1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/assembler.inline.hpp" 26 #include "code/aotCodeCache.hpp" 27 #include "code/compiledIC.hpp" 28 #include "code/debugInfo.hpp" 29 #include "code/debugInfoRec.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compilerDirectives.hpp" 32 #include "compiler/disassembler.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/gc_globals.hpp" 36 #include "gc/shared/c2/barrierSetC2.hpp" 37 #include "memory/allocation.hpp" 38 #include "opto/ad.hpp" 39 #include "opto/block.hpp" 40 #include "opto/c2compiler.hpp" 41 #include "opto/c2_MacroAssembler.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/cfgnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/optoreg.hpp" 48 #include "opto/output.hpp" 49 #include "opto/regalloc.hpp" 50 #include "opto/type.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "utilities/macros.hpp" 53 #include "utilities/powerOfTwo.hpp" 54 #include "utilities/xmlstream.hpp" 55 56 #ifndef PRODUCT 57 #define DEBUG_ARG(x) , x 58 #else 59 #define DEBUG_ARG(x) 60 #endif 61 62 //------------------------------Scheduling---------------------------------- 63 // This class contains all the information necessary to implement instruction 64 // scheduling and bundling. 65 class Scheduling { 66 67 private: 68 // Arena to use 69 Arena *_arena; 70 71 // Control-Flow Graph info 72 PhaseCFG *_cfg; 73 74 // Register Allocation info 75 PhaseRegAlloc *_regalloc; 76 77 // Number of nodes in the method 78 uint _node_bundling_limit; 79 80 // List of scheduled nodes. Generated in reverse order 81 Node_List _scheduled; 82 83 // List of nodes currently available for choosing for scheduling 84 Node_List _available; 85 86 // For each instruction beginning a bundle, the number of following 87 // nodes to be bundled with it. 88 Bundle *_node_bundling_base; 89 90 // Mapping from register to Node 91 Node_List _reg_node; 92 93 // Free list for pinch nodes. 94 Node_List _pinch_free_list; 95 96 // Number of uses of this node within the containing basic block. 97 short *_uses; 98 99 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 100 // front, branch+proj at end. Also skips Catch/CProj (same as 101 // branch-at-end), plus just-prior exception-throwing call. 102 uint _bb_start, _bb_end; 103 104 // Latency from the end of the basic block as scheduled 105 unsigned short *_current_latency; 106 107 // Remember the next node 108 Node *_next_node; 109 110 // Use this for an unconditional branch delay slot 111 Node *_unconditional_delay_slot; 112 113 // Pointer to a Nop 114 MachNopNode *_nop; 115 116 // Length of the current bundle, in instructions 117 uint _bundle_instr_count; 118 119 // Current Cycle number, for computing latencies and bundling 120 uint _bundle_cycle_number; 121 122 // Bundle information 123 Pipeline_Use_Element _bundle_use_elements[resource_count]; 124 Pipeline_Use _bundle_use; 125 126 // Dump the available list 127 void dump_available() const; 128 129 public: 130 Scheduling(Arena *arena, Compile &compile); 131 132 // Destructor 133 NOT_PRODUCT( ~Scheduling(); ) 134 135 // Step ahead "i" cycles 136 void step(uint i); 137 138 // Step ahead 1 cycle, and clear the bundle state (for example, 139 // at a branch target) 140 void step_and_clear(); 141 142 Bundle* node_bundling(const Node *n) { 143 assert(valid_bundle_info(n), "oob"); 144 return (&_node_bundling_base[n->_idx]); 145 } 146 147 bool valid_bundle_info(const Node *n) const { 148 return (_node_bundling_limit > n->_idx); 149 } 150 151 bool starts_bundle(const Node *n) const { 152 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 153 } 154 155 // Do the scheduling 156 void DoScheduling(); 157 158 // Compute the register antidependencies within a basic block 159 void ComputeRegisterAntidependencies(Block *bb); 160 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 161 void verify_good_schedule( Block *b, const char *msg ); 162 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 163 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 164 165 // Add a node to the current bundle 166 void AddNodeToBundle(Node *n, const Block *bb); 167 168 // Return an integer less than, equal to, or greater than zero 169 // if the stack offset of the first argument is respectively 170 // less than, equal to, or greater than the second. 171 int compare_two_spill_nodes(Node* first, Node* second); 172 173 // Add a node to the list of available nodes 174 void AddNodeToAvailableList(Node *n); 175 176 // Compute the local use count for the nodes in a block, and compute 177 // the list of instructions with no uses in the block as available 178 void ComputeUseCount(const Block *bb); 179 180 // Choose an instruction from the available list to add to the bundle 181 Node * ChooseNodeToBundle(); 182 183 // See if this Node fits into the currently accumulating bundle 184 bool NodeFitsInBundle(Node *n); 185 186 // Decrement the use count for a node 187 void DecrementUseCounts(Node *n, const Block *bb); 188 189 // Garbage collect pinch nodes for reuse by other blocks. 190 void garbage_collect_pinch_nodes(); 191 // Clean up a pinch node for reuse (helper for above). 192 void cleanup_pinch( Node *pinch ); 193 194 // Information for statistics gathering 195 #ifndef PRODUCT 196 private: 197 // Gather information on size of nops relative to total 198 uint _branches, _unconditional_delays; 199 200 static uint _total_nop_size, _total_method_size; 201 static uint _total_branches, _total_unconditional_delays; 202 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 203 204 public: 205 static void print_statistics(); 206 207 static void increment_instructions_per_bundle(uint i) { 208 _total_instructions_per_bundle[i]++; 209 } 210 211 static void increment_nop_size(uint s) { 212 _total_nop_size += s; 213 } 214 215 static void increment_method_size(uint s) { 216 _total_method_size += s; 217 } 218 #endif 219 220 }; 221 222 PhaseOutput::PhaseOutput() 223 : Phase(Phase::Output), 224 _code_buffer("Compile::Fill_buffer"), 225 _first_block_size(0), 226 _handler_table(), 227 _inc_table(), 228 _stub_list(), 229 _oop_map_set(nullptr), 230 _scratch_buffer_blob(nullptr), 231 _scratch_locs_memory(nullptr), 232 _scratch_const_size(-1), 233 _in_scratch_emit_size(false), 234 _frame_slots(0), 235 _code_offsets(), 236 _node_bundling_limit(0), 237 _node_bundling_base(nullptr), 238 _orig_pc_slot(0), 239 _orig_pc_slot_offset_in_bytes(0), 240 _buf_sizes(), 241 _block(nullptr), 242 _index(0) { 243 C->set_output(this); 244 if (C->stub_name() == nullptr) { 245 int fixed_slots = C->fixed_slots(); 246 if (C->needs_stack_repair()) { 247 fixed_slots -= 2; 248 } 249 // TODO 8284443 Only reserve extra slot if needed 250 if (InlineTypeReturnedAsFields) { 251 fixed_slots -= 2; 252 } 253 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 254 } 255 } 256 257 PhaseOutput::~PhaseOutput() { 258 C->set_output(nullptr); 259 if (_scratch_buffer_blob != nullptr) { 260 BufferBlob::free(_scratch_buffer_blob); 261 } 262 } 263 264 void PhaseOutput::perform_mach_node_analysis() { 265 // Late barrier analysis must be done after schedule and bundle 266 // Otherwise liveness based spilling will fail 267 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 268 bs->late_barrier_analysis(); 269 270 pd_perform_mach_node_analysis(); 271 272 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3); 273 } 274 275 // Convert Nodes to instruction bits and pass off to the VM 276 void PhaseOutput::Output() { 277 // RootNode goes 278 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 279 280 // The number of new nodes (mostly MachNop) is proportional to 281 // the number of java calls and inner loops which are aligned. 282 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 283 C->inner_loops()*(OptoLoopAlignment-1)), 284 "out of nodes before code generation" ) ) { 285 return; 286 } 287 // Make sure I can find the Start Node 288 Block *entry = C->cfg()->get_block(1); 289 Block *broot = C->cfg()->get_root_block(); 290 291 const StartNode *start = entry->head()->as_Start(); 292 293 // Replace StartNode with prolog 294 Label verified_entry; 295 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 296 entry->map_node(prolog, 0); 297 C->cfg()->map_node_to_block(prolog, entry); 298 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 299 300 // Virtual methods need an unverified entry point 301 if (C->is_osr_compilation()) { 302 if (PoisonOSREntry) { 303 // TODO: Should use a ShouldNotReachHereNode... 304 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 305 } 306 } else { 307 if (C->method()) { 308 if (C->method()->has_scalarized_args()) { 309 // Add entry point to unpack all inline type arguments 310 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 311 if (!C->method()->is_static()) { 312 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 313 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 314 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 315 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 316 } 317 } else if (!C->method()->is_static()) { 318 // Insert unvalidated entry point 319 C->cfg()->insert(broot, 0, new MachUEPNode()); 320 } 321 } 322 } 323 324 // Break before main entry point 325 if ((C->method() && C->directive()->BreakAtExecuteOption) || 326 (OptoBreakpoint && C->is_method_compilation()) || 327 (OptoBreakpointOSR && C->is_osr_compilation()) || 328 (OptoBreakpointC2R && !C->method()) ) { 329 // checking for C->method() means that OptoBreakpoint does not apply to 330 // runtime stubs or frame converters 331 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 332 } 333 334 // Insert epilogs before every return 335 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 336 Block* block = C->cfg()->get_block(i); 337 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 338 Node* m = block->end(); 339 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 340 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 341 block->add_inst(epilog); 342 C->cfg()->map_node_to_block(epilog, block); 343 } 344 } 345 } 346 347 // Keeper of sizing aspects 348 _buf_sizes = BufferSizingData(); 349 350 // Initialize code buffer 351 estimate_buffer_size(_buf_sizes._const); 352 if (C->failing()) return; 353 354 // Pre-compute the length of blocks and replace 355 // long branches with short if machine supports it. 356 // Must be done before ScheduleAndBundle due to SPARC delay slots 357 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 358 blk_starts[0] = 0; 359 shorten_branches(blk_starts); 360 361 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 362 // Compute the offsets of the entry points required by the inline type calling convention 363 if (!C->method()->is_static()) { 364 // We have entries at the beginning of the method, implemented by the first 4 nodes. 365 // Entry (unverified) @ offset 0 366 // Verified_Inline_Entry_RO 367 // Inline_Entry (unverified) 368 // Verified_Inline_Entry 369 uint offset = 0; 370 _code_offsets.set_value(CodeOffsets::Entry, offset); 371 372 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 373 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 374 375 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 376 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 377 378 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 379 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 380 } else { 381 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 382 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 383 } 384 } 385 386 ScheduleAndBundle(); 387 if (C->failing()) { 388 return; 389 } 390 391 perform_mach_node_analysis(); 392 393 // Complete sizing of codebuffer 394 CodeBuffer* cb = init_buffer(); 395 if (cb == nullptr || C->failing()) { 396 return; 397 } 398 399 BuildOopMaps(); 400 401 if (C->failing()) { 402 return; 403 } 404 405 C2_MacroAssembler masm(cb); 406 fill_buffer(&masm, blk_starts); 407 } 408 409 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 410 // Determine if we need to generate a stack overflow check. 411 // Do it if the method is not a stub function and 412 // has java calls or has frame size > vm_page_size/8. 413 // The debug VM checks that deoptimization doesn't trigger an 414 // unexpected stack overflow (compiled method stack banging should 415 // guarantee it doesn't happen) so we always need the stack bang in 416 // a debug VM. 417 return (C->stub_function() == nullptr && 418 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3 419 DEBUG_ONLY(|| true))); 420 } 421 422 bool PhaseOutput::need_register_stack_bang() const { 423 // Determine if we need to generate a register stack overflow check. 424 // This is only used on architectures which have split register 425 // and memory stacks. 426 // Bang if the method is not a stub function and has java calls 427 return (C->stub_function() == nullptr && C->has_java_calls()); 428 } 429 430 431 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 432 // of a loop. When aligning a loop we need to provide enough instructions 433 // in cpu's fetch buffer to feed decoders. The loop alignment could be 434 // avoided if we have enough instructions in fetch buffer at the head of a loop. 435 // By default, the size is set to 999999 by Block's constructor so that 436 // a loop will be aligned if the size is not reset here. 437 // 438 // Note: Mach instructions could contain several HW instructions 439 // so the size is estimated only. 440 // 441 void PhaseOutput::compute_loop_first_inst_sizes() { 442 // The next condition is used to gate the loop alignment optimization. 443 // Don't aligned a loop if there are enough instructions at the head of a loop 444 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 445 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 446 // equal to 11 bytes which is the largest address NOP instruction. 447 if (MaxLoopPad < OptoLoopAlignment - 1) { 448 uint last_block = C->cfg()->number_of_blocks() - 1; 449 for (uint i = 1; i <= last_block; i++) { 450 Block* block = C->cfg()->get_block(i); 451 // Check the first loop's block which requires an alignment. 452 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 453 uint sum_size = 0; 454 uint inst_cnt = NumberOfLoopInstrToAlign; 455 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 456 457 // Check subsequent fallthrough blocks if the loop's first 458 // block(s) does not have enough instructions. 459 Block *nb = block; 460 while(inst_cnt > 0 && 461 i < last_block && 462 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 463 !nb->has_successor(block)) { 464 i++; 465 nb = C->cfg()->get_block(i); 466 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 467 } // while( inst_cnt > 0 && i < last_block ) 468 469 block->set_first_inst_size(sum_size); 470 } // f( b->head()->is_Loop() ) 471 } // for( i <= last_block ) 472 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 473 } 474 475 // The architecture description provides short branch variants for some long 476 // branch instructions. Replace eligible long branches with short branches. 477 void PhaseOutput::shorten_branches(uint* blk_starts) { 478 479 Compile::TracePhase tp(_t_shortenBranches); 480 481 // Compute size of each block, method size, and relocation information size 482 uint nblocks = C->cfg()->number_of_blocks(); 483 484 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 485 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 486 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 487 488 // Collect worst case block paddings 489 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 490 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 491 492 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 493 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 494 495 bool has_short_branch_candidate = false; 496 497 // Initialize the sizes to 0 498 int code_size = 0; // Size in bytes of generated code 499 int stub_size = 0; // Size in bytes of all stub entries 500 // Size in bytes of all relocation entries, including those in local stubs. 501 // Start with 2-bytes of reloc info for the unvalidated entry point 502 int reloc_size = 1; // Number of relocation entries 503 504 // Make three passes. The first computes pessimistic blk_starts, 505 // relative jmp_offset and reloc_size information. The second performs 506 // short branch substitution using the pessimistic sizing. The 507 // third inserts nops where needed. 