 
2647     // Put the instruction in the schedule list
2648     _scheduled.push(n);
2649   }
2650 
2651 #ifndef PRODUCT
2652   if (_cfg->C->trace_opto_output())
2653     dump_available();
2654 #endif
2655 
2656   // Walk all the definitions, decrementing use counts, and
2657   // if a definition has a 0 use count, place it in the available list.
2658   DecrementUseCounts(n,bb);
2659 }
2660 
2661 // This method sets the use count within a basic block.  We will ignore all
2662 // uses outside the current basic block.  As we are doing a backwards walk,
2663 // any node we reach that has a use count of 0 may be scheduled.  This also
2664 // avoids the problem of cyclic references from phi nodes, as long as phi
2665 // nodes are at the front of the basic block.  This method also initializes
2666 // the available list to the set of instructions that have no uses within this
2667 // basic block.
2668 void Scheduling::ComputeUseCount(const Block *bb) {
2669 #ifndef PRODUCT
2670   if (_cfg->C->trace_opto_output())
2671     tty->print("# -> ComputeUseCount\n");
2672 #endif
2673 
2674   // Clear the list of available and scheduled instructions, just in case
2675   _available.clear();
2676   _scheduled.clear();
2677 
2678   // No delay slot specified
2679   _unconditional_delay_slot = nullptr;
2680 
2681 #ifdef ASSERT
2682   for( uint i=0; i < bb->number_of_nodes(); i++ )
2683     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2684 #endif
2685 
2686   // Force the _uses count to never go to zero for unscheduable pieces
2687   // of the block
2688   for( uint k = 0; k < _bb_start; k++ )
2689     _uses[bb->get_node(k)->_idx] = 1;
2690   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2691     _uses[bb->get_node(l)->_idx] = 1;
2692 
2693   // Iterate backwards over the instructions in the block.  Don't count the
2694   // branch projections at end or the block header instructions.
2695   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2696     Node *n = bb->get_node(j);
2697     if( n->is_Proj() ) continue; // Projections handled another way
2698 
2699     // Account for all uses
2700     for ( uint k = 0; k < n->len(); k++ ) {
2701       Node *inp = n->in(k);
2702       if (!inp) continue;
2703       assert(inp != n, "no cycles allowed" );
2704       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2705         if (inp->is_Proj()) { // Skip through Proj's
2706           inp = inp->in(0);
2707         }
2708         ++_uses[inp->_idx];     // Count 1 block-local use
2709       }
2710     }
2711 
2712     // If this instruction has a 0 use count, then it is available
2713     if (!_uses[n->_idx]) {
2714       _current_latency[n->_idx] = _bundle_cycle_number;
2715       AddNodeToAvailableList(n);
2716     }
2717 
2718 #ifndef PRODUCT
2719     if (_cfg->C->trace_opto_output()) {
2720       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2721       n->dump();
2722     }
2723 #endif
2724   }
2725 
2726 #ifndef PRODUCT
2727   if (_cfg->C->trace_opto_output())
2728     tty->print("# <- ComputeUseCount\n");
2729 #endif
2730 }
2731 
2732 // This routine performs scheduling on each basic block in reverse order,
2733 // using instruction latencies and taking into account function unit
2734 // availability.
2735 void Scheduling::DoScheduling() {
2736 #ifndef PRODUCT
2737   if (_cfg->C->trace_opto_output())
2738     tty->print("# -> DoScheduling\n");
2739 #endif
2740 
2741   Block *succ_bb = nullptr;
2742   Block *bb;
2743   Compile* C = Compile::current();
2744 
2745   // Walk over all the basic blocks in reverse order
2746   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2747     bb = _cfg->get_block(i);
2748 
2749 #ifndef PRODUCT
2750     if (_cfg->C->trace_opto_output()) {
2751       tty->print("#  Schedule BB#%03d (initial)\n", i);
2752       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2753         bb->get_node(j)->dump();
2754       }
2755     }
2756 #endif
2757 
2758     // On the head node, skip processing
2759     if (bb == _cfg->get_root_block()) {
2760       continue;
2761     }
2762 
2763     // Skip empty, connector blocks
2764     if (bb->is_connector())
2765       continue;
2766 
2767     // If the following block is not the sole successor of
2768     // this one, then reset the pipeline information
2769     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2770 #ifndef PRODUCT
2771       if (_cfg->C->trace_opto_output()) {
2772         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2773                    _next_node->_idx, _bundle_instr_count);
2774       }
2775 #endif
2776       step_and_clear();
2777     }
2778 
2779     // Leave untouched the starting instruction, any Phis, a CreateEx node
2780     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2781     _bb_end = bb->number_of_nodes()-1;
2782     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2783       Node *n = bb->get_node(_bb_start);
2784       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2785       // Also, MachIdealNodes do not get scheduled
2786       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2787       MachNode *mach = n->as_Mach();
2788       int iop = mach->ideal_Opcode();
2789       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2790       if( iop == Op_Con ) continue;      // Do not schedule Top
2791       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2792           mach->pipeline() == MachNode::pipeline_class() &&
2793           !n->is_SpillCopy() && !n->is_MachMerge() )  // Breakpoints, Prolog, etc
2794         continue;
2795       break;                    // Funny loop structure to be sure...
