1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/gc_globals.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "memory/allocation.inline.hpp" 39 #include "memory/allocation.hpp" 40 #include "opto/ad.hpp" 41 #include "opto/block.hpp" 42 #include "opto/c2compiler.hpp" 43 #include "opto/callnode.hpp" 44 #include "opto/cfgnode.hpp" 45 #include "opto/locknode.hpp" 46 #include "opto/machnode.hpp" 47 #include "opto/node.hpp" 48 #include "opto/optoreg.hpp" 49 #include "opto/output.hpp" 50 #include "opto/regalloc.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/type.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/xmlstream.hpp" 59 60 #ifndef PRODUCT 61 #define DEBUG_ARG(x) , x 62 #else 63 #define DEBUG_ARG(x) 64 #endif 65 66 //------------------------------Scheduling---------------------------------- 67 // This class contains all the information necessary to implement instruction 68 // scheduling and bundling. 69 class Scheduling { 70 71 private: 72 // Arena to use 73 Arena *_arena; 74 75 // Control-Flow Graph info 76 PhaseCFG *_cfg; 77 78 // Register Allocation info 79 PhaseRegAlloc *_regalloc; 80 81 // Number of nodes in the method 82 uint _node_bundling_limit; 83 84 // List of scheduled nodes. Generated in reverse order 85 Node_List _scheduled; 86 87 // List of nodes currently available for choosing for scheduling 88 Node_List _available; 89 90 // For each instruction beginning a bundle, the number of following 91 // nodes to be bundled with it. 92 Bundle *_node_bundling_base; 93 94 // Mapping from register to Node 95 Node_List _reg_node; 96 97 // Free list for pinch nodes. 98 Node_List _pinch_free_list; 99 100 // Number of uses of this node within the containing basic block. 101 short *_uses; 102 103 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 104 // front, branch+proj at end. Also skips Catch/CProj (same as 105 // branch-at-end), plus just-prior exception-throwing call. 106 uint _bb_start, _bb_end; 107 108 // Latency from the end of the basic block as scheduled 109 unsigned short *_current_latency; 110 111 // Remember the next node 112 Node *_next_node; 113 114 // Use this for an unconditional branch delay slot 115 Node *_unconditional_delay_slot; 116 117 // Pointer to a Nop 118 MachNopNode *_nop; 119 120 // Length of the current bundle, in instructions 121 uint _bundle_instr_count; 122 123 // Current Cycle number, for computing latencies and bundling 124 uint _bundle_cycle_number; 125 126 // Bundle information 127 Pipeline_Use_Element _bundle_use_elements[resource_count]; 128 Pipeline_Use _bundle_use; 129 130 // Dump the available list 131 void dump_available() const; 132 133 public: 134 Scheduling(Arena *arena, Compile &compile); 135 136 // Destructor 137 NOT_PRODUCT( ~Scheduling(); ) 138 139 // Step ahead "i" cycles 140 void step(uint i); 141 142 // Step ahead 1 cycle, and clear the bundle state (for example, 143 // at a branch target) 144 void step_and_clear(); 145 146 Bundle* node_bundling(const Node *n) { 147 assert(valid_bundle_info(n), "oob"); 148 return (&_node_bundling_base[n->_idx]); 149 } 150 151 bool valid_bundle_info(const Node *n) const { 152 return (_node_bundling_limit > n->_idx); 153 } 154 155 bool starts_bundle(const Node *n) const { 156 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 157 } 158 159 // Do the scheduling 160 void DoScheduling(); 161 162 // Compute the register antidependencies within a basic block 163 void ComputeRegisterAntidependencies(Block *bb); 164 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 165 void verify_good_schedule( Block *b, const char *msg ); 166 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 167 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 168 169 // Add a node to the current bundle 170 void AddNodeToBundle(Node *n, const Block *bb); 171 172 // Add a node to the list of available nodes 173 void AddNodeToAvailableList(Node *n); 174 175 // Compute the local use count for the nodes in a block, and compute 176 // the list of instructions with no uses in the block as available 177 void ComputeUseCount(const Block *bb); 178 179 // Choose an instruction from the available list to add to the bundle 180 Node * ChooseNodeToBundle(); 181 182 // See if this Node fits into the currently accumulating bundle 183 bool NodeFitsInBundle(Node *n); 184 185 // Decrement the use count for a node 186 void DecrementUseCounts(Node *n, const Block *bb); 187 188 // Garbage collect pinch nodes for reuse by other blocks. 189 void garbage_collect_pinch_nodes(); 190 // Clean up a pinch node for reuse (helper for above). 191 void cleanup_pinch( Node *pinch ); 192 193 // Information for statistics gathering 194 #ifndef PRODUCT 195 private: 196 // Gather information on size of nops relative to total 197 uint _branches, _unconditional_delays; 198 199 static uint _total_nop_size, _total_method_size; 200 static uint _total_branches, _total_unconditional_delays; 201 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 202 203 public: 204 static void print_statistics(); 205 206 static void increment_instructions_per_bundle(uint i) { 207 _total_instructions_per_bundle[i]++; 208 } 209 210 static void increment_nop_size(uint s) { 211 _total_nop_size += s; 212 } 213 214 static void increment_method_size(uint s) { 215 _total_method_size += s; 216 } 217 #endif 218 219 }; 220 221 volatile int C2SafepointPollStubTable::_stub_size = 0; 222 223 Label& C2SafepointPollStubTable::add_safepoint(uintptr_t safepoint_offset) { 224 C2SafepointPollStub* entry = new (Compile::current()->comp_arena()) C2SafepointPollStub(safepoint_offset); 225 _safepoints.append(entry); 226 return entry->_stub_label; 227 } 228 229 void C2SafepointPollStubTable::emit(CodeBuffer& cb) { 230 MacroAssembler masm(&cb); 231 for (int i = _safepoints.length() - 1; i >= 0; i--) { 232 // Make sure there is enough space in the code buffer 233 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) { 234 ciEnv::current()->record_failure("CodeCache is full"); 235 return; 236 } 237 238 C2SafepointPollStub* entry = _safepoints.at(i); 239 emit_stub(masm, entry); 240 } 241 } 242 243 int C2SafepointPollStubTable::stub_size_lazy() const { 244 int size = Atomic::load(&_stub_size); 245 246 if (size != 0) { 247 return size; 248 } 249 250 Compile* const C = Compile::current(); 251 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 252 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 253 MacroAssembler masm(&cb); 254 C2SafepointPollStub* entry = _safepoints.at(0); 255 emit_stub(masm, entry); 256 size += cb.insts_size(); 257 258 Atomic::store(&_stub_size, size); 259 260 return size; 261 } 262 263 int C2SafepointPollStubTable::estimate_stub_size() const { 264 if (_safepoints.length() == 0) { 265 return 0; 266 } 267 268 int result = stub_size_lazy() * _safepoints.length(); 269 270 #ifdef ASSERT 271 Compile* const C = Compile::current(); 272 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 273 int size = 0; 274 275 for (int i = _safepoints.length() - 1; i >= 0; i--) { 276 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 277 MacroAssembler masm(&cb); 278 C2SafepointPollStub* entry = _safepoints.at(i); 279 emit_stub(masm, entry); 280 size += cb.insts_size(); 281 } 282 assert(size == result, "stubs should not have variable size"); 283 #endif 284 285 return result; 286 } 287 288 PhaseOutput::PhaseOutput() 289 : Phase(Phase::Output), 290 _code_buffer("Compile::Fill_buffer"), 291 _first_block_size(0), 292 _handler_table(), 293 _inc_table(), 294 _oop_map_set(NULL), 295 _scratch_buffer_blob(NULL), 296 _scratch_locs_memory(NULL), 297 _scratch_const_size(-1), 298 _in_scratch_emit_size(false), 299 _frame_slots(0), 300 _code_offsets(), 301 _node_bundling_limit(0), 302 _node_bundling_base(NULL), 303 _orig_pc_slot(0), 304 _orig_pc_slot_offset_in_bytes(0), 305 _buf_sizes(), 306 _block(NULL), 307 _index(0) { 308 C->set_output(this); 309 if (C->stub_name() == NULL) { 310 int fixed_slots = C->fixed_slots(); 311 if (C->needs_stack_repair()) { 312 fixed_slots -= 2; 313 } 314 // TODO 8284443 Only reserve extra slot if needed 315 if (InlineTypeReturnedAsFields) { 316 fixed_slots -= 2; 317 } 318 _orig_pc_slot = fixed_slots - (sizeof(address) / VMRegImpl::stack_slot_size); 319 } 320 } 321 322 PhaseOutput::~PhaseOutput() { 323 C->set_output(NULL); 324 if (_scratch_buffer_blob != NULL) { 325 BufferBlob::free(_scratch_buffer_blob); 326 } 327 } 328 329 void PhaseOutput::perform_mach_node_analysis() { 330 // Late barrier analysis must be done after schedule and bundle 331 // Otherwise liveness based spilling will fail 332 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 333 bs->late_barrier_analysis(); 334 335 pd_perform_mach_node_analysis(); 336 } 337 338 // Convert Nodes to instruction bits and pass off to the VM 339 void PhaseOutput::Output() { 340 // RootNode goes 341 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 342 343 // The number of new nodes (mostly MachNop) is proportional to 344 // the number of java calls and inner loops which are aligned. 345 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 346 C->inner_loops()*(OptoLoopAlignment-1)), 347 "out of nodes before code generation" ) ) { 348 return; 349 } 350 // Make sure I can find the Start Node 351 Block *entry = C->cfg()->get_block(1); 352 Block *broot = C->cfg()->get_root_block(); 353 354 const StartNode *start = entry->head()->as_Start(); 355 356 // Replace StartNode with prolog 357 Label verified_entry; 358 MachPrologNode* prolog = new MachPrologNode(&verified_entry); 359 entry->map_node(prolog, 0); 360 C->cfg()->map_node_to_block(prolog, entry); 361 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 362 363 // Virtual methods need an unverified entry point 364 if (C->is_osr_compilation()) { 365 if (PoisonOSREntry) { 366 // TODO: Should use a ShouldNotReachHereNode... 367 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 368 } 369 } else { 370 if (C->method()) { 371 if (C->method()->has_scalarized_args()) { 372 // Add entry point to unpack all inline type arguments 373 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ false)); 374 if (!C->method()->is_static()) { 375 // Add verified/unverified entry points to only unpack inline type receiver at interface calls 376 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ false)); 377 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ true, /* receiver_only */ true)); 378 C->cfg()->insert(broot, 0, new MachVEPNode(&verified_entry, /* verified */ false, /* receiver_only */ true)); 379 } 380 } else if (!C->method()->is_static()) { 381 // Insert unvalidated entry point 382 C->cfg()->insert(broot, 0, new MachUEPNode()); 383 } 384 } 385 } 386 387 // Break before main entry point 388 if ((C->method() && C->directive()->BreakAtExecuteOption) || 389 (OptoBreakpoint && C->is_method_compilation()) || 390 (OptoBreakpointOSR && C->is_osr_compilation()) || 391 (OptoBreakpointC2R && !C->method()) ) { 392 // checking for C->method() means that OptoBreakpoint does not apply to 393 // runtime stubs or frame converters 394 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 395 } 396 397 // Insert epilogs before every return 398 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 399 Block* block = C->cfg()->get_block(i); 400 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 401 Node* m = block->end(); 402 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 403 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 404 block->add_inst(epilog); 405 C->cfg()->map_node_to_block(epilog, block); 406 } 407 } 408 } 409 410 // Keeper of sizing aspects 411 _buf_sizes = BufferSizingData(); 412 413 // Initialize code buffer 414 estimate_buffer_size(_buf_sizes._const); 415 if (C->failing()) return; 416 417 // Pre-compute the length of blocks and replace 418 // long branches with short if machine supports it. 419 // Must be done before ScheduleAndBundle due to SPARC delay slots 420 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 421 blk_starts[0] = 0; 422 shorten_branches(blk_starts); 423 424 if (!C->is_osr_compilation() && C->has_scalarized_args()) { 425 // Compute the offsets of the entry points required by the inline type calling convention 426 if (!C->method()->is_static()) { 427 // We have entries at the beginning of the method, implemented by the first 4 nodes. 428 // Entry (unverified) @ offset 0 429 // Verified_Inline_Entry_RO 430 // Inline_Entry (unverified) 431 // Verified_Inline_Entry 432 uint offset = 0; 433 _code_offsets.set_value(CodeOffsets::Entry, offset); 434 435 offset += ((MachVEPNode*)broot->get_node(0))->size(C->regalloc()); 436 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, offset); 437 438 offset += ((MachVEPNode*)broot->get_node(1))->size(C->regalloc()); 439 _code_offsets.set_value(CodeOffsets::Inline_Entry, offset); 440 441 offset += ((MachVEPNode*)broot->get_node(2))->size(C->regalloc()); 442 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, offset); 443 } else { 444 _code_offsets.set_value(CodeOffsets::Entry, -1); // will be patched later 445 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, 0); 446 } 447 } 448 449 ScheduleAndBundle(); 450 if (C->failing()) { 451 return; 452 } 453 454 perform_mach_node_analysis(); 455 456 // Complete sizing of codebuffer 457 CodeBuffer* cb = init_buffer(); 458 if (cb == NULL || C->failing()) { 459 return; 460 } 461 462 BuildOopMaps(); 463 464 if (C->failing()) { 465 return; 466 } 467 468 fill_buffer(cb, blk_starts); 469 } 470 471 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 472 // Determine if we need to generate a stack overflow check. 473 // Do it if the method is not a stub function and 474 // has java calls or has frame size > vm_page_size/8. 475 // The debug VM checks that deoptimization doesn't trigger an 476 // unexpected stack overflow (compiled method stack banging should 477 // guarantee it doesn't happen) so we always need the stack bang in 478 // a debug VM. 479 return (C->stub_function() == NULL && 480 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 481 DEBUG_ONLY(|| true))); 482 } 483 484 bool PhaseOutput::need_register_stack_bang() const { 485 // Determine if we need to generate a register stack overflow check. 486 // This is only used on architectures which have split register 487 // and memory stacks (ie. IA64). 488 // Bang if the method is not a stub function and has java calls 489 return (C->stub_function() == NULL && C->has_java_calls()); 490 } 491 492 493 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 494 // of a loop. When aligning a loop we need to provide enough instructions 495 // in cpu's fetch buffer to feed decoders. The loop alignment could be 496 // avoided if we have enough instructions in fetch buffer at the head of a loop. 497 // By default, the size is set to 999999 by Block's constructor so that 498 // a loop will be aligned if the size is not reset here. 499 // 500 // Note: Mach instructions could contain several HW instructions 501 // so the size is estimated only. 502 // 503 void PhaseOutput::compute_loop_first_inst_sizes() { 504 // The next condition is used to gate the loop alignment optimization. 505 // Don't aligned a loop if there are enough instructions at the head of a loop 506 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 507 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 508 // equal to 11 bytes which is the largest address NOP instruction. 509 if (MaxLoopPad < OptoLoopAlignment - 1) { 510 uint last_block = C->cfg()->number_of_blocks() - 1; 511 for (uint i = 1; i <= last_block; i++) { 512 Block* block = C->cfg()->get_block(i); 513 // Check the first loop's block which requires an alignment. 514 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 515 uint sum_size = 0; 516 uint inst_cnt = NumberOfLoopInstrToAlign; 517 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 518 519 // Check subsequent fallthrough blocks if the loop's first 520 // block(s) does not have enough instructions. 