508 509 // Step one, perform a pessimistic sizing pass. 510 uint last_call_adr = max_juint; 511 uint last_avoid_back_to_back_adr = max_juint; 512 uint nop_size = (new MachNopNode())->size(C->regalloc()); 513 for (uint i = 0; i < nblocks; i++) { // For all blocks 514 Block* block = C->cfg()->get_block(i); 515 _block = block; 516 517 // During short branch replacement, we store the relative (to blk_starts) 518 // offset of jump in jmp_offset, rather than the absolute offset of jump. 519 // This is so that we do not need to recompute sizes of all nodes when 520 // we compute correct blk_starts in our next sizing pass. 521 jmp_offset[i] = 0; 522 jmp_size[i] = 0; 523 jmp_nidx[i] = -1; 524 DEBUG_ONLY( jmp_target[i] = 0; ) 525 DEBUG_ONLY( jmp_rule[i] = 0; ) 526 527 // Sum all instruction sizes to compute block size 528 uint last_inst = block->number_of_nodes(); 529 uint blk_size = 0; 530 for (uint j = 0; j < last_inst; j++) { 531 _index = j; 532 Node* nj = block->get_node(_index); 533 // Handle machine instruction nodes 534 if (nj->is_Mach()) { 535 MachNode* mach = nj->as_Mach(); 536 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 537 reloc_size += mach->reloc(); 538 if (mach->is_MachCall()) { 539 // add size information for trampoline stub 540 // class CallStubImpl is platform-specific and defined in the *.ad files. 541 stub_size += CallStubImpl::size_call_trampoline(); 542 reloc_size += CallStubImpl::reloc_call_trampoline(); 543 544 MachCallNode *mcall = mach->as_MachCall(); 545 // This destination address is NOT PC-relative 546 547 if (mcall->entry_point() != nullptr) { 548 mcall->method_set((intptr_t)mcall->entry_point()); 549 } 550 551 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 552 stub_size += CompiledDirectCall::to_interp_stub_size(); 553 reloc_size += CompiledDirectCall::reloc_to_interp_stub(); 554 } 555 } else if (mach->is_MachSafePoint()) { 556 // If call/safepoint are adjacent, account for possible 557 // nop to disambiguate the two safepoints. 558 // ScheduleAndBundle() can rearrange nodes in a block, 559 // check for all offsets inside this block. 560 if (last_call_adr >= blk_starts[i]) { 561 blk_size += nop_size; 562 } 563 } 564 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 565 // Nop is inserted between "avoid back to back" instructions. 566 // ScheduleAndBundle() can rearrange nodes in a block, 567 // check for all offsets inside this block. 568 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 569 blk_size += nop_size; 570 } 571 } 572 if (mach->may_be_short_branch()) { 573 if (!nj->is_MachBranch()) { 574 #ifndef PRODUCT 575 nj->dump(3); 576 #endif 577 Unimplemented(); 578 } 579 assert(jmp_nidx[i] == -1, "block should have only one branch"); 580 jmp_offset[i] = blk_size; 581 jmp_size[i] = nj->size(C->regalloc()); 582 jmp_nidx[i] = j; 583 has_short_branch_candidate = true; 584 } 585 } 586 blk_size += nj->size(C->regalloc()); 587 // Remember end of call offset 588 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 589 last_call_adr = blk_starts[i]+blk_size; 590 } 591 // Remember end of avoid_back_to_back offset 592 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 593 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 594 } 595 } 596 597 // When the next block starts a loop, we may insert pad NOP 598 // instructions. Since we cannot know our future alignment, 599 // assume the worst. 600 if (i < nblocks - 1) { 601 Block* nb = C->cfg()->get_block(i + 1); 602 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 603 if (max_loop_pad > 0) { 604 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 605 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 606 // If either is the last instruction in this block, bump by 607 // max_loop_pad in lock-step with blk_size, so sizing 608 // calculations in subsequent blocks still can conservatively 609 // detect that it may the last instruction in this block. 610 if (last_call_adr == blk_starts[i]+blk_size) { 611 last_call_adr += max_loop_pad; 612 } 613 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 614 last_avoid_back_to_back_adr += max_loop_pad; 615 } 616 blk_size += max_loop_pad; 617 block_worst_case_pad[i + 1] = max_loop_pad; 618 } 619 } 620 621 // Save block size; update total method size 622 blk_starts[i+1] = blk_starts[i]+blk_size; 623 } 624 625 // Step two, replace eligible long jumps. 626 bool progress = true; 627 uint last_may_be_short_branch_adr = max_juint; 628 while (has_short_branch_candidate && progress) { 629 progress = false; 630 has_short_branch_candidate = false; 631 int adjust_block_start = 0; 632 for (uint i = 0; i < nblocks; i++) { 633 Block* block = C->cfg()->get_block(i); 634 int idx = jmp_nidx[i]; 635 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 636 if (mach != nullptr && mach->may_be_short_branch()) { 637 #ifdef ASSERT 638 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 639 int j; 640 // Find the branch; ignore trailing NOPs. 641 for (j = block->number_of_nodes()-1; j>=0; j--) { 642 Node* n = block->get_node(j); 643 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 644 break; 645 } 646 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 647 #endif 648 int br_size = jmp_size[i]; 649 int br_offs = blk_starts[i] + jmp_offset[i]; 650 651 // This requires the TRUE branch target be in succs[0] 652 uint bnum = block->non_connector_successor(0)->_pre_order; 653 int offset = blk_starts[bnum] - br_offs; 654 if (bnum > i) { // adjust following block's offset 655 offset -= adjust_block_start; 656 } 657 658 // This block can be a loop header, account for the padding 659 // in the previous block. 660 int block_padding = block_worst_case_pad[i]; 661 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 662 // In the following code a nop could be inserted before 663 // the branch which will increase the backward distance. 664 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 665 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 666 667 if (needs_padding && offset <= 0) 668 offset -= nop_size; 669 670 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 671 // We've got a winner. Replace this branch. 672 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 673 674 // Update the jmp_size. 675 int new_size = replacement->size(C->regalloc()); 676 int diff = br_size - new_size; 677 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 678 // Conservatively take into account padding between 679 // avoid_back_to_back branches. Previous branch could be 680 // converted into avoid_back_to_back branch during next 681 // rounds. 682 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 683 jmp_offset[i] += nop_size; 684 diff -= nop_size; 685 } 686 adjust_block_start += diff; 687 block->map_node(replacement, idx); 688 mach->subsume_by(replacement, C); 689 mach = replacement; 690 progress = true; 691 692 jmp_size[i] = new_size; 693 DEBUG_ONLY( jmp_target[i] = bnum; ); 694 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 695 } else { 696 // The jump distance is not short, try again during next iteration. 697 has_short_branch_candidate = true; 698 } 699 } // (mach->may_be_short_branch()) 700 if (mach != nullptr && (mach->may_be_short_branch() || 701 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 702 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 703 } 704 blk_starts[i+1] -= adjust_block_start; 705 } 706 } 707 708 #ifdef ASSERT 709 for (uint i = 0; i < nblocks; i++) { // For all blocks 710 if (jmp_target[i] != 0) { 711 int br_size = jmp_size[i]; 712 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 713 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 714 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 715 } 716 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 717 } 718 } 719 #endif 720 721 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 722 // after ScheduleAndBundle(). 723 724 // ------------------ 725 // Compute size for code buffer 726 code_size = blk_starts[nblocks]; 727 728 // Relocation records 729 reloc_size += 1; // Relo entry for exception handler 730 731 // Adjust reloc_size to number of record of relocation info 732 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 733 // a relocation index. 734 // The CodeBuffer will expand the locs array if this estimate is too low. 735 reloc_size *= 10 / sizeof(relocInfo); 736 737 _buf_sizes._reloc = reloc_size; 738 _buf_sizes._code = code_size; 739 _buf_sizes._stub = stub_size; 740 } 741 742 //------------------------------FillLocArray----------------------------------- 743 // Create a bit of debug info and append it to the array. The mapping is from 744 // Java local or expression stack to constant, register or stack-slot. For 745 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 746 // entry has been taken care of and caller should skip it). 747 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 748 // This should never have accepted Bad before 749 assert(OptoReg::is_valid(regnum), "location must be valid"); 750 return (OptoReg::is_reg(regnum)) 751 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 752 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 753 } 754 755 756 ObjectValue* 757 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 758 for (int i = 0; i < objs->length(); i++) { 759 assert(objs->at(i)->is_object(), "corrupt object cache"); 760 ObjectValue* sv = objs->at(i)->as_ObjectValue(); 761 if (sv->id() == id) { 762 return sv; 763 } 764 } 765 // Otherwise.. 766 return nullptr; 767 } 768 769 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 770 ObjectValue* sv ) { 771 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 772 objs->append(sv); 773 } 774 775 776 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 777 GrowableArray<ScopeValue*> *array, 778 GrowableArray<ScopeValue*> *objs ) { 779 assert( local, "use _top instead of null" ); 780 if (array->length() != idx) { 781 assert(array->length() == idx + 1, "Unexpected array count"); 782 // Old functionality: 783 // return 784 // New functionality: 785 // Assert if the local is not top. In product mode let the new node 786 // override the old entry. 787 assert(local == C->top(), "LocArray collision"); 788 if (local == C->top()) { 789 return; 790 } 791 array->pop(); 792 } 793 const Type *t = local->bottom_type(); 794 795 // Is it a safepoint scalar object node? 796 if (local->is_SafePointScalarObject()) { 797 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 798 799 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 800 if (sv == nullptr) { 801 ciKlass* cik = t->is_oopptr()->exact_klass(); 802 assert(cik->is_instance_klass() || 803 cik->is_array_klass(), "Not supported allocation."); 804 uint first_ind = spobj->first_index(sfpt->jvms()); 805 // Nullable, scalarized inline types have a null_marker input 806 // that needs to be checked before using the field values. 807 ScopeValue* null_marker = nullptr; 808 if (cik->is_inlinetype()) { 809 Node* null_marker_node = sfpt->in(first_ind++); 810 assert(null_marker_node != nullptr, "null_marker node not found"); 811 if (!null_marker_node->is_top()) { 812 const TypeInt* null_marker_type = null_marker_node->bottom_type()->is_int(); 813 if (null_marker_node->is_Con()) { 814 null_marker = new ConstantIntValue(null_marker_type->get_con()); 815 } else { 816 OptoReg::Name null_marker_reg = C->regalloc()->get_reg_first(null_marker_node); 817 null_marker = new_loc_value(C->regalloc(), null_marker_reg, Location::normal); 818 } 819 } 820 } 821 sv = new ObjectValue(spobj->_idx, 822 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, null_marker); 823 set_sv_for_object_node(objs, sv); 824 825 for (uint i = 0; i < spobj->n_fields(); i++) { 826 Node* fld_node = sfpt->in(first_ind+i); 827 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 828 } 829 } 830 array->append(sv); 831 return; 832 } else if (local->is_SafePointScalarMerge()) { 833 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge(); 834 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 835 836 if (mv == nullptr) { 837 GrowableArray<ScopeValue*> deps; 838 839 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms()); 840 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs); 841 assert(deps.length() == 1, "missing value"); 842 843 int selector_idx = smerge->selector_idx(sfpt->jvms()); 844 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr); 845 assert(deps.length() == 2, "missing value"); 846 847 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 848 set_sv_for_object_node(objs, mv); 849 850 for (uint i = 1; i < smerge->req(); i++) { 851 Node* obj_node = smerge->in(i); 852 int idx = mv->possible_objects()->length(); 853 (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs); 854 855 // By default ObjectValues that are in 'possible_objects' are not root objects. 856 // They will be marked as root later if they are directly referenced in a JVMS. 857 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 858 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 859 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 860 } 861 } 862 array->append(mv); 863 return; 864 } 865 866 // Grab the register number for the local 867 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 868 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 869 // Record the double as two float registers. 870 // The register mask for such a value always specifies two adjacent 871 // float registers, with the lower register number even. 872 // Normally, the allocation of high and low words to these registers 873 // is irrelevant, because nearly all operations on register pairs 874 // (e.g., StoreD) treat them as a single unit. 875 // Here, we assume in addition that the words in these two registers 876 // stored "naturally" (by operations like StoreD and double stores 877 // within the interpreter) such that the lower-numbered register 878 // is written to the lower memory address. This may seem like 879 // a machine dependency, but it is not--it is a requirement on 880 // the author of the <arch>.ad file to ensure that, for every 881 // even/odd double-register pair to which a double may be allocated, 882 // the word in the even single-register is stored to the first 883 // memory word. (Note that register numbers are completely 884 // arbitrary, and are not tied to any machine-level encodings.) 885 #ifdef _LP64 886 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 887 array->append(new ConstantIntValue((jint)0)); 888 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 889 } else if ( t->base() == Type::Long ) { 890 array->append(new ConstantIntValue((jint)0)); 891 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 892 } else if ( t->base() == Type::RawPtr ) { 893 // jsr/ret return address which must be restored into the full 894 // width 64-bit stack slot. 895 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 896 } 897 #else //_LP64 898 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 899 // Repack the double/long as two jints. 900 // The convention the interpreter uses is that the second local 901 // holds the first raw word of the native double representation. 902 // This is actually reasonable, since locals and stack arrays 903 // grow downwards in all implementations. 904 // (If, on some machine, the interpreter's Java locals or stack 905 // were to grow upwards, the embedded doubles would be word-swapped.) 