1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/convertnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/inlinetypenode.hpp" 36 #include "opto/locknode.hpp" 37 #include "opto/memnode.hpp" 38 #include "opto/opaquenode.hpp" 39 #include "opto/parse.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/type.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/bitMap.inline.hpp" 47 #include "utilities/copy.hpp" 48 49 // Static array so we can figure out which bytecodes stop us from compiling 50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 51 // and eventually should be encapsulated in a proper class (gri 8/18/98). 52 53 #ifndef PRODUCT 54 uint nodes_created = 0; 55 uint methods_parsed = 0; 56 uint methods_seen = 0; 57 uint blocks_parsed = 0; 58 uint blocks_seen = 0; 59 60 uint explicit_null_checks_inserted = 0; 61 uint explicit_null_checks_elided = 0; 62 uint all_null_checks_found = 0; 63 uint implicit_null_checks = 0; 64 65 bool Parse::BytecodeParseHistogram::_initialized = false; 66 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 69 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 70 71 //------------------------------print_statistics------------------------------- 72 void Parse::print_statistics() { 73 tty->print_cr("--- Compiler Statistics ---"); 74 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 75 tty->print(" Nodes created: %u", nodes_created); 76 tty->cr(); 77 if (methods_seen != methods_parsed) { 78 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 79 } 80 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 81 82 if (explicit_null_checks_inserted) { 83 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 84 explicit_null_checks_inserted, explicit_null_checks_elided, 85 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 86 all_null_checks_found); 87 } 88 if (all_null_checks_found) { 89 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 90 (100*implicit_null_checks)/all_null_checks_found); 91 } 92 if (SharedRuntime::_implicit_null_throws) { 93 tty->print_cr("%u implicit null exceptions at runtime", 94 SharedRuntime::_implicit_null_throws); 95 } 96 97 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 98 BytecodeParseHistogram::print(); 99 } 100 } 101 #endif 102 103 //------------------------------ON STACK REPLACEMENT--------------------------- 104 105 // Construct a node which can be used to get incoming state for 106 // on stack replacement. 107 Node* Parse::fetch_interpreter_state(int index, 108 const Type* type, 109 Node* local_addrs, 110 Node* local_addrs_base) { 111 BasicType bt = type->basic_type(); 112 if (type == TypePtr::NULL_PTR) { 113 // Ptr types are mixed together with T_ADDRESS but nullptr is 114 // really for T_OBJECT types so correct it. 115 bt = T_OBJECT; 116 } 117 Node *mem = memory(Compile::AliasIdxRaw); 118 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 119 Node *ctl = control(); 120 121 // Very similar to LoadNode::make, except we handle un-aligned longs and 122 // doubles on Sparc. Intel can handle them just fine directly. 123 Node *l = nullptr; 124 switch (bt) { // Signature is flattened 125 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 126 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 127 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 128 case T_PRIMITIVE_OBJECT: 129 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 130 case T_LONG: 131 case T_DOUBLE: { 132 // Since arguments are in reverse order, the argument address 'adr' 133 // refers to the back half of the long/double. Recompute adr. 134 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 135 if (Matcher::misaligned_doubles_ok) { 136 l = (bt == T_DOUBLE) 137 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 138 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 139 } else { 140 l = (bt == T_DOUBLE) 141 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 142 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 143 } 144 break; 145 } 146 default: ShouldNotReachHere(); 147 } 148 return _gvn.transform(l); 149 } 150 151 // Helper routine to prevent the interpreter from handing 152 // unexpected typestate to an OSR method. 153 // The Node l is a value newly dug out of the interpreter frame. 154 // The type is the type predicted by ciTypeFlow. Note that it is 155 // not a general type, but can only come from Type::get_typeflow_type. 156 // The safepoint is a map which will feed an uncommon trap. 157 Node* Parse::check_interpreter_type(Node* l, const Type* type, 158 SafePointNode* &bad_type_exit) { 159 const TypeOopPtr* tp = type->isa_oopptr(); 160 161 // TypeFlow may assert null-ness if a type appears unloaded. 162 if (type == TypePtr::NULL_PTR || 163 (tp != nullptr && !tp->is_loaded())) { 164 // Value must be null, not a real oop. 165 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 166 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 167 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 168 set_control(_gvn.transform( new IfTrueNode(iff) )); 169 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 170 bad_type_exit->control()->add_req(bad_type); 171 l = null(); 172 } 173 174 // Typeflow can also cut off paths from the CFG, based on 175 // types which appear unloaded, or call sites which appear unlinked. 176 // When paths are cut off, values at later merge points can rise 177 // toward more specific classes. Make sure these specific classes 178 // are still in effect. 179 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 180 // TypeFlow asserted a specific object type. Value must have that type. 181 Node* bad_type_ctrl = nullptr; 182 if (tp->is_inlinetypeptr() && !tp->maybe_null()) { 183 // Check inline types for null here to prevent checkcast from adding an 184 // exception state before the bytecode entry (use 'bad_type_ctrl' instead). 185 l = null_check_oop(l, &bad_type_ctrl); 186 bad_type_exit->control()->add_req(bad_type_ctrl); 187 } 188 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 189 bad_type_exit->control()->add_req(bad_type_ctrl); 190 } 191 192 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 193 return l; 194 } 195 196 // Helper routine which sets up elements of the initial parser map when 197 // performing a parse for on stack replacement. Add values into map. 198 // The only parameter contains the address of a interpreter arguments. 199 void Parse::load_interpreter_state(Node* osr_buf) { 200 int index; 201 int max_locals = jvms()->loc_size(); 202 int max_stack = jvms()->stk_size(); 203 204 // Mismatch between method and jvms can occur since map briefly held 205 // an OSR entry state (which takes up one RawPtr word). 206 assert(max_locals == method()->max_locals(), "sanity"); 207 assert(max_stack >= method()->max_stack(), "sanity"); 208 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 209 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 210 211 // Find the start block. 212 Block* osr_block = start_block(); 213 assert(osr_block->start() == osr_bci(), "sanity"); 214 215 // Set initial BCI. 216 set_parse_bci(osr_block->start()); 217 218 // Set initial stack depth. 219 set_sp(osr_block->start_sp()); 220 221 // Check bailouts. We currently do not perform on stack replacement 222 // of loops in catch blocks or loops which branch with a non-empty stack. 223 if (sp() != 0) { 224 C->record_method_not_compilable("OSR starts with non-empty stack"); 225 return; 226 } 227 // Do not OSR inside finally clauses: 228 if (osr_block->has_trap_at(osr_block->start())) { 229 assert(false, "OSR starts with an immediate trap"); 230 C->record_method_not_compilable("OSR starts with an immediate trap"); 231 return; 232 } 233 234 // Commute monitors from interpreter frame to compiler frame. 235 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 236 int mcnt = osr_block->flow()->monitor_count(); 237 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 238 for (index = 0; index < mcnt; index++) { 239 // Make a BoxLockNode for the monitor. 240 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 241 242 // Displaced headers and locked objects are interleaved in the 243 // temp OSR buffer. We only copy the locked objects out here. 244 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 245 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf); 246 // Try and copy the displaced header to the BoxNode 247 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf); 248 249 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 250 251 // Build a bogus FastLockNode (no code will be generated) and push the 252 // monitor into our debug info. 253 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 254 map()->push_monitor(flock); 255 256 // If the lock is our method synchronization lock, tuck it away in 257 // _sync_lock for return and rethrow exit paths. 258 if (index == 0 && method()->is_synchronized()) { 259 _synch_lock = flock; 260 } 261 } 262 263 // Use the raw liveness computation to make sure that unexpected 264 // values don't propagate into the OSR frame. 265 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 266 if (!live_locals.is_valid()) { 267 // Degenerate or breakpointed method. 268 assert(false, "OSR in empty or breakpointed method"); 269 C->record_method_not_compilable("OSR in empty or breakpointed method"); 270 return; 271 } 272 273 // Extract the needed locals from the interpreter frame. 274 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 275 276 // find all the locals that the interpreter thinks contain live oops 277 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 278 for (index = 0; index < max_locals; index++) { 279 280 if (!live_locals.at(index)) { 281 continue; 282 } 283 284 const Type *type = osr_block->local_type_at(index); 285 286 if (type->isa_oopptr() != nullptr) { 287 288 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 289 // else we might load a stale oop if the MethodLiveness disagrees with the 290 // result of the interpreter. If the interpreter says it is dead we agree 291 // by making the value go to top. 292 // 293 294 if (!live_oops.at(index)) { 295 if (C->log() != nullptr) { 296 C->log()->elem("OSR_mismatch local_index='%d'",index); 297 } 298 set_local(index, null()); 299 // and ignore it for the loads 300 continue; 301 } 302 } 303 304 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 305 if (type == Type::TOP || type == Type::HALF) { 306 continue; 307 } 308 // If the type falls to bottom, then this must be a local that 309 // is mixing ints and oops or some such. Forcing it to top 310 // makes it go dead. 311 if (type == Type::BOTTOM) { 312 continue; 313 } 314 // Construct code to access the appropriate local. 315 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf); 316 set_local(index, value); 317 } 318 319 // Extract the needed stack entries from the interpreter frame. 320 for (index = 0; index < sp(); index++) { 321 const Type *type = osr_block->stack_type_at(index); 322 if (type != Type::TOP) { 323 // Currently the compiler bails out when attempting to on stack replace 324 // at a bci with a non-empty stack. We should not reach here. 325 ShouldNotReachHere(); 326 } 327 } 328 329 // End the OSR migration 330 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 331 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 332 "OSR_migration_end", TypeRawPtr::BOTTOM, 333 osr_buf); 334 335 // Now that the interpreter state is loaded, make sure it will match 336 // at execution time what the compiler is expecting now: 337 SafePointNode* bad_type_exit = clone_map(); 338 bad_type_exit->set_control(new RegionNode(1)); 339 340 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 341 for (index = 0; index < max_locals; index++) { 342 if (stopped()) break; 343 Node* l = local(index); 344 if (l->is_top()) continue; // nothing here 345 const Type *type = osr_block->local_type_at(index); 346 if (type->isa_oopptr() != nullptr) { 347 if (!live_oops.at(index)) { 348 // skip type check for dead oops 349 continue; 350 } 351 } 352 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 353 // In our current system it's illegal for jsr addresses to be 354 // live into an OSR entry point because the compiler performs 355 // inlining of jsrs. ciTypeFlow has a bailout that detect this 356 // case and aborts the compile if addresses are live into an OSR 357 // entry point. Because of that we can assume that any address 358 // locals at the OSR entry point are dead. Method liveness 359 // isn't precise enough to figure out that they are dead in all 360 // cases so simply skip checking address locals all 361 // together. Any type check is guaranteed to fail since the 362 // interpreter type is the result of a load which might have any 363 // value and the expected type is a constant. 