1 /*
2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/assembler.inline.hpp"
26 #include "code/aotCodeCache.hpp"
27 #include "code/compiledIC.hpp"
28 #include "code/debugInfo.hpp"
29 #include "code/debugInfoRec.hpp"
30 #include "compiler/compileBroker.hpp"
31 #include "compiler/compilerDirectives.hpp"
32 #include "compiler/disassembler.hpp"
33 #include "compiler/oopMap.hpp"
34 #include "gc/shared/barrierSet.hpp"
35 #include "gc/shared/c2/barrierSetC2.hpp"
36 #include "gc/shared/gc_globals.hpp"
37 #include "memory/allocation.hpp"
38 #include "opto/ad.hpp"
39 #include "opto/block.hpp"
40 #include "opto/c2_MacroAssembler.hpp"
41 #include "opto/c2compiler.hpp"
42 #include "opto/callnode.hpp"
43 #include "opto/cfgnode.hpp"
44 #include "opto/locknode.hpp"
45 #include "opto/machnode.hpp"
46 #include "opto/node.hpp"
47 #include "opto/optoreg.hpp"
48 #include "opto/output.hpp"
49 #include "opto/regalloc.hpp"
50 #include "opto/type.hpp"
51 #include "runtime/sharedRuntime.hpp"
52 #include "utilities/macros.hpp"
53 #include "utilities/powerOfTwo.hpp"
54 #include "utilities/xmlstream.hpp"
55
56 #ifndef PRODUCT
57 #define DEBUG_ARG(x) , x
58 #else
59 #define DEBUG_ARG(x)
60 #endif
61
62 //------------------------------Scheduling----------------------------------
63 // This class contains all the information necessary to implement instruction
64 // scheduling and bundling.
65 class Scheduling {
66
67 private:
68 // Arena to use
69 Arena *_arena;
70
71 // Control-Flow Graph info
72 PhaseCFG *_cfg;
73
74 // Register Allocation info
75 PhaseRegAlloc *_regalloc;
76
77 // Number of nodes in the method
78 uint _node_bundling_limit;
79
80 // List of scheduled nodes. Generated in reverse order
81 Node_List _scheduled;
82
83 // List of nodes currently available for choosing for scheduling
84 Node_List _available;
85
86 // For each instruction beginning a bundle, the number of following
87 // nodes to be bundled with it.
88 Bundle *_node_bundling_base;
89
90 // Mapping from register to Node
91 Node_List _reg_node;
92
93 // Free list for pinch nodes.
94 Node_List _pinch_free_list;
95
96 // Number of uses of this node within the containing basic block.
97 short *_uses;
98
99 // Schedulable portion of current block. Skips Region/Phi/CreateEx up
100 // front, branch+proj at end. Also skips Catch/CProj (same as
101 // branch-at-end), plus just-prior exception-throwing call.
102 uint _bb_start, _bb_end;
103
104 // Latency from the end of the basic block as scheduled
105 unsigned short *_current_latency;
106
107 // Remember the next node
108 Node *_next_node;
109
110 // Length of the current bundle, in instructions
111 uint _bundle_instr_count;
112
113 // Current Cycle number, for computing latencies and bundling
114 uint _bundle_cycle_number;
115
116 // Bundle information
117 Pipeline_Use_Element _bundle_use_elements[resource_count];
118 Pipeline_Use _bundle_use;
119
120 // Dump the available list
121 void dump_available() const;
122
123 public:
124 Scheduling(Arena *arena, Compile &compile);
125
126 // Step ahead "i" cycles
127 void step(uint i);
128
129 // Step ahead 1 cycle, and clear the bundle state (for example,
130 // at a branch target)
131 void step_and_clear();
132
133 Bundle* node_bundling(const Node *n) {
134 assert(valid_bundle_info(n), "oob");
135 return (&_node_bundling_base[n->_idx]);
136 }
137
138 bool valid_bundle_info(const Node *n) const {
139 return (_node_bundling_limit > n->_idx);
140 }
141
142 bool starts_bundle(const Node *n) const {
143 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
144 }
145
146 // Do the scheduling
147 void DoScheduling();
148
149 // Compute the register antidependencies within a basic block
150 void ComputeRegisterAntidependencies(Block *bb);
151 void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
152 void verify_good_schedule( Block *b, const char *msg );
153 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
154 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
155
156 // Add a node to the current bundle
157 void AddNodeToBundle(Node *n, const Block *bb);
158
159 // Return an integer less than, equal to, or greater than zero
160 // if the stack offset of the first argument is respectively
161 // less than, equal to, or greater than the second.
162 int compare_two_spill_nodes(Node* first, Node* second);
163
164 // Add a node to the list of available nodes
165 void AddNodeToAvailableList(Node *n);
166
167 // Compute the local use count for the nodes in a block, and compute
168 // the list of instructions with no uses in the block as available
169 void ComputeUseCount(const Block *bb);
170
171 // Choose an instruction from the available list to add to the bundle
172 Node * ChooseNodeToBundle();
173
174 // See if this Node fits into the currently accumulating bundle
175 bool NodeFitsInBundle(Node *n);
176
177 // Decrement the use count for a node
178 void DecrementUseCounts(Node *n, const Block *bb);
179
180 // Garbage collect pinch nodes for reuse by other blocks.
181 void garbage_collect_pinch_nodes();
182 // Clean up a pinch node for reuse (helper for above).
183 void cleanup_pinch( Node *pinch );
184
185 // Information for statistics gathering
186 #ifndef PRODUCT
187 private:
188 // Gather information on size of nops relative to total
189 static uint _total_nop_size, _total_method_size;
190 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
191
192 public:
193 static void print_statistics();
194
195 static void increment_instructions_per_bundle(uint i) {
196 _total_instructions_per_bundle[i]++;
197 }
198
199 static void increment_nop_size(uint s) {
200 _total_nop_size += s;
201 }
202
203 static void increment_method_size(uint s) {
204 _total_method_size += s;
205 }
206 #endif
207
208 };
209
210 PhaseOutput::PhaseOutput()
211 : Phase(Phase::Output),
212 _code_buffer("Compile::Fill_buffer"),
213 _first_block_size(0),
214 _handler_table(),
215 _inc_table(),
216 _stub_list(),
217 _oop_map_set(nullptr),
218 _scratch_buffer_blob(nullptr),
219 _scratch_locs_memory(nullptr),
220 _scratch_const_size(-1),
221 _in_scratch_emit_size(false),
222 _frame_slots(0),
223 _code_offsets(),
224 _node_bundling_limit(0),
225 _node_bundling_base(nullptr),
226 _orig_pc_slot(0),
227 _orig_pc_slot_offset_in_bytes(0),
228 _buf_sizes(),
229 _block(nullptr),
230 _index(0) {
231 C->set_output(this);
232 if (C->stub_name() == nullptr) {
233 int fixed_slots = C->fixed_slots();
234 if (C->needs_stack_repair()) {
235 fixed_slots -= 2;
236 }
237 // TODO 8284443 Only reserve extra slot if needed
238 if (InlineTypeReturnedAsFields) {
239 fixed_slots -= 2;
240 }
241 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size);
242 }
243 }
244
245 PhaseOutput::~PhaseOutput() {
246 C->set_output(nullptr);
247 if (_scratch_buffer_blob != nullptr) {
248 BufferBlob::free(_scratch_buffer_blob);
249 }
250 }
251
252 void PhaseOutput::perform_mach_node_analysis() {
253 // Late barrier analysis must be done after schedule and bundle
254 // Otherwise liveness based spilling will fail
255 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
256 bs->late_barrier_analysis();
257
258 pd_perform_mach_node_analysis();
259
260 C->print_method(CompilerPhaseType::PHASE_MACH_ANALYSIS, 3);
261 }
262
263 // Convert Nodes to instruction bits and pass off to the VM
264 void PhaseOutput::Output() {
265 // RootNode goes
266 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
267
268 // The number of new nodes (mostly MachNop) is proportional to
269 // the number of java calls and inner loops which are aligned.
270 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
271 C->inner_loops()*(OptoLoopAlignment-1)),
272 "out of nodes before code generation" ) ) {
273 return;
274 }
275 // Make sure I can find the Start Node
276 Block *entry = C->cfg()->get_block(1);
277 Block *broot = C->cfg()->get_root_block();
278
279 const StartNode *start = entry->head()->as_Start();
280
281 // Replace StartNode with prolog
282 Label verified_entry;
283 MachPrologNode* prolog = new MachPrologNode(&verified_entry);
284 entry->map_node(prolog, 0);
285 C->cfg()->map_node_to_block(prolog, entry);
286 C->cfg()->unmap_node_from_block(start); // start is no longer in any block
287
288 // Virtual methods need an unverified entry point
289 if (C->is_osr_compilation()) {
290 if (PoisonOSREntry) {
291 // TODO: Should use a ShouldNotReachHereNode...
292 C->cfg()->insert( broot, 0, new MachBreakpointNode() );
293 }
294 } else {
295 if (C->method()) {
296 if (C->method()->has_scalarized_args()) {
297 // Add entry point to unpack all inline type arguments
298 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false));
299 if (!C->method()->is_static()) {
300 // Add verified/unverified entry points to only unpack inline type receiver at interface calls
301 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false));
302 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true));
303 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true));
304 }
305 } else if (!C->method()->is_static()) {
306 // Insert unvalidated entry point
307 C->cfg()->insert(broot, 0, new MachUEPNode());
308 }
309 }
310 }
311
312 // Break before main entry point
313 if ((C->method() && C->directive()->BreakAtExecuteOption) ||
314 (OptoBreakpoint && C->is_method_compilation()) ||
315 (OptoBreakpointOSR && C->is_osr_compilation()) ||
316 (OptoBreakpointC2R && !C->method()) ) {
317 // checking for C->method() means that OptoBreakpoint does not apply to
318 // runtime stubs or frame converters
319 C->cfg()->insert( entry, 1, new MachBreakpointNode() );
320 }
321
322 // Insert epilogs before every return
323 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
324 Block* block = C->cfg()->get_block(i);
325 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
326 Node* m = block->end();
327 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
328 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
329 block->add_inst(epilog);
330 C->cfg()->map_node_to_block(epilog, block);
331 }
332 }
333 }
334
335 // Keeper of sizing aspects
336 _buf_sizes = BufferSizingData();
337
338 // Initialize code buffer
339 estimate_buffer_size(_buf_sizes._const);
340 if (C->failing()) return;
341
342 // Pre-compute the length of blocks and replace
343 // long branches with short if machine supports it.
344 // Must be done before ScheduleAndBundle due to SPARC delay slots
345 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
346 blk_starts[0] = 0;
347 shorten_branches(blk_starts);
348
349 if (!C->is_osr_compilation() && C->has_scalarized_args()) {
350 // Compute the offsets of the entry points required by the inline type calling convention
351 if (!C->method()->is_static()) {
352 // We have entries at the beginning of the method, implemented by the first 4 nodes.
353 // Entry (unverified) @ offset 0
354 // Verified_Inline_Entry_RO
355 // Inline_Entry (unverified)
356 // Verified_Inline_Entry
357 uint offset = 0;
358 _code_offsets.set_value(CodeOffsets::Entry, offset);
359
360 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc());
361 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset);
362
363 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc());
364 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset);
365
366 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc());
367 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset);
368 } else {
369 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later
370 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0);
371 }
372 }
373
374 ScheduleAndBundle();
375 if (C->failing()) {
376 return;
377 }
378
379 perform_mach_node_analysis();
380
381 // Complete sizing of codebuffer
382 CodeBuffer* cb = init_buffer();
383 if (cb == nullptr || C->failing()) {
384 return;
385 }
386
387 BuildOopMaps();
388
389 if (C->failing()) {
390 return;
391 }
392
393 C2_MacroAssembler masm(cb);
394 fill_buffer(&masm, blk_starts);
395 if (C->failing()) {
396 // If we bailed out during matching, not all nodes were visited and the
397 // label might be in inconsistent state (used but not bound). Reset it.
398 verified_entry.reset();
399 }
400 }
401
402 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
403 // Determine if we need to generate a stack overflow check.
404 // Do it if the method is not a stub function and
405 // has java calls or has frame size > vm_page_size/8.
406 // The debug VM checks that deoptimization doesn't trigger an
407 // unexpected stack overflow (compiled method stack banging should
408 // guarantee it doesn't happen) so we always need the stack bang in
409 // a debug VM.
410 return (C->stub_function() == nullptr &&
411 (C->has_java_calls() || frame_size_in_bytes > (int)(os::vm_page_size())>>3
412 DEBUG_ONLY(|| true)));
413 }
414
415 bool PhaseOutput::need_register_stack_bang() const {
416 // Determine if we need to generate a register stack overflow check.
417 // This is only used on architectures which have split register
418 // and memory stacks.
419 // Bang if the method is not a stub function and has java calls
420 return (C->stub_function() == nullptr && C->has_java_calls());
421 }
422
423
424 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
425 // of a loop. When aligning a loop we need to provide enough instructions
426 // in cpu's fetch buffer to feed decoders. The loop alignment could be
427 // avoided if we have enough instructions in fetch buffer at the head of a loop.
428 // By default, the size is set to 999999 by Block's constructor so that
429 // a loop will be aligned if the size is not reset here.
430 //
431 // Note: Mach instructions could contain several HW instructions
432 // so the size is estimated only.
433 //
434 void PhaseOutput::compute_loop_first_inst_sizes() {
435 // The next condition is used to gate the loop alignment optimization.
436 // Don't aligned a loop if there are enough instructions at the head of a loop
437 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
438 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
439 // equal to 11 bytes which is the largest address NOP instruction.
440 if (MaxLoopPad < OptoLoopAlignment - 1) {
441 uint last_block = C->cfg()->number_of_blocks() - 1;
442 for (uint i = 1; i <= last_block; i++) {
443 Block* block = C->cfg()->get_block(i);
444 // Check the first loop's block which requires an alignment.
445 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
446 uint sum_size = 0;
447 uint inst_cnt = NumberOfLoopInstrToAlign;
448 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
449
450 // Check subsequent fallthrough blocks if the loop's first
451 // block(s) does not have enough instructions.
452 Block *nb = block;
453 while(inst_cnt > 0 &&
454 i < last_block &&
455 !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
456 !nb->has_successor(block)) {
457 i++;
458 nb = C->cfg()->get_block(i);
459 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
460 } // while( inst_cnt > 0 && i < last_block )
461
462 block->set_first_inst_size(sum_size);
463 } // f( b->head()->is_Loop() )
464 } // for( i <= last_block )
465 } // if( MaxLoopPad < OptoLoopAlignment-1 )
466 }
467
468 // The architecture description provides short branch variants for some long
469 // branch instructions. Replace eligible long branches with short branches.
470 void PhaseOutput::shorten_branches(uint* blk_starts) {
471
472 Compile::TracePhase tp(_t_shortenBranches);
473
474 // Compute size of each block, method size, and relocation information size
475 uint nblocks = C->cfg()->number_of_blocks();
476
477 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
478 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
479 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
480
481 // Collect worst case block paddings
482 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
483 memset(block_worst_case_pad, 0, nblocks * sizeof(int));
484
485 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
486 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
487
488 bool has_short_branch_candidate = false;
489
490 // Initialize the sizes to 0
491 int code_size = 0; // Size in bytes of generated code
492 int stub_size = 0; // Size in bytes of all stub entries
493 // Size in bytes of all relocation entries, including those in local stubs.