906 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 907 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 908 } 909 #endif //_LP64 910 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 911 OptoReg::is_reg(regnum) ) { 912 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 913 ? Location::float_in_dbl : Location::normal )); 914 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 915 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 916 ? Location::int_in_long : Location::normal )); 917 } else if( t->base() == Type::NarrowOop ) { 918 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 919 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 920 t->base() == Type::VectorD || t->base() == Type::VectorX || 921 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 922 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 923 } else if (C->regalloc()->is_oop(local)) { 924 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 925 t->base() == Type::AryPtr, 926 "Unexpected type: %s", t->msg()); 927 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 928 } else { 929 assert(t->base() == Type::Int || t->base() == Type::Half || 930 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 931 "Unexpected type: %s", t->msg()); 932 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 933 } 934 return; 935 } 936 937 // No register. It must be constant data. 938 switch (t->base()) { 939 case Type::Half: // Second half of a double 940 ShouldNotReachHere(); // Caller should skip 2nd halves 941 break; 942 case Type::AnyPtr: 943 array->append(new ConstantOopWriteValue(nullptr)); 944 break; 945 case Type::AryPtr: 946 case Type::InstPtr: // fall through 947 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 948 break; 949 case Type::NarrowOop: 950 if (t == TypeNarrowOop::NULL_PTR) { 951 array->append(new ConstantOopWriteValue(nullptr)); 952 } else { 953 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 954 } 955 break; 956 case Type::Int: 957 array->append(new ConstantIntValue(t->is_int()->get_con())); 958 break; 959 case Type::RawPtr: 960 // A return address (T_ADDRESS). 961 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 962 #ifdef _LP64 963 // Must be restored to the full-width 64-bit stack slot. 964 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 965 #else 966 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 967 #endif 968 break; 969 case Type::FloatCon: { 970 float f = t->is_float_constant()->getf(); 971 array->append(new ConstantIntValue(jint_cast(f))); 972 break; 973 } 974 case Type::DoubleCon: { 975 jdouble d = t->is_double_constant()->getd(); 976 #ifdef _LP64 977 array->append(new ConstantIntValue((jint)0)); 978 array->append(new ConstantDoubleValue(d)); 979 #else 980 // Repack the double as two jints. 981 // The convention the interpreter uses is that the second local 982 // holds the first raw word of the native double representation. 983 // This is actually reasonable, since locals and stack arrays 984 // grow downwards in all implementations. 985 // (If, on some machine, the interpreter's Java locals or stack 986 // were to grow upwards, the embedded doubles would be word-swapped.) 987 jlong_accessor acc; 988 acc.long_value = jlong_cast(d); 989 array->append(new ConstantIntValue(acc.words[1])); 990 array->append(new ConstantIntValue(acc.words[0])); 991 #endif 992 break; 993 } 994 case Type::Long: { 995 jlong d = t->is_long()->get_con(); 996 #ifdef _LP64 997 array->append(new ConstantIntValue((jint)0)); 998 array->append(new ConstantLongValue(d)); 999 #else 1000 // Repack the long as two jints. 1001 // The convention the interpreter uses is that the second local 1002 // holds the first raw word of the native double representation. 1003 // This is actually reasonable, since locals and stack arrays 1004 // grow downwards in all implementations. 1005 // (If, on some machine, the interpreter's Java locals or stack 1006 // were to grow upwards, the embedded doubles would be word-swapped.) 1007 jlong_accessor acc; 1008 acc.long_value = d; 1009 array->append(new ConstantIntValue(acc.words[1])); 1010 array->append(new ConstantIntValue(acc.words[0])); 1011 #endif 1012 break; 1013 } 1014 case Type::Top: // Add an illegal value here 1015 array->append(new LocationValue(Location())); 1016 break; 1017 default: 1018 ShouldNotReachHere(); 1019 break; 1020 } 1021 } 1022 1023 // Determine if this node starts a bundle 1024 bool PhaseOutput::starts_bundle(const Node *n) const { 1025 return (_node_bundling_limit > n->_idx && 1026 _node_bundling_base[n->_idx].starts_bundle()); 1027 } 1028 1029 // Determine if there is a monitor that has 'ov' as its owner. 1030 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const { 1031 for (int k = 0; k < monarray->length(); k++) { 1032 MonitorValue* mv = monarray->at(k); 1033 if (mv->owner() == ov) { 1034 return true; 1035 } 1036 } 1037 1038 return false; 1039 } 1040 1041 // Determine if there is a scalar replaced object description represented by 'ov'. 1042 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn, 1043 GrowableArray<ScopeValue*>* objs, 1044 ObjectValue* ov) const { 1045 for (int i = 0; i < jvms->scl_size(); i++) { 1046 Node* n = sfn->scalarized_obj(jvms, i); 1047 // Other kinds of nodes that we may encounter here, for instance constants 1048 // representing values of fields of objects scalarized, aren't relevant for 1049 // us, since they don't map to ObjectValue. 1050 if (!n->is_SafePointScalarObject()) { 1051 continue; 1052 } 1053 1054 ObjectValue* other = sv_for_node_id(objs, n->_idx); 1055 if (ov == other) { 1056 return true; 1057 } 1058 } 1059 return false; 1060 } 1061 1062 //--------------------------Process_OopMap_Node-------------------------------- 1063 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1064 // Handle special safepoint nodes for synchronization 1065 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1066 MachCallNode *mcall; 1067 1068 int safepoint_pc_offset = current_offset; 1069 bool is_method_handle_invoke = false; 1070 bool return_oop = false; 1071 bool return_scalarized = false; 1072 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1073 bool arg_escape = false; 1074 1075 // Add the safepoint in the DebugInfoRecorder 1076 if( !mach->is_MachCall() ) { 1077 mcall = nullptr; 1078 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1079 } else { 1080 mcall = mach->as_MachCall(); 1081 1082 // Is the call a MethodHandle call? 1083 if (mcall->is_MachCallJava()) { 1084 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1085 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1086 is_method_handle_invoke = true; 1087 } 1088 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1089 } 1090 1091 // Check if a call returns an object. 1092 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1093 return_oop = true; 1094 } 1095 if (mcall->returns_scalarized()) { 1096 return_scalarized = true; 1097 } 1098 safepoint_pc_offset += mcall->ret_addr_offset(); 1099 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1100 } 1101 1102 // Loop over the JVMState list to add scope information 1103 // Do not skip safepoints with a null method, they need monitor info 1104 JVMState* youngest_jvms = sfn->jvms(); 1105 int max_depth = youngest_jvms->depth(); 1106 1107 // Allocate the object pool for scalar-replaced objects -- the map from 1108 // small-integer keys (which can be recorded in the local and ostack 1109 // arrays) to descriptions of the object state. 1110 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1111 1112 // Visit scopes from oldest to youngest. 1113 for (int depth = 1; depth <= max_depth; depth++) { 1114 JVMState* jvms = youngest_jvms->of_depth(depth); 1115 int idx; 1116 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1117 // Safepoints that do not have method() set only provide oop-map and monitor info 1118 // to support GC; these do not support deoptimization. 1119 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1120 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1121 int num_mon = jvms->nof_monitors(); 1122 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1123 "JVMS local count must match that of the method"); 1124 1125 // Add Local and Expression Stack Information 1126 1127 // Insert locals into the locarray 1128 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1129 for( idx = 0; idx < num_locs; idx++ ) { 1130 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1131 } 1132 1133 // Insert expression stack entries into the exparray 1134 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1135 for( idx = 0; idx < num_exps; idx++ ) { 1136 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1137 } 1138 1139 // Add in mappings of the monitors 1140 assert( !method || 1141 !method->is_synchronized() || 1142 method->is_native() || 1143 num_mon > 0 || 1144 !GenerateSynchronizationCode, 1145 "monitors must always exist for synchronized methods"); 1146 1147 // Build the growable array of ScopeValues for exp stack 1148 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1149 1150 // Loop over monitors and insert into array 1151 for (idx = 0; idx < num_mon; idx++) { 1152 // Grab the node that defines this monitor 1153 Node* box_node = sfn->monitor_box(jvms, idx); 1154 Node* obj_node = sfn->monitor_obj(jvms, idx); 1155 1156 // Create ScopeValue for object 1157 ScopeValue *scval = nullptr; 1158 1159 if (obj_node->is_SafePointScalarObject()) { 1160 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1161 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1162 if (scval == nullptr) { 1163 const Type *t = spobj->bottom_type(); 1164 ciKlass* cik = t->is_oopptr()->exact_klass(); 1165 assert(cik->is_instance_klass() || 1166 cik->is_array_klass(), "Not supported allocation."); 1167 ObjectValue* sv = new ObjectValue(spobj->_idx, 1168 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1169 PhaseOutput::set_sv_for_object_node(objs, sv); 1170 1171 uint first_ind = spobj->first_index(youngest_jvms); 1172 for (uint i = 0; i < spobj->n_fields(); i++) { 1173 Node* fld_node = sfn->in(first_ind+i); 1174 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1175 } 1176 scval = sv; 1177 } 1178 } else if (obj_node->is_SafePointScalarMerge()) { 1179 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge(); 1180 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx); 1181 1182 if (mv == nullptr) { 1183 GrowableArray<ScopeValue*> deps; 1184 1185 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms); 1186 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs); 1187 assert(deps.length() == 1, "missing value"); 1188 1189 int selector_idx = smerge->selector_idx(youngest_jvms); 1190 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr); 1191 assert(deps.length() == 2, "missing value"); 1192 1193 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1)); 1194 set_sv_for_object_node(objs, mv); 1195 1196 for (uint i = 1; i < smerge->req(); i++) { 1197 Node* obj_node = smerge->in(i); 1198 int idx = mv->possible_objects()->length(); 1199 (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs); 1200 1201 // By default ObjectValues that are in 'possible_objects' are not root objects. 1202 // They will be marked as root later if they are directly referenced in a JVMS. 1203 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!"); 1204 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue."); 1205 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false); 1206 } 1207 } 1208 scval = mv; 1209 } else if (!obj_node->is_Con()) { 1210 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1211 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1212 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1213 } else { 1214 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1215 } 1216 } else { 1217 const TypePtr *tp = obj_node->get_ptr_type(); 1218 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1219 } 1220 1221 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1222 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1223 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1224 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1225 } 1226 1227 // Mark ObjectValue nodes as root nodes if they are directly 1228 // referenced in the JVMS. 1229 for (int i = 0; i < objs->length(); i++) { 1230 ScopeValue* sv = objs->at(i); 1231 if (sv->is_object_merge()) { 1232 ObjectMergeValue* merge = sv->as_ObjectMergeValue(); 1233 1234 for (int j = 0; j< merge->possible_objects()->length(); j++) { 1235 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue(); 1236 if (ov->is_root()) { 1237 // Already flagged as 'root' by something else. We shouldn't change it 1238 // to non-root in a younger JVMS because it may need to be alive in 1239 // a younger JVMS. 1240 } else { 1241 bool is_root = locarray->contains(ov) || 1242 exparray->contains(ov) || 1243 contains_as_owner(monarray, ov) || 1244 contains_as_scalarized_obj(jvms, sfn, objs, ov); 1245 ov->set_root(is_root); 1246 } 1247 } 1248 } 1249 } 1250 1251 // We dump the object pool first, since deoptimization reads it in first. 1252 C->debug_info()->dump_object_pool(objs); 1253 1254 // Build first class objects to pass to scope 1255 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1256 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1257 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1258 1259 // Make method available for all Safepoints 1260 ciMethod* scope_method = method ? method : C->method(); 1261 // Describe the scope here 1262 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1263 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1264 // Now we can describe the scope. 1265 methodHandle null_mh; 1266 bool rethrow_exception = false; 1267 C->debug_info()->describe_scope( 1268 safepoint_pc_offset, 1269 null_mh, 1270 scope_method, 1271 jvms->bci(), 1272 jvms->should_reexecute(), 1273 rethrow_exception, 1274 is_method_handle_invoke, 1275 return_oop, 1276 return_scalarized, 1277 has_ea_local_in_scope, 1278 arg_escape, 1279 locvals, 1280 expvals, 1281 monvals 1282 ); 1283 } // End jvms loop 1284 1285 // Mark the end of the scope set. 1286 C->debug_info()->end_safepoint(safepoint_pc_offset); 1287 } 1288 1289 1290 1291 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1292 class NonSafepointEmitter { 1293 Compile* C; 1294 JVMState* _pending_jvms; 1295 int _pending_offset; 1296 1297 void emit_non_safepoint(); 1298 1299 public: 1300 NonSafepointEmitter(Compile* compile) { 1301 this->C = compile; 1302 _pending_jvms = nullptr; 1303 _pending_offset = 0; 1304 } 1305 1306 void observe_instruction(Node* n, int pc_offset) { 1307 if (!C->debug_info()->recording_non_safepoints()) return; 1308 1309 Node_Notes* nn = C->node_notes_at(n->_idx); 1310 if (nn == nullptr || nn->jvms() == nullptr) return; 1311 if (_pending_jvms != nullptr && 1312 _pending_jvms->same_calls_as(nn->jvms())) { 1313 // Repeated JVMS? Stretch it up here. 1314 _pending_offset = pc_offset; 1315 } else { 1316 if (_pending_jvms != nullptr && 1317 _pending_offset < pc_offset) { 1318 emit_non_safepoint(); 1319 } 1320 _pending_jvms = nullptr; 1321 if (pc_offset > C->debug_info()->last_pc_offset()) { 1322 // This is the only way _pending_jvms can become non-null: 1323 _pending_jvms = nn->jvms(); 1324 _pending_offset = pc_offset; 1325 } 1326 } 1327 } 1328 1329 // Stay out of the way of real safepoints: 1330 void observe_safepoint(JVMState* jvms, int pc_offset) { 1331 if (_pending_jvms != nullptr && 1332 !_pending_jvms->same_calls_as(jvms) && 1333 _pending_offset < pc_offset) { 1334 emit_non_safepoint(); 1335 } 1336 _pending_jvms = nullptr; 1337 } 1338 1339 void flush_at_end() { 1340 if (_pending_jvms != nullptr) { 1341 emit_non_safepoint(); 1342 } 1343 _pending_jvms = nullptr; 1344 } 1345 }; 1346 1347 void NonSafepointEmitter::emit_non_safepoint() { 1348 JVMState* youngest_jvms = _pending_jvms; 1349 int pc_offset = _pending_offset; 1350 1351 // Clear it now: 1352 _pending_jvms = nullptr; 1353 1354 DebugInformationRecorder* debug_info = C->debug_info(); 1355 assert(debug_info->recording_non_safepoints(), "sanity"); 1356 1357 debug_info->add_non_safepoint(pc_offset); 1358 int max_depth = youngest_jvms->depth(); 1359 1360 // Visit scopes from oldest to youngest. 1361 for (int depth = 1; depth <= max_depth; depth++) { 1362 JVMState* jvms = youngest_jvms->of_depth(depth); 1363 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1364 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1365 methodHandle null_mh; 1366 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1367 } 1368 1369 // Mark the end of the scope set. 1370 debug_info->end_non_safepoint(pc_offset); 1371 } 1372 1373 //------------------------------init_buffer------------------------------------ 1374 void PhaseOutput::estimate_buffer_size(int& const_req) { 1375 1376 // Set the initially allocated size 1377 const_req = initial_const_capacity; 1378 1379 // The extra spacing after the code is necessary on some platforms. 1380 // Sometimes we need to patch in a jump after the last instruction, 1381 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1382 1383 // Compute the byte offset where we can store the deopt pc. 1384 if (C->fixed_slots() != 0) { 1385 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1386 } 1387 1388 // Compute prolog code size 1389 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1390 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1391 1392 if (C->has_mach_constant_base_node()) { 1393 uint add_size = 0; 1394 // Fill the constant table. 