1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/convertnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/inlinetypenode.hpp" 36 #include "opto/locknode.hpp" 37 #include "opto/memnode.hpp" 38 #include "opto/opaquenode.hpp" 39 #include "opto/parse.hpp" 40 #include "opto/rootnode.hpp" 41 #include "opto/runtime.hpp" 42 #include "opto/type.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/bitMap.inline.hpp" 47 #include "utilities/copy.hpp" 48 49 // Static array so we can figure out which bytecodes stop us from compiling 50 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 51 // and eventually should be encapsulated in a proper class (gri 8/18/98). 52 53 #ifndef PRODUCT 54 uint nodes_created = 0; 55 uint methods_parsed = 0; 56 uint methods_seen = 0; 57 uint blocks_parsed = 0; 58 uint blocks_seen = 0; 59 60 uint explicit_null_checks_inserted = 0; 61 uint explicit_null_checks_elided = 0; 62 uint all_null_checks_found = 0; 63 uint implicit_null_checks = 0; 64 65 bool Parse::BytecodeParseHistogram::_initialized = false; 66 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 69 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 70 71 //------------------------------print_statistics------------------------------- 72 void Parse::print_statistics() { 73 tty->print_cr("--- Compiler Statistics ---"); 74 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 75 tty->print(" Nodes created: %u", nodes_created); 76 tty->cr(); 77 if (methods_seen != methods_parsed) { 78 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 79 } 80 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 81 82 if (explicit_null_checks_inserted) { 83 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 84 explicit_null_checks_inserted, explicit_null_checks_elided, 85 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 86 all_null_checks_found); 87 } 88 if (all_null_checks_found) { 89 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 90 (100*implicit_null_checks)/all_null_checks_found); 91 } 92 if (SharedRuntime::_implicit_null_throws) { 93 tty->print_cr("%u implicit null exceptions at runtime", 94 SharedRuntime::_implicit_null_throws); 95 } 96 97 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 98 BytecodeParseHistogram::print(); 99 } 100 } 101 #endif 102 103 //------------------------------ON STACK REPLACEMENT--------------------------- 104 105 // Construct a node which can be used to get incoming state for 106 // on stack replacement. 107 Node* Parse::fetch_interpreter_state(int index, 108 const Type* type, 109 Node* local_addrs, 110 Node* local_addrs_base) { 111 BasicType bt = type->basic_type(); 112 if (type == TypePtr::NULL_PTR) { 113 // Ptr types are mixed together with T_ADDRESS but nullptr is 114 // really for T_OBJECT types so correct it. 115 bt = T_OBJECT; 116 } 117 Node *mem = memory(Compile::AliasIdxRaw); 118 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 119 Node *ctl = control(); 120 121 // Very similar to LoadNode::make, except we handle un-aligned longs and 122 // doubles on Sparc. Intel can handle them just fine directly. 123 Node *l = nullptr; 124 switch (bt) { // Signature is flattened 125 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 126 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 127 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 128 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 129 case T_LONG: 130 case T_DOUBLE: { 131 // Since arguments are in reverse order, the argument address 'adr' 132 // refers to the back half of the long/double. Recompute adr. 133 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 134 if (Matcher::misaligned_doubles_ok) { 135 l = (bt == T_DOUBLE) 136 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 137 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 138 } else { 139 l = (bt == T_DOUBLE) 140 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 141 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 142 } 143 break; 144 } 145 default: ShouldNotReachHere(); 146 } 147 return _gvn.transform(l); 148 } 149 150 // Helper routine to prevent the interpreter from handing 151 // unexpected typestate to an OSR method. 152 // The Node l is a value newly dug out of the interpreter frame. 153 // The type is the type predicted by ciTypeFlow. Note that it is 154 // not a general type, but can only come from Type::get_typeflow_type. 155 // The safepoint is a map which will feed an uncommon trap. 156 Node* Parse::check_interpreter_type(Node* l, const Type* type, 157 SafePointNode* &bad_type_exit) { 158 const TypeOopPtr* tp = type->isa_oopptr(); 159 160 // TypeFlow may assert null-ness if a type appears unloaded. 161 if (type == TypePtr::NULL_PTR || 162 (tp != nullptr && !tp->is_loaded())) { 163 // Value must be null, not a real oop. 164 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 165 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 166 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 167 set_control(_gvn.transform( new IfTrueNode(iff) )); 168 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 169 bad_type_exit->control()->add_req(bad_type); 170 l = null(); 171 } 172 173 // Typeflow can also cut off paths from the CFG, based on 174 // types which appear unloaded, or call sites which appear unlinked. 175 // When paths are cut off, values at later merge points can rise 176 // toward more specific classes. Make sure these specific classes 177 // are still in effect. 178 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 179 // TypeFlow asserted a specific object type. Value must have that type. 180 Node* bad_type_ctrl = nullptr; 181 if (tp->is_inlinetypeptr() && !tp->maybe_null()) { 182 // Check inline types for null here to prevent checkcast from adding an 183 // exception state before the bytecode entry (use 'bad_type_ctrl' instead). 184 l = null_check_oop(l, &bad_type_ctrl); 185 bad_type_exit->control()->add_req(bad_type_ctrl); 186 } 187 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 188 bad_type_exit->control()->add_req(bad_type_ctrl); 189 } 190 191 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 192 return l; 193 } 194 195 // Helper routine which sets up elements of the initial parser map when 196 // performing a parse for on stack replacement. Add values into map. 197 // The only parameter contains the address of a interpreter arguments. 198 void Parse::load_interpreter_state(Node* osr_buf) { 199 int index; 200 int max_locals = jvms()->loc_size(); 201 int max_stack = jvms()->stk_size(); 202 203 // Mismatch between method and jvms can occur since map briefly held 204 // an OSR entry state (which takes up one RawPtr word). 205 assert(max_locals == method()->max_locals(), "sanity"); 206 assert(max_stack >= method()->max_stack(), "sanity"); 207 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 208 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 209 210 // Find the start block. 211 Block* osr_block = start_block(); 212 assert(osr_block->start() == osr_bci(), "sanity"); 213 214 // Set initial BCI. 215 set_parse_bci(osr_block->start()); 216 217 // Set initial stack depth. 218 set_sp(osr_block->start_sp()); 219 220 // Check bailouts. We currently do not perform on stack replacement 221 // of loops in catch blocks or loops which branch with a non-empty stack. 222 if (sp() != 0) { 223 C->record_method_not_compilable("OSR starts with non-empty stack"); 224 return; 225 } 226 // Do not OSR inside finally clauses: 227 if (osr_block->has_trap_at(osr_block->start())) { 228 assert(false, "OSR starts with an immediate trap"); 229 C->record_method_not_compilable("OSR starts with an immediate trap"); 230 return; 231 } 232 233 // Commute monitors from interpreter frame to compiler frame. 234 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 235 int mcnt = osr_block->flow()->monitor_count(); 236 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 237 for (index = 0; index < mcnt; index++) { 238 // Make a BoxLockNode for the monitor. 239 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 240 // Check for bailout after new BoxLockNode 241 if (failing()) { return; } 242 243 // This OSR locking region is unbalanced because it does not have Lock node: 244 // locking was done in Interpreter. 245 // This is similar to Coarsened case when Lock node is eliminated 246 // and as result the region is marked as Unbalanced. 247 248 // Emulate Coarsened state transition from Regular to Unbalanced. 249 osr_box->set_coarsened(); 250 osr_box->set_unbalanced(); 251 252 Node* box = _gvn.transform(osr_box); 253 254 // Displaced headers and locked objects are interleaved in the 255 // temp OSR buffer. We only copy the locked objects out here. 256 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 257 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf); 258 // Try and copy the displaced header to the BoxNode 259 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf); 260 261 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 262 263 // Build a bogus FastLockNode (no code will be generated) and push the 264 // monitor into our debug info. 265 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 266 map()->push_monitor(flock); 267 268 // If the lock is our method synchronization lock, tuck it away in 269 // _sync_lock for return and rethrow exit paths. 270 if (index == 0 && method()->is_synchronized()) { 271 _synch_lock = flock; 272 } 273 } 274 275 // Use the raw liveness computation to make sure that unexpected 276 // values don't propagate into the OSR frame. 277 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 278 if (!live_locals.is_valid()) { 279 // Degenerate or breakpointed method. 280 assert(false, "OSR in empty or breakpointed method"); 281 C->record_method_not_compilable("OSR in empty or breakpointed method"); 282 return; 283 } 284 285 // Extract the needed locals from the interpreter frame. 286 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 287 288 // find all the locals that the interpreter thinks contain live oops 289 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 290 for (index = 0; index < max_locals; index++) { 291 292 if (!live_locals.at(index)) { 293 continue; 294 } 295 296 const Type *type = osr_block->local_type_at(index); 297 298 if (type->isa_oopptr() != nullptr) { 299 300 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 301 // else we might load a stale oop if the MethodLiveness disagrees with the 302 // result of the interpreter. If the interpreter says it is dead we agree 303 // by making the value go to top. 304 // 305 306 if (!live_oops.at(index)) { 307 if (C->log() != nullptr) { 308 C->log()->elem("OSR_mismatch local_index='%d'",index); 309 } 310 set_local(index, null()); 311 // and ignore it for the loads 312 continue; 313 } 314 } 315 316 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 317 if (type == Type::TOP || type == Type::HALF) { 318 continue; 319 } 320 // If the type falls to bottom, then this must be a local that 321 // is mixing ints and oops or some such. Forcing it to top 322 // makes it go dead. 323 if (type == Type::BOTTOM) { 324 continue; 325 } 326 // Construct code to access the appropriate local. 327 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf); 328 set_local(index, value); 329 } 330 331 // Extract the needed stack entries from the interpreter frame. 