2796     }
2797     // Compute last "interesting" instruction in block - last instruction we
2798     // might schedule.  _bb_end points just after last schedulable inst.  We
2799     // normally schedule conditional branches (despite them being forced last
2800     // in the block), because they have delay slots we can fill.  Calls all
2801     // have their delay slots filled in the template expansions, so we don't
2802     // bother scheduling them.
2803     Node *last = bb->get_node(_bb_end);
2804     // Ignore trailing NOPs.
2805     while (_bb_end > 0 && last->is_Mach() &&
2806            last->as_Mach()->ideal_Opcode() == Op_Con) {
2807       last = bb->get_node(--_bb_end);
2808     }
2809     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2810     if( last->is_Catch() ||
2811         (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2812       // There might be a prior call.  Skip it.
2813       while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2814     } else if( last->is_MachNullCheck() ) {
2815       // Backup so the last null-checked memory instruction is
2816       // outside the schedulable range. Skip over the nullcheck,
2817       // projection, and the memory nodes.
2818       Node *mem = last->in(1);
2819       do {
2820         _bb_end--;
2821       } while (mem != bb->get_node(_bb_end));
2822     } else {
2823       // Set _bb_end to point after last schedulable inst.
2824       _bb_end++;
2825     }
2826 
2827     assert( _bb_start <= _bb_end, "inverted block ends" );
2828 
2829     // Compute the register antidependencies for the basic block
2830     ComputeRegisterAntidependencies(bb);
2831     if (C->failing())  return;  // too many D-U pinch points
2832 
2833     // Compute the usage within the block, and set the list of all nodes
2834     // in the block that have no uses within the block.
2835     ComputeUseCount(bb);
2836 
2837     // Schedule the remaining instructions in the block
2838     while ( _available.size() > 0 ) {
2839       Node *n = ChooseNodeToBundle();
2840       guarantee(n != nullptr, "no nodes available");
2841       AddNodeToBundle(n,bb);
2842     }
2843 
2844     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2845 #ifdef ASSERT
2846     for( uint l = _bb_start; l < _bb_end; l++ ) {
2847       Node *n = bb->get_node(l);
2848       uint m;
2849       for( m = 0; m < _bb_end-_bb_start; m++ )
2850         if( _scheduled[m] == n )
2851           break;
2852       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2853     }
2854 #endif
2855 
2856     // Now copy the instructions (in reverse order) back to the block
2857     for ( uint k = _bb_start; k < _bb_end; k++ )
2858       bb->map_node(_scheduled[_bb_end-k-1], k);
2859 
2860 #ifndef PRODUCT
2861     if (_cfg->C->trace_opto_output()) {
2862       tty->print("#  Schedule BB#%03d (final)\n", i);
2863       uint current = 0;
2864       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2865         Node *n = bb->get_node(j);
2866         if( valid_bundle_info(n) ) {
2867           Bundle *bundle = node_bundling(n);
2868           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2869             tty->print("*** Bundle: ");
2870             bundle->dump();
2871           }
2872           n->dump();
2873         }
2874       }
2875     }
2876 #endif
2877 #ifdef ASSERT
2878     verify_good_schedule(bb,"after block local scheduling");
2879 #endif
2880   }
2881 
2882 #ifndef PRODUCT
2883   if (_cfg->C->trace_opto_output())
2884     tty->print("# <- DoScheduling\n");
2885 #endif
2886 
2887   // Record final node-bundling array location
2888   _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2889 
2890 } // end DoScheduling
2891 
2892 // Verify that no live-range used in the block is killed in the block by a
2893 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2894 
2895 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2896 static bool edge_from_to( Node *from, Node *to ) {
2897   for( uint i=0; i<from->len(); i++ )
2898     if( from->in(i) == to )
2899       return true;
2900   return false;
2901 }
2902 
2903 #ifdef ASSERT
2904 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2905   // Check for bad kills
2906   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2907     Node *prior_use = _reg_node[def];
2908     if( prior_use && !edge_from_to(prior_use,n) ) {
2909       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2910       n->dump();
2911       tty->print_cr("...");
2912       prior_use->dump();
2913       assert(edge_from_to(prior_use,n), "%s", msg);
2914     }
2915     _reg_node.map(def,nullptr); // Kill live USEs
2916   }
2917 }
2918 
2919 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2920 
2921   // Zap to something reasonable for the verify code
2922   _reg_node.clear();
2923 
2924   // Walk over the block backwards.  Check to make sure each DEF doesn't
2925   // kill a live value (other than the one it's supposed to).  Add each
2926   // USE to the live set.