494 // Start with 2-bytes of reloc info for the unvalidated entry point
495 int reloc_size = 1; // Number of relocation entries
496
497 // Make three passes. The first computes pessimistic blk_starts,
498 // relative jmp_offset and reloc_size information. The second performs
499 // short branch substitution using the pessimistic sizing. The
500 // third inserts nops where needed.
501
502 // Step one, perform a pessimistic sizing pass.
503 uint last_call_adr = max_juint;
504 uint last_avoid_back_to_back_adr = max_juint;
505 uint nop_size = (new MachNopNode())->size(C->regalloc());
506 for (uint i = 0; i < nblocks; i++) { // For all blocks
507 Block* block = C->cfg()->get_block(i);
508 _block = block;
509
510 // During short branch replacement, we store the relative (to blk_starts)
511 // offset of jump in jmp_offset, rather than the absolute offset of jump.
512 // This is so that we do not need to recompute sizes of all nodes when
513 // we compute correct blk_starts in our next sizing pass.
514 jmp_offset[i] = 0;
515 jmp_size[i] = 0;
516 jmp_nidx[i] = -1;
517 DEBUG_ONLY( jmp_target[i] = 0; )
518 DEBUG_ONLY( jmp_rule[i] = 0; )
519
520 // Sum all instruction sizes to compute block size
521 uint last_inst = block->number_of_nodes();
522 uint blk_size = 0;
523 for (uint j = 0; j < last_inst; j++) {
524 _index = j;
525 Node* nj = block->get_node(_index);
526 // Handle machine instruction nodes
527 if (nj->is_Mach()) {
528 MachNode* mach = nj->as_Mach();
529 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
530 reloc_size += mach->reloc();
531 if (mach->is_MachCall()) {
532 // add size information for trampoline stub
533 // class CallStubImpl is platform-specific and defined in the *.ad files.
534 stub_size += CallStubImpl::size_call_trampoline();
535 reloc_size += CallStubImpl::reloc_call_trampoline();
536
537 MachCallNode *mcall = mach->as_MachCall();
538 // This destination address is NOT PC-relative
539
540 if (mcall->entry_point() != nullptr) {
541 mcall->method_set((intptr_t)mcall->entry_point());
542 }
543
544 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
545 stub_size += CompiledDirectCall::to_interp_stub_size();
546 reloc_size += CompiledDirectCall::reloc_to_interp_stub();
547 }
548 } else if (mach->is_MachSafePoint()) {
549 // If call/safepoint are adjacent, account for possible
550 // nop to disambiguate the two safepoints.
551 // ScheduleAndBundle() can rearrange nodes in a block,
552 // check for all offsets inside this block.
553 if (last_call_adr >= blk_starts[i]) {
554 blk_size += nop_size;
555 }
556 }
557 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
558 // Nop is inserted between "avoid back to back" instructions.
559 // ScheduleAndBundle() can rearrange nodes in a block,
560 // check for all offsets inside this block.
561 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
562 blk_size += nop_size;
563 }
564 }
565 if (mach->may_be_short_branch()) {
566 if (!nj->is_MachBranch()) {
567 #ifndef PRODUCT
568 nj->dump(3);
569 #endif
570 Unimplemented();
571 }
572 assert(jmp_nidx[i] == -1, "block should have only one branch");
573 jmp_offset[i] = blk_size;
574 jmp_size[i] = nj->size(C->regalloc());
575 jmp_nidx[i] = j;
576 has_short_branch_candidate = true;
577 }
578 }
579 blk_size += nj->size(C->regalloc());
580 // Remember end of call offset
581 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
582 last_call_adr = blk_starts[i]+blk_size;
583 }
584 // Remember end of avoid_back_to_back offset
585 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
586 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
587 }
588 }
589
590 // When the next block starts a loop, we may insert pad NOP
591 // instructions. Since we cannot know our future alignment,
592 // assume the worst.
593 if (i < nblocks - 1) {
594 Block* nb = C->cfg()->get_block(i + 1);
595 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
596 if (max_loop_pad > 0) {
597 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
598 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
599 // If either is the last instruction in this block, bump by
600 // max_loop_pad in lock-step with blk_size, so sizing
601 // calculations in subsequent blocks still can conservatively
602 // detect that it may the last instruction in this block.
603 if (last_call_adr == blk_starts[i]+blk_size) {
604 last_call_adr += max_loop_pad;
605 }
606 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
607 last_avoid_back_to_back_adr += max_loop_pad;
608 }
609 blk_size += max_loop_pad;
610 block_worst_case_pad[i + 1] = max_loop_pad;
611 }
612 }
613
614 // Save block size; update total method size
615 blk_starts[i+1] = blk_starts[i]+blk_size;
616 }
617
618 // Step two, replace eligible long jumps.
619 bool progress = true;
620 uint last_may_be_short_branch_adr = max_juint;
621 while (has_short_branch_candidate && progress) {
622 progress = false;
623 has_short_branch_candidate = false;
624 int adjust_block_start = 0;
625 for (uint i = 0; i < nblocks; i++) {
626 Block* block = C->cfg()->get_block(i);
627 int idx = jmp_nidx[i];
628 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
629 if (mach != nullptr && mach->may_be_short_branch()) {
630 #ifdef ASSERT
631 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
632 int j;
633 // Find the branch; ignore trailing NOPs.
634 for (j = block->number_of_nodes()-1; j>=0; j--) {
635 Node* n = block->get_node(j);
636 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
637 break;
638 }
639 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
640 #endif
641 int br_size = jmp_size[i];
642 int br_offs = blk_starts[i] + jmp_offset[i];
643
644 // This requires the TRUE branch target be in succs[0]
645 uint bnum = block->non_connector_successor(0)->_pre_order;
646 int offset = blk_starts[bnum] - br_offs;
647 if (bnum > i) { // adjust following block's offset
648 offset -= adjust_block_start;
649 }
650
651 // This block can be a loop header, account for the padding
652 // in the previous block.
653 int block_padding = block_worst_case_pad[i];
654 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
655 // In the following code a nop could be inserted before
656 // the branch which will increase the backward distance.
657 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
658 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
659
660 if (needs_padding && offset <= 0)
661 offset -= nop_size;
662
663 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
664 // We've got a winner. Replace this branch.
665 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
666
667 // Update the jmp_size.
668 int new_size = replacement->size(C->regalloc());
669 int diff = br_size - new_size;
670 assert(diff >= (int)nop_size, "short_branch size should be smaller");
671 // Conservatively take into account padding between
672 // avoid_back_to_back branches. Previous branch could be
673 // converted into avoid_back_to_back branch during next
674 // rounds.
675 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
676 jmp_offset[i] += nop_size;
677 diff -= nop_size;
678 }
679 adjust_block_start += diff;
680 block->map_node(replacement, idx);
681 mach->subsume_by(replacement, C);
682 mach = replacement;
683 progress = true;
684
685 jmp_size[i] = new_size;
686 DEBUG_ONLY( jmp_target[i] = bnum; );
687 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
688 } else {
689 // The jump distance is not short, try again during next iteration.
690 has_short_branch_candidate = true;
691 }
692 } // (mach->may_be_short_branch())
693 if (mach != nullptr && (mach->may_be_short_branch() ||
694 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
695 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
696 }
697 blk_starts[i+1] -= adjust_block_start;
698 }
699 }
700
701 #ifdef ASSERT
702 for (uint i = 0; i < nblocks; i++) { // For all blocks
703 if (jmp_target[i] != 0) {
704 int br_size = jmp_size[i];
705 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
706 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
707 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
708 }
709 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
710 }
711 }
712 #endif
713
714 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
715 // after ScheduleAndBundle().
716
717 // ------------------
718 // Compute size for code buffer
719 code_size = blk_starts[nblocks];
720
721 // Relocation records
722 reloc_size += 1; // Relo entry for exception handler
723
724 // Adjust reloc_size to number of record of relocation info
725 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
726 // a relocation index.
727 // The CodeBuffer will expand the locs array if this estimate is too low.
728 reloc_size *= 10 / sizeof(relocInfo);
729
730 _buf_sizes._reloc = reloc_size;
731 _buf_sizes._code = code_size;
732 _buf_sizes._stub = stub_size;
733 }
734
735 //------------------------------FillLocArray-----------------------------------
736 // Create a bit of debug info and append it to the array. The mapping is from
737 // Java local or expression stack to constant, register or stack-slot. For
738 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
739 // entry has been taken care of and caller should skip it).
740 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
741 // This should never have accepted Bad before
742 assert(OptoReg::is_valid(regnum), "location must be valid");
743 return (OptoReg::is_reg(regnum))
744 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
745 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
746 }
747
748
749 ObjectValue*
750 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
751 for (int i = 0; i < objs->length(); i++) {
752 assert(objs->at(i)->is_object(), "corrupt object cache");
753 ObjectValue* sv = objs->at(i)->as_ObjectValue();
754 if (sv->id() == id) {
755 return sv;
756 }
757 }
758 // Otherwise..
759 return nullptr;
760 }
761
762 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
763 ObjectValue* sv ) {
764 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
765 objs->append(sv);
766 }
767
768
769 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
770 GrowableArray<ScopeValue*> *array,
771 GrowableArray<ScopeValue*> *objs ) {
772 assert( local, "use _top instead of null" );
773 if (array->length() != idx) {
774 assert(array->length() == idx + 1, "Unexpected array count");
775 // Old functionality:
776 // return
777 // New functionality:
778 // Assert if the local is not top. In product mode let the new node
779 // override the old entry.
780 assert(local == C->top(), "LocArray collision");
781 if (local == C->top()) {
782 return;
783 }
784 array->pop();
785 }
786 const Type *t = local->bottom_type();
787
788 // Is it a safepoint scalar object node?
789 if (local->is_SafePointScalarObject()) {
790 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
791
792 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
793 if (sv == nullptr) {
794 ciKlass* cik = t->is_oopptr()->exact_klass();
795 assert(cik->is_instance_klass() ||
796 cik->is_array_klass(), "Not supported allocation.");
797 uint first_ind = spobj->first_index(sfpt->jvms());
798 // Nullable, scalarized inline types have a null_marker input
799 // that needs to be checked before using the field values.
800 ScopeValue* properties = nullptr;
801 if (cik->is_inlinetype()) {
802 Node* null_marker_node = sfpt->in(first_ind++);
803 assert(null_marker_node != nullptr, "null_marker node not found");
804 if (!null_marker_node->is_top()) {
805 const TypeInt* null_marker_type = null_marker_node->bottom_type()->is_int();
806 if (null_marker_node->is_Con()) {
807 properties = new ConstantIntValue(null_marker_type->get_con());
808 } else {
809 OptoReg::Name null_marker_reg = C->regalloc()->get_reg_first(null_marker_node);
810 properties = new_loc_value(C->regalloc(), null_marker_reg, Location::normal);
811 }
812 }
813 }
814 if (cik->is_array_klass() && !cik->is_type_array_klass()) {
815 jint props = ArrayKlass::ArrayProperties::DEFAULT;
816 if (cik->as_array_klass()->element_klass()->is_inlinetype()) {
817 if (cik->as_array_klass()->is_elem_null_free()) {
818 props |= ArrayKlass::ArrayProperties::NULL_RESTRICTED;
819 }
820 if (!cik->as_array_klass()->is_elem_atomic()) {
821 props |= ArrayKlass::ArrayProperties::NON_ATOMIC;
822 }
823 }
824 properties = new ConstantIntValue(props);
825 }
826 sv = new ObjectValue(spobj->_idx,
827 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, properties);
828 set_sv_for_object_node(objs, sv);
829
830 for (uint i = 0; i < spobj->n_fields(); i++) {
831 Node* fld_node = sfpt->in(first_ind+i);
832 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
833 }
834 }
835 array->append(sv);
836 return;
837 } else if (local->is_SafePointScalarMerge()) {
838 SafePointScalarMergeNode* smerge = local->as_SafePointScalarMerge();
839 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
840
841 if (mv == nullptr) {
842 GrowableArray<ScopeValue*> deps;
843
844 int merge_pointer_idx = smerge->merge_pointer_idx(sfpt->jvms());
845 (void)FillLocArray(0, sfpt, sfpt->in(merge_pointer_idx), &deps, objs);
846 assert(deps.length() == 1, "missing value");
847
848 int selector_idx = smerge->selector_idx(sfpt->jvms());
849 (void)FillLocArray(1, nullptr, sfpt->in(selector_idx), &deps, nullptr);
850 assert(deps.length() == 2, "missing value");
851
852 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
853 set_sv_for_object_node(objs, mv);
854
855 for (uint i = 1; i < smerge->req(); i++) {
856 Node* obj_node = smerge->in(i);
857 int idx = mv->possible_objects()->length();
858 (void)FillLocArray(idx, sfpt, obj_node, mv->possible_objects(), objs);
859
860 // By default ObjectValues that are in 'possible_objects' are not root objects.
861 // They will be marked as root later if they are directly referenced in a JVMS.
862 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
863 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
864 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
865 }
866 }
867 array->append(mv);
868 return;
869 }
870
871 // Grab the register number for the local
872 OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
873 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
874 // Record the double as two float registers.
875 // The register mask for such a value always specifies two adjacent
876 // float registers, with the lower register number even.
877 // Normally, the allocation of high and low words to these registers
878 // is irrelevant, because nearly all operations on register pairs
879 // (e.g., StoreD) treat them as a single unit.
880 // Here, we assume in addition that the words in these two registers
881 // stored "naturally" (by operations like StoreD and double stores
882 // within the interpreter) such that the lower-numbered register
883 // is written to the lower memory address. This may seem like
884 // a machine dependency, but it is not--it is a requirement on
885 // the author of the <arch>.ad file to ensure that, for every
886 // even/odd double-register pair to which a double may be allocated,
887 // the word in the even single-register is stored to the first
888 // memory word. (Note that register numbers are completely
889 // arbitrary, and are not tied to any machine-level encodings.)
890 #ifdef _LP64
891 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
892 array->append(new ConstantIntValue((jint)0));
893 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
894 } else if ( t->base() == Type::Long ) {
895 array->append(new ConstantIntValue((jint)0));
896 array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
897 } else if ( t->base() == Type::RawPtr ) {
898 // jsr/ret return address which must be restored into the full
899 // width 64-bit stack slot.
900 array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
901 }
902 #else //_LP64
903 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
904 // Repack the double/long as two jints.
905 // The convention the interpreter uses is that the second local
906 // holds the first raw word of the native double representation.
907 // This is actually reasonable, since locals and stack arrays
908 // grow downwards in all implementations.
909 // (If, on some machine, the interpreter's Java locals or stack
910 // were to grow upwards, the embedded doubles would be word-swapped.)
