1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "interpreter/linkResolver.hpp" 27 #include "memory/resourceArea.hpp" 28 #include "oops/method.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/c2compiler.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/convertnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/inlinetypenode.hpp" 35 #include "opto/locknode.hpp" 36 #include "opto/memnode.hpp" 37 #include "opto/opaquenode.hpp" 38 #include "opto/parse.hpp" 39 #include "opto/rootnode.hpp" 40 #include "opto/runtime.hpp" 41 #include "opto/type.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/safepointMechanism.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "utilities/bitMap.inline.hpp" 46 #include "utilities/copy.hpp" 47 48 // Static array so we can figure out which bytecodes stop us from compiling 49 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 50 // and eventually should be encapsulated in a proper class (gri 8/18/98). 51 52 #ifndef PRODUCT 53 uint nodes_created = 0; 54 uint methods_parsed = 0; 55 uint methods_seen = 0; 56 uint blocks_parsed = 0; 57 uint blocks_seen = 0; 58 59 uint explicit_null_checks_inserted = 0; 60 uint explicit_null_checks_elided = 0; 61 uint all_null_checks_found = 0; 62 uint implicit_null_checks = 0; 63 64 bool Parse::BytecodeParseHistogram::_initialized = false; 65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 68 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 69 70 //------------------------------print_statistics------------------------------- 71 void Parse::print_statistics() { 72 tty->print_cr("--- Compiler Statistics ---"); 73 tty->print("Methods seen: %u Methods parsed: %u", methods_seen, methods_parsed); 74 tty->print(" Nodes created: %u", nodes_created); 75 tty->cr(); 76 if (methods_seen != methods_parsed) { 77 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 78 } 79 tty->print_cr("Blocks parsed: %u Blocks seen: %u", blocks_parsed, blocks_seen); 80 81 if (explicit_null_checks_inserted) { 82 tty->print_cr("%u original null checks - %u elided (%2u%%); optimizer leaves %u,", 83 explicit_null_checks_inserted, explicit_null_checks_elided, 84 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 85 all_null_checks_found); 86 } 87 if (all_null_checks_found) { 88 tty->print_cr("%u made implicit (%2u%%)", implicit_null_checks, 89 (100*implicit_null_checks)/all_null_checks_found); 90 } 91 if (SharedRuntime::_implicit_null_throws) { 92 tty->print_cr("%u implicit null exceptions at runtime", 93 SharedRuntime::_implicit_null_throws); 94 } 95 96 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 97 BytecodeParseHistogram::print(); 98 } 99 } 100 #endif 101 102 //------------------------------ON STACK REPLACEMENT--------------------------- 103 104 // Construct a node which can be used to get incoming state for 105 // on stack replacement. 106 Node* Parse::fetch_interpreter_state(int index, 107 const Type* type, 108 Node* local_addrs, 109 Node* local_addrs_base) { 110 BasicType bt = type->basic_type(); 111 if (type == TypePtr::NULL_PTR) { 112 // Ptr types are mixed together with T_ADDRESS but nullptr is 113 // really for T_OBJECT types so correct it. 114 bt = T_OBJECT; 115 } 116 Node *mem = memory(Compile::AliasIdxRaw); 117 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 118 Node *ctl = control(); 119 120 // Very similar to LoadNode::make, except we handle un-aligned longs and 121 // doubles on Sparc. Intel can handle them just fine directly. 122 Node *l = nullptr; 123 switch (bt) { // Signature is flattened 124 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 125 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 126 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 127 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 128 case T_LONG: 129 case T_DOUBLE: { 130 // Since arguments are in reverse order, the argument address 'adr' 131 // refers to the back half of the long/double. Recompute adr. 132 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 133 if (Matcher::misaligned_doubles_ok) { 134 l = (bt == T_DOUBLE) 135 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 136 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 137 } else { 138 l = (bt == T_DOUBLE) 139 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 140 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 141 } 142 break; 143 } 144 default: ShouldNotReachHere(); 145 } 146 return _gvn.transform(l); 147 } 148 149 // Helper routine to prevent the interpreter from handing 150 // unexpected typestate to an OSR method. 151 // The Node l is a value newly dug out of the interpreter frame. 152 // The type is the type predicted by ciTypeFlow. Note that it is 153 // not a general type, but can only come from Type::get_typeflow_type. 154 // The safepoint is a map which will feed an uncommon trap. 155 Node* Parse::check_interpreter_type(Node* l, const Type* type, 156 SafePointNode* &bad_type_exit) { 157 const TypeOopPtr* tp = type->isa_oopptr(); 158 159 // TypeFlow may assert null-ness if a type appears unloaded. 160 if (type == TypePtr::NULL_PTR || 161 (tp != nullptr && !tp->is_loaded())) { 162 // Value must be null, not a real oop. 163 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 164 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 165 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 166 set_control(_gvn.transform( new IfTrueNode(iff) )); 167 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 168 bad_type_exit->control()->add_req(bad_type); 169 l = null(); 170 } 171 172 // Typeflow can also cut off paths from the CFG, based on 173 // types which appear unloaded, or call sites which appear unlinked. 174 // When paths are cut off, values at later merge points can rise 175 // toward more specific classes. Make sure these specific classes 176 // are still in effect. 177 if (tp != nullptr && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 178 // TypeFlow asserted a specific object type. Value must have that type. 179 Node* bad_type_ctrl = nullptr; 180 if (tp->is_inlinetypeptr() && !tp->maybe_null()) { 181 // Check inline types for null here to prevent checkcast from adding an 182 // exception state before the bytecode entry (use 'bad_type_ctrl' instead). 183 l = null_check_oop(l, &bad_type_ctrl); 184 bad_type_exit->control()->add_req(bad_type_ctrl); 185 } 186 187 // In an OSR compilation, we cannot know if a value object in the incoming state is larval or 188 // not. As a result, we must pass maybe_larval == true to not eagerly scalarize the result if 189 // the target type is a value class. 190 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl, false, true); 191 bad_type_exit->control()->add_req(bad_type_ctrl); 192 } 193 194 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 195 return l; 196 } 197 198 // Helper routine which sets up elements of the initial parser map when 199 // performing a parse for on stack replacement. Add values into map. 200 // The only parameter contains the address of a interpreter arguments. 201 void Parse::load_interpreter_state(Node* osr_buf) { 202 int index; 203 int max_locals = jvms()->loc_size(); 204 int max_stack = jvms()->stk_size(); 205 206 // Mismatch between method and jvms can occur since map briefly held 207 // an OSR entry state (which takes up one RawPtr word). 208 assert(max_locals == method()->max_locals(), "sanity"); 209 assert(max_stack >= method()->max_stack(), "sanity"); 210 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 211 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 212 213 // Find the start block. 214 Block* osr_block = start_block(); 215 assert(osr_block->start() == osr_bci(), "sanity"); 216 217 // Set initial BCI. 218 set_parse_bci(osr_block->start()); 219 220 // Set initial stack depth. 221 set_sp(osr_block->start_sp()); 222 223 // Check bailouts. We currently do not perform on stack replacement 224 // of loops in catch blocks or loops which branch with a non-empty stack. 225 if (sp() != 0) { 226 C->record_method_not_compilable("OSR starts with non-empty stack"); 227 return; 228 } 229 // Do not OSR inside finally clauses: 230 if (osr_block->has_trap_at(osr_block->start())) { 231 assert(false, "OSR starts with an immediate trap"); 232 C->record_method_not_compilable("OSR starts with an immediate trap"); 233 return; 234 } 235 236 // Commute monitors from interpreter frame to compiler frame. 237 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 238 int mcnt = osr_block->flow()->monitor_count(); 239 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 240 for (index = 0; index < mcnt; index++) { 241 // Make a BoxLockNode for the monitor. 