521 Block *nb = block; 522 while(inst_cnt > 0 && 523 i < last_block && 524 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 525 !nb->has_successor(block)) { 526 i++; 527 nb = C->cfg()->get_block(i); 528 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 529 } // while( inst_cnt > 0 && i < last_block ) 530 531 block->set_first_inst_size(sum_size); 532 } // f( b->head()->is_Loop() ) 533 } // for( i <= last_block ) 534 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 535 } 536 537 // The architecture description provides short branch variants for some long 538 // branch instructions. Replace eligible long branches with short branches. 539 void PhaseOutput::shorten_branches(uint* blk_starts) { 540 541 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 542 543 // Compute size of each block, method size, and relocation information size 544 uint nblocks = C->cfg()->number_of_blocks(); 545 546 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 547 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 548 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 549 550 // Collect worst case block paddings 551 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 552 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 553 554 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 555 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 556 557 bool has_short_branch_candidate = false; 558 559 // Initialize the sizes to 0 560 int code_size = 0; // Size in bytes of generated code 561 int stub_size = 0; // Size in bytes of all stub entries 562 // Size in bytes of all relocation entries, including those in local stubs. 563 // Start with 2-bytes of reloc info for the unvalidated entry point 564 int reloc_size = 1; // Number of relocation entries 565 566 // Make three passes. The first computes pessimistic blk_starts, 567 // relative jmp_offset and reloc_size information. The second performs 568 // short branch substitution using the pessimistic sizing. The 569 // third inserts nops where needed. 570 571 // Step one, perform a pessimistic sizing pass. 572 uint last_call_adr = max_juint; 573 uint last_avoid_back_to_back_adr = max_juint; 574 uint nop_size = (new MachNopNode())->size(C->regalloc()); 575 for (uint i = 0; i < nblocks; i++) { // For all blocks 576 Block* block = C->cfg()->get_block(i); 577 _block = block; 578 579 // During short branch replacement, we store the relative (to blk_starts) 580 // offset of jump in jmp_offset, rather than the absolute offset of jump. 581 // This is so that we do not need to recompute sizes of all nodes when 582 // we compute correct blk_starts in our next sizing pass. 583 jmp_offset[i] = 0; 584 jmp_size[i] = 0; 585 jmp_nidx[i] = -1; 586 DEBUG_ONLY( jmp_target[i] = 0; ) 587 DEBUG_ONLY( jmp_rule[i] = 0; ) 588 589 // Sum all instruction sizes to compute block size 590 uint last_inst = block->number_of_nodes(); 591 uint blk_size = 0; 592 for (uint j = 0; j < last_inst; j++) { 593 _index = j; 594 Node* nj = block->get_node(_index); 595 // Handle machine instruction nodes 596 if (nj->is_Mach()) { 597 MachNode* mach = nj->as_Mach(); 598 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 599 reloc_size += mach->reloc(); 600 if (mach->is_MachCall()) { 601 // add size information for trampoline stub 602 // class CallStubImpl is platform-specific and defined in the *.ad files. 603 stub_size += CallStubImpl::size_call_trampoline(); 604 reloc_size += CallStubImpl::reloc_call_trampoline(); 605 606 MachCallNode *mcall = mach->as_MachCall(); 607 // This destination address is NOT PC-relative 608 609 if (mcall->entry_point() != NULL) { 610 mcall->method_set((intptr_t)mcall->entry_point()); 611 } 612 613 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 614 stub_size += CompiledStaticCall::to_interp_stub_size(); 615 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 616 } 617 } else if (mach->is_MachSafePoint()) { 618 // If call/safepoint are adjacent, account for possible 619 // nop to disambiguate the two safepoints. 620 // ScheduleAndBundle() can rearrange nodes in a block, 621 // check for all offsets inside this block. 622 if (last_call_adr >= blk_starts[i]) { 623 blk_size += nop_size; 624 } 625 } 626 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 627 // Nop is inserted between "avoid back to back" instructions. 628 // ScheduleAndBundle() can rearrange nodes in a block, 629 // check for all offsets inside this block. 630 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 631 blk_size += nop_size; 632 } 633 } 634 if (mach->may_be_short_branch()) { 635 if (!nj->is_MachBranch()) { 636 #ifndef PRODUCT 637 nj->dump(3); 638 #endif 639 Unimplemented(); 640 } 641 assert(jmp_nidx[i] == -1, "block should have only one branch"); 642 jmp_offset[i] = blk_size; 643 jmp_size[i] = nj->size(C->regalloc()); 644 jmp_nidx[i] = j; 645 has_short_branch_candidate = true; 646 } 647 } 648 blk_size += nj->size(C->regalloc()); 649 // Remember end of call offset 650 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 651 last_call_adr = blk_starts[i]+blk_size; 652 } 653 // Remember end of avoid_back_to_back offset 654 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 655 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 656 } 657 } 658 659 // When the next block starts a loop, we may insert pad NOP 660 // instructions. Since we cannot know our future alignment, 661 // assume the worst. 662 if (i < nblocks - 1) { 663 Block* nb = C->cfg()->get_block(i + 1); 664 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 665 if (max_loop_pad > 0) { 666 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 667 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 668 // If either is the last instruction in this block, bump by 669 // max_loop_pad in lock-step with blk_size, so sizing 670 // calculations in subsequent blocks still can conservatively 671 // detect that it may the last instruction in this block. 672 if (last_call_adr == blk_starts[i]+blk_size) { 673 last_call_adr += max_loop_pad; 674 } 675 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 676 last_avoid_back_to_back_adr += max_loop_pad; 677 } 678 blk_size += max_loop_pad; 679 block_worst_case_pad[i + 1] = max_loop_pad; 680 } 681 } 682 683 // Save block size; update total method size 684 blk_starts[i+1] = blk_starts[i]+blk_size; 685 } 686 687 // Step two, replace eligible long jumps. 688 bool progress = true; 689 uint last_may_be_short_branch_adr = max_juint; 690 while (has_short_branch_candidate && progress) { 691 progress = false; 692 has_short_branch_candidate = false; 693 int adjust_block_start = 0; 694 for (uint i = 0; i < nblocks; i++) { 695 Block* block = C->cfg()->get_block(i); 696 int idx = jmp_nidx[i]; 697 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach(); 698 if (mach != NULL && mach->may_be_short_branch()) { 699 #ifdef ASSERT 700 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 701 int j; 702 // Find the branch; ignore trailing NOPs. 703 for (j = block->number_of_nodes()-1; j>=0; j--) { 704 Node* n = block->get_node(j); 705 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 706 break; 707 } 708 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 709 #endif 710 int br_size = jmp_size[i]; 711 int br_offs = blk_starts[i] + jmp_offset[i]; 712 713 // This requires the TRUE branch target be in succs[0] 714 uint bnum = block->non_connector_successor(0)->_pre_order; 715 int offset = blk_starts[bnum] - br_offs; 716 if (bnum > i) { // adjust following block's offset 717 offset -= adjust_block_start; 718 } 719 720 // This block can be a loop header, account for the padding 721 // in the previous block. 722 int block_padding = block_worst_case_pad[i]; 723 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 724 // In the following code a nop could be inserted before 725 // the branch which will increase the backward distance. 726 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 727 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 728 729 if (needs_padding && offset <= 0) 730 offset -= nop_size; 731 732 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 733 // We've got a winner. Replace this branch. 734 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 735 736 // Update the jmp_size. 737 int new_size = replacement->size(C->regalloc()); 738 int diff = br_size - new_size; 739 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 740 // Conservatively take into account padding between 741 // avoid_back_to_back branches. Previous branch could be 742 // converted into avoid_back_to_back branch during next 743 // rounds. 744 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 745 jmp_offset[i] += nop_size; 746 diff -= nop_size; 747 } 748 adjust_block_start += diff; 749 block->map_node(replacement, idx); 750 mach->subsume_by(replacement, C); 751 mach = replacement; 752 progress = true; 753 754 jmp_size[i] = new_size; 755 DEBUG_ONLY( jmp_target[i] = bnum; ); 756 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 757 } else { 758 // The jump distance is not short, try again during next iteration. 759 has_short_branch_candidate = true; 760 } 761 } // (mach->may_be_short_branch()) 762 if (mach != NULL && (mach->may_be_short_branch() || 763 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 764 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 765 } 766 blk_starts[i+1] -= adjust_block_start; 767 } 768 } 769 770 #ifdef ASSERT 771 for (uint i = 0; i < nblocks; i++) { // For all blocks 772 if (jmp_target[i] != 0) { 773 int br_size = jmp_size[i]; 774 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 775 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 776 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 777 } 778 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 779 } 780 } 781 #endif 782 783 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 784 // after ScheduleAndBundle(). 785 786 // ------------------ 787 // Compute size for code buffer 788 code_size = blk_starts[nblocks]; 789 790 // Relocation records 791 reloc_size += 1; // Relo entry for exception handler 792 793 // Adjust reloc_size to number of record of relocation info 794 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 795 // a relocation index. 796 // The CodeBuffer will expand the locs array if this estimate is too low. 797 reloc_size *= 10 / sizeof(relocInfo); 798 799 _buf_sizes._reloc = reloc_size; 800 _buf_sizes._code = code_size; 801 _buf_sizes._stub = stub_size; 802 } 803 804 //------------------------------FillLocArray----------------------------------- 805 // Create a bit of debug info and append it to the array. The mapping is from 806 // Java local or expression stack to constant, register or stack-slot. For 807 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 808 // entry has been taken care of and caller should skip it). 809 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 810 // This should never have accepted Bad before 811 assert(OptoReg::is_valid(regnum), "location must be valid"); 812 return (OptoReg::is_reg(regnum)) 813 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 814 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 815 } 816 817 818 ObjectValue* 819 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 820 for (int i = 0; i < objs->length(); i++) { 821 assert(objs->at(i)->is_object(), "corrupt object cache"); 822 ObjectValue* sv = (ObjectValue*) objs->at(i); 823 if (sv->id() == id) { 824 return sv; 825 } 826 } 827 // Otherwise.. 828 return NULL; 829 } 830 831 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 832 ObjectValue* sv ) { 833 assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition"); 834 objs->append(sv); 835 } 836 837 838 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 839 GrowableArray<ScopeValue*> *array, 840 GrowableArray<ScopeValue*> *objs ) { 841 assert( local, "use _top instead of null" ); 842 if (array->length() != idx) { 843 assert(array->length() == idx + 1, "Unexpected array count"); 844 // Old functionality: 845 // return 846 // New functionality: 847 // Assert if the local is not top. In product mode let the new node 848 // override the old entry. 849 assert(local == C->top(), "LocArray collision"); 850 if (local == C->top()) { 851 return; 852 } 853 array->pop(); 854 } 855 const Type *t = local->bottom_type(); 856 857 // Is it a safepoint scalar object node? 858 if (local->is_SafePointScalarObject()) { 859 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 860 861 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 862 if (sv == NULL) { 863 ciKlass* cik = t->is_oopptr()->klass(); 864 assert(cik->is_instance_klass() || 865 cik->is_array_klass(), "Not supported allocation."); 866 uint first_ind = spobj->first_index(sfpt->jvms()); 867 // Nullable, scalarized inline types have an is_init input 868 // that needs to be checked before using the field values. 869 ScopeValue* is_init = NULL; 870 if (cik->is_inlinetype()) { 871 Node* init_node = sfpt->in(first_ind++); 872 assert(init_node != NULL, "is_init node not found"); 873 if (!init_node->is_top()) { 874 const TypeInt* init_type = init_node->bottom_type()->is_int(); 875 if (init_node->is_Con()) { 876 is_init = new ConstantIntValue(init_type->get_con()); 877 } else { 878 OptoReg::Name init_reg = C->regalloc()->get_reg_first(init_node); 879 is_init = new_loc_value(C->regalloc(), init_reg, Location::normal); 880 } 881 } 882 } 883 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 884 sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 885 : new ObjectValue(spobj->_idx, klass_sv, is_init); 886 set_sv_for_object_node(objs, sv); 887 888 for (uint i = 0; i < spobj->n_fields(); i++) { 889 Node* fld_node = sfpt->in(first_ind+i); 890 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 891 } 892 } 893 array->append(sv); 894 return; 895 } 896 897 // Grab the register number for the local 898 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 899 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 900 // Record the double as two float registers. 901 // The register mask for such a value always specifies two adjacent 902 // float registers, with the lower register number even. 903 // Normally, the allocation of high and low words to these registers 904 // is irrelevant, because nearly all operations on register pairs 905 // (e.g., StoreD) treat them as a single unit. 906 // Here, we assume in addition that the words in these two registers 907 // stored "naturally" (by operations like StoreD and double stores 908 // within the interpreter) such that the lower-numbered register 909 // is written to the lower memory address. This may seem like 910 // a machine dependency, but it is not--it is a requirement on 911 // the author of the <arch>.ad file to ensure that, for every 912 // even/odd double-register pair to which a double may be allocated, 913 // the word in the even single-register is stored to the first 914 // memory word. (Note that register numbers are completely 915 // arbitrary, and are not tied to any machine-level encodings.) 916 #ifdef _LP64 917 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 918 array->append(new ConstantIntValue((jint)0)); 919 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 920 } else if ( t->base() == Type::Long ) { 921 array->append(new ConstantIntValue((jint)0)); 922 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 923 } else if ( t->base() == Type::RawPtr ) { 924 // jsr/ret return address which must be restored into a the full 925 // width 64-bit stack slot. 926 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 927 } 928 #else //_LP64 929 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 930 // Repack the double/long as two jints. 931 // The convention the interpreter uses is that the second local 932 // holds the first raw word of the native double representation. 