1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "compiler/compileLog.hpp"
26 #include "interpreter/linkResolver.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/method.hpp"
29 #include "opto/addnode.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/castnode.hpp"
32 #include "opto/convertnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/inlinetypenode.hpp"
35 #include "opto/locknode.hpp"
36 #include "opto/memnode.hpp"
37 #include "opto/opaquenode.hpp"
38 #include "opto/parse.hpp"
39 #include "opto/rootnode.hpp"
40 #include "opto/runtime.hpp"
41 #include "opto/type.hpp"
42 #include "runtime/handles.inline.hpp"
43 #include "runtime/safepointMechanism.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/bitMap.inline.hpp"
46 #include "utilities/copy.hpp"
47
48 // Static array so we can figure out which bytecodes stop us from compiling
49 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
50 // and eventually should be encapsulated in a proper class (gri 8/18/98).
51
52 #ifndef PRODUCT
53 uint nodes_created = 0;
54 uint methods_parsed = 0;
55 uint methods_seen = 0;
56 uint blocks_parsed = 0;
57 uint blocks_seen = 0;
58
59 uint explicit_null_checks_inserted = 0;
60 uint explicit_null_checks_elided = 0;
61 uint all_null_checks_found = 0;
62 uint implicit_null_checks = 0;
63
64 bool Parse::BytecodeParseHistogram::_initialized = false;
65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
68 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes];
69
70 //------------------------------print_statistics-------------------------------
71 void Parse::print_statistics() {
72 tty->print_cr("--- Compiler Statistics ---");
73 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed);
74 tty->print(" Nodes created: %u", nodes_created);
75 tty->cr();
76 if (methods_seen != methods_parsed) {
77 tty->print_cr("Reasons for parse failures (NOT cumulative):");
78 }
79 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen);
80
81 if (explicit_null_checks_inserted) {
82 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,",
83 explicit_null_checks_inserted, explicit_null_checks_elided,
84 (100*explicit_null_checks_elided)/explicit_null_checks_inserted,
85 all_null_checks_found);
86 }
87 if (all_null_checks_found) {
88 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks,
89 (100*implicit_null_checks)/all_null_checks_found);
90 }
91 if (SharedRuntime::_implicit_null_throws) {
92 tty->print_cr("%u implicit null exceptions at runtime",
93 SharedRuntime::_implicit_null_throws);
94 }
95
96 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) {
97 BytecodeParseHistogram::print();
98 }
99 }
100 #endif
101
102 //------------------------------ON STACK REPLACEMENT---------------------------
103
104 // Construct a node which can be used to get incoming state for
105 // on stack replacement.
106 Node* Parse::fetch_interpreter_state(int index,
107 const Type* type,
108 Node* local_addrs,
109 Node* local_addrs_base) {
110 BasicType bt = type->basic_type();
111 if (type == TypePtr::NULL_PTR) {
112 // Ptr types are mixed together with T_ADDRESS but nullptr is
113 // really for T_OBJECT types so correct it.
114 bt = T_OBJECT;
115 }
116 Node *mem = memory(Compile::AliasIdxRaw);
117 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
118 Node *ctl = control();
119
120 // Very similar to LoadNode::make, except we handle un-aligned longs and
121 // doubles on Sparc. Intel can handle them just fine directly.
122 Node *l = nullptr;
123 switch (bt) { // Signature is flattened
124 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break;
125 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break;
126 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break;
127 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
128 case T_LONG:
129 case T_DOUBLE: {
130 // Since arguments are in reverse order, the argument address 'adr'
131 // refers to the back half of the long/double. Recompute adr.
132 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
133 if (Matcher::misaligned_doubles_ok) {
134 l = (bt == T_DOUBLE)
135 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
136 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
137 } else {
138 l = (bt == T_DOUBLE)
139 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
140 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
141 }
142 break;
143 }
144 default: ShouldNotReachHere();
145 }
146 return _gvn.transform(l);
147 }
148
149 // Helper routine to prevent the interpreter from handing
150 // unexpected typestate to an OSR method.
151 // The Node l is a value newly dug out of the interpreter frame.
152 // The type is the type predicted by ciTypeFlow. Note that it is
153 // not a general type, but can only come from Type::get_typeflow_type.
154 // The safepoint is a map which will feed an uncommon trap.
155 Node* Parse::check_interpreter_type(Node* l, const Type* type,
156 SafePointNode* &bad_type_exit, bool is_early_larval) {
157 const TypeOopPtr* tp = type->isa_oopptr();
158
159 // TypeFlow may assert null-ness if a type appears unloaded.
160 if (type == TypePtr::NULL_PTR ||
161 (tp != nullptr && !tp->is_loaded())) {
162 // Value must be null, not a real oop.
163 Node* chk = _gvn.transform( new CmpPNode(l, null()) );
164 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
165 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
166 set_control(_gvn.transform( new IfTrueNode(iff) ));
167 Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
168 bad_type_exit->control()->add_req(bad_type);
169 l = null();
170 }
171
172 // Typeflow can also cut off paths from the CFG, based on
173 // types which appear unloaded, or call sites which appear unlinked.
174 // When paths are cut off, values at later merge points can rise
175 // toward more specific classes. Make sure these specific classes
176 // are still in effect.
177 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) {
178 // TypeFlow asserted a specific object type. Value must have that type.
179 Node* bad_type_ctrl = nullptr;
180 if (tp->is_inlinetypeptr() && !tp->maybe_null()) {
181 // Check inline types for null here to prevent checkcast from adding an
182 // exception state before the bytecode entry (use 'bad_type_ctrl' instead).
183 l = null_check_oop(l, &bad_type_ctrl);
184 bad_type_exit->control()->add_req(bad_type_ctrl);
185 }
186
187 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl, false, is_early_larval);
188 bad_type_exit->control()->add_req(bad_type_ctrl);
189 }
190
191 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
192 return l;
193 }
194
195 // Helper routine which sets up elements of the initial parser map when
196 // performing a parse for on stack replacement. Add values into map.
197 // The only parameter contains the address of a interpreter arguments.
198 void Parse::load_interpreter_state(Node* osr_buf) {
199 int index;
200 int max_locals = jvms()->loc_size();
201 int max_stack = jvms()->stk_size();
202
203 // Mismatch between method and jvms can occur since map briefly held
204 // an OSR entry state (which takes up one RawPtr word).
205 assert(max_locals == method()->max_locals(), "sanity");
206 assert(max_stack >= method()->max_stack(), "sanity");
207 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
208 assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
209
210 // Find the start block.
211 Block* osr_block = start_block();
212 assert(osr_block->start() == osr_bci(), "sanity");
213
214 // Set initial BCI.
215 set_parse_bci(osr_block->start());
216
217 // Set initial stack depth.
218 set_sp(osr_block->start_sp());
219
220 // Check bailouts. We currently do not perform on stack replacement
221 // of loops in catch blocks or loops which branch with a non-empty stack.
222 if (sp() != 0) {
223 C->record_method_not_compilable("OSR starts with non-empty stack");
224 return;
225 }
226 // Do not OSR inside finally clauses:
227 if (osr_block->has_trap_at(osr_block->start())) {
228 assert(false, "OSR starts with an immediate trap");
229 C->record_method_not_compilable("OSR starts with an immediate trap");
230 return;
231 }
232
233 // Commute monitors from interpreter frame to compiler frame.
234 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
235 int mcnt = osr_block->flow()->monitor_count();
236 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
237 for (index = 0; index < mcnt; index++) {
238 // Make a BoxLockNode for the monitor.
239 BoxLockNode* osr_box = new BoxLockNode(next_monitor());
240 // Check for bailout after new BoxLockNode
241 if (failing()) { return; }
242
243 // This OSR locking region is unbalanced because it does not have Lock node:
244 // locking was done in Interpreter.
245 // This is similar to Coarsened case when Lock node is eliminated
246 // and as result the region is marked as Unbalanced.
247
248 // Emulate Coarsened state transition from Regular to Unbalanced.
249 osr_box->set_coarsened();
250 osr_box->set_unbalanced();
251
252 Node* box = _gvn.transform(osr_box);
253
254 // Displaced headers and locked objects are interleaved in the
255 // temp OSR buffer. We only copy the locked objects out here.
256 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
257 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf);
258 // Try and copy the displaced header to the BoxNode
259 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf);
260
261 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered);
262
263 // Build a bogus FastLockNode (no code will be generated) and push the
264 // monitor into our debug info.
265 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock();
266 map()->push_monitor(flock);
267
268 // If the lock is our method synchronization lock, tuck it away in
269 // _sync_lock for return and rethrow exit paths.
270 if (index == 0 && method()->is_synchronized()) {
271 _synch_lock = flock;
272 }
273 }
274
275 // Use the raw liveness computation to make sure that unexpected
276 // values don't propagate into the OSR frame.
277 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
278 if (!live_locals.is_valid()) {
279 // Degenerate or breakpointed method.
280 assert(false, "OSR in empty or breakpointed method");
281 C->record_method_not_compilable("OSR in empty or breakpointed method");
282 return;
283 }
284
285 // Extract the needed locals from the interpreter frame.
286 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
287
288 // find all the locals that the interpreter thinks contain live oops
289 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
290 for (index = 0; index < max_locals; index++) {
291
292 if (!live_locals.at(index)) {
293 continue;
294 }
295
296 const Type *type = osr_block->local_type_at(index);
297
298 if (type->isa_oopptr() != nullptr) {
299
300 // 6403625: Verify that the interpreter oopMap thinks that the oop is live
301 // else we might load a stale oop if the MethodLiveness disagrees with the
302 // result of the interpreter. If the interpreter says it is dead we agree
303 // by making the value go to top.
304 //
305
306 if (!live_oops.at(index)) {
307 if (C->log() != nullptr) {
308 C->log()->elem("OSR_mismatch local_index='%d'",index);
309 }
310 set_local(index, null());
311 // and ignore it for the loads
312 continue;
313 }
314 }
315
316 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.)
317 if (type == Type::TOP || type == Type::HALF) {
318 continue;
319 }
320 // If the type falls to bottom, then this must be a local that
321 // is mixing ints and oops or some such. Forcing it to top
322 // makes it go dead.
323 if (type == Type::BOTTOM) {
324 continue;
325 }
326 // Construct code to access the appropriate local.
327 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf);
328 set_local(index, value);
329 }
330
331 // Extract the needed stack entries from the interpreter frame.
332 for (index = 0; index < sp(); index++) {
333 const Type *type = osr_block->stack_type_at(index);
334 if (type != Type::TOP) {
335 // Currently the compiler bails out when attempting to on stack replace
336 // at a bci with a non-empty stack. We should not reach here.
337 ShouldNotReachHere();
338 }
339 }
340
341 // End the OSR migration
342 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
343 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
344 "OSR_migration_end", TypeRawPtr::BOTTOM,
345 osr_buf);
346
347 // Now that the interpreter state is loaded, make sure it will match
348 // at execution time what the compiler is expecting now:
349 SafePointNode* bad_type_exit = clone_map();
350 bad_type_exit->set_control(new RegionNode(1));
351
352 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
353 for (index = 0; index < max_locals; index++) {
354 if (stopped()) break;
355 Node* l = local(index);
356 if (l->is_top()) continue; // nothing here
357 const Type *type = osr_block->local_type_at(index);
358 if (type->isa_oopptr() != nullptr) {
359 if (!live_oops.at(index)) {
360 // skip type check for dead oops
361 continue;
362 }
363 }
364 if (osr_block->flow()->local_type_at(index)->is_return_address()) {
365 // In our current system it's illegal for jsr addresses to be
366 // live into an OSR entry point because the compiler performs
367 // inlining of jsrs. ciTypeFlow has a bailout that detect this
368 // case and aborts the compile if addresses are live into an OSR
369 // entry point. Because of that we can assume that any address
370 // locals at the OSR entry point are dead. Method liveness
371 // isn't precise enough to figure out that they are dead in all
372 // cases so simply skip checking address locals all
373 // together. Any type check is guaranteed to fail since the
374 // interpreter type is the result of a load which might have any
375 // value and the expected type is a constant.
