1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/gc_globals.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/allocation.hpp" 40 #include "opto/ad.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/c2_MacroAssembler.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/cfgnode.hpp" 46 #include "opto/locknode.hpp" 47 #include "opto/machnode.hpp" 48 #include "opto/node.hpp" 49 #include "opto/optoreg.hpp" 50 #include "opto/output.hpp" 51 #include "opto/regalloc.hpp" 52 #include "opto/runtime.hpp" 53 #include "opto/subnode.hpp" 54 #include "opto/type.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "utilities/macros.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #include "utilities/xmlstream.hpp" 60 61 #ifndef PRODUCT 62 #define DEBUG_ARG(x) , x 63 #else 64 #define DEBUG_ARG(x) 65 #endif 66 67 //------------------------------Scheduling---------------------------------- 68 // This class contains all the information necessary to implement instruction 69 // scheduling and bundling. 70 class Scheduling { 71 72 private: 73 // Arena to use 74 Arena *_arena; 75 76 // Control-Flow Graph info 77 PhaseCFG *_cfg; 78 79 // Register Allocation info 80 PhaseRegAlloc *_regalloc; 81 82 // Number of nodes in the method 83 uint _node_bundling_limit; 84 85 // List of scheduled nodes. Generated in reverse order 86 Node_List _scheduled; 87 88 // List of nodes currently available for choosing for scheduling 89 Node_List _available; 90 91 // For each instruction beginning a bundle, the number of following 92 // nodes to be bundled with it. 93 Bundle *_node_bundling_base; 94 95 // Mapping from register to Node 96 Node_List _reg_node; 97 98 // Free list for pinch nodes. 99 Node_List _pinch_free_list; 100 101 // Number of uses of this node within the containing basic block. 102 short *_uses; 103 104 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 105 // front, branch+proj at end. Also skips Catch/CProj (same as 106 // branch-at-end), plus just-prior exception-throwing call. 107 uint _bb_start, _bb_end; 108 109 // Latency from the end of the basic block as scheduled 110 unsigned short *_current_latency; 111 112 // Remember the next node 113 Node *_next_node; 114 115 // Use this for an unconditional branch delay slot 116 Node *_unconditional_delay_slot; 117 118 // Pointer to a Nop 119 MachNopNode *_nop; 120 121 // Length of the current bundle, in instructions 122 uint _bundle_instr_count; 123 124 // Current Cycle number, for computing latencies and bundling 125 uint _bundle_cycle_number; 126 127 // Bundle information 128 Pipeline_Use_Element _bundle_use_elements[resource_count]; 129 Pipeline_Use _bundle_use; 130 131 // Dump the available list 132 void dump_available() const; 133 134 public: 135 Scheduling(Arena *arena, Compile &compile); 136 137 // Destructor 138 NOT_PRODUCT( ~Scheduling(); ) 139 140 // Step ahead "i" cycles 141 void step(uint i); 142 143 // Step ahead 1 cycle, and clear the bundle state (for example, 144 // at a branch target) 145 void step_and_clear(); 146 147 Bundle* node_bundling(const Node *n) { 148 assert(valid_bundle_info(n), "oob"); 149 return (&_node_bundling_base[n->_idx]); 150 } 151 152 bool valid_bundle_info(const Node *n) const { 153 return (_node_bundling_limit > n->_idx); 154 } 155 156 bool starts_bundle(const Node *n) const { 157 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 158 } 159 160 // Do the scheduling 161 void DoScheduling(); 162 163 // Compute the register antidependencies within a basic block 164 void ComputeRegisterAntidependencies(Block *bb); 165 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 166 void verify_good_schedule( Block *b, const char *msg ); 167 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 168 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 169 170 // Add a node to the current bundle 171 void AddNodeToBundle(Node *n, const Block *bb); 172 173 // Return an integer less than, equal to, or greater than zero 174 // if the stack offset of the first argument is respectively 175 // less than, equal to, or greater than the second. 176 int compare_two_spill_nodes(Node* first, Node* second); 177 178 // Add a node to the list of available nodes 179 void AddNodeToAvailableList(Node *n); 180 181 // Compute the local use count for the nodes in a block, and compute 182 // the list of instructions with no uses in the block as available 183 void ComputeUseCount(const Block *bb); 184 185 // Choose an instruction from the available list to add to the bundle 186 Node * ChooseNodeToBundle(); 187 188 // See if this Node fits into the currently accumulating bundle 189 bool NodeFitsInBundle(Node *n); 190 191 // Decrement the use count for a node 192 void DecrementUseCounts(Node *n, const Block *bb); 193 194 // Garbage collect pinch nodes for reuse by other blocks. 195 void garbage_collect_pinch_nodes(); 196 // Clean up a pinch node for reuse (helper for above). 197 void cleanup_pinch( Node *pinch ); 198 199 // Information for statistics gathering 200 #ifndef PRODUCT 201 private: 202 // Gather information on size of nops relative to total 203 uint _branches, _unconditional_delays; 204 205 static uint _total_nop_size, _total_method_size; 206 static uint _total_branches, _total_unconditional_delays; 207 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 208 209 public: 210 static void print_statistics(); 211 212 static void increment_instructions_per_bundle(uint i) { 213 _total_instructions_per_bundle[i]++; 214 } 215 216 static void increment_nop_size(uint s) { 217 _total_nop_size += s; 218 } 219 220 static void increment_method_size(uint s) { 221 _total_method_size += s; 222 } 223 #endif 224 225 }; 226 227 PhaseOutput::PhaseOutput() 228 : Phase(Phase::Output), 229 _code_buffer("Compile::Fill_buffer"), 230 _first_block_size(0), 231 _handler_table(), 232 _inc_table(), 233 _stub_list(), 234 _oop_map_set(nullptr), 235 _scratch_buffer_blob(nullptr), 236 _scratch_locs_memory(nullptr), 237 _scratch_const_size(-1), 238 _in_scratch_emit_size(false), 239 _frame_slots(0), 240 _code_offsets(), 241 _node_bundling_limit(0), 242 _node_bundling_base(nullptr), 243 _orig_pc_slot(0), 244 _orig_pc_slot_offset_in_bytes(0), 245 _buf_sizes(), 246 _block(nullptr), 247 _index(0) { 248 C->set_output(this); 249 if (C->stub_name() == nullptr) { 250 int fixed_slots = C->fixed_slots(); 251 if (C->needs_stack_repair()) { 252 fixed_slots -= 2; 253 } 254 // TODO 8284443 Only reserve extra slot if needed 255 if (InlineTypeReturnedAsFields) { 256 fixed_slots -= 2; 257 } 258 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 259 } 260 } 261 262 PhaseOutput::~PhaseOutput() { 263 C->set_output(nullptr); 264 if (_scratch_buffer_blob != nullptr) { 265 BufferBlob::free(_scratch_buffer_blob); 266 } 267 } 268 269 void PhaseOutput::perform_mach_node_analysis() { 270 // Late barrier analysis must be done after schedule and bundle 271 // Otherwise liveness based spilling will fail 272 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 273 bs->late_barrier_analysis(); 274 275 pd_perform_mach_node_analysis(); 276 277 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 278 } 279 280 // Convert Nodes to instruction bits and pass off to the VM 281 void PhaseOutput::Output() { 282 // RootNode goes 283 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 284 285 // The number of new nodes (mostly MachNop) is proportional to 286 // the number of java calls and inner loops which are aligned. 287 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 288 C->inner_loops()*(OptoLoopAlignment-1)), 289 "out of nodes before code generation" ) ) { 290 return; 291 } 292 // Make sure I can find the Start Node 293 Block *entry = C->cfg()->get_block(1); 294 Block *broot = C->cfg()->get_root_block(); 295 296 const StartNode *start = entry->head()->as_Start(); 297 298 // Replace StartNode with prolog 299 Label verified_entry; 300 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 301 entry->map_node(prolog, 0); 302 C->cfg()->map_node_to_block(prolog, entry); 303 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 304 305 // Virtual methods need an unverified entry point 306 if (C->is_osr_compilation()) { 307 if (PoisonOSREntry) { 308 // TODO: Should use a ShouldNotReachHereNode... 309 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 310 } 311 } else { 312 if (C->method()) { 313 if (C->method()->has_scalarized_args()) { 314 // Add entry point to unpack all inline type arguments 315 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 316 if (!C->method()->is_static()) { 317 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 318 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 319 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 320 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 321 } 322 } else if (!C->method()->is_static()) { 323 // Insert unvalidated entry point 324 C->cfg()->insert(broot, 0, new MachUEPNode()); 325 } 326 } 327 } 328 329 // Break before main entry point 330 if ((C->method() && C->directive()->BreakAtExecuteOption) || 331 (OptoBreakpoint && C->is_method_compilation()) || 332 (OptoBreakpointOSR && C->is_osr_compilation()) || 333 (OptoBreakpointC2R && !C->method()) ) { 334 // checking for C->method() means that OptoBreakpoint does not apply to 335 // runtime stubs or frame converters 336 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 337 } 338 339 // Insert epilogs before every return 340 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 341 Block* block = C->cfg()->get_block(i); 342 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 343 Node* m = block->end(); 344 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 345 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 346 block->add_inst(epilog); 347 C->cfg()->map_node_to_block(epilog, block); 348 } 349 } 350 } 351 352 // Keeper of sizing aspects 353 _buf_sizes = BufferSizingData(); 354 355 // Initialize code buffer 356 estimate_buffer_size(_buf_sizes._const); 357 if (C->failing()) return; 358 359 // Pre-compute the length of blocks and replace 360 // long branches with short if machine supports it. 361 // Must be done before ScheduleAndBundle due to SPARC delay slots 362 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 363 blk_starts[0] = 0; 364 shorten_branches(blk_starts); 365 366 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 367 // Compute the offsets of the entry points required by the inline type calling convention 368 if (!C->method()->is_static()) { 369 // We have entries at the beginning of the method, implemented by the first 4 nodes. 370 // Entry (unverified) @ offset 0 371 // Verified_Inline_Entry_RO 372 // Inline_Entry (unverified) 373 // Verified_Inline_Entry 374 uint offset = 0; 375 _code_offsets.set_value(CodeOffsets::Entry, offset); 376 377 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 378 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 379 380 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 381 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 382 383 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 384 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 385 } else { 386 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 387 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 388 } 389 } 390 391 ScheduleAndBundle(); 392 if (C->failing()) { 393 return; 394 } 395 396 perform_mach_node_analysis(); 397 398 // Complete sizing of codebuffer 399 CodeBuffer* cb = init_buffer(); 400 if (cb == nullptr || C->failing()) { 401 return; 402 } 403 404 BuildOopMaps(); 405 406 if (C->failing()) { 407 return; 408 } 409 410 C2_MacroAssembler masm(cb); 411 fill_buffer(&masm, blk_starts); 412 } 413 414 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 415 // Determine if we need to generate a stack overflow check. 416 // Do it if the method is not a stub function and 417 // has java calls or has frame size > vm_page_size/8. 418 // The debug VM checks that deoptimization doesn't trigger an 419 // unexpected stack overflow (compiled method stack banging should 420 // guarantee it doesn't happen) so we always need the stack bang in 421 // a debug VM. 422 return (C->stub_function() == nullptr && 423 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 424 DEBUG_ONLY(|| true))); 425 } 426 427 bool PhaseOutput::need_register_stack_bang() const { 428 // Determine if we need to generate a register stack overflow check. 429 // This is only used on architectures which have split register 430 // and memory stacks (ie. IA64). 431 // Bang if the method is not a stub function and has java calls 432 return (C->stub_function() == nullptr && C->has_java_calls()); 433 } 434 435 436 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 437 // of a loop. When aligning a loop we need to provide enough instructions 438 // in cpu's fetch buffer to feed decoders. The loop alignment could be 439 // avoided if we have enough instructions in fetch buffer at the head of a loop. 440 // By default, the size is set to 999999 by Block's constructor so that 441 // a loop will be aligned if the size is not reset here. 442 // 443 // Note: Mach instructions could contain several HW instructions 444 // so the size is estimated only. 445 // 446 void PhaseOutput::compute_loop_first_inst_sizes() { 447 // The next condition is used to gate the loop alignment optimization. 448 // Don't aligned a loop if there are enough instructions at the head of a loop 449 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 450 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 451 // equal to 11 bytes which is the largest address NOP instruction. 452 if (MaxLoopPad < OptoLoopAlignment - 1) { 453 uint last_block = C->cfg()->number_of_blocks() - 1; 454 for (uint i = 1; i <= last_block; i++) { 455 Block* block = C->cfg()->get_block(i); 456 // Check the first loop's block which requires an alignment. 457 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 458 uint sum_size = 0; 459 uint inst_cnt = NumberOfLoopInstrToAlign; 460 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 461 462 // Check subsequent fallthrough blocks if the loop's first 463 // block(s) does not have enough instructions. 464 Block *nb = block; 465 while(inst_cnt > 0 && 466 i < last_block && 467 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 468 !nb->has_successor(block)) { 469 i++; 470 nb = C->cfg()->get_block(i); 471 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 472 } // while( inst_cnt > 0 && i < last_block ) 473 474 block->set_first_inst_size(sum_size); 475 } // f( b->head()->is_Loop() ) 476 } // for( i <= last_block ) 477 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 478 } 479 480 // The architecture description provides short branch variants for some long 481 // branch instructions. Replace eligible long branches with short branches. 482 void PhaseOutput::shorten_branches(uint* blk_starts) { 483 484 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 485 486 // Compute size of each block, method size, and relocation information size 487 uint nblocks = C->cfg()->number_of_blocks(); 488 489 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 490 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 491 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 492 493 // Collect worst case block paddings 494 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 495 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 496 497 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 498 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 499 500 bool has_short_branch_candidate = false; 501 502 // Initialize the sizes to 0 503 int code_size = 0; // Size in bytes of generated code 504 int stub_size = 0; // Size in bytes of all stub entries 505 // Size in bytes of all relocation entries, including those in local stubs. 506 // Start with 2-bytes of reloc info for the unvalidated entry point 507 int reloc_size = 1; // Number of relocation entries 508 509 // Make three passes. The first computes pessimistic blk_starts, 510 // relative jmp_offset and reloc_size information. The second performs 511 // short branch substitution using the pessimistic sizing. The 512 // third inserts nops where needed. 