1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "interpreter/linkResolver.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/method.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/idealGraphPrinter.hpp"
33 #include "opto/locknode.hpp"
34 #include "opto/memnode.hpp"
35 #include "opto/opaquenode.hpp"
36 #include "opto/parse.hpp"
37 #include "opto/rootnode.hpp"
38 #include "opto/runtime.hpp"
39 #include "opto/type.hpp"
40 #include "runtime/handles.inline.hpp"
41 #include "runtime/safepointMechanism.hpp"
42 #include "runtime/sharedRuntime.hpp"
43 #include "utilities/bitMap.inline.hpp"
44 #include "utilities/copy.hpp"
45
46 // Static array so we can figure out which bytecodes stop us from compiling
47 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
48 // and eventually should be encapsulated in a proper class (gri 8/18/98).
49
50 #ifndef PRODUCT
51 uint nodes_created = 0;
52 uint methods_parsed = 0;
53 uint methods_seen = 0;
54 uint blocks_parsed = 0;
55 uint blocks_seen = 0;
56
57 uint explicit_null_checks_inserted = 0;
58 uint explicit_null_checks_elided = 0;
59 uint all_null_checks_found = 0;
60 uint implicit_null_checks = 0;
61
62 bool Parse::BytecodeParseHistogram::_initialized = false;
63 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
64 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
65 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
66 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
67
68 //------------------------------print_statistics-------------------------------
69 void Parse::print_statistics() {
70 tty->print_cr("--- Compiler Statistics ---");
71 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed);
72 tty->print(" Nodes created: %u", nodes_created);
73 tty->cr();
74 if (methods_seen != methods_parsed) {
75 tty->print_cr("Reasons for parse failures (NOT cumulative):");
76 }
77 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen);
78
79 if (explicit_null_checks_inserted) {
80 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
81 explicit_null_checks_inserted, explicit_null_checks_elided,
82 (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
83 all_null_checks_found);
84 }
85 if (all_null_checks_found) {
86 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
87 (100*implicit_null_checks)/all_null_checks_found);
88 }
89 if (SharedRuntime::_implicit_null_throws) {
90 tty->print_cr("%u implicit null exceptions at runtime",
91 SharedRuntime::_implicit_null_throws);
92 }
93
94 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
95 BytecodeParseHistogram::print();
96 }
97 }
98 #endif
99
100 //------------------------------ON STACK REPLACEMENT---------------------------
101
102 // Construct a node which can be used to get incoming state for
103 // on stack replacement.
104 Node *Parse::fetch_interpreter_state(int index,
105 BasicType bt,
106 Node *local_addrs,
107 Node *local_addrs_base) {
108 Node *mem = memory(Compile::AliasIdxRaw);
109 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
110 Node *ctl = control();
111
112 // Very similar to LoadNode::make, except we handle un-aligned longs and
113 // doubles on Sparc. Intel can handle them just fine directly.
114 Node *l = nullptr;
115 switch (bt) { // Signature is flattened
116 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
117 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
118 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
119 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
120 case T_LONG:
121 case T_DOUBLE: {
122 // Since arguments are in reverse order, the argument address 'adr'
123 // refers to the back half of the long/double. Recompute adr.
124 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
125 if (Matcher::misaligned_doubles_ok) {
126 l = (bt == T_DOUBLE)
127 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
128 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
129 } else {
130 l = (bt == T_DOUBLE)
131 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
132 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
133 }
134 break;
135 }
136 default: ShouldNotReachHere();
137 }
138 return _gvn.transform(l);
139 }
140
141 // Helper routine to prevent the interpreter from handing
142 // unexpected typestate to an OSR method.
143 // The Node l is a value newly dug out of the interpreter frame.
144 // The type is the type predicted by ciTypeFlow. Note that it is
145 // not a general type, but can only come from Type::get_typeflow_type.
146 // The safepoint is a map which will feed an uncommon trap.
147 Node* Parse::check_interpreter_type(Node* l, const Type* type,
148 SafePointNode* &bad_type_exit) {
149
150 const TypeOopPtr* tp = type->isa_oopptr();
151
152 // TypeFlow may assert null-ness if a type appears unloaded.
153 if (type == TypePtr::NULL_PTR ||
154 (tp != nullptr && !tp->is_loaded())) {
155 // Value must be null, not a real oop.
156 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
157 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
158 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
159 set_control(_gvn.transform( new IfTrueNode(iff) ));
160 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
161 bad_type_exit->control()->add_req(bad_type);
162 l = null();
163 }
164
165 // Typeflow can also cut off paths from the CFG, based on
166 // types which appear unloaded, or call sites which appear unlinked.
167 // When paths are cut off, values at later merge points can rise
168 // toward more specific classes. Make sure these specific classes
169 // are still in effect.
170 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
171 // TypeFlow asserted a specific object type. Value must have that type.
172 Node* bad_type_ctrl = nullptr;
173 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl);
174 bad_type_exit->control()->add_req(bad_type_ctrl);
175 }
176
177 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
178 return l;
179 }
180
181 // Helper routine which sets up elements of the initial parser map when
182 // performing a parse for on stack replacement. Add values into map.
183 // The only parameter contains the address of a interpreter arguments.
184 void Parse::load_interpreter_state(Node* osr_buf) {
185 int index;
186 int max_locals = jvms()->loc_size();
187 int max_stack = jvms()->stk_size();
188
189
190 // Mismatch between method and jvms can occur since map briefly held
191 // an OSR entry state (which takes up one RawPtr word).
192 assert(max_locals == method()->max_locals(), "sanity");
193 assert(max_stack >= method()->max_stack(), "sanity");
194 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
195 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
196
197 // Find the start block.
198 Block* osr_block = start_block();
199 assert(osr_block->start() == osr_bci(), "sanity");
200
201 // Set initial BCI.
202 set_parse_bci(osr_block->start());
203
204 // Set initial stack depth.
205 set_sp(osr_block->start_sp());
206
207 // Check bailouts. We currently do not perform on stack replacement
208 // of loops in catch blocks or loops which branch with a non-empty stack.
209 if (sp() != 0) {
210 C->record_method_not_compilable("OSR starts with non-empty stack");
211 return;
212 }
213 // Do not OSR inside finally clauses:
214 if (osr_block->has_trap_at(osr_block->start())) {
215 assert(false, "OSR starts with an immediate trap");
216 C->record_method_not_compilable("OSR starts with an immediate trap");
217 return;
218 }
219
220 // Commute monitors from interpreter frame to compiler frame.
221 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
222 int mcnt = osr_block->flow()->monitor_count();
223 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
224 for (index = 0; index < mcnt; index++) {
225 // Make a BoxLockNode for the monitor.
226 BoxLockNode* osr_box = new BoxLockNode(next_monitor());
227 // Check for bailout after new BoxLockNode
228 if (failing()) { return; }
229
230 // This OSR locking region is unbalanced because it does not have Lock node:
231 // locking was done in Interpreter.
232 // This is similar to Coarsened case when Lock node is eliminated
233 // and as result the region is marked as Unbalanced.
234
235 // Emulate Coarsened state transition from Regular to Unbalanced.
236 osr_box->set_coarsened();
237 osr_box->set_unbalanced();
238
239 Node* box = _gvn.transform(osr_box);
240
241 // Displaced headers and locked objects are interleaved in the
242 // temp OSR buffer. We only copy the locked objects out here.
243 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
244 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
245 // Try and copy the displaced header to the BoxNode
246 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
247
248
249 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
250
251 // Build a bogus FastLockNode (no code will be generated) and push the
252 // monitor into our debug info.
253 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
254 map()->push_monitor(flock);
255
256 // If the lock is our method synchronization lock, tuck it away in
257 // _sync_lock for return and rethrow exit paths.
258 if (index == 0 && method()->is_synchronized()) {
259 _synch_lock = flock;
260 }
261 }
262
263 // Use the raw liveness computation to make sure that unexpected
264 // values don't propagate into the OSR frame.
265 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
266 if (!live_locals.is_valid()) {
267 // Degenerate or breakpointed method.
268 assert(false, "OSR in empty or breakpointed method");
269 C->record_method_not_compilable("OSR in empty or breakpointed method");
270 return;
271 }
272
273 // Extract the needed locals from the interpreter frame.
274 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
275
276 // find all the locals that the interpreter thinks contain live oops
277 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
278 for (index = 0; index < max_locals; index++) {
279
280 if (!live_locals.at(index)) {
281 continue;
282 }
283
284 const Type *type = osr_block->local_type_at(index);
285
286 if (type->isa_oopptr() != nullptr) {
287
288 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
289 // else we might load a stale oop if the MethodLiveness disagrees with the
290 // result of the interpreter. If the interpreter says it is dead we agree
291 // by making the value go to top.
292 //
293
294 if (!live_oops.at(index)) {
295 if (C->log() != nullptr) {
296 C->log()->elem("OSR_mismatch local_index='%d'",index);
297 }
298 set_local(index, null());
299 // and ignore it for the loads
300 continue;
301 }
302 }
303
304 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
305 if (type == Type::TOP || type == Type::HALF) {
306 continue;
307 }
308 // If the type falls to bottom, then this must be a local that
309 // is mixing ints and oops or some such. Forcing it to top
310 // makes it go dead.
311 if (type == Type::BOTTOM) {
312 continue;
313 }
314 // Construct code to access the appropriate local.
315 BasicType bt = type->basic_type();
316 if (type == TypePtr::NULL_PTR) {
317 // Ptr types are mixed together with T_ADDRESS but null is
318 // really for T_OBJECT types so correct it.
319 bt = T_OBJECT;
320 }
321 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
322 set_local(index, value);
323 }
324
325 // Extract the needed stack entries from the interpreter frame.
326 for (index = 0; index < sp(); index++) {
327 const Type *type = osr_block->stack_type_at(index);
328 if (type != Type::TOP) {
329 // Currently the compiler bails out when attempting to on stack replace
330 // at a bci with a non-empty stack. We should not reach here.