364 continue; 365 } 366 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 367 } 368 369 for (index = 0; index < sp(); index++) { 370 if (stopped()) break; 371 Node* l = stack(index); 372 if (l->is_top()) continue; // nothing here 373 const Type *type = osr_block->stack_type_at(index); 374 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 375 } 376 377 if (bad_type_exit->control()->req() > 1) { 378 // Build an uncommon trap here, if any inputs can be unexpected. 379 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 380 record_for_igvn(bad_type_exit->control()); 381 SafePointNode* types_are_good = map(); 382 set_map(bad_type_exit); 383 // The unexpected type happens because a new edge is active 384 // in the CFG, which typeflow had previously ignored. 385 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 386 // This x will be typed as Integer if notReached is not yet linked. 387 // It could also happen due to a problem in ciTypeFlow analysis. 388 uncommon_trap(Deoptimization::Reason_constraint, 389 Deoptimization::Action_reinterpret); 390 set_map(types_are_good); 391 } 392 } 393 394 //------------------------------Parse------------------------------------------ 395 // Main parser constructor. 396 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 397 : _exits(caller) 398 { 399 // Init some variables 400 _caller = caller; 401 _method = parse_method; 402 _expected_uses = expected_uses; 403 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 404 _wrote_final = false; 405 _wrote_volatile = false; 406 _wrote_stable = false; 407 _wrote_fields = false; 408 _alloc_with_final = nullptr; 409 _entry_bci = InvocationEntryBci; 410 _tf = nullptr; 411 _block = nullptr; 412 _first_return = true; 413 _replaced_nodes_for_exceptions = false; 414 _new_idx = C->unique(); 415 debug_only(_block_count = -1); 416 debug_only(_blocks = (Block*)-1); 417 #ifndef PRODUCT 418 if (PrintCompilation || PrintOpto) { 419 // Make sure I have an inline tree, so I can print messages about it. 420 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 421 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 422 } 423 _max_switch_depth = 0; 424 _est_switch_depth = 0; 425 #endif 426 427 if (parse_method->has_reserved_stack_access()) { 428 C->set_has_reserved_stack_access(true); 429 } 430 431 if (parse_method->is_synchronized()) { 432 C->set_has_monitors(true); 433 } 434 435 _tf = TypeFunc::make(method()); 436 _iter.reset_to_method(method()); 437 _flow = method()->get_flow_analysis(); 438 if (_flow->failing()) { 439 assert(false, "type flow failed during parsing"); 440 C->record_method_not_compilable(_flow->failure_reason()); 441 } 442 443 #ifndef PRODUCT 444 if (_flow->has_irreducible_entry()) { 445 C->set_parsed_irreducible_loop(true); 446 } 447 #endif 448 C->set_has_loops(C->has_loops() || method()->has_loops()); 449 450 if (_expected_uses <= 0) { 451 _prof_factor = 1; 452 } else { 453 float prof_total = parse_method->interpreter_invocation_count(); 454 if (prof_total <= _expected_uses) { 455 _prof_factor = 1; 456 } else { 457 _prof_factor = _expected_uses / prof_total; 458 } 459 } 460 461 CompileLog* log = C->log(); 462 if (log != nullptr) { 463 log->begin_head("parse method='%d' uses='%f'", 464 log->identify(parse_method), expected_uses); 465 if (depth() == 1 && C->is_osr_compilation()) { 466 log->print(" osr_bci='%d'", C->entry_bci()); 467 } 468 log->stamp(); 469 log->end_head(); 470 } 471 472 // Accumulate deoptimization counts. 473 // (The range_check and store_check counts are checked elsewhere.) 474 ciMethodData* md = method()->method_data(); 475 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 476 uint md_count = md->trap_count(reason); 477 if (md_count != 0) { 478 if (md_count >= md->trap_count_limit()) { 479 md_count = md->trap_count_limit() + md->overflow_trap_count(); 480 } 481 uint total_count = C->trap_count(reason); 482 uint old_count = total_count; 483 total_count += md_count; 484 // Saturate the add if it overflows. 485 if (total_count < old_count || total_count < md_count) 486 total_count = (uint)-1; 487 C->set_trap_count(reason, total_count); 488 if (log != nullptr) 489 log->elem("observe trap='%s' count='%d' total='%d'", 490 Deoptimization::trap_reason_name(reason), 491 md_count, total_count); 492 } 493 } 494 // Accumulate total sum of decompilations, also. 495 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 496 497 if (log != nullptr && method()->has_exception_handlers()) { 498 log->elem("observe that='has_exception_handlers'"); 499 } 500 501 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 502 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 503 504 // Always register dependence if JVMTI is enabled, because 505 // either breakpoint setting or hotswapping of methods may 506 // cause deoptimization. 507 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 508 C->dependencies()->assert_evol_method(method()); 509 } 510 511 NOT_PRODUCT(methods_seen++); 512 513 // Do some special top-level things. 514 if (depth() == 1 && C->is_osr_compilation()) { 515 _entry_bci = C->entry_bci(); 516 _flow = method()->get_osr_flow_analysis(osr_bci()); 517 if (_flow->failing()) { 518 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke 519 // can lead to this. Re-enable once 8284443 is fixed. 520 // assert(false, "type flow analysis failed for OSR compilation"); 521 C->record_method_not_compilable(_flow->failure_reason()); 522 #ifndef PRODUCT 523 if (PrintOpto && (Verbose || WizardMode)) { 524 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 525 if (Verbose) { 526 method()->print(); 527 method()->print_codes(); 528 _flow->print(); 529 } 530 } 531 #endif 532 } 533 _tf = C->tf(); // the OSR entry type is different 534 } 535 536 #ifdef ASSERT 537 if (depth() == 1) { 538 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 539 } else { 540 assert(!this->is_osr_parse(), "no recursive OSR"); 541 } 542 #endif 543 544 #ifndef PRODUCT 545 methods_parsed++; 546 // add method size here to guarantee that inlined methods are added too 547 if (CITime) 548 _total_bytes_compiled += method()->code_size(); 549 550 show_parse_info(); 551 #endif 552 553 if (failing()) { 554 if (log) log->done("parse"); 555 return; 556 } 557 558 gvn().transform(top()); 559 560 // Import the results of the ciTypeFlow. 561 init_blocks(); 562 563 // Merge point for all normal exits 564 build_exits(); 565 566 // Setup the initial JVM state map. 567 SafePointNode* entry_map = create_entry_map(); 568 569 // Check for bailouts during map initialization 570 if (failing() || entry_map == nullptr) { 571 if (log) log->done("parse"); 572 return; 573 } 574 575 Node_Notes* caller_nn = C->default_node_notes(); 576 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 577 if (DebugInlinedCalls || depth() == 1) { 578 C->set_default_node_notes(make_node_notes(caller_nn)); 579 } 580 581 if (is_osr_parse()) { 582 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 583 entry_map->set_req(TypeFunc::Parms+0, top()); 584 set_map(entry_map); 585 load_interpreter_state(osr_buf); 586 } else { 587 set_map(entry_map); 588 do_method_entry(); 589 } 590 591 if (depth() == 1 && !failing()) { 592 if (C->clinit_barrier_on_entry()) { 593 // Add check to deoptimize the nmethod once the holder class is fully initialized 594 clinit_deopt(); 595 } 596 597 // Add check to deoptimize the nmethod if RTM state was changed 598 rtm_deopt(); 599 } 600 601 // Check for bailouts during method entry or RTM state check setup. 602 if (failing()) { 603 if (log) log->done("parse"); 604 C->set_default_node_notes(caller_nn); 605 return; 606 } 607 608 // Handle inline type arguments 609 int arg_size = method()->arg_size(); 610 for (int i = 0; i < arg_size; i++) { 611 Node* parm = local(i); 612 const Type* t = _gvn.type(parm); 613 if (t->is_inlinetypeptr()) { 614 // Create InlineTypeNode from the oop and replace the parameter 615 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null()); 616 set_local(i, vt); 617 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() && 618 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) { 619 // Speculate on varargs Object array being not null-free (and therefore also not flat) 620 const TypePtr* spec_type = t->speculative(); 621 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr(); 622 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free(); 623 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type); 624 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type))); 625 set_local(i, cast); 626 } 627 } 628 629 entry_map = map(); // capture any changes performed by method setup code 630 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 631 632 // We begin parsing as if we have just encountered a jump to the 633 // method entry. 634 Block* entry_block = start_block(); 635 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 636 set_map_clone(entry_map); 637 merge_common(entry_block, entry_block->next_path_num()); 638 639 #ifndef PRODUCT 640 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 641 set_parse_histogram( parse_histogram_obj ); 642 #endif 643 644 // Parse all the basic blocks. 645 do_all_blocks(); 646 647 // Check for bailouts during conversion to graph 648 if (failing()) { 649 if (log) log->done("parse"); 650 return; 651 } 652 653 // Fix up all exiting control flow. 654 set_map(entry_map); 655 do_exits(); 656 657 // Only reset this now, to make sure that debug information emitted 658 // for exiting control flow still refers to the inlined method. 659 C->set_default_node_notes(caller_nn); 660 661 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 662 C->unique(), C->live_nodes(), C->node_arena()->used()); 663 } 664 665 //---------------------------do_all_blocks------------------------------------- 666 void Parse::do_all_blocks() { 667 bool has_irreducible = flow()->has_irreducible_entry(); 668 669 // Walk over all blocks in Reverse Post-Order. 670 while (true) { 671 bool progress = false; 672 for (int rpo = 0; rpo < block_count(); rpo++) { 673 Block* block = rpo_at(rpo); 674 675 if (block->is_parsed()) continue; 676 677 if (!block->is_merged()) { 678 // Dead block, no state reaches this block 679 continue; 680 } 681 682 // Prepare to parse this block. 683 load_state_from(block); 684 685 if (stopped()) { 686 // Block is dead. 687 continue; 688 } 689 690 NOT_PRODUCT(blocks_parsed++); 691 692 progress = true; 693 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 694 // Not all preds have been parsed. We must build phis everywhere. 695 // (Note that dead locals do not get phis built, ever.) 696 ensure_phis_everywhere(); 697 698 if (block->is_SEL_head()) { 699 // Add predicate to single entry (not irreducible) loop head. 700 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 701 // Predicates may have been added after a dominating if 702 if (!block->has_predicates()) { 703 // Need correct bci for predicate. 704 // It is fine to set it here since do_one_block() will set it anyway. 