1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/gc_globals.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/allocation.hpp" 40 #include "opto/ad.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/c2_MacroAssembler.hpp" 44 #include "opto/callnode.hpp" 45 #include "opto/cfgnode.hpp" 46 #include "opto/locknode.hpp" 47 #include "opto/machnode.hpp" 48 #include "opto/node.hpp" 49 #include "opto/optoreg.hpp" 50 #include "opto/output.hpp" 51 #include "opto/regalloc.hpp" 52 #include "opto/runtime.hpp" 53 #include "opto/subnode.hpp" 54 #include "opto/type.hpp" 55 #include "runtime/handles.inline.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "utilities/macros.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #include "utilities/xmlstream.hpp" 60 61 #ifndef PRODUCT 62 #define DEBUG_ARG(x) , x 63 #else 64 #define DEBUG_ARG(x) 65 #endif 66 67 //------------------------------Scheduling---------------------------------- 68 // This class contains all the information necessary to implement instruction 69 // scheduling and bundling. 70 class Scheduling { 71 72 private: 73 // Arena to use 74 Arena *_arena; 75 76 // Control-Flow Graph info 77 PhaseCFG *_cfg; 78 79 // Register Allocation info 80 PhaseRegAlloc *_regalloc; 81 82 // Number of nodes in the method 83 uint _node_bundling_limit; 84 85 // List of scheduled nodes. Generated in reverse order 86 Node_List _scheduled; 87 88 // List of nodes currently available for choosing for scheduling 89 Node_List _available; 90 91 // For each instruction beginning a bundle, the number of following 92 // nodes to be bundled with it. 93 Bundle *_node_bundling_base; 94 95 // Mapping from register to Node 96 Node_List _reg_node; 97 98 // Free list for pinch nodes. 99 Node_List _pinch_free_list; 100 101 // Number of uses of this node within the containing basic block. 102 short *_uses; 103 104 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 105 // front, branch+proj at end. Also skips Catch/CProj (same as 106 // branch-at-end), plus just-prior exception-throwing call. 107 uint _bb_start, _bb_end; 108 109 // Latency from the end of the basic block as scheduled 110 unsigned short *_current_latency; 111 112 // Remember the next node 113 Node *_next_node; 114 115 // Use this for an unconditional branch delay slot 116 Node *_unconditional_delay_slot; 117 118 // Pointer to a Nop 119 MachNopNode *_nop; 120 121 // Length of the current bundle, in instructions 122 uint _bundle_instr_count; 123 124 // Current Cycle number, for computing latencies and bundling 125 uint _bundle_cycle_number; 126 127 // Bundle information 128 Pipeline_Use_Element _bundle_use_elements[resource_count]; 129 Pipeline_Use _bundle_use; 130 131 // Dump the available list 132 void dump_available() const; 133 134 public: 135 Scheduling(Arena *arena, Compile &compile); 136 137 // Destructor 138 NOT_PRODUCT( ~Scheduling(); ) 139 140 // Step ahead "i" cycles 141 void step(uint i); 142 143 // Step ahead 1 cycle, and clear the bundle state (for example, 144 // at a branch target) 145 void step_and_clear(); 146 147 Bundle* node_bundling(const Node *n) { 148 assert(valid_bundle_info(n), "oob"); 149 return (&_node_bundling_base[n->_idx]); 150 } 151 152 bool valid_bundle_info(const Node *n) const { 153 return (_node_bundling_limit > n->_idx); 154 } 155 156 bool starts_bundle(const Node *n) const { 157 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 158 } 159 160 // Do the scheduling 161 void DoScheduling(); 162 163 // Compute the register antidependencies within a basic block 164 void ComputeRegisterAntidependencies(Block *bb); 165 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 166 void verify_good_schedule( Block *b, const char *msg ); 167 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 168 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 169 170 // Add a node to the current bundle 171 void AddNodeToBundle(Node *n, const Block *bb); 172 173 // Add a node to the list of available nodes 174 void AddNodeToAvailableList(Node *n); 175 176 // Compute the local use count for the nodes in a block, and compute 177 // the list of instructions with no uses in the block as available 178 void ComputeUseCount(const Block *bb); 179 180 // Choose an instruction from the available list to add to the bundle 181 Node * ChooseNodeToBundle(); 182 183 // See if this Node fits into the currently accumulating bundle 184 bool NodeFitsInBundle(Node *n); 185 186 // Decrement the use count for a node 187 void DecrementUseCounts(Node *n, const Block *bb); 188 189 // Garbage collect pinch nodes for reuse by other blocks. 190 void garbage_collect_pinch_nodes(); 191 // Clean up a pinch node for reuse (helper for above). 192 void cleanup_pinch( Node *pinch ); 193 194 // Information for statistics gathering 195 #ifndef PRODUCT 196 private: 197 // Gather information on size of nops relative to total 198 uint _branches, _unconditional_delays; 199 200 static uint _total_nop_size, _total_method_size; 201 static uint _total_branches, _total_unconditional_delays; 202 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 203 204 public: 205 static void print_statistics(); 206 207 static void increment_instructions_per_bundle(uint i) { 208 _total_instructions_per_bundle[i]++; 209 } 210 211 static void increment_nop_size(uint s) { 212 _total_nop_size += s; 213 } 214 215 static void increment_method_size(uint s) { 216 _total_method_size += s; 217 } 218 #endif 219 220 }; 221 222 PhaseOutput::PhaseOutput() 223 : Phase(Phase::Output), 224 _code_buffer("Compile::Fill_buffer"), 225 _first_block_size(0), 226 _handler_table(), 227 _inc_table(), 228 _stub_list(), 229 _oop_map_set(NULL), 230 _scratch_buffer_blob(NULL), 231 _scratch_locs_memory(NULL), 232 _scratch_const_size(-1), 233 _in_scratch_emit_size(false), 234 _frame_slots(0), 235 _code_offsets(), 236 _node_bundling_limit(0), 237 _node_bundling_base(NULL), 238 _orig_pc_slot(0), 239 _orig_pc_slot_offset_in_bytes(0), 240 _buf_sizes(), 241 _block(NULL), 242 _index(0) { 243 C->set_output(this); 244 if (C->stub_name() == NULL) { 245 int fixed_slots = C->fixed_slots(); 246 if (C->needs_stack_repair()) { 247 fixed_slots -= 2; 248 } 249 // TODO 8284443 Only reserve extra slot if needed 250 if (InlineTypeReturnedAsFields) { 251 fixed_slots -= 2; 252 } 253 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 254 } 255 } 256 257 PhaseOutput::~PhaseOutput() { 258 C->set_output(NULL); 259 if (_scratch_buffer_blob != NULL) { 260 BufferBlob::free(_scratch_buffer_blob); 261 } 262 } 263 264 void PhaseOutput::perform_mach_node_analysis() { 265 // Late barrier analysis must be done after schedule and bundle 266 // Otherwise liveness based spilling will fail 267 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 268 bs->late_barrier_analysis(); 269 270 pd_perform_mach_node_analysis(); 271 272 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 4); 273 } 274 275 // Convert Nodes to instruction bits and pass off to the VM 276 void PhaseOutput::Output() { 277 // RootNode goes 278 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 279 280 // The number of new nodes (mostly MachNop) is proportional to 281 // the number of java calls and inner loops which are aligned. 282 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 283 C->inner_loops()*(OptoLoopAlignment-1)), 284 "out of nodes before code generation" ) ) { 285 return; 286 } 287 // Make sure I can find the Start Node 288 Block *entry = C->cfg()->get_block(1); 289 Block *broot = C->cfg()->get_root_block(); 290 291 const StartNode *start = entry->head()->as_Start(); 292 293 // Replace StartNode with prolog 294 Label verified_entry; 295 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 296 entry->map_node(prolog, 0); 297 C->cfg()->map_node_to_block(prolog, entry); 298 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 299 300 // Virtual methods need an unverified entry point 301 if (C->is_osr_compilation()) { 302 if (PoisonOSREntry) { 303 // TODO: Should use a ShouldNotReachHereNode... 304 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 305 } 306 } else { 307 if (C->method()) { 308 if (C->method()->has_scalarized_args()) { 309 // Add entry point to unpack all inline type arguments 310 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 311 if (!C->method()->is_static()) { 312 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 313 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 314 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 315 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 316 } 317 } else if (!C->method()->is_static()) { 318 // Insert unvalidated entry point 319 C->cfg()->insert(broot, 0, new MachUEPNode()); 320 } 321 } 322 } 323 324 // Break before main entry point 325 if ((C->method() && C->directive()->BreakAtExecuteOption) || 326 (OptoBreakpoint && C->is_method_compilation()) || 327 (OptoBreakpointOSR && C->is_osr_compilation()) || 328 (OptoBreakpointC2R && !C->method()) ) { 329 // checking for C->method() means that OptoBreakpoint does not apply to 330 // runtime stubs or frame converters 331 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 332 } 333 334 // Insert epilogs before every return 335 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 336 Block* block = C->cfg()->get_block(i); 337 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 338 Node* m = block->end(); 339 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 340 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 341 block->add_inst(epilog); 342 C->cfg()->map_node_to_block(epilog, block); 343 } 344 } 345 } 346 347 // Keeper of sizing aspects 348 _buf_sizes = BufferSizingData(); 349 350 // Initialize code buffer 351 estimate_buffer_size(_buf_sizes._const); 352 if (C->failing()) return; 353 354 // Pre-compute the length of blocks and replace 355 // long branches with short if machine supports it. 356 // Must be done before ScheduleAndBundle due to SPARC delay slots 357 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 358 blk_starts[0] = 0; 359 shorten_branches(blk_starts); 360 361 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 362 // Compute the offsets of the entry points required by the inline type calling convention 363 if (!C->method()->is_static()) { 364 // We have entries at the beginning of the method, implemented by the first 4 nodes. 365 // Entry (unverified) @ offset 0 366 // Verified_Inline_Entry_RO 367 // Inline_Entry (unverified) 368 // Verified_Inline_Entry 369 uint offset = 0; 370 _code_offsets.set_value(CodeOffsets::Entry, offset); 371 372 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 373 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 374 375 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 376 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 377 378 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 379 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 380 } else { 381 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 382 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 383 } 384 } 385 386 ScheduleAndBundle(); 387 if (C->failing()) { 388 return; 389 } 390 391 perform_mach_node_analysis(); 392 393 // Complete sizing of codebuffer 394 CodeBuffer* cb = init_buffer(); 395 if (cb == NULL || C->failing()) { 396 return; 397 } 398 399 BuildOopMaps(); 400 401 if (C->failing()) { 402 return; 403 } 404 405 fill_buffer(cb, blk_starts); 406 } 407 408 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 409 // Determine if we need to generate a stack overflow check. 410 // Do it if the method is not a stub function and 411 // has java calls or has frame size > vm_page_size/8. 412 // The debug VM checks that deoptimization doesn't trigger an 413 // unexpected stack overflow (compiled method stack banging should 414 // guarantee it doesn't happen) so we always need the stack bang in 415 // a debug VM. 416 return (C->stub_function() == NULL && 417 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 418 DEBUG_ONLY(|| true))); 419 } 420 421 bool PhaseOutput::need_register_stack_bang() const { 422 // Determine if we need to generate a register stack overflow check. 423 // This is only used on architectures which have split register 424 // and memory stacks (ie. IA64). 425 // Bang if the method is not a stub function and has java calls 426 return (C->stub_function() == NULL && C->has_java_calls()); 427 } 428 429 430 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 431 // of a loop. When aligning a loop we need to provide enough instructions 432 // in cpu's fetch buffer to feed decoders. The loop alignment could be 433 // avoided if we have enough instructions in fetch buffer at the head of a loop. 434 // By default, the size is set to 999999 by Block's constructor so that 435 // a loop will be aligned if the size is not reset here. 436 // 437 // Note: Mach instructions could contain several HW instructions 438 // so the size is estimated only. 439 // 440 void PhaseOutput::compute_loop_first_inst_sizes() { 441 // The next condition is used to gate the loop alignment optimization. 442 // Don't aligned a loop if there are enough instructions at the head of a loop 443 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 444 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 445 // equal to 11 bytes which is the largest address NOP instruction. 446 if (MaxLoopPad < OptoLoopAlignment - 1) { 447 uint last_block = C->cfg()->number_of_blocks() - 1; 448 for (uint i = 1; i <= last_block; i++) { 449 Block* block = C->cfg()->get_block(i); 450 // Check the first loop's block which requires an alignment. 451 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 452 uint sum_size = 0; 453 uint inst_cnt = NumberOfLoopInstrToAlign; 454 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 455 456 // Check subsequent fallthrough blocks if the loop's first 457 // block(s) does not have enough instructions. 458 Block *nb = block; 459 while(inst_cnt > 0 && 460 i < last_block && 461 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 462 !nb->has_successor(block)) { 463 i++; 464 nb = C->cfg()->get_block(i); 465 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 466 } // while( inst_cnt > 0 && i < last_block ) 467 468 block->set_first_inst_size(sum_size); 469 } // f( b->head()->is_Loop() ) 470 } // for( i <= last_block ) 471 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 472 } 473 474 // The architecture description provides short branch variants for some long 475 // branch instructions. Replace eligible long branches with short branches. 476 void PhaseOutput::shorten_branches(uint* blk_starts) { 477 478 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 479 480 // Compute size of each block, method size, and relocation information size 481 uint nblocks = C->cfg()->number_of_blocks(); 482 483 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 484 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 485 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 486 487 // Collect worst case block paddings 488 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 489 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 490 491 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 492 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 493 494 bool has_short_branch_candidate = false; 495 496 // Initialize the sizes to 0 497 int code_size = 0; // Size in bytes of generated code 498 int stub_size = 0; // Size in bytes of all stub entries 499 // Size in bytes of all relocation entries, including those in local stubs. 