242 BoxLockNode* osr_box = new BoxLockNode(next_monitor()); 243 // Check for bailout after new BoxLockNode 244 if (failing()) { return; } 245 246 // This OSR locking region is unbalanced because it does not have Lock node: 247 // locking was done in Interpreter. 248 // This is similar to Coarsened case when Lock node is eliminated 249 // and as result the region is marked as Unbalanced. 250 251 // Emulate Coarsened state transition from Regular to Unbalanced. 252 osr_box->set_coarsened(); 253 osr_box->set_unbalanced(); 254 255 Node* box = _gvn.transform(osr_box); 256 257 // Displaced headers and locked objects are interleaved in the 258 // temp OSR buffer. We only copy the locked objects out here. 259 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 260 Node* lock_object = fetch_interpreter_state(index*2, Type::get_const_basic_type(T_OBJECT), monitors_addr, osr_buf); 261 // Try and copy the displaced header to the BoxNode 262 Node* displaced_hdr = fetch_interpreter_state((index*2) + 1, Type::get_const_basic_type(T_ADDRESS), monitors_addr, osr_buf); 263 264 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, MemNode::unordered); 265 266 // Build a bogus FastLockNode (no code will be generated) and push the 267 // monitor into our debug info. 268 const FastLockNode *flock = _gvn.transform(new FastLockNode( nullptr, lock_object, box ))->as_FastLock(); 269 map()->push_monitor(flock); 270 271 // If the lock is our method synchronization lock, tuck it away in 272 // _sync_lock for return and rethrow exit paths. 273 if (index == 0 && method()->is_synchronized()) { 274 _synch_lock = flock; 275 } 276 } 277 278 // Use the raw liveness computation to make sure that unexpected 279 // values don't propagate into the OSR frame. 280 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 281 if (!live_locals.is_valid()) { 282 // Degenerate or breakpointed method. 283 assert(false, "OSR in empty or breakpointed method"); 284 C->record_method_not_compilable("OSR in empty or breakpointed method"); 285 return; 286 } 287 288 // Extract the needed locals from the interpreter frame. 289 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 290 291 // find all the locals that the interpreter thinks contain live oops 292 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 293 for (index = 0; index < max_locals; index++) { 294 295 if (!live_locals.at(index)) { 296 continue; 297 } 298 299 const Type *type = osr_block->local_type_at(index); 300 301 if (type->isa_oopptr() != nullptr) { 302 303 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 304 // else we might load a stale oop if the MethodLiveness disagrees with the 305 // result of the interpreter. If the interpreter says it is dead we agree 306 // by making the value go to top. 307 // 308 309 if (!live_oops.at(index)) { 310 if (C->log() != nullptr) { 311 C->log()->elem("OSR_mismatch local_index='%d'",index); 312 } 313 set_local(index, null()); 314 // and ignore it for the loads 315 continue; 316 } 317 } 318 319 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 320 if (type == Type::TOP || type == Type::HALF) { 321 continue; 322 } 323 // If the type falls to bottom, then this must be a local that 324 // is mixing ints and oops or some such. Forcing it to top 325 // makes it go dead. 326 if (type == Type::BOTTOM) { 327 continue; 328 } 329 // Construct code to access the appropriate local. 330 Node* value = fetch_interpreter_state(index, type, locals_addr, osr_buf); 331 set_local(index, value); 332 } 333 334 // Extract the needed stack entries from the interpreter frame. 335 for (index = 0; index < sp(); index++) { 336 const Type *type = osr_block->stack_type_at(index); 337 if (type != Type::TOP) { 338 // Currently the compiler bails out when attempting to on stack replace 339 // at a bci with a non-empty stack. We should not reach here. 340 ShouldNotReachHere(); 341 } 342 } 343 344 // End the OSR migration 345 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 346 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 347 "OSR_migration_end", TypeRawPtr::BOTTOM, 348 osr_buf); 349 350 // Now that the interpreter state is loaded, make sure it will match 351 // at execution time what the compiler is expecting now: 352 SafePointNode* bad_type_exit = clone_map(); 353 bad_type_exit->set_control(new RegionNode(1)); 354 355 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 356 for (index = 0; index < max_locals; index++) { 357 if (stopped()) break; 358 Node* l = local(index); 359 if (l->is_top()) continue; // nothing here 360 const Type *type = osr_block->local_type_at(index); 361 if (type->isa_oopptr() != nullptr) { 362 if (!live_oops.at(index)) { 363 // skip type check for dead oops 364 continue; 365 } 366 } 367 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 368 // In our current system it's illegal for jsr addresses to be 369 // live into an OSR entry point because the compiler performs 370 // inlining of jsrs. ciTypeFlow has a bailout that detect this 371 // case and aborts the compile if addresses are live into an OSR 372 // entry point. Because of that we can assume that any address 373 // locals at the OSR entry point are dead. Method liveness 374 // isn't precise enough to figure out that they are dead in all 375 // cases so simply skip checking address locals all 376 // together. Any type check is guaranteed to fail since the 377 // interpreter type is the result of a load which might have any 378 // value and the expected type is a constant. 379 continue; 380 } 381 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 382 } 383 384 for (index = 0; index < sp(); index++) { 385 if (stopped()) break; 386 Node* l = stack(index); 387 if (l->is_top()) continue; // nothing here 388 const Type *type = osr_block->stack_type_at(index); 389 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 390 } 391 392 if (bad_type_exit->control()->req() > 1) { 393 // Build an uncommon trap here, if any inputs can be unexpected. 394 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 395 record_for_igvn(bad_type_exit->control()); 396 SafePointNode* types_are_good = map(); 397 set_map(bad_type_exit); 398 // The unexpected type happens because a new edge is active 399 // in the CFG, which typeflow had previously ignored. 400 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 401 // This x will be typed as Integer if notReached is not yet linked. 402 // It could also happen due to a problem in ciTypeFlow analysis. 403 uncommon_trap(Deoptimization::Reason_constraint, 404 Deoptimization::Action_reinterpret); 405 set_map(types_are_good); 406 } 407 } 408 409 //------------------------------Parse------------------------------------------ 410 // Main parser constructor. 411 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 412 : _exits(caller) 413 { 414 // Init some variables 415 _caller = caller; 416 _method = parse_method; 417 _expected_uses = expected_uses; 418 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 419 _wrote_final = false; 420 _wrote_volatile = false; 421 _wrote_stable = false; 422 _wrote_fields = false; 423 _alloc_with_final_or_stable = nullptr; 424 _block = nullptr; 425 _first_return = true; 426 _replaced_nodes_for_exceptions = false; 427 _new_idx = C->unique(); 428 DEBUG_ONLY(_entry_bci = UnknownBci); 429 DEBUG_ONLY(_block_count = -1); 430 DEBUG_ONLY(_blocks = (Block*)-1); 431 #ifndef PRODUCT 432 if (PrintCompilation || PrintOpto) { 433 // Make sure I have an inline tree, so I can print messages about it. 434 InlineTree::find_subtree_from_root(C->ilt(), caller, parse_method); 435 } 436 _max_switch_depth = 0; 437 _est_switch_depth = 0; 438 #endif 439 440 if (parse_method->has_reserved_stack_access()) { 441 C->set_has_reserved_stack_access(true); 442 } 443 444 if (parse_method->is_synchronized() || parse_method->has_monitor_bytecodes()) { 445 C->set_has_monitors(true); 446 } 447 448 if (parse_method->is_scoped()) { 449 C->set_has_scoped_access(true); 450 } 451 452 _iter.reset_to_method(method()); 453 C->set_has_loops(C->has_loops() || method()->has_loops()); 454 455 if (_expected_uses <= 0) { 456 _prof_factor = 1; 457 } else { 458 float prof_total = parse_method->interpreter_invocation_count(); 459 if (prof_total <= _expected_uses) { 460 _prof_factor = 1; 461 } else { 462 _prof_factor = _expected_uses / prof_total; 463 } 464 } 465 466 CompileLog* log = C->log(); 467 if (log != nullptr) { 468 log->begin_head("parse method='%d' uses='%f'", 469 log->identify(parse_method), expected_uses); 470 if (depth() == 1 && C->is_osr_compilation()) { 471 log->print(" osr_bci='%d'", C->entry_bci()); 472 } 473 log->stamp(); 474 log->end_head(); 475 } 476 477 // Accumulate deoptimization counts. 