513 514 // Step one, perform a pessimistic sizing pass. 515 uint last_call_adr = max_juint; 516 uint last_avoid_back_to_back_adr = max_juint; 517 uint nop_size = (new MachNopNode())->size(C->regalloc()); 518 for (uint i = 0; i < nblocks; i++) { // For all blocks 519 Block* block = C->cfg()->get_block(i); 520 _block = block; 521 522 // During short branch replacement, we store the relative (to blk_starts) 523 // offset of jump in jmp_offset, rather than the absolute offset of jump. 524 // This is so that we do not need to recompute sizes of all nodes when 525 // we compute correct blk_starts in our next sizing pass. 526 jmp_offset[i] = 0; 527 jmp_size[i] = 0; 528 jmp_nidx[i] = -1; 529 DEBUG_ONLY( jmp_target[i] = 0; ) 530 DEBUG_ONLY( jmp_rule[i] = 0; ) 531 532 // Sum all instruction sizes to compute block size 533 uint last_inst = block->number_of_nodes(); 534 uint blk_size = 0; 535 for (uint j = 0; j < last_inst; j++) { 536 _index = j; 537 Node* nj = block->get_node(_index); 538 // Handle machine instruction nodes 539 if (nj->is_Mach()) { 540 MachNode* mach = nj->as_Mach(); 541 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 542 reloc_size += mach->reloc(); 543 if (mach->is_MachCall()) { 544 // add size information for trampoline stub 545 // class CallStubImpl is platform-specific and defined in the *.ad files. 546 stub_size += CallStubImpl::size_call_trampoline(); 547 reloc_size += CallStubImpl::reloc_call_trampoline(); 548 549 MachCallNode *mcall = mach->as_MachCall(); 550 // This destination address is NOT PC-relative 551 552 if (mcall->entry_point() != nullptr) { 553 mcall->method_set((intptr_t)mcall->entry_point()); 554 } 555 556 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 557 stub_size += CompiledDirectCall::to_interp_stub_size(); 558 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 559 } 560 } else if (mach->is_MachSafePoint()) { 561 // If call/safepoint are adjacent, account for possible 562 // nop to disambiguate the two safepoints. 563 // ScheduleAndBundle() can rearrange nodes in a block, 564 // check for all offsets inside this block. 565 if (last_call_adr >= blk_starts[i]) { 566 blk_size += nop_size; 567 } 568 } 569 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 570 // Nop is inserted between "avoid back to back" instructions. 571 // ScheduleAndBundle() can rearrange nodes in a block, 572 // check for all offsets inside this block. 573 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 574 blk_size += nop_size; 575 } 576 } 577 if (mach->may_be_short_branch()) { 578 if (!nj->is_MachBranch()) { 579 #ifndef PRODUCT 580 nj->dump(3); 581 #endif 582 Unimplemented(); 583 } 584 assert(jmp_nidx[i] == -1, "block should have only one branch"); 585 jmp_offset[i] = blk_size; 586 jmp_size[i] = nj->size(C->regalloc()); 587 jmp_nidx[i] = j; 588 has_short_branch_candidate = true; 589 } 590 } 591 blk_size += nj->size(C->regalloc()); 592 // Remember end of call offset 593 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 594 last_call_adr = blk_starts[i]+blk_size; 595 } 596 // Remember end of avoid_back_to_back offset 597 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 598 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 599 } 600 } 601 602 // When the next block starts a loop, we may insert pad NOP 603 // instructions. Since we cannot know our future alignment, 604 // assume the worst. 605 if (i < nblocks - 1) { 606 Block* nb = C->cfg()->get_block(i + 1); 607 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 608 if (max_loop_pad > 0) { 609 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 610 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 611 // If either is the last instruction in this block, bump by 612 // max_loop_pad in lock-step with blk_size, so sizing 613 // calculations in subsequent blocks still can conservatively 614 // detect that it may the last instruction in this block. 615 if (last_call_adr == blk_starts[i]+blk_size) { 616 last_call_adr += max_loop_pad; 617 } 618 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 619 last_avoid_back_to_back_adr += max_loop_pad; 620 } 621 blk_size += max_loop_pad; 622 block_worst_case_pad[i + 1] = max_loop_pad; 623 } 624 } 625 626 // Save block size; update total method size 627 blk_starts[i+1] = blk_starts[i]+blk_size; 628 } 629 630 // Step two, replace eligible long jumps. 631 bool progress = true; 632 uint last_may_be_short_branch_adr = max_juint; 633 while (has_short_branch_candidate && progress) { 634 progress = false; 635 has_short_branch_candidate = false; 636 int adjust_block_start = 0; 637 for (uint i = 0; i < nblocks; i++) { 638 Block* block = C->cfg()->get_block(i); 639 int idx = jmp_nidx[i]; 640 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 641 if (mach != nullptr && mach->may_be_short_branch()) { 642 #ifdef ASSERT 643 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 644 int j; 645 // Find the branch; ignore trailing NOPs. 646 for (j = block->number_of_nodes()-1; j>=0; j--) { 647 Node* n = block->get_node(j); 648 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 649 break; 650 } 651 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 652 #endif 653 int br_size = jmp_size[i]; 654 int br_offs = blk_starts[i] + jmp_offset[i]; 655 656 // This requires the TRUE branch target be in succs[0] 657 uint bnum = block->non_connector_successor(0)->_pre_order; 658 int offset = blk_starts[bnum] - br_offs; 659 if (bnum > i) { // adjust following block's offset 660 offset -= adjust_block_start; 661 } 662 663 // This block can be a loop header, account for the padding 664 // in the previous block. 665 int block_padding = block_worst_case_pad[i]; 666 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 667 // In the following code a nop could be inserted before 668 // the branch which will increase the backward distance. 669 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 670 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 671 672 if (needs_padding && offset <= 0) 673 offset -= nop_size; 674 675 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 676 // We've got a winner. Replace this branch. 677 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 678 679 // Update the jmp_size. 680 int new_size = replacement->size(C->regalloc()); 681 int diff = br_size - new_size; 682 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 683 // Conservatively take into account padding between 684 // avoid_back_to_back branches. Previous branch could be 685 // converted into avoid_back_to_back branch during next 686 // rounds. 687 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 688 jmp_offset[i] += nop_size; 689 diff -= nop_size; 690 } 691 adjust_block_start += diff; 692 block->map_node(replacement, idx); 693 mach->subsume_by(replacement, C); 694 mach = replacement; 695 progress = true; 696 697 jmp_size[i] = new_size; 698 DEBUG_ONLY( jmp_target[i] = bnum; ); 699 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 700 } else { 701 // The jump distance is not short, try again during next iteration. 702 has_short_branch_candidate = true; 703 } 704 } // (mach->may_be_short_branch()) 705 if (mach != nullptr && (mach->may_be_short_branch() || 706 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 707 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 708 } 709 blk_starts[i+1] -= adjust_block_start; 710 } 711 } 712 713 #ifdef ASSERT 714 for (uint i = 0; i < nblocks; i++) { // For all blocks 715 if (jmp_target[i] != 0) { 716 int br_size = jmp_size[i]; 717 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 718 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 719 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 720 } 721 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 722 } 723 } 724 #endif 725 726 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 727 // after ScheduleAndBundle(). 728 729 // ------------------ 730 // Compute size for code buffer 731 code_size = blk_starts[nblocks]; 732 733 // Relocation records 734 reloc_size += 1; // Relo entry for exception handler 735 736 // Adjust reloc_size to number of record of relocation info 737 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 738 // a relocation index. 739 // The CodeBuffer will expand the locs array if this estimate is too low. 740 reloc_size *= 10 / sizeof(relocInfo); 741 742 _buf_sizes._reloc = reloc_size; 743 _buf_sizes._code = code_size; 744 _buf_sizes._stub = stub_size; 745 } 746 747 //------------------------------FillLocArray----------------------------------- 748 // Create a bit of debug info and append it to the array. The mapping is from 749 // Java local or expression stack to constant, register or stack-slot. For 750 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 751 // entry has been taken care of and caller should skip it). 752 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 753 // This should never have accepted Bad before 754 assert(OptoReg::is_valid(regnum), "location must be valid"); 755 return (OptoReg::is_reg(regnum)) 756 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 757 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 758 } 759 760 761 ObjectValue* 762 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 763 for (int i = 0; i < objs->length(); i++) { 764 assert(objs->at(i)->is_object(), "corrupt object cache"); 765 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 766 if (sv->id() == id) { 767 return sv; 768 } 769 } 770 // Otherwise.. 771 return nullptr; 772 } 773 774 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 775 ObjectValue* sv ) { 776 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 777 objs->append(sv); 778 } 779 780 781 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 782 GrowableArray<ScopeValue*> *array, 783 GrowableArray<ScopeValue*> *objs ) { 784 assert( local, "use _top instead of null" ); 785 if (array->length() != idx) { 786 assert(array->length() == idx + 1, "Unexpected array count"); 787 // Old functionality: 788 // return 789 // New functionality: 790 // Assert if the local is not top. In product mode let the new node 791 // override the old entry. 792 assert(local == C->top(), "LocArray collision"); 793 if (local == C->top()) { 794 return; 795 } 796 array->pop(); 797 } 798 const Type *t = local->bottom_type(); 799 800 // Is it a safepoint scalar object node? 801 if (local->is_SafePointScalarObject()) { 802 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 803 804 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 805 if (sv == nullptr) { 806 ciKlass* cik = t->is_oopptr()->exact_klass(); 807 assert(cik->is_instance_klass() || 808 cik->is_array_klass(), "Not supported allocation."); 809 uint first_ind = spobj->first_index(sfpt->jvms()); 810 // Nullable, scalarized inline types have an is_init input 811 // that needs to be checked before using the field values. 812 ScopeValue* is_init = nullptr; 813 if (cik->is_inlinetype()) { 814 Node* init_node = sfpt->in(first_ind++); 815 assert(init_node != nullptr, "is_init node not found"); 816 if (!init_node->is_top()) { 817 const TypeInt* init_type = init_node->bottom_type()->is_int(); 818 if (init_node->is_Con()) { 819 is_init = new ConstantIntValue(init_type->get_con()); 820 } else { 821 OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node); 822 is_init = new_loc_value(C->regalloc(), init_reg, Location::normal); 823 } 824 } 825 } 826 sv = new ObjectValue(spobj->_idx, 827 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, is_init); 828 set_sv_for_object_node(objs, sv); 829 830 for (uint i = 0; i < spobj->n_fields(); i++) { 831 Node* fld_node = sfpt->in(first_ind+i); 832 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 833 } 834 } 835 array->append(sv); 836 return; 837 } else if (local->is_SafePointScalarMerge()) { 838 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 839 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 840 841 if (mv == nullptr) { 842 GrowableArray<ScopeValue*> deps; 843 844 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 845 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 846 assert(deps.length() == 1, "missing value"); 847 848 int selector_idx = smerge->selector_idx(sfpt->jvms()); 849 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 850 assert(deps.length() == 2, "missing value"); 851 852 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 853 set_sv_for_object_node(objs, mv); 854 855 for (uint i = 1; i < smerge->req(); i++) { 856 Node* obj_node = smerge->in(i); 857 (void)FillLocArray(mv->possible_objects()->length(), sfpt, obj_node, mv->possible_objects(), objs); 858 } 859 } 860 array->append(mv); 861 return; 862 } 863 864 // Grab the register number for the local 865 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 866 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 867 // Record the double as two float registers. 868 // The register mask for such a value always specifies two adjacent 869 // float registers, with the lower register number even. 870 // Normally, the allocation of high and low words to these registers 871 // is irrelevant, because nearly all operations on register pairs 872 // (e.g., StoreD) treat them as a single unit. 873 // Here, we assume in addition that the words in these two registers 874 // stored "naturally" (by operations like StoreD and double stores 875 // within the interpreter) such that the lower-numbered register 876 // is written to the lower memory address. This may seem like 877 // a machine dependency, but it is not--it is a requirement on 878 // the author of the <arch>.ad file to ensure that, for every 879 // even/odd double-register pair to which a double may be allocated, 880 // the word in the even single-register is stored to the first 881 // memory word. (Note that register numbers are completely 882 // arbitrary, and are not tied to any machine-level encodings.) 883 #ifdef _LP64 884 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 885 array->append(new ConstantIntValue((jint)0)); 886 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 887 } else if ( t->base() == Type::Long ) { 888 array->append(new ConstantIntValue((jint)0)); 889 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 890 } else if ( t->base() == Type::RawPtr ) { 891 // jsr/ret return address which must be restored into the full 892 // width 64-bit stack slot. 893 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 894 } 895 #else //_LP64 896 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 897 // Repack the double/long as two jints. 898 // The convention the interpreter uses is that the second local 899 // holds the first raw word of the native double representation. 900 // This is actually reasonable, since locals and stack arrays 901 // grow downwards in all implementations. 902 // (If, on some machine, the interpreter's Java locals or stack 903 // were to grow upwards, the embedded doubles would be word-swapped.) 904 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 905 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 906 } 907 #endif //_LP64 908 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 909 OptoReg::is_reg(regnum) ) { 910 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 911 ? Location::float_in_dbl : Location::normal )); 912 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 913 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 914 ? Location::int_in_long : Location::normal )); 915 } else if( t->base() == Type::NarrowOop ) { 916 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 917 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 918 t->base() == Type::VectorD || t->base() == Type::VectorX || 919 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 920 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 921 } else if (C->regalloc()->is_oop(local)) { 922 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 923 t->base() == Type::AryPtr, 924 "Unexpected type: %s", t->msg()); 925 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 926 } else { 927 assert(t->base() == Type::Int || t->base() == Type::Half || 928 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 929 "Unexpected type: %s", t->msg()); 930 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 931 } 932 return; 933 } 934 935 // No register. It must be constant data. 936 switch (t->base()) { 937 case Type::Half: // Second half of a double 938 ShouldNotReachHere(); // Caller should skip 2nd halves 939 break; 940 case Type::AnyPtr: 941 array->append(new ConstantOopWriteValue(nullptr)); 942 break; 943 case Type::AryPtr: 944 case Type::InstPtr: // fall through 945 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 946 break; 947 case Type::NarrowOop: 948 if (t == TypeNarrowOop::NULL_PTR) { 949 array->append(new ConstantOopWriteValue(nullptr)); 950 } else { 951 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 952 } 953 break; 954 case Type::Int: 955 array->append(new ConstantIntValue(t->is_int()->get_con())); 956 break; 957 case Type::RawPtr: 958 // A return address (T_ADDRESS). 