933 // This is actually reasonable, since locals and stack arrays 934 // grow downwards in all implementations. 935 // (If, on some machine, the interpreter's Java locals or stack 936 // were to grow upwards, the embedded doubles would be word-swapped.) 937 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 938 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 939 } 940 #endif //_LP64 941 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 942 OptoReg::is_reg(regnum) ) { 943 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 944 ? Location::float_in_dbl : Location::normal )); 945 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 946 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 947 ? Location::int_in_long : Location::normal )); 948 } else if( t->base() == Type::NarrowOop ) { 949 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 950 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 951 t->base() == Type::VectorD || t->base() == Type::VectorX || 952 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 953 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 954 } else { 955 array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal )); 956 } 957 return; 958 } 959 960 // No register. It must be constant data. 961 switch (t->base()) { 962 case Type::Half: // Second half of a double 963 ShouldNotReachHere(); // Caller should skip 2nd halves 964 break; 965 case Type::AnyPtr: 966 array->append(new ConstantOopWriteValue(NULL)); 967 break; 968 case Type::AryPtr: 969 case Type::InstPtr: // fall through 970 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 971 break; 972 case Type::NarrowOop: 973 if (t == TypeNarrowOop::NULL_PTR) { 974 array->append(new ConstantOopWriteValue(NULL)); 975 } else { 976 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 977 } 978 break; 979 case Type::Int: 980 array->append(new ConstantIntValue(t->is_int()->get_con())); 981 break; 982 case Type::RawPtr: 983 // A return address (T_ADDRESS). 984 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 985 #ifdef _LP64 986 // Must be restored to the full-width 64-bit stack slot. 987 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 988 #else 989 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 990 #endif 991 break; 992 case Type::FloatCon: { 993 float f = t->is_float_constant()->getf(); 994 array->append(new ConstantIntValue(jint_cast(f))); 995 break; 996 } 997 case Type::DoubleCon: { 998 jdouble d = t->is_double_constant()->getd(); 999 #ifdef _LP64 1000 array->append(new ConstantIntValue((jint)0)); 1001 array->append(new ConstantDoubleValue(d)); 1002 #else 1003 // Repack the double as two jints. 1004 // The convention the interpreter uses is that the second local 1005 // holds the first raw word of the native double representation. 1006 // This is actually reasonable, since locals and stack arrays 1007 // grow downwards in all implementations. 1008 // (If, on some machine, the interpreter's Java locals or stack 1009 // were to grow upwards, the embedded doubles would be word-swapped.) 1010 jlong_accessor acc; 1011 acc.long_value = jlong_cast(d); 1012 array->append(new ConstantIntValue(acc.words[1])); 1013 array->append(new ConstantIntValue(acc.words[0])); 1014 #endif 1015 break; 1016 } 1017 case Type::Long: { 1018 jlong d = t->is_long()->get_con(); 1019 #ifdef _LP64 1020 array->append(new ConstantIntValue((jint)0)); 1021 array->append(new ConstantLongValue(d)); 1022 #else 1023 // Repack the long as two jints. 1024 // The convention the interpreter uses is that the second local 1025 // holds the first raw word of the native double representation. 1026 // This is actually reasonable, since locals and stack arrays 1027 // grow downwards in all implementations. 1028 // (If, on some machine, the interpreter's Java locals or stack 1029 // were to grow upwards, the embedded doubles would be word-swapped.) 1030 jlong_accessor acc; 1031 acc.long_value = d; 1032 array->append(new ConstantIntValue(acc.words[1])); 1033 array->append(new ConstantIntValue(acc.words[0])); 1034 #endif 1035 break; 1036 } 1037 case Type::Top: // Add an illegal value here 1038 array->append(new LocationValue(Location())); 1039 break; 1040 default: 1041 ShouldNotReachHere(); 1042 break; 1043 } 1044 } 1045 1046 // Determine if this node starts a bundle 1047 bool PhaseOutput::starts_bundle(const Node *n) const { 1048 return (_node_bundling_limit > n->_idx && 1049 _node_bundling_base[n->_idx].starts_bundle()); 1050 } 1051 1052 //--------------------------Process_OopMap_Node-------------------------------- 1053 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1054 // Handle special safepoint nodes for synchronization 1055 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1056 MachCallNode *mcall; 1057 1058 int safepoint_pc_offset = current_offset; 1059 bool is_method_handle_invoke = false; 1060 bool is_opt_native = false; 1061 bool return_oop = false; 1062 bool return_scalarized = false; 1063 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1064 bool arg_escape = false; 1065 1066 // Add the safepoint in the DebugInfoRecorder 1067 if( !mach->is_MachCall() ) { 1068 mcall = NULL; 1069 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1070 } else { 1071 mcall = mach->as_MachCall(); 1072 1073 // Is the call a MethodHandle call? 1074 if (mcall->is_MachCallJava()) { 1075 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1076 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1077 is_method_handle_invoke = true; 1078 } 1079 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1080 } else if (mcall->is_MachCallNative()) { 1081 is_opt_native = true; 1082 } 1083 1084 // Check if a call returns an object. 1085 if (mcall->returns_pointer() || mcall->returns_scalarized()) { 1086 return_oop = true; 1087 } 1088 if (mcall->returns_scalarized()) { 1089 return_scalarized = true; 1090 } 1091 safepoint_pc_offset += mcall->ret_addr_offset(); 1092 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1093 } 1094 1095 // Loop over the JVMState list to add scope information 1096 // Do not skip safepoints with a NULL method, they need monitor info 1097 JVMState* youngest_jvms = sfn->jvms(); 1098 int max_depth = youngest_jvms->depth(); 1099 1100 // Allocate the object pool for scalar-replaced objects -- the map from 1101 // small-integer keys (which can be recorded in the local and ostack 1102 // arrays) to descriptions of the object state. 1103 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1104 1105 // Visit scopes from oldest to youngest. 1106 for (int depth = 1; depth <= max_depth; depth++) { 1107 JVMState* jvms = youngest_jvms->of_depth(depth); 1108 int idx; 1109 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1110 // Safepoints that do not have method() set only provide oop-map and monitor info 1111 // to support GC; these do not support deoptimization. 1112 int num_locs = (method == NULL) ? 0 : jvms->loc_size(); 1113 int num_exps = (method == NULL) ? 0 : jvms->stk_size(); 1114 int num_mon = jvms->nof_monitors(); 1115 assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), 1116 "JVMS local count must match that of the method"); 1117 1118 // Add Local and Expression Stack Information 1119 1120 // Insert locals into the locarray 1121 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1122 for( idx = 0; idx < num_locs; idx++ ) { 1123 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1124 } 1125 1126 // Insert expression stack entries into the exparray 1127 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1128 for( idx = 0; idx < num_exps; idx++ ) { 1129 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1130 } 1131 1132 // Add in mappings of the monitors 1133 assert( !method || 1134 !method->is_synchronized() || 1135 method->is_native() || 1136 num_mon > 0 || 1137 !GenerateSynchronizationCode, 1138 "monitors must always exist for synchronized methods"); 1139 1140 // Build the growable array of ScopeValues for exp stack 1141 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1142 1143 // Loop over monitors and insert into array 1144 for (idx = 0; idx < num_mon; idx++) { 1145 // Grab the node that defines this monitor 1146 Node* box_node = sfn->monitor_box(jvms, idx); 1147 Node* obj_node = sfn->monitor_obj(jvms, idx); 1148 1149 // Create ScopeValue for object 1150 ScopeValue *scval = NULL; 1151 1152 if (obj_node->is_SafePointScalarObject()) { 1153 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1154 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1155 if (scval == NULL) { 1156 const Type *t = spobj->bottom_type(); 1157 ciKlass* cik = t->is_oopptr()->klass(); 1158 assert(cik->is_instance_klass() || 1159 cik->is_array_klass(), "Not supported allocation."); 1160 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 1161 ObjectValue* sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 1162 : new ObjectValue(spobj->_idx, klass_sv); 1163 PhaseOutput::set_sv_for_object_node(objs, sv); 1164 1165 uint first_ind = spobj->first_index(youngest_jvms); 1166 for (uint i = 0; i < spobj->n_fields(); i++) { 1167 Node* fld_node = sfn->in(first_ind+i); 1168 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1169 } 1170 scval = sv; 1171 } 1172 } else if (!obj_node->is_Con()) { 1173 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1174 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1175 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1176 } else { 1177 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1178 } 1179 } else { 1180 const TypePtr *tp = obj_node->get_ptr_type(); 1181 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1182 } 1183 1184 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1185 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1186 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1187 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1188 } 1189 1190 // We dump the object pool first, since deoptimization reads it in first. 1191 C->debug_info()->dump_object_pool(objs); 1192 1193 // Build first class objects to pass to scope 1194 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1195 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1196 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1197 1198 // Make method available for all Safepoints 1199 ciMethod* scope_method = method ? method : C->method(); 1200 // Describe the scope here 1201 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1202 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1203 // Now we can describe the scope. 1204 methodHandle null_mh; 1205 bool rethrow_exception = false; 1206 C->debug_info()->describe_scope( 1207 safepoint_pc_offset, 1208 null_mh, 1209 scope_method, 1210 jvms->bci(), 1211 jvms->should_reexecute(), 1212 rethrow_exception, 1213 is_method_handle_invoke, 1214 is_opt_native, 1215 return_oop, 1216 return_scalarized, 1217 has_ea_local_in_scope, 1218 arg_escape, 1219 locvals, 1220 expvals, 1221 monvals 1222 ); 1223 } // End jvms loop 1224 1225 // Mark the end of the scope set. 1226 C->debug_info()->end_safepoint(safepoint_pc_offset); 1227 } 1228 1229 1230 1231 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1232 class NonSafepointEmitter { 1233 Compile* C; 1234 JVMState* _pending_jvms; 1235 int _pending_offset; 1236 1237 void emit_non_safepoint(); 1238 1239 public: 1240 NonSafepointEmitter(Compile* compile) { 1241 this->C = compile; 1242 _pending_jvms = NULL; 1243 _pending_offset = 0; 1244 } 1245 1246 void observe_instruction(Node* n, int pc_offset) { 1247 if (!C->debug_info()->recording_non_safepoints()) return; 1248 1249 Node_Notes* nn = C->node_notes_at(n->_idx); 1250 if (nn == NULL || nn->jvms() == NULL) return; 1251 if (_pending_jvms != NULL && 1252 _pending_jvms->same_calls_as(nn->jvms())) { 1253 // Repeated JVMS? Stretch it up here. 1254 _pending_offset = pc_offset; 1255 } else { 1256 if (_pending_jvms != NULL && 1257 _pending_offset < pc_offset) { 1258 emit_non_safepoint(); 1259 } 1260 _pending_jvms = NULL; 1261 if (pc_offset > C->debug_info()->last_pc_offset()) { 1262 // This is the only way _pending_jvms can become non-NULL: 1263 _pending_jvms = nn->jvms(); 1264 _pending_offset = pc_offset; 1265 } 1266 } 1267 } 1268 1269 // Stay out of the way of real safepoints: 1270 void observe_safepoint(JVMState* jvms, int pc_offset) { 1271 if (_pending_jvms != NULL && 1272 !_pending_jvms->same_calls_as(jvms) && 1273 _pending_offset < pc_offset) { 1274 emit_non_safepoint(); 1275 } 1276 _pending_jvms = NULL; 1277 } 1278 1279 void flush_at_end() { 1280 if (_pending_jvms != NULL) { 1281 emit_non_safepoint(); 1282 } 1283 _pending_jvms = NULL; 1284 } 1285 }; 1286 1287 void NonSafepointEmitter::emit_non_safepoint() { 1288 JVMState* youngest_jvms = _pending_jvms; 1289 int pc_offset = _pending_offset; 1290 1291 // Clear it now: 1292 _pending_jvms = NULL; 1293 1294 DebugInformationRecorder* debug_info = C->debug_info(); 1295 assert(debug_info->recording_non_safepoints(), "sanity"); 1296 1297 debug_info->add_non_safepoint(pc_offset); 1298 int max_depth = youngest_jvms->depth(); 1299 1300 // Visit scopes from oldest to youngest. 1301 for (int depth = 1; depth <= max_depth; depth++) { 1302 JVMState* jvms = youngest_jvms->of_depth(depth); 1303 ciMethod* method = jvms->has_method() ? jvms->method() : NULL; 1304 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1305 methodHandle null_mh; 1306 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1307 } 1308 1309 // Mark the end of the scope set. 1310 debug_info->end_non_safepoint(pc_offset); 1311 } 1312 1313 //------------------------------init_buffer------------------------------------ 1314 void PhaseOutput::estimate_buffer_size(int& const_req) { 1315 1316 // Set the initially allocated size 1317 const_req = initial_const_capacity; 1318 1319 // The extra spacing after the code is necessary on some platforms. 1320 // Sometimes we need to patch in a jump after the last instruction, 1321 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1322 1323 // Compute the byte offset where we can store the deopt pc. 1324 if (C->fixed_slots() != 0) { 1325 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1326 } 1327 1328 // Compute prolog code size 1329 _method_size = 0; 1330 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1331 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1332 1333 if (C->has_mach_constant_base_node()) { 1334 uint add_size = 0; 1335 // Fill the constant table. 1336 // Note: This must happen before shorten_branches. 1337 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1338 Block* b = C->cfg()->get_block(i); 1339 1340 for (uint j = 0; j < b->number_of_nodes(); j++) { 1341 Node* n = b->get_node(j); 1342 1343 // If the node is a MachConstantNode evaluate the constant 1344 // value section. 1345 if (n->is_MachConstant()) { 1346 MachConstantNode* machcon = n->as_MachConstant(); 1347 machcon->eval_constant(C); 1348 } else if (n->is_Mach()) { 1349 // On Power there are more nodes that issue constants. 1350 add_size += (n->as_Mach()->ins_num_consts() * 8); 1351 } 1352 } 1353 } 1354 1355 // Calculate the offsets of the constants and the size of the 1356 // constant table (including the padding to the next section). 1357 constant_table().calculate_offsets_and_size(); 1358 const_req = constant_table().size() + add_size; 1359 } 1360 1361 // Initialize the space for the BufferBlob used to find and verify 1362 // instruction size in MachNode::emit_size() 1363 init_scratch_buffer_blob(const_req); 1364 } 1365 1366 CodeBuffer* PhaseOutput::init_buffer() { 1367 int stub_req = _buf_sizes._stub; 1368 int code_req = _buf_sizes._code; 1369 int const_req = _buf_sizes._const; 1370 1371 int pad_req = NativeCall::instruction_size; 1372 1373 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1374 stub_req += bs->estimate_stub_size(); 1375 stub_req += safepoint_poll_table()->estimate_stub_size(); 1376 1377 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1378 // class HandlerImpl is platform-specific and defined in the *.ad files. 