500 // Start with 2-bytes of reloc info for the unvalidated entry point 501 int reloc_size = 1; // Number of relocation entries 502 503 // Make three passes. The first computes pessimistic blk_starts, 504 // relative jmp_offset and reloc_size information. The second performs 505 // short branch substitution using the pessimistic sizing. The 506 // third inserts nops where needed. 507 508 // Step one, perform a pessimistic sizing pass. 509 uint last_call_adr = max_juint; 510 uint last_avoid_back_to_back_adr = max_juint; 511 uint nop_size = (new MachNopNode())->size(C->regalloc()); 512 for (uint i = 0; i < nblocks; i++) { // For all blocks 513 Block* block = C->cfg()->get_block(i); 514 _block = block; 515 516 // During short branch replacement, we store the relative (to blk_starts) 517 // offset of jump in jmp_offset, rather than the absolute offset of jump. 518 // This is so that we do not need to recompute sizes of all nodes when 519 // we compute correct blk_starts in our next sizing pass. 520 jmp_offset[i] = 0; 521 jmp_size[i] = 0; 522 jmp_nidx[i] = -1; 523 DEBUG_ONLY( jmp_target[i] = 0; ) 524 DEBUG_ONLY( jmp_rule[i] = 0; ) 525 526 // Sum all instruction sizes to compute block size 527 uint last_inst = block->number_of_nodes(); 528 uint blk_size = 0; 529 for (uint j = 0; j < last_inst; j++) { 530 _index = j; 531 Node* nj = block->get_node(_index); 532 // Handle machine instruction nodes 533 if (nj->is_Mach()) { 534 MachNode* mach = nj->as_Mach(); 535 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 536 reloc_size += mach->reloc(); 537 if (mach->is_MachCall()) { 538 // add size information for trampoline stub 539 // class CallStubImpl is platform-specific and defined in the *.ad files. 540 stub_size += CallStubImpl::size_call_trampoline(); 541 reloc_size += CallStubImpl::reloc_call_trampoline(); 542 543 MachCallNode *mcall = mach->as_MachCall(); 544 // This destination address is NOT PC-relative 545 546 if (mcall->entry_point() != NULL) { 547 mcall->method_set((intptr_t)mcall->entry_point()); 548 } 549 550 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 551 stub_size += CompiledStaticCall::to_interp_stub_size(); 552 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 553 } 554 } else if (mach->is_MachSafePoint()) { 555 // If call/safepoint are adjacent, account for possible 556 // nop to disambiguate the two safepoints. 557 // ScheduleAndBundle() can rearrange nodes in a block, 558 // check for all offsets inside this block. 559 if (last_call_adr >= blk_starts[i]) { 560 blk_size += nop_size; 561 } 562 } 563 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 564 // Nop is inserted between "avoid back to back" instructions. 565 // ScheduleAndBundle() can rearrange nodes in a block, 566 // check for all offsets inside this block. 567 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 568 blk_size += nop_size; 569 } 570 } 571 if (mach->may_be_short_branch()) { 572 if (!nj->is_MachBranch()) { 573 #ifndef PRODUCT 574 nj->dump(3); 575 #endif 576 Unimplemented(); 577 } 578 assert(jmp_nidx[i] == -1, "block should have only one branch"); 579 jmp_offset[i] = blk_size; 580 jmp_size[i] = nj->size(C->regalloc()); 581 jmp_nidx[i] = j; 582 has_short_branch_candidate = true; 583 } 584 } 585 blk_size += nj->size(C->regalloc()); 586 // Remember end of call offset 587 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 588 last_call_adr = blk_starts[i]+blk_size; 589 } 590 // Remember end of avoid_back_to_back offset 591 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 592 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 593 } 594 } 595 596 // When the next block starts a loop, we may insert pad NOP 597 // instructions. Since we cannot know our future alignment, 598 // assume the worst. 599 if (i < nblocks - 1) { 600 Block* nb = C->cfg()->get_block(i + 1); 601 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 602 if (max_loop_pad > 0) { 603 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 604 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 605 // If either is the last instruction in this block, bump by 606 // max_loop_pad in lock-step with blk_size, so sizing 607 // calculations in subsequent blocks still can conservatively 608 // detect that it may the last instruction in this block. 609 if (last_call_adr == blk_starts[i]+blk_size) { 610 last_call_adr += max_loop_pad; 611 } 612 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 613 last_avoid_back_to_back_adr += max_loop_pad; 614 } 615 blk_size += max_loop_pad; 616 block_worst_case_pad[i + 1] = max_loop_pad; 617 } 618 } 619 620 // Save block size; update total method size 621 blk_starts[i+1] = blk_starts[i]+blk_size; 622 } 623 624 // Step two, replace eligible long jumps. 625 bool progress = true; 626 uint last_may_be_short_branch_adr = max_juint; 627 while (has_short_branch_candidate && progress) { 628 progress = false; 629 has_short_branch_candidate = false; 630 int adjust_block_start = 0; 631 for (uint i = 0; i < nblocks; i++) { 632 Block* block = C->cfg()->get_block(i); 633 int idx = jmp_nidx[i]; 634 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach(); 635 if (mach != NULL && mach->may_be_short_branch()) { 636 #ifdef ASSERT 637 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 638 int j; 639 // Find the branch; ignore trailing NOPs. 640 for (j = block->number_of_nodes()-1; j>=0; j--) { 641 Node* n = block->get_node(j); 642 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 643 break; 644 } 645 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 646 #endif 647 int br_size = jmp_size[i]; 648 int br_offs = blk_starts[i] + jmp_offset[i]; 649 650 // This requires the TRUE branch target be in succs[0] 651 uint bnum = block->non_connector_successor(0)->_pre_order; 652 int offset = blk_starts[bnum] - br_offs; 653 if (bnum > i) { // adjust following block's offset 654 offset -= adjust_block_start; 655 } 656 657 // This block can be a loop header, account for the padding 658 // in the previous block. 659 int block_padding = block_worst_case_pad[i]; 660 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 661 // In the following code a nop could be inserted before 662 // the branch which will increase the backward distance. 663 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 664 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 665 666 if (needs_padding && offset <= 0) 667 offset -= nop_size; 668 669 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 670 // We've got a winner. Replace this branch. 671 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 672 673 // Update the jmp_size. 674 int new_size = replacement->size(C->regalloc()); 675 int diff = br_size - new_size; 676 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 677 // Conservatively take into account padding between 678 // avoid_back_to_back branches. Previous branch could be 679 // converted into avoid_back_to_back branch during next 680 // rounds. 681 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 682 jmp_offset[i] += nop_size; 683 diff -= nop_size; 684 } 685 adjust_block_start += diff; 686 block->map_node(replacement, idx); 687 mach->subsume_by(replacement, C); 688 mach = replacement; 689 progress = true; 690 691 jmp_size[i] = new_size; 692 DEBUG_ONLY( jmp_target[i] = bnum; ); 693 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 694 } else { 695 // The jump distance is not short, try again during next iteration. 696 has_short_branch_candidate = true; 697 } 698 } // (mach->may_be_short_branch()) 699 if (mach != NULL && (mach->may_be_short_branch() || 700 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 701 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 702 } 703 blk_starts[i+1] -= adjust_block_start; 704 } 705 } 706 707 #ifdef ASSERT 708 for (uint i = 0; i < nblocks; i++) { // For all blocks 709 if (jmp_target[i] != 0) { 710 int br_size = jmp_size[i]; 711 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 712 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 713 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 714 } 715 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 716 } 717 } 718 #endif 719 720 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 721 // after ScheduleAndBundle(). 722 723 // ------------------ 724 // Compute size for code buffer 725 code_size = blk_starts[nblocks]; 726 727 // Relocation records 728 reloc_size += 1; // Relo entry for exception handler 729 730 // Adjust reloc_size to number of record of relocation info 731 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 732 // a relocation index. 733 // The CodeBuffer will expand the locs array if this estimate is too low. 734 reloc_size *= 10 / sizeof(relocInfo); 735 736 _buf_sizes._reloc = reloc_size; 737 _buf_sizes._code = code_size; 738 _buf_sizes._stub = stub_size; 739 } 740 741 //------------------------------FillLocArray----------------------------------- 742 // Create a bit of debug info and append it to the array. The mapping is from 743 // Java local or expression stack to constant, register or stack-slot. For 744 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 745 // entry has been taken care of and caller should skip it). 746 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 747 // This should never have accepted Bad before 748 assert(OptoReg::is_valid(regnum), "location must be valid"); 749 return (OptoReg::is_reg(regnum)) 750 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 751 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 752 } 753 754 755 ObjectValue* 756 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 757 for (int i = 0; i < objs->length(); i++) { 758 assert(objs->at(i)->is_object(), "corrupt object cache"); 759 ObjectValue* sv = (ObjectValue*) objs->at(i); 760 if (sv->id() == id) { 761 return sv; 762 } 763 } 764 // Otherwise.. 765 return NULL; 766 } 767 768 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 769 ObjectValue* sv ) { 770 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition"); 771 objs->append(sv); 772 } 773 774 775 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 776 GrowableArray<ScopeValue*> *array, 777 GrowableArray<ScopeValue*> *objs ) { 778 assert( local, "use _top instead of null" ); 779 if (array->length() != idx) { 780 assert(array->length() == idx + 1, "Unexpected array count"); 781 // Old functionality: 782 // return 783 // New functionality: 784 // Assert if the local is not top. In product mode let the new node 785 // override the old entry. 786 assert(local == C->top(), "LocArray collision"); 787 if (local == C->top()) { 788 return; 789 } 790 array->pop(); 791 } 792 const Type *t = local->bottom_type(); 793 794 // Is it a safepoint scalar object node? 795 if (local->is_SafePointScalarObject()) { 796 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 797 798 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 799 if (sv == NULL) { 800 ciKlass* cik = t->is_oopptr()->exact_klass(); 801 assert(cik->is_instance_klass() || 802 cik->is_array_klass(), "Not supported allocation."); 803 uint first_ind = spobj->first_index(sfpt->jvms()); 804 // Nullable, scalarized inline types have an is_init input 805 // that needs to be checked before using the field values. 806 ScopeValue* is_init = NULL; 807 if (cik->is_inlinetype()) { 808 Node* init_node = sfpt->in(first_ind++); 809 assert(init_node != NULL, "is_init node not found"); 810 if (!init_node->is_top()) { 811 const TypeInt* init_type = init_node->bottom_type()->is_int(); 812 if (init_node->is_Con()) { 813 is_init = new ConstantIntValue(init_type->get_con()); 814 } else { 815 OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node); 816 is_init = new_loc_value(C->regalloc(), init_reg, Location::normal); 817 } 818 } 819 } 820 sv = new ObjectValue(spobj->_idx, 821 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), is_init); 822 set_sv_for_object_node(objs, sv); 823 824 for (uint i = 0; i < spobj->n_fields(); i++) { 825 Node* fld_node = sfpt->in(first_ind+i); 826 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 827 } 828 } 829 array->append(sv); 830 return; 831 } 832 833 // Grab the register number for the local 834 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 835 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 836 // Record the double as two float registers. 837 // The register mask for such a value always specifies two adjacent 838 // float registers, with the lower register number even. 839 // Normally, the allocation of high and low words to these registers 840 // is irrelevant, because nearly all operations on register pairs 841 // (e.g., StoreD) treat them as a single unit. 842 // Here, we assume in addition that the words in these two registers 843 // stored "naturally" (by operations like StoreD and double stores 844 // within the interpreter) such that the lower-numbered register 845 // is written to the lower memory address. This may seem like 846 // a machine dependency, but it is not--it is a requirement on 847 // the author of the <arch>.ad file to ensure that, for every 848 // even/odd double-register pair to which a double may be allocated, 849 // the word in the even single-register is stored to the first 850 // memory word. (Note that register numbers are completely 851 // arbitrary, and are not tied to any machine-level encodings.) 852 #ifdef _LP64 853 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 854 array->append(new ConstantIntValue((jint)0)); 855 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 856 } else if ( t->base() == Type::Long ) { 857 array->append(new ConstantIntValue((jint)0)); 858 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 859 } else if ( t->base() == Type::RawPtr ) { 860 // jsr/ret return address which must be restored into the full 861 // width 64-bit stack slot. 862 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 863 } 864 #else //_LP64 865 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 866 // Repack the double/long as two jints. 867 // The convention the interpreter uses is that the second local 868 // holds the first raw word of the native double representation. 869 // This is actually reasonable, since locals and stack arrays 870 // grow downwards in all implementations. 871 // (If, on some machine, the interpreter's Java locals or stack 872 // were to grow upwards, the embedded doubles would be word-swapped.) 873 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 874 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 875 } 876 #endif //_LP64 877 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 878 OptoReg::is_reg(regnum) ) { 879 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 880 ? Location::float_in_dbl : Location::normal )); 881 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 882 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 883 ? Location::int_in_long : Location::normal )); 884 } else if( t->base() == Type::NarrowOop ) { 885 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 886 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 887 t->base() == Type::VectorD || t->base() == Type::VectorX || 888 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 889 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 890 } else if (C->regalloc()->is_oop(local)) { 891 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr || 892 t->base() == Type::AryPtr, 893 "Unexpected type: %s", t->msg()); 894 array->append(new_loc_value( C->regalloc(), regnum, Location::oop )); 895 } else { 896 assert(t->base() == Type::Int || t->base() == Type::Half || 897 t->base() == Type::FloatCon || t->base() == Type::FloatBot, 898 "Unexpected type: %s", t->msg()); 899 array->append(new_loc_value( C->regalloc(), regnum, Location::normal )); 900 } 901 return; 902 } 903 904 // No register. It must be constant data. 905 switch (t->base()) { 906 case Type::Half: // Second half of a double 907 ShouldNotReachHere(); // Caller should skip 2nd halves 908 break; 909 case Type::AnyPtr: 910 array->append(new ConstantOopWriteValue(NULL)); 911 break; 912 case Type::AryPtr: 913 case Type::InstPtr: // fall through 914 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 915 break; 916 case Type::NarrowOop: 917 if (t == TypeNarrowOop::NULL_PTR) { 918 array->append(new ConstantOopWriteValue(NULL)); 919 } else { 920 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 921 } 922 break; 923 case Type::Int: 924 array->append(new ConstantIntValue(t->is_int()->get_con())); 925 break; 926 case Type::RawPtr: 927 // A return address (T_ADDRESS). 