2927   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2928     Node *n = b->get_node(i);
2929     int n_op = n->Opcode();
2930     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2931       // Fat-proj kills a slew of registers
2932       RegMaskIterator rmi(n->out_RegMask());
2933       while (rmi.has_next()) {
2934         OptoReg::Name kill = rmi.next();
2935         verify_do_def(n, kill, msg);
2936       }
2937     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2938       // Get DEF'd registers the normal way
2939       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2940       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2941     }
2942 
2943     // Now make all USEs live
2944     for( uint i=1; i<n->req(); i++ ) {
2945       Node *def = n->in(i);
2946       assert(def != 0, "input edge required");
2947       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2948       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2949       if( OptoReg::is_valid(reg_lo) ) {
2950         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2951         _reg_node.map(reg_lo,n);
2952       }
2953       if( OptoReg::is_valid(reg_hi) ) {
2954         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2955         _reg_node.map(reg_hi,n);
2956       }
2957     }
2958 
2959   }
2960 
2961   // Zap to something reasonable for the Antidependence code
2962   _reg_node.clear();
2963 }
2964 #endif
2965 
2966 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2967 static void add_prec_edge_from_to( Node *from, Node *to ) {
2968   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2969     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2970     from = from->in(0);
2971   }
2972   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2973       !edge_from_to( from, to ) ) // Avoid duplicate edge
2974     from->add_prec(to);
2975 }
2976 
2977 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2978   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2979     return;
2980 
2981   if (OptoReg::is_reg(def_reg)) {
2982     VMReg vmreg = OptoReg::as_VMReg(def_reg);
2983     if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
2984       // This is one of the high slots of a vector register.
2985       // ScheduleAndBundle already checked there are no live wide
2986       // vectors in this method so it can be safely ignored.
2987       return;
2988     }
2989   }
2990 
2991   Node *pinch = _reg_node[def_reg]; // Get pinch point
2992   if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2993       is_def ) {    // Check for a true def (not a kill)
2994     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2995     return;
2996   }
2997 
2998   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2999   debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
3000 
3001   // After some number of kills there _may_ be a later def
3002   Node *later_def = nullptr;
3003 
3004   Compile* C = Compile::current();
3005 
3006   // Finding a kill requires a real pinch-point.
3007   // Check for not already having a pinch-point.
3008   // Pinch points are Op_Node's.
3009   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
3010     later_def = pinch;            // Must be def/kill as optimistic pinch-point
3011     if ( _pinch_free_list.size() > 0) {
3012       pinch = _pinch_free_list.pop();
3013     } else {
3014       pinch = new Node(1); // Pinch point to-be
3015     }
3016     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
3017       DEBUG_ONLY( pinch->dump(); );
3018       assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index());
3019       _cfg->C->record_method_not_compilable("too many D-U pinch points");
3020       return;
3021     }
3022     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
3023     _reg_node.map(def_reg,pinch); // Record pinch-point
3024     //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
3025     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
3026       pinch->init_req(0, C->top());     // set not null for the next call
3027       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
3028       later_def = nullptr;           // and no later def
3029     }
3030     pinch->set_req(0,later_def);  // Hook later def so we can find it
3031   } else {                        // Else have valid pinch point
3032     if( pinch->in(0) )            // If there is a later-def
3033       later_def = pinch->in(0);   // Get it
3034   }
3035 
3036   // Add output-dependence edge from later def to kill
3037   if( later_def )               // If there is some original def
3038     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
3039 
3040   // See if current kill is also a use, and so is forced to be the pinch-point.
3041   if( pinch->Opcode() == Op_Node ) {
3042     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
3043     for( uint i=1; i<uses->req(); i++ ) {
3044       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
3045           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
3046         // Yes, found a use/kill pinch-point
3047         pinch->set_req(0,nullptr);  //
3048         pinch->replace_by(kill); // Move anti-dep edges up
3049         pinch = kill;
3050         _reg_node.map(def_reg,pinch);
3051         return;
3052       }
3053     }
3054   }
3055 
3056   // Add edge from kill to pinch-point
3057   add_prec_edge_from_to(kill,pinch);
3058 }
3059 
3060 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
3061   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
3062     return;
3063   Node *pinch = _reg_node[use_reg]; // Get pinch point
3064   // Check for no later def_reg/kill in block
3065   if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
3066       // Use has to be block-local as well
3067       _cfg->get_block_for_node(use) == b) {
3068     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
3069         pinch->req() == 1 ) {   // pinch not yet in block?