705 set_parse_bci(block->start()); 706 add_parse_predicates(); 707 } 708 // Add new region for back branches. 709 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 710 RegionNode *r = new RegionNode(edges+1); 711 _gvn.set_type(r, Type::CONTROL); 712 record_for_igvn(r); 713 r->init_req(edges, control()); 714 set_control(r); 715 block->copy_irreducible_status_to(r, jvms()); 716 // Add new phis. 717 ensure_phis_everywhere(); 718 } 719 720 // Leave behind an undisturbed copy of the map, for future merges. 721 set_map(clone_map()); 722 } 723 724 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 725 // In the absence of irreducible loops, the Region and Phis 726 // associated with a merge that doesn't involve a backedge can 727 // be simplified now since the RPO parsing order guarantees 728 // that any path which was supposed to reach here has already 729 // been parsed or must be dead. 730 Node* c = control(); 731 Node* result = _gvn.transform_no_reclaim(control()); 732 if (c != result && TraceOptoParse) { 733 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 734 } 735 if (result != top()) { 736 record_for_igvn(result); 737 } 738 } 739 740 // Parse the block. 741 do_one_block(); 742 743 // Check for bailouts. 744 if (failing()) return; 745 } 746 747 // with irreducible loops multiple passes might be necessary to parse everything 748 if (!has_irreducible || !progress) { 749 break; 750 } 751 } 752 753 #ifndef PRODUCT 754 blocks_seen += block_count(); 755 756 // Make sure there are no half-processed blocks remaining. 757 // Every remaining unprocessed block is dead and may be ignored now. 758 for (int rpo = 0; rpo < block_count(); rpo++) { 759 Block* block = rpo_at(rpo); 760 if (!block->is_parsed()) { 761 if (TraceOptoParse) { 762 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 763 } 764 assert(!block->is_merged(), "no half-processed blocks"); 765 } 766 } 767 #endif 768 } 769 770 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 771 switch (bt) { 772 case T_BYTE: 773 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 774 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 775 break; 776 case T_SHORT: 777 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 778 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 779 break; 780 case T_CHAR: 781 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 782 break; 783 case T_BOOLEAN: 784 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 785 break; 786 default: 787 break; 788 } 789 return v; 790 } 791 792 //-------------------------------build_exits---------------------------------- 793 // Build normal and exceptional exit merge points. 794 void Parse::build_exits() { 795 // make a clone of caller to prevent sharing of side-effects 796 _exits.set_map(_exits.clone_map()); 797 _exits.clean_stack(_exits.sp()); 798 _exits.sync_jvms(); 799 800 RegionNode* region = new RegionNode(1); 801 record_for_igvn(region); 802 gvn().set_type_bottom(region); 803 _exits.set_control(region); 804 805 // Note: iophi and memphi are not transformed until do_exits. 806 Node* iophi = new PhiNode(region, Type::ABIO); 807 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 808 gvn().set_type_bottom(iophi); 809 gvn().set_type_bottom(memphi); 810 _exits.set_i_o(iophi); 811 _exits.set_all_memory(memphi); 812 813 // Add a return value to the exit state. (Do not push it yet.) 814 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 815 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 816 if (ret_type->isa_int()) { 817 BasicType ret_bt = method()->return_type()->basic_type(); 818 if (ret_bt == T_BOOLEAN || 819 ret_bt == T_CHAR || 820 ret_bt == T_BYTE || 821 ret_bt == T_SHORT) { 822 ret_type = TypeInt::INT; 823 } 824 } 825 826 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 827 // becomes loaded during the subsequent parsing, the loaded and unloaded 828 // types will not join when we transform and push in do_exits(). 829 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 830 if (ret_oop_type && !ret_oop_type->is_loaded()) { 831 ret_type = TypeOopPtr::BOTTOM; 832 } 833 int ret_size = type2size[ret_type->basic_type()]; 834 Node* ret_phi = new PhiNode(region, ret_type); 835 gvn().set_type_bottom(ret_phi); 836 _exits.ensure_stack(ret_size); 837 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 838 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 839 _exits.set_argument(0, ret_phi); // here is where the parser finds it 840 // Note: ret_phi is not yet pushed, until do_exits. 841 } 842 } 843 844 //----------------------------build_start_state------------------------------- 845 // Construct a state which contains only the incoming arguments from an 846 // unknown caller. The method & bci will be null & InvocationEntryBci. 847 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 848 int arg_size = tf->domain_sig()->cnt(); 849 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt()); 850 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 851 SafePointNode* map = new SafePointNode(max_size, jvms); 852 jvms->set_map(map); 853 record_for_igvn(map); 854 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 855 Node_Notes* old_nn = default_node_notes(); 856 if (old_nn != nullptr && has_method()) { 857 Node_Notes* entry_nn = old_nn->clone(this); 858 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 859 entry_jvms->set_offsets(0); 860 entry_jvms->set_bci(entry_bci()); 861 entry_nn->set_jvms(entry_jvms); 862 set_default_node_notes(entry_nn); 863 } 864 PhaseGVN& gvn = *initial_gvn(); 865 uint i = 0; 866 int arg_num = 0; 867 for (uint j = 0; i < (uint)arg_size; i++) { 868 const Type* t = tf->domain_sig()->field_at(i); 869 Node* parm = nullptr; 870 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) { 871 // Inline type arguments are not passed by reference: we get an argument per 872 // field of the inline type. Build InlineTypeNodes from the inline type arguments. 873 GraphKit kit(jvms, &gvn); 874 kit.set_control(map->control()); 875 Node* old_mem = map->memory(); 876 // Use immutable memory for inline type loads and restore it below 877 kit.set_all_memory(C->immutable_memory()); 878 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null()); 879 map->set_control(kit.control()); 880 map->set_memory(old_mem); 881 } else { 882 parm = gvn.transform(new ParmNode(start, j++)); 883 } 884 map->init_req(i, parm); 885 // Record all these guys for later GVN. 886 record_for_igvn(parm); 887 if (i >= TypeFunc::Parms && t != Type::HALF) { 888 arg_num++; 889 } 890 } 891 for (; i < map->req(); i++) { 892 map->init_req(i, top()); 893 } 894 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 895 set_default_node_notes(old_nn); 896 return jvms; 897 } 898 899 //-----------------------------make_node_notes--------------------------------- 900 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 901 if (caller_nn == nullptr) return nullptr; 902 Node_Notes* nn = caller_nn->clone(C); 903 JVMState* caller_jvms = nn->jvms(); 904 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 905 jvms->set_offsets(0); 906 jvms->set_bci(_entry_bci); 907 nn->set_jvms(jvms); 908 return nn; 909 } 910 911 912 //--------------------------return_values-------------------------------------- 913 void Compile::return_values(JVMState* jvms) { 914 GraphKit kit(jvms); 915 Node* ret = new ReturnNode(TypeFunc::Parms, 916 kit.control(), 917 kit.i_o(), 918 kit.reset_memory(), 919 kit.frameptr(), 920 kit.returnadr()); 921 // Add zero or 1 return values 922 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms; 923 if (ret_size > 0) { 924 kit.inc_sp(-ret_size); // pop the return value(s) 925 kit.sync_jvms(); 926 Node* res = kit.argument(0); 927 if (tf()->returns_inline_type_as_fields()) { 928 // Multiple return values (inline type fields): add as many edges 929 // to the Return node as returned values. 930 InlineTypeNode* vt = res->as_InlineType(); 931 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms); 932 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) { 933 ret->init_req(TypeFunc::Parms, vt->get_oop()); 934 } else { 935 // Return the tagged klass pointer to signal scalarization to the caller 936 Node* tagged_klass = vt->tagged_klass(kit.gvn()); 937 if (!method()->signature()->returns_null_free_inline_type()) { 938 // Return null if the inline type is null (IsInit field is not set) 939 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_is_init())); 940 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63))); 941 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63))); 942 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr)); 943 } 944 ret->init_req(TypeFunc::Parms, tagged_klass); 945 } 946 uint idx = TypeFunc::Parms + 1; 947 vt->pass_fields(&kit, ret, idx, false, method()->signature()->returns_null_free_inline_type()); 948 } else { 949 ret->add_req(res); 950 // Note: The second dummy edge is not needed by a ReturnNode. 951 } 952 } 953 // bind it to root 954 root()->add_req(ret); 955 record_for_igvn(ret); 956 initial_gvn()->transform_no_reclaim(ret); 957 } 958 959 //------------------------rethrow_exceptions----------------------------------- 960 // Bind all exception states in the list into a single RethrowNode. 961 void Compile::rethrow_exceptions(JVMState* jvms) { 962 GraphKit kit(jvms); 963 if (!kit.has_exceptions()) return; // nothing to generate 964 // Load my combined exception state into the kit, with all phis transformed: 965 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 966 Node* ex_oop = kit.use_exception_state(ex_map); 967 RethrowNode* exit = new RethrowNode(kit.control(), 968 kit.i_o(), kit.reset_memory(), 969 kit.frameptr(), kit.returnadr(), 970 // like a return but with exception input 971 ex_oop); 972 // bind to root 973 root()->add_req(exit); 974 record_for_igvn(exit); 975 initial_gvn()->transform_no_reclaim(exit); 976 } 977 978 //---------------------------do_exceptions------------------------------------- 979 // Process exceptions arising from the current bytecode. 980 // Send caught exceptions to the proper handler within this method. 981 // Unhandled exceptions feed into _exit. 982 void Parse::do_exceptions() { 983 if (!has_exceptions()) return; 984 985 if (failing()) { 986 // Pop them all off and throw them away. 987 while (pop_exception_state() != nullptr) ; 988 return; 989 } 990 991 PreserveJVMState pjvms(this, false); 992 993 SafePointNode* ex_map; 994 while ((ex_map = pop_exception_state()) != nullptr) { 995 if (!method()->has_exception_handlers()) { 996 // Common case: Transfer control outward. 997 // Doing it this early allows the exceptions to common up 998 // even between adjacent method calls. 999 throw_to_exit(ex_map); 1000 } else { 1001 // Have to look at the exception first. 1002 assert(stopped(), "catch_inline_exceptions trashes the map"); 1003 catch_inline_exceptions(ex_map); 1004 stop_and_kill_map(); // we used up this exception state; kill it 1005 } 1006 } 1007 1008 // We now return to our regularly scheduled program: 1009 } 1010 1011 //---------------------------throw_to_exit------------------------------------- 1012 // Merge the given map into an exception exit from this method. 1013 // The exception exit will handle any unlocking of receiver. 1014 // The ex_oop must be saved within the ex_map, unlike merge_exception. 1015 void Parse::throw_to_exit(SafePointNode* ex_map) { 1016 // Pop the JVMS to (a copy of) the caller. 