928 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 929 #ifdef _LP64 930 // Must be restored to the full-width 64-bit stack slot. 931 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 932 #else 933 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 934 #endif 935 break; 936 case Type::FloatCon: { 937 float f = t->is_float_constant()->getf(); 938 array->append(new ConstantIntValue(jint_cast(f))); 939 break; 940 } 941 case Type::DoubleCon: { 942 jdouble d = t->is_double_constant()->getd(); 943 #ifdef _LP64 944 array->append(new ConstantIntValue((jint)0)); 945 array->append(new ConstantDoubleValue(d)); 946 #else 947 // Repack the double as two jints. 948 // The convention the interpreter uses is that the second local 949 // holds the first raw word of the native double representation. 950 // This is actually reasonable, since locals and stack arrays 951 // grow downwards in all implementations. 952 // (If, on some machine, the interpreter's Java locals or stack 953 // were to grow upwards, the embedded doubles would be word-swapped.) 954 jlong_accessor acc; 955 acc.long_value = jlong_cast(d); 956 array->append(new ConstantIntValue(acc.words[1])); 957 array->append(new ConstantIntValue(acc.words[0])); 958 #endif 959 break; 960 } 961 case Type::Long: { 962 jlong d = t->is_long()->get_con(); 963 #ifdef _LP64 964 array->append(new ConstantIntValue((jint)0)); 965 array->append(new ConstantLongValue(d)); 966 #else 967 // Repack the long as two jints. 968 // The convention the interpreter uses is that the second local 969 // holds the first raw word of the native double representation. 970 // This is actually reasonable, since locals and stack arrays 971 // grow downwards in all implementations. 972 // (If, on some machine, the interpreter's Java locals or stack 973 // were to grow upwards, the embedded doubles would be word-swapped.) 974 jlong_accessor acc; 975 acc.long_value = d; 976 array->append(new ConstantIntValue(acc.words[1])); 977 array->append(new ConstantIntValue(acc.words[0])); 978 #endif 979 break; 980 } 981 case Type::Top: // Add an illegal value here 982 array->append(new LocationValue(Location())); 983 break; 984 default: 985 ShouldNotReachHere(); 986 break; 987 } 988 } 989 990 // Determine if this node starts a bundle 991 bool PhaseOutput::starts_bundle(const Node *n) const { 992 return (_node_bundling_limit > n->_idx && 993 _node_bundling_base[n->_idx].starts_bundle()); 994 } 995 996 //--------------------------Process_OopMap_Node-------------------------------- 997 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 998 // Handle special safepoint nodes for synchronization 999 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1000 MachCallNode *mcall; 1001 1002 int safepoint_pc_offset = current_offset; 1003 bool is_method_handle_invoke = false; 1004 bool return_oop = false; 1005 bool return_scalarized = false; 1006 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1007 bool arg_escape = false; 1008 1009 // Add the safepoint in the DebugInfoRecorder 1010 if( !mach->is_MachCall() ) { 1011 mcall = NULL; 1012 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1013 } else { 1014 mcall = mach->as_MachCall(); 1015 1016 // Is the call a MethodHandle call? 1017 if (mcall->is_MachCallJava()) { 1018 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1019 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1020 is_method_handle_invoke = true; 1021 } 1022 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1023 } 1024 1025 // Check if a call returns an object. 1026 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1027 return_oop = true; 1028 } 1029 if (mcall->returns_scalarized()) { 1030 return_scalarized = true; 1031 } 1032 safepoint_pc_offset += mcall->ret_addr_offset(); 1033 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1034 } 1035 1036 // Loop over the JVMState list to add scope information 1037 // Do not skip safepoints with a NULL method, they need monitor info 1038 JVMState* youngest_jvms = sfn->jvms(); 1039 int max_depth = youngest_jvms->depth(); 1040 1041 // Allocate the object pool for scalar-replaced objects -- the map from 1042 // small-integer keys (which can be recorded in the local and ostack 1043 // arrays) to descriptions of the object state. 1044 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1045 1046 // Visit scopes from oldest to youngest. 1047 for (int depth = 1; depth <= max_depth; depth++) { 1048 JVMState* jvms = youngest_jvms->of_depth(depth); 1049 int idx; 1050 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1051 // Safepoints that do not have method() set only provide oop-map and monitor info 1052 // to support GC; these do not support deoptimization. 1053 int num_locs = (method == NULL) ? 0 : jvms->loc_size(); 1054 int num_exps = (method == NULL) ? 0 : jvms->stk_size(); 1055 int num_mon = jvms->nof_monitors(); 1056 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), 1057 "JVMS local count must match that of the method"); 1058 1059 // Add Local and Expression Stack Information 1060 1061 // Insert locals into the locarray 1062 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1063 for( idx = 0; idx < num_locs; idx++ ) { 1064 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1065 } 1066 1067 // Insert expression stack entries into the exparray 1068 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1069 for( idx = 0; idx < num_exps; idx++ ) { 1070 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1071 } 1072 1073 // Add in mappings of the monitors 1074 assert( !method || 1075 !method->is_synchronized() || 1076 method->is_native() || 1077 num_mon > 0 || 1078 !GenerateSynchronizationCode, 1079 "monitors must always exist for synchronized methods"); 1080 1081 // Build the growable array of ScopeValues for exp stack 1082 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1083 1084 // Loop over monitors and insert into array 1085 for (idx = 0; idx < num_mon; idx++) { 1086 // Grab the node that defines this monitor 1087 Node* box_node = sfn->monitor_box(jvms, idx); 1088 Node* obj_node = sfn->monitor_obj(jvms, idx); 1089 1090 // Create ScopeValue for object 1091 ScopeValue *scval = NULL; 1092 1093 if (obj_node->is_SafePointScalarObject()) { 1094 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1095 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1096 if (scval == NULL) { 1097 const Type *t = spobj->bottom_type(); 1098 ciKlass* cik = t->is_oopptr()->exact_klass(); 1099 assert(cik->is_instance_klass() || 1100 cik->is_array_klass(), "Not supported allocation."); 1101 ObjectValue* sv = new ObjectValue(spobj->_idx, 1102 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 1103 PhaseOutput::set_sv_for_object_node(objs, sv); 1104 1105 uint first_ind = spobj->first_index(youngest_jvms); 1106 for (uint i = 0; i < spobj->n_fields(); i++) { 1107 Node* fld_node = sfn->in(first_ind+i); 1108 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1109 } 1110 scval = sv; 1111 } 1112 } else if (!obj_node->is_Con()) { 1113 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1114 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1115 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1116 } else { 1117 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1118 } 1119 } else { 1120 const TypePtr *tp = obj_node->get_ptr_type(); 1121 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1122 } 1123 1124 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1125 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1126 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1127 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1128 } 1129 1130 // We dump the object pool first, since deoptimization reads it in first. 1131 C->debug_info()->dump_object_pool(objs); 1132 1133 // Build first class objects to pass to scope 1134 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1135 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1136 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1137 1138 // Make method available for all Safepoints 1139 ciMethod* scope_method = method ? method : C->method(); 1140 // Describe the scope here 1141 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1142 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1143 // Now we can describe the scope. 1144 methodHandle null_mh; 1145 bool rethrow_exception = false; 1146 C->debug_info()->describe_scope( 1147 safepoint_pc_offset, 1148 null_mh, 1149 scope_method, 1150 jvms->bci(), 1151 jvms->should_reexecute(), 1152 rethrow_exception, 1153 is_method_handle_invoke, 1154 return_oop, 1155 return_scalarized, 1156 has_ea_local_in_scope, 1157 arg_escape, 1158 locvals, 1159 expvals, 1160 monvals 1161 ); 1162 } // End jvms loop 1163 1164 // Mark the end of the scope set. 1165 C->debug_info()->end_safepoint(safepoint_pc_offset); 1166 } 1167 1168 1169 1170 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1171 class NonSafepointEmitter { 1172 Compile* C; 1173 JVMState* _pending_jvms; 1174 int _pending_offset; 1175 1176 void emit_non_safepoint(); 1177 1178 public: 1179 NonSafepointEmitter(Compile* compile) { 1180 this->C = compile; 1181 _pending_jvms = NULL; 1182 _pending_offset = 0; 1183 } 1184 1185 void observe_instruction(Node* n, int pc_offset) { 1186 if (!C->debug_info()->recording_non_safepoints()) return; 1187 1188 Node_Notes* nn = C->node_notes_at(n->_idx); 1189 if (nn == NULL || nn->jvms() == NULL) return; 1190 if (_pending_jvms != NULL && 1191 _pending_jvms->same_calls_as(nn->jvms())) { 1192 // Repeated JVMS? Stretch it up here. 1193 _pending_offset = pc_offset; 1194 } else { 1195 if (_pending_jvms != NULL && 1196 _pending_offset < pc_offset) { 1197 emit_non_safepoint(); 1198 } 1199 _pending_jvms = NULL; 1200 if (pc_offset > C->debug_info()->last_pc_offset()) { 1201 // This is the only way _pending_jvms can become non-NULL: 1202 _pending_jvms = nn->jvms(); 1203 _pending_offset = pc_offset; 1204 } 1205 } 1206 } 1207 1208 // Stay out of the way of real safepoints: 1209 void observe_safepoint(JVMState* jvms, int pc_offset) { 1210 if (_pending_jvms != NULL && 1211 !_pending_jvms->same_calls_as(jvms) && 1212 _pending_offset < pc_offset) { 1213 emit_non_safepoint(); 1214 } 1215 _pending_jvms = NULL; 1216 } 1217 1218 void flush_at_end() { 1219 if (_pending_jvms != NULL) { 1220 emit_non_safepoint(); 1221 } 1222 _pending_jvms = NULL; 1223 } 1224 }; 1225 1226 void NonSafepointEmitter::emit_non_safepoint() { 1227 JVMState* youngest_jvms = _pending_jvms; 1228 int pc_offset = _pending_offset; 1229 1230 // Clear it now: 1231 _pending_jvms = NULL; 1232 1233 DebugInformationRecorder* debug_info = C->debug_info(); 1234 assert(debug_info->recording_non_safepoints(), "sanity"); 1235 1236 debug_info->add_non_safepoint(pc_offset); 1237 int max_depth = youngest_jvms->depth(); 1238 1239 // Visit scopes from oldest to youngest. 1240 for (int depth = 1; depth <= max_depth; depth++) { 1241 JVMState* jvms = youngest_jvms->of_depth(depth); 1242 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1243 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1244 methodHandle null_mh; 1245 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1246 } 1247 1248 // Mark the end of the scope set. 1249 debug_info->end_non_safepoint(pc_offset); 1250 } 1251 1252 //------------------------------init_buffer------------------------------------ 1253 void PhaseOutput::estimate_buffer_size(int& const_req) { 1254 1255 // Set the initially allocated size 1256 const_req = initial_const_capacity; 1257 1258 // The extra spacing after the code is necessary on some platforms. 1259 // Sometimes we need to patch in a jump after the last instruction, 1260 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1261 1262 // Compute the byte offset where we can store the deopt pc. 1263 if (C->fixed_slots() != 0) { 1264 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1265 } 1266 1267 // Compute prolog code size 1268 _method_size = 0; 1269 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1270 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1271 1272 if (C->has_mach_constant_base_node()) { 1273 uint add_size = 0; 1274 // Fill the constant table. 1275 // Note: This must happen before shorten_branches. 1276 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1277 Block* b = C->cfg()->get_block(i); 1278 1279 for (uint j = 0; j < b->number_of_nodes(); j++) { 1280 Node* n = b->get_node(j); 1281 1282 // If the node is a MachConstantNode evaluate the constant 1283 // value section. 1284 if (n->is_MachConstant()) { 1285 MachConstantNode* machcon = n->as_MachConstant(); 1286 machcon->eval_constant(C); 1287 } else if (n->is_Mach()) { 1288 // On Power there are more nodes that issue constants. 1289 add_size += (n->as_Mach()->ins_num_consts() * 8); 1290 } 1291 } 1292 } 1293 1294 // Calculate the offsets of the constants and the size of the 1295 // constant table (including the padding to the next section). 1296 constant_table().calculate_offsets_and_size(); 1297 const_req = constant_table().size() + add_size; 1298 } 1299 1300 // Initialize the space for the BufferBlob used to find and verify 1301 // instruction size in MachNode::emit_size() 1302 init_scratch_buffer_blob(const_req); 1303 } 1304 1305 CodeBuffer* PhaseOutput::init_buffer() { 1306 int stub_req = _buf_sizes._stub; 1307 int code_req = _buf_sizes._code; 1308 int const_req = _buf_sizes._const; 1309 1310 int pad_req = NativeCall::instruction_size; 1311 1312 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1313 stub_req += bs->estimate_stub_size(); 1314 1315 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1316 // class HandlerImpl is platform-specific and defined in the *.ad files. 1317 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1318 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1319 stub_req += MAX_stubs_size; // ensure per-stub margin 1320 code_req += MAX_inst_size; // ensure per-instruction margin 1321 1322 if (StressCodeBuffers) 1323 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1324 1325 int total_req = 1326 const_req + 1327 code_req + 1328 pad_req + 1329 stub_req + 1330 exception_handler_req + 1331 deopt_handler_req; // deopt handler 1332 1333 if (C->has_method_handle_invokes()) 1334 total_req += deopt_handler_req; // deopt MH handler 1335 1336 CodeBuffer* cb = code_buffer(); 1337 cb->initialize(total_req, _buf_sizes._reloc); 1338 1339 // Have we run out of code space? 1340 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1341 C->record_failure("CodeCache is full"); 1342 return NULL; 1343 } 1344 // Configure the code buffer. 