3070       pinch->del_req(0);        // yank pointer to later-def, also set flag
3071       // Insert the pinch-point in the block just after the last use
3072       b->insert_node(pinch, b->find_node(use) + 1);
3073       _bb_end++;                // Increase size scheduled region in block
3074     }
3075 
3076     add_prec_edge_from_to(pinch,use);
3077   }
3078 }
3079 
3080 // We insert antidependences between the reads and following write of
3081 // allocated registers to prevent illegal code motion. Hopefully, the
3082 // number of added references should be fairly small, especially as we
3083 // are only adding references within the current basic block.
3084 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
3085 
3086 #ifdef ASSERT
3087   verify_good_schedule(b,"before block local scheduling");
3088 #endif
3089 
3090   // A valid schedule, for each register independently, is an endless cycle
3091   // of: a def, then some uses (connected to the def by true dependencies),
3092   // then some kills (defs with no uses), finally the cycle repeats with a new
3093   // def.  The uses are allowed to float relative to each other, as are the
3094   // kills.  No use is allowed to slide past a kill (or def).  This requires
3095   // antidependencies between all uses of a single def and all kills that
3096   // follow, up to the next def.  More edges are redundant, because later defs
3097   // & kills are already serialized with true or antidependencies.  To keep
3098   // the edge count down, we add a 'pinch point' node if there's more than
3099   // one use or more than one kill/def.
3100 
3101   // We add dependencies in one bottom-up pass.
3102 
3103   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
3104 
3105   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
3106   // register.  If not, we record the DEF/KILL in _reg_node, the
3107   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
3108   // "pinch point", a new Node that's in the graph but not in the block.
3109   // We put edges from the prior and current DEF/KILLs to the pinch point.
3110   // We put the pinch point in _reg_node.  If there's already a pinch point
3111   // we merely add an edge from the current DEF/KILL to the pinch point.
3112 
3113   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
3114   // put an edge from the pinch point to the USE.
3115 
3116   // To be expedient, the _reg_node array is pre-allocated for the whole
3117   // compilation.  _reg_node is lazily initialized; it either contains a null,
3118   // or a valid def/kill/pinch-point, or a leftover node from some prior
3119   // block.  Leftover node from some prior block is treated like a null (no
3120   // prior def, so no anti-dependence needed).  Valid def is distinguished by
3121   // it being in the current block.
3122   bool fat_proj_seen = false;
3123   uint last_safept = _bb_end-1;
3124   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
3125   Node* last_safept_node = end_node;
3126   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
3127     Node *n = b->get_node(i);
3128     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
3129     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
3130       // Fat-proj kills a slew of registers
3131       // This can add edges to 'n' and obscure whether or not it was a def,
3132       // hence the is_def flag.
3133       fat_proj_seen = true;
3134       RegMaskIterator rmi(n->out_RegMask());
3135       while (rmi.has_next()) {
3136         OptoReg::Name kill = rmi.next();
3137         anti_do_def(b, n, kill, is_def);
3138       }
3139     } else {
3140       // Get DEF'd registers the normal way
3141       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
3142       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
3143     }
3144 
3145     // Kill projections on a branch should appear to occur on the
3146     // branch, not afterwards, so grab the masks from the projections
3147     // and process them.
3148     if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
3149       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3150         Node* use = n->fast_out(i);
3151         if (use->is_Proj()) {
3152           RegMaskIterator rmi(use->out_RegMask());
3153           while (rmi.has_next()) {
3154             OptoReg::Name kill = rmi.next();
3155             anti_do_def(b, n, kill, false);
3156           }
3157         }
3158       }
3159     }
3160 
3161     // Check each register used by this instruction for a following DEF/KILL
3162     // that must occur afterward and requires an anti-dependence edge.
3163     for( uint j=0; j<n->req(); j++ ) {
3164       Node *def = n->in(j);
3165       if( def ) {
3166         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3167         anti_do_use( b, n, _regalloc->get_reg_first(def) );
3168         anti_do_use( b, n, _regalloc->get_reg_second(def) );
3169       }
3170     }
3171     // Do not allow defs of new derived values to float above GC
3172     // points unless the base is definitely available at the GC point.
3173 
3174     Node *m = b->get_node(i);
3175 
3176     // Add precedence edge from following safepoint to use of derived pointer
3177     if( last_safept_node != end_node &&
3178         m != last_safept_node) {
3179       for (uint k = 1; k < m->req(); k++) {
3180         const Type *t = m->in(k)->bottom_type();
3181         if( t->isa_oop_ptr() &&
3182             t->is_ptr()->offset() != 0 ) {
3183           last_safept_node->add_prec( m );
3184           break;
3185         }
3186       }
3187 
3188       // Do not allow a CheckCastPP node whose input is a raw pointer to
3189       // float past a safepoint.  This can occur when a buffered inline
3190       // type is allocated in a loop and the CheckCastPP from that
3191       // allocation is reused outside the loop.  If the use inside the
3192       // loop is scalarized the CheckCastPP will no longer be connected
3193       // to the loop safepoint.  See JDK-8264340.