376 continue;
377 }
378 bool is_early_larval = osr_block->flow()->local_type_at(index)->is_early_larval();
379 set_local(index, check_interpreter_type(l, type, bad_type_exit, is_early_larval));
380 }
381
382 for (index = 0; index < sp(); index++) {
383 if (stopped()) break;
384 Node* l = stack(index);
385 if (l->is_top()) continue; // nothing here
386 const Type *type = osr_block->stack_type_at(index);
387 bool is_early_larval = osr_block->flow()->stack_type_at(index)->is_early_larval();
388 set_stack(index, check_interpreter_type(l, type, bad_type_exit, is_early_larval));
389 }
390
391 if (bad_type_exit->control()->req() > 1) {
392 // Build an uncommon trap here, if any inputs can be unexpected.
393 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
394 record_for_igvn(bad_type_exit->control());
395 SafePointNode* types_are_good = map();
396 set_map(bad_type_exit);
397 // The unexpected type happens because a new edge is active
398 // in the CFG, which typeflow had previously ignored.
399 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
400 // This x will be typed as Integer if notReached is not yet linked.
401 // It could also happen due to a problem in ciTypeFlow analysis.
402 uncommon_trap(Deoptimization::Reason_constraint,
403 Deoptimization::Action_reinterpret);
404 set_map(types_are_good);
405 }
406 }
407
408 //------------------------------Parse------------------------------------------
409 // Main parser constructor.
410 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
411 : _exits(caller)
412 {
413 // Init some variables
414 _caller = caller;
415 _method = parse_method;
416 _expected_uses = expected_uses;
417 _depth = 1 + (caller->has_method() ? caller->depth() : 0);
418 _wrote_final = false;
419 _wrote_volatile = false;
420 _wrote_stable = false;
421 _wrote_fields = false;
422 _alloc_with_final_or_stable = nullptr;
423 _block = nullptr;
424 _first_return = true;
425 _replaced_nodes_for_exceptions = false;
426 _new_idx = C->unique();
427 DEBUG_ONLY(_entry_bci = UnknownBci);
428 DEBUG_ONLY(_block_count = -1);
429 DEBUG_ONLY(_blocks = (Block*)-1);
430 #ifndef PRODUCT
431 if (PrintCompilation || PrintOpto) {
432 // Make sure I have an inline tree, so I can print messages about it.
433 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method);
434 }
435 _max_switch_depth = 0;
436 _est_switch_depth = 0;
437 #endif
438
439 if (parse_method->has_reserved_stack_access()) {
440 C->set_has_reserved_stack_access(true);
441 }
442
443 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) {
444 C->set_has_monitors(true);
445 }
446
447 if (parse_method->is_scoped()) {
448 C->set_has_scoped_access(true);
449 }
450
451 _iter.reset_to_method(method());
452 C->set_has_loops(C->has_loops() || method()->has_loops());
453
454 if (_expected_uses <= 0) {
455 _prof_factor = 1;
456 } else {
457 float prof_total = parse_method->interpreter_invocation_count();
458 if (prof_total <= _expected_uses) {
459 _prof_factor = 1;
460 } else {
461 _prof_factor = _expected_uses / prof_total;
462 }
463 }
464
465 CompileLog* log = C->log();
466 if (log != nullptr) {
467 log->begin_head("parse method='%d' uses='%f'",
468 log->identify(parse_method), expected_uses);
469 if (depth() == 1 && C->is_osr_compilation()) {
470 log->print(" osr_bci='%d'", C->entry_bci());
471 }
472 log->stamp();
473 log->end_head();
474 }
475
476 // Accumulate deoptimization counts.
477 // (The range_check and store_check counts are checked elsewhere.)
478 ciMethodData* md = method()->method_data();
479 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
480 uint md_count = md->trap_count(reason);
481 if (md_count != 0) {
482 if (md_count >= md->trap_count_limit()) {
483 md_count = md->trap_count_limit() + md->overflow_trap_count();
484 }
485 uint total_count = C->trap_count(reason);
486 uint old_count = total_count;
487 total_count += md_count;
488 // Saturate the add if it overflows.
489 if (total_count < old_count || total_count < md_count)
490 total_count = (uint)-1;
491 C->set_trap_count(reason, total_count);
492 if (log != nullptr)
493 log->elem("observe trap='%s' count='%d' total='%d'",
494 Deoptimization::trap_reason_name(reason),
495 md_count, total_count);
496 }
497 }
498 // Accumulate total sum of decompilations, also.
499 C->set_decompile_count(C->decompile_count() + md->decompile_count());
500
501 if (log != nullptr && method()->has_exception_handlers()) {
502 log->elem("observe that='has_exception_handlers'");
503 }
504
505 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier");
506 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
507
508 // Always register dependence if JVMTI is enabled, because
509 // either breakpoint setting or hotswapping of methods may
510 // cause deoptimization.
511 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
512 C->dependencies()->assert_evol_method(method());
513 }
514
515 NOT_PRODUCT(methods_seen++);
516
517 // Do some special top-level things.
518 if (depth() == 1 && C->is_osr_compilation()) {
519 _tf = C->tf(); // the OSR entry type is different
520 _entry_bci = C->entry_bci();
521 _flow = method()->get_osr_flow_analysis(osr_bci());
522 } else {
523 _tf = TypeFunc::make(method());
524 _entry_bci = InvocationEntryBci;
525 _flow = method()->get_flow_analysis();
526 }
527
528 if (_flow->failing()) {
529 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke
530 // can lead to this. Re-enable once 8284443 is fixed.
531 //assert(false, "type flow analysis failed during parsing");
532 C->record_method_not_compilable(_flow->failure_reason());
533 #ifndef PRODUCT
534 if (PrintOpto && (Verbose || WizardMode)) {
535 if (is_osr_parse()) {
536 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
537 } else {
538 tty->print_cr("type flow bailout: %s", _flow->failure_reason());
539 }
540 if (Verbose) {
541 method()->print();
542 method()->print_codes();
543 _flow->print();
544 }
545 }
546 #endif
547 }
548
549 #ifdef ASSERT
550 if (depth() == 1) {
551 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
552 } else {
553 assert(!this->is_osr_parse(), "no recursive OSR");
554 }
555 #endif
556
557 #ifndef PRODUCT
558 if (_flow->has_irreducible_entry()) {
559 C->set_parsed_irreducible_loop(true);
560 }
561
562 methods_parsed++;
563 // add method size here to guarantee that inlined methods are added too
564 if (CITime)
565 _total_bytes_compiled += method()->code_size();
566
567 show_parse_info();
568 #endif
569
570 if (failing()) {
571 if (log) log->done("parse");
572 return;
573 }
574
575 gvn().transform(top());
576
577 // Import the results of the ciTypeFlow.
578 init_blocks();
579
580 // Merge point for all normal exits
581 build_exits();
582
583 // Setup the initial JVM state map.
584 SafePointNode* entry_map = create_entry_map();
585
586 // Check for bailouts during map initialization
587 if (failing() || entry_map == nullptr) {
588 if (log) log->done("parse");
589 return;
590 }
591
592 Node_Notes* caller_nn = C->default_node_notes();
593 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
594 if (DebugInlinedCalls || depth() == 1) {
595 C->set_default_node_notes(make_node_notes(caller_nn));
596 }
597
598 if (is_osr_parse()) {
599 Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
600 entry_map->set_req(TypeFunc::Parms+0, top());
601 set_map(entry_map);
602 load_interpreter_state(osr_buf);
603 } else {
604 set_map(entry_map);
605 do_method_entry();
606 }
607
608 if (depth() == 1 && !failing()) {
609 if (C->clinit_barrier_on_entry()) {
610 // Add check to deoptimize the nmethod once the holder class is fully initialized
611 clinit_deopt();
612 }
613 }
614
615 // Check for bailouts during method entry.
616 if (failing()) {
617 if (log) log->done("parse");
618 C->set_default_node_notes(caller_nn);
619 return;
620 }
621
622 // Handle inline type arguments
623 int arg_size = method()->arg_size();
624 for (int i = 0; i < arg_size; i++) {
625 Node* parm = local(i);
626 const Type* t = _gvn.type(parm);
627 if (t->is_inlinetypeptr()) {
628 // If the parameter is a value object, try to scalarize it if we know that it is unrestricted (not early larval)
629 // Parameters are non-larval except the receiver of a constructor, which must be an early larval object.
630 if (!(method()->is_object_constructor() && i == 0)) {
631 // Create InlineTypeNode from the oop and replace the parameter
632 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass());
633 replace_in_map(parm, vt);
634 }
635 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() &&
636 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_flat() &&
637 (!t->is_aryptr()->is_not_null_free() || !t->is_aryptr()->is_not_flat())) {
638 // Speculate on varargs Object array being not null-free and not flat
639 const TypePtr* spec_type = t->speculative();
640 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr();
641 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free()->cast_to_not_flat();
642 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type);
643 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type)));
644 replace_in_map(parm, cast);
645 }
646 }
647
648 entry_map = map(); // capture any changes performed by method setup code
649 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
650
651 // We begin parsing as if we have just encountered a jump to the
652 // method entry.
653 Block* entry_block = start_block();
654 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
655 set_map_clone(entry_map);
656 merge_common(entry_block, entry_block->next_path_num());
657
658 #ifndef PRODUCT
659 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
660 set_parse_histogram( parse_histogram_obj );
661 #endif
662
663 // Parse all the basic blocks.
664 do_all_blocks();
665
666 // Check for bailouts during conversion to graph
667 if (failing()) {
668 if (log) log->done("parse");
669 return;
670 }
671
672 // Fix up all exiting control flow.
673 set_map(entry_map);
674 do_exits();
675
676 // Only reset this now, to make sure that debug information emitted
677 // for exiting control flow still refers to the inlined method.
678 C->set_default_node_notes(caller_nn);
679
680 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'",
681 C->unique(), C->live_nodes(), C->node_arena()->used());
682 }
683
684 //---------------------------do_all_blocks-------------------------------------
685 void Parse::do_all_blocks() {
686 bool has_irreducible = flow()->has_irreducible_entry();
687
688 // Walk over all blocks in Reverse Post-Order.
689 while (true) {
690 bool progress = false;
691 for (int rpo = 0; rpo < block_count(); rpo++) {
692 Block* block = rpo_at(rpo);
693
694 if (block->is_parsed()) continue;
695
696 if (!block->is_merged()) {
697 // Dead block, no state reaches this block
698 continue;
699 }
700
701 // Prepare to parse this block.
702 load_state_from(block);
703
704 if (stopped()) {
705 // Block is dead.
706 continue;
707 }
708
709 NOT_PRODUCT(blocks_parsed++);
710
711 progress = true;
712 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) {
713 // Not all preds have been parsed. We must build phis everywhere.
714 // (Note that dead locals do not get phis built, ever.)
715 ensure_phis_everywhere();
716
717 if (block->is_SEL_head()) {
718 // Add predicate to single entry (not irreducible) loop head.
719 assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
720 // Predicates may have been added after a dominating if
721 if (!block->has_predicates()) {
722 // Need correct bci for predicate.
723 // It is fine to set it here since do_one_block() will set it anyway.
724 set_parse_bci(block->start());
725 add_parse_predicates();
726 }
727 // Add new region for back branches.