332 for (index = 0; index < sp(); index++) { 333 const Type *type = osr_block->stack_type_at(index); 334 if (type != Type::TOP) { 335 // Currently the compiler bails out when attempting to on stack replace 336 // at a bci with a non-empty stack. We should not reach here. 337 ShouldNotReachHere(); 338 } 339 } 340 341 // End the OSR migration 342 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 343 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 344 "OSR_migration_end", TypeRawPtr::BOTTOM, 345 osr_buf); 346 347 // Now that the interpreter state is loaded, make sure it will match 348 // at execution time what the compiler is expecting now: 349 SafePointNode* bad_type_exit = clone_map(); 350 bad_type_exit->set_control(new RegionNode(1)); 351 352 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 353 for (index = 0; index < max_locals; index++) { 354 if (stopped()) break; 355 Node* l = local(index); 356 if (l->is_top()) continue; // nothing here 357 const Type *type = osr_block->local_type_at(index); 358 if (type->isa_oopptr() != nullptr) { 359 if (!live_oops.at(index)) { 360 // skip type check for dead oops 361 continue; 362 } 363 } 364 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 365 // In our current system it's illegal for jsr addresses to be 366 // live into an OSR entry point because the compiler performs 367 // inlining of jsrs. ciTypeFlow has a bailout that detect this 368 // case and aborts the compile if addresses are live into an OSR 369 // entry point. Because of that we can assume that any address 370 // locals at the OSR entry point are dead. Method liveness 371 // isn't precise enough to figure out that they are dead in all 372 // cases so simply skip checking address locals all 373 // together. Any type check is guaranteed to fail since the 374 // interpreter type is the result of a load which might have any 375 // value and the expected type is a constant. 376 continue; 377 } 378 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 379 } 380 381 for (index = 0; index < sp(); index++) { 382 if (stopped()) break; 383 Node* l = stack(index); 384 if (l->is_top()) continue; // nothing here 385 const Type *type = osr_block->stack_type_at(index); 386 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 387 } 388 389 if (bad_type_exit->control()->req() > 1) { 390 // Build an uncommon trap here, if any inputs can be unexpected. 391 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 392 record_for_igvn(bad_type_exit->control()); 393 SafePointNode* types_are_good = map(); 394 set_map(bad_type_exit); 395 // The unexpected type happens because a new edge is active 396 // in the CFG, which typeflow had previously ignored. 397 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 398 // This x will be typed as Integer if notReached is not yet linked. 399 // It could also happen due to a problem in ciTypeFlow analysis. 400 uncommon_trap(Deoptimization::Reason_constraint, 401 Deoptimization::Action_reinterpret); 402 set_map(types_are_good); 403 } 404 } 405 406 //------------------------------Parse------------------------------------------ 407 // Main parser constructor. 408 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 409 : _exits(caller) 410 { 411 // Init some variables 412 _caller = caller; 413 _method = parse_method; 414 _expected_uses = expected_uses; 415 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 416 _wrote_final = false; 417 _wrote_volatile = false; 418 _wrote_stable = false; 419 _wrote_fields = false; 420 _alloc_with_final_or_stable = nullptr; 421 _block = nullptr; 422 _first_return = true; 423 _replaced_nodes_for_exceptions = false; 424 _new_idx = C->unique(); 425 DEBUG_ONLY(_entry_bci = UnknownBci); 426 DEBUG_ONLY(_block_count = -1); 427 DEBUG_ONLY(_blocks = (Block*)-1); 428 #ifndef PRODUCT 429 if (PrintCompilation || PrintOpto) { 430 // Make sure I have an inline tree, so I can print messages about it. 431 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 432 } 433 _max_switch_depth = 0; 434 _est_switch_depth = 0; 435 #endif 436 437 if (parse_method->has_reserved_stack_access()) { 438 C->set_has_reserved_stack_access(true); 439 } 440 441 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 442 C->set_has_monitors(true); 443 } 444 445 if (parse_method->is_scoped()) { 446 C->set_has_scoped_access(true); 447 } 448 449 _iter.reset_to_method(method()); 450 C->set_has_loops(C->has_loops() || method()->has_loops()); 451 452 if (_expected_uses <= 0) { 453 _prof_factor = 1; 454 } else { 455 float prof_total = parse_method->interpreter_invocation_count(); 456 if (prof_total <= _expected_uses) { 457 _prof_factor = 1; 458 } else { 459 _prof_factor = _expected_uses / prof_total; 460 } 461 } 462 463 CompileLog* log = C->log(); 464 if (log != nullptr) { 465 log->begin_head("parse method='%d' uses='%f'", 466 log->identify(parse_method), expected_uses); 467 if (depth() == 1 && C->is_osr_compilation()) { 468 log->print(" osr_bci='%d'", C->entry_bci()); 469 } 470 log->stamp(); 471 log->end_head(); 472 } 473 474 // Accumulate deoptimization counts. 475 // (The range_check and store_check counts are checked elsewhere.) 476 ciMethodData* md = method()->method_data(); 477 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 478 uint md_count = md->trap_count(reason); 479 if (md_count != 0) { 480 if (md_count >= md->trap_count_limit()) { 481 md_count = md->trap_count_limit() + md->overflow_trap_count(); 482 } 483 uint total_count = C->trap_count(reason); 484 uint old_count = total_count; 485 total_count += md_count; 486 // Saturate the add if it overflows. 487 if (total_count < old_count || total_count < md_count) 488 total_count = (uint)-1; 489 C->set_trap_count(reason, total_count); 490 if (log != nullptr) 491 log->elem("observe trap='%s' count='%d' total='%d'", 492 Deoptimization::trap_reason_name(reason), 493 md_count, total_count); 494 } 495 } 496 // Accumulate total sum of decompilations, also. 497 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 498 499 if (log != nullptr && method()->has_exception_handlers()) { 500 log->elem("observe that='has_exception_handlers'"); 501 } 502 503 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 504 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 505 506 // Always register dependence if JVMTI is enabled, because 507 // either breakpoint setting or hotswapping of methods may 508 // cause deoptimization. 509 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 510 C->dependencies()->assert_evol_method(method()); 511 } 512 513 NOT_PRODUCT(methods_seen++); 514 515 // Do some special top-level things. 516 if (depth() == 1 && C->is_osr_compilation()) { 517 _tf = C->tf(); // the OSR entry type is different 518 _entry_bci = C->entry_bci(); 519 _flow = method()->get_osr_flow_analysis(osr_bci()); 520 } else { 521 _tf = TypeFunc::make(method()); 522 _entry_bci = InvocationEntryBci; 523 _flow = method()->get_flow_analysis(); 524 } 525 526 if (_flow->failing()) { 527 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke 528 // can lead to this. Re-enable once 8284443 is fixed. 529 //assert(false, "type flow analysis failed during parsing"); 530 C->record_method_not_compilable(_flow->failure_reason()); 531 #ifndef PRODUCT 532 if (PrintOpto && (Verbose || WizardMode)) { 533 if (is_osr_parse()) { 534 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 535 } else { 536 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 537 } 538 if (Verbose) { 539 method()->print(); 540 method()->print_codes(); 541 _flow->print(); 542 } 543 } 544 #endif 545 } 546 547 #ifdef ASSERT 548 if (depth() == 1) { 549 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 550 } else { 551 assert(!this->is_osr_parse(), "no recursive OSR"); 552 } 553 #endif 554 555 #ifndef PRODUCT 556 if (_flow->has_irreducible_entry()) { 557 C->set_parsed_irreducible_loop(true); 558 } 559 560 methods_parsed++; 561 // add method size here to guarantee that inlined methods are added too 562 if (CITime) 563 _total_bytes_compiled += method()->code_size(); 564 565 show_parse_info(); 566 #endif 567 568 if (failing()) { 569 if (log) log->done("parse"); 570 return; 571 } 572 573 gvn().transform(top()); 574 575 // Import the results of the ciTypeFlow. 576 init_blocks(); 577 578 // Merge point for all normal exits 579 build_exits(); 580 581 // Setup the initial JVM state map. 582 SafePointNode* entry_map = create_entry_map(); 583 584 // Check for bailouts during map initialization 585 if (failing() || entry_map == nullptr) { 586 if (log) log->done("parse"); 587 return; 588 } 589 590 Node_Notes* caller_nn = C->default_node_notes(); 591 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 592 if (DebugInlinedCalls || depth() == 1) { 593 C->set_default_node_notes(make_node_notes(caller_nn)); 594 } 595 596 if (is_osr_parse()) { 597 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 598 entry_map->set_req(TypeFunc::Parms+0, top()); 599 set_map(entry_map); 600 load_interpreter_state(osr_buf); 601 } else { 602 set_map(entry_map); 603 do_method_entry(); 604 } 605 606 if (depth() == 1 && !failing()) { 607 if (C->clinit_barrier_on_entry()) { 608 // Add check to deoptimize the nmethod once the holder class is fully initialized 609 clinit_deopt(); 610 } 611 } 612 613 // Check for bailouts during method entry. 614 if (failing()) { 615 if (log) log->done("parse"); 616 C->set_default_node_notes(caller_nn); 617 return; 618 } 619 620 // Handle inline type arguments 621 int arg_size = method()->arg_size(); 622 for (int i = 0; i < arg_size; i++) { 623 Node* parm = local(i); 624 const Type* t = _gvn.type(parm); 625 if (t->is_inlinetypeptr()) { 626 // Create InlineTypeNode from the oop and replace the parameter 627 bool is_larval = (i == 0) && method()->is_object_constructor() && !method()->holder()->is_java_lang_Object(); 628 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null(), is_larval); 629 replace_in_map(parm, vt); 630 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() && 631 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) { 632 // Speculate on varargs Object array being not null-free (and therefore also not flat) 633 const TypePtr* spec_type = t->speculative(); 634 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr(); 635 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free(); 636 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type); 637 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type))); 638 replace_in_map(parm, cast); 639 } 640 } 641 642 entry_map = map(); // capture any changes performed by method setup code 643 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 644 645 // We begin parsing as if we have just encountered a jump to the 646 // method entry. 647 Block* entry_block = start_block(); 648 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 649 set_map_clone(entry_map); 650 merge_common(entry_block, entry_block->next_path_num()); 651 652 #ifndef PRODUCT 653 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 654 set_parse_histogram( parse_histogram_obj ); 655 #endif 656 657 // Parse all the basic blocks. 658 do_all_blocks(); 659 660 // Check for bailouts during conversion to graph 661 if (failing()) { 662 if (log) log->done("parse"); 663 return; 664 } 665 666 // Fix up all exiting control flow. 667 set_map(entry_map); 668 do_exits(); 669 670 // Only reset this now, to make sure that debug information emitted 671 // for exiting control flow still refers to the inlined method. 672 C->set_default_node_notes(caller_nn); 673 674 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 675 C->unique(), C->live_nodes(), C->node_arena()->used()); 676 } 677 678 //---------------------------do_all_blocks------------------------------------- 679 void Parse::do_all_blocks() { 680 bool has_irreducible = flow()->has_irreducible_entry(); 681 682 // Walk over all blocks in Reverse Post-Order. 683 while (true) { 684 bool progress = false; 685 for (int rpo = 0; rpo < block_count(); rpo++) { 686 Block* block = rpo_at(rpo); 687 688 if (block->is_parsed()) continue; 689 690 if (!block->is_merged()) { 691 // Dead block, no state reaches this block 692 continue; 693 } 694 695 // Prepare to parse this block. 