1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "interpreter/linkResolver.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/inlinetypenode.hpp" 35 #include "opto/locknode.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/opaquenode.hpp" 38 #include "opto/parse.hpp" 39 #include "opto/rootnode.hpp" 40 #include "opto/runtime.hpp" 41 #include "opto/type.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/copy.hpp" 47 48 // Static array so we can figure out which bytecodes stop us from compiling 49 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 50 // and eventually should be encapsulated in a proper class (gri 8/18/98). 51 52 #ifndef PRODUCT 53 uint nodes_created = 0; 54 uint methods_parsed = 0; 55 uint methods_seen = 0; 56 uint blocks_parsed = 0; 57 uint blocks_seen = 0; 58 59 uint explicit_null_checks_inserted = 0; 60 uint explicit_null_checks_elided = 0; 61 uint all_null_checks_found = 0; 62 uint implicit_null_checks = 0; 63 64 bool Parse::BytecodeParseHistogram::_initialized = false; 65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 69 70 //------------------------------print_statistics------------------------------- 71 void Parse::print_statistics() { 72 tty->print_cr("--- Compiler Statistics ---"); 73 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 74 tty->print(" Nodes created: %u", nodes_created); 75 tty->cr(); 76 if (methods_seen != methods_parsed) { 77 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 78 } 79 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 80 81 if (explicit_null_checks_inserted) { 82 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 83 explicit_null_checks_inserted, explicit_null_checks_elided, 84 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 85 all_null_checks_found); 86 } 87 if (all_null_checks_found) { 88 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 89 (100*implicit_null_checks)/all_null_checks_found); 90 } 91 if (SharedRuntime::_implicit_null_throws) { 92 tty->print_cr("%u implicit null exceptions at runtime", 93 SharedRuntime::_implicit_null_throws); 94 } 95 96 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 97 BytecodeParseHistogram::print(); 98 } 99 } 100 #endif 101 102 //------------------------------ON STACK REPLACEMENT--------------------------- 103 104 // Construct a node which can be used to get incoming state for 105 // on stack replacement. 106 Node* Parse::fetch_interpreter_state(int index, 107 const Type* type, 108 Node* local_addrs, 109 Node* local_addrs_base) { 110 BasicType bt = type->basic_type(); 111 if (type == TypePtr::NULL_PTR) { 112 // Ptr types are mixed together with T_ADDRESS but nullptr is 113 // really for T_OBJECT types so correct it. 114 bt = T_OBJECT; 115 } 116 Node *mem = memory(Compile::AliasIdxRaw); 117 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 118 Node *ctl = control(); 119 120 // Very similar to LoadNode::make, except we handle un-aligned longs and 121 // doubles on Sparc. Intel can handle them just fine directly. 122 Node *l = nullptr; 123 switch (bt) { // Signature is flattened 124 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 125 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 126 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 127 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 128 case T_LONG: 129 case T_DOUBLE: { 130 // Since arguments are in reverse order, the argument address 'adr' 131 // refers to the back half of the long/double. Recompute adr. 132 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 133 if (Matcher::misaligned_doubles_ok) { 134 l = (bt == T_DOUBLE) 135 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 136 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 137 } else { 138 l = (bt == T_DOUBLE) 139 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 140 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 141 } 142 break; 143 } 144 default: ShouldNotReachHere(); 145 } 146 return _gvn.transform(l); 147 } 148 149 // Helper routine to prevent the interpreter from handing 150 // unexpected typestate to an OSR method. 151 // The Node l is a value newly dug out of the interpreter frame. 152 // The type is the type predicted by ciTypeFlow. Note that it is 153 // not a general type, but can only come from Type::get_typeflow_type. 154 // The safepoint is a map which will feed an uncommon trap. 155 Node* Parse::check_interpreter_type(Node* l, const Type* type, 156 SafePointNode* &bad_type_exit) { 157 const TypeOopPtr* tp = type->isa_oopptr(); 158 159 // TypeFlow may assert null-ness if a type appears unloaded. 160 if (type == TypePtr::NULL_PTR || 161 (tp != nullptr && !tp->is_loaded())) { 162 // Value must be null, not a real oop. 163 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 164 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 165 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 166 set_control(_gvn.transform( new IfTrueNode(iff) )); 167 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 168 bad_type_exit->control()->add_req(bad_type); 169 l = null(); 170 } 171 172 // Typeflow can also cut off paths from the CFG, based on 173 // types which appear unloaded, or call sites which appear unlinked. 174 // When paths are cut off, values at later merge points can rise 175 // toward more specific classes. Make sure these specific classes 176 // are still in effect. 177 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 178 // TypeFlow asserted a specific object type. Value must have that type. 179 Node* bad_type_ctrl = nullptr; 180 if (tp->is_inlinetypeptr() && !tp->maybe_null()) { 181 // Check inline types for null here to prevent checkcast from adding an 182 // exception state before the bytecode entry (use 'bad_type_ctrl' instead). 183 l = null_check_oop(l, &bad_type_ctrl); 184 bad_type_exit->control()->add_req(bad_type_ctrl); 185 } 186 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 187 bad_type_exit->control()->add_req(bad_type_ctrl); 188 } 189 190 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 191 return l; 192 } 193 194 // Helper routine which sets up elements of the initial parser map when 195 // performing a parse for on stack replacement. Add values into map. 196 // The only parameter contains the address of a interpreter arguments. 197 void Parse::load_interpreter_state(Node* osr_buf) { 198 int index; 199 int max_locals = jvms()->loc_size(); 200 int max_stack = jvms()->stk_size(); 201 202 // Mismatch between method and jvms can occur since map briefly held 203 // an OSR entry state (which takes up one RawPtr word). 204 assert(max_locals == method()->max_locals(), "sanity"); 205 assert(max_stack >= method()->max_stack(), "sanity"); 206 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 207 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 208 209 // Find the start block. 210 Block* osr_block = start_block(); 211 assert(osr_block->start() == osr_bci(), "sanity"); 212 213 // Set initial BCI. 214 set_parse_bci(osr_block->start()); 215 216 // Set initial stack depth. 217 set_sp(osr_block->start_sp()); 218 219 // Check bailouts. We currently do not perform on stack replacement 220 // of loops in catch blocks or loops which branch with a non-empty stack. 221 if (sp() != 0) { 222 C->record_method_not_compilable("OSR starts with non-empty stack"); 223 return; 224 } 225 // Do not OSR inside finally clauses: 226 if (osr_block->has_trap_at(osr_block->start())) { 227 assert(false, "OSR starts with an immediate trap"); 228 C->record_method_not_compilable("OSR starts with an immediate trap"); 229 return; 230 } 231 232 // Commute monitors from interpreter frame to compiler frame. 233 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 234 int mcnt = osr_block->flow()->monitor_count(); 235 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 236 for (index = 0; index < mcnt; index++) { 237 // Make a BoxLockNode for the monitor. 238 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 239 // Check for bailout after new BoxLockNode 240 if (failing()) { return; } 241 242 // This OSR locking region is unbalanced because it does not have Lock node: 243 // locking was done in Interpreter. 244 // This is similar to Coarsened case when Lock node is eliminated 245 // and as result the region is marked as Unbalanced. 246 247 // Emulate Coarsened state transition from Regular to Unbalanced. 248 osr_box->set_coarsened(); 249 osr_box->set_unbalanced(); 250 251 Node* box = _gvn.transform(osr_box); 252 253 // Displaced headers and locked objects are interleaved in the 254 // temp OSR buffer. We only copy the locked objects out here. 255 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 256 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf); 257 // Try and copy the displaced header to the BoxNode 258 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf); 259 260 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered); 261 262 // Build a bogus FastLockNode (no code will be generated) and push the 263 // monitor into our debug info. 264 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 265 map()->push_monitor(flock); 266 267 // If the lock is our method synchronization lock, tuck it away in 268 // _sync_lock for return and rethrow exit paths. 269 if (index == 0 && method()->is_synchronized()) { 270 _synch_lock = flock; 271 } 272 } 273 274 // Use the raw liveness computation to make sure that unexpected 275 // values don't propagate into the OSR frame. 276 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 277 if (!live_locals.is_valid()) { 278 // Degenerate or breakpointed method. 279 assert(false, "OSR in empty or breakpointed method"); 280 C->record_method_not_compilable("OSR in empty or breakpointed method"); 281 return; 282 } 283 284 // Extract the needed locals from the interpreter frame. 285 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 286 287 // find all the locals that the interpreter thinks contain live oops 288 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 289 for (index = 0; index < max_locals; index++) { 290 291 if (!live_locals.at(index)) { 292 continue; 293 } 294 295 const Type *type = osr_block->local_type_at(index); 296 297 if (type->isa_oopptr() != nullptr) { 298 299 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 300 // else we might load a stale oop if the MethodLiveness disagrees with the 301 // result of the interpreter. If the interpreter says it is dead we agree 302 // by making the value go to top. 303 // 304 305 if (!live_oops.at(index)) { 306 if (C->log() != nullptr) { 307 C->log()->elem("OSR_mismatch local_index='%d'",index); 308 } 309 set_local(index, null()); 310 // and ignore it for the loads 311 continue; 312 } 313 } 314 315 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 316 if (type == Type::TOP || type == Type::HALF) { 317 continue; 318 } 319 // If the type falls to bottom, then this must be a local that 320 // is mixing ints and oops or some such. Forcing it to top 321 // makes it go dead. 322 if (type == Type::BOTTOM) { 323 continue; 324 } 325 // Construct code to access the appropriate local. 326 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf); 327 set_local(index, value); 328 } 329 330 // Extract the needed stack entries from the interpreter frame. 