728 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
729 RegionNode *r = new RegionNode(edges+1);
730 _gvn.set_type(r, Type::CONTROL);
731 record_for_igvn(r);
732 r->init_req(edges, control());
733 set_control(r);
734 block->copy_irreducible_status_to(r, jvms());
735 // Add new phis.
736 ensure_phis_everywhere();
737 }
738
739 // Leave behind an undisturbed copy of the map, for future merges.
740 set_map(clone_map());
741 }
742
743 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
744 // In the absence of irreducible loops, the Region and Phis
745 // associated with a merge that doesn't involve a backedge can
746 // be simplified now since the RPO parsing order guarantees
747 // that any path which was supposed to reach here has already
748 // been parsed or must be dead.
749 Node* c = control();
750 Node* result = _gvn.transform(control());
751 if (c != result && TraceOptoParse) {
752 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
753 }
754 if (result != top()) {
755 record_for_igvn(result);
756 }
757 }
758
759 // Parse the block.
760 do_one_block();
761
762 // Check for bailouts.
763 if (failing()) return;
764 }
765
766 // with irreducible loops multiple passes might be necessary to parse everything
767 if (!has_irreducible || !progress) {
768 break;
769 }
770 }
771
772 #ifndef PRODUCT
773 blocks_seen += block_count();
774
775 // Make sure there are no half-processed blocks remaining.
776 // Every remaining unprocessed block is dead and may be ignored now.
777 for (int rpo = 0; rpo < block_count(); rpo++) {
778 Block* block = rpo_at(rpo);
779 if (!block->is_parsed()) {
780 if (TraceOptoParse) {
781 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
782 }
783 assert(!block->is_merged(), "no half-processed blocks");
784 }
785 }
786 #endif
787 }
788
789 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
790 switch (bt) {
791 case T_BYTE:
792 v = gvn->transform(new LShiftINode(v, gvn->intcon(24)));
793 v = gvn->transform(new RShiftINode(v, gvn->intcon(24)));
794 break;
795 case T_SHORT:
796 v = gvn->transform(new LShiftINode(v, gvn->intcon(16)));
797 v = gvn->transform(new RShiftINode(v, gvn->intcon(16)));
798 break;
799 case T_CHAR:
800 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF)));
801 break;
802 case T_BOOLEAN:
803 v = gvn->transform(new AndINode(v, gvn->intcon(0x1)));
804 break;
805 default:
806 break;
807 }
808 return v;
809 }
810
811 //-------------------------------build_exits----------------------------------
812 // Build normal and exceptional exit merge points.
813 void Parse::build_exits() {
814 // make a clone of caller to prevent sharing of side-effects
815 _exits.set_map(_exits.clone_map());
816 _exits.clean_stack(_exits.sp());
817 _exits.sync_jvms();
818
819 RegionNode* region = new RegionNode(1);
820 record_for_igvn(region);
821 gvn().set_type_bottom(region);
822 _exits.set_control(region);
823
824 // Note: iophi and memphi are not transformed until do_exits.
825 Node* iophi = new PhiNode(region, Type::ABIO);
826 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
827 gvn().set_type_bottom(iophi);
828 gvn().set_type_bottom(memphi);
829 _exits.set_i_o(iophi);
830 _exits.set_all_memory(memphi);
831
832 // Add a return value to the exit state. (Do not push it yet.)
833 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
834 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
835 if (ret_type->isa_int()) {
836 BasicType ret_bt = method()->return_type()->basic_type();
837 if (ret_bt == T_BOOLEAN ||
838 ret_bt == T_CHAR ||
839 ret_bt == T_BYTE ||
840 ret_bt == T_SHORT) {
841 ret_type = TypeInt::INT;
842 }
843 }
844
845 // Don't "bind" an unloaded return klass to the ret_phi. If the klass
846 // becomes loaded during the subsequent parsing, the loaded and unloaded
847 // types will not join when we transform and push in do_exits().
848 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
849 if (ret_oop_type && !ret_oop_type->is_loaded()) {
850 ret_type = TypeOopPtr::BOTTOM;
851 }
852 int ret_size = type2size[ret_type->basic_type()];
853 Node* ret_phi = new PhiNode(region, ret_type);
854 gvn().set_type_bottom(ret_phi);
855 _exits.ensure_stack(ret_size);
856 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
857 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
858 _exits.set_argument(0, ret_phi); // here is where the parser finds it
859 // Note: ret_phi is not yet pushed, until do_exits.
860 }
861 }
862
863 //----------------------------build_start_state-------------------------------
864 // Construct a state which contains only the incoming arguments from an
865 // unknown caller. The method & bci will be null & InvocationEntryBci.
866 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
867 int arg_size = tf->domain_sig()->cnt();
868 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt());
869 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms);
870 SafePointNode* map = new SafePointNode(max_size, jvms);
871 jvms->set_map(map);
872 record_for_igvn(map);
873 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
874 Node_Notes* old_nn = default_node_notes();
875 if (old_nn != nullptr && has_method()) {
876 Node_Notes* entry_nn = old_nn->clone(this);
877 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
878 entry_jvms->set_offsets(0);
879 entry_jvms->set_bci(entry_bci());
880 entry_nn->set_jvms(entry_jvms);
881 set_default_node_notes(entry_nn);
882 }
883 PhaseGVN& gvn = *initial_gvn();
884 uint i = 0;
885 int arg_num = 0;
886 for (uint j = 0; i < (uint)arg_size; i++) {
887 const Type* t = tf->domain_sig()->field_at(i);
888 Node* parm = nullptr;
889 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) {
890 // Inline type arguments are not passed by reference: we get an argument per
891 // field of the inline type. Build InlineTypeNodes from the inline type arguments.
892 GraphKit kit(jvms, &gvn);
893 kit.set_control(map->control());
894 Node* old_mem = map->memory();
895 // Use immutable memory for inline type loads and restore it below
896 kit.set_all_memory(C->immutable_memory());
897 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null());
898 map->set_control(kit.control());
899 map->set_memory(old_mem);
900 } else {
901 parm = gvn.transform(new ParmNode(start, j++));
902 }
903 map->init_req(i, parm);
904 // Record all these guys for later GVN.
905 record_for_igvn(parm);
906 if (i >= TypeFunc::Parms && t != Type::HALF) {
907 arg_num++;
908 }
909 }
910 for (; i < map->req(); i++) {
911 map->init_req(i, top());
912 }
913 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
914 set_default_node_notes(old_nn);
915 return jvms;
916 }
917
918 //-----------------------------make_node_notes---------------------------------
919 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
920 if (caller_nn == nullptr) return nullptr;
921 Node_Notes* nn = caller_nn->clone(C);
922 JVMState* caller_jvms = nn->jvms();
923 JVMState* jvms = new (C) JVMState(method(), caller_jvms);
924 jvms->set_offsets(0);
925 jvms->set_bci(_entry_bci);
926 nn->set_jvms(jvms);
927 return nn;
928 }
929
930
931 //--------------------------return_values--------------------------------------
932 void Compile::return_values(JVMState* jvms) {
933 GraphKit kit(jvms);
934 Node* ret = new ReturnNode(TypeFunc::Parms,
935 kit.control(),
936 kit.i_o(),
937 kit.reset_memory(),
938 kit.frameptr(),
939 kit.returnadr());
940 // Add zero or 1 return values
941 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms;
942 if (ret_size > 0) {
943 kit.inc_sp(-ret_size); // pop the return value(s)
944 kit.sync_jvms();
945 Node* res = kit.argument(0);
946 if (tf()->returns_inline_type_as_fields()) {
947 // Multiple return values (inline type fields): add as many edges
948 // to the Return node as returned values.
949 InlineTypeNode* vt = res->as_InlineType();
950 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms);
951 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) {
952 ret->init_req(TypeFunc::Parms, vt);
953 } else {
954 // Return the tagged klass pointer to signal scalarization to the caller
955 Node* tagged_klass = vt->tagged_klass(kit.gvn());
956 // Return null if the inline type is null (null marker field is not set)
957 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_null_marker()));
958 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63)));
959 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63)));
960 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr));
961 ret->init_req(TypeFunc::Parms, tagged_klass);
962 }
963 uint idx = TypeFunc::Parms + 1;
964 vt->pass_fields(&kit, ret, idx, false, false);
965 } else {
966 ret->add_req(res);
967 // Note: The second dummy edge is not needed by a ReturnNode.
968 }
969 }
970 // bind it to root
971 root()->add_req(ret);
972 record_for_igvn(ret);
973 initial_gvn()->transform(ret);
974 }
975
976 //------------------------rethrow_exceptions-----------------------------------
977 // Bind all exception states in the list into a single RethrowNode.
978 void Compile::rethrow_exceptions(JVMState* jvms) {
979 GraphKit kit(jvms);
980 if (!kit.has_exceptions()) return; // nothing to generate
981 // Load my combined exception state into the kit, with all phis transformed:
982 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
983 Node* ex_oop = kit.use_exception_state(ex_map);
984 RethrowNode* exit = new RethrowNode(kit.control(),
985 kit.i_o(), kit.reset_memory(),
986 kit.frameptr(), kit.returnadr(),
987 // like a return but with exception input
988 ex_oop);
989 // bind to root
990 root()->add_req(exit);
991 record_for_igvn(exit);
992 initial_gvn()->transform(exit);
993 }
994
995 //---------------------------do_exceptions-------------------------------------
996 // Process exceptions arising from the current bytecode.
997 // Send caught exceptions to the proper handler within this method.
998 // Unhandled exceptions feed into _exit.
999 void Parse::do_exceptions() {
1000 if (!has_exceptions()) return;
1001
1002 if (failing()) {
1003 // Pop them all off and throw them away.
1004 while (pop_exception_state() != nullptr) ;
1005 return;
1006 }
1007
1008 PreserveJVMState pjvms(this, false);
1009
1010 SafePointNode* ex_map;
1011 while ((ex_map = pop_exception_state()) != nullptr) {
1012 if (!method()->has_exception_handlers()) {
1013 // Common case: Transfer control outward.
1014 // Doing it this early allows the exceptions to common up
1015 // even between adjacent method calls.
1016 throw_to_exit(ex_map);
1017 } else {
1018 // Have to look at the exception first.
1019 assert(stopped(), "catch_inline_exceptions trashes the map");
1020 catch_inline_exceptions(ex_map);
1021 stop_and_kill_map(); // we used up this exception state; kill it
1022 }
1023 }
1024
1025 // We now return to our regularly scheduled program:
1026 }
1027
1028 //---------------------------throw_to_exit-------------------------------------
1029 // Merge the given map into an exception exit from this method.
1030 // The exception exit will handle any unlocking of receiver.
1031 // The ex_oop must be saved within the ex_map, unlike merge_exception.
1032 void Parse::throw_to_exit(SafePointNode* ex_map) {
1033 // Pop the JVMS to (a copy of) the caller.
1034 GraphKit caller;
1035 caller.set_map_clone(_caller->map());
1036 caller.set_bci(_caller->bci());
1037 caller.set_sp(_caller->sp());
1038 // Copy out the standard machine state:
1039 for (uint i = 0; i < TypeFunc::Parms; i++) {
1040 caller.map()->set_req(i, ex_map->in(i));
1041 }
1042 if (ex_map->has_replaced_nodes()) {
1043 _replaced_nodes_for_exceptions = true;
1044 }
1045 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
1046 // ...and the exception:
1047 Node* ex_oop = saved_ex_oop(ex_map);
1048 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
1049 // Finally, collect the new exception state in my exits:
1050 _exits.add_exception_state(caller_ex_map);
1051 }
1052
1053 //------------------------------do_exits---------------------------------------
1054 void Parse::do_exits() {
1055 set_parse_bci(InvocationEntryBci);
1056
1057 // Now peephole on the return bits
1058 Node* region = _exits.control();
1059 _exits.set_control(gvn().transform(region));
1060
1061 Node* iophi = _exits.i_o();
1062 _exits.set_i_o(gvn().transform(iophi));
1063
1064 // Figure out if we need to emit the trailing barrier. The barrier is only
1065 // needed in the constructors, and only in three cases:
1066 //
1067 // 1. The constructor wrote a final or a @Stable field. All these
1068 // initializations must be ordered before any code after the constructor
1069 // publishes the reference to the newly constructed object. Rather
1070 // than wait for the publication, we simply block the writes here.