696 load_state_from(block); 697 698 if (stopped()) { 699 // Block is dead. 700 continue; 701 } 702 703 NOT_PRODUCT(blocks_parsed++); 704 705 progress = true; 706 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 707 // Not all preds have been parsed. We must build phis everywhere. 708 // (Note that dead locals do not get phis built, ever.) 709 ensure_phis_everywhere(); 710 711 if (block->is_SEL_head()) { 712 // Add predicate to single entry (not irreducible) loop head. 713 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 714 // Predicates may have been added after a dominating if 715 if (!block->has_predicates()) { 716 // Need correct bci for predicate. 717 // It is fine to set it here since do_one_block() will set it anyway. 718 set_parse_bci(block->start()); 719 add_parse_predicates(); 720 } 721 // Add new region for back branches. 722 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 723 RegionNode *r = new RegionNode(edges+1); 724 _gvn.set_type(r, Type::CONTROL); 725 record_for_igvn(r); 726 r->init_req(edges, control()); 727 set_control(r); 728 block->copy_irreducible_status_to(r, jvms()); 729 // Add new phis. 730 ensure_phis_everywhere(); 731 } 732 733 // Leave behind an undisturbed copy of the map, for future merges. 734 set_map(clone_map()); 735 } 736 737 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 738 // In the absence of irreducible loops, the Region and Phis 739 // associated with a merge that doesn't involve a backedge can 740 // be simplified now since the RPO parsing order guarantees 741 // that any path which was supposed to reach here has already 742 // been parsed or must be dead. 743 Node* c = control(); 744 Node* result = _gvn.transform(control()); 745 if (c != result && TraceOptoParse) { 746 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 747 } 748 if (result != top()) { 749 record_for_igvn(result); 750 } 751 } 752 753 // Parse the block. 754 do_one_block(); 755 756 // Check for bailouts. 757 if (failing()) return; 758 } 759 760 // with irreducible loops multiple passes might be necessary to parse everything 761 if (!has_irreducible || !progress) { 762 break; 763 } 764 } 765 766 #ifndef PRODUCT 767 blocks_seen += block_count(); 768 769 // Make sure there are no half-processed blocks remaining. 770 // Every remaining unprocessed block is dead and may be ignored now. 771 for (int rpo = 0; rpo < block_count(); rpo++) { 772 Block* block = rpo_at(rpo); 773 if (!block->is_parsed()) { 774 if (TraceOptoParse) { 775 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 776 } 777 assert(!block->is_merged(), "no half-processed blocks"); 778 } 779 } 780 #endif 781 } 782 783 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 784 switch (bt) { 785 case T_BYTE: 786 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 787 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 788 break; 789 case T_SHORT: 790 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 791 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 792 break; 793 case T_CHAR: 794 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 795 break; 796 case T_BOOLEAN: 797 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 798 break; 799 default: 800 break; 801 } 802 return v; 803 } 804 805 //-------------------------------build_exits---------------------------------- 806 // Build normal and exceptional exit merge points. 807 void Parse::build_exits() { 808 // make a clone of caller to prevent sharing of side-effects 809 _exits.set_map(_exits.clone_map()); 810 _exits.clean_stack(_exits.sp()); 811 _exits.sync_jvms(); 812 813 RegionNode* region = new RegionNode(1); 814 record_for_igvn(region); 815 gvn().set_type_bottom(region); 816 _exits.set_control(region); 817 818 // Note: iophi and memphi are not transformed until do_exits. 819 Node* iophi = new PhiNode(region, Type::ABIO); 820 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 821 gvn().set_type_bottom(iophi); 822 gvn().set_type_bottom(memphi); 823 _exits.set_i_o(iophi); 824 _exits.set_all_memory(memphi); 825 826 // Add a return value to the exit state. (Do not push it yet.) 827 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 828 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 829 if (ret_type->isa_int()) { 830 BasicType ret_bt = method()->return_type()->basic_type(); 831 if (ret_bt == T_BOOLEAN || 832 ret_bt == T_CHAR || 833 ret_bt == T_BYTE || 834 ret_bt == T_SHORT) { 835 ret_type = TypeInt::INT; 836 } 837 } 838 839 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 840 // becomes loaded during the subsequent parsing, the loaded and unloaded 841 // types will not join when we transform and push in do_exits(). 842 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 843 if (ret_oop_type && !ret_oop_type->is_loaded()) { 844 ret_type = TypeOopPtr::BOTTOM; 845 } 846 int ret_size = type2size[ret_type->basic_type()]; 847 Node* ret_phi = new PhiNode(region, ret_type); 848 gvn().set_type_bottom(ret_phi); 849 _exits.ensure_stack(ret_size); 850 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 851 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 852 _exits.set_argument(0, ret_phi); // here is where the parser finds it 853 // Note: ret_phi is not yet pushed, until do_exits. 854 } 855 } 856 857 //----------------------------build_start_state------------------------------- 858 // Construct a state which contains only the incoming arguments from an 859 // unknown caller. The method & bci will be null & InvocationEntryBci. 860 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 861 int arg_size = tf->domain_sig()->cnt(); 862 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt()); 863 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 864 SafePointNode* map = new SafePointNode(max_size, jvms); 865 jvms->set_map(map); 866 record_for_igvn(map); 867 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 868 Node_Notes* old_nn = default_node_notes(); 869 if (old_nn != nullptr && has_method()) { 870 Node_Notes* entry_nn = old_nn->clone(this); 871 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 872 entry_jvms->set_offsets(0); 873 entry_jvms->set_bci(entry_bci()); 874 entry_nn->set_jvms(entry_jvms); 875 set_default_node_notes(entry_nn); 876 } 877 PhaseGVN& gvn = *initial_gvn(); 878 uint i = 0; 879 int arg_num = 0; 880 for (uint j = 0; i < (uint)arg_size; i++) { 881 const Type* t = tf->domain_sig()->field_at(i); 882 Node* parm = nullptr; 883 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) { 884 // Inline type arguments are not passed by reference: we get an argument per 885 // field of the inline type. Build InlineTypeNodes from the inline type arguments. 886 GraphKit kit(jvms, &gvn); 887 kit.set_control(map->control()); 888 Node* old_mem = map->memory(); 889 // Use immutable memory for inline type loads and restore it below 890 kit.set_all_memory(C->immutable_memory()); 891 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null()); 892 map->set_control(kit.control()); 893 map->set_memory(old_mem); 894 } else { 895 parm = gvn.transform(new ParmNode(start, j++)); 896 } 897 map->init_req(i, parm); 898 // Record all these guys for later GVN. 899 record_for_igvn(parm); 900 if (i >= TypeFunc::Parms && t != Type::HALF) { 901 arg_num++; 902 } 903 } 904 for (; i < map->req(); i++) { 905 map->init_req(i, top()); 906 } 907 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 908 set_default_node_notes(old_nn); 909 return jvms; 910 } 911 912 //-----------------------------make_node_notes--------------------------------- 913 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 914 if (caller_nn == nullptr) return nullptr; 915 Node_Notes* nn = caller_nn->clone(C); 916 JVMState* caller_jvms = nn->jvms(); 917 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 918 jvms->set_offsets(0); 919 jvms->set_bci(_entry_bci); 920 nn->set_jvms(jvms); 921 return nn; 922 } 923 924 925 //--------------------------return_values-------------------------------------- 926 void Compile::return_values(JVMState* jvms) { 927 GraphKit kit(jvms); 928 Node* ret = new ReturnNode(TypeFunc::Parms, 929 kit.control(), 930 kit.i_o(), 931 kit.reset_memory(), 932 kit.frameptr(), 933 kit.returnadr()); 934 // Add zero or 1 return values 935 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms; 936 if (ret_size > 0) { 937 kit.inc_sp(-ret_size); // pop the return value(s) 938 kit.sync_jvms(); 939 Node* res = kit.argument(0); 940 if (tf()->returns_inline_type_as_fields()) { 941 // Multiple return values (inline type fields): add as many edges 942 // to the Return node as returned values. 943 InlineTypeNode* vt = res->as_InlineType(); 944 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms); 945 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) { 946 ret->init_req(TypeFunc::Parms, vt); 947 } else { 948 // Return the tagged klass pointer to signal scalarization to the caller 949 Node* tagged_klass = vt->tagged_klass(kit.gvn()); 950 // Return null if the inline type is null (IsInit field is not set) 951 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_is_init())); 952 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63))); 953 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63))); 954 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr)); 955 ret->init_req(TypeFunc::Parms, tagged_klass); 956 } 957 uint idx = TypeFunc::Parms + 1; 958 vt->pass_fields(&kit, ret, idx, false, false); 959 } else { 960 ret->add_req(res); 961 // Note: The second dummy edge is not needed by a ReturnNode. 962 } 963 } 964 // bind it to root 965 root()->add_req(ret); 966 record_for_igvn(ret); 967 initial_gvn()->transform(ret); 968 } 969 970 //------------------------rethrow_exceptions----------------------------------- 971 // Bind all exception states in the list into a single RethrowNode. 972 void Compile::rethrow_exceptions(JVMState* jvms) { 973 GraphKit kit(jvms); 974 if (!kit.has_exceptions()) return; // nothing to generate 975 // Load my combined exception state into the kit, with all phis transformed: 976 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 977 Node* ex_oop = kit.use_exception_state(ex_map); 978 RethrowNode* exit = new RethrowNode(kit.control(), 979 kit.i_o(), kit.reset_memory(), 980 kit.frameptr(), kit.returnadr(), 981 // like a return but with exception input 982 ex_oop); 983 // bind to root 984 root()->add_req(exit); 985 record_for_igvn(exit); 986 initial_gvn()->transform(exit); 987 } 988 989 //---------------------------do_exceptions------------------------------------- 990 // Process exceptions arising from the current bytecode. 991 // Send caught exceptions to the proper handler within this method. 992 // Unhandled exceptions feed into _exit. 993 void Parse::do_exceptions() { 994 if (!has_exceptions()) return; 995 996 if (failing()) { 997 // Pop them all off and throw them away. 998 while (pop_exception_state() != nullptr) ; 999 return; 1000 } 1001 1002 PreserveJVMState pjvms(this, false); 1003 1004 SafePointNode* ex_map; 1005 while ((ex_map = pop_exception_state()) != nullptr) { 1006 if (!method()->has_exception_handlers()) { 1007 // Common case: Transfer control outward. 1008 // Doing it this early allows the exceptions to common up 1009 // even between adjacent method calls. 1010 throw_to_exit(ex_map); 1011 } else { 1012 // Have to look at the exception first. 1013 assert(stopped(), "catch_inline_exceptions trashes the map"); 1014 catch_inline_exceptions(ex_map); 1015 stop_and_kill_map(); // we used up this exception state; kill it 1016 } 1017 } 1018 1019 // We now return to our regularly scheduled program: 1020 } 1021 1022 //---------------------------throw_to_exit------------------------------------- 1023 // Merge the given map into an exception exit from this method. 1024 // The exception exit will handle any unlocking of receiver. 1025 // The ex_oop must be saved within the ex_map, unlike merge_exception. 