331 for (index = 0; index < sp(); index++) { 332 const Type *type = osr_block->stack_type_at(index); 333 if (type != Type::TOP) { 334 // Currently the compiler bails out when attempting to on stack replace 335 // at a bci with a non-empty stack. We should not reach here. 336 ShouldNotReachHere(); 337 } 338 } 339 340 // End the OSR migration 341 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 342 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 343 "OSR_migration_end", TypeRawPtr::BOTTOM, 344 osr_buf); 345 346 // Now that the interpreter state is loaded, make sure it will match 347 // at execution time what the compiler is expecting now: 348 SafePointNode* bad_type_exit = clone_map(); 349 bad_type_exit->set_control(new RegionNode(1)); 350 351 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 352 for (index = 0; index < max_locals; index++) { 353 if (stopped()) break; 354 Node* l = local(index); 355 if (l->is_top()) continue; // nothing here 356 const Type *type = osr_block->local_type_at(index); 357 if (type->isa_oopptr() != nullptr) { 358 if (!live_oops.at(index)) { 359 // skip type check for dead oops 360 continue; 361 } 362 } 363 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 364 // In our current system it's illegal for jsr addresses to be 365 // live into an OSR entry point because the compiler performs 366 // inlining of jsrs. ciTypeFlow has a bailout that detect this 367 // case and aborts the compile if addresses are live into an OSR 368 // entry point. Because of that we can assume that any address 369 // locals at the OSR entry point are dead. Method liveness 370 // isn't precise enough to figure out that they are dead in all 371 // cases so simply skip checking address locals all 372 // together. Any type check is guaranteed to fail since the 373 // interpreter type is the result of a load which might have any 374 // value and the expected type is a constant. 375 continue; 376 } 377 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 378 } 379 380 for (index = 0; index < sp(); index++) { 381 if (stopped()) break; 382 Node* l = stack(index); 383 if (l->is_top()) continue; // nothing here 384 const Type *type = osr_block->stack_type_at(index); 385 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 386 } 387 388 if (bad_type_exit->control()->req() > 1) { 389 // Build an uncommon trap here, if any inputs can be unexpected. 390 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 391 record_for_igvn(bad_type_exit->control()); 392 SafePointNode* types_are_good = map(); 393 set_map(bad_type_exit); 394 // The unexpected type happens because a new edge is active 395 // in the CFG, which typeflow had previously ignored. 396 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 397 // This x will be typed as Integer if notReached is not yet linked. 398 // It could also happen due to a problem in ciTypeFlow analysis. 399 uncommon_trap(Deoptimization::Reason_constraint, 400 Deoptimization::Action_reinterpret); 401 set_map(types_are_good); 402 } 403 } 404 405 //------------------------------Parse------------------------------------------ 406 // Main parser constructor. 407 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 408 : _exits(caller) 409 { 410 // Init some variables 411 _caller = caller; 412 _method = parse_method; 413 _expected_uses = expected_uses; 414 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 415 _wrote_final = false; 416 _wrote_volatile = false; 417 _wrote_stable = false; 418 _wrote_fields = false; 419 _alloc_with_final_or_stable = nullptr; 420 _block = nullptr; 421 _first_return = true; 422 _replaced_nodes_for_exceptions = false; 423 _new_idx = C->unique(); 424 DEBUG_ONLY(_entry_bci = UnknownBci); 425 DEBUG_ONLY(_block_count = -1); 426 DEBUG_ONLY(_blocks = (Block*)-1); 427 #ifndef PRODUCT 428 if (PrintCompilation || PrintOpto) { 429 // Make sure I have an inline tree, so I can print messages about it. 430 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 431 } 432 _max_switch_depth = 0; 433 _est_switch_depth = 0; 434 #endif 435 436 if (parse_method->has_reserved_stack_access()) { 437 C->set_has_reserved_stack_access(true); 438 } 439 440 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 441 C->set_has_monitors(true); 442 } 443 444 if (parse_method->is_scoped()) { 445 C->set_has_scoped_access(true); 446 } 447 448 _iter.reset_to_method(method()); 449 C->set_has_loops(C->has_loops() || method()->has_loops()); 450 451 if (_expected_uses <= 0) { 452 _prof_factor = 1; 453 } else { 454 float prof_total = parse_method->interpreter_invocation_count(); 455 if (prof_total <= _expected_uses) { 456 _prof_factor = 1; 457 } else { 458 _prof_factor = _expected_uses / prof_total; 459 } 460 } 461 462 CompileLog* log = C->log(); 463 if (log != nullptr) { 464 log->begin_head("parse method='%d' uses='%f'", 465 log->identify(parse_method), expected_uses); 466 if (depth() == 1 && C->is_osr_compilation()) { 467 log->print(" osr_bci='%d'", C->entry_bci()); 468 } 469 log->stamp(); 470 log->end_head(); 471 } 472 473 // Accumulate deoptimization counts. 474 // (The range_check and store_check counts are checked elsewhere.) 475 ciMethodData* md = method()->method_data(); 476 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 477 uint md_count = md->trap_count(reason); 478 if (md_count != 0) { 479 if (md_count >= md->trap_count_limit()) { 480 md_count = md->trap_count_limit() + md->overflow_trap_count(); 481 } 482 uint total_count = C->trap_count(reason); 483 uint old_count = total_count; 484 total_count += md_count; 485 // Saturate the add if it overflows. 486 if (total_count < old_count || total_count < md_count) 487 total_count = (uint)-1; 488 C->set_trap_count(reason, total_count); 489 if (log != nullptr) 490 log->elem("observe trap='%s' count='%d' total='%d'", 491 Deoptimization::trap_reason_name(reason), 492 md_count, total_count); 493 } 494 } 495 // Accumulate total sum of decompilations, also. 496 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 497 498 if (log != nullptr && method()->has_exception_handlers()) { 499 log->elem("observe that='has_exception_handlers'"); 500 } 501 502 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 503 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 504 505 // Always register dependence if JVMTI is enabled, because 506 // either breakpoint setting or hotswapping of methods may 507 // cause deoptimization. 508 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 509 C->dependencies()->assert_evol_method(method()); 510 } 511 512 NOT_PRODUCT(methods_seen++); 513 514 // Do some special top-level things. 515 if (depth() == 1 && C->is_osr_compilation()) { 516 _tf = C->tf(); // the OSR entry type is different 517 _entry_bci = C->entry_bci(); 518 _flow = method()->get_osr_flow_analysis(osr_bci()); 519 } else { 520 _tf = TypeFunc::make(method()); 521 _entry_bci = InvocationEntryBci; 522 _flow = method()->get_flow_analysis(); 523 } 524 525 if (_flow->failing()) { 526 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke 527 // can lead to this. Re-enable once 8284443 is fixed. 528 //assert(false, "type flow analysis failed during parsing"); 529 C->record_method_not_compilable(_flow->failure_reason()); 530 #ifndef PRODUCT 531 if (PrintOpto && (Verbose || WizardMode)) { 532 if (is_osr_parse()) { 533 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 534 } else { 535 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 536 } 537 if (Verbose) { 538 method()->print(); 539 method()->print_codes(); 540 _flow->print(); 541 } 542 } 543 #endif 544 } 545 546 #ifdef ASSERT 547 if (depth() == 1) { 548 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 549 } else { 550 assert(!this->is_osr_parse(), "no recursive OSR"); 551 } 552 #endif 553 554 #ifndef PRODUCT 555 if (_flow->has_irreducible_entry()) { 556 C->set_parsed_irreducible_loop(true); 557 } 558 559 methods_parsed++; 560 // add method size here to guarantee that inlined methods are added too 561 if (CITime) 562 _total_bytes_compiled += method()->code_size(); 563 564 show_parse_info(); 565 #endif 566 567 if (failing()) { 568 if (log) log->done("parse"); 569 return; 570 } 571 572 gvn().transform(top()); 573 574 // Import the results of the ciTypeFlow. 575 init_blocks(); 576 577 // Merge point for all normal exits 578 build_exits(); 579 580 // Setup the initial JVM state map. 581 SafePointNode* entry_map = create_entry_map(); 582 583 // Check for bailouts during map initialization 584 if (failing() || entry_map == nullptr) { 585 if (log) log->done("parse"); 586 return; 587 } 588 589 Node_Notes* caller_nn = C->default_node_notes(); 590 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 591 if (DebugInlinedCalls || depth() == 1) { 592 C->set_default_node_notes(make_node_notes(caller_nn)); 593 } 594 595 if (is_osr_parse()) { 596 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 597 entry_map->set_req(TypeFunc::Parms+0, top()); 598 set_map(entry_map); 599 load_interpreter_state(osr_buf); 600 } else { 601 set_map(entry_map); 602 do_method_entry(); 603 } 604 605 if (depth() == 1 && !failing()) { 606 if (C->clinit_barrier_on_entry()) { 607 // Add check to deoptimize the nmethod once the holder class is fully initialized 608 clinit_deopt(); 609 } 610 } 611 612 // Check for bailouts during method entry. 613 if (failing()) { 614 if (log) log->done("parse"); 615 C->set_default_node_notes(caller_nn); 616 return; 617 } 618 619 // Handle inline type arguments 620 int arg_size = method()->arg_size(); 621 for (int i = 0; i < arg_size; i++) { 622 Node* parm = local(i); 623 const Type* t = _gvn.type(parm); 624 if (t->is_inlinetypeptr()) { 625 // Create InlineTypeNode from the oop and replace the parameter 626 bool is_larval = (i == 0) && method()->is_object_constructor() && !method()->holder()->is_java_lang_Object(); 627 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass(), !t->maybe_null(), is_larval); 628 replace_in_map(parm, vt); 629 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() && 630 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_not_null_free()) { 631 // Speculate on varargs Object array being not null-free (and therefore also not flat) 632 const TypePtr* spec_type = t->speculative(); 633 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr(); 634 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free(); 635 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type); 636 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type))); 637 replace_in_map(parm, cast); 638 } 639 } 640 641 entry_map = map(); // capture any changes performed by method setup code 642 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 643 644 // We begin parsing as if we have just encountered a jump to the 645 // method entry. 646 Block* entry_block = start_block(); 647 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 648 set_map_clone(entry_map); 649 merge_common(entry_block, entry_block->next_path_num()); 650 651 #ifndef PRODUCT 652 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 653 set_parse_histogram( parse_histogram_obj ); 654 #endif 655 656 // Parse all the basic blocks. 657 do_all_blocks(); 658 659 // Check for bailouts during conversion to graph 660 if (failing()) { 661 if (log) log->done("parse"); 662 return; 663 } 664 665 // Fix up all exiting control flow. 666 set_map(entry_map); 667 do_exits(); 668 669 // Only reset this now, to make sure that debug information emitted 670 // for exiting control flow still refers to the inlined method. 671 C->set_default_node_notes(caller_nn); 672 673 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'", 674 C->unique(), C->live_nodes(), C->node_arena()->used()); 675 } 676 677 //---------------------------do_all_blocks------------------------------------- 678 void Parse::do_all_blocks() { 679 bool has_irreducible = flow()->has_irreducible_entry(); 680 681 // Walk over all blocks in Reverse Post-Order. 682 while (true) { 683 bool progress = false; 684 for (int rpo = 0; rpo < block_count(); rpo++) { 685 Block* block = rpo_at(rpo); 686 687 if (block->is_parsed()) continue; 688 689 if (!block->is_merged()) { 690 // Dead block, no state reaches this block 691 continue; 692 } 693 694 // Prepare to parse this block. 