331 ShouldNotReachHere();
332 }
333 }
334
335 // End the OSR migration
336 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
337 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
338 "OSR_migration_end", TypeRawPtr::BOTTOM,
339 osr_buf);
340
341 // Now that the interpreter state is loaded, make sure it will match
342 // at execution time what the compiler is expecting now:
343 SafePointNode* bad_type_exit = clone_map();
344 bad_type_exit->set_control(new RegionNode(1));
345
346 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
347 for (index = 0; index < max_locals; index++) {
348 if (stopped()) break;
349 Node* l = local(index);
350 if (l->is_top()) continue; // nothing here
351 const Type *type = osr_block->local_type_at(index);
352 if (type->isa_oopptr() != nullptr) {
353 if (!live_oops.at(index)) {
354 // skip type check for dead oops
355 continue;
356 }
357 }
358 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
359 // In our current system it's illegal for jsr addresses to be
360 // live into an OSR entry point because the compiler performs
361 // inlining of jsrs. ciTypeFlow has a bailout that detect this
362 // case and aborts the compile if addresses are live into an OSR
363 // entry point. Because of that we can assume that any address
364 // locals at the OSR entry point are dead. Method liveness
365 // isn't precise enough to figure out that they are dead in all
366 // cases so simply skip checking address locals all
367 // together. Any type check is guaranteed to fail since the
368 // interpreter type is the result of a load which might have any
369 // value and the expected type is a constant.
370 continue;
371 }
372 set_local(index, check_interpreter_type(l, type, bad_type_exit));
373 }
374
375 for (index = 0; index < sp(); index++) {
376 if (stopped()) break;
377 Node* l = stack(index);
378 if (l->is_top()) continue; // nothing here
379 const Type *type = osr_block->stack_type_at(index);
380 set_stack(index, check_interpreter_type(l, type, bad_type_exit));
381 }
382
383 if (bad_type_exit->control()->req() > 1) {
384 // Build an uncommon trap here, if any inputs can be unexpected.
385 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
386 record_for_igvn(bad_type_exit->control());
387 SafePointNode* types_are_good = map();
388 set_map(bad_type_exit);
389 // The unexpected type happens because a new edge is active
390 // in the CFG, which typeflow had previously ignored.
391 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
392 // This x will be typed as Integer if notReached is not yet linked.
393 // It could also happen due to a problem in ciTypeFlow analysis.
394 uncommon_trap(Deoptimization::Reason_constraint,
395 Deoptimization::Action_reinterpret);
396 set_map(types_are_good);
397 }
398 }
399
400 //------------------------------Parse------------------------------------------
401 // Main parser constructor.
402 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
403 : _exits(caller)
404 {
405 // Init some variables
406 _caller = caller;
407 _method = parse_method;
408 _expected_uses = expected_uses;
409 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
410 _wrote_final = false;
411 _wrote_volatile = false;
412 _wrote_stable = false;
413 _wrote_fields = false;
414 _alloc_with_final_or_stable = nullptr;
415 _block = nullptr;
416 _first_return = true;
417 _replaced_nodes_for_exceptions = false;
418 _new_idx = C->unique();
419 DEBUG_ONLY(_entry_bci = UnknownBci);
420 DEBUG_ONLY(_block_count = -1);
421 DEBUG_ONLY(_blocks = (Block*)-1);
422 #ifndef PRODUCT
423 if (PrintCompilation || PrintOpto) {
424 // Make sure I have an inline tree, so I can print messages about it.
425 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method);
426 }
427 _max_switch_depth = 0;
428 _est_switch_depth = 0;
429 #endif
430
431 if (parse_method->has_reserved_stack_access()) {
432 C->set_has_reserved_stack_access(true);
433 }
434
435 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) {
436 C->set_has_monitors(true);
437 }
438
439 if (parse_method->is_scoped()) {
440 C->set_has_scoped_access(true);
441 }
442
443 _iter.reset_to_method(method());
444 C->set_has_loops(C->has_loops() || method()->has_loops());
445
446 if (_expected_uses <= 0) {
447 _prof_factor = 1;
448 } else {
449 float prof_total = parse_method->interpreter_invocation_count();
450 if (prof_total <= _expected_uses) {
451 _prof_factor = 1;
452 } else {
453 _prof_factor = _expected_uses / prof_total;
454 }
455 }
456
457 CompileLog* log = C->log();
458 if (log != nullptr) {
459 log->begin_head("parse method='%d' uses='%f'",
460 log->identify(parse_method), expected_uses);
461 if (depth() == 1 && C->is_osr_compilation()) {
462 log->print(" osr_bci='%d'", C->entry_bci());
463 }
464 log->stamp();
465 log->end_head();
466 }
467
468 // Accumulate deoptimization counts.
469 // (The range_check and store_check counts are checked elsewhere.)
470 ciMethodData* md = method()->method_data();
471 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
472 uint md_count = md->trap_count(reason);
473 if (md_count != 0) {
474 if (md_count >= md->trap_count_limit()) {
475 md_count = md->trap_count_limit() + md->overflow_trap_count();
476 }
477 uint total_count = C->trap_count(reason);
478 uint old_count = total_count;
479 total_count += md_count;
480 // Saturate the add if it overflows.
481 if (total_count < old_count || total_count < md_count)
482 total_count = (uint)-1;
483 C->set_trap_count(reason, total_count);
484 if (log != nullptr)
485 log->elem("observe trap='%s' count='%d' total='%d'",
486 Deoptimization::trap_reason_name(reason),
487 md_count, total_count);
488 }
489 }
490 // Accumulate total sum of decompilations, also.
491 C->set_decompile_count(C->decompile_count() + md->decompile_count());
492
493 if (log != nullptr && method()->has_exception_handlers()) {
494 log->elem("observe that='has_exception_handlers'");
495 }
496
497 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
498 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
499
500 // Always register dependence if JVMTI is enabled, because
501 // either breakpoint setting or hotswapping of methods may
502 // cause deoptimization.
503 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
504 C->dependencies()->assert_evol_method(method());
505 }
506
507 NOT_PRODUCT(methods_seen++);
508
509 // Do some special top-level things.
510 if (depth() == 1 && C->is_osr_compilation()) {
511 _tf = C->tf(); // the OSR entry type is different
512 _entry_bci = C->entry_bci();
513 _flow = method()->get_osr_flow_analysis(osr_bci());
514 } else {
515 _tf = TypeFunc::make(method());
516 _entry_bci = InvocationEntryBci;
517 _flow = method()->get_flow_analysis();
518 }
519
520 if (_flow->failing()) {
521 assert(false, "type flow analysis failed during parsing");
522 C->record_method_not_compilable(_flow->failure_reason());
523 #ifndef PRODUCT
524 if (PrintOpto && (Verbose || WizardMode)) {
525 if (is_osr_parse()) {
526 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
527 } else {
528 tty->print_cr("type flow bailout: %s", _flow->failure_reason());
529 }
530 if (Verbose) {
531 method()->print();
532 method()->print_codes();
533 _flow->print();
534 }
535 }
536 #endif
537 }
538
539 #ifdef ASSERT
540 if (depth() == 1) {
541 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
542 } else {
543 assert(!this->is_osr_parse(), "no recursive OSR");
544 }
545 #endif
546
547 #ifndef PRODUCT
548 if (_flow->has_irreducible_entry()) {
549 C->set_parsed_irreducible_loop(true);
550 }
551
552 methods_parsed++;
553 // add method size here to guarantee that inlined methods are added too
554 if (CITime)
555 _total_bytes_compiled += method()->code_size();
556
557 show_parse_info();
558 #endif
559
560 if (failing()) {
561 if (log) log->done("parse");
562 return;
563 }
564
565 gvn().transform(top());
566
567 // Import the results of the ciTypeFlow.
568 init_blocks();
569
570 // Merge point for all normal exits
571 build_exits();
572
573 // Setup the initial JVM state map.
574 SafePointNode* entry_map = create_entry_map();
575
576 // Check for bailouts during map initialization
577 if (failing() || entry_map == nullptr) {
578 if (log) log->done("parse");
579 return;
580 }
581
582 Node_Notes* caller_nn = C->default_node_notes();
583 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
584 if (DebugInlinedCalls || depth() == 1) {
585 C->set_default_node_notes(make_node_notes(caller_nn));
586 }
587
588 if (is_osr_parse()) {
589 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
590 entry_map->set_req(TypeFunc::Parms+0, top());
591 set_map(entry_map);
592 load_interpreter_state(osr_buf);
593 } else {
594 set_map(entry_map);
595 do_method_entry();
596 }
597
598 if (depth() == 1 && !failing()) {
599 if (C->clinit_barrier_on_entry()) {
600 // Add check to deoptimize the nmethod once the holder class is fully initialized
601 clinit_deopt();
602 }
603 }
604
605 // Check for bailouts during method entry.
606 if (failing()) {
607 if (log) log->done("parse");
608 C->set_default_node_notes(caller_nn);
609 return;
610 }
611
612 entry_map = map(); // capture any changes performed by method setup code
613 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
614
615 // We begin parsing as if we have just encountered a jump to the
616 // method entry.
617 Block* entry_block = start_block();
618 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
619 set_map_clone(entry_map);
620 merge_common(entry_block, entry_block->next_path_num());
621
622 #ifndef PRODUCT
623 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
624 set_parse_histogram( parse_histogram_obj );
625 #endif
626
627 // Parse all the basic blocks.
628 do_all_blocks();
629
630 // Check for bailouts during conversion to graph
631 if (failing()) {
632 if (log) log->done("parse");
633 return;
634 }
635
636 // Fix up all exiting control flow.
637 set_map(entry_map);
638 do_exits();
639
640 // Only reset this now, to make sure that debug information emitted
641 // for exiting control flow still refers to the inlined method.
642 C->set_default_node_notes(caller_nn);
643
644 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'",
645 C->unique(), C->live_nodes(), C->node_arena()->used());
646 }
647
648 //---------------------------do_all_blocks-------------------------------------
649 void Parse::do_all_blocks() {
650 bool has_irreducible = flow()->has_irreducible_entry();
651
652 // Walk over all blocks in Reverse Post-Order.