911 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
912 array->append(new_loc_value( C->regalloc(), regnum , Location::normal ));
913 }
914 #endif //_LP64
915 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
916 OptoReg::is_reg(regnum) ) {
917 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
918 ? Location::float_in_dbl : Location::normal ));
919 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
920 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
921 ? Location::int_in_long : Location::normal ));
922 } else if( t->base() == Type::NarrowOop ) {
923 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
924 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
925 t->base() == Type::VectorD || t->base() == Type::VectorX ||
926 t->base() == Type::VectorY || t->base() == Type::VectorZ) {
927 array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
928 } else if (C->regalloc()->is_oop(local)) {
929 assert(t->base() == Type::OopPtr || t->base() == Type::InstPtr ||
930 t->base() == Type::AryPtr,
931 "Unexpected type: %s", t->msg());
932 array->append(new_loc_value( C->regalloc(), regnum, Location::oop ));
933 } else {
934 assert(t->base() == Type::Int || t->base() == Type::Half ||
935 t->base() == Type::FloatCon || t->base() == Type::FloatBot,
936 "Unexpected type: %s", t->msg());
937 array->append(new_loc_value( C->regalloc(), regnum, Location::normal ));
938 }
939 return;
940 }
941
942 // No register. It must be constant data.
943 switch (t->base()) {
944 case Type::Half: // Second half of a double
945 ShouldNotReachHere(); // Caller should skip 2nd halves
946 break;
947 case Type::AnyPtr:
948 array->append(new ConstantOopWriteValue(nullptr));
949 break;
950 case Type::AryPtr:
951 case Type::InstPtr: // fall through
952 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
953 break;
954 case Type::NarrowOop:
955 if (t == TypeNarrowOop::NULL_PTR) {
956 array->append(new ConstantOopWriteValue(nullptr));
957 } else {
958 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
959 }
960 break;
961 case Type::Int:
962 array->append(new ConstantIntValue(t->is_int()->get_con()));
963 break;
964 case Type::RawPtr:
965 // A return address (T_ADDRESS).
966 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
967 #ifdef _LP64
968 // Must be restored to the full-width 64-bit stack slot.
969 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
970 #else
971 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
972 #endif
973 break;
974 case Type::FloatCon: {
975 float f = t->is_float_constant()->getf();
976 array->append(new ConstantIntValue(jint_cast(f)));
977 break;
978 }
979 case Type::DoubleCon: {
980 jdouble d = t->is_double_constant()->getd();
981 #ifdef _LP64
982 array->append(new ConstantIntValue((jint)0));
983 array->append(new ConstantDoubleValue(d));
984 #else
985 // Repack the double as two jints.
986 // The convention the interpreter uses is that the second local
987 // holds the first raw word of the native double representation.
988 // This is actually reasonable, since locals and stack arrays
989 // grow downwards in all implementations.
990 // (If, on some machine, the interpreter's Java locals or stack
991 // were to grow upwards, the embedded doubles would be word-swapped.)
992 jlong_accessor acc;
993 acc.long_value = jlong_cast(d);
994 array->append(new ConstantIntValue(acc.words[1]));
995 array->append(new ConstantIntValue(acc.words[0]));
996 #endif
997 break;
998 }
999 case Type::Long: {
1000 jlong d = t->is_long()->get_con();
1001 #ifdef _LP64
1002 array->append(new ConstantIntValue((jint)0));
1003 array->append(new ConstantLongValue(d));
1004 #else
1005 // Repack the long as two jints.
1006 // The convention the interpreter uses is that the second local
1007 // holds the first raw word of the native double representation.
1008 // This is actually reasonable, since locals and stack arrays
1009 // grow downwards in all implementations.
1010 // (If, on some machine, the interpreter's Java locals or stack
1011 // were to grow upwards, the embedded doubles would be word-swapped.)
1012 jlong_accessor acc;
1013 acc.long_value = d;
1014 array->append(new ConstantIntValue(acc.words[1]));
1015 array->append(new ConstantIntValue(acc.words[0]));
1016 #endif
1017 break;
1018 }
1019 case Type::Top: // Add an illegal value here
1020 array->append(new LocationValue(Location()));
1021 break;
1022 default:
1023 ShouldNotReachHere();
1024 break;
1025 }
1026 }
1027
1028 // Determine if this node starts a bundle
1029 bool PhaseOutput::starts_bundle(const Node *n) const {
1030 return (_node_bundling_limit > n->_idx &&
1031 _node_bundling_base[n->_idx].starts_bundle());
1032 }
1033
1034 // Determine if there is a monitor that has 'ov' as its owner.
1035 bool PhaseOutput::contains_as_owner(GrowableArray<MonitorValue*> *monarray, ObjectValue *ov) const {
1036 for (int k = 0; k < monarray->length(); k++) {
1037 MonitorValue* mv = monarray->at(k);
1038 if (mv->owner() == ov) {
1039 return true;
1040 }
1041 }
1042
1043 return false;
1044 }
1045
1046 // Determine if there is a scalar replaced object description represented by 'ov'.
1047 bool PhaseOutput::contains_as_scalarized_obj(JVMState* jvms, MachSafePointNode* sfn,
1048 GrowableArray<ScopeValue*>* objs,
1049 ObjectValue* ov) const {
1050 for (int i = 0; i < jvms->scl_size(); i++) {
1051 Node* n = sfn->scalarized_obj(jvms, i);
1052 // Other kinds of nodes that we may encounter here, for instance constants
1053 // representing values of fields of objects scalarized, aren't relevant for
1054 // us, since they don't map to ObjectValue.
1055 if (!n->is_SafePointScalarObject()) {
1056 continue;
1057 }
1058
1059 ObjectValue* other = sv_for_node_id(objs, n->_idx);
1060 if (ov == other) {
1061 return true;
1062 }
1063 }
1064 return false;
1065 }
1066
1067 //--------------------------Process_OopMap_Node--------------------------------
1068 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1069 // Handle special safepoint nodes for synchronization
1070 MachSafePointNode *sfn = mach->as_MachSafePoint();
1071 MachCallNode *mcall;
1072
1073 int safepoint_pc_offset = current_offset;
1074 bool return_oop = false;
1075 bool return_scalarized = false;
1076 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1077 bool arg_escape = false;
1078
1079 // Add the safepoint in the DebugInfoRecorder
1080 if( !mach->is_MachCall() ) {
1081 mcall = nullptr;
1082 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1083 } else {
1084 mcall = mach->as_MachCall();
1085
1086 if (mcall->is_MachCallJava()) {
1087 arg_escape = mcall->as_MachCallJava()->_arg_escape;
1088 }
1089
1090 // Check if a call returns an object.
1091 if (mcall->returns_pointer() || mcall->returns_scalarized()) {
1092 return_oop = true;
1093 }
1094 if (mcall->returns_scalarized()) {
1095 return_scalarized = true;
1096 }
1097 safepoint_pc_offset += mcall->ret_addr_offset();
1098 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1099 }
1100
1101 // Loop over the JVMState list to add scope information
1102 // Do not skip safepoints with a null method, they need monitor info
1103 JVMState* youngest_jvms = sfn->jvms();
1104 int max_depth = youngest_jvms->depth();
1105
1106 // Allocate the object pool for scalar-replaced objects -- the map from
1107 // small-integer keys (which can be recorded in the local and ostack
1108 // arrays) to descriptions of the object state.
1109 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1110
1111 // Visit scopes from oldest to youngest.
1112 for (int depth = 1; depth <= max_depth; depth++) {
1113 JVMState* jvms = youngest_jvms->of_depth(depth);
1114 int idx;
1115 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1116 // Safepoints that do not have method() set only provide oop-map and monitor info
1117 // to support GC; these do not support deoptimization.
1118 int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1119 int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1120 int num_mon = jvms->nof_monitors();
1121 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1122 "JVMS local count must match that of the method");
1123
1124 // Add Local and Expression Stack Information
1125
1126 // Insert locals into the locarray
1127 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1128 for( idx = 0; idx < num_locs; idx++ ) {
1129 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1130 }
1131
1132 // Insert expression stack entries into the exparray
1133 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1134 for( idx = 0; idx < num_exps; idx++ ) {
1135 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
1136 }
1137
1138 // Add in mappings of the monitors
1139 assert( !method ||
1140 !method->is_synchronized() ||
1141 method->is_native() ||
1142 num_mon > 0,
1143 "monitors must always exist for synchronized methods");
1144
1145 // Build the growable array of ScopeValues for exp stack
1146 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1147
1148 // Loop over monitors and insert into array
1149 for (idx = 0; idx < num_mon; idx++) {
1150 // Grab the node that defines this monitor
1151 Node* box_node = sfn->monitor_box(jvms, idx);
1152 Node* obj_node = sfn->monitor_obj(jvms, idx);
1153
1154 // Create ScopeValue for object
1155 ScopeValue *scval = nullptr;
1156
1157 if (obj_node->is_SafePointScalarObject()) {
1158 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1159 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1160 if (scval == nullptr) {
1161 const Type *t = spobj->bottom_type();
1162 ciKlass* cik = t->is_oopptr()->exact_klass();
1163 assert(cik->is_instance_klass() ||
1164 cik->is_array_klass(), "Not supported allocation.");
1165 assert(!cik->is_inlinetype(), "Synchronization on value object?");
1166 ScopeValue* properties = nullptr;
1167 if (cik->is_array_klass() && !cik->is_type_array_klass()) {
1168 jint props = ArrayKlass::ArrayProperties::DEFAULT;
1169 if (cik->as_array_klass()->element_klass()->is_inlinetype()) {
1170 if (cik->as_array_klass()->is_elem_null_free()) {
1171 props |= ArrayKlass::ArrayProperties::NULL_RESTRICTED;
1172 }
1173 if (!cik->as_array_klass()->is_elem_atomic()) {
1174 props |= ArrayKlass::ArrayProperties::NON_ATOMIC;
1175 }
1176 }
1177 properties = new ConstantIntValue(props);
1178 }
1179 ObjectValue* sv = new ObjectValue(spobj->_idx,
1180 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()), true, properties);
1181 PhaseOutput::set_sv_for_object_node(objs, sv);
1182
1183 uint first_ind = spobj->first_index(youngest_jvms);
1184 for (uint i = 0; i < spobj->n_fields(); i++) {
1185 Node* fld_node = sfn->in(first_ind+i);
1186 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1187 }
1188 scval = sv;
1189 }
1190 } else if (obj_node->is_SafePointScalarMerge()) {
1191 SafePointScalarMergeNode* smerge = obj_node->as_SafePointScalarMerge();
1192 ObjectMergeValue* mv = (ObjectMergeValue*) sv_for_node_id(objs, smerge->_idx);
1193
1194 if (mv == nullptr) {
1195 GrowableArray<ScopeValue*> deps;
1196
1197 int merge_pointer_idx = smerge->merge_pointer_idx(youngest_jvms);
1198 FillLocArray(0, sfn, sfn->in(merge_pointer_idx), &deps, objs);
1199 assert(deps.length() == 1, "missing value");
1200
1201 int selector_idx = smerge->selector_idx(youngest_jvms);
1202 FillLocArray(1, nullptr, sfn->in(selector_idx), &deps, nullptr);
1203 assert(deps.length() == 2, "missing value");
1204
1205 mv = new ObjectMergeValue(smerge->_idx, deps.at(0), deps.at(1));
1206 set_sv_for_object_node(objs, mv);
1207
1208 for (uint i = 1; i < smerge->req(); i++) {
1209 Node* obj_node = smerge->in(i);
1210 int idx = mv->possible_objects()->length();
1211 (void)FillLocArray(idx, sfn, obj_node, mv->possible_objects(), objs);
1212
1213 // By default ObjectValues that are in 'possible_objects' are not root objects.
1214 // They will be marked as root later if they are directly referenced in a JVMS.
1215 assert(mv->possible_objects()->length() > idx, "Didn't add entry to possible_objects?!");
1216 assert(mv->possible_objects()->at(idx)->is_object(), "Entries in possible_objects should be ObjectValue.");
1217 mv->possible_objects()->at(idx)->as_ObjectValue()->set_root(false);
1218 }
1219 }
1220 scval = mv;
1221 } else if (!obj_node->is_Con()) {
1222 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1223 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1224 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1225 } else {
1226 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1227 }
1228 } else {
1229 const TypePtr *tp = obj_node->get_ptr_type();
1230 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1231 }
1232
1233 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1234 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1235 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1236 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1237 }
1238
1239 // Mark ObjectValue nodes as root nodes if they are directly
1240 // referenced in the JVMS.
1241 for (int i = 0; i < objs->length(); i++) {
1242 ScopeValue* sv = objs->at(i);
1243 if (sv->is_object_merge()) {
1244 ObjectMergeValue* merge = sv->as_ObjectMergeValue();
1245
1246 for (int j = 0; j< merge->possible_objects()->length(); j++) {
1247 ObjectValue* ov = merge->possible_objects()->at(j)->as_ObjectValue();
1248 if (ov->is_root()) {
1249 // Already flagged as 'root' by something else. We shouldn't change it
1250 // to non-root in a younger JVMS because it may need to be alive in
1251 // a younger JVMS.
1252 } else {
1253 bool is_root = locarray->contains(ov) ||
1254 exparray->contains(ov) ||
1255 contains_as_owner(monarray, ov) ||
1256 contains_as_scalarized_obj(jvms, sfn, objs, ov);
1257 ov->set_root(is_root);
1258 }
1259 }
1260 }
1261 }
1262
1263 // We dump the object pool first, since deoptimization reads it in first.
1264 C->debug_info()->dump_object_pool(objs);
1265
1266 // Build first class objects to pass to scope
1267 DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1268 DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1269 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1270
1271 // Make method available for all Safepoints
1272 ciMethod* scope_method = method ? method : C->method();
1273 // Describe the scope here
1274 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1275 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1276 // Now we can describe the scope.
1277 methodHandle null_mh;
1278 bool rethrow_exception = false;
1279 C->debug_info()->describe_scope(
1280 safepoint_pc_offset,
1281 null_mh,
1282 scope_method,
1283 jvms->bci(),
1284 jvms->should_reexecute(),
1285 rethrow_exception,
1286 return_oop,
1287 return_scalarized,
1288 has_ea_local_in_scope,
1289 arg_escape,
1290 locvals,
1291 expvals,
1292 monvals
1293 );
1294 } // End jvms loop
1295
1296 // Mark the end of the scope set.
1297 C->debug_info()->end_safepoint(safepoint_pc_offset);
1298 }
1299
1300
1301
1302 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1303 class NonSafepointEmitter {
1304 Compile* C;
1305 JVMState* _pending_jvms;
1306 int _pending_offset;
1307
1308 void emit_non_safepoint();
1309
1310 public:
1311 NonSafepointEmitter(Compile* compile) {
1312 this->C = compile;
1313 _pending_jvms = nullptr;
1314 _pending_offset = 0;
1315 }
1316
1317 void observe_instruction(Node* n, int pc_offset) {
1318 if (!C->debug_info()->recording_non_safepoints()) return;
1319
1320 Node_Notes* nn = C->node_notes_at(n->_idx);
1321 if (nn == nullptr || nn->jvms() == nullptr) return;
1322 if (_pending_jvms != nullptr &&
1323 _pending_jvms->same_calls_as(nn->jvms())) {
1324 // Repeated JVMS? Stretch it up here.
