1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/method.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/idealGraphPrinter.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/memnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Static array so we can figure out which bytecodes stop us from compiling
  48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  49 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  50 
  51 #ifndef PRODUCT
  52 uint nodes_created             = 0;
  53 uint methods_parsed            = 0;
  54 uint methods_seen              = 0;
  55 uint blocks_parsed             = 0;
  56 uint blocks_seen               = 0;
  57 
  58 uint explicit_null_checks_inserted = 0;
  59 uint explicit_null_checks_elided   = 0;
  60 uint all_null_checks_found         = 0;
  61 uint implicit_null_checks          = 0;
  62 
  63 bool Parse::BytecodeParseHistogram::_initialized = false;
  64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  68 
  69 //------------------------------print_statistics-------------------------------
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %u  Methods parsed: %u", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %u", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed) {
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   }
  78   tty->print_cr("Blocks parsed: %u  Blocks seen: %u", blocks_parsed, blocks_seen);
  79 
  80   if (explicit_null_checks_inserted) {
  81     tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
  82                   explicit_null_checks_inserted, explicit_null_checks_elided,
  83                   (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
  84                   all_null_checks_found);
  85   }
  86   if (all_null_checks_found) {
  87     tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
  88                   (100*implicit_null_checks)/all_null_checks_found);
  89   }
  90   if (SharedRuntime::_implicit_null_throws) {
  91     tty->print_cr("%u implicit null exceptions at runtime",
  92                   SharedRuntime::_implicit_null_throws);
  93   }
  94 
  95   if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
  96     BytecodeParseHistogram::print();
  97   }
  98 }
  99 #endif
 100 
 101 //------------------------------ON STACK REPLACEMENT---------------------------
 102 
 103 // Construct a node which can be used to get incoming state for
 104 // on stack replacement.
 105 Node *Parse::fetch_interpreter_state(int index,
 106                                      BasicType bt,
 107                                      Node *local_addrs,
 108                                      Node *local_addrs_base) {
 109   Node *mem = memory(Compile::AliasIdxRaw);
 110   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 111   Node *ctl = control();
 112 
 113   // Very similar to LoadNode::make, except we handle un-aligned longs and
 114   // doubles on Sparc.  Intel can handle them just fine directly.
 115   Node *l = nullptr;
 116   switch (bt) {                // Signature is flattened
 117   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 118   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 119   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 120   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 121   case T_LONG:
 122   case T_DOUBLE: {
 123     // Since arguments are in reverse order, the argument address 'adr'
 124     // refers to the back half of the long/double.  Recompute adr.
 125     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 126     if (Matcher::misaligned_doubles_ok) {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 129         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 130     } else {
 131       l = (bt == T_DOUBLE)
 132         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 133         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 134     }
 135     break;
 136   }
 137   default: ShouldNotReachHere();
 138   }
 139   return _gvn.transform(l);
 140 }
 141 
 142 // Helper routine to prevent the interpreter from handing
 143 // unexpected typestate to an OSR method.
 144 // The Node l is a value newly dug out of the interpreter frame.
 145 // The type is the type predicted by ciTypeFlow.  Note that it is
 146 // not a general type, but can only come from Type::get_typeflow_type.
 147 // The safepoint is a map which will feed an uncommon trap.
 148 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 149                                     SafePointNode* &bad_type_exit) {
 150 
 151   const TypeOopPtr* tp = type->isa_oopptr();
 152 
 153   // TypeFlow may assert null-ness if a type appears unloaded.
 154   if (type == TypePtr::NULL_PTR ||
 155       (tp != nullptr && !tp->is_loaded())) {
 156     // Value must be null, not a real oop.
 157     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 158     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 159     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 160     set_control(_gvn.transform( new IfTrueNode(iff) ));
 161     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 162     bad_type_exit->control()->add_req(bad_type);
 163     l = null();
 164   }
 165 
 166   // Typeflow can also cut off paths from the CFG, based on
 167   // types which appear unloaded, or call sites which appear unlinked.
 168   // When paths are cut off, values at later merge points can rise
 169   // toward more specific classes.  Make sure these specific classes
 170   // are still in effect.
 171   if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
 172     // TypeFlow asserted a specific object type.  Value must have that type.
 173     Node* bad_type_ctrl = nullptr;
 174     l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
 175     bad_type_exit->control()->add_req(bad_type_ctrl);
 176   }
 177 
 178   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 179   return l;
 180 }
 181 
 182 // Helper routine which sets up elements of the initial parser map when
 183 // performing a parse for on stack replacement.  Add values into map.
 184 // The only parameter contains the address of a interpreter arguments.
 185 void Parse::load_interpreter_state(Node* osr_buf) {
 186   int index;
 187   int max_locals = jvms()->loc_size();
 188   int max_stack  = jvms()->stk_size();
 189 
 190 
 191   // Mismatch between method and jvms can occur since map briefly held
 192   // an OSR entry state (which takes up one RawPtr word).
 193   assert(max_locals == method()->max_locals(), "sanity");
 194   assert(max_stack  >= method()->max_stack(),  "sanity");
 195   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 196   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 197 
 198   // Find the start block.
 199   Block* osr_block = start_block();
 200   assert(osr_block->start() == osr_bci(), "sanity");
 201 
 202   // Set initial BCI.
 203   set_parse_bci(osr_block->start());
 204 
 205   // Set initial stack depth.
 206   set_sp(osr_block->start_sp());
 207 
 208   // Check bailouts.  We currently do not perform on stack replacement
 209   // of loops in catch blocks or loops which branch with a non-empty stack.
 210   if (sp() != 0) {
 211     C->record_method_not_compilable("OSR starts with non-empty stack");
 212     return;
 213   }
 214   // Do not OSR inside finally clauses:
 215   if (osr_block->has_trap_at(osr_block->start())) {
 216     assert(false, "OSR starts with an immediate trap");
 217     C->record_method_not_compilable("OSR starts with an immediate trap");
 218     return;
 219   }
 220 
 221   // Commute monitors from interpreter frame to compiler frame.
 222   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 223   int mcnt = osr_block->flow()->monitor_count();
 224   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 225   for (index = 0; index < mcnt; index++) {
 226     // Make a BoxLockNode for the monitor.
 227     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 228 
 229 
 230     // Displaced headers and locked objects are interleaved in the
 231     // temp OSR buffer.  We only copy the locked objects out here.
 232     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 233     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 234     // Try and copy the displaced header to the BoxNode
 235     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 236 
 237 
 238     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 239 
 240     // Build a bogus FastLockNode (no code will be generated) and push the
 241     // monitor into our debug info.
 242     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 243     map()->push_monitor(flock);
 244 
 245     // If the lock is our method synchronization lock, tuck it away in
 246     // _sync_lock for return and rethrow exit paths.
 247     if (index == 0 && method()->is_synchronized()) {
 248       _synch_lock = flock;
 249     }
 250   }
 251 
 252   // Use the raw liveness computation to make sure that unexpected
 253   // values don't propagate into the OSR frame.
 254   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 255   if (!live_locals.is_valid()) {
 256     // Degenerate or breakpointed method.
 257     assert(false, "OSR in empty or breakpointed method");
 258     C->record_method_not_compilable("OSR in empty or breakpointed method");
 259     return;
 260   }
 261 
 262   // Extract the needed locals from the interpreter frame.
 263   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 264 
 265   // find all the locals that the interpreter thinks contain live oops
 266   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 267   for (index = 0; index < max_locals; index++) {
 268 
 269     if (!live_locals.at(index)) {
 270       continue;
 271     }
 272 
 273     const Type *type = osr_block->local_type_at(index);
 274 
 275     if (type->isa_oopptr() != nullptr) {
 276 
 277       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 278       // else we might load a stale oop if the MethodLiveness disagrees with the
 279       // result of the interpreter. If the interpreter says it is dead we agree
 280       // by making the value go to top.
 281       //
 282 
 283       if (!live_oops.at(index)) {
 284         if (C->log() != nullptr) {
 285           C->log()->elem("OSR_mismatch local_index='%d'",index);
 286         }
 287         set_local(index, null());
 288         // and ignore it for the loads
 289         continue;
 290       }
 291     }
 292 
 293     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 294     if (type == Type::TOP || type == Type::HALF) {
 295       continue;
 296     }
 297     // If the type falls to bottom, then this must be a local that
 298     // is mixing ints and oops or some such.  Forcing it to top
 299     // makes it go dead.
 300     if (type == Type::BOTTOM) {
 301       continue;
 302     }
 303     // Construct code to access the appropriate local.
 304     BasicType bt = type->basic_type();
 305     if (type == TypePtr::NULL_PTR) {
 306       // Ptr types are mixed together with T_ADDRESS but null is
 307       // really for T_OBJECT types so correct it.
 308       bt = T_OBJECT;
 309     }
 310     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 311     set_local(index, value);
 312   }
 313 
 314   // Extract the needed stack entries from the interpreter frame.
 315   for (index = 0; index < sp(); index++) {
 316     const Type *type = osr_block->stack_type_at(index);
 317     if (type != Type::TOP) {
 318       // Currently the compiler bails out when attempting to on stack replace
 319       // at a bci with a non-empty stack.  We should not reach here.
 320       ShouldNotReachHere();
 321     }
 322   }
 323 
 324   // End the OSR migration
 325   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 326                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 327                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 328                     osr_buf);
 329 
 330   // Now that the interpreter state is loaded, make sure it will match
 331   // at execution time what the compiler is expecting now:
 332   SafePointNode* bad_type_exit = clone_map();
 333   bad_type_exit->set_control(new RegionNode(1));
 334 
 335   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 336   for (index = 0; index < max_locals; index++) {
 337     if (stopped())  break;
 338     Node* l = local(index);
 339     if (l->is_top())  continue;  // nothing here
 340     const Type *type = osr_block->local_type_at(index);
 341     if (type->isa_oopptr() != nullptr) {
 342       if (!live_oops.at(index)) {
 343         // skip type check for dead oops
 344         continue;
 345       }
 346     }
 347     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 348       // In our current system it's illegal for jsr addresses to be
 349       // live into an OSR entry point because the compiler performs
 350       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 351       // case and aborts the compile if addresses are live into an OSR
 352       // entry point.  Because of that we can assume that any address
 353       // locals at the OSR entry point are dead.  Method liveness
 354       // isn't precise enough to figure out that they are dead in all
 355       // cases so simply skip checking address locals all
 356       // together. Any type check is guaranteed to fail since the
 357       // interpreter type is the result of a load which might have any
 358       // value and the expected type is a constant.