1379 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1380 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1381 stub_req += MAX_stubs_size; // ensure per-stub margin 1382 code_req += MAX_inst_size; // ensure per-instruction margin 1383 1384 if (StressCodeBuffers) 1385 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1386 1387 int total_req = 1388 const_req + 1389 code_req + 1390 pad_req + 1391 stub_req + 1392 exception_handler_req + 1393 deopt_handler_req; // deopt handler 1394 1395 if (C->has_method_handle_invokes()) 1396 total_req += deopt_handler_req; // deopt MH handler 1397 1398 CodeBuffer* cb = code_buffer(); 1399 cb->initialize(total_req, _buf_sizes._reloc); 1400 1401 // Have we run out of code space? 1402 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1403 C->record_failure("CodeCache is full"); 1404 return NULL; 1405 } 1406 // Configure the code buffer. 1407 cb->initialize_consts_size(const_req); 1408 cb->initialize_stubs_size(stub_req); 1409 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1410 1411 // fill in the nop array for bundling computations 1412 MachNode *_nop_list[Bundle::_nop_count]; 1413 Bundle::initialize_nops(_nop_list); 1414 1415 return cb; 1416 } 1417 1418 //------------------------------fill_buffer------------------------------------ 1419 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1420 // blk_starts[] contains offsets calculated during short branches processing, 1421 // offsets should not be increased during following steps. 1422 1423 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1424 // of a loop. It is used to determine the padding for loop alignment. 1425 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1426 1427 compute_loop_first_inst_sizes(); 1428 1429 // Create oopmap set. 1430 _oop_map_set = new OopMapSet(); 1431 1432 // !!!!! This preserves old handling of oopmaps for now 1433 C->debug_info()->set_oopmaps(_oop_map_set); 1434 1435 uint nblocks = C->cfg()->number_of_blocks(); 1436 // Count and start of implicit null check instructions 1437 uint inct_cnt = 0; 1438 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1439 1440 // Count and start of calls 1441 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1442 1443 uint return_offset = 0; 1444 int nop_size = (new MachNopNode())->size(C->regalloc()); 1445 1446 int previous_offset = 0; 1447 int current_offset = 0; 1448 int last_call_offset = -1; 1449 int last_avoid_back_to_back_offset = -1; 1450 #ifdef ASSERT 1451 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1452 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1453 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1454 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1455 #endif 1456 1457 // Create an array of unused labels, one for each basic block, if printing is enabled 1458 #if defined(SUPPORT_OPTO_ASSEMBLY) 1459 int* node_offsets = NULL; 1460 uint node_offset_limit = C->unique(); 1461 1462 if (C->print_assembly()) { 1463 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1464 } 1465 if (node_offsets != NULL) { 1466 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1467 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1468 } 1469 #endif 1470 1471 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1472 1473 // Emit the constant table. 1474 if (C->has_mach_constant_base_node()) { 1475 if (!constant_table().emit(*cb)) { 1476 C->record_failure("consts section overflow"); 1477 return; 1478 } 1479 } 1480 1481 // Create an array of labels, one for each basic block 1482 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1483 for (uint i = 0; i <= nblocks; i++) { 1484 blk_labels[i].init(); 1485 } 1486 1487 // Now fill in the code buffer 1488 Node* delay_slot = NULL; 1489 for (uint i = 0; i < nblocks; i++) { 1490 Block* block = C->cfg()->get_block(i); 1491 _block = block; 1492 Node* head = block->head(); 1493 1494 // If this block needs to start aligned (i.e, can be reached other 1495 // than by falling-thru from the previous block), then force the 1496 // start of a new bundle. 1497 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1498 cb->flush_bundle(true); 1499 } 1500 1501 #ifdef ASSERT 1502 if (!block->is_connector()) { 1503 stringStream st; 1504 block->dump_head(C->cfg(), &st); 1505 MacroAssembler(cb).block_comment(st.as_string()); 1506 } 1507 jmp_target[i] = 0; 1508 jmp_offset[i] = 0; 1509 jmp_size[i] = 0; 1510 jmp_rule[i] = 0; 1511 #endif 1512 int blk_offset = current_offset; 1513 1514 // Define the label at the beginning of the basic block 1515 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1516 1517 uint last_inst = block->number_of_nodes(); 1518 1519 // Emit block normally, except for last instruction. 1520 // Emit means "dump code bits into code buffer". 1521 for (uint j = 0; j<last_inst; j++) { 1522 _index = j; 1523 1524 // Get the node 1525 Node* n = block->get_node(j); 1526 1527 // See if delay slots are supported 1528 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1529 assert(delay_slot == NULL, "no use of delay slot node"); 1530 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1531 1532 delay_slot = n; 1533 continue; 1534 } 1535 1536 // If this starts a new instruction group, then flush the current one 1537 // (but allow split bundles) 1538 if (Pipeline::requires_bundling() && starts_bundle(n)) 1539 cb->flush_bundle(false); 1540 1541 // Special handling for SafePoint/Call Nodes 1542 bool is_mcall = false; 1543 if (n->is_Mach()) { 1544 MachNode *mach = n->as_Mach(); 1545 is_mcall = n->is_MachCall(); 1546 bool is_sfn = n->is_MachSafePoint(); 1547 1548 // If this requires all previous instructions be flushed, then do so 1549 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1550 cb->flush_bundle(true); 1551 current_offset = cb->insts_size(); 1552 } 1553 1554 // A padding may be needed again since a previous instruction 1555 // could be moved to delay slot. 1556 1557 // align the instruction if necessary 1558 int padding = mach->compute_padding(current_offset); 1559 // Make sure safepoint node for polling is distinct from a call's 1560 // return by adding a nop if needed. 1561 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1562 padding = nop_size; 1563 } 1564 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1565 current_offset == last_avoid_back_to_back_offset) { 1566 // Avoid back to back some instructions. 1567 padding = nop_size; 1568 } 1569 1570 if (padding > 0) { 1571 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1572 int nops_cnt = padding / nop_size; 1573 MachNode *nop = new MachNopNode(nops_cnt); 1574 block->insert_node(nop, j++); 1575 last_inst++; 1576 C->cfg()->map_node_to_block(nop, block); 1577 // Ensure enough space. 1578 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1579 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1580 C->record_failure("CodeCache is full"); 1581 return; 1582 } 1583 nop->emit(*cb, C->regalloc()); 1584 cb->flush_bundle(true); 1585 current_offset = cb->insts_size(); 1586 } 1587 1588 bool observe_safepoint = is_sfn; 1589 // Remember the start of the last call in a basic block 1590 if (is_mcall) { 1591 MachCallNode *mcall = mach->as_MachCall(); 1592 1593 if (mcall->entry_point() != NULL) { 1594 // This destination address is NOT PC-relative 1595 mcall->method_set((intptr_t)mcall->entry_point()); 1596 } 1597 1598 // Save the return address 1599 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1600 1601 observe_safepoint = mcall->guaranteed_safepoint(); 1602 } 1603 1604 // sfn will be valid whenever mcall is valid now because of inheritance 1605 if (observe_safepoint) { 1606 // Handle special safepoint nodes for synchronization 1607 if (!is_mcall) { 1608 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1609 // !!!!! Stubs only need an oopmap right now, so bail out 1610 if (sfn->jvms()->method() == NULL) { 1611 // Write the oopmap directly to the code blob??!! 1612 continue; 1613 } 1614 } // End synchronization 1615 1616 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1617 current_offset); 1618 Process_OopMap_Node(mach, current_offset); 1619 } // End if safepoint 1620 1621 // If this is a null check, then add the start of the previous instruction to the list 1622 else if( mach->is_MachNullCheck() ) { 1623 inct_starts[inct_cnt++] = previous_offset; 1624 } 1625 1626 // If this is a branch, then fill in the label with the target BB's label 1627 else if (mach->is_MachBranch()) { 1628 // This requires the TRUE branch target be in succs[0] 1629 uint block_num = block->non_connector_successor(0)->_pre_order; 1630 1631 // Try to replace long branch if delay slot is not used, 1632 // it is mostly for back branches since forward branch's 1633 // distance is not updated yet. 1634 bool delay_slot_is_used = valid_bundle_info(n) && 1635 C->output()->node_bundling(n)->use_unconditional_delay(); 1636 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1637 assert(delay_slot == NULL, "not expecting delay slot node"); 1638 int br_size = n->size(C->regalloc()); 1639 int offset = blk_starts[block_num] - current_offset; 1640 if (block_num >= i) { 1641 // Current and following block's offset are not 1642 // finalized yet, adjust distance by the difference 1643 // between calculated and final offsets of current block. 1644 offset -= (blk_starts[i] - blk_offset); 1645 } 1646 // In the following code a nop could be inserted before 1647 // the branch which will increase the backward distance. 1648 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1649 if (needs_padding && offset <= 0) 1650 offset -= nop_size; 1651 1652 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1653 // We've got a winner. Replace this branch. 1654 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1655 1656 // Update the jmp_size. 1657 int new_size = replacement->size(C->regalloc()); 1658 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1659 // Insert padding between avoid_back_to_back branches. 1660 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1661 MachNode *nop = new MachNopNode(); 1662 block->insert_node(nop, j++); 1663 C->cfg()->map_node_to_block(nop, block); 1664 last_inst++; 1665 nop->emit(*cb, C->regalloc()); 1666 cb->flush_bundle(true); 1667 current_offset = cb->insts_size(); 1668 } 1669 #ifdef ASSERT 1670 jmp_target[i] = block_num; 1671 jmp_offset[i] = current_offset - blk_offset; 1672 jmp_size[i] = new_size; 1673 jmp_rule[i] = mach->rule(); 1674 #endif 1675 block->map_node(replacement, j); 1676 mach->subsume_by(replacement, C); 1677 n = replacement; 1678 mach = replacement; 1679 } 1680 } 1681 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1682 } else if (mach->ideal_Opcode() == Op_Jump) { 1683 for (uint h = 0; h < block->_num_succs; h++) { 1684 Block* succs_block = block->_succs[h]; 1685 for (uint j = 1; j < succs_block->num_preds(); j++) { 1686 Node* jpn = succs_block->pred(j); 1687 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1688 uint block_num = succs_block->non_connector()->_pre_order; 1689 Label *blkLabel = &blk_labels[block_num]; 1690 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1691 } 1692 } 1693 } 1694 } 1695 #ifdef ASSERT 1696 // Check that oop-store precedes the card-mark 1697 else if (mach->ideal_Opcode() == Op_StoreCM) { 1698 uint storeCM_idx = j; 1699 int count = 0; 1700 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1701 Node *oop_store = mach->in(prec); // Precedence edge 1702 if (oop_store == NULL) continue; 1703 count++; 1704 uint i4; 1705 for (i4 = 0; i4 < last_inst; ++i4) { 1706 if (block->get_node(i4) == oop_store) { 1707 break; 1708 } 1709 } 1710 // Note: This test can provide a false failure if other precedence 1711 // edges have been added to the storeCMNode. 1712 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1713 } 1714 assert(count > 0, "storeCM expects at least one precedence edge"); 1715 } 1716 #endif 1717 else if (!n->is_Proj()) { 1718 // Remember the beginning of the previous instruction, in case 1719 // it's followed by a flag-kill and a null-check. Happens on 1720 // Intel all the time, with add-to-memory kind of opcodes. 1721 previous_offset = current_offset; 1722 } 1723 1724 // Not an else-if! 1725 // If this is a trap based cmp then add its offset to the list. 1726 if (mach->is_TrapBasedCheckNode()) { 1727 inct_starts[inct_cnt++] = current_offset; 1728 } 1729 } 1730 1731 // Verify that there is sufficient space remaining 1732 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1733 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1734 C->record_failure("CodeCache is full"); 1735 return; 1736 } 1737 1738 // Save the offset for the listing 1739 #if defined(SUPPORT_OPTO_ASSEMBLY) 1740 if ((node_offsets != NULL) && (n->_idx < node_offset_limit)) { 1741 node_offsets[n->_idx] = cb->insts_size(); 1742 } 1743 #endif 1744 assert(!C->failing(), "Should not reach here if failing."); 1745 1746 // "Normal" instruction case 1747 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1748 n->emit(*cb, C->regalloc()); 1749 current_offset = cb->insts_size(); 1750 1751 // Above we only verified that there is enough space in the instruction section. 1752 // However, the instruction may emit stubs that cause code buffer expansion. 1753 // Bail out here if expansion failed due to a lack of code cache space. 1754 if (C->failing()) { 1755 return; 1756 } 1757 1758 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1759 "ret_addr_offset() not within emitted code"); 1760 #ifdef ASSERT 1761 uint n_size = n->size(C->regalloc()); 1762 if (n_size < (current_offset-instr_offset)) { 1763 MachNode* mach = n->as_Mach(); 1764 n->dump(); 1765 mach->dump_format(C->regalloc(), tty); 1766 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1767 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1768 tty->print_cr(" ------------------- "); 1769 BufferBlob* blob = this->scratch_buffer_blob(); 1770 address blob_begin = blob->content_begin(); 1771 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1772 assert(false, "wrong size of mach node"); 1773 } 1774 #endif 1775 non_safepoints.observe_instruction(n, current_offset); 1776 1777 // mcall is last "call" that can be a safepoint 1778 // record it so we can see if a poll will directly follow it 1779 // in which case we'll need a pad to make the PcDesc sites unique 1780 // see 5010568. This can be slightly inaccurate but conservative 1781 // in the case that return address is not actually at current_offset. 1782 // This is a small price to pay. 1783 1784 if (is_mcall) { 1785 last_call_offset = current_offset; 1786 } 1787 1788 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1789 // Avoid back to back some instructions. 1790 last_avoid_back_to_back_offset = current_offset; 1791 } 1792 1793 // See if this instruction has a delay slot 1794 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1795 guarantee(delay_slot != NULL, "expecting delay slot node"); 1796 1797 // Back up 1 instruction 1798 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1799 1800 // Save the offset for the listing 1801 #if defined(SUPPORT_OPTO_ASSEMBLY) 1802 if ((node_offsets != NULL) && (delay_slot->_idx < node_offset_limit)) { 1803 node_offsets[delay_slot->_idx] = cb->insts_size(); 1804 } 1805 #endif 1806 1807 // Support a SafePoint in the delay slot 1808 if (delay_slot->is_MachSafePoint()) { 1809 MachNode *mach = delay_slot->as_Mach(); 1810 // !!!!! Stubs only need an oopmap right now, so bail out 1811 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) { 1812 // Write the oopmap directly to the code blob??!! 1813 delay_slot = NULL; 1814 continue; 1815 } 1816 1817 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1818 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1819 adjusted_offset); 1820 // Generate an OopMap entry 1821 Process_OopMap_Node(mach, adjusted_offset); 1822 } 1823 1824 // Insert the delay slot instruction 1825 delay_slot->emit(*cb, C->regalloc()); 1826 1827 // Don't reuse it 1828 delay_slot = NULL; 1829 } 1830 1831 } // End for all instructions in block 1832 1833 // If the next block is the top of a loop, pad this block out to align 1834 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1835 if (i < nblocks-1) { 1836 Block *nb = C->cfg()->get_block(i + 1); 1837 int padding = nb->alignment_padding(current_offset); 1838 if( padding > 0 ) { 1839 MachNode *nop = new MachNopNode(padding / nop_size); 1840 block->insert_node(nop, block->number_of_nodes()); 1841 C->cfg()->map_node_to_block(nop, block); 1842 nop->emit(*cb, C->regalloc()); 1843 current_offset = cb->insts_size(); 1844 } 1845 } 1846 // Verify that the distance for generated before forward 1847 // short branches is still valid. 