1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "interpreter/linkResolver.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/inlinetypenode.hpp" 35 #include "opto/locknode.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/opaquenode.hpp" 38 #include "opto/parse.hpp" 39 #include "opto/rootnode.hpp" 40 #include "opto/runtime.hpp" 41 #include "opto/type.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/copy.hpp" 47 48 // Static array so we can figure out which bytecodes stop us from compiling 49 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 50 // and eventually should be encapsulated in a proper class (gri 8/18/98). 51 52 #ifndef PRODUCT 53 uint nodes_created = 0; 54 uint methods_parsed = 0; 55 uint methods_seen = 0; 56 uint blocks_parsed = 0; 57 uint blocks_seen = 0; 58 59 uint explicit_null_checks_inserted = 0; 60 uint explicit_null_checks_elided = 0; 61 uint all_null_checks_found = 0; 62 uint implicit_null_checks = 0; 63 64 bool Parse::BytecodeParseHistogram::_initialized = false; 65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 69 70 //------------------------------print_statistics------------------------------- 71 void Parse::print_statistics() { 72 tty->print_cr("--- Compiler Statistics ---"); 73 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 74 tty->print(" Nodes created: %u", nodes_created); 75 tty->cr(); 76 if (methods_seen != methods_parsed) { 77 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 78 } 79 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 80 81 if (explicit_null_checks_inserted) { 82 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 83 explicit_null_checks_inserted, explicit_null_checks_elided, 84 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 85 all_null_checks_found); 86 } 87 if (all_null_checks_found) { 88 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 89 (100*implicit_null_checks)/all_null_checks_found); 90 } 91 if (SharedRuntime::_implicit_null_throws) { 92 tty->print_cr("%u implicit null exceptions at runtime", 93 SharedRuntime::_implicit_null_throws); 94 } 95 96 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 97 BytecodeParseHistogram::print(); 98 } 99 } 100 #endif 101 102 //------------------------------ON STACK REPLACEMENT--------------------------- 103 104 // Construct a node which can be used to get incoming state for 105 // on stack replacement. 106 Node* Parse::fetch_interpreter_state(int index, 107 const Type* type, 108 Node* local_addrs, 109 Node* local_addrs_base) { 110 BasicType bt = type->basic_type(); 111 if (type == TypePtr::NULL_PTR) { 112 // Ptr types are mixed together with T_ADDRESS but nullptr is 113 // really for T_OBJECT types so correct it. 114 bt = T_OBJECT; 115 } 116 Node *mem = memory(Compile::AliasIdxRaw); 117 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 118 Node *ctl = control(); 119 120 // Very similar to LoadNode::make, except we handle un-aligned longs and 121 // doubles on Sparc. Intel can handle them just fine directly. 122 Node *l = nullptr; 123 switch (bt) { // Signature is flattened 124 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 125 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 126 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 127 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 128 case T_LONG: 129 case T_DOUBLE: { 130 // Since arguments are in reverse order, the argument address 'adr' 131 // refers to the back half of the long/double. Recompute adr. 132 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 133 if (Matcher::misaligned_doubles_ok) { 134 l = (bt == T_DOUBLE) 135 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 136 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 137 } else { 138 l = (bt == T_DOUBLE) 139 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 140 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 141 } 142 break; 143 } 144 default: ShouldNotReachHere(); 145 } 146 return _gvn.transform(l); 147 } 148 149 // Helper routine to prevent the interpreter from handing 150 // unexpected typestate to an OSR method. 151 // The Node l is a value newly dug out of the interpreter frame. 152 // The type is the type predicted by ciTypeFlow. Note that it is 153 // not a general type, but can only come from Type::get_typeflow_type. 154 // The safepoint is a map which will feed an uncommon trap. 155 Node* Parse::check_interpreter_type(Node* l, const Type* type, 156 SafePointNode* &bad_type_exit, bool is_early_larval) { 157 const TypeOopPtr* tp = type->isa_oopptr(); 158 159 // TypeFlow may assert null-ness if a type appears unloaded. 160 if (type == TypePtr::NULL_PTR || 161 (tp != nullptr && !tp->is_loaded())) { 162 // Value must be null, not a real oop. 163 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 164 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 165 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 166 set_control(_gvn.transform( new IfTrueNode(iff) )); 167 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 168 bad_type_exit->control()->add_req(bad_type); 169 l = null(); 170 } 171 172 // Typeflow can also cut off paths from the CFG, based on 173 // types which appear unloaded, or call sites which appear unlinked. 174 // When paths are cut off, values at later merge points can rise 175 // toward more specific classes. Make sure these specific classes 176 // are still in effect. 177 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 178 // TypeFlow asserted a specific object type. Value must have that type. 179 Node* bad_type_ctrl = nullptr; 180 if (tp->is_inlinetypeptr() && !tp->maybe_null()) { 181 // Check inline types for null here to prevent checkcast from adding an 182 // exception state before the bytecode entry (use 'bad_type_ctrl' instead). 183 l = null_check_oop(l, &bad_type_ctrl); 184 bad_type_exit->control()->add_req(bad_type_ctrl); 185 } 186 187 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl, false, is_early_larval); 188 bad_type_exit->control()->add_req(bad_type_ctrl); 189 } 190 191 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 192 return l; 193 } 194 195 // Helper routine which sets up elements of the initial parser map when 196 // performing a parse for on stack replacement. Add values into map. 197 // The only parameter contains the address of a interpreter arguments. 198 void Parse::load_interpreter_state(Node* osr_buf) { 199 int index; 200 int max_locals = jvms()->loc_size(); 201 int max_stack = jvms()->stk_size(); 202 203 // Mismatch between method and jvms can occur since map briefly held 204 // an OSR entry state (which takes up one RawPtr word). 205 assert(max_locals == method()->max_locals(), "sanity"); 206 assert(max_stack >= method()->max_stack(), "sanity"); 207 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 208 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 209 210 // Find the start block. 211 Block* osr_block = start_block(); 212 assert(osr_block->start() == osr_bci(), "sanity"); 213 214 // Set initial BCI. 215 set_parse_bci(osr_block->start()); 216 217 // Set initial stack depth. 218 set_sp(osr_block->start_sp()); 219 220 // Check bailouts. We currently do not perform on stack replacement 221 // of loops in catch blocks or loops which branch with a non-empty stack. 222 if (sp() != 0) { 223 C->record_method_not_compilable("OSR starts with non-empty stack"); 224 return; 225 } 226 // Do not OSR inside finally clauses: 227 if (osr_block->has_trap_at(osr_block->start())) { 228 assert(false, "OSR starts with an immediate trap"); 229 C->record_method_not_compilable("OSR starts with an immediate trap"); 230 return; 231 } 232 233 // Commute monitors from interpreter frame to compiler frame. 234 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 235 int mcnt = osr_block->flow()->monitor_count(); 236 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 237 for (index = 0; index < mcnt; index++) { 238 // Make a BoxLockNode for the monitor. 239 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 240 // Check for bailout after new BoxLockNode 241 if (failing()) { return; } 242 243 // This OSR locking region is unbalanced because it does not have Lock node: 244 // locking was done in Interpreter. 245 // This is similar to Coarsened case when Lock node is eliminated 246 // and as result the region is marked as Unbalanced. 247 248 // Emulate Coarsened state transition from Regular to Unbalanced. 249 osr_box->set_coarsened(); 250 osr_box->set_unbalanced(); 251 252 Node* box = _gvn.transform(osr_box); 253 254 // Displaced headers and locked objects are interleaved in the 255 // temp OSR buffer. We only copy the locked objects out here. 256 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 257 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf); 258 // Try and copy the displaced header to the BoxNode 259 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf); 260 261 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered); 262 263 // Build a bogus FastLockNode (no code will be generated) and push the 264 // monitor into our debug info. 265 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 266 map()->push_monitor(flock); 267 268 // If the lock is our method synchronization lock, tuck it away in 269 // _sync_lock for return and rethrow exit paths. 270 if (index == 0 && method()->is_synchronized()) { 271 _synch_lock = flock; 272 } 273 } 274 275 // Use the raw liveness computation to make sure that unexpected 276 // values don't propagate into the OSR frame. 277 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 278 if (!live_locals.is_valid()) { 279 // Degenerate or breakpointed method. 280 assert(false, "OSR in empty or breakpointed method"); 281 C->record_method_not_compilable("OSR in empty or breakpointed method"); 282 return; 283 } 284 285 // Extract the needed locals from the interpreter frame. 286 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 287 288 // find all the locals that the interpreter thinks contain live oops 289 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 290 for (index = 0; index < max_locals; index++) { 291 292 if (!live_locals.at(index)) { 293 continue; 294 } 295 296 const Type *type = osr_block->local_type_at(index); 297 298 if (type->isa_oopptr() != nullptr) { 299 300 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 301 // else we might load a stale oop if the MethodLiveness disagrees with the 302 // result of the interpreter. If the interpreter says it is dead we agree 303 // by making the value go to top. 304 // 305 306 if (!live_oops.at(index)) { 307 if (C->log() != nullptr) { 308 C->log()->elem("OSR_mismatch local_index='%d'",index); 309 } 310 set_local(index, null()); 311 // and ignore it for the loads 312 continue; 313 } 314 } 315 316 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 317 if (type == Type::TOP || type == Type::HALF) { 318 continue; 319 } 320 // If the type falls to bottom, then this must be a local that 321 // is mixing ints and oops or some such. Forcing it to top 322 // makes it go dead. 323 if (type == Type::BOTTOM) { 324 continue; 325 } 326 // Construct code to access the appropriate local. 327 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf); 328 set_local(index, value); 329 } 330 331 // Extract the needed stack entries from the interpreter frame. 