653 while (true) {
654 bool progress = false;
655 for (int rpo = 0; rpo < block_count(); rpo++) {
656 Block* block = rpo_at(rpo);
657
658 if (block->is_parsed()) continue;
659
660 if (!block->is_merged()) {
661 // Dead block, no state reaches this block
662 continue;
663 }
664
665 // Prepare to parse this block.
666 load_state_from(block);
667
668 if (stopped()) {
669 // Block is dead.
670 continue;
671 }
672
673 NOT_PRODUCT(blocks_parsed++);
674
675 progress = true;
676 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
677 // Not all preds have been parsed. We must build phis everywhere.
678 // (Note that dead locals do not get phis built, ever.)
679 ensure_phis_everywhere();
680
681 if (block->is_SEL_head()) {
682 // Add predicate to single entry (not irreducible) loop head.
683 assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
684 // Predicates may have been added after a dominating if
685 if (!block->has_predicates()) {
686 // Need correct bci for predicate.
687 // It is fine to set it here since do_one_block() will set it anyway.
688 set_parse_bci(block->start());
689 add_parse_predicates();
690 }
691 // Add new region for back branches.
692 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
693 RegionNode *r = new RegionNode(edges+1);
694 _gvn.set_type(r, Type::CONTROL);
695 record_for_igvn(r);
696 r->init_req(edges, control());
697 set_control(r);
698 block->copy_irreducible_status_to(r, jvms());
699 // Add new phis.
700 ensure_phis_everywhere();
701 }
702
703 // Leave behind an undisturbed copy of the map, for future merges.
704 set_map(clone_map());
705 }
706
707 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
708 // In the absence of irreducible loops, the Region and Phis
709 // associated with a merge that doesn't involve a backedge can
710 // be simplified now since the RPO parsing order guarantees
711 // that any path which was supposed to reach here has already
712 // been parsed or must be dead.
713 Node* c = control();
714 Node* result = _gvn.transform(control());
715 if (c != result && TraceOptoParse) {
716 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
717 }
718 if (result != top()) {
719 record_for_igvn(result);
720 }
721 }
722
723 // Parse the block.
724 do_one_block();
725
726 // Check for bailouts.
727 if (failing()) return;
728 }
729
730 // with irreducible loops multiple passes might be necessary to parse everything
731 if (!has_irreducible || !progress) {
732 break;
733 }
734 }
735
736 #ifndef PRODUCT
737 blocks_seen += block_count();
738
739 // Make sure there are no half-processed blocks remaining.
740 // Every remaining unprocessed block is dead and may be ignored now.
741 for (int rpo = 0; rpo < block_count(); rpo++) {
742 Block* block = rpo_at(rpo);
743 if (!block->is_parsed()) {
744 if (TraceOptoParse) {
745 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
746 }
747 assert(!block->is_merged(), "no half-processed blocks");
748 }
749 }
750 #endif
751 }
752
753 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
754 switch (bt) {
755 case T_BYTE:
756 v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
757 v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
758 break;
759 case T_SHORT:
760 v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
761 v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
762 break;
763 case T_CHAR:
764 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
765 break;
766 case T_BOOLEAN:
767 v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
768 break;
769 default:
770 break;
771 }
772 return v;
773 }
774
775 //-------------------------------build_exits----------------------------------
776 // Build normal and exceptional exit merge points.
777 void Parse::build_exits() {
778 // make a clone of caller to prevent sharing of side-effects
779 _exits.set_map(_exits.clone_map());
780 _exits.clean_stack(_exits.sp());
781 _exits.sync_jvms();
782
783 RegionNode* region = new RegionNode(1);
784 record_for_igvn(region);
785 gvn().set_type_bottom(region);
786 _exits.set_control(region);
787
788 // Note: iophi and memphi are not transformed until do_exits.
789 Node* iophi = new PhiNode(region, Type::ABIO);
790 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
791 gvn().set_type_bottom(iophi);
792 gvn().set_type_bottom(memphi);
793 _exits.set_i_o(iophi);
794 _exits.set_all_memory(memphi);
795
796 // Add a return value to the exit state. (Do not push it yet.)
797 if (tf()->range()->cnt() > TypeFunc::Parms) {
798 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
799 if (ret_type->isa_int()) {
800 BasicType ret_bt = method()->return_type()->basic_type();
801 if (ret_bt == T_BOOLEAN ||
802 ret_bt == T_CHAR ||
803 ret_bt == T_BYTE ||
804 ret_bt == T_SHORT) {
805 ret_type = TypeInt::INT;
806 }
807 }
808
809 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
810 // becomes loaded during the subsequent parsing, the loaded and unloaded
811 // types will not join when we transform and push in do_exits().
812 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
813 if (ret_oop_type && !ret_oop_type->is_loaded()) {
814 ret_type = TypeOopPtr::BOTTOM;
815 }
816 int ret_size = type2size[ret_type->basic_type()];
817 Node* ret_phi = new PhiNode(region, ret_type);
818 gvn().set_type_bottom(ret_phi);
819 _exits.ensure_stack(ret_size);
820 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
821 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
822 _exits.set_argument(0, ret_phi); // here is where the parser finds it
823 // Note: ret_phi is not yet pushed, until do_exits.
824 }
825 }
826
827
828 //----------------------------build_start_state-------------------------------
829 // Construct a state which contains only the incoming arguments from an
830 // unknown caller. The method & bci will be null & InvocationEntryBci.
831 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
832 int arg_size = tf->domain()->cnt();
833 int max_size = MAX2(arg_size, (int)tf->range()->cnt());
834 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
835 SafePointNode* map = new SafePointNode(max_size, jvms);
836 record_for_igvn(map);
837 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
838 Node_Notes* old_nn = default_node_notes();
839 if (old_nn != nullptr && has_method()) {
840 Node_Notes* entry_nn = old_nn->clone(this);
841 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
842 entry_jvms->set_offsets(0);
843 entry_jvms->set_bci(entry_bci());
844 entry_nn->set_jvms(entry_jvms);
845 set_default_node_notes(entry_nn);
846 }
847 uint i;
848 for (i = 0; i < (uint)arg_size; i++) {
849 Node* parm = initial_gvn()->transform(new ParmNode(start, i));
850 map->init_req(i, parm);
851 // Record all these guys for later GVN.
852 record_for_igvn(parm);
853 }
854 for (; i < map->req(); i++) {
855 map->init_req(i, top());
856 }
857 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
858 set_default_node_notes(old_nn);
859 jvms->set_map(map);
860 return jvms;
861 }
862
863 //-----------------------------make_node_notes---------------------------------
864 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
865 if (caller_nn == nullptr) return nullptr;
866 Node_Notes* nn = caller_nn->clone(C);
867 JVMState* caller_jvms = nn->jvms();
868 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
869 jvms->set_offsets(0);
870 jvms->set_bci(_entry_bci);
871 nn->set_jvms(jvms);
872 return nn;
873 }
874
875
876 //--------------------------return_values--------------------------------------
877 void Compile::return_values(JVMState* jvms) {
878 GraphKit kit(jvms);
879 Node* ret = new ReturnNode(TypeFunc::Parms,
880 kit.control(),
881 kit.i_o(),
882 kit.reset_memory(),
883 kit.frameptr(),
884 kit.returnadr());
885 // Add zero or 1 return values
886 int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
887 if (ret_size > 0) {
888 kit.inc_sp(-ret_size); // pop the return value(s)
889 kit.sync_jvms();
890 ret->add_req(kit.argument(0));
891 // Note: The second dummy edge is not needed by a ReturnNode.
892 }
893 // bind it to root
894 root()->add_req(ret);
895 record_for_igvn(ret);
896 initial_gvn()->transform(ret);
897 }
898
899 //------------------------rethrow_exceptions-----------------------------------
900 // Bind all exception states in the list into a single RethrowNode.
901 void Compile::rethrow_exceptions(JVMState* jvms) {
902 GraphKit kit(jvms);
903 if (!kit.has_exceptions()) return; // nothing to generate
904 // Load my combined exception state into the kit, with all phis transformed:
905 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
906 Node* ex_oop = kit.use_exception_state(ex_map);
907 RethrowNode* exit = new RethrowNode(kit.control(),
908 kit.i_o(), kit.reset_memory(),
909 kit.frameptr(), kit.returnadr(),
910 // like a return but with exception input
911 ex_oop);
912 // bind to root
913 root()->add_req(exit);
914 record_for_igvn(exit);
915 initial_gvn()->transform(exit);
916 }
917
918 //---------------------------do_exceptions-------------------------------------
919 // Process exceptions arising from the current bytecode.
920 // Send caught exceptions to the proper handler within this method.
921 // Unhandled exceptions feed into _exit.
922 void Parse::do_exceptions() {
923 if (!has_exceptions()) return;
924
925 if (failing()) {
926 // Pop them all off and throw them away.
927 while (pop_exception_state() != nullptr) ;
928 return;
929 }
930
931 PreserveJVMState pjvms(this, false);
932
933 SafePointNode* ex_map;
934 while ((ex_map = pop_exception_state()) != nullptr) {
935 if (!method()->has_exception_handlers()) {
936 // Common case: Transfer control outward.
937 // Doing it this early allows the exceptions to common up
938 // even between adjacent method calls.
939 throw_to_exit(ex_map);
940 } else {
941 // Have to look at the exception first.
942 assert(stopped(), "catch_inline_exceptions trashes the map");
943 catch_inline_exceptions(ex_map);
944 stop_and_kill_map(); // we used up this exception state; kill it
945 }
946 }
947
948 // We now return to our regularly scheduled program:
949 }
950
951 //---------------------------throw_to_exit-------------------------------------
952 // Merge the given map into an exception exit from this method.
953 // The exception exit will handle any unlocking of receiver.
954 // The ex_oop must be saved within the ex_map, unlike merge_exception.
955 void Parse::throw_to_exit(SafePointNode* ex_map) {
956 // Pop the JVMS to (a copy of) the caller.