1071 // Rather than put a barrier on only those writes which are required
1072 // to complete, we force all writes to complete.
1073 //
1074 // 2. Experimental VM option is used to force the barrier if any field
1075 // was written out in the constructor.
1076 //
1077 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64),
1078 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that
1079 // MemBarVolatile is used before volatile load instead of after volatile
1080 // store, so there's no barrier after the store.
1081 // We want to guarantee the same behavior as on platforms with total store
1082 // order, although this is not required by the Java memory model.
1083 // In this case, we want to enforce visibility of volatile field
1084 // initializations which are performed in constructors.
1085 // So as with finals, we add a barrier here.
1086 //
1087 // "All bets are off" unless the first publication occurs after a
1088 // normal return from the constructor. We do not attempt to detect
1089 // such unusual early publications. But no barrier is needed on
1090 // exceptional returns, since they cannot publish normally.
1091 //
1092 if ((method()->is_object_constructor() || method()->is_class_initializer()) &&
1093 (wrote_final() || wrote_stable() ||
1094 (AlwaysSafeConstructors && wrote_fields()) ||
1095 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) {
1096 Node* recorded_alloc = alloc_with_final_or_stable();
1097 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease,
1098 recorded_alloc);
1099
1100 // If Memory barrier is created for final fields write
1101 // and allocation node does not escape the initialize method,
1102 // then barrier introduced by allocation node can be removed.
1103 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) {
1104 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc);
1105 alloc->compute_MemBar_redundancy(method());
1106 }
1107 if (PrintOpto && (Verbose || WizardMode)) {
1108 method()->print_name();
1109 tty->print_cr(" writes finals/@Stable and needs a memory barrier");
1110 }
1111 }
1112
1113 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
1114 // transform each slice of the original memphi:
1115 mms.set_memory(_gvn.transform(mms.memory()));
1116 }
1117 // Clean up input MergeMems created by transforming the slices
1118 _gvn.transform(_exits.merged_memory());
1119
1120 if (tf()->range_sig()->cnt() > TypeFunc::Parms) {
1121 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms);
1122 Node* ret_phi = _gvn.transform( _exits.argument(0) );
1123 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
1124 // If the type we set for the ret_phi in build_exits() is too optimistic and
1125 // the ret_phi is top now, there's an extremely small chance that it may be due to class
1126 // loading. It could also be due to an error, so mark this method as not compilable because
1127 // otherwise this could lead to an infinite compile loop.
1128 // In any case, this code path is rarely (and never in my testing) reached.
1129 C->record_method_not_compilable("Can't determine return type.");
1130 return;
1131 }
1132 if (ret_type->isa_int()) {
1133 BasicType ret_bt = method()->return_type()->basic_type();
1134 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
1135 }
1136 _exits.push_node(ret_type->basic_type(), ret_phi);
1137 }
1138
1139 // Note: Logic for creating and optimizing the ReturnNode is in Compile.
1140
1141 // Unlock along the exceptional paths.
1142 // This is done late so that we can common up equivalent exceptions
1143 // (e.g., null checks) arising from multiple points within this method.
1144 // See GraphKit::add_exception_state, which performs the commoning.
1145 bool do_synch = method()->is_synchronized();
1146
1147 // record exit from a method if compiled while Dtrace is turned on.
1148 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1149 // First move the exception list out of _exits:
1150 GraphKit kit(_exits.transfer_exceptions_into_jvms());
1151 SafePointNode* normal_map = kit.map(); // keep this guy safe
1152 // Now re-collect the exceptions into _exits:
1153 SafePointNode* ex_map;
1154 while ((ex_map = kit.pop_exception_state()) != nullptr) {
1155 Node* ex_oop = kit.use_exception_state(ex_map);
1156 // Force the exiting JVM state to have this method at InvocationEntryBci.
1157 // The exiting JVM state is otherwise a copy of the calling JVMS.
1158 JVMState* caller = kit.jvms();
1159 JVMState* ex_jvms = caller->clone_shallow(C);
1160 ex_jvms->bind_map(kit.clone_map());
1161 ex_jvms->set_bci( InvocationEntryBci);
1162 kit.set_jvms(ex_jvms);
1163 if (do_synch) {
1164 // Add on the synchronized-method box/object combo
1165 kit.map()->push_monitor(_synch_lock);
1166 // Unlock!
1167 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1168 }
1169 if (C->env()->dtrace_method_probes()) {
1170 kit.make_dtrace_method_exit(method());
1171 }
1172 if (_replaced_nodes_for_exceptions) {
1173 kit.map()->apply_replaced_nodes(_new_idx);
1174 }
1175 // Done with exception-path processing.
1176 ex_map = kit.make_exception_state(ex_oop);
1177 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1178 // Pop the last vestige of this method:
1179 caller->clone_shallow(C)->bind_map(ex_map);
1180 _exits.push_exception_state(ex_map);
1181 }
1182 assert(_exits.map() == normal_map, "keep the same return state");
1183 }
1184
1185 {
1186 // Capture very early exceptions (receiver null checks) from caller JVMS
1187 GraphKit caller(_caller);
1188 SafePointNode* ex_map;
1189 while ((ex_map = caller.pop_exception_state()) != nullptr) {
1190 _exits.add_exception_state(ex_map);
1191 }
1192 }
1193 _exits.map()->apply_replaced_nodes(_new_idx);
1194 }
1195
1196 //-----------------------------create_entry_map-------------------------------
1197 // Initialize our parser map to contain the types at method entry.
1198 // For OSR, the map contains a single RawPtr parameter.
1199 // Initial monitor locking for sync. methods is performed by do_method_entry.
1200 SafePointNode* Parse::create_entry_map() {
1201 // Check for really stupid bail-out cases.
1202 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1203 if (len >= 32760) {
1204 // Bailout expected, this is a very rare edge case.
1205 C->record_method_not_compilable("too many local variables");
1206 return nullptr;
1207 }
1208
1209 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1210 _caller->map()->delete_replaced_nodes();
1211
1212 // If this is an inlined method, we may have to do a receiver null check.
1213 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1214 GraphKit kit(_caller);
1215 Node* receiver = kit.argument(0);
1216 Node* null_free = kit.null_check_receiver_before_call(method());
1217 _caller = kit.transfer_exceptions_into_jvms();
1218
1219 if (kit.stopped()) {
1220 _exits.add_exception_states_from(_caller);
1221 _exits.set_jvms(_caller);
1222 return nullptr;
1223 }
1224 }
1225
1226 assert(method() != nullptr, "parser must have a method");
1227
1228 // Create an initial safepoint to hold JVM state during parsing
1229 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr);
1230 set_map(new SafePointNode(len, jvms));
1231
1232 // Capture receiver info for compiled lambda forms.
1233 if (method()->is_compiled_lambda_form()) {
1234 ciInstance* recv_info = _caller->compute_receiver_info(method());
1235 jvms->set_receiver_info(recv_info);
1236 }
1237
1238 jvms->set_map(map());
1239 record_for_igvn(map());
1240 assert(jvms->endoff() == len, "correct jvms sizing");
1241
1242 SafePointNode* inmap = _caller->map();
1243 assert(inmap != nullptr, "must have inmap");
1244 // In case of null check on receiver above
1245 map()->transfer_replaced_nodes_from(inmap, _new_idx);
1246
1247 uint i;
1248
1249 // Pass thru the predefined input parameters.
1250 for (i = 0; i < TypeFunc::Parms; i++) {
1251 map()->init_req(i, inmap->in(i));
1252 }
1253
1254 if (depth() == 1) {
1255 assert(map()->memory()->Opcode() == Op_Parm, "");
1256 // Insert the memory aliasing node
1257 set_all_memory(reset_memory());
1258 }
1259 assert(merged_memory(), "");
1260
1261 // Now add the locals which are initially bound to arguments:
1262 uint arg_size = tf()->domain_sig()->cnt();
1263 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args
1264 for (i = TypeFunc::Parms; i < arg_size; i++) {
1265 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1266 }
1267
1268 // Clear out the rest of the map (locals and stack)
1269 for (i = arg_size; i < len; i++) {
1270 map()->init_req(i, top());
1271 }
1272
1273 SafePointNode* entry_map = stop();
1274 return entry_map;
1275 }
1276
1277 //-----------------------------do_method_entry--------------------------------
1278 // Emit any code needed in the pseudo-block before BCI zero.
1279 // The main thing to do is lock the receiver of a synchronized method.
1280 void Parse::do_method_entry() {
1281 set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1282 set_sp(0); // Java Stack Pointer
1283
1284 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1285
1286 // Check if we need a membar at the beginning of the java.lang.Object
1287 // constructor to satisfy the memory model for strict fields.
1288 if (EnableValhalla && method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1289 Node* receiver_obj = local(0);
1290 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1291 // If there's no exact type, check if the declared type has no implementors and add a dependency
1292 const TypeKlassPtr* klass_ptr = receiver_type->as_klass_type(/* try_for_exact= */ true);
1293 ciType* klass = klass_ptr->klass_is_exact() ? klass_ptr->exact_klass() : nullptr;
1294 if (klass != nullptr && klass->is_instance_klass()) {
1295 // Exact receiver type, check if there is a strict field
1296 ciInstanceKlass* holder = klass->as_instance_klass();
1297 for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
1298 ciField* field = holder->nonstatic_field_at(i);
1299 if (field->is_strict()) {
1300 // Found a strict field, a membar is needed
1301 AllocateNode* alloc = AllocateNode::Ideal_allocation(receiver_obj);
1302 insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, receiver_obj);
1303 if (DoEscapeAnalysis && (alloc != nullptr)) {
1304 alloc->compute_MemBar_redundancy(method());
1305 }
1306 break;
1307 }
1308 }
1309 } else if (klass == nullptr) {
1310 // We can't statically determine the type of the receiver and therefore need
1311 // to put a membar here because it could have a strict field.
1312 insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease);
1313 }
1314 }
1315
1316 if (C->env()->dtrace_method_probes()) {
1317 make_dtrace_method_entry(method());
1318 }
1319
1320 #ifdef ASSERT
1321 // Narrow receiver type when it is too broad for the method being parsed.
1322 if (!method()->is_static()) {
1323 ciInstanceKlass* callee_holder = method()->holder();
1324 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces);
1325
1326 Node* receiver_obj = local(0);
1327 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr();
1328
1329 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) {
1330 // Receiver should always be a subtype of callee holder.
1331 // But, since C2 type system doesn't properly track interfaces,
1332 // the invariant can't be expressed in the type system for default methods.
1333 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I.
1334 assert(callee_holder->is_interface(), "missing subtype check");
1335
1336 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure.
1337 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces));
1338 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass);
1339 assert(!stopped(), "not a subtype");
1340
1341 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check"));
1342 C->root()->add_req(halt);
1343 }
1344 }
1345 #endif // ASSERT
1346
1347 // If the method is synchronized, we need to construct a lock node, attach
1348 // it to the Start node, and pin it there.