1345 cb->initialize_consts_size(const_req); 1346 cb->initialize_stubs_size(stub_req); 1347 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1348 1349 // fill in the nop array for bundling computations 1350 MachNode *_nop_list[Bundle::_nop_count]; 1351 Bundle::initialize_nops(_nop_list); 1352 1353 return cb; 1354 } 1355 1356 //------------------------------fill_buffer------------------------------------ 1357 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1358 // blk_starts[] contains offsets calculated during short branches processing, 1359 // offsets should not be increased during following steps. 1360 1361 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1362 // of a loop. It is used to determine the padding for loop alignment. 1363 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1364 1365 compute_loop_first_inst_sizes(); 1366 1367 // Create oopmap set. 1368 _oop_map_set = new OopMapSet(); 1369 1370 // !!!!! This preserves old handling of oopmaps for now 1371 C->debug_info()->set_oopmaps(_oop_map_set); 1372 1373 uint nblocks = C->cfg()->number_of_blocks(); 1374 // Count and start of implicit null check instructions 1375 uint inct_cnt = 0; 1376 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1377 1378 // Count and start of calls 1379 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1380 1381 uint return_offset = 0; 1382 int nop_size = (new MachNopNode())->size(C->regalloc()); 1383 1384 int previous_offset = 0; 1385 int current_offset = 0; 1386 int last_call_offset = -1; 1387 int last_avoid_back_to_back_offset = -1; 1388 #ifdef ASSERT 1389 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1390 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1391 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1392 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1393 #endif 1394 1395 // Create an array of unused labels, one for each basic block, if printing is enabled 1396 #if defined(SUPPORT_OPTO_ASSEMBLY) 1397 int* node_offsets = NULL; 1398 uint node_offset_limit = C->unique(); 1399 1400 if (C->print_assembly()) { 1401 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1402 } 1403 if (node_offsets != NULL) { 1404 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1405 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1406 } 1407 #endif 1408 1409 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1410 1411 // Emit the constant table. 1412 if (C->has_mach_constant_base_node()) { 1413 if (!constant_table().emit(*cb)) { 1414 C->record_failure("consts section overflow"); 1415 return; 1416 } 1417 } 1418 1419 // Create an array of labels, one for each basic block 1420 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1421 for (uint i = 0; i <= nblocks; i++) { 1422 blk_labels[i].init(); 1423 } 1424 1425 // Now fill in the code buffer 1426 Node* delay_slot = NULL; 1427 for (uint i = 0; i < nblocks; i++) { 1428 Block* block = C->cfg()->get_block(i); 1429 _block = block; 1430 Node* head = block->head(); 1431 1432 // If this block needs to start aligned (i.e, can be reached other 1433 // than by falling-thru from the previous block), then force the 1434 // start of a new bundle. 1435 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1436 cb->flush_bundle(true); 1437 } 1438 1439 #ifdef ASSERT 1440 if (!block->is_connector()) { 1441 stringStream st; 1442 block->dump_head(C->cfg(), &st); 1443 MacroAssembler(cb).block_comment(st.freeze()); 1444 } 1445 jmp_target[i] = 0; 1446 jmp_offset[i] = 0; 1447 jmp_size[i] = 0; 1448 jmp_rule[i] = 0; 1449 #endif 1450 int blk_offset = current_offset; 1451 1452 // Define the label at the beginning of the basic block 1453 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1454 1455 uint last_inst = block->number_of_nodes(); 1456 1457 // Emit block normally, except for last instruction. 1458 // Emit means "dump code bits into code buffer". 1459 for (uint j = 0; j<last_inst; j++) { 1460 _index = j; 1461 1462 // Get the node 1463 Node* n = block->get_node(j); 1464 1465 // See if delay slots are supported 1466 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1467 assert(delay_slot == NULL, "no use of delay slot node"); 1468 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1469 1470 delay_slot = n; 1471 continue; 1472 } 1473 1474 // If this starts a new instruction group, then flush the current one 1475 // (but allow split bundles) 1476 if (Pipeline::requires_bundling() && starts_bundle(n)) 1477 cb->flush_bundle(false); 1478 1479 // Special handling for SafePoint/Call Nodes 1480 bool is_mcall = false; 1481 if (n->is_Mach()) { 1482 MachNode *mach = n->as_Mach(); 1483 is_mcall = n->is_MachCall(); 1484 bool is_sfn = n->is_MachSafePoint(); 1485 1486 // If this requires all previous instructions be flushed, then do so 1487 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1488 cb->flush_bundle(true); 1489 current_offset = cb->insts_size(); 1490 } 1491 1492 // A padding may be needed again since a previous instruction 1493 // could be moved to delay slot. 1494 1495 // align the instruction if necessary 1496 int padding = mach->compute_padding(current_offset); 1497 // Make sure safepoint node for polling is distinct from a call's 1498 // return by adding a nop if needed. 1499 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1500 padding = nop_size; 1501 } 1502 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1503 current_offset == last_avoid_back_to_back_offset) { 1504 // Avoid back to back some instructions. 1505 padding = nop_size; 1506 } 1507 1508 if (padding > 0) { 1509 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1510 int nops_cnt = padding / nop_size; 1511 MachNode *nop = new MachNopNode(nops_cnt); 1512 block->insert_node(nop, j++); 1513 last_inst++; 1514 C->cfg()->map_node_to_block(nop, block); 1515 // Ensure enough space. 1516 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1517 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1518 C->record_failure("CodeCache is full"); 1519 return; 1520 } 1521 nop->emit(*cb, C->regalloc()); 1522 cb->flush_bundle(true); 1523 current_offset = cb->insts_size(); 1524 } 1525 1526 bool observe_safepoint = is_sfn; 1527 // Remember the start of the last call in a basic block 1528 if (is_mcall) { 1529 MachCallNode *mcall = mach->as_MachCall(); 1530 1531 if (mcall->entry_point() != NULL) { 1532 // This destination address is NOT PC-relative 1533 mcall->method_set((intptr_t)mcall->entry_point()); 1534 } 1535 1536 // Save the return address 1537 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1538 1539 observe_safepoint = mcall->guaranteed_safepoint(); 1540 } 1541 1542 // sfn will be valid whenever mcall is valid now because of inheritance 1543 if (observe_safepoint) { 1544 // Handle special safepoint nodes for synchronization 1545 if (!is_mcall) { 1546 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1547 // !!!!! Stubs only need an oopmap right now, so bail out 1548 if (sfn->jvms()->method() == NULL) { 1549 // Write the oopmap directly to the code blob??!! 1550 continue; 1551 } 1552 } // End synchronization 1553 1554 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1555 current_offset); 1556 Process_OopMap_Node(mach, current_offset); 1557 } // End if safepoint 1558 1559 // If this is a null check, then add the start of the previous instruction to the list 1560 else if( mach->is_MachNullCheck() ) { 1561 inct_starts[inct_cnt++] = previous_offset; 1562 } 1563 1564 // If this is a branch, then fill in the label with the target BB's label 1565 else if (mach->is_MachBranch()) { 1566 // This requires the TRUE branch target be in succs[0] 1567 uint block_num = block->non_connector_successor(0)->_pre_order; 1568 1569 // Try to replace long branch if delay slot is not used, 1570 // it is mostly for back branches since forward branch's 1571 // distance is not updated yet. 1572 bool delay_slot_is_used = valid_bundle_info(n) && 1573 C->output()->node_bundling(n)->use_unconditional_delay(); 1574 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1575 assert(delay_slot == NULL, "not expecting delay slot node"); 1576 int br_size = n->size(C->regalloc()); 1577 int offset = blk_starts[block_num] - current_offset; 1578 if (block_num >= i) { 1579 // Current and following block's offset are not 1580 // finalized yet, adjust distance by the difference 1581 // between calculated and final offsets of current block. 1582 offset -= (blk_starts[i] - blk_offset); 1583 } 1584 // In the following code a nop could be inserted before 1585 // the branch which will increase the backward distance. 1586 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1587 if (needs_padding && offset <= 0) 1588 offset -= nop_size; 1589 1590 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1591 // We've got a winner. Replace this branch. 1592 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1593 1594 // Update the jmp_size. 1595 int new_size = replacement->size(C->regalloc()); 1596 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1597 // Insert padding between avoid_back_to_back branches. 1598 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1599 MachNode *nop = new MachNopNode(); 1600 block->insert_node(nop, j++); 1601 C->cfg()->map_node_to_block(nop, block); 1602 last_inst++; 1603 nop->emit(*cb, C->regalloc()); 1604 cb->flush_bundle(true); 1605 current_offset = cb->insts_size(); 1606 } 1607 #ifdef ASSERT 1608 jmp_target[i] = block_num; 1609 jmp_offset[i] = current_offset - blk_offset; 1610 jmp_size[i] = new_size; 1611 jmp_rule[i] = mach->rule(); 1612 #endif 1613 block->map_node(replacement, j); 1614 mach->subsume_by(replacement, C); 1615 n = replacement; 1616 mach = replacement; 1617 } 1618 } 1619 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1620 } else if (mach->ideal_Opcode() == Op_Jump) { 1621 for (uint h = 0; h < block->_num_succs; h++) { 1622 Block* succs_block = block->_succs[h]; 1623 for (uint j = 1; j < succs_block->num_preds(); j++) { 1624 Node* jpn = succs_block->pred(j); 1625 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1626 uint block_num = succs_block->non_connector()->_pre_order; 1627 Label *blkLabel = &blk_labels[block_num]; 1628 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1629 } 1630 } 1631 } 1632 } 1633 #ifdef ASSERT 1634 // Check that oop-store precedes the card-mark 1635 else if (mach->ideal_Opcode() == Op_StoreCM) { 1636 uint storeCM_idx = j; 1637 int count = 0; 1638 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1639 Node *oop_store = mach->in(prec); // Precedence edge 1640 if (oop_store == NULL) continue; 1641 count++; 1642 uint i4; 1643 for (i4 = 0; i4 < last_inst; ++i4) { 1644 if (block->get_node(i4) == oop_store) { 1645 break; 1646 } 1647 } 1648 // Note: This test can provide a false failure if other precedence 1649 // edges have been added to the storeCMNode. 1650 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1651 } 1652 assert(count > 0, "storeCM expects at least one precedence edge"); 1653 } 1654 #endif 1655 else if (!n->is_Proj()) { 1656 // Remember the beginning of the previous instruction, in case 1657 // it's followed by a flag-kill and a null-check. Happens on 1658 // Intel all the time, with add-to-memory kind of opcodes. 1659 previous_offset = current_offset; 1660 } 1661 1662 // Not an else-if! 1663 // If this is a trap based cmp then add its offset to the list. 1664 if (mach->is_TrapBasedCheckNode()) { 1665 inct_starts[inct_cnt++] = current_offset; 1666 } 1667 } 1668 1669 // Verify that there is sufficient space remaining 1670 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1671 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1672 C->record_failure("CodeCache is full"); 1673 return; 1674 } 1675 1676 // Save the offset for the listing 1677 #if defined(SUPPORT_OPTO_ASSEMBLY) 1678 if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) { 1679 node_offsets[n->_idx] = cb->insts_size(); 1680 } 1681 #endif 1682 assert(!C->failing(), "Should not reach here if failing."); 1683 1684 // "Normal" instruction case 1685 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1686 n->emit(*cb, C->regalloc()); 1687 current_offset = cb->insts_size(); 1688 1689 // Above we only verified that there is enough space in the instruction section. 1690 // However, the instruction may emit stubs that cause code buffer expansion. 1691 // Bail out here if expansion failed due to a lack of code cache space. 1692 if (C->failing()) { 1693 return; 1694 } 1695 1696 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1697 "ret_addr_offset() not within emitted code"); 1698 #ifdef ASSERT 1699 uint n_size = n->size(C->regalloc()); 1700 if (n_size < (current_offset-instr_offset)) { 1701 MachNode* mach = n->as_Mach(); 1702 n->dump(); 1703 mach->dump_format(C->regalloc(), tty); 1704 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1705 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1706 tty->print_cr(" ------------------- "); 1707 BufferBlob* blob = this->scratch_buffer_blob(); 1708 address blob_begin = blob->content_begin(); 1709 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1710 assert(false, "wrong size of mach node"); 1711 } 1712 #endif 1713 non_safepoints.observe_instruction(n, current_offset); 1714 1715 // mcall is last "call" that can be a safepoint 1716 // record it so we can see if a poll will directly follow it 1717 // in which case we'll need a pad to make the PcDesc sites unique 1718 // see 5010568. This can be slightly inaccurate but conservative 1719 // in the case that return address is not actually at current_offset. 1720 // This is a small price to pay. 1721 1722 if (is_mcall) { 1723 last_call_offset = current_offset; 1724 } 1725 1726 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1727 // Avoid back to back some instructions. 1728 last_avoid_back_to_back_offset = current_offset; 1729 } 1730 1731 // See if this instruction has a delay slot 1732 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1733 guarantee(delay_slot != NULL, "expecting delay slot node"); 1734 1735 // Back up 1 instruction 1736 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1737 1738 // Save the offset for the listing 1739 #if defined(SUPPORT_OPTO_ASSEMBLY) 1740 if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) { 1741 node_offsets[delay_slot->_idx] = cb->insts_size(); 1742 } 1743 #endif 1744 1745 // Support a SafePoint in the delay slot 1746 if (delay_slot->is_MachSafePoint()) { 1747 MachNode *mach = delay_slot->as_Mach(); 1748 // !!!!! Stubs only need an oopmap right now, so bail out 1749 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) { 1750 // Write the oopmap directly to the code blob??!! 1751 delay_slot = NULL; 1752 continue; 1753 } 1754 1755 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1756 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1757 adjusted_offset); 1758 // Generate an OopMap entry 1759 Process_OopMap_Node(mach, adjusted_offset); 1760 } 1761 1762 // Insert the delay slot instruction 1763 delay_slot->emit(*cb, C->regalloc()); 1764 1765 // Don't reuse it 1766 delay_slot = NULL; 1767 } 1768 1769 } // End for all instructions in block 1770 1771 // If the next block is the top of a loop, pad this block out to align 1772 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1773 if (i < nblocks-1) { 1774 Block *nb = C->cfg()->get_block(i + 1); 1775 int padding = nb->alignment_padding(current_offset); 1776 if( padding > 0 ) { 1777 MachNode *nop = new MachNopNode(padding / nop_size); 1778 block->insert_node(nop, block->number_of_nodes()); 1779 C->cfg()->map_node_to_block(nop, block); 1780 nop->emit(*cb, C->regalloc()); 1781 current_offset = cb->insts_size(); 1782 } 1783 } 1784 // Verify that the distance for generated before forward 1785 // short branches is still valid. 