1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/gc_globals.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/allocation.hpp" 40 #include "opto/ad.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/c2_MacroAssembler.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/cfgnode.hpp" 46 #include "opto/locknode.hpp" 47 #include "opto/machnode.hpp" 48 #include "opto/node.hpp" 49 #include "opto/optoreg.hpp" 50 #include "opto/output.hpp" 51 #include "opto/regalloc.hpp" 52 #include "opto/runtime.hpp" 53 #include "opto/subnode.hpp" 54 #include "opto/type.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "utilities/macros.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #include "utilities/xmlstream.hpp" 60 61 #ifndef PRODUCT 62 #define DEBUG_ARG(x) , x 63 #else 64 #define DEBUG_ARG(x) 65 #endif 66 67 //------------------------------Scheduling---------------------------------- 68 // This class contains all the information necessary to implement instruction 69 // scheduling and bundling. 70 class Scheduling { 71 72 private: 73 // Arena to use 74 Arena *_arena; 75 76 // Control-Flow Graph info 77 PhaseCFG *_cfg; 78 79 // Register Allocation info 80 PhaseRegAlloc *_regalloc; 81 82 // Number of nodes in the method 83 uint _node_bundling_limit; 84 85 // List of scheduled nodes. Generated in reverse order 86 Node_List _scheduled; 87 88 // List of nodes currently available for choosing for scheduling 89 Node_List _available; 90 91 // For each instruction beginning a bundle, the number of following 92 // nodes to be bundled with it. 93 Bundle *_node_bundling_base; 94 95 // Mapping from register to Node 96 Node_List _reg_node; 97 98 // Free list for pinch nodes. 99 Node_List _pinch_free_list; 100 101 // Number of uses of this node within the containing basic block. 102 short *_uses; 103 104 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 105 // front, branch+proj at end. Also skips Catch/CProj (same as 106 // branch-at-end), plus just-prior exception-throwing call. 107 uint _bb_start, _bb_end; 108 109 // Latency from the end of the basic block as scheduled 110 unsigned short *_current_latency; 111 112 // Remember the next node 113 Node *_next_node; 114 115 // Use this for an unconditional branch delay slot 116 Node *_unconditional_delay_slot; 117 118 // Pointer to a Nop 119 MachNopNode *_nop; 120 121 // Length of the current bundle, in instructions 122 uint _bundle_instr_count; 123 124 // Current Cycle number, for computing latencies and bundling 125 uint _bundle_cycle_number; 126 127 // Bundle information 128 Pipeline_Use_Element _bundle_use_elements[resource_count]; 129 Pipeline_Use _bundle_use; 130 131 // Dump the available list 132 void dump_available() const; 133 134 public: 135 Scheduling(Arena *arena, Compile &compile); 136 137 // Destructor 138 NOT_PRODUCT( ~Scheduling(); ) 139 140 // Step ahead "i" cycles 141 void step(uint i); 142 143 // Step ahead 1 cycle, and clear the bundle state (for example, 144 // at a branch target) 145 void step_and_clear(); 146 147 Bundle* node_bundling(const Node *n) { 148 assert(valid_bundle_info(n), "oob"); 149 return (&_node_bundling_base[n->_idx]); 150 } 151 152 bool valid_bundle_info(const Node *n) const { 153 return (_node_bundling_limit > n->_idx); 154 } 155 156 bool starts_bundle(const Node *n) const { 157 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 158 } 159 160 // Do the scheduling 161 void DoScheduling(); 162 163 // Compute the register antidependencies within a basic block 164 void ComputeRegisterAntidependencies(Block *bb); 165 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 166 void verify_good_schedule( Block *b, const char *msg ); 167 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 168 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 169 170 // Add a node to the current bundle 171 void AddNodeToBundle(Node *n, const Block *bb); 172 173 // Add a node to the list of available nodes 174 void AddNodeToAvailableList(Node *n); 175 176 // Compute the local use count for the nodes in a block, and compute 177 // the list of instructions with no uses in the block as available 178 void ComputeUseCount(const Block *bb); 179 180 // Choose an instruction from the available list to add to the bundle 181 Node * ChooseNodeToBundle(); 182 183 // See if this Node fits into the currently accumulating bundle 184 bool NodeFitsInBundle(Node *n); 185 186 // Decrement the use count for a node 187 void DecrementUseCounts(Node *n, const Block *bb); 188 189 // Garbage collect pinch nodes for reuse by other blocks. 190 void garbage_collect_pinch_nodes(); 191 // Clean up a pinch node for reuse (helper for above). 192 void cleanup_pinch( Node *pinch ); 193 194 // Information for statistics gathering 195 #ifndef PRODUCT 196 private: 197 // Gather information on size of nops relative to total 198 uint _branches, _unconditional_delays; 199 200 static uint _total_nop_size, _total_method_size; 201 static uint _total_branches, _total_unconditional_delays; 202 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 203 204 public: 205 static void print_statistics(); 206 207 static void increment_instructions_per_bundle(uint i) { 208 _total_instructions_per_bundle[i]++; 209 } 210 211 static void increment_nop_size(uint s) { 212 _total_nop_size += s; 213 } 214 215 static void increment_method_size(uint s) { 216 _total_method_size += s; 217 } 218 #endif 219 220 }; 221 222 PhaseOutput::PhaseOutput() 223 : Phase(Phase::Output), 224 _code_buffer("Compile::Fill_buffer"), 225 _first_block_size(0), 226 _handler_table(), 227 _inc_table(), 228 _stub_list(), 229 _oop_map_set(nullptr), 230 _scratch_buffer_blob(nullptr), 231 _scratch_locs_memory(nullptr), 232 _scratch_const_size(-1), 233 _in_scratch_emit_size(false), 234 _frame_slots(0), 235 _code_offsets(), 236 _node_bundling_limit(0), 237 _node_bundling_base(nullptr), 238 _orig_pc_slot(0), 239 _orig_pc_slot_offset_in_bytes(0), 240 _buf_sizes(), 241 _block(nullptr), 242 _index(0) { 243 C->set_output(this); 244 if (C->stub_name() == nullptr) { 245 int fixed_slots = C->fixed_slots(); 246 if (C->needs_stack_repair()) { 247 fixed_slots -= 2; 248 } 249 // TODO 8284443 Only reserve extra slot if needed 250 if (InlineTypeReturnedAsFields) { 251 fixed_slots -= 2; 252 } 253 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 254 } 255 } 256 257 PhaseOutput::~PhaseOutput() { 258 C->set_output(nullptr); 259 if (_scratch_buffer_blob != nullptr) { 260 BufferBlob::free(_scratch_buffer_blob); 261 } 262 } 263 264 void PhaseOutput::perform_mach_node_analysis() { 265 // Late barrier analysis must be done after schedule and bundle 266 // Otherwise liveness based spilling will fail 267 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 268 bs->late_barrier_analysis(); 269 270 pd_perform_mach_node_analysis(); 271 272 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 4); 273 } 274 275 // Convert Nodes to instruction bits and pass off to the VM 276 void PhaseOutput::Output() { 277 // RootNode goes 278 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 279 280 // The number of new nodes (mostly MachNop) is proportional to 281 // the number of java calls and inner loops which are aligned. 282 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 283 C->inner_loops()*(OptoLoopAlignment-1)), 284 "out of nodes before code generation" ) ) { 285 return; 286 } 287 // Make sure I can find the Start Node 288 Block *entry = C->cfg()->get_block(1); 289 Block *broot = C->cfg()->get_root_block(); 290 291 const StartNode *start = entry->head()->as_Start(); 292 293 // Replace StartNode with prolog 294 Label verified_entry; 295 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 296 entry->map_node(prolog, 0); 297 C->cfg()->map_node_to_block(prolog, entry); 298 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 299 300 // Virtual methods need an unverified entry point 301 if (C->is_osr_compilation()) { 302 if (PoisonOSREntry) { 303 // TODO: Should use a ShouldNotReachHereNode... 304 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 305 } 306 } else { 307 if (C->method()) { 308 if (C->method()->has_scalarized_args()) { 309 // Add entry point to unpack all inline type arguments 310 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 311 if (!C->method()->is_static()) { 312 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 313 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 314 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 315 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 316 } 317 } else if (!C->method()->is_static()) { 318 // Insert unvalidated entry point 319 C->cfg()->insert(broot, 0, new MachUEPNode()); 320 } 321 } 322 } 323 324 // Break before main entry point 325 if ((C->method() && C->directive()->BreakAtExecuteOption) || 326 (OptoBreakpoint && C->is_method_compilation()) || 327 (OptoBreakpointOSR && C->is_osr_compilation()) || 328 (OptoBreakpointC2R && !C->method()) ) { 329 // checking for C->method() means that OptoBreakpoint does not apply to 330 // runtime stubs or frame converters 331 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 332 } 333 334 // Insert epilogs before every return 335 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 336 Block* block = C->cfg()->get_block(i); 337 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 338 Node* m = block->end(); 339 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 340 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 341 block->add_inst(epilog); 342 C->cfg()->map_node_to_block(epilog, block); 343 } 344 } 345 } 346 347 // Keeper of sizing aspects 348 _buf_sizes = BufferSizingData(); 349 350 // Initialize code buffer 351 estimate_buffer_size(_buf_sizes._const); 352 if (C->failing()) return; 353 354 // Pre-compute the length of blocks and replace 355 // long branches with short if machine supports it. 356 // Must be done before ScheduleAndBundle due to SPARC delay slots 357 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 358 blk_starts[0] = 0; 359 shorten_branches(blk_starts); 360 361 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 362 // Compute the offsets of the entry points required by the inline type calling convention 363 if (!C->method()->is_static()) { 364 // We have entries at the beginning of the method, implemented by the first 4 nodes. 365 // Entry (unverified) @ offset 0 366 // Verified_Inline_Entry_RO 367 // Inline_Entry (unverified) 368 // Verified_Inline_Entry 369 uint offset = 0; 370 _code_offsets.set_value(CodeOffsets::Entry, offset); 371 372 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 373 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 374 375 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 376 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 377 378 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 379 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 380 } else { 381 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 382 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 383 } 384 } 385 386 ScheduleAndBundle(); 387 if (C->failing()) { 388 return; 389 } 390 391 perform_mach_node_analysis(); 392 393 // Complete sizing of codebuffer 394 CodeBuffer* cb = init_buffer(); 395 if (cb == nullptr || C->failing()) { 396 return; 397 } 398 399 BuildOopMaps(); 400 401 if (C->failing()) { 402 return; 403 } 404 405 fill_buffer(cb, blk_starts); 406 } 407 408 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 409 // Determine if we need to generate a stack overflow check. 410 // Do it if the method is not a stub function and 411 // has java calls or has frame size > vm_page_size/8. 412 // The debug VM checks that deoptimization doesn't trigger an 413 // unexpected stack overflow (compiled method stack banging should 414 // guarantee it doesn't happen) so we always need the stack bang in 415 // a debug VM. 416 return (C->stub_function() == nullptr && 417 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 418 DEBUG_ONLY(|| true))); 419 } 420 421 bool PhaseOutput::need_register_stack_bang() const { 422 // Determine if we need to generate a register stack overflow check. 423 // This is only used on architectures which have split register 424 // and memory stacks (ie. IA64). 425 // Bang if the method is not a stub function and has java calls 426 return (C->stub_function() == nullptr && C->has_java_calls()); 427 } 428 429 430 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 431 // of a loop. When aligning a loop we need to provide enough instructions 432 // in cpu's fetch buffer to feed decoders. The loop alignment could be 433 // avoided if we have enough instructions in fetch buffer at the head of a loop. 434 // By default, the size is set to 999999 by Block's constructor so that 435 // a loop will be aligned if the size is not reset here. 436 // 437 // Note: Mach instructions could contain several HW instructions 438 // so the size is estimated only. 439 // 440 void PhaseOutput::compute_loop_first_inst_sizes() { 441 // The next condition is used to gate the loop alignment optimization. 442 // Don't aligned a loop if there are enough instructions at the head of a loop 443 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 444 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 445 // equal to 11 bytes which is the largest address NOP instruction. 446 if (MaxLoopPad < OptoLoopAlignment - 1) { 447 uint last_block = C->cfg()->number_of_blocks() - 1; 448 for (uint i = 1; i <= last_block; i++) { 449 Block* block = C->cfg()->get_block(i); 450 // Check the first loop's block which requires an alignment. 451 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 452 uint sum_size = 0; 453 uint inst_cnt = NumberOfLoopInstrToAlign; 454 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 455 456 // Check subsequent fallthrough blocks if the loop's first 457 // block(s) does not have enough instructions. 458 Block *nb = block; 459 while(inst_cnt > 0 && 460 i < last_block && 461 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 462 !nb->has_successor(block)) { 463 i++; 464 nb = C->cfg()->get_block(i); 465 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 466 } // while( inst_cnt > 0 && i < last_block ) 467 468 block->set_first_inst_size(sum_size); 469 } // f( b->head()->is_Loop() ) 470 } // for( i <= last_block ) 471 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 472 } 473 474 // The architecture description provides short branch variants for some long 475 // branch instructions. Replace eligible long branches with short branches. 476 void PhaseOutput::shorten_branches(uint* blk_starts) { 477 478 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 479 480 // Compute size of each block, method size, and relocation information size 481 uint nblocks = C->cfg()->number_of_blocks(); 482 483 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 484 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 485 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 486 487 // Collect worst case block paddings 488 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 489 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 490 491 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 492 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 493 494 bool has_short_branch_candidate = false; 495 496 // Initialize the sizes to 0 497 int code_size = 0; // Size in bytes of generated code 498 int stub_size = 0; // Size in bytes of all stub entries 499 // Size in bytes of all relocation entries, including those in local stubs. 500 // Start with 2-bytes of reloc info for the unvalidated entry point 501 int reloc_size = 1; // Number of relocation entries 502 503 // Make three passes. The first computes pessimistic blk_starts, 504 // relative jmp_offset and reloc_size information. The second performs 505 // short branch substitution using the pessimistic sizing. The 506 // third inserts nops where needed. 