1395 // Note: This must happen before shorten_branches. 1396 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1397 Block* b = C->cfg()->get_block(i); 1398 1399 for (uint j = 0; j < b->number_of_nodes(); j++) { 1400 Node* n = b->get_node(j); 1401 1402 // If the node is a MachConstantNode evaluate the constant 1403 // value section. 1404 if (n->is_MachConstant()) { 1405 MachConstantNode* machcon = n->as_MachConstant(); 1406 machcon->eval_constant(C); 1407 } else if (n->is_Mach()) { 1408 // On Power there are more nodes that issue constants. 1409 add_size += (n->as_Mach()->ins_num_consts() * 8); 1410 } 1411 } 1412 } 1413 1414 // Calculate the offsets of the constants and the size of the 1415 // constant table (including the padding to the next section). 1416 constant_table().calculate_offsets_and_size(); 1417 const_req = constant_table().alignment() + constant_table().size() + add_size; 1418 } 1419 1420 // Initialize the space for the BufferBlob used to find and verify 1421 // instruction size in MachNode::emit_size() 1422 init_scratch_buffer_blob(const_req); 1423 } 1424 1425 CodeBuffer* PhaseOutput::init_buffer() { 1426 int stub_req = _buf_sizes._stub; 1427 int code_req = _buf_sizes._code; 1428 int const_req = _buf_sizes._const; 1429 1430 int pad_req = NativeCall::byte_size(); 1431 1432 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1433 stub_req += bs->estimate_stub_size(); 1434 1435 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1436 // class HandlerImpl is platform-specific and defined in the *.ad files. 1437 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1438 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1439 stub_req += MAX_stubs_size; // ensure per-stub margin 1440 code_req += MAX_inst_size; // ensure per-instruction margin 1441 1442 if (StressCodeBuffers) 1443 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1444 1445 int total_req = 1446 const_req + 1447 code_req + 1448 pad_req + 1449 stub_req + 1450 exception_handler_req + 1451 deopt_handler_req; // deopt handler 1452 1453 if (C->has_method_handle_invokes()) 1454 total_req += deopt_handler_req; // deopt MH handler 1455 1456 CodeBuffer* cb = code_buffer(); 1457 cb->set_const_section_alignment(constant_table().alignment()); 1458 cb->initialize(total_req, _buf_sizes._reloc); 1459 1460 // Have we run out of code space? 1461 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1462 C->record_failure("CodeCache is full"); 1463 return nullptr; 1464 } 1465 // Configure the code buffer. 1466 cb->initialize_consts_size(const_req); 1467 cb->initialize_stubs_size(stub_req); 1468 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1469 1470 // fill in the nop array for bundling computations 1471 MachNode *_nop_list[Bundle::_nop_count]; 1472 Bundle::initialize_nops(_nop_list); 1473 1474 return cb; 1475 } 1476 1477 //------------------------------fill_buffer------------------------------------ 1478 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) { 1479 // blk_starts[] contains offsets calculated during short branches processing, 1480 // offsets should not be increased during following steps. 1481 1482 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1483 // of a loop. It is used to determine the padding for loop alignment. 1484 Compile::TracePhase tp(_t_fillBuffer); 1485 1486 compute_loop_first_inst_sizes(); 1487 1488 // Create oopmap set. 1489 _oop_map_set = new OopMapSet(); 1490 1491 // !!!!! This preserves old handling of oopmaps for now 1492 C->debug_info()->set_oopmaps(_oop_map_set); 1493 1494 uint nblocks = C->cfg()->number_of_blocks(); 1495 // Count and start of implicit null check instructions 1496 uint inct_cnt = 0; 1497 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1498 1499 // Count and start of calls 1500 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1501 1502 uint return_offset = 0; 1503 int nop_size = (new MachNopNode())->size(C->regalloc()); 1504 1505 int previous_offset = 0; 1506 int current_offset = 0; 1507 int last_call_offset = -1; 1508 int last_avoid_back_to_back_offset = -1; 1509 #ifdef ASSERT 1510 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1511 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1512 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1513 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1514 #endif 1515 1516 // Create an array of unused labels, one for each basic block, if printing is enabled 1517 #if defined(SUPPORT_OPTO_ASSEMBLY) 1518 int* node_offsets = nullptr; 1519 uint node_offset_limit = C->unique(); 1520 1521 if (C->print_assembly()) { 1522 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1523 } 1524 if (node_offsets != nullptr) { 1525 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1526 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1527 } 1528 #endif 1529 1530 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1531 1532 // Emit the constant table. 1533 if (C->has_mach_constant_base_node()) { 1534 if (!constant_table().emit(masm)) { 1535 C->record_failure("consts section overflow"); 1536 return; 1537 } 1538 } 1539 1540 // Create an array of labels, one for each basic block 1541 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1542 for (uint i = 0; i <= nblocks; i++) { 1543 blk_labels[i].init(); 1544 } 1545 1546 // Now fill in the code buffer 1547 Node* delay_slot = nullptr; 1548 for (uint i = 0; i < nblocks; i++) { 1549 Block* block = C->cfg()->get_block(i); 1550 _block = block; 1551 Node* head = block->head(); 1552 1553 // If this block needs to start aligned (i.e, can be reached other 1554 // than by falling-thru from the previous block), then force the 1555 // start of a new bundle. 1556 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1557 masm->code()->flush_bundle(true); 1558 } 1559 1560 #ifdef ASSERT 1561 if (!block->is_connector()) { 1562 stringStream st; 1563 block->dump_head(C->cfg(), &st); 1564 masm->block_comment(st.freeze()); 1565 } 1566 jmp_target[i] = 0; 1567 jmp_offset[i] = 0; 1568 jmp_size[i] = 0; 1569 jmp_rule[i] = 0; 1570 #endif 1571 int blk_offset = current_offset; 1572 1573 // Define the label at the beginning of the basic block 1574 masm->bind(blk_labels[block->_pre_order]); 1575 1576 uint last_inst = block->number_of_nodes(); 1577 1578 // Emit block normally, except for last instruction. 1579 // Emit means "dump code bits into code buffer". 1580 for (uint j = 0; j<last_inst; j++) { 1581 _index = j; 1582 1583 // Get the node 1584 Node* n = block->get_node(j); 1585 1586 // See if delay slots are supported 1587 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1588 assert(delay_slot == nullptr, "no use of delay slot node"); 1589 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1590 1591 delay_slot = n; 1592 continue; 1593 } 1594 1595 // If this starts a new instruction group, then flush the current one 1596 // (but allow split bundles) 1597 if (Pipeline::requires_bundling() && starts_bundle(n)) 1598 masm->code()->flush_bundle(false); 1599 1600 // Special handling for SafePoint/Call Nodes 1601 bool is_mcall = false; 1602 if (n->is_Mach()) { 1603 MachNode *mach = n->as_Mach(); 1604 is_mcall = n->is_MachCall(); 1605 bool is_sfn = n->is_MachSafePoint(); 1606 1607 // If this requires all previous instructions be flushed, then do so 1608 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1609 masm->code()->flush_bundle(true); 1610 current_offset = masm->offset(); 1611 } 1612 1613 // A padding may be needed again since a previous instruction 1614 // could be moved to delay slot. 1615 1616 // align the instruction if necessary 1617 int padding = mach->compute_padding(current_offset); 1618 // Make sure safepoint node for polling is distinct from a call's 1619 // return by adding a nop if needed. 1620 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1621 padding = nop_size; 1622 } 1623 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1624 current_offset == last_avoid_back_to_back_offset) { 1625 // Avoid back to back some instructions. 1626 padding = nop_size; 1627 } 1628 1629 if (padding > 0) { 1630 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1631 int nops_cnt = padding / nop_size; 1632 MachNode *nop = new MachNopNode(nops_cnt); 1633 block->insert_node(nop, j++); 1634 last_inst++; 1635 C->cfg()->map_node_to_block(nop, block); 1636 // Ensure enough space. 1637 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1638 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1639 C->record_failure("CodeCache is full"); 1640 return; 1641 } 1642 nop->emit(masm, C->regalloc()); 1643 masm->code()->flush_bundle(true); 1644 current_offset = masm->offset(); 1645 } 1646 1647 bool observe_safepoint = is_sfn; 1648 // Remember the start of the last call in a basic block 1649 if (is_mcall) { 1650 MachCallNode *mcall = mach->as_MachCall(); 1651 1652 if (mcall->entry_point() != nullptr) { 1653 // This destination address is NOT PC-relative 1654 mcall->method_set((intptr_t)mcall->entry_point()); 1655 } 1656 1657 // Save the return address 1658 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1659 1660 observe_safepoint = mcall->guaranteed_safepoint(); 1661 } 1662 1663 // sfn will be valid whenever mcall is valid now because of inheritance 1664 if (observe_safepoint) { 1665 // Handle special safepoint nodes for synchronization 1666 if (!is_mcall) { 1667 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1668 // !!!!! Stubs only need an oopmap right now, so bail out 1669 if (sfn->jvms()->method() == nullptr) { 1670 // Write the oopmap directly to the code blob??!! 1671 continue; 1672 } 1673 } // End synchronization 1674 1675 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1676 current_offset); 1677 Process_OopMap_Node(mach, current_offset); 1678 } // End if safepoint 1679 1680 // If this is a null check, then add the start of the previous instruction to the list 1681 else if( mach->is_MachNullCheck() ) { 1682 inct_starts[inct_cnt++] = previous_offset; 1683 } 1684 1685 // If this is a branch, then fill in the label with the target BB's label 1686 else if (mach->is_MachBranch()) { 1687 // This requires the TRUE branch target be in succs[0] 1688 uint block_num = block->non_connector_successor(0)->_pre_order; 1689 1690 // Try to replace long branch if delay slot is not used, 1691 // it is mostly for back branches since forward branch's 1692 // distance is not updated yet. 1693 bool delay_slot_is_used = valid_bundle_info(n) && 1694 C->output()->node_bundling(n)->use_unconditional_delay(); 1695 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1696 assert(delay_slot == nullptr, "not expecting delay slot node"); 1697 int br_size = n->size(C->regalloc()); 1698 int offset = blk_starts[block_num] - current_offset; 1699 if (block_num >= i) { 1700 // Current and following block's offset are not 1701 // finalized yet, adjust distance by the difference 1702 // between calculated and final offsets of current block. 1703 offset -= (blk_starts[i] - blk_offset); 1704 } 1705 // In the following code a nop could be inserted before 1706 // the branch which will increase the backward distance. 1707 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1708 if (needs_padding && offset <= 0) 1709 offset -= nop_size; 1710 1711 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1712 // We've got a winner. Replace this branch. 1713 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1714 1715 // Update the jmp_size. 1716 int new_size = replacement->size(C->regalloc()); 1717 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1718 // Insert padding between avoid_back_to_back branches. 1719 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1720 MachNode *nop = new MachNopNode(); 1721 block->insert_node(nop, j++); 1722 C->cfg()->map_node_to_block(nop, block); 1723 last_inst++; 1724 nop->emit(masm, C->regalloc()); 1725 masm->code()->flush_bundle(true); 1726 current_offset = masm->offset(); 1727 } 1728 #ifdef ASSERT 1729 jmp_target[i] = block_num; 1730 jmp_offset[i] = current_offset - blk_offset; 1731 jmp_size[i] = new_size; 1732 jmp_rule[i] = mach->rule(); 1733 #endif 1734 block->map_node(replacement, j); 1735 mach->subsume_by(replacement, C); 1736 n = replacement; 1737 mach = replacement; 1738 } 1739 } 1740 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1741 } else if (mach->ideal_Opcode() == Op_Jump) { 1742 for (uint h = 0; h < block->_num_succs; h++) { 1743 Block* succs_block = block->_succs[h]; 1744 for (uint j = 1; j < succs_block->num_preds(); j++) { 1745 Node* jpn = succs_block->pred(j); 1746 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1747 uint block_num = succs_block->non_connector()->_pre_order; 1748 Label *blkLabel = &blk_labels[block_num]; 1749 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1750 } 1751 } 1752 } 1753 } else if (!n->is_Proj()) { 1754 // Remember the beginning of the previous instruction, in case 1755 // it's followed by a flag-kill and a null-check. Happens on 1756 // Intel all the time, with add-to-memory kind of opcodes. 1757 previous_offset = current_offset; 1758 } 1759 1760 // Not an else-if! 1761 // If this is a trap based cmp then add its offset to the list. 1762 if (mach->is_TrapBasedCheckNode()) { 1763 inct_starts[inct_cnt++] = current_offset; 1764 } 1765 } 1766 1767 // Verify that there is sufficient space remaining 1768 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1769 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1770 C->record_failure("CodeCache is full"); 1771 return; 1772 } 1773 1774 // Save the offset for the listing 1775 #if defined(SUPPORT_OPTO_ASSEMBLY) 1776 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1777 node_offsets[n->_idx] = masm->offset(); 1778 } 1779 #endif 1780 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing."); 1781 1782 // "Normal" instruction case 1783 DEBUG_ONLY(uint instr_offset = masm->offset()); 1784 n->emit(masm, C->regalloc()); 1785 current_offset = masm->offset(); 1786 1787 // Above we only verified that there is enough space in the instruction section. 1788 // However, the instruction may emit stubs that cause code buffer expansion. 1789 // Bail out here if expansion failed due to a lack of code cache space. 1790 if (C->failing()) { 1791 return; 1792 } 1793 1794 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1795 "ret_addr_offset() not within emitted code"); 1796 #ifdef ASSERT 1797 uint n_size = n->size(C->regalloc()); 1798 if (n_size < (current_offset-instr_offset)) { 1799 MachNode* mach = n->as_Mach(); 1800 n->dump(); 1801 mach->dump_format(C->regalloc(), tty); 1802 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1803 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty); 1804 tty->print_cr(" ------------------- "); 1805 BufferBlob* blob = this->scratch_buffer_blob(); 1806 address blob_begin = blob->content_begin(); 1807 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1808 assert(false, "wrong size of mach node"); 1809 } 1810 #endif 1811 non_safepoints.observe_instruction(n, current_offset); 1812 1813 // mcall is last "call" that can be a safepoint 1814 // record it so we can see if a poll will directly follow it 1815 // in which case we'll need a pad to make the PcDesc sites unique 1816 // see 5010568. This can be slightly inaccurate but conservative 1817 // in the case that return address is not actually at current_offset. 1818 // This is a small price to pay. 1819 1820 if (is_mcall) { 1821 last_call_offset = current_offset; 1822 } 1823 1824 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1825 // Avoid back to back some instructions. 