1786 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1787 1788 // Save new block start offset 1789 blk_starts[i] = blk_offset; 1790 } // End of for all blocks 1791 blk_starts[nblocks] = current_offset; 1792 1793 non_safepoints.flush_at_end(); 1794 1795 // Offset too large? 1796 if (C->failing()) return; 1797 1798 // Define a pseudo-label at the end of the code 1799 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1800 1801 // Compute the size of the first block 1802 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1803 1804 #ifdef ASSERT 1805 for (uint i = 0; i < nblocks; i++) { // For all blocks 1806 if (jmp_target[i] != 0) { 1807 int br_size = jmp_size[i]; 1808 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1809 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1810 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1811 assert(false, "Displacement too large for short jmp"); 1812 } 1813 } 1814 } 1815 #endif 1816 1817 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1818 bs->emit_stubs(*cb); 1819 if (C->failing()) return; 1820 1821 // Fill in stubs. 1822 _stub_list.emit(*cb); 1823 if (C->failing()) return; 1824 1825 #ifndef PRODUCT 1826 // Information on the size of the method, without the extraneous code 1827 Scheduling::increment_method_size(cb->insts_size()); 1828 #endif 1829 1830 // ------------------ 1831 // Fill in exception table entries. 1832 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1833 1834 // Only java methods have exception handlers and deopt handlers 1835 // class HandlerImpl is platform-specific and defined in the *.ad files. 1836 if (C->method()) { 1837 // Emit the exception handler code. 1838 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1839 if (C->failing()) { 1840 return; // CodeBuffer::expand failed 1841 } 1842 // Emit the deopt handler code. 1843 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1844 1845 // Emit the MethodHandle deopt handler code (if required). 1846 if (C->has_method_handle_invokes() && !C->failing()) { 1847 // We can use the same code as for the normal deopt handler, we 1848 // just need a different entry point address. 1849 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1850 } 1851 } 1852 1853 // One last check for failed CodeBuffer::expand: 1854 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1855 C->record_failure("CodeCache is full"); 1856 return; 1857 } 1858 1859 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1860 if (C->print_assembly()) { 1861 tty->cr(); 1862 tty->print_cr("============================= C2-compiled nmethod =============================="); 1863 } 1864 #endif 1865 1866 #if defined(SUPPORT_OPTO_ASSEMBLY) 1867 // Dump the assembly code, including basic-block numbers 1868 if (C->print_assembly()) { 1869 ttyLocker ttyl; // keep the following output all in one block 1870 if (!VMThread::should_terminate()) { // test this under the tty lock 1871 // print_metadata and dump_asm may safepoint which makes us loose the ttylock. 1872 // We call them first and write to a stringStream, then we retake the lock to 1873 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe. 1874 ResourceMark rm; 1875 stringStream method_metadata_str; 1876 if (C->method() != NULL) { 1877 C->method()->print_metadata(&method_metadata_str); 1878 } 1879 stringStream dump_asm_str; 1880 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit); 1881 1882 NoSafepointVerifier nsv; 1883 ttyLocker ttyl2; 1884 // This output goes directly to the tty, not the compiler log. 1885 // To enable tools to match it up with the compilation activity, 1886 // be sure to tag this tty output with the compile ID. 1887 if (xtty != NULL) { 1888 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1889 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1890 } 1891 if (C->method() != NULL) { 1892 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1893 tty->print_raw(method_metadata_str.freeze()); 1894 } else if (C->stub_name() != NULL) { 1895 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1896 } 1897 tty->cr(); 1898 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1899 tty->print_raw(dump_asm_str.freeze()); 1900 tty->print_cr("--------------------------------------------------------------------------------"); 1901 if (xtty != NULL) { 1902 xtty->tail("opto_assembly"); 1903 } 1904 } 1905 } 1906 #endif 1907 } 1908 1909 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1910 _inc_table.set_size(cnt); 1911 1912 uint inct_cnt = 0; 1913 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1914 Block* block = C->cfg()->get_block(i); 1915 Node *n = NULL; 1916 int j; 1917 1918 // Find the branch; ignore trailing NOPs. 1919 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1920 n = block->get_node(j); 1921 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1922 break; 1923 } 1924 } 1925 1926 // If we didn't find anything, continue 1927 if (j < 0) { 1928 continue; 1929 } 1930 1931 // Compute ExceptionHandlerTable subtable entry and add it 1932 // (skip empty blocks) 1933 if (n->is_Catch()) { 1934 1935 // Get the offset of the return from the call 1936 uint call_return = call_returns[block->_pre_order]; 1937 #ifdef ASSERT 1938 assert( call_return > 0, "no call seen for this basic block" ); 1939 while (block->get_node(--j)->is_MachProj()) ; 1940 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1941 #endif 1942 // last instruction is a CatchNode, find it's CatchProjNodes 1943 int nof_succs = block->_num_succs; 1944 // allocate space 1945 GrowableArray<intptr_t> handler_bcis(nof_succs); 1946 GrowableArray<intptr_t> handler_pcos(nof_succs); 1947 // iterate through all successors 1948 for (int j = 0; j < nof_succs; j++) { 1949 Block* s = block->_succs[j]; 1950 bool found_p = false; 1951 for (uint k = 1; k < s->num_preds(); k++) { 1952 Node* pk = s->pred(k); 1953 if (pk->is_CatchProj() && pk->in(0) == n) { 1954 const CatchProjNode* p = pk->as_CatchProj(); 1955 found_p = true; 1956 // add the corresponding handler bci & pco information 1957 if (p->_con != CatchProjNode::fall_through_index) { 1958 // p leads to an exception handler (and is not fall through) 1959 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1960 // no duplicates, please 1961 if (!handler_bcis.contains(p->handler_bci())) { 1962 uint block_num = s->non_connector()->_pre_order; 1963 handler_bcis.append(p->handler_bci()); 1964 handler_pcos.append(blk_labels[block_num].loc_pos()); 1965 } 1966 } 1967 } 1968 } 1969 assert(found_p, "no matching predecessor found"); 1970 // Note: Due to empty block removal, one block may have 1971 // several CatchProj inputs, from the same Catch. 1972 } 1973 1974 // Set the offset of the return from the call 1975 assert(handler_bcis.find(-1) != -1, "must have default handler"); 1976 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); 1977 continue; 1978 } 1979 1980 // Handle implicit null exception table updates 1981 if (n->is_MachNullCheck()) { 1982 uint block_num = block->non_connector_successor(0)->_pre_order; 1983 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1984 continue; 1985 } 1986 // Handle implicit exception table updates: trap instructions. 1987 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 1988 uint block_num = block->non_connector_successor(0)->_pre_order; 1989 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1990 continue; 1991 } 1992 } // End of for all blocks fill in exception table entries 1993 } 1994 1995 // Static Variables 1996 #ifndef PRODUCT 1997 uint Scheduling::_total_nop_size = 0; 1998 uint Scheduling::_total_method_size = 0; 1999 uint Scheduling::_total_branches = 0; 2000 uint Scheduling::_total_unconditional_delays = 0; 2001 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2002 #endif 2003 2004 // Initializer for class Scheduling 2005 2006 Scheduling::Scheduling(Arena *arena, Compile &compile) 2007 : _arena(arena), 2008 _cfg(compile.cfg()), 2009 _regalloc(compile.regalloc()), 2010 _scheduled(arena), 2011 _available(arena), 2012 _reg_node(arena), 2013 _pinch_free_list(arena), 2014 _next_node(NULL), 2015 _bundle_instr_count(0), 2016 _bundle_cycle_number(0), 2017 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2018 #ifndef PRODUCT 2019 , _branches(0) 2020 , _unconditional_delays(0) 2021 #endif 2022 { 2023 // Create a MachNopNode 2024 _nop = new MachNopNode(); 2025 2026 // Now that the nops are in the array, save the count 2027 // (but allow entries for the nops) 2028 _node_bundling_limit = compile.unique(); 2029 uint node_max = _regalloc->node_regs_max_index(); 2030 2031 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2032 2033 // This one is persistent within the Compile class 2034 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2035 2036 // Allocate space for fixed-size arrays 2037 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2038 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2039 2040 // Clear the arrays 2041 for (uint i = 0; i < node_max; i++) { 2042 ::new (&_node_bundling_base[i]) Bundle(); 2043 } 2044 memset(_uses, 0, node_max * sizeof(short)); 2045 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2046 2047 // Clear the bundling information 2048 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2049 2050 // Get the last node 2051 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2052 2053 _next_node = block->get_node(block->number_of_nodes() - 1); 2054 } 2055 2056 #ifndef PRODUCT 2057 // Scheduling destructor 2058 Scheduling::~Scheduling() { 2059 _total_branches += _branches; 2060 _total_unconditional_delays += _unconditional_delays; 2061 } 2062 #endif 2063 2064 // Step ahead "i" cycles 2065 void Scheduling::step(uint i) { 2066 2067 Bundle *bundle = node_bundling(_next_node); 2068 bundle->set_starts_bundle(); 2069 2070 // Update the bundle record, but leave the flags information alone 2071 if (_bundle_instr_count > 0) { 2072 bundle->set_instr_count(_bundle_instr_count); 2073 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2074 } 2075 2076 // Update the state information 2077 _bundle_instr_count = 0; 2078 _bundle_cycle_number += i; 2079 _bundle_use.step(i); 2080 } 2081 2082 void Scheduling::step_and_clear() { 2083 Bundle *bundle = node_bundling(_next_node); 2084 bundle->set_starts_bundle(); 2085 2086 // Update the bundle record 2087 if (_bundle_instr_count > 0) { 2088 bundle->set_instr_count(_bundle_instr_count); 2089 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2090 2091 _bundle_cycle_number += 1; 2092 } 2093 2094 // Clear the bundling information 2095 _bundle_instr_count = 0; 2096 _bundle_use.reset(); 2097 2098 memcpy(_bundle_use_elements, 2099 Pipeline_Use::elaborated_elements, 2100 sizeof(Pipeline_Use::elaborated_elements)); 2101 } 2102 2103 // Perform instruction scheduling and bundling over the sequence of 2104 // instructions in backwards order. 2105 void PhaseOutput::ScheduleAndBundle() { 2106 2107 // Don't optimize this if it isn't a method 2108 if (!C->method()) 2109 return; 2110 2111 // Don't optimize this if scheduling is disabled 2112 if (!C->do_scheduling()) 2113 return; 2114 2115 // Scheduling code works only with pairs (8 bytes) maximum. 2116 // And when the scalable vector register is used, we may spill/unspill 2117 // the whole reg regardless of the max vector size. 2118 if (C->max_vector_size() > 8 || 2119 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2120 return; 2121 } 2122 2123 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2124 2125 // Create a data structure for all the scheduling information 2126 Scheduling scheduling(Thread::current()->resource_area(), *C); 2127 2128 // Walk backwards over each basic block, computing the needed alignment 2129 // Walk over all the basic blocks 2130 scheduling.DoScheduling(); 2131 2132 #ifndef PRODUCT 2133 if (C->trace_opto_output()) { 2134 tty->print("\n---- After ScheduleAndBundle ----\n"); 2135 print_scheduling(); 2136 } 2137 #endif 2138 } 2139 2140 #ifndef PRODUCT 2141 // Separated out so that it can be called directly from debugger 2142 void PhaseOutput::print_scheduling() { 2143 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2144 tty->print("\nBB#%03d:\n", i); 2145 Block* block = C->cfg()->get_block(i); 2146 for (uint j = 0; j < block->number_of_nodes(); j++) { 2147 Node* n = block->get_node(j); 2148 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2149 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2150 n->dump(); 2151 } 2152 } 2153 } 2154 #endif 2155 2156 // See if this node fits into the present instruction bundle 2157 bool Scheduling::NodeFitsInBundle(Node *n) { 2158 uint n_idx = n->_idx; 2159 2160 // If this is the unconditional delay instruction, then it fits 2161 if (n == _unconditional_delay_slot) { 2162 #ifndef PRODUCT 2163 if (_cfg->C->trace_opto_output()) 2164 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2165 #endif 2166 return (true); 2167 } 2168 2169 // If the node cannot be scheduled this cycle, skip it 2170 if (_current_latency[n_idx] > _bundle_cycle_number) { 2171 #ifndef PRODUCT 2172 if (_cfg->C->trace_opto_output()) 2173 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2174 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2175 #endif 2176 return (false); 2177 } 2178 2179 const Pipeline *node_pipeline = n->pipeline(); 2180 2181 uint instruction_count = node_pipeline->instructionCount(); 2182 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2183 instruction_count = 0; 2184 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2185 instruction_count++; 2186 2187 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2188 #ifndef PRODUCT 2189 if (_cfg->C->trace_opto_output()) 2190 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2191 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2192 #endif 2193 return (false); 2194 } 2195 2196 // Don't allow non-machine nodes to be handled this way 2197 if (!n->is_Mach() && instruction_count == 0) 2198 return (false); 2199 2200 // See if there is any overlap 2201 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2202 2203 if (delay > 0) { 2204 #ifndef PRODUCT 2205 if (_cfg->C->trace_opto_output()) 2206 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2207 #endif 2208 return false; 2209 } 2210 2211 #ifndef PRODUCT 2212 if (_cfg->C->trace_opto_output()) 2213 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2214 #endif 2215 2216 return true; 2217 } 2218 2219 Node * Scheduling::ChooseNodeToBundle() { 2220 uint siz = _available.size(); 2221 2222 if (siz == 0) { 2223 2224 #ifndef PRODUCT 2225 if (_cfg->C->trace_opto_output()) 2226 tty->print("# ChooseNodeToBundle: NULL\n"); 2227 #endif 2228 return (NULL); 2229 } 2230 2231 // Fast path, if only 1 instruction in the bundle 2232 if (siz == 1) { 2233 #ifndef PRODUCT 2234 if (_cfg->C->trace_opto_output()) { 2235 tty->print("# ChooseNodeToBundle (only 1): "); 2236 _available[0]->dump(); 2237 } 2238 #endif 2239 return (_available[0]); 2240 } 2241 2242 // Don't bother, if the bundle is already full 2243 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2244 for ( uint i = 0; i < siz; i++ ) { 2245 Node *n = _available[i]; 2246 2247 // Skip projections, we'll handle them another way 2248 if (n->is_Proj()) 2249 continue; 2250 2251 // This presupposed that instructions are inserted into the 2252 // available list in a legality order; i.e. instructions that 2253 // must be inserted first are at the head of the list 2254 if (NodeFitsInBundle(n)) { 2255 #ifndef PRODUCT 2256 if (_cfg->C->trace_opto_output()) { 2257 