332 for (index = 0; index < sp(); index++) { 333 const Type *type = osr_block->stack_type_at(index); 334 if (type != Type::TOP) { 335 // Currently the compiler bails out when attempting to on stack replace 336 // at a bci with a non-empty stack. We should not reach here. 337 ShouldNotReachHere(); 338 } 339 } 340 341 // End the OSR migration 342 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 343 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 344 "OSR_migration_end", TypeRawPtr::BOTTOM, 345 osr_buf); 346 347 // Now that the interpreter state is loaded, make sure it will match 348 // at execution time what the compiler is expecting now: 349 SafePointNode* bad_type_exit = clone_map(); 350 bad_type_exit->set_control(new RegionNode(1)); 351 352 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 353 for (index = 0; index < max_locals; index++) { 354 if (stopped()) break; 355 Node* l = local(index); 356 if (l->is_top()) continue; // nothing here 357 const Type *type = osr_block->local_type_at(index); 358 if (type->isa_oopptr() != nullptr) { 359 if (!live_oops.at(index)) { 360 // skip type check for dead oops 361 continue; 362 } 363 } 364 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 365 // In our current system it's illegal for jsr addresses to be 366 // live into an OSR entry point because the compiler performs 367 // inlining of jsrs. ciTypeFlow has a bailout that detect this 368 // case and aborts the compile if addresses are live into an OSR 369 // entry point. Because of that we can assume that any address 370 // locals at the OSR entry point are dead. Method liveness 371 // isn't precise enough to figure out that they are dead in all 372 // cases so simply skip checking address locals all 373 // together. Any type check is guaranteed to fail since the 374 // interpreter type is the result of a load which might have any 375 // value and the expected type is a constant. 376 continue; 377 } 378 bool is_early_larval = osr_block->flow()->local_type_at(index)->is_early_larval(); 379 set_local(index, check_interpreter_type(l, type, bad_type_exit, is_early_larval)); 380 } 381 382 for (index = 0; index < sp(); index++) { 383 if (stopped()) break; 384 Node* l = stack(index); 385 if (l->is_top()) continue; // nothing here 386 const Type *type = osr_block->stack_type_at(index); 387 bool is_early_larval = osr_block->flow()->stack_type_at(index)->is_early_larval(); 388 set_stack(index, check_interpreter_type(l, type, bad_type_exit, is_early_larval)); 389 } 390 391 if (bad_type_exit->control()->req() > 1) { 392 // Build an uncommon trap here, if any inputs can be unexpected. 393 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 394 record_for_igvn(bad_type_exit->control()); 395 SafePointNode* types_are_good = map(); 396 set_map(bad_type_exit); 397 // The unexpected type happens because a new edge is active 398 // in the CFG, which typeflow had previously ignored. 399 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 400 // This x will be typed as Integer if notReached is not yet linked. 401 // It could also happen due to a problem in ciTypeFlow analysis. 402 uncommon_trap(Deoptimization::Reason_constraint, 403 Deoptimization::Action_reinterpret); 404 set_map(types_are_good); 405 } 406 } 407 408 //------------------------------Parse------------------------------------------ 409 // Main parser constructor. 410 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 411 : _exits(caller) 412 { 413 // Init some variables 414 _caller = caller; 415 _method = parse_method; 416 _expected_uses = expected_uses; 417 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 418 _wrote_final = false; 419 _wrote_volatile = false; 420 _wrote_stable = false; 421 _wrote_fields = false; 422 _alloc_with_final_or_stable = nullptr; 423 _block = nullptr; 424 _first_return = true; 425 _replaced_nodes_for_exceptions = false; 426 _new_idx = C->unique(); 427 DEBUG_ONLY(_entry_bci = UnknownBci); 428 DEBUG_ONLY(_block_count = -1); 429 DEBUG_ONLY(_blocks = (Block*)-1); 430 #ifndef PRODUCT 431 if (PrintCompilation || PrintOpto) { 432 // Make sure I have an inline tree, so I can print messages about it. 433 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 434 } 435 _max_switch_depth = 0; 436 _est_switch_depth = 0; 437 #endif 438 439 if (parse_method->has_reserved_stack_access()) { 440 C->set_has_reserved_stack_access(true); 441 } 442 443 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 444 C->set_has_monitors(true); 445 } 446 447 if (parse_method->is_scoped()) { 448 C->set_has_scoped_access(true); 449 } 450 451 _iter.reset_to_method(method()); 452 C->set_has_loops(C->has_loops() || method()->has_loops()); 453 454 if (_expected_uses <= 0) { 455 _prof_factor = 1; 456 } else { 457 float prof_total = parse_method->interpreter_invocation_count(); 458 if (prof_total <= _expected_uses) { 459 _prof_factor = 1; 460 } else { 461 _prof_factor = _expected_uses / prof_total; 462 } 463 } 464 465 CompileLog* log = C->log(); 466 if (log != nullptr) { 467 log->begin_head("parse method='%d' uses='%f'", 468 log->identify(parse_method), expected_uses); 469 if (depth() == 1 && C->is_osr_compilation()) { 470 log->print(" osr_bci='%d'", C->entry_bci()); 471 } 472 log->stamp(); 473 log->end_head(); 474 } 475 476 // Accumulate deoptimization counts. 477 // (The range_check and store_check counts are checked elsewhere.) 478 ciMethodData* md = method()->method_data(); 479 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 480 uint md_count = md->trap_count(reason); 481 if (md_count != 0) { 482 if (md_count >= md->trap_count_limit()) { 483 md_count = md->trap_count_limit() + md->overflow_trap_count(); 484 } 485 uint total_count = C->trap_count(reason); 486 uint old_count = total_count; 487 total_count += md_count; 488 // Saturate the add if it overflows. 489 if (total_count < old_count || total_count < md_count) 490 total_count = (uint)-1; 491 C->set_trap_count(reason, total_count); 492 if (log != nullptr) 493 log->elem("observe trap='%s' count='%d' total='%d'", 494 Deoptimization::trap_reason_name(reason), 495 md_count, total_count); 496 } 497 } 498 // Accumulate total sum of decompilations, also. 499 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 500 501 if (log != nullptr && method()->has_exception_handlers()) { 502 log->elem("observe that='has_exception_handlers'"); 503 } 504 505 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 506 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 507 508 // Always register dependence if JVMTI is enabled, because 509 // either breakpoint setting or hotswapping of methods may 510 // cause deoptimization. 511 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 512 C->dependencies()->assert_evol_method(method()); 513 } 514 515 NOT_PRODUCT(methods_seen++); 516 517 // Do some special top-level things. 518 if (depth() == 1 && C->is_osr_compilation()) { 519 _tf = C->tf(); // the OSR entry type is different 520 _entry_bci = C->entry_bci(); 521 _flow = method()->get_osr_flow_analysis(osr_bci()); 522 } else { 523 _tf = TypeFunc::make(method()); 524 _entry_bci = InvocationEntryBci; 525 _flow = method()->get_flow_analysis(); 526 } 527 528 if (_flow->failing()) { 529 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke 530 // can lead to this. Re-enable once 8284443 is fixed. 531 //assert(false, "type flow analysis failed during parsing"); 532 C->record_method_not_compilable(_flow->failure_reason()); 533 #ifndef PRODUCT 534 if (PrintOpto && (Verbose || WizardMode)) { 535 if (is_osr_parse()) { 536 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 537 } else { 538 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 539 } 540 if (Verbose) { 541 method()->print(); 542 method()->print_codes(); 543 _flow->print(); 544 } 545 } 546 #endif 547 } 548 549 #ifdef ASSERT 550 if (depth() == 1) { 551 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 552 } else { 553 assert(!this->is_osr_parse(), "no recursive OSR"); 554 } 555 #endif 556 557 #ifndef PRODUCT 558 if (_flow->has_irreducible_entry()) { 559 C->set_parsed_irreducible_loop(true); 560 } 561 562 methods_parsed++; 563 // add method size here to guarantee that inlined methods are added too 564 if (CITime) 565 _total_bytes_compiled += method()->code_size(); 566 567 show_parse_info(); 568 #endif 569 570 if (failing()) { 571 if (log) log->done("parse"); 572 return; 573 } 574 575 gvn().transform(top()); 576 577 // Import the results of the ciTypeFlow. 578 init_blocks(); 579 580 // Merge point for all normal exits 581 build_exits(); 582 583 // Setup the initial JVM state map. 584 SafePointNode* entry_map = create_entry_map(); 585 586 // Check for bailouts during map initialization 587 if (failing() || entry_map == nullptr) { 588 if (log) log->done("parse"); 589 return; 590 } 591 592 Node_Notes* caller_nn = C->default_node_notes(); 593 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 594 if (DebugInlinedCalls || depth() == 1) { 595 C->set_default_node_notes(make_node_notes(caller_nn)); 596 } 597 598 if (is_osr_parse()) { 599 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 600 entry_map->set_req(TypeFunc::Parms+0, top()); 601 set_map(entry_map); 602 load_interpreter_state(osr_buf); 603 } else { 604 set_map(entry_map); 605 do_method_entry(); 606 } 607 608 if (depth() == 1 && !failing()) { 609 if (C->clinit_barrier_on_entry()) { 610 // Add check to deoptimize the nmethod once the holder class is fully initialized 611 clinit_deopt(); 612 } 613 } 614 615 // Check for bailouts during method entry. 616 if (failing()) { 617 if (log) log->done("parse"); 618 C->set_default_node_notes(caller_nn); 619 return; 620 } 621 622 // Handle inline type arguments 623 int arg_size = method()->arg_size(); 624 for (int i = 0; i < arg_size; i++) { 625 Node* parm = local(i); 626 const Type* t = _gvn.type(parm); 627 if (t->is_inlinetypeptr()) { 628 // If the parameter is a value object, try to scalarize it if we know that it is unrestricted (not early larval) 629 // Parameters are non-larval except the receiver of a constructor, which must be an early larval object. 630 if (!(method()->is_object_constructor() && i == 0)) { 631 // Create InlineTypeNode from the oop and replace the parameter 632 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass()); 633 replace_in_map(parm, vt); 634 } 635 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() && 636 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_flat() && 637 (!t->is_aryptr()->is_not_null_free() || !t->is_aryptr()->is_not_flat())) { 638 // Speculate on varargs Object array being not null-free and not flat 639 const TypePtr* spec_type = t->speculative(); 640 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr(); 641 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free()->cast_to_not_flat(); 642 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type); 643 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type))); 644 replace_in_map(parm, cast); 645 } 646 } 647 648 entry_map = map(); // capture any changes performed by method setup code 649 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 650 651 // We begin parsing as if we have just encountered a jump to the 652 // method entry. 653 Block* entry_block = start_block(); 654 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 655 set_map_clone(entry_map); 656 merge_common(entry_block, entry_block->next_path_num()); 657 658 #ifndef PRODUCT 659 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 660 set_parse_histogram( parse_histogram_obj ); 661 #endif 662 663 // Parse all the basic blocks. 664 do_all_blocks(); 665 666 // Check for bailouts during conversion to graph 667 if (failing()) { 668 if (log) log->done("parse"); 669 return; 670 } 671 672 // Fix up all exiting control flow. 673 set_map(entry_map); 674 do_exits(); 675 676 // Only reset this now, to make sure that debug information emitted 677 // for exiting control flow still refers to the inlined method. 678 C->set_default_node_notes(caller_nn); 679 680 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'", 681 C->unique(), C->live_nodes(), C->node_arena()->used()); 682 } 683 684 //---------------------------do_all_blocks------------------------------------- 685 void Parse::do_all_blocks() { 686 bool has_irreducible = flow()->has_irreducible_entry(); 687 688 // Walk over all blocks in Reverse Post-Order. 689 while (true) { 690 bool progress = false; 691 for (int rpo = 0; rpo < block_count(); rpo++) { 692 Block* block = rpo_at(rpo); 693 694 if (block->is_parsed()) continue; 695 696 if (!block->is_merged()) { 697 // Dead block, no state reaches this block 698 continue; 699 } 700 701 // Prepare to parse this block. 