1017 GraphKit caller; 1018 caller.set_map_clone(_caller->map()); 1019 caller.set_bci(_caller->bci()); 1020 caller.set_sp(_caller->sp()); 1021 // Copy out the standard machine state: 1022 for (uint i = 0; i < TypeFunc::Parms; i++) { 1023 caller.map()->set_req(i, ex_map->in(i)); 1024 } 1025 if (ex_map->has_replaced_nodes()) { 1026 _replaced_nodes_for_exceptions = true; 1027 } 1028 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 1029 // ...and the exception: 1030 Node* ex_oop = saved_ex_oop(ex_map); 1031 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 1032 // Finally, collect the new exception state in my exits: 1033 _exits.add_exception_state(caller_ex_map); 1034 } 1035 1036 //------------------------------do_exits--------------------------------------- 1037 void Parse::do_exits() { 1038 set_parse_bci(InvocationEntryBci); 1039 1040 // Now peephole on the return bits 1041 Node* region = _exits.control(); 1042 _exits.set_control(gvn().transform(region)); 1043 1044 Node* iophi = _exits.i_o(); 1045 _exits.set_i_o(gvn().transform(iophi)); 1046 1047 // Figure out if we need to emit the trailing barrier. The barrier is only 1048 // needed in the constructors, and only in three cases: 1049 // 1050 // 1. The constructor wrote a final. The effects of all initializations 1051 // must be committed to memory before any code after the constructor 1052 // publishes the reference to the newly constructed object. Rather 1053 // than wait for the publication, we simply block the writes here. 1054 // Rather than put a barrier on only those writes which are required 1055 // to complete, we force all writes to complete. 1056 // 1057 // 2. Experimental VM option is used to force the barrier if any field 1058 // was written out in the constructor. 1059 // 1060 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1061 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1062 // MemBarVolatile is used before volatile load instead of after volatile 1063 // store, so there's no barrier after the store. 1064 // We want to guarantee the same behavior as on platforms with total store 1065 // order, although this is not required by the Java memory model. 1066 // In this case, we want to enforce visibility of volatile field 1067 // initializations which are performed in constructors. 1068 // So as with finals, we add a barrier here. 1069 // 1070 // "All bets are off" unless the first publication occurs after a 1071 // normal return from the constructor. We do not attempt to detect 1072 // such unusual early publications. But no barrier is needed on 1073 // exceptional returns, since they cannot publish normally. 1074 // 1075 if (method()->is_object_constructor_or_class_initializer() && 1076 (wrote_final() || 1077 (AlwaysSafeConstructors && wrote_fields()) || 1078 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1079 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 1080 1081 // If Memory barrier is created for final fields write 1082 // and allocation node does not escape the initialize method, 1083 // then barrier introduced by allocation node can be removed. 1084 if (DoEscapeAnalysis && alloc_with_final()) { 1085 AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_with_final()); 1086 alloc->compute_MemBar_redundancy(method()); 1087 } 1088 if (PrintOpto && (Verbose || WizardMode)) { 1089 method()->print_name(); 1090 tty->print_cr(" writes finals and needs a memory barrier"); 1091 } 1092 } 1093 1094 // Any method can write a @Stable field; insert memory barriers 1095 // after those also. Can't bind predecessor allocation node (if any) 1096 // with barrier because allocation doesn't always dominate 1097 // MemBarRelease. 1098 if (wrote_stable()) { 1099 _exits.insert_mem_bar(Op_MemBarRelease); 1100 if (PrintOpto && (Verbose || WizardMode)) { 1101 method()->print_name(); 1102 tty->print_cr(" writes @Stable and needs a memory barrier"); 1103 } 1104 } 1105 1106 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1107 // transform each slice of the original memphi: 1108 mms.set_memory(_gvn.transform(mms.memory())); 1109 } 1110 // Clean up input MergeMems created by transforming the slices 1111 _gvn.transform(_exits.merged_memory()); 1112 1113 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 1114 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 1115 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1116 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1117 // If the type we set for the ret_phi in build_exits() is too optimistic and 1118 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1119 // loading. It could also be due to an error, so mark this method as not compilable because 1120 // otherwise this could lead to an infinite compile loop. 1121 // In any case, this code path is rarely (and never in my testing) reached. 1122 #ifdef ASSERT 1123 tty->print_cr("# Can't determine return type."); 1124 tty->print_cr("# exit control"); 1125 _exits.control()->dump(2); 1126 tty->print_cr("# ret phi type"); 1127 _gvn.type(ret_phi)->dump(); 1128 tty->print_cr("# ret phi"); 1129 ret_phi->dump(2); 1130 #endif // ASSERT 1131 assert(false, "Can't determine return type."); 1132 C->record_method_not_compilable("Can't determine return type."); 1133 return; 1134 } 1135 if (ret_type->isa_int()) { 1136 BasicType ret_bt = method()->return_type()->basic_type(); 1137 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1138 } 1139 _exits.push_node(ret_type->basic_type(), ret_phi); 1140 } 1141 1142 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1143 1144 // Unlock along the exceptional paths. 1145 // This is done late so that we can common up equivalent exceptions 1146 // (e.g., null checks) arising from multiple points within this method. 1147 // See GraphKit::add_exception_state, which performs the commoning. 1148 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1149 1150 // record exit from a method if compiled while Dtrace is turned on. 1151 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1152 // First move the exception list out of _exits: 1153 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1154 SafePointNode* normal_map = kit.map(); // keep this guy safe 1155 // Now re-collect the exceptions into _exits: 1156 SafePointNode* ex_map; 1157 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1158 Node* ex_oop = kit.use_exception_state(ex_map); 1159 // Force the exiting JVM state to have this method at InvocationEntryBci. 1160 // The exiting JVM state is otherwise a copy of the calling JVMS. 1161 JVMState* caller = kit.jvms(); 1162 JVMState* ex_jvms = caller->clone_shallow(C); 1163 ex_jvms->bind_map(kit.clone_map()); 1164 ex_jvms->set_bci( InvocationEntryBci); 1165 kit.set_jvms(ex_jvms); 1166 if (do_synch) { 1167 // Add on the synchronized-method box/object combo 1168 kit.map()->push_monitor(_synch_lock); 1169 // Unlock! 1170 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1171 } 1172 if (C->env()->dtrace_method_probes()) { 1173 kit.make_dtrace_method_exit(method()); 1174 } 1175 if (_replaced_nodes_for_exceptions) { 1176 kit.map()->apply_replaced_nodes(_new_idx); 1177 } 1178 // Done with exception-path processing. 1179 ex_map = kit.make_exception_state(ex_oop); 1180 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1181 // Pop the last vestige of this method: 1182 caller->clone_shallow(C)->bind_map(ex_map); 1183 _exits.push_exception_state(ex_map); 1184 } 1185 assert(_exits.map() == normal_map, "keep the same return state"); 1186 } 1187 1188 { 1189 // Capture very early exceptions (receiver null checks) from caller JVMS 1190 GraphKit caller(_caller); 1191 SafePointNode* ex_map; 1192 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1193 _exits.add_exception_state(ex_map); 1194 } 1195 } 1196 _exits.map()->apply_replaced_nodes(_new_idx); 1197 } 1198 1199 //-----------------------------create_entry_map------------------------------- 1200 // Initialize our parser map to contain the types at method entry. 1201 // For OSR, the map contains a single RawPtr parameter. 1202 // Initial monitor locking for sync. methods is performed by do_method_entry. 1203 SafePointNode* Parse::create_entry_map() { 1204 // Check for really stupid bail-out cases. 1205 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1206 if (len >= 32760) { 1207 // Bailout expected, this is a very rare edge case. 1208 C->record_method_not_compilable("too many local variables"); 1209 return nullptr; 1210 } 1211 1212 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1213 _caller->map()->delete_replaced_nodes(); 1214 1215 // If this is an inlined method, we may have to do a receiver null check. 1216 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1217 GraphKit kit(_caller); 1218 kit.null_check_receiver_before_call(method(), false); 1219 _caller = kit.transfer_exceptions_into_jvms(); 1220 if (kit.stopped()) { 1221 _exits.add_exception_states_from(_caller); 1222 _exits.set_jvms(_caller); 1223 return nullptr; 1224 } 1225 } 1226 1227 assert(method() != nullptr, "parser must have a method"); 1228 1229 // Create an initial safepoint to hold JVM state during parsing 1230 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1231 set_map(new SafePointNode(len, jvms)); 1232 jvms->set_map(map()); 1233 record_for_igvn(map()); 1234 assert(jvms->endoff() == len, "correct jvms sizing"); 1235 1236 SafePointNode* inmap = _caller->map(); 1237 assert(inmap != nullptr, "must have inmap"); 1238 // In case of null check on receiver above 1239 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1240 1241 uint i; 1242 1243 // Pass thru the predefined input parameters. 1244 for (i = 0; i < TypeFunc::Parms; i++) { 1245 map()->init_req(i, inmap->in(i)); 1246 } 1247 1248 if (depth() == 1) { 1249 assert(map()->memory()->Opcode() == Op_Parm, ""); 1250 // Insert the memory aliasing node 1251 set_all_memory(reset_memory()); 1252 } 1253 assert(merged_memory(), ""); 1254 1255 // Now add the locals which are initially bound to arguments: 1256 uint arg_size = tf()->domain_sig()->cnt(); 1257 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1258 for (i = TypeFunc::Parms; i < arg_size; i++) { 1259 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1260 } 1261 1262 // Clear out the rest of the map (locals and stack) 1263 for (i = arg_size; i < len; i++) { 1264 map()->init_req(i, top()); 1265 } 1266 1267 SafePointNode* entry_map = stop(); 1268 return entry_map; 1269 } 1270 1271 //-----------------------------do_method_entry-------------------------------- 1272 // Emit any code needed in the pseudo-block before BCI zero. 1273 // The main thing to do is lock the receiver of a synchronized method. 1274 void Parse::do_method_entry() { 1275 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1276 set_sp(0); // Java Stack Pointer 1277 1278 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1279 1280 if (C->env()->dtrace_method_probes()) { 1281 make_dtrace_method_entry(method()); 1282 } 1283 1284 #ifdef ASSERT 1285 // Narrow receiver type when it is too broad for the method being parsed. 1286 if (!method()->is_static()) { 1287 ciInstanceKlass* callee_holder = method()->holder(); 1288 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1289 1290 Node* receiver_obj = local(0); 1291 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1292 1293 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1294 // Receiver should always be a subtype of callee holder. 1295 // But, since C2 type system doesn't properly track interfaces, 1296 // the invariant can't be expressed in the type system for default methods. 1297 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1298 assert(callee_holder->is_interface(), "missing subtype check"); 1299 1300 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1301 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1302 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1303 assert(!stopped(), "not a subtype"); 1304 1305 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1306 C->root()->add_req(halt); 1307 } 1308 } 1309 #endif // ASSERT 1310 1311 // If the method is synchronized, we need to construct a lock node, attach 1312 // it to the Start node, and pin it there. 