1026 void Parse::throw_to_exit(SafePointNode* ex_map) { 1027 // Pop the JVMS to (a copy of) the caller. 1028 GraphKit caller; 1029 caller.set_map_clone(_caller->map()); 1030 caller.set_bci(_caller->bci()); 1031 caller.set_sp(_caller->sp()); 1032 // Copy out the standard machine state: 1033 for (uint i = 0; i < TypeFunc::Parms; i++) { 1034 caller.map()->set_req(i, ex_map->in(i)); 1035 } 1036 if (ex_map->has_replaced_nodes()) { 1037 _replaced_nodes_for_exceptions = true; 1038 } 1039 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 1040 // ...and the exception: 1041 Node* ex_oop = saved_ex_oop(ex_map); 1042 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 1043 // Finally, collect the new exception state in my exits: 1044 _exits.add_exception_state(caller_ex_map); 1045 } 1046 1047 //------------------------------do_exits--------------------------------------- 1048 void Parse::do_exits() { 1049 set_parse_bci(InvocationEntryBci); 1050 1051 // Now peephole on the return bits 1052 Node* region = _exits.control(); 1053 _exits.set_control(gvn().transform(region)); 1054 1055 Node* iophi = _exits.i_o(); 1056 _exits.set_i_o(gvn().transform(iophi)); 1057 1058 // Figure out if we need to emit the trailing barrier. The barrier is only 1059 // needed in the constructors, and only in three cases: 1060 // 1061 // 1. The constructor wrote a final or a @Stable field. All these 1062 // initializations must be ordered before any code after the constructor 1063 // publishes the reference to the newly constructed object. Rather 1064 // than wait for the publication, we simply block the writes here. 1065 // Rather than put a barrier on only those writes which are required 1066 // to complete, we force all writes to complete. 1067 // 1068 // 2. Experimental VM option is used to force the barrier if any field 1069 // was written out in the constructor. 1070 // 1071 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1072 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1073 // MemBarVolatile is used before volatile load instead of after volatile 1074 // store, so there's no barrier after the store. 1075 // We want to guarantee the same behavior as on platforms with total store 1076 // order, although this is not required by the Java memory model. 1077 // In this case, we want to enforce visibility of volatile field 1078 // initializations which are performed in constructors. 1079 // So as with finals, we add a barrier here. 1080 // 1081 // "All bets are off" unless the first publication occurs after a 1082 // normal return from the constructor. We do not attempt to detect 1083 // such unusual early publications. But no barrier is needed on 1084 // exceptional returns, since they cannot publish normally. 1085 // 1086 if ((method()->is_object_constructor() || method()->is_class_initializer()) && 1087 (wrote_final() || wrote_stable() || 1088 (AlwaysSafeConstructors && wrote_fields()) || 1089 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1090 Node* recorded_alloc = alloc_with_final_or_stable(); 1091 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1092 recorded_alloc); 1093 1094 // If Memory barrier is created for final fields write 1095 // and allocation node does not escape the initialize method, 1096 // then barrier introduced by allocation node can be removed. 1097 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1098 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1099 alloc->compute_MemBar_redundancy(method()); 1100 } 1101 if (PrintOpto && (Verbose || WizardMode)) { 1102 method()->print_name(); 1103 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1104 } 1105 } 1106 1107 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1108 // transform each slice of the original memphi: 1109 mms.set_memory(_gvn.transform(mms.memory())); 1110 } 1111 // Clean up input MergeMems created by transforming the slices 1112 _gvn.transform(_exits.merged_memory()); 1113 1114 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 1115 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 1116 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1117 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1118 // If the type we set for the ret_phi in build_exits() is too optimistic and 1119 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1120 // loading. It could also be due to an error, so mark this method as not compilable because 1121 // otherwise this could lead to an infinite compile loop. 1122 // In any case, this code path is rarely (and never in my testing) reached. 1123 C->record_method_not_compilable("Can't determine return type."); 1124 return; 1125 } 1126 if (ret_type->isa_int()) { 1127 BasicType ret_bt = method()->return_type()->basic_type(); 1128 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1129 } 1130 _exits.push_node(ret_type->basic_type(), ret_phi); 1131 } 1132 1133 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1134 1135 // Unlock along the exceptional paths. 1136 // This is done late so that we can common up equivalent exceptions 1137 // (e.g., null checks) arising from multiple points within this method. 1138 // See GraphKit::add_exception_state, which performs the commoning. 1139 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1140 1141 // record exit from a method if compiled while Dtrace is turned on. 1142 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1143 // First move the exception list out of _exits: 1144 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1145 SafePointNode* normal_map = kit.map(); // keep this guy safe 1146 // Now re-collect the exceptions into _exits: 1147 SafePointNode* ex_map; 1148 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1149 Node* ex_oop = kit.use_exception_state(ex_map); 1150 // Force the exiting JVM state to have this method at InvocationEntryBci. 1151 // The exiting JVM state is otherwise a copy of the calling JVMS. 1152 JVMState* caller = kit.jvms(); 1153 JVMState* ex_jvms = caller->clone_shallow(C); 1154 ex_jvms->bind_map(kit.clone_map()); 1155 ex_jvms->set_bci( InvocationEntryBci); 1156 kit.set_jvms(ex_jvms); 1157 if (do_synch) { 1158 // Add on the synchronized-method box/object combo 1159 kit.map()->push_monitor(_synch_lock); 1160 // Unlock! 1161 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1162 } 1163 if (C->env()->dtrace_method_probes()) { 1164 kit.make_dtrace_method_exit(method()); 1165 } 1166 if (_replaced_nodes_for_exceptions) { 1167 kit.map()->apply_replaced_nodes(_new_idx); 1168 } 1169 // Done with exception-path processing. 1170 ex_map = kit.make_exception_state(ex_oop); 1171 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1172 // Pop the last vestige of this method: 1173 caller->clone_shallow(C)->bind_map(ex_map); 1174 _exits.push_exception_state(ex_map); 1175 } 1176 assert(_exits.map() == normal_map, "keep the same return state"); 1177 } 1178 1179 { 1180 // Capture very early exceptions (receiver null checks) from caller JVMS 1181 GraphKit caller(_caller); 1182 SafePointNode* ex_map; 1183 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1184 _exits.add_exception_state(ex_map); 1185 } 1186 } 1187 _exits.map()->apply_replaced_nodes(_new_idx); 1188 } 1189 1190 //-----------------------------create_entry_map------------------------------- 1191 // Initialize our parser map to contain the types at method entry. 1192 // For OSR, the map contains a single RawPtr parameter. 1193 // Initial monitor locking for sync. methods is performed by do_method_entry. 1194 SafePointNode* Parse::create_entry_map() { 1195 // Check for really stupid bail-out cases. 1196 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1197 if (len >= 32760) { 1198 // Bailout expected, this is a very rare edge case. 1199 C->record_method_not_compilable("too many local variables"); 1200 return nullptr; 1201 } 1202 1203 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1204 _caller->map()->delete_replaced_nodes(); 1205 1206 // If this is an inlined method, we may have to do a receiver null check. 1207 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1208 GraphKit kit(_caller); 1209 Node* receiver = kit.argument(0); 1210 Node* null_free = kit.null_check_receiver_before_call(method()); 1211 _caller = kit.transfer_exceptions_into_jvms(); 1212 if (receiver->is_InlineType() && receiver->as_InlineType()->is_larval()) { 1213 // Replace the larval inline type receiver in the exit map as well to make sure that 1214 // we can find and update it in Parse::do_call when we are done with the initialization. 1215 _exits.map()->replace_edge(receiver, null_free); 1216 } 1217 if (kit.stopped()) { 1218 _exits.add_exception_states_from(_caller); 1219 _exits.set_jvms(_caller); 1220 return nullptr; 1221 } 1222 } 1223 1224 assert(method() != nullptr, "parser must have a method"); 1225 1226 // Create an initial safepoint to hold JVM state during parsing 1227 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1228 set_map(new SafePointNode(len, jvms)); 1229 jvms->set_map(map()); 1230 record_for_igvn(map()); 1231 assert(jvms->endoff() == len, "correct jvms sizing"); 1232 1233 SafePointNode* inmap = _caller->map(); 1234 assert(inmap != nullptr, "must have inmap"); 1235 // In case of null check on receiver above 1236 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1237 1238 uint i; 1239 1240 // Pass thru the predefined input parameters. 1241 for (i = 0; i < TypeFunc::Parms; i++) { 1242 map()->init_req(i, inmap->in(i)); 1243 } 1244 1245 if (depth() == 1) { 1246 assert(map()->memory()->Opcode() == Op_Parm, ""); 1247 // Insert the memory aliasing node 1248 set_all_memory(reset_memory()); 1249 } 1250 assert(merged_memory(), ""); 1251 1252 // Now add the locals which are initially bound to arguments: 1253 uint arg_size = tf()->domain_sig()->cnt(); 1254 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1255 for (i = TypeFunc::Parms; i < arg_size; i++) { 1256 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1257 } 1258 1259 // Clear out the rest of the map (locals and stack) 1260 for (i = arg_size; i < len; i++) { 1261 map()->init_req(i, top()); 1262 } 1263 1264 SafePointNode* entry_map = stop(); 1265 return entry_map; 1266 } 1267 1268 //-----------------------------do_method_entry-------------------------------- 1269 // Emit any code needed in the pseudo-block before BCI zero. 1270 // The main thing to do is lock the receiver of a synchronized method. 1271 void Parse::do_method_entry() { 1272 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1273 set_sp(0); // Java Stack Pointer 1274 1275 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1276 1277 if (C->env()->dtrace_method_probes()) { 1278 make_dtrace_method_entry(method()); 1279 } 1280 1281 #ifdef ASSERT 1282 // Narrow receiver type when it is too broad for the method being parsed. 1283 if (!method()->is_static()) { 1284 ciInstanceKlass* callee_holder = method()->holder(); 1285 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1286 1287 Node* receiver_obj = local(0); 1288 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1289 1290 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1291 // Receiver should always be a subtype of callee holder. 1292 // But, since C2 type system doesn't properly track interfaces, 1293 // the invariant can't be expressed in the type system for default methods. 1294 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1295 assert(callee_holder->is_interface(), "missing subtype check"); 1296 1297 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1298 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1299 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1300 assert(!stopped(), "not a subtype"); 1301 1302 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1303 C->root()->add_req(halt); 1304 } 1305 } 1306 #endif // ASSERT 1307 1308 // If the method is synchronized, we need to construct a lock node, attach 1309 // it to the Start node, and pin it there. 