702 load_state_from(block); 703 704 if (stopped()) { 705 // Block is dead. 706 continue; 707 } 708 709 NOT_PRODUCT(blocks_parsed++); 710 711 progress = true; 712 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 713 // Not all preds have been parsed. We must build phis everywhere. 714 // (Note that dead locals do not get phis built, ever.) 715 ensure_phis_everywhere(); 716 717 if (block->is_SEL_head()) { 718 // Add predicate to single entry (not irreducible) loop head. 719 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 720 // Predicates may have been added after a dominating if 721 if (!block->has_predicates()) { 722 // Need correct bci for predicate. 723 // It is fine to set it here since do_one_block() will set it anyway. 724 set_parse_bci(block->start()); 725 add_parse_predicates(); 726 } 727 // Add new region for back branches. 728 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 729 RegionNode *r = new RegionNode(edges+1); 730 _gvn.set_type(r, Type::CONTROL); 731 record_for_igvn(r); 732 r->init_req(edges, control()); 733 set_control(r); 734 block->copy_irreducible_status_to(r, jvms()); 735 // Add new phis. 736 ensure_phis_everywhere(); 737 } 738 739 // Leave behind an undisturbed copy of the map, for future merges. 740 set_map(clone_map()); 741 } 742 743 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 744 // In the absence of irreducible loops, the Region and Phis 745 // associated with a merge that doesn't involve a backedge can 746 // be simplified now since the RPO parsing order guarantees 747 // that any path which was supposed to reach here has already 748 // been parsed or must be dead. 749 Node* c = control(); 750 Node* result = _gvn.transform(control()); 751 if (c != result && TraceOptoParse) { 752 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 753 } 754 if (result != top()) { 755 record_for_igvn(result); 756 } 757 } 758 759 // Parse the block. 760 do_one_block(); 761 762 // Check for bailouts. 763 if (failing()) return; 764 } 765 766 // with irreducible loops multiple passes might be necessary to parse everything 767 if (!has_irreducible || !progress) { 768 break; 769 } 770 } 771 772 #ifndef PRODUCT 773 blocks_seen += block_count(); 774 775 // Make sure there are no half-processed blocks remaining. 776 // Every remaining unprocessed block is dead and may be ignored now. 777 for (int rpo = 0; rpo < block_count(); rpo++) { 778 Block* block = rpo_at(rpo); 779 if (!block->is_parsed()) { 780 if (TraceOptoParse) { 781 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 782 } 783 assert(!block->is_merged(), "no half-processed blocks"); 784 } 785 } 786 #endif 787 } 788 789 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 790 switch (bt) { 791 case T_BYTE: 792 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 793 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 794 break; 795 case T_SHORT: 796 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 797 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 798 break; 799 case T_CHAR: 800 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 801 break; 802 case T_BOOLEAN: 803 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 804 break; 805 default: 806 break; 807 } 808 return v; 809 } 810 811 //-------------------------------build_exits---------------------------------- 812 // Build normal and exceptional exit merge points. 813 void Parse::build_exits() { 814 // make a clone of caller to prevent sharing of side-effects 815 _exits.set_map(_exits.clone_map()); 816 _exits.clean_stack(_exits.sp()); 817 _exits.sync_jvms(); 818 819 RegionNode* region = new RegionNode(1); 820 record_for_igvn(region); 821 gvn().set_type_bottom(region); 822 _exits.set_control(region); 823 824 // Note: iophi and memphi are not transformed until do_exits. 825 Node* iophi = new PhiNode(region, Type::ABIO); 826 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 827 gvn().set_type_bottom(iophi); 828 gvn().set_type_bottom(memphi); 829 _exits.set_i_o(iophi); 830 _exits.set_all_memory(memphi); 831 832 // Add a return value to the exit state. (Do not push it yet.) 833 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 834 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 835 if (ret_type->isa_int()) { 836 BasicType ret_bt = method()->return_type()->basic_type(); 837 if (ret_bt == T_BOOLEAN || 838 ret_bt == T_CHAR || 839 ret_bt == T_BYTE || 840 ret_bt == T_SHORT) { 841 ret_type = TypeInt::INT; 842 } 843 } 844 845 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 846 // becomes loaded during the subsequent parsing, the loaded and unloaded 847 // types will not join when we transform and push in do_exits(). 848 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 849 if (ret_oop_type && !ret_oop_type->is_loaded()) { 850 ret_type = TypeOopPtr::BOTTOM; 851 } 852 int ret_size = type2size[ret_type->basic_type()]; 853 Node* ret_phi = new PhiNode(region, ret_type); 854 gvn().set_type_bottom(ret_phi); 855 _exits.ensure_stack(ret_size); 856 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 857 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 858 _exits.set_argument(0, ret_phi); // here is where the parser finds it 859 // Note: ret_phi is not yet pushed, until do_exits. 860 } 861 } 862 863 //----------------------------build_start_state------------------------------- 864 // Construct a state which contains only the incoming arguments from an 865 // unknown caller. The method & bci will be null & InvocationEntryBci. 866 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 867 int arg_size = tf->domain_sig()->cnt(); 868 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt()); 869 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 870 SafePointNode* map = new SafePointNode(max_size, jvms); 871 jvms->set_map(map); 872 record_for_igvn(map); 873 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 874 Node_Notes* old_nn = default_node_notes(); 875 if (old_nn != nullptr && has_method()) { 876 Node_Notes* entry_nn = old_nn->clone(this); 877 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 878 entry_jvms->set_offsets(0); 879 entry_jvms->set_bci(entry_bci()); 880 entry_nn->set_jvms(entry_jvms); 881 set_default_node_notes(entry_nn); 882 } 883 PhaseGVN& gvn = *initial_gvn(); 884 uint i = 0; 885 int arg_num = 0; 886 for (uint j = 0; i < (uint)arg_size; i++) { 887 const Type* t = tf->domain_sig()->field_at(i); 888 Node* parm = nullptr; 889 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) { 890 // Inline type arguments are not passed by reference: we get an argument per 891 // field of the inline type. Build InlineTypeNodes from the inline type arguments. 892 GraphKit kit(jvms, &gvn); 893 kit.set_control(map->control()); 894 Node* old_mem = map->memory(); 895 // Use immutable memory for inline type loads and restore it below 896 kit.set_all_memory(C->immutable_memory()); 897 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null()); 898 map->set_control(kit.control()); 899 map->set_memory(old_mem); 900 } else { 901 parm = gvn.transform(new ParmNode(start, j++)); 902 } 903 map->init_req(i, parm); 904 // Record all these guys for later GVN. 905 record_for_igvn(parm); 906 if (i >= TypeFunc::Parms && t != Type::HALF) { 907 arg_num++; 908 } 909 } 910 for (; i < map->req(); i++) { 911 map->init_req(i, top()); 912 } 913 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 914 set_default_node_notes(old_nn); 915 return jvms; 916 } 917 918 //-----------------------------make_node_notes--------------------------------- 919 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 920 if (caller_nn == nullptr) return nullptr; 921 Node_Notes* nn = caller_nn->clone(C); 922 JVMState* caller_jvms = nn->jvms(); 923 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 924 jvms->set_offsets(0); 925 jvms->set_bci(_entry_bci); 926 nn->set_jvms(jvms); 927 return nn; 928 } 929 930 931 //--------------------------return_values-------------------------------------- 932 void Compile::return_values(JVMState* jvms) { 933 GraphKit kit(jvms); 934 Node* ret = new ReturnNode(TypeFunc::Parms, 935 kit.control(), 936 kit.i_o(), 937 kit.reset_memory(), 938 kit.frameptr(), 939 kit.returnadr()); 940 // Add zero or 1 return values 941 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms; 942 if (ret_size > 0) { 943 kit.inc_sp(-ret_size); // pop the return value(s) 944 kit.sync_jvms(); 945 Node* res = kit.argument(0); 946 if (tf()->returns_inline_type_as_fields()) { 947 // Multiple return values (inline type fields): add as many edges 948 // to the Return node as returned values. 949 InlineTypeNode* vt = res->as_InlineType(); 950 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms); 951 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) { 952 ret->init_req(TypeFunc::Parms, vt); 953 } else { 954 // Return the tagged klass pointer to signal scalarization to the caller 955 Node* tagged_klass = vt->tagged_klass(kit.gvn()); 956 // Return null if the inline type is null (null marker field is not set) 957 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_null_marker())); 958 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63))); 959 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63))); 960 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr)); 961 ret->init_req(TypeFunc::Parms, tagged_klass); 962 } 963 uint idx = TypeFunc::Parms + 1; 964 vt->pass_fields(&kit, ret, idx, false, false); 965 } else { 966 ret->add_req(res); 967 // Note: The second dummy edge is not needed by a ReturnNode. 968 } 969 } 970 // bind it to root 971 root()->add_req(ret); 972 record_for_igvn(ret); 973 initial_gvn()->transform(ret); 974 } 975 976 //------------------------rethrow_exceptions----------------------------------- 977 // Bind all exception states in the list into a single RethrowNode. 978 void Compile::rethrow_exceptions(JVMState* jvms) { 979 GraphKit kit(jvms); 980 if (!kit.has_exceptions()) return; // nothing to generate 981 // Load my combined exception state into the kit, with all phis transformed: 982 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 983 Node* ex_oop = kit.use_exception_state(ex_map); 984 RethrowNode* exit = new RethrowNode(kit.control(), 985 kit.i_o(), kit.reset_memory(), 986 kit.frameptr(), kit.returnadr(), 987 // like a return but with exception input 988 ex_oop); 989 // bind to root 990 root()->add_req(exit); 991 record_for_igvn(exit); 992 initial_gvn()->transform(exit); 993 } 994 995 //---------------------------do_exceptions------------------------------------- 996 // Process exceptions arising from the current bytecode. 997 // Send caught exceptions to the proper handler within this method. 998 // Unhandled exceptions feed into _exit. 999 void Parse::do_exceptions() { 1000 if (!has_exceptions()) return; 1001 1002 if (failing()) { 1003 // Pop them all off and throw them away. 1004 while (pop_exception_state() != nullptr) ; 1005 return; 1006 } 1007 1008 PreserveJVMState pjvms(this, false); 1009 1010 SafePointNode* ex_map; 1011 while ((ex_map = pop_exception_state()) != nullptr) { 1012 if (!method()->has_exception_handlers()) { 1013 // Common case: Transfer control outward. 1014 // Doing it this early allows the exceptions to common up 1015 // even between adjacent method calls. 1016 throw_to_exit(ex_map); 1017 } else { 1018 // Have to look at the exception first. 1019 assert(stopped(), "catch_inline_exceptions trashes the map"); 1020 catch_inline_exceptions(ex_map); 1021 stop_and_kill_map(); // we used up this exception state; kill it 1022 } 1023 } 1024 1025 // We now return to our regularly scheduled program: 1026 } 1027 1028 //---------------------------throw_to_exit------------------------------------- 1029 // Merge the given map into an exception exit from this method. 1030 // The exception exit will handle any unlocking of receiver. 1031 // The ex_oop must be saved within the ex_map, unlike merge_exception. 