959 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 960 #ifdef _LP64 961 // Must be restored to the full-width 64-bit stack slot. 962 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 963 #else 964 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 965 #endif 966 break; 967 case Type::FloatCon: { 968 float f = t->is_float_constant()->getf(); 969 array->append(new ConstantIntValue(jint_cast(f))); 970 break; 971 } 972 case Type::DoubleCon: { 973 jdouble d = t->is_double_constant()->getd(); 974 #ifdef _LP64 975 array->append(new ConstantIntValue((jint)0)); 976 array->append(new ConstantDoubleValue(d)); 977 #else 978 // Repack the double as two jints. 979 // The convention the interpreter uses is that the second local 980 // holds the first raw word of the native double representation. 981 // This is actually reasonable, since locals and stack arrays 982 // grow downwards in all implementations. 983 // (If, on some machine, the interpreter's Java locals or stack 984 // were to grow upwards, the embedded doubles would be word-swapped.) 985 jlong_accessor acc; 986 acc.long_value = jlong_cast(d); 987 array->append(new ConstantIntValue(acc.words[1])); 988 array->append(new ConstantIntValue(acc.words[0])); 989 #endif 990 break; 991 } 992 case Type::Long: { 993 jlong d = t->is_long()->get_con(); 994 #ifdef _LP64 995 array->append(new ConstantIntValue((jint)0)); 996 array->append(new ConstantLongValue(d)); 997 #else 998 // Repack the long as two jints. 999 // The convention the interpreter uses is that the second local 1000 // holds the first raw word of the native double representation. 1001 // This is actually reasonable, since locals and stack arrays 1002 // grow downwards in all implementations. 1003 // (If, on some machine, the interpreter's Java locals or stack 1004 // were to grow upwards, the embedded doubles would be word-swapped.) 1005 jlong_accessor acc; 1006 acc.long_value = d; 1007 array->append(new ConstantIntValue(acc.words[1])); 1008 array->append(new ConstantIntValue(acc.words[0])); 1009 #endif 1010 break; 1011 } 1012 case Type::Top: // Add an illegal value here 1013 array->append(new LocationValue(Location())); 1014 break; 1015 default: 1016 ShouldNotReachHere(); 1017 break; 1018 } 1019 } 1020 1021 // Determine if this node starts a bundle 1022 bool PhaseOutput::starts_bundle(const Node *n) const { 1023 return (_node_bundling_limit > n->_idx && 1024 _node_bundling_base[n->_idx].starts_bundle()); 1025 } 1026 1027 // Determine if there is a monitor that has 'ov' as its owner. 1028 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 1029 for (int k = 0; k < monarray->length(); k++) { 1030 MonitorValue* mv = monarray->at(k); 1031 if (mv->owner() == ov) { 1032 return true; 1033 } 1034 } 1035 1036 return false; 1037 } 1038 1039 // Determine if there is a scalar replaced object description represented by 'ov'. 1040 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 1041 GrowableArray<ScopeValue*>* objs, 1042 ObjectValue* ov) const { 1043 for (int i = 0; i < jvms->scl_size(); i++) { 1044 Node* n = sfn->scalarized_obj(jvms, i); 1045 // Other kinds of nodes that we may encounter here, for instance constants 1046 // representing values of fields of objects scalarized, aren't relevant for 1047 // us, since they don't map to ObjectValue. 1048 if (!n->is_SafePointScalarObject()) { 1049 continue; 1050 } 1051 1052 ObjectValue* other = sv_for_node_id(objs, n->_idx); 1053 if (ov == other) { 1054 return true; 1055 } 1056 } 1057 return false; 1058 } 1059 1060 //--------------------------Process_OopMap_Node-------------------------------- 1061 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1062 // Handle special safepoint nodes for synchronization 1063 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1064 MachCallNode *mcall; 1065 1066 int safepoint_pc_offset = current_offset; 1067 bool is_method_handle_invoke = false; 1068 bool return_oop = false; 1069 bool return_scalarized = false; 1070 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1071 bool arg_escape = false; 1072 1073 // Add the safepoint in the DebugInfoRecorder 1074 if( !mach->is_MachCall() ) { 1075 mcall = nullptr; 1076 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1077 } else { 1078 mcall = mach->as_MachCall(); 1079 1080 // Is the call a MethodHandle call? 1081 if (mcall->is_MachCallJava()) { 1082 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1083 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1084 is_method_handle_invoke = true; 1085 } 1086 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1087 } 1088 1089 // Check if a call returns an object. 1090 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1091 return_oop = true; 1092 } 1093 if (mcall->returns_scalarized()) { 1094 return_scalarized = true; 1095 } 1096 safepoint_pc_offset += mcall->ret_addr_offset(); 1097 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1098 } 1099 1100 // Loop over the JVMState list to add scope information 1101 // Do not skip safepoints with a null method, they need monitor info 1102 JVMState* youngest_jvms = sfn->jvms(); 1103 int max_depth = youngest_jvms->depth(); 1104 1105 // Allocate the object pool for scalar-replaced objects -- the map from 1106 // small-integer keys (which can be recorded in the local and ostack 1107 // arrays) to descriptions of the object state. 1108 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1109 1110 // Visit scopes from oldest to youngest. 1111 for (int depth = 1; depth <= max_depth; depth++) { 1112 JVMState* jvms = youngest_jvms->of_depth(depth); 1113 int idx; 1114 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1115 // Safepoints that do not have method() set only provide oop-map and monitor info 1116 // to support GC; these do not support deoptimization. 1117 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1118 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1119 int num_mon = jvms->nof_monitors(); 1120 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1121 "JVMS local count must match that of the method"); 1122 1123 // Add Local and Expression Stack Information 1124 1125 // Insert locals into the locarray 1126 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1127 for( idx = 0; idx < num_locs; idx++ ) { 1128 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1129 } 1130 1131 // Insert expression stack entries into the exparray 1132 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1133 for( idx = 0; idx < num_exps; idx++ ) { 1134 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1135 } 1136 1137 // Add in mappings of the monitors 1138 assert( !method || 1139 !method->is_synchronized() || 1140 method->is_native() || 1141 num_mon > 0 || 1142 !GenerateSynchronizationCode, 1143 "monitors must always exist for synchronized methods"); 1144 1145 // Build the growable array of ScopeValues for exp stack 1146 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1147 1148 // Loop over monitors and insert into array 1149 for (idx = 0; idx < num_mon; idx++) { 1150 // Grab the node that defines this monitor 1151 Node* box_node = sfn->monitor_box(jvms, idx); 1152 Node* obj_node = sfn->monitor_obj(jvms, idx); 1153 1154 // Create ScopeValue for object 1155 ScopeValue *scval = nullptr; 1156 1157 if (obj_node->is_SafePointScalarObject()) { 1158 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1159 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1160 if (scval == nullptr) { 1161 const Type *t = spobj->bottom_type(); 1162 ciKlass* cik = t->is_oopptr()->exact_klass(); 1163 assert(cik->is_instance_klass() || 1164 cik->is_array_klass(), "Not supported allocation."); 1165 ObjectValue* sv = new ObjectValue(spobj->_idx, 1166 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1167 PhaseOutput::set_sv_for_object_node(objs, sv); 1168 1169 uint first_ind = spobj->first_index(youngest_jvms); 1170 for (uint i = 0; i < spobj->n_fields(); i++) { 1171 Node* fld_node = sfn->in(first_ind+i); 1172 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1173 } 1174 scval = sv; 1175 } 1176 } else if (obj_node->is_SafePointScalarMerge()) { 1177 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1178 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1179 1180 if (mv == nullptr) { 1181 GrowableArray<ScopeValue*> deps; 1182 1183 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1184 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1185 assert(deps.length() == 1, "missing value"); 1186 1187 int selector_idx = smerge->selector_idx(youngest_jvms); 1188 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1189 assert(deps.length() == 2, "missing value"); 1190 1191 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1192 set_sv_for_object_node(objs, mv); 1193 1194 for (uint i = 1; i < smerge->req(); i++) { 1195 Node* obj_node = smerge->in(i); 1196 FillLocArray(mv->possible_objects()->length(), sfn, obj_node, mv->possible_objects(), objs); 1197 } 1198 } 1199 scval = mv; 1200 } else if (!obj_node->is_Con()) { 1201 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1202 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1203 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1204 } else { 1205 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1206 } 1207 } else { 1208 const TypePtr *tp = obj_node->get_ptr_type(); 1209 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1210 } 1211 1212 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1213 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1214 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1215 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1216 } 1217 1218 // Mark ObjectValue nodes as root nodes if they are directly 1219 // referenced in the JVMS. 1220 for (int i = 0; i < objs->length(); i++) { 1221 ScopeValue* sv = objs->at(i); 1222 if (sv->is_object_merge()) { 1223 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1224 1225 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1226 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1227 bool is_root = locarray->contains(ov) || 1228 exparray->contains(ov) || 1229 contains_as_owner(monarray, ov) || 1230 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1231 ov->set_root(is_root); 1232 } 1233 } 1234 } 1235 1236 // We dump the object pool first, since deoptimization reads it in first. 1237 C->debug_info()->dump_object_pool(objs); 1238 1239 // Build first class objects to pass to scope 1240 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1241 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1242 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1243 1244 // Make method available for all Safepoints 1245 ciMethod* scope_method = method ? method : C->method(); 1246 // Describe the scope here 1247 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1248 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1249 // Now we can describe the scope. 1250 methodHandle null_mh; 1251 bool rethrow_exception = false; 1252 C->debug_info()->describe_scope( 1253 safepoint_pc_offset, 1254 null_mh, 1255 scope_method, 1256 jvms->bci(), 1257 jvms->should_reexecute(), 1258 rethrow_exception, 1259 is_method_handle_invoke, 1260 return_oop, 1261 return_scalarized, 1262 has_ea_local_in_scope, 1263 arg_escape, 1264 locvals, 1265 expvals, 1266 monvals 1267 ); 1268 } // End jvms loop 1269 1270 // Mark the end of the scope set. 1271 C->debug_info()->end_safepoint(safepoint_pc_offset); 1272 } 1273 1274 1275 1276 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1277 class NonSafepointEmitter { 1278 Compile* C; 1279 JVMState* _pending_jvms; 1280 int _pending_offset; 1281 1282 void emit_non_safepoint(); 1283 1284 public: 1285 NonSafepointEmitter(Compile* compile) { 1286 this->C = compile; 1287 _pending_jvms = nullptr; 1288 _pending_offset = 0; 1289 } 1290 1291 void observe_instruction(Node* n, int pc_offset) { 1292 if (!C->debug_info()->recording_non_safepoints()) return; 1293 1294 Node_Notes* nn = C->node_notes_at(n->_idx); 1295 if (nn == nullptr || nn->jvms() == nullptr) return; 1296 if (_pending_jvms != nullptr && 1297 _pending_jvms->same_calls_as(nn->jvms())) { 1298 // Repeated JVMS? Stretch it up here. 1299 _pending_offset = pc_offset; 1300 } else { 1301 if (_pending_jvms != nullptr && 1302 _pending_offset < pc_offset) { 1303 emit_non_safepoint(); 1304 } 1305 _pending_jvms = nullptr; 1306 if (pc_offset > C->debug_info()->last_pc_offset()) { 1307 // This is the only way _pending_jvms can become non-null: 1308 _pending_jvms = nn->jvms(); 1309 _pending_offset = pc_offset; 1310 } 1311 } 1312 } 1313 1314 // Stay out of the way of real safepoints: 1315 void observe_safepoint(JVMState* jvms, int pc_offset) { 1316 if (_pending_jvms != nullptr && 1317 !_pending_jvms->same_calls_as(jvms) && 1318 _pending_offset < pc_offset) { 1319 emit_non_safepoint(); 1320 } 1321 _pending_jvms = nullptr; 1322 } 1323 1324 void flush_at_end() { 1325 if (_pending_jvms != nullptr) { 1326 emit_non_safepoint(); 1327 } 1328 _pending_jvms = nullptr; 1329 } 1330 }; 1331 1332 void NonSafepointEmitter::emit_non_safepoint() { 1333 JVMState* youngest_jvms = _pending_jvms; 1334 int pc_offset = _pending_offset; 1335 1336 // Clear it now: 1337 _pending_jvms = nullptr; 1338 1339 DebugInformationRecorder* debug_info = C->debug_info(); 1340 assert(debug_info->recording_non_safepoints(), "sanity"); 1341 1342 debug_info->add_non_safepoint(pc_offset); 1343 int max_depth = youngest_jvms->depth(); 1344 1345 // Visit scopes from oldest to youngest. 1346 for (int depth = 1; depth <= max_depth; depth++) { 1347 JVMState* jvms = youngest_jvms->of_depth(depth); 1348 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1349 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1350 methodHandle null_mh; 1351 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1352 } 1353 1354 // Mark the end of the scope set. 1355 debug_info->end_non_safepoint(pc_offset); 1356 } 1357 1358 //------------------------------init_buffer------------------------------------ 1359 void PhaseOutput::estimate_buffer_size(int& const_req) { 1360 1361 // Set the initially allocated size 1362 const_req = initial_const_capacity; 1363 1364 // The extra spacing after the code is necessary on some platforms. 1365 // Sometimes we need to patch in a jump after the last instruction, 1366 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1367 1368 // Compute the byte offset where we can store the deopt pc. 1369 if (C->fixed_slots() != 0) { 1370 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1371 } 1372 1373 // Compute prolog code size 1374 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1375 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1376 1377 if (C->has_mach_constant_base_node()) { 1378 uint add_size = 0; 1379 // Fill the constant table. 1380 // Note: This must happen before shorten_branches. 1381 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1382 Block* b = C->cfg()->get_block(i); 1383 1384 for (uint j = 0; j < b->number_of_nodes(); j++) { 1385 Node* n = b->get_node(j); 1386 1387 // If the node is a MachConstantNode evaluate the constant 1388 // value section. 1389 if (n->is_MachConstant()) { 1390 MachConstantNode* machcon = n->as_MachConstant(); 1391 machcon->eval_constant(C); 1392 } else if (n->is_Mach()) { 1393 // On Power there are more nodes that issue constants. 