507 508 // Step one, perform a pessimistic sizing pass. 509 uint last_call_adr = max_juint; 510 uint last_avoid_back_to_back_adr = max_juint; 511 uint nop_size = (new MachNopNode())->size(C->regalloc()); 512 for (uint i = 0; i < nblocks; i++) { // For all blocks 513 Block* block = C->cfg()->get_block(i); 514 _block = block; 515 516 // During short branch replacement, we store the relative (to blk_starts) 517 // offset of jump in jmp_offset, rather than the absolute offset of jump. 518 // This is so that we do not need to recompute sizes of all nodes when 519 // we compute correct blk_starts in our next sizing pass. 520 jmp_offset[i] = 0; 521 jmp_size[i] = 0; 522 jmp_nidx[i] = -1; 523 DEBUG_ONLY( jmp_target[i] = 0; ) 524 DEBUG_ONLY( jmp_rule[i] = 0; ) 525 526 // Sum all instruction sizes to compute block size 527 uint last_inst = block->number_of_nodes(); 528 uint blk_size = 0; 529 for (uint j = 0; j < last_inst; j++) { 530 _index = j; 531 Node* nj = block->get_node(_index); 532 // Handle machine instruction nodes 533 if (nj->is_Mach()) { 534 MachNode* mach = nj->as_Mach(); 535 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 536 reloc_size += mach->reloc(); 537 if (mach->is_MachCall()) { 538 // add size information for trampoline stub 539 // class CallStubImpl is platform-specific and defined in the *.ad files. 540 stub_size += CallStubImpl::size_call_trampoline(); 541 reloc_size += CallStubImpl::reloc_call_trampoline(); 542 543 MachCallNode *mcall = mach->as_MachCall(); 544 // This destination address is NOT PC-relative 545 546 if (mcall->entry_point() != nullptr) { 547 mcall->method_set((intptr_t)mcall->entry_point()); 548 } 549 550 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 551 stub_size += CompiledStaticCall::to_interp_stub_size(); 552 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 553 } 554 } else if (mach->is_MachSafePoint()) { 555 // If call/safepoint are adjacent, account for possible 556 // nop to disambiguate the two safepoints. 557 // ScheduleAndBundle() can rearrange nodes in a block, 558 // check for all offsets inside this block. 559 if (last_call_adr >= blk_starts[i]) { 560 blk_size += nop_size; 561 } 562 } 563 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 564 // Nop is inserted between "avoid back to back" instructions. 565 // ScheduleAndBundle() can rearrange nodes in a block, 566 // check for all offsets inside this block. 567 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 568 blk_size += nop_size; 569 } 570 } 571 if (mach->may_be_short_branch()) { 572 if (!nj->is_MachBranch()) { 573 #ifndef PRODUCT 574 nj->dump(3); 575 #endif 576 Unimplemented(); 577 } 578 assert(jmp_nidx[i] == -1, "block should have only one branch"); 579 jmp_offset[i] = blk_size; 580 jmp_size[i] = nj->size(C->regalloc()); 581 jmp_nidx[i] = j; 582 has_short_branch_candidate = true; 583 } 584 } 585 blk_size += nj->size(C->regalloc()); 586 // Remember end of call offset 587 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 588 last_call_adr = blk_starts[i]+blk_size; 589 } 590 // Remember end of avoid_back_to_back offset 591 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 592 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 593 } 594 } 595 596 // When the next block starts a loop, we may insert pad NOP 597 // instructions. Since we cannot know our future alignment, 598 // assume the worst. 599 if (i < nblocks - 1) { 600 Block* nb = C->cfg()->get_block(i + 1); 601 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 602 if (max_loop_pad > 0) { 603 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 604 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 605 // If either is the last instruction in this block, bump by 606 // max_loop_pad in lock-step with blk_size, so sizing 607 // calculations in subsequent blocks still can conservatively 608 // detect that it may the last instruction in this block. 609 if (last_call_adr == blk_starts[i]+blk_size) { 610 last_call_adr += max_loop_pad; 611 } 612 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 613 last_avoid_back_to_back_adr += max_loop_pad; 614 } 615 blk_size += max_loop_pad; 616 block_worst_case_pad[i + 1] = max_loop_pad; 617 } 618 } 619 620 // Save block size; update total method size 621 blk_starts[i+1] = blk_starts[i]+blk_size; 622 } 623 624 // Step two, replace eligible long jumps. 625 bool progress = true; 626 uint last_may_be_short_branch_adr = max_juint; 627 while (has_short_branch_candidate && progress) { 628 progress = false; 629 has_short_branch_candidate = false; 630 int adjust_block_start = 0; 631 for (uint i = 0; i < nblocks; i++) { 632 Block* block = C->cfg()->get_block(i); 633 int idx = jmp_nidx[i]; 634 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 635 if (mach != nullptr && mach->may_be_short_branch()) { 636 #ifdef ASSERT 637 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 638 int j; 639 // Find the branch; ignore trailing NOPs. 640 for (j = block->number_of_nodes()-1; j>=0; j--) { 641 Node* n = block->get_node(j); 642 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 643 break; 644 } 645 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 646 #endif 647 int br_size = jmp_size[i]; 648 int br_offs = blk_starts[i] + jmp_offset[i]; 649 650 // This requires the TRUE branch target be in succs[0] 651 uint bnum = block->non_connector_successor(0)->_pre_order; 652 int offset = blk_starts[bnum] - br_offs; 653 if (bnum > i) { // adjust following block's offset 654 offset -= adjust_block_start; 655 } 656 657 // This block can be a loop header, account for the padding 658 // in the previous block. 659 int block_padding = block_worst_case_pad[i]; 660 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 661 // In the following code a nop could be inserted before 662 // the branch which will increase the backward distance. 663 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 664 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 665 666 if (needs_padding && offset <= 0) 667 offset -= nop_size; 668 669 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 670 // We've got a winner. Replace this branch. 671 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 672 673 // Update the jmp_size. 674 int new_size = replacement->size(C->regalloc()); 675 int diff = br_size - new_size; 676 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 677 // Conservatively take into account padding between 678 // avoid_back_to_back branches. Previous branch could be 679 // converted into avoid_back_to_back branch during next 680 // rounds. 681 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 682 jmp_offset[i] += nop_size; 683 diff -= nop_size; 684 } 685 adjust_block_start += diff; 686 block->map_node(replacement, idx); 687 mach->subsume_by(replacement, C); 688 mach = replacement; 689 progress = true; 690 691 jmp_size[i] = new_size; 692 DEBUG_ONLY( jmp_target[i] = bnum; ); 693 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 694 } else { 695 // The jump distance is not short, try again during next iteration. 696 has_short_branch_candidate = true; 697 } 698 } // (mach->may_be_short_branch()) 699 if (mach != nullptr && (mach->may_be_short_branch() || 700 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 701 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 702 } 703 blk_starts[i+1] -= adjust_block_start; 704 } 705 } 706 707 #ifdef ASSERT 708 for (uint i = 0; i < nblocks; i++) { // For all blocks 709 if (jmp_target[i] != 0) { 710 int br_size = jmp_size[i]; 711 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 712 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 713 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 714 } 715 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 716 } 717 } 718 #endif 719 720 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 721 // after ScheduleAndBundle(). 722 723 // ------------------ 724 // Compute size for code buffer 725 code_size = blk_starts[nblocks]; 726 727 // Relocation records 728 reloc_size += 1; // Relo entry for exception handler 729 730 // Adjust reloc_size to number of record of relocation info 731 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 732 // a relocation index. 733 // The CodeBuffer will expand the locs array if this estimate is too low. 734 reloc_size *= 10 / sizeof(relocInfo); 735 736 _buf_sizes._reloc = reloc_size; 737 _buf_sizes._code = code_size; 738 _buf_sizes._stub = stub_size; 739 } 740 741 //------------------------------FillLocArray----------------------------------- 742 // Create a bit of debug info and append it to the array. The mapping is from 743 // Java local or expression stack to constant, register or stack-slot. For 744 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 745 // entry has been taken care of and caller should skip it). 746 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 747 // This should never have accepted Bad before 748 assert(OptoReg::is_valid(regnum), "location must be valid"); 749 return (OptoReg::is_reg(regnum)) 750 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 751 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 752 } 753 754 755 ObjectValue* 756 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 757 for (int i = 0; i < objs->length(); i++) { 758 assert(objs->at(i)->is_object(), "corrupt object cache"); 759 ObjectValue* sv = (ObjectValue*) objs->at(i); 760 if (sv->id() == id) { 761 return sv; 762 } 763 } 764 // Otherwise.. 765 return nullptr; 766 } 767 768 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 769 ObjectValue* sv ) { 770 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 771 objs->append(sv); 772 } 773 774 775 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 776 GrowableArray<ScopeValue*> *array, 777 GrowableArray<ScopeValue*> *objs ) { 778 assert( local, "use _top instead of null" ); 779 if (array->length() != idx) { 780 assert(array->length() == idx + 1, "Unexpected array count"); 781 // Old functionality: 782 // return 783 // New functionality: 784 // Assert if the local is not top. In product mode let the new node 785 // override the old entry. 786 assert(local == C->top(), "LocArray collision"); 787 if (local == C->top()) { 788 return; 789 } 790 array->pop(); 791 } 792 const Type *t = local->bottom_type(); 793 794 // Is it a safepoint scalar object node? 795 if (local->is_SafePointScalarObject()) { 796 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 797 798 ObjectValue* sv = (ObjectValue*) sv_for_node_id(objs, spobj->_idx); 799 if (sv == nullptr) { 800 ciKlass* cik = t->is_oopptr()->exact_klass(); 801 assert(cik->is_instance_klass() || 802 cik->is_array_klass(), "Not supported allocation."); 803 uint first_ind = spobj->first_index(sfpt->jvms()); 804 // Nullable, scalarized inline types have an is_init input 805 // that needs to be checked before using the field values. 806 ScopeValue* is_init = nullptr; 807 if (cik->is_inlinetype()) { 808 Node* init_node = sfpt->in(first_ind++); 809 assert(init_node != nullptr, "is_init node not found"); 810 if (!init_node->is_top()) { 811 const TypeInt* init_type = init_node->bottom_type()->is_int(); 812 if (init_node->is_Con()) { 813 is_init = new ConstantIntValue(init_type->get_con()); 814 } else { 815 OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node); 816 is_init = new_loc_value(C->regalloc(), init_reg, Location::normal); 817 } 818 } 819 } 820 sv = new ObjectValue(spobj->_idx, 821 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), is_init); 822 set_sv_for_object_node(objs, sv); 823 824 for (uint i = 0; i < spobj->n_fields(); i++) { 825 Node* fld_node = sfpt->in(first_ind+i); 826 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 827 } 828 } 829 array->append(sv); 830 return; 831 } else if (local->is_SafePointScalarMerge()) { 832 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 833 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 834 835 if (mv == NULL) { 836 GrowableArray<ScopeValue*> deps; 837 838 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 839 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 840 assert(deps.length() == 1, "missing value"); 841 842 int selector_idx = smerge->selector_idx(sfpt->jvms()); 843 (void)FillLocArray(1, NULL, sfpt->in(selector_idx), &deps, NULL); 844 assert(deps.length() == 2, "missing value"); 845 846 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 847 set_sv_for_object_node(objs, mv); 848 849 for (uint i = 1; i < smerge->req(); i++) { 850 Node* obj_node = smerge->in(i); 851 (void)FillLocArray(mv->possible_objects()->length(), sfpt, obj_node, mv->possible_objects(), objs); 852 } 853 } 854 array->append(mv); 855 return; 856 } 857 858 // Grab the register number for the local 859 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 860 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 861 // Record the double as two float registers. 862 // The register mask for such a value always specifies two adjacent 863 // float registers, with the lower register number even. 864 // Normally, the allocation of high and low words to these registers 865 // is irrelevant, because nearly all operations on register pairs 866 // (e.g., StoreD) treat them as a single unit. 867 // Here, we assume in addition that the words in these two registers 868 // stored "naturally" (by operations like StoreD and double stores 869 // within the interpreter) such that the lower-numbered register 870 // is written to the lower memory address. This may seem like 871 // a machine dependency, but it is not--it is a requirement on 872 // the author of the <arch>.ad file to ensure that, for every 873 // even/odd double-register pair to which a double may be allocated, 874 // the word in the even single-register is stored to the first 875 // memory word. (Note that register numbers are completely 876 // arbitrary, and are not tied to any machine-level encodings.) 877 #ifdef _LP64 878 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 879 array->append(new ConstantIntValue((jint)0)); 880 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 881 } else if ( t->base() == Type::Long ) { 882 array->append(new ConstantIntValue((jint)0)); 883 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 884 } else if ( t->base() == Type::RawPtr ) { 885 // jsr/ret return address which must be restored into the full 886 // width 64-bit stack slot. 887 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 888 } 889 #else //_LP64 890 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 891 // Repack the double/long as two jints. 892 // The convention the interpreter uses is that the second local 893 // holds the first raw word of the native double representation. 894 // This is actually reasonable, since locals and stack arrays 895 // grow downwards in all implementations. 896 // (If, on some machine, the interpreter's Java locals or stack 897 // were to grow upwards, the embedded doubles would be word-swapped.) 