3194       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) {
3195         Node *def = m->in(1);
3196         if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
3197           last_safept_node->add_prec(m);
3198         }
3199       }
3200     }
3201 
3202     if( n->jvms() ) {           // Precedence edge from derived to safept
3203       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3204       if( b->get_node(last_safept) != last_safept_node ) {
3205         last_safept = b->find_node(last_safept_node);
3206       }
3207       for( uint j=last_safept; j > i; j-- ) {
3208         Node *mach = b->get_node(j);
3209         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3210           mach->add_prec( n );
3211       }
3212       last_safept = i;
3213       last_safept_node = m;
3214     }
3215   }
3216 
3217   if (fat_proj_seen) {
3218     // Garbage collect pinch nodes that were not consumed.
3219     // They are usually created by a fat kill MachProj for a call.
3220     garbage_collect_pinch_nodes();
3221   }
3222 }
3223 
3224 // Garbage collect pinch nodes for reuse by other blocks.
3225 //
3226 // The block scheduler's insertion of anti-dependence
3227 // edges creates many pinch nodes when the block contains
3228 // 2 or more Calls.  A pinch node is used to prevent a
3229 // combinatorial explosion of edges.  If a set of kills for a
3230 // register is anti-dependent on a set of uses (or defs), rather
3231 // than adding an edge in the graph between each pair of kill
3232 // and use (or def), a pinch is inserted between them:
3233 //
3234 //            use1   use2  use3
3235 //                \   |   /
3236 //                 \  |  /
3237 //                  pinch
3238 //                 /  |  \
3239 //                /   |   \
3240 //            kill1 kill2 kill3
3241 //
3242 // One pinch node is created per register killed when
3243 // the second call is encountered during a backwards pass
3244 // over the block.  Most of these pinch nodes are never
3245 // wired into the graph because the register is never
3246 // used or def'ed in the block.
3247 //
3248 void Scheduling::garbage_collect_pinch_nodes() {
3249 #ifndef PRODUCT
3250   if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3251 #endif
3252   int trace_cnt = 0;
3253   for (uint k = 0; k < _reg_node.max(); k++) {
3254     Node* pinch = _reg_node[k];
3255     if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3256         // no predecence input edges
3257         (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3258       cleanup_pinch(pinch);
3259       _pinch_free_list.push(pinch);
3260       _reg_node.map(k, nullptr);
3261 #ifndef PRODUCT
3262       if (_cfg->C->trace_opto_output()) {
3263         trace_cnt++;
3264         if (trace_cnt > 40) {
3265           tty->print("\n");
3266           trace_cnt = 0;
3267         }
3268         tty->print(" %d", pinch->_idx);
3269       }
3270 #endif
3271     }
3272   }
3273 #ifndef PRODUCT
3274   if (_cfg->C->trace_opto_output()) tty->print("\n");
3275 #endif
3276 }
3277 
3278 // Clean up a pinch node for reuse.
3279 void Scheduling::cleanup_pinch( Node *pinch ) {
3280   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3281 
3282   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3283     Node* use = pinch->last_out(i);
3284     uint uses_found = 0;
3285     for (uint j = use->req(); j < use->len(); j++) {
3286       if (use->in(j) == pinch) {
3287         use->rm_prec(j);
3288         uses_found++;
3289       }
3290     }
3291     assert(uses_found > 0, "must be a precedence edge");
3292     i -= uses_found;    // we deleted 1 or more copies of this edge
3293   }
3294   // May have a later_def entry
3295   pinch->set_req(0, nullptr);
3296 }
3297 
3298 #ifndef PRODUCT
3299 
3300 void Scheduling::dump_available() const {
3301   tty->print("#Availist  ");
3302   for (uint i = 0; i < _available.size(); i++)
3303     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3304   tty->cr();
3305 }
3306 
3307 // Print Scheduling Statistics
3308 void Scheduling::print_statistics() {
3309   // Print the size added by nops for bundling
3310   tty->print("Nops added %d bytes to total of %d bytes",
3311              _total_nop_size, _total_method_size);
3312   if (_total_method_size > 0)
3313     tty->print(", for %.2f%%",
3314                ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3315   tty->print("\n");
3316 
3317   // Print the number of branch shadows filled
3318   if (Pipeline::_branch_has_delay_slot) {
3319     tty->print("Of %d branches, %d had unconditional delay slots filled",
3320                _total_branches, _total_unconditional_delays);
3321     if (_total_branches > 0)
3322       tty->print(", for %.2f%%",
3323                  ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3324     tty->print("\n");
3325   }
3326 
3327   uint total_instructions = 0, total_bundles = 0;
3328 
3329   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3330     uint bundle_count   = _total_instructions_per_bundle[i];
3331     total_instructions += bundle_count * i;
3332     total_bundles      += bundle_count;
3333   }
3334 
3335   if (total_bundles > 0)
3336     tty->print("Average ILP (excluding nops) is %.2f\n",
3337                ((double)total_instructions) / ((double)total_bundles));
3338 }
3339 #endif
3340 
3341 //-----------------------init_scratch_buffer_blob------------------------------
3342 // Construct a temporary BufferBlob and cache it for this compile.