 359       continue;
 360     }
 361     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 362   }
 363 
 364   for (index = 0; index < sp(); index++) {
 365     if (stopped())  break;
 366     Node* l = stack(index);
 367     if (l->is_top())  continue;  // nothing here
 368     const Type *type = osr_block->stack_type_at(index);
 369     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 370   }
 371 
 372   if (bad_type_exit->control()->req() > 1) {
 373     // Build an uncommon trap here, if any inputs can be unexpected.
 374     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 375     record_for_igvn(bad_type_exit->control());
 376     SafePointNode* types_are_good = map();
 377     set_map(bad_type_exit);
 378     // The unexpected type happens because a new edge is active
 379     // in the CFG, which typeflow had previously ignored.
 380     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 381     // This x will be typed as Integer if notReached is not yet linked.
 382     // It could also happen due to a problem in ciTypeFlow analysis.
 383     uncommon_trap(Deoptimization::Reason_constraint,
 384                   Deoptimization::Action_reinterpret);
 385     set_map(types_are_good);
 386   }
 387 }
 388 
 389 //------------------------------Parse------------------------------------------
 390 // Main parser constructor.
 391 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 392   : _exits(caller)
 393 {
 394   // Init some variables
 395   _caller = caller;
 396   _method = parse_method;
 397   _expected_uses = expected_uses;
 398   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 399   _wrote_final = false;
 400   _wrote_volatile = false;
 401   _wrote_stable = false;
 402   _wrote_fields = false;
 403   _alloc_with_final = nullptr;
 404   _entry_bci = InvocationEntryBci;
 405   _tf = nullptr;
 406   _block = nullptr;
 407   _first_return = true;
 408   _replaced_nodes_for_exceptions = false;
 409   _new_idx = C->unique();
 410   debug_only(_block_count = -1);
 411   debug_only(_blocks = (Block*)-1);
 412 #ifndef PRODUCT
 413   if (PrintCompilation || PrintOpto) {
 414     // Make sure I have an inline tree, so I can print messages about it.
 415     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 416     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 417   }
 418   _max_switch_depth = 0;
 419   _est_switch_depth = 0;
 420 #endif
 421 
 422   if (parse_method->has_reserved_stack_access()) {
 423     C->set_has_reserved_stack_access(true);
 424   }
 425 
 426   if (parse_method->is_synchronized()) {
 427     C->set_has_monitors(true);
 428   }
 429 
 430   _tf = TypeFunc::make(method());
 431   _iter.reset_to_method(method());
 432   _flow = method()->get_flow_analysis();
 433   if (_flow->failing()) {
 434     assert(false, "type flow failed during parsing");
 435     C->record_method_not_compilable(_flow->failure_reason());
 436   }
 437 
 438 #ifndef PRODUCT
 439   if (_flow->has_irreducible_entry()) {
 440     C->set_parsed_irreducible_loop(true);
 441   }
 442 #endif
 443   C->set_has_loops(C->has_loops() || method()->has_loops());
 444 
 445   if (_expected_uses <= 0) {
 446     _prof_factor = 1;
 447   } else {
 448     float prof_total = parse_method->interpreter_invocation_count();
 449     if (prof_total <= _expected_uses) {
 450       _prof_factor = 1;
 451     } else {
 452       _prof_factor = _expected_uses / prof_total;
 453     }
 454   }
 455 
 456   CompileLog* log = C->log();
 457   if (log != nullptr) {
 458     log->begin_head("parse method='%d' uses='%f'",
 459                     log->identify(parse_method), expected_uses);
 460     if (depth() == 1 && C->is_osr_compilation()) {
 461       log->print(" osr_bci='%d'", C->entry_bci());
 462     }
 463     log->stamp();
 464     log->end_head();
 465   }
 466 
 467   // Accumulate deoptimization counts.
 468   // (The range_check and store_check counts are checked elsewhere.)
 469   ciMethodData* md = method()->method_data();
 470   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 471     uint md_count = md->trap_count(reason);
 472     if (md_count != 0) {
 473       if (md_count >= md->trap_count_limit()) {
 474         md_count = md->trap_count_limit() + md->overflow_trap_count();
 475       }
 476       uint total_count = C->trap_count(reason);
 477       uint old_count   = total_count;
 478       total_count += md_count;
 479       // Saturate the add if it overflows.
 480       if (total_count < old_count || total_count < md_count)
 481         total_count = (uint)-1;
 482       C->set_trap_count(reason, total_count);
 483       if (log != nullptr)
 484         log->elem("observe trap='%s' count='%d' total='%d'",
 485                   Deoptimization::trap_reason_name(reason),
 486                   md_count, total_count);
 487     }
 488   }
 489   // Accumulate total sum of decompilations, also.
 490   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 491 
 492   if (log != nullptr && method()->has_exception_handlers()) {
 493     log->elem("observe that='has_exception_handlers'");
 494   }
 495 
 496   assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
 497   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 498 
 499   // Always register dependence if JVMTI is enabled, because
 500   // either breakpoint setting or hotswapping of methods may
 501   // cause deoptimization.
 502   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 503     C->dependencies()->assert_evol_method(method());
 504   }
 505 
 506   NOT_PRODUCT(methods_seen++);
 507 
 508   // Do some special top-level things.
 509   if (depth() == 1 && C->is_osr_compilation()) {
 510     _entry_bci = C->entry_bci();
 511     _flow = method()->get_osr_flow_analysis(osr_bci());
 512     if (_flow->failing()) {
 513       assert(false, "type flow analysis failed for OSR compilation");
 514       C->record_method_not_compilable(_flow->failure_reason());
 515 #ifndef PRODUCT
 516       if (PrintOpto && (Verbose || WizardMode)) {
 517         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 518         if (Verbose) {
 519           method()->print();
 520           method()->print_codes();
 521           _flow->print();
 522         }
 523       }
 524 #endif
 525     }
 526     _tf = C->tf();     // the OSR entry type is different
 527   }
 528 
 529 #ifdef ASSERT
 530   if (depth() == 1) {
 531     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 532   } else {
 533     assert(!this->is_osr_parse(), "no recursive OSR");
 534   }
 535 #endif
 536 
 537 #ifndef PRODUCT
 538   methods_parsed++;
 539   // add method size here to guarantee that inlined methods are added too
 540   if (CITime)
 541     _total_bytes_compiled += method()->code_size();
 542 
 543   show_parse_info();
 544 #endif
 545 
 546   if (failing()) {
 547     if (log)  log->done("parse");
 548     return;
 549   }
 550 
 551   gvn().transform(top());
 552 
 553   // Import the results of the ciTypeFlow.
 554   init_blocks();
 555 
 556   // Merge point for all normal exits
 557   build_exits();
 558 
 559   // Setup the initial JVM state map.
 560   SafePointNode* entry_map = create_entry_map();
 561 
 562   // Check for bailouts during map initialization
 563   if (failing() || entry_map == nullptr) {
 564     if (log)  log->done("parse");
 565     return;
 566   }
 567 
 568   Node_Notes* caller_nn = C->default_node_notes();
 569   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 570   if (DebugInlinedCalls || depth() == 1) {
 571     C->set_default_node_notes(make_node_notes(caller_nn));
 572   }
 573 
 574   if (is_osr_parse()) {
 575     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 576     entry_map->set_req(TypeFunc::Parms+0, top());
 577     set_map(entry_map);
 578     load_interpreter_state(osr_buf);
 579   } else {
 580     set_map(entry_map);
 581     do_method_entry();
 582   }
 583 
 584   if (depth() == 1 && !failing()) {
 585     if (C->clinit_barrier_on_entry()) {
 586       // Add check to deoptimize the nmethod once the holder class is fully initialized
 587       clinit_deopt();
 588     }
 589 
 590     // Add check to deoptimize the nmethod if RTM state was changed
 591     rtm_deopt();
 592   }
 593 
 594   // Check for bailouts during method entry or RTM state check setup.
 595   if (failing()) {
 596     if (log)  log->done("parse");
 597     C->set_default_node_notes(caller_nn);
 598     return;
 599   }
 600 
 601   entry_map = map();  // capture any changes performed by method setup code
 602   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 603 
 604   // We begin parsing as if we have just encountered a jump to the
 605   // method entry.
 606   Block* entry_block = start_block();
 607   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 608   set_map_clone(entry_map);
 609   merge_common(entry_block, entry_block->next_path_num());
 610 
 611 #ifndef PRODUCT
 612   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 613   set_parse_histogram( parse_histogram_obj );
 614 #endif
 615 
 616   // Parse all the basic blocks.
 617   do_all_blocks();
 618 
 619   // Check for bailouts during conversion to graph
 620   if (failing()) {
 621     if (log)  log->done("parse");
 622     return;
 623   }
 624 
 625   // Fix up all exiting control flow.
 626   set_map(entry_map);
 627   do_exits();
 628 
 629   // Only reset this now, to make sure that debug information emitted
 630   // for exiting control flow still refers to the inlined method.
 631   C->set_default_node_notes(caller_nn);
 632 
 633   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 634                       C->unique(), C->live_nodes(), C->node_arena()->used());
 635 }
 636 
 637 //---------------------------do_all_blocks-------------------------------------
 638 void Parse::do_all_blocks() {
 639   bool has_irreducible = flow()->has_irreducible_entry();
 640 
 641   // Walk over all blocks in Reverse Post-Order.
 642   while (true) {
 643     bool progress = false;
 644     for (int rpo = 0; rpo < block_count(); rpo++) {
 645       Block* block = rpo_at(rpo);
 646 
 647       if (block->is_parsed()) continue;
 648 
 649       if (!block->is_merged()) {
 650         // Dead block, no state reaches this block
 651         continue;
 652       }
 653 
 654       // Prepare to parse this block.
 655       load_state_from(block);
 656 
 657       if (stopped()) {
 658         // Block is dead.
 659         continue;
 660       }
 661 
 662       NOT_PRODUCT(blocks_parsed++);
 663 
 664       progress = true;
 665       if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
 666         // Not all preds have been parsed.  We must build phis everywhere.