1313 if (method()->is_synchronized()) { 1314 // Insert a FastLockNode right after the Start which takes as arguments 1315 // the current thread pointer, the "this" pointer & the address of the 1316 // stack slot pair used for the lock. The "this" pointer is a projection 1317 // off the start node, but the locking spot has to be constructed by 1318 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1319 // becomes the second argument to the FastLockNode call. The 1320 // FastLockNode becomes the new control parent to pin it to the start. 1321 1322 // Setup Object Pointer 1323 Node *lock_obj = nullptr; 1324 if (method()->is_static()) { 1325 ciInstance* mirror = _method->holder()->java_mirror(); 1326 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1327 lock_obj = makecon(t_lock); 1328 } else { // Else pass the "this" pointer, 1329 lock_obj = local(0); // which is Parm0 from StartNode 1330 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type"); 1331 } 1332 // Clear out dead values from the debug info. 1333 kill_dead_locals(); 1334 // Build the FastLockNode 1335 _synch_lock = shared_lock(lock_obj); 1336 } 1337 1338 // Feed profiling data for parameters to the type system so it can 1339 // propagate it as speculative types 1340 record_profiled_parameters_for_speculation(); 1341 } 1342 1343 //------------------------------init_blocks------------------------------------ 1344 // Initialize our parser map to contain the types/monitors at method entry. 1345 void Parse::init_blocks() { 1346 // Create the blocks. 1347 _block_count = flow()->block_count(); 1348 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1349 1350 // Initialize the structs. 1351 for (int rpo = 0; rpo < block_count(); rpo++) { 1352 Block* block = rpo_at(rpo); 1353 new(block) Block(this, rpo); 1354 } 1355 1356 // Collect predecessor and successor information. 1357 for (int rpo = 0; rpo < block_count(); rpo++) { 1358 Block* block = rpo_at(rpo); 1359 block->init_graph(this); 1360 } 1361 } 1362 1363 //-------------------------------init_node------------------------------------- 1364 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1365 _flow = outer->flow()->rpo_at(rpo); 1366 _pred_count = 0; 1367 _preds_parsed = 0; 1368 _count = 0; 1369 _is_parsed = false; 1370 _is_handler = false; 1371 _has_merged_backedge = false; 1372 _start_map = nullptr; 1373 _has_predicates = false; 1374 _num_successors = 0; 1375 _all_successors = 0; 1376 _successors = nullptr; 1377 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1378 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1379 assert(_live_locals.size() == 0, "sanity"); 1380 1381 // entry point has additional predecessor 1382 if (flow()->is_start()) _pred_count++; 1383 assert(flow()->is_start() == (this == outer->start_block()), ""); 1384 } 1385 1386 //-------------------------------init_graph------------------------------------ 1387 void Parse::Block::init_graph(Parse* outer) { 1388 // Create the successor list for this parser block. 1389 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1390 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1391 int ns = tfs->length(); 1392 int ne = tfe->length(); 1393 _num_successors = ns; 1394 _all_successors = ns+ne; 1395 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1396 int p = 0; 1397 for (int i = 0; i < ns+ne; i++) { 1398 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1399 Block* block2 = outer->rpo_at(tf2->rpo()); 1400 _successors[i] = block2; 1401 1402 // Accumulate pred info for the other block, too. 1403 // Note: We also need to set _pred_count for exception blocks since they could 1404 // also have normal predecessors (reached without athrow by an explicit jump). 1405 // This also means that next_path_num can be called along exception paths. 1406 block2->_pred_count++; 1407 if (i >= ns) { 1408 block2->_is_handler = true; 1409 } 1410 1411 #ifdef ASSERT 1412 // A block's successors must be distinguishable by BCI. 1413 // That is, no bytecode is allowed to branch to two different 1414 // clones of the same code location. 1415 for (int j = 0; j < i; j++) { 1416 Block* block1 = _successors[j]; 1417 if (block1 == block2) continue; // duplicates are OK 1418 assert(block1->start() != block2->start(), "successors have unique bcis"); 1419 } 1420 #endif 1421 } 1422 } 1423 1424 //---------------------------successor_for_bci--------------------------------- 1425 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1426 for (int i = 0; i < all_successors(); i++) { 1427 Block* block2 = successor_at(i); 1428 if (block2->start() == bci) return block2; 1429 } 1430 // We can actually reach here if ciTypeFlow traps out a block 1431 // due to an unloaded class, and concurrently with compilation the 1432 // class is then loaded, so that a later phase of the parser is 1433 // able to see more of the bytecode CFG. Or, the flow pass and 1434 // the parser can have a minor difference of opinion about executability 1435 // of bytecodes. For example, "obj.field = null" is executable even 1436 // if the field's type is an unloaded class; the flow pass used to 1437 // make a trap for such code. 1438 return nullptr; 1439 } 1440 1441 1442 //-----------------------------stack_type_at----------------------------------- 1443 const Type* Parse::Block::stack_type_at(int i) const { 1444 return get_type(flow()->stack_type_at(i)); 1445 } 1446 1447 1448 //-----------------------------local_type_at----------------------------------- 1449 const Type* Parse::Block::local_type_at(int i) const { 1450 // Make dead locals fall to bottom. 1451 if (_live_locals.size() == 0) { 1452 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1453 // This bitmap can be zero length if we saw a breakpoint. 1454 // In such cases, pretend they are all live. 1455 ((Block*)this)->_live_locals = live_locals; 1456 } 1457 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1458 return Type::BOTTOM; 1459 1460 return get_type(flow()->local_type_at(i)); 1461 } 1462 1463 1464 #ifndef PRODUCT 1465 1466 //----------------------------name_for_bc-------------------------------------- 1467 // helper method for BytecodeParseHistogram 1468 static const char* name_for_bc(int i) { 1469 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1470 } 1471 1472 //----------------------------BytecodeParseHistogram------------------------------------ 1473 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1474 _parser = p; 1475 _compiler = c; 1476 if( ! _initialized ) { _initialized = true; reset(); } 1477 } 1478 1479 //----------------------------current_count------------------------------------ 1480 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1481 switch( bph_type ) { 1482 case BPH_transforms: { return _parser->gvn().made_progress(); } 1483 case BPH_values: { return _parser->gvn().made_new_values(); } 1484 default: { ShouldNotReachHere(); return 0; } 1485 } 1486 } 1487 1488 //----------------------------initialized-------------------------------------- 1489 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1490 1491 //----------------------------reset-------------------------------------------- 1492 void Parse::BytecodeParseHistogram::reset() { 1493 int i = Bytecodes::number_of_codes; 1494 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1495 } 1496 1497 //----------------------------set_initial_state-------------------------------- 1498 // Record info when starting to parse one bytecode 1499 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1500 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1501 _initial_bytecode = bc; 1502 _initial_node_count = _compiler->unique(); 1503 _initial_transforms = current_count(BPH_transforms); 1504 _initial_values = current_count(BPH_values); 1505 } 1506 } 1507 1508 //----------------------------record_change-------------------------------- 1509 // Record results of parsing one bytecode 1510 void Parse::BytecodeParseHistogram::record_change() { 1511 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1512 ++_bytecodes_parsed[_initial_bytecode]; 1513 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1514 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1515 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1516 } 1517 } 1518 1519 1520 //----------------------------print-------------------------------------------- 1521 void Parse::BytecodeParseHistogram::print(float cutoff) { 1522 ResourceMark rm; 1523 // print profile 1524 int total = 0; 1525 int i = 0; 1526 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1527 int abs_sum = 0; 1528 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1529 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1530 if( total == 0 ) { return; } 1531 tty->cr(); 1532 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1533 tty->print_cr("relative: percentage contribution to compiled nodes"); 1534 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1535 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1536 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1537 tty->print_cr("values : Average number of node values improved per bytecode"); 1538 tty->print_cr("name : Bytecode name"); 1539 tty->cr(); 1540 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1541 tty->print_cr("----------------------------------------------------------------------"); 1542 while (--i > 0) { 1543 int abs = _bytecodes_parsed[i]; 1544 float rel = abs * 100.0F / total; 1545 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1546 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1547 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1548 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1549 if (cutoff <= rel) { 1550 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1551 abs_sum += abs; 1552 } 1553 } 1554 tty->print_cr("----------------------------------------------------------------------"); 1555 float rel_sum = abs_sum * 100.0F / total; 1556 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1557 tty->print_cr("----------------------------------------------------------------------"); 1558 tty->cr(); 1559 } 1560 #endif 1561 1562 //----------------------------load_state_from---------------------------------- 1563 // Load block/map/sp. But not do not touch iter/bci. 1564 void Parse::load_state_from(Block* block) { 1565 set_block(block); 1566 // load the block's JVM state: 1567 set_map(block->start_map()); 1568 set_sp( block->start_sp()); 1569 } 1570 1571 1572 //-----------------------------record_state------------------------------------ 1573 void Parse::Block::record_state(Parse* p) { 1574 assert(!is_merged(), "can only record state once, on 1st inflow"); 1575 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1576 set_start_map(p->stop()); 1577 } 1578 1579 1580 //------------------------------do_one_block----------------------------------- 1581 void Parse::do_one_block() { 1582 if (TraceOptoParse) { 1583 Block *b = block(); 1584 int ns = b->num_successors(); 1585 int nt = b->all_successors(); 1586 1587 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1588 block()->rpo(), block()->start(), block()->limit()); 1589 for (int i = 0; i < nt; i++) { 1590 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1591 } 1592 if (b->is_loop_head()) { 1593 tty->print(" lphd"); 1594 } 1595 if (b->is_irreducible_loop_entry()) { 1596 tty->print(" irreducible"); 1597 } 1598 tty->cr(); 1599 } 1600 1601 assert(block()->is_merged(), "must be merged before being parsed"); 1602 block()->mark_parsed(); 1603 1604 // Set iterator to start of block. 1605 iter().reset_to_bci(block()->start()); 1606 1607 CompileLog* log = C->log(); 1608 1609 // Parse bytecodes 1610 while (!stopped() && !failing()) { 1611 iter().next(); 1612 1613 // Learn the current bci from the iterator: 1614 set_parse_bci(iter().cur_bci()); 1615 1616 if (bci() == block()->limit()) { 1617 // Do not walk into the next block until directed by do_all_blocks. 