1394 add_size += (n->as_Mach()->ins_num_consts() * 8); 1395 } 1396 } 1397 } 1398 1399 // Calculate the offsets of the constants and the size of the 1400 // constant table (including the padding to the next section). 1401 constant_table().calculate_offsets_and_size(); 1402 const_req = constant_table().size() + add_size; 1403 } 1404 1405 // Initialize the space for the BufferBlob used to find and verify 1406 // instruction size in MachNode::emit_size() 1407 init_scratch_buffer_blob(const_req); 1408 } 1409 1410 CodeBuffer* PhaseOutput::init_buffer() { 1411 int stub_req = _buf_sizes._stub; 1412 int code_req = _buf_sizes._code; 1413 int const_req = _buf_sizes._const; 1414 1415 int pad_req = NativeCall::byte_size(); 1416 1417 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1418 stub_req += bs->estimate_stub_size(); 1419 1420 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1421 // class HandlerImpl is platform-specific and defined in the *.ad files. 1422 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1423 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1424 stub_req += MAX_stubs_size; // ensure per-stub margin 1425 code_req += MAX_inst_size; // ensure per-instruction margin 1426 1427 if (StressCodeBuffers) 1428 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1429 1430 int total_req = 1431 const_req + 1432 code_req + 1433 pad_req + 1434 stub_req + 1435 exception_handler_req + 1436 deopt_handler_req; // deopt handler 1437 1438 if (C->has_method_handle_invokes()) 1439 total_req += deopt_handler_req; // deopt MH handler 1440 1441 CodeBuffer* cb = code_buffer(); 1442 cb->initialize(total_req, _buf_sizes._reloc); 1443 1444 // Have we run out of code space? 1445 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1446 C->record_failure("CodeCache is full"); 1447 return nullptr; 1448 } 1449 // Configure the code buffer. 1450 cb->initialize_consts_size(const_req); 1451 cb->initialize_stubs_size(stub_req); 1452 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1453 1454 // fill in the nop array for bundling computations 1455 MachNode *_nop_list[Bundle::_nop_count]; 1456 Bundle::initialize_nops(_nop_list); 1457 1458 return cb; 1459 } 1460 1461 //------------------------------fill_buffer------------------------------------ 1462 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1463 // blk_starts[] contains offsets calculated during short branches processing, 1464 // offsets should not be increased during following steps. 1465 1466 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1467 // of a loop. It is used to determine the padding for loop alignment. 1468 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1469 1470 compute_loop_first_inst_sizes(); 1471 1472 // Create oopmap set. 1473 _oop_map_set = new OopMapSet(); 1474 1475 // !!!!! This preserves old handling of oopmaps for now 1476 C->debug_info()->set_oopmaps(_oop_map_set); 1477 1478 uint nblocks = C->cfg()->number_of_blocks(); 1479 // Count and start of implicit null check instructions 1480 uint inct_cnt = 0; 1481 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1482 1483 // Count and start of calls 1484 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1485 1486 uint return_offset = 0; 1487 int nop_size = (new MachNopNode())->size(C->regalloc()); 1488 1489 int previous_offset = 0; 1490 int current_offset = 0; 1491 int last_call_offset = -1; 1492 int last_avoid_back_to_back_offset = -1; 1493 #ifdef ASSERT 1494 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1495 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1496 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1497 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1498 #endif 1499 1500 // Create an array of unused labels, one for each basic block, if printing is enabled 1501 #if defined(SUPPORT_OPTO_ASSEMBLY) 1502 int* node_offsets = nullptr; 1503 uint node_offset_limit = C->unique(); 1504 1505 if (C->print_assembly()) { 1506 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1507 } 1508 if (node_offsets != nullptr) { 1509 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1510 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1511 } 1512 #endif 1513 1514 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1515 1516 // Emit the constant table. 1517 if (C->has_mach_constant_base_node()) { 1518 if (!constant_table().emit(masm)) { 1519 C->record_failure("consts section overflow"); 1520 return; 1521 } 1522 } 1523 1524 // Create an array of labels, one for each basic block 1525 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1526 for (uint i = 0; i <= nblocks; i++) { 1527 blk_labels[i].init(); 1528 } 1529 1530 // Now fill in the code buffer 1531 Node* delay_slot = nullptr; 1532 for (uint i = 0; i < nblocks; i++) { 1533 Block* block = C->cfg()->get_block(i); 1534 _block = block; 1535 Node* head = block->head(); 1536 1537 // If this block needs to start aligned (i.e, can be reached other 1538 // than by falling-thru from the previous block), then force the 1539 // start of a new bundle. 1540 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1541 masm->code()->flush_bundle(true); 1542 } 1543 1544 #ifdef ASSERT 1545 if (!block->is_connector()) { 1546 stringStream st; 1547 block->dump_head(C->cfg(), &st); 1548 masm->block_comment(st.freeze()); 1549 } 1550 jmp_target[i] = 0; 1551 jmp_offset[i] = 0; 1552 jmp_size[i] = 0; 1553 jmp_rule[i] = 0; 1554 #endif 1555 int blk_offset = current_offset; 1556 1557 // Define the label at the beginning of the basic block 1558 masm->bind(blk_labels[block->_pre_order]); 1559 1560 uint last_inst = block->number_of_nodes(); 1561 1562 // Emit block normally, except for last instruction. 1563 // Emit means "dump code bits into code buffer". 1564 for (uint j = 0; j<last_inst; j++) { 1565 _index = j; 1566 1567 // Get the node 1568 Node* n = block->get_node(j); 1569 1570 // See if delay slots are supported 1571 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1572 assert(delay_slot == nullptr, "no use of delay slot node"); 1573 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1574 1575 delay_slot = n; 1576 continue; 1577 } 1578 1579 // If this starts a new instruction group, then flush the current one 1580 // (but allow split bundles) 1581 if (Pipeline::requires_bundling() && starts_bundle(n)) 1582 masm->code()->flush_bundle(false); 1583 1584 // Special handling for SafePoint/Call Nodes 1585 bool is_mcall = false; 1586 if (n->is_Mach()) { 1587 MachNode *mach = n->as_Mach(); 1588 is_mcall = n->is_MachCall(); 1589 bool is_sfn = n->is_MachSafePoint(); 1590 1591 // If this requires all previous instructions be flushed, then do so 1592 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1593 masm->code()->flush_bundle(true); 1594 current_offset = masm->offset(); 1595 } 1596 1597 // A padding may be needed again since a previous instruction 1598 // could be moved to delay slot. 1599 1600 // align the instruction if necessary 1601 int padding = mach->compute_padding(current_offset); 1602 // Make sure safepoint node for polling is distinct from a call's 1603 // return by adding a nop if needed. 1604 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1605 padding = nop_size; 1606 } 1607 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1608 current_offset == last_avoid_back_to_back_offset) { 1609 // Avoid back to back some instructions. 1610 padding = nop_size; 1611 } 1612 1613 if (padding > 0) { 1614 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1615 int nops_cnt = padding / nop_size; 1616 MachNode *nop = new MachNopNode(nops_cnt); 1617 block->insert_node(nop, j++); 1618 last_inst++; 1619 C->cfg()->map_node_to_block(nop, block); 1620 // Ensure enough space. 1621 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1622 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1623 C->record_failure("CodeCache is full"); 1624 return; 1625 } 1626 nop->emit(masm, C->regalloc()); 1627 masm->code()->flush_bundle(true); 1628 current_offset = masm->offset(); 1629 } 1630 1631 bool observe_safepoint = is_sfn; 1632 // Remember the start of the last call in a basic block 1633 if (is_mcall) { 1634 MachCallNode *mcall = mach->as_MachCall(); 1635 1636 if (mcall->entry_point() != nullptr) { 1637 // This destination address is NOT PC-relative 1638 mcall->method_set((intptr_t)mcall->entry_point()); 1639 } 1640 1641 // Save the return address 1642 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1643 1644 observe_safepoint = mcall->guaranteed_safepoint(); 1645 } 1646 1647 // sfn will be valid whenever mcall is valid now because of inheritance 1648 if (observe_safepoint) { 1649 // Handle special safepoint nodes for synchronization 1650 if (!is_mcall) { 1651 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1652 // !!!!! Stubs only need an oopmap right now, so bail out 1653 if (sfn->jvms()->method() == nullptr) { 1654 // Write the oopmap directly to the code blob??!! 1655 continue; 1656 } 1657 } // End synchronization 1658 1659 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1660 current_offset); 1661 Process_OopMap_Node(mach, current_offset); 1662 } // End if safepoint 1663 1664 // If this is a null check, then add the start of the previous instruction to the list 1665 else if( mach->is_MachNullCheck() ) { 1666 inct_starts[inct_cnt++] = previous_offset; 1667 } 1668 1669 // If this is a branch, then fill in the label with the target BB's label 1670 else if (mach->is_MachBranch()) { 1671 // This requires the TRUE branch target be in succs[0] 1672 uint block_num = block->non_connector_successor(0)->_pre_order; 1673 1674 // Try to replace long branch if delay slot is not used, 1675 // it is mostly for back branches since forward branch's 1676 // distance is not updated yet. 1677 bool delay_slot_is_used = valid_bundle_info(n) && 1678 C->output()->node_bundling(n)->use_unconditional_delay(); 1679 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1680 assert(delay_slot == nullptr, "not expecting delay slot node"); 1681 int br_size = n->size(C->regalloc()); 1682 int offset = blk_starts[block_num] - current_offset; 1683 if (block_num >= i) { 1684 // Current and following block's offset are not 1685 // finalized yet, adjust distance by the difference 1686 // between calculated and final offsets of current block. 1687 offset -= (blk_starts[i] - blk_offset); 1688 } 1689 // In the following code a nop could be inserted before 1690 // the branch which will increase the backward distance. 1691 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1692 if (needs_padding && offset <= 0) 1693 offset -= nop_size; 1694 1695 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1696 // We've got a winner. Replace this branch. 1697 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1698 1699 // Update the jmp_size. 1700 int new_size = replacement->size(C->regalloc()); 1701 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1702 // Insert padding between avoid_back_to_back branches. 1703 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1704 MachNode *nop = new MachNopNode(); 1705 block->insert_node(nop, j++); 1706 C->cfg()->map_node_to_block(nop, block); 1707 last_inst++; 1708 nop->emit(masm, C->regalloc()); 1709 masm->code()->flush_bundle(true); 1710 current_offset = masm->offset(); 1711 } 1712 #ifdef ASSERT 1713 jmp_target[i] = block_num; 1714 jmp_offset[i] = current_offset - blk_offset; 1715 jmp_size[i] = new_size; 1716 jmp_rule[i] = mach->rule(); 1717 #endif 1718 block->map_node(replacement, j); 1719 mach->subsume_by(replacement, C); 1720 n = replacement; 1721 mach = replacement; 1722 } 1723 } 1724 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1725 } else if (mach->ideal_Opcode() == Op_Jump) { 1726 for (uint h = 0; h < block->_num_succs; h++) { 1727 Block* succs_block = block->_succs[h]; 1728 for (uint j = 1; j < succs_block->num_preds(); j++) { 1729 Node* jpn = succs_block->pred(j); 1730 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1731 uint block_num = succs_block->non_connector()->_pre_order; 1732 Label *blkLabel = &blk_labels[block_num]; 1733 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1734 } 1735 } 1736 } 1737 } else if (!n->is_Proj()) { 1738 // Remember the beginning of the previous instruction, in case 1739 // it's followed by a flag-kill and a null-check. Happens on 1740 // Intel all the time, with add-to-memory kind of opcodes. 1741 previous_offset = current_offset; 1742 } 1743 1744 // Not an else-if! 1745 // If this is a trap based cmp then add its offset to the list. 1746 if (mach->is_TrapBasedCheckNode()) { 1747 inct_starts[inct_cnt++] = current_offset; 1748 } 1749 } 1750 1751 // Verify that there is sufficient space remaining 1752 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1753 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1754 C->record_failure("CodeCache is full"); 1755 return; 1756 } 1757 1758 // Save the offset for the listing 1759 #if defined(SUPPORT_OPTO_ASSEMBLY) 1760 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1761 node_offsets[n->_idx] = masm->offset(); 1762 } 1763 #endif 1764 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1765 1766 // "Normal" instruction case 1767 DEBUG_ONLY(uint instr_offset = masm->offset()); 1768 n->emit(masm, C->regalloc()); 1769 current_offset = masm->offset(); 1770 1771 // Above we only verified that there is enough space in the instruction section. 1772 // However, the instruction may emit stubs that cause code buffer expansion. 1773 // Bail out here if expansion failed due to a lack of code cache space. 1774 if (C->failing()) { 1775 return; 1776 } 1777 1778 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1779 "ret_addr_offset() not within emitted code"); 1780 #ifdef ASSERT 1781 uint n_size = n->size(C->regalloc()); 1782 if (n_size < (current_offset-instr_offset)) { 1783 MachNode* mach = n->as_Mach(); 1784 n->dump(); 1785 mach->dump_format(C->regalloc(), tty); 1786 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1787 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1788 tty->print_cr(" ------------------- "); 1789 BufferBlob* blob = this->scratch_buffer_blob(); 1790 address blob_begin = blob->content_begin(); 1791 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1792 assert(false, "wrong size of mach node"); 1793 } 1794 #endif 1795 non_safepoints.observe_instruction(n, current_offset); 1796 1797 // mcall is last "call" that can be a safepoint 1798 // record it so we can see if a poll will directly follow it 1799 // in which case we'll need a pad to make the PcDesc sites unique 1800 // see 5010568. This can be slightly inaccurate but conservative 1801 // in the case that return address is not actually at current_offset. 1802 // This is a small price to pay. 1803 1804 if (is_mcall) { 1805 last_call_offset = current_offset; 1806 } 1807 1808 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1809 // Avoid back to back some instructions. 1810 last_avoid_back_to_back_offset = current_offset; 1811 } 1812 1813 // See if this instruction has a delay slot 1814 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1815 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1816 1817 // Back up 1 instruction 1818 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1819 1820 // Save the offset for the listing 1821 #if defined(SUPPORT_OPTO_ASSEMBLY) 1822 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1823 node_offsets[delay_slot->_idx] = masm->offset(); 1824 } 1825 #endif 1826 1827 // Support a SafePoint in the delay slot 1828 if (delay_slot->is_MachSafePoint()) { 1829 MachNode *mach = delay_slot->as_Mach(); 1830 // !!!!! Stubs only need an oopmap right now, so bail out 1831 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1832 // Write the oopmap directly to the code blob??!! 1833 delay_slot = nullptr; 1834 continue; 1835 } 1836 1837 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1838 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1839 adjusted_offset); 1840 // Generate an OopMap entry 1841 Process_OopMap_Node(mach, adjusted_offset); 1842 } 1843 1844 // Insert the delay slot instruction 1845 delay_slot->emit(masm, C->regalloc()); 1846 1847 // Don't reuse it 1848 delay_slot = nullptr; 1849 } 1850 1851 } // End for all instructions in block 1852 1853 // If the next block is the top of a loop, pad this block out to align 1854 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1855 if (i < nblocks-1) { 1856 Block *nb = C->cfg()->get_block(i + 1); 1857 int padding = nb->alignment_padding(current_offset); 1858 if( padding > 0 ) { 1859 MachNode *nop = new MachNopNode(padding / nop_size); 1860 block->insert_node(nop, block->number_of_nodes()); 1861 C->cfg()->map_node_to_block(nop, block); 1862 nop->emit(masm, C->regalloc()); 1863 current_offset = masm->offset(); 1864 } 1865 } 1866 // Verify that the distance for generated before forward 1867 // short branches is still valid. 