 667         // (Note that dead locals do not get phis built, ever.)
 668         ensure_phis_everywhere();
 669 
 670         if (block->is_SEL_head()) {
 671           // Add predicate to single entry (not irreducible) loop head.
 672           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 673           // Predicates may have been added after a dominating if
 674           if (!block->has_predicates()) {
 675             // Need correct bci for predicate.
 676             // It is fine to set it here since do_one_block() will set it anyway.
 677             set_parse_bci(block->start());
 678             add_parse_predicates();
 679           }
 680           // Add new region for back branches.
 681           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 682           RegionNode *r = new RegionNode(edges+1);
 683           _gvn.set_type(r, Type::CONTROL);
 684           record_for_igvn(r);
 685           r->init_req(edges, control());
 686           set_control(r);
 687           block->copy_irreducible_status_to(r, jvms());
 688           // Add new phis.
 689           ensure_phis_everywhere();
 690         }
 691 
 692         // Leave behind an undisturbed copy of the map, for future merges.
 693         set_map(clone_map());
 694       }
 695 
 696       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 697         // In the absence of irreducible loops, the Region and Phis
 698         // associated with a merge that doesn't involve a backedge can
 699         // be simplified now since the RPO parsing order guarantees
 700         // that any path which was supposed to reach here has already
 701         // been parsed or must be dead.
 702         Node* c = control();
 703         Node* result = _gvn.transform_no_reclaim(control());
 704         if (c != result && TraceOptoParse) {
 705           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 706         }
 707         if (result != top()) {
 708           record_for_igvn(result);
 709         }
 710       }
 711 
 712       // Parse the block.
 713       do_one_block();
 714 
 715       // Check for bailouts.
 716       if (failing())  return;
 717     }
 718 
 719     // with irreducible loops multiple passes might be necessary to parse everything
 720     if (!has_irreducible || !progress) {
 721       break;
 722     }
 723   }
 724 
 725 #ifndef PRODUCT
 726   blocks_seen += block_count();
 727 
 728   // Make sure there are no half-processed blocks remaining.
 729   // Every remaining unprocessed block is dead and may be ignored now.
 730   for (int rpo = 0; rpo < block_count(); rpo++) {
 731     Block* block = rpo_at(rpo);
 732     if (!block->is_parsed()) {
 733       if (TraceOptoParse) {
 734         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 735       }
 736       assert(!block->is_merged(), "no half-processed blocks");
 737     }
 738   }
 739 #endif
 740 }
 741 
 742 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 743   switch (bt) {
 744   case T_BYTE:
 745     v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
 746     v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
 747     break;
 748   case T_SHORT:
 749     v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
 750     v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
 751     break;
 752   case T_CHAR:
 753     v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
 754     break;
 755   case T_BOOLEAN:
 756     v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
 757     break;
 758   default:
 759     break;
 760   }
 761   return v;
 762 }
 763 
 764 //-------------------------------build_exits----------------------------------
 765 // Build normal and exceptional exit merge points.
 766 void Parse::build_exits() {
 767   // make a clone of caller to prevent sharing of side-effects
 768   _exits.set_map(_exits.clone_map());
 769   _exits.clean_stack(_exits.sp());
 770   _exits.sync_jvms();
 771 
 772   RegionNode* region = new RegionNode(1);
 773   record_for_igvn(region);
 774   gvn().set_type_bottom(region);
 775   _exits.set_control(region);
 776 
 777   // Note:  iophi and memphi are not transformed until do_exits.
 778   Node* iophi  = new PhiNode(region, Type::ABIO);
 779   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 780   gvn().set_type_bottom(iophi);
 781   gvn().set_type_bottom(memphi);
 782   _exits.set_i_o(iophi);
 783   _exits.set_all_memory(memphi);
 784 
 785   // Add a return value to the exit state.  (Do not push it yet.)
 786   if (tf()->range()->cnt() > TypeFunc::Parms) {
 787     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 788     if (ret_type->isa_int()) {
 789       BasicType ret_bt = method()->return_type()->basic_type();
 790       if (ret_bt == T_BOOLEAN ||
 791           ret_bt == T_CHAR ||
 792           ret_bt == T_BYTE ||
 793           ret_bt == T_SHORT) {
 794         ret_type = TypeInt::INT;
 795       }
 796     }
 797 
 798     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 799     // becomes loaded during the subsequent parsing, the loaded and unloaded
 800     // types will not join when we transform and push in do_exits().
 801     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 802     if (ret_oop_type && !ret_oop_type->is_loaded()) {
 803       ret_type = TypeOopPtr::BOTTOM;
 804     }
 805     int         ret_size = type2size[ret_type->basic_type()];
 806     Node*       ret_phi  = new PhiNode(region, ret_type);
 807     gvn().set_type_bottom(ret_phi);
 808     _exits.ensure_stack(ret_size);
 809     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 810     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 811     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 812     // Note:  ret_phi is not yet pushed, until do_exits.
 813   }
 814 }
 815 
 816 
 817 //----------------------------build_start_state-------------------------------
 818 // Construct a state which contains only the incoming arguments from an
 819 // unknown caller.  The method & bci will be null & InvocationEntryBci.
 820 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 821   int        arg_size = tf->domain()->cnt();
 822   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 823   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 824   SafePointNode* map  = new SafePointNode(max_size, jvms);
 825   record_for_igvn(map);
 826   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 827   Node_Notes* old_nn = default_node_notes();
 828   if (old_nn != nullptr && has_method()) {
 829     Node_Notes* entry_nn = old_nn->clone(this);
 830     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 831     entry_jvms->set_offsets(0);
 832     entry_jvms->set_bci(entry_bci());
 833     entry_nn->set_jvms(entry_jvms);
 834     set_default_node_notes(entry_nn);
 835   }
 836   uint i;
 837   for (i = 0; i < (uint)arg_size; i++) {
 838     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 839     map->init_req(i, parm);
 840     // Record all these guys for later GVN.
 841     record_for_igvn(parm);
 842   }
 843   for (; i < map->req(); i++) {
 844     map->init_req(i, top());
 845   }
 846   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 847   set_default_node_notes(old_nn);
 848   jvms->set_map(map);
 849   return jvms;
 850 }
 851 
 852 //-----------------------------make_node_notes---------------------------------
 853 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 854   if (caller_nn == nullptr)  return nullptr;
 855   Node_Notes* nn = caller_nn->clone(C);
 856   JVMState* caller_jvms = nn->jvms();
 857   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 858   jvms->set_offsets(0);
 859   jvms->set_bci(_entry_bci);
 860   nn->set_jvms(jvms);
 861   return nn;
 862 }
 863 
 864 
 865 //--------------------------return_values--------------------------------------
 866 void Compile::return_values(JVMState* jvms) {
 867   GraphKit kit(jvms);
 868   Node* ret = new ReturnNode(TypeFunc::Parms,
 869                              kit.control(),
 870                              kit.i_o(),
 871                              kit.reset_memory(),
 872                              kit.frameptr(),
 873                              kit.returnadr());
 874   // Add zero or 1 return values
 875   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 876   if (ret_size > 0) {
 877     kit.inc_sp(-ret_size);  // pop the return value(s)
 878     kit.sync_jvms();
 879     ret->add_req(kit.argument(0));
 880     // Note:  The second dummy edge is not needed by a ReturnNode.
 881   }
 882   // bind it to root
 883   root()->add_req(ret);
 884   record_for_igvn(ret);
 885   initial_gvn()->transform_no_reclaim(ret);
 886 }
 887 
 888 //------------------------rethrow_exceptions-----------------------------------
 889 // Bind all exception states in the list into a single RethrowNode.
 890 void Compile::rethrow_exceptions(JVMState* jvms) {
 891   GraphKit kit(jvms);
 892   if (!kit.has_exceptions())  return;  // nothing to generate
 893   // Load my combined exception state into the kit, with all phis transformed:
 894   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 895   Node* ex_oop = kit.use_exception_state(ex_map);
 896   RethrowNode* exit = new RethrowNode(kit.control(),
 897                                       kit.i_o(), kit.reset_memory(),
 898                                       kit.frameptr(), kit.returnadr(),
 899                                       // like a return but with exception input
 900                                       ex_oop);
 901   // bind to root
 902   root()->add_req(exit);
 903   record_for_igvn(exit);
 904   initial_gvn()->transform_no_reclaim(exit);
 905 }
 906 
 907 //---------------------------do_exceptions-------------------------------------
 908 // Process exceptions arising from the current bytecode.
 909 // Send caught exceptions to the proper handler within this method.
 910 // Unhandled exceptions feed into _exit.
 911 void Parse::do_exceptions() {
 912   if (!has_exceptions())  return;
 913 
 914   if (failing()) {
 915     // Pop them all off and throw them away.
 916     while (pop_exception_state() != nullptr) ;
 917     return;
 918   }
 919 
 920   PreserveJVMState pjvms(this, false);
 921 
 922   SafePointNode* ex_map;
 923   while ((ex_map = pop_exception_state()) != nullptr) {
 924     if (!method()->has_exception_handlers()) {
 925       // Common case:  Transfer control outward.
 926       // Doing it this early allows the exceptions to common up
 927       // even between adjacent method calls.
 928       throw_to_exit(ex_map);
 929     } else {
 930       // Have to look at the exception first.
 931       assert(stopped(), "catch_inline_exceptions trashes the map");
 932       catch_inline_exceptions(ex_map);
 933       stop_and_kill_map();      // we used up this exception state; kill it
 934     }
 935   }
 936 
 937   // We now return to our regularly scheduled program:
 938 }
 939 
 940 //---------------------------throw_to_exit-------------------------------------
 941 // Merge the given map into an exception exit from this method.
 942 // The exception exit will handle any unlocking of receiver.
 943 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 944 void Parse::throw_to_exit(SafePointNode* ex_map) {
 945   // Pop the JVMS to (a copy of) the caller.