478 // (The range_check and store_check counts are checked elsewhere.) 479 ciMethodData* md = method()->method_data(); 480 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 481 uint md_count = md->trap_count(reason); 482 if (md_count != 0) { 483 if (md_count >= md->trap_count_limit()) { 484 md_count = md->trap_count_limit() + md->overflow_trap_count(); 485 } 486 uint total_count = C->trap_count(reason); 487 uint old_count = total_count; 488 total_count += md_count; 489 // Saturate the add if it overflows. 490 if (total_count < old_count || total_count < md_count) 491 total_count = (uint)-1; 492 C->set_trap_count(reason, total_count); 493 if (log != nullptr) 494 log->elem("observe trap='%s' count='%d' total='%d'", 495 Deoptimization::trap_reason_name(reason), 496 md_count, total_count); 497 } 498 } 499 // Accumulate total sum of decompilations, also. 500 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 501 502 if (log != nullptr && method()->has_exception_handlers()) { 503 log->elem("observe that='has_exception_handlers'"); 504 } 505 506 assert(InlineTree::check_can_parse(method()) == nullptr, "Can not parse this method, cutout earlier"); 507 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 508 509 // Always register dependence if JVMTI is enabled, because 510 // either breakpoint setting or hotswapping of methods may 511 // cause deoptimization. 512 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 513 C->dependencies()->assert_evol_method(method()); 514 } 515 516 NOT_PRODUCT(methods_seen++); 517 518 // Do some special top-level things. 519 if (depth() == 1 && C->is_osr_compilation()) { 520 _tf = C->tf(); // the OSR entry type is different 521 _entry_bci = C->entry_bci(); 522 _flow = method()->get_osr_flow_analysis(osr_bci()); 523 } else { 524 _tf = TypeFunc::make(method()); 525 _entry_bci = InvocationEntryBci; 526 _flow = method()->get_flow_analysis(); 527 } 528 529 if (_flow->failing()) { 530 // TODO Adding a trap due to an unloaded return type in ciTypeFlow::StateVector::do_invoke 531 // can lead to this. Re-enable once 8284443 is fixed. 532 //assert(false, "type flow analysis failed during parsing"); 533 C->record_method_not_compilable(_flow->failure_reason()); 534 #ifndef PRODUCT 535 if (PrintOpto && (Verbose || WizardMode)) { 536 if (is_osr_parse()) { 537 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 538 } else { 539 tty->print_cr("type flow bailout: %s", _flow->failure_reason()); 540 } 541 if (Verbose) { 542 method()->print(); 543 method()->print_codes(); 544 _flow->print(); 545 } 546 } 547 #endif 548 } 549 550 #ifdef ASSERT 551 if (depth() == 1) { 552 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 553 } else { 554 assert(!this->is_osr_parse(), "no recursive OSR"); 555 } 556 #endif 557 558 #ifndef PRODUCT 559 if (_flow->has_irreducible_entry()) { 560 C->set_parsed_irreducible_loop(true); 561 } 562 563 methods_parsed++; 564 // add method size here to guarantee that inlined methods are added too 565 if (CITime) 566 _total_bytes_compiled += method()->code_size(); 567 568 show_parse_info(); 569 #endif 570 571 if (failing()) { 572 if (log) log->done("parse"); 573 return; 574 } 575 576 gvn().transform(top()); 577 578 // Import the results of the ciTypeFlow. 579 init_blocks(); 580 581 // Merge point for all normal exits 582 build_exits(); 583 584 // Setup the initial JVM state map. 585 SafePointNode* entry_map = create_entry_map(); 586 587 // Check for bailouts during map initialization 588 if (failing() || entry_map == nullptr) { 589 if (log) log->done("parse"); 590 return; 591 } 592 593 Node_Notes* caller_nn = C->default_node_notes(); 594 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 595 if (DebugInlinedCalls || depth() == 1) { 596 C->set_default_node_notes(make_node_notes(caller_nn)); 597 } 598 599 if (is_osr_parse()) { 600 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 601 entry_map->set_req(TypeFunc::Parms+0, top()); 602 set_map(entry_map); 603 load_interpreter_state(osr_buf); 604 } else { 605 set_map(entry_map); 606 do_method_entry(); 607 } 608 609 if (depth() == 1 && !failing()) { 610 if (C->clinit_barrier_on_entry()) { 611 // Add check to deoptimize the nmethod once the holder class is fully initialized 612 clinit_deopt(); 613 } 614 } 615 616 // Check for bailouts during method entry. 617 if (failing()) { 618 if (log) log->done("parse"); 619 C->set_default_node_notes(caller_nn); 620 return; 621 } 622 623 // Handle inline type arguments 624 int arg_size = method()->arg_size(); 625 for (int i = 0; i < arg_size; i++) { 626 Node* parm = local(i); 627 const Type* t = _gvn.type(parm); 628 if (t->is_inlinetypeptr()) { 629 // If the parameter is a value object, try to scalarize it if we know that it is not larval. 630 // There are 2 cases when a parameter may be larval: 631 // - In an OSR compilation, we do not know if a value object in the incoming state is larval 632 // or not. We must be conservative and not eagerly scalarize them. 633 // - In a normal compilation, all parameters are non-larval except the receiver of a 634 // constructor, which must be a larval object. 635 if (!is_osr_parse() && !(method()->is_object_constructor() && i == 0)) { 636 // Create InlineTypeNode from the oop and replace the parameter 637 Node* vt = InlineTypeNode::make_from_oop(this, parm, t->inline_klass()); 638 replace_in_map(parm, vt); 639 } 640 } else if (UseTypeSpeculation && (i == (arg_size - 1)) && !is_osr_parse() && method()->has_vararg() && 641 t->isa_aryptr() != nullptr && !t->is_aryptr()->is_null_free() && !t->is_aryptr()->is_flat() && 642 (!t->is_aryptr()->is_not_null_free() || !t->is_aryptr()->is_not_flat())) { 643 // Speculate on varargs Object array being not null-free and not flat 644 const TypePtr* spec_type = t->speculative(); 645 spec_type = (spec_type != nullptr && spec_type->isa_aryptr() != nullptr) ? spec_type : t->is_aryptr(); 646 spec_type = spec_type->remove_speculative()->is_aryptr()->cast_to_not_null_free()->cast_to_not_flat(); 647 spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, spec_type); 648 Node* cast = _gvn.transform(new CheckCastPPNode(control(), parm, t->join_speculative(spec_type))); 649 replace_in_map(parm, cast); 650 } 651 } 652 653 entry_map = map(); // capture any changes performed by method setup code 654 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 655 656 // We begin parsing as if we have just encountered a jump to the 657 // method entry. 658 Block* entry_block = start_block(); 659 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 660 set_map_clone(entry_map); 661 merge_common(entry_block, entry_block->next_path_num()); 662 663 #ifndef PRODUCT 664 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 665 set_parse_histogram( parse_histogram_obj ); 666 #endif 667 668 // Parse all the basic blocks. 669 do_all_blocks(); 670 671 // Check for bailouts during conversion to graph 672 if (failing()) { 673 if (log) log->done("parse"); 674 return; 675 } 676 677 // Fix up all exiting control flow. 678 set_map(entry_map); 679 do_exits(); 680 681 // Only reset this now, to make sure that debug information emitted 682 // for exiting control flow still refers to the inlined method. 683 C->set_default_node_notes(caller_nn); 684 685 if (log) log->done("parse nodes='%d' live='%d' memory='%zu'", 686 C->unique(), C->live_nodes(), C->node_arena()->used()); 687 } 688 689 //---------------------------do_all_blocks------------------------------------- 690 void Parse::do_all_blocks() { 691 bool has_irreducible = flow()->has_irreducible_entry(); 692 693 // Walk over all blocks in Reverse Post-Order. 694 while (true) { 695 bool progress = false; 696 for (int rpo = 0; rpo < block_count(); rpo++) { 697 Block* block = rpo_at(rpo); 698 699 if (block->is_parsed()) continue; 700 701 if (!block->is_merged()) { 702 // Dead block, no state reaches this block 703 continue; 704 } 705 706 // Prepare to parse this block. 707 load_state_from(block); 708 709 if (stopped()) { 710 // Block is dead. 711 continue; 712 } 713 714 NOT_PRODUCT(blocks_parsed++); 715 716 progress = true; 717 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 718 // Not all preds have been parsed. We must build phis everywhere. 719 // (Note that dead locals do not get phis built, ever.) 720 ensure_phis_everywhere(); 721 722 if (block->is_SEL_head()) { 723 // Add predicate to single entry (not irreducible) loop head. 724 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 725 // Predicates may have been added after a dominating if 726 if (!block->has_predicates()) { 727 // Need correct bci for predicate. 728 // It is fine to set it here since do_one_block() will set it anyway. 