898 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 899 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 900 } 901 #endif //_LP64 902 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 903 OptoReg::is_reg(regnum) ) { 904 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 905 ? Location::float_in_dbl : Location::normal )); 906 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 907 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 908 ? Location::int_in_long : Location::normal )); 909 } else if( t->base() == Type::NarrowOop ) { 910 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 911 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 912 t->base() == Type::VectorD || t->base() == Type::VectorX || 913 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 914 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 915 } else if (C->regalloc()->is_oop(local)) { 916 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 917 t->base() == Type::AryPtr, 918 "Unexpected type: %s", t->msg()); 919 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 920 } else { 921 assert(t->base() == Type::Int || t->base() == Type::Half || 922 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 923 "Unexpected type: %s", t->msg()); 924 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 925 } 926 return; 927 } 928 929 // No register. It must be constant data. 930 switch (t->base()) { 931 case Type::Half: // Second half of a double 932 ShouldNotReachHere(); // Caller should skip 2nd halves 933 break; 934 case Type::AnyPtr: 935 array->append(new ConstantOopWriteValue(nullptr)); 936 break; 937 case Type::AryPtr: 938 case Type::InstPtr: // fall through 939 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 940 break; 941 case Type::NarrowOop: 942 if (t == TypeNarrowOop::NULL_PTR) { 943 array->append(new ConstantOopWriteValue(nullptr)); 944 } else { 945 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 946 } 947 break; 948 case Type::Int: 949 array->append(new ConstantIntValue(t->is_int()->get_con())); 950 break; 951 case Type::RawPtr: 952 // A return address (T_ADDRESS). 953 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 954 #ifdef _LP64 955 // Must be restored to the full-width 64-bit stack slot. 956 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 957 #else 958 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 959 #endif 960 break; 961 case Type::FloatCon: { 962 float f = t->is_float_constant()->getf(); 963 array->append(new ConstantIntValue(jint_cast(f))); 964 break; 965 } 966 case Type::DoubleCon: { 967 jdouble d = t->is_double_constant()->getd(); 968 #ifdef _LP64 969 array->append(new ConstantIntValue((jint)0)); 970 array->append(new ConstantDoubleValue(d)); 971 #else 972 // Repack the double as two jints. 973 // The convention the interpreter uses is that the second local 974 // holds the first raw word of the native double representation. 975 // This is actually reasonable, since locals and stack arrays 976 // grow downwards in all implementations. 977 // (If, on some machine, the interpreter's Java locals or stack 978 // were to grow upwards, the embedded doubles would be word-swapped.) 979 jlong_accessor acc; 980 acc.long_value = jlong_cast(d); 981 array->append(new ConstantIntValue(acc.words[1])); 982 array->append(new ConstantIntValue(acc.words[0])); 983 #endif 984 break; 985 } 986 case Type::Long: { 987 jlong d = t->is_long()->get_con(); 988 #ifdef _LP64 989 array->append(new ConstantIntValue((jint)0)); 990 array->append(new ConstantLongValue(d)); 991 #else 992 // Repack the long as two jints. 993 // The convention the interpreter uses is that the second local 994 // holds the first raw word of the native double representation. 995 // This is actually reasonable, since locals and stack arrays 996 // grow downwards in all implementations. 997 // (If, on some machine, the interpreter's Java locals or stack 998 // were to grow upwards, the embedded doubles would be word-swapped.) 999 jlong_accessor acc; 1000 acc.long_value = d; 1001 array->append(new ConstantIntValue(acc.words[1])); 1002 array->append(new ConstantIntValue(acc.words[0])); 1003 #endif 1004 break; 1005 } 1006 case Type::Top: // Add an illegal value here 1007 array->append(new LocationValue(Location())); 1008 break; 1009 default: 1010 ShouldNotReachHere(); 1011 break; 1012 } 1013 } 1014 1015 // Determine if this node starts a bundle 1016 bool PhaseOutput::starts_bundle(const Node *n) const { 1017 return (_node_bundling_limit > n->_idx && 1018 _node_bundling_base[n->_idx].starts_bundle()); 1019 } 1020 1021 // Determine if there is a monitor that has 'ov' as its owner. 1022 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 1023 for (int k = 0; k < monarray->length(); k++) { 1024 MonitorValue* mv = monarray->at(k); 1025 if (mv->owner() == ov) { 1026 return true; 1027 } 1028 } 1029 1030 return false; 1031 } 1032 1033 //--------------------------Process_OopMap_Node-------------------------------- 1034 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1035 // Handle special safepoint nodes for synchronization 1036 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1037 MachCallNode *mcall; 1038 1039 int safepoint_pc_offset = current_offset; 1040 bool is_method_handle_invoke = false; 1041 bool return_oop = false; 1042 bool return_scalarized = false; 1043 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1044 bool arg_escape = false; 1045 1046 // Add the safepoint in the DebugInfoRecorder 1047 if( !mach->is_MachCall() ) { 1048 mcall = nullptr; 1049 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1050 } else { 1051 mcall = mach->as_MachCall(); 1052 1053 // Is the call a MethodHandle call? 1054 if (mcall->is_MachCallJava()) { 1055 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1056 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1057 is_method_handle_invoke = true; 1058 } 1059 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1060 } 1061 1062 // Check if a call returns an object. 1063 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1064 return_oop = true; 1065 } 1066 if (mcall->returns_scalarized()) { 1067 return_scalarized = true; 1068 } 1069 safepoint_pc_offset += mcall->ret_addr_offset(); 1070 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1071 } 1072 1073 // Loop over the JVMState list to add scope information 1074 // Do not skip safepoints with a null method, they need monitor info 1075 JVMState* youngest_jvms = sfn->jvms(); 1076 int max_depth = youngest_jvms->depth(); 1077 1078 // Allocate the object pool for scalar-replaced objects -- the map from 1079 // small-integer keys (which can be recorded in the local and ostack 1080 // arrays) to descriptions of the object state. 1081 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1082 1083 // Visit scopes from oldest to youngest. 1084 for (int depth = 1; depth <= max_depth; depth++) { 1085 JVMState* jvms = youngest_jvms->of_depth(depth); 1086 int idx; 1087 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1088 // Safepoints that do not have method() set only provide oop-map and monitor info 1089 // to support GC; these do not support deoptimization. 1090 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1091 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1092 int num_mon = jvms->nof_monitors(); 1093 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1094 "JVMS local count must match that of the method"); 1095 1096 // Add Local and Expression Stack Information 1097 1098 // Insert locals into the locarray 1099 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1100 for( idx = 0; idx < num_locs; idx++ ) { 1101 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1102 } 1103 1104 // Insert expression stack entries into the exparray 1105 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1106 for( idx = 0; idx < num_exps; idx++ ) { 1107 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1108 } 1109 1110 // Add in mappings of the monitors 1111 assert( !method || 1112 !method->is_synchronized() || 1113 method->is_native() || 1114 num_mon > 0 || 1115 !GenerateSynchronizationCode, 1116 "monitors must always exist for synchronized methods"); 1117 1118 // Build the growable array of ScopeValues for exp stack 1119 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1120 1121 // Loop over monitors and insert into array 1122 for (idx = 0; idx < num_mon; idx++) { 1123 // Grab the node that defines this monitor 1124 Node* box_node = sfn->monitor_box(jvms, idx); 1125 Node* obj_node = sfn->monitor_obj(jvms, idx); 1126 1127 // Create ScopeValue for object 1128 ScopeValue *scval = nullptr; 1129 1130 if (obj_node->is_SafePointScalarObject()) { 1131 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1132 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1133 if (scval == nullptr) { 1134 const Type *t = spobj->bottom_type(); 1135 ciKlass* cik = t->is_oopptr()->exact_klass(); 1136 assert(cik->is_instance_klass() || 1137 cik->is_array_klass(), "Not supported allocation."); 1138 ObjectValue* sv = new ObjectValue(spobj->_idx, 1139 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1140 PhaseOutput::set_sv_for_object_node(objs, sv); 1141 1142 uint first_ind = spobj->first_index(youngest_jvms); 1143 for (uint i = 0; i < spobj->n_fields(); i++) { 1144 Node* fld_node = sfn->in(first_ind+i); 1145 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1146 } 1147 scval = sv; 1148 } 1149 } else if (!obj_node->is_Con()) { 1150 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1151 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1152 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1153 } else { 1154 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1155 } 1156 } else { 1157 const TypePtr *tp = obj_node->get_ptr_type(); 1158 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1159 } 1160 1161 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1162 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1163 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1164 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1165 } 1166 1167 // Mark ObjectValue nodes as root nodes if they are directly 1168 // referenced in the JVMS. 1169 for (int i = 0; i < objs->length(); i++) { 1170 ScopeValue* sv = objs->at(i); 1171 if (sv->is_object_merge()) { 1172 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1173 1174 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1175 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1176 bool is_root = locarray->contains(ov) || exparray->contains(ov) || contains_as_owner(monarray, ov); 1177 ov->set_root(is_root); 1178 } 1179 } 1180 } 1181 1182 // We dump the object pool first, since deoptimization reads it in first. 1183 C->debug_info()->dump_object_pool(objs); 1184 1185 // Build first class objects to pass to scope 1186 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1187 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1188 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1189 1190 // Make method available for all Safepoints 1191 ciMethod* scope_method = method ? method : C->method(); 1192 // Describe the scope here 1193 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1194 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1195 // Now we can describe the scope. 1196 methodHandle null_mh; 1197 bool rethrow_exception = false; 1198 C->debug_info()->describe_scope( 1199 safepoint_pc_offset, 1200 null_mh, 1201 scope_method, 1202 jvms->bci(), 1203 jvms->should_reexecute(), 1204 rethrow_exception, 1205 is_method_handle_invoke, 1206 return_oop, 1207 return_scalarized, 1208 has_ea_local_in_scope, 1209 arg_escape, 1210 locvals, 1211 expvals, 1212 monvals 1213 ); 1214 } // End jvms loop 1215 1216 // Mark the end of the scope set. 1217 C->debug_info()->end_safepoint(safepoint_pc_offset); 1218 } 1219 1220 1221 1222 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1223 class NonSafepointEmitter { 1224 Compile* C; 1225 JVMState* _pending_jvms; 1226 int _pending_offset; 1227 1228 void emit_non_safepoint(); 1229 1230 public: 1231 NonSafepointEmitter(Compile* compile) { 1232 this->C = compile; 1233 _pending_jvms = nullptr; 1234 _pending_offset = 0; 1235 } 1236 1237 void observe_instruction(Node* n, int pc_offset) { 1238 if (!C->debug_info()->recording_non_safepoints()) return; 1239 1240 Node_Notes* nn = C->node_notes_at(n->_idx); 1241 if (nn == nullptr || nn->jvms() == nullptr) return; 1242 if (_pending_jvms != nullptr && 1243 _pending_jvms->same_calls_as(nn->jvms())) { 1244 // Repeated JVMS? Stretch it up here. 1245 _pending_offset = pc_offset; 1246 } else { 1247 if (_pending_jvms != nullptr && 1248 _pending_offset < pc_offset) { 1249 emit_non_safepoint(); 1250 } 1251 _pending_jvms = nullptr; 1252 if (pc_offset > C->debug_info()->last_pc_offset()) { 1253 // This is the only way _pending_jvms can become non-null: 1254 _pending_jvms = nn->jvms(); 1255 _pending_offset = pc_offset; 1256 } 1257 } 1258 } 1259 1260 // Stay out of the way of real safepoints: 1261 void observe_safepoint(JVMState* jvms, int pc_offset) { 1262 if (_pending_jvms != nullptr && 1263 !_pending_jvms->same_calls_as(jvms) && 1264 _pending_offset < pc_offset) { 1265 emit_non_safepoint(); 1266 } 1267 _pending_jvms = nullptr; 1268 } 1269 1270 void flush_at_end() { 1271 if (_pending_jvms != nullptr) { 1272 emit_non_safepoint(); 1273 } 1274 _pending_jvms = nullptr; 1275 } 1276 }; 1277 1278 void NonSafepointEmitter::emit_non_safepoint() { 1279 JVMState* youngest_jvms = _pending_jvms; 1280 int pc_offset = _pending_offset; 1281 1282 // Clear it now: 1283 _pending_jvms = nullptr; 1284 1285 DebugInformationRecorder* debug_info = C->debug_info(); 1286 assert(debug_info->recording_non_safepoints(), "sanity"); 1287 1288 debug_info->add_non_safepoint(pc_offset); 1289 int max_depth = youngest_jvms->depth(); 1290 1291 // Visit scopes from oldest to youngest. 1292 for (int depth = 1; depth <= max_depth; depth++) { 1293 JVMState* jvms = youngest_jvms->of_depth(depth); 1294 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1295 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1296 methodHandle null_mh; 1297 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1298 } 1299 1300 // Mark the end of the scope set. 1301 debug_info->end_non_safepoint(pc_offset); 1302 } 1303 1304 //------------------------------init_buffer------------------------------------ 1305 void PhaseOutput::estimate_buffer_size(int& const_req) { 1306 1307 // Set the initially allocated size 1308 const_req = initial_const_capacity; 1309 1310 // The extra spacing after the code is necessary on some platforms. 1311 // Sometimes we need to patch in a jump after the last instruction, 1312 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1313 1314 // Compute the byte offset where we can store the deopt pc. 1315 if (C->fixed_slots() != 0) { 1316 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1317 } 1318 1319 // Compute prolog code size 1320 _method_size = 0; 1321 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1322 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1323 1324 if (C->has_mach_constant_base_node()) { 1325 uint add_size = 0; 1326 // Fill the constant table. 1327 // Note: This must happen before shorten_branches. 1328 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1329 Block* b = C->cfg()->get_block(i); 1330 1331 for (uint j = 0; j < b->number_of_nodes(); j++) { 1332 Node* n = b->get_node(j); 1333 1334 // If the node is a MachConstantNode evaluate the constant 1335 // value section. 1336 if (n->is_MachConstant()) { 1337 MachConstantNode* machcon = n->as_MachConstant(); 1338 machcon->eval_constant(C); 1339 } else if (n->is_Mach()) { 1340 // On Power there are more nodes that issue constants. 1341 add_size += (n->as_Mach()->ins_num_consts() * 8); 1342 } 1343 } 1344 } 1345 1346 // Calculate the offsets of the constants and the size of the 1347 // constant table (including the padding to the next section). 1348 constant_table().calculate_offsets_and_size(); 1349 const_req = constant_table().size() + add_size; 1350 } 1351 1352 // Initialize the space for the BufferBlob used to find and verify 1353 // instruction size in MachNode::emit_size() 1354 init_scratch_buffer_blob(const_req); 1355 } 1356 1357 CodeBuffer* PhaseOutput::init_buffer() { 1358 int stub_req = _buf_sizes._stub; 1359 int code_req = _buf_sizes._code; 1360 int const_req = _buf_sizes._const; 1361 1362 int pad_req = NativeCall::instruction_size; 1363 1364 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1365 stub_req += bs->estimate_stub_size(); 1366 1367 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1368 // class HandlerImpl is platform-specific and defined in the *.ad files. 