695 load_state_from(block); 696 697 if (stopped()) { 698 // Block is dead. 699 continue; 700 } 701 702 NOT_PRODUCT(blocks_parsed++); 703 704 progress = true; 705 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 706 // Not all preds have been parsed. We must build phis everywhere. 707 // (Note that dead locals do not get phis built, ever.) 708 ensure_phis_everywhere(); 709 710 if (block->is_SEL_head()) { 711 // Add predicate to single entry (not irreducible) loop head. 712 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 713 // Predicates may have been added after a dominating if 714 if (!block->has_predicates()) { 715 // Need correct bci for predicate. 716 // It is fine to set it here since do_one_block() will set it anyway. 717 set_parse_bci(block->start()); 718 add_parse_predicates(); 719 } 720 // Add new region for back branches. 721 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 722 RegionNode *r = new RegionNode(edges+1); 723 _gvn.set_type(r, Type::CONTROL); 724 record_for_igvn(r); 725 r->init_req(edges, control()); 726 set_control(r); 727 block->copy_irreducible_status_to(r, jvms()); 728 // Add new phis. 729 ensure_phis_everywhere(); 730 } 731 732 // Leave behind an undisturbed copy of the map, for future merges. 733 set_map(clone_map()); 734 } 735 736 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 737 // In the absence of irreducible loops, the Region and Phis 738 // associated with a merge that doesn't involve a backedge can 739 // be simplified now since the RPO parsing order guarantees 740 // that any path which was supposed to reach here has already 741 // been parsed or must be dead. 742 Node* c = control(); 743 Node* result = _gvn.transform(control()); 744 if (c != result && TraceOptoParse) { 745 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 746 } 747 if (result != top()) { 748 record_for_igvn(result); 749 } 750 } 751 752 // Parse the block. 753 do_one_block(); 754 755 // Check for bailouts. 756 if (failing()) return; 757 } 758 759 // with irreducible loops multiple passes might be necessary to parse everything 760 if (!has_irreducible || !progress) { 761 break; 762 } 763 } 764 765 #ifndef PRODUCT 766 blocks_seen += block_count(); 767 768 // Make sure there are no half-processed blocks remaining. 769 // Every remaining unprocessed block is dead and may be ignored now. 770 for (int rpo = 0; rpo < block_count(); rpo++) { 771 Block* block = rpo_at(rpo); 772 if (!block->is_parsed()) { 773 if (TraceOptoParse) { 774 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 775 } 776 assert(!block->is_merged(), "no half-processed blocks"); 777 } 778 } 779 #endif 780 } 781 782 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 783 switch (bt) { 784 case T_BYTE: 785 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 786 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 787 break; 788 case T_SHORT: 789 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 790 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 791 break; 792 case T_CHAR: 793 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 794 break; 795 case T_BOOLEAN: 796 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 797 break; 798 default: 799 break; 800 } 801 return v; 802 } 803 804 //-------------------------------build_exits---------------------------------- 805 // Build normal and exceptional exit merge points. 806 void Parse::build_exits() { 807 // make a clone of caller to prevent sharing of side-effects 808 _exits.set_map(_exits.clone_map()); 809 _exits.clean_stack(_exits.sp()); 810 _exits.sync_jvms(); 811 812 RegionNode* region = new RegionNode(1); 813 record_for_igvn(region); 814 gvn().set_type_bottom(region); 815 _exits.set_control(region); 816 817 // Note: iophi and memphi are not transformed until do_exits. 818 Node* iophi = new PhiNode(region, Type::ABIO); 819 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 820 gvn().set_type_bottom(iophi); 821 gvn().set_type_bottom(memphi); 822 _exits.set_i_o(iophi); 823 _exits.set_all_memory(memphi); 824 825 // Add a return value to the exit state. (Do not push it yet.) 826 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 827 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 828 if (ret_type->isa_int()) { 829 BasicType ret_bt = method()->return_type()->basic_type(); 830 if (ret_bt == T_BOOLEAN || 831 ret_bt == T_CHAR || 832 ret_bt == T_BYTE || 833 ret_bt == T_SHORT) { 834 ret_type = TypeInt::INT; 835 } 836 } 837 838 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 839 // becomes loaded during the subsequent parsing, the loaded and unloaded 840 // types will not join when we transform and push in do_exits(). 841 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 842 if (ret_oop_type && !ret_oop_type->is_loaded()) { 843 ret_type = TypeOopPtr::BOTTOM; 844 } 845 int ret_size = type2size[ret_type->basic_type()]; 846 Node* ret_phi = new PhiNode(region, ret_type); 847 gvn().set_type_bottom(ret_phi); 848 _exits.ensure_stack(ret_size); 849 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 850 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 851 _exits.set_argument(0, ret_phi); // here is where the parser finds it 852 // Note: ret_phi is not yet pushed, until do_exits. 853 } 854 } 855 856 //----------------------------build_start_state------------------------------- 857 // Construct a state which contains only the incoming arguments from an 858 // unknown caller. The method & bci will be null & InvocationEntryBci. 859 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 860 int arg_size = tf->domain_sig()->cnt(); 861 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt()); 862 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 863 SafePointNode* map = new SafePointNode(max_size, jvms); 864 jvms->set_map(map); 865 record_for_igvn(map); 866 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 867 Node_Notes* old_nn = default_node_notes(); 868 if (old_nn != nullptr && has_method()) { 869 Node_Notes* entry_nn = old_nn->clone(this); 870 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 871 entry_jvms->set_offsets(0); 872 entry_jvms->set_bci(entry_bci()); 873 entry_nn->set_jvms(entry_jvms); 874 set_default_node_notes(entry_nn); 875 } 876 PhaseGVN& gvn = *initial_gvn(); 877 uint i = 0; 878 int arg_num = 0; 879 for (uint j = 0; i < (uint)arg_size; i++) { 880 const Type* t = tf->domain_sig()->field_at(i); 881 Node* parm = nullptr; 882 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) { 883 // Inline type arguments are not passed by reference: we get an argument per 884 // field of the inline type. Build InlineTypeNodes from the inline type arguments. 885 GraphKit kit(jvms, &gvn); 886 kit.set_control(map->control()); 887 Node* old_mem = map->memory(); 888 // Use immutable memory for inline type loads and restore it below 889 kit.set_all_memory(C->immutable_memory()); 890 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null()); 891 map->set_control(kit.control()); 892 map->set_memory(old_mem); 893 } else { 894 parm = gvn.transform(new ParmNode(start, j++)); 895 } 896 map->init_req(i, parm); 897 // Record all these guys for later GVN. 898 record_for_igvn(parm); 899 if (i >= TypeFunc::Parms && t != Type::HALF) { 900 arg_num++; 901 } 902 } 903 for (; i < map->req(); i++) { 904 map->init_req(i, top()); 905 } 906 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 907 set_default_node_notes(old_nn); 908 return jvms; 909 } 910 911 //-----------------------------make_node_notes--------------------------------- 912 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 913 if (caller_nn == nullptr) return nullptr; 914 Node_Notes* nn = caller_nn->clone(C); 915 JVMState* caller_jvms = nn->jvms(); 916 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 917 jvms->set_offsets(0); 918 jvms->set_bci(_entry_bci); 919 nn->set_jvms(jvms); 920 return nn; 921 } 922 923 924 //--------------------------return_values-------------------------------------- 925 void Compile::return_values(JVMState* jvms) { 926 GraphKit kit(jvms); 927 Node* ret = new ReturnNode(TypeFunc::Parms, 928 kit.control(), 929 kit.i_o(), 930 kit.reset_memory(), 931 kit.frameptr(), 932 kit.returnadr()); 933 // Add zero or 1 return values 934 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms; 935 if (ret_size > 0) { 936 kit.inc_sp(-ret_size); // pop the return value(s) 937 kit.sync_jvms(); 938 Node* res = kit.argument(0); 939 if (tf()->returns_inline_type_as_fields()) { 940 // Multiple return values (inline type fields): add as many edges 941 // to the Return node as returned values. 942 InlineTypeNode* vt = res->as_InlineType(); 943 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms); 944 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) { 945 ret->init_req(TypeFunc::Parms, vt); 946 } else { 947 // Return the tagged klass pointer to signal scalarization to the caller 948 Node* tagged_klass = vt->tagged_klass(kit.gvn()); 949 // Return null if the inline type is null (IsInit field is not set) 950 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_is_init())); 951 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63))); 952 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63))); 953 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr)); 954 ret->init_req(TypeFunc::Parms, tagged_klass); 955 } 956 uint idx = TypeFunc::Parms + 1; 957 vt->pass_fields(&kit, ret, idx, false, false); 958 } else { 959 ret->add_req(res); 960 // Note: The second dummy edge is not needed by a ReturnNode. 961 } 962 } 963 // bind it to root 964 root()->add_req(ret); 965 record_for_igvn(ret); 966 initial_gvn()->transform(ret); 967 } 968 969 //------------------------rethrow_exceptions----------------------------------- 970 // Bind all exception states in the list into a single RethrowNode. 971 void Compile::rethrow_exceptions(JVMState* jvms) { 972 GraphKit kit(jvms); 973 if (!kit.has_exceptions()) return; // nothing to generate 974 // Load my combined exception state into the kit, with all phis transformed: 975 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 976 Node* ex_oop = kit.use_exception_state(ex_map); 977 RethrowNode* exit = new RethrowNode(kit.control(), 978 kit.i_o(), kit.reset_memory(), 979 kit.frameptr(), kit.returnadr(), 980 // like a return but with exception input 981 ex_oop); 982 // bind to root 983 root()->add_req(exit); 984 record_for_igvn(exit); 985 initial_gvn()->transform(exit); 986 } 987 988 //---------------------------do_exceptions------------------------------------- 989 // Process exceptions arising from the current bytecode. 990 // Send caught exceptions to the proper handler within this method. 991 // Unhandled exceptions feed into _exit. 992 void Parse::do_exceptions() { 993 if (!has_exceptions()) return; 994 995 if (failing()) { 996 // Pop them all off and throw them away. 997 while (pop_exception_state() != nullptr) ; 998 return; 999 } 1000 1001 PreserveJVMState pjvms(this, false); 1002 1003 SafePointNode* ex_map; 1004 while ((ex_map = pop_exception_state()) != nullptr) { 1005 if (!method()->has_exception_handlers()) { 1006 // Common case: Transfer control outward. 1007 // Doing it this early allows the exceptions to common up 1008 // even between adjacent method calls. 1009 throw_to_exit(ex_map); 1010 } else { 1011 // Have to look at the exception first. 1012 assert(stopped(), "catch_inline_exceptions trashes the map"); 1013 catch_inline_exceptions(ex_map); 1014 stop_and_kill_map(); // we used up this exception state; kill it 1015 } 1016 } 1017 1018 // We now return to our regularly scheduled program: 1019 } 1020 1021 //---------------------------throw_to_exit------------------------------------- 1022 // Merge the given map into an exception exit from this method. 1023 // The exception exit will handle any unlocking of receiver. 1024 // The ex_oop must be saved within the ex_map, unlike merge_exception. 