1325 _pending_offset = pc_offset;
1326 } else {
1327 if (_pending_jvms != nullptr &&
1328 _pending_offset < pc_offset) {
1329 emit_non_safepoint();
1330 }
1331 _pending_jvms = nullptr;
1332 if (pc_offset > C->debug_info()->last_pc_offset()) {
1333 // This is the only way _pending_jvms can become non-null:
1334 _pending_jvms = nn->jvms();
1335 _pending_offset = pc_offset;
1336 }
1337 }
1338 }
1339
1340 // Stay out of the way of real safepoints:
1341 void observe_safepoint(JVMState* jvms, int pc_offset) {
1342 if (_pending_jvms != nullptr &&
1343 !_pending_jvms->same_calls_as(jvms) &&
1344 _pending_offset < pc_offset) {
1345 emit_non_safepoint();
1346 }
1347 _pending_jvms = nullptr;
1348 }
1349
1350 void flush_at_end() {
1351 if (_pending_jvms != nullptr) {
1352 emit_non_safepoint();
1353 }
1354 _pending_jvms = nullptr;
1355 }
1356 };
1357
1358 void NonSafepointEmitter::emit_non_safepoint() {
1359 JVMState* youngest_jvms = _pending_jvms;
1360 int pc_offset = _pending_offset;
1361
1362 // Clear it now:
1363 _pending_jvms = nullptr;
1364
1365 DebugInformationRecorder* debug_info = C->debug_info();
1366 assert(debug_info->recording_non_safepoints(), "sanity");
1367
1368 debug_info->add_non_safepoint(pc_offset);
1369 int max_depth = youngest_jvms->depth();
1370
1371 // Visit scopes from oldest to youngest.
1372 for (int depth = 1; depth <= max_depth; depth++) {
1373 JVMState* jvms = youngest_jvms->of_depth(depth);
1374 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1375 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1376 methodHandle null_mh;
1377 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1378 }
1379
1380 // Mark the end of the scope set.
1381 debug_info->end_non_safepoint(pc_offset);
1382 }
1383
1384 //------------------------------init_buffer------------------------------------
1385 void PhaseOutput::estimate_buffer_size(int& const_req) {
1386
1387 // Set the initially allocated size
1388 const_req = initial_const_capacity;
1389
1390 // The extra spacing after the code is necessary on some platforms.
1391 // Sometimes we need to patch in a jump after the last instruction,
1392 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
1393
1394 // Compute the byte offset where we can store the deopt pc.
1395 if (C->fixed_slots() != 0) {
1396 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1397 }
1398
1399 // Compute prolog code size
1400 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1401 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1402
1403 if (C->has_mach_constant_base_node()) {
1404 uint add_size = 0;
1405 // Fill the constant table.
1406 // Note: This must happen before shorten_branches.
1407 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1408 Block* b = C->cfg()->get_block(i);
1409
1410 for (uint j = 0; j < b->number_of_nodes(); j++) {
1411 Node* n = b->get_node(j);
1412
1413 // If the node is a MachConstantNode evaluate the constant
1414 // value section.
1415 if (n->is_MachConstant()) {
1416 MachConstantNode* machcon = n->as_MachConstant();
1417 machcon->eval_constant(C);
1418 } else if (n->is_Mach()) {
1419 // On Power there are more nodes that issue constants.
1420 add_size += (n->as_Mach()->ins_num_consts() * 8);
1421 }
1422 }
1423 }
1424
1425 // Calculate the offsets of the constants and the size of the
1426 // constant table (including the padding to the next section).
1427 constant_table().calculate_offsets_and_size();
1428 const_req = constant_table().alignment() + constant_table().size() + add_size;
1429 }
1430
1431 // Initialize the space for the BufferBlob used to find and verify
1432 // instruction size in MachNode::emit_size()
1433 init_scratch_buffer_blob(const_req);
1434 }
1435
1436 CodeBuffer* PhaseOutput::init_buffer() {
1437 int stub_req = _buf_sizes._stub;
1438 int code_req = _buf_sizes._code;
1439 int const_req = _buf_sizes._const;
1440
1441 int pad_req = NativeCall::byte_size();
1442
1443 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1444 stub_req += bs->estimate_stub_size();
1445
1446 // nmethod and CodeBuffer count stubs & constants as part of method's code.
1447 // class HandlerImpl is platform-specific and defined in the *.ad files.
1448 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler
1449 stub_req += MAX_stubs_size; // ensure per-stub margin
1450 code_req += MAX_inst_size; // ensure per-instruction margin
1451
1452 if (StressCodeBuffers)
1453 code_req = const_req = stub_req = deopt_handler_req = 0x10; // force expansion
1454
1455 int total_req =
1456 const_req +
1457 code_req +
1458 pad_req +
1459 stub_req +
1460 deopt_handler_req; // deopt handler
1461
1462 CodeBuffer* cb = code_buffer();
1463 cb->set_const_section_alignment(constant_table().alignment());
1464 cb->initialize(total_req, _buf_sizes._reloc);
1465
1466 // Have we run out of code space?
1467 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1468 C->record_failure("CodeCache is full");
1469 return nullptr;
1470 }
1471 // Configure the code buffer.
1472 cb->initialize_consts_size(const_req);
1473 cb->initialize_stubs_size(stub_req);
1474 cb->initialize_oop_recorder(C->env()->oop_recorder());
1475
1476 return cb;
1477 }
1478
1479 //------------------------------fill_buffer------------------------------------
1480 void PhaseOutput::fill_buffer(C2_MacroAssembler* masm, uint* blk_starts) {
1481 // blk_starts[] contains offsets calculated during short branches processing,
1482 // offsets should not be increased during following steps.
1483
1484 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1485 // of a loop. It is used to determine the padding for loop alignment.
1486 Compile::TracePhase tp(_t_fillBuffer);
1487
1488 compute_loop_first_inst_sizes();
1489
1490 // Create oopmap set.
1491 _oop_map_set = new OopMapSet();
1492
1493 // !!!!! This preserves old handling of oopmaps for now
1494 C->debug_info()->set_oopmaps(_oop_map_set);
1495
1496 uint nblocks = C->cfg()->number_of_blocks();
1497 // Count and start of implicit null check instructions
1498 uint inct_cnt = 0;
1499 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1500
1501 // Count and start of calls
1502 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1503
1504 uint return_offset = 0;
1505 int nop_size = (new MachNopNode())->size(C->regalloc());
1506
1507 int previous_offset = 0;
1508 int current_offset = 0;
1509 int last_call_offset = -1;
1510 int last_avoid_back_to_back_offset = -1;
1511 #ifdef ASSERT
1512 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1513 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1514 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
1515 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
1516 #endif
1517
1518 // Create an array of unused labels, one for each basic block, if printing is enabled
1519 #if defined(SUPPORT_OPTO_ASSEMBLY)
1520 int* node_offsets = nullptr;
1521 uint node_offset_limit = C->unique();
1522
1523 if (C->print_assembly()) {
1524 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1525 }
1526 if (node_offsets != nullptr) {
1527 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1528 memset(node_offsets, 0, node_offset_limit*sizeof(int));
1529 }
1530 #endif
1531
1532 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily
1533
1534 // Emit the constant table.
1535 if (C->has_mach_constant_base_node()) {
1536 if (!constant_table().emit(masm)) {
1537 C->record_failure("consts section overflow");
1538 return;
1539 }
1540 }
1541
1542 // Create an array of labels, one for each basic block
1543 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1544 for (uint i = 0; i <= nblocks; i++) {
1545 blk_labels[i].init();
1546 }
1547
1548 // Now fill in the code buffer
1549 for (uint i = 0; i < nblocks; i++) {
1550 Block* block = C->cfg()->get_block(i);
1551 _block = block;
1552 Node* head = block->head();
1553
1554 // If this block needs to start aligned (i.e, can be reached other
1555 // than by falling-thru from the previous block), then force the
1556 // start of a new bundle.
1557 if (Pipeline::requires_bundling() && starts_bundle(head)) {
1558 masm->code()->flush_bundle(true);
1559 }
1560
1561 #ifdef ASSERT
1562 if (!block->is_connector()) {
1563 stringStream st;
1564 block->dump_head(C->cfg(), &st);
1565 masm->block_comment(st.freeze());
1566 }
1567 jmp_target[i] = 0;
1568 jmp_offset[i] = 0;
1569 jmp_size[i] = 0;
1570 jmp_rule[i] = 0;
1571 #endif
1572 int blk_offset = current_offset;
1573
1574 // Define the label at the beginning of the basic block
1575 masm->bind(blk_labels[block->_pre_order]);
1576
1577 uint last_inst = block->number_of_nodes();
1578
1579 // Emit block normally, except for last instruction.
1580 // Emit means "dump code bits into code buffer".
1581 for (uint j = 0; j<last_inst; j++) {
1582 _index = j;
1583
1584 // Get the node
1585 Node* n = block->get_node(j);
1586
1587 // If this starts a new instruction group, then flush the current one
1588 // (but allow split bundles)
1589 if (Pipeline::requires_bundling() && starts_bundle(n))
1590 masm->code()->flush_bundle(false);
1591
1592 // Special handling for SafePoint/Call Nodes
1593 bool is_mcall = false;
1594 if (n->is_Mach()) {
1595 MachNode *mach = n->as_Mach();
1596 is_mcall = n->is_MachCall();
1597 bool is_sfn = n->is_MachSafePoint();
1598
1599 // If this requires all previous instructions be flushed, then do so
1600 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1601 masm->code()->flush_bundle(true);
1602 current_offset = masm->offset();
1603 }
1604
1605 // align the instruction if necessary
1606 int padding = mach->compute_padding(current_offset);
1607 // Make sure safepoint node for polling is distinct from a call's
1608 // return by adding a nop if needed.
1609 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1610 padding = nop_size;
1611 }
1612 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1613 current_offset == last_avoid_back_to_back_offset) {
1614 // Avoid back to back some instructions.
1615 padding = nop_size;
1616 }
1617
1618 if (padding > 0) {
1619 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1620 int nops_cnt = padding / nop_size;
1621 MachNode *nop = new MachNopNode(nops_cnt);
1622 block->insert_node(nop, j++);
1623 last_inst++;
1624 C->cfg()->map_node_to_block(nop, block);
1625 // Ensure enough space.
1626 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1627 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1628 C->record_failure("CodeCache is full");
1629 return;
1630 }
1631 nop->emit(masm, C->regalloc());
1632 masm->code()->flush_bundle(true);
1633 current_offset = masm->offset();
1634 }
1635
1636 bool observe_safepoint = is_sfn;
1637 // Remember the start of the last call in a basic block
1638 if (is_mcall) {
1639 MachCallNode *mcall = mach->as_MachCall();
1640
1641 if (mcall->entry_point() != nullptr) {
1642 // This destination address is NOT PC-relative
1643 mcall->method_set((intptr_t)mcall->entry_point());
1644 }
1645
1646 // Save the return address
1647 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1648
1649 observe_safepoint = mcall->guaranteed_safepoint();
1650 }
1651
1652 // sfn will be valid whenever mcall is valid now because of inheritance
1653 if (observe_safepoint) {
1654 // Handle special safepoint nodes for synchronization
1655 if (!is_mcall) {
1656 MachSafePointNode *sfn = mach->as_MachSafePoint();
1657 // !!!!! Stubs only need an oopmap right now, so bail out
1658 if (sfn->jvms()->method() == nullptr) {
1659 // Write the oopmap directly to the code blob??!!
1660 continue;
1661 }
1662 } // End synchronization
1663
1664 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1665 current_offset);
1666 Process_OopMap_Node(mach, current_offset);
1667 } // End if safepoint
1668
1669 // If this is a null check, then add the start of the previous instruction to the list
1670 else if( mach->is_MachNullCheck() ) {
1671 inct_starts[inct_cnt++] = previous_offset;
1672 }
1673
1674 // If this is a branch, then fill in the label with the target BB's label
1675 else if (mach->is_MachBranch()) {
1676 // This requires the TRUE branch target be in succs[0]
1677 uint block_num = block->non_connector_successor(0)->_pre_order;
1678
1679 // Try to replace long branch,
1680 // it is mostly for back branches since forward branch's
1681 // distance is not updated yet.
1682 if (mach->may_be_short_branch()) {
1683 int br_size = n->size(C->regalloc());
1684 int offset = blk_starts[block_num] - current_offset;
1685 if (block_num >= i) {
1686 // Current and following block's offset are not
1687 // finalized yet, adjust distance by the difference
1688 // between calculated and final offsets of current block.
1689 offset -= (blk_starts[i] - blk_offset);
1690 }
1691 // In the following code a nop could be inserted before
1692 // the branch which will increase the backward distance.
1693 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1694 if (needs_padding && offset <= 0)
1695 offset -= nop_size;
1696
1697 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1698 // We've got a winner. Replace this branch.
1699 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1700
1701 // Update the jmp_size.
1702 int new_size = replacement->size(C->regalloc());
1703 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1704 // Insert padding between avoid_back_to_back branches.
1705 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1706 MachNode *nop = new MachNopNode();
1707 block->insert_node(nop, j++);
1708 C->cfg()->map_node_to_block(nop, block);
1709 last_inst++;
1710 nop->emit(masm, C->regalloc());
1711 masm->code()->flush_bundle(true);
1712 current_offset = masm->offset();
1713 }
1714 #ifdef ASSERT
1715 jmp_target[i] = block_num;
1716 jmp_offset[i] = current_offset - blk_offset;
1717 jmp_size[i] = new_size;
1718 jmp_rule[i] = mach->rule();
1719 #endif
1720 block->map_node(replacement, j);
1721 mach->subsume_by(replacement, C);
1722 n = replacement;
1723 mach = replacement;
1724 }
1725 }
1726 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1727 } else if (mach->ideal_Opcode() == Op_Jump) {
1728 for (uint h = 0; h < block->_num_succs; h++) {
1729 Block* succs_block = block->_succs[h];
1730 for (uint j = 1; j < succs_block->num_preds(); j++) {
1731 Node* jpn = succs_block->pred(j);
1732 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1733 uint block_num = succs_block->non_connector()->_pre_order;
1734 Label *blkLabel = &blk_labels[block_num];
1735 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1736 }
1737 }
1738 }
1739 } else if (!n->is_Proj()) {
1740 // Remember the beginning of the previous instruction, in case
1741 // it's followed by a flag-kill and a null-check. Happens on
1742 // Intel all the time, with add-to-memory kind of opcodes.
1743 previous_offset = current_offset;
1744 }
1745
1746 // Not an else-if!
1747 // If this is a trap based cmp then add its offset to the list.
1748 if (mach->is_TrapBasedCheckNode()) {
1749 inct_starts[inct_cnt++] = current_offset;
1750 }
1751 }
1752
1753 // Verify that there is sufficient space remaining
1754 masm->code()->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1755 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1756 C->record_failure("CodeCache is full");
1757 return;
1758 }
1759
1760 // Save the offset for the listing
1761 #if defined(SUPPORT_OPTO_ASSEMBLY)
1762 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1763 node_offsets[n->_idx] = masm->offset();
1764 }
1765 #endif
1766 assert(!C->failing_internal() || C->failure_is_artificial(), "Should not reach here if failing.");
1767
1768 // "Normal" instruction case
1769 DEBUG_ONLY(uint instr_offset = masm->offset());
1770 n->emit(masm, C->regalloc());
1771 current_offset = masm->offset();
1772
1773 // Above we only verified that there is enough space in the instruction section.