1349 if (method()->is_synchronized()) {
1350 // Insert a FastLockNode right after the Start which takes as arguments
1351 // the current thread pointer, the "this" pointer & the address of the
1352 // stack slot pair used for the lock. The "this" pointer is a projection
1353 // off the start node, but the locking spot has to be constructed by
1354 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode
1355 // becomes the second argument to the FastLockNode call. The
1356 // FastLockNode becomes the new control parent to pin it to the start.
1357
1358 // Setup Object Pointer
1359 Node *lock_obj = nullptr;
1360 if (method()->is_static()) {
1361 ciInstance* mirror = _method->holder()->java_mirror();
1362 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1363 lock_obj = makecon(t_lock);
1364 } else { // Else pass the "this" pointer,
1365 lock_obj = local(0); // which is Parm0 from StartNode
1366 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type");
1367 }
1368 // Clear out dead values from the debug info.
1369 kill_dead_locals();
1370 // Build the FastLockNode
1371 _synch_lock = shared_lock(lock_obj);
1372 // Check for bailout in shared_lock
1373 if (failing()) { return; }
1374 }
1375
1376 // Feed profiling data for parameters to the type system so it can
1377 // propagate it as speculative types
1378 record_profiled_parameters_for_speculation();
1379 }
1380
1381 //------------------------------init_blocks------------------------------------
1382 // Initialize our parser map to contain the types/monitors at method entry.
1383 void Parse::init_blocks() {
1384 // Create the blocks.
1385 _block_count = flow()->block_count();
1386 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1387
1388 // Initialize the structs.
1389 for (int rpo = 0; rpo < block_count(); rpo++) {
1390 Block* block = rpo_at(rpo);
1391 new(block) Block(this, rpo);
1392 }
1393
1394 // Collect predecessor and successor information.
1395 for (int rpo = 0; rpo < block_count(); rpo++) {
1396 Block* block = rpo_at(rpo);
1397 block->init_graph(this);
1398 }
1399 }
1400
1401 //-------------------------------init_node-------------------------------------
1402 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() {
1403 _flow = outer->flow()->rpo_at(rpo);
1404 _pred_count = 0;
1405 _preds_parsed = 0;
1406 _count = 0;
1407 _is_parsed = false;
1408 _is_handler = false;
1409 _has_merged_backedge = false;
1410 _start_map = nullptr;
1411 _has_predicates = false;
1412 _num_successors = 0;
1413 _all_successors = 0;
1414 _successors = nullptr;
1415 assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1416 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1417 assert(_live_locals.size() == 0, "sanity");
1418
1419 // entry point has additional predecessor
1420 if (flow()->is_start()) _pred_count++;
1421 assert(flow()->is_start() == (this == outer->start_block()), "");
1422 }
1423
1424 //-------------------------------init_graph------------------------------------
1425 void Parse::Block::init_graph(Parse* outer) {
1426 // Create the successor list for this parser block.
1427 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1428 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1429 int ns = tfs->length();
1430 int ne = tfe->length();
1431 _num_successors = ns;
1432 _all_successors = ns+ne;
1433 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1434 int p = 0;
1435 for (int i = 0; i < ns+ne; i++) {
1436 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1437 Block* block2 = outer->rpo_at(tf2->rpo());
1438 _successors[i] = block2;
1439
1440 // Accumulate pred info for the other block, too.
1441 // Note: We also need to set _pred_count for exception blocks since they could
1442 // also have normal predecessors (reached without athrow by an explicit jump).
1443 // This also means that next_path_num can be called along exception paths.
1444 block2->_pred_count++;
1445 if (i >= ns) {
1446 block2->_is_handler = true;
1447 }
1448
1449 #ifdef ASSERT
1450 // A block's successors must be distinguishable by BCI.
1451 // That is, no bytecode is allowed to branch to two different
1452 // clones of the same code location.
1453 for (int j = 0; j < i; j++) {
1454 Block* block1 = _successors[j];
1455 if (block1 == block2) continue; // duplicates are OK
1456 assert(block1->start() != block2->start(), "successors have unique bcis");
1457 }
1458 #endif
1459 }
1460 }
1461
1462 //---------------------------successor_for_bci---------------------------------
1463 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1464 for (int i = 0; i < all_successors(); i++) {
1465 Block* block2 = successor_at(i);
1466 if (block2->start() == bci) return block2;
1467 }
1468 // We can actually reach here if ciTypeFlow traps out a block
1469 // due to an unloaded class, and concurrently with compilation the
1470 // class is then loaded, so that a later phase of the parser is
1471 // able to see more of the bytecode CFG. Or, the flow pass and
1472 // the parser can have a minor difference of opinion about executability
1473 // of bytecodes. For example, "obj.field = null" is executable even
1474 // if the field's type is an unloaded class; the flow pass used to
1475 // make a trap for such code.
1476 return nullptr;
1477 }
1478
1479
1480 //-----------------------------stack_type_at-----------------------------------
1481 const Type* Parse::Block::stack_type_at(int i) const {
1482 return get_type(flow()->stack_type_at(i));
1483 }
1484
1485
1486 //-----------------------------local_type_at-----------------------------------
1487 const Type* Parse::Block::local_type_at(int i) const {
1488 // Make dead locals fall to bottom.
1489 if (_live_locals.size() == 0) {
1490 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1491 // This bitmap can be zero length if we saw a breakpoint.
1492 // In such cases, pretend they are all live.
1493 ((Block*)this)->_live_locals = live_locals;
1494 }
1495 if (_live_locals.size() > 0 && !_live_locals.at(i))
1496 return Type::BOTTOM;
1497
1498 return get_type(flow()->local_type_at(i));
1499 }
1500
1501
1502 #ifndef PRODUCT
1503
1504 //----------------------------name_for_bc--------------------------------------
1505 // helper method for BytecodeParseHistogram
1506 static const char* name_for_bc(int i) {
1507 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1508 }
1509
1510 //----------------------------BytecodeParseHistogram------------------------------------
1511 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1512 _parser = p;
1513 _compiler = c;
1514 if( ! _initialized ) { _initialized = true; reset(); }
1515 }
1516
1517 //----------------------------current_count------------------------------------
1518 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1519 switch( bph_type ) {
1520 case BPH_transforms: { return _parser->gvn().made_progress(); }
1521 case BPH_values: { return _parser->gvn().made_new_values(); }
1522 default: { ShouldNotReachHere(); return 0; }
1523 }
1524 }
1525
1526 //----------------------------initialized--------------------------------------
1527 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1528
1529 //----------------------------reset--------------------------------------------
1530 void Parse::BytecodeParseHistogram::reset() {
1531 int i = Bytecodes::number_of_codes;
1532 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1533 }
1534
1535 //----------------------------set_initial_state--------------------------------
1536 // Record info when starting to parse one bytecode
1537 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1538 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1539 _initial_bytecode = bc;
1540 _initial_node_count = _compiler->unique();
1541 _initial_transforms = current_count(BPH_transforms);
1542 _initial_values = current_count(BPH_values);
1543 }
1544 }
1545
1546 //----------------------------record_change--------------------------------
1547 // Record results of parsing one bytecode
1548 void Parse::BytecodeParseHistogram::record_change() {
1549 if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1550 ++_bytecodes_parsed[_initial_bytecode];
1551 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1552 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1553 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values);
1554 }
1555 }
1556
1557
1558 //----------------------------print--------------------------------------------
1559 void Parse::BytecodeParseHistogram::print(float cutoff) {
1560 ResourceMark rm;
1561 // print profile
1562 int total = 0;
1563 int i = 0;
1564 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1565 int abs_sum = 0;
1566 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789
1567 tty->print_cr("Histogram of %d parsed bytecodes:", total);
1568 if( total == 0 ) { return; }
1569 tty->cr();
1570 tty->print_cr("absolute: count of compiled bytecodes of this type");
1571 tty->print_cr("relative: percentage contribution to compiled nodes");
1572 tty->print_cr("nodes : Average number of nodes constructed per bytecode");
1573 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)");
1574 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled");
1575 tty->print_cr("values : Average number of node values improved per bytecode");
1576 tty->print_cr("name : Bytecode name");
1577 tty->cr();
1578 tty->print_cr(" absolute relative nodes rnodes transforms values name");
1579 tty->print_cr("----------------------------------------------------------------------");
1580 while (--i > 0) {
1581 int abs = _bytecodes_parsed[i];
1582 float rel = abs * 100.0F / total;
1583 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1584 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes;
1585 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1586 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i];
1587 if (cutoff <= rel) {
1588 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1589 abs_sum += abs;
1590 }
1591 }
1592 tty->print_cr("----------------------------------------------------------------------");
1593 float rel_sum = abs_sum * 100.0F / total;
1594 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1595 tty->print_cr("----------------------------------------------------------------------");
1596 tty->cr();
1597 }
1598 #endif
1599
1600 //----------------------------load_state_from----------------------------------
1601 // Load block/map/sp. But not do not touch iter/bci.
1602 void Parse::load_state_from(Block* block) {
1603 set_block(block);
1604 // load the block's JVM state:
1605 set_map(block->start_map());
1606 set_sp( block->start_sp());
1607 }
1608
1609
1610 //-----------------------------record_state------------------------------------
1611 void Parse::Block::record_state(Parse* p) {
1612 assert(!is_merged(), "can only record state once, on 1st inflow");
1613 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1614 set_start_map(p->stop());
1615 }
1616
1617
1618 //------------------------------do_one_block-----------------------------------
1619 void Parse::do_one_block() {
1620 if (TraceOptoParse) {
1621 Block *b = block();
1622 int ns = b->num_successors();
1623 int nt = b->all_successors();
1624
1625 tty->print("Parsing block #%d at bci [%d,%d), successors:",
1626 block()->rpo(), block()->start(), block()->limit());
1627 for (int i = 0; i < nt; i++) {
1628 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo());
1629 }
1630 if (b->is_loop_head()) {
1631 tty->print(" loop head");
1632 }
1633 if (b->is_irreducible_loop_entry()) {
1634 tty->print(" irreducible");
1635 }
1636 tty->cr();
1637 }
1638
1639 assert(block()->is_merged(), "must be merged before being parsed");
1640 block()->mark_parsed();
1641
1642 // Set iterator to start of block.
1643 iter().reset_to_bci(block()->start());
1644
1645 if (ProfileExceptionHandlers && block()->is_handler()) {
1646 ciMethodData* methodData = method()->method_data();
1647 if (methodData->is_mature()) {
1648 ciBitData data = methodData->exception_handler_bci_to_data(block()->start());
1649 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) {
1650 // dead catch block
1651 // Emit an uncommon trap instead of processing the block.
1652 set_parse_bci(block()->start());
1653 uncommon_trap(Deoptimization::Reason_unreached,
1654 Deoptimization::Action_reinterpret,
1655 nullptr, "dead catch block");
1656 return;
1657 }
1658 }
1659 }
1660
1661 CompileLog* log = C->log();
1662
1663 // Parse bytecodes
1664 while (!stopped() && !failing()) {
1665 iter().next();
1666
1667 // Learn the current bci from the iterator:
1668 set_parse_bci(iter().cur_bci());
1669
1670 if (bci() == block()->limit()) {
1671 // Do not walk into the next block until directed by do_all_blocks.
1672 merge(bci());
1673 break;
1674 }
1675 assert(bci() < block()->limit(), "bci still in block");
1676
1677 if (log != nullptr) {
1678 // Output an optional context marker, to help place actions
1679 // that occur during parsing of this BC. If there is no log
1680 // output until the next context string, this context string
1681 // will be silently ignored.
1682 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1683 }
1684
1685 if (block()->has_trap_at(bci())) {
1686 // We must respect the flow pass's traps, because it will refuse
1687 // to produce successors for trapping blocks.