1032 void Parse::throw_to_exit(SafePointNode* ex_map) { 1033 // Pop the JVMS to (a copy of) the caller. 1034 GraphKit caller; 1035 caller.set_map_clone(_caller->map()); 1036 caller.set_bci(_caller->bci()); 1037 caller.set_sp(_caller->sp()); 1038 // Copy out the standard machine state: 1039 for (uint i = 0; i < TypeFunc::Parms; i++) { 1040 caller.map()->set_req(i, ex_map->in(i)); 1041 } 1042 if (ex_map->has_replaced_nodes()) { 1043 _replaced_nodes_for_exceptions = true; 1044 } 1045 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 1046 // ...and the exception: 1047 Node* ex_oop = saved_ex_oop(ex_map); 1048 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 1049 // Finally, collect the new exception state in my exits: 1050 _exits.add_exception_state(caller_ex_map); 1051 } 1052 1053 //------------------------------do_exits--------------------------------------- 1054 void Parse::do_exits() { 1055 set_parse_bci(InvocationEntryBci); 1056 1057 // Now peephole on the return bits 1058 Node* region = _exits.control(); 1059 _exits.set_control(gvn().transform(region)); 1060 1061 Node* iophi = _exits.i_o(); 1062 _exits.set_i_o(gvn().transform(iophi)); 1063 1064 // Figure out if we need to emit the trailing barrier. The barrier is only 1065 // needed in the constructors, and only in three cases: 1066 // 1067 // 1. The constructor wrote a final or a @Stable field. All these 1068 // initializations must be ordered before any code after the constructor 1069 // publishes the reference to the newly constructed object. Rather 1070 // than wait for the publication, we simply block the writes here. 1071 // Rather than put a barrier on only those writes which are required 1072 // to complete, we force all writes to complete. 1073 // 1074 // 2. Experimental VM option is used to force the barrier if any field 1075 // was written out in the constructor. 1076 // 1077 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1078 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1079 // MemBarVolatile is used before volatile load instead of after volatile 1080 // store, so there's no barrier after the store. 1081 // We want to guarantee the same behavior as on platforms with total store 1082 // order, although this is not required by the Java memory model. 1083 // In this case, we want to enforce visibility of volatile field 1084 // initializations which are performed in constructors. 1085 // So as with finals, we add a barrier here. 1086 // 1087 // "All bets are off" unless the first publication occurs after a 1088 // normal return from the constructor. We do not attempt to detect 1089 // such unusual early publications. But no barrier is needed on 1090 // exceptional returns, since they cannot publish normally. 1091 // 1092 if ((method()->is_object_constructor() || method()->is_class_initializer()) && 1093 (wrote_final() || wrote_stable() || 1094 (AlwaysSafeConstructors && wrote_fields()) || 1095 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1096 Node* recorded_alloc = alloc_with_final_or_stable(); 1097 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1098 recorded_alloc); 1099 1100 // If Memory barrier is created for final fields write 1101 // and allocation node does not escape the initialize method, 1102 // then barrier introduced by allocation node can be removed. 1103 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1104 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1105 alloc->compute_MemBar_redundancy(method()); 1106 } 1107 if (PrintOpto && (Verbose || WizardMode)) { 1108 method()->print_name(); 1109 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1110 } 1111 } 1112 1113 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1114 // transform each slice of the original memphi: 1115 mms.set_memory(_gvn.transform(mms.memory())); 1116 } 1117 // Clean up input MergeMems created by transforming the slices 1118 _gvn.transform(_exits.merged_memory()); 1119 1120 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 1121 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 1122 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1123 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1124 // If the type we set for the ret_phi in build_exits() is too optimistic and 1125 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1126 // loading. It could also be due to an error, so mark this method as not compilable because 1127 // otherwise this could lead to an infinite compile loop. 1128 // In any case, this code path is rarely (and never in my testing) reached. 1129 C->record_method_not_compilable("Can't determine return type."); 1130 return; 1131 } 1132 if (ret_type->isa_int()) { 1133 BasicType ret_bt = method()->return_type()->basic_type(); 1134 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1135 } 1136 _exits.push_node(ret_type->basic_type(), ret_phi); 1137 } 1138 1139 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1140 1141 // Unlock along the exceptional paths. 1142 // This is done late so that we can common up equivalent exceptions 1143 // (e.g., null checks) arising from multiple points within this method. 1144 // See GraphKit::add_exception_state, which performs the commoning. 1145 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1146 1147 // record exit from a method if compiled while Dtrace is turned on. 1148 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1149 // First move the exception list out of _exits: 1150 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1151 SafePointNode* normal_map = kit.map(); // keep this guy safe 1152 // Now re-collect the exceptions into _exits: 1153 SafePointNode* ex_map; 1154 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1155 Node* ex_oop = kit.use_exception_state(ex_map); 1156 // Force the exiting JVM state to have this method at InvocationEntryBci. 1157 // The exiting JVM state is otherwise a copy of the calling JVMS. 1158 JVMState* caller = kit.jvms(); 1159 JVMState* ex_jvms = caller->clone_shallow(C); 1160 ex_jvms->bind_map(kit.clone_map()); 1161 ex_jvms->set_bci( InvocationEntryBci); 1162 kit.set_jvms(ex_jvms); 1163 if (do_synch) { 1164 // Add on the synchronized-method box/object combo 1165 kit.map()->push_monitor(_synch_lock); 1166 // Unlock! 1167 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1168 } 1169 if (C->env()->dtrace_method_probes()) { 1170 kit.make_dtrace_method_exit(method()); 1171 } 1172 if (_replaced_nodes_for_exceptions) { 1173 kit.map()->apply_replaced_nodes(_new_idx); 1174 } 1175 // Done with exception-path processing. 1176 ex_map = kit.make_exception_state(ex_oop); 1177 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1178 // Pop the last vestige of this method: 1179 caller->clone_shallow(C)->bind_map(ex_map); 1180 _exits.push_exception_state(ex_map); 1181 } 1182 assert(_exits.map() == normal_map, "keep the same return state"); 1183 } 1184 1185 { 1186 // Capture very early exceptions (receiver null checks) from caller JVMS 1187 GraphKit caller(_caller); 1188 SafePointNode* ex_map; 1189 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1190 _exits.add_exception_state(ex_map); 1191 } 1192 } 1193 _exits.map()->apply_replaced_nodes(_new_idx); 1194 } 1195 1196 //-----------------------------create_entry_map------------------------------- 1197 // Initialize our parser map to contain the types at method entry. 1198 // For OSR, the map contains a single RawPtr parameter. 1199 // Initial monitor locking for sync. methods is performed by do_method_entry. 1200 SafePointNode* Parse::create_entry_map() { 1201 // Check for really stupid bail-out cases. 1202 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1203 if (len >= 32760) { 1204 // Bailout expected, this is a very rare edge case. 1205 C->record_method_not_compilable("too many local variables"); 1206 return nullptr; 1207 } 1208 1209 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1210 _caller->map()->delete_replaced_nodes(); 1211 1212 // If this is an inlined method, we may have to do a receiver null check. 1213 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1214 GraphKit kit(_caller); 1215 Node* receiver = kit.argument(0); 1216 Node* null_free = kit.null_check_receiver_before_call(method()); 1217 _caller = kit.transfer_exceptions_into_jvms(); 1218 1219 if (kit.stopped()) { 1220 _exits.add_exception_states_from(_caller); 1221 _exits.set_jvms(_caller); 1222 return nullptr; 1223 } 1224 } 1225 1226 assert(method() != nullptr, "parser must have a method"); 1227 1228 // Create an initial safepoint to hold JVM state during parsing 1229 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1230 set_map(new SafePointNode(len, jvms)); 1231 jvms->set_map(map()); 1232 record_for_igvn(map()); 1233 assert(jvms->endoff() == len, "correct jvms sizing"); 1234 1235 SafePointNode* inmap = _caller->map(); 1236 assert(inmap != nullptr, "must have inmap"); 1237 // In case of null check on receiver above 1238 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1239 1240 uint i; 1241 1242 // Pass thru the predefined input parameters. 1243 for (i = 0; i < TypeFunc::Parms; i++) { 1244 map()->init_req(i, inmap->in(i)); 1245 } 1246 1247 if (depth() == 1) { 1248 assert(map()->memory()->Opcode() == Op_Parm, ""); 1249 // Insert the memory aliasing node 1250 set_all_memory(reset_memory()); 1251 } 1252 assert(merged_memory(), ""); 1253 1254 // Now add the locals which are initially bound to arguments: 1255 uint arg_size = tf()->domain_sig()->cnt(); 1256 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1257 for (i = TypeFunc::Parms; i < arg_size; i++) { 1258 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1259 } 1260 1261 // Clear out the rest of the map (locals and stack) 1262 for (i = arg_size; i < len; i++) { 1263 map()->init_req(i, top()); 1264 } 1265 1266 SafePointNode* entry_map = stop(); 1267 return entry_map; 1268 } 1269 1270 //-----------------------------do_method_entry-------------------------------- 1271 // Emit any code needed in the pseudo-block before BCI zero. 1272 // The main thing to do is lock the receiver of a synchronized method. 1273 void Parse::do_method_entry() { 1274 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1275 set_sp(0); // Java Stack Pointer 1276 1277 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1278 1279 if (C->env()->dtrace_method_probes()) { 1280 make_dtrace_method_entry(method()); 1281 } 1282 1283 #ifdef ASSERT 1284 // Narrow receiver type when it is too broad for the method being parsed. 1285 if (!method()->is_static()) { 1286 ciInstanceKlass* callee_holder = method()->holder(); 1287 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1288 1289 Node* receiver_obj = local(0); 1290 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1291 1292 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1293 // Receiver should always be a subtype of callee holder. 1294 // But, since C2 type system doesn't properly track interfaces, 1295 // the invariant can't be expressed in the type system for default methods. 1296 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1297 assert(callee_holder->is_interface(), "missing subtype check"); 1298 1299 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1300 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1301 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1302 assert(!stopped(), "not a subtype"); 1303 1304 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1305 C->root()->add_req(halt); 1306 } 1307 } 1308 #endif // ASSERT 1309 1310 // If the method is synchronized, we need to construct a lock node, attach 1311 // it to the Start node, and pin it there. 1312 if (method()->is_synchronized()) { 1313 // Insert a FastLockNode right after the Start which takes as arguments 1314 // the current thread pointer, the "this" pointer & the address of the 1315 // stack slot pair used for the lock. The "this" pointer is a projection 1316 // off the start node, but the locking spot has to be constructed by 1317 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1318 // becomes the second argument to the FastLockNode call. The 1319 // FastLockNode becomes the new control parent to pin it to the start. 