1618 merge(bci()); 1619 break; 1620 } 1621 assert(bci() < block()->limit(), "bci still in block"); 1622 1623 if (log != nullptr) { 1624 // Output an optional context marker, to help place actions 1625 // that occur during parsing of this BC. If there is no log 1626 // output until the next context string, this context string 1627 // will be silently ignored. 1628 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1629 } 1630 1631 if (block()->has_trap_at(bci())) { 1632 // We must respect the flow pass's traps, because it will refuse 1633 // to produce successors for trapping blocks. 1634 int trap_index = block()->flow()->trap_index(); 1635 assert(trap_index != 0, "trap index must be valid"); 1636 uncommon_trap(trap_index); 1637 break; 1638 } 1639 1640 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1641 1642 #ifdef ASSERT 1643 int pre_bc_sp = sp(); 1644 int inputs, depth; 1645 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1646 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1647 #endif //ASSERT 1648 1649 do_one_bytecode(); 1650 1651 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1652 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1653 1654 do_exceptions(); 1655 1656 NOT_PRODUCT( parse_histogram()->record_change(); ); 1657 1658 if (log != nullptr) 1659 log->clear_context(); // skip marker if nothing was printed 1660 1661 // Fall into next bytecode. Each bytecode normally has 1 sequential 1662 // successor which is typically made ready by visiting this bytecode. 1663 // If the successor has several predecessors, then it is a merge 1664 // point, starts a new basic block, and is handled like other basic blocks. 1665 } 1666 } 1667 1668 1669 //------------------------------merge------------------------------------------ 1670 void Parse::set_parse_bci(int bci) { 1671 set_bci(bci); 1672 Node_Notes* nn = C->default_node_notes(); 1673 if (nn == nullptr) return; 1674 1675 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1676 if (!DebugInlinedCalls && depth() > 1) { 1677 return; 1678 } 1679 1680 // Update the JVMS annotation, if present. 1681 JVMState* jvms = nn->jvms(); 1682 if (jvms != nullptr && jvms->bci() != bci) { 1683 // Update the JVMS. 1684 jvms = jvms->clone_shallow(C); 1685 jvms->set_bci(bci); 1686 nn->set_jvms(jvms); 1687 } 1688 } 1689 1690 //------------------------------merge------------------------------------------ 1691 // Merge the current mapping into the basic block starting at bci 1692 void Parse::merge(int target_bci) { 1693 Block* target = successor_for_bci(target_bci); 1694 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1695 assert(!target->is_ready(), "our arrival must be expected"); 1696 int pnum = target->next_path_num(); 1697 merge_common(target, pnum); 1698 } 1699 1700 //-------------------------merge_new_path-------------------------------------- 1701 // Merge the current mapping into the basic block, using a new path 1702 void Parse::merge_new_path(int target_bci) { 1703 Block* target = successor_for_bci(target_bci); 1704 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1705 assert(!target->is_ready(), "new path into frozen graph"); 1706 int pnum = target->add_new_path(); 1707 merge_common(target, pnum); 1708 } 1709 1710 //-------------------------merge_exception------------------------------------- 1711 // Merge the current mapping into the basic block starting at bci 1712 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1713 void Parse::merge_exception(int target_bci) { 1714 #ifdef ASSERT 1715 if (target_bci < bci()) { 1716 C->set_exception_backedge(); 1717 } 1718 #endif 1719 assert(sp() == 1, "must have only the throw exception on the stack"); 1720 Block* target = successor_for_bci(target_bci); 1721 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1722 assert(target->is_handler(), "exceptions are handled by special blocks"); 1723 int pnum = target->add_new_path(); 1724 merge_common(target, pnum); 1725 } 1726 1727 //--------------------handle_missing_successor--------------------------------- 1728 void Parse::handle_missing_successor(int target_bci) { 1729 #ifndef PRODUCT 1730 Block* b = block(); 1731 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1732 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1733 #endif 1734 ShouldNotReachHere(); 1735 } 1736 1737 //--------------------------merge_common--------------------------------------- 1738 void Parse::merge_common(Parse::Block* target, int pnum) { 1739 if (TraceOptoParse) { 1740 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1741 } 1742 1743 // Zap extra stack slots to top 1744 assert(sp() == target->start_sp(), ""); 1745 clean_stack(sp()); 1746 1747 // Check for merge conflicts involving inline types 1748 JVMState* old_jvms = map()->jvms(); 1749 int old_bci = bci(); 1750 JVMState* tmp_jvms = old_jvms->clone_shallow(C); 1751 tmp_jvms->set_should_reexecute(true); 1752 tmp_jvms->bind_map(map()); 1753 // Execution needs to restart a the next bytecode (entry of next 1754 // block) 1755 if (target->is_merged() || 1756 pnum > PhiNode::Input || 1757 target->is_handler() || 1758 target->is_loop_head()) { 1759 set_parse_bci(target->start()); 1760 for (uint j = TypeFunc::Parms; j < map()->req(); j++) { 1761 Node* n = map()->in(j); // Incoming change to target state. 1762 const Type* t = nullptr; 1763 if (tmp_jvms->is_loc(j)) { 1764 t = target->local_type_at(j - tmp_jvms->locoff()); 1765 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) { 1766 t = target->stack_type_at(j - tmp_jvms->stkoff()); 1767 } 1768 if (t != nullptr && t != Type::BOTTOM) { 1769 if (n->is_InlineType() && !t->is_inlinetypeptr()) { 1770 // Allocate inline type in src block to be able to merge it with oop in target block 1771 map()->set_req(j, n->as_InlineType()->buffer(this)); 1772 } else if (!n->is_InlineType() && t->is_inlinetypeptr()) { 1773 // Scalarize null in src block to be able to merge it with inline type in target block 1774 assert(gvn().type(n)->is_zero_type(), "Should have been scalarized"); 1775 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass())); 1776 } 1777 } 1778 } 1779 } 1780 old_jvms->bind_map(map()); 1781 set_parse_bci(old_bci); 1782 1783 if (!target->is_merged()) { // No prior mapping at this bci 1784 if (TraceOptoParse) { tty->print(" with empty state"); } 1785 1786 // If this path is dead, do not bother capturing it as a merge. 1787 // It is "as if" we had 1 fewer predecessors from the beginning. 1788 if (stopped()) { 1789 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1790 return; 1791 } 1792 1793 // Make a region if we know there are multiple or unpredictable inputs. 1794 // (Also, if this is a plain fall-through, we might see another region, 1795 // which must not be allowed into this block's map.) 1796 if (pnum > PhiNode::Input // Known multiple inputs. 1797 || target->is_handler() // These have unpredictable inputs. 1798 || target->is_loop_head() // Known multiple inputs 1799 || control()->is_Region()) { // We must hide this guy. 1800 1801 int current_bci = bci(); 1802 set_parse_bci(target->start()); // Set target bci 1803 if (target->is_SEL_head()) { 1804 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1805 if (target->start() == 0) { 1806 // Add Parse Predicates for the special case when 1807 // there are backbranches to the method entry. 1808 add_parse_predicates(); 1809 } 1810 } 1811 // Add a Region to start the new basic block. Phis will be added 1812 // later lazily. 1813 int edges = target->pred_count(); 1814 if (edges < pnum) edges = pnum; // might be a new path! 1815 RegionNode *r = new RegionNode(edges+1); 1816 gvn().set_type(r, Type::CONTROL); 1817 record_for_igvn(r); 1818 // zap all inputs to null for debugging (done in Node(uint) constructor) 1819 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1820 r->init_req(pnum, control()); 1821 set_control(r); 1822 target->copy_irreducible_status_to(r, jvms()); 1823 set_parse_bci(current_bci); // Restore bci 1824 } 1825 1826 // Convert the existing Parser mapping into a mapping at this bci. 1827 store_state_to(target); 1828 assert(target->is_merged(), "do not come here twice"); 1829 1830 } else { // Prior mapping at this bci 1831 if (TraceOptoParse) { tty->print(" with previous state"); } 1832 #ifdef ASSERT 1833 if (target->is_SEL_head()) { 1834 target->mark_merged_backedge(block()); 1835 } 1836 #endif 1837 1838 // We must not manufacture more phis if the target is already parsed. 1839 bool nophi = target->is_parsed(); 1840 1841 SafePointNode* newin = map();// Hang on to incoming mapping 1842 Block* save_block = block(); // Hang on to incoming block; 1843 load_state_from(target); // Get prior mapping 1844 1845 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1846 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1847 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1848 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1849 1850 // Iterate over my current mapping and the old mapping. 1851 // Where different, insert Phi functions. 1852 // Use any existing Phi functions. 1853 assert(control()->is_Region(), "must be merging to a region"); 1854 RegionNode* r = control()->as_Region(); 1855 1856 // Compute where to merge into 1857 // Merge incoming control path 1858 r->init_req(pnum, newin->control()); 1859 1860 if (pnum == 1) { // Last merge for this Region? 1861 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1862 Node* result = _gvn.transform_no_reclaim(r); 1863 if (r != result && TraceOptoParse) { 1864 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1865 } 1866 } 1867 record_for_igvn(r); 1868 } 1869 1870 // Update all the non-control inputs to map: 1871 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1872 bool check_elide_phi = target->is_SEL_backedge(save_block); 1873 bool last_merge = (pnum == PhiNode::Input); 1874 for (uint j = 1; j < newin->req(); j++) { 1875 Node* m = map()->in(j); // Current state of target. 1876 Node* n = newin->in(j); // Incoming change to target state. 1877 PhiNode* phi; 1878 if (m->is_Phi() && m->as_Phi()->region() == r) { 1879 phi = m->as_Phi(); 1880 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) { 1881 phi = m->as_InlineType()->get_oop()->as_Phi(); 1882 } else { 1883 phi = nullptr; 1884 } 1885 if (m != n) { // Different; must merge 1886 switch (j) { 1887 // Frame pointer and Return Address never changes 1888 case TypeFunc::FramePtr:// Drop m, use the original value 1889 case TypeFunc::ReturnAdr: 1890 break; 1891 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1892 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1893 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1894 continue; 1895 default: // All normal stuff 1896 if (phi == nullptr) { 1897 const JVMState* jvms = map()->jvms(); 1898 if (EliminateNestedLocks && 1899 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1900 // BoxLock nodes are not commoning. 1901 // Use old BoxLock node as merged box. 1902 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1903 // This assert also tests that nodes are BoxLock. 1904 assert(BoxLockNode::same_slot(n, m), "sanity"); 1905 C->gvn_replace_by(n, m); 1906 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1907 phi = ensure_phi(j, nophi); 1908 } 1909 } 1910 break; 1911 } 1912 } 1913 // At this point, n might be top if: 1914 // - there is no phi (because TypeFlow detected a conflict), or 1915 // - the corresponding control edges is top (a dead incoming path) 1916 // It is a bug if we create a phi which sees a garbage value on a live path. 1917 1918 // Merging two inline types? 