1774 // However, the instruction may emit stubs that cause code buffer expansion.
1775 // Bail out here if expansion failed due to a lack of code cache space.
1776 if (C->failing()) {
1777 return;
1778 }
1779
1780 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1781 "ret_addr_offset() not within emitted code");
1782 #ifdef ASSERT
1783 uint n_size = n->size(C->regalloc());
1784 if (n_size < (current_offset-instr_offset)) {
1785 MachNode* mach = n->as_Mach();
1786 n->dump();
1787 mach->dump_format(C->regalloc(), tty);
1788 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1789 Disassembler::decode(masm->code()->insts_begin() + instr_offset, masm->code()->insts_begin() + current_offset + 1, tty);
1790 tty->print_cr(" ------------------- ");
1791 BufferBlob* blob = this->scratch_buffer_blob();
1792 address blob_begin = blob->content_begin();
1793 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1794 assert(false, "wrong size of mach node");
1795 }
1796 #endif
1797 non_safepoints.observe_instruction(n, current_offset);
1798
1799 // mcall is last "call" that can be a safepoint
1800 // record it so we can see if a poll will directly follow it
1801 // in which case we'll need a pad to make the PcDesc sites unique
1802 // see 5010568. This can be slightly inaccurate but conservative
1803 // in the case that return address is not actually at current_offset.
1804 // This is a small price to pay.
1805
1806 if (is_mcall) {
1807 last_call_offset = current_offset;
1808 }
1809
1810 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1811 // Avoid back to back some instructions.
1812 last_avoid_back_to_back_offset = current_offset;
1813 }
1814
1815 } // End for all instructions in block
1816
1817 // If the next block is the top of a loop, pad this block out to align
1818 // the loop top a little. Helps prevent pipe stalls at loop back branches.
1819 if (i < nblocks-1) {
1820 Block *nb = C->cfg()->get_block(i + 1);
1821 int padding = nb->alignment_padding(current_offset);
1822 if( padding > 0 ) {
1823 MachNode *nop = new MachNopNode(padding / nop_size);
1824 block->insert_node(nop, block->number_of_nodes());
1825 C->cfg()->map_node_to_block(nop, block);
1826 nop->emit(masm, C->regalloc());
1827 current_offset = masm->offset();
1828 }
1829 }
1830 // Verify that the distance for generated before forward
1831 // short branches is still valid.
1832 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1833
1834 // Save new block start offset
1835 blk_starts[i] = blk_offset;
1836 } // End of for all blocks
1837 blk_starts[nblocks] = current_offset;
1838
1839 non_safepoints.flush_at_end();
1840
1841 // Offset too large?
1842 if (C->failing()) return;
1843
1844 // Define a pseudo-label at the end of the code
1845 masm->bind( blk_labels[nblocks] );
1846
1847 // Compute the size of the first block
1848 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1849
1850 #ifdef ASSERT
1851 for (uint i = 0; i < nblocks; i++) { // For all blocks
1852 if (jmp_target[i] != 0) {
1853 int br_size = jmp_size[i];
1854 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1855 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1856 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1857 assert(false, "Displacement too large for short jmp");
1858 }
1859 }
1860 }
1861 #endif
1862
1863 if (!masm->code()->finalize_stubs()) {
1864 C->record_failure("CodeCache is full");
1865 return;
1866 }
1867
1868 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1869 bs->emit_stubs(*masm->code());
1870 if (C->failing()) return;
1871
1872 // Fill in stubs.
1873 assert(masm->inst_mark() == nullptr, "should be.");
1874 _stub_list.emit(*masm);
1875 if (C->failing()) return;
1876
1877 #ifndef PRODUCT
1878 // Information on the size of the method, without the extraneous code
1879 Scheduling::increment_method_size(masm->offset());
1880 #endif
1881
1882 // ------------------
1883 // Fill in exception table entries.
1884 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1885
1886 // Only java methods have exception handlers and deopt handlers
1887 // class HandlerImpl is platform-specific and defined in the *.ad files.
1888 if (C->method()) {
1889 if (C->failing()) {
1890 return; // CodeBuffer::expand failed
1891 }
1892 // Emit the deopt handler code.
1893 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(masm));
1894 }
1895
1896 // One last check for failed CodeBuffer::expand:
1897 if ((masm->code()->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1898 C->record_failure("CodeCache is full");
1899 return;
1900 }
1901
1902 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1903 if (C->print_assembly()) {
1904 tty->cr();
1905 tty->print_cr("============================= C2-compiled nmethod ==============================");
1906 }
1907 #endif
1908
1909 #if defined(SUPPORT_OPTO_ASSEMBLY)
1910 // Dump the assembly code, including basic-block numbers
1911 if (C->print_assembly()) {
1912 ttyLocker ttyl; // keep the following output all in one block
1913 if (!VMThread::should_terminate()) { // test this under the tty lock
1914 // print_metadata and dump_asm may safepoint which makes us loose the ttylock.
1915 // We call them first and write to a stringStream, then we retake the lock to
1916 // make sure the end tag is coherent, and that xmlStream->pop_tag is done thread safe.
1917 ResourceMark rm;
1918 stringStream method_metadata_str;
1919 if (C->method() != nullptr) {
1920 C->method()->print_metadata(&method_metadata_str);
1921 }
1922 stringStream dump_asm_str;
1923 dump_asm_on(&dump_asm_str, node_offsets, node_offset_limit);
1924
1925 NoSafepointVerifier nsv;
1926 ttyLocker ttyl2;
1927 // This output goes directly to the tty, not the compiler log.
1928 // To enable tools to match it up with the compilation activity,
1929 // be sure to tag this tty output with the compile ID.
1930 if (xtty != nullptr) {
1931 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1932 C->is_osr_compilation() ? " compile_kind='osr'" : "");
1933 }
1934 if (C->method() != nullptr) {
1935 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1936 tty->print_raw(method_metadata_str.freeze());
1937 } else if (C->stub_name() != nullptr) {
1938 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1939 }
1940 tty->cr();
1941 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1942 tty->print_raw(dump_asm_str.freeze());
1943 tty->print_cr("--------------------------------------------------------------------------------");
1944 if (xtty != nullptr) {
1945 xtty->tail("opto_assembly");
1946 }
1947 }
1948 }
1949 #endif
1950 }
1951
1952 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1953 _inc_table.set_size(cnt);
1954
1955 uint inct_cnt = 0;
1956 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1957 Block* block = C->cfg()->get_block(i);
1958 Node *n = nullptr;
1959 int j;
1960
1961 // Find the branch; ignore trailing NOPs.
1962 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1963 n = block->get_node(j);
1964 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1965 break;
1966 }
1967 }
1968
1969 // If we didn't find anything, continue
1970 if (j < 0) {
1971 continue;
1972 }
1973
1974 // Compute ExceptionHandlerTable subtable entry and add it
1975 // (skip empty blocks)
1976 if (n->is_Catch()) {
1977
1978 // Get the offset of the return from the call
1979 uint call_return = call_returns[block->_pre_order];
1980 #ifdef ASSERT
1981 assert( call_return > 0, "no call seen for this basic block" );
1982 while (block->get_node(--j)->is_MachProj()) ;
1983 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1984 #endif
1985 // last instruction is a CatchNode, find it's CatchProjNodes
1986 int nof_succs = block->_num_succs;
1987 // allocate space
1988 GrowableArray<intptr_t> handler_bcis(nof_succs);
1989 GrowableArray<intptr_t> handler_pcos(nof_succs);
1990 // iterate through all successors
1991 for (int j = 0; j < nof_succs; j++) {
1992 Block* s = block->_succs[j];
1993 bool found_p = false;
1994 for (uint k = 1; k < s->num_preds(); k++) {
1995 Node* pk = s->pred(k);
1996 if (pk->is_CatchProj() && pk->in(0) == n) {
1997 const CatchProjNode* p = pk->as_CatchProj();
1998 found_p = true;
1999 // add the corresponding handler bci & pco information
2000 if (p->_con != CatchProjNode::fall_through_index) {
2001 // p leads to an exception handler (and is not fall through)
2002 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
2003 // no duplicates, please
2004 if (!handler_bcis.contains(p->handler_bci())) {
2005 uint block_num = s->non_connector()->_pre_order;
2006 handler_bcis.append(p->handler_bci());
2007 handler_pcos.append(blk_labels[block_num].loc_pos());
2008 }
2009 }
2010 }
2011 }
2012 assert(found_p, "no matching predecessor found");
2013 // Note: Due to empty block removal, one block may have
2014 // several CatchProj inputs, from the same Catch.
2015 }
2016
2017 // Set the offset of the return from the call
2018 assert(handler_bcis.find(-1) != -1, "must have default handler");
2019 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
2020 continue;
2021 }
2022
2023 // Handle implicit null exception table updates
2024 if (n->is_MachNullCheck()) {
2025 MachNode* access = n->in(1)->as_Mach();
2026 assert(access->barrier_data() == 0 ||
2027 access->is_late_expanded_null_check_candidate(),
2028 "Implicit null checks on memory accesses with barriers are only supported on nodes explicitly marked as null-check candidates");
2029 uint block_num = block->non_connector_successor(0)->_pre_order;
2030 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2031 continue;
2032 }
2033 // Handle implicit exception table updates: trap instructions.
2034 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
2035 uint block_num = block->non_connector_successor(0)->_pre_order;
2036 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
2037 continue;
2038 }
2039 } // End of for all blocks fill in exception table entries
2040 }
2041
2042 // Static Variables
2043 #ifndef PRODUCT
2044 uint Scheduling::_total_nop_size = 0;
2045 uint Scheduling::_total_method_size = 0;
2046 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
2047 #endif
2048
2049 // Initializer for class Scheduling
2050
2051 Scheduling::Scheduling(Arena *arena, Compile &compile)
2052 : _arena(arena),
2053 _cfg(compile.cfg()),
2054 _regalloc(compile.regalloc()),
2055 _scheduled(arena),
2056 _available(arena),
2057 _reg_node(arena),
2058 _pinch_free_list(arena),
2059 _next_node(nullptr),
2060 _bundle_instr_count(0),
2061 _bundle_cycle_number(0),
2062 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2063 {
2064 // Save the count
2065 _node_bundling_limit = compile.unique();
2066 uint node_max = _regalloc->node_regs_max_index();
2067
2068 compile.output()->set_node_bundling_limit(_node_bundling_limit);
2069
2070 // This one is persistent within the Compile class
2071 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2072
2073 // Allocate space for fixed-size arrays
2074 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
2075 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2076
2077 // Clear the arrays
2078 for (uint i = 0; i < node_max; i++) {
2079 ::new (&_node_bundling_base[i]) Bundle();
2080 }
2081 memset(_uses, 0, node_max * sizeof(short));
2082 memset(_current_latency, 0, node_max * sizeof(unsigned short));
2083
2084 // Clear the bundling information
2085 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2086
2087 // Get the last node
2088 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2089
2090 _next_node = block->get_node(block->number_of_nodes() - 1);
2091 }
2092
2093 // Step ahead "i" cycles
2094 void Scheduling::step(uint i) {
2095
2096 Bundle *bundle = node_bundling(_next_node);
2097 bundle->set_starts_bundle();
2098
2099 // Update the bundle record, but leave the flags information alone
2100 if (_bundle_instr_count > 0) {
2101 bundle->set_instr_count(_bundle_instr_count);
2102 bundle->set_resources_used(_bundle_use.resourcesUsed());
2103 }
2104
2105 // Update the state information
2106 _bundle_instr_count = 0;
2107 _bundle_cycle_number += i;
2108 _bundle_use.step(i);
2109 }
2110
2111 void Scheduling::step_and_clear() {
2112 Bundle *bundle = node_bundling(_next_node);
2113 bundle->set_starts_bundle();
2114
2115 // Update the bundle record
2116 if (_bundle_instr_count > 0) {
2117 bundle->set_instr_count(_bundle_instr_count);
2118 bundle->set_resources_used(_bundle_use.resourcesUsed());
2119
2120 _bundle_cycle_number += 1;
2121 }
2122
2123 // Clear the bundling information
2124 _bundle_instr_count = 0;
2125 _bundle_use.reset();
2126
2127 memcpy(_bundle_use_elements,
2128 Pipeline_Use::elaborated_elements,
2129 sizeof(Pipeline_Use::elaborated_elements));
2130 }
2131
2132 // Perform instruction scheduling and bundling over the sequence of
2133 // instructions in backwards order.
2134 void PhaseOutput::ScheduleAndBundle() {
2135
2136 // Don't optimize this if it isn't a method
2137 if (!C->method())
2138 return;
2139
2140 // Don't optimize this if scheduling is disabled
2141 if (!C->do_scheduling())
2142 return;
2143
2144 // Scheduling code works only with pairs (8 bytes) maximum.
2145 // And when the scalable vector register is used, we may spill/unspill
2146 // the whole reg regardless of the max vector size.