1826 last_avoid_back_to_back_offset = current_offset; 1827 } 1828 1829 // See if this instruction has a delay slot 1830 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1831 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1832 1833 // Back up 1 instruction 1834 masm->code()->set_insts_end(masm->code()->insts_end() - Pipeline::instr_unit_size()); 1835 1836 // Save the offset for the listing 1837 #if defined(SUPPORT_OPTO_ASSEMBLY) 1838 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1839 node_offsets[delay_slot->_idx] = masm->offset(); 1840 } 1841 #endif 1842 1843 // Support a SafePoint in the delay slot 1844 if (delay_slot->is_MachSafePoint()) { 1845 MachNode *mach = delay_slot->as_Mach(); 1846 // !!!!! Stubs only need an oopmap right now, so bail out 1847 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1848 // Write the oopmap directly to the code blob??!! 1849 delay_slot = nullptr; 1850 continue; 1851 } 1852 1853 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1854 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1855 adjusted_offset); 1856 // Generate an OopMap entry 1857 Process_OopMap_Node(mach, adjusted_offset); 1858 } 1859 1860 // Insert the delay slot instruction 1861 delay_slot->emit(masm, C->regalloc()); 1862 1863 // Don't reuse it 1864 delay_slot = nullptr; 1865 } 1866 1867 } // End for all instructions in block 1868 1869 // If the next block is the top of a loop, pad this block out to align 1870 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1871 if (i < nblocks-1) { 1872 Block *nb = C->cfg()->get_block(i + 1); 1873 int padding = nb->alignment_padding(current_offset); 1874 if( padding > 0 ) { 1875 MachNode *nop = new MachNopNode(padding / nop_size); 1876 block->insert_node(nop, block->number_of_nodes()); 1877 C->cfg()->map_node_to_block(nop, block); 1878 nop->emit(masm, C->regalloc()); 1879 current_offset = masm->offset(); 1880 } 1881 } 1882 // Verify that the distance for generated before forward 1883 // short branches is still valid. 1884 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1885 1886 // Save new block start offset 1887 blk_starts[i] = blk_offset; 1888 } // End of for all blocks 1889 blk_starts[nblocks] = current_offset; 1890 1891 non_safepoints.flush_at_end(); 1892 1893 // Offset too large? 1894 if (C->failing()) return; 1895 1896 // Define a pseudo-label at the end of the code 1897 masm->bind( blk_labels[nblocks] ); 1898 1899 // Compute the size of the first block 1900 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1901 1902 #ifdef ASSERT 1903 for (uint i = 0; i < nblocks; i++) { // For all blocks 1904 if (jmp_target[i] != 0) { 1905 int br_size = jmp_size[i]; 1906 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1907 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1908 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1909 assert(false, "Displacement too large for short jmp"); 1910 } 1911 } 1912 } 1913 #endif 1914 1915 if (!masm->code()->finalize_stubs()) { 1916 C->record_failure("CodeCache is full"); 1917 return; 1918 } 1919 1920 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1921 bs->emit_stubs(*masm->code()); 1922 if (C->failing()) return; 1923 1924 // Fill in stubs. 1925 assert(masm->inst_mark() == nullptr, "should be."); 1926 _stub_list.emit(*masm); 1927 if (C->failing()) return; 1928 1929 #ifndef PRODUCT 1930 // Information on the size of the method, without the extraneous code 1931 Scheduling::increment_method_size(masm->offset()); 1932 #endif 1933 1934 // ------------------ 1935 // Fill in exception table entries. 1936 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1937 1938 // Only java methods have exception handlers and deopt handlers 1939 // class HandlerImpl is platform-specific and defined in the *.ad files. 1940 if (C->method()) { 1941 // Emit the exception handler code. 1942 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(masm)); 1943 if (C->failing()) { 1944 return; // CodeBuffer::expand failed 1945 } 1946 // Emit the deopt handler code. 1947 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm)); 1948 1949 // Emit the MethodHandle deopt handler code (if required). 1950 if (C->has_method_handle_invokes() && !C->failing()) { 1951 // We can use the same code as for the normal deopt handler, we 1952 // just need a different entry point address. 1953 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(masm)); 1954 } 1955 } 1956 1957 // One last check for failed CodeBuffer::expand: 1958 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1959 C->record_failure("CodeCache is full"); 1960 return; 1961 } 1962 1963 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1964 if (C->print_assembly()) { 1965 tty->cr(); 1966 tty->print_cr("============================= C2-compiled nmethod =============================="); 1967 } 1968 #endif 1969 1970 #if defined(SUPPORT_OPTO_ASSEMBLY) 1971 // Dump the assembly code, including basic-block numbers 1972 if (C->print_assembly()) { 1973 ttyLocker ttyl; // keep the following output all in one block 1974 if (!VMThread::should_terminate()) { // test this under the tty lock 1975 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1976 // We call them first and write to a stringStream, then we retake the lock to 1977 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1978 ResourceMark rm; 1979 stringStream method_metadata_str; 1980 if (C->method() != nullptr) { 1981 C->method()->print_metadata(&method_metadata_str); 1982 } 1983 stringStream dump_asm_str; 1984 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1985 1986 NoSafepointVerifier nsv; 1987 ttyLocker ttyl2; 1988 // This output goes directly to the tty, not the compiler log. 1989 // To enable tools to match it up with the compilation activity, 1990 // be sure to tag this tty output with the compile ID. 1991 if (xtty != nullptr) { 1992 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1993 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1994 } 1995 if (C->method() != nullptr) { 1996 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1997 tty->print_raw(method_metadata_str.freeze()); 1998 } else if (C->stub_name() != nullptr) { 1999 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 2000 } 2001 tty->cr(); 2002 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 2003 tty->print_raw(dump_asm_str.freeze()); 2004 tty->print_cr("--------------------------------------------------------------------------------"); 2005 if (xtty != nullptr) { 2006 xtty->tail("opto_assembly"); 2007 } 2008 } 2009 } 2010 #endif 2011 } 2012 2013 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 2014 _inc_table.set_size(cnt); 2015 2016 uint inct_cnt = 0; 2017 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2018 Block* block = C->cfg()->get_block(i); 2019 Node *n = nullptr; 2020 int j; 2021 2022 // Find the branch; ignore trailing NOPs. 2023 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 2024 n = block->get_node(j); 2025 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 2026 break; 2027 } 2028 } 2029 2030 // If we didn't find anything, continue 2031 if (j < 0) { 2032 continue; 2033 } 2034 2035 // Compute ExceptionHandlerTable subtable entry and add it 2036 // (skip empty blocks) 2037 if (n->is_Catch()) { 2038 2039 // Get the offset of the return from the call 2040 uint call_return = call_returns[block->_pre_order]; 2041 #ifdef ASSERT 2042 assert( call_return > 0, "no call seen for this basic block" ); 2043 while (block->get_node(--j)->is_MachProj()) ; 2044 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 2045 #endif 2046 // last instruction is a CatchNode, find it's CatchProjNodes 2047 int nof_succs = block->_num_succs; 2048 // allocate space 2049 GrowableArray<intptr_t> handler_bcis(nof_succs); 2050 GrowableArray<intptr_t> handler_pcos(nof_succs); 2051 // iterate through all successors 2052 for (int j = 0; j < nof_succs; j++) { 2053 Block* s = block->_succs[j]; 2054 bool found_p = false; 2055 for (uint k = 1; k < s->num_preds(); k++) { 2056 Node* pk = s->pred(k); 2057 if (pk->is_CatchProj() && pk->in(0) == n) { 2058 const CatchProjNode* p = pk->as_CatchProj(); 2059 found_p = true; 2060 // add the corresponding handler bci & pco information 2061 if (p->_con != CatchProjNode::fall_through_index) { 2062 // p leads to an exception handler (and is not fall through) 2063 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 2064 // no duplicates, please 2065 if (!handler_bcis.contains(p->handler_bci())) { 2066 uint block_num = s->non_connector()->_pre_order; 2067 handler_bcis.append(p->handler_bci()); 2068 handler_pcos.append(blk_labels[block_num].loc_pos()); 2069 } 2070 } 2071 } 2072 } 2073 assert(found_p, "no matching predecessor found"); 2074 // Note: Due to empty block removal, one block may have 2075 // several CatchProj inputs, from the same Catch. 2076 } 2077 2078 // Set the offset of the return from the call 2079 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2080 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 2081 continue; 2082 } 2083 2084 // Handle implicit null exception table updates 2085 if (n->is_MachNullCheck()) { 2086 assert(n->in(1)->as_Mach()->barrier_data() == 0, 2087 "Implicit null checks on memory accesses with barriers are not yet supported"); 2088 uint block_num = block->non_connector_successor(0)->_pre_order; 2089 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2090 continue; 2091 } 2092 // Handle implicit exception table updates: trap instructions. 2093 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2094 uint block_num = block->non_connector_successor(0)->_pre_order; 2095 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2096 continue; 2097 } 2098 } // End of for all blocks fill in exception table entries 2099 } 2100 2101 // Static Variables 2102 #ifndef PRODUCT 2103 uint Scheduling::_total_nop_size = 0; 2104 uint Scheduling::_total_method_size = 0; 2105 uint Scheduling::_total_branches = 0; 2106 uint Scheduling::_total_unconditional_delays = 0; 2107 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2108 #endif 2109 2110 // Initializer for class Scheduling 2111 2112 Scheduling::Scheduling(Arena *arena, Compile &compile) 2113 : _arena(arena), 2114 _cfg(compile.cfg()), 2115 _regalloc(compile.regalloc()), 2116 _scheduled(arena), 2117 _available(arena), 2118 _reg_node(arena), 2119 _pinch_free_list(arena), 2120 _next_node(nullptr), 2121 _bundle_instr_count(0), 2122 _bundle_cycle_number(0), 2123 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2124 #ifndef PRODUCT 2125 , _branches(0) 2126 , _unconditional_delays(0) 2127 #endif 2128 { 2129 // Create a MachNopNode 2130 _nop = new MachNopNode(); 2131 2132 // Now that the nops are in the array, save the count 2133 // (but allow entries for the nops) 2134 _node_bundling_limit = compile.unique(); 2135 uint node_max = _regalloc->node_regs_max_index(); 2136 2137 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2138 2139 // This one is persistent within the Compile class 2140 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2141 2142 // Allocate space for fixed-size arrays 2143 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2144 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2145 2146 // Clear the arrays 2147 for (uint i = 0; i < node_max; i++) { 2148 ::new (&_node_bundling_base[i]) Bundle(); 2149 } 2150 memset(_uses, 0, node_max * sizeof(short)); 2151 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2152 2153 // Clear the bundling information 2154 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2155 2156 // Get the last node 2157 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2158 2159 _next_node = block->get_node(block->number_of_nodes() - 1); 2160 } 2161 2162 #ifndef PRODUCT 2163 // Scheduling destructor 2164 Scheduling::~Scheduling() { 2165 _total_branches += _branches; 2166 _total_unconditional_delays += _unconditional_delays; 2167 } 2168 #endif 2169 2170 // Step ahead "i" cycles 2171 void Scheduling::step(uint i) { 2172 2173 Bundle *bundle = node_bundling(_next_node); 2174 bundle->set_starts_bundle(); 2175 2176 // Update the bundle record, but leave the flags information alone 2177 if (_bundle_instr_count > 0) { 2178 bundle->set_instr_count(_bundle_instr_count); 2179 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2180 } 2181 2182 // Update the state information 2183 _bundle_instr_count = 0; 2184 _bundle_cycle_number += i; 2185 _bundle_use.step(i); 2186 } 2187 2188 void Scheduling::step_and_clear() { 2189 Bundle *bundle = node_bundling(_next_node); 2190 bundle->set_starts_bundle(); 2191 2192 // Update the bundle record 2193 if (_bundle_instr_count > 0) { 2194 bundle->set_instr_count(_bundle_instr_count); 2195 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2196 2197 _bundle_cycle_number += 1; 2198 } 2199 2200 // Clear the bundling information 2201 _bundle_instr_count = 0; 2202 _bundle_use.reset(); 2203 2204 memcpy(_bundle_use_elements, 2205 Pipeline_Use::elaborated_elements, 2206 sizeof(Pipeline_Use::elaborated_elements)); 2207 } 2208 2209 // Perform instruction scheduling and bundling over the sequence of 2210 // instructions in backwards order. 2211 void PhaseOutput::ScheduleAndBundle() { 2212 2213 // Don't optimize this if it isn't a method 2214 if (!C->method()) 2215 return; 2216 2217 // Don't optimize this if scheduling is disabled 2218 if (!C->do_scheduling()) 2219 return; 2220 2221 // Scheduling code works only with pairs (8 bytes) maximum. 2222 // And when the scalable vector register is used, we may spill/unspill 2223 // the whole reg regardless of the max vector size. 2224 if (C->max_vector_size() > 8 || 2225 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2226 return; 2227 } 2228 2229 Compile::TracePhase tp(_t_instrSched); 2230 2231 // Create a data structure for all the scheduling information 2232 Scheduling scheduling(Thread::current()->resource_area(), *C); 2233 2234 // Walk backwards over each basic block, computing the needed alignment 2235 // Walk over all the basic blocks 2236 scheduling.DoScheduling(); 2237 2238 #ifndef PRODUCT 2239 if (C->trace_opto_output()) { 2240 // Buffer and print all at once 2241 ResourceMark rm; 2242 stringStream ss; 2243 ss.print("\n---- After ScheduleAndBundle ----\n"); 2244 print_scheduling(&ss); 2245 tty->print("%s", ss.as_string()); 2246 } 2247 #endif 2248 } 2249 2250 #ifndef PRODUCT 2251 // Separated out so that it can be called directly from debugger 2252 void PhaseOutput::print_scheduling() { 2253 print_scheduling(tty); 2254 } 2255 2256 void PhaseOutput::print_scheduling(outputStream* output_stream) { 2257 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2258 output_stream->print("\nBB#%03d:\n", i); 2259 Block* block = C->cfg()->get_block(i); 2260 for (uint j = 0; j < block->number_of_nodes(); j++) { 2261 Node* n = block->get_node(j); 2262 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2263 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2264 n->dump("\n", false, output_stream); 2265 } 2266 } 2267 } 2268 #endif 2269 2270 // See if this node fits into the present instruction bundle 2271 bool Scheduling::NodeFitsInBundle(Node *n) { 2272 uint n_idx = n->_idx; 2273 2274 // If this is the unconditional delay instruction, then it fits 2275 if (n == _unconditional_delay_slot) { 2276 #ifndef PRODUCT 2277 if (_cfg->C->trace_opto_output()) 2278 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2279 #endif 2280 return (true); 2281 } 2282 2283 // If the node cannot be scheduled this cycle, skip it 2284 if (_current_latency[n_idx] > _bundle_cycle_number) { 2285 #ifndef PRODUCT 2286 if (_cfg->C->trace_opto_output()) 2287 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2288 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2289 #endif 2290 return (false); 2291 } 2292 2293 const Pipeline *node_pipeline = n->pipeline(); 2294 2295 uint instruction_count = node_pipeline->instructionCount(); 2296 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2297 instruction_count = 0; 2298 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2299 instruction_count++; 2300 2301 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2302 #ifndef PRODUCT 2303 if (_cfg->C->trace_opto_output()) 2304 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2305 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2306 #endif 2307 return (false); 2308 } 2309 2310 // Don't allow non-machine nodes to be handled this way 2311 if (!n->is_Mach() && instruction_count == 0) 2312 return (false); 2313 2314 // See if there is any overlap 2315 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2316 2317 if (delay > 0) { 2318 #ifndef PRODUCT 2319 if (_cfg->C->trace_opto_output()) 2320 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2321 #endif 2322 return false; 2323 } 2324 2325 #ifndef PRODUCT 2326 if (_cfg->C->trace_opto_output()) 2327 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2328 #endif 2329 2330 return true; 2331 } 2332 2333 Node * Scheduling::ChooseNodeToBundle() { 2334 uint siz = _available.size(); 2335 2336 if (siz == 0) { 2337 2338 #ifndef PRODUCT 2339 if (_cfg->C->trace_opto_output()) 2340 tty->print("# ChooseNodeToBundle: null\n"); 2341 #endif 2342 return (nullptr); 2343 } 2344 2345 // Fast path, if only 1 