1320 1321 // Setup Object Pointer 1322 Node *lock_obj = nullptr; 1323 if (method()->is_static()) { 1324 ciInstance* mirror = _method->holder()->java_mirror(); 1325 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1326 lock_obj = makecon(t_lock); 1327 } else { // Else pass the "this" pointer, 1328 lock_obj = local(0); // which is Parm0 from StartNode 1329 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type"); 1330 } 1331 // Clear out dead values from the debug info. 1332 kill_dead_locals(); 1333 // Build the FastLockNode 1334 _synch_lock = shared_lock(lock_obj); 1335 // Check for bailout in shared_lock 1336 if (failing()) { return; } 1337 } 1338 1339 // Feed profiling data for parameters to the type system so it can 1340 // propagate it as speculative types 1341 record_profiled_parameters_for_speculation(); 1342 } 1343 1344 //------------------------------init_blocks------------------------------------ 1345 // Initialize our parser map to contain the types/monitors at method entry. 1346 void Parse::init_blocks() { 1347 // Create the blocks. 1348 _block_count = flow()->block_count(); 1349 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1350 1351 // Initialize the structs. 1352 for (int rpo = 0; rpo < block_count(); rpo++) { 1353 Block* block = rpo_at(rpo); 1354 new(block) Block(this, rpo); 1355 } 1356 1357 // Collect predecessor and successor information. 1358 for (int rpo = 0; rpo < block_count(); rpo++) { 1359 Block* block = rpo_at(rpo); 1360 block->init_graph(this); 1361 } 1362 } 1363 1364 //-------------------------------init_node------------------------------------- 1365 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1366 _flow = outer->flow()->rpo_at(rpo); 1367 _pred_count = 0; 1368 _preds_parsed = 0; 1369 _count = 0; 1370 _is_parsed = false; 1371 _is_handler = false; 1372 _has_merged_backedge = false; 1373 _start_map = nullptr; 1374 _has_predicates = false; 1375 _num_successors = 0; 1376 _all_successors = 0; 1377 _successors = nullptr; 1378 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1379 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1380 assert(_live_locals.size() == 0, "sanity"); 1381 1382 // entry point has additional predecessor 1383 if (flow()->is_start()) _pred_count++; 1384 assert(flow()->is_start() == (this == outer->start_block()), ""); 1385 } 1386 1387 //-------------------------------init_graph------------------------------------ 1388 void Parse::Block::init_graph(Parse* outer) { 1389 // Create the successor list for this parser block. 1390 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1391 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1392 int ns = tfs->length(); 1393 int ne = tfe->length(); 1394 _num_successors = ns; 1395 _all_successors = ns+ne; 1396 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1397 int p = 0; 1398 for (int i = 0; i < ns+ne; i++) { 1399 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1400 Block* block2 = outer->rpo_at(tf2->rpo()); 1401 _successors[i] = block2; 1402 1403 // Accumulate pred info for the other block, too. 1404 // Note: We also need to set _pred_count for exception blocks since they could 1405 // also have normal predecessors (reached without athrow by an explicit jump). 1406 // This also means that next_path_num can be called along exception paths. 1407 block2->_pred_count++; 1408 if (i >= ns) { 1409 block2->_is_handler = true; 1410 } 1411 1412 #ifdef ASSERT 1413 // A block's successors must be distinguishable by BCI. 1414 // That is, no bytecode is allowed to branch to two different 1415 // clones of the same code location. 1416 for (int j = 0; j < i; j++) { 1417 Block* block1 = _successors[j]; 1418 if (block1 == block2) continue; // duplicates are OK 1419 assert(block1->start() != block2->start(), "successors have unique bcis"); 1420 } 1421 #endif 1422 } 1423 } 1424 1425 //---------------------------successor_for_bci--------------------------------- 1426 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1427 for (int i = 0; i < all_successors(); i++) { 1428 Block* block2 = successor_at(i); 1429 if (block2->start() == bci) return block2; 1430 } 1431 // We can actually reach here if ciTypeFlow traps out a block 1432 // due to an unloaded class, and concurrently with compilation the 1433 // class is then loaded, so that a later phase of the parser is 1434 // able to see more of the bytecode CFG. Or, the flow pass and 1435 // the parser can have a minor difference of opinion about executability 1436 // of bytecodes. For example, "obj.field = null" is executable even 1437 // if the field's type is an unloaded class; the flow pass used to 1438 // make a trap for such code. 1439 return nullptr; 1440 } 1441 1442 1443 //-----------------------------stack_type_at----------------------------------- 1444 const Type* Parse::Block::stack_type_at(int i) const { 1445 return get_type(flow()->stack_type_at(i)); 1446 } 1447 1448 1449 //-----------------------------local_type_at----------------------------------- 1450 const Type* Parse::Block::local_type_at(int i) const { 1451 // Make dead locals fall to bottom. 1452 if (_live_locals.size() == 0) { 1453 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1454 // This bitmap can be zero length if we saw a breakpoint. 1455 // In such cases, pretend they are all live. 1456 ((Block*)this)->_live_locals = live_locals; 1457 } 1458 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1459 return Type::BOTTOM; 1460 1461 return get_type(flow()->local_type_at(i)); 1462 } 1463 1464 1465 #ifndef PRODUCT 1466 1467 //----------------------------name_for_bc-------------------------------------- 1468 // helper method for BytecodeParseHistogram 1469 static const char* name_for_bc(int i) { 1470 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1471 } 1472 1473 //----------------------------BytecodeParseHistogram------------------------------------ 1474 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1475 _parser = p; 1476 _compiler = c; 1477 if( ! _initialized ) { _initialized = true; reset(); } 1478 } 1479 1480 //----------------------------current_count------------------------------------ 1481 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1482 switch( bph_type ) { 1483 case BPH_transforms: { return _parser->gvn().made_progress(); } 1484 case BPH_values: { return _parser->gvn().made_new_values(); } 1485 default: { ShouldNotReachHere(); return 0; } 1486 } 1487 } 1488 1489 //----------------------------initialized-------------------------------------- 1490 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1491 1492 //----------------------------reset-------------------------------------------- 1493 void Parse::BytecodeParseHistogram::reset() { 1494 int i = Bytecodes::number_of_codes; 1495 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1496 } 1497 1498 //----------------------------set_initial_state-------------------------------- 1499 // Record info when starting to parse one bytecode 1500 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1501 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1502 _initial_bytecode = bc; 1503 _initial_node_count = _compiler->unique(); 1504 _initial_transforms = current_count(BPH_transforms); 1505 _initial_values = current_count(BPH_values); 1506 } 1507 } 1508 1509 //----------------------------record_change-------------------------------- 1510 // Record results of parsing one bytecode 1511 void Parse::BytecodeParseHistogram::record_change() { 1512 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1513 ++_bytecodes_parsed[_initial_bytecode]; 1514 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1515 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1516 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1517 } 1518 } 1519 1520 1521 //----------------------------print-------------------------------------------- 1522 void Parse::BytecodeParseHistogram::print(float cutoff) { 1523 ResourceMark rm; 1524 // print profile 1525 int total = 0; 1526 int i = 0; 1527 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1528 int abs_sum = 0; 1529 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1530 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1531 if( total == 0 ) { return; } 1532 tty->cr(); 1533 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1534 tty->print_cr("relative: percentage contribution to compiled nodes"); 1535 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1536 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1537 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1538 tty->print_cr("values : Average number of node values improved per bytecode"); 1539 tty->print_cr("name : Bytecode name"); 1540 tty->cr(); 1541 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1542 tty->print_cr("----------------------------------------------------------------------"); 1543 while (--i > 0) { 1544 int abs = _bytecodes_parsed[i]; 1545 float rel = abs * 100.0F / total; 1546 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1547 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1548 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1549 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1550 if (cutoff <= rel) { 1551 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1552 abs_sum += abs; 1553 } 1554 } 1555 tty->print_cr("----------------------------------------------------------------------"); 1556 float rel_sum = abs_sum * 100.0F / total; 1557 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1558 tty->print_cr("----------------------------------------------------------------------"); 1559 tty->cr(); 1560 } 1561 #endif 1562 1563 //----------------------------load_state_from---------------------------------- 1564 // Load block/map/sp. But not do not touch iter/bci. 1565 void Parse::load_state_from(Block* block) { 1566 set_block(block); 1567 // load the block's JVM state: 1568 set_map(block->start_map()); 1569 set_sp( block->start_sp()); 1570 } 1571 1572 1573 //-----------------------------record_state------------------------------------ 1574 void Parse::Block::record_state(Parse* p) { 1575 assert(!is_merged(), "can only record state once, on 1st inflow"); 1576 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1577 set_start_map(p->stop()); 1578 } 1579 1580 1581 //------------------------------do_one_block----------------------------------- 1582 void Parse::do_one_block() { 1583 if (TraceOptoParse) { 1584 Block *b = block(); 1585 int ns = b->num_successors(); 1586 int nt = b->all_successors(); 1587 1588 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1589 block()->rpo(), block()->start(), block()->limit()); 1590 for (int i = 0; i < nt; i++) { 1591 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1592 } 1593 if (b->is_loop_head()) { 1594 tty->print(" loop head"); 1595 } 1596 if (b->is_irreducible_loop_entry()) { 1597 tty->print(" irreducible"); 1598 } 1599 tty->cr(); 1600 } 1601 1602 assert(block()->is_merged(), "must be merged before being parsed"); 1603 block()->mark_parsed(); 1604 1605 // Set iterator to start of block. 1606 iter().reset_to_bci(block()->start()); 1607 1608 if (ProfileExceptionHandlers && block()->is_handler()) { 1609 ciMethodData* methodData = method()->method_data(); 1610 if (methodData->is_mature()) { 1611 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1612 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1613 // dead catch block 1614 // Emit an uncommon trap instead of processing the block. 1615 set_parse_bci(block()->start()); 1616 uncommon_trap(Deoptimization::Reason_unreached, 1617 Deoptimization::Action_reinterpret, 1618 nullptr, "dead catch block"); 1619 return; 1620 } 1621 } 1622 } 1623 1624 CompileLog* log = C->log(); 1625 1626 // Parse bytecodes 1627 while (!stopped() && !failing()) { 1628 iter().next(); 1629 1630 // Learn the current bci from the iterator: 1631 set_parse_bci(iter().cur_bci()); 1632 1633 if (bci() == block()->limit()) { 1634 // Do not walk into the next block until directed by do_all_blocks. 