1369 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1370 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1371 stub_req += MAX_stubs_size; // ensure per-stub margin 1372 code_req += MAX_inst_size; // ensure per-instruction margin 1373 1374 if (StressCodeBuffers) 1375 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1376 1377 int total_req = 1378 const_req + 1379 code_req + 1380 pad_req + 1381 stub_req + 1382 exception_handler_req + 1383 deopt_handler_req; // deopt handler 1384 1385 if (C->has_method_handle_invokes()) 1386 total_req += deopt_handler_req; // deopt MH handler 1387 1388 CodeBuffer* cb = code_buffer(); 1389 cb->initialize(total_req, _buf_sizes._reloc); 1390 1391 // Have we run out of code space? 1392 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1393 C->record_failure("CodeCache is full"); 1394 return nullptr; 1395 } 1396 // Configure the code buffer. 1397 cb->initialize_consts_size(const_req); 1398 cb->initialize_stubs_size(stub_req); 1399 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1400 1401 // fill in the nop array for bundling computations 1402 MachNode *_nop_list[Bundle::_nop_count]; 1403 Bundle::initialize_nops(_nop_list); 1404 1405 return cb; 1406 } 1407 1408 //------------------------------fill_buffer------------------------------------ 1409 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1410 // blk_starts[] contains offsets calculated during short branches processing, 1411 // offsets should not be increased during following steps. 1412 1413 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1414 // of a loop. It is used to determine the padding for loop alignment. 1415 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1416 1417 compute_loop_first_inst_sizes(); 1418 1419 // Create oopmap set. 1420 _oop_map_set = new OopMapSet(); 1421 1422 // !!!!! This preserves old handling of oopmaps for now 1423 C->debug_info()->set_oopmaps(_oop_map_set); 1424 1425 uint nblocks = C->cfg()->number_of_blocks(); 1426 // Count and start of implicit null check instructions 1427 uint inct_cnt = 0; 1428 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1429 1430 // Count and start of calls 1431 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1432 1433 uint return_offset = 0; 1434 int nop_size = (new MachNopNode())->size(C->regalloc()); 1435 1436 int previous_offset = 0; 1437 int current_offset = 0; 1438 int last_call_offset = -1; 1439 int last_avoid_back_to_back_offset = -1; 1440 #ifdef ASSERT 1441 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1442 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1443 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1444 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1445 #endif 1446 1447 // Create an array of unused labels, one for each basic block, if printing is enabled 1448 #if defined(SUPPORT_OPTO_ASSEMBLY) 1449 int* node_offsets = nullptr; 1450 uint node_offset_limit = C->unique(); 1451 1452 if (C->print_assembly()) { 1453 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1454 } 1455 if (node_offsets != nullptr) { 1456 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1457 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1458 } 1459 #endif 1460 1461 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1462 1463 // Emit the constant table. 1464 if (C->has_mach_constant_base_node()) { 1465 if (!constant_table().emit(*cb)) { 1466 C->record_failure("consts section overflow"); 1467 return; 1468 } 1469 } 1470 1471 // Create an array of labels, one for each basic block 1472 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1473 for (uint i = 0; i <= nblocks; i++) { 1474 blk_labels[i].init(); 1475 } 1476 1477 // Now fill in the code buffer 1478 Node* delay_slot = nullptr; 1479 for (uint i = 0; i < nblocks; i++) { 1480 Block* block = C->cfg()->get_block(i); 1481 _block = block; 1482 Node* head = block->head(); 1483 1484 // If this block needs to start aligned (i.e, can be reached other 1485 // than by falling-thru from the previous block), then force the 1486 // start of a new bundle. 1487 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1488 cb->flush_bundle(true); 1489 } 1490 1491 #ifdef ASSERT 1492 if (!block->is_connector()) { 1493 stringStream st; 1494 block->dump_head(C->cfg(), &st); 1495 MacroAssembler(cb).block_comment(st.freeze()); 1496 } 1497 jmp_target[i] = 0; 1498 jmp_offset[i] = 0; 1499 jmp_size[i] = 0; 1500 jmp_rule[i] = 0; 1501 #endif 1502 int blk_offset = current_offset; 1503 1504 // Define the label at the beginning of the basic block 1505 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1506 1507 uint last_inst = block->number_of_nodes(); 1508 1509 // Emit block normally, except for last instruction. 1510 // Emit means "dump code bits into code buffer". 1511 for (uint j = 0; j<last_inst; j++) { 1512 _index = j; 1513 1514 // Get the node 1515 Node* n = block->get_node(j); 1516 1517 // See if delay slots are supported 1518 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1519 assert(delay_slot == nullptr, "no use of delay slot node"); 1520 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1521 1522 delay_slot = n; 1523 continue; 1524 } 1525 1526 // If this starts a new instruction group, then flush the current one 1527 // (but allow split bundles) 1528 if (Pipeline::requires_bundling() && starts_bundle(n)) 1529 cb->flush_bundle(false); 1530 1531 // Special handling for SafePoint/Call Nodes 1532 bool is_mcall = false; 1533 if (n->is_Mach()) { 1534 MachNode *mach = n->as_Mach(); 1535 is_mcall = n->is_MachCall(); 1536 bool is_sfn = n->is_MachSafePoint(); 1537 1538 // If this requires all previous instructions be flushed, then do so 1539 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1540 cb->flush_bundle(true); 1541 current_offset = cb->insts_size(); 1542 } 1543 1544 // A padding may be needed again since a previous instruction 1545 // could be moved to delay slot. 1546 1547 // align the instruction if necessary 1548 int padding = mach->compute_padding(current_offset); 1549 // Make sure safepoint node for polling is distinct from a call's 1550 // return by adding a nop if needed. 1551 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1552 padding = nop_size; 1553 } 1554 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1555 current_offset == last_avoid_back_to_back_offset) { 1556 // Avoid back to back some instructions. 1557 padding = nop_size; 1558 } 1559 1560 if (padding > 0) { 1561 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1562 int nops_cnt = padding / nop_size; 1563 MachNode *nop = new MachNopNode(nops_cnt); 1564 block->insert_node(nop, j++); 1565 last_inst++; 1566 C->cfg()->map_node_to_block(nop, block); 1567 // Ensure enough space. 1568 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1569 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1570 C->record_failure("CodeCache is full"); 1571 return; 1572 } 1573 nop->emit(*cb, C->regalloc()); 1574 cb->flush_bundle(true); 1575 current_offset = cb->insts_size(); 1576 } 1577 1578 bool observe_safepoint = is_sfn; 1579 // Remember the start of the last call in a basic block 1580 if (is_mcall) { 1581 MachCallNode *mcall = mach->as_MachCall(); 1582 1583 if (mcall->entry_point() != nullptr) { 1584 // This destination address is NOT PC-relative 1585 mcall->method_set((intptr_t)mcall->entry_point()); 1586 } 1587 1588 // Save the return address 1589 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1590 1591 observe_safepoint = mcall->guaranteed_safepoint(); 1592 } 1593 1594 // sfn will be valid whenever mcall is valid now because of inheritance 1595 if (observe_safepoint) { 1596 // Handle special safepoint nodes for synchronization 1597 if (!is_mcall) { 1598 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1599 // !!!!! Stubs only need an oopmap right now, so bail out 1600 if (sfn->jvms()->method() == nullptr) { 1601 // Write the oopmap directly to the code blob??!! 1602 continue; 1603 } 1604 } // End synchronization 1605 1606 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1607 current_offset); 1608 Process_OopMap_Node(mach, current_offset); 1609 } // End if safepoint 1610 1611 // If this is a null check, then add the start of the previous instruction to the list 1612 else if( mach->is_MachNullCheck() ) { 1613 inct_starts[inct_cnt++] = previous_offset; 1614 } 1615 1616 // If this is a branch, then fill in the label with the target BB's label 1617 else if (mach->is_MachBranch()) { 1618 // This requires the TRUE branch target be in succs[0] 1619 uint block_num = block->non_connector_successor(0)->_pre_order; 1620 1621 // Try to replace long branch if delay slot is not used, 1622 // it is mostly for back branches since forward branch's 1623 // distance is not updated yet. 1624 bool delay_slot_is_used = valid_bundle_info(n) && 1625 C->output()->node_bundling(n)->use_unconditional_delay(); 1626 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1627 assert(delay_slot == nullptr, "not expecting delay slot node"); 1628 int br_size = n->size(C->regalloc()); 1629 int offset = blk_starts[block_num] - current_offset; 1630 if (block_num >= i) { 1631 // Current and following block's offset are not 1632 // finalized yet, adjust distance by the difference 1633 // between calculated and final offsets of current block. 1634 offset -= (blk_starts[i] - blk_offset); 1635 } 1636 // In the following code a nop could be inserted before 1637 // the branch which will increase the backward distance. 1638 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1639 if (needs_padding && offset <= 0) 1640 offset -= nop_size; 1641 1642 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1643 // We've got a winner. Replace this branch. 1644 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1645 1646 // Update the jmp_size. 1647 int new_size = replacement->size(C->regalloc()); 1648 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1649 // Insert padding between avoid_back_to_back branches. 1650 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1651 MachNode *nop = new MachNopNode(); 1652 block->insert_node(nop, j++); 1653 C->cfg()->map_node_to_block(nop, block); 1654 last_inst++; 1655 nop->emit(*cb, C->regalloc()); 1656 cb->flush_bundle(true); 1657 current_offset = cb->insts_size(); 1658 } 1659 #ifdef ASSERT 1660 jmp_target[i] = block_num; 1661 jmp_offset[i] = current_offset - blk_offset; 1662 jmp_size[i] = new_size; 1663 jmp_rule[i] = mach->rule(); 1664 #endif 1665 block->map_node(replacement, j); 1666 mach->subsume_by(replacement, C); 1667 n = replacement; 1668 mach = replacement; 1669 } 1670 } 1671 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1672 } else if (mach->ideal_Opcode() == Op_Jump) { 1673 for (uint h = 0; h < block->_num_succs; h++) { 1674 Block* succs_block = block->_succs[h]; 1675 for (uint j = 1; j < succs_block->num_preds(); j++) { 1676 Node* jpn = succs_block->pred(j); 1677 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1678 uint block_num = succs_block->non_connector()->_pre_order; 1679 Label *blkLabel = &blk_labels[block_num]; 1680 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1681 } 1682 } 1683 } 1684 } 1685 #ifdef ASSERT 1686 // Check that oop-store precedes the card-mark 1687 else if (mach->ideal_Opcode() == Op_StoreCM) { 1688 uint storeCM_idx = j; 1689 int count = 0; 1690 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1691 Node *oop_store = mach->in(prec); // Precedence edge 1692 if (oop_store == nullptr) continue; 1693 count++; 1694 uint i4; 1695 for (i4 = 0; i4 < last_inst; ++i4) { 1696 if (block->get_node(i4) == oop_store) { 1697 break; 1698 } 1699 } 1700 // Note: This test can provide a false failure if other precedence 1701 // edges have been added to the storeCMNode. 1702 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1703 } 1704 assert(count > 0, "storeCM expects at least one precedence edge"); 1705 } 1706 #endif 1707 else if (!n->is_Proj()) { 1708 // Remember the beginning of the previous instruction, in case 1709 // it's followed by a flag-kill and a null-check. Happens on 1710 // Intel all the time, with add-to-memory kind of opcodes. 1711 previous_offset = current_offset; 1712 } 1713 1714 // Not an else-if! 1715 // If this is a trap based cmp then add its offset to the list. 1716 if (mach->is_TrapBasedCheckNode()) { 1717 inct_starts[inct_cnt++] = current_offset; 1718 } 1719 } 1720 1721 // Verify that there is sufficient space remaining 1722 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1723 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1724 C->record_failure("CodeCache is full"); 1725 return; 1726 } 1727 1728 // Save the offset for the listing 1729 #if defined(SUPPORT_OPTO_ASSEMBLY) 1730 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1731 node_offsets[n->_idx] = cb->insts_size(); 1732 } 1733 #endif 1734 assert(!C->failing(), "Should not reach here if failing."); 1735 1736 // "Normal" instruction case 1737 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1738 n->emit(*cb, C->regalloc()); 1739 current_offset = cb->insts_size(); 1740 1741 // Above we only verified that there is enough space in the instruction section. 1742 // However, the instruction may emit stubs that cause code buffer expansion. 1743 // Bail out here if expansion failed due to a lack of code cache space. 1744 if (C->failing()) { 1745 return; 1746 } 1747 1748 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1749 "ret_addr_offset() not within emitted code"); 1750 #ifdef ASSERT 1751 uint n_size = n->size(C->regalloc()); 1752 if (n_size < (current_offset-instr_offset)) { 1753 MachNode* mach = n->as_Mach(); 1754 n->dump(); 1755 mach->dump_format(C->regalloc(), tty); 1756 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1757 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1758 tty->print_cr(" ------------------- "); 1759 BufferBlob* blob = this->scratch_buffer_blob(); 1760 address blob_begin = blob->content_begin(); 1761 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1762 assert(false, "wrong size of mach node"); 1763 } 1764 #endif 1765 non_safepoints.observe_instruction(n, current_offset); 1766 1767 // mcall is last "call" that can be a safepoint 1768 // record it so we can see if a poll will directly follow it 1769 // in which case we'll need a pad to make the PcDesc sites unique 1770 // see 5010568. This can be slightly inaccurate but conservative 1771 // in the case that return address is not actually at current_offset. 1772 // This is a small price to pay. 1773 1774 if (is_mcall) { 1775 last_call_offset = current_offset; 1776 } 1777 1778 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1779 // Avoid back to back some instructions. 1780 last_avoid_back_to_back_offset = current_offset; 1781 } 1782 1783 // See if this instruction has a delay slot 1784 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1785 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1786 1787 // Back up 1 instruction 1788 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1789 1790 // Save the offset for the listing 1791 #if defined(SUPPORT_OPTO_ASSEMBLY) 1792 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1793 node_offsets[delay_slot->_idx] = cb->insts_size(); 1794 } 1795 #endif 1796 1797 // Support a SafePoint in the delay slot 1798 if (delay_slot->is_MachSafePoint()) { 1799 MachNode *mach = delay_slot->as_Mach(); 1800 // !!!!! Stubs only need an oopmap right now, so bail out 1801 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1802 // Write the oopmap directly to the code blob??!! 1803 delay_slot = nullptr; 1804 continue; 1805 } 1806 1807 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1808 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1809 adjusted_offset); 1810 // Generate an OopMap entry 1811 Process_OopMap_Node(mach, adjusted_offset); 1812 } 1813 1814 // Insert the delay slot instruction 1815 delay_slot->emit(*cb, C->regalloc()); 1816 1817 // Don't reuse it 1818 delay_slot = nullptr; 1819 } 1820 1821 } // End for all instructions in block 1822 1823 // If the next block is the top of a loop, pad this block out to align 1824 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1825 if (i < nblocks-1) { 1826 Block *nb = C->cfg()->get_block(i + 1); 1827 int padding = nb->alignment_padding(current_offset); 1828 if( padding > 0 ) { 1829 MachNode *nop = new MachNopNode(padding / nop_size); 1830 block->insert_node(nop, block->number_of_nodes()); 1831 C->cfg()->map_node_to_block(nop, block); 1832 nop->emit(*cb, C->regalloc()); 1833 current_offset = cb->insts_size(); 1834 } 1835 } 1836 // Verify that the distance for generated before forward 1837 // short branches is still valid. 