1868 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1869 1870 // Save new block start offset 1871 blk_starts[i] = blk_offset; 1872 } // End of for all blocks 1873 blk_starts[nblocks] = current_offset; 1874 1875 non_safepoints.flush_at_end(); 1876 1877 // Offset too large? 1878 if (C->failing()) return; 1879 1880 // Define a pseudo-label at the end of the code 1881 masm->bind( blk_labels[nblocks] ); 1882 1883 // Compute the size of the first block 1884 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1885 1886 #ifdef ASSERT 1887 for (uint i = 0; i < nblocks; i++) { // For all blocks 1888 if (jmp_target[i] != 0) { 1889 int br_size = jmp_size[i]; 1890 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1891 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1892 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1893 assert(false, "Displacement too large for short jmp"); 1894 } 1895 } 1896 } 1897 #endif 1898 1899 if (!masm->code()->finalize_stubs()) { 1900 C->record_failure("CodeCache is full"); 1901 return; 1902 } 1903 1904 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1905 bs->emit_stubs(*masm->code()); 1906 if (C->failing()) return; 1907 1908 // Fill in stubs. 1909 assert(masm->inst_mark() == nullptr, "should be."); 1910 _stub_list.emit(*masm); 1911 if (C->failing()) return; 1912 1913 #ifndef PRODUCT 1914 // Information on the size of the method, without the extraneous code 1915 Scheduling::increment_method_size(masm->offset()); 1916 #endif 1917 1918 // ------------------ 1919 // Fill in exception table entries. 1920 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1921 1922 // Only java methods have exception handlers and deopt handlers 1923 // class HandlerImpl is platform-specific and defined in the *.ad files. 1924 if (C->method()) { 1925 // Emit the exception handler code. 1926 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1927 if (C->failing()) { 1928 return; // CodeBuffer::expand failed 1929 } 1930 // Emit the deopt handler code. 1931 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1932 1933 // Emit the MethodHandle deopt handler code (if required). 1934 if (C->has_method_handle_invokes() && !C->failing()) { 1935 // We can use the same code as for the normal deopt handler, we 1936 // just need a different entry point address. 1937 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1938 } 1939 } 1940 1941 // One last check for failed CodeBuffer::expand: 1942 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1943 C->record_failure("CodeCache is full"); 1944 return; 1945 } 1946 1947 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1948 if (C->print_assembly()) { 1949 tty->cr(); 1950 tty->print_cr("============================= C2-compiled nmethod =============================="); 1951 } 1952 #endif 1953 1954 #if defined(SUPPORT_OPTO_ASSEMBLY) 1955 // Dump the assembly code, including basic-block numbers 1956 if (C->print_assembly()) { 1957 ttyLocker ttyl; // keep the following output all in one block 1958 if (!VMThread::should_terminate()) { // test this under the tty lock 1959 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1960 // We call them first and write to a stringStream, then we retake the lock to 1961 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1962 ResourceMark rm; 1963 stringStream method_metadata_str; 1964 if (C->method() != nullptr) { 1965 C->method()->print_metadata(&method_metadata_str); 1966 } 1967 stringStream dump_asm_str; 1968 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1969 1970 NoSafepointVerifier nsv; 1971 ttyLocker ttyl2; 1972 // This output goes directly to the tty, not the compiler log. 1973 // To enable tools to match it up with the compilation activity, 1974 // be sure to tag this tty output with the compile ID. 1975 if (xtty != nullptr) { 1976 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1977 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1978 } 1979 if (C->method() != nullptr) { 1980 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1981 tty->print_raw(method_metadata_str.freeze()); 1982 } else if (C->stub_name() != nullptr) { 1983 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1984 } 1985 tty->cr(); 1986 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1987 tty->print_raw(dump_asm_str.freeze()); 1988 tty->print_cr("--------------------------------------------------------------------------------"); 1989 if (xtty != nullptr) { 1990 xtty->tail("opto_assembly"); 1991 } 1992 } 1993 } 1994 #endif 1995 } 1996 1997 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1998 _inc_table.set_size(cnt); 1999 2000 uint inct_cnt = 0; 2001 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2002 Block* block = C->cfg()->get_block(i); 2003 Node *n = nullptr; 2004 int j; 2005 2006 // Find the branch; ignore trailing NOPs. 2007 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 2008 n = block->get_node(j); 2009 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 2010 break; 2011 } 2012 } 2013 2014 // If we didn't find anything, continue 2015 if (j < 0) { 2016 continue; 2017 } 2018 2019 // Compute ExceptionHandlerTable subtable entry and add it 2020 // (skip empty blocks) 2021 if (n->is_Catch()) { 2022 2023 // Get the offset of the return from the call 2024 uint call_return = call_returns[block->_pre_order]; 2025 #ifdef ASSERT 2026 assert( call_return > 0, "no call seen for this basic block" ); 2027 while (block->get_node(--j)->is_MachProj()) ; 2028 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 2029 #endif 2030 // last instruction is a CatchNode, find it's CatchProjNodes 2031 int nof_succs = block->_num_succs; 2032 // allocate space 2033 GrowableArray<intptr_t> handler_bcis(nof_succs); 2034 GrowableArray<intptr_t> handler_pcos(nof_succs); 2035 // iterate through all successors 2036 for (int j = 0; j < nof_succs; j++) { 2037 Block* s = block->_succs[j]; 2038 bool found_p = false; 2039 for (uint k = 1; k < s->num_preds(); k++) { 2040 Node* pk = s->pred(k); 2041 if (pk->is_CatchProj() && pk->in(0) == n) { 2042 const CatchProjNode* p = pk->as_CatchProj(); 2043 found_p = true; 2044 // add the corresponding handler bci & pco information 2045 if (p->_con != CatchProjNode::fall_through_index) { 2046 // p leads to an exception handler (and is not fall through) 2047 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 2048 // no duplicates, please 2049 if (!handler_bcis.contains(p->handler_bci())) { 2050 uint block_num = s->non_connector()->_pre_order; 2051 handler_bcis.append(p->handler_bci()); 2052 handler_pcos.append(blk_labels[block_num].loc_pos()); 2053 } 2054 } 2055 } 2056 } 2057 assert(found_p, "no matching predecessor found"); 2058 // Note: Due to empty block removal, one block may have 2059 // several CatchProj inputs, from the same Catch. 2060 } 2061 2062 // Set the offset of the return from the call 2063 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2064 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2065 continue; 2066 } 2067 2068 // Handle implicit null exception table updates 2069 if (n->is_MachNullCheck()) { 2070 assert(n->in(1)->as_Mach()->barrier_data() == 0, 2071 "Implicit null checks on memory accesses with barriers are not yet supported"); 2072 uint block_num = block->non_connector_successor(0)->_pre_order; 2073 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2074 continue; 2075 } 2076 // Handle implicit exception table updates: trap instructions. 2077 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2078 uint block_num = block->non_connector_successor(0)->_pre_order; 2079 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2080 continue; 2081 } 2082 } // End of for all blocks fill in exception table entries 2083 } 2084 2085 // Static Variables 2086 #ifndef PRODUCT 2087 uint Scheduling::_total_nop_size = 0; 2088 uint Scheduling::_total_method_size = 0; 2089 uint Scheduling::_total_branches = 0; 2090 uint Scheduling::_total_unconditional_delays = 0; 2091 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2092 #endif 2093 2094 // Initializer for class Scheduling 2095 2096 Scheduling::Scheduling(Arena *arena, Compile &compile) 2097 : _arena(arena), 2098 _cfg(compile.cfg()), 2099 _regalloc(compile.regalloc()), 2100 _scheduled(arena), 2101 _available(arena), 2102 _reg_node(arena), 2103 _pinch_free_list(arena), 2104 _next_node(nullptr), 2105 _bundle_instr_count(0), 2106 _bundle_cycle_number(0), 2107 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2108 #ifndef PRODUCT 2109 , _branches(0) 2110 , _unconditional_delays(0) 2111 #endif 2112 { 2113 // Create a MachNopNode 2114 _nop = new MachNopNode(); 2115 2116 // Now that the nops are in the array, save the count 2117 // (but allow entries for the nops) 2118 _node_bundling_limit = compile.unique(); 2119 uint node_max = _regalloc->node_regs_max_index(); 2120 2121 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2122 2123 // This one is persistent within the Compile class 2124 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2125 2126 // Allocate space for fixed-size arrays 2127 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2128 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2129 2130 // Clear the arrays 2131 for (uint i = 0; i < node_max; i++) { 2132 ::new (&_node_bundling_base[i]) Bundle(); 2133 } 2134 memset(_uses, 0, node_max * sizeof(short)); 2135 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2136 2137 // Clear the bundling information 2138 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2139 2140 // Get the last node 2141 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2142 2143 _next_node = block->get_node(block->number_of_nodes() - 1); 2144 } 2145 2146 #ifndef PRODUCT 2147 // Scheduling destructor 2148 Scheduling::~Scheduling() { 2149 _total_branches += _branches; 2150 _total_unconditional_delays += _unconditional_delays; 2151 } 2152 #endif 2153 2154 // Step ahead "i" cycles 2155 void Scheduling::step(uint i) { 2156 2157 Bundle *bundle = node_bundling(_next_node); 2158 bundle->set_starts_bundle(); 2159 2160 // Update the bundle record, but leave the flags information alone 2161 if (_bundle_instr_count > 0) { 2162 bundle->set_instr_count(_bundle_instr_count); 2163 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2164 } 2165 2166 // Update the state information 2167 _bundle_instr_count = 0; 2168 _bundle_cycle_number += i; 2169 _bundle_use.step(i); 2170 } 2171 2172 void Scheduling::step_and_clear() { 2173 Bundle *bundle = node_bundling(_next_node); 2174 bundle->set_starts_bundle(); 2175 2176 // Update the bundle record 2177 if (_bundle_instr_count > 0) { 2178 bundle->set_instr_count(_bundle_instr_count); 2179 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2180 2181 _bundle_cycle_number += 1; 2182 } 2183 2184 // Clear the bundling information 2185 _bundle_instr_count = 0; 2186 _bundle_use.reset(); 2187 2188 memcpy(_bundle_use_elements, 2189 Pipeline_Use::elaborated_elements, 2190 sizeof(Pipeline_Use::elaborated_elements)); 2191 } 2192 2193 // Perform instruction scheduling and bundling over the sequence of 2194 // instructions in backwards order. 2195 void PhaseOutput::ScheduleAndBundle() { 2196 2197 // Don't optimize this if it isn't a method 2198 if (!C->method()) 2199 return; 2200 2201 // Don't optimize this if scheduling is disabled 2202 if (!C->do_scheduling()) 2203 return; 2204 2205 // Scheduling code works only with pairs (8 bytes) maximum. 2206 // And when the scalable vector register is used, we may spill/unspill 2207 // the whole reg regardless of the max vector size. 2208 if (C->max_vector_size() > 8 || 2209 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2210 return; 2211 } 2212 2213 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2214 2215 // Create a data structure for all the scheduling information 2216 Scheduling scheduling(Thread::current()->resource_area(), *C); 2217 2218 // Walk backwards over each basic block, computing the needed alignment 2219 // Walk over all the basic blocks 2220 scheduling.DoScheduling(); 2221 2222 #ifndef PRODUCT 2223 if (C->trace_opto_output()) { 2224 // Buffer and print all at once 2225 ResourceMark rm; 2226 stringStream ss; 2227 ss.print("\n---- After ScheduleAndBundle ----\n"); 2228 print_scheduling(&ss); 2229 tty->print("%s", ss.as_string()); 2230 } 2231 #endif 2232 } 2233 2234 #ifndef PRODUCT 2235 // Separated out so that it can be called directly from debugger 2236 void PhaseOutput::print_scheduling() { 2237 print_scheduling(tty); 2238 } 2239 2240 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2241 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2242 output_stream->print("\nBB#%03d:\n", i); 2243 Block* block = C->cfg()->get_block(i); 2244 for (uint j = 0; j < block->number_of_nodes(); j++) { 2245 Node* n = block->get_node(j); 2246 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2247 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2248 n->dump("\n", false, output_stream); 2249 } 2250 } 2251 } 2252 #endif 2253 2254 // See if this node fits into the present instruction bundle 2255 bool Scheduling::NodeFitsInBundle(Node *n) { 2256 uint n_idx = n->_idx; 2257 2258 // If this is the unconditional delay instruction, then it fits 2259 if (n == _unconditional_delay_slot) { 2260 #ifndef PRODUCT 2261 if (_cfg->C->trace_opto_output()) 2262 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2263 #endif 2264 return (true); 2265 } 2266 2267 // If the node cannot be scheduled this cycle, skip it 2268 if (_current_latency[n_idx] > _bundle_cycle_number) { 2269 #ifndef PRODUCT 2270 if (_cfg->C->trace_opto_output()) 2271 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2272 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2273 #endif 2274 return (false); 2275 } 2276 2277 const Pipeline *node_pipeline = n->pipeline(); 2278 2279 uint instruction_count = node_pipeline->instructionCount(); 2280 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2281 instruction_count = 0; 2282 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2283 instruction_count++; 2284 2285 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2286 #ifndef PRODUCT 2287 if (_cfg->C->trace_opto_output()) 2288 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2289 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2290 #endif 2291 return (false); 2292 } 2293 2294 // Don't allow non-machine nodes to be handled this way 2295 if (!n->is_Mach() && instruction_count == 0) 2296 return (false); 2297 2298 // See if there is any overlap 2299 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2300 2301 if (delay > 0) { 2302 #ifndef PRODUCT 2303 if (_cfg->C->trace_opto_output()) 2304 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2305 #endif 2306 return false; 2307 } 2308 2309 #ifndef PRODUCT 2310 if (_cfg->C->trace_opto_output()) 2311 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2312 #endif 2313 2314 return true; 2315 } 2316 2317 Node * Scheduling::ChooseNodeToBundle() { 2318 uint siz = _available.size(); 2319 2320 if (siz == 0) { 2321 2322 #ifndef PRODUCT 2323 if (_cfg->C->trace_opto_output()) 2324 tty->print("# ChooseNodeToBundle: null\n"); 2325 #endif 2326 return (nullptr); 2327 } 2328 2329 // Fast path, if only 1 instruction in the bundle 2330 if (siz == 1) { 2331 #ifndef PRODUCT 2332 if (_cfg->C->trace_opto_output()) { 2333 tty->print("# ChooseNodeToBundle (only 1): "); 2334 _available[0]->dump(); 2335 } 2336 #endif 2337 return (_available[0]); 2338 } 2339 2340 // Don't bother, if the bundle is already full 2341 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2342 for ( uint i = 0; i < siz; i++ ) { 2343 Node *n = _available[i]; 2344 2345 // Skip projections, we'll handle them another way 2346 if (n->is_Proj()) 2347 continue; 2348 2349 // This presupposed that instructions are inserted into the 2350 // available list in a legality order; i.e. instructions that 2351 // must be inserted first are at the head of the list 2352 if (NodeFitsInBundle(n)) { 2353 #ifndef PRODUCT 2354 if (_cfg->C->trace_opto_output()) { 2355 tty->print("# ChooseNodeToBundle: "); 2356 n->dump(); 2357 } 2358 #endif 2359 return (n); 2360 } 2361 } 2362 } 2363 2364 // Nothing fits in this bundle, choose the highest priority 2365 #ifndef PRODUCT 2366 if (_cfg->C->trace_opto_output()) { 2367 tty->print("# ChooseNodeToBundle: "); 2368 _available[0]->dump(); 2369 } 2370 #endif 2371 2372 return _available[0]; 2373 } 2374 2375 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2376 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2377 2378 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2379 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2380 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2381 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2382 2383 // Comparison between stack -> reg and stack -> reg 2384 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2385 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2386 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2387 } 2388 2389 // Comparison between reg -> stack and reg -> stack 2390 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2391 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2392 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2393 } 2394 2395 return 0; // Not comparable 2396 } 2397 2398 void Scheduling::AddNodeToAvailableList(Node *n) { 2399 assert( !n->is_Proj(), "projections never directly made available" ); 2400 #ifndef PRODUCT 2401 if (_cfg->C->trace_opto_output()) { 2402 tty->print("# AddNodeToAvailableList: "); 2403 n->dump(); 2404 } 2405 #endif 2406 2407 int latency = _current_latency[n->_idx]; 2408 2409 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2410 // for stack spilling or unspilling have the same latency, we sort 2411 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2412 // have more opportunities to do ld/st merging 2413 uint i; 2414 for (i = 0; i < _available.size(); i++) { 2415 if (_current_latency[_available[i]->_idx] > latency) { 2416 break; 2417 } else if (_current_latency[_available[i]->_idx] == latency && 2418 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2419 compare_two_spill_nodes(n, _available[i]) > 0) { 2420 break; 2421 } 2422 } 2423 2424 // Special Check for compares following branches 2425 if( n->is_Mach() && _scheduled.size() > 0 ) { 2426 int op = n->as_Mach()->ideal_Opcode(); 2427 Node *last = _scheduled[0]; 2428 if( last->is_MachIf() && last->in(1) == n && 2429 ( op == Op_CmpI || 2430 op == Op_CmpU || 2431 op == Op_CmpUL || 2432 op == Op_CmpP || 2433 op == Op_CmpF || 2434 op == Op_CmpD || 2435 op == Op_CmpL ) ) { 2436 2437 // Recalculate position, moving to front of same latency 2438 for ( i=0 ; i < _available.size(); i++ ) 2439 if (_current_latency[_available[i]->_idx] >= latency) 2440 break; 2441 } 2442 } 2443 2444 // Insert the node in the available list 2445 _available.insert(i, n); 2446 2447 #ifndef PRODUCT 2448 if (_cfg->C->trace_opto_output()) 2449 dump_available(); 2450 #endif 2451 } 2452 2453 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2454 for ( uint i=0; i < n->len(); i++ ) { 2455 Node *def = n->in(i); 2456 if (!def) continue; 2457 if( def->is_Proj() ) // If this is a machine projection, then 2458 def = def->in(0); // propagate usage thru to the base instruction 2459 2460 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2461 continue; 2462 } 2463 2464 // Compute the latency 2465 uint l = _bundle_cycle_number + n->latency(i); 2466 if (_current_latency[def->_idx] < l) 2467 _current_latency[def->_idx] = l; 2468 2469 // If this does not have uses then schedule it 2470 if ((--_uses[def->_idx]) == 0) 2471 AddNodeToAvailableList(def); 2472 } 2473 } 2474 2475 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2476 #ifndef PRODUCT 2477 if (_cfg->C->trace_opto_output()) { 2478 tty->print("# AddNodeToBundle: "); 2479 n->dump(); 2480 } 2481 #endif 2482 2483 // Remove this from the available list 2484 uint i; 2485 for (i = 0; i < _available.size(); i++) 2486 if (_available[i] == n) 2487 break; 2488 assert(i < _available.size(), "entry in _available list not found"); 2489 _available.remove(i); 2490 2491 // See if this fits in the current bundle 2492 const Pipeline *node_pipeline = n->pipeline(); 2493 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2494 2495 // Check for instructions to be placed in the delay slot. We 2496 // do this before we actually schedule the current instruction, 2497 // because the delay slot follows the current instruction. 2498 if (Pipeline::_branch_has_delay_slot && 2499 node_pipeline->hasBranchDelay() && 2500 !_unconditional_delay_slot) { 2501 2502 uint siz = _available.size(); 2503 2504 // Conditional branches can support an instruction that 2505 // is unconditionally executed and not dependent by the 2506 // branch, OR a conditionally executed instruction if 2507 // the branch is taken. In practice, this means that 2508 // the first instruction at the branch target is 2509 // copied to the delay slot, and the branch goes to 2510 // the instruction after that at the branch target 2511 if ( n->is_MachBranch() ) { 2512 2513 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2514 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2515 2516 #ifndef PRODUCT 2517 _branches++; 2518 #endif 2519 2520 // At least 1 instruction is on the available list 2521 // that is not dependent on the branch 2522 for (uint i = 0; i < siz; i++) { 2523 Node *d = _available[i]; 2524 const Pipeline *avail_pipeline = d->pipeline(); 2525 2526 // Don't allow safepoints in the branch shadow, that will 2527 // cause a number of difficulties 2528 if ( avail_pipeline->instructionCount() == 1 && 2529 !avail_pipeline->hasMultipleBundles() && 2530 !avail_pipeline->hasBranchDelay() && 2531 Pipeline::instr_has_unit_size() && 2532 d->size(_regalloc) == Pipeline::instr_unit_size() && 2533 NodeFitsInBundle(d) && 2534 !node_bundling(d)->used_in_delay()) { 2535 2536 if (d->is_Mach() && !d->is_MachSafePoint()) { 2537 // A node that fits in the delay slot was found, so we need to 2538 // set the appropriate bits in the bundle pipeline information so 2539 // that it correctly indicates resource usage. Later, when we 2540 // attempt to add this instruction to the bundle, we will skip 2541 // setting the resource usage. 2542 _unconditional_delay_slot = d; 2543 node_bundling(n)->set_use_unconditional_delay(); 2544 node_bundling(d)->set_used_in_unconditional_delay(); 2545 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2546 _current_latency[d->_idx] = _bundle_cycle_number; 2547 _next_node = d; 2548 ++_bundle_instr_count; 2549 #ifndef PRODUCT 2550 _unconditional_delays++; 2551 #endif 2552 break; 2553 } 2554 } 2555 } 2556 } 2557 2558 // No delay slot, add a nop to the usage 2559 if (!_unconditional_delay_slot) { 2560 // See if adding an instruction in the delay slot will overflow 2561 // the bundle. 2562 if (!NodeFitsInBundle(_nop)) { 2563 #ifndef PRODUCT 2564 if (_cfg->C->trace_opto_output()) 2565 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2566 #endif 2567 step(1); 2568 } 2569 2570 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2571 _next_node = _nop; 2572 ++_bundle_instr_count; 2573 } 2574 2575 // See if the instruction in the delay slot requires a 2576 // step of the bundles 2577 if (!NodeFitsInBundle(n)) { 2578 #ifndef PRODUCT 2579 if (_cfg->C->trace_opto_output()) 2580 tty->print("# *** STEP(branch won't fit) ***\n"); 2581 #endif 2582 // Update the state information 2583 _bundle_instr_count = 0; 2584 _bundle_cycle_number += 1; 2585 _bundle_use.step(1); 2586 } 2587 } 2588 2589 // Get the number of instructions 2590 uint instruction_count = node_pipeline->instructionCount(); 2591 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2592 instruction_count = 0; 2593 2594 // Compute the latency information 2595 uint delay = 0; 2596 2597 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2598 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2599 if (relative_latency < 0) 2600 relative_latency = 0; 2601 2602 delay = _bundle_use.full_latency(relative_latency, node_usage); 2603 2604 // Does not fit in this bundle, start a new one 2605 if (delay > 0) { 2606 step(delay); 2607 2608 #ifndef PRODUCT 2609 if (_cfg->C->trace_opto_output()) 2610 tty->print("# *** STEP(%d) ***\n", delay); 2611 #endif 2612 } 2613 } 2614 2615 // If this was placed in the delay slot, ignore it 2616 if (n != _unconditional_delay_slot) { 2617 2618 if (delay == 0) { 2619 if (node_pipeline->hasMultipleBundles()) { 2620 #ifndef PRODUCT 2621 if (_cfg->C->trace_opto_output()) 2622 tty->print("# *** STEP(multiple instructions) ***\n"); 2623 #endif 2624 step(1); 2625 } 2626 2627 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2628 #ifndef PRODUCT 2629 if (_cfg->C->trace_opto_output()) 2630 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2631 instruction_count + _bundle_instr_count, 2632 Pipeline::_max_instrs_per_cycle); 2633 #endif 2634 step(1); 2635 } 2636 } 2637 2638 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2639 _bundle_instr_count++; 2640 2641 // Set the node's latency 2642 _current_latency[n->_idx] = _bundle_cycle_number; 2643 2644 // Now merge the functional unit information 2645 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2646 _bundle_use.add_usage(node_usage); 2647 2648 // Increment the number of instructions in this bundle 2649 _bundle_instr_count += instruction_count; 2650 2651 // Remember this node for later 2652 if (n->is_Mach()) 2653 _next_node = n; 2654 } 2655 2656 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2657 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2658 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2659 // into the block. All other scheduled nodes get put in the schedule here. 2660 int op = n->Opcode(); 2661 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2662 (op != Op_Node && // Not an unused antidepedence node and 2663 // not an unallocated boxlock 2664 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2665 2666 // Push any trailing projections 2667 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2668 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2669 Node *foi = n->fast_out(i); 2670 if( foi->is_Proj() ) 2671 _scheduled.push(foi); 2672 } 2673 } 2674 2675 // Put the instruction in the schedule list 2676 _scheduled.push(n); 2677 } 2678 2679 #ifndef PRODUCT 2680 if (_cfg->C->trace_opto_output()) 2681 dump_available(); 2682 #endif 2683 2684 // Walk all the definitions, decrementing use counts, and 2685 // if a definition has a 0 use count, place it in the available list. 2686 DecrementUseCounts(n,bb); 2687 } 2688 2689 // This method sets the use count within a basic block. We will ignore all 2690 // uses outside the current basic block. As we are doing a backwards walk, 2691 // any node we reach that has a use count of 0 may be scheduled. This also 2692 // avoids the problem of cyclic references from phi nodes, as long as phi 2693 // nodes are at the front of the basic block. This method also initializes 2694 // the available list to the set of instructions that have no uses within this 2695 // basic block. 2696 void Scheduling::ComputeUseCount(const Block *bb) { 2697 #ifndef PRODUCT 2698 if (_cfg->C->trace_opto_output()) 2699 tty->print("# -> ComputeUseCount\n"); 2700 #endif 2701 2702 // Clear the list of available and scheduled instructions, just in case 2703 _available.clear(); 2704 _scheduled.clear(); 2705 2706 // No delay slot specified 2707 _unconditional_delay_slot = nullptr; 2708 2709 #ifdef ASSERT 2710 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2711 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2712 #endif 2713 2714 // Force the _uses count to never go to zero for unscheduable pieces 2715 // of the block 2716 for( uint k = 0; k < _bb_start; k++ ) 2717 _uses[bb->get_node(k)->_idx] = 1; 2718 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2719 _uses[bb->get_node(l)->_idx] = 1; 2720 2721 // Iterate backwards over the instructions in the block. Don't count the 2722 // branch projections at end or the block header instructions. 2723 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2724 Node *n = bb->get_node(j); 2725 if( n->is_Proj() ) continue; // Projections handled another way 2726 2727 // Account for all uses 2728 for ( uint k = 0; k < n->len(); k++ ) { 2729 Node *inp = n->in(k); 2730 if (!inp) continue; 2731 assert(inp != n, "no cycles allowed" ); 2732 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2733 if (inp->is_Proj()) { // Skip through Proj's 2734 inp = inp->in(0); 2735 } 2736 ++_uses[inp->_idx]; // Count 1 block-local use 2737 } 2738 } 2739 2740 // If this instruction has a 0 use count, then it is available 2741 if (!_uses[n->_idx]) { 2742 _current_latency[n->_idx] = _bundle_cycle_number; 2743 AddNodeToAvailableList(n); 2744 } 2745 2746 #ifndef PRODUCT 2747 if (_cfg->C->trace_opto_output()) { 2748 tty->print("# uses: %3d: ", _uses[n->_idx]); 2749 n->dump(); 2750 } 2751 #endif 2752 } 2753 2754 #ifndef PRODUCT 2755 if (_cfg->C->trace_opto_output()) 2756 tty->print("# <- ComputeUseCount\n"); 2757 #endif 2758 } 2759 2760 // This routine performs scheduling on each basic block in reverse order, 2761 // using instruction latencies and taking into account function unit 2762 // availability. 2763 void Scheduling::DoScheduling() { 2764 #ifndef PRODUCT 2765 if (_cfg->C->trace_opto_output()) 2766 tty->print("# -> DoScheduling\n"); 2767 #endif 2768 2769 Block *succ_bb = nullptr; 2770 Block *bb; 2771 Compile* C = Compile::current(); 2772 2773 // Walk over all the basic blocks in reverse order 2774 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2775 bb = _cfg->get_block(i); 2776 2777 #ifndef PRODUCT 2778 if (_cfg->C->trace_opto_output()) { 2779 tty->print("# Schedule BB#%03d (initial)\n", i); 2780 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2781 bb->get_node(j)->dump(); 2782 } 2783 } 2784 #endif 2785 2786 // On the head node, skip processing 2787 if (bb == _cfg->get_root_block()) { 2788 continue; 2789 } 2790 2791 // Skip empty, connector blocks 2792 if (bb->is_connector()) 2793 continue; 2794 2795 // If the following block is not the sole successor of 2796 // this one, then reset the pipeline information 2797 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2798 #ifndef PRODUCT 2799 if (_cfg->C->trace_opto_output()) { 2800 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2801 _next_node->_idx, _bundle_instr_count); 2802 } 2803 #endif 2804 step_and_clear(); 2805 } 2806 2807 // Leave untouched the starting instruction, any Phis, a CreateEx node 2808 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2809 _bb_end = bb->number_of_nodes()-1; 2810 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2811 Node *n = bb->get_node(_bb_start); 2812 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2813 // Also, MachIdealNodes do not get scheduled 2814 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2815 MachNode *mach = n->as_Mach(); 2816 int iop = mach->ideal_Opcode(); 2817 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2818 if( iop == Op_Con ) continue; // Do not schedule Top 2819 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2820 mach->pipeline() == MachNode::pipeline_class() && 2821 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2822 continue; 2823 break; // Funny loop structure to be sure... 2824 } 2825 // Compute last "interesting" instruction in block - last instruction we 2826 // might schedule. _bb_end points just after last schedulable inst. We 2827 // normally schedule conditional branches (despite them being forced last 2828 // in the block), because they have delay slots we can fill. Calls all 2829 // have their delay slots filled in the template expansions, so we don't 2830 // bother scheduling them. 2831 Node *last = bb->get_node(_bb_end); 2832 // Ignore trailing NOPs. 2833 while (_bb_end > 0 && last->is_Mach() && 2834 last->as_Mach()->ideal_Opcode() == Op_Con) { 2835 last = bb->get_node(--_bb_end); 2836 } 2837 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2838 if( last->is_Catch() || 2839 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2840 // There might be a prior call. Skip it. 2841 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2842 } else if( last->is_MachNullCheck() ) { 2843 // Backup so the last null-checked memory instruction is 2844 // outside the schedulable range. Skip over the nullcheck, 2845 // projection, and the memory nodes. 