729 set_parse_bci(block->start()); 730 add_parse_predicates(); 731 } 732 // Add new region for back branches. 733 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 734 RegionNode *r = new RegionNode(edges+1); 735 _gvn.set_type(r, Type::CONTROL); 736 record_for_igvn(r); 737 r->init_req(edges, control()); 738 set_control(r); 739 block->copy_irreducible_status_to(r, jvms()); 740 // Add new phis. 741 ensure_phis_everywhere(); 742 } 743 744 // Leave behind an undisturbed copy of the map, for future merges. 745 set_map(clone_map()); 746 } 747 748 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 749 // In the absence of irreducible loops, the Region and Phis 750 // associated with a merge that doesn't involve a backedge can 751 // be simplified now since the RPO parsing order guarantees 752 // that any path which was supposed to reach here has already 753 // been parsed or must be dead. 754 Node* c = control(); 755 Node* result = _gvn.transform(control()); 756 if (c != result && TraceOptoParse) { 757 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 758 } 759 if (result != top()) { 760 record_for_igvn(result); 761 } 762 } 763 764 // Parse the block. 765 do_one_block(); 766 767 // Check for bailouts. 768 if (failing()) return; 769 } 770 771 // with irreducible loops multiple passes might be necessary to parse everything 772 if (!has_irreducible || !progress) { 773 break; 774 } 775 } 776 777 #ifndef PRODUCT 778 blocks_seen += block_count(); 779 780 // Make sure there are no half-processed blocks remaining. 781 // Every remaining unprocessed block is dead and may be ignored now. 782 for (int rpo = 0; rpo < block_count(); rpo++) { 783 Block* block = rpo_at(rpo); 784 if (!block->is_parsed()) { 785 if (TraceOptoParse) { 786 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 787 } 788 assert(!block->is_merged(), "no half-processed blocks"); 789 } 790 } 791 #endif 792 } 793 794 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 795 switch (bt) { 796 case T_BYTE: 797 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 798 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 799 break; 800 case T_SHORT: 801 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 802 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 803 break; 804 case T_CHAR: 805 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 806 break; 807 case T_BOOLEAN: 808 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 809 break; 810 default: 811 break; 812 } 813 return v; 814 } 815 816 //-------------------------------build_exits---------------------------------- 817 // Build normal and exceptional exit merge points. 818 void Parse::build_exits() { 819 // make a clone of caller to prevent sharing of side-effects 820 _exits.set_map(_exits.clone_map()); 821 _exits.clean_stack(_exits.sp()); 822 _exits.sync_jvms(); 823 824 RegionNode* region = new RegionNode(1); 825 record_for_igvn(region); 826 gvn().set_type_bottom(region); 827 _exits.set_control(region); 828 829 // Note: iophi and memphi are not transformed until do_exits. 830 Node* iophi = new PhiNode(region, Type::ABIO); 831 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 832 gvn().set_type_bottom(iophi); 833 gvn().set_type_bottom(memphi); 834 _exits.set_i_o(iophi); 835 _exits.set_all_memory(memphi); 836 837 // Add a return value to the exit state. (Do not push it yet.) 838 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 839 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 840 if (ret_type->isa_int()) { 841 BasicType ret_bt = method()->return_type()->basic_type(); 842 if (ret_bt == T_BOOLEAN || 843 ret_bt == T_CHAR || 844 ret_bt == T_BYTE || 845 ret_bt == T_SHORT) { 846 ret_type = TypeInt::INT; 847 } 848 } 849 850 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 851 // becomes loaded during the subsequent parsing, the loaded and unloaded 852 // types will not join when we transform and push in do_exits(). 853 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 854 if (ret_oop_type && !ret_oop_type->is_loaded()) { 855 ret_type = TypeOopPtr::BOTTOM; 856 } 857 int ret_size = type2size[ret_type->basic_type()]; 858 Node* ret_phi = new PhiNode(region, ret_type); 859 gvn().set_type_bottom(ret_phi); 860 _exits.ensure_stack(ret_size); 861 assert((int)(tf()->range_sig()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 862 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 863 _exits.set_argument(0, ret_phi); // here is where the parser finds it 864 // Note: ret_phi is not yet pushed, until do_exits. 865 } 866 } 867 868 //----------------------------build_start_state------------------------------- 869 // Construct a state which contains only the incoming arguments from an 870 // unknown caller. The method & bci will be null & InvocationEntryBci. 871 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 872 int arg_size = tf->domain_sig()->cnt(); 873 int max_size = MAX2(arg_size, (int)tf->range_cc()->cnt()); 874 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 875 SafePointNode* map = new SafePointNode(max_size, jvms); 876 jvms->set_map(map); 877 record_for_igvn(map); 878 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 879 Node_Notes* old_nn = default_node_notes(); 880 if (old_nn != nullptr && has_method()) { 881 Node_Notes* entry_nn = old_nn->clone(this); 882 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 883 entry_jvms->set_offsets(0); 884 entry_jvms->set_bci(entry_bci()); 885 entry_nn->set_jvms(entry_jvms); 886 set_default_node_notes(entry_nn); 887 } 888 PhaseGVN& gvn = *initial_gvn(); 889 uint i = 0; 890 int arg_num = 0; 891 for (uint j = 0; i < (uint)arg_size; i++) { 892 const Type* t = tf->domain_sig()->field_at(i); 893 Node* parm = nullptr; 894 if (t->is_inlinetypeptr() && method()->is_scalarized_arg(arg_num)) { 895 // Inline type arguments are not passed by reference: we get an argument per 896 // field of the inline type. Build InlineTypeNodes from the inline type arguments. 897 GraphKit kit(jvms, &gvn); 898 kit.set_control(map->control()); 899 Node* old_mem = map->memory(); 900 // Use immutable memory for inline type loads and restore it below 901 kit.set_all_memory(C->immutable_memory()); 902 parm = InlineTypeNode::make_from_multi(&kit, start, t->inline_klass(), j, /* in= */ true, /* null_free= */ !t->maybe_null()); 903 map->set_control(kit.control()); 904 map->set_memory(old_mem); 905 } else { 906 parm = gvn.transform(new ParmNode(start, j++)); 907 } 908 map->init_req(i, parm); 909 // Record all these guys for later GVN. 910 record_for_igvn(parm); 911 if (i >= TypeFunc::Parms && t != Type::HALF) { 912 arg_num++; 913 } 914 } 915 for (; i < map->req(); i++) { 916 map->init_req(i, top()); 917 } 918 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 919 set_default_node_notes(old_nn); 920 return jvms; 921 } 922 923 //-----------------------------make_node_notes--------------------------------- 924 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 925 if (caller_nn == nullptr) return nullptr; 926 Node_Notes* nn = caller_nn->clone(C); 927 JVMState* caller_jvms = nn->jvms(); 928 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 929 jvms->set_offsets(0); 930 jvms->set_bci(_entry_bci); 931 nn->set_jvms(jvms); 932 return nn; 933 } 934 935 936 //--------------------------return_values-------------------------------------- 937 void Compile::return_values(JVMState* jvms) { 938 GraphKit kit(jvms); 939 Node* ret = new ReturnNode(TypeFunc::Parms, 940 kit.control(), 941 kit.i_o(), 942 kit.reset_memory(), 943 kit.frameptr(), 944 kit.returnadr()); 945 // Add zero or 1 return values 946 int ret_size = tf()->range_sig()->cnt() - TypeFunc::Parms; 947 if (ret_size > 0) { 948 kit.inc_sp(-ret_size); // pop the return value(s) 949 kit.sync_jvms(); 950 Node* res = kit.argument(0); 951 if (tf()->returns_inline_type_as_fields()) { 952 // Multiple return values (inline type fields): add as many edges 953 // to the Return node as returned values. 954 InlineTypeNode* vt = res->as_InlineType(); 955 ret->add_req_batch(nullptr, tf()->range_cc()->cnt() - TypeFunc::Parms); 956 if (vt->is_allocated(&kit.gvn()) && !StressCallingConvention) { 957 ret->init_req(TypeFunc::Parms, vt); 958 } else { 959 // Return the tagged klass pointer to signal scalarization to the caller 960 Node* tagged_klass = vt->tagged_klass(kit.gvn()); 961 // Return null if the inline type is null (IsInit field is not set) 962 Node* conv = kit.gvn().transform(new ConvI2LNode(vt->get_is_init())); 963 Node* shl = kit.gvn().transform(new LShiftLNode(conv, kit.intcon(63))); 964 Node* shr = kit.gvn().transform(new RShiftLNode(shl, kit.intcon(63))); 965 tagged_klass = kit.gvn().transform(new AndLNode(tagged_klass, shr)); 966 ret->init_req(TypeFunc::Parms, tagged_klass); 967 } 968 uint idx = TypeFunc::Parms + 1; 969 vt->pass_fields(&kit, ret, idx, false, false); 970 } else { 971 ret->add_req(res); 972 // Note: The second dummy edge is not needed by a ReturnNode. 