instruction in the bundle 2346 if (siz == 1) { 2347 #ifndef PRODUCT 2348 if (_cfg->C->trace_opto_output()) { 2349 tty->print("# ChooseNodeToBundle (only 1): "); 2350 _available[0]->dump(); 2351 } 2352 #endif 2353 return (_available[0]); 2354 } 2355 2356 // Don't bother, if the bundle is already full 2357 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2358 for ( uint i = 0; i < siz; i++ ) { 2359 Node *n = _available[i]; 2360 2361 // Skip projections, we'll handle them another way 2362 if (n->is_Proj()) 2363 continue; 2364 2365 // This presupposed that instructions are inserted into the 2366 // available list in a legality order; i.e. instructions that 2367 // must be inserted first are at the head of the list 2368 if (NodeFitsInBundle(n)) { 2369 #ifndef PRODUCT 2370 if (_cfg->C->trace_opto_output()) { 2371 tty->print("# ChooseNodeToBundle: "); 2372 n->dump(); 2373 } 2374 #endif 2375 return (n); 2376 } 2377 } 2378 } 2379 2380 // Nothing fits in this bundle, choose the highest priority 2381 #ifndef PRODUCT 2382 if (_cfg->C->trace_opto_output()) { 2383 tty->print("# ChooseNodeToBundle: "); 2384 _available[0]->dump(); 2385 } 2386 #endif 2387 2388 return _available[0]; 2389 } 2390 2391 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) { 2392 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), ""); 2393 2394 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1)); 2395 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first); 2396 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1)); 2397 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second); 2398 2399 // Comparison between stack -> reg and stack -> reg 2400 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) && 2401 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) { 2402 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo); 2403 } 2404 2405 // Comparison between reg -> stack and reg -> stack 2406 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) && 2407 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) { 2408 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo); 2409 } 2410 2411 return 0; // Not comparable 2412 } 2413 2414 void Scheduling::AddNodeToAvailableList(Node *n) { 2415 assert( !n->is_Proj(), "projections never directly made available" ); 2416 #ifndef PRODUCT 2417 if (_cfg->C->trace_opto_output()) { 2418 tty->print("# AddNodeToAvailableList: "); 2419 n->dump(); 2420 } 2421 #endif 2422 2423 int latency = _current_latency[n->_idx]; 2424 2425 // Insert in latency order (insertion sort). If two MachSpillCopyNodes 2426 // for stack spilling or unspilling have the same latency, we sort 2427 // them in the order of stack offset. Some ports (e.g. aarch64) may also 2428 // have more opportunities to do ld/st merging 2429 uint i; 2430 for (i = 0; i < _available.size(); i++) { 2431 if (_current_latency[_available[i]->_idx] > latency) { 2432 break; 2433 } else if (_current_latency[_available[i]->_idx] == latency && 2434 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() && 2435 compare_two_spill_nodes(n, _available[i]) > 0) { 2436 break; 2437 } 2438 } 2439 2440 // Special Check for compares following branches 2441 if( n->is_Mach() && _scheduled.size() > 0 ) { 2442 int op = n->as_Mach()->ideal_Opcode(); 2443 Node *last = _scheduled[0]; 2444 if( last->is_MachIf() && last->in(1) == n && 2445 ( op == Op_CmpI || 2446 op == Op_CmpU || 2447 op == Op_CmpUL || 2448 op == Op_CmpP || 2449 op == Op_CmpF || 2450 op == Op_CmpD || 2451 op == Op_CmpL ) ) { 2452 2453 // Recalculate position, moving to front of same latency 2454 for ( i=0 ; i < _available.size(); i++ ) 2455 if (_current_latency[_available[i]->_idx] >= latency) 2456 break; 2457 } 2458 } 2459 2460 // Insert the node in the available list 2461 _available.insert(i, n); 2462 2463 #ifndef PRODUCT 2464 if (_cfg->C->trace_opto_output()) 2465 dump_available(); 2466 #endif 2467 } 2468 2469 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2470 for ( uint i=0; i < n->len(); i++ ) { 2471 Node *def = n->in(i); 2472 if (!def) continue; 2473 if( def->is_Proj() ) // If this is a machine projection, then 2474 def = def->in(0); // propagate usage thru to the base instruction 2475 2476 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2477 continue; 2478 } 2479 2480 // Compute the latency 2481 uint l = _bundle_cycle_number + n->latency(i); 2482 if (_current_latency[def->_idx] < l) 2483 _current_latency[def->_idx] = l; 2484 2485 // If this does not have uses then schedule it 2486 if ((--_uses[def->_idx]) == 0) 2487 AddNodeToAvailableList(def); 2488 } 2489 } 2490 2491 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2492 #ifndef PRODUCT 2493 if (_cfg->C->trace_opto_output()) { 2494 tty->print("# AddNodeToBundle: "); 2495 n->dump(); 2496 } 2497 #endif 2498 2499 // Remove this from the available list 2500 uint i; 2501 for (i = 0; i < _available.size(); i++) 2502 if (_available[i] == n) 2503 break; 2504 assert(i < _available.size(), "entry in _available list not found"); 2505 _available.remove(i); 2506 2507 // See if this fits in the current bundle 2508 const Pipeline *node_pipeline = n->pipeline(); 2509 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2510 2511 // Check for instructions to be placed in the delay slot. We 2512 // do this before we actually schedule the current instruction, 2513 // because the delay slot follows the current instruction. 2514 if (Pipeline::_branch_has_delay_slot && 2515 node_pipeline->hasBranchDelay() && 2516 !_unconditional_delay_slot) { 2517 2518 uint siz = _available.size(); 2519 2520 // Conditional branches can support an instruction that 2521 // is unconditionally executed and not dependent by the 2522 // branch, OR a conditionally executed instruction if 2523 // the branch is taken. In practice, this means that 2524 // the first instruction at the branch target is 2525 // copied to the delay slot, and the branch goes to 2526 // the instruction after that at the branch target 2527 if ( n->is_MachBranch() ) { 2528 2529 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2530 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2531 2532 #ifndef PRODUCT 2533 _branches++; 2534 #endif 2535 2536 // At least 1 instruction is on the available list 2537 // that is not dependent on the branch 2538 for (uint i = 0; i < siz; i++) { 2539 Node *d = _available[i]; 2540 const Pipeline *avail_pipeline = d->pipeline(); 2541 2542 // Don't allow safepoints in the branch shadow, that will 2543 // cause a number of difficulties 2544 if ( avail_pipeline->instructionCount() == 1 && 2545 !avail_pipeline->hasMultipleBundles() && 2546 !avail_pipeline->hasBranchDelay() && 2547 Pipeline::instr_has_unit_size() && 2548 d->size(_regalloc) == Pipeline::instr_unit_size() && 2549 NodeFitsInBundle(d) && 2550 !node_bundling(d)->used_in_delay()) { 2551 2552 if (d->is_Mach() && !d->is_MachSafePoint()) { 2553 // A node that fits in the delay slot was found, so we need to 2554 // set the appropriate bits in the bundle pipeline information so 2555 // that it correctly indicates resource usage. Later, when we 2556 // attempt to add this instruction to the bundle, we will skip 2557 // setting the resource usage. 2558 _unconditional_delay_slot = d; 2559 node_bundling(n)->set_use_unconditional_delay(); 2560 node_bundling(d)->set_used_in_unconditional_delay(); 2561 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2562 _current_latency[d->_idx] = _bundle_cycle_number; 2563 _next_node = d; 2564 ++_bundle_instr_count; 2565 #ifndef PRODUCT 2566 _unconditional_delays++; 2567 #endif 2568 break; 2569 } 2570 } 2571 } 2572 } 2573 2574 // No delay slot, add a nop to the usage 2575 if (!_unconditional_delay_slot) { 2576 // See if adding an instruction in the delay slot will overflow 2577 // the bundle. 2578 if (!NodeFitsInBundle(_nop)) { 2579 #ifndef PRODUCT 2580 if (_cfg->C->trace_opto_output()) 2581 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2582 #endif 2583 step(1); 2584 } 2585 2586 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2587 _next_node = _nop; 2588 ++_bundle_instr_count; 2589 } 2590 2591 // See if the instruction in the delay slot requires a 2592 // step of the bundles 2593 if (!NodeFitsInBundle(n)) { 2594 #ifndef PRODUCT 2595 if (_cfg->C->trace_opto_output()) 2596 tty->print("# *** STEP(branch won't fit) ***\n"); 2597 #endif 2598 // Update the state information 2599 _bundle_instr_count = 0; 2600 _bundle_cycle_number += 1; 2601 _bundle_use.step(1); 2602 } 2603 } 2604 2605 // Get the number of instructions 2606 uint instruction_count = node_pipeline->instructionCount(); 2607 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2608 instruction_count = 0; 2609 2610 // Compute the latency information 2611 uint delay = 0; 2612 2613 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2614 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2615 if (relative_latency < 0) 2616 relative_latency = 0; 2617 2618 delay = _bundle_use.full_latency(relative_latency, node_usage); 2619 2620 // Does not fit in this bundle, start a new one 2621 if (delay > 0) { 2622 step(delay); 2623 2624 #ifndef PRODUCT 2625 if (_cfg->C->trace_opto_output()) 2626 tty->print("# *** STEP(%d) ***\n", delay); 2627 #endif 2628 } 2629 } 2630 2631 // If this was placed in the delay slot, ignore it 2632 if (n != _unconditional_delay_slot) { 2633 2634 if (delay == 0) { 2635 if (node_pipeline->hasMultipleBundles()) { 2636 #ifndef PRODUCT 2637 if (_cfg->C->trace_opto_output()) 2638 tty->print("# *** STEP(multiple instructions) ***\n"); 2639 #endif 2640 step(1); 2641 } 2642 2643 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2644 #ifndef PRODUCT 2645 if (_cfg->C->trace_opto_output()) 2646 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2647 instruction_count + _bundle_instr_count, 2648 Pipeline::_max_instrs_per_cycle); 2649 #endif 2650 step(1); 2651 } 2652 } 2653 2654 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2655 _bundle_instr_count++; 2656 2657 // Set the node's latency 2658 _current_latency[n->_idx] = _bundle_cycle_number; 2659 2660 // Now merge the functional unit information 2661 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2662 _bundle_use.add_usage(node_usage); 2663 2664 // Increment the number of instructions in this bundle 2665 _bundle_instr_count += instruction_count; 2666 2667 // Remember this node for later 2668 if (n->is_Mach()) 2669 _next_node = n; 2670 } 2671 2672 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2673 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2674 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2675 // into the block. All other scheduled nodes get put in the schedule here. 2676 int op = n->Opcode(); 2677 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2678 (op != Op_Node && // Not an unused antidepedence node and 2679 // not an unallocated boxlock 2680 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2681 2682 // Push any trailing projections 2683 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2684 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2685 Node *foi = n->fast_out(i); 2686 if( foi->is_Proj() ) 2687 _scheduled.push(foi); 2688 } 2689 } 2690 2691 // Put the instruction in the schedule list 2692 _scheduled.push(n); 2693 } 2694 2695 #ifndef PRODUCT 2696 if (_cfg->C->trace_opto_output()) 2697 dump_available(); 2698 #endif 2699 2700 // Walk all the definitions, decrementing use counts, and 2701 // if a definition has a 0 use count, place it in the available list. 2702 DecrementUseCounts(n,bb); 2703 } 2704 2705 // This method sets the use count within a basic block. We will ignore all 2706 // uses outside the current basic block. As we are doing a backwards walk, 2707 // any node we reach that has a use count of 0 may be scheduled. This also 2708 // avoids the problem of cyclic references from phi nodes, as long as phi 2709 // nodes are at the front of the basic block. This method also initializes 2710 // the available list to the set of instructions that have no uses within this 2711 // basic block. 2712 void Scheduling::ComputeUseCount(const Block *bb) { 2713 #ifndef PRODUCT 2714 if (_cfg->C->trace_opto_output()) 2715 tty->print("# -> ComputeUseCount\n"); 2716 #endif 2717 2718 // Clear the list of available and scheduled instructions, just in case 2719 _available.clear(); 2720 _scheduled.clear(); 2721 2722 // No delay slot specified 2723 _unconditional_delay_slot = nullptr; 2724 2725 #ifdef ASSERT 2726 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2727 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2728 #endif 2729 2730 // Force the _uses count to never go to zero for unscheduable pieces 2731 // of the block 2732 for( uint k = 0; k < _bb_start; k++ ) 2733 _uses[bb->get_node(k)->_idx] = 1; 2734 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2735 _uses[bb->get_node(l)->_idx] = 1; 2736 2737 // Iterate backwards over the instructions in the block. Don't count the 2738 // branch projections at end or the block header instructions. 2739 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2740 Node *n = bb->get_node(j); 2741 if( n->is_Proj() ) continue; // Projections handled another way 2742 2743 // Account for all uses 2744 for ( uint k = 0; k < n->len(); k++ ) { 2745 Node *inp = n->in(k); 2746 if (!inp) continue; 2747 assert(inp != n, "no cycles allowed" ); 2748 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2749 if (inp->is_Proj()) { // Skip through Proj's 2750 inp = inp->in(0); 2751 } 2752 ++_uses[inp->_idx]; // Count 1 block-local use 2753 } 2754 } 2755 2756 // If this instruction has a 0 use count, then it is available 2757 if (!_uses[n->_idx]) { 2758 _current_latency[n->_idx] = _bundle_cycle_number; 2759 AddNodeToAvailableList(n); 2760 } 2761 2762 #ifndef PRODUCT 2763 if (_cfg->C->trace_opto_output()) { 2764 tty->print("# uses: %3d: ", _uses[n->_idx]); 2765 n->dump(); 2766 } 2767 #endif 2768 } 2769 2770 #ifndef PRODUCT 2771 if (_cfg->C->trace_opto_output()) 2772 tty->print("# <- ComputeUseCount\n"); 2773 #endif 2774 } 2775 2776 // This routine performs scheduling on each basic block in reverse order, 2777 // using instruction latencies and taking into account function unit 2778 // availability. 2779 void Scheduling::DoScheduling() { 2780 #ifndef PRODUCT 2781 if (_cfg->C->trace_opto_output()) 2782 tty->print("# -> DoScheduling\n"); 2783 #endif 2784 2785 Block *succ_bb = nullptr; 2786 Block *bb; 2787 Compile* C = Compile::current(); 2788 2789 // Walk over all the basic blocks in reverse order 2790 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2791 bb = _cfg->get_block(i); 2792 2793 #ifndef PRODUCT 2794 if (_cfg->C->trace_opto_output()) { 2795 tty->print("# Schedule BB#%03d (initial)\n", i); 2796 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2797 bb->get_node(j)->dump(); 2798 } 2799 } 2800 #endif 2801 2802 // On the head node, skip processing 2803 if (bb == _cfg->get_root_block()) { 2804 continue; 2805 } 2806 2807 // Skip empty, connector blocks 2808 if (bb->is_connector()) 2809 continue; 2810 2811 // If the following block is not the sole successor of 2812 // this one, then reset the pipeline information 2813 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2814 #ifndef PRODUCT 2815 if (_cfg->C->trace_opto_output()) { 2816 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2817 _next_node->_idx, _bundle_instr_count); 2818 } 2819 #endif 2820 step_and_clear(); 2821 } 2822 2823 // Leave untouched the starting instruction, any Phis, a CreateEx node 2824 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2825 _bb_end = bb->number_of_nodes()-1; 2826 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2827 Node *n = bb->get_node(_bb_start); 2828 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2829 // Also, MachIdealNodes do not get scheduled 2830 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2831 MachNode *mach = n->as_Mach(); 2832 int iop = mach->ideal_Opcode(); 2833 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2834 if( iop == Op_Con ) continue; // Do not schedule Top 2835 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2836 mach->pipeline() == MachNode::pipeline_class() && 2837 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2838 continue; 2839 break; // Funny loop structure to be sure... 2840 } 2841 // Compute last "interesting" instruction in block - last instruction we 2842 // might schedule. _bb_end points just after last schedulable inst. We 2843 // normally schedule conditional branches (despite them being forced last 2844 // in the block), because they have delay slots we can fill. Calls all 2845 // have their delay slots filled in the template expansions, so we don't 2846 // bother scheduling them. 2847 Node *last = bb->get_node(_bb_end); 2848 // Ignore trailing NOPs. 2849 while (_bb_end > 0 && last->is_Mach() && 2850 last->as_Mach()->ideal_Opcode() == Op_Con) { 2851 last = bb->get_node(--_bb_end); 2852 } 2853 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2854 if( last->is_Catch() || 2855 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2856 // There might be a prior call. Skip it. 2857 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2858 } else if( last->is_MachNullCheck() ) { 2859 // Backup so the last null-checked memory instruction is 2860 // outside the schedulable range. Skip over the nullcheck, 2861 // projection, and the memory nodes. 