 946   GraphKit caller;
 947   caller.set_map_clone(_caller->map());
 948   caller.set_bci(_caller->bci());
 949   caller.set_sp(_caller->sp());
 950   // Copy out the standard machine state:
 951   for (uint i = 0; i < TypeFunc::Parms; i++) {
 952     caller.map()->set_req(i, ex_map->in(i));
 953   }
 954   if (ex_map->has_replaced_nodes()) {
 955     _replaced_nodes_for_exceptions = true;
 956   }
 957   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 958   // ...and the exception:
 959   Node*          ex_oop        = saved_ex_oop(ex_map);
 960   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 961   // Finally, collect the new exception state in my exits:
 962   _exits.add_exception_state(caller_ex_map);
 963 }
 964 
 965 //------------------------------do_exits---------------------------------------
 966 void Parse::do_exits() {
 967   set_parse_bci(InvocationEntryBci);
 968 
 969   // Now peephole on the return bits
 970   Node* region = _exits.control();
 971   _exits.set_control(gvn().transform(region));
 972 
 973   Node* iophi = _exits.i_o();
 974   _exits.set_i_o(gvn().transform(iophi));
 975 
 976   // Figure out if we need to emit the trailing barrier. The barrier is only
 977   // needed in the constructors, and only in three cases:
 978   //
 979   // 1. The constructor wrote a final. The effects of all initializations
 980   //    must be committed to memory before any code after the constructor
 981   //    publishes the reference to the newly constructed object. Rather
 982   //    than wait for the publication, we simply block the writes here.
 983   //    Rather than put a barrier on only those writes which are required
 984   //    to complete, we force all writes to complete.
 985   //
 986   // 2. Experimental VM option is used to force the barrier if any field
 987   //    was written out in the constructor.
 988   //
 989   // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
 990   //    support_IRIW_for_not_multiple_copy_atomic_cpu selects that
 991   //    MemBarVolatile is used before volatile load instead of after volatile
 992   //    store, so there's no barrier after the store.
 993   //    We want to guarantee the same behavior as on platforms with total store
 994   //    order, although this is not required by the Java memory model.
 995   //    In this case, we want to enforce visibility of volatile field
 996   //    initializations which are performed in constructors.
 997   //    So as with finals, we add a barrier here.
 998   //
 999   // "All bets are off" unless the first publication occurs after a
1000   // normal return from the constructor.  We do not attempt to detect
1001   // such unusual early publications.  But no barrier is needed on
1002   // exceptional returns, since they cannot publish normally.
1003   //
1004   if (method()->is_initializer() &&
1005        (wrote_final() ||
1006          (AlwaysSafeConstructors && wrote_fields()) ||
1007          (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1008     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
1009 
1010     // If Memory barrier is created for final fields write
1011     // and allocation node does not escape the initialize method,
1012     // then barrier introduced by allocation node can be removed.
1013     if (DoEscapeAnalysis && alloc_with_final()) {
1014       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final());
1015       alloc->compute_MemBar_redundancy(method());
1016     }
1017     if (PrintOpto && (Verbose || WizardMode)) {
1018       method()->print_name();
1019       tty->print_cr(" writes finals and needs a memory barrier");
1020     }
1021   }
1022 
1023   // Any method can write a @Stable field; insert memory barriers
1024   // after those also. Can't bind predecessor allocation node (if any)
1025   // with barrier because allocation doesn't always dominate
1026   // MemBarRelease.
1027   if (wrote_stable()) {
1028     _exits.insert_mem_bar(Op_MemBarRelease);
1029     if (PrintOpto && (Verbose || WizardMode)) {
1030       method()->print_name();
1031       tty->print_cr(" writes @Stable and needs a memory barrier");
1032     }
1033   }
1034 
1035   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1036     // transform each slice of the original memphi:
1037     mms.set_memory(_gvn.transform(mms.memory()));
1038   }
1039   // Clean up input MergeMems created by transforming the slices
1040   _gvn.transform(_exits.merged_memory());
1041 
1042   if (tf()->range()->cnt() > TypeFunc::Parms) {
1043     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1044     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
1045     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1046       // If the type we set for the ret_phi in build_exits() is too optimistic and
1047       // the ret_phi is top now, there's an extremely small chance that it may be due to class
1048       // loading.  It could also be due to an error, so mark this method as not compilable because
1049       // otherwise this could lead to an infinite compile loop.
1050       // In any case, this code path is rarely (and never in my testing) reached.
1051 #ifdef ASSERT
1052       tty->print_cr("# Can't determine return type.");
1053       tty->print_cr("# exit control");
1054       _exits.control()->dump(2);
1055       tty->print_cr("# ret phi type");
1056       _gvn.type(ret_phi)->dump();
1057       tty->print_cr("# ret phi");
1058       ret_phi->dump(2);
1059 #endif // ASSERT
1060       assert(false, "Can't determine return type.");
1061       C->record_method_not_compilable("Can't determine return type.");
1062       return;
1063     }
1064     if (ret_type->isa_int()) {
1065       BasicType ret_bt = method()->return_type()->basic_type();
1066       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1067     }
1068     _exits.push_node(ret_type->basic_type(), ret_phi);
1069   }
1070 
1071   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1072 
1073   // Unlock along the exceptional paths.
1074   // This is done late so that we can common up equivalent exceptions
1075   // (e.g., null checks) arising from multiple points within this method.
1076   // See GraphKit::add_exception_state, which performs the commoning.
1077   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1078 
1079   // record exit from a method if compiled while Dtrace is turned on.
1080   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1081     // First move the exception list out of _exits:
1082     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1083     SafePointNode* normal_map = kit.map();  // keep this guy safe
1084     // Now re-collect the exceptions into _exits:
1085     SafePointNode* ex_map;
1086     while ((ex_map = kit.pop_exception_state()) != nullptr) {
1087       Node* ex_oop = kit.use_exception_state(ex_map);
1088       // Force the exiting JVM state to have this method at InvocationEntryBci.
1089       // The exiting JVM state is otherwise a copy of the calling JVMS.
1090       JVMState* caller = kit.jvms();
1091       JVMState* ex_jvms = caller->clone_shallow(C);
1092       ex_jvms->bind_map(kit.clone_map());
1093       ex_jvms->set_bci(   InvocationEntryBci);
1094       kit.set_jvms(ex_jvms);
1095       if (do_synch) {
1096         // Add on the synchronized-method box/object combo
1097         kit.map()->push_monitor(_synch_lock);
1098         // Unlock!
1099         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1100       }
1101       if (C->env()->dtrace_method_probes()) {
1102         kit.make_dtrace_method_exit(method());
1103       }
1104       if (_replaced_nodes_for_exceptions) {
1105         kit.map()->apply_replaced_nodes(_new_idx);
1106       }
1107       // Done with exception-path processing.
1108       ex_map = kit.make_exception_state(ex_oop);
1109       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1110       // Pop the last vestige of this method:
1111       caller->clone_shallow(C)->bind_map(ex_map);
1112       _exits.push_exception_state(ex_map);
1113     }
1114     assert(_exits.map() == normal_map, "keep the same return state");
1115   }
1116 
1117   {
1118     // Capture very early exceptions (receiver null checks) from caller JVMS
1119     GraphKit caller(_caller);
1120     SafePointNode* ex_map;
1121     while ((ex_map = caller.pop_exception_state()) != nullptr) {
1122       _exits.add_exception_state(ex_map);
1123     }
1124   }
1125   _exits.map()->apply_replaced_nodes(_new_idx);
1126 }
1127 
1128 //-----------------------------create_entry_map-------------------------------
1129 // Initialize our parser map to contain the types at method entry.
1130 // For OSR, the map contains a single RawPtr parameter.
1131 // Initial monitor locking for sync. methods is performed by do_method_entry.
1132 SafePointNode* Parse::create_entry_map() {
1133   // Check for really stupid bail-out cases.
1134   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1135   if (len >= 32760) {
1136     // Bailout expected, this is a very rare edge case.
1137     C->record_method_not_compilable("too many local variables");
1138     return nullptr;
1139   }
1140 
1141   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1142   _caller->map()->delete_replaced_nodes();
1143 
1144   // If this is an inlined method, we may have to do a receiver null check.
1145   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1146     GraphKit kit(_caller);
1147     kit.null_check_receiver_before_call(method());
1148     _caller = kit.transfer_exceptions_into_jvms();
1149     if (kit.stopped()) {
1150       _exits.add_exception_states_from(_caller);
1151       _exits.set_jvms(_caller);
1152       return nullptr;
1153     }
1154   }
1155 
1156   assert(method() != nullptr, "parser must have a method");
1157 
1158   // Create an initial safepoint to hold JVM state during parsing
1159   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1160   set_map(new SafePointNode(len, jvms));
1161   jvms->set_map(map());
1162   record_for_igvn(map());
1163   assert(jvms->endoff() == len, "correct jvms sizing");
1164 
1165   SafePointNode* inmap = _caller->map();
1166   assert(inmap != nullptr, "must have inmap");
1167   // In case of null check on receiver above
1168   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1169 
1170   uint i;
1171 
1172   // Pass thru the predefined input parameters.
1173   for (i = 0; i < TypeFunc::Parms; i++) {
1174     map()->init_req(i, inmap->in(i));
1175   }
1176 
1177   if (depth() == 1) {
1178     assert(map()->memory()->Opcode() == Op_Parm, "");
1179     // Insert the memory aliasing node
1180     set_all_memory(reset_memory());
1181   }
1182   assert(merged_memory(), "");
1183 
1184   // Now add the locals which are initially bound to arguments:
1185   uint arg_size = tf()->domain()->cnt();
1186   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1187   for (i = TypeFunc::Parms; i < arg_size; i++) {
1188     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1189   }
1190 
1191   // Clear out the rest of the map (locals and stack)
1192   for (i = arg_size; i < len; i++) {
1193     map()->init_req(i, top());
1194   }
1195 
1196   SafePointNode* entry_map = stop();
1197   return entry_map;
1198 }
1199 
1200 //-----------------------------do_method_entry--------------------------------
1201 // Emit any code needed in the pseudo-block before BCI zero.
1202 // The main thing to do is lock the receiver of a synchronized method.
1203 void Parse::do_method_entry() {
1204   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1205   set_sp(0);                         // Java Stack Pointer
1206 
1207   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1208 
1209   if (C->env()->dtrace_method_probes()) {
1210     make_dtrace_method_entry(method());
1211   }
1212 
1213 #ifdef ASSERT
1214   // Narrow receiver type when it is too broad for the method being parsed.