1635 merge(bci()); 1636 break; 1637 } 1638 assert(bci() < block()->limit(), "bci still in block"); 1639 1640 if (log != nullptr) { 1641 // Output an optional context marker, to help place actions 1642 // that occur during parsing of this BC. If there is no log 1643 // output until the next context string, this context string 1644 // will be silently ignored. 1645 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1646 } 1647 1648 if (block()->has_trap_at(bci())) { 1649 // We must respect the flow pass's traps, because it will refuse 1650 // to produce successors for trapping blocks. 1651 int trap_index = block()->flow()->trap_index(); 1652 assert(trap_index != 0, "trap index must be valid"); 1653 uncommon_trap(trap_index); 1654 break; 1655 } 1656 1657 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1658 1659 #ifdef ASSERT 1660 int pre_bc_sp = sp(); 1661 int inputs, depth; 1662 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1663 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1664 #endif //ASSERT 1665 1666 do_one_bytecode(); 1667 if (failing()) return; 1668 1669 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1670 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1671 1672 do_exceptions(); 1673 1674 NOT_PRODUCT( parse_histogram()->record_change(); ); 1675 1676 if (log != nullptr) 1677 log->clear_context(); // skip marker if nothing was printed 1678 1679 // Fall into next bytecode. Each bytecode normally has 1 sequential 1680 // successor which is typically made ready by visiting this bytecode. 1681 // If the successor has several predecessors, then it is a merge 1682 // point, starts a new basic block, and is handled like other basic blocks. 1683 } 1684 } 1685 1686 1687 //------------------------------merge------------------------------------------ 1688 void Parse::set_parse_bci(int bci) { 1689 set_bci(bci); 1690 Node_Notes* nn = C->default_node_notes(); 1691 if (nn == nullptr) return; 1692 1693 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1694 if (!DebugInlinedCalls && depth() > 1) { 1695 return; 1696 } 1697 1698 // Update the JVMS annotation, if present. 1699 JVMState* jvms = nn->jvms(); 1700 if (jvms != nullptr && jvms->bci() != bci) { 1701 // Update the JVMS. 1702 jvms = jvms->clone_shallow(C); 1703 jvms->set_bci(bci); 1704 nn->set_jvms(jvms); 1705 } 1706 } 1707 1708 //------------------------------merge------------------------------------------ 1709 // Merge the current mapping into the basic block starting at bci 1710 void Parse::merge(int target_bci) { 1711 Block* target = successor_for_bci(target_bci); 1712 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1713 assert(!target->is_ready(), "our arrival must be expected"); 1714 int pnum = target->next_path_num(); 1715 merge_common(target, pnum); 1716 } 1717 1718 //-------------------------merge_new_path-------------------------------------- 1719 // Merge the current mapping into the basic block, using a new path 1720 void Parse::merge_new_path(int target_bci) { 1721 Block* target = successor_for_bci(target_bci); 1722 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1723 assert(!target->is_ready(), "new path into frozen graph"); 1724 int pnum = target->add_new_path(); 1725 merge_common(target, pnum); 1726 } 1727 1728 //-------------------------merge_exception------------------------------------- 1729 // Merge the current mapping into the basic block starting at bci 1730 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1731 void Parse::merge_exception(int target_bci) { 1732 #ifdef ASSERT 1733 if (target_bci <= bci()) { 1734 C->set_exception_backedge(); 1735 } 1736 #endif 1737 assert(sp() == 1, "must have only the throw exception on the stack"); 1738 Block* target = successor_for_bci(target_bci); 1739 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1740 assert(target->is_handler(), "exceptions are handled by special blocks"); 1741 int pnum = target->add_new_path(); 1742 merge_common(target, pnum); 1743 } 1744 1745 //--------------------handle_missing_successor--------------------------------- 1746 void Parse::handle_missing_successor(int target_bci) { 1747 #ifndef PRODUCT 1748 Block* b = block(); 1749 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1750 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1751 #endif 1752 ShouldNotReachHere(); 1753 } 1754 1755 //--------------------------merge_common--------------------------------------- 1756 void Parse::merge_common(Parse::Block* target, int pnum) { 1757 if (TraceOptoParse) { 1758 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1759 } 1760 1761 // Zap extra stack slots to top 1762 assert(sp() == target->start_sp(), ""); 1763 clean_stack(sp()); 1764 1765 // Check for merge conflicts involving inline types 1766 JVMState* old_jvms = map()->jvms(); 1767 int old_bci = bci(); 1768 JVMState* tmp_jvms = old_jvms->clone_shallow(C); 1769 tmp_jvms->set_should_reexecute(true); 1770 tmp_jvms->bind_map(map()); 1771 // Execution needs to restart a the next bytecode (entry of next 1772 // block) 1773 if (target->is_merged() || 1774 pnum > PhiNode::Input || 1775 target->is_handler() || 1776 target->is_loop_head()) { 1777 set_parse_bci(target->start()); 1778 for (uint j = TypeFunc::Parms; j < map()->req(); j++) { 1779 Node* n = map()->in(j); // Incoming change to target state. 1780 const Type* t = nullptr; 1781 if (tmp_jvms->is_loc(j)) { 1782 t = target->local_type_at(j - tmp_jvms->locoff()); 1783 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) { 1784 t = target->stack_type_at(j - tmp_jvms->stkoff()); 1785 } 1786 if (t != nullptr && t != Type::BOTTOM) { 1787 // An object can appear in the JVMS as either an oop or an InlineTypeNode. If the merge is 1788 // an InlineTypeNode, we need all the merge inputs to be InlineTypeNodes. Else, if the 1789 // merge is an oop, each merge input needs to be either an oop or an buffered 1790 // InlineTypeNode. 1791 if (!t->is_inlinetypeptr()) { 1792 // The merge cannot be an InlineTypeNode, ensure the input is buffered if it is an 1793 // InlineTypeNode 1794 if (n->is_InlineType()) { 1795 map()->set_req(j, n->as_InlineType()->buffer(this)); 1796 } 1797 } else { 1798 // Since the merge is a value object, it can either be an oop or an InlineTypeNode 1799 if (!target->is_merged()) { 1800 // This is the first processed input of the merge. If it is an InlineTypeNode, the 1801 // merge will be an InlineTypeNode. Else, try to scalarize so the merge can be 1802 // scalarized as well. However, we cannot blindly scalarize an inline type oop here 1803 // since it may be larval 1804 if (!n->is_InlineType() && gvn().type(n)->is_zero_type()) { 1805 // Null constant implies that this is not a larval object 1806 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass())); 1807 } 1808 } else { 1809 Node* phi = target->start_map()->in(j); 1810 if (phi->is_InlineType()) { 1811 // Larval oops cannot be merged with non-larval ones, and since the merge point is 1812 // non-larval, n must be non-larval as well. As a result, we can scalarize n to merge 1813 // into phi 1814 if (!n->is_InlineType()) { 1815 map()->set_req(j, InlineTypeNode::make_from_oop(this, n, t->inline_klass())); 1816 } 1817 } else { 1818 // The merge is an oop phi, ensure the input is buffered if it is an InlineTypeNode 1819 if (n->is_InlineType()) { 1820 map()->set_req(j, n->as_InlineType()->buffer(this)); 1821 } 1822 } 1823 } 1824 } 1825 } 1826 } 1827 } 1828 old_jvms->bind_map(map()); 1829 set_parse_bci(old_bci); 1830 1831 if (!target->is_merged()) { // No prior mapping at this bci 1832 if (TraceOptoParse) { tty->print(" with empty state"); } 1833 1834 // If this path is dead, do not bother capturing it as a merge. 1835 // It is "as if" we had 1 fewer predecessors from the beginning. 1836 if (stopped()) { 1837 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1838 return; 1839 } 1840 1841 // Make a region if we know there are multiple or unpredictable inputs. 1842 // (Also, if this is a plain fall-through, we might see another region, 1843 // which must not be allowed into this block's map.) 1844 if (pnum > PhiNode::Input // Known multiple inputs. 1845 || target->is_handler() // These have unpredictable inputs. 1846 || target->is_loop_head() // Known multiple inputs 1847 || control()->is_Region()) { // We must hide this guy. 1848 1849 int current_bci = bci(); 1850 set_parse_bci(target->start()); // Set target bci 1851 if (target->is_SEL_head()) { 1852 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1853 if (target->start() == 0) { 1854 // Add Parse Predicates for the special case when 1855 // there are backbranches to the method entry. 1856 add_parse_predicates(); 1857 } 1858 } 1859 // Add a Region to start the new basic block. Phis will be added 1860 // later lazily. 1861 int edges = target->pred_count(); 1862 if (edges < pnum) edges = pnum; // might be a new path! 1863 RegionNode *r = new RegionNode(edges+1); 1864 gvn().set_type(r, Type::CONTROL); 1865 record_for_igvn(r); 1866 // zap all inputs to null for debugging (done in Node(uint) constructor) 1867 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1868 r->init_req(pnum, control()); 1869 set_control(r); 1870 target->copy_irreducible_status_to(r, jvms()); 1871 set_parse_bci(current_bci); // Restore bci 1872 } 1873 1874 // Convert the existing Parser mapping into a mapping at this bci. 1875 store_state_to(target); 1876 assert(target->is_merged(), "do not come here twice"); 1877 1878 } else { // Prior mapping at this bci 1879 if (TraceOptoParse) { tty->print(" with previous state"); } 1880 #ifdef ASSERT 1881 if (target->is_SEL_head()) { 1882 target->mark_merged_backedge(block()); 1883 } 1884 #endif 1885 1886 // We must not manufacture more phis if the target is already parsed. 1887 bool nophi = target->is_parsed(); 1888 1889 SafePointNode* newin = map();// Hang on to incoming mapping 1890 Block* save_block = block(); // Hang on to incoming block; 1891 load_state_from(target); // Get prior mapping 1892 1893 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1894 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1895 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1896 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1897 1898 // Iterate over my current mapping and the old mapping. 1899 // Where different, insert Phi functions. 1900 // Use any existing Phi functions. 1901 assert(control()->is_Region(), "must be merging to a region"); 1902 RegionNode* r = control()->as_Region(); 1903 1904 // Compute where to merge into 1905 // Merge incoming control path 1906 r->init_req(pnum, newin->control()); 1907 1908 if (pnum == 1) { // Last merge for this Region? 1909 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1910 Node* result = _gvn.transform(r); 1911 if (r != result && TraceOptoParse) { 1912 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1913 } 1914 } 1915 record_for_igvn(r); 1916 } 1917 1918 // Update all the non-control inputs to map: 1919 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1920 bool check_elide_phi = target->is_SEL_backedge(save_block); 1921 bool last_merge = (pnum == PhiNode::Input); 1922 for (uint j = 1; j < newin->req(); j++) { 1923 Node* m = map()->in(j); // Current state of target. 1924 Node* n = newin->in(j); // Incoming change to target state. 