1919 if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) { 1920 // Reload current state because it may have been updated by ensure_phi 1921 m = map()->in(j); 1922 InlineTypeNode* vtm = m->as_InlineType(); // Current inline type 1923 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type 1924 assert(vtm->get_oop() == phi, "Inline type should have Phi input"); 1925 if (TraceOptoParse) { 1926 #ifdef ASSERT 1927 tty->print_cr("\nMerging inline types"); 1928 tty->print_cr("Current:"); 1929 vtm->dump(2); 1930 tty->print_cr("Incoming:"); 1931 vtn->dump(2); 1932 tty->cr(); 1933 #endif 1934 } 1935 // Do the merge 1936 vtm->merge_with(&_gvn, vtn, pnum, last_merge); 1937 if (last_merge) { 1938 map()->set_req(j, _gvn.transform_no_reclaim(vtm)); 1939 record_for_igvn(vtm); 1940 } 1941 } else if (phi != nullptr) { 1942 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1943 assert(phi->region() == r, ""); 1944 phi->set_req(pnum, n); // Then add 'n' to the merge 1945 if (last_merge) { 1946 // Last merge for this Phi. 1947 // So far, Phis have had a reasonable type from ciTypeFlow. 1948 // Now _gvn will join that with the meet of current inputs. 1949 // BOTTOM is never permissible here, 'cause pessimistically 1950 // Phis of pointers cannot lose the basic pointer type. 1951 debug_only(const Type* bt1 = phi->bottom_type()); 1952 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1953 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1954 debug_only(const Type* bt2 = phi->bottom_type()); 1955 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1956 record_for_igvn(phi); 1957 } 1958 } 1959 } // End of for all values to be merged 1960 1961 if (last_merge && !r->in(0)) { // The occasional useless Region 1962 assert(control() == r, ""); 1963 set_control(r->nonnull_req()); 1964 } 1965 1966 map()->merge_replaced_nodes_with(newin); 1967 1968 // newin has been subsumed into the lazy merge, and is now dead. 1969 set_block(save_block); 1970 1971 stop(); // done with this guy, for now 1972 } 1973 1974 if (TraceOptoParse) { 1975 tty->print_cr(" on path %d", pnum); 1976 } 1977 1978 // Done with this parser state. 1979 assert(stopped(), ""); 1980 } 1981 1982 1983 //--------------------------merge_memory_edges--------------------------------- 1984 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1985 // (nophi means we must not create phis, because we already parsed here) 1986 assert(n != nullptr, ""); 1987 // Merge the inputs to the MergeMems 1988 MergeMemNode* m = merged_memory(); 1989 1990 assert(control()->is_Region(), "must be merging to a region"); 1991 RegionNode* r = control()->as_Region(); 1992 1993 PhiNode* base = nullptr; 1994 MergeMemNode* remerge = nullptr; 1995 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1996 Node *p = mms.force_memory(); 1997 Node *q = mms.memory2(); 1998 if (mms.is_empty() && nophi) { 1999 // Trouble: No new splits allowed after a loop body is parsed. 2000 // Instead, wire the new split into a MergeMem on the backedge. 2001 // The optimizer will sort it out, slicing the phi. 2002 if (remerge == nullptr) { 2003 guarantee(base != nullptr, ""); 2004 assert(base->in(0) != nullptr, "should not be xformed away"); 2005 remerge = MergeMemNode::make(base->in(pnum)); 2006 gvn().set_type(remerge, Type::MEMORY); 2007 base->set_req(pnum, remerge); 2008 } 2009 remerge->set_memory_at(mms.alias_idx(), q); 2010 continue; 2011 } 2012 assert(!q->is_MergeMem(), ""); 2013 PhiNode* phi; 2014 if (p != q) { 2015 phi = ensure_memory_phi(mms.alias_idx(), nophi); 2016 } else { 2017 if (p->is_Phi() && p->as_Phi()->region() == r) 2018 phi = p->as_Phi(); 2019 else 2020 phi = nullptr; 2021 } 2022 // Insert q into local phi 2023 if (phi != nullptr) { 2024 assert(phi->region() == r, ""); 2025 p = phi; 2026 phi->set_req(pnum, q); 2027 if (mms.at_base_memory()) { 2028 base = phi; // delay transforming it 2029 } else if (pnum == 1) { 2030 record_for_igvn(phi); 2031 p = _gvn.transform_no_reclaim(phi); 2032 } 2033 mms.set_memory(p);// store back through the iterator 2034 } 2035 } 2036 // Transform base last, in case we must fiddle with remerging. 2037 if (base != nullptr && pnum == 1) { 2038 record_for_igvn(base); 2039 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 2040 } 2041 } 2042 2043 2044 //------------------------ensure_phis_everywhere------------------------------- 2045 void Parse::ensure_phis_everywhere() { 2046 ensure_phi(TypeFunc::I_O); 2047 2048 // Ensure a phi on all currently known memories. 2049 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 2050 ensure_memory_phi(mms.alias_idx()); 2051 debug_only(mms.set_memory()); // keep the iterator happy 2052 } 2053 2054 // Note: This is our only chance to create phis for memory slices. 2055 // If we miss a slice that crops up later, it will have to be 2056 // merged into the base-memory phi that we are building here. 2057 // Later, the optimizer will comb out the knot, and build separate 2058 // phi-loops for each memory slice that matters. 2059 2060 // Monitors must nest nicely and not get confused amongst themselves. 2061 // Phi-ify everything up to the monitors, though. 2062 uint monoff = map()->jvms()->monoff(); 2063 uint nof_monitors = map()->jvms()->nof_monitors(); 2064 2065 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 2066 bool check_elide_phi = block()->is_SEL_head(); 2067 for (uint i = TypeFunc::Parms; i < monoff; i++) { 2068 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 2069 ensure_phi(i); 2070 } 2071 } 2072 2073 // Even monitors need Phis, though they are well-structured. 2074 // This is true for OSR methods, and also for the rare cases where 2075 // a monitor object is the subject of a replace_in_map operation. 2076 // See bugs 4426707 and 5043395. 2077 for (uint m = 0; m < nof_monitors; m++) { 2078 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 2079 } 2080 } 2081 2082 2083 //-----------------------------add_new_path------------------------------------ 2084 // Add a previously unaccounted predecessor to this block. 2085 int Parse::Block::add_new_path() { 2086 // If there is no map, return the lowest unused path number. 2087 if (!is_merged()) return pred_count()+1; // there will be a map shortly 2088 2089 SafePointNode* map = start_map(); 2090 if (!map->control()->is_Region()) 2091 return pred_count()+1; // there may be a region some day 2092 RegionNode* r = map->control()->as_Region(); 2093 2094 // Add new path to the region. 2095 uint pnum = r->req(); 2096 r->add_req(nullptr); 2097 2098 for (uint i = 1; i < map->req(); i++) { 2099 Node* n = map->in(i); 2100 if (i == TypeFunc::Memory) { 2101 // Ensure a phi on all currently known memories. 2102 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2103 Node* phi = mms.memory(); 2104 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2105 assert(phi->req() == pnum, "must be same size as region"); 2106 phi->add_req(nullptr); 2107 } 2108 } 2109 } else { 2110 if (n->is_Phi() && n->as_Phi()->region() == r) { 2111 assert(n->req() == pnum, "must be same size as region"); 2112 n->add_req(nullptr); 2113 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) { 2114 n->as_InlineType()->add_new_path(r); 2115 } 2116 } 2117 } 2118 2119 return pnum; 2120 } 2121 2122 //------------------------------ensure_phi------------------------------------- 2123 // Turn the idx'th entry of the current map into a Phi 2124 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2125 SafePointNode* map = this->map(); 2126 Node* region = map->control(); 2127 assert(region->is_Region(), ""); 2128 2129 Node* o = map->in(idx); 2130 assert(o != nullptr, ""); 2131 2132 if (o == top()) return nullptr; // TOP always merges into TOP 2133 2134 if (o->is_Phi() && o->as_Phi()->region() == region) { 2135 return o->as_Phi(); 2136 } 2137 InlineTypeNode* vt = o->isa_InlineType(); 2138 if (vt != nullptr && vt->has_phi_inputs(region)) { 2139 return vt->get_oop()->as_Phi(); 2140 } 2141 2142 // Now use a Phi here for merging 2143 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2144 const JVMState* jvms = map->jvms(); 2145 const Type* t = nullptr; 2146 if (jvms->is_loc(idx)) { 2147 t = block()->local_type_at(idx - jvms->locoff()); 2148 } else if (jvms->is_stk(idx)) { 2149 t = block()->stack_type_at(idx - jvms->stkoff()); 2150 } else if (jvms->is_mon(idx)) { 2151 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2152 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2153 } else if ((uint)idx < TypeFunc::Parms) { 2154 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2155 } else { 2156 assert(false, "no type information for this phi"); 2157 } 2158 2159 // If the type falls to bottom, then this must be a local that 2160 // is already dead or is mixing ints and oops or some such. 2161 // Forcing it to top makes it go dead. 2162 if (t == Type::BOTTOM) { 2163 map->set_req(idx, top()); 2164 return nullptr; 2165 } 2166 2167 // Do not create phis for top either. 2168 // A top on a non-null control flow must be an unused even after the.phi. 2169 if (t == Type::TOP || t == Type::HALF) { 2170 map->set_req(idx, top()); 2171 return nullptr; 2172 } 2173 2174 if (vt != nullptr && t->is_inlinetypeptr()) { 2175 // Inline types are merged by merging their field values. 2176 // Create a cloned InlineTypeNode with phi inputs that 2177 // represents the merged inline type and update the map. 2178 vt = vt->clone_with_phis(&_gvn, region); 2179 map->set_req(idx, vt); 2180 return vt->get_oop()->as_Phi(); 2181 } else { 2182 PhiNode* phi = PhiNode::make(region, o, t); 2183 gvn().set_type(phi, t); 2184 if (C->do_escape_analysis()) record_for_igvn(phi); 2185 map->set_req(idx, phi); 2186 return phi; 2187 } 2188 } 2189 2190 //--------------------------ensure_memory_phi---------------------------------- 2191 // Turn the idx'th slice of the current memory into a Phi 2192 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2193 MergeMemNode* mem = merged_memory(); 2194 Node* region = control(); 2195 assert(region->is_Region(), ""); 2196 2197 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2198 assert(o != nullptr && o != top(), ""); 2199 2200 PhiNode* phi; 2201 if (o->is_Phi() && o->as_Phi()->region() == region) { 2202 phi = o->as_Phi(); 2203 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2204 // clone the shared base memory phi to make a new memory split 2205 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2206 const Type* t = phi->bottom_type(); 2207 const TypePtr* adr_type = C->get_adr_type(idx); 2208 phi = phi->slice_memory(adr_type); 2209 gvn().set_type(phi, t); 2210 } 2211 return phi; 2212 } 2213 2214 // Now use a Phi here for merging 2215 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2216 const Type* t = o->bottom_type(); 2217 const TypePtr* adr_type = C->get_adr_type(idx); 2218 phi = PhiNode::make(region, o, t, adr_type); 2219 gvn().set_type(phi, t); 2220 if (idx == Compile::AliasIdxBot) 2221 mem->set_base_memory(phi); 2222 else 2223 mem->set_memory_at(idx, phi); 2224 return phi; 2225 } 2226 2227 //------------------------------call_register_finalizer----------------------- 2228 // Check the klass of the receiver and call register_finalizer if the 2229 // class need finalization. 2230 void Parse::call_register_finalizer() { 2231 Node* receiver = local(0); 2232 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2233 "must have non-null instance type"); 2234 2235 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2236 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2237 // The type isn't known exactly so see if CHA tells us anything. 2238 ciInstanceKlass* ik = tinst->instance_klass(); 2239 if (!Dependencies::has_finalizable_subclass(ik)) { 2240 // No finalizable subclasses so skip the dynamic check. 2241 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2242 return; 2243 } 2244 } 2245 2246 // Insert a dynamic test for whether the instance needs 2247 // finalization. In general this will fold up since the concrete 2248 // class is often visible so the access flags are constant. 