1838 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1839 1840 // Save new block start offset 1841 blk_starts[i] = blk_offset; 1842 } // End of for all blocks 1843 blk_starts[nblocks] = current_offset; 1844 1845 non_safepoints.flush_at_end(); 1846 1847 // Offset too large? 1848 if (C->failing()) return; 1849 1850 // Define a pseudo-label at the end of the code 1851 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1852 1853 // Compute the size of the first block 1854 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1855 1856 #ifdef ASSERT 1857 for (uint i = 0; i < nblocks; i++) { // For all blocks 1858 if (jmp_target[i] != 0) { 1859 int br_size = jmp_size[i]; 1860 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1861 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1862 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1863 assert(false, "Displacement too large for short jmp"); 1864 } 1865 } 1866 } 1867 #endif 1868 1869 if (!cb->finalize_stubs()) { 1870 C->record_failure("CodeCache is full"); 1871 return; 1872 } 1873 1874 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1875 bs->emit_stubs(*cb); 1876 if (C->failing()) return; 1877 1878 // Fill in stubs. 1879 _stub_list.emit(*cb); 1880 if (C->failing()) return; 1881 1882 #ifndef PRODUCT 1883 // Information on the size of the method, without the extraneous code 1884 Scheduling::increment_method_size(cb->insts_size()); 1885 #endif 1886 1887 // ------------------ 1888 // Fill in exception table entries. 1889 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1890 1891 // Only java methods have exception handlers and deopt handlers 1892 // class HandlerImpl is platform-specific and defined in the *.ad files. 1893 if (C->method()) { 1894 // Emit the exception handler code. 1895 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1896 if (C->failing()) { 1897 return; // CodeBuffer::expand failed 1898 } 1899 // Emit the deopt handler code. 1900 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1901 1902 // Emit the MethodHandle deopt handler code (if required). 1903 if (C->has_method_handle_invokes() && !C->failing()) { 1904 // We can use the same code as for the normal deopt handler, we 1905 // just need a different entry point address. 1906 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1907 } 1908 } 1909 1910 // One last check for failed CodeBuffer::expand: 1911 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1912 C->record_failure("CodeCache is full"); 1913 return; 1914 } 1915 1916 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1917 if (C->print_assembly()) { 1918 tty->cr(); 1919 tty->print_cr("============================= C2-compiled nmethod =============================="); 1920 } 1921 #endif 1922 1923 #if defined(SUPPORT_OPTO_ASSEMBLY) 1924 // Dump the assembly code, including basic-block numbers 1925 if (C->print_assembly()) { 1926 ttyLocker ttyl; // keep the following output all in one block 1927 if (!VMThread::should_terminate()) { // test this under the tty lock 1928 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1929 // We call them first and write to a stringStream, then we retake the lock to 1930 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1931 ResourceMark rm; 1932 stringStream method_metadata_str; 1933 if (C->method() != nullptr) { 1934 C->method()->print_metadata(&method_metadata_str); 1935 } 1936 stringStream dump_asm_str; 1937 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1938 1939 NoSafepointVerifier nsv; 1940 ttyLocker ttyl2; 1941 // This output goes directly to the tty, not the compiler log. 1942 // To enable tools to match it up with the compilation activity, 1943 // be sure to tag this tty output with the compile ID. 1944 if (xtty != nullptr) { 1945 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1946 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1947 } 1948 if (C->method() != nullptr) { 1949 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1950 tty->print_raw(method_metadata_str.freeze()); 1951 } else if (C->stub_name() != nullptr) { 1952 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1953 } 1954 tty->cr(); 1955 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1956 tty->print_raw(dump_asm_str.freeze()); 1957 tty->print_cr("--------------------------------------------------------------------------------"); 1958 if (xtty != nullptr) { 1959 xtty->tail("opto_assembly"); 1960 } 1961 } 1962 } 1963 #endif 1964 } 1965 1966 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1967 _inc_table.set_size(cnt); 1968 1969 uint inct_cnt = 0; 1970 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1971 Block* block = C->cfg()->get_block(i); 1972 Node *n = nullptr; 1973 int j; 1974 1975 // Find the branch; ignore trailing NOPs. 1976 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1977 n = block->get_node(j); 1978 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1979 break; 1980 } 1981 } 1982 1983 // If we didn't find anything, continue 1984 if (j < 0) { 1985 continue; 1986 } 1987 1988 // Compute ExceptionHandlerTable subtable entry and add it 1989 // (skip empty blocks) 1990 if (n->is_Catch()) { 1991 1992 // Get the offset of the return from the call 1993 uint call_return = call_returns[block->_pre_order]; 1994 #ifdef ASSERT 1995 assert( call_return > 0, "no call seen for this basic block" ); 1996 while (block->get_node(--j)->is_MachProj()) ; 1997 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1998 #endif 1999 // last instruction is a CatchNode, find it's CatchProjNodes 2000 int nof_succs = block->_num_succs; 2001 // allocate space 2002 GrowableArray<intptr_t> handler_bcis(nof_succs); 2003 GrowableArray<intptr_t> handler_pcos(nof_succs); 2004 // iterate through all successors 2005 for (int j = 0; j < nof_succs; j++) { 2006 Block* s = block->_succs[j]; 2007 bool found_p = false; 2008 for (uint k = 1; k < s->num_preds(); k++) { 2009 Node* pk = s->pred(k); 2010 if (pk->is_CatchProj() && pk->in(0) == n) { 2011 const CatchProjNode* p = pk->as_CatchProj(); 2012 found_p = true; 2013 // add the corresponding handler bci & pco information 2014 if (p->_con != CatchProjNode::fall_through_index) { 2015 // p leads to an exception handler (and is not fall through) 2016 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 2017 // no duplicates, please 2018 if (!handler_bcis.contains(p->handler_bci())) { 2019 uint block_num = s->non_connector()->_pre_order; 2020 handler_bcis.append(p->handler_bci()); 2021 handler_pcos.append(blk_labels[block_num].loc_pos()); 2022 } 2023 } 2024 } 2025 } 2026 assert(found_p, "no matching predecessor found"); 2027 // Note: Due to empty block removal, one block may have 2028 // several CatchProj inputs, from the same Catch. 2029 } 2030 2031 // Set the offset of the return from the call 2032 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2033 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2034 continue; 2035 } 2036 2037 // Handle implicit null exception table updates 2038 if (n->is_MachNullCheck()) { 2039 uint block_num = block->non_connector_successor(0)->_pre_order; 2040 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2041 continue; 2042 } 2043 // Handle implicit exception table updates: trap instructions. 2044 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2045 uint block_num = block->non_connector_successor(0)->_pre_order; 2046 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2047 continue; 2048 } 2049 } // End of for all blocks fill in exception table entries 2050 } 2051 2052 // Static Variables 2053 #ifndef PRODUCT 2054 uint Scheduling::_total_nop_size = 0; 2055 uint Scheduling::_total_method_size = 0; 2056 uint Scheduling::_total_branches = 0; 2057 uint Scheduling::_total_unconditional_delays = 0; 2058 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2059 #endif 2060 2061 // Initializer for class Scheduling 2062 2063 Scheduling::Scheduling(Arena *arena, Compile &compile) 2064 : _arena(arena), 2065 _cfg(compile.cfg()), 2066 _regalloc(compile.regalloc()), 2067 _scheduled(arena), 2068 _available(arena), 2069 _reg_node(arena), 2070 _pinch_free_list(arena), 2071 _next_node(nullptr), 2072 _bundle_instr_count(0), 2073 _bundle_cycle_number(0), 2074 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2075 #ifndef PRODUCT 2076 , _branches(0) 2077 , _unconditional_delays(0) 2078 #endif 2079 { 2080 // Create a MachNopNode 2081 _nop = new MachNopNode(); 2082 2083 // Now that the nops are in the array, save the count 2084 // (but allow entries for the nops) 2085 _node_bundling_limit = compile.unique(); 2086 uint node_max = _regalloc->node_regs_max_index(); 2087 2088 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2089 2090 // This one is persistent within the Compile class 2091 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2092 2093 // Allocate space for fixed-size arrays 2094 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2095 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2096 2097 // Clear the arrays 2098 for (uint i = 0; i < node_max; i++) { 2099 ::new (&_node_bundling_base[i]) Bundle(); 2100 } 2101 memset(_uses, 0, node_max * sizeof(short)); 2102 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2103 2104 // Clear the bundling information 2105 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2106 2107 // Get the last node 2108 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2109 2110 _next_node = block->get_node(block->number_of_nodes() - 1); 2111 } 2112 2113 #ifndef PRODUCT 2114 // Scheduling destructor 2115 Scheduling::~Scheduling() { 2116 _total_branches += _branches; 2117 _total_unconditional_delays += _unconditional_delays; 2118 } 2119 #endif 2120 2121 // Step ahead "i" cycles 2122 void Scheduling::step(uint i) { 2123 2124 Bundle *bundle = node_bundling(_next_node); 2125 bundle->set_starts_bundle(); 2126 2127 // Update the bundle record, but leave the flags information alone 2128 if (_bundle_instr_count > 0) { 2129 bundle->set_instr_count(_bundle_instr_count); 2130 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2131 } 2132 2133 // Update the state information 2134 _bundle_instr_count = 0; 2135 _bundle_cycle_number += i; 2136 _bundle_use.step(i); 2137 } 2138 2139 void Scheduling::step_and_clear() { 2140 Bundle *bundle = node_bundling(_next_node); 2141 bundle->set_starts_bundle(); 2142 2143 // Update the bundle record 2144 if (_bundle_instr_count > 0) { 2145 bundle->set_instr_count(_bundle_instr_count); 2146 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2147 2148 _bundle_cycle_number += 1; 2149 } 2150 2151 // Clear the bundling information 2152 _bundle_instr_count = 0; 2153 _bundle_use.reset(); 2154 2155 memcpy(_bundle_use_elements, 2156 Pipeline_Use::elaborated_elements, 2157 sizeof(Pipeline_Use::elaborated_elements)); 2158 } 2159 2160 // Perform instruction scheduling and bundling over the sequence of 2161 // instructions in backwards order. 2162 void PhaseOutput::ScheduleAndBundle() { 2163 2164 // Don't optimize this if it isn't a method 2165 if (!C->method()) 2166 return; 2167 2168 // Don't optimize this if scheduling is disabled 2169 if (!C->do_scheduling()) 2170 return; 2171 2172 // Scheduling code works only with pairs (8 bytes) maximum. 2173 // And when the scalable vector register is used, we may spill/unspill 2174 // the whole reg regardless of the max vector size. 2175 if (C->max_vector_size() > 8 || 2176 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2177 return; 2178 } 2179 2180 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2181 2182 // Create a data structure for all the scheduling information 2183 Scheduling scheduling(Thread::current()->resource_area(), *C); 2184 2185 // Walk backwards over each basic block, computing the needed alignment 2186 // Walk over all the basic blocks 2187 scheduling.DoScheduling(); 2188 2189 #ifndef PRODUCT 2190 if (C->trace_opto_output()) { 2191 // Buffer and print all at once 2192 ResourceMark rm; 2193 stringStream ss; 2194 ss.print("\n---- After ScheduleAndBundle ----\n"); 2195 print_scheduling(&ss); 2196 tty->print("%s", ss.as_string()); 2197 } 2198 #endif 2199 } 2200 2201 #ifndef PRODUCT 2202 // Separated out so that it can be called directly from debugger 2203 void PhaseOutput::print_scheduling() { 2204 print_scheduling(tty); 2205 } 2206 2207 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2208 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2209 output_stream->print("\nBB#%03d:\n", i); 2210 Block* block = C->cfg()->get_block(i); 2211 for (uint j = 0; j < block->number_of_nodes(); j++) { 2212 Node* n = block->get_node(j); 2213 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2214 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2215 n->dump("\n", false, output_stream); 2216 } 2217 } 2218 } 2219 #endif 2220 2221 // See if this node fits into the present instruction bundle 2222 bool Scheduling::NodeFitsInBundle(Node *n) { 2223 uint n_idx = n->_idx; 2224 2225 // If this is the unconditional delay instruction, then it fits 2226 if (n == _unconditional_delay_slot) { 2227 #ifndef PRODUCT 2228 if (_cfg->C->trace_opto_output()) 2229 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2230 #endif 2231 return (true); 2232 } 2233 2234 // If the node cannot be scheduled this cycle, skip it 2235 if (_current_latency[n_idx] > _bundle_cycle_number) { 2236 #ifndef PRODUCT 2237 if (_cfg->C->trace_opto_output()) 2238 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2239 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2240 #endif 2241 return (false); 2242 } 2243 2244 const Pipeline *node_pipeline = n->pipeline(); 2245 2246 uint instruction_count = node_pipeline->instructionCount(); 2247 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2248 instruction_count = 0; 2249 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2250 instruction_count++; 2251 2252 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2253 #ifndef PRODUCT 2254 if (_cfg->C->trace_opto_output()) 2255 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2256 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2257 #endif 2258 return (false); 2259 } 2260 2261 // Don't allow non-machine nodes to be handled this way 2262 if (!n->is_Mach() && instruction_count == 0) 2263 return (false); 2264 2265 // See if there is any overlap 2266 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2267 2268 if (delay > 0) { 2269 #ifndef PRODUCT 2270 if (_cfg->C->trace_opto_output()) 2271 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2272 #endif 2273 return false; 2274 } 2275 2276 #ifndef PRODUCT 2277 if (_cfg->C->trace_opto_output()) 2278 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2279 #endif 2280 2281 return true; 2282 } 2283 2284 Node * Scheduling::ChooseNodeToBundle() { 2285 uint siz = _available.size(); 2286 2287 if (siz == 0) { 2288 2289 #ifndef PRODUCT 2290 if (_cfg->C->trace_opto_output()) 2291 tty->print("# ChooseNodeToBundle: null\n"); 2292 #endif 2293 return (nullptr); 2294 } 2295 2296 // Fast path, if only 1 instruction in the bundle 2297 if (siz == 1) { 2298 #ifndef PRODUCT 2299 if (_cfg->C->trace_opto_output()) { 