2147 if (C->max_vector_size() > 8 ||
2148 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) {
2149 return;
2150 }
2151
2152 Compile::TracePhase tp(_t_instrSched);
2153
2154 // Create a data structure for all the scheduling information
2155 Scheduling scheduling(Thread::current()->resource_area(), *C);
2156
2157 // Walk backwards over each basic block, computing the needed alignment
2158 // Walk over all the basic blocks
2159 scheduling.DoScheduling();
2160
2161 #ifndef PRODUCT
2162 if (C->trace_opto_output()) {
2163 // Buffer and print all at once
2164 ResourceMark rm;
2165 stringStream ss;
2166 ss.print("\n---- After ScheduleAndBundle ----\n");
2167 print_scheduling(&ss);
2168 tty->print("%s", ss.as_string());
2169 }
2170 #endif
2171 }
2172
2173 #ifndef PRODUCT
2174 // Separated out so that it can be called directly from debugger
2175 void PhaseOutput::print_scheduling() {
2176 print_scheduling(tty);
2177 }
2178
2179 void PhaseOutput::print_scheduling(outputStream* output_stream) {
2180 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2181 output_stream->print("\nBB#%03d:\n", i);
2182 Block* block = C->cfg()->get_block(i);
2183 for (uint j = 0; j < block->number_of_nodes(); j++) {
2184 Node* n = block->get_node(j);
2185 OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2186 output_stream->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2187 n->dump("\n", false, output_stream);
2188 }
2189 }
2190 }
2191 #endif
2192
2193 // See if this node fits into the present instruction bundle
2194 bool Scheduling::NodeFitsInBundle(Node *n) {
2195 uint n_idx = n->_idx;
2196
2197 // If the node cannot be scheduled this cycle, skip it
2198 if (_current_latency[n_idx] > _bundle_cycle_number) {
2199 #ifndef PRODUCT
2200 if (_cfg->C->trace_opto_output())
2201 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2202 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2203 #endif
2204 return (false);
2205 }
2206
2207 const Pipeline *node_pipeline = n->pipeline();
2208
2209 uint instruction_count = node_pipeline->instructionCount();
2210 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2211 instruction_count = 0;
2212
2213 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2214 #ifndef PRODUCT
2215 if (_cfg->C->trace_opto_output())
2216 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2217 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2218 #endif
2219 return (false);
2220 }
2221
2222 // Don't allow non-machine nodes to be handled this way
2223 if (!n->is_Mach() && instruction_count == 0)
2224 return (false);
2225
2226 // See if there is any overlap
2227 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2228
2229 if (delay > 0) {
2230 #ifndef PRODUCT
2231 if (_cfg->C->trace_opto_output())
2232 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2233 #endif
2234 return false;
2235 }
2236
2237 #ifndef PRODUCT
2238 if (_cfg->C->trace_opto_output())
2239 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
2240 #endif
2241
2242 return true;
2243 }
2244
2245 Node * Scheduling::ChooseNodeToBundle() {
2246 uint siz = _available.size();
2247
2248 if (siz == 0) {
2249
2250 #ifndef PRODUCT
2251 if (_cfg->C->trace_opto_output())
2252 tty->print("# ChooseNodeToBundle: null\n");
2253 #endif
2254 return (nullptr);
2255 }
2256
2257 // Fast path, if only 1 instruction in the bundle
2258 if (siz == 1) {
2259 #ifndef PRODUCT
2260 if (_cfg->C->trace_opto_output()) {
2261 tty->print("# ChooseNodeToBundle (only 1): ");
2262 _available[0]->dump();
2263 }
2264 #endif
2265 return (_available[0]);
2266 }
2267
2268 // Don't bother, if the bundle is already full
2269 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2270 for ( uint i = 0; i < siz; i++ ) {
2271 Node *n = _available[i];
2272
2273 // Skip projections, we'll handle them another way
2274 if (n->is_Proj())
2275 continue;
2276
2277 // This presupposed that instructions are inserted into the
2278 // available list in a legality order; i.e. instructions that
2279 // must be inserted first are at the head of the list
2280 if (NodeFitsInBundle(n)) {
2281 #ifndef PRODUCT
2282 if (_cfg->C->trace_opto_output()) {
2283 tty->print("# ChooseNodeToBundle: ");
2284 n->dump();
2285 }
2286 #endif
2287 return (n);
2288 }
2289 }
2290 }
2291
2292 // Nothing fits in this bundle, choose the highest priority
2293 #ifndef PRODUCT
2294 if (_cfg->C->trace_opto_output()) {
2295 tty->print("# ChooseNodeToBundle: ");
2296 _available[0]->dump();
2297 }
2298 #endif
2299
2300 return _available[0];
2301 }
2302
2303 int Scheduling::compare_two_spill_nodes(Node* first, Node* second) {
2304 assert(first->is_MachSpillCopy() && second->is_MachSpillCopy(), "");
2305
2306 OptoReg::Name first_src_lo = _regalloc->get_reg_first(first->in(1));
2307 OptoReg::Name first_dst_lo = _regalloc->get_reg_first(first);
2308 OptoReg::Name second_src_lo = _regalloc->get_reg_first(second->in(1));
2309 OptoReg::Name second_dst_lo = _regalloc->get_reg_first(second);
2310
2311 // Comparison between stack -> reg and stack -> reg
2312 if (OptoReg::is_stack(first_src_lo) && OptoReg::is_stack(second_src_lo) &&
2313 OptoReg::is_reg(first_dst_lo) && OptoReg::is_reg(second_dst_lo)) {
2314 return _regalloc->reg2offset(first_src_lo) - _regalloc->reg2offset(second_src_lo);
2315 }
2316
2317 // Comparison between reg -> stack and reg -> stack
2318 if (OptoReg::is_stack(first_dst_lo) && OptoReg::is_stack(second_dst_lo) &&
2319 OptoReg::is_reg(first_src_lo) && OptoReg::is_reg(second_src_lo)) {
2320 return _regalloc->reg2offset(first_dst_lo) - _regalloc->reg2offset(second_dst_lo);
2321 }
2322
2323 return 0; // Not comparable
2324 }
2325
2326 void Scheduling::AddNodeToAvailableList(Node *n) {
2327 assert( !n->is_Proj(), "projections never directly made available" );
2328 #ifndef PRODUCT
2329 if (_cfg->C->trace_opto_output()) {
2330 tty->print("# AddNodeToAvailableList: ");
2331 n->dump();
2332 }
2333 #endif
2334
2335 int latency = _current_latency[n->_idx];
2336
2337 // Insert in latency order (insertion sort). If two MachSpillCopyNodes
2338 // for stack spilling or unspilling have the same latency, we sort
2339 // them in the order of stack offset. Some ports (e.g. aarch64) may also
2340 // have more opportunities to do ld/st merging
2341 uint i;
2342 for (i = 0; i < _available.size(); i++) {
2343 if (_current_latency[_available[i]->_idx] > latency) {
2344 break;
2345 } else if (_current_latency[_available[i]->_idx] == latency &&
2346 n->is_MachSpillCopy() && _available[i]->is_MachSpillCopy() &&
2347 compare_two_spill_nodes(n, _available[i]) > 0) {
2348 break;
2349 }
2350 }
2351
2352 // Special Check for compares following branches
2353 if( n->is_Mach() && _scheduled.size() > 0 ) {
2354 int op = n->as_Mach()->ideal_Opcode();
2355 Node *last = _scheduled[0];
2356 if( last->is_MachIf() && last->in(1) == n &&
2357 ( op == Op_CmpI ||
2358 op == Op_CmpU ||
2359 op == Op_CmpUL ||
2360 op == Op_CmpP ||
2361 op == Op_CmpF ||
2362 op == Op_CmpD ||
2363 op == Op_CmpL ) ) {
2364
2365 // Recalculate position, moving to front of same latency
2366 for ( i=0 ; i < _available.size(); i++ )
2367 if (_current_latency[_available[i]->_idx] >= latency)
2368 break;
2369 }
2370 }
2371
2372 // Insert the node in the available list
2373 _available.insert(i, n);
2374
2375 #ifndef PRODUCT
2376 if (_cfg->C->trace_opto_output())
2377 dump_available();
2378 #endif
2379 }
2380
2381 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2382 for ( uint i=0; i < n->len(); i++ ) {
2383 Node *def = n->in(i);
2384 if (!def) continue;
2385 if( def->is_Proj() ) // If this is a machine projection, then
2386 def = def->in(0); // propagate usage thru to the base instruction
2387
2388 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2389 continue;
2390 }
2391
2392 // Compute the latency
2393 uint l = _bundle_cycle_number + n->latency(i);
2394 if (_current_latency[def->_idx] < l)
2395 _current_latency[def->_idx] = l;
2396
2397 // If this does not have uses then schedule it
2398 if ((--_uses[def->_idx]) == 0)
2399 AddNodeToAvailableList(def);
2400 }
2401 }
2402
2403 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2404 #ifndef PRODUCT
2405 if (_cfg->C->trace_opto_output()) {
2406 tty->print("# AddNodeToBundle: ");
2407 n->dump();
2408 }
2409 #endif
2410
2411 // Remove this from the available list
2412 uint i;
2413 for (i = 0; i < _available.size(); i++)
2414 if (_available[i] == n)
2415 break;
2416 assert(i < _available.size(), "entry in _available list not found");
2417 _available.remove(i);
2418
2419 // See if this fits in the current bundle
2420 const Pipeline *node_pipeline = n->pipeline();
2421 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2422
2423
2424 // Get the number of instructions
2425 uint instruction_count = node_pipeline->instructionCount();
2426 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2427 instruction_count = 0;
2428
2429 // Compute the latency information
2430 uint delay = 0;
2431
2432 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2433 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2434 if (relative_latency < 0)
2435 relative_latency = 0;
2436
2437 delay = _bundle_use.full_latency(relative_latency, node_usage);
2438
2439 // Does not fit in this bundle, start a new one
2440 if (delay > 0) {
2441 step(delay);
2442
2443 #ifndef PRODUCT
2444 if (_cfg->C->trace_opto_output())
2445 tty->print("# *** STEP(%d) ***\n", delay);
2446 #endif
2447 }
2448 }
2449
2450 if (delay == 0) {
2451 if (node_pipeline->hasMultipleBundles()) {
2452 #ifndef PRODUCT
2453 if (_cfg->C->trace_opto_output())
2454 tty->print("# *** STEP(multiple instructions) ***\n");
2455 #endif
2456 step(1);
2457 }
2458
2459 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2460 #ifndef PRODUCT
2461 if (_cfg->C->trace_opto_output())
2462 tty->print("# *** STEP(%d >= %d instructions) ***\n",
2463 instruction_count + _bundle_instr_count,
2464 Pipeline::_max_instrs_per_cycle);
2465 #endif
2466 step(1);
2467 }
2468 }
2469
2470 // Set the node's latency
2471 _current_latency[n->_idx] = _bundle_cycle_number;
2472
2473 // Now merge the functional unit information
2474 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2475 _bundle_use.add_usage(node_usage);
2476
2477 // Increment the number of instructions in this bundle
2478 _bundle_instr_count += instruction_count;
2479
2480 // Remember this node for later
2481 if (n->is_Mach())
2482 _next_node = n;
2483
2484 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2485 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
2486 // 'Schedule' them (basically ignore in the schedule) but do not insert them
2487 // into the block. All other scheduled nodes get put in the schedule here.
2488 int op = n->Opcode();
2489 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2490 (op != Op_Node && // Not an unused antidepedence node and
2491 // not an unallocated boxlock
2492 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2493
2494 // Push any trailing projections
2495 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2496 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2497 Node *foi = n->fast_out(i);
2498 if( foi->is_Proj() )
2499 _scheduled.push(foi);
2500 }
2501 }
2502
2503 // Put the instruction in the schedule list
2504 _scheduled.push(n);
2505 }
2506
2507 #ifndef PRODUCT
2508 if (_cfg->C->trace_opto_output())
2509 dump_available();
2510 #endif
2511
2512 // Walk all the definitions, decrementing use counts, and
2513 // if a definition has a 0 use count, place it in the available list.
2514 DecrementUseCounts(n,bb);
2515 }
2516
2517 // This method sets the use count within a basic block. We will ignore all
2518 // uses outside the current basic block. As we are doing a backwards walk,
2519 // any node we reach that has a use count of 0 may be scheduled. This also
2520 // avoids the problem of cyclic references from phi nodes, as long as phi
2521 // nodes are at the front of the basic block. This method also initializes
2522 // the available list to the set of instructions that have no uses within this
2523 // basic block.
2524 void Scheduling::ComputeUseCount(const Block *bb) {
2525 #ifndef PRODUCT
2526 if (_cfg->C->trace_opto_output())
2527 tty->print("# -> ComputeUseCount\n");
2528 #endif
2529
2530 // Clear the list of available and scheduled instructions, just in case
2531 _available.clear();
2532 _scheduled.clear();
2533
2534 #ifdef ASSERT
2535 for( uint i=0; i < bb->number_of_nodes(); i++ )
2536 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2537 #endif
2538
2539 // Force the _uses count to never go to zero for unscheduable pieces
2540 // of the block
2541 for( uint k = 0; k < _bb_start; k++ )
2542 _uses[bb->get_node(k)->_idx] = 1;
2543 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2544 _uses[bb->get_node(l)->_idx] = 1;
2545
2546 // Iterate backwards over the instructions in the block. Don't count the
2547 // branch projections at end or the block header instructions.
2548 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2549 Node *n = bb->get_node(j);
2550 if( n->is_Proj() ) continue; // Projections handled another way
2551
2552 // Account for all uses
2553 for ( uint k = 0; k < n->len(); k++ ) {
2554 Node *inp = n->in(k);
2555 if (!inp) continue;
2556 assert(inp != n, "no cycles allowed" );
2557 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2558 if (inp->is_Proj()) { // Skip through Proj's
2559 inp = inp->in(0);
2560 }
2561 ++_uses[inp->_idx]; // Count 1 block-local use
2562 }
2563 }
2564
2565 // If this instruction has a 0 use count, then it is available
2566 if (!_uses[n->_idx]) {
2567 _current_latency[n->_idx] = _bundle_cycle_number;
2568 AddNodeToAvailableList(n);
2569 }
2570
2571 #ifndef PRODUCT
2572 if (_cfg->C->trace_opto_output()) {
2573 tty->print("# uses: %3d: ", _uses[n->_idx]);
2574 n->dump();
2575 }
2576 #endif
2577 }
2578
2579 #ifndef PRODUCT
2580 if (_cfg->C->trace_opto_output())
2581 tty->print("# <- ComputeUseCount\n");
2582 #endif
2583 }
2584
2585 // This routine performs scheduling on each basic block in reverse order,
2586 // using instruction latencies and taking into account function unit
2587 // availability.
2588 void Scheduling::DoScheduling() {
2589 #ifndef PRODUCT
2590 if (_cfg->C->trace_opto_output())
2591 tty->print("# -> DoScheduling\n");
2592 #endif
2593
2594 Block *succ_bb = nullptr;
2595 Block *bb;
2596 Compile* C = Compile::current();
2597
2598 // Walk over all the basic blocks in reverse order
2599 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2600 bb = _cfg->get_block(i);
2601
2602 #ifndef PRODUCT
2603 if (_cfg->C->trace_opto_output()) {
2604 tty->print("# Schedule BB#%03d (initial)\n", i);
2605 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2606 bb->get_node(j)->dump();
2607 }
2608 }
2609 #endif
2610
2611 // On the head node, skip processing
2612 if (bb == _cfg->get_root_block()) {
2613 continue;
2614 }
2615
2616 // Skip empty, connector blocks
2617 if (bb->is_connector())
2618 continue;
2619
2620 // If the following block is not the sole successor of
2621 // this one, then reset the pipeline information
2622 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2623 #ifndef PRODUCT
2624 if (_cfg->C->trace_opto_output()) {
2625 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2626 _next_node->_idx, _bundle_instr_count);
2627 }
2628 #endif
2629 step_and_clear();
2630 }
2631
2632 // Leave untouched the starting instruction, any Phis, a CreateEx node
2633 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
2634 _bb_end = bb->number_of_nodes()-1;
2635 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2636 Node *n = bb->get_node(_bb_start);
2637 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2638 // Also, MachIdealNodes do not get scheduled
2639 if( !n->is_Mach() ) continue; // Skip non-machine nodes
2640 MachNode *mach = n->as_Mach();
2641 int iop = mach->ideal_Opcode();
2642 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2643 if( iop == Op_Con ) continue; // Do not schedule Top
2644 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
2645 mach->pipeline() == MachNode::pipeline_class() &&
2646 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc
2647 continue;
2648 break; // Funny loop structure to be sure...
2649 }
2650 // Compute last "interesting" instruction in block - last instruction we
2651 // might schedule. _bb_end points just after last schedulable inst.
2652 Node *last = bb->get_node(_bb_end);
2653 // Ignore trailing NOPs.
2654 while (_bb_end > 0 && last->is_Mach() &&
2655 last->as_Mach()->ideal_Opcode() == Op_Con) {
2656 last = bb->get_node(--_bb_end);
2657 }
2658 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2659 if( last->is_Catch() ||
2660 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2661 // There might be a prior call. Skip it.
2662 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2663 } else if( last->is_MachNullCheck() ) {
2664 // Backup so the last null-checked memory instruction is
2665 // outside the schedulable range. Skip over the nullcheck,
2666 // projection, and the memory nodes.