2846 Node *mem = last->in(1); 2847 do { 2848 _bb_end--; 2849 } while (mem != bb->get_node(_bb_end)); 2850 } else { 2851 // Set _bb_end to point after last schedulable inst. 2852 _bb_end++; 2853 } 2854 2855 assert( _bb_start <= _bb_end, "inverted block ends" ); 2856 2857 // Compute the register antidependencies for the basic block 2858 ComputeRegisterAntidependencies(bb); 2859 if (C->failing()) return; // too many D-U pinch points 2860 2861 // Compute the usage within the block, and set the list of all nodes 2862 // in the block that have no uses within the block. 2863 ComputeUseCount(bb); 2864 2865 // Schedule the remaining instructions in the block 2866 while ( _available.size() > 0 ) { 2867 Node *n = ChooseNodeToBundle(); 2868 guarantee(n != nullptr, "no nodes available"); 2869 AddNodeToBundle(n,bb); 2870 } 2871 2872 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2873 #ifdef ASSERT 2874 for( uint l = _bb_start; l < _bb_end; l++ ) { 2875 Node *n = bb->get_node(l); 2876 uint m; 2877 for( m = 0; m < _bb_end-_bb_start; m++ ) 2878 if( _scheduled[m] == n ) 2879 break; 2880 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2881 } 2882 #endif 2883 2884 // Now copy the instructions (in reverse order) back to the block 2885 for ( uint k = _bb_start; k < _bb_end; k++ ) 2886 bb->map_node(_scheduled[_bb_end-k-1], k); 2887 2888 #ifndef PRODUCT 2889 if (_cfg->C->trace_opto_output()) { 2890 tty->print("# Schedule BB#%03d (final)\n", i); 2891 uint current = 0; 2892 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2893 Node *n = bb->get_node(j); 2894 if( valid_bundle_info(n) ) { 2895 Bundle *bundle = node_bundling(n); 2896 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2897 tty->print("*** Bundle: "); 2898 bundle->dump(); 2899 } 2900 n->dump(); 2901 } 2902 } 2903 } 2904 #endif 2905 #ifdef ASSERT 2906 verify_good_schedule(bb,"after block local scheduling"); 2907 #endif 2908 } 2909 2910 #ifndef PRODUCT 2911 if (_cfg->C->trace_opto_output()) 2912 tty->print("# <- DoScheduling\n"); 2913 #endif 2914 2915 // Record final node-bundling array location 2916 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2917 2918 } // end DoScheduling 2919 2920 // Verify that no live-range used in the block is killed in the block by a 2921 // wrong DEF. This doesn't verify live-ranges that span blocks. 2922 2923 // Check for edge existence. Used to avoid adding redundant precedence edges. 2924 static bool edge_from_to( Node *from, Node *to ) { 2925 for( uint i=0; i<from->len(); i++ ) 2926 if( from->in(i) == to ) 2927 return true; 2928 return false; 2929 } 2930 2931 #ifdef ASSERT 2932 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2933 // Check for bad kills 2934 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2935 Node *prior_use = _reg_node[def]; 2936 if( prior_use && !edge_from_to(prior_use,n) ) { 2937 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2938 n->dump(); 2939 tty->print_cr("..."); 2940 prior_use->dump(); 2941 assert(edge_from_to(prior_use,n), "%s", msg); 2942 } 2943 _reg_node.map(def,nullptr); // Kill live USEs 2944 } 2945 } 2946 2947 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2948 2949 // Zap to something reasonable for the verify code 2950 _reg_node.clear(); 2951 2952 // Walk over the block backwards. Check to make sure each DEF doesn't 2953 // kill a live value (other than the one it's supposed to). Add each 2954 // USE to the live set. 2955 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2956 Node *n = b->get_node(i); 2957 int n_op = n->Opcode(); 2958 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2959 // Fat-proj kills a slew of registers 2960 RegMaskIterator rmi(n->out_RegMask()); 2961 while (rmi.has_next()) { 2962 OptoReg::Name kill = rmi.next(); 2963 verify_do_def(n, kill, msg); 2964 } 2965 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2966 // Get DEF'd registers the normal way 2967 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2968 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2969 } 2970 2971 // Now make all USEs live 2972 for( uint i=1; i<n->req(); i++ ) { 2973 Node *def = n->in(i); 2974 assert(def != nullptr, "input edge required"); 2975 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2976 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2977 if( OptoReg::is_valid(reg_lo) ) { 2978 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2979 _reg_node.map(reg_lo,n); 2980 } 2981 if( OptoReg::is_valid(reg_hi) ) { 2982 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2983 _reg_node.map(reg_hi,n); 2984 } 2985 } 2986 2987 } 2988 2989 // Zap to something reasonable for the Antidependence code 2990 _reg_node.clear(); 2991 } 2992 #endif 2993 2994 // Conditionally add precedence edges. Avoid putting edges on Projs. 2995 static void add_prec_edge_from_to( Node *from, Node *to ) { 2996 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2997 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 2998 from = from->in(0); 2999 } 3000 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 3001 !edge_from_to( from, to ) ) // Avoid duplicate edge 3002 from->add_prec(to); 3003 } 3004 3005 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 3006 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 3007 return; 3008 3009 if (OptoReg::is_reg(def_reg)) { 3010 VMReg vmreg = OptoReg::as_VMReg(def_reg); 3011 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 3012 // This is one of the high slots of a vector register. 3013 // ScheduleAndBundle already checked there are no live wide 3014 // vectors in this method so it can be safely ignored. 3015 return; 3016 } 3017 } 3018 3019 Node *pinch = _reg_node[def_reg]; // Get pinch point 3020 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 3021 is_def ) { // Check for a true def (not a kill) 3022 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 3023 return; 3024 } 3025 3026 Node *kill = def; // Rename 'def' to more descriptive 'kill' 3027 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 3028 3029 // After some number of kills there _may_ be a later def 3030 Node *later_def = nullptr; 3031 3032 Compile* C = Compile::current(); 3033 3034 // Finding a kill requires a real pinch-point. 3035 // Check for not already having a pinch-point. 3036 // Pinch points are Op_Node's. 3037 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 3038 later_def = pinch; // Must be def/kill as optimistic pinch-point 3039 if ( _pinch_free_list.size() > 0) { 3040 pinch = _pinch_free_list.pop(); 3041 } else { 3042 pinch = new Node(1); // Pinch point to-be 3043 } 3044 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 3045 DEBUG_ONLY( pinch->dump(); ); 3046 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 3047 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 3048 return; 3049 } 3050 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 3051 _reg_node.map(def_reg,pinch); // Record pinch-point 3052 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 3053 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 3054 pinch->init_req(0, C->top()); // set not null for the next call 3055 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 3056 later_def = nullptr; // and no later def 3057 } 3058 pinch->set_req(0,later_def); // Hook later def so we can find it 3059 } else { // Else have valid pinch point 3060 if( pinch->in(0) ) // If there is a later-def 3061 later_def = pinch->in(0); // Get it 3062 } 3063 3064 // Add output-dependence edge from later def to kill 3065 if( later_def ) // If there is some original def 3066 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3067 3068 // See if current kill is also a use, and so is forced to be the pinch-point. 3069 if( pinch->Opcode() == Op_Node ) { 3070 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3071 for( uint i=1; i<uses->req(); i++ ) { 3072 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3073 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3074 // Yes, found a use/kill pinch-point 3075 pinch->set_req(0,nullptr); // 3076 pinch->replace_by(kill); // Move anti-dep edges up 3077 pinch = kill; 3078 _reg_node.map(def_reg,pinch); 3079 return; 3080 } 3081 } 3082 } 3083 3084 // Add edge from kill to pinch-point 3085 add_prec_edge_from_to(kill,pinch); 3086 } 3087 3088 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3089 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3090 return; 3091 Node *pinch = _reg_node[use_reg]; // Get pinch point 3092 // Check for no later def_reg/kill in block 3093 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3094 // Use has to be block-local as well 3095 _cfg->get_block_for_node(use) == b) { 3096 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3097 pinch->req() == 1 ) { // pinch not yet in block? 3098 pinch->del_req(0); // yank pointer to later-def, also set flag 3099 // Insert the pinch-point in the block just after the last use 3100 b->insert_node(pinch, b->find_node(use) + 1); 3101 _bb_end++; // Increase size scheduled region in block 3102 } 3103 3104 add_prec_edge_from_to(pinch,use); 3105 } 3106 } 3107 3108 // We insert antidependences between the reads and following write of 3109 // allocated registers to prevent illegal code motion. Hopefully, the 3110 // number of added references should be fairly small, especially as we 3111 // are only adding references within the current basic block. 3112 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3113 3114 #ifdef ASSERT 3115 verify_good_schedule(b,"before block local scheduling"); 3116 #endif 3117 3118 // A valid schedule, for each register independently, is an endless cycle 3119 // of: a def, then some uses (connected to the def by true dependencies), 3120 // then some kills (defs with no uses), finally the cycle repeats with a new 3121 // def. The uses are allowed to float relative to each other, as are the 3122 // kills. No use is allowed to slide past a kill (or def). This requires 3123 // antidependencies between all uses of a single def and all kills that 3124 // follow, up to the next def. More edges are redundant, because later defs 3125 // & kills are already serialized with true or antidependencies. To keep 3126 // the edge count down, we add a 'pinch point' node if there's more than 3127 // one use or more than one kill/def. 3128 3129 // We add dependencies in one bottom-up pass. 3130 3131 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3132 3133 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3134 // register. If not, we record the DEF/KILL in _reg_node, the 3135 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3136 // "pinch point", a new Node that's in the graph but not in the block. 3137 // We put edges from the prior and current DEF/KILLs to the pinch point. 3138 // We put the pinch point in _reg_node. If there's already a pinch point 3139 // we merely add an edge from the current DEF/KILL to the pinch point. 3140 3141 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3142 // put an edge from the pinch point to the USE. 3143 3144 // To be expedient, the _reg_node array is pre-allocated for the whole 3145 // compilation. _reg_node is lazily initialized; it either contains a null, 3146 // or a valid def/kill/pinch-point, or a leftover node from some prior 3147 // block. Leftover node from some prior block is treated like a null (no 3148 // prior def, so no anti-dependence needed). Valid def is distinguished by 3149 // it being in the current block. 3150 bool fat_proj_seen = false; 3151 uint last_safept = _bb_end-1; 3152 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3153 Node* last_safept_node = end_node; 3154 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3155 Node *n = b->get_node(i); 3156 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3157 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3158 // Fat-proj kills a slew of registers 3159 // This can add edges to 'n' and obscure whether or not it was a def, 3160 // hence the is_def flag. 3161 fat_proj_seen = true; 3162 RegMaskIterator rmi(n->out_RegMask()); 3163 while (rmi.has_next()) { 3164 OptoReg::Name kill = rmi.next(); 3165 anti_do_def(b, n, kill, is_def); 3166 } 3167 } else { 3168 // Get DEF'd registers the normal way 3169 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3170 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3171 } 3172 3173 // Kill projections on a branch should appear to occur on the 3174 // branch, not afterwards, so grab the masks from the projections 3175 // and process them. 3176 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3177 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3178 Node* use = n->fast_out(i); 3179 if (use->is_Proj()) { 3180 RegMaskIterator rmi(use->out_RegMask()); 3181 while (rmi.has_next()) { 3182 OptoReg::Name kill = rmi.next(); 3183 anti_do_def(b, n, kill, false); 3184 } 3185 } 3186 } 3187 } 3188 3189 // Check each register used by this instruction for a following DEF/KILL 3190 // that must occur afterward and requires an anti-dependence edge. 3191 for( uint j=0; j<n->req(); j++ ) { 3192 Node *def = n->in(j); 3193 if( def ) { 3194 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3195 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3196 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3197 } 3198 } 3199 // Do not allow defs of new derived values to float above GC 3200 // points unless the base is definitely available at the GC point. 3201 3202 Node *m = b->get_node(i); 3203 3204 // Add precedence edge from following safepoint to use of derived pointer 3205 if( last_safept_node != end_node && 3206 m != last_safept_node) { 3207 for (uint k = 1; k < m->req(); k++) { 3208 const Type *t = m->in(k)->bottom_type(); 3209 if( t->isa_oop_ptr() && 3210 t->is_ptr()->offset() != 0 ) { 3211 last_safept_node->add_prec( m ); 3212 break; 3213 } 3214 } 3215 3216 // Do not allow a CheckCastPP node whose input is a raw pointer to 3217 // float past a safepoint. This can occur when a buffered inline 3218 // type is allocated in a loop and the CheckCastPP from that 3219 // allocation is reused outside the loop. If the use inside the 3220 // loop is scalarized the CheckCastPP will no longer be connected 3221 // to the loop safepoint. See JDK-8264340. 3222 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3223 Node *def = m->in(1); 3224 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 3225 last_safept_node->add_prec(m); 3226 } 3227 } 3228 } 3229 3230 if( n->jvms() ) { // Precedence edge from derived to safept 3231 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3232 if( b->get_node(last_safept) != last_safept_node ) { 3233 last_safept = b->find_node(last_safept_node); 3234 } 3235 for( uint j=last_safept; j > i; j-- ) { 3236 Node *mach = b->get_node(j); 3237 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3238 mach->add_prec( n ); 3239 } 3240 last_safept = i; 3241 last_safept_node = m; 3242 } 3243 } 3244 3245 if (fat_proj_seen) { 3246 // Garbage collect pinch nodes that were not consumed. 3247 // They are usually created by a fat kill MachProj for a call. 3248 garbage_collect_pinch_nodes(); 3249 } 3250 } 3251 3252 // Garbage collect pinch nodes for reuse by other blocks. 