1848 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1849 1850 // Save new block start offset 1851 blk_starts[i] = blk_offset; 1852 } // End of for all blocks 1853 blk_starts[nblocks] = current_offset; 1854 1855 non_safepoints.flush_at_end(); 1856 1857 // Offset too large? 1858 if (C->failing()) return; 1859 1860 // Define a pseudo-label at the end of the code 1861 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1862 1863 // Compute the size of the first block 1864 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1865 1866 #ifdef ASSERT 1867 for (uint i = 0; i < nblocks; i++) { // For all blocks 1868 if (jmp_target[i] != 0) { 1869 int br_size = jmp_size[i]; 1870 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1871 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1872 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1873 assert(false, "Displacement too large for short jmp"); 1874 } 1875 } 1876 } 1877 #endif 1878 1879 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1880 bs->emit_stubs(*cb); 1881 if (C->failing()) return; 1882 1883 // Fill in stubs for calling the runtime from safepoint polls. 1884 safepoint_poll_table()->emit(*cb); 1885 if (C->failing()) return; 1886 1887 #ifndef PRODUCT 1888 // Information on the size of the method, without the extraneous code 1889 Scheduling::increment_method_size(cb->insts_size()); 1890 #endif 1891 1892 // ------------------ 1893 // Fill in exception table entries. 1894 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1895 1896 // Only java methods have exception handlers and deopt handlers 1897 // class HandlerImpl is platform-specific and defined in the *.ad files. 1898 if (C->method()) { 1899 // Emit the exception handler code. 1900 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1901 if (C->failing()) { 1902 return; // CodeBuffer::expand failed 1903 } 1904 // Emit the deopt handler code. 1905 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1906 1907 // Emit the MethodHandle deopt handler code (if required). 1908 if (C->has_method_handle_invokes() && !C->failing()) { 1909 // We can use the same code as for the normal deopt handler, we 1910 // just need a different entry point address. 1911 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1912 } 1913 } 1914 1915 // One last check for failed CodeBuffer::expand: 1916 if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) { 1917 C->record_failure("CodeCache is full"); 1918 return; 1919 } 1920 1921 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1922 if (C->print_assembly()) { 1923 tty->cr(); 1924 tty->print_cr("============================= C2-compiled nmethod =============================="); 1925 } 1926 #endif 1927 1928 #if defined(SUPPORT_OPTO_ASSEMBLY) 1929 // Dump the assembly code, including basic-block numbers 1930 if (C->print_assembly()) { 1931 ttyLocker ttyl; // keep the following output all in one block 1932 if (!VMThread::should_terminate()) { // test this under the tty lock 1933 // This output goes directly to the tty, not the compiler log. 1934 // To enable tools to match it up with the compilation activity, 1935 // be sure to tag this tty output with the compile ID. 1936 if (xtty != NULL) { 1937 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1938 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1939 } 1940 if (C->method() != NULL) { 1941 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1942 C->method()->print_metadata(); 1943 } else if (C->stub_name() != NULL) { 1944 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1945 } 1946 tty->cr(); 1947 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1948 dump_asm(node_offsets, node_offset_limit); 1949 tty->print_cr("--------------------------------------------------------------------------------"); 1950 if (xtty != NULL) { 1951 // print_metadata and dump_asm above may safepoint which makes us loose the ttylock. 1952 // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done 1953 // thread safe 1954 ttyLocker ttyl2; 1955 xtty->tail("opto_assembly"); 1956 } 1957 } 1958 } 1959 #endif 1960 } 1961 1962 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1963 _inc_table.set_size(cnt); 1964 1965 uint inct_cnt = 0; 1966 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1967 Block* block = C->cfg()->get_block(i); 1968 Node *n = NULL; 1969 int j; 1970 1971 // Find the branch; ignore trailing NOPs. 1972 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1973 n = block->get_node(j); 1974 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1975 break; 1976 } 1977 } 1978 1979 // If we didn't find anything, continue 1980 if (j < 0) { 1981 continue; 1982 } 1983 1984 // Compute ExceptionHandlerTable subtable entry and add it 1985 // (skip empty blocks) 1986 if (n->is_Catch()) { 1987 1988 // Get the offset of the return from the call 1989 uint call_return = call_returns[block->_pre_order]; 1990 #ifdef ASSERT 1991 assert( call_return > 0, "no call seen for this basic block" ); 1992 while (block->get_node(--j)->is_MachProj()) ; 1993 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1994 #endif 1995 // last instruction is a CatchNode, find it's CatchProjNodes 1996 int nof_succs = block->_num_succs; 1997 // allocate space 1998 GrowableArray<intptr_t> handler_bcis(nof_succs); 1999 GrowableArray<intptr_t> handler_pcos(nof_succs); 2000 // iterate through all successors 2001 for (int j = 0; j < nof_succs; j++) { 2002 Block* s = block->_succs[j]; 2003 bool found_p = false; 2004 for (uint k = 1; k < s->num_preds(); k++) { 2005 Node* pk = s->pred(k); 2006 if (pk->is_CatchProj() && pk->in(0) == n) { 2007 const CatchProjNode* p = pk->as_CatchProj(); 2008 found_p = true; 2009 // add the corresponding handler bci & pco information 2010 if (p->_con != CatchProjNode::fall_through_index) { 2011 // p leads to an exception handler (and is not fall through) 2012 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 2013 // no duplicates, please 2014 if (!handler_bcis.contains(p->handler_bci())) { 2015 uint block_num = s->non_connector()->_pre_order; 2016 handler_bcis.append(p->handler_bci()); 2017 handler_pcos.append(blk_labels[block_num].loc_pos()); 2018 } 2019 } 2020 } 2021 } 2022 assert(found_p, "no matching predecessor found"); 2023 // Note: Due to empty block removal, one block may have 2024 // several CatchProj inputs, from the same Catch. 2025 } 2026 2027 // Set the offset of the return from the call 2028 assert(handler_bcis.find(-1) != -1, "must have default handler"); 2029 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); 2030 continue; 2031 } 2032 2033 // Handle implicit null exception table updates 2034 if (n->is_MachNullCheck()) { 2035 uint block_num = block->non_connector_successor(0)->_pre_order; 2036 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2037 continue; 2038 } 2039 // Handle implicit exception table updates: trap instructions. 2040 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 2041 uint block_num = block->non_connector_successor(0)->_pre_order; 2042 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 2043 continue; 2044 } 2045 } // End of for all blocks fill in exception table entries 2046 } 2047 2048 // Static Variables 2049 #ifndef PRODUCT 2050 uint Scheduling::_total_nop_size = 0; 2051 uint Scheduling::_total_method_size = 0; 2052 uint Scheduling::_total_branches = 0; 2053 uint Scheduling::_total_unconditional_delays = 0; 2054 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 2055 #endif 2056 2057 // Initializer for class Scheduling 2058 2059 Scheduling::Scheduling(Arena *arena, Compile &compile) 2060 : _arena(arena), 2061 _cfg(compile.cfg()), 2062 _regalloc(compile.regalloc()), 2063 _scheduled(arena), 2064 _available(arena), 2065 _reg_node(arena), 2066 _pinch_free_list(arena), 2067 _next_node(NULL), 2068 _bundle_instr_count(0), 2069 _bundle_cycle_number(0), 2070 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2071 #ifndef PRODUCT 2072 , _branches(0) 2073 , _unconditional_delays(0) 2074 #endif 2075 { 2076 // Create a MachNopNode 2077 _nop = new MachNopNode(); 2078 2079 // Now that the nops are in the array, save the count 2080 // (but allow entries for the nops) 2081 _node_bundling_limit = compile.unique(); 2082 uint node_max = _regalloc->node_regs_max_index(); 2083 2084 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2085 2086 // This one is persistent within the Compile class 2087 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2088 2089 // Allocate space for fixed-size arrays 2090 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2091 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2092 2093 // Clear the arrays 2094 for (uint i = 0; i < node_max; i++) { 2095 ::new (&_node_bundling_base[i]) Bundle(); 2096 } 2097 memset(_uses, 0, node_max * sizeof(short)); 2098 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2099 2100 // Clear the bundling information 2101 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2102 2103 // Get the last node 2104 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2105 2106 _next_node = block->get_node(block->number_of_nodes() - 1); 2107 } 2108 2109 #ifndef PRODUCT 2110 // Scheduling destructor 2111 Scheduling::~Scheduling() { 2112 _total_branches += _branches; 2113 _total_unconditional_delays += _unconditional_delays; 2114 } 2115 #endif 2116 2117 // Step ahead "i" cycles 2118 void Scheduling::step(uint i) { 2119 2120 Bundle *bundle = node_bundling(_next_node); 2121 bundle->set_starts_bundle(); 2122 2123 // Update the bundle record, but leave the flags information alone 2124 if (_bundle_instr_count > 0) { 2125 bundle->set_instr_count(_bundle_instr_count); 2126 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2127 } 2128 2129 // Update the state information 2130 _bundle_instr_count = 0; 2131 _bundle_cycle_number += i; 2132 _bundle_use.step(i); 2133 } 2134 2135 void Scheduling::step_and_clear() { 2136 Bundle *bundle = node_bundling(_next_node); 2137 bundle->set_starts_bundle(); 2138 2139 // Update the bundle record 2140 if (_bundle_instr_count > 0) { 2141 bundle->set_instr_count(_bundle_instr_count); 2142 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2143 2144 _bundle_cycle_number += 1; 2145 } 2146 2147 // Clear the bundling information 2148 _bundle_instr_count = 0; 2149 _bundle_use.reset(); 2150 2151 memcpy(_bundle_use_elements, 2152 Pipeline_Use::elaborated_elements, 2153 sizeof(Pipeline_Use::elaborated_elements)); 2154 } 2155 2156 // Perform instruction scheduling and bundling over the sequence of 2157 // instructions in backwards order. 2158 void PhaseOutput::ScheduleAndBundle() { 2159 2160 // Don't optimize this if it isn't a method 2161 if (!C->method()) 2162 return; 2163 2164 // Don't optimize this if scheduling is disabled 2165 if (!C->do_scheduling()) 2166 return; 2167 2168 // Scheduling code works only with pairs (8 bytes) maximum. 2169 // And when the scalable vector register is used, we may spill/unspill 2170 // the whole reg regardless of the max vector size. 2171 if (C->max_vector_size() > 8 || 2172 (C->max_vector_size() > 0 && Matcher::supports_scalable_vector())) { 2173 return; 2174 } 2175 2176 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2177 2178 // Create a data structure for all the scheduling information 2179 Scheduling scheduling(Thread::current()->resource_area(), *C); 2180 2181 // Walk backwards over each basic block, computing the needed alignment 2182 // Walk over all the basic blocks 2183 scheduling.DoScheduling(); 2184 2185 #ifndef PRODUCT 2186 if (C->trace_opto_output()) { 2187 tty->print("\n---- After ScheduleAndBundle ----\n"); 2188 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2189 tty->print("\nBB#%03d:\n", i); 2190 Block* block = C->cfg()->get_block(i); 2191 for (uint j = 0; j < block->number_of_nodes(); j++) { 2192 Node* n = block->get_node(j); 2193 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2194 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2195 n->dump(); 2196 } 2197 } 2198 } 2199 #endif 2200 } 2201 2202 // See if this node fits into the present instruction bundle 2203 bool Scheduling::NodeFitsInBundle(Node *n) { 2204 uint n_idx = n->_idx; 2205 2206 // If this is the unconditional delay instruction, then it fits 2207 if (n == _unconditional_delay_slot) { 2208 #ifndef PRODUCT 2209 if (_cfg->C->trace_opto_output()) 2210 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2211 #endif 2212 return (true); 2213 } 2214 2215 // If the node cannot be scheduled this cycle, skip it 2216 if (_current_latency[n_idx] > _bundle_cycle_number) { 2217 #ifndef PRODUCT 2218 if (_cfg->C->trace_opto_output()) 2219 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2220 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2221 #endif 2222 return (false); 2223 } 2224 2225 const Pipeline *node_pipeline = n->pipeline(); 2226 2227 uint instruction_count = node_pipeline->instructionCount(); 2228 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2229 instruction_count = 0; 2230 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2231 instruction_count++; 2232 2233 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2234 #ifndef PRODUCT 2235 if (_cfg->C->trace_opto_output()) 2236 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2237 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2238 #endif 2239 return (false); 2240 } 2241 2242 // Don't allow non-machine nodes to be handled this way 2243 if (!n->is_Mach() && instruction_count == 0) 2244 return (false); 2245 2246 // See if there is any overlap 2247 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2248 2249 if (delay > 0) { 2250 #ifndef PRODUCT 2251 if (_cfg->C->trace_opto_output()) 2252 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2253 #endif 2254 return false; 2255 } 2256 2257 #ifndef PRODUCT 2258 if (_cfg->C->trace_opto_output()) 2259 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2260 #endif 2261 2262 return true; 2263 } 2264 2265 Node * Scheduling::ChooseNodeToBundle() { 2266 uint siz = _available.size(); 2267 2268 if (siz == 0) { 2269 2270 #ifndef PRODUCT 2271 if (_cfg->C->trace_opto_output()) 2272 tty->print("# ChooseNodeToBundle: NULL\n"); 2273 #endif 2274 return (NULL); 2275 } 2276 2277 // Fast path, if only 1 instruction in the bundle 2278 if (siz == 1) { 2279 #ifndef PRODUCT 2280 if (_cfg->C->trace_opto_output()) { 2281 tty->print("# ChooseNodeToBundle (only 1): "); 2282 _available[0]->dump(); 2283 } 2284 #endif 2285 return (_available[0]); 2286 } 2287 2288 // Don't bother, if the bundle is already full 2289 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2290 for ( uint i = 0; i < siz; i++ ) { 2291 Node *n = _available[i]; 2292 2293 // Skip projections, we'll handle them another way 2294 if (n->is_Proj()) 2295 continue; 2296 2297 // This presupposed that instructions are inserted into the 2298 // available list in a legality order; i.e. instructions that 2299 // must be inserted