2667 Node *mem = last->in(1);
2668 do {
2669 _bb_end--;
2670 } while (mem != bb->get_node(_bb_end));
2671 } else {
2672 // Set _bb_end to point after last schedulable inst.
2673 _bb_end++;
2674 }
2675
2676 assert( _bb_start <= _bb_end, "inverted block ends" );
2677
2678 // Compute the register antidependencies for the basic block
2679 ComputeRegisterAntidependencies(bb);
2680 if (C->failing()) return; // too many D-U pinch points
2681
2682 // Compute the usage within the block, and set the list of all nodes
2683 // in the block that have no uses within the block.
2684 ComputeUseCount(bb);
2685
2686 // Schedule the remaining instructions in the block
2687 while ( _available.size() > 0 ) {
2688 Node *n = ChooseNodeToBundle();
2689 guarantee(n != nullptr, "no nodes available");
2690 AddNodeToBundle(n,bb);
2691 }
2692
2693 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2694 #ifdef ASSERT
2695 for( uint l = _bb_start; l < _bb_end; l++ ) {
2696 Node *n = bb->get_node(l);
2697 uint m;
2698 for( m = 0; m < _bb_end-_bb_start; m++ )
2699 if( _scheduled[m] == n )
2700 break;
2701 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2702 }
2703 #endif
2704
2705 // Now copy the instructions (in reverse order) back to the block
2706 for ( uint k = _bb_start; k < _bb_end; k++ )
2707 bb->map_node(_scheduled[_bb_end-k-1], k);
2708
2709 #ifndef PRODUCT
2710 if (_cfg->C->trace_opto_output()) {
2711 tty->print("# Schedule BB#%03d (final)\n", i);
2712 uint current = 0;
2713 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2714 Node *n = bb->get_node(j);
2715 if( valid_bundle_info(n) ) {
2716 Bundle *bundle = node_bundling(n);
2717 if (bundle->instr_count() > 0) {
2718 tty->print("*** Bundle: ");
2719 bundle->dump();
2720 }
2721 n->dump();
2722 }
2723 }
2724 }
2725 #endif
2726 #ifdef ASSERT
2727 verify_good_schedule(bb,"after block local scheduling");
2728 #endif
2729 }
2730
2731 #ifndef PRODUCT
2732 if (_cfg->C->trace_opto_output())
2733 tty->print("# <- DoScheduling\n");
2734 #endif
2735
2736 // Record final node-bundling array location
2737 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2738
2739 } // end DoScheduling
2740
2741 // Verify that no live-range used in the block is killed in the block by a
2742 // wrong DEF. This doesn't verify live-ranges that span blocks.
2743
2744 // Check for edge existence. Used to avoid adding redundant precedence edges.
2745 static bool edge_from_to( Node *from, Node *to ) {
2746 for( uint i=0; i<from->len(); i++ )
2747 if( from->in(i) == to )
2748 return true;
2749 return false;
2750 }
2751
2752 #ifdef ASSERT
2753 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2754 // Check for bad kills
2755 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2756 Node *prior_use = _reg_node[def];
2757 if( prior_use && !edge_from_to(prior_use,n) ) {
2758 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2759 n->dump();
2760 tty->print_cr("...");
2761 prior_use->dump();
2762 assert(edge_from_to(prior_use,n), "%s", msg);
2763 }
2764 _reg_node.map(def,nullptr); // Kill live USEs
2765 }
2766 }
2767
2768 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2769
2770 // Zap to something reasonable for the verify code
2771 _reg_node.clear();
2772
2773 // Walk over the block backwards. Check to make sure each DEF doesn't
2774 // kill a live value (other than the one it's supposed to). Add each
2775 // USE to the live set.
2776 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2777 Node *n = b->get_node(i);
2778 int n_op = n->Opcode();
2779 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2780 // Fat-proj kills a slew of registers
2781 RegMaskIterator rmi(n->out_RegMask());
2782 while (rmi.has_next()) {
2783 OptoReg::Name kill = rmi.next();
2784 verify_do_def(n, kill, msg);
2785 }
2786 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2787 // Get DEF'd registers the normal way
2788 verify_do_def( n, _regalloc->get_reg_first(n), msg );
2789 verify_do_def( n, _regalloc->get_reg_second(n), msg );
2790 }
2791
2792 // Now make all USEs live
2793 for( uint i=1; i<n->req(); i++ ) {
2794 Node *def = n->in(i);
2795 assert(def != nullptr, "input edge required");
2796 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2797 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2798 if( OptoReg::is_valid(reg_lo) ) {
2799 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2800 _reg_node.map(reg_lo,n);
2801 }
2802 if( OptoReg::is_valid(reg_hi) ) {
2803 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2804 _reg_node.map(reg_hi,n);
2805 }
2806 }
2807
2808 }
2809
2810 // Zap to something reasonable for the Antidependence code
2811 _reg_node.clear();
2812 }
2813 #endif
2814
2815 // Conditionally add precedence edges. Avoid putting edges on Projs.
2816 static void add_prec_edge_from_to( Node *from, Node *to ) {
2817 if( from->is_Proj() ) { // Put precedence edge on Proj's input
2818 assert( from->req() == 1 && (from->len() == 1 || from->in(1) == nullptr), "no precedence edges on projections" );
2819 from = from->in(0);
2820 }
2821 if( from != to && // No cycles (for things like LD L0,[L0+4] )
2822 !edge_from_to( from, to ) ) // Avoid duplicate edge
2823 from->add_prec(to);
2824 }
2825
2826 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2827 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2828 return;
2829
2830 if (OptoReg::is_reg(def_reg)) {
2831 VMReg vmreg = OptoReg::as_VMReg(def_reg);
2832 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
2833 // This is one of the high slots of a vector register.
2834 // ScheduleAndBundle already checked there are no live wide
2835 // vectors in this method so it can be safely ignored.
2836 return;
2837 }
2838 }
2839
2840 Node *pinch = _reg_node[def_reg]; // Get pinch point
2841 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2842 is_def ) { // Check for a true def (not a kill)
2843 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2844 return;
2845 }
2846
2847 Node *kill = def; // Rename 'def' to more descriptive 'kill'
2848 DEBUG_ONLY( def = (Node*)((intptr_t)0xdeadbeef); )
2849
2850 // After some number of kills there _may_ be a later def
2851 Node *later_def = nullptr;
2852
2853 Compile* C = Compile::current();
2854
2855 // Finding a kill requires a real pinch-point.
2856 // Check for not already having a pinch-point.
2857 // Pinch points are Op_Node's.
2858 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2859 later_def = pinch; // Must be def/kill as optimistic pinch-point
2860 if ( _pinch_free_list.size() > 0) {
2861 pinch = _pinch_free_list.pop();
2862 } else {
2863 pinch = new Node(1); // Pinch point to-be
2864 }
2865 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2866 DEBUG_ONLY( pinch->dump(); );
2867 assert(false, "too many D-U pinch points: %d >= %d", pinch->_idx, _regalloc->node_regs_max_index());
2868 _cfg->C->record_method_not_compilable("too many D-U pinch points");
2869 return;
2870 }
2871 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
2872 _reg_node.map(def_reg,pinch); // Record pinch-point
2873 //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2874 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2875 pinch->init_req(0, C->top()); // set not null for the next call
2876 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2877 later_def = nullptr; // and no later def
2878 }
2879 pinch->set_req(0,later_def); // Hook later def so we can find it
2880 } else { // Else have valid pinch point
2881 if( pinch->in(0) ) // If there is a later-def
2882 later_def = pinch->in(0); // Get it
2883 }
2884
2885 // Add output-dependence edge from later def to kill
2886 if( later_def ) // If there is some original def
2887 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2888
2889 // See if current kill is also a use, and so is forced to be the pinch-point.
2890 if( pinch->Opcode() == Op_Node ) {
2891 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2892 for( uint i=1; i<uses->req(); i++ ) {
2893 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2894 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2895 // Yes, found a use/kill pinch-point
2896 pinch->set_req(0,nullptr); //
2897 pinch->replace_by(kill); // Move anti-dep edges up
2898 pinch = kill;
2899 _reg_node.map(def_reg,pinch);
2900 return;
2901 }
2902 }
2903 }
2904
2905 // Add edge from kill to pinch-point
2906 add_prec_edge_from_to(kill,pinch);
2907 }
2908
2909 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2910 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2911 return;
2912 Node *pinch = _reg_node[use_reg]; // Get pinch point
2913 // Check for no later def_reg/kill in block
2914 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
2915 // Use has to be block-local as well
2916 _cfg->get_block_for_node(use) == b) {
2917 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2918 pinch->req() == 1 ) { // pinch not yet in block?
2919 pinch->del_req(0); // yank pointer to later-def, also set flag
2920 // Insert the pinch-point in the block just after the last use
2921 b->insert_node(pinch, b->find_node(use) + 1);
2922 _bb_end++; // Increase size scheduled region in block
2923 }
2924
2925 add_prec_edge_from_to(pinch,use);
2926 }
2927 }
2928
2929 // We insert antidependences between the reads and following write of
2930 // allocated registers to prevent illegal code motion. Hopefully, the
2931 // number of added references should be fairly small, especially as we
2932 // are only adding references within the current basic block.
2933 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2934
2935 #ifdef ASSERT
2936 verify_good_schedule(b,"before block local scheduling");
2937 #endif
2938
2939 // A valid schedule, for each register independently, is an endless cycle
2940 // of: a def, then some uses (connected to the def by true dependencies),
2941 // then some kills (defs with no uses), finally the cycle repeats with a new
2942 // def. The uses are allowed to float relative to each other, as are the
2943 // kills. No use is allowed to slide past a kill (or def). This requires
2944 // antidependencies between all uses of a single def and all kills that
2945 // follow, up to the next def. More edges are redundant, because later defs
2946 // & kills are already serialized with true or antidependencies. To keep
2947 // the edge count down, we add a 'pinch point' node if there's more than
2948 // one use or more than one kill/def.
2949
2950 // We add dependencies in one bottom-up pass.
2951
2952 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2953
2954 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2955 // register. If not, we record the DEF/KILL in _reg_node, the
2956 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
2957 // "pinch point", a new Node that's in the graph but not in the block.
2958 // We put edges from the prior and current DEF/KILLs to the pinch point.
2959 // We put the pinch point in _reg_node. If there's already a pinch point
2960 // we merely add an edge from the current DEF/KILL to the pinch point.
2961
2962 // After doing the DEF/KILLs, we handle USEs. For each used register, we
2963 // put an edge from the pinch point to the USE.
2964
2965 // To be expedient, the _reg_node array is pre-allocated for the whole
2966 // compilation. _reg_node is lazily initialized; it either contains a null,
2967 // or a valid def/kill/pinch-point, or a leftover node from some prior
2968 // block. Leftover node from some prior block is treated like a null (no
2969 // prior def, so no anti-dependence needed). Valid def is distinguished by
2970 // it being in the current block.
2971 bool fat_proj_seen = false;
2972 uint last_safept = _bb_end-1;
2973 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
2974 Node* last_safept_node = end_node;
2975 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2976 Node *n = b->get_node(i);
2977 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
2978 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2979 // Fat-proj kills a slew of registers
2980 // This can add edges to 'n' and obscure whether or not it was a def,
2981 // hence the is_def flag.
2982 fat_proj_seen = true;
2983 RegMaskIterator rmi(n->out_RegMask());
2984 while (rmi.has_next()) {
2985 OptoReg::Name kill = rmi.next();
2986 anti_do_def(b, n, kill, is_def);
2987 }
2988 } else {
2989 // Get DEF'd registers the normal way
2990 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2991 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2992 }
2993
2994 // Kill projections on a branch should appear to occur on the
2995 // branch, not afterwards, so grab the masks from the projections
2996 // and process them.
2997 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
2998 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2999 Node* use = n->fast_out(i);
3000 if (use->is_Proj()) {
3001 RegMaskIterator rmi(use->out_RegMask());
3002 while (rmi.has_next()) {
3003 OptoReg::Name kill = rmi.next();
3004 anti_do_def(b, n, kill, false);
3005 }
3006 }
3007 }
3008 }
3009
3010 // Check each register used by this instruction for a following DEF/KILL
3011 // that must occur afterward and requires an anti-dependence edge.
3012 for( uint j=0; j<n->req(); j++ ) {
3013 Node *def = n->in(j);
3014 if( def ) {
3015 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3016 anti_do_use( b, n, _regalloc->get_reg_first(def) );
3017 anti_do_use( b, n, _regalloc->get_reg_second(def) );
3018 }
3019 }
3020 // Do not allow defs of new derived values to float above GC
3021 // points unless the base is definitely available at the GC point.
3022
3023 Node *m = b->get_node(i);
3024
3025 // Add precedence edge from following safepoint to use of derived pointer
3026 if( last_safept_node != end_node &&
3027 m != last_safept_node) {
3028 for (uint k = 1; k < m->req(); k++) {
3029 const Type *t = m->in(k)->bottom_type();
3030 if( t->isa_oop_ptr() &&
3031 t->is_ptr()->offset() != 0 ) {
3032 last_safept_node->add_prec( m );
3033 break;
3034 }
3035 }
3036
3037 // Do not allow a CheckCastPP node whose input is a raw pointer to
3038 // float past a safepoint. This can occur when a buffered inline
3039 // type is allocated in a loop and the CheckCastPP from that
3040 // allocation is reused outside the loop. If the use inside the
3041 // loop is scalarized the CheckCastPP will no longer be connected
3042 // to the loop safepoint. See JDK-8264340.
3043 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) {
3044 Node *def = m->in(1);
3045 if (def != nullptr && def->bottom_type()->base() == Type::RawPtr) {
3046 last_safept_node->add_prec(m);
3047 }
3048 }
3049 }
3050
3051 if( n->jvms() ) { // Precedence edge from derived to safept
3052 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3053 if( b->get_node(last_safept) != last_safept_node ) {
3054 last_safept = b->find_node(last_safept_node);
3055 }
3056 for( uint j=last_safept; j > i; j-- ) {
3057 Node *mach = b->get_node(j);
3058 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3059 mach->add_prec( n );
3060 }
3061 last_safept = i;
3062 last_safept_node = m;
3063 }
3064 }
3065
3066 if (fat_proj_seen) {
3067 // Garbage collect pinch nodes that were not consumed.
3068 // They are usually created by a fat kill MachProj for a call.
3069 garbage_collect_pinch_nodes();
3070 }
3071 }
3072
3073 // Garbage collect pinch nodes for reuse by other blocks.
3074 //
3075 // The block scheduler's insertion of anti-dependence
3076 // edges creates many pinch nodes when the block contains
3077 // 2 or more Calls. A pinch node is used to prevent a
3078 // combinatorial explosion of edges. If a set of kills for a
3079 // register is anti-dependent on a set of uses (or defs), rather
3080 // than adding an edge in the graph between each pair of kill
3081 // and use (or def), a pinch is inserted between them:
3082 //
3083 // use1 use2 use3
3084 // \ | /
3085 // \ | /
3086 // pinch
3087 // / | \
3088 // / | \
3089 // kill1 kill2 kill3
3090 //
3091 // One pinch node is created per register killed when
3092 // the second call is encountered during a backwards pass
3093 // over the block. Most of these pinch nodes are never
3094 // wired into the graph because the register is never
3095 // used or def'ed in the block.