973 } 974 } 975 // bind it to root 976 root()->add_req(ret); 977 record_for_igvn(ret); 978 initial_gvn()->transform(ret); 979 } 980 981 //------------------------rethrow_exceptions----------------------------------- 982 // Bind all exception states in the list into a single RethrowNode. 983 void Compile::rethrow_exceptions(JVMState* jvms) { 984 GraphKit kit(jvms); 985 if (!kit.has_exceptions()) return; // nothing to generate 986 // Load my combined exception state into the kit, with all phis transformed: 987 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 988 Node* ex_oop = kit.use_exception_state(ex_map); 989 RethrowNode* exit = new RethrowNode(kit.control(), 990 kit.i_o(), kit.reset_memory(), 991 kit.frameptr(), kit.returnadr(), 992 // like a return but with exception input 993 ex_oop); 994 // bind to root 995 root()->add_req(exit); 996 record_for_igvn(exit); 997 initial_gvn()->transform(exit); 998 } 999 1000 //---------------------------do_exceptions------------------------------------- 1001 // Process exceptions arising from the current bytecode. 1002 // Send caught exceptions to the proper handler within this method. 1003 // Unhandled exceptions feed into _exit. 1004 void Parse::do_exceptions() { 1005 if (!has_exceptions()) return; 1006 1007 if (failing()) { 1008 // Pop them all off and throw them away. 1009 while (pop_exception_state() != nullptr) ; 1010 return; 1011 } 1012 1013 PreserveJVMState pjvms(this, false); 1014 1015 SafePointNode* ex_map; 1016 while ((ex_map = pop_exception_state()) != nullptr) { 1017 if (!method()->has_exception_handlers()) { 1018 // Common case: Transfer control outward. 1019 // Doing it this early allows the exceptions to common up 1020 // even between adjacent method calls. 1021 throw_to_exit(ex_map); 1022 } else { 1023 // Have to look at the exception first. 1024 assert(stopped(), "catch_inline_exceptions trashes the map"); 1025 catch_inline_exceptions(ex_map); 1026 stop_and_kill_map(); // we used up this exception state; kill it 1027 } 1028 } 1029 1030 // We now return to our regularly scheduled program: 1031 } 1032 1033 //---------------------------throw_to_exit------------------------------------- 1034 // Merge the given map into an exception exit from this method. 1035 // The exception exit will handle any unlocking of receiver. 1036 // The ex_oop must be saved within the ex_map, unlike merge_exception. 1037 void Parse::throw_to_exit(SafePointNode* ex_map) { 1038 // Pop the JVMS to (a copy of) the caller. 1039 GraphKit caller; 1040 caller.set_map_clone(_caller->map()); 1041 caller.set_bci(_caller->bci()); 1042 caller.set_sp(_caller->sp()); 1043 // Copy out the standard machine state: 1044 for (uint i = 0; i < TypeFunc::Parms; i++) { 1045 caller.map()->set_req(i, ex_map->in(i)); 1046 } 1047 if (ex_map->has_replaced_nodes()) { 1048 _replaced_nodes_for_exceptions = true; 1049 } 1050 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 1051 // ...and the exception: 1052 Node* ex_oop = saved_ex_oop(ex_map); 1053 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 1054 // Finally, collect the new exception state in my exits: 1055 _exits.add_exception_state(caller_ex_map); 1056 } 1057 1058 //------------------------------do_exits--------------------------------------- 1059 void Parse::do_exits() { 1060 set_parse_bci(InvocationEntryBci); 1061 1062 // Now peephole on the return bits 1063 Node* region = _exits.control(); 1064 _exits.set_control(gvn().transform(region)); 1065 1066 Node* iophi = _exits.i_o(); 1067 _exits.set_i_o(gvn().transform(iophi)); 1068 1069 // Figure out if we need to emit the trailing barrier. The barrier is only 1070 // needed in the constructors, and only in three cases: 1071 // 1072 // 1. The constructor wrote a final or a @Stable field. All these 1073 // initializations must be ordered before any code after the constructor 1074 // publishes the reference to the newly constructed object. Rather 1075 // than wait for the publication, we simply block the writes here. 1076 // Rather than put a barrier on only those writes which are required 1077 // to complete, we force all writes to complete. 1078 // 1079 // 2. Experimental VM option is used to force the barrier if any field 1080 // was written out in the constructor. 1081 // 1082 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 1083 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 1084 // MemBarVolatile is used before volatile load instead of after volatile 1085 // store, so there's no barrier after the store. 1086 // We want to guarantee the same behavior as on platforms with total store 1087 // order, although this is not required by the Java memory model. 1088 // In this case, we want to enforce visibility of volatile field 1089 // initializations which are performed in constructors. 1090 // So as with finals, we add a barrier here. 1091 // 1092 // "All bets are off" unless the first publication occurs after a 1093 // normal return from the constructor. We do not attempt to detect 1094 // such unusual early publications. But no barrier is needed on 1095 // exceptional returns, since they cannot publish normally. 1096 // 1097 if ((method()->is_object_constructor() || method()->is_class_initializer()) && 1098 (wrote_final() || wrote_stable() || 1099 (AlwaysSafeConstructors && wrote_fields()) || 1100 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1101 Node* recorded_alloc = alloc_with_final_or_stable(); 1102 _exits.insert_mem_bar(UseStoreStoreForCtor ? Op_MemBarStoreStore : Op_MemBarRelease, 1103 recorded_alloc); 1104 1105 // If Memory barrier is created for final fields write 1106 // and allocation node does not escape the initialize method, 1107 // then barrier introduced by allocation node can be removed. 1108 if (DoEscapeAnalysis && (recorded_alloc != nullptr)) { 1109 AllocateNode* alloc = AllocateNode::Ideal_allocation(recorded_alloc); 1110 alloc->compute_MemBar_redundancy(method()); 1111 } 1112 if (PrintOpto && (Verbose || WizardMode)) { 1113 method()->print_name(); 1114 tty->print_cr(" writes finals/@Stable and needs a memory barrier"); 1115 } 1116 } 1117 1118 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1119 // transform each slice of the original memphi: 1120 mms.set_memory(_gvn.transform(mms.memory())); 1121 } 1122 // Clean up input MergeMems created by transforming the slices 1123 _gvn.transform(_exits.merged_memory()); 1124 1125 if (tf()->range_sig()->cnt() > TypeFunc::Parms) { 1126 const Type* ret_type = tf()->range_sig()->field_at(TypeFunc::Parms); 1127 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1128 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1129 // If the type we set for the ret_phi in build_exits() is too optimistic and 1130 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1131 // loading. It could also be due to an error, so mark this method as not compilable because 1132 // otherwise this could lead to an infinite compile loop. 1133 // In any case, this code path is rarely (and never in my testing) reached. 1134 C->record_method_not_compilable("Can't determine return type."); 1135 return; 1136 } 1137 if (ret_type->isa_int()) { 1138 BasicType ret_bt = method()->return_type()->basic_type(); 1139 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1140 } 1141 _exits.push_node(ret_type->basic_type(), ret_phi); 1142 } 1143 1144 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1145 1146 // Unlock along the exceptional paths. 1147 // This is done late so that we can common up equivalent exceptions 1148 // (e.g., null checks) arising from multiple points within this method. 1149 // See GraphKit::add_exception_state, which performs the commoning. 1150 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1151 1152 // record exit from a method if compiled while Dtrace is turned on. 1153 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1154 // First move the exception list out of _exits: 1155 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1156 SafePointNode* normal_map = kit.map(); // keep this guy safe 1157 // Now re-collect the exceptions into _exits: 1158 SafePointNode* ex_map; 1159 while ((ex_map = kit.pop_exception_state()) != nullptr) { 1160 Node* ex_oop = kit.use_exception_state(ex_map); 1161 // Force the exiting JVM state to have this method at InvocationEntryBci. 