first are at the head of the list 2300 if (NodeFitsInBundle(n)) { 2301 #ifndef PRODUCT 2302 if (_cfg->C->trace_opto_output()) { 2303 tty->print("# ChooseNodeToBundle: "); 2304 n->dump(); 2305 } 2306 #endif 2307 return (n); 2308 } 2309 } 2310 } 2311 2312 // Nothing fits in this bundle, choose the highest priority 2313 #ifndef PRODUCT 2314 if (_cfg->C->trace_opto_output()) { 2315 tty->print("# ChooseNodeToBundle: "); 2316 _available[0]->dump(); 2317 } 2318 #endif 2319 2320 return _available[0]; 2321 } 2322 2323 void Scheduling::AddNodeToAvailableList(Node *n) { 2324 assert( !n->is_Proj(), "projections never directly made available" ); 2325 #ifndef PRODUCT 2326 if (_cfg->C->trace_opto_output()) { 2327 tty->print("# AddNodeToAvailableList: "); 2328 n->dump(); 2329 } 2330 #endif 2331 2332 int latency = _current_latency[n->_idx]; 2333 2334 // Insert in latency order (insertion sort) 2335 uint i; 2336 for ( i=0; i < _available.size(); i++ ) 2337 if (_current_latency[_available[i]->_idx] > latency) 2338 break; 2339 2340 // Special Check for compares following branches 2341 if( n->is_Mach() && _scheduled.size() > 0 ) { 2342 int op = n->as_Mach()->ideal_Opcode(); 2343 Node *last = _scheduled[0]; 2344 if( last->is_MachIf() && last->in(1) == n && 2345 ( op == Op_CmpI || 2346 op == Op_CmpU || 2347 op == Op_CmpUL || 2348 op == Op_CmpP || 2349 op == Op_CmpF || 2350 op == Op_CmpD || 2351 op == Op_CmpL ) ) { 2352 2353 // Recalculate position, moving to front of same latency 2354 for ( i=0 ; i < _available.size(); i++ ) 2355 if (_current_latency[_available[i]->_idx] >= latency) 2356 break; 2357 } 2358 } 2359 2360 // Insert the node in the available list 2361 _available.insert(i, n); 2362 2363 #ifndef PRODUCT 2364 if (_cfg->C->trace_opto_output()) 2365 dump_available(); 2366 #endif 2367 } 2368 2369 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2370 for ( uint i=0; i < n->len(); i++ ) { 2371 Node *def = n->in(i); 2372 if (!def) continue; 2373 if( def->is_Proj() ) // If this is a machine projection, then 2374 def = def->in(0); // propagate usage thru to the base instruction 2375 2376 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2377 continue; 2378 } 2379 2380 // Compute the latency 2381 uint l = _bundle_cycle_number + n->latency(i); 2382 if (_current_latency[def->_idx] < l) 2383 _current_latency[def->_idx] = l; 2384 2385 // If this does not have uses then schedule it 2386 if ((--_uses[def->_idx]) == 0) 2387 AddNodeToAvailableList(def); 2388 } 2389 } 2390 2391 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2392 #ifndef PRODUCT 2393 if (_cfg->C->trace_opto_output()) { 2394 tty->print("# AddNodeToBundle: "); 2395 n->dump(); 2396 } 2397 #endif 2398 2399 // Remove this from the available list 2400 uint i; 2401 for (i = 0; i < _available.size(); i++) 2402 if (_available[i] == n) 2403 break; 2404 assert(i < _available.size(), "entry in _available list not found"); 2405 _available.remove(i); 2406 2407 // See if this fits in the current bundle 2408 const Pipeline *node_pipeline = n->pipeline(); 2409 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2410 2411 // Check for instructions to be placed in the delay slot. We 2412 // do this before we actually schedule the current instruction, 2413 // because the delay slot follows the current instruction. 2414 if (Pipeline::_branch_has_delay_slot && 2415 node_pipeline->hasBranchDelay() && 2416 !_unconditional_delay_slot) { 2417 2418 uint siz = _available.size(); 2419 2420 // Conditional branches can support an instruction that 2421 // is unconditionally executed and not dependent by the 2422 // branch, OR a conditionally executed instruction if 2423 // the branch is taken. In practice, this means that 2424 // the first instruction at the branch target is 2425 // copied to the delay slot, and the branch goes to 2426 // the instruction after that at the branch target 2427 if ( n->is_MachBranch() ) { 2428 2429 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2430 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2431 2432 #ifndef PRODUCT 2433 _branches++; 2434 #endif 2435 2436 // At least 1 instruction is on the available list 2437 // that is not dependent on the branch 2438 for (uint i = 0; i < siz; i++) { 2439 Node *d = _available[i]; 2440 const Pipeline *avail_pipeline = d->pipeline(); 2441 2442 // Don't allow safepoints in the branch shadow, that will 2443 // cause a number of difficulties 2444 if ( avail_pipeline->instructionCount() == 1 && 2445 !avail_pipeline->hasMultipleBundles() && 2446 !avail_pipeline->hasBranchDelay() && 2447 Pipeline::instr_has_unit_size() && 2448 d->size(_regalloc) == Pipeline::instr_unit_size() && 2449 NodeFitsInBundle(d) && 2450 !node_bundling(d)->used_in_delay()) { 2451 2452 if (d->is_Mach() && !d->is_MachSafePoint()) { 2453 // A node that fits in the delay slot was found, so we need to 2454 // set the appropriate bits in the bundle pipeline information so 2455 // that it correctly indicates resource usage. Later, when we 2456 // attempt to add this instruction to the bundle, we will skip 2457 // setting the resource usage. 2458 _unconditional_delay_slot = d; 2459 node_bundling(n)->set_use_unconditional_delay(); 2460 node_bundling(d)->set_used_in_unconditional_delay(); 2461 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2462 _current_latency[d->_idx] = _bundle_cycle_number; 2463 _next_node = d; 2464 ++_bundle_instr_count; 2465 #ifndef PRODUCT 2466 _unconditional_delays++; 2467 #endif 2468 break; 2469 } 2470 } 2471 } 2472 } 2473 2474 // No delay slot, add a nop to the usage 2475 if (!_unconditional_delay_slot) { 2476 // See if adding an instruction in the delay slot will overflow 2477 // the bundle. 2478 if (!NodeFitsInBundle(_nop)) { 2479 #ifndef PRODUCT 2480 if (_cfg->C->trace_opto_output()) 2481 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2482 #endif 2483 step(1); 2484 } 2485 2486 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2487 _next_node = _nop; 2488 ++_bundle_instr_count; 2489 } 2490 2491 // See if the instruction in the delay slot requires a 2492 // step of the bundles 2493 if (!NodeFitsInBundle(n)) { 2494 #ifndef PRODUCT 2495 if (_cfg->C->trace_opto_output()) 2496 tty->print("# *** STEP(branch won't fit) ***\n"); 2497 #endif 2498 // Update the state information 2499 _bundle_instr_count = 0; 2500 _bundle_cycle_number += 1; 2501 _bundle_use.step(1); 2502 } 2503 } 2504 2505 // Get the number of instructions 2506 uint instruction_count = node_pipeline->instructionCount(); 2507 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2508 instruction_count = 0; 2509 2510 // Compute the latency information 2511 uint delay = 0; 2512 2513 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2514 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2515 if (relative_latency < 0) 2516 relative_latency = 0; 2517 2518 delay = _bundle_use.full_latency(relative_latency, node_usage); 2519 2520 // Does not fit in this bundle, start a new one 2521 if (delay > 0) { 2522 step(delay); 2523 2524 #ifndef PRODUCT 2525 if (_cfg->C->trace_opto_output()) 2526 tty->print("# *** STEP(%d) ***\n", delay); 2527 #endif 2528 } 2529 } 2530 2531 // If this was placed in the delay slot, ignore it 2532 if (n != _unconditional_delay_slot) { 2533 2534 if (delay == 0) { 2535 if (node_pipeline->hasMultipleBundles()) { 2536 #ifndef PRODUCT 2537 if (_cfg->C->trace_opto_output()) 2538 tty->print("# *** STEP(multiple instructions) ***\n"); 2539 #endif 2540 step(1); 2541 } 2542 2543 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2544 #ifndef PRODUCT 2545 if (_cfg->C->trace_opto_output()) 2546 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2547 instruction_count + _bundle_instr_count, 2548 Pipeline::_max_instrs_per_cycle); 2549 #endif 2550 step(1); 2551 } 2552 } 2553 2554 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2555 _bundle_instr_count++; 2556 2557 // Set the node's latency 2558 _current_latency[n->_idx] = _bundle_cycle_number; 2559 2560 // Now merge the functional unit information 2561 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2562 _bundle_use.add_usage(node_usage); 2563 2564 // Increment the number of instructions in this bundle 2565 _bundle_instr_count += instruction_count; 2566 2567 // Remember this node for later 2568 if (n->is_Mach()) 2569 _next_node = n; 2570 } 2571 2572 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2573 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2574 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2575 // into the block. All other scheduled nodes get put in the schedule here. 2576 int op = n->Opcode(); 2577 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2578 (op != Op_Node && // Not an unused antidepedence node and 2579 // not an unallocated boxlock 2580 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2581 2582 // Push any trailing projections 2583 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2584 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2585 Node *foi = n->fast_out(i); 2586 if( foi->is_Proj() ) 2587 _scheduled.push(foi); 2588 } 2589 } 2590 2591 // Put the instruction in the schedule list 2592 _scheduled.push(n); 2593 } 2594 2595 #ifndef PRODUCT 2596 if (_cfg->C->trace_opto_output()) 2597 dump_available(); 2598 #endif 2599 2600 // Walk all the definitions, decrementing use counts, and 2601 // if a definition has a 0 use count, place it in the available list. 2602 DecrementUseCounts(n,bb); 2603 } 2604 2605 // This method sets the use count within a basic block. We will ignore all 2606 // uses outside the current basic block. As we are doing a backwards walk, 2607 // any node we reach that has a use count of 0 may be scheduled. This also 2608 // avoids the problem of cyclic references from phi nodes, as long as phi 2609 // nodes are at the front of the basic block. This method also initializes 2610 // the available list to the set of instructions that have no uses within this 2611 // basic block. 2612 void Scheduling::ComputeUseCount(const Block *bb) { 2613 #ifndef PRODUCT 2614 if (_cfg->C->trace_opto_output()) 2615 tty->print("# -> ComputeUseCount\n"); 2616 #endif 2617 2618 // Clear the list of available and scheduled instructions, just in case 2619 _available.clear(); 2620 _scheduled.clear(); 2621 2622 // No delay slot specified 2623 _unconditional_delay_slot = NULL; 2624 2625 #ifdef ASSERT 2626 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2627 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2628 #endif 2629 2630 // Force the _uses count to never go to zero for unscheduable pieces 2631 // of the block 2632 for( uint k = 0; k < _bb_start; k++ ) 2633 _uses[bb->get_node(k)->_idx] = 1; 2634 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2635 _uses[bb->get_node(l)->_idx] = 1; 2636 2637 // Iterate backwards over the instructions in the block. Don't count the 2638 // branch projections at end or the block header instructions. 2639 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2640 Node *n = bb->get_node(j); 2641 if( n->is_Proj() ) continue; // Projections handled another way 2642 2643 // Account for all uses 2644 for ( uint k = 0; k < n->len(); k++ ) { 2645 Node *inp = n->in(k); 2646 if (!inp) continue; 2647 assert(inp != n, "no cycles allowed" ); 2648 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2649 if (inp->is_Proj()) { // Skip through Proj's 2650 inp = inp->in(0); 2651 } 2652 ++_uses[inp->_idx]; // Count 1 block-local use 2653 } 2654 } 2655 2656 // If this instruction has a 0 use count, then it is available 2657 if (!_uses[n->_idx]) { 2658 _current_latency[n->_idx] = _bundle_cycle_number; 2659 AddNodeToAvailableList(n); 2660 } 2661 2662 #ifndef PRODUCT 2663 if (_cfg->C->trace_opto_output()) { 2664 tty->print("# uses: %3d: ", _uses[n->_idx]); 2665 n->dump(); 2666 } 2667 #endif 2668 } 2669 2670 #ifndef PRODUCT 2671 if (_cfg->C->trace_opto_output()) 2672 tty->print("# <- ComputeUseCount\n"); 2673 #endif 2674 } 2675 2676 // This routine performs scheduling on each basic block in reverse order, 2677 // using instruction latencies and taking into account function unit 2678 // availability. 2679 void Scheduling::DoScheduling() { 2680 #ifndef PRODUCT 2681 if (_cfg->C->trace_opto_output()) 2682 tty->print("# -> DoScheduling\n"); 2683 #endif 2684 2685 Block *succ_bb = NULL; 2686 Block *bb; 2687 Compile* C = Compile::current(); 2688 2689 // Walk over all the basic blocks in reverse order 2690 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2691 bb = _cfg->get_block(i); 2692 2693 #ifndef PRODUCT 2694 if (_cfg->C->trace_opto_output()) { 2695 tty->print("# Schedule BB#%03d (initial)\n", i); 2696 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2697 bb->get_node(j)->dump(); 2698 } 2699 } 2700 #endif 2701 2702 // On the head node, skip processing 2703 if (bb == _cfg->get_root_block()) { 2704 continue; 2705 } 2706 2707 // Skip empty, connector blocks 2708 if (bb->is_connector()) 2709 continue; 2710 2711 // If the following block is not the sole successor of 2712 // this one, then reset the pipeline information 2713 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2714 #ifndef PRODUCT 2715 if (_cfg->C->trace_opto_output()) { 2716 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2717 _next_node->_idx, _bundle_instr_count); 2718 } 2719 #endif 2720 step_and_clear(); 2721 } 2722 2723 // Leave untouched the starting instruction, any Phis, a CreateEx node 2724 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2725 _bb_end = bb->number_of_nodes()-1; 2726 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2727 Node *n = bb->get_node(_bb_start); 2728 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2729 // Also, MachIdealNodes do not get scheduled 2730 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2731 MachNode *mach = n->as_Mach(); 2732 int iop = mach->ideal_Opcode(); 2733 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2734 if( iop == Op_Con ) continue; // Do not schedule Top 2735 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2736 mach->pipeline() == MachNode::pipeline_class() && 2737 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2738 continue; 2739 break; // Funny loop structure to be sure... 2740 } 2741 // Compute last "interesting" instruction in block - last instruction we 2742 // might schedule. _bb_end points just after last schedulable inst. We 2743 // normally schedule conditional branches (despite them being forced last 2744 // in the block), because they have delay slots we can fill. Calls all 2745 // have their delay slots filled in the template expansions, so we don't 2746 // bother scheduling them. 2747 Node *last = bb->get_node(_bb_end); 2748 // Ignore trailing NOPs. 2749 while (_bb_end > 0 && last->is_Mach() && 2750 last->as_Mach()->ideal_Opcode() == Op_Con) { 2751 last = bb->get_node(--_bb_end); 2752 } 2753 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2754 if( last->is_Catch() || 2755 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2756 // There might be a prior call. Skip it. 2757 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2758 } else if( last->is_MachNullCheck() ) { 2759 // Backup so the last null-checked memory instruction is 2760 // outside the schedulable range. Skip over the nullcheck, 2761 // projection, and the memory nodes. 2762 Node *mem = last->in(1); 2763 do { 2764 _bb_end--; 2765 } while (mem != bb->get_node(_bb_end)); 2766 } else { 2767 // Set _bb_end to point after last schedulable inst. 2768 _bb_end++; 2769 } 2770 2771 assert( _bb_start <= _bb_end, "inverted block ends" ); 2772 2773 // Compute the register antidependencies for the basic block 2774 ComputeRegisterAntidependencies(bb); 2775 if (C->failing()) return; // too many D-U pinch points 2776 2777 // Compute the usage within the block, and set the list of all nodes 2778 // in the block that have no uses within the block. 