1688 int trap_index = block()->flow()->trap_index();
1689 assert(trap_index != 0, "trap index must be valid");
1690 uncommon_trap(trap_index);
1691 break;
1692 }
1693
1694 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1695
1696 #ifdef ASSERT
1697 int pre_bc_sp = sp();
1698 int inputs, depth;
1699 bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1700 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs);
1701 #endif //ASSERT
1702
1703 do_one_bytecode();
1704 if (failing()) return;
1705
1706 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1707 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth);
1708
1709 do_exceptions();
1710
1711 NOT_PRODUCT( parse_histogram()->record_change(); );
1712
1713 if (log != nullptr)
1714 log->clear_context(); // skip marker if nothing was printed
1715
1716 // Fall into next bytecode. Each bytecode normally has 1 sequential
1717 // successor which is typically made ready by visiting this bytecode.
1718 // If the successor has several predecessors, then it is a merge
1719 // point, starts a new basic block, and is handled like other basic blocks.
1720 }
1721 }
1722
1723
1724 //------------------------------merge------------------------------------------
1725 void Parse::set_parse_bci(int bci) {
1726 set_bci(bci);
1727 Node_Notes* nn = C->default_node_notes();
1728 if (nn == nullptr) return;
1729
1730 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1731 if (!DebugInlinedCalls && depth() > 1) {
1732 return;
1733 }
1734
1735 // Update the JVMS annotation, if present.
1736 JVMState* jvms = nn->jvms();
1737 if (jvms != nullptr && jvms->bci() != bci) {
1738 // Update the JVMS.
1739 jvms = jvms->clone_shallow(C);
1740 jvms->set_bci(bci);
1741 nn->set_jvms(jvms);
1742 }
1743 }
1744
1745 //------------------------------merge------------------------------------------
1746 // Merge the current mapping into the basic block starting at bci
1747 void Parse::merge(int target_bci) {
1748 Block* target = successor_for_bci(target_bci);
1749 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1750 assert(!target->is_ready(), "our arrival must be expected");
1751 int pnum = target->next_path_num();
1752 merge_common(target, pnum);
1753 }
1754
1755 //-------------------------merge_new_path--------------------------------------
1756 // Merge the current mapping into the basic block, using a new path
1757 void Parse::merge_new_path(int target_bci) {
1758 Block* target = successor_for_bci(target_bci);
1759 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1760 assert(!target->is_ready(), "new path into frozen graph");
1761 int pnum = target->add_new_path();
1762 merge_common(target, pnum);
1763 }
1764
1765 //-------------------------merge_exception-------------------------------------
1766 // Merge the current mapping into the basic block starting at bci
1767 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1768 void Parse::merge_exception(int target_bci) {
1769 #ifdef ASSERT
1770 if (target_bci <= bci()) {
1771 C->set_exception_backedge();
1772 }
1773 #endif
1774 assert(sp() == 1, "must have only the throw exception on the stack");
1775 Block* target = successor_for_bci(target_bci);
1776 if (target == nullptr) { handle_missing_successor(target_bci); return; }
1777 assert(target->is_handler(), "exceptions are handled by special blocks");
1778 int pnum = target->add_new_path();
1779 merge_common(target, pnum);
1780 }
1781
1782 //--------------------handle_missing_successor---------------------------------
1783 void Parse::handle_missing_successor(int target_bci) {
1784 #ifndef PRODUCT
1785 Block* b = block();
1786 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1787 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1788 #endif
1789 ShouldNotReachHere();
1790 }
1791
1792 //--------------------------merge_common---------------------------------------
1793 void Parse::merge_common(Parse::Block* target, int pnum) {
1794 if (TraceOptoParse) {
1795 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1796 }
1797
1798 // Zap extra stack slots to top
1799 assert(sp() == target->start_sp(), "");
1800 clean_stack(sp());
1801
1802 // Check for merge conflicts involving inline types
1803 JVMState* old_jvms = map()->jvms();
1804 int old_bci = bci();
1805 JVMState* tmp_jvms = old_jvms->clone_shallow(C);
1806 tmp_jvms->set_should_reexecute(true);
1807 tmp_jvms->bind_map(map());
1808 // Execution needs to restart a the next bytecode (entry of next
1809 // block)
1810 if (target->is_merged() ||
1811 pnum > PhiNode::Input ||
1812 target->is_handler() ||
1813 target->is_loop_head()) {
1814 set_parse_bci(target->start());
1815 for (uint j = TypeFunc::Parms; j < map()->req(); j++) {
1816 Node* n = map()->in(j); // Incoming change to target state.
1817 const Type* t = nullptr;
1818 if (tmp_jvms->is_loc(j)) {
1819 t = target->local_type_at(j - tmp_jvms->locoff());
1820 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) {
1821 t = target->stack_type_at(j - tmp_jvms->stkoff());
1822 }
1823 if (t != nullptr && t != Type::BOTTOM) {
1824 // An object can appear in the JVMS as either an oop or an InlineTypeNode. If the merge is
1825 // an InlineTypeNode, we need all the merge inputs to be InlineTypeNodes. Else, if the
1826 // merge is an oop, each merge input needs to be either an oop or an buffered
1827 // InlineTypeNode.
1828 if (!t->is_inlinetypeptr()) {
1829 // The merge cannot be an InlineTypeNode, ensure the input is buffered if it is an
1830 // InlineTypeNode
1831 if (n->is_InlineType()) {
1832 map()->set_req(j, n->as_InlineType()->buffer(this));
1833 }
1834 } else {
1835 // Since the merge is a value object, it can either be an oop or an InlineTypeNode
1836 if (!target->is_merged()) {
1837 // This is the first processed input of the merge. If it is an InlineTypeNode, the
1838 // merge will be an InlineTypeNode. Else, try to scalarize so the merge can be
1839 // scalarized as well. However, we cannot blindly scalarize an inline type oop here
1840 // since it may be larval
1841 if (!n->is_InlineType() && gvn().type(n)->is_zero_type()) {
1842 // Null constant implies that this is not a larval object
1843 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass()));
1844 }
1845 } else {
1846 Node* phi = target->start_map()->in(j);
1847 if (phi->is_InlineType()) {
1848 // Larval oops cannot be merged with non-larval ones, and since the merge point is
1849 // non-larval, n must be non-larval as well. As a result, we can scalarize n to merge
1850 // into phi
1851 if (!n->is_InlineType()) {
1852 map()->set_req(j, InlineTypeNode::make_from_oop(this, n, t->inline_klass()));
1853 }
1854 } else {
1855 // The merge is an oop phi, ensure the input is buffered if it is an InlineTypeNode
1856 if (n->is_InlineType()) {
1857 map()->set_req(j, n->as_InlineType()->buffer(this));
1858 }
1859 }
1860 }
1861 }
1862 }
1863 }
1864 }
1865 old_jvms->bind_map(map());
1866 set_parse_bci(old_bci);
1867
1868 if (!target->is_merged()) { // No prior mapping at this bci
1869 if (TraceOptoParse) { tty->print(" with empty state"); }
1870
1871 // If this path is dead, do not bother capturing it as a merge.
1872 // It is "as if" we had 1 fewer predecessors from the beginning.
1873 if (stopped()) {
1874 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count");
1875 return;
1876 }
1877
1878 // Make a region if we know there are multiple or unpredictable inputs.
1879 // (Also, if this is a plain fall-through, we might see another region,
1880 // which must not be allowed into this block's map.)
1881 if (pnum > PhiNode::Input // Known multiple inputs.
1882 || target->is_handler() // These have unpredictable inputs.
1883 || target->is_loop_head() // Known multiple inputs
1884 || control()->is_Region()) { // We must hide this guy.
1885
1886 int current_bci = bci();
1887 set_parse_bci(target->start()); // Set target bci
1888 if (target->is_SEL_head()) {
1889 DEBUG_ONLY( target->mark_merged_backedge(block()); )
1890 if (target->start() == 0) {
1891 // Add Parse Predicates for the special case when
1892 // there are backbranches to the method entry.
1893 add_parse_predicates();
1894 }
1895 }
1896 // Add a Region to start the new basic block. Phis will be added
1897 // later lazily.
1898 int edges = target->pred_count();
1899 if (edges < pnum) edges = pnum; // might be a new path!
1900 RegionNode *r = new RegionNode(edges+1);
1901 gvn().set_type(r, Type::CONTROL);
1902 record_for_igvn(r);
1903 // zap all inputs to null for debugging (done in Node(uint) constructor)
1904 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); }
1905 r->init_req(pnum, control());
1906 set_control(r);
1907 target->copy_irreducible_status_to(r, jvms());
1908 set_parse_bci(current_bci); // Restore bci
1909 }
1910
1911 // Convert the existing Parser mapping into a mapping at this bci.
1912 store_state_to(target);
1913 assert(target->is_merged(), "do not come here twice");
1914
1915 } else { // Prior mapping at this bci
1916 if (TraceOptoParse) { tty->print(" with previous state"); }
1917 #ifdef ASSERT
1918 if (target->is_SEL_head()) {
1919 target->mark_merged_backedge(block());
1920 }
1921 #endif
1922
1923 // We must not manufacture more phis if the target is already parsed.
1924 bool nophi = target->is_parsed();
1925
1926 SafePointNode* newin = map();// Hang on to incoming mapping
1927 Block* save_block = block(); // Hang on to incoming block;
1928 load_state_from(target); // Get prior mapping
1929
1930 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1931 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1932 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1933 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1934
1935 // Iterate over my current mapping and the old mapping.
1936 // Where different, insert Phi functions.
1937 // Use any existing Phi functions.
1938 assert(control()->is_Region(), "must be merging to a region");
1939 RegionNode* r = control()->as_Region();
1940
1941 // Compute where to merge into
1942 // Merge incoming control path
1943 r->init_req(pnum, newin->control());
1944
1945 if (pnum == 1) { // Last merge for this Region?
1946 if (!block()->flow()->is_irreducible_loop_secondary_entry()) {
1947 Node* result = _gvn.transform(r);
1948 if (r != result && TraceOptoParse) {
1949 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1950 }
1951 }
1952 record_for_igvn(r);
1953 }
1954
1955 // Update all the non-control inputs to map:
1956 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1957 bool check_elide_phi = target->is_SEL_backedge(save_block);
1958 bool last_merge = (pnum == PhiNode::Input);
1959 for (uint j = 1; j < newin->req(); j++) {
1960 Node* m = map()->in(j); // Current state of target.
1961 Node* n = newin->in(j); // Incoming change to target state.
1962 Node* phi;
1963 if (m->is_Phi() && m->as_Phi()->region() == r) {
1964 phi = m;
1965 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) {
1966 phi = m;
1967 } else {
1968 phi = nullptr;
1969 }
1970 if (m != n) { // Different; must merge
1971 switch (j) {
1972 // Frame pointer and Return Address never changes
1973 case TypeFunc::FramePtr:// Drop m, use the original value
1974 case TypeFunc::ReturnAdr:
1975 break;
1976 case TypeFunc::Memory: // Merge inputs to the MergeMem node
1977 assert(phi == nullptr, "the merge contains phis, not vice versa");
1978 merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1979 continue;
1980 default: // All normal stuff
1981 if (phi == nullptr) {
1982 const JVMState* jvms = map()->jvms();
1983 if (EliminateNestedLocks &&
1984 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1985 // BoxLock nodes are not commoning when EliminateNestedLocks is on.
1986 // Use old BoxLock node as merged box.
1987 assert(newin->jvms()->is_monitor_box(j), "sanity");
1988 // This assert also tests that nodes are BoxLock.
1989 assert(BoxLockNode::same_slot(n, m), "sanity");
1990 BoxLockNode* old_box = m->as_BoxLock();
1991 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) {
1992 // Preserve Unbalanced status.