tty->print("# ChooseNodeToBundle: "); 2258 n->dump(); 2259 } 2260 #endif 2261 return (n); 2262 } 2263 } 2264 } 2265 2266 // Nothing fits in this bundle, choose the highest priority 2267 #ifndef PRODUCT 2268 if (_cfg->C->trace_opto_output()) { 2269 tty->print("# ChooseNodeToBundle: "); 2270 _available[0]->dump(); 2271 } 2272 #endif 2273 2274 return _available[0]; 2275 } 2276 2277 void Scheduling::AddNodeToAvailableList(Node *n) { 2278 assert( !n->is_Proj(), "projections never directly made available" ); 2279 #ifndef PRODUCT 2280 if (_cfg->C->trace_opto_output()) { 2281 tty->print("# AddNodeToAvailableList: "); 2282 n->dump(); 2283 } 2284 #endif 2285 2286 int latency = _current_latency[n->_idx]; 2287 2288 // Insert in latency order (insertion sort) 2289 uint i; 2290 for ( i=0; i < _available.size(); i++ ) 2291 if (_current_latency[_available[i]->_idx] > latency) 2292 break; 2293 2294 // Special Check for compares following branches 2295 if( n->is_Mach() && _scheduled.size() > 0 ) { 2296 int op = n->as_Mach()->ideal_Opcode(); 2297 Node *last = _scheduled[0]; 2298 if( last->is_MachIf() && last->in(1) == n && 2299 ( op == Op_CmpI || 2300 op == Op_CmpU || 2301 op == Op_CmpUL || 2302 op == Op_CmpP || 2303 op == Op_CmpF || 2304 op == Op_CmpD || 2305 op == Op_CmpL ) ) { 2306 2307 // Recalculate position, moving to front of same latency 2308 for ( i=0 ; i < _available.size(); i++ ) 2309 if (_current_latency[_available[i]->_idx] >= latency) 2310 break; 2311 } 2312 } 2313 2314 // Insert the node in the available list 2315 _available.insert(i, n); 2316 2317 #ifndef PRODUCT 2318 if (_cfg->C->trace_opto_output()) 2319 dump_available(); 2320 #endif 2321 } 2322 2323 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2324 for ( uint i=0; i < n->len(); i++ ) { 2325 Node *def = n->in(i); 2326 if (!def) continue; 2327 if( def->is_Proj() ) // If this is a machine projection, then 2328 def = def->in(0); // propagate usage thru to the base instruction 2329 2330 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2331 continue; 2332 } 2333 2334 // Compute the latency 2335 uint l = _bundle_cycle_number + n->latency(i); 2336 if (_current_latency[def->_idx] < l) 2337 _current_latency[def->_idx] = l; 2338 2339 // If this does not have uses then schedule it 2340 if ((--_uses[def->_idx]) == 0) 2341 AddNodeToAvailableList(def); 2342 } 2343 } 2344 2345 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2346 #ifndef PRODUCT 2347 if (_cfg->C->trace_opto_output()) { 2348 tty->print("# AddNodeToBundle: "); 2349 n->dump(); 2350 } 2351 #endif 2352 2353 // Remove this from the available list 2354 uint i; 2355 for (i = 0; i < _available.size(); i++) 2356 if (_available[i] == n) 2357 break; 2358 assert(i < _available.size(), "entry in _available list not found"); 2359 _available.remove(i); 2360 2361 // See if this fits in the current bundle 2362 const Pipeline *node_pipeline = n->pipeline(); 2363 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2364 2365 // Check for instructions to be placed in the delay slot. We 2366 // do this before we actually schedule the current instruction, 2367 // because the delay slot follows the current instruction. 2368 if (Pipeline::_branch_has_delay_slot && 2369 node_pipeline->hasBranchDelay() && 2370 !_unconditional_delay_slot) { 2371 2372 uint siz = _available.size(); 2373 2374 // Conditional branches can support an instruction that 2375 // is unconditionally executed and not dependent by the 2376 // branch, OR a conditionally executed instruction if 2377 // the branch is taken. In practice, this means that 2378 // the first instruction at the branch target is 2379 // copied to the delay slot, and the branch goes to 2380 // the instruction after that at the branch target 2381 if ( n->is_MachBranch() ) { 2382 2383 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2384 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2385 2386 #ifndef PRODUCT 2387 _branches++; 2388 #endif 2389 2390 // At least 1 instruction is on the available list 2391 // that is not dependent on the branch 2392 for (uint i = 0; i < siz; i++) { 2393 Node *d = _available[i]; 2394 const Pipeline *avail_pipeline = d->pipeline(); 2395 2396 // Don't allow safepoints in the branch shadow, that will 2397 // cause a number of difficulties 2398 if ( avail_pipeline->instructionCount() == 1 && 2399 !avail_pipeline->hasMultipleBundles() && 2400 !avail_pipeline->hasBranchDelay() && 2401 Pipeline::instr_has_unit_size() && 2402 d->size(_regalloc) == Pipeline::instr_unit_size() && 2403 NodeFitsInBundle(d) && 2404 !node_bundling(d)->used_in_delay()) { 2405 2406 if (d->is_Mach() && !d->is_MachSafePoint()) { 2407 // A node that fits in the delay slot was found, so we need to 2408 // set the appropriate bits in the bundle pipeline information so 2409 // that it correctly indicates resource usage. Later, when we 2410 // attempt to add this instruction to the bundle, we will skip 2411 // setting the resource usage. 2412 _unconditional_delay_slot = d; 2413 node_bundling(n)->set_use_unconditional_delay(); 2414 node_bundling(d)->set_used_in_unconditional_delay(); 2415 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2416 _current_latency[d->_idx] = _bundle_cycle_number; 2417 _next_node = d; 2418 ++_bundle_instr_count; 2419 #ifndef PRODUCT 2420 _unconditional_delays++; 2421 #endif 2422 break; 2423 } 2424 } 2425 } 2426 } 2427 2428 // No delay slot, add a nop to the usage 2429 if (!_unconditional_delay_slot) { 2430 // See if adding an instruction in the delay slot will overflow 2431 // the bundle. 2432 if (!NodeFitsInBundle(_nop)) { 2433 #ifndef PRODUCT 2434 if (_cfg->C->trace_opto_output()) 2435 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2436 #endif 2437 step(1); 2438 } 2439 2440 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2441 _next_node = _nop; 2442 ++_bundle_instr_count; 2443 } 2444 2445 // See if the instruction in the delay slot requires a 2446 // step of the bundles 2447 if (!NodeFitsInBundle(n)) { 2448 #ifndef PRODUCT 2449 if (_cfg->C->trace_opto_output()) 2450 tty->print("# *** STEP(branch won't fit) ***\n"); 2451 #endif 2452 // Update the state information 2453 _bundle_instr_count = 0; 2454 _bundle_cycle_number += 1; 2455 _bundle_use.step(1); 2456 } 2457 } 2458 2459 // Get the number of instructions 2460 uint instruction_count = node_pipeline->instructionCount(); 2461 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2462 instruction_count = 0; 2463 2464 // Compute the latency information 2465 uint delay = 0; 2466 2467 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2468 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2469 if (relative_latency < 0) 2470 relative_latency = 0; 2471 2472 delay = _bundle_use.full_latency(relative_latency, node_usage); 2473 2474 // Does not fit in this bundle, start a new one 2475 if (delay > 0) { 2476 step(delay); 2477 2478 #ifndef PRODUCT 2479 if (_cfg->C->trace_opto_output()) 2480 tty->print("# *** STEP(%d) ***\n", delay); 2481 #endif 2482 } 2483 } 2484 2485 // If this was placed in the delay slot, ignore it 2486 if (n != _unconditional_delay_slot) { 2487 2488 if (delay == 0) { 2489 if (node_pipeline->hasMultipleBundles()) { 2490 #ifndef PRODUCT 2491 if (_cfg->C->trace_opto_output()) 2492 tty->print("# *** STEP(multiple instructions) ***\n"); 2493 #endif 2494 step(1); 2495 } 2496 2497 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2498 #ifndef PRODUCT 2499 if (_cfg->C->trace_opto_output()) 2500 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2501 instruction_count + _bundle_instr_count, 2502 Pipeline::_max_instrs_per_cycle); 2503 #endif 2504 step(1); 2505 } 2506 } 2507 2508 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2509 _bundle_instr_count++; 2510 2511 // Set the node's latency 2512 _current_latency[n->_idx] = _bundle_cycle_number; 2513 2514 // Now merge the functional unit information 2515 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2516 _bundle_use.add_usage(node_usage); 2517 2518 // Increment the number of instructions in this bundle 2519 _bundle_instr_count += instruction_count; 2520 2521 // Remember this node for later 2522 if (n->is_Mach()) 2523 _next_node = n; 2524 } 2525 2526 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2527 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2528 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2529 // into the block. All other scheduled nodes get put in the schedule here. 2530 int op = n->Opcode(); 2531 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2532 (op != Op_Node && // Not an unused antidepedence node and 2533 // not an unallocated boxlock 2534 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2535 2536 // Push any trailing projections 2537 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2538 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2539 Node *foi = n->fast_out(i); 2540 if( foi->is_Proj() ) 2541 _scheduled.push(foi); 2542 } 2543 } 2544 2545 // Put the instruction in the schedule list 2546 _scheduled.push(n); 2547 } 2548 2549 #ifndef PRODUCT 2550 if (_cfg->C->trace_opto_output()) 2551 dump_available(); 2552 #endif 2553 2554 // Walk all the definitions, decrementing use counts, and 2555 // if a definition has a 0 use count, place it in the available list. 2556 DecrementUseCounts(n,bb); 2557 } 2558 2559 // This method sets the use count within a basic block. We will ignore all 2560 // uses outside the current basic block. As we are doing a backwards walk, 2561 // any node we reach that has a use count of 0 may be scheduled. This also 2562 // avoids the problem of cyclic references from phi nodes, as long as phi 2563 // nodes are at the front of the basic block. This method also initializes 2564 // the available list to the set of instructions that have no uses within this 2565 // basic block. 2566 void Scheduling::ComputeUseCount(const Block *bb) { 2567 #ifndef PRODUCT 2568 if (_cfg->C->trace_opto_output()) 2569 tty->print("# -> ComputeUseCount\n"); 2570 #endif 2571 2572 // Clear the list of available and scheduled instructions, just in case 2573 _available.clear(); 2574 _scheduled.clear(); 2575 2576 // No delay slot specified 2577 _unconditional_delay_slot = NULL; 2578 2579 #ifdef ASSERT 2580 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2581 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2582 #endif 2583 2584 // Force the _uses count to never go to zero for unscheduable pieces 2585 // of the block 2586 for( uint k = 0; k < _bb_start; k++ ) 2587 _uses[bb->get_node(k)->_idx] = 1; 2588 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2589 _uses[bb->get_node(l)->_idx] = 1; 2590 2591 // Iterate backwards over the instructions in the block. Don't count the 2592 // branch projections at end or the block header instructions. 2593 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2594 Node *n = bb->get_node(j); 2595 if( n->is_Proj() ) continue; // Projections handled another way 2596 2597 // Account for all uses 2598 for ( uint k = 0; k < n->len(); k++ ) { 2599 Node *inp = n->in(k); 2600 if (!inp) continue; 2601 assert(inp != n, "no cycles allowed" ); 2602 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2603 if (inp->is_Proj()) { // Skip through Proj's 2604 inp = inp->in(0); 2605 } 2606 ++_uses[inp->_idx]; // Count 1 block-local use 2607 } 2608 } 2609 2610 // If this instruction has a 0 use count, then it is available 2611 if (!_uses[n->_idx]) { 2612 _current_latency[n->_idx] = _bundle_cycle_number; 2613 AddNodeToAvailableList(n); 2614 } 2615 2616 #ifndef PRODUCT 2617 if (_cfg->C->trace_opto_output()) { 2618 tty->print("# uses: %3d: ", _uses[n->_idx]); 2619 n->dump(); 2620 } 2621 #endif 2622 } 2623 2624 #ifndef PRODUCT 2625 if (_cfg->C->trace_opto_output()) 2626 tty->print("# <- ComputeUseCount\n"); 2627 #endif 2628 } 2629 2630 // This routine performs scheduling on each basic block in reverse order, 2631 // using instruction latencies and taking into account function unit 2632 // availability. 2633 void Scheduling::DoScheduling() { 2634 #ifndef PRODUCT 2635 if (_cfg->C->trace_opto_output()) 2636 tty->print("# -> DoScheduling\n"); 2637 #endif 2638 2639 Block *succ_bb = NULL; 2640 Block *bb; 2641 Compile* C = Compile::current(); 2642 2643 // Walk over all the basic blocks in reverse order 2644 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2645 bb = _cfg->get_block(i); 2646 2647 #ifndef PRODUCT 2648 if (_cfg->C->trace_opto_output()) { 2649 tty->print("# Schedule BB#%03d (initial)\n", i); 2650 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2651 bb->get_node(j)->dump(); 2652 } 2653 } 2654 #endif 2655 2656 // On the head node, skip processing 2657 if (bb == _cfg->get_root_block()) { 2658 continue; 2659 } 2660 2661 // Skip empty, connector blocks 2662 if (bb->is_connector()) 2663 continue; 2664 2665 // If the following block is not the sole successor of 2666 // this one, then reset the pipeline information 2667 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2668 #ifndef PRODUCT 2669 if (_cfg->C->trace_opto_output()) { 2670 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2671 _next_node->_idx, _bundle_instr_count); 2672 } 2673 #endif 2674 step_and_clear(); 2675 } 2676 2677 // Leave untouched the starting instruction, any Phis, a CreateEx node 2678 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2679 _bb_end = bb->number_of_nodes()-1; 2680 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2681 Node *n = bb->get_node(_bb_start); 2682 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2683 // Also, MachIdealNodes do not get scheduled 2684 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2685 MachNode *mach = n->as_Mach(); 2686 int iop = mach->ideal_Opcode(); 2687 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2688 if( iop == Op_Con ) continue; // Do not schedule Top 2689 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2690 mach->pipeline() == MachNode::pipeline_class() && 2691 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2692 continue; 2693 break; // Funny loop structure to be sure... 2694 } 2695 // Compute last "interesting" instruction in block - last instruction we 2696 // might schedule. _bb_end points just after last schedulable inst. We 2697 // normally schedule conditional branches (despite them being forced last 2698 // in the block), because they have delay slots we can fill. Calls all 2699 // have their delay slots filled in the template expansions, so we don't 2700 // bother scheduling them. 2701 Node *last = bb->get_node(_bb_end); 2702 // Ignore trailing NOPs. 2703 while (_bb_end > 0 && last->is_Mach() && 2704 last->as_Mach()->ideal_Opcode() == Op_Con) { 2705 last = bb->get_node(--_bb_end); 2706 } 2707 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2708 if( last->is_Catch() || 2709 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2710 // There might be a prior call. Skip it. 2711 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2712 } else if( last->is_MachNullCheck() ) { 2713 // Backup so the last null-checked memory instruction is 2714 // outside the schedulable range. Skip over the nullcheck, 2715 // projection, and the memory nodes. 2716 Node *mem = last->in(1); 2717 do { 2718 _bb_end--; 2719 } while (mem != bb->get_node(_bb_end)); 2720 } else { 2721 // Set _bb_end to point after last schedulable inst. 2722 _bb_end++; 2723 } 2724 2725 assert( _bb_start <= _bb_end, "inverted block ends" ); 2726 2727 // Compute the register antidependencies for the basic block 2728 ComputeRegisterAntidependencies(bb); 2729 if (C->failing()) return; // too many D-U pinch points 2730 2731 // Compute the usage within the block, and set the list of all nodes 2732 // in the block that have no uses within the block. 