1310 if (method()->is_synchronized()) { 1311 // Insert a FastLockNode right after the Start which takes as arguments 1312 // the current thread pointer, the "this" pointer & the address of the 1313 // stack slot pair used for the lock. The "this" pointer is a projection 1314 // off the start node, but the locking spot has to be constructed by 1315 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1316 // becomes the second argument to the FastLockNode call. The 1317 // FastLockNode becomes the new control parent to pin it to the start. 1318 1319 // Setup Object Pointer 1320 Node *lock_obj = nullptr; 1321 if (method()->is_static()) { 1322 ciInstance* mirror = _method->holder()->java_mirror(); 1323 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1324 lock_obj = makecon(t_lock); 1325 } else { // Else pass the "this" pointer, 1326 lock_obj = local(0); // which is Parm0 from StartNode 1327 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type"); 1328 } 1329 // Clear out dead values from the debug info. 1330 kill_dead_locals(); 1331 // Build the FastLockNode 1332 _synch_lock = shared_lock(lock_obj); 1333 // Check for bailout in shared_lock 1334 if (failing()) { return; } 1335 } 1336 1337 // Feed profiling data for parameters to the type system so it can 1338 // propagate it as speculative types 1339 record_profiled_parameters_for_speculation(); 1340 } 1341 1342 //------------------------------init_blocks------------------------------------ 1343 // Initialize our parser map to contain the types/monitors at method entry. 1344 void Parse::init_blocks() { 1345 // Create the blocks. 1346 _block_count = flow()->block_count(); 1347 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1348 1349 // Initialize the structs. 1350 for (int rpo = 0; rpo < block_count(); rpo++) { 1351 Block* block = rpo_at(rpo); 1352 new(block) Block(this, rpo); 1353 } 1354 1355 // Collect predecessor and successor information. 1356 for (int rpo = 0; rpo < block_count(); rpo++) { 1357 Block* block = rpo_at(rpo); 1358 block->init_graph(this); 1359 } 1360 } 1361 1362 //-------------------------------init_node------------------------------------- 1363 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1364 _flow = outer->flow()->rpo_at(rpo); 1365 _pred_count = 0; 1366 _preds_parsed = 0; 1367 _count = 0; 1368 _is_parsed = false; 1369 _is_handler = false; 1370 _has_merged_backedge = false; 1371 _start_map = nullptr; 1372 _has_predicates = false; 1373 _num_successors = 0; 1374 _all_successors = 0; 1375 _successors = nullptr; 1376 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1377 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1378 assert(_live_locals.size() == 0, "sanity"); 1379 1380 // entry point has additional predecessor 1381 if (flow()->is_start()) _pred_count++; 1382 assert(flow()->is_start() == (this == outer->start_block()), ""); 1383 } 1384 1385 //-------------------------------init_graph------------------------------------ 1386 void Parse::Block::init_graph(Parse* outer) { 1387 // Create the successor list for this parser block. 1388 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1389 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1390 int ns = tfs->length(); 1391 int ne = tfe->length(); 1392 _num_successors = ns; 1393 _all_successors = ns+ne; 1394 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1395 int p = 0; 1396 for (int i = 0; i < ns+ne; i++) { 1397 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1398 Block* block2 = outer->rpo_at(tf2->rpo()); 1399 _successors[i] = block2; 1400 1401 // Accumulate pred info for the other block, too. 1402 // Note: We also need to set _pred_count for exception blocks since they could 1403 // also have normal predecessors (reached without athrow by an explicit jump). 1404 // This also means that next_path_num can be called along exception paths. 1405 block2->_pred_count++; 1406 if (i >= ns) { 1407 block2->_is_handler = true; 1408 } 1409 1410 #ifdef ASSERT 1411 // A block's successors must be distinguishable by BCI. 1412 // That is, no bytecode is allowed to branch to two different 1413 // clones of the same code location. 1414 for (int j = 0; j < i; j++) { 1415 Block* block1 = _successors[j]; 1416 if (block1 == block2) continue; // duplicates are OK 1417 assert(block1->start() != block2->start(), "successors have unique bcis"); 1418 } 1419 #endif 1420 } 1421 } 1422 1423 //---------------------------successor_for_bci--------------------------------- 1424 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1425 for (int i = 0; i < all_successors(); i++) { 1426 Block* block2 = successor_at(i); 1427 if (block2->start() == bci) return block2; 1428 } 1429 // We can actually reach here if ciTypeFlow traps out a block 1430 // due to an unloaded class, and concurrently with compilation the 1431 // class is then loaded, so that a later phase of the parser is 1432 // able to see more of the bytecode CFG. Or, the flow pass and 1433 // the parser can have a minor difference of opinion about executability 1434 // of bytecodes. For example, "obj.field = null" is executable even 1435 // if the field's type is an unloaded class; the flow pass used to 1436 // make a trap for such code. 1437 return nullptr; 1438 } 1439 1440 1441 //-----------------------------stack_type_at----------------------------------- 1442 const Type* Parse::Block::stack_type_at(int i) const { 1443 return get_type(flow()->stack_type_at(i)); 1444 } 1445 1446 1447 //-----------------------------local_type_at----------------------------------- 1448 const Type* Parse::Block::local_type_at(int i) const { 1449 // Make dead locals fall to bottom. 1450 if (_live_locals.size() == 0) { 1451 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1452 // This bitmap can be zero length if we saw a breakpoint. 1453 // In such cases, pretend they are all live. 1454 ((Block*)this)->_live_locals = live_locals; 1455 } 1456 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1457 return Type::BOTTOM; 1458 1459 return get_type(flow()->local_type_at(i)); 1460 } 1461 1462 1463 #ifndef PRODUCT 1464 1465 //----------------------------name_for_bc-------------------------------------- 1466 // helper method for BytecodeParseHistogram 1467 static const char* name_for_bc(int i) { 1468 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1469 } 1470 1471 //----------------------------BytecodeParseHistogram------------------------------------ 1472 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1473 _parser = p; 1474 _compiler = c; 1475 if( ! _initialized ) { _initialized = true; reset(); } 1476 } 1477 1478 //----------------------------current_count------------------------------------ 1479 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1480 switch( bph_type ) { 1481 case BPH_transforms: { return _parser->gvn().made_progress(); } 1482 case BPH_values: { return _parser->gvn().made_new_values(); } 1483 default: { ShouldNotReachHere(); return 0; } 1484 } 1485 } 1486 1487 //----------------------------initialized-------------------------------------- 1488 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1489 1490 //----------------------------reset-------------------------------------------- 1491 void Parse::BytecodeParseHistogram::reset() { 1492 int i = Bytecodes::number_of_codes; 1493 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1494 } 1495 1496 //----------------------------set_initial_state-------------------------------- 1497 // Record info when starting to parse one bytecode 1498 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1499 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1500 _initial_bytecode = bc; 1501 _initial_node_count = _compiler->unique(); 1502 _initial_transforms = current_count(BPH_transforms); 1503 _initial_values = current_count(BPH_values); 1504 } 1505 } 1506 1507 //----------------------------record_change-------------------------------- 1508 // Record results of parsing one bytecode 1509 void Parse::BytecodeParseHistogram::record_change() { 1510 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1511 ++_bytecodes_parsed[_initial_bytecode]; 1512 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1513 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1514 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1515 } 1516 } 1517 1518 1519 //----------------------------print-------------------------------------------- 1520 void Parse::BytecodeParseHistogram::print(float cutoff) { 1521 ResourceMark rm; 1522 // print profile 1523 int total = 0; 1524 int i = 0; 1525 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1526 int abs_sum = 0; 1527 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1528 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1529 if( total == 0 ) { return; } 1530 tty->cr(); 1531 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1532 tty->print_cr("relative: percentage contribution to compiled nodes"); 1533 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1534 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1535 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1536 tty->print_cr("values : Average number of node values improved per bytecode"); 1537 tty->print_cr("name : Bytecode name"); 1538 tty->cr(); 1539 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1540 tty->print_cr("----------------------------------------------------------------------"); 1541 while (--i > 0) { 1542 int abs = _bytecodes_parsed[i]; 1543 float rel = abs * 100.0F / total; 1544 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1545 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1546 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1547 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1548 if (cutoff <= rel) { 1549 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1550 abs_sum += abs; 1551 } 1552 } 1553 tty->print_cr("----------------------------------------------------------------------"); 1554 float rel_sum = abs_sum * 100.0F / total; 1555 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1556 tty->print_cr("----------------------------------------------------------------------"); 1557 tty->cr(); 1558 } 1559 #endif 1560 1561 //----------------------------load_state_from---------------------------------- 1562 // Load block/map/sp. But not do not touch iter/bci. 1563 void Parse::load_state_from(Block* block) { 1564 set_block(block); 1565 // load the block's JVM state: 1566 set_map(block->start_map()); 1567 set_sp( block->start_sp()); 1568 } 1569 1570 1571 //-----------------------------record_state------------------------------------ 1572 void Parse::Block::record_state(Parse* p) { 1573 assert(!is_merged(), "can only record state once, on 1st inflow"); 1574 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1575 set_start_map(p->stop()); 1576 } 1577 1578 1579 //------------------------------do_one_block----------------------------------- 1580 void Parse::do_one_block() { 1581 if (TraceOptoParse) { 1582 Block *b = block(); 1583 int ns = b->num_successors(); 1584 int nt = b->all_successors(); 1585 1586 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1587 block()->rpo(), block()->start(), block()->limit()); 1588 for (int i = 0; i < nt; i++) { 1589 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1590 } 1591 if (b->is_loop_head()) { 1592 tty->print(" loop head"); 1593 } 1594 if (b->is_irreducible_loop_entry()) { 1595 tty->print(" irreducible"); 1596 } 1597 tty->cr(); 1598 } 1599 1600 assert(block()->is_merged(), "must be merged before being parsed"); 1601 block()->mark_parsed(); 1602 1603 // Set iterator to start of block. 