1162 // The exiting JVM state is otherwise a copy of the calling JVMS. 1163 JVMState* caller = kit.jvms(); 1164 JVMState* ex_jvms = caller->clone_shallow(C); 1165 ex_jvms->bind_map(kit.clone_map()); 1166 ex_jvms->set_bci( InvocationEntryBci); 1167 kit.set_jvms(ex_jvms); 1168 if (do_synch) { 1169 // Add on the synchronized-method box/object combo 1170 kit.map()->push_monitor(_synch_lock); 1171 // Unlock! 1172 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1173 } 1174 if (C->env()->dtrace_method_probes()) { 1175 kit.make_dtrace_method_exit(method()); 1176 } 1177 if (_replaced_nodes_for_exceptions) { 1178 kit.map()->apply_replaced_nodes(_new_idx); 1179 } 1180 // Done with exception-path processing. 1181 ex_map = kit.make_exception_state(ex_oop); 1182 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1183 // Pop the last vestige of this method: 1184 caller->clone_shallow(C)->bind_map(ex_map); 1185 _exits.push_exception_state(ex_map); 1186 } 1187 assert(_exits.map() == normal_map, "keep the same return state"); 1188 } 1189 1190 { 1191 // Capture very early exceptions (receiver null checks) from caller JVMS 1192 GraphKit caller(_caller); 1193 SafePointNode* ex_map; 1194 while ((ex_map = caller.pop_exception_state()) != nullptr) { 1195 _exits.add_exception_state(ex_map); 1196 } 1197 } 1198 _exits.map()->apply_replaced_nodes(_new_idx); 1199 } 1200 1201 //-----------------------------create_entry_map------------------------------- 1202 // Initialize our parser map to contain the types at method entry. 1203 // For OSR, the map contains a single RawPtr parameter. 1204 // Initial monitor locking for sync. methods is performed by do_method_entry. 1205 SafePointNode* Parse::create_entry_map() { 1206 // Check for really stupid bail-out cases. 1207 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1208 if (len >= 32760) { 1209 // Bailout expected, this is a very rare edge case. 1210 C->record_method_not_compilable("too many local variables"); 1211 return nullptr; 1212 } 1213 1214 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1215 _caller->map()->delete_replaced_nodes(); 1216 1217 // If this is an inlined method, we may have to do a receiver null check. 1218 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1219 GraphKit kit(_caller); 1220 Node* receiver = kit.argument(0); 1221 Node* null_free = kit.null_check_receiver_before_call(method()); 1222 _caller = kit.transfer_exceptions_into_jvms(); 1223 1224 if (kit.stopped()) { 1225 _exits.add_exception_states_from(_caller); 1226 _exits.set_jvms(_caller); 1227 return nullptr; 1228 } 1229 } 1230 1231 assert(method() != nullptr, "parser must have a method"); 1232 1233 // Create an initial safepoint to hold JVM state during parsing 1234 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : nullptr); 1235 set_map(new SafePointNode(len, jvms)); 1236 jvms->set_map(map()); 1237 record_for_igvn(map()); 1238 assert(jvms->endoff() == len, "correct jvms sizing"); 1239 1240 SafePointNode* inmap = _caller->map(); 1241 assert(inmap != nullptr, "must have inmap"); 1242 // In case of null check on receiver above 1243 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1244 1245 uint i; 1246 1247 // Pass thru the predefined input parameters. 1248 for (i = 0; i < TypeFunc::Parms; i++) { 1249 map()->init_req(i, inmap->in(i)); 1250 } 1251 1252 if (depth() == 1) { 1253 assert(map()->memory()->Opcode() == Op_Parm, ""); 1254 // Insert the memory aliasing node 1255 set_all_memory(reset_memory()); 1256 } 1257 assert(merged_memory(), ""); 1258 1259 // Now add the locals which are initially bound to arguments: 1260 uint arg_size = tf()->domain_sig()->cnt(); 1261 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1262 for (i = TypeFunc::Parms; i < arg_size; i++) { 1263 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1264 } 1265 1266 // Clear out the rest of the map (locals and stack) 1267 for (i = arg_size; i < len; i++) { 1268 map()->init_req(i, top()); 1269 } 1270 1271 SafePointNode* entry_map = stop(); 1272 return entry_map; 1273 } 1274 1275 //-----------------------------do_method_entry-------------------------------- 1276 // Emit any code needed in the pseudo-block before BCI zero. 1277 // The main thing to do is lock the receiver of a synchronized method. 1278 void Parse::do_method_entry() { 1279 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1280 set_sp(0); // Java Stack Pointer 1281 1282 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1283 1284 if (C->env()->dtrace_method_probes()) { 1285 make_dtrace_method_entry(method()); 1286 } 1287 1288 #ifdef ASSERT 1289 // Narrow receiver type when it is too broad for the method being parsed. 1290 if (!method()->is_static()) { 1291 ciInstanceKlass* callee_holder = method()->holder(); 1292 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1293 1294 Node* receiver_obj = local(0); 1295 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1296 1297 if (receiver_type != nullptr && !receiver_type->higher_equal(holder_type)) { 1298 // Receiver should always be a subtype of callee holder. 1299 // But, since C2 type system doesn't properly track interfaces, 1300 // the invariant can't be expressed in the type system for default methods. 1301 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1302 assert(callee_holder->is_interface(), "missing subtype check"); 1303 1304 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1305 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1306 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1307 assert(!stopped(), "not a subtype"); 1308 1309 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1310 C->root()->add_req(halt); 1311 } 1312 } 1313 #endif // ASSERT 1314 1315 // If the method is synchronized, we need to construct a lock node, attach 1316 // it to the Start node, and pin it there. 1317 if (method()->is_synchronized()) { 1318 // Insert a FastLockNode right after the Start which takes as arguments 1319 // the current thread pointer, the "this" pointer & the address of the 1320 // stack slot pair used for the lock. The "this" pointer is a projection 1321 // off the start node, but the locking spot has to be constructed by 1322 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1323 // becomes the second argument to the FastLockNode call. The 1324 // FastLockNode becomes the new control parent to pin it to the start. 1325 1326 // Setup Object Pointer 1327 Node *lock_obj = nullptr; 1328 if (method()->is_static()) { 1329 ciInstance* mirror = _method->holder()->java_mirror(); 1330 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1331 lock_obj = makecon(t_lock); 1332 } else { // Else pass the "this" pointer, 1333 lock_obj = local(0); // which is Parm0 from StartNode 1334 assert(!_gvn.type(lock_obj)->make_oopptr()->can_be_inline_type(), "can't be an inline type"); 1335 } 1336 // Clear out dead values from the debug info. 1337 kill_dead_locals(); 1338 // Build the FastLockNode 1339 _synch_lock = shared_lock(lock_obj); 1340 // Check for bailout in shared_lock 1341 if (failing()) { return; } 1342 } 1343 1344 // Feed profiling data for parameters to the type system so it can 1345 // propagate it as speculative types 1346 record_profiled_parameters_for_speculation(); 1347 } 1348 1349 //------------------------------init_blocks------------------------------------ 1350 // Initialize our parser map to contain the types/monitors at method entry. 1351 void Parse::init_blocks() { 1352 // Create the blocks. 1353 _block_count = flow()->block_count(); 1354 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1355 1356 // Initialize the structs. 1357 for (int rpo = 0; rpo < block_count(); rpo++) { 1358 Block* block = rpo_at(rpo); 1359 new(block) Block(this, rpo); 1360 } 1361 1362 // Collect predecessor and successor information. 1363 for (int rpo = 0; rpo < block_count(); rpo++) { 1364 Block* block = rpo_at(rpo); 1365 block->init_graph(this); 1366 } 1367 } 1368 1369 //-------------------------------init_node------------------------------------- 1370 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1371 _flow = outer->flow()->rpo_at(rpo); 1372 _pred_count = 0; 1373 _preds_parsed = 0; 1374 _count = 0; 1375 _is_parsed = false; 1376 _is_handler = false; 1377 _has_merged_backedge = false; 1378 _start_map = nullptr; 1379 _has_predicates = false; 1380 _num_successors = 0; 1381 _all_successors = 0; 1382 _successors = nullptr; 1383 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1384 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1385 assert(_live_locals.size() == 0, "sanity"); 1386 1387 // entry point has additional predecessor 1388 if (flow()->is_start()) _pred_count++; 1389 assert(flow()->is_start() == (this == outer->start_block()), ""); 1390 } 1391 1392 //-------------------------------init_graph------------------------------------ 1393 void Parse::Block::init_graph(Parse* outer) { 1394 // Create the successor list for this parser block. 