1925 Node* phi; 1926 if (m->is_Phi() && m->as_Phi()->region() == r) { 1927 phi = m; 1928 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) { 1929 phi = m; 1930 } else { 1931 phi = nullptr; 1932 } 1933 if (m != n) { // Different; must merge 1934 switch (j) { 1935 // Frame pointer and Return Address never changes 1936 case TypeFunc::FramePtr:// Drop m, use the original value 1937 case TypeFunc::ReturnAdr: 1938 break; 1939 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1940 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1941 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1942 continue; 1943 default: // All normal stuff 1944 if (phi == nullptr) { 1945 const JVMState* jvms = map()->jvms(); 1946 if (EliminateNestedLocks && 1947 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1948 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1949 // Use old BoxLock node as merged box. 1950 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1951 // This assert also tests that nodes are BoxLock. 1952 assert(BoxLockNode::same_slot(n, m), "sanity"); 1953 BoxLockNode* old_box = m->as_BoxLock(); 1954 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1955 // Preserve Unbalanced status. 1956 // 1957 // `old_box` can have only Regular or Coarsened status 1958 // because this code is executed only during Parse phase and 1959 // Incremental Inlining before EA and Macro nodes elimination. 1960 // 1961 // Incremental Inlining is executed after IGVN optimizations 1962 // during which BoxLock can be marked as Coarsened. 1963 old_box->set_coarsened(); // Verifies state 1964 old_box->set_unbalanced(); 1965 } 1966 C->gvn_replace_by(n, m); 1967 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1968 phi = ensure_phi(j, nophi); 1969 } 1970 } 1971 break; 1972 } 1973 } 1974 // At this point, n might be top if: 1975 // - there is no phi (because TypeFlow detected a conflict), or 1976 // - the corresponding control edges is top (a dead incoming path) 1977 // It is a bug if we create a phi which sees a garbage value on a live path. 1978 1979 // Merging two inline types? 1980 if (phi != nullptr && phi->is_InlineType()) { 1981 // Reload current state because it may have been updated by ensure_phi 1982 assert(phi == map()->in(j), "unexpected value in map"); 1983 assert(phi->as_InlineType()->has_phi_inputs(r), ""); 1984 InlineTypeNode* vtm = phi->as_InlineType(); // Current inline type 1985 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type 1986 assert(vtm == phi, "Inline type should have Phi input"); 1987 1988 #ifdef ASSERT 1989 if (TraceOptoParse) { 1990 tty->print_cr("\nMerging inline types"); 1991 tty->print_cr("Current:"); 1992 vtm->dump(2); 1993 tty->print_cr("Incoming:"); 1994 vtn->dump(2); 1995 tty->cr(); 1996 } 1997 #endif 1998 // Do the merge 1999 vtm->merge_with(&_gvn, vtn, pnum, last_merge); 2000 if (last_merge) { 2001 map()->set_req(j, _gvn.transform(vtm)); 2002 record_for_igvn(vtm); 2003 } 2004 } else if (phi != nullptr) { 2005 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 2006 assert(phi->as_Phi()->region() == r, ""); 2007 phi->set_req(pnum, n); // Then add 'n' to the merge 2008 if (last_merge) { 2009 // Last merge for this Phi. 2010 // So far, Phis have had a reasonable type from ciTypeFlow. 2011 // Now _gvn will join that with the meet of current inputs. 2012 // BOTTOM is never permissible here, 'cause pessimistically 2013 // Phis of pointers cannot lose the basic pointer type. 2014 DEBUG_ONLY(const Type* bt1 = phi->bottom_type()); 2015 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 2016 map()->set_req(j, _gvn.transform(phi)); 2017 DEBUG_ONLY(const Type* bt2 = phi->bottom_type()); 2018 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 2019 record_for_igvn(phi); 2020 } 2021 } 2022 } // End of for all values to be merged 2023 2024 if (last_merge && !r->in(0)) { // The occasional useless Region 2025 assert(control() == r, ""); 2026 set_control(r->nonnull_req()); 2027 } 2028 2029 map()->merge_replaced_nodes_with(newin); 2030 2031 // newin has been subsumed into the lazy merge, and is now dead. 2032 set_block(save_block); 2033 2034 stop(); // done with this guy, for now 2035 } 2036 2037 if (TraceOptoParse) { 2038 tty->print_cr(" on path %d", pnum); 2039 } 2040 2041 // Done with this parser state. 2042 assert(stopped(), ""); 2043 } 2044 2045 2046 //--------------------------merge_memory_edges--------------------------------- 2047 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 2048 // (nophi means we must not create phis, because we already parsed here) 2049 assert(n != nullptr, ""); 2050 // Merge the inputs to the MergeMems 2051 MergeMemNode* m = merged_memory(); 2052 2053 assert(control()->is_Region(), "must be merging to a region"); 2054 RegionNode* r = control()->as_Region(); 2055 2056 PhiNode* base = nullptr; 2057 MergeMemNode* remerge = nullptr; 2058 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 2059 Node *p = mms.force_memory(); 2060 Node *q = mms.memory2(); 2061 if (mms.is_empty() && nophi) { 2062 // Trouble: No new splits allowed after a loop body is parsed. 2063 // Instead, wire the new split into a MergeMem on the backedge. 2064 // The optimizer will sort it out, slicing the phi. 2065 if (remerge == nullptr) { 2066 guarantee(base != nullptr, ""); 2067 assert(base->in(0) != nullptr, "should not be xformed away"); 2068 remerge = MergeMemNode::make(base->in(pnum)); 2069 gvn().set_type(remerge, Type::MEMORY); 2070 base->set_req(pnum, remerge); 2071 } 2072 remerge->set_memory_at(mms.alias_idx(), q); 2073 continue; 2074 } 2075 assert(!q->is_MergeMem(), ""); 2076 PhiNode* phi; 2077 if (p != q) { 2078 phi = ensure_memory_phi(mms.alias_idx(), nophi); 2079 } else { 2080 if (p->is_Phi() && p->as_Phi()->region() == r) 2081 phi = p->as_Phi(); 2082 else 2083 phi = nullptr; 2084 } 2085 // Insert q into local phi 2086 if (phi != nullptr) { 2087 assert(phi->region() == r, ""); 2088 p = phi; 2089 phi->set_req(pnum, q); 2090 if (mms.at_base_memory()) { 2091 base = phi; // delay transforming it 2092 } else if (pnum == 1) { 2093 record_for_igvn(phi); 2094 p = _gvn.transform(phi); 2095 } 2096 mms.set_memory(p);// store back through the iterator 2097 } 2098 } 2099 // Transform base last, in case we must fiddle with remerging. 2100 if (base != nullptr && pnum == 1) { 2101 record_for_igvn(base); 2102 m->set_base_memory(_gvn.transform(base)); 2103 } 2104 } 2105 2106 2107 //------------------------ensure_phis_everywhere------------------------------- 2108 void Parse::ensure_phis_everywhere() { 2109 ensure_phi(TypeFunc::I_O); 2110 2111 // Ensure a phi on all currently known memories. 2112 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 2113 ensure_memory_phi(mms.alias_idx()); 2114 DEBUG_ONLY(mms.set_memory()); // keep the iterator happy 2115 } 2116 2117 // Note: This is our only chance to create phis for memory slices. 2118 // If we miss a slice that crops up later, it will have to be 2119 // merged into the base-memory phi that we are building here. 2120 // Later, the optimizer will comb out the knot, and build separate 2121 // phi-loops for each memory slice that matters. 2122 2123 // Monitors must nest nicely and not get confused amongst themselves. 2124 // Phi-ify everything up to the monitors, though. 2125 uint monoff = map()->jvms()->monoff(); 2126 uint nof_monitors = map()->jvms()->nof_monitors(); 2127 2128 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 2129 bool check_elide_phi = block()->is_SEL_head(); 2130 for (uint i = TypeFunc::Parms; i < monoff; i++) { 2131 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 2132 ensure_phi(i); 2133 } 2134 } 2135 2136 // Even monitors need Phis, though they are well-structured. 2137 // This is true for OSR methods, and also for the rare cases where 2138 // a monitor object is the subject of a replace_in_map operation. 2139 // See bugs 4426707 and 5043395. 2140 for (uint m = 0; m < nof_monitors; m++) { 2141 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 2142 } 2143 } 2144 2145 2146 //-----------------------------add_new_path------------------------------------ 2147 // Add a previously unaccounted predecessor to this block. 2148 int Parse::Block::add_new_path() { 2149 // If there is no map, return the lowest unused path number. 2150 if (!is_merged()) return pred_count()+1; // there will be a map shortly 2151 2152 SafePointNode* map = start_map(); 2153 if (!map->control()->is_Region()) 2154 return pred_count()+1; // there may be a region some day 2155 RegionNode* r = map->control()->as_Region(); 2156 2157 // Add new path to the region. 2158 uint pnum = r->req(); 2159 r->add_req(nullptr); 2160 2161 for (uint i = 1; i < map->req(); i++) { 2162 Node* n = map->in(i); 2163 if (i == TypeFunc::Memory) { 2164 // Ensure a phi on all currently known memories. 2165 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2166 Node* phi = mms.memory(); 2167 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2168 assert(phi->req() == pnum, "must be same size as region"); 2169 phi->add_req(nullptr); 2170 } 2171 } 2172 } else { 2173 if (n->is_Phi() && n->as_Phi()->region() == r) { 2174 assert(n->req() == pnum, "must be same size as region"); 2175 n->add_req(nullptr); 2176 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) { 2177 n->as_InlineType()->add_new_path(r); 2178 } 2179 } 2180 } 2181 2182 return pnum; 2183 } 2184 2185 //------------------------------ensure_phi------------------------------------- 2186 // Turn the idx'th entry of the current map into a Phi 2187 Node* Parse::ensure_phi(int idx, bool nocreate) { 2188 SafePointNode* map = this->map(); 2189 Node* region = map->control(); 2190 assert(region->is_Region(), ""); 2191 2192 Node* o = map->in(idx); 2193 assert(o != nullptr, ""); 2194 2195 if (o == top()) return nullptr; // TOP always merges into TOP 2196 2197 if (o->is_Phi() && o->as_Phi()->region() == region) { 2198 return o->as_Phi(); 2199 } 2200 InlineTypeNode* vt = o->isa_InlineType(); 2201 if (vt != nullptr && vt->has_phi_inputs(region)) { 2202 return vt; 2203 } 2204 2205 // Now use a Phi here for merging 2206 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2207 const JVMState* jvms = map->jvms(); 2208 const Type* t = nullptr; 2209 if (jvms->is_loc(idx)) { 2210 t = block()->local_type_at(idx - jvms->locoff()); 2211 } else if (jvms->is_stk(idx)) { 2212 t = block()->stack_type_at(idx - jvms->stkoff()); 2213 } else if (jvms->is_mon(idx)) { 2214 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2215 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2216 } else if ((uint)idx < TypeFunc::Parms) { 2217 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2218 } else { 2219 assert(false, "no type information for this phi"); 2220 } 2221 2222 // If the type falls to bottom, then this must be a local that 2223 // is already dead or is mixing ints and oops or some such. 2224 // Forcing it to top makes it go dead. 2225 if (t == Type::BOTTOM) { 2226 map->set_req(idx, top()); 2227 return nullptr; 2228 } 2229 2230 // Do not create phis for top either. 2231 // A top on a non-null control flow must be an unused even after the.phi. 2232 if (t == Type::TOP || t == Type::HALF) { 2233 map->set_req(idx, top()); 2234 return nullptr; 2235 } 2236 2237 if (vt != nullptr && t->is_inlinetypeptr()) { 2238 // Inline types are merged by merging their field values. 2239 // Create a cloned InlineTypeNode with phi inputs that 2240 // represents the merged inline type and update the map. 2241 vt = vt->clone_with_phis(&_gvn, region); 2242 map->set_req(idx, vt); 2243 return vt; 2244 } else { 2245 PhiNode* phi = PhiNode::make(region, o, t); 2246 gvn().set_type(phi, t); 2247 if (C->do_escape_analysis()) record_for_igvn(phi); 2248 map->set_req(idx, phi); 2249 return phi; 2250 } 2251 } 2252 2253 //--------------------------ensure_memory_phi---------------------------------- 2254 // Turn the idx'th slice of the current memory into a Phi 2255 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2256 MergeMemNode* mem = merged_memory(); 2257 Node* region = control(); 2258 assert(region->is_Region(), ""); 2259 2260 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2261 assert(o != nullptr && o != top(), ""); 2262 2263 PhiNode* phi; 2264 if (o->is_Phi() && o->as_Phi()->region() == region) { 2265 phi = o->as_Phi(); 2266 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2267 // clone the shared base memory phi to make a new memory split 2268 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2269 const Type* t = phi->bottom_type(); 2270 const TypePtr* adr_type = C->get_adr_type(idx); 2271 phi = phi->slice_memory(adr_type); 2272 gvn().set_type(phi, t); 2273 } 2274 return phi; 2275 } 2276 2277 // Now use a Phi here for merging 2278 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2279 const Type* t = o->bottom_type(); 2280 const TypePtr* adr_type = C->get_adr_type(idx); 2281 phi = PhiNode::make(region, o, t, adr_type); 2282 gvn().set_type(phi, t); 2283 if (idx == Compile::AliasIdxBot) 2284 mem->set_base_memory(phi); 2285 else 2286 mem->set_memory_at(idx, phi); 2287 return phi; 2288 } 2289 2290 //------------------------------call_register_finalizer----------------------- 2291 // Check the klass of the receiver and call register_finalizer if the 2292 // class need finalization. 