2733 ComputeUseCount(bb); 2734 2735 // Schedule the remaining instructions in the block 2736 while ( _available.size() > 0 ) { 2737 Node *n = ChooseNodeToBundle(); 2738 guarantee(n != NULL, "no nodes available"); 2739 AddNodeToBundle(n,bb); 2740 } 2741 2742 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2743 #ifdef ASSERT 2744 for( uint l = _bb_start; l < _bb_end; l++ ) { 2745 Node *n = bb->get_node(l); 2746 uint m; 2747 for( m = 0; m < _bb_end-_bb_start; m++ ) 2748 if( _scheduled[m] == n ) 2749 break; 2750 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2751 } 2752 #endif 2753 2754 // Now copy the instructions (in reverse order) back to the block 2755 for ( uint k = _bb_start; k < _bb_end; k++ ) 2756 bb->map_node(_scheduled[_bb_end-k-1], k); 2757 2758 #ifndef PRODUCT 2759 if (_cfg->C->trace_opto_output()) { 2760 tty->print("# Schedule BB#%03d (final)\n", i); 2761 uint current = 0; 2762 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2763 Node *n = bb->get_node(j); 2764 if( valid_bundle_info(n) ) { 2765 Bundle *bundle = node_bundling(n); 2766 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2767 tty->print("*** Bundle: "); 2768 bundle->dump(); 2769 } 2770 n->dump(); 2771 } 2772 } 2773 } 2774 #endif 2775 #ifdef ASSERT 2776 verify_good_schedule(bb,"after block local scheduling"); 2777 #endif 2778 } 2779 2780 #ifndef PRODUCT 2781 if (_cfg->C->trace_opto_output()) 2782 tty->print("# <- DoScheduling\n"); 2783 #endif 2784 2785 // Record final node-bundling array location 2786 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2787 2788 } // end DoScheduling 2789 2790 // Verify that no live-range used in the block is killed in the block by a 2791 // wrong DEF. This doesn't verify live-ranges that span blocks. 2792 2793 // Check for edge existence. Used to avoid adding redundant precedence edges. 2794 static bool edge_from_to( Node *from, Node *to ) { 2795 for( uint i=0; i<from->len(); i++ ) 2796 if( from->in(i) == to ) 2797 return true; 2798 return false; 2799 } 2800 2801 #ifdef ASSERT 2802 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2803 // Check for bad kills 2804 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2805 Node *prior_use = _reg_node[def]; 2806 if( prior_use && !edge_from_to(prior_use,n) ) { 2807 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2808 n->dump(); 2809 tty->print_cr("..."); 2810 prior_use->dump(); 2811 assert(edge_from_to(prior_use,n), "%s", msg); 2812 } 2813 _reg_node.map(def,NULL); // Kill live USEs 2814 } 2815 } 2816 2817 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2818 2819 // Zap to something reasonable for the verify code 2820 _reg_node.clear(); 2821 2822 // Walk over the block backwards. Check to make sure each DEF doesn't 2823 // kill a live value (other than the one it's supposed to). Add each 2824 // USE to the live set. 2825 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2826 Node *n = b->get_node(i); 2827 int n_op = n->Opcode(); 2828 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2829 // Fat-proj kills a slew of registers 2830 RegMaskIterator rmi(n->out_RegMask()); 2831 while (rmi.has_next()) { 2832 OptoReg::Name kill = rmi.next(); 2833 verify_do_def(n, kill, msg); 2834 } 2835 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2836 // Get DEF'd registers the normal way 2837 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2838 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2839 } 2840 2841 // Now make all USEs live 2842 for( uint i=1; i<n->req(); i++ ) { 2843 Node *def = n->in(i); 2844 assert(def != 0, "input edge required"); 2845 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2846 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2847 if( OptoReg::is_valid(reg_lo) ) { 2848 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2849 _reg_node.map(reg_lo,n); 2850 } 2851 if( OptoReg::is_valid(reg_hi) ) { 2852 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2853 _reg_node.map(reg_hi,n); 2854 } 2855 } 2856 2857 } 2858 2859 // Zap to something reasonable for the Antidependence code 2860 _reg_node.clear(); 2861 } 2862 #endif 2863 2864 // Conditionally add precedence edges. Avoid putting edges on Projs. 2865 static void add_prec_edge_from_to( Node *from, Node *to ) { 2866 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2867 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2868 from = from->in(0); 2869 } 2870 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2871 !edge_from_to( from, to ) ) // Avoid duplicate edge 2872 from->add_prec(to); 2873 } 2874 2875 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2876 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2877 return; 2878 2879 if (OptoReg::is_reg(def_reg)) { 2880 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2881 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2882 // This is one of the high slots of a vector register. 2883 // ScheduleAndBundle already checked there are no live wide 2884 // vectors in this method so it can be safely ignored. 2885 return; 2886 } 2887 } 2888 2889 Node *pinch = _reg_node[def_reg]; // Get pinch point 2890 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2891 is_def ) { // Check for a true def (not a kill) 2892 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2893 return; 2894 } 2895 2896 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2897 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2898 2899 // After some number of kills there _may_ be a later def 2900 Node *later_def = NULL; 2901 2902 Compile* C = Compile::current(); 2903 2904 // Finding a kill requires a real pinch-point. 2905 // Check for not already having a pinch-point. 2906 // Pinch points are Op_Node's. 2907 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2908 later_def = pinch; // Must be def/kill as optimistic pinch-point 2909 if ( _pinch_free_list.size() > 0) { 2910 pinch = _pinch_free_list.pop(); 2911 } else { 2912 pinch = new Node(1); // Pinch point to-be 2913 } 2914 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2915 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2916 return; 2917 } 2918 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2919 _reg_node.map(def_reg,pinch); // Record pinch-point 2920 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2921 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2922 pinch->init_req(0, C->top()); // set not NULL for the next call 2923 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2924 later_def = NULL; // and no later def 2925 } 2926 pinch->set_req(0,later_def); // Hook later def so we can find it 2927 } else { // Else have valid pinch point 2928 if( pinch->in(0) ) // If there is a later-def 2929 later_def = pinch->in(0); // Get it 2930 } 2931 2932 // Add output-dependence edge from later def to kill 2933 if( later_def ) // If there is some original def 2934 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2935 2936 // See if current kill is also a use, and so is forced to be the pinch-point. 2937 if( pinch->Opcode() == Op_Node ) { 2938 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 2939 for( uint i=1; i<uses->req(); i++ ) { 2940 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 2941 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 2942 // Yes, found a use/kill pinch-point 2943 pinch->set_req(0,NULL); // 2944 pinch->replace_by(kill); // Move anti-dep edges up 2945 pinch = kill; 2946 _reg_node.map(def_reg,pinch); 2947 return; 2948 } 2949 } 2950 } 2951 2952 // Add edge from kill to pinch-point 2953 add_prec_edge_from_to(kill,pinch); 2954 } 2955 2956 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 2957 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 2958 return; 2959 Node *pinch = _reg_node[use_reg]; // Get pinch point 2960 // Check for no later def_reg/kill in block 2961 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b && 2962 // Use has to be block-local as well 2963 _cfg->get_block_for_node(use) == b) { 2964 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 2965 pinch->req() == 1 ) { // pinch not yet in block? 2966 pinch->del_req(0); // yank pointer to later-def, also set flag 2967 // Insert the pinch-point in the block just after the last use 2968 b->insert_node(pinch, b->find_node(use) + 1); 2969 _bb_end++; // Increase size scheduled region in block 2970 } 2971 2972 add_prec_edge_from_to(pinch,use); 2973 } 2974 } 2975 2976 // We insert antidependences between the reads and following write of 2977 // allocated registers to prevent illegal code motion. Hopefully, the 2978 // number of added references should be fairly small, especially as we 2979 // are only adding references within the current basic block. 2980 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 2981 2982 #ifdef ASSERT 2983 verify_good_schedule(b,"before block local scheduling"); 2984 #endif 2985 2986 // A valid schedule, for each register independently, is an endless cycle 2987 // of: a def, then some uses (connected to the def by true dependencies), 2988 // then some kills (defs with no uses), finally the cycle repeats with a new 2989 // def. The uses are allowed to float relative to each other, as are the 2990 // kills. No use is allowed to slide past a kill (or def). This requires 2991 // antidependencies between all uses of a single def and all kills that 2992 // follow, up to the next def. More edges are redundant, because later defs 2993 // & kills are already serialized with true or antidependencies. To keep 2994 // the edge count down, we add a 'pinch point' node if there's more than 2995 // one use or more than one kill/def. 2996 2997 // We add dependencies in one bottom-up pass. 2998 2999 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3000 3001 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3002 // register. If not, we record the DEF/KILL in _reg_node, the 3003 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3004 // "pinch point", a new Node that's in the graph but not in the block. 3005 // We put edges from the prior and current DEF/KILLs to the pinch point. 3006 // We put the pinch point in _reg_node. If there's already a pinch point 3007 // we merely add an edge from the current DEF/KILL to the pinch point. 3008 3009 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3010 // put an edge from the pinch point to the USE. 3011 3012 // To be expedient, the _reg_node array is pre-allocated for the whole 3013 // compilation. _reg_node is lazily initialized; it either contains a NULL, 3014 // or a valid def/kill/pinch-point, or a leftover node from some prior 3015 // block. Leftover node from some prior block is treated like a NULL (no 3016 // prior def, so no anti-dependence needed). Valid def is distinguished by 3017 // it being in the current block. 3018 bool fat_proj_seen = false; 3019 uint last_safept = _bb_end-1; 3020 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL; 3021 Node* last_safept_node = end_node; 3022 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3023 Node *n = b->get_node(i); 3024 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3025 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3026 // Fat-proj kills a slew of registers 3027 // This can add edges to 'n' and obscure whether or not it was a def, 3028 // hence the is_def flag. 3029 fat_proj_seen = true; 3030 RegMaskIterator rmi(n->out_RegMask()); 3031 while (rmi.has_next()) { 3032 OptoReg::Name kill = rmi.next(); 3033 anti_do_def(b, n, kill, is_def); 3034 } 3035 } else { 3036 // Get DEF'd registers the normal way 3037 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3038 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3039 } 3040 3041 // Kill projections on a branch should appear to occur on the 3042 // branch, not afterwards, so grab the masks from the projections 3043 // and process them. 3044 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3045 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3046 Node* use = n->fast_out(i); 3047 if (use->is_Proj()) { 3048 RegMaskIterator rmi(use->out_RegMask()); 3049 while (rmi.has_next()) { 3050 OptoReg::Name kill = rmi.next(); 3051 anti_do_def(b, n, kill, false); 3052 } 3053 } 3054 } 3055 } 3056 3057 // Check each register used by this instruction for a following DEF/KILL 3058 // that must occur afterward and requires an anti-dependence edge. 3059 for( uint j=0; j<n->req(); j++ ) { 3060 Node *def = n->in(j); 3061 if( def ) { 3062 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3063 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3064 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3065 } 3066 } 3067 // Do not allow defs of new derived values to float above GC 3068 // points unless the base is definitely available at the GC point. 3069 3070 Node *m = b->get_node(i); 3071 3072 // Add precedence edge from following safepoint to use of derived pointer 3073 if( last_safept_node != end_node && 3074 m != last_safept_node) { 3075 for (uint k = 1; k < m->req(); k++) { 3076 const Type *t = m->in(k)->bottom_type(); 3077 if( t->isa_oop_ptr() && 3078 t->is_ptr()->offset() != 0 ) { 3079 last_safept_node->add_prec( m ); 3080 break; 3081 } 3082 } 3083 3084 // Do not allow a CheckCastPP node whose input is a raw pointer to 3085 // float past a safepoint. This can occur when a buffered inline 3086 // type is allocated in a loop and the CheckCastPP from that 3087 // allocation is reused outside the loop. If the use inside the 3088 // loop is scalarized the CheckCastPP will no longer be connected 3089 // to the loop safepoint. See JDK-8264340. 3090 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3091 Node *def = m->in(1); 3092 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) { 3093 last_safept_node->add_prec(m); 3094 } 3095 } 3096 } 3097 3098 if( n->jvms() ) { // Precedence edge from derived to safept 3099 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3100 if( b->get_node(last_safept) != last_safept_node ) { 3101 last_safept = b->find_node(last_safept_node); 3102 } 3103 for( uint j=last_safept; j > i; j-- ) { 3104 Node *mach = b->get_node(j); 3105 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3106 mach->add_prec( n ); 3107 } 3108 last_safept = i; 3109 last_safept_node = m; 3110 } 3111 } 3112 3113 if (fat_proj_seen) { 3114 // Garbage collect pinch nodes that were not consumed. 3115 // They are usually created by a fat kill MachProj for a call. 3116 garbage_collect_pinch_nodes(); 3117 } 3118 } 3119 3120 // Garbage collect pinch nodes for reuse by other blocks. 3121 // 3122 // The block scheduler's insertion of anti-dependence 3123 // edges creates many pinch nodes when the block contains 3124 // 2 or more Calls. A pinch node is used to prevent a 3125 // combinatorial explosion of edges. If a set of kills for a 3126 // register is anti-dependent on a set of uses (or defs), rather 3127 // than adding an edge in the graph between each pair of kill 3128 // and use (or def), a pinch is inserted between them: 3129 // 3130 // use1 use2 use3 3131 // \ | / 3132 // \ | / 3133 // pinch 3134 // / | \ 3135 // / | \ 3136 // kill1 kill2 kill3 3137 // 3138 // One pinch node is created per register killed when 3139 // the second call is encountered during a backwards pass 3140 // over the block. Most of these pinch nodes are never 3141 // wired into the graph because the register is never 3142 // used or def'ed in the block. 