1395 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1396 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1397 int ns = tfs->length(); 1398 int ne = tfe->length(); 1399 _num_successors = ns; 1400 _all_successors = ns+ne; 1401 _successors = (ns+ne == 0) ? nullptr : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1402 int p = 0; 1403 for (int i = 0; i < ns+ne; i++) { 1404 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1405 Block* block2 = outer->rpo_at(tf2->rpo()); 1406 _successors[i] = block2; 1407 1408 // Accumulate pred info for the other block, too. 1409 // Note: We also need to set _pred_count for exception blocks since they could 1410 // also have normal predecessors (reached without athrow by an explicit jump). 1411 // This also means that next_path_num can be called along exception paths. 1412 block2->_pred_count++; 1413 if (i >= ns) { 1414 block2->_is_handler = true; 1415 } 1416 1417 #ifdef ASSERT 1418 // A block's successors must be distinguishable by BCI. 1419 // That is, no bytecode is allowed to branch to two different 1420 // clones of the same code location. 1421 for (int j = 0; j < i; j++) { 1422 Block* block1 = _successors[j]; 1423 if (block1 == block2) continue; // duplicates are OK 1424 assert(block1->start() != block2->start(), "successors have unique bcis"); 1425 } 1426 #endif 1427 } 1428 } 1429 1430 //---------------------------successor_for_bci--------------------------------- 1431 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1432 for (int i = 0; i < all_successors(); i++) { 1433 Block* block2 = successor_at(i); 1434 if (block2->start() == bci) return block2; 1435 } 1436 // We can actually reach here if ciTypeFlow traps out a block 1437 // due to an unloaded class, and concurrently with compilation the 1438 // class is then loaded, so that a later phase of the parser is 1439 // able to see more of the bytecode CFG. Or, the flow pass and 1440 // the parser can have a minor difference of opinion about executability 1441 // of bytecodes. For example, "obj.field = null" is executable even 1442 // if the field's type is an unloaded class; the flow pass used to 1443 // make a trap for such code. 1444 return nullptr; 1445 } 1446 1447 1448 //-----------------------------stack_type_at----------------------------------- 1449 const Type* Parse::Block::stack_type_at(int i) const { 1450 return get_type(flow()->stack_type_at(i)); 1451 } 1452 1453 1454 //-----------------------------local_type_at----------------------------------- 1455 const Type* Parse::Block::local_type_at(int i) const { 1456 // Make dead locals fall to bottom. 1457 if (_live_locals.size() == 0) { 1458 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1459 // This bitmap can be zero length if we saw a breakpoint. 1460 // In such cases, pretend they are all live. 1461 ((Block*)this)->_live_locals = live_locals; 1462 } 1463 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1464 return Type::BOTTOM; 1465 1466 return get_type(flow()->local_type_at(i)); 1467 } 1468 1469 1470 #ifndef PRODUCT 1471 1472 //----------------------------name_for_bc-------------------------------------- 1473 // helper method for BytecodeParseHistogram 1474 static const char* name_for_bc(int i) { 1475 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1476 } 1477 1478 //----------------------------BytecodeParseHistogram------------------------------------ 1479 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1480 _parser = p; 1481 _compiler = c; 1482 if( ! _initialized ) { _initialized = true; reset(); } 1483 } 1484 1485 //----------------------------current_count------------------------------------ 1486 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1487 switch( bph_type ) { 1488 case BPH_transforms: { return _parser->gvn().made_progress(); } 1489 case BPH_values: { return _parser->gvn().made_new_values(); } 1490 default: { ShouldNotReachHere(); return 0; } 1491 } 1492 } 1493 1494 //----------------------------initialized-------------------------------------- 1495 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1496 1497 //----------------------------reset-------------------------------------------- 1498 void Parse::BytecodeParseHistogram::reset() { 1499 int i = Bytecodes::number_of_codes; 1500 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1501 } 1502 1503 //----------------------------set_initial_state-------------------------------- 1504 // Record info when starting to parse one bytecode 1505 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1506 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1507 _initial_bytecode = bc; 1508 _initial_node_count = _compiler->unique(); 1509 _initial_transforms = current_count(BPH_transforms); 1510 _initial_values = current_count(BPH_values); 1511 } 1512 } 1513 1514 //----------------------------record_change-------------------------------- 1515 // Record results of parsing one bytecode 1516 void Parse::BytecodeParseHistogram::record_change() { 1517 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1518 ++_bytecodes_parsed[_initial_bytecode]; 1519 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1520 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1521 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1522 } 1523 } 1524 1525 1526 //----------------------------print-------------------------------------------- 1527 void Parse::BytecodeParseHistogram::print(float cutoff) { 1528 ResourceMark rm; 1529 // print profile 1530 int total = 0; 1531 int i = 0; 1532 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1533 int abs_sum = 0; 1534 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1535 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1536 if( total == 0 ) { return; } 1537 tty->cr(); 1538 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1539 tty->print_cr("relative: percentage contribution to compiled nodes"); 1540 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1541 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1542 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1543 tty->print_cr("values : Average number of node values improved per bytecode"); 1544 tty->print_cr("name : Bytecode name"); 1545 tty->cr(); 1546 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1547 tty->print_cr("----------------------------------------------------------------------"); 1548 while (--i > 0) { 1549 int abs = _bytecodes_parsed[i]; 1550 float rel = abs * 100.0F / total; 1551 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1552 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1553 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1554 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1555 if (cutoff <= rel) { 1556 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1557 abs_sum += abs; 1558 } 1559 } 1560 tty->print_cr("----------------------------------------------------------------------"); 1561 float rel_sum = abs_sum * 100.0F / total; 1562 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1563 tty->print_cr("----------------------------------------------------------------------"); 1564 tty->cr(); 1565 } 1566 #endif 1567 1568 //----------------------------load_state_from---------------------------------- 1569 // Load block/map/sp. But not do not touch iter/bci. 1570 void Parse::load_state_from(Block* block) { 1571 set_block(block); 1572 // load the block's JVM state: 1573 set_map(block->start_map()); 1574 set_sp( block->start_sp()); 1575 } 1576 1577 1578 //-----------------------------record_state------------------------------------ 1579 void Parse::Block::record_state(Parse* p) { 1580 assert(!is_merged(), "can only record state once, on 1st inflow"); 1581 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1582 set_start_map(p->stop()); 1583 } 1584 1585 1586 //------------------------------do_one_block----------------------------------- 1587 void Parse::do_one_block() { 1588 if (TraceOptoParse) { 1589 Block *b = block(); 1590 int ns = b->num_successors(); 1591 int nt = b->all_successors(); 1592 1593 tty->print("Parsing block #%d at bci [%d,%d), successors:", 1594 block()->rpo(), block()->start(), block()->limit()); 1595 for (int i = 0; i < nt; i++) { 1596 tty->print((( i < ns) ? " %d" : " %d(exception block)"), b->successor_at(i)->rpo()); 1597 } 1598 if (b->is_loop_head()) { 1599 tty->print(" loop head"); 1600 } 1601 if (b->is_irreducible_loop_entry()) { 1602 tty->print(" irreducible"); 1603 } 1604 tty->cr(); 1605 } 1606 1607 assert(block()->is_merged(), "must be merged before being parsed"); 1608 block()->mark_parsed(); 1609 1610 // Set iterator to start of block. 