1025 void Parse::throw_to_exit(SafePointNode* ex_map) { 1026 // Pop the JVMS to (a copy of) the caller. 1027 GraphKit caller; 1028 caller.set_map_clone(_caller->map()); 1029 caller.set_bci(_caller->bci()); 1030 caller.set_sp(_caller->sp()); 1031 // Copy out the standard machine state: 1032 for (uint i = 0; i < TypeFunc::Parms; i++) { 1033 caller.map()->set_req(i, ex_map->in(i)); 1034 } 1035 if (ex_map->has_replaced_nodes()) { 1036 _replaced_nodes_for_exceptions = true; 1037 } 1038 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 1039 // ...and the exception: 1040 Node* ex_oop = saved_ex_oop(ex_map); 1041 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 1042 // Finally, collect the new exception state in my exits: 1043 _exits.add_exception_state(caller_ex_map); 1044 } 1045 1046 //------------------------------do_exits--------------------------------------- 1047 void Parse::do_exits() { 1048 set_parse_bci(InvocationEntryBci); 1049 1050 // Now peephole on the return bits 1051 Node* region = _exits.control(); 1052 _exits.set_control(gvn().transform(region)); 1053 1054 Node* iophi = _exits.i_o(); 1055 _exits.set_i_o(gvn().transform(iophi)); 1056 1057 // Figure out if we need to emit the trailing barrier. The barrier is only 1058 // needed in the constructors, and only in three cases: 1059 // 1060 // 1. The constructor wrote a final or a @Stable field. All these 1061 // initializations must be ordered before any code after the constructor 1062 // publishes the reference to the newly constructed object. Rather 1063 // than wait for the publication, we simply block the writes here. 1064 // Rather than put a barrier on only those writes which are required 1065 // to complete, we force all writes to complete. 1066 // 1067 // 2. Experimental VM option is used to force the barrier if any field 1068 // was written out in the constructor. 1069 // 1070 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1071 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1072 // MemBarVolatile is used before volatile load instead of after volatile 1073 // store, so there's no barrier after the store. 1074 // We want to guarantee the same behavior as on platforms with total store 1075 // order, although this is not required by the Java memory model. 1076 // In this case, we want to enforce visibility of volatile field 1077 // initializations which are performed in constructors. 1078 // So as with finals, we add a barrier here. 1079 // 1080 // "All bets are off" unless the first publication occurs after a 1081 // normal return from the constructor. We do not attempt to detect 1082 // such unusual early publications. But no barrier is needed on 1083 // exceptional returns, since they cannot publish normally. 1084 // 1085 if ((method()->is_object_constructor() || method()->is_class_initializer()) && 1086 (wrote_final() || wrote_stable() || 1087 (AlwaysSafeConstructors && wrote_fields()) || 1088 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1089 Node* recorded_alloc = alloc_with_final_or_stable(); 1090 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1091 recorded_alloc); 1092 1093 // If Memory barrier is created for final fields write 1094 // and allocation node does not escape the initialize method, 1095 // then barrier introduced by allocation node can be removed. 1096 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1097 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1098 alloc->compute_MemBar_redundancy(method()); 1099 } 1100 if (PrintOpto && (Verbose || WizardMode)) { 1101 method()->print_name(); 1102 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1103 } 1104 } 1105 1106 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1107 // transform each slice of the original memphi: 1108 mms.set_memory(_gvn.transform(mms.memory())); 1109 } 1110 // Clean up input MergeMems created by transforming the slices 1111 _gvn.transform(_exits.merged_memory()); 1112 1113 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 1114 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 1115 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1116 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1117 // If the type we set for the ret_phi in build_exits() is too optimistic and 1118 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1119 // loading. It could also be due to an error, so mark this method as not compilable because 1120 // otherwise this could lead to an infinite compile loop. 1121 // In any case, this code path is rarely (and never in my testing) reached. 1122 C->record_method_not_compilable("Can't determine return type."); 1123 return; 1124 } 1125 if (ret_type->isa_int()) { 1126 BasicType ret_bt = method()->return_type()->basic_type(); 1127 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1128 } 1129 _exits.push_node(ret_type->basic_type(), ret_phi); 1130 } 1131 1132 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1133 1134 // Unlock along the exceptional paths. 1135 // This is done late so that we can common up equivalent exceptions 1136 // (e.g., null checks) arising from multiple points within this method. 1137 // See GraphKit::add_exception_state, which performs the commoning. 1138 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1139 1140 // record exit from a method if compiled while Dtrace is turned on. 1141 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1142 // First move the exception list out of _exits: 1143 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1144 SafePointNode* normal_map = kit.map(); // keep this guy safe 1145 // Now re-collect the exceptions into _exits: 1146 SafePointNode* ex_map; 1147 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1148 Node* ex_oop = kit.use_exception_state(ex_map); 1149 // Force the exiting JVM state to have this method at InvocationEntryBci. 1150 // The exiting JVM state is otherwise a copy of the calling JVMS. 1151 JVMState* caller = kit.jvms(); 1152 JVMState* ex_jvms = caller->clone_shallow(C); 1153 ex_jvms->bind_map(kit.clone_map()); 1154 ex_jvms->set_bci( InvocationEntryBci); 1155 kit.set_jvms(ex_jvms); 1156 if (do_synch) { 1157 // Add on the synchronized-method box/object combo 1158 kit.map()->push_monitor(_synch_lock); 1159 // Unlock! 1160 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1161 } 1162 if (C->env()->dtrace_method_probes()) { 1163 kit.make_dtrace_method_exit(method()); 1164 } 1165 if (_replaced_nodes_for_exceptions) { 1166 kit.map()->apply_replaced_nodes(_new_idx); 1167 } 1168 // Done with exception-path processing. 1169 ex_map = kit.make_exception_state(ex_oop); 1170 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1171 // Pop the last vestige of this method: 1172 caller->clone_shallow(C)->bind_map(ex_map); 1173 _exits.push_exception_state(ex_map); 1174 } 1175 assert(_exits.map() == normal_map, "keep the same return state"); 1176 } 1177 1178 { 1179 // Capture very early exceptions (receiver null checks) from caller JVMS 1180 GraphKit caller(_caller); 1181 SafePointNode* ex_map; 1182 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1183 _exits.add_exception_state(ex_map); 1184 } 1185 } 1186 _exits.map()->apply_replaced_nodes(_new_idx); 1187 } 1188 1189 //-----------------------------create_entry_map------------------------------- 1190 // Initialize our parser map to contain the types at method entry. 1191 // For OSR, the map contains a single RawPtr parameter. 1192 // Initial monitor locking for sync. methods is performed by do_method_entry. 1193 SafePointNode* Parse::create_entry_map() { 1194 // Check for really stupid bail-out cases. 1195 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1196 if (len >= 32760) { 1197 // Bailout expected, this is a very rare edge case. 1198 C->record_method_not_compilable("too many local variables"); 1199 return nullptr; 1200 } 1201 1202 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1203 _caller->map()->delete_replaced_nodes(); 1204 1205 // If this is an inlined method, we may have to do a receiver null check. 1206 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1207 GraphKit kit(_caller); 1208 Node* receiver = kit.argument(0); 1209 Node* null_free = kit.null_check_receiver_before_call(method()); 1210 _caller = kit.transfer_exceptions_into_jvms(); 1211 if (receiver->is_InlineType() && receiver->as_InlineType()->is_larval()) { 1212 // Replace the larval inline type receiver in the exit map as well to make sure that 1213 // we can find and update it in Parse::do_call when we are done with the initialization. 1214 _exits.map()->replace_edge(receiver, null_free); 1215 } 1216 if (kit.stopped()) { 1217 _exits.add_exception_states_from(_caller); 1218 _exits.set_jvms(_caller); 1219 return nullptr; 1220 } 1221 } 1222 1223 assert(method() != nullptr, "parser must have a method"); 1224 1225 // Create an initial safepoint to hold JVM state during parsing 1226 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1227 set_map(new SafePointNode(len, jvms)); 1228 jvms->set_map(map()); 1229 record_for_igvn(map()); 1230 assert(jvms->endoff() == len, "correct jvms sizing"); 1231 1232 SafePointNode* inmap = _caller->map(); 1233 assert(inmap != nullptr, "must have inmap"); 1234 // In case of null check on receiver above 1235 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1236 1237 uint i; 1238 1239 // Pass thru the predefined input parameters. 1240 for (i = 0; i < TypeFunc::Parms; i++) { 1241 map()->init_req(i, inmap->in(i)); 1242 } 1243 1244 if (depth() == 1) { 1245 assert(map()->memory()->Opcode() == Op_Parm, ""); 1246 // Insert the memory aliasing node 1247 set_all_memory(reset_memory()); 1248 } 1249 assert(merged_memory(), ""); 1250 1251 // Now add the locals which are initially bound to arguments: 1252 uint arg_size = tf()->domain_sig()->cnt(); 1253 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1254 for (i = TypeFunc::Parms; i < arg_size; i++) { 1255 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1256 } 1257 1258 // Clear out the rest of the map (locals and stack) 1259 for (i = arg_size; i < len; i++) { 1260 map()->init_req(i, top()); 1261 } 1262 1263 SafePointNode* entry_map = stop(); 1264 return entry_map; 1265 } 1266 1267 //-----------------------------do_method_entry-------------------------------- 1268 // Emit any code needed in the pseudo-block before BCI zero. 1269 // The main thing to do is lock the receiver of a synchronized method. 1270 void Parse::do_method_entry() { 1271 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1272 set_sp(0); // Java Stack Pointer 1273 1274 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1275 1276 if (C->env()->dtrace_method_probes()) { 1277 make_dtrace_method_entry(method()); 1278 } 1279 1280 #ifdef ASSERT 1281 // Narrow receiver type when it is too broad for the method being parsed. 1282 if (!method()->is_static()) { 1283 ciInstanceKlass* callee_holder = method()->holder(); 1284 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1285 1286 Node* receiver_obj = local(0); 1287 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1288 1289 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1290 // Receiver should always be a subtype of callee holder. 1291 // But, since C2 type system doesn't properly track interfaces, 1292 // the invariant can't be expressed in the type system for default methods. 1293 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1294 assert(callee_holder->is_interface(), "missing subtype check"); 1295 1296 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1297 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1298 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1299 assert(!stopped(), "not a subtype"); 1300 1301 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1302 C->root()->add_req(halt); 1303 } 1304 } 1305 #endif // ASSERT 1306 1307 // If the method is synchronized, we need to construct a lock node, attach 1308 // it to the Start node, and pin it there. 