1604 iter().reset_to_bci(block()->start()); 1605 1606 if (ProfileExceptionHandlers && block()->is_handler()) { 1607 ciMethodData* methodData = method()->method_data(); 1608 if (methodData->is_mature()) { 1609 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1610 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1611 // dead catch block 1612 // Emit an uncommon trap instead of processing the block. 1613 set_parse_bci(block()->start()); 1614 uncommon_trap(Deoptimization::Reason_unreached, 1615 Deoptimization::Action_reinterpret, 1616 nullptr, "dead catch block"); 1617 return; 1618 } 1619 } 1620 } 1621 1622 CompileLog* log = C->log(); 1623 1624 // Parse bytecodes 1625 while (!stopped() && !failing()) { 1626 iter().next(); 1627 1628 // Learn the current bci from the iterator: 1629 set_parse_bci(iter().cur_bci()); 1630 1631 if (bci() == block()->limit()) { 1632 // Do not walk into the next block until directed by do_all_blocks. 1633 merge(bci()); 1634 break; 1635 } 1636 assert(bci() < block()->limit(), "bci still in block"); 1637 1638 if (log != nullptr) { 1639 // Output an optional context marker, to help place actions 1640 // that occur during parsing of this BC. If there is no log 1641 // output until the next context string, this context string 1642 // will be silently ignored. 1643 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1644 } 1645 1646 if (block()->has_trap_at(bci())) { 1647 // We must respect the flow pass's traps, because it will refuse 1648 // to produce successors for trapping blocks. 1649 int trap_index = block()->flow()->trap_index(); 1650 assert(trap_index != 0, "trap index must be valid"); 1651 uncommon_trap(trap_index); 1652 break; 1653 } 1654 1655 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1656 1657 #ifdef ASSERT 1658 int pre_bc_sp = sp(); 1659 int inputs, depth; 1660 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1661 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1662 #endif //ASSERT 1663 1664 do_one_bytecode(); 1665 if (failing()) return; 1666 1667 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1668 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1669 1670 do_exceptions(); 1671 1672 NOT_PRODUCT( parse_histogram()->record_change(); ); 1673 1674 if (log != nullptr) 1675 log->clear_context(); // skip marker if nothing was printed 1676 1677 // Fall into next bytecode. Each bytecode normally has 1 sequential 1678 // successor which is typically made ready by visiting this bytecode. 1679 // If the successor has several predecessors, then it is a merge 1680 // point, starts a new basic block, and is handled like other basic blocks. 1681 } 1682 } 1683 1684 1685 //------------------------------merge------------------------------------------ 1686 void Parse::set_parse_bci(int bci) { 1687 set_bci(bci); 1688 Node_Notes* nn = C->default_node_notes(); 1689 if (nn == nullptr) return; 1690 1691 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1692 if (!DebugInlinedCalls && depth() > 1) { 1693 return; 1694 } 1695 1696 // Update the JVMS annotation, if present. 1697 JVMState* jvms = nn->jvms(); 1698 if (jvms != nullptr && jvms->bci() != bci) { 1699 // Update the JVMS. 1700 jvms = jvms->clone_shallow(C); 1701 jvms->set_bci(bci); 1702 nn->set_jvms(jvms); 1703 } 1704 } 1705 1706 //------------------------------merge------------------------------------------ 1707 // Merge the current mapping into the basic block starting at bci 1708 void Parse::merge(int target_bci) { 1709 Block* target = successor_for_bci(target_bci); 1710 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1711 assert(!target->is_ready(), "our arrival must be expected"); 1712 int pnum = target->next_path_num(); 1713 merge_common(target, pnum); 1714 } 1715 1716 //-------------------------merge_new_path-------------------------------------- 1717 // Merge the current mapping into the basic block, using a new path 1718 void Parse::merge_new_path(int target_bci) { 1719 Block* target = successor_for_bci(target_bci); 1720 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1721 assert(!target->is_ready(), "new path into frozen graph"); 1722 int pnum = target->add_new_path(); 1723 merge_common(target, pnum); 1724 } 1725 1726 //-------------------------merge_exception------------------------------------- 1727 // Merge the current mapping into the basic block starting at bci 1728 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1729 void Parse::merge_exception(int target_bci) { 1730 #ifdef ASSERT 1731 if (target_bci <= bci()) { 1732 C->set_exception_backedge(); 1733 } 1734 #endif 1735 assert(sp() == 1, "must have only the throw exception on the stack"); 1736 Block* target = successor_for_bci(target_bci); 1737 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1738 assert(target->is_handler(), "exceptions are handled by special blocks"); 1739 int pnum = target->add_new_path(); 1740 merge_common(target, pnum); 1741 } 1742 1743 //--------------------handle_missing_successor--------------------------------- 1744 void Parse::handle_missing_successor(int target_bci) { 1745 #ifndef PRODUCT 1746 Block* b = block(); 1747 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1748 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1749 #endif 1750 ShouldNotReachHere(); 1751 } 1752 1753 //--------------------------merge_common--------------------------------------- 1754 void Parse::merge_common(Parse::Block* target, int pnum) { 1755 if (TraceOptoParse) { 1756 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1757 } 1758 1759 // Zap extra stack slots to top 1760 assert(sp() == target->start_sp(), ""); 1761 clean_stack(sp()); 1762 1763 // Check for merge conflicts involving inline types 1764 JVMState* old_jvms = map()->jvms(); 1765 int old_bci = bci(); 1766 JVMState* tmp_jvms = old_jvms->clone_shallow(C); 1767 tmp_jvms->set_should_reexecute(true); 1768 tmp_jvms->bind_map(map()); 1769 // Execution needs to restart a the next bytecode (entry of next 1770 // block) 1771 if (target->is_merged() || 1772 pnum > PhiNode::Input || 1773 target->is_handler() || 1774 target->is_loop_head()) { 1775 set_parse_bci(target->start()); 1776 for (uint j = TypeFunc::Parms; j < map()->req(); j++) { 1777 Node* n = map()->in(j); // Incoming change to target state. 1778 const Type* t = nullptr; 1779 if (tmp_jvms->is_loc(j)) { 1780 t = target->local_type_at(j - tmp_jvms->locoff()); 1781 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) { 1782 t = target->stack_type_at(j - tmp_jvms->stkoff()); 1783 } 1784 if (t != nullptr && t != Type::BOTTOM) { 1785 if (n->is_InlineType() && !t->is_inlinetypeptr()) { 1786 // Allocate inline type in src block to be able to merge it with oop in target block 1787 map()->set_req(j, n->as_InlineType()->buffer(this)); 1788 } else if (!n->is_InlineType() && t->is_inlinetypeptr()) { 1789 // Scalarize null in src block to be able to merge it with inline type in target block 1790 assert(gvn().type(n)->is_zero_type(), "Should have been scalarized"); 1791 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass())); 1792 } 1793 } 1794 } 1795 } 1796 old_jvms->bind_map(map()); 1797 set_parse_bci(old_bci); 1798 1799 if (!target->is_merged()) { // No prior mapping at this bci 1800 if (TraceOptoParse) { tty->print(" with empty state"); } 1801 1802 // If this path is dead, do not bother capturing it as a merge. 1803 // It is "as if" we had 1 fewer predecessors from the beginning. 1804 if (stopped()) { 1805 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1806 return; 1807 } 1808 1809 // Make a region if we know there are multiple or unpredictable inputs. 1810 // (Also, if this is a plain fall-through, we might see another region, 1811 // which must not be allowed into this block's map.) 1812 if (pnum > PhiNode::Input // Known multiple inputs. 1813 || target->is_handler() // These have unpredictable inputs. 1814 || target->is_loop_head() // Known multiple inputs 1815 || control()->is_Region()) { // We must hide this guy. 1816 1817 int current_bci = bci(); 1818 set_parse_bci(target->start()); // Set target bci 1819 if (target->is_SEL_head()) { 1820 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1821 if (target->start() == 0) { 1822 // Add Parse Predicates for the special case when 1823 // there are backbranches to the method entry. 1824 add_parse_predicates(); 1825 } 1826 } 1827 // Add a Region to start the new basic block. Phis will be added 1828 // later lazily. 1829 int edges = target->pred_count(); 1830 if (edges < pnum) edges = pnum; // might be a new path! 1831 RegionNode *r = new RegionNode(edges+1); 1832 gvn().set_type(r, Type::CONTROL); 1833 record_for_igvn(r); 1834 // zap all inputs to null for debugging (done in Node(uint) constructor) 1835 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1836 r->init_req(pnum, control()); 1837 set_control(r); 1838 target->copy_irreducible_status_to(r, jvms()); 1839 set_parse_bci(current_bci); // Restore bci 1840 } 1841 1842 // Convert the existing Parser mapping into a mapping at this bci. 1843 store_state_to(target); 1844 assert(target->is_merged(), "do not come here twice"); 1845 1846 } else { // Prior mapping at this bci 1847 if (TraceOptoParse) { tty->print(" with previous state"); } 1848 #ifdef ASSERT 1849 if (target->is_SEL_head()) { 1850 target->mark_merged_backedge(block()); 1851 } 1852 #endif 1853 1854 // We must not manufacture more phis if the target is already parsed. 1855 bool nophi = target->is_parsed(); 1856 1857 SafePointNode* newin = map();// Hang on to incoming mapping 1858 Block* save_block = block(); // Hang on to incoming block; 1859 load_state_from(target); // Get prior mapping 1860 1861 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1862 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1863 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1864 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1865 1866 // Iterate over my current mapping and the old mapping. 1867 // Where different, insert Phi functions. 1868 // Use any existing Phi functions. 1869 assert(control()->is_Region(), "must be merging to a region"); 1870 RegionNode* r = control()->as_Region(); 1871 1872 // Compute where to merge into 1873 // Merge incoming control path 1874 r->init_req(pnum, newin->control()); 1875 1876 if (pnum == 1) { // Last merge for this Region? 1877 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1878 Node* result = _gvn.transform(r); 1879 if (r != result && TraceOptoParse) { 1880 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1881 } 1882 } 1883 record_for_igvn(r); 1884 } 1885 1886 // Update all the non-control inputs to map: 1887 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1888 bool check_elide_phi = target->is_SEL_backedge(save_block); 1889 bool last_merge = (pnum == PhiNode::Input); 1890 for (uint j = 1; j < newin->req(); j++) { 1891 Node* m = map()->in(j); // Current state of target. 1892 Node* n = newin->in(j); // Incoming change to target state. 1893 PhiNode* phi; 1894 if (m->is_Phi() && m->as_Phi()->region() == r) { 1895 phi = m->as_Phi(); 1896 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) { 1897 phi = m->as_InlineType()->get_oop()->as_Phi(); 1898 } else { 1899 phi = nullptr; 1900 } 1901 if (m != n) { // Different; must merge 1902 switch (j) { 1903 // Frame pointer and Return Address never changes 1904 case TypeFunc::FramePtr:// Drop m, use the original value 1905 case TypeFunc::ReturnAdr: 1906 break; 1907 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1908 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1909 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1910 continue; 1911 default: // All normal stuff 1912 if (phi == nullptr) { 1913 const JVMState* jvms = map()->jvms(); 1914 if (EliminateNestedLocks && 1915 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1916 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1917 // Use old BoxLock node as merged box. 1918 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1919 // This assert also tests that nodes are BoxLock. 