957 GraphKit caller;
958 caller.set_map_clone(_caller->map());
959 caller.set_bci(_caller->bci());
960 caller.set_sp(_caller->sp());
961 // Copy out the standard machine state:
962 for (uint i = 0; i < TypeFunc::Parms; i++) {
963 caller.map()->set_req(i, ex_map->in(i));
964 }
965 if (ex_map->has_replaced_nodes()) {
966 _replaced_nodes_for_exceptions = true;
967 }
968 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
969 // ...and the exception:
970 Node* ex_oop = saved_ex_oop(ex_map);
971 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
972 // Finally, collect the new exception state in my exits:
973 _exits.add_exception_state(caller_ex_map);
974 }
975
976 //------------------------------do_exits---------------------------------------
977 void Parse::do_exits() {
978 set_parse_bci(InvocationEntryBci);
979
980 // Now peephole on the return bits
981 Node* region = _exits.control();
982 _exits.set_control(gvn().transform(region));
983
984 Node* iophi = _exits.i_o();
985 _exits.set_i_o(gvn().transform(iophi));
986
987 // Figure out if we need to emit the trailing barrier. The barrier is only
988 // needed in the constructors, and only in three cases:
989 //
990 // 1. The constructor wrote a final or a @Stable field. All these
991 // initializations must be ordered before any code after the constructor
992 // publishes the reference to the newly constructed object. Rather
993 // than wait for the publication, we simply block the writes here.
994 // Rather than put a barrier on only those writes which are required
995 // to complete, we force all writes to complete.
996 //
997 // 2. Experimental VM option is used to force the barrier if any field
998 // was written out in the constructor.
999 //
1000 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1001 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1002 // MemBarVolatile is used before volatile load instead of after volatile
1003 // store, so there's no barrier after the store.
1004 // We want to guarantee the same behavior as on platforms with total store
1005 // order, although this is not required by the Java memory model.
1006 // In this case, we want to enforce visibility of volatile field
1007 // initializations which are performed in constructors.
1008 // So as with finals, we add a barrier here.
1009 //
1010 // "All bets are off" unless the first publication occurs after a
1011 // normal return from the constructor. We do not attempt to detect
1012 // such unusual early publications. But no barrier is needed on
1013 // exceptional returns, since they cannot publish normally.
1014 //
1015 if (method()->is_object_initializer() &&
1016 (wrote_final() || wrote_stable() ||
1017 (AlwaysSafeConstructors && wrote_fields()) ||
1018 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1019 Node* recorded_alloc = alloc_with_final_or_stable();
1020 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1021 recorded_alloc);
1022
1023 // If Memory barrier is created for final fields write
1024 // and allocation node does not escape the initialize method,
1025 // then barrier introduced by allocation node can be removed.
1026 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1027 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1028 alloc->compute_MemBar_redundancy(method());
1029 }
1030 if (PrintOpto && (Verbose || WizardMode)) {
1031 method()->print_name();
1032 tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1033 }
1034 }
1035
1036 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1037 // transform each slice of the original memphi:
1038 mms.set_memory(_gvn.transform(mms.memory()));
1039 }
1040 // Clean up input MergeMems created by transforming the slices
1041 _gvn.transform(_exits.merged_memory());
1042
1043 if (tf()->range()->cnt() > TypeFunc::Parms) {
1044 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
1045 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1046 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1047 // If the type we set for the ret_phi in build_exits() is too optimistic and
1048 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1049 // loading. It could also be due to an error, so mark this method as not compilable because
1050 // otherwise this could lead to an infinite compile loop.
1051 // In any case, this code path is rarely (and never in my testing) reached.
1052 C->record_method_not_compilable("Can't determine return type.");
1053 return;
1054 }
1055 if (ret_type->isa_int()) {
1056 BasicType ret_bt = method()->return_type()->basic_type();
1057 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1058 }
1059 _exits.push_node(ret_type->basic_type(), ret_phi);
1060 }
1061
1062 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1063
1064 // Unlock along the exceptional paths.
1065 // This is done late so that we can common up equivalent exceptions
1066 // (e.g., null checks) arising from multiple points within this method.
1067 // See GraphKit::add_exception_state, which performs the commoning.
1068 bool do_synch = method()->is_synchronized();
1069
1070 // record exit from a method if compiled while Dtrace is turned on.
1071 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1072 // First move the exception list out of _exits:
1073 GraphKit kit(_exits.transfer_exceptions_into_jvms());
1074 SafePointNode* normal_map = kit.map(); // keep this guy safe
1075 // Now re-collect the exceptions into _exits:
1076 SafePointNode* ex_map;
1077 while ((ex_map = kit.pop_exception_state()) != nullptr) {
1078 Node* ex_oop = kit.use_exception_state(ex_map);
1079 // Force the exiting JVM state to have this method at InvocationEntryBci.
1080 // The exiting JVM state is otherwise a copy of the calling JVMS.
1081 JVMState* caller = kit.jvms();
1082 JVMState* ex_jvms = caller->clone_shallow(C);
1083 ex_jvms->bind_map(kit.clone_map());
1084 ex_jvms->set_bci( InvocationEntryBci);
1085 kit.set_jvms(ex_jvms);
1086 if (do_synch) {
1087 // Add on the synchronized-method box/object combo
1088 kit.map()->push_monitor(_synch_lock);
1089 // Unlock!
1090 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1091 }
1092 if (C->env()->dtrace_method_probes()) {
1093 kit.make_dtrace_method_exit(method());
1094 }
1095 if (_replaced_nodes_for_exceptions) {
1096 kit.map()->apply_replaced_nodes(_new_idx);
1097 }
1098 // Done with exception-path processing.
1099 ex_map = kit.make_exception_state(ex_oop);
1100 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1101 // Pop the last vestige of this method:
1102 caller->clone_shallow(C)->bind_map(ex_map);
1103 _exits.push_exception_state(ex_map);
1104 }
1105 assert(_exits.map() == normal_map, "keep the same return state");
1106 }
1107
1108 {
1109 // Capture very early exceptions (receiver null checks) from caller JVMS
1110 GraphKit caller(_caller);
1111 SafePointNode* ex_map;
1112 while ((ex_map = caller.pop_exception_state()) != nullptr) {
1113 _exits.add_exception_state(ex_map);
1114 }
1115 }
1116 _exits.map()->apply_replaced_nodes(_new_idx);
1117 }
1118
1119 //-----------------------------create_entry_map-------------------------------
1120 // Initialize our parser map to contain the types at method entry.
1121 // For OSR, the map contains a single RawPtr parameter.
1122 // Initial monitor locking for sync. methods is performed by do_method_entry.
1123 SafePointNode* Parse::create_entry_map() {
1124 // Check for really stupid bail-out cases.
1125 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1126 if (len >= 32760) {
1127 // Bailout expected, this is a very rare edge case.
1128 C->record_method_not_compilable("too many local variables");
1129 return nullptr;
1130 }
1131
1132 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1133 _caller->map()->delete_replaced_nodes();
1134
1135 // If this is an inlined method, we may have to do a receiver null check.
1136 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1137 GraphKit kit(_caller);
1138 kit.null_check_receiver_before_call(method());
1139 _caller = kit.transfer_exceptions_into_jvms();
1140 if (kit.stopped()) {
1141 _exits.add_exception_states_from(_caller);
1142 _exits.set_jvms(_caller);
1143 return nullptr;
1144 }
1145 }
1146
1147 assert(method() != nullptr, "parser must have a method");
1148
1149 // Create an initial safepoint to hold JVM state during parsing
1150 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1151 set_map(new SafePointNode(len, jvms));
1152
1153 // Capture receiver info for compiled lambda forms.
1154 if (method()->is_compiled_lambda_form()) {
1155 ciInstance* recv_info = _caller->compute_receiver_info(method());
1156 jvms->set_receiver_info(recv_info);
1157 }
1158
1159 jvms->set_map(map());
1160 record_for_igvn(map());
1161 assert(jvms->endoff() == len, "correct jvms sizing");
1162
1163 SafePointNode* inmap = _caller->map();
1164 assert(inmap != nullptr, "must have inmap");
1165 // In case of null check on receiver above
1166 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1167
1168 uint i;
1169
1170 // Pass thru the predefined input parameters.
1171 for (i = 0; i < TypeFunc::Parms; i++) {
1172 map()->init_req(i, inmap->in(i));
1173 }
1174
1175 if (depth() == 1) {
1176 assert(map()->memory()->Opcode() == Op_Parm, "");
1177 // Insert the memory aliasing node
1178 set_all_memory(reset_memory());
1179 }
1180 assert(merged_memory(), "");
1181
1182 // Now add the locals which are initially bound to arguments:
1183 uint arg_size = tf()->domain()->cnt();
1184 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1185 for (i = TypeFunc::Parms; i < arg_size; i++) {
1186 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1187 }
1188
1189 // Clear out the rest of the map (locals and stack)
1190 for (i = arg_size; i < len; i++) {
1191 map()->init_req(i, top());
1192 }
1193
1194 SafePointNode* entry_map = stop();
1195 return entry_map;
1196 }
1197
1198 //-----------------------------do_method_entry--------------------------------
1199 // Emit any code needed in the pseudo-block before BCI zero.
1200 // The main thing to do is lock the receiver of a synchronized method.
1201 void Parse::do_method_entry() {
1202 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1203 set_sp(0); // Java Stack Pointer
1204
1205 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1206
1207 if (C->env()->dtrace_method_probes()) {
1208 make_dtrace_method_entry(method());
1209 }
1210
1211 #ifdef ASSERT
1212 // Narrow receiver type when it is too broad for the method being parsed.
1213 if (!method()->is_static()) {
1214 ciInstanceKlass* callee_holder = method()->holder();
1215 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1216
1217 Node* receiver_obj = local(0);
1218 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1219
1220 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1221 // Receiver should always be a subtype of callee holder.
1222 // But, since C2 type system doesn't properly track interfaces,
1223 // the invariant can't be expressed in the type system for default methods.