2779 ComputeUseCount(bb); 2780 2781 // Schedule the remaining instructions in the block 2782 while ( _available.size() > 0 ) { 2783 Node *n = ChooseNodeToBundle(); 2784 guarantee(n != NULL, "no nodes available"); 2785 AddNodeToBundle(n,bb); 2786 } 2787 2788 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2789 #ifdef ASSERT 2790 for( uint l = _bb_start; l < _bb_end; l++ ) { 2791 Node *n = bb->get_node(l); 2792 uint m; 2793 for( m = 0; m < _bb_end-_bb_start; m++ ) 2794 if( _scheduled[m] == n ) 2795 break; 2796 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2797 } 2798 #endif 2799 2800 // Now copy the instructions (in reverse order) back to the block 2801 for ( uint k = _bb_start; k < _bb_end; k++ ) 2802 bb->map_node(_scheduled[_bb_end-k-1], k); 2803 2804 #ifndef PRODUCT 2805 if (_cfg->C->trace_opto_output()) { 2806 tty->print("# Schedule BB#%03d (final)\n", i); 2807 uint current = 0; 2808 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2809 Node *n = bb->get_node(j); 2810 if( valid_bundle_info(n) ) { 2811 Bundle *bundle = node_bundling(n); 2812 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2813 tty->print("*** Bundle: "); 2814 bundle->dump(); 2815 } 2816 n->dump(); 2817 } 2818 } 2819 } 2820 #endif 2821 #ifdef ASSERT 2822 verify_good_schedule(bb,"after block local scheduling"); 2823 #endif 2824 } 2825 2826 #ifndef PRODUCT 2827 if (_cfg->C->trace_opto_output()) 2828 tty->print("# <- DoScheduling\n"); 2829 #endif 2830 2831 // Record final node-bundling array location 2832 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2833 2834 } // end DoScheduling 2835 2836 // Verify that no live-range used in the block is killed in the block by a 2837 // wrong DEF. This doesn't verify live-ranges that span blocks. 2838 2839 // Check for edge existence. Used to avoid adding redundant precedence edges. 2840 static bool edge_from_to( Node *from, Node *to ) { 2841 for( uint i=0; i<from->len(); i++ ) 2842 if( from->in(i) == to ) 2843 return true; 2844 return false; 2845 } 2846 2847 #ifdef ASSERT 2848 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2849 // Check for bad kills 2850 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2851 Node *prior_use = _reg_node[def]; 2852 if( prior_use && !edge_from_to(prior_use,n) ) { 2853 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2854 n->dump(); 2855 tty->print_cr("..."); 2856 prior_use->dump(); 2857 assert(edge_from_to(prior_use,n), "%s", msg); 2858 } 2859 _reg_node.map(def,NULL); // Kill live USEs 2860 } 2861 } 2862 2863 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2864 2865 // Zap to something reasonable for the verify code 2866 _reg_node.clear(); 2867 2868 // Walk over the block backwards. Check to make sure each DEF doesn't 2869 // kill a live value (other than the one it's supposed to). Add each 2870 // USE to the live set. 2871 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2872 Node *n = b->get_node(i); 2873 int n_op = n->Opcode(); 2874 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2875 // Fat-proj kills a slew of registers 2876 RegMaskIterator rmi(n->out_RegMask()); 2877 while (rmi.has_next()) { 2878 OptoReg::Name kill = rmi.next(); 2879 verify_do_def(n, kill, msg); 2880 } 2881 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2882 // Get DEF'd registers the normal way 2883 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2884 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2885 } 2886 2887 // Now make all USEs live 2888 for( uint i=1; i<n->req(); i++ ) { 2889 Node *def = n->in(i); 2890 assert(def != 0, "input edge required"); 2891 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2892 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2893 if( OptoReg::is_valid(reg_lo) ) { 2894 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2895 _reg_node.map(reg_lo,n); 2896 } 2897 if( OptoReg::is_valid(reg_hi) ) { 2898 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2899 _reg_node.map(reg_hi,n); 2900 } 2901 } 2902 2903 } 2904 2905 // Zap to something reasonable for the Antidependence code 2906 _reg_node.clear(); 2907 } 2908 #endif 2909 2910 // Conditionally add precedence edges. Avoid putting edges on Projs. 2911 static void add_prec_edge_from_to( Node *from, Node *to ) { 2912 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2913 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2914 from = from->in(0); 2915 } 2916 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2917 !edge_from_to( from, to ) ) // Avoid duplicate edge 2918 from->add_prec(to); 2919 } 2920 2921 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2922 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2923 return; 2924 2925 if (OptoReg::is_reg(def_reg)) { 2926 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2927 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2928 // This is one of the high slots of a vector register. 2929 // ScheduleAndBundle already checked there are no live wide 2930 // vectors in this method so it can be safely ignored. 2931 return; 2932 } 2933 } 2934 2935 Node *pinch = _reg_node[def_reg]; // Get pinch point 2936 if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2937 is_def ) { // Check for a true def (not a kill) 2938 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2939 return; 2940 } 2941 2942 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2943 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2944 2945 // After some number of kills there _may_ be a later def 2946 Node *later_def = NULL; 2947 2948 Compile* C = Compile::current(); 2949 2950 // Finding a kill requires a real pinch-point. 2951 // Check for not already having a pinch-point. 2952 // Pinch points are Op_Node's. 2953 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2954 later_def = pinch; // Must be def/kill as optimistic pinch-point 2955 if ( _pinch_free_list.size() > 0) { 2956 pinch = _pinch_free_list.pop(); 2957 } else { 2958 pinch = new Node(1); // Pinch point to-be 2959 } 2960 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2961 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2962 return; 2963 } 2964 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2965 _reg_node.map(def_reg,pinch); // Record pinch-point 2966 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2967 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2968 pinch->init_req(0, C->top()); // set not NULL for the next call 2969 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2970 later_def = NULL; // and no later def 2971 } 2972 pinch->set_req(0,later_def); // Hook later def so we can find it 2973 } else { // Else have valid pinch point 2974 if( pinch->in(0) ) // If there is a later-def 2975 later_def = pinch->in(0); // Get it 2976 } 2977 2978 // Add output-dependence edge from later def to kill 2979 if( later_def ) // If there is some original def 2980 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2981 2982 // See if current kill is also a use, and so is forced to be the pinch-point. 2983 if( pinch->Opcode() == Op_Node ) { 2984 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 2985 for( uint i=1; i<uses->req(); i++ ) { 2986 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 2987 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 2988 // Yes, found a use/kill pinch-point 2989 pinch->set_req(0,NULL); // 2990 pinch->replace_by(kill); // Move anti-dep edges up 2991 pinch = kill; 2992 _reg_node.map(def_reg,pinch); 2993 return; 2994 } 2995 } 2996 } 2997 2998 // Add edge from kill to pinch-point 2999 add_prec_edge_from_to(kill,pinch); 3000 } 3001 3002 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 3003 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 3004 return; 3005 Node *pinch = _reg_node[use_reg]; // Get pinch point 3006 // Check for no later def_reg/kill in block 3007 if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b && 3008 // Use has to be block-local as well 3009 _cfg->get_block_for_node(use) == b) { 3010 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3011 pinch->req() == 1 ) { // pinch not yet in block? 3012 pinch->del_req(0); // yank pointer to later-def, also set flag 3013 // Insert the pinch-point in the block just after the last use 3014 b->insert_node(pinch, b->find_node(use) + 1); 3015 _bb_end++; // Increase size scheduled region in block 3016 } 3017 3018 add_prec_edge_from_to(pinch,use); 3019 } 3020 } 3021 3022 // We insert antidependences between the reads and following write of 3023 // allocated registers to prevent illegal code motion. Hopefully, the 3024 // number of added references should be fairly small, especially as we 3025 // are only adding references within the current basic block. 3026 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3027 3028 #ifdef ASSERT 3029 verify_good_schedule(b,"before block local scheduling"); 3030 #endif 3031 3032 // A valid schedule, for each register independently, is an endless cycle 3033 // of: a def, then some uses (connected to the def by true dependencies), 3034 // then some kills (defs with no uses), finally the cycle repeats with a new 3035 // def. The uses are allowed to float relative to each other, as are the 3036 // kills. No use is allowed to slide past a kill (or def). This requires 3037 // antidependencies between all uses of a single def and all kills that 3038 // follow, up to the next def. More edges are redundant, because later defs 3039 // & kills are already serialized with true or antidependencies. To keep 3040 // the edge count down, we add a 'pinch point' node if there's more than 3041 // one use or more than one kill/def. 3042 3043 // We add dependencies in one bottom-up pass. 3044 3045 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3046 3047 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3048 // register. If not, we record the DEF/KILL in _reg_node, the 3049 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3050 // "pinch point", a new Node that's in the graph but not in the block. 3051 // We put edges from the prior and current DEF/KILLs to the pinch point. 3052 // We put the pinch point in _reg_node. If there's already a pinch point 3053 // we merely add an edge from the current DEF/KILL to the pinch point. 3054 3055 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3056 // put an edge from the pinch point to the USE. 3057 3058 // To be expedient, the _reg_node array is pre-allocated for the whole 3059 // compilation. _reg_node is lazily initialized; it either contains a NULL, 3060 // or a valid def/kill/pinch-point, or a leftover node from some prior 3061 // block. Leftover node from some prior block is treated like a NULL (no 3062 // prior def, so no anti-dependence needed). Valid def is distinguished by 3063 // it being in the current block. 3064 bool fat_proj_seen = false; 3065 uint last_safept = _bb_end-1; 3066 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL; 3067 Node* last_safept_node = end_node; 3068 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3069 Node *n = b->get_node(i); 3070 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3071 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3072 // Fat-proj kills a slew of registers 3073 // This can add edges to 'n' and obscure whether or not it was a def, 3074 // hence the is_def flag. 3075 fat_proj_seen = true; 3076 RegMaskIterator rmi(n->out_RegMask()); 3077 while (rmi.has_next()) { 3078 OptoReg::Name kill = rmi.next(); 3079 anti_do_def(b, n, kill, is_def); 3080 } 3081 } else { 3082 // Get DEF'd registers the normal way 3083 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3084 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3085 } 3086 3087 // Kill projections on a branch should appear to occur on the 3088 // branch, not afterwards, so grab the masks from the projections 3089 // and process them. 3090 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3091 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3092 Node* use = n->fast_out(i); 3093 if (use->is_Proj()) { 3094 RegMaskIterator rmi(use->out_RegMask()); 3095 while (rmi.has_next()) { 3096 OptoReg::Name kill = rmi.next(); 3097 anti_do_def(b, n, kill, false); 3098 } 3099 } 3100 } 3101 } 3102 3103 // Check each register used by this instruction for a following DEF/KILL 3104 // that must occur afterward and requires an anti-dependence edge. 3105 for( uint j=0; j<n->req(); j++ ) { 3106 Node *def = n->in(j); 3107 if( def ) { 3108 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3109 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3110 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3111 } 3112 } 3113 // Do not allow defs of new derived values to float above GC 3114 // points unless the base is definitely available at the GC point. 3115 3116 Node *m = b->get_node(i); 3117 3118 // Add precedence edge from following safepoint to use of derived pointer 3119 if( last_safept_node != end_node && 3120 m != last_safept_node) { 3121 for (uint k = 1; k < m->req(); k++) { 3122 const Type *t = m->in(k)->bottom_type(); 3123 if( t->isa_oop_ptr() && 3124 t->is_ptr()->offset() != 0 ) { 3125 last_safept_node->add_prec( m ); 3126 break; 3127 } 3128 } 3129 3130 // Do not allow a CheckCastPP node whose input is a raw pointer to 3131 // float past a safepoint. This can occur when a buffered inline 3132 // type is allocated in a loop and the CheckCastPP from that 3133 // allocation is reused outside the loop. If the use inside the 3134 // loop is scalarized the CheckCastPP will no longer be connected 3135 // to the loop safepoint. See JDK-8264340. 3136 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CheckCastPP) { 3137 Node *def = m->in(1); 3138 if (def != NULL && def->bottom_type()->base() == Type::RawPtr) { 3139 last_safept_node->add_prec(m); 3140 } 3141 } 3142 } 3143 3144 if( n->jvms() ) { // Precedence edge from derived to safept 3145 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3146 if( b->get_node(last_safept) != last_safept_node ) { 3147 last_safept = b->find_node(last_safept_node); 3148 } 3149 for( uint j=last_safept; j > i; j-- ) { 3150 Node *mach = b->get_node(j); 3151 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3152 mach->add_prec( n ); 3153 } 3154 last_safept = i; 3155 last_safept_node = m; 3156 } 3157 } 3158 3159 if (fat_proj_seen) { 3160 // Garbage collect pinch nodes that were not consumed. 3161 // They are usually created by a fat kill MachProj for a call. 3162 garbage_collect_pinch_nodes(); 3163 } 3164 } 3165 3166 // Garbage collect pinch nodes for reuse by other blocks. 3167 // 3168 // The block scheduler's insertion of anti-dependence 3169 // edges creates many pinch nodes when the block contains 3170 // 2 or more Calls. A pinch node is used to prevent a 3171 // combinatorial explosion of edges. If a set of kills for a 3172 // register is anti-dependent on a set of uses (or defs), rather 3173 // than adding an edge in the graph between each pair of kill 3174 // and use (or def), a pinch is inserted between them: 3175 // 3176 // use1 use2 use3 3177 // \ | / 3178 // \ | / 3179 // pinch 3180 // / | \ 3181 // / | \ 3182 // kill1 kill2 kill3 3183 // 3184 // One pinch node is created per register killed when 3185 // the second call is encountered during a backwards pass 3186 // over the block. Most of these pinch nodes are never 3187 // wired into the graph because the register is never 3188 // used or def'ed in the block. 3189 // 3190 void Scheduling::garbage_collect_pinch_nodes() { 3191 #ifndef PRODUCT 3192 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3193 #endif 3194 int trace_cnt = 0; 3195 for (uint k = 0; k < _reg_node.Size(); k++) { 3196 Node* pinch = _reg_node[k]; 3197 if ((pinch != NULL) && pinch->Opcode() == Op_Node && 3198 // no predecence input edges 3199 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { 3200 cleanup_pinch(pinch); 3201 _pinch_free_list.push(pinch); 3202 _reg_node.map(k, NULL); 3203 #ifndef PRODUCT 3204 if (_cfg->C->trace_opto_output()) { 3205 trace_cnt++; 3206 if (trace_cnt > 40) { 3207 tty->print("\n"); 3208 trace_cnt = 0; 3209 } 3210 tty->print(" %d", pinch->_idx); 3211 } 3212 #endif 3213 } 3214 } 3215 #ifndef PRODUCT 3216 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3217 #endif 3218 } 3219 3220 // Clean up a pinch node for reuse. 