1993 //
1994 // `old_box` can have only Regular or Coarsened status
1995 // because this code is executed only during Parse phase and
1996 // Incremental Inlining before EA and Macro nodes elimination.
1997 //
1998 // Incremental Inlining is executed after IGVN optimizations
1999 // during which BoxLock can be marked as Coarsened.
2000 old_box->set_coarsened(); // Verifies state
2001 old_box->set_unbalanced();
2002 }
2003 C->gvn_replace_by(n, m);
2004 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
2005 phi = ensure_phi(j, nophi);
2006 }
2007 }
2008 break;
2009 }
2010 }
2011 // At this point, n might be top if:
2012 // - there is no phi (because TypeFlow detected a conflict), or
2013 // - the corresponding control edges is top (a dead incoming path)
2014 // It is a bug if we create a phi which sees a garbage value on a live path.
2015
2016 // Merging two inline types?
2017 if (phi != nullptr && phi->is_InlineType()) {
2018 // Reload current state because it may have been updated by ensure_phi
2019 assert(phi == map()->in(j), "unexpected value in map");
2020 assert(phi->as_InlineType()->has_phi_inputs(r), "");
2021 InlineTypeNode* vtm = phi->as_InlineType(); // Current inline type
2022 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type
2023 assert(vtm == phi, "Inline type should have Phi input");
2024
2025 #ifdef ASSERT
2026 if (TraceOptoParse) {
2027 tty->print_cr("\nMerging inline types");
2028 tty->print_cr("Current:");
2029 vtm->dump(2);
2030 tty->print_cr("Incoming:");
2031 vtn->dump(2);
2032 tty->cr();
2033 }
2034 #endif
2035 // Do the merge
2036 vtm->merge_with(&_gvn, vtn, pnum, last_merge);
2037 if (last_merge) {
2038 map()->set_req(j, _gvn.transform(vtm));
2039 record_for_igvn(vtm);
2040 }
2041 } else if (phi != nullptr) {
2042 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
2043 assert(phi->as_Phi()->region() == r, "");
2044 phi->set_req(pnum, n); // Then add 'n' to the merge
2045 if (last_merge) {
2046 // Last merge for this Phi.
2047 // So far, Phis have had a reasonable type from ciTypeFlow.
2048 // Now _gvn will join that with the meet of current inputs.
2049 // BOTTOM is never permissible here, 'cause pessimistically
2050 // Phis of pointers cannot lose the basic pointer type.
2051 DEBUG_ONLY(const Type* bt1 = phi->bottom_type());
2052 assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
2053 map()->set_req(j, _gvn.transform(phi));
2054 DEBUG_ONLY(const Type* bt2 = phi->bottom_type());
2055 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
2056 record_for_igvn(phi);
2057 }
2058 }
2059 } // End of for all values to be merged
2060
2061 if (last_merge && !r->in(0)) { // The occasional useless Region
2062 assert(control() == r, "");
2063 set_control(r->nonnull_req());
2064 }
2065
2066 map()->merge_replaced_nodes_with(newin);
2067
2068 // newin has been subsumed into the lazy merge, and is now dead.
2069 set_block(save_block);
2070
2071 stop(); // done with this guy, for now
2072 }
2073
2074 if (TraceOptoParse) {
2075 tty->print_cr(" on path %d", pnum);
2076 }
2077
2078 // Done with this parser state.
2079 assert(stopped(), "");
2080 }
2081
2082
2083 //--------------------------merge_memory_edges---------------------------------
2084 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
2085 // (nophi means we must not create phis, because we already parsed here)
2086 assert(n != nullptr, "");
2087 // Merge the inputs to the MergeMems
2088 MergeMemNode* m = merged_memory();
2089
2090 assert(control()->is_Region(), "must be merging to a region");
2091 RegionNode* r = control()->as_Region();
2092
2093 PhiNode* base = nullptr;
2094 MergeMemNode* remerge = nullptr;
2095 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
2096 Node *p = mms.force_memory();
2097 Node *q = mms.memory2();
2098 if (mms.is_empty() && nophi) {
2099 // Trouble: No new splits allowed after a loop body is parsed.
2100 // Instead, wire the new split into a MergeMem on the backedge.
2101 // The optimizer will sort it out, slicing the phi.
2102 if (remerge == nullptr) {
2103 guarantee(base != nullptr, "");
2104 assert(base->in(0) != nullptr, "should not be xformed away");
2105 remerge = MergeMemNode::make(base->in(pnum));
2106 gvn().set_type(remerge, Type::MEMORY);
2107 base->set_req(pnum, remerge);
2108 }
2109 remerge->set_memory_at(mms.alias_idx(), q);
2110 continue;
2111 }
2112 assert(!q->is_MergeMem(), "");
2113 PhiNode* phi;
2114 if (p != q) {
2115 phi = ensure_memory_phi(mms.alias_idx(), nophi);
2116 } else {
2117 if (p->is_Phi() && p->as_Phi()->region() == r)
2118 phi = p->as_Phi();
2119 else
2120 phi = nullptr;
2121 }
2122 // Insert q into local phi
2123 if (phi != nullptr) {
2124 assert(phi->region() == r, "");
2125 p = phi;
2126 phi->set_req(pnum, q);
2127 if (mms.at_base_memory()) {
2128 base = phi; // delay transforming it
2129 } else if (pnum == 1) {
2130 record_for_igvn(phi);
2131 p = _gvn.transform(phi);
2132 }
2133 mms.set_memory(p);// store back through the iterator
2134 }
2135 }
2136 // Transform base last, in case we must fiddle with remerging.
2137 if (base != nullptr && pnum == 1) {
2138 record_for_igvn(base);
2139 m->set_base_memory(_gvn.transform(base));
2140 }
2141 }
2142
2143
2144 //------------------------ensure_phis_everywhere-------------------------------
2145 void Parse::ensure_phis_everywhere() {
2146 ensure_phi(TypeFunc::I_O);
2147
2148 // Ensure a phi on all currently known memories.
2149 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
2150 ensure_memory_phi(mms.alias_idx());
2151 DEBUG_ONLY(mms.set_memory()); // keep the iterator happy
2152 }
2153
2154 // Note: This is our only chance to create phis for memory slices.
2155 // If we miss a slice that crops up later, it will have to be
2156 // merged into the base-memory phi that we are building here.
2157 // Later, the optimizer will comb out the knot, and build separate
2158 // phi-loops for each memory slice that matters.
2159
2160 // Monitors must nest nicely and not get confused amongst themselves.
2161 // Phi-ify everything up to the monitors, though.
2162 uint monoff = map()->jvms()->monoff();
2163 uint nof_monitors = map()->jvms()->nof_monitors();
2164
2165 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
2166 bool check_elide_phi = block()->is_SEL_head();
2167 for (uint i = TypeFunc::Parms; i < monoff; i++) {
2168 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
2169 ensure_phi(i);
2170 }
2171 }
2172
2173 // Even monitors need Phis, though they are well-structured.
2174 // This is true for OSR methods, and also for the rare cases where
2175 // a monitor object is the subject of a replace_in_map operation.
2176 // See bugs 4426707 and 5043395.
2177 for (uint m = 0; m < nof_monitors; m++) {
2178 ensure_phi(map()->jvms()->monitor_obj_offset(m));
2179 }
2180 }
2181
2182
2183 //-----------------------------add_new_path------------------------------------
2184 // Add a previously unaccounted predecessor to this block.
2185 int Parse::Block::add_new_path() {
2186 // If there is no map, return the lowest unused path number.
2187 if (!is_merged()) return pred_count()+1; // there will be a map shortly
2188
2189 SafePointNode* map = start_map();
2190 if (!map->control()->is_Region())
2191 return pred_count()+1; // there may be a region some day
2192 RegionNode* r = map->control()->as_Region();
2193
2194 // Add new path to the region.
2195 uint pnum = r->req();
2196 r->add_req(nullptr);
2197
2198 for (uint i = 1; i < map->req(); i++) {
2199 Node* n = map->in(i);
2200 if (i == TypeFunc::Memory) {
2201 // Ensure a phi on all currently known memories.
2202 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
2203 Node* phi = mms.memory();
2204 if (phi->is_Phi() && phi->as_Phi()->region() == r) {
2205 assert(phi->req() == pnum, "must be same size as region");
2206 phi->add_req(nullptr);
2207 }
2208 }
2209 } else {
2210 if (n->is_Phi() && n->as_Phi()->region() == r) {
2211 assert(n->req() == pnum, "must be same size as region");
2212 n->add_req(nullptr);
2213 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) {
2214 n->as_InlineType()->add_new_path(r);
2215 }
2216 }
2217 }
2218
2219 return pnum;
2220 }
2221
2222 //------------------------------ensure_phi-------------------------------------
2223 // Turn the idx'th entry of the current map into a Phi
2224 Node* Parse::ensure_phi(int idx, bool nocreate) {
2225 SafePointNode* map = this->map();
2226 Node* region = map->control();
2227 assert(region->is_Region(), "");
2228
2229 Node* o = map->in(idx);
2230 assert(o != nullptr, "");
2231
2232 if (o == top()) return nullptr; // TOP always merges into TOP
2233
2234 if (o->is_Phi() && o->as_Phi()->region() == region) {
2235 return o->as_Phi();
2236 }
2237 InlineTypeNode* vt = o->isa_InlineType();
2238 if (vt != nullptr && vt->has_phi_inputs(region)) {
2239 return vt;
2240 }
2241
2242 // Now use a Phi here for merging
2243 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2244 const JVMState* jvms = map->jvms();
2245 const Type* t = nullptr;
2246 if (jvms->is_loc(idx)) {
2247 t = block()->local_type_at(idx - jvms->locoff());
2248 } else if (jvms->is_stk(idx)) {
2249 t = block()->stack_type_at(idx - jvms->stkoff());
2250 } else if (jvms->is_mon(idx)) {
2251 assert(!jvms->is_monitor_box(idx), "no phis for boxes");
2252 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
2253 } else if ((uint)idx < TypeFunc::Parms) {
2254 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like.
2255 } else {
2256 assert(false, "no type information for this phi");
2257 }
2258
2259 // If the type falls to bottom, then this must be a local that
2260 // is already dead or is mixing ints and oops or some such.
2261 // Forcing it to top makes it go dead.
2262 if (t == Type::BOTTOM) {
2263 map->set_req(idx, top());
2264 return nullptr;
2265 }
2266
2267 // Do not create phis for top either.
2268 // A top on a non-null control flow must be an unused even after the.phi.
2269 if (t == Type::TOP || t == Type::HALF) {
2270 map->set_req(idx, top());
2271 return nullptr;
2272 }
2273
2274 if (vt != nullptr && t->is_inlinetypeptr()) {
2275 // Inline types are merged by merging their field values.
2276 // Create a cloned InlineTypeNode with phi inputs that
2277 // represents the merged inline type and update the map.