1224 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1225 assert(callee_holder->is_interface(), "missing subtype check");
1226
1227 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1228 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1229 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1230 assert(!stopped(), "not a subtype");
1231
1232 halt(not_subtype_ctrl, frameptr(), "failed receiver subtype check");
1233 }
1234 }
1235 #endif // ASSERT
1236
1237 // If the method is synchronized, we need to construct a lock node, attach
1238 // it to the Start node, and pin it there.
1239 if (method()->is_synchronized()) {
1240 // Insert a FastLockNode right after the Start which takes as arguments
1241 // the current thread pointer, the "this" pointer & the address of the
1242 // stack slot pair used for the lock. The "this" pointer is a projection
1243 // off the start node, but the locking spot has to be constructed by
1244 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1245 // becomes the second argument to the FastLockNode call. The
1246 // FastLockNode becomes the new control parent to pin it to the start.
1247
1248 // Setup Object Pointer
1249 Node *lock_obj = nullptr;
1250 if (method()->is_static()) {
1251 ciInstance* mirror = _method->holder()->java_mirror();
1252 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1253 lock_obj = makecon(t_lock);
1254 } else { // Else pass the "this" pointer,
1255 lock_obj = local(0); // which is Parm0 from StartNode
1256 }
1257 // Clear out dead values from the debug info.
1258 kill_dead_locals();
1259 // Build the FastLockNode
1260 _synch_lock = shared_lock(lock_obj);
1261 // Check for bailout in shared_lock
1262 if (failing()) { return; }
1263 }
1264
1265 // Feed profiling data for parameters to the type system so it can
1266 // propagate it as speculative types
1267 record_profiled_parameters_for_speculation();
1268 }
1269
1270 //------------------------------init_blocks------------------------------------
1271 // Initialize our parser map to contain the types/monitors at method entry.
1272 void Parse::init_blocks() {
1273 // Create the blocks.
1274 _block_count = flow()->block_count();
1275 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1276
1277 // Initialize the structs.
1278 for (int rpo = 0; rpo < block_count(); rpo++) {
1279 Block* block = rpo_at(rpo);
1280 new(block) Block(this, rpo);
1281 }
1282
1283 // Collect predecessor and successor information.
1284 for (int rpo = 0; rpo < block_count(); rpo++) {
1285 Block* block = rpo_at(rpo);
1286 block->init_graph(this);
1287 }
1288 }
1289
1290 //-------------------------------init_node-------------------------------------
1291 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1292 _flow = outer->flow()->rpo_at(rpo);
1293 _pred_count = 0;
1294 _preds_parsed = 0;
1295 _count = 0;
1296 _is_parsed = false;
1297 _is_handler = false;
1298 _has_merged_backedge = false;
1299 _start_map = nullptr;
1300 _has_predicates = false;
1301 _num_successors = 0;
1302 _all_successors = 0;
1303 _successors = nullptr;
1304 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1305 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1306 assert(_live_locals.size() == 0, "sanity");
1307
1308 // entry point has additional predecessor
1309 if (flow()->is_start()) _pred_count++;
1310 assert(flow()->is_start() == (this == outer->start_block()), "");
1311 }
1312
1313 //-------------------------------init_graph------------------------------------
1314 void Parse::Block::init_graph(Parse* outer) {
1315 // Create the successor list for this parser block.
1316 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1317 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1318 int ns = tfs->length();
1319 int ne = tfe->length();
1320 _num_successors = ns;
1321 _all_successors = ns+ne;
1322 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1323 int p = 0;
1324 for (int i = 0; i < ns+ne; i++) {
1325 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1326 Block* block2 = outer->rpo_at(tf2->rpo());
1327 _successors[i] = block2;
1328
1329 // Accumulate pred info for the other block, too.
1330 // Note: We also need to set _pred_count for exception blocks since they could
1331 // also have normal predecessors (reached without athrow by an explicit jump).
1332 // This also means that next_path_num can be called along exception paths.
1333 block2->_pred_count++;
1334 if (i >= ns) {
1335 block2->_is_handler = true;
1336 }
1337
1338 #ifdef ASSERT
1339 // A block's successors must be distinguishable by BCI.
1340 // That is, no bytecode is allowed to branch to two different
1341 // clones of the same code location.
1342 for (int j = 0; j < i; j++) {
1343 Block* block1 = _successors[j];
1344 if (block1 == block2) continue; // duplicates are OK
1345 assert(block1->start() != block2->start(), "successors have unique bcis");
1346 }
1347 #endif
1348 }
1349 }
1350
1351 //---------------------------successor_for_bci---------------------------------
1352 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1353 for (int i = 0; i < all_successors(); i++) {
1354 Block* block2 = successor_at(i);
1355 if (block2->start() == bci) return block2;
1356 }
1357 // We can actually reach here if ciTypeFlow traps out a block
1358 // due to an unloaded class, and concurrently with compilation the
1359 // class is then loaded, so that a later phase of the parser is
1360 // able to see more of the bytecode CFG. Or, the flow pass and
1361 // the parser can have a minor difference of opinion about executability
1362 // of bytecodes. For example, "obj.field = null" is executable even
1363 // if the field's type is an unloaded class; the flow pass used to
1364 // make a trap for such code.
1365 return nullptr;
1366 }
1367
1368
1369 //-----------------------------stack_type_at-----------------------------------
1370 const Type* Parse::Block::stack_type_at(int i) const {
1371 return get_type(flow()->stack_type_at(i));
1372 }
1373
1374
1375 //-----------------------------local_type_at-----------------------------------
1376 const Type* Parse::Block::local_type_at(int i) const {
1377 // Make dead locals fall to bottom.
1378 if (_live_locals.size() == 0) {
1379 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1380 // This bitmap can be zero length if we saw a breakpoint.
1381 // In such cases, pretend they are all live.
1382 ((Block*)this)->_live_locals = live_locals;
1383 }
1384 if (_live_locals.size() > 0 && !_live_locals.at(i))
1385 return Type::BOTTOM;
1386
1387 return get_type(flow()->local_type_at(i));
1388 }
1389
1390
1391 #ifndef PRODUCT
1392
1393 //----------------------------name_for_bc--------------------------------------
1394 // helper method for BytecodeParseHistogram
1395 static const char* name_for_bc(int i) {
1396 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1397 }
1398
1399 //----------------------------BytecodeParseHistogram------------------------------------
1400 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1401 _parser = p;
1402 _compiler = c;
1403 if( ! _initialized ) { _initialized = true; reset(); }
1404 }
1405
1406 //----------------------------current_count------------------------------------
1407 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1408 switch( bph_type ) {
1409 case BPH_transforms: { return _parser->gvn().made_progress(); }
1410 case BPH_values: { return _parser->gvn().made_new_values(); }
1411 default: { ShouldNotReachHere(); return 0; }
1412 }
1413 }
1414
1415 //----------------------------initialized--------------------------------------
1416 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1417
1418 //----------------------------reset--------------------------------------------
1419 void Parse::BytecodeParseHistogram::reset() {
1420 int i = Bytecodes::number_of_codes;
1421 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1422 }
1423
1424 //----------------------------set_initial_state--------------------------------
1425 // Record info when starting to parse one bytecode
1426 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1427 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1428 _initial_bytecode = bc;
1429 _initial_node_count = _compiler->unique();
1430 _initial_transforms = current_count(BPH_transforms);
1431 _initial_values = current_count(BPH_values);
1432 }
1433 }
1434
1435 //----------------------------record_change--------------------------------
1436 // Record results of parsing one bytecode
1437 void Parse::BytecodeParseHistogram::record_change() {
1438 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1439 ++_bytecodes_parsed[_initial_bytecode];
1440 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1441 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1442 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
1443 }
1444 }
1445
1446
1447 //----------------------------print--------------------------------------------
1448 void Parse::BytecodeParseHistogram::print(float cutoff) {
1449 ResourceMark rm;
1450 // print profile
1451 int total = 0;
1452 int i = 0;
1453 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1454 int abs_sum = 0;
1455 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
1456 tty->print_cr("Histogram of %d parsed bytecodes:", total);
1457 if( total == 0 ) { return; }
1458 tty->cr();
1459 tty->print_cr("absolute: count of compiled bytecodes of this type");
1460 tty->print_cr("relative: percentage contribution to compiled nodes");
1461 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
1462 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
1463 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1464 tty->print_cr("values : Average number of node values improved per bytecode");
1465 tty->print_cr("name : Bytecode name");
1466 tty->cr();
1467 tty->print_cr(" absolute relative nodes rnodes transforms values name");
1468 tty->print_cr("----------------------------------------------------------------------");
1469 while (--i > 0) {
1470 int abs = _bytecodes_parsed[i];
1471 float rel = abs * 100.0F / total;
1472 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1473 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
1474 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1475 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
1476 if (cutoff <= rel) {
1477 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1478 abs_sum += abs;
1479 }
1480 }
1481 tty->print_cr("----------------------------------------------------------------------");
1482 float rel_sum = abs_sum * 100.0F / total;
1483 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1484 tty->print_cr("----------------------------------------------------------------------");
1485 tty->cr();
1486 }
1487 #endif
1488
1489 //----------------------------load_state_from----------------------------------
1490 // Load block/map/sp. But not do not touch iter/bci.
1491 void Parse::load_state_from(Block* block) {
1492 set_block(block);
1493 // load the block's JVM state:
1494 set_map(block->start_map());
1495 set_sp( block->start_sp());
1496 }
1497
1498
1499 //-----------------------------record_state------------------------------------
1500 void Parse::Block::record_state(Parse* p) {
1501 assert(!is_merged(), "can only record state once, on 1st inflow");
1502 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1503 set_start_map(p->stop());
1504 }
1505
1506
1507 //------------------------------do_one_block-----------------------------------
1508 void Parse::do_one_block() {
1509 if (TraceOptoParse) {
1510 Block *b = block();
1511 int ns = b->num_successors();
1512 int nt = b->all_successors();
1513
1514 tty->print("Parsing block #%d at bci [%d,%d), successors:",
1515 block()->rpo(), block()->start(), block()->limit());
1516 for (int i = 0; i < nt; i++) {
1517 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo());
1518 }
1519 if (b->is_loop_head()) {
1520 tty->print(" loop head");
1521 }
1522 if (b->is_irreducible_loop_entry()) {
1523 tty->print(" irreducible");
1524 }
1525 tty->cr();
1526 }
1527
1528 assert(block()->is_merged(), "must be merged before being parsed");
1529 block()->mark_parsed();
1530
1531 // Set iterator to start of block.