3343 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3344   // If there is already a scratch buffer blob allocated and the
3345   // constant section is big enough, use it.  Otherwise free the
3346   // current and allocate a new one.
3347   BufferBlob* blob = scratch_buffer_blob();
3348   if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3349     // Use the current blob.
3350   } else {
3351     if (blob != nullptr) {
3352       BufferBlob::free(blob);
3353     }
3354 
3355     ResourceMark rm;
3356     _scratch_const_size = const_size;
3357     int size = C2Compiler::initial_code_buffer_size(const_size);
3358     if (C->has_scalarized_args()) {
3359       // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification
3360       // when loading object fields from the buffered argument. Increase scratch buffer size accordingly.
3361       ciMethod* method = C->method();
3362       int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37));
3363       int arg_num = 0;
3364       if (!method->is_static()) {
3365         if (method->is_scalarized_arg(arg_num)) {
3366           size += method->holder()->as_inline_klass()->oop_count() * barrier_size;
3367         }
3368         arg_num++;
3369       }
3370       for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) {
3371         if (method->is_scalarized_arg(arg_num)) {
3372           size += str.type()->as_inline_klass()->oop_count() * barrier_size;
3373         }
3374         arg_num++;
3375       }
3376     }
3377     blob = BufferBlob::create("Compile::scratch_buffer", size);
3378     // Record the buffer blob for next time.
3379     set_scratch_buffer_blob(blob);
3380     // Have we run out of code space?
3381     if (scratch_buffer_blob() == nullptr) {
3382       // Let CompilerBroker disable further compilations.
3383       C->record_failure("Not enough space for scratch buffer in CodeCache");
3384       return;
3385     }
3386   }
3387 
3388   // Initialize the relocation buffers
3389   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3390   set_scratch_locs_memory(locs_buf);
3391 }
3392 
3393 
3394 //-----------------------scratch_emit_size-------------------------------------
3395 // Helper function that computes size by emitting code
3396 uint PhaseOutput::scratch_emit_size(const Node* n) {
3397   // Start scratch_emit_size section.
3398   set_in_scratch_emit_size(true);
3399 
3400   // Emit into a trash buffer and count bytes emitted.
3401   // This is a pretty expensive way to compute a size,
3402   // but it works well enough if seldom used.
3403   // All common fixed-size instructions are given a size
3404   // method by the AD file.
3405   // Note that the scratch buffer blob and locs memory are
3406   // allocated at the beginning of the compile task, and
3407   // may be shared by several calls to scratch_emit_size.
3408   // The allocation of the scratch buffer blob is particularly
3409   // expensive, since it has to grab the code cache lock.
3410   BufferBlob* blob = this->scratch_buffer_blob();
3411   assert(blob != nullptr, "Initialize BufferBlob at start");
3412   assert(blob->size() > MAX_inst_size, "sanity");
3413   relocInfo* locs_buf = scratch_locs_memory();
3414   address blob_begin = blob->content_begin();
3415   address blob_end   = (address)locs_buf;
3416   assert(blob->contains(blob_end), "sanity");
3417   CodeBuffer buf(blob_begin, blob_end - blob_begin);
3418   buf.initialize_consts_size(_scratch_const_size);
3419   buf.initialize_stubs_size(MAX_stubs_size);
3420   assert(locs_buf != nullptr, "sanity");
3421   int lsize = MAX_locs_size / 3;
3422   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3423   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3424   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3425   // Mark as scratch buffer.
3426   buf.consts()->set_scratch_emit();
3427   buf.insts()->set_scratch_emit();
3428   buf.stubs()->set_scratch_emit();
3429 
3430   // Do the emission.
3431 
3432   Label fakeL; // Fake label for branch instructions.
3433   Label*   saveL = nullptr;
3434   uint save_bnum = 0;
3435   bool is_branch = n->is_MachBranch();
3436   if (is_branch) {
3437     MacroAssembler masm(&buf);
3438     masm.bind(fakeL);
3439     n->as_MachBranch()->save_label(&saveL, &save_bnum);
3440     n->as_MachBranch()->label_set(&fakeL, 0);
3441   }
3442   n->emit(buf, C->regalloc());
3443 
3444   // Emitting into the scratch buffer should not fail
3445   assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3446 
3447   // Restore label.