1215   if (!method()->is_static()) {
1216     ciInstanceKlass* callee_holder = method()->holder();
1217     const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1218 
1219     Node* receiver_obj = local(0);
1220     const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1221 
1222     if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1223       // Receiver should always be a subtype of callee holder.
1224       // But, since C2 type system doesn't properly track interfaces,
1225       // the invariant can't be expressed in the type system for default methods.
1226       // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1227       assert(callee_holder->is_interface(), "missing subtype check");
1228 
1229       // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1230       Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1231       Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1232       assert(!stopped(), "not a subtype");
1233 
1234       Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check"));
1235       C->root()->add_req(halt);
1236     }
1237   }
1238 #endif // ASSERT
1239 
1240   // If the method is synchronized, we need to construct a lock node, attach
1241   // it to the Start node, and pin it there.
1242   if (method()->is_synchronized()) {
1243     // Insert a FastLockNode right after the Start which takes as arguments
1244     // the current thread pointer, the "this" pointer & the address of the
1245     // stack slot pair used for the lock.  The "this" pointer is a projection
1246     // off the start node, but the locking spot has to be constructed by
1247     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1248     // becomes the second argument to the FastLockNode call.  The
1249     // FastLockNode becomes the new control parent to pin it to the start.
1250 
1251     // Setup Object Pointer
1252     Node *lock_obj = nullptr;
1253     if (method()->is_static()) {
1254       ciInstance* mirror = _method->holder()->java_mirror();
1255       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1256       lock_obj = makecon(t_lock);
1257     } else {                  // Else pass the "this" pointer,
1258       lock_obj = local(0);    // which is Parm0 from StartNode
1259     }
1260     // Clear out dead values from the debug info.
1261     kill_dead_locals();
1262     // Build the FastLockNode
1263     _synch_lock = shared_lock(lock_obj);
1264   }
1265 
1266   // Feed profiling data for parameters to the type system so it can
1267   // propagate it as speculative types
1268   record_profiled_parameters_for_speculation();
1269 }
1270 
1271 //------------------------------init_blocks------------------------------------
1272 // Initialize our parser map to contain the types/monitors at method entry.
1273 void Parse::init_blocks() {
1274   // Create the blocks.
1275   _block_count = flow()->block_count();
1276   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1277 
1278   // Initialize the structs.
1279   for (int rpo = 0; rpo < block_count(); rpo++) {
1280     Block* block = rpo_at(rpo);
1281     new(block) Block(this, rpo);
1282   }
1283 
1284   // Collect predecessor and successor information.
1285   for (int rpo = 0; rpo < block_count(); rpo++) {
1286     Block* block = rpo_at(rpo);
1287     block->init_graph(this);
1288   }
1289 }
1290 
1291 //-------------------------------init_node-------------------------------------
1292 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1293   _flow = outer->flow()->rpo_at(rpo);
1294   _pred_count = 0;
1295   _preds_parsed = 0;
1296   _count = 0;
1297   _is_parsed = false;
1298   _is_handler = false;
1299   _has_merged_backedge = false;
1300   _start_map = nullptr;
1301   _has_predicates = false;
1302   _num_successors = 0;
1303   _all_successors = 0;
1304   _successors = nullptr;
1305   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1306   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1307   assert(_live_locals.size() == 0, "sanity");
1308 
1309   // entry point has additional predecessor
1310   if (flow()->is_start())  _pred_count++;
1311   assert(flow()->is_start() == (this == outer->start_block()), "");
1312 }
1313 
1314 //-------------------------------init_graph------------------------------------
1315 void Parse::Block::init_graph(Parse* outer) {
1316   // Create the successor list for this parser block.
1317   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1318   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1319   int ns = tfs->length();
1320   int ne = tfe->length();
1321   _num_successors = ns;
1322   _all_successors = ns+ne;
1323   _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1324   int p = 0;
1325   for (int i = 0; i < ns+ne; i++) {
1326     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1327     Block* block2 = outer->rpo_at(tf2->rpo());
1328     _successors[i] = block2;
1329 
1330     // Accumulate pred info for the other block, too.
1331     // Note: We also need to set _pred_count for exception blocks since they could
1332     // also have normal predecessors (reached without athrow by an explicit jump).
1333     // This also means that next_path_num can be called along exception paths.
1334     block2->_pred_count++;
1335     if (i >= ns) {
1336       block2->_is_handler = true;
1337     }
1338 
1339     #ifdef ASSERT
1340     // A block's successors must be distinguishable by BCI.
1341     // That is, no bytecode is allowed to branch to two different
1342     // clones of the same code location.
1343     for (int j = 0; j < i; j++) {
1344       Block* block1 = _successors[j];
1345       if (block1 == block2)  continue;  // duplicates are OK
1346       assert(block1->start() != block2->start(), "successors have unique bcis");
1347     }
1348     #endif
1349   }
1350 }
1351 
1352 //---------------------------successor_for_bci---------------------------------
1353 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1354   for (int i = 0; i < all_successors(); i++) {
1355     Block* block2 = successor_at(i);
1356     if (block2->start() == bci)  return block2;
1357   }
1358   // We can actually reach here if ciTypeFlow traps out a block
1359   // due to an unloaded class, and concurrently with compilation the
1360   // class is then loaded, so that a later phase of the parser is
1361   // able to see more of the bytecode CFG.  Or, the flow pass and
1362   // the parser can have a minor difference of opinion about executability
1363   // of bytecodes.  For example, "obj.field = null" is executable even
1364   // if the field's type is an unloaded class; the flow pass used to
1365   // make a trap for such code.
1366   return nullptr;
1367 }
1368 
1369 
1370 //-----------------------------stack_type_at-----------------------------------
1371 const Type* Parse::Block::stack_type_at(int i) const {
1372   return get_type(flow()->stack_type_at(i));
1373 }
1374 
1375 
1376 //-----------------------------local_type_at-----------------------------------
1377 const Type* Parse::Block::local_type_at(int i) const {
1378   // Make dead locals fall to bottom.
1379   if (_live_locals.size() == 0) {
1380     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1381     // This bitmap can be zero length if we saw a breakpoint.
1382     // In such cases, pretend they are all live.
1383     ((Block*)this)->_live_locals = live_locals;
1384   }
1385   if (_live_locals.size() > 0 && !_live_locals.at(i))
1386     return Type::BOTTOM;
1387 
1388   return get_type(flow()->local_type_at(i));
1389 }
1390 
1391 
1392 #ifndef PRODUCT
1393 
1394 //----------------------------name_for_bc--------------------------------------
1395 // helper method for BytecodeParseHistogram
1396 static const char* name_for_bc(int i) {
1397   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1398 }
1399 
1400 //----------------------------BytecodeParseHistogram------------------------------------
1401 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1402   _parser   = p;
1403   _compiler = c;
1404   if( ! _initialized ) { _initialized = true; reset(); }
1405 }
1406 
1407 //----------------------------current_count------------------------------------
1408 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1409   switch( bph_type ) {
1410   case BPH_transforms: { return _parser->gvn().made_progress(); }
1411   case BPH_values:     { return _parser->gvn().made_new_values(); }
1412   default: { ShouldNotReachHere(); return 0; }
1413   }
1414 }
1415 
1416 //----------------------------initialized--------------------------------------
1417 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1418 
1419 //----------------------------reset--------------------------------------------
1420 void Parse::BytecodeParseHistogram::reset() {
1421   int i = Bytecodes::number_of_codes;
1422   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1423 }
1424 
1425 //----------------------------set_initial_state--------------------------------
1426 // Record info when starting to parse one bytecode
1427 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1428   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1429     _initial_bytecode    = bc;
1430     _initial_node_count  = _compiler->unique();
1431     _initial_transforms  = current_count(BPH_transforms);
1432     _initial_values      = current_count(BPH_values);
1433   }
1434 }
1435 
1436 //----------------------------record_change--------------------------------
1437 // Record results of parsing one bytecode
1438 void Parse::BytecodeParseHistogram::record_change() {
1439   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1440     ++_bytecodes_parsed[_initial_bytecode];
1441     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1442     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1443     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1444   }
1445 }
1446 
1447 
1448 //----------------------------print--------------------------------------------
1449 void Parse::BytecodeParseHistogram::print(float cutoff) {
1450   ResourceMark rm;
1451   // print profile
1452   int total  = 0;
1453   int i      = 0;
1454   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1455   int abs_sum = 0;
1456   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1457   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1458   if( total == 0 ) { return; }
1459   tty->cr();
1460   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1461   tty->print_cr("relative:  percentage contribution to compiled nodes");
1462   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1463   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1464   tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1465   tty->print_cr("values  :  Average number of node values improved per bytecode");
1466   tty->print_cr("name    :  Bytecode name");
1467   tty->cr();
1468   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1469   tty->print_cr("----------------------------------------------------------------------");
1470   while (--i > 0) {
1471     int       abs = _bytecodes_parsed[i];
1472     float     rel = abs * 100.0F / total;
1473     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1474     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1475     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1476     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1477     if (cutoff <= rel) {
1478       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1479       abs_sum += abs;
1480     }
1481   }
1482   tty->print_cr("----------------------------------------------------------------------");
1483   float rel_sum = abs_sum * 100.0F / total;
1484   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1485   tty->print_cr("----------------------------------------------------------------------");
1486   tty->cr();
1487 }
1488 #endif
1489 
1490 //----------------------------load_state_from----------------------------------
1491 // Load block/map/sp.  But not do not touch iter/bci.
1492 void Parse::load_state_from(Block* block) {
1493   set_block(block);
1494   // load the block's JVM state:
1495   set_map(block->start_map());
1496   set_sp( block->start_sp());
1497 }
1498 
1499 
1500 //-----------------------------record_state------------------------------------
1501 void Parse::Block::record_state(Parse* p) {
1502   assert(!is_merged(), "can only record state once, on 1st inflow");
1503   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1504   set_start_map(p->stop());
1505 }
1506 
1507 
1508 //------------------------------do_one_block-----------------------------------
1509 void Parse::do_one_block() {
1510   if (TraceOptoParse) {
1511     Block *b = block();
1512     int ns = b->num_successors();
1513     int nt = b->all_successors();
1514 
1515     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1516                   block()->rpo(), block()->start(), block()->limit());
1517     for (int i = 0; i < nt; i++) {
1518       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1519     }
1520     if (b->is_loop_head()) {
1521       tty->print("  lphd");
1522     }
1523     if (b->is_irreducible_loop_entry()) {
1524       tty->print("  irreducible");
1525     }
1526     tty->cr();
1527   }
1528 
1529   assert(block()->is_merged(), "must be merged before being parsed");
1530   block()->mark_parsed();
1531 
1532   // Set iterator to start of block.