2300 tty->print("# ChooseNodeToBundle (only 1): "); 2301 _available[0]->dump(); 2302 } 2303 #endif 2304 return (_available[0]); 2305 } 2306 2307 // Don't bother, if the bundle is already full 2308 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2309 for ( uint i = 0; i < siz; i++ ) { 2310 Node *n = _available[i]; 2311 2312 // Skip projections, we'll handle them another way 2313 if (n->is_Proj()) 2314 continue; 2315 2316 // This presupposed that instructions are inserted into the 2317 // available list in a legality order; i.e. instructions that 2318 // must be inserted first are at the head of the list 2319 if (NodeFitsInBundle(n)) { 2320 #ifndef PRODUCT 2321 if (_cfg->C->trace_opto_output()) { 2322 tty->print("# ChooseNodeToBundle: "); 2323 n->dump(); 2324 } 2325 #endif 2326 return (n); 2327 } 2328 } 2329 } 2330 2331 // Nothing fits in this bundle, choose the highest priority 2332 #ifndef PRODUCT 2333 if (_cfg->C->trace_opto_output()) { 2334 tty->print("# ChooseNodeToBundle: "); 2335 _available[0]->dump(); 2336 } 2337 #endif 2338 2339 return _available[0]; 2340 } 2341 2342 void Scheduling::AddNodeToAvailableList(Node *n) { 2343 assert( !n->is_Proj(), "projections never directly made available" ); 2344 #ifndef PRODUCT 2345 if (_cfg->C->trace_opto_output()) { 2346 tty->print("# AddNodeToAvailableList: "); 2347 n->dump(); 2348 } 2349 #endif 2350 2351 int latency = _current_latency[n->_idx]; 2352 2353 // Insert in latency order (insertion sort) 2354 uint i; 2355 for ( i=0; i < _available.size(); i++ ) 2356 if (_current_latency[_available[i]->_idx] > latency) 2357 break; 2358 2359 // Special Check for compares following branches 2360 if( n->is_Mach() && _scheduled.size() > 0 ) { 2361 int op = n->as_Mach()->ideal_Opcode(); 2362 Node *last = _scheduled[0]; 2363 if( last->is_MachIf() && last->in(1) == n && 2364 ( op == Op_CmpI || 2365 op == Op_CmpU || 2366 op == Op_CmpUL || 2367 op == Op_CmpP || 2368 op == Op_CmpF || 2369 op == Op_CmpD || 2370 op == Op_CmpL ) ) { 2371 2372 // Recalculate position, moving to front of same latency 2373 for ( i=0 ; i < _available.size(); i++ ) 2374 if (_current_latency[_available[i]->_idx] >= latency) 2375 break; 2376 } 2377 } 2378 2379 // Insert the node in the available list 2380 _available.insert(i, n); 2381 2382 #ifndef PRODUCT 2383 if (_cfg->C->trace_opto_output()) 2384 dump_available(); 2385 #endif 2386 } 2387 2388 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2389 for ( uint i=0; i < n->len(); i++ ) { 2390 Node *def = n->in(i); 2391 if (!def) continue; 2392 if( def->is_Proj() ) // If this is a machine projection, then 2393 def = def->in(0); // propagate usage thru to the base instruction 2394 2395 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2396 continue; 2397 } 2398 2399 // Compute the latency 2400 uint l = _bundle_cycle_number + n->latency(i); 2401 if (_current_latency[def->_idx] < l) 2402 _current_latency[def->_idx] = l; 2403 2404 // If this does not have uses then schedule it 2405 if ((--_uses[def->_idx]) == 0) 2406 AddNodeToAvailableList(def); 2407 } 2408 } 2409 2410 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2411 #ifndef PRODUCT 2412 if (_cfg->C->trace_opto_output()) { 2413 tty->print("# AddNodeToBundle: "); 2414 n->dump(); 2415 } 2416 #endif 2417 2418 // Remove this from the available list 2419 uint i; 2420 for (i = 0; i < _available.size(); i++) 2421 if (_available[i] == n) 2422 break; 2423 assert(i < _available.size(), "entry in _available list not found"); 2424 _available.remove(i); 2425 2426 // See if this fits in the current bundle 2427 const Pipeline *node_pipeline = n->pipeline(); 2428 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2429 2430 // Check for instructions to be placed in the delay slot. We 2431 // do this before we actually schedule the current instruction, 2432 // because the delay slot follows the current instruction. 2433 if (Pipeline::_branch_has_delay_slot && 2434 node_pipeline->hasBranchDelay() && 2435 !_unconditional_delay_slot) { 2436 2437 uint siz = _available.size(); 2438 2439 // Conditional branches can support an instruction that 2440 // is unconditionally executed and not dependent by the 2441 // branch, OR a conditionally executed instruction if 2442 // the branch is taken. In practice, this means that 2443 // the first instruction at the branch target is 2444 // copied to the delay slot, and the branch goes to 2445 // the instruction after that at the branch target 2446 if ( n->is_MachBranch() ) { 2447 2448 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2449 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2450 2451 #ifndef PRODUCT 2452 _branches++; 2453 #endif 2454 2455 // At least 1 instruction is on the available list 2456 // that is not dependent on the branch 2457 for (uint i = 0; i < siz; i++) { 2458 Node *d = _available[i]; 2459 const Pipeline *avail_pipeline = d->pipeline(); 2460 2461 // Don't allow safepoints in the branch shadow, that will 2462 // cause a number of difficulties 2463 if ( avail_pipeline->instructionCount() == 1 && 2464 !avail_pipeline->hasMultipleBundles() && 2465 !avail_pipeline->hasBranchDelay() && 2466 Pipeline::instr_has_unit_size() && 2467 d->size(_regalloc) == Pipeline::instr_unit_size() && 2468 NodeFitsInBundle(d) && 2469 !node_bundling(d)->used_in_delay()) { 2470 2471 if (d->is_Mach() && !d->is_MachSafePoint()) { 2472 // A node that fits in the delay slot was found, so we need to 2473 // set the appropriate bits in the bundle pipeline information so 2474 // that it correctly indicates resource usage. Later, when we 2475 // attempt to add this instruction to the bundle, we will skip 2476 // setting the resource usage. 2477 _unconditional_delay_slot = d; 2478 node_bundling(n)->set_use_unconditional_delay(); 2479 node_bundling(d)->set_used_in_unconditional_delay(); 2480 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2481 _current_latency[d->_idx] = _bundle_cycle_number; 2482 _next_node = d; 2483 ++_bundle_instr_count; 2484 #ifndef PRODUCT 2485 _unconditional_delays++; 2486 #endif 2487 break; 2488 } 2489 } 2490 } 2491 } 2492 2493 // No delay slot, add a nop to the usage 2494 if (!_unconditional_delay_slot) { 2495 // See if adding an instruction in the delay slot will overflow 2496 // the bundle. 2497 if (!NodeFitsInBundle(_nop)) { 2498 #ifndef PRODUCT 2499 if (_cfg->C->trace_opto_output()) 2500 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2501 #endif 2502 step(1); 2503 } 2504 2505 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2506 _next_node = _nop; 2507 ++_bundle_instr_count; 2508 } 2509 2510 // See if the instruction in the delay slot requires a 2511 // step of the bundles 2512 if (!NodeFitsInBundle(n)) { 2513 #ifndef PRODUCT 2514 if (_cfg->C->trace_opto_output()) 2515 tty->print("# *** STEP(branch won't fit) ***\n"); 2516 #endif 2517 // Update the state information 2518 _bundle_instr_count = 0; 2519 _bundle_cycle_number += 1; 2520 _bundle_use.step(1); 2521 } 2522 } 2523 2524 // Get the number of instructions 2525 uint instruction_count = node_pipeline->instructionCount(); 2526 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2527 instruction_count = 0; 2528 2529 // Compute the latency information 2530 uint delay = 0; 2531 2532 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2533 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2534 if (relative_latency < 0) 2535 relative_latency = 0; 2536 2537 delay = _bundle_use.full_latency(relative_latency, node_usage); 2538 2539 // Does not fit in this bundle, start a new one 2540 if (delay > 0) { 2541 step(delay); 2542 2543 #ifndef PRODUCT 2544 if (_cfg->C->trace_opto_output()) 2545 tty->print("# *** STEP(%d) ***\n", delay); 2546 #endif 2547 } 2548 } 2549 2550 // If this was placed in the delay slot, ignore it 2551 if (n != _unconditional_delay_slot) { 2552 2553 if (delay == 0) { 2554 if (node_pipeline->hasMultipleBundles()) { 2555 #ifndef PRODUCT 2556 if (_cfg->C->trace_opto_output()) 2557 tty->print("# *** STEP(multiple instructions) ***\n"); 2558 #endif 2559 step(1); 2560 } 2561 2562 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2563 #ifndef PRODUCT 2564 if (_cfg->C->trace_opto_output()) 2565 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2566 instruction_count + _bundle_instr_count, 2567 Pipeline::_max_instrs_per_cycle); 2568 #endif 2569 step(1); 2570 } 2571 } 2572 2573 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2574 _bundle_instr_count++; 2575 2576 // Set the node's latency 2577 _current_latency[n->_idx] = _bundle_cycle_number; 2578 2579 // Now merge the functional unit information 2580 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2581 _bundle_use.add_usage(node_usage); 2582 2583 // Increment the number of instructions in this bundle 2584 _bundle_instr_count += instruction_count; 2585 2586 // Remember this node for later 2587 if (n->is_Mach()) 2588 _next_node = n; 2589 } 2590 2591 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2592 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2593 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2594 // into the block. All other scheduled nodes get put in the schedule here. 2595 int op = n->Opcode(); 2596 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2597 (op != Op_Node && // Not an unused antidepedence node and 2598 // not an unallocated boxlock 2599 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2600 2601 // Push any trailing projections 2602 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2603 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2604 Node *foi = n->fast_out(i); 2605 if( foi->is_Proj() ) 2606 _scheduled.push(foi); 2607 } 2608 } 2609 2610 // Put the instruction in the schedule list 2611 _scheduled.push(n); 2612 } 2613 2614 #ifndef PRODUCT 2615 if (_cfg->C->trace_opto_output()) 2616 dump_available(); 2617 #endif 2618 2619 // Walk all the definitions, decrementing use counts, and 2620 // if a definition has a 0 use count, place it in the available list. 2621 DecrementUseCounts(n,bb); 2622 } 2623 2624 // This method sets the use count within a basic block. We will ignore all 2625 // uses outside the current basic block. As we are doing a backwards walk, 2626 // any node we reach that has a use count of 0 may be scheduled. This also 2627 // avoids the problem of cyclic references from phi nodes, as long as phi 2628 // nodes are at the front of the basic block. This method also initializes 2629 // the available list to the set of instructions that have no uses within this 2630 // basic block. 2631 void Scheduling::ComputeUseCount(const Block *bb) { 2632 #ifndef PRODUCT 2633 if (_cfg->C->trace_opto_output()) 2634 tty->print("# -> ComputeUseCount\n"); 2635 #endif 2636 2637 // Clear the list of available and scheduled instructions, just in case 2638 _available.clear(); 2639 _scheduled.clear(); 2640 2641 // No delay slot specified 2642 _unconditional_delay_slot = nullptr; 2643 2644 #ifdef ASSERT 2645 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2646 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2647 #endif 2648 2649 // Force the _uses count to never go to zero for unscheduable pieces 2650 // of the block 2651 for( uint k = 0; k < _bb_start; k++ ) 2652 _uses[bb->get_node(k)->_idx] = 1; 2653 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2654 _uses[bb->get_node(l)->_idx] = 1; 2655 2656 // Iterate backwards over the instructions in the block. Don't count the 2657 // branch projections at end or the block header instructions. 2658 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2659 Node *n = bb->get_node(j); 2660 if( n->is_Proj() ) continue; // Projections handled another way 2661 2662 // Account for all uses 2663 for ( uint k = 0; k < n->len(); k++ ) { 2664 Node *inp = n->in(k); 2665 if (!inp) continue; 2666 assert(inp != n, "no cycles allowed" ); 2667 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2668 if (inp->is_Proj()) { // Skip through Proj's 2669 inp = inp->in(0); 2670 } 2671 ++_uses[inp->_idx]; // Count 1 block-local use 2672 } 2673 } 2674 2675 // If this instruction has a 0 use count, then it is available 2676 if (!_uses[n->_idx]) { 2677 _current_latency[n->_idx] = _bundle_cycle_number; 2678 AddNodeToAvailableList(n); 2679 } 2680 2681 #ifndef PRODUCT 2682 if (_cfg->C->trace_opto_output()) { 2683 tty->print("# uses: %3d: ", _uses[n->_idx]); 2684 n->dump(); 2685 } 2686 #endif 2687 } 2688 2689 #ifndef PRODUCT 2690 if (_cfg->C->trace_opto_output()) 2691 tty->print("# <- ComputeUseCount\n"); 2692 #endif 2693 } 2694 2695 // This routine performs scheduling on each basic block in reverse order, 2696 // using instruction latencies and taking into account function unit 2697 // availability. 2698 void Scheduling::DoScheduling() { 2699 #ifndef PRODUCT 2700 if (_cfg->C->trace_opto_output()) 2701 tty->print("# -> DoScheduling\n"); 2702 #endif 2703 2704 Block *succ_bb = nullptr; 2705 Block *bb; 2706 Compile* C = Compile::current(); 2707 2708 // Walk over all the basic blocks in reverse order 2709 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2710 bb = _cfg->get_block(i); 2711 2712 #ifndef PRODUCT 2713 if (_cfg->C->trace_opto_output()) { 2714 tty->print("# Schedule BB#%03d (initial)\n", i); 2715 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2716 bb->get_node(j)->dump(); 2717 } 2718 } 2719 #endif 2720 2721 // On the head node, skip processing 2722 if (bb == _cfg->get_root_block()) { 2723 continue; 2724 } 2725 2726 // Skip empty, connector blocks 2727 if (bb->is_connector()) 2728 continue; 2729 2730 // If the following block is not the sole successor of 2731 // this one, then reset the pipeline information 2732 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2733 #ifndef PRODUCT 2734 if (_cfg->C->trace_opto_output()) { 2735 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2736 _next_node->_idx, _bundle_instr_count); 2737 } 2738 #endif 2739 step_and_clear(); 2740 } 2741 2742 // Leave untouched the starting instruction, any Phis, a CreateEx node 2743 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2744 _bb_end = bb->number_of_nodes()-1; 2745 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2746 Node *n = bb->get_node(_bb_start); 2747 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2748 // Also, MachIdealNodes do not get scheduled 2749 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2750 MachNode *mach = n->as_Mach(); 2751 int iop = mach->ideal_Opcode(); 2752 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2753 if( iop == Op_Con ) continue; // Do not schedule Top 2754 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2755 mach->pipeline() == MachNode::pipeline_class() && 2756 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2757 continue; 2758 break; // Funny loop structure to be sure... 2759 } 2760 // Compute last "interesting" instruction in block - last instruction we 2761 // might schedule. _bb_end points just after last schedulable inst. We 2762 // normally schedule conditional branches (despite them being forced last 2763 // in the block), because they have delay slots we can fill. Calls all 2764 // have their delay slots filled in the template expansions, so we don't 2765 // bother scheduling them. 2766 Node *last = bb->get_node(_bb_end); 2767 // Ignore trailing NOPs. 2768 while (_bb_end > 0 && last->is_Mach() && 2769 last->as_Mach()->ideal_Opcode() == Op_Con) { 2770 last = bb->get_node(--_bb_end); 2771 } 2772 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2773 if( last->is_Catch() || 2774 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2775 // There might be a prior call. Skip it. 2776 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2777 } else if( last->is_MachNullCheck() ) { 2778 // Backup so the last null-checked memory instruction is 2779 // outside the schedulable range. Skip over the nullcheck, 2780 // projection, and the memory nodes. 