3448   if (is_branch) {
3449     n->as_MachBranch()->label_set(saveL, save_bnum);
3450   }
3451 
3452   // End scratch_emit_size section.
3453   set_in_scratch_emit_size(false);
3454 
3455   return buf.insts_size();
3456 }
3457 
3458 void PhaseOutput::install() {
3459   if (!C->should_install_code()) {
3460     return;
3461   } else if (C->stub_function() != nullptr) {
3462     install_stub(C->stub_name());
3463   } else {
3464     install_code(C->method(),
3465                  C->entry_bci(),
3466                  CompileBroker::compiler2(),
3467                  C->has_unsafe_access(),
3468                  SharedRuntime::is_wide_vector(C->max_vector_size()),
3469                  C->rtm_state());
3470   }
3471 }
3472 
3473 void PhaseOutput::install_code(ciMethod*         target,
3474                                int               entry_bci,
3475                                AbstractCompiler* compiler,
3476                                bool              has_unsafe_access,
3477                                bool              has_wide_vectors,
3478                                RTMState          rtm_state) {
3479   // Check if we want to skip execution of all compiled code.
3480   {
3481 #ifndef PRODUCT
3482     if (OptoNoExecute) {
3483       C->record_method_not_compilable("+OptoNoExecute");  // Flag as failed
3484       return;
3485     }
3486 #endif
3487     Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3488 
3489     if (C->is_osr_compilation()) {
3490       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3491       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3492     } else {
3493       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3494       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) {
3495         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size);
3496       }
3497       if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) {
3498         _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size);
3499       }
3500       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
3501         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
3502       }
3503       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3504     }
3505 
3506     C->env()->register_method(target,
3507                               entry_bci,
3508                               &_code_offsets,
3509                               _orig_pc_slot_offset_in_bytes,
3510                               code_buffer(),
3511                               frame_size_in_words(),
3512                               _oop_map_set,
3513                               &_handler_table,
3514                               inc_table(),
3515                               compiler,
3516                               has_unsafe_access,
3517                               SharedRuntime::is_wide_vector(C->max_vector_size()),
3518                               C->has_monitors(),
3519                               0,
3520                               C->rtm_state());
3521 
3522     if (C->log() != nullptr) { // Print code cache state into compiler log
3523       C->log()->code_cache_state();
3524     }
3525   }
3526 }
3527 void PhaseOutput::install_stub(const char* stub_name) {
3528   // Entry point will be accessed using stub_entry_point();
3529   if (code_buffer() == nullptr) {
3530     Matcher::soft_match_failure();
3531   } else {
3532     if (PrintAssembly && (WizardMode || Verbose))
3533       tty->print_cr("### Stub::%s", stub_name);
3534 
3535     if (!C->failing()) {
3536       assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3537 
3538       // Make the NMethod
3539       // For now we mark the frame as never safe for profile stackwalking
3540       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3541                                                       code_buffer(),
3542                                                       CodeOffsets::frame_never_safe,
3543                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
3544                                                       frame_size_in_words(),
3545                                                       oop_map_set(),
3546                                                       false);
3547       assert(rs != nullptr && rs->is_runtime_stub(), "sanity check");
3548 
3549       C->set_stub_entry_point(rs->entry_point());
3550     }
3551   }
3552 }
3553 
3554 // Support for bundling info
3555 Bundle* PhaseOutput::node_bundling(const Node *n) {
3556   assert(valid_bundle_info(n), "oob");
3557   return &_node_bundling_base[n->_idx];
3558 }
3559 
3560 bool PhaseOutput::valid_bundle_info(const Node *n) {
3561   return (_node_bundling_limit > n->_idx);
3562 }
3563 
3564 //------------------------------frame_size_in_words-----------------------------
3565 // frame_slots in units of words
3566 int PhaseOutput::frame_size_in_words() const {
3567   // shift is 0 in LP32 and 1 in LP64
3568   const int shift = (LogBytesPerWord - LogBytesPerInt);
3569   int words = _frame_slots >> shift;
3570   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3571   return words;
3572 }
3573 
3574 // To bang the stack of this compiled method we use the stack size
3575 // that the interpreter would need in case of a deoptimization. This
3576 // removes the need to bang the stack in the deoptimization blob which
3577 // in turn simplifies stack overflow handling.