1309 if (method()->is_synchronized()) { 1310 // Insert a FastLockNode right after the Start which takes as arguments 1311 // the current thread pointer, the "this" pointer & the address of the 1312 // stack slot pair used for the lock. The "this" pointer is a projection 1313 // off the start node, but the locking spot has to be constructed by 1314 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1315 // becomes the second argument to the FastLockNode call. The 1316 // FastLockNode becomes the new control parent to pin it to the start. 1317 1318 // Setup Object Pointer 1319 Node *lock_obj = nullptr; 1320 if (method()->is_static()) { 1321 ciInstance* mirror = _method->holder()->java_mirror(); 1322 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1323 lock_obj = makecon(t_lock); 1324 } else { // Else pass the "this" pointer, 1325 lock_obj = local(0); // which is Parm0 from StartNode 1326 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type"); 1327 } 1328 // Clear out dead values from the debug info. 1329 kill_dead_locals(); 1330 // Build the FastLockNode 1331 _synch_lock = shared_lock(lock_obj); 1332 // Check for bailout in shared_lock 1333 if (failing()) { return; } 1334 } 1335 1336 // Feed profiling data for parameters to the type system so it can 1337 // propagate it as speculative types 1338 record_profiled_parameters_for_speculation(); 1339 } 1340 1341 //------------------------------init_blocks------------------------------------ 1342 // Initialize our parser map to contain the types/monitors at method entry. 1343 void Parse::init_blocks() { 1344 // Create the blocks. 1345 _block_count = flow()->block_count(); 1346 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1347 1348 // Initialize the structs. 1349 for (int rpo = 0; rpo < block_count(); rpo++) { 1350 Block* block = rpo_at(rpo); 1351 new(block) Block(this, rpo); 1352 } 1353 1354 // Collect predecessor and successor information. 1355 for (int rpo = 0; rpo < block_count(); rpo++) { 1356 Block* block = rpo_at(rpo); 1357 block->init_graph(this); 1358 } 1359 } 1360 1361 //-------------------------------init_node------------------------------------- 1362 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1363 _flow = outer->flow()->rpo_at(rpo); 1364 _pred_count = 0; 1365 _preds_parsed = 0; 1366 _count = 0; 1367 _is_parsed = false; 1368 _is_handler = false; 1369 _has_merged_backedge = false; 1370 _start_map = nullptr; 1371 _has_predicates = false; 1372 _num_successors = 0; 1373 _all_successors = 0; 1374 _successors = nullptr; 1375 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1376 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1377 assert(_live_locals.size() == 0, "sanity"); 1378 1379 // entry point has additional predecessor 1380 if (flow()->is_start()) _pred_count++; 1381 assert(flow()->is_start() == (this == outer->start_block()), ""); 1382 } 1383 1384 //-------------------------------init_graph------------------------------------ 1385 void Parse::Block::init_graph(Parse* outer) { 1386 // Create the successor list for this parser block. 1387 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1388 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1389 int ns = tfs->length(); 1390 int ne = tfe->length(); 1391 _num_successors = ns; 1392 _all_successors = ns+ne; 1393 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1394 int p = 0; 1395 for (int i = 0; i < ns+ne; i++) { 1396 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1397 Block* block2 = outer->rpo_at(tf2->rpo()); 1398 _successors[i] = block2; 1399 1400 // Accumulate pred info for the other block, too. 1401 // Note: We also need to set _pred_count for exception blocks since they could 1402 // also have normal predecessors (reached without athrow by an explicit jump). 1403 // This also means that next_path_num can be called along exception paths. 1404 block2->_pred_count++; 1405 if (i >= ns) { 1406 block2->_is_handler = true; 1407 } 1408 1409 #ifdef ASSERT 1410 // A block's successors must be distinguishable by BCI. 1411 // That is, no bytecode is allowed to branch to two different 1412 // clones of the same code location. 1413 for (int j = 0; j < i; j++) { 1414 Block* block1 = _successors[j]; 1415 if (block1 == block2) continue; // duplicates are OK 1416 assert(block1->start() != block2->start(), "successors have unique bcis"); 1417 } 1418 #endif 1419 } 1420 } 1421 1422 //---------------------------successor_for_bci--------------------------------- 1423 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1424 for (int i = 0; i < all_successors(); i++) { 1425 Block* block2 = successor_at(i); 1426 if (block2->start() == bci) return block2; 1427 } 1428 // We can actually reach here if ciTypeFlow traps out a block 1429 // due to an unloaded class, and concurrently with compilation the 1430 // class is then loaded, so that a later phase of the parser is 1431 // able to see more of the bytecode CFG. Or, the flow pass and 1432 // the parser can have a minor difference of opinion about executability 1433 // of bytecodes. For example, "obj.field = null" is executable even 1434 // if the field's type is an unloaded class; the flow pass used to 1435 // make a trap for such code. 1436 return nullptr; 1437 } 1438 1439 1440 //-----------------------------stack_type_at----------------------------------- 1441 const Type* Parse::Block::stack_type_at(int i) const { 1442 return get_type(flow()->stack_type_at(i)); 1443 } 1444 1445 1446 //-----------------------------local_type_at----------------------------------- 1447 const Type* Parse::Block::local_type_at(int i) const { 1448 // Make dead locals fall to bottom. 1449 if (_live_locals.size() == 0) { 1450 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1451 // This bitmap can be zero length if we saw a breakpoint. 1452 // In such cases, pretend they are all live. 1453 ((Block*)this)->_live_locals = live_locals; 1454 } 1455 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1456 return Type::BOTTOM; 1457 1458 return get_type(flow()->local_type_at(i)); 1459 } 1460 1461 1462 #ifndef PRODUCT 1463 1464 //----------------------------name_for_bc-------------------------------------- 1465 // helper method for BytecodeParseHistogram 1466 static const char* name_for_bc(int i) { 1467 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1468 } 1469 1470 //----------------------------BytecodeParseHistogram------------------------------------ 1471 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1472 _parser = p; 1473 _compiler = c; 1474 if( ! _initialized ) { _initialized = true; reset(); } 1475 } 1476 1477 //----------------------------current_count------------------------------------ 1478 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1479 switch( bph_type ) { 1480 case BPH_transforms: { return _parser->gvn().made_progress(); } 1481 case BPH_values: { return _parser->gvn().made_new_values(); } 1482 default: { ShouldNotReachHere(); return 0; } 1483 } 1484 } 1485 1486 //----------------------------initialized-------------------------------------- 1487 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1488 1489 //----------------------------reset-------------------------------------------- 1490 void Parse::BytecodeParseHistogram::reset() { 1491 int i = Bytecodes::number_of_codes; 1492 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1493 } 1494 1495 //----------------------------set_initial_state-------------------------------- 1496 // Record info when starting to parse one bytecode 1497 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1498 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1499 _initial_bytecode = bc; 1500 _initial_node_count = _compiler->unique(); 1501 _initial_transforms = current_count(BPH_transforms); 1502 _initial_values = current_count(BPH_values); 1503 } 1504 } 1505 1506 //----------------------------record_change-------------------------------- 1507 // Record results of parsing one bytecode 1508 void Parse::BytecodeParseHistogram::record_change() { 1509 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1510 ++_bytecodes_parsed[_initial_bytecode]; 1511 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1512 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1513 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1514 } 1515 } 1516 1517 1518 //----------------------------print-------------------------------------------- 1519 void Parse::BytecodeParseHistogram::print(float cutoff) { 1520 ResourceMark rm; 1521 // print profile 1522 int total = 0; 1523 int i = 0; 1524 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1525 int abs_sum = 0; 1526 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1527 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1528 if( total == 0 ) { return; } 1529 tty->cr(); 1530 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1531 tty->print_cr("relative: percentage contribution to compiled nodes"); 1532 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1533 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1534 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1535 tty->print_cr("values : Average number of node values improved per bytecode"); 1536 tty->print_cr("name : Bytecode name"); 1537 tty->cr(); 1538 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1539 tty->print_cr("----------------------------------------------------------------------"); 1540 while (--i > 0) { 1541 int abs = _bytecodes_parsed[i]; 1542 float rel = abs * 100.0F / total; 1543 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1544 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1545 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1546 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1547 if (cutoff <= rel) { 1548 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1549 abs_sum += abs; 1550 } 1551 } 1552 tty->print_cr("----------------------------------------------------------------------"); 1553 float rel_sum = abs_sum * 100.0F / total; 1554 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1555 tty->print_cr("----------------------------------------------------------------------"); 1556 tty->cr(); 1557 } 1558 #endif 1559 1560 //----------------------------load_state_from---------------------------------- 1561 // Load block/map/sp. But not do not touch iter/bci. 1562 void Parse::load_state_from(Block* block) { 1563 set_block(block); 1564 // load the block's JVM state: 1565 set_map(block->start_map()); 1566 set_sp( block->start_sp()); 1567 } 1568 1569 1570 //-----------------------------record_state------------------------------------ 1571 void Parse::Block::record_state(Parse* p) { 1572 assert(!is_merged(), "can only record state once, on 1st inflow"); 1573 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1574 set_start_map(p->stop()); 1575 } 1576 1577 1578 //------------------------------do_one_block----------------------------------- 1579 void Parse::do_one_block() { 1580 if (TraceOptoParse) { 1581 Block *b = block(); 1582 int ns = b->num_successors(); 1583 int nt = b->all_successors(); 1584 1585 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1586 block()->rpo(), block()->start(), block()->limit()); 1587 for (int i = 0; i < nt; i++) { 1588 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1589 } 1590 if (b->is_loop_head()) { 1591 tty->print(" loop head"); 1592 } 1593 if (b->is_irreducible_loop_entry()) { 1594 tty->print(" irreducible"); 1595 } 1596 tty->cr(); 1597 } 1598 1599 assert(block()->is_merged(), "must be merged before being parsed"); 1600 block()->mark_parsed(); 1601 1602 // Set iterator to start of block. 