2781 Node *mem = last->in(1); 2782 do { 2783 _bb_end--; 2784 } while (mem != bb->get_node(_bb_end)); 2785 } else { 2786 // Set _bb_end to point after last schedulable inst. 2787 _bb_end++; 2788 } 2789 2790 assert( _bb_start <= _bb_end, "inverted block ends" ); 2791 2792 // Compute the register antidependencies for the basic block 2793 ComputeRegisterAntidependencies(bb); 2794 if (C->failing()) return; // too many D-U pinch points 2795 2796 // Compute the usage within the block, and set the list of all nodes 2797 // in the block that have no uses within the block. 2798 ComputeUseCount(bb); 2799 2800 // Schedule the remaining instructions in the block 2801 while ( _available.size() > 0 ) { 2802 Node *n = ChooseNodeToBundle(); 2803 guarantee(n != nullptr, "no nodes available"); 2804 AddNodeToBundle(n,bb); 2805 } 2806 2807 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2808 #ifdef ASSERT 2809 for( uint l = _bb_start; l < _bb_end; l++ ) { 2810 Node *n = bb->get_node(l); 2811 uint m; 2812 for( m = 0; m < _bb_end-_bb_start; m++ ) 2813 if( _scheduled[m] == n ) 2814 break; 2815 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2816 } 2817 #endif 2818 2819 // Now copy the instructions (in reverse order) back to the block 2820 for ( uint k = _bb_start; k < _bb_end; k++ ) 2821 bb->map_node(_scheduled[_bb_end-k-1], k); 2822 2823 #ifndef PRODUCT 2824 if (_cfg->C->trace_opto_output()) { 2825 tty->print("# Schedule BB#%03d (final)\n", i); 2826 uint current = 0; 2827 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2828 Node *n = bb->get_node(j); 2829 if( valid_bundle_info(n) ) { 2830 Bundle *bundle = node_bundling(n); 2831 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2832 tty->print("*** Bundle: "); 2833 bundle->dump(); 2834 } 2835 n->dump(); 2836 } 2837 } 2838 } 2839 #endif 2840 #ifdef ASSERT 2841 verify_good_schedule(bb,"after block local scheduling"); 2842 #endif 2843 } 2844 2845 #ifndef PRODUCT 2846 if (_cfg->C->trace_opto_output()) 2847 tty->print("# <- DoScheduling\n"); 2848 #endif 2849 2850 // Record final node-bundling array location 2851 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2852 2853 } // end DoScheduling 2854 2855 // Verify that no live-range used in the block is killed in the block by a 2856 // wrong DEF. This doesn't verify live-ranges that span blocks. 2857 2858 // Check for edge existence. Used to avoid adding redundant precedence edges. 2859 static bool edge_from_to( Node *from, Node *to ) { 2860 for( uint i=0; i<from->len(); i++ ) 2861 if( from->in(i) == to ) 2862 return true; 2863 return false; 2864 } 2865 2866 #ifdef ASSERT 2867 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2868 // Check for bad kills 2869 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2870 Node *prior_use = _reg_node[def]; 2871 if( prior_use && !edge_from_to(prior_use,n) ) { 2872 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2873 n->dump(); 2874 tty->print_cr("..."); 2875 prior_use->dump(); 2876 assert(edge_from_to(prior_use,n), "%s", msg); 2877 } 2878 _reg_node.map(def,nullptr); // Kill live USEs 2879 } 2880 } 2881 2882 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2883 2884 // Zap to something reasonable for the verify code 2885 _reg_node.clear(); 2886 2887 // Walk over the block backwards. Check to make sure each DEF doesn't 2888 // kill a live value (other than the one it's supposed to). Add each 2889 // USE to the live set. 2890 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2891 Node *n = b->get_node(i); 2892 int n_op = n->Opcode(); 2893 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2894 // Fat-proj kills a slew of registers 2895 RegMaskIterator rmi(n->out_RegMask()); 2896 while (rmi.has_next()) { 2897 OptoReg::Name kill = rmi.next(); 2898 verify_do_def(n, kill, msg); 2899 } 2900 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2901 // Get DEF'd registers the normal way 2902 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2903 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2904 } 2905 2906 // Now make all USEs live 2907 for( uint i=1; i<n->req(); i++ ) { 2908 Node *def = n->in(i); 2909 assert(def != 0, "input edge required"); 2910 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2911 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2912 if( OptoReg::is_valid(reg_lo) ) { 2913 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2914 _reg_node.map(reg_lo,n); 2915 } 2916 if( OptoReg::is_valid(reg_hi) ) { 2917 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2918 _reg_node.map(reg_hi,n); 2919 } 2920 } 2921 2922 } 2923 2924 // Zap to something reasonable for the Antidependence code 2925 _reg_node.clear(); 2926 } 2927 #endif 2928 2929 // Conditionally add precedence edges. Avoid putting edges on Projs. 2930 static void add_prec_edge_from_to( Node *from, Node *to ) { 2931 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2932 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2933 from = from->in(0); 2934 } 2935 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2936 !edge_from_to( from, to ) ) // Avoid duplicate edge 2937 from->add_prec(to); 2938 } 2939 2940 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2941 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2942 return; 2943 2944 if (OptoReg::is_reg(def_reg)) { 2945 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2946 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2947 // This is one of the high slots of a vector register. 2948 // ScheduleAndBundle already checked there are no live wide 2949 // vectors in this method so it can be safely ignored. 2950 return; 2951 } 2952 } 2953 2954 Node *pinch = _reg_node[def_reg]; // Get pinch point 2955 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2956 is_def ) { // Check for a true def (not a kill) 2957 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2958 return; 2959 } 2960 2961 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2962 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2963 2964 // After some number of kills there _may_ be a later def 2965 Node *later_def = nullptr; 2966 2967 Compile* C = Compile::current(); 2968 2969 // Finding a kill requires a real pinch-point. 2970 // Check for not already having a pinch-point. 2971 // Pinch points are Op_Node's. 2972 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2973 later_def = pinch; // Must be def/kill as optimistic pinch-point 2974 if ( _pinch_free_list.size() > 0) { 2975 pinch = _pinch_free_list.pop(); 2976 } else { 2977 pinch = new Node(1); // Pinch point to-be 2978 } 2979 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2980 DEBUG_ONLY( pinch->dump(); ); 2981 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 2982 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2983 return; 2984 } 2985 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2986 _reg_node.map(def_reg,pinch); // Record pinch-point 2987 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2988 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2989 pinch->init_req(0, C->top()); // set not null for the next call 2990 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2991 later_def = nullptr; // and no later def 2992 } 2993 pinch->set_req(0,later_def); // Hook later def so we can find it 2994 } else { // Else have valid pinch point 2995 if( pinch->in(0) ) // If there is a later-def 2996 later_def = pinch->in(0); // Get it 2997 } 2998 2999 // Add output-dependence edge from later def to kill 3000 if( later_def ) // If there is some original def 3001 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3002 3003 // See if current kill is also a use, and so is forced to be the pinch-point. 3004 if( pinch->Opcode() == Op_Node ) { 3005 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3006 for( uint i=1; i<uses->req(); i++ ) { 3007 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3008 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3009 // Yes, found a use/kill pinch-point 3010 pinch->set_req(0,nullptr); // 3011 pinch->replace_by(kill); // Move anti-dep edges up 3012 pinch = kill; 3013 _reg_node.map(def_reg,pinch); 3014 return; 3015 } 3016 } 3017 } 3018 3019 // Add edge from kill to pinch-point 3020 add_prec_edge_from_to(kill,pinch); 3021 } 3022 3023 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3024 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3025 return; 3026 Node *pinch = _reg_node[use_reg]; // Get pinch point 3027 // Check for no later def_reg/kill in block 3028 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3029 // Use has to be block-local as well 3030 _cfg->get_block_for_node(use) == b) { 3031 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3032 pinch->req() == 1 ) { // pinch not yet in block? 3033 pinch->del_req(0); // yank pointer to later-def, also set flag 3034 // Insert the pinch-point in the block just after the last use 3035 b->insert_node(pinch, b->find_node(use) + 1); 3036 _bb_end++; // Increase size scheduled region in block 3037 } 3038 3039 add_prec_edge_from_to(pinch,use); 3040 } 3041 } 3042 3043 // We insert antidependences between the reads and following write of 3044 // allocated registers to prevent illegal code motion. Hopefully, the 3045 // number of added references should be fairly small, especially as we 3046 // are only adding references within the current basic block. 3047 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3048 3049 #ifdef ASSERT 3050 verify_good_schedule(b,"before block local scheduling"); 3051 #endif 3052 3053 // A valid schedule, for each register independently, is an endless cycle 3054 // of: a def, then some uses (connected to the def by true dependencies), 3055 // then some kills (defs with no uses), finally the cycle repeats with a new 3056 // def. The uses are allowed to float relative to each other, as are the 3057 // kills. No use is allowed to slide past a kill (or def). This requires 3058 // antidependencies between all uses of a single def and all kills that 3059 // follow, up to the next def. More edges are redundant, because later defs 3060 // & kills are already serialized with true or antidependencies. To keep 3061 // the edge count down, we add a 'pinch point' node if there's more than 3062 // one use or more than one kill/def. 3063 3064 // We add dependencies in one bottom-up pass. 3065 3066 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3067 3068 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3069 // register. If not, we record the DEF/KILL in _reg_node, the 3070 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3071 // "pinch point", a new Node that's in the graph but not in the block. 3072 // We put edges from the prior and current DEF/KILLs to the pinch point. 3073 // We put the pinch point in _reg_node. If there's already a pinch point 3074 // we merely add an edge from the current DEF/KILL to the pinch point. 3075 3076 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3077 // put an edge from the pinch point to the USE. 3078 3079 // To be expedient, the _reg_node array is pre-allocated for the whole 3080 // compilation. _reg_node is lazily initialized; it either contains a null, 3081 // or a valid def/kill/pinch-point, or a leftover node from some prior 3082 // block. Leftover node from some prior block is treated like a null (no 3083 // prior def, so no anti-dependence needed). Valid def is distinguished by 3084 // it being in the current block. 3085 bool fat_proj_seen = false; 3086 uint last_safept = _bb_end-1; 3087 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3088 Node* last_safept_node = end_node; 3089 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3090 Node *n = b->get_node(i); 3091 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3092 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3093 // Fat-proj kills a slew of registers 3094 // This can add edges to 'n' and obscure whether or not it was a def, 3095 // hence the is_def flag. 3096 fat_proj_seen = true; 3097 RegMaskIterator rmi(n->out_RegMask()); 3098 while (rmi.has_next()) { 3099 OptoReg::Name kill = rmi.next(); 3100 anti_do_def(b, n, kill, is_def); 3101 } 3102 } else { 3103 // Get DEF'd registers the normal way 3104 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3105 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3106 } 3107 3108 // Kill projections on a branch should appear to occur on the 3109 // branch, not afterwards, so grab the masks from the projections 3110 // and process them. 3111 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3112 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3113 Node* use = n->fast_out(i); 3114 if (use->is_Proj()) { 3115 RegMaskIterator rmi(use->out_RegMask()); 3116 while (rmi.has_next()) { 3117 OptoReg::Name kill = rmi.next(); 3118 anti_do_def(b, n, kill, false); 3119 } 3120 } 3121 } 3122 } 3123 3124 // Check each register used by this instruction for a following DEF/KILL 3125 // that must occur afterward and requires an anti-dependence edge. 3126 for( uint j=0; j<n->req(); j++ ) { 3127 Node *def = n->in(j); 3128 if( def ) { 3129 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3130 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3131 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3132 } 3133 } 3134 // Do not allow defs of new derived values to float above GC 3135 // points unless the base is definitely available at the GC point. 3136 3137 Node *m = b->get_node(i); 3138 3139 // Add precedence edge from following safepoint to use of derived pointer 3140 if( last_safept_node != end_node && 3141 m != last_safept_node) { 3142 for (uint k = 1; k < m->req(); k++) { 3143 const Type *t = m->in(k)->bottom_type(); 3144 if( t->isa_oop_ptr() && 3145 t->is_ptr()->offset() != 0 ) { 3146 last_safept_node->add_prec( m ); 3147 break; 3148 } 3149 } 3150 3151 // Do not allow a CheckCastPP node whose input is a raw pointer to 3152 // float past a safepoint. This can occur when a buffered inline 3153 // type is allocated in a loop and the CheckCastPP from that 3154 // allocation is reused outside the loop. If the use inside the 3155 // loop is scalarized the CheckCastPP will no longer be connected 3156 // to the loop safepoint. See JDK-8264340. 3157 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3158 Node *def = m->in(1); 3159 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 3160 last_safept_node->add_prec(m); 3161 } 3162 } 3163 } 3164 3165 if( n->jvms() ) { // Precedence edge from derived to safept 3166 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3167 if( b->get_node(last_safept) != last_safept_node ) { 3168 last_safept = b->find_node(last_safept_node); 3169 } 3170 for( uint j=last_safept; j > i; j-- ) { 3171 Node *mach = b->get_node(j); 3172 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3173 mach->add_prec( n ); 3174 } 3175 last_safept = i; 3176 last_safept_node = m; 3177 } 3178 } 3179 3180 if (fat_proj_seen) { 3181 // Garbage collect pinch nodes that were not consumed. 3182 // They are usually created by a fat kill MachProj for a call. 3183 garbage_collect_pinch_nodes(); 3184 } 3185 } 3186 3187 // Garbage collect pinch nodes for reuse by other blocks. 3188 // 3189 // The block scheduler's insertion of anti-dependence 3190 // edges creates many pinch nodes when the block contains 3191 // 2 or more Calls. A pinch node is used to prevent a 3192 // combinatorial explosion of edges. If a set of kills for a 3193 // register is anti-dependent on a set of uses (or defs), rather 3194 // than adding an edge in the graph between each pair of kill 3195 // and use (or def), a pinch is inserted between them: 3196 // 3197 // use1 use2 use3 3198 // \ | / 3199 // \ | / 3200 // pinch 3201 // / | \ 3202 // / | \ 3203 // kill1 kill2 kill3 3204 // 3205 // One pinch node is created per register killed when 3206 // the second call is encountered during a backwards pass 3207 // over the block. Most of these pinch nodes are never 3208 // wired into the graph because the register is never 3209 // used or def'ed in the block. 