2862 Node *mem = last->in(1); 2863 do { 2864 _bb_end--; 2865 } while (mem != bb->get_node(_bb_end)); 2866 } else { 2867 // Set _bb_end to point after last schedulable inst. 2868 _bb_end++; 2869 } 2870 2871 assert( _bb_start <= _bb_end, "inverted block ends" ); 2872 2873 // Compute the register antidependencies for the basic block 2874 ComputeRegisterAntidependencies(bb); 2875 if (C->failing()) return; // too many D-U pinch points 2876 2877 // Compute the usage within the block, and set the list of all nodes 2878 // in the block that have no uses within the block. 2879 ComputeUseCount(bb); 2880 2881 // Schedule the remaining instructions in the block 2882 while ( _available.size() > 0 ) { 2883 Node *n = ChooseNodeToBundle(); 2884 guarantee(n != nullptr, "no nodes available"); 2885 AddNodeToBundle(n,bb); 2886 } 2887 2888 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2889 #ifdef ASSERT 2890 for( uint l = _bb_start; l < _bb_end; l++ ) { 2891 Node *n = bb->get_node(l); 2892 uint m; 2893 for( m = 0; m < _bb_end-_bb_start; m++ ) 2894 if( _scheduled[m] == n ) 2895 break; 2896 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2897 } 2898 #endif 2899 2900 // Now copy the instructions (in reverse order) back to the block 2901 for ( uint k = _bb_start; k < _bb_end; k++ ) 2902 bb->map_node(_scheduled[_bb_end-k-1], k); 2903 2904 #ifndef PRODUCT 2905 if (_cfg->C->trace_opto_output()) { 2906 tty->print("# Schedule BB#%03d (final)\n", i); 2907 uint current = 0; 2908 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2909 Node *n = bb->get_node(j); 2910 if( valid_bundle_info(n) ) { 2911 Bundle *bundle = node_bundling(n); 2912 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2913 tty->print("*** Bundle: "); 2914 bundle->dump(); 2915 } 2916 n->dump(); 2917 } 2918 } 2919 } 2920 #endif 2921 #ifdef ASSERT 2922 verify_good_schedule(bb,"after block local scheduling"); 2923 #endif 2924 } 2925 2926 #ifndef PRODUCT 2927 if (_cfg->C->trace_opto_output()) 2928 tty->print("# <- DoScheduling\n"); 2929 #endif 2930 2931 // Record final node-bundling array location 2932 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2933 2934 } // end DoScheduling 2935 2936 // Verify that no live-range used in the block is killed in the block by a 2937 // wrong DEF. This doesn't verify live-ranges that span blocks. 2938 2939 // Check for edge existence. Used to avoid adding redundant precedence edges. 2940 static bool edge_from_to( Node *from, Node *to ) { 2941 for( uint i=0; i<from->len(); i++ ) 2942 if( from->in(i) == to ) 2943 return true; 2944 return false; 2945 } 2946 2947 #ifdef ASSERT 2948 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2949 // Check for bad kills 2950 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2951 Node *prior_use = _reg_node[def]; 2952 if( prior_use && !edge_from_to(prior_use,n) ) { 2953 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2954 n->dump(); 2955 tty->print_cr("..."); 2956 prior_use->dump(); 2957 assert(edge_from_to(prior_use,n), "%s", msg); 2958 } 2959 _reg_node.map(def,nullptr); // Kill live USEs 2960 } 2961 } 2962 2963 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2964 2965 // Zap to something reasonable for the verify code 2966 _reg_node.clear(); 2967 2968 // Walk over the block backwards. Check to make sure each DEF doesn't 2969 // kill a live value (other than the one it's supposed to). Add each 2970 // USE to the live set. 2971 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2972 Node *n = b->get_node(i); 2973 int n_op = n->Opcode(); 2974 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2975 // Fat-proj kills a slew of registers 2976 RegMaskIterator rmi(n->out_RegMask()); 2977 while (rmi.has_next()) { 2978 OptoReg::Name kill = rmi.next(); 2979 verify_do_def(n, kill, msg); 2980 } 2981 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2982 // Get DEF'd registers the normal way 2983 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2984 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2985 } 2986 2987 // Now make all USEs live 2988 for( uint i=1; i<n->req(); i++ ) { 2989 Node *def = n->in(i); 2990 assert(def != nullptr, "input edge required"); 2991 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2992 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2993 if( OptoReg::is_valid(reg_lo) ) { 2994 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2995 _reg_node.map(reg_lo,n); 2996 } 2997 if( OptoReg::is_valid(reg_hi) ) { 2998 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2999 _reg_node.map(reg_hi,n); 3000 } 3001 } 3002 3003 } 3004 3005 // Zap to something reasonable for the Antidependence code 3006 _reg_node.clear(); 3007 } 3008 #endif 3009 3010 // Conditionally add precedence edges. Avoid putting edges on Projs. 3011 static void add_prec_edge_from_to( Node *from, Node *to ) { 3012 if( from->is_Proj() ) { // Put precedence edge on Proj's input 3013 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" ); 3014 from = from->in(0); 3015 } 3016 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 3017 !edge_from_to( from, to ) ) // Avoid duplicate edge 3018 from->add_prec(to); 3019 } 3020 3021 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 3022 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 3023 return; 3024 3025 if (OptoReg::is_reg(def_reg)) { 3026 VMReg vmreg = OptoReg::as_VMReg(def_reg); 3027 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 3028 // This is one of the high slots of a vector register. 3029 // ScheduleAndBundle already checked there are no live wide 3030 // vectors in this method so it can be safely ignored. 3031 return; 3032 } 3033 } 3034 3035 Node *pinch = _reg_node[def_reg]; // Get pinch point 3036 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 3037 is_def ) { // Check for a true def (not a kill) 3038 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 3039 return; 3040 } 3041 3042 Node *kill = def; // Rename 'def' to more descriptive 'kill' 3043 DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); ) 3044 3045 // After some number of kills there _may_ be a later def 3046 Node *later_def = nullptr; 3047 3048 Compile* C = Compile::current(); 3049 3050 // Finding a kill requires a real pinch-point. 3051 // Check for not already having a pinch-point. 3052 // Pinch points are Op_Node's. 3053 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 3054 later_def = pinch; // Must be def/kill as optimistic pinch-point 3055 if ( _pinch_free_list.size() > 0) { 3056 pinch = _pinch_free_list.pop(); 3057 } else { 3058 pinch = new Node(1); // Pinch point to-be 3059 } 3060 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 3061 DEBUG_ONLY( pinch->dump(); ); 3062 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index()); 3063 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 3064 return; 3065 } 3066 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 3067 _reg_node.map(def_reg,pinch); // Record pinch-point 3068 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 3069 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 3070 pinch->init_req(0, C->top()); // set not null for the next call 3071 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 3072 later_def = nullptr; // and no later def 3073 } 3074 pinch->set_req(0,later_def); // Hook later def so we can find it 3075 } else { // Else have valid pinch point 3076 if( pinch->in(0) ) // If there is a later-def 3077 later_def = pinch->in(0); // Get it 3078 } 3079 3080 // Add output-dependence edge from later def to kill 3081 if( later_def ) // If there is some original def 3082 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 3083 3084 // See if current kill is also a use, and so is forced to be the pinch-point. 3085 if( pinch->Opcode() == Op_Node ) { 3086 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 3087 for( uint i=1; i<uses->req(); i++ ) { 3088 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 3089 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 3090 // Yes, found a use/kill pinch-point 3091 pinch->set_req(0,nullptr); // 3092 pinch->replace_by(kill); // Move anti-dep edges up 3093 pinch = kill; 3094 _reg_node.map(def_reg,pinch); 3095 return; 3096 } 3097 } 3098 } 3099 3100 // Add edge from kill to pinch-point 3101 add_prec_edge_from_to(kill,pinch); 3102 } 3103 3104 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3105 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3106 return; 3107 Node *pinch = _reg_node[use_reg]; // Get pinch point 3108 // Check for no later def_reg/kill in block 3109 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 3110 // Use has to be block-local as well 3111 _cfg->get_block_for_node(use) == b) { 3112 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3113 pinch->req() == 1 ) { // pinch not yet in block? 3114 pinch->del_req(0); // yank pointer to later-def, also set flag 3115 // Insert the pinch-point in the block just after the last use 3116 b->insert_node(pinch, b->find_node(use) + 1); 3117 _bb_end++; // Increase size scheduled region in block 3118 } 3119 3120 add_prec_edge_from_to(pinch,use); 3121 } 3122 } 3123 3124 // We insert antidependences between the reads and following write of 3125 // allocated registers to prevent illegal code motion. Hopefully, the 3126 // number of added references should be fairly small, especially as we 3127 // are only adding references within the current basic block. 3128 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3129 3130 #ifdef ASSERT 3131 verify_good_schedule(b,"before block local scheduling"); 3132 #endif 3133 3134 // A valid schedule, for each register independently, is an endless cycle 3135 // of: a def, then some uses (connected to the def by true dependencies), 3136 // then some kills (defs with no uses), finally the cycle repeats with a new 3137 // def. The uses are allowed to float relative to each other, as are the 3138 // kills. No use is allowed to slide past a kill (or def). This requires 3139 // antidependencies between all uses of a single def and all kills that 3140 // follow, up to the next def. More edges are redundant, because later defs 3141 // & kills are already serialized with true or antidependencies. To keep 3142 // the edge count down, we add a 'pinch point' node if there's more than 3143 // one use or more than one kill/def. 3144 3145 // We add dependencies in one bottom-up pass. 3146 3147 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3148 3149 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3150 // register. If not, we record the DEF/KILL in _reg_node, the 3151 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3152 // "pinch point", a new Node that's in the graph but not in the block. 3153 // We put edges from the prior and current DEF/KILLs to the pinch point. 3154 // We put the pinch point in _reg_node. If there's already a pinch point 3155 // we merely add an edge from the current DEF/KILL to the pinch point. 3156 3157 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3158 // put an edge from the pinch point to the USE. 3159 3160 // To be expedient, the _reg_node array is pre-allocated for the whole 3161 // compilation. _reg_node is lazily initialized; it either contains a null, 3162 // or a valid def/kill/pinch-point, or a leftover node from some prior 3163 // block. Leftover node from some prior block is treated like a null (no 3164 // prior def, so no anti-dependence needed). Valid def is distinguished by 3165 // it being in the current block. 3166 bool fat_proj_seen = false; 3167 uint last_safept = _bb_end-1; 3168 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3169 Node* last_safept_node = end_node; 3170 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3171 Node *n = b->get_node(i); 3172 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3173 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3174 // Fat-proj kills a slew of registers 3175 // This can add edges to 'n' and obscure whether or not it was a def, 3176 // hence the is_def flag. 3177 fat_proj_seen = true; 3178 RegMaskIterator rmi(n->out_RegMask()); 3179 while (rmi.has_next()) { 3180 OptoReg::Name kill = rmi.next(); 3181 anti_do_def(b, n, kill, is_def); 3182 } 3183 } else { 3184 // Get DEF'd registers the normal way 3185 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3186 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3187 } 3188 3189 // Kill projections on a branch should appear to occur on the 3190 // branch, not afterwards, so grab the masks from the projections 3191 // and process them. 3192 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3193 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3194 Node* use = n->fast_out(i); 3195 if (use->is_Proj()) { 3196 RegMaskIterator rmi(use->out_RegMask()); 3197 while (rmi.has_next()) { 3198 OptoReg::Name kill = rmi.next(); 3199 anti_do_def(b, n, kill, false); 3200 } 3201 } 3202 } 3203 } 3204 3205 // Check each register used by this instruction for a following DEF/KILL 3206 // that must occur afterward and requires an anti-dependence edge. 3207 for( uint j=0; j<n->req(); j++ ) { 3208 Node *def = n->in(j); 3209 if( def ) { 3210 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3211 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3212 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3213 } 3214 } 3215 // Do not allow defs of new derived values to float above GC 3216 // points unless the base is definitely available at the GC point. 3217 3218 Node *m = b->get_node(i); 3219 3220 // Add precedence edge from following safepoint to use of derived pointer 3221 if( last_safept_node != end_node && 3222 m != last_safept_node) { 3223 for (uint k = 1; k < m->req(); k++) { 3224 const Type *t = m->in(k)->bottom_type(); 3225 if( t->isa_oop_ptr() && 3226 t->is_ptr()->offset() != 0 ) { 3227 last_safept_node->add_prec( m ); 3228 break; 3229 } 3230 } 3231 3232 // Do not allow a CheckCastPP node whose input is a raw pointer to 3233 // float past a safepoint. This can occur when a buffered inline 3234 // type is allocated in a loop and the CheckCastPP from that 3235 // allocation is reused outside the loop. If the use inside the 3236 // loop is scalarized the CheckCastPP will no longer be connected 3237 // to the loop safepoint. See JDK-8264340. 3238 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3239 Node *def = m->in(1); 3240 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) { 3241 last_safept_node->add_prec(m); 3242 } 3243 } 3244 } 3245 3246 if( n->jvms() ) { // Precedence edge from derived to safept 3247 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3248 if( b->get_node(last_safept) != last_safept_node ) { 3249 last_safept = b->find_node(last_safept_node); 3250 } 3251 for( uint j=last_safept; j > i; j-- ) { 3252 Node *mach = b->get_node(j); 3253 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3254 mach->add_prec( n ); 3255 } 3256 last_safept = i; 3257 last_safept_node = m; 3258 } 3259 } 3260 3261 if (fat_proj_seen) { 3262 // Garbage collect pinch nodes that were not consumed. 3263 // They are usually created by a fat kill MachProj for a call. 3264 garbage_collect_pinch_nodes(); 3265 } 3266 } 3267 3268 // Garbage collect pinch nodes for reuse by other blocks. 