1920 assert(BoxLockNode::same_slot(n, m), "sanity"); 1921 BoxLockNode* old_box = m->as_BoxLock(); 1922 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1923 // Preserve Unbalanced status. 1924 // 1925 // `old_box` can have only Regular or Coarsened status 1926 // because this code is executed only during Parse phase and 1927 // Incremental Inlining before EA and Macro nodes elimination. 1928 // 1929 // Incremental Inlining is executed after IGVN optimizations 1930 // during which BoxLock can be marked as Coarsened. 1931 old_box->set_coarsened(); // Verifies state 1932 old_box->set_unbalanced(); 1933 } 1934 C->gvn_replace_by(n, m); 1935 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1936 phi = ensure_phi(j, nophi); 1937 } 1938 } 1939 break; 1940 } 1941 } 1942 // At this point, n might be top if: 1943 // - there is no phi (because TypeFlow detected a conflict), or 1944 // - the corresponding control edges is top (a dead incoming path) 1945 // It is a bug if we create a phi which sees a garbage value on a live path. 1946 1947 // Merging two inline types? 1948 if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) { 1949 // Reload current state because it may have been updated by ensure_phi 1950 m = map()->in(j); 1951 InlineTypeNode* vtm = m->as_InlineType(); // Current inline type 1952 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type 1953 assert(vtm->get_oop() == phi, "Inline type should have Phi input"); 1954 if (TraceOptoParse) { 1955 #ifdef ASSERT 1956 tty->print_cr("\nMerging inline types"); 1957 tty->print_cr("Current:"); 1958 vtm->dump(2); 1959 tty->print_cr("Incoming:"); 1960 vtn->dump(2); 1961 tty->cr(); 1962 #endif 1963 } 1964 // Do the merge 1965 vtm->merge_with(&_gvn, vtn, pnum, last_merge); 1966 if (last_merge) { 1967 map()->set_req(j, _gvn.transform(vtm)); 1968 record_for_igvn(vtm); 1969 } 1970 } else if (phi != nullptr) { 1971 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1972 assert(phi->region() == r, ""); 1973 phi->set_req(pnum, n); // Then add 'n' to the merge 1974 if (last_merge) { 1975 // Last merge for this Phi. 1976 // So far, Phis have had a reasonable type from ciTypeFlow. 1977 // Now _gvn will join that with the meet of current inputs. 1978 // BOTTOM is never permissible here, 'cause pessimistically 1979 // Phis of pointers cannot lose the basic pointer type. 1980 debug_only(const Type* bt1 = phi->bottom_type()); 1981 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1982 map()->set_req(j, _gvn.transform(phi)); 1983 debug_only(const Type* bt2 = phi->bottom_type()); 1984 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1985 record_for_igvn(phi); 1986 } 1987 } 1988 } // End of for all values to be merged 1989 1990 if (last_merge && !r->in(0)) { // The occasional useless Region 1991 assert(control() == r, ""); 1992 set_control(r->nonnull_req()); 1993 } 1994 1995 map()->merge_replaced_nodes_with(newin); 1996 1997 // newin has been subsumed into the lazy merge, and is now dead. 1998 set_block(save_block); 1999 2000 stop(); // done with this guy, for now 2001 } 2002 2003 if (TraceOptoParse) { 2004 tty->print_cr(" on path %d", pnum); 2005 } 2006 2007 // Done with this parser state. 2008 assert(stopped(), ""); 2009 } 2010 2011 2012 //--------------------------merge_memory_edges--------------------------------- 2013 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 2014 // (nophi means we must not create phis, because we already parsed here) 2015 assert(n != nullptr, ""); 2016 // Merge the inputs to the MergeMems 2017 MergeMemNode* m = merged_memory(); 2018 2019 assert(control()->is_Region(), "must be merging to a region"); 2020 RegionNode* r = control()->as_Region(); 2021 2022 PhiNode* base = nullptr; 2023 MergeMemNode* remerge = nullptr; 2024 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 2025 Node *p = mms.force_memory(); 2026 Node *q = mms.memory2(); 2027 if (mms.is_empty() && nophi) { 2028 // Trouble: No new splits allowed after a loop body is parsed. 2029 // Instead, wire the new split into a MergeMem on the backedge. 2030 // The optimizer will sort it out, slicing the phi. 2031 if (remerge == nullptr) { 2032 guarantee(base != nullptr, ""); 2033 assert(base->in(0) != nullptr, "should not be xformed away"); 2034 remerge = MergeMemNode::make(base->in(pnum)); 2035 gvn().set_type(remerge, Type::MEMORY); 2036 base->set_req(pnum, remerge); 2037 } 2038 remerge->set_memory_at(mms.alias_idx(), q); 2039 continue; 2040 } 2041 assert(!q->is_MergeMem(), ""); 2042 PhiNode* phi; 2043 if (p != q) { 2044 phi = ensure_memory_phi(mms.alias_idx(), nophi); 2045 } else { 2046 if (p->is_Phi() && p->as_Phi()->region() == r) 2047 phi = p->as_Phi(); 2048 else 2049 phi = nullptr; 2050 } 2051 // Insert q into local phi 2052 if (phi != nullptr) { 2053 assert(phi->region() == r, ""); 2054 p = phi; 2055 phi->set_req(pnum, q); 2056 if (mms.at_base_memory()) { 2057 base = phi; // delay transforming it 2058 } else if (pnum == 1) { 2059 record_for_igvn(phi); 2060 p = _gvn.transform(phi); 2061 } 2062 mms.set_memory(p);// store back through the iterator 2063 } 2064 } 2065 // Transform base last, in case we must fiddle with remerging. 2066 if (base != nullptr && pnum == 1) { 2067 record_for_igvn(base); 2068 m->set_base_memory(_gvn.transform(base)); 2069 } 2070 } 2071 2072 2073 //------------------------ensure_phis_everywhere------------------------------- 2074 void Parse::ensure_phis_everywhere() { 2075 ensure_phi(TypeFunc::I_O); 2076 2077 // Ensure a phi on all currently known memories. 2078 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 2079 ensure_memory_phi(mms.alias_idx()); 2080 debug_only(mms.set_memory()); // keep the iterator happy 2081 } 2082 2083 // Note: This is our only chance to create phis for memory slices. 2084 // If we miss a slice that crops up later, it will have to be 2085 // merged into the base-memory phi that we are building here. 2086 // Later, the optimizer will comb out the knot, and build separate 2087 // phi-loops for each memory slice that matters. 2088 2089 // Monitors must nest nicely and not get confused amongst themselves. 2090 // Phi-ify everything up to the monitors, though. 2091 uint monoff = map()->jvms()->monoff(); 2092 uint nof_monitors = map()->jvms()->nof_monitors(); 2093 2094 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 2095 bool check_elide_phi = block()->is_SEL_head(); 2096 for (uint i = TypeFunc::Parms; i < monoff; i++) { 2097 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 2098 ensure_phi(i); 2099 } 2100 } 2101 2102 // Even monitors need Phis, though they are well-structured. 2103 // This is true for OSR methods, and also for the rare cases where 2104 // a monitor object is the subject of a replace_in_map operation. 2105 // See bugs 4426707 and 5043395. 2106 for (uint m = 0; m < nof_monitors; m++) { 2107 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 2108 } 2109 } 2110 2111 2112 //-----------------------------add_new_path------------------------------------ 2113 // Add a previously unaccounted predecessor to this block. 2114 int Parse::Block::add_new_path() { 2115 // If there is no map, return the lowest unused path number. 2116 if (!is_merged()) return pred_count()+1; // there will be a map shortly 2117 2118 SafePointNode* map = start_map(); 2119 if (!map->control()->is_Region()) 2120 return pred_count()+1; // there may be a region some day 2121 RegionNode* r = map->control()->as_Region(); 2122 2123 // Add new path to the region. 2124 uint pnum = r->req(); 2125 r->add_req(nullptr); 2126 2127 for (uint i = 1; i < map->req(); i++) { 2128 Node* n = map->in(i); 2129 if (i == TypeFunc::Memory) { 2130 // Ensure a phi on all currently known memories. 2131 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2132 Node* phi = mms.memory(); 2133 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2134 assert(phi->req() == pnum, "must be same size as region"); 2135 phi->add_req(nullptr); 2136 } 2137 } 2138 } else { 2139 if (n->is_Phi() && n->as_Phi()->region() == r) { 2140 assert(n->req() == pnum, "must be same size as region"); 2141 n->add_req(nullptr); 2142 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) { 2143 n->as_InlineType()->add_new_path(r); 2144 } 2145 } 2146 } 2147 2148 return pnum; 2149 } 2150 2151 //------------------------------ensure_phi------------------------------------- 2152 // Turn the idx'th entry of the current map into a Phi 2153 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2154 SafePointNode* map = this->map(); 2155 Node* region = map->control(); 2156 assert(region->is_Region(), ""); 2157 2158 Node* o = map->in(idx); 2159 assert(o != nullptr, ""); 2160 2161 if (o == top()) return nullptr; // TOP always merges into TOP 2162 2163 if (o->is_Phi() && o->as_Phi()->region() == region) { 2164 return o->as_Phi(); 2165 } 2166 InlineTypeNode* vt = o->isa_InlineType(); 2167 if (vt != nullptr && vt->has_phi_inputs(region)) { 2168 return vt->get_oop()->as_Phi(); 2169 } 2170 2171 // Now use a Phi here for merging 2172 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2173 const JVMState* jvms = map->jvms(); 2174 const Type* t = nullptr; 2175 if (jvms->is_loc(idx)) { 2176 t = block()->local_type_at(idx - jvms->locoff()); 2177 } else if (jvms->is_stk(idx)) { 2178 t = block()->stack_type_at(idx - jvms->stkoff()); 2179 } else if (jvms->is_mon(idx)) { 2180 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2181 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2182 } else if ((uint)idx < TypeFunc::Parms) { 2183 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2184 } else { 2185 assert(false, "no type information for this phi"); 2186 } 2187 2188 // If the type falls to bottom, then this must be a local that 2189 // is already dead or is mixing ints and oops or some such. 2190 // Forcing it to top makes it go dead. 2191 if (t == Type::BOTTOM) { 2192 map->set_req(idx, top()); 2193 return nullptr; 2194 } 2195 2196 // Do not create phis for top either. 2197 // A top on a non-null control flow must be an unused even after the.phi. 2198 if (t == Type::TOP || t == Type::HALF) { 2199 map->set_req(idx, top()); 2200 return nullptr; 2201 } 2202 2203 if (vt != nullptr && t->is_inlinetypeptr()) { 2204 // Inline types are merged by merging their field values. 2205 // Create a cloned InlineTypeNode with phi inputs that 2206 // represents the merged inline type and update the map. 2207 vt = vt->clone_with_phis(&_gvn, region); 2208 map->set_req(idx, vt); 2209 return vt->get_oop()->as_Phi(); 2210 } else { 2211 PhiNode* phi = PhiNode::make(region, o, t); 2212 gvn().set_type(phi, t); 2213 if (C->do_escape_analysis()) record_for_igvn(phi); 2214 map->set_req(idx, phi); 2215 return phi; 2216 } 2217 } 2218 2219 //--------------------------ensure_memory_phi---------------------------------- 2220 // Turn the idx'th slice of the current memory into a Phi 2221 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2222 MergeMemNode* mem = merged_memory(); 2223 Node* region = control(); 2224 assert(region->is_Region(), ""); 2225 2226 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2227 assert(o != nullptr && o != top(), ""); 2228 2229 PhiNode* phi; 2230 if (o->is_Phi() && o->as_Phi()->region() == region) { 2231 phi = o->as_Phi(); 2232 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2233 // clone the shared base memory phi to make a new memory split 2234 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2235 const Type* t = phi->bottom_type(); 2236 const TypePtr* adr_type = C->get_adr_type(idx); 2237 phi = phi->slice_memory(adr_type); 2238 gvn().set_type(phi, t); 2239 } 2240 return phi; 2241 } 2242 2243 // Now use a Phi here for merging 2244 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2245 const Type* t = o->bottom_type(); 2246 const TypePtr* adr_type = C->get_adr_type(idx); 2247 phi = PhiNode::make(region, o, t, adr_type); 2248 gvn().set_type(phi, t); 2249 if (idx == Compile::AliasIdxBot) 2250 mem->set_base_memory(phi); 2251 else 2252 mem->set_memory_at(idx, phi); 2253 return phi; 2254 } 2255 2256 //------------------------------call_register_finalizer----------------------- 2257 // Check the klass of the receiver and call register_finalizer if the 2258 // class need finalization. 