1603 iter().reset_to_bci(block()->start()); 1604 1605 if (ProfileExceptionHandlers && block()->is_handler()) { 1606 ciMethodData* methodData = method()->method_data(); 1607 if (methodData->is_mature()) { 1608 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1609 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1610 // dead catch block 1611 // Emit an uncommon trap instead of processing the block. 1612 set_parse_bci(block()->start()); 1613 uncommon_trap(Deoptimization::Reason_unreached, 1614 Deoptimization::Action_reinterpret, 1615 nullptr, "dead catch block"); 1616 return; 1617 } 1618 } 1619 } 1620 1621 CompileLog* log = C->log(); 1622 1623 // Parse bytecodes 1624 while (!stopped() && !failing()) { 1625 iter().next(); 1626 1627 // Learn the current bci from the iterator: 1628 set_parse_bci(iter().cur_bci()); 1629 1630 if (bci() == block()->limit()) { 1631 // Do not walk into the next block until directed by do_all_blocks. 1632 merge(bci()); 1633 break; 1634 } 1635 assert(bci() < block()->limit(), "bci still in block"); 1636 1637 if (log != nullptr) { 1638 // Output an optional context marker, to help place actions 1639 // that occur during parsing of this BC. If there is no log 1640 // output until the next context string, this context string 1641 // will be silently ignored. 1642 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1643 } 1644 1645 if (block()->has_trap_at(bci())) { 1646 // We must respect the flow pass's traps, because it will refuse 1647 // to produce successors for trapping blocks. 1648 int trap_index = block()->flow()->trap_index(); 1649 assert(trap_index != 0, "trap index must be valid"); 1650 uncommon_trap(trap_index); 1651 break; 1652 } 1653 1654 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1655 1656 #ifdef ASSERT 1657 int pre_bc_sp = sp(); 1658 int inputs, depth; 1659 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1660 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1661 #endif //ASSERT 1662 1663 do_one_bytecode(); 1664 if (failing()) return; 1665 1666 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1667 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1668 1669 do_exceptions(); 1670 1671 NOT_PRODUCT( parse_histogram()->record_change(); ); 1672 1673 if (log != nullptr) 1674 log->clear_context(); // skip marker if nothing was printed 1675 1676 // Fall into next bytecode. Each bytecode normally has 1 sequential 1677 // successor which is typically made ready by visiting this bytecode. 1678 // If the successor has several predecessors, then it is a merge 1679 // point, starts a new basic block, and is handled like other basic blocks. 1680 } 1681 } 1682 1683 1684 //------------------------------merge------------------------------------------ 1685 void Parse::set_parse_bci(int bci) { 1686 set_bci(bci); 1687 Node_Notes* nn = C->default_node_notes(); 1688 if (nn == nullptr) return; 1689 1690 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1691 if (!DebugInlinedCalls && depth() > 1) { 1692 return; 1693 } 1694 1695 // Update the JVMS annotation, if present. 1696 JVMState* jvms = nn->jvms(); 1697 if (jvms != nullptr && jvms->bci() != bci) { 1698 // Update the JVMS. 1699 jvms = jvms->clone_shallow(C); 1700 jvms->set_bci(bci); 1701 nn->set_jvms(jvms); 1702 } 1703 } 1704 1705 //------------------------------merge------------------------------------------ 1706 // Merge the current mapping into the basic block starting at bci 1707 void Parse::merge(int target_bci) { 1708 Block* target = successor_for_bci(target_bci); 1709 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1710 assert(!target->is_ready(), "our arrival must be expected"); 1711 int pnum = target->next_path_num(); 1712 merge_common(target, pnum); 1713 } 1714 1715 //-------------------------merge_new_path-------------------------------------- 1716 // Merge the current mapping into the basic block, using a new path 1717 void Parse::merge_new_path(int target_bci) { 1718 Block* target = successor_for_bci(target_bci); 1719 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1720 assert(!target->is_ready(), "new path into frozen graph"); 1721 int pnum = target->add_new_path(); 1722 merge_common(target, pnum); 1723 } 1724 1725 //-------------------------merge_exception------------------------------------- 1726 // Merge the current mapping into the basic block starting at bci 1727 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1728 void Parse::merge_exception(int target_bci) { 1729 #ifdef ASSERT 1730 if (target_bci <= bci()) { 1731 C->set_exception_backedge(); 1732 } 1733 #endif 1734 assert(sp() == 1, "must have only the throw exception on the stack"); 1735 Block* target = successor_for_bci(target_bci); 1736 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1737 assert(target->is_handler(), "exceptions are handled by special blocks"); 1738 int pnum = target->add_new_path(); 1739 merge_common(target, pnum); 1740 } 1741 1742 //--------------------handle_missing_successor--------------------------------- 1743 void Parse::handle_missing_successor(int target_bci) { 1744 #ifndef PRODUCT 1745 Block* b = block(); 1746 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1747 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1748 #endif 1749 ShouldNotReachHere(); 1750 } 1751 1752 //--------------------------merge_common--------------------------------------- 1753 void Parse::merge_common(Parse::Block* target, int pnum) { 1754 if (TraceOptoParse) { 1755 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1756 } 1757 1758 // Zap extra stack slots to top 1759 assert(sp() == target->start_sp(), ""); 1760 clean_stack(sp()); 1761 1762 // Check for merge conflicts involving inline types 1763 JVMState* old_jvms = map()->jvms(); 1764 int old_bci = bci(); 1765 JVMState* tmp_jvms = old_jvms->clone_shallow(C); 1766 tmp_jvms->set_should_reexecute(true); 1767 tmp_jvms->bind_map(map()); 1768 // Execution needs to restart a the next bytecode (entry of next 1769 // block) 1770 if (target->is_merged() || 1771 pnum > PhiNode::Input || 1772 target->is_handler() || 1773 target->is_loop_head()) { 1774 set_parse_bci(target->start()); 1775 for (uint j = TypeFunc::Parms; j < map()->req(); j++) { 1776 Node* n = map()->in(j); // Incoming change to target state. 1777 const Type* t = nullptr; 1778 if (tmp_jvms->is_loc(j)) { 1779 t = target->local_type_at(j - tmp_jvms->locoff()); 1780 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) { 1781 t = target->stack_type_at(j - tmp_jvms->stkoff()); 1782 } 1783 if (t != nullptr && t != Type::BOTTOM) { 1784 if (n->is_InlineType() && !t->is_inlinetypeptr()) { 1785 // Allocate inline type in src block to be able to merge it with oop in target block 1786 map()->set_req(j, n->as_InlineType()->buffer(this)); 1787 } else if (!n->is_InlineType() && t->is_inlinetypeptr()) { 1788 // Scalarize null in src block to be able to merge it with inline type in target block 1789 assert(gvn().type(n)->is_zero_type(), "Should have been scalarized"); 1790 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass())); 1791 } 1792 } 1793 } 1794 } 1795 old_jvms->bind_map(map()); 1796 set_parse_bci(old_bci); 1797 1798 if (!target->is_merged()) { // No prior mapping at this bci 1799 if (TraceOptoParse) { tty->print(" with empty state"); } 1800 1801 // If this path is dead, do not bother capturing it as a merge. 1802 // It is "as if" we had 1 fewer predecessors from the beginning. 1803 if (stopped()) { 1804 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1805 return; 1806 } 1807 1808 // Make a region if we know there are multiple or unpredictable inputs. 1809 // (Also, if this is a plain fall-through, we might see another region, 1810 // which must not be allowed into this block's map.) 1811 if (pnum > PhiNode::Input // Known multiple inputs. 1812 || target->is_handler() // These have unpredictable inputs. 1813 || target->is_loop_head() // Known multiple inputs 1814 || control()->is_Region()) { // We must hide this guy. 1815 1816 int current_bci = bci(); 1817 set_parse_bci(target->start()); // Set target bci 1818 if (target->is_SEL_head()) { 1819 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1820 if (target->start() == 0) { 1821 // Add Parse Predicates for the special case when 1822 // there are backbranches to the method entry. 1823 add_parse_predicates(); 1824 } 1825 } 1826 // Add a Region to start the new basic block. Phis will be added 1827 // later lazily. 1828 int edges = target->pred_count(); 1829 if (edges < pnum) edges = pnum; // might be a new path! 1830 RegionNode *r = new RegionNode(edges+1); 1831 gvn().set_type(r, Type::CONTROL); 1832 record_for_igvn(r); 1833 // zap all inputs to null for debugging (done in Node(uint) constructor) 1834 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1835 r->init_req(pnum, control()); 1836 set_control(r); 1837 target->copy_irreducible_status_to(r, jvms()); 1838 set_parse_bci(current_bci); // Restore bci 1839 } 1840 1841 // Convert the existing Parser mapping into a mapping at this bci. 1842 store_state_to(target); 1843 assert(target->is_merged(), "do not come here twice"); 1844 1845 } else { // Prior mapping at this bci 1846 if (TraceOptoParse) { tty->print(" with previous state"); } 1847 #ifdef ASSERT 1848 if (target->is_SEL_head()) { 1849 target->mark_merged_backedge(block()); 1850 } 1851 #endif 1852 1853 // We must not manufacture more phis if the target is already parsed. 1854 bool nophi = target->is_parsed(); 1855 1856 SafePointNode* newin = map();// Hang on to incoming mapping 1857 Block* save_block = block(); // Hang on to incoming block; 1858 load_state_from(target); // Get prior mapping 1859 1860 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1861 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1862 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1863 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1864 1865 // Iterate over my current mapping and the old mapping. 1866 // Where different, insert Phi functions. 1867 // Use any existing Phi functions. 1868 assert(control()->is_Region(), "must be merging to a region"); 1869 RegionNode* r = control()->as_Region(); 1870 1871 // Compute where to merge into 1872 // Merge incoming control path 1873 r->init_req(pnum, newin->control()); 1874 1875 if (pnum == 1) { // Last merge for this Region? 1876 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1877 Node* result = _gvn.transform(r); 1878 if (r != result && TraceOptoParse) { 1879 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1880 } 1881 } 1882 record_for_igvn(r); 1883 } 1884 1885 // Update all the non-control inputs to map: 1886 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1887 bool check_elide_phi = target->is_SEL_backedge(save_block); 1888 bool last_merge = (pnum == PhiNode::Input); 1889 for (uint j = 1; j < newin->req(); j++) { 1890 Node* m = map()->in(j); // Current state of target. 1891 Node* n = newin->in(j); // Incoming change to target state. 1892 PhiNode* phi; 1893 if (m->is_Phi() && m->as_Phi()->region() == r) { 1894 phi = m->as_Phi(); 1895 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) { 1896 phi = m->as_InlineType()->get_oop()->as_Phi(); 1897 } else { 1898 phi = nullptr; 1899 } 1900 if (m != n) { // Different; must merge 1901 switch (j) { 1902 // Frame pointer and Return Address never changes 1903 case TypeFunc::FramePtr:// Drop m, use the original value 1904 case TypeFunc::ReturnAdr: 1905 break; 1906 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1907 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1908 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1909 continue; 1910 default: // All normal stuff 1911 if (phi == nullptr) { 1912 const JVMState* jvms = map()->jvms(); 1913 if (EliminateNestedLocks && 1914 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1915 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1916 // Use old BoxLock node as merged box. 1917 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1918 // This assert also tests that nodes are BoxLock. 