3221 void Scheduling::cleanup_pinch( Node *pinch ) { 3222 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3223 3224 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3225 Node* use = pinch->last_out(i); 3226 uint uses_found = 0; 3227 for (uint j = use->req(); j < use->len(); j++) { 3228 if (use->in(j) == pinch) { 3229 use->rm_prec(j); 3230 uses_found++; 3231 } 3232 } 3233 assert(uses_found > 0, "must be a precedence edge"); 3234 i -= uses_found; // we deleted 1 or more copies of this edge 3235 } 3236 // May have a later_def entry 3237 pinch->set_req(0, NULL); 3238 } 3239 3240 #ifndef PRODUCT 3241 3242 void Scheduling::dump_available() const { 3243 tty->print("#Availist "); 3244 for (uint i = 0; i < _available.size(); i++) 3245 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3246 tty->cr(); 3247 } 3248 3249 // Print Scheduling Statistics 3250 void Scheduling::print_statistics() { 3251 // Print the size added by nops for bundling 3252 tty->print("Nops added %d bytes to total of %d bytes", 3253 _total_nop_size, _total_method_size); 3254 if (_total_method_size > 0) 3255 tty->print(", for %.2f%%", 3256 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3257 tty->print("\n"); 3258 3259 // Print the number of branch shadows filled 3260 if (Pipeline::_branch_has_delay_slot) { 3261 tty->print("Of %d branches, %d had unconditional delay slots filled", 3262 _total_branches, _total_unconditional_delays); 3263 if (_total_branches > 0) 3264 tty->print(", for %.2f%%", 3265 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3266 tty->print("\n"); 3267 } 3268 3269 uint total_instructions = 0, total_bundles = 0; 3270 3271 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3272 uint bundle_count = _total_instructions_per_bundle[i]; 3273 total_instructions += bundle_count * i; 3274 total_bundles += bundle_count; 3275 } 3276 3277 if (total_bundles > 0) 3278 tty->print("Average ILP (excluding nops) is %.2f\n", 3279 ((double)total_instructions) / ((double)total_bundles)); 3280 } 3281 #endif 3282 3283 //-----------------------init_scratch_buffer_blob------------------------------ 3284 // Construct a temporary BufferBlob and cache it for this compile. 3285 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3286 // If there is already a scratch buffer blob allocated and the 3287 // constant section is big enough, use it. Otherwise free the 3288 // current and allocate a new one. 3289 BufferBlob* blob = scratch_buffer_blob(); 3290 if ((blob != NULL) && (const_size <= _scratch_const_size)) { 3291 // Use the current blob. 3292 } else { 3293 if (blob != NULL) { 3294 BufferBlob::free(blob); 3295 } 3296 3297 ResourceMark rm; 3298 _scratch_const_size = const_size; 3299 int size = C2Compiler::initial_code_buffer_size(const_size); 3300 if (C->has_scalarized_args()) { 3301 // Inline type entry points (MachVEPNodes) require lots of space for GC barriers and oop verification 3302 // when loading object fields from the buffered argument. Increase scratch buffer size accordingly. 3303 ciMethod* method = C->method(); 3304 int barrier_size = UseZGC ? 200 : (7 DEBUG_ONLY(+ 37)); 3305 int arg_num = 0; 3306 if (!method->is_static()) { 3307 if (method->is_scalarized_arg(arg_num)) { 3308 size += method->holder()->as_inline_klass()->oop_count() * barrier_size; 3309 } 3310 arg_num++; 3311 } 3312 for (ciSignatureStream str(method->signature()); !str.at_return_type(); str.next()) { 3313 if (method->is_scalarized_arg(arg_num)) { 3314 size += str.type()->as_inline_klass()->oop_count() * barrier_size; 3315 } 3316 arg_num++; 3317 } 3318 } 3319 blob = BufferBlob::create("Compile::scratch_buffer", size); 3320 // Record the buffer blob for next time. 3321 set_scratch_buffer_blob(blob); 3322 // Have we run out of code space? 3323 if (scratch_buffer_blob() == NULL) { 3324 // Let CompilerBroker disable further compilations. 3325 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3326 return; 3327 } 3328 } 3329 3330 // Initialize the relocation buffers 3331 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3332 set_scratch_locs_memory(locs_buf); 3333 } 3334 3335 3336 //-----------------------scratch_emit_size------------------------------------- 3337 // Helper function that computes size by emitting code 3338 uint PhaseOutput::scratch_emit_size(const Node* n) { 3339 // Start scratch_emit_size section. 3340 set_in_scratch_emit_size(true); 3341 3342 // Emit into a trash buffer and count bytes emitted. 3343 // This is a pretty expensive way to compute a size, 3344 // but it works well enough if seldom used. 3345 // All common fixed-size instructions are given a size 3346 // method by the AD file. 3347 // Note that the scratch buffer blob and locs memory are 3348 // allocated at the beginning of the compile task, and 3349 // may be shared by several calls to scratch_emit_size. 3350 // The allocation of the scratch buffer blob is particularly 3351 // expensive, since it has to grab the code cache lock. 3352 BufferBlob* blob = this->scratch_buffer_blob(); 3353 assert(blob != NULL, "Initialize BufferBlob at start"); 3354 assert(blob->size() > MAX_inst_size, "sanity"); 3355 relocInfo* locs_buf = scratch_locs_memory(); 3356 address blob_begin = blob->content_begin(); 3357 address blob_end = (address)locs_buf; 3358 assert(blob->contains(blob_end), "sanity"); 3359 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3360 buf.initialize_consts_size(_scratch_const_size); 3361 buf.initialize_stubs_size(MAX_stubs_size); 3362 assert(locs_buf != NULL, "sanity"); 3363 int lsize = MAX_locs_size / 3; 3364 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3365 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3366 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3367 // Mark as scratch buffer. 3368 buf.consts()->set_scratch_emit(); 3369 buf.insts()->set_scratch_emit(); 3370 buf.stubs()->set_scratch_emit(); 3371 3372 // Do the emission. 3373 3374 Label fakeL; // Fake label for branch instructions. 3375 Label* saveL = NULL; 3376 uint save_bnum = 0; 3377 bool is_branch = n->is_MachBranch(); 3378 if (is_branch) { 3379 MacroAssembler masm(&buf); 3380 masm.bind(fakeL); 3381 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3382 n->as_MachBranch()->label_set(&fakeL, 0); 3383 } else if (n->is_MachProlog()) { 3384 saveL = ((MachPrologNode*)n)->_verified_entry; 3385 ((MachPrologNode*)n)->_verified_entry = &fakeL; 3386 } else if (n->is_MachVEP()) { 3387 saveL = ((MachVEPNode*)n)->_verified_entry; 3388 ((MachVEPNode*)n)->_verified_entry = &fakeL; 3389 } 3390 n->emit(buf, C->regalloc()); 3391 3392 // Emitting into the scratch buffer should not fail 3393 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3394 3395 // Restore label. 3396 if (is_branch) { 3397 n->as_MachBranch()->label_set(saveL, save_bnum); 3398 } else if (n->is_MachProlog()) { 3399 ((MachPrologNode*)n)->_verified_entry = saveL; 3400 } else if (n->is_MachVEP()) { 3401 ((MachVEPNode*)n)->_verified_entry = saveL; 3402 } 3403 3404 // End scratch_emit_size section. 3405 set_in_scratch_emit_size(false); 3406 3407 return buf.insts_size(); 3408 } 3409 3410 void PhaseOutput::install() { 3411 if (!C->should_install_code()) { 3412 return; 3413 } else if (C->stub_function() != NULL) { 3414 install_stub(C->stub_name()); 3415 } else { 3416 install_code(C->method(), 3417 C->entry_bci(), 3418 CompileBroker::compiler2(), 3419 C->has_unsafe_access(), 3420 SharedRuntime::is_wide_vector(C->max_vector_size()), 3421 C->rtm_state()); 3422 } 3423 } 3424 3425 void PhaseOutput::install_code(ciMethod* target, 3426 int entry_bci, 3427 AbstractCompiler* compiler, 3428 bool has_unsafe_access, 3429 bool has_wide_vectors, 3430 RTMState rtm_state) { 3431 // Check if we want to skip execution of all compiled code. 3432 { 3433 #ifndef PRODUCT 3434 if (OptoNoExecute) { 3435 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3436 return; 3437 } 3438 #endif 3439 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3440 3441 if (C->is_osr_compilation()) { 3442 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3443 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3444 } else { 3445 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3446 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry) == -1) { 3447 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry, _first_block_size); 3448 } 3449 if (_code_offsets.value(CodeOffsets::Verified_Inline_Entry_RO) == -1) { 3450 _code_offsets.set_value(CodeOffsets::Verified_Inline_Entry_RO, _first_block_size); 3451 } 3452 if (_code_offsets.value(CodeOffsets::Entry) == -1) { 3453 _code_offsets.set_value(CodeOffsets::Entry, _first_block_size); 3454 } 3455 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3456 } 3457 3458 C->env()->register_method(target, 3459 entry_bci, 3460 &_code_offsets, 3461 _orig_pc_slot_offset_in_bytes, 3462 code_buffer(), 3463 frame_size_in_words(), 3464 _oop_map_set, 3465 &_handler_table, 3466 &_inc_table, 3467 compiler, 3468 has_unsafe_access, 3469 SharedRuntime::is_wide_vector(C->max_vector_size()), 3470 C->rtm_state(), 3471 C->native_invokers()); 3472 3473 if (C->log() != NULL) { // Print code cache state into compiler log 3474 C->log()->code_cache_state(); 3475 } 3476 } 3477 } 3478 void PhaseOutput::install_stub(const char* stub_name) { 3479 // Entry point will be accessed using stub_entry_point(); 3480 if (code_buffer() == NULL) { 3481 Matcher::soft_match_failure(); 3482 } else { 3483 if (PrintAssembly && (WizardMode || Verbose)) 3484 tty->print_cr("### Stub::%s", stub_name); 3485 3486 if (!C->failing()) { 3487 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3488 3489 // Make the NMethod 3490 // For now we mark the frame as never safe for profile stackwalking 3491 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3492 code_buffer(), 3493 CodeOffsets::frame_never_safe, 3494 // _code_offsets.value(CodeOffsets::Frame_Complete), 3495 frame_size_in_words(), 3496 oop_map_set(), 3497 false); 3498 assert(rs != NULL && rs->is_runtime_stub(), "sanity check"); 3499 3500 C->set_stub_entry_point(rs->entry_point()); 3501 } 3502 } 3503 } 3504 3505 // Support for bundling info 3506 Bundle* PhaseOutput::node_bundling(const Node *n) { 3507 assert(valid_bundle_info(n), "oob"); 3508 return &_node_bundling_base[n->_idx]; 3509 } 3510 3511 bool PhaseOutput::valid_bundle_info(const Node *n) { 3512 return (_node_bundling_limit > n->_idx); 3513 } 3514 3515 //------------------------------frame_size_in_words----------------------------- 3516 // frame_slots in units of words 3517 int PhaseOutput::frame_size_in_words() const { 3518 // shift is 0 in LP32 and 1 in LP64 3519 const int shift = (LogBytesPerWord - LogBytesPerInt); 3520 int words = _frame_slots >> shift; 3521 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3522 return words; 3523 } 3524 3525 // To bang the stack of this compiled method we use the stack size 3526 // that the interpreter would need in case of a deoptimization. This 3527 // removes the need to bang the stack in the deoptimization blob which 3528 // in turn simplifies stack overflow handling. 3529 int PhaseOutput::bang_size_in_bytes() const { 3530 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3531 } 3532 3533 //------------------------------dump_asm--------------------------------------- 3534 // Dump formatted assembly 3535 #if defined(SUPPORT_OPTO_ASSEMBLY) 3536 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3537 3538 int pc_digits = 3; // #chars required for pc 3539 int sb_chars = 3; // #chars for "start bundle" indicator 3540 int tab_size = 8; 3541 if (pcs != NULL) { 3542 int max_pc = 0; 3543 for (uint i = 0; i < pc_limit; i++) { 3544 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3545 } 3546 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3547 } 3548 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3549 3550 bool cut_short = false; 3551 st->print_cr("#"); 3552 st->print("# "); C->tf()->dump_on(st); st->cr(); 3553 st->print_cr("#"); 3554 3555 // For all blocks 3556 int pc = 0x0; // Program counter 3557 char starts_bundle = ' '; 3558 C->regalloc()->dump_frame(); 3559 3560 Node *n = NULL; 3561 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3562 if (VMThread::should_terminate()) { 3563 cut_short = true; 3564 break; 3565 } 3566 Block* block = C->cfg()->get_block(i); 3567 if (block->is_connector() && !Verbose) { 3568 continue; 3569 } 3570 n = block->head(); 3571 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3572 pc = pcs[n->_idx]; 3573 st->print("%*.*x", pc_digits, pc_digits, pc); 3574 } 3575 st->fill_to(prefix_len); 3576 block->dump_head(C->cfg(), st); 3577 if (block->is_connector()) { 3578 st->fill_to(prefix_len); 3579 st->print_cr("# Empty connector block"); 3580 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3581 st->fill_to(prefix_len); 3582 st->print_cr("# Block is sole successor of call"); 3583 } 3584 3585 // For all instructions 3586 Node *delay = NULL; 3587 for (uint j = 0; j < block->number_of_nodes(); j++) { 3588 if (VMThread::should_terminate()) { 3589 cut_short = true; 3590 break; 3591 } 3592 n = block->get_node(j); 3593 if (valid_bundle_info(n)) { 3594 Bundle* bundle = node_bundling(n); 3595 if (bundle->used_in_unconditional_delay()) { 3596 delay = n; 3597 continue; 3598 } 3599 if (bundle->starts_bundle()) { 3600 starts_bundle = '+'; 3601 } 3602 } 3603 3604 if (WizardMode) { 3605 n->dump(); 3606 } 3607 3608 if( !n->is_Region() && // Dont print in the Assembly 3609 !n->is_Phi() && // a few noisely useless nodes 3610 !n->is_Proj() && 3611 !n->is_MachTemp() && 3612 !n->is_SafePointScalarObject() && 3613 !n->is_Catch() && // Would be nice to print exception table targets 3614 !n->is_MergeMem() && // Not very interesting 3615 !n->is_top() && // Debug info table constants 3616 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3617 ) { 3618 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3619 pc = pcs[n->_idx]; 3620 st->print("%*.*x", pc_digits, pc_digits, pc); 3621 } else { 3622 st->fill_to(pc_digits); 3623 } 3624 st->print(" %c ", starts_bundle); 3625 starts_bundle = ' '; 3626 st->fill_to(prefix_len); 3627 n->format(C->regalloc(), st); 3628 st->cr(); 3629 } 3630 3631 // If we have an instruction with a delay slot, and have seen a delay, 3632 // then back up and print it 3633 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3634 // Coverity finding - Explicit null dereferenced. 3635 guarantee(delay != NULL, "no unconditional delay instruction"); 3636 if (WizardMode) delay->dump(); 3637 3638 if (node_bundling(delay)->starts_bundle()) 3639 starts_bundle = '+'; 3640 if ((pcs != NULL) && (n->_idx < pc_limit)) { 3641 pc = pcs[n->_idx]; 3642 st->print("%*.*x", pc_digits, pc_digits, pc); 3643 } else { 3644 st->fill_to(pc_digits); 3645 } 3646 st->print(" %c ", starts_bundle); 3647 starts_bundle = ' '; 3648 st->fill_to(prefix_len); 3649 delay->format(C->regalloc(), st); 3650 st->cr(); 3651 delay = NULL; 3652 } 3653 3654 // Dump the exception table as well 3655 if( n->is_Catch() && (Verbose || WizardMode) ) { 3656 // Print the exception table for this offset 3657 _handler_table.print_subtable_for(pc); 3658 } 3659 st->bol(); // Make sure we start on a new line 3660 } 3661 st->cr(); // one empty line between blocks 3662 assert(cut_short || delay == NULL, "no unconditional delay branch"); 3663 } // End of per-block dump 3664 3665 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3666 } 3667 #endif 3668 3669 #ifndef PRODUCT 3670 void PhaseOutput::print_statistics() { 3671 Scheduling::print_statistics(); 3672 } 3673 #endif