1532 iter().reset_to_bci(block()->start());
1533
1534 if (ProfileExceptionHandlers && block()->is_handler()) {
1535 ciMethodData* methodData = method()->method_data();
1536 if (methodData->is_mature()) {
1537 ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1538 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1539 // dead catch block
1540 // Emit an uncommon trap instead of processing the block.
1541 set_parse_bci(block()->start());
1542 uncommon_trap(Deoptimization::Reason_unreached,
1543 Deoptimization::Action_reinterpret,
1544 nullptr, "dead catch block");
1545 return;
1546 }
1547 }
1548 }
1549
1550 CompileLog* log = C->log();
1551
1552 // Parse bytecodes
1553 while (!stopped() && !failing()) {
1554 iter().next();
1555
1556 // Learn the current bci from the iterator:
1557 set_parse_bci(iter().cur_bci());
1558
1559 if (bci() == block()->limit()) {
1560 // Do not walk into the next block until directed by do_all_blocks.
1561 merge(bci());
1562 break;
1563 }
1564 assert(bci() < block()->limit(), "bci still in block");
1565
1566 if (log != nullptr) {
1567 // Output an optional context marker, to help place actions
1568 // that occur during parsing of this BC. If there is no log
1569 // output until the next context string, this context string
1570 // will be silently ignored.
1571 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1572 }
1573
1574 if (block()->has_trap_at(bci())) {
1575 // We must respect the flow pass's traps, because it will refuse
1576 // to produce successors for trapping blocks.
1577 int trap_index = block()->flow()->trap_index();
1578 assert(trap_index != 0, "trap index must be valid");
1579 uncommon_trap(trap_index);
1580 break;
1581 }
1582
1583 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1584
1585 #ifdef ASSERT
1586 int pre_bc_sp = sp();
1587 int inputs, depth;
1588 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1589 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1590 #endif //ASSERT
1591
1592 do_one_bytecode();
1593 if (failing()) return;
1594
1595 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1596 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1597
1598 do_exceptions();
1599
1600 NOT_PRODUCT( parse_histogram()->record_change(); );
1601
1602 if (log != nullptr)
1603 log->clear_context(); // skip marker if nothing was printed
1604
1605 // Fall into next bytecode. Each bytecode normally has 1 sequential
1606 // successor which is typically made ready by visiting this bytecode.
1607 // If the successor has several predecessors, then it is a merge
1608 // point, starts a new basic block, and is handled like other basic blocks.
1609 }
1610 }
1611
1612
1613 //------------------------------merge------------------------------------------
1614 void Parse::set_parse_bci(int bci) {
1615 set_bci(bci);
1616 Node_Notes* nn = C->default_node_notes();
1617 if (nn == nullptr) return;
1618
1619 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1620 if (!DebugInlinedCalls && depth() > 1) {
1621 return;
1622 }
1623
1624 // Update the JVMS annotation, if present.
1625 JVMState* jvms = nn->jvms();
1626 if (jvms != nullptr && jvms->bci() != bci) {
1627 // Update the JVMS.
1628 jvms = jvms->clone_shallow(C);
1629 jvms->set_bci(bci);
1630 nn->set_jvms(jvms);
1631 }
1632 }
1633
1634 //------------------------------merge------------------------------------------
1635 // Merge the current mapping into the basic block starting at bci
1636 void Parse::merge(int target_bci) {
1637 Block* target = successor_for_bci(target_bci);
1638 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1639 assert(!target->is_ready(), "our arrival must be expected");
1640 int pnum = target->next_path_num();
1641 merge_common(target, pnum);
1642 }
1643
1644 //-------------------------merge_new_path--------------------------------------
1645 // Merge the current mapping into the basic block, using a new path
1646 void Parse::merge_new_path(int target_bci) {
1647 Block* target = successor_for_bci(target_bci);
1648 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1649 assert(!target->is_ready(), "new path into frozen graph");
1650 int pnum = target->add_new_path();
1651 merge_common(target, pnum);
1652 }
1653
1654 //-------------------------merge_exception-------------------------------------
1655 // Merge the current mapping into the basic block starting at bci
1656 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1657 void Parse::merge_exception(int target_bci) {
1658 #ifdef ASSERT
1659 if (target_bci <= bci()) {
1660 C->set_exception_backedge();
1661 }
1662 #endif
1663 assert(sp() == 1, "must have only the throw exception on the stack");
1664 Block* target = successor_for_bci(target_bci);
1665 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1666 assert(target->is_handler(), "exceptions are handled by special blocks");
1667 int pnum = target->add_new_path();
1668 merge_common(target, pnum);
1669 }
1670
1671 //--------------------handle_missing_successor---------------------------------
1672 void Parse::handle_missing_successor(int target_bci) {
1673 #ifndef PRODUCT
1674 Block* b = block();
1675 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1676 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1677 #endif
1678 ShouldNotReachHere();
1679 }
1680
1681 //--------------------------merge_common---------------------------------------
1682 void Parse::merge_common(Parse::Block* target, int pnum) {
1683 if (TraceOptoParse) {
1684 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1685 }
1686
1687 // Zap extra stack slots to top
1688 assert(sp() == target->start_sp(), "");
1689 clean_stack(sp());
1690
1691 if (!target->is_merged()) { // No prior mapping at this bci
1692 if (TraceOptoParse) { tty->print(" with empty state"); }
1693
1694 // If this path is dead, do not bother capturing it as a merge.
1695 // It is "as if" we had 1 fewer predecessors from the beginning.
1696 if (stopped()) {
1697 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1698 return;
1699 }
1700
1701 // Make a region if we know there are multiple or unpredictable inputs.
1702 // (Also, if this is a plain fall-through, we might see another region,
1703 // which must not be allowed into this block's map.)
1704 if (pnum > PhiNode::Input // Known multiple inputs.
1705 || target->is_handler() // These have unpredictable inputs.
1706 || target->is_loop_head() // Known multiple inputs
1707 || control()->is_Region()) { // We must hide this guy.
1708
1709 int current_bci = bci();
1710 set_parse_bci(target->start()); // Set target bci
1711 if (target->is_SEL_head()) {
1712 DEBUG_ONLY( target->mark_merged_backedge(block()); )
1713 if (target->start() == 0) {
1714 // Add Parse Predicates for the special case when
1715 // there are backbranches to the method entry.
1716 add_parse_predicates();
1717 }
1718 }
1719 // Add a Region to start the new basic block. Phis will be added
1720 // later lazily.
1721 int edges = target->pred_count();
1722 if (edges < pnum) edges = pnum; // might be a new path!
1723 RegionNode *r = new RegionNode(edges+1);
1724 gvn().set_type(r, Type::CONTROL);
1725 record_for_igvn(r);
1726 // zap all inputs to null for debugging (done in Node(uint) constructor)
1727 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1728 r->init_req(pnum, control());
1729 set_control(r);
1730 target->copy_irreducible_status_to(r, jvms());
1731 set_parse_bci(current_bci); // Restore bci
1732 }
1733
1734 // Convert the existing Parser mapping into a mapping at this bci.
1735 store_state_to(target);
1736 assert(target->is_merged(), "do not come here twice");
1737
1738 } else { // Prior mapping at this bci
1739 if (TraceOptoParse) { tty->print(" with previous state"); }
1740 #ifdef ASSERT
1741 if (target->is_SEL_head()) {
1742 target->mark_merged_backedge(block());
1743 }
1744 #endif
1745 // We must not manufacture more phis if the target is already parsed.
1746 bool nophi = target->is_parsed();
1747
1748 SafePointNode* newin = map();// Hang on to incoming mapping
1749 Block* save_block = block(); // Hang on to incoming block;
1750 load_state_from(target); // Get prior mapping
1751
1752 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1753 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1754 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1755 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1756
1757 // Iterate over my current mapping and the old mapping.
1758 // Where different, insert Phi functions.
1759 // Use any existing Phi functions.
1760 assert(control()->is_Region(), "must be merging to a region");
1761 RegionNode* r = control()->as_Region();
1762
1763 // Compute where to merge into
1764 // Merge incoming control path
1765 r->init_req(pnum, newin->control());
1766
1767 if (pnum == 1) { // Last merge for this Region?
1768 if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1769 Node* result = _gvn.transform(r);
1770 if (r != result && TraceOptoParse) {
1771 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1772 }
1773 }
1774 record_for_igvn(r);
1775 }
1776
1777 // Update all the non-control inputs to map:
1778 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1779 bool check_elide_phi = target->is_SEL_backedge(save_block);
1780 for (uint j = 1; j < newin->req(); j++) {
1781 Node* m = map()->in(j); // Current state of target.
1782 Node* n = newin->in(j); // Incoming change to target state.
1783 PhiNode* phi;
1784 if (m->is_Phi() && m->as_Phi()->region() == r)
1785 phi = m->as_Phi();
1786 else
1787 phi = nullptr;
1788 if (m != n) { // Different; must merge
1789 switch (j) {
1790 // Frame pointer and Return Address never changes
1791 case TypeFunc::FramePtr:// Drop m, use the original value
1792 case TypeFunc::ReturnAdr:
1793 break;
1794 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1795 assert(phi == nullptr, "the merge contains phis, not vice versa");
1796 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1797 continue;
1798 default: // All normal stuff
1799 if (phi == nullptr) {
1800 const JVMState* jvms = map()->jvms();
1801 if (EliminateNestedLocks &&
1802 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1803 // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1804 // Use old BoxLock node as merged box.
1805 assert(newin->jvms()->is_monitor_box(j), "sanity");
1806 // This assert also tests that nodes are BoxLock.