1919 assert(BoxLockNode::same_slot(n, m), "sanity"); 1920 BoxLockNode* old_box = m->as_BoxLock(); 1921 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1922 // Preserve Unbalanced status. 1923 // 1924 // `old_box` can have only Regular or Coarsened status 1925 // because this code is executed only during Parse phase and 1926 // Incremental Inlining before EA and Macro nodes elimination. 1927 // 1928 // Incremental Inlining is executed after IGVN optimizations 1929 // during which BoxLock can be marked as Coarsened. 1930 old_box->set_coarsened(); // Verifies state 1931 old_box->set_unbalanced(); 1932 } 1933 C->gvn_replace_by(n, m); 1934 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1935 phi = ensure_phi(j, nophi); 1936 } 1937 } 1938 break; 1939 } 1940 } 1941 // At this point, n might be top if: 1942 // - there is no phi (because TypeFlow detected a conflict), or 1943 // - the corresponding control edges is top (a dead incoming path) 1944 // It is a bug if we create a phi which sees a garbage value on a live path. 1945 1946 // Merging two inline types? 1947 if (phi != nullptr && phi->bottom_type()->is_inlinetypeptr()) { 1948 // Reload current state because it may have been updated by ensure_phi 1949 m = map()->in(j); 1950 InlineTypeNode* vtm = m->as_InlineType(); // Current inline type 1951 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type 1952 assert(vtm->get_oop() == phi, "Inline type should have Phi input"); 1953 if (TraceOptoParse) { 1954 #ifdef ASSERT 1955 tty->print_cr("\nMerging inline types"); 1956 tty->print_cr("Current:"); 1957 vtm->dump(2); 1958 tty->print_cr("Incoming:"); 1959 vtn->dump(2); 1960 tty->cr(); 1961 #endif 1962 } 1963 // Do the merge 1964 vtm->merge_with(&_gvn, vtn, pnum, last_merge); 1965 if (last_merge) { 1966 map()->set_req(j, _gvn.transform(vtm)); 1967 record_for_igvn(vtm); 1968 } 1969 } else if (phi != nullptr) { 1970 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1971 assert(phi->region() == r, ""); 1972 phi->set_req(pnum, n); // Then add 'n' to the merge 1973 if (last_merge) { 1974 // Last merge for this Phi. 1975 // So far, Phis have had a reasonable type from ciTypeFlow. 1976 // Now _gvn will join that with the meet of current inputs. 1977 // BOTTOM is never permissible here, 'cause pessimistically 1978 // Phis of pointers cannot lose the basic pointer type. 1979 debug_only(const Type* bt1 = phi->bottom_type()); 1980 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1981 map()->set_req(j, _gvn.transform(phi)); 1982 debug_only(const Type* bt2 = phi->bottom_type()); 1983 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1984 record_for_igvn(phi); 1985 } 1986 } 1987 } // End of for all values to be merged 1988 1989 if (last_merge && !r->in(0)) { // The occasional useless Region 1990 assert(control() == r, ""); 1991 set_control(r->nonnull_req()); 1992 } 1993 1994 map()->merge_replaced_nodes_with(newin); 1995 1996 // newin has been subsumed into the lazy merge, and is now dead. 1997 set_block(save_block); 1998 1999 stop(); // done with this guy, for now 2000 } 2001 2002 if (TraceOptoParse) { 2003 tty->print_cr(" on path %d", pnum); 2004 } 2005 2006 // Done with this parser state. 2007 assert(stopped(), ""); 2008 } 2009 2010 2011 //--------------------------merge_memory_edges--------------------------------- 2012 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 2013 // (nophi means we must not create phis, because we already parsed here) 2014 assert(n != nullptr, ""); 2015 // Merge the inputs to the MergeMems 2016 MergeMemNode* m = merged_memory(); 2017 2018 assert(control()->is_Region(), "must be merging to a region"); 2019 RegionNode* r = control()->as_Region(); 2020 2021 PhiNode* base = nullptr; 2022 MergeMemNode* remerge = nullptr; 2023 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 2024 Node *p = mms.force_memory(); 2025 Node *q = mms.memory2(); 2026 if (mms.is_empty() && nophi) { 2027 // Trouble: No new splits allowed after a loop body is parsed. 2028 // Instead, wire the new split into a MergeMem on the backedge. 2029 // The optimizer will sort it out, slicing the phi. 2030 if (remerge == nullptr) { 2031 guarantee(base != nullptr, ""); 2032 assert(base->in(0) != nullptr, "should not be xformed away"); 2033 remerge = MergeMemNode::make(base->in(pnum)); 2034 gvn().set_type(remerge, Type::MEMORY); 2035 base->set_req(pnum, remerge); 2036 } 2037 remerge->set_memory_at(mms.alias_idx(), q); 2038 continue; 2039 } 2040 assert(!q->is_MergeMem(), ""); 2041 PhiNode* phi; 2042 if (p != q) { 2043 phi = ensure_memory_phi(mms.alias_idx(), nophi); 2044 } else { 2045 if (p->is_Phi() && p->as_Phi()->region() == r) 2046 phi = p->as_Phi(); 2047 else 2048 phi = nullptr; 2049 } 2050 // Insert q into local phi 2051 if (phi != nullptr) { 2052 assert(phi->region() == r, ""); 2053 p = phi; 2054 phi->set_req(pnum, q); 2055 if (mms.at_base_memory()) { 2056 base = phi; // delay transforming it 2057 } else if (pnum == 1) { 2058 record_for_igvn(phi); 2059 p = _gvn.transform(phi); 2060 } 2061 mms.set_memory(p);// store back through the iterator 2062 } 2063 } 2064 // Transform base last, in case we must fiddle with remerging. 2065 if (base != nullptr && pnum == 1) { 2066 record_for_igvn(base); 2067 m->set_base_memory(_gvn.transform(base)); 2068 } 2069 } 2070 2071 2072 //------------------------ensure_phis_everywhere------------------------------- 2073 void Parse::ensure_phis_everywhere() { 2074 ensure_phi(TypeFunc::I_O); 2075 2076 // Ensure a phi on all currently known memories. 2077 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 2078 ensure_memory_phi(mms.alias_idx()); 2079 debug_only(mms.set_memory()); // keep the iterator happy 2080 } 2081 2082 // Note: This is our only chance to create phis for memory slices. 2083 // If we miss a slice that crops up later, it will have to be 2084 // merged into the base-memory phi that we are building here. 2085 // Later, the optimizer will comb out the knot, and build separate 2086 // phi-loops for each memory slice that matters. 2087 2088 // Monitors must nest nicely and not get confused amongst themselves. 2089 // Phi-ify everything up to the monitors, though. 2090 uint monoff = map()->jvms()->monoff(); 2091 uint nof_monitors = map()->jvms()->nof_monitors(); 2092 2093 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 2094 bool check_elide_phi = block()->is_SEL_head(); 2095 for (uint i = TypeFunc::Parms; i < monoff; i++) { 2096 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 2097 ensure_phi(i); 2098 } 2099 } 2100 2101 // Even monitors need Phis, though they are well-structured. 2102 // This is true for OSR methods, and also for the rare cases where 2103 // a monitor object is the subject of a replace_in_map operation. 2104 // See bugs 4426707 and 5043395. 2105 for (uint m = 0; m < nof_monitors; m++) { 2106 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 2107 } 2108 } 2109 2110 2111 //-----------------------------add_new_path------------------------------------ 2112 // Add a previously unaccounted predecessor to this block. 2113 int Parse::Block::add_new_path() { 2114 // If there is no map, return the lowest unused path number. 2115 if (!is_merged()) return pred_count()+1; // there will be a map shortly 2116 2117 SafePointNode* map = start_map(); 2118 if (!map->control()->is_Region()) 2119 return pred_count()+1; // there may be a region some day 2120 RegionNode* r = map->control()->as_Region(); 2121 2122 // Add new path to the region. 2123 uint pnum = r->req(); 2124 r->add_req(nullptr); 2125 2126 for (uint i = 1; i < map->req(); i++) { 2127 Node* n = map->in(i); 2128 if (i == TypeFunc::Memory) { 2129 // Ensure a phi on all currently known memories. 2130 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2131 Node* phi = mms.memory(); 2132 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2133 assert(phi->req() == pnum, "must be same size as region"); 2134 phi->add_req(nullptr); 2135 } 2136 } 2137 } else { 2138 if (n->is_Phi() && n->as_Phi()->region() == r) { 2139 assert(n->req() == pnum, "must be same size as region"); 2140 n->add_req(nullptr); 2141 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) { 2142 n->as_InlineType()->add_new_path(r); 2143 } 2144 } 2145 } 2146 2147 return pnum; 2148 } 2149 2150 //------------------------------ensure_phi------------------------------------- 2151 // Turn the idx'th entry of the current map into a Phi 2152 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 2153 SafePointNode* map = this->map(); 2154 Node* region = map->control(); 2155 assert(region->is_Region(), ""); 2156 2157 Node* o = map->in(idx); 2158 assert(o != nullptr, ""); 2159 2160 if (o == top()) return nullptr; // TOP always merges into TOP 2161 2162 if (o->is_Phi() && o->as_Phi()->region() == region) { 2163 return o->as_Phi(); 2164 } 2165 InlineTypeNode* vt = o->isa_InlineType(); 2166 if (vt != nullptr && vt->has_phi_inputs(region)) { 2167 return vt->get_oop()->as_Phi(); 2168 } 2169 2170 // Now use a Phi here for merging 2171 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2172 const JVMState* jvms = map->jvms(); 2173 const Type* t = nullptr; 2174 if (jvms->is_loc(idx)) { 2175 t = block()->local_type_at(idx - jvms->locoff()); 2176 } else if (jvms->is_stk(idx)) { 2177 t = block()->stack_type_at(idx - jvms->stkoff()); 2178 } else if (jvms->is_mon(idx)) { 2179 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2180 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2181 } else if ((uint)idx < TypeFunc::Parms) { 2182 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2183 } else { 2184 assert(false, "no type information for this phi"); 2185 } 2186 2187 // If the type falls to bottom, then this must be a local that 2188 // is already dead or is mixing ints and oops or some such. 2189 // Forcing it to top makes it go dead. 2190 if (t == Type::BOTTOM) { 2191 map->set_req(idx, top()); 2192 return nullptr; 2193 } 2194 2195 // Do not create phis for top either. 2196 // A top on a non-null control flow must be an unused even after the.phi. 2197 if (t == Type::TOP || t == Type::HALF) { 2198 map->set_req(idx, top()); 2199 return nullptr; 2200 } 2201 2202 if (vt != nullptr && t->is_inlinetypeptr()) { 2203 // Inline types are merged by merging their field values. 2204 // Create a cloned InlineTypeNode with phi inputs that 2205 // represents the merged inline type and update the map. 2206 vt = vt->clone_with_phis(&_gvn, region); 2207 map->set_req(idx, vt); 2208 return vt->get_oop()->as_Phi(); 2209 } else { 2210 PhiNode* phi = PhiNode::make(region, o, t); 2211 gvn().set_type(phi, t); 2212 if (C->do_escape_analysis()) record_for_igvn(phi); 2213 map->set_req(idx, phi); 2214 return phi; 2215 } 2216 } 2217 2218 //--------------------------ensure_memory_phi---------------------------------- 2219 // Turn the idx'th slice of the current memory into a Phi 2220 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2221 MergeMemNode* mem = merged_memory(); 2222 Node* region = control(); 2223 assert(region->is_Region(), ""); 2224 2225 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2226 assert(o != nullptr && o != top(), ""); 2227 2228 PhiNode* phi; 2229 if (o->is_Phi() && o->as_Phi()->region() == region) { 2230 phi = o->as_Phi(); 2231 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2232 // clone the shared base memory phi to make a new memory split 2233 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2234 const Type* t = phi->bottom_type(); 2235 const TypePtr* adr_type = C->get_adr_type(idx); 2236 phi = phi->slice_memory(adr_type); 2237 gvn().set_type(phi, t); 2238 } 2239 return phi; 2240 } 2241 2242 // Now use a Phi here for merging 2243 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2244 const Type* t = o->bottom_type(); 2245 const TypePtr* adr_type = C->get_adr_type(idx); 2246 phi = PhiNode::make(region, o, t, adr_type); 2247 gvn().set_type(phi, t); 2248 if (idx == Compile::AliasIdxBot) 2249 mem->set_base_memory(phi); 2250 else 2251 mem->set_memory_at(idx, phi); 2252 return phi; 2253 } 2254 2255 //------------------------------call_register_finalizer----------------------- 2256 // Check the klass of the receiver and call register_finalizer if the 2257 // class need finalization. 