3143 // 3144 void Scheduling::garbage_collect_pinch_nodes() { 3145 #ifndef PRODUCT 3146 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3147 #endif 3148 int trace_cnt = 0; 3149 for (uint k = 0; k < _reg_node.Size(); k++) { 3150 Node* pinch = _reg_node[k]; 3151 if ((pinch != NULL) && pinch->Opcode() == Op_Node && 3152 // no predecence input edges 3153 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { 3154 cleanup_pinch(pinch); 3155 _pinch_free_list.push(pinch); 3156 _reg_node.map(k, NULL); 3157 #ifndef PRODUCT 3158 if (_cfg->C->trace_opto_output()) { 3159 trace_cnt++; 3160 if (trace_cnt > 40) { 3161 tty->print("\n"); 3162 trace_cnt = 0; 3163 } 3164 tty->print(" %d", pinch->_idx); 3165 } 3166 #endif 3167 } 3168 } 3169 #ifndef PRODUCT 3170 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3171 #endif 3172 } 3173 3174 // Clean up a pinch node for reuse. 3175 void Scheduling::cleanup_pinch( Node *pinch ) { 3176 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3177 3178 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3179 Node* use = pinch->last_out(i); 3180 uint uses_found = 0; 3181 for (uint j = use->req(); j < use->len(); j++) { 3182 if (use->in(j) == pinch) { 3183 use->rm_prec(j); 3184 uses_found++; 3185 } 3186 } 3187 assert(uses_found > 0, "must be a precedence edge"); 3188 i -= uses_found; // we deleted 1 or more copies of this edge 3189 } 3190 // May have a later_def entry 3191 pinch->set_req(0, NULL); 3192 } 3193 3194 #ifndef PRODUCT 3195 3196 void Scheduling::dump_available() const { 3197 tty->print("#Availist "); 3198 for (uint i = 0; i < _available.size(); i++) 3199 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3200 tty->cr(); 3201 } 3202 3203 // Print Scheduling Statistics 3204 void Scheduling::print_statistics() { 3205 // Print the size added by nops for bundling 3206 tty->print("Nops added %d bytes to total of %d bytes", 3207 _total_nop_size, _total_method_size); 3208 if (_total_method_size > 0) 3209 tty->print(", for %.2f%%", 3210 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3211 tty->print("\n"); 3212 3213 // Print the number of branch shadows filled 3214 if (Pipeline::_branch_has_delay_slot) { 3215 tty->print("Of %d branches, %d had unconditional delay slots filled", 3216 _total_branches, _total_unconditional_delays); 3217 if (_total_branches > 0) 3218 tty->print(", for %.2f%%", 3219 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3220 tty->print("\n"); 3221 } 3222 3223 uint total_instructions = 0, total_bundles = 0; 3224 3225 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3226 uint bundle_count = _total_instructions_per_bundle[i]; 3227 total_instructions += bundle_count * i; 3228 total_bundles += bundle_count; 3229 } 3230 3231 if (total_bundles > 0) 3232 tty->print("Average ILP (excluding nops) is %.2f\n", 3233 ((double)total_instructions) / ((double)total_bundles)); 3234 } 3235 #endif 3236 3237 //-----------------------init_scratch_buffer_blob------------------------------ 3238 // Construct a temporary BufferBlob and cache it for this compile. 3239 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3240 // If there is already a scratch buffer blob allocated and the 3241 // constant section is big enough, use it. Otherwise free the 3242 // current and allocate a new one. 3243 BufferBlob* blob = scratch_buffer_blob(); 3244 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 3245 // Use the current blob. 3246 } else { 3247 if (blob != NULL) { 3248 BufferBlob::free(blob); 3249 } 3250 3251 ResourceMark rm; 3252 _scratch_const_size = const_size; 3253 int size = C2Compiler::initial_code_buffer_size(const_size); 3254 if (C->has_scalarized_args()) { 3255 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3256 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3257 ciMethod* method = C->method(); 3258 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3259 int arg_num = 0; 3260 if (!method->is_static()) { 3261 if (method->is_scalarized_arg(arg_num)) { 3262 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3263 } 3264 arg_num++; 3265 } 3266 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3267 if (method->is_scalarized_arg(arg_num)) { 3268 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3269 } 3270 arg_num++; 3271 } 3272 } 3273 blob = BufferBlob::create("Compile::scratch_buffer", size); 3274 // Record the buffer blob for next time. 3275 set_scratch_buffer_blob(blob); 3276 // Have we run out of code space? 3277 if (scratch_buffer_blob() == NULL) { 3278 // Let CompilerBroker disable further compilations. 3279 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3280 return; 3281 } 3282 } 3283 3284 // Initialize the relocation buffers 3285 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3286 set_scratch_locs_memory(locs_buf); 3287 } 3288 3289 3290 //-----------------------scratch_emit_size------------------------------------- 3291 // Helper function that computes size by emitting code 3292 uint PhaseOutput::scratch_emit_size(const Node* n) { 3293 // Start scratch_emit_size section. 3294 set_in_scratch_emit_size(true); 3295 3296 // Emit into a trash buffer and count bytes emitted. 3297 // This is a pretty expensive way to compute a size, 3298 // but it works well enough if seldom used. 3299 // All common fixed-size instructions are given a size 3300 // method by the AD file. 3301 // Note that the scratch buffer blob and locs memory are 3302 // allocated at the beginning of the compile task, and 3303 // may be shared by several calls to scratch_emit_size. 3304 // The allocation of the scratch buffer blob is particularly 3305 // expensive, since it has to grab the code cache lock. 3306 BufferBlob* blob = this->scratch_buffer_blob(); 3307 assert(blob != NULL, "Initialize BufferBlob at start"); 3308 assert(blob->size() > MAX_inst_size, "sanity"); 3309 relocInfo* locs_buf = scratch_locs_memory(); 3310 address blob_begin = blob->content_begin(); 3311 address blob_end = (address)locs_buf; 3312 assert(blob->contains(blob_end), "sanity"); 3313 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3314 buf.initialize_consts_size(_scratch_const_size); 3315 buf.initialize_stubs_size(MAX_stubs_size); 3316 assert(locs_buf != NULL, "sanity"); 3317 int lsize = MAX_locs_size / 3; 3318 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3319 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3320 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3321 // Mark as scratch buffer. 3322 buf.consts()->set_scratch_emit(); 3323 buf.insts()->set_scratch_emit(); 3324 buf.stubs()->set_scratch_emit(); 3325 3326 // Do the emission. 3327 3328 Label fakeL; // Fake label for branch instructions. 3329 Label* saveL = NULL; 3330 uint save_bnum = 0; 3331 bool is_branch = n->is_MachBranch(); 3332 if (is_branch) { 3333 MacroAssembler masm(&buf); 3334 masm.bind(fakeL); 3335 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3336 n->as_MachBranch()->label_set(&fakeL, 0); 3337 } 3338 n->emit(buf, C->regalloc()); 3339 3340 // Emitting into the scratch buffer should not fail 3341 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3342 3343 // Restore label. 3344 if (is_branch) { 3345 n->as_MachBranch()->label_set(saveL, save_bnum); 3346 } 3347 3348 // End scratch_emit_size section. 3349 set_in_scratch_emit_size(false); 3350 3351 return buf.insts_size(); 3352 } 3353 3354 void PhaseOutput::install() { 3355 if (!C->should_install_code()) { 3356 return; 3357 } else if (C->stub_function() != NULL) { 3358 install_stub(C->stub_name()); 3359 } else { 3360 install_code(C->method(), 3361 C->entry_bci(), 3362 CompileBroker::compiler2(), 3363 C->has_unsafe_access(), 3364 SharedRuntime::is_wide_vector(C->max_vector_size()), 3365 C->rtm_state()); 3366 } 3367 } 3368 3369 void PhaseOutput::install_code(ciMethod* target, 3370 int entry_bci, 3371 AbstractCompiler* compiler, 3372 bool has_unsafe_access, 3373 bool has_wide_vectors, 3374 RTMState rtm_state) { 3375 // Check if we want to skip execution of all compiled code. 3376 { 3377 #ifndef PRODUCT 3378 if (OptoNoExecute) { 3379 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3380 return; 3381 } 3382 #endif 3383 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3384 3385 if (C->is_osr_compilation()) { 3386 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3387 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3388 } else { 3389 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3390 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3391 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3392 } 3393 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3394 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3395 } 3396 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3397 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3398 } 3399 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3400 } 3401 3402 C->env()->register_method(target, 3403 entry_bci, 3404 &_code_offsets, 3405 _orig_pc_slot_offset_in_bytes, 3406 code_buffer(), 3407 frame_size_in_words(), 3408 _oop_map_set, 3409 &_handler_table, 3410 inc_table(), 3411 compiler, 3412 has_unsafe_access, 3413 SharedRuntime::is_wide_vector(C->max_vector_size()), 3414 C->has_monitors(), 3415 0, 3416 C->rtm_state()); 3417 3418 if (C->log() != NULL) { // Print code cache state into compiler log 3419 C->log()->code_cache_state(); 3420 } 3421 } 3422 } 3423 void PhaseOutput::install_stub(const char* stub_name) { 3424 // Entry point will be accessed using stub_entry_point(); 3425 if (code_buffer() == NULL) { 3426 Matcher::soft_match_failure(); 3427 } else { 3428 if (PrintAssembly && (WizardMode || Verbose)) 3429 tty->print_cr("### Stub::%s", stub_name); 3430 3431 if (!C->failing()) { 3432 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3433 3434 // Make the NMethod 3435 // For now we mark the frame as never safe for profile stackwalking 3436 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3437 code_buffer(), 3438 CodeOffsets::frame_never_safe, 3439 // _code_offsets.value(CodeOffsets::Frame_Complete), 3440 frame_size_in_words(), 3441 oop_map_set(), 3442 false); 3443 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 3444 3445 C->set_stub_entry_point(rs->entry_point()); 3446 } 3447 } 3448 } 3449 3450 // Support for bundling info 3451 Bundle* PhaseOutput::node_bundling(const Node *n) { 3452 assert(valid_bundle_info(n), "oob"); 3453 return &_node_bundling_base[n->_idx]; 3454 } 3455 3456 bool PhaseOutput::valid_bundle_info(const Node *n) { 3457 return (_node_bundling_limit > n->_idx); 3458 } 3459 3460 //------------------------------frame_size_in_words----------------------------- 3461 // frame_slots in units of words 3462 int PhaseOutput::frame_size_in_words() const { 3463 // shift is 0 in LP32 and 1 in LP64 3464 const int shift = (LogBytesPerWord - LogBytesPerInt); 3465 int words = _frame_slots >> shift; 3466 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3467 return words; 3468 } 3469 3470 // To bang the stack of this compiled method we use the stack size 3471 // that the interpreter would need in case of a deoptimization. This 3472 // removes the need to bang the stack in the deoptimization blob which 3473 // in turn simplifies stack overflow handling. 3474 int PhaseOutput::bang_size_in_bytes() const { 3475 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3476 } 3477 3478 //------------------------------dump_asm--------------------------------------- 3479 // Dump formatted assembly 3480 #if defined(SUPPORT_OPTO_ASSEMBLY) 3481 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3482 3483 int pc_digits = 3; // #chars required for pc 3484 int sb_chars = 3; // #chars for "start bundle" indicator 3485 int tab_size = 8; 3486 if (pcs != NULL) { 3487 int max_pc = 0; 3488 for (uint i = 0; i < pc_limit; i++) { 3489 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3490 } 3491 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3492 } 3493 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3494 3495 bool cut_short = false; 3496 st->print_cr("#"); 3497 st->print("# "); C->tf()->dump_on(st); st->cr(); 3498 st->print_cr("#"); 3499 3500 // For all blocks 3501 int pc = 0x0; // Program counter 3502 char starts_bundle = ' '; 3503 C->regalloc()->dump_frame(); 3504 3505 Node *n = NULL; 3506 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3507 if (VMThread::should_terminate()) { 3508 cut_short = true; 3509 break; 3510 } 3511 Block* block = C->cfg()->get_block(i); 3512 if (block->is_connector() && !Verbose) { 3513 continue; 3514 } 3515 n = block->head(); 3516 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3517 pc = pcs[n->_idx]; 3518 st->print("%*.*x", pc_digits, pc_digits, pc); 3519 } 3520 st->fill_to(prefix_len); 3521 block->dump_head(C->cfg(), st); 3522 if (block->is_connector()) { 3523 st->fill_to(prefix_len); 3524 st->print_cr("# Empty connector block"); 3525 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3526 st->fill_to(prefix_len); 3527 st->print_cr("# Block is sole successor of call"); 3528 } 3529 3530 // For all instructions 3531 Node *delay = NULL; 3532 for (uint j = 0; j < block->number_of_nodes(); j++) { 3533 if (VMThread::should_terminate()) { 3534 cut_short = true; 3535 break; 3536 } 3537 n = block->get_node(j); 3538 if (valid_bundle_info(n)) { 3539 Bundle* bundle = node_bundling(n); 3540 if (bundle->used_in_unconditional_delay()) { 3541 delay = n; 3542 continue; 3543 } 3544 if (bundle->starts_bundle()) { 3545 starts_bundle = '+'; 3546 } 3547 } 3548 3549 if (WizardMode) { 3550 n->dump(); 3551 } 3552 3553 if( !n->is_Region() && // Dont print in the Assembly 3554 !n->is_Phi() && // a few noisely useless nodes 3555 !n->is_Proj() && 3556 !n->is_MachTemp() && 3557 !n->is_SafePointScalarObject() && 3558 !n->is_Catch() && // Would be nice to print exception table targets 3559 !n->is_MergeMem() && // Not very interesting 3560 !n->is_top() && // Debug info table constants 3561 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3562 ) { 3563 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3564 pc = pcs[n->_idx]; 3565 st->print("%*.*x", pc_digits, pc_digits, pc); 3566 } else { 3567 st->fill_to(pc_digits); 3568 } 3569 st->print(" %c ", starts_bundle); 3570 starts_bundle = ' '; 3571 st->fill_to(prefix_len); 3572 n->format(C->regalloc(), st); 3573 st->cr(); 3574 } 3575 3576 // If we have an instruction with a delay slot, and have seen a delay, 3577 // then back up and print it 3578 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3579 // Coverity finding - Explicit null dereferenced. 3580 guarantee(delay != NULL, "no unconditional delay instruction"); 3581 if (WizardMode) delay->dump(); 3582 3583 if (node_bundling(delay)->starts_bundle()) 3584 starts_bundle = '+'; 3585 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3586 pc = pcs[n->_idx]; 3587 st->print("%*.*x", pc_digits, pc_digits, pc); 3588 } else { 3589 st->fill_to(pc_digits); 3590 } 3591 st->print(" %c ", starts_bundle); 3592 starts_bundle = ' '; 3593 st->fill_to(prefix_len); 3594 delay->format(C->regalloc(), st); 3595 st->cr(); 3596 delay = NULL; 3597 } 3598 3599 // Dump the exception table as well 3600 if( n->is_Catch() && (Verbose || WizardMode) ) { 3601 // Print the exception table for this offset 3602 _handler_table.print_subtable_for(pc); 3603 } 3604 st->bol(); // Make sure we start on a new line 3605 } 3606 st->cr(); // one empty line between blocks 3607 assert(cut_short || delay == NULL, "no unconditional delay branch"); 3608 } // End of per-block dump 3609 3610 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3611 } 3612 #endif 3613 3614 #ifndef PRODUCT 3615 void PhaseOutput::print_statistics() { 3616 Scheduling::print_statistics(); 3617 } 3618 #endif