2278 vt = vt->clone_with_phis(&_gvn, region);
2279 map->set_req(idx, vt);
2280 return vt;
2281 } else {
2282 PhiNode* phi = PhiNode::make(region, o, t);
2283 gvn().set_type(phi, t);
2284 if (C->do_escape_analysis()) record_for_igvn(phi);
2285 map->set_req(idx, phi);
2286 return phi;
2287 }
2288 }
2289
2290 //--------------------------ensure_memory_phi----------------------------------
2291 // Turn the idx'th slice of the current memory into a Phi
2292 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
2293 MergeMemNode* mem = merged_memory();
2294 Node* region = control();
2295 assert(region->is_Region(), "");
2296
2297 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
2298 assert(o != nullptr && o != top(), "");
2299
2300 PhiNode* phi;
2301 if (o->is_Phi() && o->as_Phi()->region() == region) {
2302 phi = o->as_Phi();
2303 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
2304 // clone the shared base memory phi to make a new memory split
2305 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2306 const Type* t = phi->bottom_type();
2307 const TypePtr* adr_type = C->get_adr_type(idx);
2308 phi = phi->slice_memory(adr_type);
2309 gvn().set_type(phi, t);
2310 }
2311 return phi;
2312 }
2313
2314 // Now use a Phi here for merging
2315 assert(!nocreate, "Cannot build a phi for a block already parsed.");
2316 const Type* t = o->bottom_type();
2317 const TypePtr* adr_type = C->get_adr_type(idx);
2318 phi = PhiNode::make(region, o, t, adr_type);
2319 gvn().set_type(phi, t);
2320 if (idx == Compile::AliasIdxBot)
2321 mem->set_base_memory(phi);
2322 else
2323 mem->set_memory_at(idx, phi);
2324 return phi;
2325 }
2326
2327 //------------------------------call_register_finalizer-----------------------
2328 // Check the klass of the receiver and call register_finalizer if the
2329 // class need finalization.
2330 void Parse::call_register_finalizer() {
2331 Node* receiver = local(0);
2332 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr,
2333 "must have non-null instance type");
2334
2335 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
2336 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) {
2337 // The type isn't known exactly so see if CHA tells us anything.
2338 ciInstanceKlass* ik = tinst->instance_klass();
2339 if (!Dependencies::has_finalizable_subclass(ik)) {
2340 // No finalizable subclasses so skip the dynamic check.
2341 C->dependencies()->assert_has_no_finalizable_subclasses(ik);
2342 return;
2343 }
2344 }
2345
2346 // Insert a dynamic test for whether the instance needs
2347 // finalization. In general this will fold up since the concrete
2348 // class is often visible so the access flags are constant.
2349 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2350 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2351
2352 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset()));
2353 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2354
2355 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer)));
2356 Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2357 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne));
2358
2359 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2360
2361 RegionNode* result_rgn = new RegionNode(3);
2362 record_for_igvn(result_rgn);
2363
2364 Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2365 result_rgn->init_req(1, skip_register);
2366
2367 Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2368 set_control(needs_register);
2369 if (stopped()) {
2370 // There is no slow path.
2371 result_rgn->init_req(2, top());
2372 } else {
2373 Node *call = make_runtime_call(RC_NO_LEAF,
2374 OptoRuntime::register_finalizer_Type(),
2375 OptoRuntime::register_finalizer_Java(),
2376 nullptr, TypePtr::BOTTOM,
2377 receiver);
2378 make_slow_call_ex(call, env()->Throwable_klass(), true);
2379
2380 Node* fast_io = call->in(TypeFunc::I_O);
2381 Node* fast_mem = call->in(TypeFunc::Memory);
2382 // These two phis are pre-filled with copies of of the fast IO and Memory
2383 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO);
2384 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2385
2386 result_rgn->init_req(2, control());
2387 io_phi ->init_req(2, i_o());
2388 mem_phi ->init_req(2, reset_memory());
2389
2390 set_all_memory( _gvn.transform(mem_phi) );
2391 set_i_o( _gvn.transform(io_phi) );
2392 }
2393
2394 set_control( _gvn.transform(result_rgn) );
2395 }
2396
2397 // Add check to deoptimize once holder klass is fully initialized.
2398 void Parse::clinit_deopt() {
2399 assert(C->has_method(), "only for normal compilations");
2400 assert(depth() == 1, "only for main compiled method");
2401 assert(is_normal_parse(), "no barrier needed on osr entry");
2402 assert(!method()->holder()->is_not_initialized(), "initialization should have been started");
2403
2404 set_parse_bci(0);
2405
2406 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces));
2407 guard_klass_being_initialized(holder);
2408 }
2409
2410 //------------------------------return_current---------------------------------
2411 // Append current _map to _exit_return
2412 void Parse::return_current(Node* value) {
2413 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2414 call_register_finalizer();
2415 }
2416
2417 // frame pointer is always same, already captured
2418 if (value != nullptr) {
2419 Node* phi = _exits.argument(0);
2420 const Type* return_type = phi->bottom_type();
2421 const TypeInstPtr* tr = return_type->isa_instptr();
2422 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) &&
2423 return_type->is_inlinetypeptr()) {
2424 // Inline type is returned as fields, make sure it is scalarized
2425 if (!value->is_InlineType()) {
2426 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass());
2427 }
2428 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) {
2429 // Returning from root or an incrementally inlined method. Make sure all non-flat
2430 // fields are buffered and re-execute if allocation triggers deoptimization.
2431 PreserveReexecuteState preexecs(this);
2432 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields");
2433 jvms()->set_should_reexecute(true);
2434 inc_sp(1);
2435 value = value->as_InlineType()->allocate_fields(this);
2436 }
2437 } else if (value->is_InlineType()) {
2438 // Inline type is returned as oop, make sure it is buffered and re-execute
2439 // if allocation triggers deoptimization.
2440 PreserveReexecuteState preexecs(this);
2441 jvms()->set_should_reexecute(true);
2442 inc_sp(1);
2443 value = value->as_InlineType()->buffer(this);
2444 }
2445 // ...else
2446 // If returning oops to an interface-return, there is a silent free
2447 // cast from oop to interface allowed by the Verifier. Make it explicit here.
2448 phi->add_req(value);
2449 }
2450
2451 // Do not set_parse_bci, so that return goo is credited to the return insn.
2452 set_bci(InvocationEntryBci);
2453 if (method()->is_synchronized()) {
2454 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2455 }
2456 if (C->env()->dtrace_method_probes()) {
2457 make_dtrace_method_exit(method());
2458 }
2459
2460 SafePointNode* exit_return = _exits.map();
2461 exit_return->in( TypeFunc::Control )->add_req( control() );
2462 exit_return->in( TypeFunc::I_O )->add_req( i_o () );
2463 Node *mem = exit_return->in( TypeFunc::Memory );
2464 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2465 if (mms.is_empty()) {
2466 // get a copy of the base memory, and patch just this one input
2467 const TypePtr* adr_type = mms.adr_type(C);
2468 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2469 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2470 gvn().set_type_bottom(phi);
2471 phi->del_req(phi->req()-1); // prepare to re-patch
2472 mms.set_memory(phi);
2473 }
2474 mms.memory()->add_req(mms.memory2());
2475 }
2476
2477 if (_first_return) {
2478 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2479 _first_return = false;
2480 } else {
2481 _exits.map()->merge_replaced_nodes_with(map());
2482 }
2483
2484 stop_and_kill_map(); // This CFG path dies here
2485 }
2486
2487
2488 //------------------------------add_safepoint----------------------------------
2489 void Parse::add_safepoint() {
2490 uint parms = TypeFunc::Parms+1;
2491
2492 // Clear out dead values from the debug info.
2493 kill_dead_locals();
2494
2495 // Clone the JVM State
2496 SafePointNode *sfpnt = new SafePointNode(parms, nullptr);
2497
2498 // Capture memory state BEFORE a SafePoint. Since we can block at a
2499 // SafePoint we need our GC state to be safe; i.e. we need all our current
2500 // write barriers (card marks) to not float down after the SafePoint so we
2501 // must read raw memory. Likewise we need all oop stores to match the card
2502 // marks. If deopt can happen, we need ALL stores (we need the correct JVM
2503 // state on a deopt).
2504
2505 // We do not need to WRITE the memory state after a SafePoint. The control
2506 // edge will keep card-marks and oop-stores from floating up from below a
2507 // SafePoint and our true dependency added here will keep them from floating
2508 // down below a SafePoint.
2509
2510 // Clone the current memory state
2511 Node* mem = MergeMemNode::make(map()->memory());
2512
2513 mem = _gvn.transform(mem);
2514
2515 // Pass control through the safepoint
2516 sfpnt->init_req(TypeFunc::Control , control());
2517 // Fix edges normally used by a call
2518 sfpnt->init_req(TypeFunc::I_O , top() );
2519 sfpnt->init_req(TypeFunc::Memory , mem );
2520 sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2521 sfpnt->init_req(TypeFunc::FramePtr , top() );
2522
2523 // Create a node for the polling address
2524 Node *polladr;
2525 Node *thread = _gvn.transform(new ThreadLocalNode());
2526 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset())));
2527 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2528 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2529
2530 // Fix up the JVM State edges
2531 add_safepoint_edges(sfpnt);
2532 Node *transformed_sfpnt = _gvn.transform(sfpnt);
2533 set_control(transformed_sfpnt);
2534
2535 // Provide an edge from root to safepoint. This makes the safepoint
2536 // appear useful until the parse has completed.
2537 if (transformed_sfpnt->is_SafePoint()) {
2538 assert(C->root() != nullptr, "Expect parse is still valid");
2539 C->root()->add_prec(transformed_sfpnt);
2540 }
2541 }
2542
2543 #ifndef PRODUCT
2544 //------------------------show_parse_info--------------------------------------
2545 void Parse::show_parse_info() {
2546 InlineTree* ilt = nullptr;
2547 if (C->ilt() != nullptr) {
2548 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2549 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2550 }
2551 if (PrintCompilation && Verbose) {
2552 if (depth() == 1) {
2553 if( ilt->count_inlines() ) {
2554 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2555 ilt->count_inline_bcs());
2556 tty->cr();
2557 }
2558 } else {
2559 if (method()->is_synchronized()) tty->print("s");
2560 if (method()->has_exception_handlers()) tty->print("!");
2561 // Check this is not the final compiled version
2562 if (C->trap_can_recompile()) {
2563 tty->print("-");
2564 } else {
2565 tty->print(" ");
2566 }
2567 method()->print_short_name();
2568 if (is_osr_parse()) {
2569 tty->print(" @ %d", osr_bci());
2570 }
2571 tty->print(" (%d bytes)",method()->code_size());
2572 if (ilt->count_inlines()) {
2573 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2574 ilt->count_inline_bcs());
2575 }
2576 tty->cr();
2577 }
2578 }
2579 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2580 // Print that we succeeded; suppress this message on the first osr parse.
2581
2582 if (method()->is_synchronized()) tty->print("s");
2583 if (method()->has_exception_handlers()) tty->print("!");
2584 // Check this is not the final compiled version
2585 if (C->trap_can_recompile() && depth() == 1) {
2586 tty->print("-");
2587 } else {
2588 tty->print(" ");
2589 }
2590 if( depth() != 1 ) { tty->print(" "); } // missing compile count
2591 for (int i = 1; i < depth(); ++i) { tty->print(" "); }
2592 method()->print_short_name();
2593 if (is_osr_parse()) {
2594 tty->print(" @ %d", osr_bci());
2595 }
2596 if (ilt->caller_bci() != -1) {
2597 tty->print(" @ %d", ilt->caller_bci());
2598 }
2599 tty->print(" (%d bytes)",method()->code_size());
2600 if (ilt->count_inlines()) {
2601 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2602 ilt->count_inline_bcs());
2603 }
2604 tty->cr();
2605 }
2606 }
2607
2608
2609 //------------------------------dump-------------------------------------------
2610 // Dump information associated with the bytecodes of current _method
2611 void Parse::dump() {
2612 if( method() != nullptr ) {
2613 // Iterate over bytecodes
2614 ciBytecodeStream iter(method());
2615 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2616 dump_bci( iter.cur_bci() );
2617 tty->cr();
2618 }
2619 }
2620 }
2621
2622 // Dump information associated with a byte code index, 'bci'
2623 void Parse::dump_bci(int bci) {
2624 // Output info on merge-points, cloning, and within _jsr..._ret
2625 // NYI
2626 tty->print(" bci:%d", bci);
2627 }
2628
2629 #endif