2258 void Parse::call_register_finalizer() { 2259 Node* receiver = local(0); 2260 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2261 "must have non-null instance type"); 2262 2263 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2264 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2265 // The type isn't known exactly so see if CHA tells us anything. 2266 ciInstanceKlass* ik = tinst->instance_klass(); 2267 if (!Dependencies::has_finalizable_subclass(ik)) { 2268 // No finalizable subclasses so skip the dynamic check. 2269 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2270 return; 2271 } 2272 } 2273 2274 // Insert a dynamic test for whether the instance needs 2275 // finalization. In general this will fold up since the concrete 2276 // class is often visible so the access flags are constant. 2277 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2278 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2279 2280 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2281 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2282 2283 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2284 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2285 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2286 2287 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2288 2289 RegionNode* result_rgn = new RegionNode(3); 2290 record_for_igvn(result_rgn); 2291 2292 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2293 result_rgn->init_req(1, skip_register); 2294 2295 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2296 set_control(needs_register); 2297 if (stopped()) { 2298 // There is no slow path. 2299 result_rgn->init_req(2, top()); 2300 } else { 2301 Node *call = make_runtime_call(RC_NO_LEAF, 2302 OptoRuntime::register_finalizer_Type(), 2303 OptoRuntime::register_finalizer_Java(), 2304 nullptr, TypePtr::BOTTOM, 2305 receiver); 2306 make_slow_call_ex(call, env()->Throwable_klass(), true); 2307 2308 Node* fast_io = call->in(TypeFunc::I_O); 2309 Node* fast_mem = call->in(TypeFunc::Memory); 2310 // These two phis are pre-filled with copies of of the fast IO and Memory 2311 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2312 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2313 2314 result_rgn->init_req(2, control()); 2315 io_phi ->init_req(2, i_o()); 2316 mem_phi ->init_req(2, reset_memory()); 2317 2318 set_all_memory( _gvn.transform(mem_phi) ); 2319 set_i_o( _gvn.transform(io_phi) ); 2320 } 2321 2322 set_control( _gvn.transform(result_rgn) ); 2323 } 2324 2325 // Add check to deoptimize once holder klass is fully initialized. 2326 void Parse::clinit_deopt() { 2327 assert(C->has_method(), "only for normal compilations"); 2328 assert(depth() == 1, "only for main compiled method"); 2329 assert(is_normal_parse(), "no barrier needed on osr entry"); 2330 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2331 2332 set_parse_bci(0); 2333 2334 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2335 guard_klass_being_initialized(holder); 2336 } 2337 2338 //------------------------------return_current--------------------------------- 2339 // Append current _map to _exit_return 2340 void Parse::return_current(Node* value) { 2341 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2342 call_register_finalizer(); 2343 } 2344 2345 // frame pointer is always same, already captured 2346 if (value != nullptr) { 2347 Node* phi = _exits.argument(0); 2348 const Type* return_type = phi->bottom_type(); 2349 const TypeInstPtr* tr = return_type->isa_instptr(); 2350 assert(!value->is_InlineType() || !value->as_InlineType()->is_larval(), "returning a larval"); 2351 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) && 2352 return_type->is_inlinetypeptr()) { 2353 // Inline type is returned as fields, make sure it is scalarized 2354 if (!value->is_InlineType()) { 2355 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass(), false); 2356 } 2357 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) { 2358 // Returning from root or an incrementally inlined method. Make sure all non-flat 2359 // fields are buffered and re-execute if allocation triggers deoptimization. 2360 PreserveReexecuteState preexecs(this); 2361 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields"); 2362 jvms()->set_should_reexecute(true); 2363 inc_sp(1); 2364 value = value->as_InlineType()->allocate_fields(this); 2365 } 2366 } else if (value->is_InlineType()) { 2367 // Inline type is returned as oop, make sure it is buffered and re-execute 2368 // if allocation triggers deoptimization. 2369 PreserveReexecuteState preexecs(this); 2370 jvms()->set_should_reexecute(true); 2371 inc_sp(1); 2372 value = value->as_InlineType()->buffer(this); 2373 } 2374 // ...else 2375 // If returning oops to an interface-return, there is a silent free 2376 // cast from oop to interface allowed by the Verifier. Make it explicit here. 2377 phi->add_req(value); 2378 } 2379 2380 // Do not set_parse_bci, so that return goo is credited to the return insn. 2381 set_bci(InvocationEntryBci); 2382 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2383 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2384 } 2385 if (C->env()->dtrace_method_probes()) { 2386 make_dtrace_method_exit(method()); 2387 } 2388 2389 SafePointNode* exit_return = _exits.map(); 2390 exit_return->in( TypeFunc::Control )->add_req( control() ); 2391 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2392 Node *mem = exit_return->in( TypeFunc::Memory ); 2393 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2394 if (mms.is_empty()) { 2395 // get a copy of the base memory, and patch just this one input 2396 const TypePtr* adr_type = mms.adr_type(C); 2397 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2398 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2399 gvn().set_type_bottom(phi); 2400 phi->del_req(phi->req()-1); // prepare to re-patch 2401 mms.set_memory(phi); 2402 } 2403 mms.memory()->add_req(mms.memory2()); 2404 } 2405 2406 if (_first_return) { 2407 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2408 _first_return = false; 2409 } else { 2410 _exits.map()->merge_replaced_nodes_with(map()); 2411 } 2412 2413 stop_and_kill_map(); // This CFG path dies here 2414 } 2415 2416 2417 //------------------------------add_safepoint---------------------------------- 2418 void Parse::add_safepoint() { 2419 uint parms = TypeFunc::Parms+1; 2420 2421 // Clear out dead values from the debug info. 2422 kill_dead_locals(); 2423 2424 // Clone the JVM State 2425 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2426 2427 // Capture memory state BEFORE a SafePoint. Since we can block at a 2428 // SafePoint we need our GC state to be safe; i.e. we need all our current 2429 // write barriers (card marks) to not float down after the SafePoint so we 2430 // must read raw memory. Likewise we need all oop stores to match the card 2431 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2432 // state on a deopt). 2433 2434 // We do not need to WRITE the memory state after a SafePoint. The control 2435 // edge will keep card-marks and oop-stores from floating up from below a 2436 // SafePoint and our true dependency added here will keep them from floating 2437 // down below a SafePoint. 2438 2439 // Clone the current memory state 2440 Node* mem = MergeMemNode::make(map()->memory()); 2441 2442 mem = _gvn.transform(mem); 2443 2444 // Pass control through the safepoint 2445 sfpnt->init_req(TypeFunc::Control , control()); 2446 // Fix edges normally used by a call 2447 sfpnt->init_req(TypeFunc::I_O , top() ); 2448 sfpnt->init_req(TypeFunc::Memory , mem ); 2449 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2450 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2451 2452 // Create a node for the polling address 2453 Node *polladr; 2454 Node *thread = _gvn.transform(new ThreadLocalNode()); 2455 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2456 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2457 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2458 2459 // Fix up the JVM State edges 2460 add_safepoint_edges(sfpnt); 2461 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2462 set_control(transformed_sfpnt); 2463 2464 // Provide an edge from root to safepoint. This makes the safepoint 2465 // appear useful until the parse has completed. 2466 if (transformed_sfpnt->is_SafePoint()) { 2467 assert(C->root() != nullptr, "Expect parse is still valid"); 2468 C->root()->add_prec(transformed_sfpnt); 2469 } 2470 } 2471 2472 #ifndef PRODUCT 2473 //------------------------show_parse_info-------------------------------------- 2474 void Parse::show_parse_info() { 2475 InlineTree* ilt = nullptr; 2476 if (C->ilt() != nullptr) { 2477 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2478 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2479 } 2480 if (PrintCompilation && Verbose) { 2481 if (depth() == 1) { 2482 if( ilt->count_inlines() ) { 2483 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2484 ilt->count_inline_bcs()); 2485 tty->cr(); 2486 } 2487 } else { 2488 if (method()->is_synchronized()) tty->print("s"); 2489 if (method()->has_exception_handlers()) tty->print("!"); 2490 // Check this is not the final compiled version 2491 if (C->trap_can_recompile()) { 2492 tty->print("-"); 2493 } else { 2494 tty->print(" "); 2495 } 2496 method()->print_short_name(); 2497 if (is_osr_parse()) { 2498 tty->print(" @ %d", osr_bci()); 2499 } 2500 tty->print(" (%d bytes)",method()->code_size()); 2501 if (ilt->count_inlines()) { 2502 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2503 ilt->count_inline_bcs()); 2504 } 2505 tty->cr(); 2506 } 2507 } 2508 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2509 // Print that we succeeded; suppress this message on the first osr parse. 2510 2511 if (method()->is_synchronized()) tty->print("s"); 2512 if (method()->has_exception_handlers()) tty->print("!"); 2513 // Check this is not the final compiled version 2514 if (C->trap_can_recompile() && depth() == 1) { 2515 tty->print("-"); 2516 } else { 2517 tty->print(" "); 2518 } 2519 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2520 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2521 method()->print_short_name(); 2522 if (is_osr_parse()) { 2523 tty->print(" @ %d", osr_bci()); 2524 } 2525 if (ilt->caller_bci() != -1) { 2526 tty->print(" @ %d", ilt->caller_bci()); 2527 } 2528 tty->print(" (%d bytes)",method()->code_size()); 2529 if (ilt->count_inlines()) { 2530 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2531 ilt->count_inline_bcs()); 2532 } 2533 tty->cr(); 2534 } 2535 } 2536 2537 2538 //------------------------------dump------------------------------------------- 2539 // Dump information associated with the bytecodes of current _method 2540 void Parse::dump() { 2541 if( method() != nullptr ) { 2542 // Iterate over bytecodes 2543 ciBytecodeStream iter(method()); 2544 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2545 dump_bci( iter.cur_bci() ); 2546 tty->cr(); 2547 } 2548 } 2549 } 2550 2551 // Dump information associated with a byte code index, 'bci' 2552 void Parse::dump_bci(int bci) { 2553 // Output info on merge-points, cloning, and within _jsr..._ret 2554 // NYI 2555 tty->print(" bci:%d", bci); 2556 } 2557 2558 #endif