3269 // 3270 // The block scheduler's insertion of anti-dependence 3271 // edges creates many pinch nodes when the block contains 3272 // 2 or more Calls. A pinch node is used to prevent a 3273 // combinatorial explosion of edges. If a set of kills for a 3274 // register is anti-dependent on a set of uses (or defs), rather 3275 // than adding an edge in the graph between each pair of kill 3276 // and use (or def), a pinch is inserted between them: 3277 // 3278 // use1 use2 use3 3279 // \ | / 3280 // \ | / 3281 // pinch 3282 // / | \ 3283 // / | \ 3284 // kill1 kill2 kill3 3285 // 3286 // One pinch node is created per register killed when 3287 // the second call is encountered during a backwards pass 3288 // over the block. Most of these pinch nodes are never 3289 // wired into the graph because the register is never 3290 // used or def'ed in the block. 3291 // 3292 void Scheduling::garbage_collect_pinch_nodes() { 3293 #ifndef PRODUCT 3294 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3295 #endif 3296 int trace_cnt = 0; 3297 for (uint k = 0; k < _reg_node.max(); k++) { 3298 Node* pinch = _reg_node[k]; 3299 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3300 // no predecence input edges 3301 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3302 cleanup_pinch(pinch); 3303 _pinch_free_list.push(pinch); 3304 _reg_node.map(k, nullptr); 3305 #ifndef PRODUCT 3306 if (_cfg->C->trace_opto_output()) { 3307 trace_cnt++; 3308 if (trace_cnt > 40) { 3309 tty->print("\n"); 3310 trace_cnt = 0; 3311 } 3312 tty->print(" %d", pinch->_idx); 3313 } 3314 #endif 3315 } 3316 } 3317 #ifndef PRODUCT 3318 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3319 #endif 3320 } 3321 3322 // Clean up a pinch node for reuse. 3323 void Scheduling::cleanup_pinch( Node *pinch ) { 3324 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3325 3326 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3327 Node* use = pinch->last_out(i); 3328 uint uses_found = 0; 3329 for (uint j = use->req(); j < use->len(); j++) { 3330 if (use->in(j) == pinch) { 3331 use->rm_prec(j); 3332 uses_found++; 3333 } 3334 } 3335 assert(uses_found > 0, "must be a precedence edge"); 3336 i -= uses_found; // we deleted 1 or more copies of this edge 3337 } 3338 // May have a later_def entry 3339 pinch->set_req(0, nullptr); 3340 } 3341 3342 #ifndef PRODUCT 3343 3344 void Scheduling::dump_available() const { 3345 tty->print("#Availist "); 3346 for (uint i = 0; i < _available.size(); i++) 3347 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3348 tty->cr(); 3349 } 3350 3351 // Print Scheduling Statistics 3352 void Scheduling::print_statistics() { 3353 // Print the size added by nops for bundling 3354 tty->print("Nops added %d bytes to total of %d bytes", 3355 _total_nop_size, _total_method_size); 3356 if (_total_method_size > 0) 3357 tty->print(", for %.2f%%", 3358 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3359 tty->print("\n"); 3360 3361 // Print the number of branch shadows filled 3362 if (Pipeline::_branch_has_delay_slot) { 3363 tty->print("Of %d branches, %d had unconditional delay slots filled", 3364 _total_branches, _total_unconditional_delays); 3365 if (_total_branches > 0) 3366 tty->print(", for %.2f%%", 3367 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3368 tty->print("\n"); 3369 } 3370 3371 uint total_instructions = 0, total_bundles = 0; 3372 3373 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3374 uint bundle_count = _total_instructions_per_bundle[i]; 3375 total_instructions += bundle_count * i; 3376 total_bundles += bundle_count; 3377 } 3378 3379 if (total_bundles > 0) 3380 tty->print("Average ILP (excluding nops) is %.2f\n", 3381 ((double)total_instructions) / ((double)total_bundles)); 3382 } 3383 #endif 3384 3385 //-----------------------init_scratch_buffer_blob------------------------------ 3386 // Construct a temporary BufferBlob and cache it for this compile. 3387 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3388 // If there is already a scratch buffer blob allocated and the 3389 // constant section is big enough, use it. Otherwise free the 3390 // current and allocate a new one. 3391 BufferBlob* blob = scratch_buffer_blob(); 3392 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3393 // Use the current blob. 3394 } else { 3395 if (blob != nullptr) { 3396 BufferBlob::free(blob); 3397 } 3398 3399 ResourceMark rm; 3400 _scratch_const_size = const_size; 3401 int size = C2Compiler::initial_code_buffer_size(const_size); 3402 if (C->has_scalarized_args()) { 3403 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3404 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3405 ciMethod* method = C->method(); 3406 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3407 int arg_num = 0; 3408 if (!method->is_static()) { 3409 if (method->is_scalarized_arg(arg_num)) { 3410 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3411 } 3412 arg_num++; 3413 } 3414 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3415 if (method->is_scalarized_arg(arg_num)) { 3416 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3417 } 3418 arg_num++; 3419 } 3420 } 3421 blob = BufferBlob::create("Compile::scratch_buffer", size); 3422 // Record the buffer blob for next time. 3423 set_scratch_buffer_blob(blob); 3424 // Have we run out of code space? 3425 if (scratch_buffer_blob() == nullptr) { 3426 // Let CompilerBroker disable further compilations. 3427 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3428 return; 3429 } 3430 } 3431 3432 // Initialize the relocation buffers 3433 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3434 set_scratch_locs_memory(locs_buf); 3435 } 3436 3437 3438 //-----------------------scratch_emit_size------------------------------------- 3439 // Helper function that computes size by emitting code 3440 uint PhaseOutput::scratch_emit_size(const Node* n) { 3441 // Start scratch_emit_size section. 3442 set_in_scratch_emit_size(true); 3443 3444 // Emit into a trash buffer and count bytes emitted. 3445 // This is a pretty expensive way to compute a size, 3446 // but it works well enough if seldom used. 3447 // All common fixed-size instructions are given a size 3448 // method by the AD file. 3449 // Note that the scratch buffer blob and locs memory are 3450 // allocated at the beginning of the compile task, and 3451 // may be shared by several calls to scratch_emit_size. 3452 // The allocation of the scratch buffer blob is particularly 3453 // expensive, since it has to grab the code cache lock. 3454 BufferBlob* blob = this->scratch_buffer_blob(); 3455 assert(blob != nullptr, "Initialize BufferBlob at start"); 3456 assert(blob->size() > MAX_inst_size, "sanity"); 3457 relocInfo* locs_buf = scratch_locs_memory(); 3458 address blob_begin = blob->content_begin(); 3459 address blob_end = (address)locs_buf; 3460 assert(blob->contains(blob_end), "sanity"); 3461 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3462 buf.initialize_consts_size(_scratch_const_size); 3463 buf.initialize_stubs_size(MAX_stubs_size); 3464 assert(locs_buf != nullptr, "sanity"); 3465 int lsize = MAX_locs_size / 3; 3466 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3467 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3468 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3469 // Mark as scratch buffer. 3470 buf.consts()->set_scratch_emit(); 3471 buf.insts()->set_scratch_emit(); 3472 buf.stubs()->set_scratch_emit(); 3473 3474 // Do the emission. 3475 3476 Label fakeL; // Fake label for branch instructions. 3477 Label* saveL = nullptr; 3478 uint save_bnum = 0; 3479 bool is_branch = n->is_MachBranch(); 3480 C2_MacroAssembler masm(&buf); 3481 masm.bind(fakeL); 3482 if (is_branch) { 3483 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3484 n->as_MachBranch()->label_set(&fakeL, 0); 3485 } 3486 n->emit(&masm, C->regalloc()); 3487 3488 // Emitting into the scratch buffer should not fail 3489 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3490 3491 // Restore label. 3492 if (is_branch) { 3493 n->as_MachBranch()->label_set(saveL, save_bnum); 3494 } 3495 3496 // End scratch_emit_size section. 3497 set_in_scratch_emit_size(false); 3498 3499 return buf.insts_size(); 3500 } 3501 3502 void PhaseOutput::install() { 3503 if (!C->should_install_code()) { 3504 return; 3505 } else if (C->stub_function() != nullptr) { 3506 install_stub(C->stub_name()); 3507 } else { 3508 install_code(C->method(), 3509 C->entry_bci(), 3510 CompileBroker::compiler2(), 3511 C->has_unsafe_access(), 3512 SharedRuntime::is_wide_vector(C->max_vector_size())); 3513 } 3514 } 3515 3516 void PhaseOutput::install_code(ciMethod* target, 3517 int entry_bci, 3518 AbstractCompiler* compiler, 3519 bool has_unsafe_access, 3520 bool has_wide_vectors) { 3521 // Check if we want to skip execution of all compiled code. 3522 { 3523 #ifndef PRODUCT 3524 if (OptoNoExecute) { 3525 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3526 return; 3527 } 3528 #endif 3529 Compile::TracePhase tp(_t_registerMethod); 3530 3531 if (C->is_osr_compilation()) { 3532 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3533 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3534 } else { 3535 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3536 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3537 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3538 } 3539 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3540 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3541 } 3542 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3543 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3544 } 3545 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3546 } 3547 3548 C->env()->register_method(target, 3549 entry_bci, 3550 &_code_offsets, 3551 _orig_pc_slot_offset_in_bytes, 3552 code_buffer(), 3553 frame_size_in_words(), 3554 _oop_map_set, 3555 &_handler_table, 3556 inc_table(), 3557 compiler, 3558 has_unsafe_access, 3559 SharedRuntime::is_wide_vector(C->max_vector_size()), 3560 C->has_monitors(), 3561 C->has_scoped_access(), 3562 0); 3563 3564 if (C->log() != nullptr) { // Print code cache state into compiler log 3565 C->log()->code_cache_state(); 3566 } 3567 } 3568 } 3569 void PhaseOutput::install_stub(const char* stub_name) { 3570 // Entry point will be accessed using stub_entry_point(); 3571 if (code_buffer() == nullptr) { 3572 Matcher::soft_match_failure(); 3573 } else { 3574 if (PrintAssembly && (WizardMode || Verbose)) 3575 tty->print_cr("### Stub::%s", stub_name); 3576 3577 if (!C->failing()) { 3578 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3579 3580 // Make the NMethod 3581 // For now we mark the frame as never safe for profile stackwalking 3582 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3583 code_buffer(), 3584 CodeOffsets::frame_never_safe, 3585 // _code_offsets.value(CodeOffsets::Frame_Complete), 3586 frame_size_in_words(), 3587 oop_map_set(), 3588 false, 3589 false); 3590 3591 if (rs == nullptr) { 3592 C->record_failure("CodeCache is full"); 3593 } else { 3594 assert(rs->is_runtime_stub(), "sanity check"); 3595 C->set_stub_entry_point(rs->entry_point()); 3596 AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, C->stub_id(), stub_name); 3597 } 3598 } 3599 } 3600 } 3601 3602 // Support for bundling info 3603 Bundle* PhaseOutput::node_bundling(const Node *n) { 3604 assert(valid_bundle_info(n), "oob"); 3605 return &_node_bundling_base[n->_idx]; 3606 } 3607 3608 bool PhaseOutput::valid_bundle_info(const Node *n) { 3609 return (_node_bundling_limit > n->_idx); 3610 } 3611 3612 //------------------------------frame_size_in_words----------------------------- 3613 // frame_slots in units of words 3614 int PhaseOutput::frame_size_in_words() const { 3615 // shift is 0 in LP32 and 1 in LP64 3616 const int shift = (LogBytesPerWord - LogBytesPerInt); 3617 int words = _frame_slots >> shift; 3618 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3619 return words; 3620 } 3621 3622 // To bang the stack of this compiled method we use the stack size 3623 // that the interpreter would need in case of a deoptimization. This 3624 // removes the need to bang the stack in the deoptimization blob which 3625 // in turn simplifies stack overflow handling. 3626 int PhaseOutput::bang_size_in_bytes() const { 3627 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3628 } 3629 3630 //------------------------------dump_asm--------------------------------------- 3631 // Dump formatted assembly 3632 #if defined(SUPPORT_OPTO_ASSEMBLY) 3633 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3634 3635 int pc_digits = 3; // #chars required for pc 3636 int sb_chars = 3; // #chars for "start bundle" indicator 3637 int tab_size = 8; 3638 if (pcs != nullptr) { 3639 int max_pc = 0; 3640 for (uint i = 0; i < pc_limit; i++) { 3641 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3642 } 3643 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3644 } 3645 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3646 3647 bool cut_short = false; 3648 st->print_cr("#"); 3649 st->print("# "); C->tf()->dump_on(st); st->cr(); 3650 st->print_cr("#"); 3651 3652 // For all blocks 3653 int pc = 0x0; // Program counter 3654 char starts_bundle = ' '; 3655 C->regalloc()->dump_frame(); 3656 3657 Node *n = nullptr; 3658 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3659 if (VMThread::should_terminate()) { 3660 cut_short = true; 3661 break; 3662 } 3663 Block* block = C->cfg()->get_block(i); 3664 if (block->is_connector() && !Verbose) { 3665 continue; 3666 } 3667 n = block->head(); 3668 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3669 pc = pcs[n->_idx]; 3670 st->print("%*.*x", pc_digits, pc_digits, pc); 3671 } 3672 st->fill_to(prefix_len); 3673 block->dump_head(C->cfg(), st); 3674 if (block->is_connector()) { 3675 st->fill_to(prefix_len); 3676 st->print_cr("# Empty connector block"); 3677 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3678 st->fill_to(prefix_len); 3679 st->print_cr("# Block is sole successor of call"); 3680 } 3681 3682 // For all instructions 3683 Node *delay = nullptr; 3684 for (uint j = 0; j < block->number_of_nodes(); j++) { 3685 if (VMThread::should_terminate()) { 3686 cut_short = true; 3687 break; 3688 } 3689 n = block->get_node(j); 3690 if (valid_bundle_info(n)) { 3691 Bundle* bundle = node_bundling(n); 3692 if (bundle->used_in_unconditional_delay()) { 3693 delay = n; 3694 continue; 3695 } 3696 if (bundle->starts_bundle()) { 3697 starts_bundle = '+'; 3698 } 3699 } 3700 3701 if (WizardMode) { 3702 n->dump(); 3703 } 3704 3705 if( !n->is_Region() && // Dont print in the Assembly 3706 !n->is_Phi() && // a few noisely useless nodes 3707 !n->is_Proj() && 3708 !n->is_MachTemp() && 3709 !n->is_SafePointScalarObject() && 3710 !n->is_Catch() && // Would be nice to print exception table targets 3711 !n->is_MergeMem() && // Not very interesting 3712 !n->is_top() && // Debug info table constants 3713 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3714 ) { 3715 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3716 pc = pcs[n->_idx]; 3717 st->print("%*.*x", pc_digits, pc_digits, pc); 3718 } else { 3719 st->fill_to(pc_digits); 3720 } 3721 st->print(" %c ", starts_bundle); 3722 starts_bundle = ' '; 3723 st->fill_to(prefix_len); 3724 n->format(C->regalloc(), st); 3725 st->cr(); 3726 } 3727 3728 // If we have an instruction with a delay slot, and have seen a delay, 3729 // then back up and print it 3730 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3731 // Coverity finding - Explicit null dereferenced. 3732 guarantee(delay != nullptr, "no unconditional delay instruction"); 3733 if (WizardMode) delay->dump(); 3734 3735 if (node_bundling(delay)->starts_bundle()) 3736 starts_bundle = '+'; 3737 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3738 pc = pcs[n->_idx]; 3739 st->print("%*.*x", pc_digits, pc_digits, pc); 3740 } else { 3741 st->fill_to(pc_digits); 3742 } 3743 st->print(" %c ", starts_bundle); 3744 starts_bundle = ' '; 3745 st->fill_to(prefix_len); 3746 delay->format(C->regalloc(), st); 3747 st->cr(); 3748 delay = nullptr; 3749 } 3750 3751 // Dump the exception table as well 3752 if( n->is_Catch() && (Verbose || WizardMode) ) { 3753 // Print the exception table for this offset 3754 _handler_table.print_subtable_for(pc); 3755 } 3756 st->bol(); // Make sure we start on a new line 3757 } 3758 st->cr(); // one empty line between blocks 3759 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3760 } // End of per-block dump 3761 3762 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3763 } 3764 #endif 3765 3766 #ifndef PRODUCT 3767 void PhaseOutput::print_statistics() { 3768 Scheduling::print_statistics(); 3769 } 3770 #endif