2293 void Parse::call_register_finalizer() { 2294 Node* receiver = local(0); 2295 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2296 "must have non-null instance type"); 2297 2298 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2299 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2300 // The type isn't known exactly so see if CHA tells us anything. 2301 ciInstanceKlass* ik = tinst->instance_klass(); 2302 if (!Dependencies::has_finalizable_subclass(ik)) { 2303 // No finalizable subclasses so skip the dynamic check. 2304 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2305 return; 2306 } 2307 } 2308 2309 // Insert a dynamic test for whether the instance needs 2310 // finalization. In general this will fold up since the concrete 2311 // class is often visible so the access flags are constant. 2312 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2313 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2314 2315 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2316 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2317 2318 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2319 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2320 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2321 2322 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2323 2324 RegionNode* result_rgn = new RegionNode(3); 2325 record_for_igvn(result_rgn); 2326 2327 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2328 result_rgn->init_req(1, skip_register); 2329 2330 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2331 set_control(needs_register); 2332 if (stopped()) { 2333 // There is no slow path. 2334 result_rgn->init_req(2, top()); 2335 } else { 2336 Node *call = make_runtime_call(RC_NO_LEAF, 2337 OptoRuntime::register_finalizer_Type(), 2338 OptoRuntime::register_finalizer_Java(), 2339 nullptr, TypePtr::BOTTOM, 2340 receiver); 2341 make_slow_call_ex(call, env()->Throwable_klass(), true); 2342 2343 Node* fast_io = call->in(TypeFunc::I_O); 2344 Node* fast_mem = call->in(TypeFunc::Memory); 2345 // These two phis are pre-filled with copies of of the fast IO and Memory 2346 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2347 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2348 2349 result_rgn->init_req(2, control()); 2350 io_phi ->init_req(2, i_o()); 2351 mem_phi ->init_req(2, reset_memory()); 2352 2353 set_all_memory( _gvn.transform(mem_phi) ); 2354 set_i_o( _gvn.transform(io_phi) ); 2355 } 2356 2357 set_control( _gvn.transform(result_rgn) ); 2358 } 2359 2360 // Add check to deoptimize once holder klass is fully initialized. 2361 void Parse::clinit_deopt() { 2362 assert(C->has_method(), "only for normal compilations"); 2363 assert(depth() == 1, "only for main compiled method"); 2364 assert(is_normal_parse(), "no barrier needed on osr entry"); 2365 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2366 2367 set_parse_bci(0); 2368 2369 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2370 guard_klass_being_initialized(holder); 2371 } 2372 2373 //------------------------------return_current--------------------------------- 2374 // Append current _map to _exit_return 2375 void Parse::return_current(Node* value) { 2376 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2377 call_register_finalizer(); 2378 } 2379 2380 // frame pointer is always same, already captured 2381 if (value != nullptr) { 2382 Node* phi = _exits.argument(0); 2383 const Type* return_type = phi->bottom_type(); 2384 const TypeInstPtr* tr = return_type->isa_instptr(); 2385 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) && 2386 return_type->is_inlinetypeptr()) { 2387 // Inline type is returned as fields, make sure it is scalarized 2388 if (!value->is_InlineType()) { 2389 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass()); 2390 } 2391 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) { 2392 // Returning from root or an incrementally inlined method. Make sure all non-flat 2393 // fields are buffered and re-execute if allocation triggers deoptimization. 2394 PreserveReexecuteState preexecs(this); 2395 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields"); 2396 jvms()->set_should_reexecute(true); 2397 inc_sp(1); 2398 value = value->as_InlineType()->allocate_fields(this); 2399 } 2400 } else if (value->is_InlineType()) { 2401 // Inline type is returned as oop, make sure it is buffered and re-execute 2402 // if allocation triggers deoptimization. 2403 PreserveReexecuteState preexecs(this); 2404 jvms()->set_should_reexecute(true); 2405 inc_sp(1); 2406 value = value->as_InlineType()->buffer(this); 2407 } 2408 // ...else 2409 // If returning oops to an interface-return, there is a silent free 2410 // cast from oop to interface allowed by the Verifier. Make it explicit here. 2411 phi->add_req(value); 2412 } 2413 2414 // Do not set_parse_bci, so that return goo is credited to the return insn. 2415 set_bci(InvocationEntryBci); 2416 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2417 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2418 } 2419 if (C->env()->dtrace_method_probes()) { 2420 make_dtrace_method_exit(method()); 2421 } 2422 2423 SafePointNode* exit_return = _exits.map(); 2424 exit_return->in( TypeFunc::Control )->add_req( control() ); 2425 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2426 Node *mem = exit_return->in( TypeFunc::Memory ); 2427 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2428 if (mms.is_empty()) { 2429 // get a copy of the base memory, and patch just this one input 2430 const TypePtr* adr_type = mms.adr_type(C); 2431 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2432 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2433 gvn().set_type_bottom(phi); 2434 phi->del_req(phi->req()-1); // prepare to re-patch 2435 mms.set_memory(phi); 2436 } 2437 mms.memory()->add_req(mms.memory2()); 2438 } 2439 2440 if (_first_return) { 2441 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2442 _first_return = false; 2443 } else { 2444 _exits.map()->merge_replaced_nodes_with(map()); 2445 } 2446 2447 stop_and_kill_map(); // This CFG path dies here 2448 } 2449 2450 2451 //------------------------------add_safepoint---------------------------------- 2452 void Parse::add_safepoint() { 2453 uint parms = TypeFunc::Parms+1; 2454 2455 // Clear out dead values from the debug info. 2456 kill_dead_locals(); 2457 2458 // Clone the JVM State 2459 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2460 2461 // Capture memory state BEFORE a SafePoint. Since we can block at a 2462 // SafePoint we need our GC state to be safe; i.e. we need all our current 2463 // write barriers (card marks) to not float down after the SafePoint so we 2464 // must read raw memory. Likewise we need all oop stores to match the card 2465 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2466 // state on a deopt). 2467 2468 // We do not need to WRITE the memory state after a SafePoint. The control 2469 // edge will keep card-marks and oop-stores from floating up from below a 2470 // SafePoint and our true dependency added here will keep them from floating 2471 // down below a SafePoint. 2472 2473 // Clone the current memory state 2474 Node* mem = MergeMemNode::make(map()->memory()); 2475 2476 mem = _gvn.transform(mem); 2477 2478 // Pass control through the safepoint 2479 sfpnt->init_req(TypeFunc::Control , control()); 2480 // Fix edges normally used by a call 2481 sfpnt->init_req(TypeFunc::I_O , top() ); 2482 sfpnt->init_req(TypeFunc::Memory , mem ); 2483 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2484 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2485 2486 // Create a node for the polling address 2487 Node *polladr; 2488 Node *thread = _gvn.transform(new ThreadLocalNode()); 2489 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2490 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2491 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2492 2493 // Fix up the JVM State edges 2494 add_safepoint_edges(sfpnt); 2495 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2496 set_control(transformed_sfpnt); 2497 2498 // Provide an edge from root to safepoint. This makes the safepoint 2499 // appear useful until the parse has completed. 2500 if (transformed_sfpnt->is_SafePoint()) { 2501 assert(C->root() != nullptr, "Expect parse is still valid"); 2502 C->root()->add_prec(transformed_sfpnt); 2503 } 2504 } 2505 2506 #ifndef PRODUCT 2507 //------------------------show_parse_info-------------------------------------- 2508 void Parse::show_parse_info() { 2509 InlineTree* ilt = nullptr; 2510 if (C->ilt() != nullptr) { 2511 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2512 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2513 } 2514 if (PrintCompilation && Verbose) { 2515 if (depth() == 1) { 2516 if( ilt->count_inlines() ) { 2517 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2518 ilt->count_inline_bcs()); 2519 tty->cr(); 2520 } 2521 } else { 2522 if (method()->is_synchronized()) tty->print("s"); 2523 if (method()->has_exception_handlers()) tty->print("!"); 2524 // Check this is not the final compiled version 2525 if (C->trap_can_recompile()) { 2526 tty->print("-"); 2527 } else { 2528 tty->print(" "); 2529 } 2530 method()->print_short_name(); 2531 if (is_osr_parse()) { 2532 tty->print(" @ %d", osr_bci()); 2533 } 2534 tty->print(" (%d bytes)",method()->code_size()); 2535 if (ilt->count_inlines()) { 2536 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2537 ilt->count_inline_bcs()); 2538 } 2539 tty->cr(); 2540 } 2541 } 2542 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2543 // Print that we succeeded; suppress this message on the first osr parse. 2544 2545 if (method()->is_synchronized()) tty->print("s"); 2546 if (method()->has_exception_handlers()) tty->print("!"); 2547 // Check this is not the final compiled version 2548 if (C->trap_can_recompile() && depth() == 1) { 2549 tty->print("-"); 2550 } else { 2551 tty->print(" "); 2552 } 2553 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2554 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2555 method()->print_short_name(); 2556 if (is_osr_parse()) { 2557 tty->print(" @ %d", osr_bci()); 2558 } 2559 if (ilt->caller_bci() != -1) { 2560 tty->print(" @ %d", ilt->caller_bci()); 2561 } 2562 tty->print(" (%d bytes)",method()->code_size()); 2563 if (ilt->count_inlines()) { 2564 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2565 ilt->count_inline_bcs()); 2566 } 2567 tty->cr(); 2568 } 2569 } 2570 2571 2572 //------------------------------dump------------------------------------------- 2573 // Dump information associated with the bytecodes of current _method 2574 void Parse::dump() { 2575 if( method() != nullptr ) { 2576 // Iterate over bytecodes 2577 ciBytecodeStream iter(method()); 2578 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2579 dump_bci( iter.cur_bci() ); 2580 tty->cr(); 2581 } 2582 } 2583 } 2584 2585 // Dump information associated with a byte code index, 'bci' 2586 void Parse::dump_bci(int bci) { 2587 // Output info on merge-points, cloning, and within _jsr..._ret 2588 // NYI 2589 tty->print(" bci:%d", bci); 2590 } 2591 2592 #endif