3096 //
3097 void Scheduling::garbage_collect_pinch_nodes() {
3098 #ifndef PRODUCT
3099 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3100 #endif
3101 int trace_cnt = 0;
3102 for (uint k = 0; k < _reg_node.max(); k++) {
3103 Node* pinch = _reg_node[k];
3104 if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3105 // no predecence input edges
3106 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3107 cleanup_pinch(pinch);
3108 _pinch_free_list.push(pinch);
3109 _reg_node.map(k, nullptr);
3110 #ifndef PRODUCT
3111 if (_cfg->C->trace_opto_output()) {
3112 trace_cnt++;
3113 if (trace_cnt > 40) {
3114 tty->print("\n");
3115 trace_cnt = 0;
3116 }
3117 tty->print(" %d", pinch->_idx);
3118 }
3119 #endif
3120 }
3121 }
3122 #ifndef PRODUCT
3123 if (_cfg->C->trace_opto_output()) tty->print("\n");
3124 #endif
3125 }
3126
3127 // Clean up a pinch node for reuse.
3128 void Scheduling::cleanup_pinch( Node *pinch ) {
3129 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3130
3131 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3132 Node* use = pinch->last_out(i);
3133 uint uses_found = 0;
3134 for (uint j = use->req(); j < use->len(); j++) {
3135 if (use->in(j) == pinch) {
3136 use->rm_prec(j);
3137 uses_found++;
3138 }
3139 }
3140 assert(uses_found > 0, "must be a precedence edge");
3141 i -= uses_found; // we deleted 1 or more copies of this edge
3142 }
3143 // May have a later_def entry
3144 pinch->set_req(0, nullptr);
3145 }
3146
3147 #ifndef PRODUCT
3148
3149 void Scheduling::dump_available() const {
3150 tty->print("#Availist ");
3151 for (uint i = 0; i < _available.size(); i++)
3152 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3153 tty->cr();
3154 }
3155
3156 // Print Scheduling Statistics
3157 void Scheduling::print_statistics() {
3158 // Print the size added by nops for bundling
3159 tty->print("Nops added %d bytes to total of %d bytes",
3160 _total_nop_size, _total_method_size);
3161 if (_total_method_size > 0)
3162 tty->print(", for %.2f%%",
3163 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3164 tty->print("\n");
3165
3166 uint total_instructions = 0, total_bundles = 0;
3167
3168 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3169 uint bundle_count = _total_instructions_per_bundle[i];
3170 total_instructions += bundle_count * i;
3171 total_bundles += bundle_count;
3172 }
3173
3174 if (total_bundles > 0)
3175 tty->print("Average ILP (excluding nops) is %.2f\n",
3176 ((double)total_instructions) / ((double)total_bundles));
3177 }
3178 #endif
3179
3180 //-----------------------init_scratch_buffer_blob------------------------------
3181 // Construct a temporary BufferBlob and cache it for this compile.
3182 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3183 // If there is already a scratch buffer blob allocated and the
3184 // constant section is big enough, use it. Otherwise free the
3185 // current and allocate a new one.
3186 BufferBlob* blob = scratch_buffer_blob();
3187 if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3188 // Use the current blob.
3189 } else {
3190 if (blob != nullptr) {
3191 BufferBlob::free(blob);
3192 }
3193
3194 ResourceMark rm;
3195 _scratch_const_size = const_size;
3196 int size = C2Compiler::initial_code_buffer_size(const_size);
3197 if (C->has_scalarized_args()) {
3198 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification
3199 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly.
3200 ciMethod* method = C->method();
3201 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37));
3202 int arg_num = 0;
3203 if (!method->is_static()) {
3204 if (method->is_scalarized_arg(arg_num)) {
3205 size += method->holder()->as_inline_klass()->oop_count() * barrier_size;
3206 }
3207 arg_num++;
3208 }
3209 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) {
3210 if (method->is_scalarized_arg(arg_num)) {
3211 size += str.type()->as_inline_klass()->oop_count() * barrier_size;
3212 }
3213 arg_num++;
3214 }
3215 }
3216 blob = BufferBlob::create("Compile::scratch_buffer", size);
3217 // Record the buffer blob for next time.
3218 set_scratch_buffer_blob(blob);
3219 // Have we run out of code space?
3220 if (scratch_buffer_blob() == nullptr) {
3221 // Let CompilerBroker disable further compilations.
3222 C->record_failure("Not enough space for scratch buffer in CodeCache");
3223 return;
3224 }
3225 }
3226
3227 // Initialize the relocation buffers
3228 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3229 set_scratch_locs_memory(locs_buf);
3230 }
3231
3232
3233 //-----------------------scratch_emit_size-------------------------------------
3234 // Helper function that computes size by emitting code
3235 uint PhaseOutput::scratch_emit_size(const Node* n) {
3236 // Start scratch_emit_size section.
3237 set_in_scratch_emit_size(true);
3238
3239 // Emit into a trash buffer and count bytes emitted.
3240 // This is a pretty expensive way to compute a size,
3241 // but it works well enough if seldom used.
3242 // All common fixed-size instructions are given a size
3243 // method by the AD file.
3244 // Note that the scratch buffer blob and locs memory are
3245 // allocated at the beginning of the compile task, and
3246 // may be shared by several calls to scratch_emit_size.
3247 // The allocation of the scratch buffer blob is particularly
3248 // expensive, since it has to grab the code cache lock.
3249 BufferBlob* blob = this->scratch_buffer_blob();
3250 assert(blob != nullptr, "Initialize BufferBlob at start");
3251 assert(blob->size() > MAX_inst_size, "sanity");
3252 relocInfo* locs_buf = scratch_locs_memory();
3253 address blob_begin = blob->content_begin();
3254 address blob_end = (address)locs_buf;
3255 assert(blob->contains(blob_end), "sanity");
3256 CodeBuffer buf(blob_begin, blob_end - blob_begin);
3257 buf.initialize_consts_size(_scratch_const_size);
3258 buf.initialize_stubs_size(MAX_stubs_size);
3259 assert(locs_buf != nullptr, "sanity");
3260 int lsize = MAX_locs_size / 3;
3261 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3262 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3263 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3264 // Mark as scratch buffer.
3265 buf.consts()->set_scratch_emit();
3266 buf.insts()->set_scratch_emit();
3267 buf.stubs()->set_scratch_emit();
3268
3269 // Do the emission.
3270
3271 Label fakeL; // Fake label for branch instructions.
3272 Label* saveL = nullptr;
3273 uint save_bnum = 0;
3274 bool is_branch = n->is_MachBranch();
3275 C2_MacroAssembler masm(&buf);
3276 masm.bind(fakeL);
3277 if (is_branch) {
3278 n->as_MachBranch()->save_label(&saveL, &save_bnum);
3279 n->as_MachBranch()->label_set(&fakeL, 0);
3280 }
3281 n->emit(&masm, C->regalloc());
3282
3283 // Emitting into the scratch buffer should not fail
3284 assert(!C->failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3285
3286 // Restore label.
3287 if (is_branch) {
3288 n->as_MachBranch()->label_set(saveL, save_bnum);
3289 }
3290
3291 // End scratch_emit_size section.
3292 set_in_scratch_emit_size(false);
3293
3294 return buf.insts_size();
3295 }
3296
3297 void PhaseOutput::install() {
3298 if (!C->should_install_code()) {
3299 return;
3300 } else if (C->stub_function() != nullptr) {
3301 install_stub(C->stub_name());
3302 } else {
3303 install_code(C->method(),
3304 C->entry_bci(),
3305 CompileBroker::compiler2(),
3306 C->has_unsafe_access(),
3307 SharedRuntime::is_wide_vector(C->max_vector_size()));
3308 }
3309 }
3310
3311 void PhaseOutput::install_code(ciMethod* target,
3312 int entry_bci,
3313 AbstractCompiler* compiler,
3314 bool has_unsafe_access,
3315 bool has_wide_vectors) {
3316 // Check if we want to skip execution of all compiled code.
3317 {
3318 #ifndef PRODUCT
3319 if (OptoNoExecute) {
3320 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed
3321 return;
3322 }
3323 #endif
3324 Compile::TracePhase tp(_t_registerMethod);
3325
3326 if (C->is_osr_compilation()) {
3327 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3328 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3329 } else {
3330 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3331 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) {
3332 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size);
3333 }
3334 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) {
3335 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size);
3336 }
3337 if (_code_offsets.value(CodeOffsets::Entry) == -1) {
3338 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
3339 }
3340 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3341 }
3342
3343 C->env()->register_method(target,
3344 entry_bci,
3345 &_code_offsets,
3346 _orig_pc_slot_offset_in_bytes,
3347 code_buffer(),
3348 frame_size_in_words(),
3349 _oop_map_set,
3350 &_handler_table,
3351 inc_table(),
3352 compiler,
3353 has_unsafe_access,
3354 SharedRuntime::is_wide_vector(C->max_vector_size()),
3355 C->has_monitors(),
3356 C->has_scoped_access(),
3357 0);
3358
3359 if (C->log() != nullptr) { // Print code cache state into compiler log
3360 C->log()->code_cache_state();
3361 }
3362 }
3363 }
3364 void PhaseOutput::install_stub(const char* stub_name) {
3365 // Entry point will be accessed using stub_entry_point();
3366 if (code_buffer() == nullptr) {
3367 Matcher::soft_match_failure();
3368 } else {
3369 if (PrintAssembly && (WizardMode || Verbose))
3370 tty->print_cr("### Stub::%s", stub_name);
3371
3372 if (!C->failing()) {
3373 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3374
3375 // Make the NMethod
3376 // For now we mark the frame as never safe for profile stackwalking
3377 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3378 code_buffer(),
3379 CodeOffsets::frame_never_safe,
3380 // _code_offsets.value(CodeOffsets::Frame_Complete),
3381 frame_size_in_words(),
3382 oop_map_set(),
3383 false,
3384 false);
3385
3386 if (rs == nullptr) {
3387 C->record_failure("CodeCache is full");
3388 } else {
3389 assert(rs->is_runtime_stub(), "sanity check");
3390 C->set_stub_entry_point(rs->entry_point());
3391 BlobId blob_id = StubInfo::blob(C->stub_id());
3392 AOTCodeCache::store_code_blob(*rs, AOTCodeEntry::C2Blob, blob_id);
3393 }
3394 }
3395 }
3396 }
3397
3398 // Support for bundling info
3399 Bundle* PhaseOutput::node_bundling(const Node *n) {
3400 assert(valid_bundle_info(n), "oob");
3401 return &_node_bundling_base[n->_idx];
3402 }
3403
3404 bool PhaseOutput::valid_bundle_info(const Node *n) {
3405 return (_node_bundling_limit > n->_idx);
3406 }
3407
3408 //------------------------------frame_size_in_words-----------------------------
3409 // frame_slots in units of words
3410 int PhaseOutput::frame_size_in_words() const {
3411 // shift is 0 in LP32 and 1 in LP64
3412 const int shift = (LogBytesPerWord - LogBytesPerInt);
3413 int words = _frame_slots >> shift;
3414 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3415 return words;
3416 }
3417
3418 // To bang the stack of this compiled method we use the stack size
3419 // that the interpreter would need in case of a deoptimization. This
3420 // removes the need to bang the stack in the deoptimization blob which
3421 // in turn simplifies stack overflow handling.
3422 int PhaseOutput::bang_size_in_bytes() const {
3423 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3424 }
3425
3426 //------------------------------dump_asm---------------------------------------
3427 // Dump formatted assembly
3428 #if defined(SUPPORT_OPTO_ASSEMBLY)
3429 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3430
3431 int pc_digits = 3; // #chars required for pc
3432 int sb_chars = 3; // #chars for "start bundle" indicator
3433 int tab_size = 8;
3434 if (pcs != nullptr) {
3435 int max_pc = 0;
3436 for (uint i = 0; i < pc_limit; i++) {
3437 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3438 }
3439 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3440 }
3441 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3442
3443 bool cut_short = false;
3444 st->print_cr("#");
3445 st->print("# "); C->tf()->dump_on(st); st->cr();
3446 st->print_cr("#");
3447
3448 // For all blocks
3449 int pc = 0x0; // Program counter
3450 char starts_bundle = ' ';
3451 C->regalloc()->dump_frame();
3452
3453 Node *n = nullptr;
3454 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3455 if (VMThread::should_terminate()) {
3456 cut_short = true;
3457 break;
3458 }
3459 Block* block = C->cfg()->get_block(i);
3460 if (block->is_connector() && !Verbose) {
3461 continue;
3462 }
3463 n = block->head();
3464 if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3465 pc = pcs[n->_idx];
3466 st->print("%*.*x", pc_digits, pc_digits, pc);
3467 }
3468 st->fill_to(prefix_len);
3469 block->dump_head(C->cfg(), st);
3470 if (block->is_connector()) {
3471 st->fill_to(prefix_len);
3472 st->print_cr("# Empty connector block");
3473 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3474 st->fill_to(prefix_len);
3475 st->print_cr("# Block is sole successor of call");
3476 }
3477
3478 // For all instructions
3479 for (uint j = 0; j < block->number_of_nodes(); j++) {
3480 if (VMThread::should_terminate()) {
3481 cut_short = true;
3482 break;
3483 }
3484 n = block->get_node(j);
3485 if (valid_bundle_info(n)) {
3486 Bundle* bundle = node_bundling(n);
3487 if (bundle->starts_bundle()) {
3488 starts_bundle = '+';
3489 }
3490 }
3491
3492 if (WizardMode) {
3493 n->dump();
3494 }
3495
3496 if( !n->is_Region() && // Dont print in the Assembly
3497 !n->is_Phi() && // a few noisely useless nodes
3498 !n->is_Proj() &&
3499 !n->is_MachTemp() &&
3500 !n->is_SafePointScalarObject() &&
3501 !n->is_Catch() && // Would be nice to print exception table targets
3502 !n->is_MergeMem() && // Not very interesting
3503 !n->is_top() && // Debug info table constants
3504 !(n->is_Con() && !n->is_Mach())// Debug info table constants
3505 ) {
3506 if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3507 pc = pcs[n->_idx];
3508 st->print("%*.*x", pc_digits, pc_digits, pc);
3509 } else {
3510 st->fill_to(pc_digits);
3511 }
3512 st->print(" %c ", starts_bundle);
3513 starts_bundle = ' ';
3514 st->fill_to(prefix_len);
3515 n->format(C->regalloc(), st);
3516 st->cr();
3517 }
3518
3519 // Dump the exception table as well
3520 if( n->is_Catch() && (Verbose || WizardMode) ) {
3521 // Print the exception table for this offset
3522 _handler_table.print_subtable_for(pc);
3523 }
3524 st->bol(); // Make sure we start on a new line
3525 }
3526 st->cr(); // one empty line between blocks
3527 } // End of per-block dump
3528
3529 if (cut_short) st->print_cr("*** disassembly is cut short ***");
3530 }
3531 #endif
3532
3533 #ifndef PRODUCT
3534 void PhaseOutput::print_statistics() {
3535 Scheduling::print_statistics();
3536 }
3537 #endif