1807 assert(BoxLockNode::same_slot(n, m), "sanity");
1808 BoxLockNode* old_box = m->as_BoxLock();
1809 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) {
1810 // Preserve Unbalanced status.
1811 //
1812 // `old_box` can have only Regular or Coarsened status
1813 // because this code is executed only during Parse phase and
1814 // Incremental Inlining before EA and Macro nodes elimination.
1815 //
1816 // Incremental Inlining is executed after IGVN optimizations
1817 // during which BoxLock can be marked as Coarsened.
1818 old_box->set_coarsened(); // Verifies state
1819 old_box->set_unbalanced();
1820 }
1821 C->gvn_replace_by(n, m);
1822 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1823 phi = ensure_phi(j, nophi);
1824 }
1825 }
1826 break;
1827 }
1828 }
1829 // At this point, n might be top if:
1830 // - there is no phi (because TypeFlow detected a conflict), or
1831 // - the corresponding control edges is top (a dead incoming path)
1832 // It is a bug if we create a phi which sees a garbage value on a live path.
1833
1834 if (phi != nullptr) {
1835 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1836 assert(phi->region() == r, "");
1837 phi->set_req(pnum, n); // Then add 'n' to the merge
1838 if (pnum == PhiNode::Input) {
1839 // Last merge for this Phi.
1840 // So far, Phis have had a reasonable type from ciTypeFlow.
1841 // Now _gvn will join that with the meet of current inputs.
1842 // BOTTOM is never permissible here, 'cause pessimistically
1843 // Phis of pointers cannot lose the basic pointer type.
1844 DEBUG_ONLY(const Type* bt1 = phi->bottom_type());
1845 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1846 map()->set_req(j, _gvn.transform(phi));
1847 DEBUG_ONLY(const Type* bt2 = phi->bottom_type());
1848 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1849 record_for_igvn(phi);
1850 }
1851 }
1852 } // End of for all values to be merged
1853
1854 if (pnum == PhiNode::Input &&
1855 !r->in(0)) { // The occasional useless Region
1856 assert(control() == r, "");
1857 set_control(r->nonnull_req());
1858 }
1859
1860 map()->merge_replaced_nodes_with(newin);
1861
1862 // newin has been subsumed into the lazy merge, and is now dead.
1863 set_block(save_block);
1864
1865 stop(); // done with this guy, for now
1866 }
1867
1868 if (TraceOptoParse) {
1869 tty->print_cr(" on path %d", pnum);
1870 }
1871
1872 // Done with this parser state.
1873 assert(stopped(), "");
1874 }
1875
1876
1877 //--------------------------merge_memory_edges---------------------------------
1878 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1879 // (nophi means we must not create phis, because we already parsed here)
1880 assert(n != nullptr, "");
1881 // Merge the inputs to the MergeMems
1882 MergeMemNode* m = merged_memory();
1883
1884 assert(control()->is_Region(), "must be merging to a region");
1885 RegionNode* r = control()->as_Region();
1886
1887 PhiNode* base = nullptr;
1888 MergeMemNode* remerge = nullptr;
1889 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1890 Node *p = mms.force_memory();
1891 Node *q = mms.memory2();
1892 if (mms.is_empty() && nophi) {
1893 // Trouble: No new splits allowed after a loop body is parsed.
1894 // Instead, wire the new split into a MergeMem on the backedge.
1895 // The optimizer will sort it out, slicing the phi.
1896 if (remerge == nullptr) {
1897 guarantee(base != nullptr, "");
1898 assert(base->in(0) != nullptr, "should not be xformed away");
1899 remerge = MergeMemNode::make(base->in(pnum));
1900 gvn().set_type(remerge, Type::MEMORY);
1901 base->set_req(pnum, remerge);
1902 }
1903 remerge->set_memory_at(mms.alias_idx(), q);
1904 continue;
1905 }
1906 assert(!q->is_MergeMem(), "");
1907 PhiNode* phi;
1908 if (p != q) {
1909 phi = ensure_memory_phi(mms.alias_idx(), nophi);
1910 } else {
1911 if (p->is_Phi() && p->as_Phi()->region() == r)
1912 phi = p->as_Phi();
1913 else
1914 phi = nullptr;
1915 }
1916 // Insert q into local phi
1917 if (phi != nullptr) {
1918 assert(phi->region() == r, "");
1919 p = phi;
1920 phi->set_req(pnum, q);
1921 if (mms.at_base_memory()) {
1922 base = phi; // delay transforming it
1923 } else if (pnum == 1) {
1924 record_for_igvn(phi);
1925 p = _gvn.transform(phi);
1926 }
1927 mms.set_memory(p);// store back through the iterator
1928 }
1929 }
1930 // Transform base last, in case we must fiddle with remerging.
1931 if (base != nullptr && pnum == 1) {
1932 record_for_igvn(base);
1933 m->set_base_memory(_gvn.transform(base));
1934 }
1935 }
1936
1937
1938 //------------------------ensure_phis_everywhere-------------------------------
1939 void Parse::ensure_phis_everywhere() {
1940 ensure_phi(TypeFunc::I_O);
1941
1942 // Ensure a phi on all currently known memories.
1943 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1944 ensure_memory_phi(mms.alias_idx());
1945 DEBUG_ONLY(mms.set_memory()); // keep the iterator happy
1946 }
1947
1948 // Note: This is our only chance to create phis for memory slices.
1949 // If we miss a slice that crops up later, it will have to be
1950 // merged into the base-memory phi that we are building here.
1951 // Later, the optimizer will comb out the knot, and build separate
1952 // phi-loops for each memory slice that matters.
1953
1954 // Monitors must nest nicely and not get confused amongst themselves.
1955 // Phi-ify everything up to the monitors, though.
1956 uint monoff = map()->jvms()->monoff();
1957 uint nof_monitors = map()->jvms()->nof_monitors();
1958
1959 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1960 bool check_elide_phi = block()->is_SEL_head();
1961 for (uint i = TypeFunc::Parms; i < monoff; i++) {
1962 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1963 ensure_phi(i);
1964 }
1965 }
1966
1967 // Even monitors need Phis, though they are well-structured.
1968 // This is true for OSR methods, and also for the rare cases where
1969 // a monitor object is the subject of a replace_in_map operation.
1970 // See bugs 4426707 and 5043395.
1971 for (uint m = 0; m < nof_monitors; m++) {
1972 ensure_phi(map()->jvms()->monitor_obj_offset(m));
1973 }
1974 }
1975
1976
1977 //-----------------------------add_new_path------------------------------------
1978 // Add a previously unaccounted predecessor to this block.
1979 int Parse::Block::add_new_path() {
1980 // If there is no map, return the lowest unused path number.
1981 if (!is_merged()) return pred_count()+1; // there will be a map shortly
1982
1983 SafePointNode* map = start_map();
1984 if (!map->control()->is_Region())
1985 return pred_count()+1; // there may be a region some day
1986 RegionNode* r = map->control()->as_Region();
1987
1988 // Add new path to the region.
1989 uint pnum = r->req();
1990 r->add_req(nullptr);
1991
1992 for (uint i = 1; i < map->req(); i++) {
1993 Node* n = map->in(i);
1994 if (i == TypeFunc::Memory) {
1995 // Ensure a phi on all currently known memories.
1996 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1997 Node* phi = mms.memory();
1998 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1999 assert(phi->req() == pnum, "must be same size as region");
2000 phi->add_req(nullptr);
2001 }
2002 }
2003 } else {
2004 if (n->is_Phi() && n->as_Phi()->region() == r) {
2005 assert(n->req() == pnum, "must be same size as region");
2006 n->add_req(nullptr);
2007 }
2008 }
2009 }
2010
2011 return pnum;
2012 }
2013
2014 //------------------------------ensure_phi-------------------------------------
2015 // Turn the idx'th entry of the current map into a Phi
2016 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
2017 SafePointNode* map = this->map();
2018 Node* region = map->control();
2019 assert(region->is_Region(), "");
2020
2021 Node* o = map->in(idx);
2022 assert(o != nullptr, "");
2023
2024 if (o == top()) return nullptr; // TOP always merges into TOP
2025
2026 if (o->is_Phi() && o->as_Phi()->region() == region) {
2027 return o->as_Phi();
2028 }
2029
2030 // Now use a Phi here for merging
2031 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2032 const JVMState* jvms = map->jvms();
2033 const Type* t = nullptr;
2034 if (jvms->is_loc(idx)) {
2035 t = block()->local_type_at(idx - jvms->locoff());
2036 } else if (jvms->is_stk(idx)) {
2037 t = block()->stack_type_at(idx - jvms->stkoff());
2038 } else if (jvms->is_mon(idx)) {
2039 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2040 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2041 } else if ((uint)idx < TypeFunc::Parms) {
2042 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2043 } else {
2044 assert(false, "no type information for this phi");
2045 }
2046
2047 // If the type falls to bottom, then this must be a local that
2048 // is mixing ints and oops or some such. Forcing it to top
2049 // makes it go dead.
2050 if (t == Type::BOTTOM) {
2051 map->set_req(idx, top());
2052 return nullptr;
2053 }
2054
2055 // Do not create phis for top either.
2056 // A top on a non-null control flow must be an unused even after the.phi.