1533   iter().reset_to_bci(block()->start());
1534 
1535   if (ProfileExceptionHandlers && block()->is_handler()) {
1536     ciMethodData* methodData = method()->method_data();
1537     if (methodData->is_mature()) {
1538       ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1539       if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1540         // dead catch block
1541         // Emit an uncommon trap instead of processing the block.
1542         set_parse_bci(block()->start());
1543         uncommon_trap(Deoptimization::Reason_unreached,
1544                       Deoptimization::Action_reinterpret,
1545                       nullptr, "dead catch block");
1546         return;
1547       }
1548     }
1549   }
1550 
1551   CompileLog* log = C->log();
1552 
1553   // Parse bytecodes
1554   while (!stopped() && !failing()) {
1555     iter().next();
1556 
1557     // Learn the current bci from the iterator:
1558     set_parse_bci(iter().cur_bci());
1559 
1560     if (bci() == block()->limit()) {
1561       // Do not walk into the next block until directed by do_all_blocks.
1562       merge(bci());
1563       break;
1564     }
1565     assert(bci() < block()->limit(), "bci still in block");
1566 
1567     if (log != nullptr) {
1568       // Output an optional context marker, to help place actions
1569       // that occur during parsing of this BC.  If there is no log
1570       // output until the next context string, this context string
1571       // will be silently ignored.
1572       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1573     }
1574 
1575     if (block()->has_trap_at(bci())) {
1576       // We must respect the flow pass's traps, because it will refuse
1577       // to produce successors for trapping blocks.
1578       int trap_index = block()->flow()->trap_index();
1579       assert(trap_index != 0, "trap index must be valid");
1580       uncommon_trap(trap_index);
1581       break;
1582     }
1583 
1584     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1585 
1586 #ifdef ASSERT
1587     int pre_bc_sp = sp();
1588     int inputs, depth;
1589     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1590     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1591 #endif //ASSERT
1592 
1593     do_one_bytecode();
1594     if (failing()) return;
1595 
1596     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1597            "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1598 
1599     do_exceptions();
1600 
1601     NOT_PRODUCT( parse_histogram()->record_change(); );
1602 
1603     if (log != nullptr)
1604       log->clear_context();  // skip marker if nothing was printed
1605 
1606     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1607     // successor which is typically made ready by visiting this bytecode.
1608     // If the successor has several predecessors, then it is a merge
1609     // point, starts a new basic block, and is handled like other basic blocks.
1610   }
1611 }
1612 
1613 
1614 //------------------------------merge------------------------------------------
1615 void Parse::set_parse_bci(int bci) {
1616   set_bci(bci);
1617   Node_Notes* nn = C->default_node_notes();
1618   if (nn == nullptr)  return;
1619 
1620   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1621   if (!DebugInlinedCalls && depth() > 1) {
1622     return;
1623   }
1624 
1625   // Update the JVMS annotation, if present.
1626   JVMState* jvms = nn->jvms();
1627   if (jvms != nullptr && jvms->bci() != bci) {
1628     // Update the JVMS.
1629     jvms = jvms->clone_shallow(C);
1630     jvms->set_bci(bci);
1631     nn->set_jvms(jvms);
1632   }
1633 }
1634 
1635 //------------------------------merge------------------------------------------
1636 // Merge the current mapping into the basic block starting at bci
1637 void Parse::merge(int target_bci) {
1638   Block* target = successor_for_bci(target_bci);
1639   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1640   assert(!target->is_ready(), "our arrival must be expected");
1641   int pnum = target->next_path_num();
1642   merge_common(target, pnum);
1643 }
1644 
1645 //-------------------------merge_new_path--------------------------------------
1646 // Merge the current mapping into the basic block, using a new path
1647 void Parse::merge_new_path(int target_bci) {
1648   Block* target = successor_for_bci(target_bci);
1649   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1650   assert(!target->is_ready(), "new path into frozen graph");
1651   int pnum = target->add_new_path();
1652   merge_common(target, pnum);
1653 }
1654 
1655 //-------------------------merge_exception-------------------------------------
1656 // Merge the current mapping into the basic block starting at bci
1657 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1658 void Parse::merge_exception(int target_bci) {
1659 #ifdef ASSERT
1660   if (target_bci < bci()) {
1661     C->set_exception_backedge();
1662   }
1663 #endif
1664   assert(sp() == 1, "must have only the throw exception on the stack");
1665   Block* target = successor_for_bci(target_bci);
1666   if (target == nullptr) { handle_missing_successor(target_bci); return; }
1667   assert(target->is_handler(), "exceptions are handled by special blocks");
1668   int pnum = target->add_new_path();
1669   merge_common(target, pnum);
1670 }
1671 
1672 //--------------------handle_missing_successor---------------------------------
1673 void Parse::handle_missing_successor(int target_bci) {
1674 #ifndef PRODUCT
1675   Block* b = block();
1676   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1677   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1678 #endif
1679   ShouldNotReachHere();
1680 }
1681 
1682 //--------------------------merge_common---------------------------------------
1683 void Parse::merge_common(Parse::Block* target, int pnum) {
1684   if (TraceOptoParse) {
1685     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1686   }
1687 
1688   // Zap extra stack slots to top
1689   assert(sp() == target->start_sp(), "");
1690   clean_stack(sp());
1691 
1692   if (!target->is_merged()) {   // No prior mapping at this bci
1693     if (TraceOptoParse) { tty->print(" with empty state");  }
1694 
1695     // If this path is dead, do not bother capturing it as a merge.
1696     // It is "as if" we had 1 fewer predecessors from the beginning.
1697     if (stopped()) {
1698       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1699       return;
1700     }
1701 
1702     // Make a region if we know there are multiple or unpredictable inputs.
1703     // (Also, if this is a plain fall-through, we might see another region,
1704     // which must not be allowed into this block's map.)
1705     if (pnum > PhiNode::Input         // Known multiple inputs.
1706         || target->is_handler()       // These have unpredictable inputs.
1707         || target->is_loop_head()     // Known multiple inputs
1708         || control()->is_Region()) {  // We must hide this guy.
1709 
1710       int current_bci = bci();
1711       set_parse_bci(target->start()); // Set target bci
1712       if (target->is_SEL_head()) {
1713         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1714         if (target->start() == 0) {
1715           // Add Parse Predicates for the special case when
1716           // there are backbranches to the method entry.
1717           add_parse_predicates();
1718         }
1719       }
1720       // Add a Region to start the new basic block.  Phis will be added
1721       // later lazily.
1722       int edges = target->pred_count();
1723       if (edges < pnum)  edges = pnum;  // might be a new path!
1724       RegionNode *r = new RegionNode(edges+1);
1725       gvn().set_type(r, Type::CONTROL);
1726       record_for_igvn(r);
1727       // zap all inputs to null for debugging (done in Node(uint) constructor)
1728       // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1729       r->init_req(pnum, control());
1730       set_control(r);
1731       target->copy_irreducible_status_to(r, jvms());
1732       set_parse_bci(current_bci); // Restore bci
1733     }
1734 
1735     // Convert the existing Parser mapping into a mapping at this bci.
1736     store_state_to(target);
1737     assert(target->is_merged(), "do not come here twice");
1738 
1739   } else {                      // Prior mapping at this bci
1740     if (TraceOptoParse) {  tty->print(" with previous state"); }
1741 #ifdef ASSERT
1742     if (target->is_SEL_head()) {
1743       target->mark_merged_backedge(block());
1744     }
1745 #endif
1746     // We must not manufacture more phis if the target is already parsed.
1747     bool nophi = target->is_parsed();
1748 
1749     SafePointNode* newin = map();// Hang on to incoming mapping
1750     Block* save_block = block(); // Hang on to incoming block;
1751     load_state_from(target);    // Get prior mapping
1752 
1753     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1754     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1755     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1756     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1757 
1758     // Iterate over my current mapping and the old mapping.
1759     // Where different, insert Phi functions.
1760     // Use any existing Phi functions.
1761     assert(control()->is_Region(), "must be merging to a region");
1762     RegionNode* r = control()->as_Region();
1763 
1764     // Compute where to merge into
1765     // Merge incoming control path
1766     r->init_req(pnum, newin->control());
1767 
1768     if (pnum == 1) {            // Last merge for this Region?
1769       if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1770         Node* result = _gvn.transform_no_reclaim(r);
1771         if (r != result && TraceOptoParse) {
1772           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1773         }
1774       }
1775       record_for_igvn(r);
1776     }
1777 
1778     // Update all the non-control inputs to map:
1779     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1780     bool check_elide_phi = target->is_SEL_backedge(save_block);
1781     for (uint j = 1; j < newin->req(); j++) {
1782       Node* m = map()->in(j);   // Current state of target.
1783       Node* n = newin->in(j);   // Incoming change to target state.
1784       PhiNode* phi;
1785       if (m->is_Phi() && m->as_Phi()->region() == r)
1786         phi = m->as_Phi();
1787       else
1788         phi = nullptr;
1789       if (m != n) {             // Different; must merge
1790         switch (j) {
1791         // Frame pointer and Return Address never changes
1792         case TypeFunc::FramePtr:// Drop m, use the original value
1793         case TypeFunc::ReturnAdr:
1794           break;
1795         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1796           assert(phi == nullptr, "the merge contains phis, not vice versa");
1797           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1798           continue;
1799         default:                // All normal stuff
1800           if (phi == nullptr) {
1801             const JVMState* jvms = map()->jvms();
1802             if (EliminateNestedLocks &&
1803                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1804               // BoxLock nodes are not commoning.
1805               // Use old BoxLock node as merged box.
1806               assert(newin->jvms()->is_monitor_box(j), "sanity");
1807               // This assert also tests that nodes are BoxLock.