3210 // 3211 void Scheduling::garbage_collect_pinch_nodes() { 3212 #ifndef PRODUCT 3213 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3214 #endif 3215 int trace_cnt = 0; 3216 for (uint k = 0; k < _reg_node.max(); k++) { 3217 Node* pinch = _reg_node[k]; 3218 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3219 // no predecence input edges 3220 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3221 cleanup_pinch(pinch); 3222 _pinch_free_list.push(pinch); 3223 _reg_node.map(k, nullptr); 3224 #ifndef PRODUCT 3225 if (_cfg->C->trace_opto_output()) { 3226 trace_cnt++; 3227 if (trace_cnt > 40) { 3228 tty->print("\n"); 3229 trace_cnt = 0; 3230 } 3231 tty->print(" %d", pinch->_idx); 3232 } 3233 #endif 3234 } 3235 } 3236 #ifndef PRODUCT 3237 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3238 #endif 3239 } 3240 3241 // Clean up a pinch node for reuse. 3242 void Scheduling::cleanup_pinch( Node *pinch ) { 3243 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3244 3245 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3246 Node* use = pinch->last_out(i); 3247 uint uses_found = 0; 3248 for (uint j = use->req(); j < use->len(); j++) { 3249 if (use->in(j) == pinch) { 3250 use->rm_prec(j); 3251 uses_found++; 3252 } 3253 } 3254 assert(uses_found > 0, "must be a precedence edge"); 3255 i -= uses_found; // we deleted 1 or more copies of this edge 3256 } 3257 // May have a later_def entry 3258 pinch->set_req(0, nullptr); 3259 } 3260 3261 #ifndef PRODUCT 3262 3263 void Scheduling::dump_available() const { 3264 tty->print("#Availist "); 3265 for (uint i = 0; i < _available.size(); i++) 3266 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3267 tty->cr(); 3268 } 3269 3270 // Print Scheduling Statistics 3271 void Scheduling::print_statistics() { 3272 // Print the size added by nops for bundling 3273 tty->print("Nops added %d bytes to total of %d bytes", 3274 _total_nop_size, _total_method_size); 3275 if (_total_method_size > 0) 3276 tty->print(", for %.2f%%", 3277 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3278 tty->print("\n"); 3279 3280 // Print the number of branch shadows filled 3281 if (Pipeline::_branch_has_delay_slot) { 3282 tty->print("Of %d branches, %d had unconditional delay slots filled", 3283 _total_branches, _total_unconditional_delays); 3284 if (_total_branches > 0) 3285 tty->print(", for %.2f%%", 3286 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3287 tty->print("\n"); 3288 } 3289 3290 uint total_instructions = 0, total_bundles = 0; 3291 3292 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3293 uint bundle_count = _total_instructions_per_bundle[i]; 3294 total_instructions += bundle_count * i; 3295 total_bundles += bundle_count; 3296 } 3297 3298 if (total_bundles > 0) 3299 tty->print("Average ILP (excluding nops) is %.2f\n", 3300 ((double)total_instructions) / ((double)total_bundles)); 3301 } 3302 #endif 3303 3304 //-----------------------init_scratch_buffer_blob------------------------------ 3305 // Construct a temporary BufferBlob and cache it for this compile. 3306 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3307 // If there is already a scratch buffer blob allocated and the 3308 // constant section is big enough, use it. Otherwise free the 3309 // current and allocate a new one. 3310 BufferBlob* blob = scratch_buffer_blob(); 3311 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3312 // Use the current blob. 3313 } else { 3314 if (blob != nullptr) { 3315 BufferBlob::free(blob); 3316 } 3317 3318 ResourceMark rm; 3319 _scratch_const_size = const_size; 3320 int size = C2Compiler::initial_code_buffer_size(const_size); 3321 if (C->has_scalarized_args()) { 3322 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3323 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3324 ciMethod* method = C->method(); 3325 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3326 int arg_num = 0; 3327 if (!method->is_static()) { 3328 if (method->is_scalarized_arg(arg_num)) { 3329 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3330 } 3331 arg_num++; 3332 } 3333 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3334 if (method->is_scalarized_arg(arg_num)) { 3335 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3336 } 3337 arg_num++; 3338 } 3339 } 3340 blob = BufferBlob::create("Compile::scratch_buffer", size); 3341 // Record the buffer blob for next time. 3342 set_scratch_buffer_blob(blob); 3343 // Have we run out of code space? 3344 if (scratch_buffer_blob() == nullptr) { 3345 // Let CompilerBroker disable further compilations. 3346 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3347 return; 3348 } 3349 } 3350 3351 // Initialize the relocation buffers 3352 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3353 set_scratch_locs_memory(locs_buf); 3354 } 3355 3356 3357 //-----------------------scratch_emit_size------------------------------------- 3358 // Helper function that computes size by emitting code 3359 uint PhaseOutput::scratch_emit_size(const Node* n) { 3360 // Start scratch_emit_size section. 3361 set_in_scratch_emit_size(true); 3362 3363 // Emit into a trash buffer and count bytes emitted. 3364 // This is a pretty expensive way to compute a size, 3365 // but it works well enough if seldom used. 3366 // All common fixed-size instructions are given a size 3367 // method by the AD file. 3368 // Note that the scratch buffer blob and locs memory are 3369 // allocated at the beginning of the compile task, and 3370 // may be shared by several calls to scratch_emit_size. 3371 // The allocation of the scratch buffer blob is particularly 3372 // expensive, since it has to grab the code cache lock. 3373 BufferBlob* blob = this->scratch_buffer_blob(); 3374 assert(blob != nullptr, "Initialize BufferBlob at start"); 3375 assert(blob->size() > MAX_inst_size, "sanity"); 3376 relocInfo* locs_buf = scratch_locs_memory(); 3377 address blob_begin = blob->content_begin(); 3378 address blob_end = (address)locs_buf; 3379 assert(blob->contains(blob_end), "sanity"); 3380 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3381 buf.initialize_consts_size(_scratch_const_size); 3382 buf.initialize_stubs_size(MAX_stubs_size); 3383 assert(locs_buf != nullptr, "sanity"); 3384 int lsize = MAX_locs_size / 3; 3385 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3386 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3387 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3388 // Mark as scratch buffer. 3389 buf.consts()->set_scratch_emit(); 3390 buf.insts()->set_scratch_emit(); 3391 buf.stubs()->set_scratch_emit(); 3392 3393 // Do the emission. 3394 3395 Label fakeL; // Fake label for branch instructions. 3396 Label* saveL = nullptr; 3397 uint save_bnum = 0; 3398 bool is_branch = n->is_MachBranch(); 3399 if (is_branch) { 3400 MacroAssembler masm(&buf); 3401 masm.bind(fakeL); 3402 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3403 n->as_MachBranch()->label_set(&fakeL, 0); 3404 } 3405 n->emit(buf, C->regalloc()); 3406 3407 // Emitting into the scratch buffer should not fail 3408 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3409 3410 // Restore label. 3411 if (is_branch) { 3412 n->as_MachBranch()->label_set(saveL, save_bnum); 3413 } 3414 3415 // End scratch_emit_size section. 3416 set_in_scratch_emit_size(false); 3417 3418 return buf.insts_size(); 3419 } 3420 3421 void PhaseOutput::install() { 3422 if (!C->should_install_code()) { 3423 return; 3424 } else if (C->stub_function() != nullptr) { 3425 install_stub(C->stub_name()); 3426 } else { 3427 install_code(C->method(), 3428 C->entry_bci(), 3429 CompileBroker::compiler2(), 3430 C->has_unsafe_access(), 3431 SharedRuntime::is_wide_vector(C->max_vector_size()), 3432 C->rtm_state()); 3433 } 3434 } 3435 3436 void PhaseOutput::install_code(ciMethod* target, 3437 int entry_bci, 3438 AbstractCompiler* compiler, 3439 bool has_unsafe_access, 3440 bool has_wide_vectors, 3441 RTMState rtm_state) { 3442 // Check if we want to skip execution of all compiled code. 3443 { 3444 #ifndef PRODUCT 3445 if (OptoNoExecute) { 3446 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3447 return; 3448 } 3449 #endif 3450 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3451 3452 if (C->is_osr_compilation()) { 3453 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3454 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3455 } else { 3456 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3457 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3458 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3459 } 3460 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3461 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3462 } 3463 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3464 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3465 } 3466 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3467 } 3468 3469 C->env()->register_method(target, 3470 entry_bci, 3471 &_code_offsets, 3472 _orig_pc_slot_offset_in_bytes, 3473 code_buffer(), 3474 frame_size_in_words(), 3475 _oop_map_set, 3476 &_handler_table, 3477 inc_table(), 3478 compiler, 3479 has_unsafe_access, 3480 SharedRuntime::is_wide_vector(C->max_vector_size()), 3481 C->has_monitors(), 3482 0, 3483 C->rtm_state()); 3484 3485 if (C->log() != nullptr) { // Print code cache state into compiler log 3486 C->log()->code_cache_state(); 3487 } 3488 } 3489 } 3490 void PhaseOutput::install_stub(const char* stub_name) { 3491 // Entry point will be accessed using stub_entry_point(); 3492 if (code_buffer() == nullptr) { 3493 Matcher::soft_match_failure(); 3494 } else { 3495 if (PrintAssembly && (WizardMode || Verbose)) 3496 tty->print_cr("### Stub::%s", stub_name); 3497 3498 if (!C->failing()) { 3499 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3500 3501 // Make the NMethod 3502 // For now we mark the frame as never safe for profile stackwalking 3503 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3504 code_buffer(), 3505 CodeOffsets::frame_never_safe, 3506 // _code_offsets.value(CodeOffsets::Frame_Complete), 3507 frame_size_in_words(), 3508 oop_map_set(), 3509 false); 3510 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check"); 3511 3512 C->set_stub_entry_point(rs->entry_point()); 3513 } 3514 } 3515 } 3516 3517 // Support for bundling info 3518 Bundle* PhaseOutput::node_bundling(const Node *n) { 3519 assert(valid_bundle_info(n), "oob"); 3520 return &_node_bundling_base[n->_idx]; 3521 } 3522 3523 bool PhaseOutput::valid_bundle_info(const Node *n) { 3524 return (_node_bundling_limit > n->_idx); 3525 } 3526 3527 //------------------------------frame_size_in_words----------------------------- 3528 // frame_slots in units of words 3529 int PhaseOutput::frame_size_in_words() const { 3530 // shift is 0 in LP32 and 1 in LP64 3531 const int shift = (LogBytesPerWord - LogBytesPerInt); 3532 int words = _frame_slots >> shift; 3533 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3534 return words; 3535 } 3536 3537 // To bang the stack of this compiled method we use the stack size 3538 // that the interpreter would need in case of a deoptimization. This 3539 // removes the need to bang the stack in the deoptimization blob which 3540 // in turn simplifies stack overflow handling. 3541 int PhaseOutput::bang_size_in_bytes() const { 3542 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3543 } 3544 3545 //------------------------------dump_asm--------------------------------------- 3546 // Dump formatted assembly 3547 #if defined(SUPPORT_OPTO_ASSEMBLY) 3548 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3549 3550 int pc_digits = 3; // #chars required for pc 3551 int sb_chars = 3; // #chars for "start bundle" indicator 3552 int tab_size = 8; 3553 if (pcs != nullptr) { 3554 int max_pc = 0; 3555 for (uint i = 0; i < pc_limit; i++) { 3556 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3557 } 3558 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3559 } 3560 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3561 3562 bool cut_short = false; 3563 st->print_cr("#"); 3564 st->print("# "); C->tf()->dump_on(st); st->cr(); 3565 st->print_cr("#"); 3566 3567 // For all blocks 3568 int pc = 0x0; // Program counter 3569 char starts_bundle = ' '; 3570 C->regalloc()->dump_frame(); 3571 3572 Node *n = nullptr; 3573 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3574 if (VMThread::should_terminate()) { 3575 cut_short = true; 3576 break; 3577 } 3578 Block* block = C->cfg()->get_block(i); 3579 if (block->is_connector() && !Verbose) { 3580 continue; 3581 } 3582 n = block->head(); 3583 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3584 pc = pcs[n->_idx]; 3585 st->print("%*.*x", pc_digits, pc_digits, pc); 3586 } 3587 st->fill_to(prefix_len); 3588 block->dump_head(C->cfg(), st); 3589 if (block->is_connector()) { 3590 st->fill_to(prefix_len); 3591 st->print_cr("# Empty connector block"); 3592 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3593 st->fill_to(prefix_len); 3594 st->print_cr("# Block is sole successor of call"); 3595 } 3596 3597 // For all instructions 3598 Node *delay = nullptr; 3599 for (uint j = 0; j < block->number_of_nodes(); j++) { 3600 if (VMThread::should_terminate()) { 3601 cut_short = true; 3602 break; 3603 } 3604 n = block->get_node(j); 3605 if (valid_bundle_info(n)) { 3606 Bundle* bundle = node_bundling(n); 3607 if (bundle->used_in_unconditional_delay()) { 3608 delay = n; 3609 continue; 3610 } 3611 if (bundle->starts_bundle()) { 3612 starts_bundle = '+'; 3613 } 3614 } 3615 3616 if (WizardMode) { 3617 n->dump(); 3618 } 3619 3620 if( !n->is_Region() && // Dont print in the Assembly 3621 !n->is_Phi() && // a few noisely useless nodes 3622 !n->is_Proj() && 3623 !n->is_MachTemp() && 3624 !n->is_SafePointScalarObject() && 3625 !n->is_Catch() && // Would be nice to print exception table targets 3626 !n->is_MergeMem() && // Not very interesting 3627 !n->is_top() && // Debug info table constants 3628 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3629 ) { 3630 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3631 pc = pcs[n->_idx]; 3632 st->print("%*.*x", pc_digits, pc_digits, pc); 3633 } else { 3634 st->fill_to(pc_digits); 3635 } 3636 st->print(" %c ", starts_bundle); 3637 starts_bundle = ' '; 3638 st->fill_to(prefix_len); 3639 n->format(C->regalloc(), st); 3640 st->cr(); 3641 } 3642 3643 // If we have an instruction with a delay slot, and have seen a delay, 3644 // then back up and print it 3645 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3646 // Coverity finding - Explicit null dereferenced. 3647 guarantee(delay != nullptr, "no unconditional delay instruction"); 3648 if (WizardMode) delay->dump(); 3649 3650 if (node_bundling(delay)->starts_bundle()) 3651 starts_bundle = '+'; 3652 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3653 pc = pcs[n->_idx]; 3654 st->print("%*.*x", pc_digits, pc_digits, pc); 3655 } else { 3656 st->fill_to(pc_digits); 3657 } 3658 st->print(" %c ", starts_bundle); 3659 starts_bundle = ' '; 3660 st->fill_to(prefix_len); 3661 delay->format(C->regalloc(), st); 3662 st->cr(); 3663 delay = nullptr; 3664 } 3665 3666 // Dump the exception table as well 3667 if( n->is_Catch() && (Verbose || WizardMode) ) { 3668 // Print the exception table for this offset 3669 _handler_table.print_subtable_for(pc); 3670 } 3671 st->bol(); // Make sure we start on a new line 3672 } 3673 st->cr(); // one empty line between blocks 3674 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3675 } // End of per-block dump 3676 3677 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3678 } 3679 #endif 3680 3681 #ifndef PRODUCT 3682 void PhaseOutput::print_statistics() { 3683 Scheduling::print_statistics(); 3684 } 3685 #endif