2057 if (t == Type::TOP || t == Type::HALF) {
2058 map->set_req(idx, top());
2059 return nullptr;
2060 }
2061
2062 PhiNode* phi = PhiNode::make(region, o, t);
2063 gvn().set_type(phi, t);
2064 if (C->do_escape_analysis()) record_for_igvn(phi);
2065 map->set_req(idx, phi);
2066 return phi;
2067 }
2068
2069 //--------------------------ensure_memory_phi----------------------------------
2070 // Turn the idx'th slice of the current memory into a Phi
2071 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2072 MergeMemNode* mem = merged_memory();
2073 Node* region = control();
2074 assert(region->is_Region(), "");
2075
2076 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2077 assert(o != nullptr && o != top(), "");
2078
2079 PhiNode* phi;
2080 if (o->is_Phi() && o->as_Phi()->region() == region) {
2081 phi = o->as_Phi();
2082 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2083 // clone the shared base memory phi to make a new memory split
2084 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2085 const Type* t = phi->bottom_type();
2086 const TypePtr* adr_type = C->get_adr_type(idx);
2087 phi = phi->slice_memory(adr_type);
2088 gvn().set_type(phi, t);
2089 }
2090 return phi;
2091 }
2092
2093 // Now use a Phi here for merging
2094 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2095 const Type* t = o->bottom_type();
2096 const TypePtr* adr_type = C->get_adr_type(idx);
2097 phi = PhiNode::make(region, o, t, adr_type);
2098 gvn().set_type(phi, t);
2099 if (idx == Compile::AliasIdxBot)
2100 mem->set_base_memory(phi);
2101 else
2102 mem->set_memory_at(idx, phi);
2103 return phi;
2104 }
2105
2106 //------------------------------call_register_finalizer-----------------------
2107 // Check the klass of the receiver and call register_finalizer if the
2108 // class need finalization.
2109 void Parse::call_register_finalizer() {
2110 Node* receiver = local(0);
2111 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2112 "must have non-null instance type");
2113
2114 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2115 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2116 // The type isn't known exactly so see if CHA tells us anything.
2117 ciInstanceKlass* ik = tinst->instance_klass();
2118 if (!Dependencies::has_finalizable_subclass(ik)) {
2119 // No finalizable subclasses so skip the dynamic check.
2120 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2121 return;
2122 }
2123 }
2124
2125 // Insert a dynamic test for whether the instance needs
2126 // finalization. In general this will fold up since the concrete
2127 // class is often visible so the access flags are constant.
2128 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2129 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2130
2131 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset()));
2132 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2133
2134 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer)));
2135 Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2136 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne));
2137
2138 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2139
2140 RegionNode* result_rgn = new RegionNode(3);
2141 record_for_igvn(result_rgn);
2142
2143 Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2144 result_rgn->init_req(1, skip_register);
2145
2146 Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2147 set_control(needs_register);
2148 if (stopped()) {
2149 // There is no slow path.
2150 result_rgn->init_req(2, top());
2151 } else {
2152 Node *call = make_runtime_call(RC_NO_LEAF,
2153 OptoRuntime::register_finalizer_Type(),
2154 OptoRuntime::register_finalizer_Java(),
2155 nullptr, TypePtr::BOTTOM,
2156 receiver);
2157 make_slow_call_ex(call, env()->Throwable_klass(), true);
2158
2159 Node* fast_io = call->in(TypeFunc::I_O);
2160 Node* fast_mem = call->in(TypeFunc::Memory);
2161 // These two phis are pre-filled with copies of of the fast IO and Memory
2162 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
2163 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2164
2165 result_rgn->init_req(2, control());
2166 io_phi ->init_req(2, i_o());
2167 mem_phi ->init_req(2, reset_memory());
2168
2169 set_all_memory( _gvn.transform(mem_phi) );
2170 set_i_o( _gvn.transform(io_phi) );
2171 }
2172
2173 set_control( _gvn.transform(result_rgn) );
2174 }
2175
2176 // Add check to deoptimize once holder klass is fully initialized.
2177 void Parse::clinit_deopt() {
2178 assert(C->has_method(), "only for normal compilations");
2179 assert(depth() == 1, "only for main compiled method");
2180 assert(is_normal_parse(), "no barrier needed on osr entry");
2181 assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2182
2183 set_parse_bci(0);
2184
2185 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2186 guard_klass_being_initialized(holder);
2187 }
2188
2189 //------------------------------return_current---------------------------------
2190 // Append current _map to _exit_return
2191 void Parse::return_current(Node* value) {
2192 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2193 call_register_finalizer();
2194 }
2195
2196 // Do not set_parse_bci, so that return goo is credited to the return insn.
2197 set_bci(InvocationEntryBci);
2198 if (method()->is_synchronized()) {
2199 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2200 }
2201 if (C->env()->dtrace_method_probes()) {
2202 make_dtrace_method_exit(method());
2203 }
2204 SafePointNode* exit_return = _exits.map();
2205 exit_return->in( TypeFunc::Control )->add_req( control() );
2206 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2207 Node *mem = exit_return->in( TypeFunc::Memory );
2208 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2209 if (mms.is_empty()) {
2210 // get a copy of the base memory, and patch just this one input
2211 const TypePtr* adr_type = mms.adr_type(C);
2212 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2213 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2214 gvn().set_type_bottom(phi);
2215 phi->del_req(phi->req()-1); // prepare to re-patch
2216 mms.set_memory(phi);
2217 }
2218 mms.memory()->add_req(mms.memory2());
2219 }
2220
2221 // frame pointer is always same, already captured
2222 if (value != nullptr) {
2223 // If returning oops to an interface-return, there is a silent free
2224 // cast from oop to interface allowed by the Verifier. Make it explicit
2225 // here.
2226 Node* phi = _exits.argument(0);
2227 phi->add_req(value);
2228 }
2229
2230 if (_first_return) {
2231 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2232 _first_return = false;
2233 } else {
2234 _exits.map()->merge_replaced_nodes_with(map());
2235 }
2236
2237 stop_and_kill_map(); // This CFG path dies here
2238 }
2239
2240
2241 //------------------------------add_safepoint----------------------------------
2242 void Parse::add_safepoint() {
2243 uint parms = TypeFunc::Parms+1;
2244
2245 // Clear out dead values from the debug info.
2246 kill_dead_locals();
2247
2248 // Clone the JVM State
2249 SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2250
2251 // Capture memory state BEFORE a SafePoint. Since we can block at a
2252 // SafePoint we need our GC state to be safe; i.e. we need all our current
2253 // write barriers (card marks) to not float down after the SafePoint so we
2254 // must read raw memory. Likewise we need all oop stores to match the card
2255 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
2256 // state on a deopt).
2257
2258 // We do not need to WRITE the memory state after a SafePoint. The control
2259 // edge will keep card-marks and oop-stores from floating up from below a
2260 // SafePoint and our true dependency added here will keep them from floating
2261 // down below a SafePoint.
2262
2263 // Clone the current memory state
2264 Node* mem = MergeMemNode::make(map()->memory());
2265
2266 mem = _gvn.transform(mem);
2267
2268 // Pass control through the safepoint
2269 sfpnt->init_req(TypeFunc::Control , control());
2270 // Fix edges normally used by a call
2271 sfpnt->init_req(TypeFunc::I_O , top() );
2272 sfpnt->init_req(TypeFunc::Memory , mem );
2273 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2274 sfpnt->init_req(TypeFunc::FramePtr , top() );
2275
2276 // Create a node for the polling address
2277 Node *polladr;
2278 Node *thread = _gvn.transform(new ThreadLocalNode());
2279 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2280 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2281 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2282
2283 // Fix up the JVM State edges
2284 add_safepoint_edges(sfpnt);
2285 Node *transformed_sfpnt = _gvn.transform(sfpnt);
2286 set_control(transformed_sfpnt);
2287
2288 // Provide an edge from root to safepoint. This makes the safepoint
2289 // appear useful until the parse has completed.
2290 if (transformed_sfpnt->is_SafePoint()) {
2291 assert(C->root() != nullptr, "Expect parse is still valid");
2292 C->root()->add_prec(transformed_sfpnt);
2293 }
2294 }
2295
2296 #ifndef PRODUCT
2297 //------------------------show_parse_info--------------------------------------
2298 void Parse::show_parse_info() {
2299 InlineTree* ilt = nullptr;
2300 if (C->ilt() != nullptr) {
2301 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2302 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2303 }
2304 if (PrintCompilation && Verbose) {
2305 if (depth() == 1) {
2306 if( ilt->count_inlines() ) {
2307 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2308 ilt->count_inline_bcs());
2309 tty->cr();
2310 }
2311 } else {
2312 if (method()->is_synchronized()) tty->print("s");
2313 if (method()->has_exception_handlers()) tty->print("!");
2314 // Check this is not the final compiled version
2315 if (C->trap_can_recompile()) {
2316 tty->print("-");
2317 } else {
2318 tty->print(" ");
2319 }
2320 method()->print_short_name();
2321 if (is_osr_parse()) {
2322 tty->print(" @ %d", osr_bci());
2323 }
2324 tty->print(" (%d bytes)",method()->code_size());
2325 if (ilt->count_inlines()) {
2326 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2327 ilt->count_inline_bcs());
2328 }
2329 tty->cr();
2330 }
2331 }
2332 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2333 // Print that we succeeded; suppress this message on the first osr parse.
2334
2335 if (method()->is_synchronized()) tty->print("s");
2336 if (method()->has_exception_handlers()) tty->print("!");
2337 // Check this is not the final compiled version
2338 if (C->trap_can_recompile() && depth() == 1) {
2339 tty->print("-");
2340 } else {
2341 tty->print(" ");
2342 }
2343 if( depth() != 1 ) { tty->print(" "); } // missing compile count
2344 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
2345 method()->print_short_name();
2346 if (is_osr_parse()) {
2347 tty->print(" @ %d", osr_bci());
2348 }
2349 if (ilt->caller_bci() != -1) {
2350 tty->print(" @ %d", ilt->caller_bci());
2351 }
2352 tty->print(" (%d bytes)",method()->code_size());
2353 if (ilt->count_inlines()) {
2354 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2355 ilt->count_inline_bcs());
2356 }
2357 tty->cr();
2358 }
2359 }
2360
2361
2362 //------------------------------dump-------------------------------------------
2363 // Dump information associated with the bytecodes of current _method
2364 void Parse::dump() {
2365 if( method() != nullptr ) {
2366 // Iterate over bytecodes
2367 ciBytecodeStream iter(method());
2368 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2369 dump_bci( iter.cur_bci() );
2370 tty->cr();
2371 }
2372 }
2373 }
2374
2375 // Dump information associated with a byte code index, 'bci'
2376 void Parse::dump_bci(int bci) {
2377 // Output info on merge-points, cloning, and within _jsr..._ret
2378 // NYI
2379 tty->print(" bci:%d", bci);
2380 }
2381
2382 #endif