1808               assert(BoxLockNode::same_slot(n, m), "sanity");
1809               C->gvn_replace_by(n, m);
1810             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1811               phi = ensure_phi(j, nophi);
1812             }
1813           }
1814           break;
1815         }
1816       }
1817       // At this point, n might be top if:
1818       //  - there is no phi (because TypeFlow detected a conflict), or
1819       //  - the corresponding control edges is top (a dead incoming path)
1820       // It is a bug if we create a phi which sees a garbage value on a live path.
1821 
1822       if (phi != nullptr) {
1823         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1824         assert(phi->region() == r, "");
1825         phi->set_req(pnum, n);  // Then add 'n' to the merge
1826         if (pnum == PhiNode::Input) {
1827           // Last merge for this Phi.
1828           // So far, Phis have had a reasonable type from ciTypeFlow.
1829           // Now _gvn will join that with the meet of current inputs.
1830           // BOTTOM is never permissible here, 'cause pessimistically
1831           // Phis of pointers cannot lose the basic pointer type.
1832           debug_only(const Type* bt1 = phi->bottom_type());
1833           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1834           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1835           debug_only(const Type* bt2 = phi->bottom_type());
1836           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1837           record_for_igvn(phi);
1838         }
1839       }
1840     } // End of for all values to be merged
1841 
1842     if (pnum == PhiNode::Input &&
1843         !r->in(0)) {         // The occasional useless Region
1844       assert(control() == r, "");
1845       set_control(r->nonnull_req());
1846     }
1847 
1848     map()->merge_replaced_nodes_with(newin);
1849 
1850     // newin has been subsumed into the lazy merge, and is now dead.
1851     set_block(save_block);
1852 
1853     stop();                     // done with this guy, for now
1854   }
1855 
1856   if (TraceOptoParse) {
1857     tty->print_cr(" on path %d", pnum);
1858   }
1859 
1860   // Done with this parser state.
1861   assert(stopped(), "");
1862 }
1863 
1864 
1865 //--------------------------merge_memory_edges---------------------------------
1866 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1867   // (nophi means we must not create phis, because we already parsed here)
1868   assert(n != nullptr, "");
1869   // Merge the inputs to the MergeMems
1870   MergeMemNode* m = merged_memory();
1871 
1872   assert(control()->is_Region(), "must be merging to a region");
1873   RegionNode* r = control()->as_Region();
1874 
1875   PhiNode* base = nullptr;
1876   MergeMemNode* remerge = nullptr;
1877   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1878     Node *p = mms.force_memory();
1879     Node *q = mms.memory2();
1880     if (mms.is_empty() && nophi) {
1881       // Trouble:  No new splits allowed after a loop body is parsed.
1882       // Instead, wire the new split into a MergeMem on the backedge.
1883       // The optimizer will sort it out, slicing the phi.
1884       if (remerge == nullptr) {
1885         guarantee(base != nullptr, "");
1886         assert(base->in(0) != nullptr, "should not be xformed away");
1887         remerge = MergeMemNode::make(base->in(pnum));
1888         gvn().set_type(remerge, Type::MEMORY);
1889         base->set_req(pnum, remerge);
1890       }
1891       remerge->set_memory_at(mms.alias_idx(), q);
1892       continue;
1893     }
1894     assert(!q->is_MergeMem(), "");
1895     PhiNode* phi;
1896     if (p != q) {
1897       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1898     } else {
1899       if (p->is_Phi() && p->as_Phi()->region() == r)
1900         phi = p->as_Phi();
1901       else
1902         phi = nullptr;
1903     }
1904     // Insert q into local phi
1905     if (phi != nullptr) {
1906       assert(phi->region() == r, "");
1907       p = phi;
1908       phi->set_req(pnum, q);
1909       if (mms.at_base_memory()) {
1910         base = phi;  // delay transforming it
1911       } else if (pnum == 1) {
1912         record_for_igvn(phi);
1913         p = _gvn.transform_no_reclaim(phi);
1914       }
1915       mms.set_memory(p);// store back through the iterator
1916     }
1917   }
1918   // Transform base last, in case we must fiddle with remerging.
1919   if (base != nullptr && pnum == 1) {
1920     record_for_igvn(base);
1921     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1922   }
1923 }
1924 
1925 
1926 //------------------------ensure_phis_everywhere-------------------------------
1927 void Parse::ensure_phis_everywhere() {
1928   ensure_phi(TypeFunc::I_O);
1929 
1930   // Ensure a phi on all currently known memories.
1931   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1932     ensure_memory_phi(mms.alias_idx());
1933     debug_only(mms.set_memory());  // keep the iterator happy
1934   }
1935 
1936   // Note:  This is our only chance to create phis for memory slices.
1937   // If we miss a slice that crops up later, it will have to be
1938   // merged into the base-memory phi that we are building here.
1939   // Later, the optimizer will comb out the knot, and build separate
1940   // phi-loops for each memory slice that matters.
1941 
1942   // Monitors must nest nicely and not get confused amongst themselves.
1943   // Phi-ify everything up to the monitors, though.
1944   uint monoff = map()->jvms()->monoff();
1945   uint nof_monitors = map()->jvms()->nof_monitors();
1946 
1947   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1948   bool check_elide_phi = block()->is_SEL_head();
1949   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1950     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1951       ensure_phi(i);
1952     }
1953   }
1954 
1955   // Even monitors need Phis, though they are well-structured.
1956   // This is true for OSR methods, and also for the rare cases where
1957   // a monitor object is the subject of a replace_in_map operation.
1958   // See bugs 4426707 and 5043395.
1959   for (uint m = 0; m < nof_monitors; m++) {
1960     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1961   }
1962 }
1963 
1964 
1965 //-----------------------------add_new_path------------------------------------
1966 // Add a previously unaccounted predecessor to this block.
1967 int Parse::Block::add_new_path() {
1968   // If there is no map, return the lowest unused path number.
1969   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1970 
1971   SafePointNode* map = start_map();
1972   if (!map->control()->is_Region())
1973     return pred_count()+1;  // there may be a region some day
1974   RegionNode* r = map->control()->as_Region();
1975 
1976   // Add new path to the region.
1977   uint pnum = r->req();
1978   r->add_req(nullptr);
1979 
1980   for (uint i = 1; i < map->req(); i++) {
1981     Node* n = map->in(i);
1982     if (i == TypeFunc::Memory) {
1983       // Ensure a phi on all currently known memories.
1984       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1985         Node* phi = mms.memory();
1986         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1987           assert(phi->req() == pnum, "must be same size as region");
1988           phi->add_req(nullptr);
1989         }
1990       }
1991     } else {
1992       if (n->is_Phi() && n->as_Phi()->region() == r) {
1993         assert(n->req() == pnum, "must be same size as region");
1994         n->add_req(nullptr);
1995       }
1996     }
1997   }
1998 
1999   return pnum;
2000 }
2001 
2002 //------------------------------ensure_phi-------------------------------------
2003 // Turn the idx'th entry of the current map into a Phi
2004 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2005   SafePointNode* map = this->map();
2006   Node* region = map->control();
2007   assert(region->is_Region(), "");
2008 
2009   Node* o = map->in(idx);
2010   assert(o != nullptr, "");
2011 
2012   if (o == top())  return nullptr; // TOP always merges into TOP
2013 
2014   if (o->is_Phi() && o->as_Phi()->region() == region) {
2015     return o->as_Phi();
2016   }
2017 
2018   // Now use a Phi here for merging
2019   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2020   const JVMState* jvms = map->jvms();
2021   const Type* t = nullptr;
2022   if (jvms->is_loc(idx)) {
2023     t = block()->local_type_at(idx - jvms->locoff());
2024   } else if (jvms->is_stk(idx)) {
2025     t = block()->stack_type_at(idx - jvms->stkoff());
2026   } else if (jvms->is_mon(idx)) {
2027     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2028     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2029   } else if ((uint)idx < TypeFunc::Parms) {
2030     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
2031   } else {
2032     assert(false, "no type information for this phi");
2033   }
2034 
2035   // If the type falls to bottom, then this must be a local that
2036   // is mixing ints and oops or some such.  Forcing it to top
2037   // makes it go dead.
2038   if (t == Type::BOTTOM) {
2039     map->set_req(idx, top());
2040     return nullptr;
2041   }
2042 
2043   // Do not create phis for top either.
2044   // A top on a non-null control flow must be an unused even after the.phi.
2045   if (t == Type::TOP || t == Type::HALF) {
2046     map->set_req(idx, top());
2047     return nullptr;
2048   }
2049 
2050   PhiNode* phi = PhiNode::make(region, o, t);
2051   gvn().set_type(phi, t);
2052   if (C->do_escape_analysis()) record_for_igvn(phi);
2053   map->set_req(idx, phi);
2054   return phi;
2055 }
2056 
2057 //--------------------------ensure_memory_phi----------------------------------
2058 // Turn the idx'th slice of the current memory into a Phi
2059 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2060   MergeMemNode* mem = merged_memory();
2061   Node* region = control();
2062   assert(region->is_Region(), "");
2063 
2064   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2065   assert(o != nullptr && o != top(), "");
2066 
2067   PhiNode* phi;
2068   if (o->is_Phi() && o->as_Phi()->region() == region) {
2069     phi = o->as_Phi();
2070     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2071       // clone the shared base memory phi to make a new memory split
2072       assert(!nocreate, "Cannot build a phi for a block already parsed.");
2073       const Type* t = phi->bottom_type();
2074       const TypePtr* adr_type = C->get_adr_type(idx);
2075       phi = phi->slice_memory(adr_type);
2076       gvn().set_type(phi, t);
2077     }
2078     return phi;
2079   }
2080 
2081   // Now use a Phi here for merging
2082   assert(!nocreate, "Cannot build a phi for a block already parsed.");
2083   const Type* t = o->bottom_type();
2084   const TypePtr* adr_type = C->get_adr_type(idx);
2085   phi = PhiNode::make(region, o, t, adr_type);
2086   gvn().set_type(phi, t);
2087   if (idx == Compile::AliasIdxBot)
2088     mem->set_base_memory(phi);
2089   else
2090     mem->set_memory_at(idx, phi);
2091   return phi;
2092 }
2093 
2094 //------------------------------call_register_finalizer-----------------------
2095 // Check the klass of the receiver and call register_finalizer if the
2096 // class need finalization.