3253 // 3254 // The block scheduler's insertion of anti-dependence 3255 // edges creates many pinch nodes when the block contains 3256 // 2 or more Calls. A pinch node is used to prevent a 3257 // combinatorial explosion of edges. If a set of kills for a 3258 // register is anti-dependent on a set of uses (or defs), rather 3259 // than adding an edge in the graph between each pair of kill 3260 // and use (or def), a pinch is inserted between them: 3261 // 3262 // use1 use2 use3 3263 // \ | / 3264 // \ | / 3265 // pinch 3266 // / | \ 3267 // / | \ 3268 // kill1 kill2 kill3 3269 // 3270 // One pinch node is created per register killed when 3271 // the second call is encountered during a backwards pass 3272 // over the block. Most of these pinch nodes are never 3273 // wired into the graph because the register is never 3274 // used or def'ed in the block. 3275 // 3276 void Scheduling::garbage_collect_pinch_nodes() { 3277 #ifndef PRODUCT 3278 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3279 #endif 3280 int trace_cnt = 0; 3281 for (uint k = 0; k < _reg_node.max(); k++) { 3282 Node* pinch = _reg_node[k]; 3283 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3284 // no predecence input edges 3285 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3286 cleanup_pinch(pinch); 3287 _pinch_free_list.push(pinch); 3288 _reg_node.map(k, nullptr); 3289 #ifndef PRODUCT 3290 if (_cfg->C->trace_opto_output()) { 3291 trace_cnt++; 3292 if (trace_cnt > 40) { 3293 tty->print("\n"); 3294 trace_cnt = 0; 3295 } 3296 tty->print(" %d", pinch->_idx); 3297 } 3298 #endif 3299 } 3300 } 3301 #ifndef PRODUCT 3302 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3303 #endif 3304 } 3305 3306 // Clean up a pinch node for reuse. 3307 void Scheduling::cleanup_pinch( Node *pinch ) { 3308 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3309 3310 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3311 Node* use = pinch->last_out(i); 3312 uint uses_found = 0; 3313 for (uint j = use->req(); j < use->len(); j++) { 3314 if (use->in(j) == pinch) { 3315 use->rm_prec(j); 3316 uses_found++; 3317 } 3318 } 3319 assert(uses_found > 0, "must be a precedence edge"); 3320 i -= uses_found; // we deleted 1 or more copies of this edge 3321 } 3322 // May have a later_def entry 3323 pinch->set_req(0, nullptr); 3324 } 3325 3326 #ifndef PRODUCT 3327 3328 void Scheduling::dump_available() const { 3329 tty->print("#Availist "); 3330 for (uint i = 0; i < _available.size(); i++) 3331 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3332 tty->cr(); 3333 } 3334 3335 // Print Scheduling Statistics 3336 void Scheduling::print_statistics() { 3337 // Print the size added by nops for bundling 3338 tty->print("Nops added %d bytes to total of %d bytes", 3339 _total_nop_size, _total_method_size); 3340 if (_total_method_size > 0) 3341 tty->print(", for %.2f%%", 3342 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3343 tty->print("\n"); 3344 3345 // Print the number of branch shadows filled 3346 if (Pipeline::_branch_has_delay_slot) { 3347 tty->print("Of %d branches, %d had unconditional delay slots filled", 3348 _total_branches, _total_unconditional_delays); 3349 if (_total_branches > 0) 3350 tty->print(", for %.2f%%", 3351 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3352 tty->print("\n"); 3353 } 3354 3355 uint total_instructions = 0, total_bundles = 0; 3356 3357 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3358 uint bundle_count = _total_instructions_per_bundle[i]; 3359 total_instructions += bundle_count * i; 3360 total_bundles += bundle_count; 3361 } 3362 3363 if (total_bundles > 0) 3364 tty->print("Average ILP (excluding nops) is %.2f\n", 3365 ((double)total_instructions) / ((double)total_bundles)); 3366 } 3367 #endif 3368 3369 //-----------------------init_scratch_buffer_blob------------------------------ 3370 // Construct a temporary BufferBlob and cache it for this compile. 3371 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3372 // If there is already a scratch buffer blob allocated and the 3373 // constant section is big enough, use it. Otherwise free the 3374 // current and allocate a new one. 3375 BufferBlob* blob = scratch_buffer_blob(); 3376 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3377 // Use the current blob. 3378 } else { 3379 if (blob != nullptr) { 3380 BufferBlob::free(blob); 3381 } 3382 3383 ResourceMark rm; 3384 _scratch_const_size = const_size; 3385 int size = C2Compiler::initial_code_buffer_size(const_size); 3386 if (C->has_scalarized_args()) { 3387 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3388 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3389 ciMethod* method = C->method(); 3390 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3391 int arg_num = 0; 3392 if (!method->is_static()) { 3393 if (method->is_scalarized_arg(arg_num)) { 3394 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3395 } 3396 arg_num++; 3397 } 3398 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3399 if (method->is_scalarized_arg(arg_num)) { 3400 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3401 } 3402 arg_num++; 3403 } 3404 } 3405 blob = BufferBlob::create("Compile::scratch_buffer", size); 3406 // Record the buffer blob for next time. 3407 set_scratch_buffer_blob(blob); 3408 // Have we run out of code space? 3409 if (scratch_buffer_blob() == nullptr) { 3410 // Let CompilerBroker disable further compilations. 3411 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3412 return; 3413 } 3414 } 3415 3416 // Initialize the relocation buffers 3417 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3418 set_scratch_locs_memory(locs_buf); 3419 } 3420 3421 3422 //-----------------------scratch_emit_size------------------------------------- 3423 // Helper function that computes size by emitting code 3424 uint PhaseOutput::scratch_emit_size(const Node* n) { 3425 // Start scratch_emit_size section. 3426 set_in_scratch_emit_size(true); 3427 3428 // Emit into a trash buffer and count bytes emitted. 3429 // This is a pretty expensive way to compute a size, 3430 // but it works well enough if seldom used. 3431 // All common fixed-size instructions are given a size 3432 // method by the AD file. 3433 // Note that the scratch buffer blob and locs memory are 3434 // allocated at the beginning of the compile task, and 3435 // may be shared by several calls to scratch_emit_size. 3436 // The allocation of the scratch buffer blob is particularly 3437 // expensive, since it has to grab the code cache lock. 3438 BufferBlob* blob = this->scratch_buffer_blob(); 3439 assert(blob != nullptr, "Initialize BufferBlob at start"); 3440 assert(blob->size() > MAX_inst_size, "sanity"); 3441 relocInfo* locs_buf = scratch_locs_memory(); 3442 address blob_begin = blob->content_begin(); 3443 address blob_end = (address)locs_buf; 3444 assert(blob->contains(blob_end), "sanity"); 3445 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3446 buf.initialize_consts_size(_scratch_const_size); 3447 buf.initialize_stubs_size(MAX_stubs_size); 3448 assert(locs_buf != nullptr, "sanity"); 3449 int lsize = MAX_locs_size / 3; 3450 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3451 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3452 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3453 // Mark as scratch buffer. 3454 buf.consts()->set_scratch_emit(); 3455 buf.insts()->set_scratch_emit(); 3456 buf.stubs()->set_scratch_emit(); 3457 3458 // Do the emission. 3459 3460 Label fakeL; // Fake label for branch instructions. 3461 Label* saveL = nullptr; 3462 uint save_bnum = 0; 3463 bool is_branch = n->is_MachBranch(); 3464 C2_MacroAssembler masm(&buf); 3465 masm.bind(fakeL); 3466 if (is_branch) { 3467 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3468 n->as_MachBranch()->label_set(&fakeL, 0); 3469 } 3470 n->emit(&masm, C->regalloc()); 3471 3472 // Emitting into the scratch buffer should not fail 3473 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3474 3475 // Restore label. 3476 if (is_branch) { 3477 n->as_MachBranch()->label_set(saveL, save_bnum); 3478 } 3479 3480 // End scratch_emit_size section. 3481 set_in_scratch_emit_size(false); 3482 3483 return buf.insts_size(); 3484 } 3485 3486 void PhaseOutput::install() { 3487 if (!C->should_install_code()) { 3488 return; 3489 } else if (C->stub_function() != nullptr) { 3490 install_stub(C->stub_name()); 3491 } else { 3492 install_code(C->method(), 3493 C->entry_bci(), 3494 CompileBroker::compiler2(), 3495 C->has_unsafe_access(), 3496 SharedRuntime::is_wide_vector(C->max_vector_size())); 3497 } 3498 } 3499 3500 void PhaseOutput::install_code(ciMethod* target, 3501 int entry_bci, 3502 AbstractCompiler* compiler, 3503 bool has_unsafe_access, 3504 bool has_wide_vectors) { 3505 // Check if we want to skip execution of all compiled code. 3506 { 3507 #ifndef PRODUCT 3508 if (OptoNoExecute) { 3509 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3510 return; 3511 } 3512 #endif 3513 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3514 3515 if (C->is_osr_compilation()) { 3516 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3517 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3518 } else { 3519 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3520 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3521 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3522 } 3523 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3524 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3525 } 3526 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3527 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3528 } 3529 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3530 } 3531 3532 C->env()->register_method(target, 3533 entry_bci, 3534 &_code_offsets, 3535 _orig_pc_slot_offset_in_bytes, 3536 code_buffer(), 3537 frame_size_in_words(), 3538 _oop_map_set, 3539 &_handler_table, 3540 inc_table(), 3541 compiler, 3542 has_unsafe_access, 3543 SharedRuntime::is_wide_vector(C->max_vector_size()), 3544 C->has_monitors(), 3545 C->has_scoped_access(), 3546 0); 3547 3548 if (C->log() != nullptr) { // Print code cache state into compiler log 3549 C->log()->code_cache_state(); 3550 } 3551 } 3552 } 3553 void PhaseOutput::install_stub(const char* stub_name) { 3554 // Entry point will be accessed using stub_entry_point(); 3555 if (code_buffer() == nullptr) { 3556 Matcher::soft_match_failure(); 3557 } else { 3558 if (PrintAssembly && (WizardMode || Verbose)) 3559 tty->print_cr("### Stub::%s", stub_name); 3560 3561 if (!C->failing()) { 3562 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3563 3564 // Make the NMethod 3565 // For now we mark the frame as never safe for profile stackwalking 3566 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3567 code_buffer(), 3568 CodeOffsets::frame_never_safe, 3569 // _code_offsets.value(CodeOffsets::Frame_Complete), 3570 frame_size_in_words(), 3571 oop_map_set(), 3572 false); 3573 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check"); 3574 3575 C->set_stub_entry_point(rs->entry_point()); 3576 } 3577 } 3578 } 3579 3580 // Support for bundling info 3581 Bundle* PhaseOutput::node_bundling(const Node *n) { 3582 assert(valid_bundle_info(n), "oob"); 3583 return &_node_bundling_base[n->_idx]; 3584 } 3585 3586 bool PhaseOutput::valid_bundle_info(const Node *n) { 3587 return (_node_bundling_limit > n->_idx); 3588 } 3589 3590 //------------------------------frame_size_in_words----------------------------- 3591 // frame_slots in units of words 3592 int PhaseOutput::frame_size_in_words() const { 3593 // shift is 0 in LP32 and 1 in LP64 3594 const int shift = (LogBytesPerWord - LogBytesPerInt); 3595 int words = _frame_slots >> shift; 3596 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3597 return words; 3598 } 3599 3600 // To bang the stack of this compiled method we use the stack size 3601 // that the interpreter would need in case of a deoptimization. This 3602 // removes the need to bang the stack in the deoptimization blob which 3603 // in turn simplifies stack overflow handling. 3604 int PhaseOutput::bang_size_in_bytes() const { 3605 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3606 } 3607 3608 //------------------------------dump_asm--------------------------------------- 3609 // Dump formatted assembly 3610 #if defined(SUPPORT_OPTO_ASSEMBLY) 3611 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3612 3613 int pc_digits = 3; // #chars required for pc 3614 int sb_chars = 3; // #chars for "start bundle" indicator 3615 int tab_size = 8; 3616 if (pcs != nullptr) { 3617 int max_pc = 0; 3618 for (uint i = 0; i < pc_limit; i++) { 3619 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3620 } 3621 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3622 } 3623 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3624 3625 bool cut_short = false; 3626 st->print_cr("#"); 3627 st->print("# "); C->tf()->dump_on(st); st->cr(); 3628 st->print_cr("#"); 3629 3630 // For all blocks 3631 int pc = 0x0; // Program counter 3632 char starts_bundle = ' '; 3633 C->regalloc()->dump_frame(); 3634 3635 Node *n = nullptr; 3636 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3637 if (VMThread::should_terminate()) { 3638 cut_short = true; 3639 break; 3640 } 3641 Block* block = C->cfg()->get_block(i); 3642 if (block->is_connector() && !Verbose) { 3643 continue; 3644 } 3645 n = block->head(); 3646 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3647 pc = pcs[n->_idx]; 3648 st->print("%*.*x", pc_digits, pc_digits, pc); 3649 } 3650 st->fill_to(prefix_len); 3651 block->dump_head(C->cfg(), st); 3652 if (block->is_connector()) { 3653 st->fill_to(prefix_len); 3654 st->print_cr("# Empty connector block"); 3655 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3656 st->fill_to(prefix_len); 3657 st->print_cr("# Block is sole successor of call"); 3658 } 3659 3660 // For all instructions 3661 Node *delay = nullptr; 3662 for (uint j = 0; j < block->number_of_nodes(); j++) { 3663 if (VMThread::should_terminate()) { 3664 cut_short = true; 3665 break; 3666 } 3667 n = block->get_node(j); 3668 if (valid_bundle_info(n)) { 3669 Bundle* bundle = node_bundling(n); 3670 if (bundle->used_in_unconditional_delay()) { 3671 delay = n; 3672 continue; 3673 } 3674 if (bundle->starts_bundle()) { 3675 starts_bundle = '+'; 3676 } 3677 } 3678 3679 if (WizardMode) { 3680 n->dump(); 3681 } 3682 3683 if( !n->is_Region() && // Dont print in the Assembly 3684 !n->is_Phi() && // a few noisely useless nodes 3685 !n->is_Proj() && 3686 !n->is_MachTemp() && 3687 !n->is_SafePointScalarObject() && 3688 !n->is_Catch() && // Would be nice to print exception table targets 3689 !n->is_MergeMem() && // Not very interesting 3690 !n->is_top() && // Debug info table constants 3691 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3692 ) { 3693 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3694 pc = pcs[n->_idx]; 3695 st->print("%*.*x", pc_digits, pc_digits, pc); 3696 } else { 3697 st->fill_to(pc_digits); 3698 } 3699 st->print(" %c ", starts_bundle); 3700 starts_bundle = ' '; 3701 st->fill_to(prefix_len); 3702 n->format(C->regalloc(), st); 3703 st->cr(); 3704 } 3705 3706 // If we have an instruction with a delay slot, and have seen a delay, 3707 // then back up and print it 3708 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3709 // Coverity finding - Explicit null dereferenced. 3710 guarantee(delay != nullptr, "no unconditional delay instruction"); 3711 if (WizardMode) delay->dump(); 3712 3713 if (node_bundling(delay)->starts_bundle()) 3714 starts_bundle = '+'; 3715 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3716 pc = pcs[n->_idx]; 3717 st->print("%*.*x", pc_digits, pc_digits, pc); 3718 } else { 3719 st->fill_to(pc_digits); 3720 } 3721 st->print(" %c ", starts_bundle); 3722 starts_bundle = ' '; 3723 st->fill_to(prefix_len); 3724 delay->format(C->regalloc(), st); 3725 st->cr(); 3726 delay = nullptr; 3727 } 3728 3729 // Dump the exception table as well 3730 if( n->is_Catch() && (Verbose || WizardMode) ) { 3731 // Print the exception table for this offset 3732 _handler_table.print_subtable_for(pc); 3733 } 3734 st->bol(); // Make sure we start on a new line 3735 } 3736 st->cr(); // one empty line between blocks 3737 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3738 } // End of per-block dump 3739 3740 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3741 } 3742 #endif 3743 3744 #ifndef PRODUCT 3745 void PhaseOutput::print_statistics() { 3746 Scheduling::print_statistics(); 3747 } 3748 #endif