2259 void Parse::call_register_finalizer() { 2260 Node* receiver = local(0); 2261 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2262 "must have non-null instance type"); 2263 2264 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2265 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2266 // The type isn't known exactly so see if CHA tells us anything. 2267 ciInstanceKlass* ik = tinst->instance_klass(); 2268 if (!Dependencies::has_finalizable_subclass(ik)) { 2269 // No finalizable subclasses so skip the dynamic check. 2270 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2271 return; 2272 } 2273 } 2274 2275 // Insert a dynamic test for whether the instance needs 2276 // finalization. In general this will fold up since the concrete 2277 // class is often visible so the access flags are constant. 2278 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2279 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2280 2281 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2282 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2283 2284 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2285 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2286 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2287 2288 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2289 2290 RegionNode* result_rgn = new RegionNode(3); 2291 record_for_igvn(result_rgn); 2292 2293 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2294 result_rgn->init_req(1, skip_register); 2295 2296 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2297 set_control(needs_register); 2298 if (stopped()) { 2299 // There is no slow path. 2300 result_rgn->init_req(2, top()); 2301 } else { 2302 Node *call = make_runtime_call(RC_NO_LEAF, 2303 OptoRuntime::register_finalizer_Type(), 2304 OptoRuntime::register_finalizer_Java(), 2305 nullptr, TypePtr::BOTTOM, 2306 receiver); 2307 make_slow_call_ex(call, env()->Throwable_klass(), true); 2308 2309 Node* fast_io = call->in(TypeFunc::I_O); 2310 Node* fast_mem = call->in(TypeFunc::Memory); 2311 // These two phis are pre-filled with copies of of the fast IO and Memory 2312 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2313 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2314 2315 result_rgn->init_req(2, control()); 2316 io_phi ->init_req(2, i_o()); 2317 mem_phi ->init_req(2, reset_memory()); 2318 2319 set_all_memory( _gvn.transform(mem_phi) ); 2320 set_i_o( _gvn.transform(io_phi) ); 2321 } 2322 2323 set_control( _gvn.transform(result_rgn) ); 2324 } 2325 2326 // Add check to deoptimize once holder klass is fully initialized. 2327 void Parse::clinit_deopt() { 2328 assert(C->has_method(), "only for normal compilations"); 2329 assert(depth() == 1, "only for main compiled method"); 2330 assert(is_normal_parse(), "no barrier needed on osr entry"); 2331 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2332 2333 set_parse_bci(0); 2334 2335 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2336 guard_klass_being_initialized(holder); 2337 } 2338 2339 //------------------------------return_current--------------------------------- 2340 // Append current _map to _exit_return 2341 void Parse::return_current(Node* value) { 2342 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2343 call_register_finalizer(); 2344 } 2345 2346 // frame pointer is always same, already captured 2347 if (value != nullptr) { 2348 Node* phi = _exits.argument(0); 2349 const Type* return_type = phi->bottom_type(); 2350 const TypeInstPtr* tr = return_type->isa_instptr(); 2351 assert(!value->is_InlineType() || !value->as_InlineType()->is_larval(), "returning a larval"); 2352 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) && 2353 return_type->is_inlinetypeptr()) { 2354 // Inline type is returned as fields, make sure it is scalarized 2355 if (!value->is_InlineType()) { 2356 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), false); 2357 } 2358 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) { 2359 // Returning from root or an incrementally inlined method. Make sure all non-flat 2360 // fields are buffered and re-execute if allocation triggers deoptimization. 2361 PreserveReexecuteState preexecs(this); 2362 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields"); 2363 jvms()->set_should_reexecute(true); 2364 inc_sp(1); 2365 value = value->as_InlineType()->allocate_fields(this); 2366 } 2367 } else if (value->is_InlineType()) { 2368 // Inline type is returned as oop, make sure it is buffered and re-execute 2369 // if allocation triggers deoptimization. 2370 PreserveReexecuteState preexecs(this); 2371 jvms()->set_should_reexecute(true); 2372 inc_sp(1); 2373 value = value->as_InlineType()->buffer(this); 2374 } 2375 // ...else 2376 // If returning oops to an interface-return, there is a silent free 2377 // cast from oop to interface allowed by the Verifier. Make it explicit here. 2378 phi->add_req(value); 2379 } 2380 2381 // Do not set_parse_bci, so that return goo is credited to the return insn. 2382 set_bci(InvocationEntryBci); 2383 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2384 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2385 } 2386 if (C->env()->dtrace_method_probes()) { 2387 make_dtrace_method_exit(method()); 2388 } 2389 2390 SafePointNode* exit_return = _exits.map(); 2391 exit_return->in( TypeFunc::Control )->add_req( control() ); 2392 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2393 Node *mem = exit_return->in( TypeFunc::Memory ); 2394 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2395 if (mms.is_empty()) { 2396 // get a copy of the base memory, and patch just this one input 2397 const TypePtr* adr_type = mms.adr_type(C); 2398 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2399 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2400 gvn().set_type_bottom(phi); 2401 phi->del_req(phi->req()-1); // prepare to re-patch 2402 mms.set_memory(phi); 2403 } 2404 mms.memory()->add_req(mms.memory2()); 2405 } 2406 2407 if (_first_return) { 2408 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2409 _first_return = false; 2410 } else { 2411 _exits.map()->merge_replaced_nodes_with(map()); 2412 } 2413 2414 stop_and_kill_map(); // This CFG path dies here 2415 } 2416 2417 2418 //------------------------------add_safepoint---------------------------------- 2419 void Parse::add_safepoint() { 2420 uint parms = TypeFunc::Parms+1; 2421 2422 // Clear out dead values from the debug info. 2423 kill_dead_locals(); 2424 2425 // Clone the JVM State 2426 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2427 2428 // Capture memory state BEFORE a SafePoint. Since we can block at a 2429 // SafePoint we need our GC state to be safe; i.e. we need all our current 2430 // write barriers (card marks) to not float down after the SafePoint so we 2431 // must read raw memory. Likewise we need all oop stores to match the card 2432 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2433 // state on a deopt). 2434 2435 // We do not need to WRITE the memory state after a SafePoint. The control 2436 // edge will keep card-marks and oop-stores from floating up from below a 2437 // SafePoint and our true dependency added here will keep them from floating 2438 // down below a SafePoint. 2439 2440 // Clone the current memory state 2441 Node* mem = MergeMemNode::make(map()->memory()); 2442 2443 mem = _gvn.transform(mem); 2444 2445 // Pass control through the safepoint 2446 sfpnt->init_req(TypeFunc::Control , control()); 2447 // Fix edges normally used by a call 2448 sfpnt->init_req(TypeFunc::I_O , top() ); 2449 sfpnt->init_req(TypeFunc::Memory , mem ); 2450 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2451 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2452 2453 // Create a node for the polling address 2454 Node *polladr; 2455 Node *thread = _gvn.transform(new ThreadLocalNode()); 2456 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2457 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2458 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2459 2460 // Fix up the JVM State edges 2461 add_safepoint_edges(sfpnt); 2462 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2463 set_control(transformed_sfpnt); 2464 2465 // Provide an edge from root to safepoint. This makes the safepoint 2466 // appear useful until the parse has completed. 2467 if (transformed_sfpnt->is_SafePoint()) { 2468 assert(C->root() != nullptr, "Expect parse is still valid"); 2469 C->root()->add_prec(transformed_sfpnt); 2470 } 2471 } 2472 2473 #ifndef PRODUCT 2474 //------------------------show_parse_info-------------------------------------- 2475 void Parse::show_parse_info() { 2476 InlineTree* ilt = nullptr; 2477 if (C->ilt() != nullptr) { 2478 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2479 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2480 } 2481 if (PrintCompilation && Verbose) { 2482 if (depth() == 1) { 2483 if( ilt->count_inlines() ) { 2484 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2485 ilt->count_inline_bcs()); 2486 tty->cr(); 2487 } 2488 } else { 2489 if (method()->is_synchronized()) tty->print("s"); 2490 if (method()->has_exception_handlers()) tty->print("!"); 2491 // Check this is not the final compiled version 2492 if (C->trap_can_recompile()) { 2493 tty->print("-"); 2494 } else { 2495 tty->print(" "); 2496 } 2497 method()->print_short_name(); 2498 if (is_osr_parse()) { 2499 tty->print(" @ %d", osr_bci()); 2500 } 2501 tty->print(" (%d bytes)",method()->code_size()); 2502 if (ilt->count_inlines()) { 2503 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2504 ilt->count_inline_bcs()); 2505 } 2506 tty->cr(); 2507 } 2508 } 2509 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2510 // Print that we succeeded; suppress this message on the first osr parse. 2511 2512 if (method()->is_synchronized()) tty->print("s"); 2513 if (method()->has_exception_handlers()) tty->print("!"); 2514 // Check this is not the final compiled version 2515 if (C->trap_can_recompile() && depth() == 1) { 2516 tty->print("-"); 2517 } else { 2518 tty->print(" "); 2519 } 2520 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2521 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2522 method()->print_short_name(); 2523 if (is_osr_parse()) { 2524 tty->print(" @ %d", osr_bci()); 2525 } 2526 if (ilt->caller_bci() != -1) { 2527 tty->print(" @ %d", ilt->caller_bci()); 2528 } 2529 tty->print(" (%d bytes)",method()->code_size()); 2530 if (ilt->count_inlines()) { 2531 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2532 ilt->count_inline_bcs()); 2533 } 2534 tty->cr(); 2535 } 2536 } 2537 2538 2539 //------------------------------dump------------------------------------------- 2540 // Dump information associated with the bytecodes of current _method 2541 void Parse::dump() { 2542 if( method() != nullptr ) { 2543 // Iterate over bytecodes 2544 ciBytecodeStream iter(method()); 2545 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2546 dump_bci( iter.cur_bci() ); 2547 tty->cr(); 2548 } 2549 } 2550 } 2551 2552 // Dump information associated with a byte code index, 'bci' 2553 void Parse::dump_bci(int bci) { 2554 // Output info on merge-points, cloning, and within _jsr..._ret 2555 // NYI 2556 tty->print(" bci:%d", bci); 2557 } 2558 2559 #endif