2097 void Parse::call_register_finalizer() {
2098   Node* receiver = local(0);
2099   assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2100          "must have non-null instance type");
2101 
2102   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2103   if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2104     // The type isn't known exactly so see if CHA tells us anything.
2105     ciInstanceKlass* ik = tinst->instance_klass();
2106     if (!Dependencies::has_finalizable_subclass(ik)) {
2107       // No finalizable subclasses so skip the dynamic check.
2108       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2109       return;
2110     }
2111   }
2112 
2113   // Insert a dynamic test for whether the instance needs
2114   // finalization.  In general this will fold up since the concrete
2115   // class is often visible so the access flags are constant.
2116   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2117   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2118 
2119   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2120   Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2121 
2122   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2123   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2124   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2125 
2126   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2127 
2128   RegionNode* result_rgn = new RegionNode(3);
2129   record_for_igvn(result_rgn);
2130 
2131   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2132   result_rgn->init_req(1, skip_register);
2133 
2134   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2135   set_control(needs_register);
2136   if (stopped()) {
2137     // There is no slow path.
2138     result_rgn->init_req(2, top());
2139   } else {
2140     Node *call = make_runtime_call(RC_NO_LEAF,
2141                                    OptoRuntime::register_finalizer_Type(),
2142                                    OptoRuntime::register_finalizer_Java(),
2143                                    nullptr, TypePtr::BOTTOM,
2144                                    receiver);
2145     make_slow_call_ex(call, env()->Throwable_klass(), true);
2146 
2147     Node* fast_io  = call->in(TypeFunc::I_O);
2148     Node* fast_mem = call->in(TypeFunc::Memory);
2149     // These two phis are pre-filled with copies of of the fast IO and Memory
2150     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2151     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2152 
2153     result_rgn->init_req(2, control());
2154     io_phi    ->init_req(2, i_o());
2155     mem_phi   ->init_req(2, reset_memory());
2156 
2157     set_all_memory( _gvn.transform(mem_phi) );
2158     set_i_o(        _gvn.transform(io_phi) );
2159   }
2160 
2161   set_control( _gvn.transform(result_rgn) );
2162 }
2163 
2164 // Add check to deoptimize once holder klass is fully initialized.
2165 void Parse::clinit_deopt() {
2166   assert(C->has_method(), "only for normal compilations");
2167   assert(depth() == 1, "only for main compiled method");
2168   assert(is_normal_parse(), "no barrier needed on osr entry");
2169   assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2170 
2171   set_parse_bci(0);
2172 
2173   Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2174   guard_klass_being_initialized(holder);
2175 }
2176 
2177 // Add check to deoptimize if RTM state is not ProfileRTM
2178 void Parse::rtm_deopt() {
2179 #if INCLUDE_RTM_OPT
2180   if (C->profile_rtm()) {
2181     assert(C->has_method(), "only for normal compilations");
2182     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2183     assert(depth() == 1, "generate check only for main compiled method");
2184 
2185     // Set starting bci for uncommon trap.
2186     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2187 
2188     // Load the rtm_state from the MethodData.
2189     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2190     Node* mdo = makecon(adr_type);
2191     int offset = in_bytes(MethodData::rtm_state_offset());
2192     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2193     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2194 
2195     // Separate Load from Cmp by Opaque.
2196     // In expand_macro_nodes() it will be replaced either
2197     // with this load when there are locks in the code
2198     // or with ProfileRTM (cmp->in(2)) otherwise so that
2199     // the check will fold.
2200     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2201     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2202     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2203     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2204     // Branch to failure if state was changed
2205     { BuildCutout unless(this, tst, PROB_ALWAYS);
2206       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2207                     Deoptimization::Action_make_not_entrant);
2208     }
2209   }
2210 #endif
2211 }
2212 
2213 //------------------------------return_current---------------------------------
2214 // Append current _map to _exit_return
2215 void Parse::return_current(Node* value) {
2216   if (RegisterFinalizersAtInit &&
2217       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2218     call_register_finalizer();
2219   }
2220 
2221   // Do not set_parse_bci, so that return goo is credited to the return insn.
2222   set_bci(InvocationEntryBci);
2223   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2224     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2225   }
2226   if (C->env()->dtrace_method_probes()) {
2227     make_dtrace_method_exit(method());
2228   }
2229   SafePointNode* exit_return = _exits.map();
2230   exit_return->in( TypeFunc::Control  )->add_req( control() );
2231   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2232   Node *mem = exit_return->in( TypeFunc::Memory   );
2233   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2234     if (mms.is_empty()) {
2235       // get a copy of the base memory, and patch just this one input
2236       const TypePtr* adr_type = mms.adr_type(C);
2237       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2238       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2239       gvn().set_type_bottom(phi);
2240       phi->del_req(phi->req()-1);  // prepare to re-patch
2241       mms.set_memory(phi);
2242     }
2243     mms.memory()->add_req(mms.memory2());
2244   }
2245 
2246   // frame pointer is always same, already captured
2247   if (value != nullptr) {
2248     // If returning oops to an interface-return, there is a silent free
2249     // cast from oop to interface allowed by the Verifier.  Make it explicit
2250     // here.
2251     Node* phi = _exits.argument(0);
2252     phi->add_req(value);
2253   }
2254 
2255   if (_first_return) {
2256     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2257     _first_return = false;
2258   } else {
2259     _exits.map()->merge_replaced_nodes_with(map());
2260   }
2261 
2262   stop_and_kill_map();          // This CFG path dies here
2263 }
2264 
2265 
2266 //------------------------------add_safepoint----------------------------------
2267 void Parse::add_safepoint() {
2268   uint parms = TypeFunc::Parms+1;
2269 
2270   // Clear out dead values from the debug info.
2271   kill_dead_locals();
2272 
2273   // Clone the JVM State
2274   SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2275 
2276   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2277   // SafePoint we need our GC state to be safe; i.e. we need all our current
2278   // write barriers (card marks) to not float down after the SafePoint so we
2279   // must read raw memory.  Likewise we need all oop stores to match the card
2280   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2281   // state on a deopt).
2282 
2283   // We do not need to WRITE the memory state after a SafePoint.  The control
2284   // edge will keep card-marks and oop-stores from floating up from below a
2285   // SafePoint and our true dependency added here will keep them from floating
2286   // down below a SafePoint.
2287 
2288   // Clone the current memory state
2289   Node* mem = MergeMemNode::make(map()->memory());
2290 
2291   mem = _gvn.transform(mem);
2292 
2293   // Pass control through the safepoint
2294   sfpnt->init_req(TypeFunc::Control  , control());
2295   // Fix edges normally used by a call
2296   sfpnt->init_req(TypeFunc::I_O      , top() );
2297   sfpnt->init_req(TypeFunc::Memory   , mem   );
2298   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2299   sfpnt->init_req(TypeFunc::FramePtr , top() );
2300 
2301   // Create a node for the polling address
2302   Node *polladr;
2303   Node *thread = _gvn.transform(new ThreadLocalNode());
2304   Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2305   polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
2306   sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2307 
2308   // Fix up the JVM State edges
2309   add_safepoint_edges(sfpnt);
2310   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2311   set_control(transformed_sfpnt);
2312 
2313   // Provide an edge from root to safepoint.  This makes the safepoint
2314   // appear useful until the parse has completed.
2315   if (transformed_sfpnt->is_SafePoint()) {
2316     assert(C->root() != nullptr, "Expect parse is still valid");
2317     C->root()->add_prec(transformed_sfpnt);
2318   }
2319 }
2320 
2321 #ifndef PRODUCT
2322 //------------------------show_parse_info--------------------------------------
2323 void Parse::show_parse_info() {
2324   InlineTree* ilt = nullptr;
2325   if (C->ilt() != nullptr) {
2326     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2327     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2328   }
2329   if (PrintCompilation && Verbose) {
2330     if (depth() == 1) {
2331       if( ilt->count_inlines() ) {
2332         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2333                      ilt->count_inline_bcs());
2334         tty->cr();
2335       }
2336     } else {
2337       if (method()->is_synchronized())         tty->print("s");
2338       if (method()->has_exception_handlers())  tty->print("!");
2339       // Check this is not the final compiled version
2340       if (C->trap_can_recompile()) {
2341         tty->print("-");
2342       } else {
2343         tty->print(" ");
2344       }
2345       method()->print_short_name();
2346       if (is_osr_parse()) {
2347         tty->print(" @ %d", osr_bci());
2348       }
2349       tty->print(" (%d bytes)",method()->code_size());
2350       if (ilt->count_inlines()) {
2351         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2352                    ilt->count_inline_bcs());
2353       }
2354       tty->cr();
2355     }
2356   }
2357   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2358     // Print that we succeeded; suppress this message on the first osr parse.
2359 
2360     if (method()->is_synchronized())         tty->print("s");
2361     if (method()->has_exception_handlers())  tty->print("!");
2362     // Check this is not the final compiled version
2363     if (C->trap_can_recompile() && depth() == 1) {
2364       tty->print("-");
2365     } else {
2366       tty->print(" ");
2367     }
2368     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2369     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2370     method()->print_short_name();
2371     if (is_osr_parse()) {
2372       tty->print(" @ %d", osr_bci());
2373     }
2374     if (ilt->caller_bci() != -1) {
2375       tty->print(" @ %d", ilt->caller_bci());
2376     }
2377     tty->print(" (%d bytes)",method()->code_size());
2378     if (ilt->count_inlines()) {
2379       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2380                  ilt->count_inline_bcs());
2381     }
2382     tty->cr();
2383   }
2384 }
2385 
2386 
2387 //------------------------------dump-------------------------------------------
2388 // Dump information associated with the bytecodes of current _method
2389 void Parse::dump() {
2390   if( method() != nullptr ) {
2391     // Iterate over bytecodes
2392     ciBytecodeStream iter(method());
2393     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2394       dump_bci( iter.cur_bci() );
2395       tty->cr();
2396     }
2397   }
2398 }
2399 
2400 // Dump information associated with a byte code index, 'bci'
2401 void Parse::dump_bci(int bci) {
2402   // Output info on merge-points, cloning, and within _jsr..._ret
2403   // NYI
2404   tty->print(" bci:%d", bci);
2405 }
2406 
2407 #endif