3578 int PhaseOutput::bang_size_in_bytes() const {
3579   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3580 }
3581 
3582 //------------------------------dump_asm---------------------------------------
3583 // Dump formatted assembly
3584 #if defined(SUPPORT_OPTO_ASSEMBLY)
3585 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3586 
3587   int pc_digits = 3; // #chars required for pc
3588   int sb_chars  = 3; // #chars for "start bundle" indicator
3589   int tab_size  = 8;
3590   if (pcs != nullptr) {
3591     int max_pc = 0;
3592     for (uint i = 0; i < pc_limit; i++) {
3593       max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3594     }
3595     pc_digits  = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3596   }
3597   int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3598 
3599   bool cut_short = false;
3600   st->print_cr("#");
3601   st->print("#  ");  C->tf()->dump_on(st);  st->cr();
3602   st->print_cr("#");
3603 
3604   // For all blocks
3605   int pc = 0x0;                 // Program counter
3606   char starts_bundle = ' ';
3607   C->regalloc()->dump_frame();
3608 
3609   Node *n = nullptr;
3610   for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3611     if (VMThread::should_terminate()) {
3612       cut_short = true;
3613       break;
3614     }
3615     Block* block = C->cfg()->get_block(i);
3616     if (block->is_connector() && !Verbose) {
3617       continue;
3618     }
3619     n = block->head();
3620     if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3621       pc = pcs[n->_idx];
3622       st->print("%*.*x", pc_digits, pc_digits, pc);
3623     }
3624     st->fill_to(prefix_len);
3625     block->dump_head(C->cfg(), st);
3626     if (block->is_connector()) {
3627       st->fill_to(prefix_len);
3628       st->print_cr("# Empty connector block");
3629     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3630       st->fill_to(prefix_len);
3631       st->print_cr("# Block is sole successor of call");
3632     }
3633 
3634     // For all instructions
3635     Node *delay = nullptr;
3636     for (uint j = 0; j < block->number_of_nodes(); j++) {
3637       if (VMThread::should_terminate()) {
3638         cut_short = true;
3639         break;
3640       }
3641       n = block->get_node(j);
3642       if (valid_bundle_info(n)) {
3643         Bundle* bundle = node_bundling(n);
3644         if (bundle->used_in_unconditional_delay()) {
3645           delay = n;
3646           continue;
3647         }
3648         if (bundle->starts_bundle()) {
3649           starts_bundle = '+';
3650         }
3651       }
3652 
3653       if (WizardMode) {
3654         n->dump();
3655       }
3656 
3657       if( !n->is_Region() &&    // Dont print in the Assembly
3658           !n->is_Phi() &&       // a few noisely useless nodes
3659           !n->is_Proj() &&
3660           !n->is_MachTemp() &&
3661           !n->is_SafePointScalarObject() &&
3662           !n->is_Catch() &&     // Would be nice to print exception table targets
3663           !n->is_MergeMem() &&  // Not very interesting
3664           !n->is_top() &&       // Debug info table constants
3665           !(n->is_Con() && !n->is_Mach())// Debug info table constants
3666           ) {
3667         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3668           pc = pcs[n->_idx];
3669           st->print("%*.*x", pc_digits, pc_digits, pc);
3670         } else {
3671           st->fill_to(pc_digits);
3672         }
3673         st->print(" %c ", starts_bundle);
3674         starts_bundle = ' ';
3675         st->fill_to(prefix_len);
3676         n->format(C->regalloc(), st);
3677         st->cr();
3678       }
3679 
3680       // If we have an instruction with a delay slot, and have seen a delay,
3681       // then back up and print it
3682       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3683         // Coverity finding - Explicit null dereferenced.
3684         guarantee(delay != nullptr, "no unconditional delay instruction");
3685         if (WizardMode) delay->dump();
3686 
3687         if (node_bundling(delay)->starts_bundle())
3688           starts_bundle = '+';
3689         if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3690           pc = pcs[n->_idx];
3691           st->print("%*.*x", pc_digits, pc_digits, pc);
3692         } else {
3693           st->fill_to(pc_digits);
3694         }
3695         st->print(" %c ", starts_bundle);
3696         starts_bundle = ' ';
3697         st->fill_to(prefix_len);
3698         delay->format(C->regalloc(), st);
3699         st->cr();
3700         delay = nullptr;
3701       }
3702 
3703       // Dump the exception table as well
3704       if( n->is_Catch() && (Verbose || WizardMode) ) {
3705         // Print the exception table for this offset
3706         _handler_table.print_subtable_for(pc);
3707       }
3708       st->bol(); // Make sure we start on a new line
3709     }
3710     st->cr(); // one empty line between blocks
3711     assert(cut_short || delay == nullptr, "no unconditional delay branch");
3712   } // End of per-block dump
3713 
3714   if (cut_short)  st->print_cr("*** disassembly is cut short ***");
3715 }
3716 #endif
3717 
3718 #ifndef PRODUCT
3719 void PhaseOutput::print_statistics() {
3720   Scheduling::print_statistics();
3721 }
3722 #endif