2249 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2250 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2251 2252 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2253 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2254 2255 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2256 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2257 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2258 2259 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2260 2261 RegionNode* result_rgn = new RegionNode(3); 2262 record_for_igvn(result_rgn); 2263 2264 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2265 result_rgn->init_req(1, skip_register); 2266 2267 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2268 set_control(needs_register); 2269 if (stopped()) { 2270 // There is no slow path. 2271 result_rgn->init_req(2, top()); 2272 } else { 2273 Node *call = make_runtime_call(RC_NO_LEAF, 2274 OptoRuntime::register_finalizer_Type(), 2275 OptoRuntime::register_finalizer_Java(), 2276 nullptr, TypePtr::BOTTOM, 2277 receiver); 2278 make_slow_call_ex(call, env()->Throwable_klass(), true); 2279 2280 Node* fast_io = call->in(TypeFunc::I_O); 2281 Node* fast_mem = call->in(TypeFunc::Memory); 2282 // These two phis are pre-filled with copies of of the fast IO and Memory 2283 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2284 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2285 2286 result_rgn->init_req(2, control()); 2287 io_phi ->init_req(2, i_o()); 2288 mem_phi ->init_req(2, reset_memory()); 2289 2290 set_all_memory( _gvn.transform(mem_phi) ); 2291 set_i_o( _gvn.transform(io_phi) ); 2292 } 2293 2294 set_control( _gvn.transform(result_rgn) ); 2295 } 2296 2297 // Add check to deoptimize once holder klass is fully initialized. 2298 void Parse::clinit_deopt() { 2299 assert(C->has_method(), "only for normal compilations"); 2300 assert(depth() == 1, "only for main compiled method"); 2301 assert(is_normal_parse(), "no barrier needed on osr entry"); 2302 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2303 2304 set_parse_bci(0); 2305 2306 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2307 guard_klass_being_initialized(holder); 2308 } 2309 2310 // Add check to deoptimize if RTM state is not ProfileRTM 2311 void Parse::rtm_deopt() { 2312 #if INCLUDE_RTM_OPT 2313 if (C->profile_rtm()) { 2314 assert(C->has_method(), "only for normal compilations"); 2315 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2316 assert(depth() == 1, "generate check only for main compiled method"); 2317 2318 // Set starting bci for uncommon trap. 2319 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2320 2321 // Load the rtm_state from the MethodData. 2322 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2323 Node* mdo = makecon(adr_type); 2324 int offset = in_bytes(MethodData::rtm_state_offset()); 2325 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2326 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2327 2328 // Separate Load from Cmp by Opaque. 2329 // In expand_macro_nodes() it will be replaced either 2330 // with this load when there are locks in the code 2331 // or with ProfileRTM (cmp->in(2)) otherwise so that 2332 // the check will fold. 2333 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2334 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2335 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2336 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2337 // Branch to failure if state was changed 2338 { BuildCutout unless(this, tst, PROB_ALWAYS); 2339 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2340 Deoptimization::Action_make_not_entrant); 2341 } 2342 } 2343 #endif 2344 } 2345 2346 //------------------------------return_current--------------------------------- 2347 // Append current _map to _exit_return 2348 void Parse::return_current(Node* value) { 2349 if (RegisterFinalizersAtInit && 2350 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2351 call_register_finalizer(); 2352 } 2353 2354 // Do not set_parse_bci, so that return goo is credited to the return insn. 2355 // vreturn can trigger an allocation so vreturn can throw. Setting 2356 // the bci here breaks exception handling. Commenting this out 2357 // doesn't seem to break anything. 2358 // set_bci(InvocationEntryBci); 2359 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2360 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2361 } 2362 if (C->env()->dtrace_method_probes()) { 2363 make_dtrace_method_exit(method()); 2364 } 2365 // frame pointer is always same, already captured 2366 if (value != nullptr) { 2367 Node* phi = _exits.argument(0); 2368 const Type* return_type = phi->bottom_type(); 2369 const TypeInstPtr* tr = return_type->isa_instptr(); 2370 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) && 2371 return_type->is_inlinetypeptr()) { 2372 // Inline type is returned as fields, make sure it is scalarized 2373 if (!value->is_InlineType()) { 2374 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), method()->signature()->returns_null_free_inline_type()); 2375 } 2376 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) { 2377 // Returning from root or an incrementally inlined method. Make sure all non-flat 2378 // fields are buffered and re-execute if allocation triggers deoptimization. 2379 PreserveReexecuteState preexecs(this); 2380 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields"); 2381 jvms()->set_should_reexecute(true); 2382 inc_sp(1); 2383 value = value->as_InlineType()->allocate_fields(this); 2384 } 2385 } else if (value->is_InlineType()) { 2386 // Inline type is returned as oop, make sure it is buffered and re-execute 2387 // if allocation triggers deoptimization. 2388 PreserveReexecuteState preexecs(this); 2389 jvms()->set_should_reexecute(true); 2390 inc_sp(1); 2391 value = value->as_InlineType()->buffer(this); 2392 } 2393 // ...else 2394 // If returning oops to an interface-return, there is a silent free 2395 // cast from oop to interface allowed by the Verifier. Make it explicit here. 2396 phi->add_req(value); 2397 } 2398 2399 SafePointNode* exit_return = _exits.map(); 2400 exit_return->in( TypeFunc::Control )->add_req( control() ); 2401 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2402 Node *mem = exit_return->in( TypeFunc::Memory ); 2403 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2404 if (mms.is_empty()) { 2405 // get a copy of the base memory, and patch just this one input 2406 const TypePtr* adr_type = mms.adr_type(C); 2407 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2408 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2409 gvn().set_type_bottom(phi); 2410 phi->del_req(phi->req()-1); // prepare to re-patch 2411 mms.set_memory(phi); 2412 } 2413 mms.memory()->add_req(mms.memory2()); 2414 } 2415 2416 if (_first_return) { 2417 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2418 _first_return = false; 2419 } else { 2420 _exits.map()->merge_replaced_nodes_with(map()); 2421 } 2422 2423 stop_and_kill_map(); // This CFG path dies here 2424 } 2425 2426 2427 //------------------------------add_safepoint---------------------------------- 2428 void Parse::add_safepoint() { 2429 uint parms = TypeFunc::Parms+1; 2430 2431 // Clear out dead values from the debug info. 2432 kill_dead_locals(); 2433 2434 // Clone the JVM State 2435 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2436 2437 // Capture memory state BEFORE a SafePoint. Since we can block at a 2438 // SafePoint we need our GC state to be safe; i.e. we need all our current 2439 // write barriers (card marks) to not float down after the SafePoint so we 2440 // must read raw memory. Likewise we need all oop stores to match the card 2441 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2442 // state on a deopt). 2443 2444 // We do not need to WRITE the memory state after a SafePoint. The control 2445 // edge will keep card-marks and oop-stores from floating up from below a 2446 // SafePoint and our true dependency added here will keep them from floating 2447 // down below a SafePoint. 2448 2449 // Clone the current memory state 2450 Node* mem = MergeMemNode::make(map()->memory()); 2451 2452 mem = _gvn.transform(mem); 2453 2454 // Pass control through the safepoint 2455 sfpnt->init_req(TypeFunc::Control , control()); 2456 // Fix edges normally used by a call 2457 sfpnt->init_req(TypeFunc::I_O , top() ); 2458 sfpnt->init_req(TypeFunc::Memory , mem ); 2459 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2460 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2461 2462 // Create a node for the polling address 2463 Node *polladr; 2464 Node *thread = _gvn.transform(new ThreadLocalNode()); 2465 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2466 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2467 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2468 2469 // Fix up the JVM State edges 2470 add_safepoint_edges(sfpnt); 2471 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2472 set_control(transformed_sfpnt); 2473 2474 // Provide an edge from root to safepoint. This makes the safepoint 2475 // appear useful until the parse has completed. 2476 if (transformed_sfpnt->is_SafePoint()) { 2477 assert(C->root() != nullptr, "Expect parse is still valid"); 2478 C->root()->add_prec(transformed_sfpnt); 2479 } 2480 } 2481 2482 #ifndef PRODUCT 2483 //------------------------show_parse_info-------------------------------------- 2484 void Parse::show_parse_info() { 2485 InlineTree* ilt = nullptr; 2486 if (C->ilt() != nullptr) { 2487 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2488 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2489 } 2490 if (PrintCompilation && Verbose) { 2491 if (depth() == 1) { 2492 if( ilt->count_inlines() ) { 2493 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2494 ilt->count_inline_bcs()); 2495 tty->cr(); 2496 } 2497 } else { 2498 if (method()->is_synchronized()) tty->print("s"); 2499 if (method()->has_exception_handlers()) tty->print("!"); 2500 // Check this is not the final compiled version 2501 if (C->trap_can_recompile()) { 2502 tty->print("-"); 2503 } else { 2504 tty->print(" "); 2505 } 2506 method()->print_short_name(); 2507 if (is_osr_parse()) { 2508 tty->print(" @ %d", osr_bci()); 2509 } 2510 tty->print(" (%d bytes)",method()->code_size()); 2511 if (ilt->count_inlines()) { 2512 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2513 ilt->count_inline_bcs()); 2514 } 2515 tty->cr(); 2516 } 2517 } 2518 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2519 // Print that we succeeded; suppress this message on the first osr parse. 2520 2521 if (method()->is_synchronized()) tty->print("s"); 2522 if (method()->has_exception_handlers()) tty->print("!"); 2523 // Check this is not the final compiled version 2524 if (C->trap_can_recompile() && depth() == 1) { 2525 tty->print("-"); 2526 } else { 2527 tty->print(" "); 2528 } 2529 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2530 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2531 method()->print_short_name(); 2532 if (is_osr_parse()) { 2533 tty->print(" @ %d", osr_bci()); 2534 } 2535 if (ilt->caller_bci() != -1) { 2536 tty->print(" @ %d", ilt->caller_bci()); 2537 } 2538 tty->print(" (%d bytes)",method()->code_size()); 2539 if (ilt->count_inlines()) { 2540 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2541 ilt->count_inline_bcs()); 2542 } 2543 tty->cr(); 2544 } 2545 } 2546 2547 2548 //------------------------------dump------------------------------------------- 2549 // Dump information associated with the bytecodes of current _method 2550 void Parse::dump() { 2551 if( method() != nullptr ) { 2552 // Iterate over bytecodes 2553 ciBytecodeStream iter(method()); 2554 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2555 dump_bci( iter.cur_bci() ); 2556 tty->cr(); 2557 } 2558 } 2559 } 2560 2561 // Dump information associated with a byte code index, 'bci' 2562 void Parse::dump_bci(int bci) { 2563 // Output info on merge-points, cloning, and within _jsr..._ret 2564 // NYI 2565 tty->print(" bci:%d", bci); 2566 } 2567 2568 #endif