1611 iter().reset_to_bci(block()->start()); 1612 1613 if (ProfileExceptionHandlers && block()->is_handler()) { 1614 ciMethodData* methodData = method()->method_data(); 1615 if (methodData->is_mature()) { 1616 ciBitData data = methodData->exception_handler_bci_to_data(block()->start()); 1617 if (!data.exception_handler_entered() || StressPrunedExceptionHandlers) { 1618 // dead catch block 1619 // Emit an uncommon trap instead of processing the block. 1620 set_parse_bci(block()->start()); 1621 uncommon_trap(Deoptimization::Reason_unreached, 1622 Deoptimization::Action_reinterpret, 1623 nullptr, "dead catch block"); 1624 return; 1625 } 1626 } 1627 } 1628 1629 CompileLog* log = C->log(); 1630 1631 // Parse bytecodes 1632 while (!stopped() && !failing()) { 1633 iter().next(); 1634 1635 // Learn the current bci from the iterator: 1636 set_parse_bci(iter().cur_bci()); 1637 1638 if (bci() == block()->limit()) { 1639 // Do not walk into the next block until directed by do_all_blocks. 1640 merge(bci()); 1641 break; 1642 } 1643 assert(bci() < block()->limit(), "bci still in block"); 1644 1645 if (log != nullptr) { 1646 // Output an optional context marker, to help place actions 1647 // that occur during parsing of this BC. If there is no log 1648 // output until the next context string, this context string 1649 // will be silently ignored. 1650 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1651 } 1652 1653 if (block()->has_trap_at(bci())) { 1654 // We must respect the flow pass's traps, because it will refuse 1655 // to produce successors for trapping blocks. 1656 int trap_index = block()->flow()->trap_index(); 1657 assert(trap_index != 0, "trap index must be valid"); 1658 uncommon_trap(trap_index); 1659 break; 1660 } 1661 1662 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1663 1664 #ifdef ASSERT 1665 int pre_bc_sp = sp(); 1666 int inputs, depth; 1667 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1668 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1669 #endif //ASSERT 1670 1671 do_one_bytecode(); 1672 if (failing()) return; 1673 1674 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1675 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1676 1677 do_exceptions(); 1678 1679 NOT_PRODUCT( parse_histogram()->record_change(); ); 1680 1681 if (log != nullptr) 1682 log->clear_context(); // skip marker if nothing was printed 1683 1684 // Fall into next bytecode. Each bytecode normally has 1 sequential 1685 // successor which is typically made ready by visiting this bytecode. 1686 // If the successor has several predecessors, then it is a merge 1687 // point, starts a new basic block, and is handled like other basic blocks. 1688 } 1689 } 1690 1691 1692 //------------------------------merge------------------------------------------ 1693 void Parse::set_parse_bci(int bci) { 1694 set_bci(bci); 1695 Node_Notes* nn = C->default_node_notes(); 1696 if (nn == nullptr) return; 1697 1698 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1699 if (!DebugInlinedCalls && depth() > 1) { 1700 return; 1701 } 1702 1703 // Update the JVMS annotation, if present. 1704 JVMState* jvms = nn->jvms(); 1705 if (jvms != nullptr && jvms->bci() != bci) { 1706 // Update the JVMS. 1707 jvms = jvms->clone_shallow(C); 1708 jvms->set_bci(bci); 1709 nn->set_jvms(jvms); 1710 } 1711 } 1712 1713 //------------------------------merge------------------------------------------ 1714 // Merge the current mapping into the basic block starting at bci 1715 void Parse::merge(int target_bci) { 1716 Block* target = successor_for_bci(target_bci); 1717 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1718 assert(!target->is_ready(), "our arrival must be expected"); 1719 int pnum = target->next_path_num(); 1720 merge_common(target, pnum); 1721 } 1722 1723 //-------------------------merge_new_path-------------------------------------- 1724 // Merge the current mapping into the basic block, using a new path 1725 void Parse::merge_new_path(int target_bci) { 1726 Block* target = successor_for_bci(target_bci); 1727 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1728 assert(!target->is_ready(), "new path into frozen graph"); 1729 int pnum = target->add_new_path(); 1730 merge_common(target, pnum); 1731 } 1732 1733 //-------------------------merge_exception------------------------------------- 1734 // Merge the current mapping into the basic block starting at bci 1735 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1736 void Parse::merge_exception(int target_bci) { 1737 #ifdef ASSERT 1738 if (target_bci <= bci()) { 1739 C->set_exception_backedge(); 1740 } 1741 #endif 1742 assert(sp() == 1, "must have only the throw exception on the stack"); 1743 Block* target = successor_for_bci(target_bci); 1744 if (target == nullptr) { handle_missing_successor(target_bci); return; } 1745 assert(target->is_handler(), "exceptions are handled by special blocks"); 1746 int pnum = target->add_new_path(); 1747 merge_common(target, pnum); 1748 } 1749 1750 //--------------------handle_missing_successor--------------------------------- 1751 void Parse::handle_missing_successor(int target_bci) { 1752 #ifndef PRODUCT 1753 Block* b = block(); 1754 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1755 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1756 #endif 1757 ShouldNotReachHere(); 1758 } 1759 1760 //--------------------------merge_common--------------------------------------- 1761 void Parse::merge_common(Parse::Block* target, int pnum) { 1762 if (TraceOptoParse) { 1763 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1764 } 1765 1766 // Zap extra stack slots to top 1767 assert(sp() == target->start_sp(), ""); 1768 clean_stack(sp()); 1769 1770 // Check for merge conflicts involving inline types 1771 JVMState* old_jvms = map()->jvms(); 1772 int old_bci = bci(); 1773 JVMState* tmp_jvms = old_jvms->clone_shallow(C); 1774 tmp_jvms->set_should_reexecute(true); 1775 tmp_jvms->bind_map(map()); 1776 // Execution needs to restart a the next bytecode (entry of next 1777 // block) 1778 if (target->is_merged() || 1779 pnum > PhiNode::Input || 1780 target->is_handler() || 1781 target->is_loop_head()) { 1782 set_parse_bci(target->start()); 1783 for (uint j = TypeFunc::Parms; j < map()->req(); j++) { 1784 Node* n = map()->in(j); // Incoming change to target state. 1785 const Type* t = nullptr; 1786 if (tmp_jvms->is_loc(j)) { 1787 t = target->local_type_at(j - tmp_jvms->locoff()); 1788 } else if (tmp_jvms->is_stk(j) && j < (uint)sp() + tmp_jvms->stkoff()) { 1789 t = target->stack_type_at(j - tmp_jvms->stkoff()); 1790 } 1791 if (t != nullptr && t != Type::BOTTOM) { 1792 // An object can appear in the JVMS as either an oop or an InlineTypeNode. If the merge is 1793 // an InlineTypeNode, we need all the merge inputs to be InlineTypeNodes. Else, if the 1794 // merge is an oop, each merge input needs to be either an oop or an buffered 1795 // InlineTypeNode. 1796 if (!t->is_inlinetypeptr()) { 1797 // The merge cannot be an InlineTypeNode, ensure the input is buffered if it is an 1798 // InlineTypeNode 1799 if (n->is_InlineType()) { 1800 map()->set_req(j, n->as_InlineType()->buffer(this)); 1801 } 1802 } else { 1803 // Since the merge is a value object, it can either be an oop or an InlineTypeNode 1804 if (!target->is_merged()) { 1805 // This is the first processed input of the merge. If it is an InlineTypeNode, the 1806 // merge will be an InlineTypeNode. Else, try to scalarize so the merge can be 1807 // scalarized as well. However, we cannot blindly scalarize an inline type oop here 1808 // since it may be larval 1809 if (!n->is_InlineType() && gvn().type(n)->is_zero_type()) { 1810 // Null constant implies that this is not a larval object 1811 map()->set_req(j, InlineTypeNode::make_null(gvn(), t->inline_klass())); 1812 } 1813 } else { 1814 Node* phi = target->start_map()->in(j); 1815 if (phi->is_InlineType()) { 1816 // Larval oops cannot be merged with non-larval ones, and since the merge point is 1817 // non-larval, n must be non-larval as well. As a result, we can scalarize n to merge 1818 // into phi 1819 if (!n->is_InlineType()) { 1820 map()->set_req(j, InlineTypeNode::make_from_oop(this, n, t->inline_klass())); 1821 } 1822 } else { 1823 // The merge is an oop phi, ensure the input is buffered if it is an InlineTypeNode 1824 if (n->is_InlineType()) { 1825 map()->set_req(j, n->as_InlineType()->buffer(this)); 1826 } 1827 } 1828 } 1829 } 1830 } 1831 } 1832 } 1833 old_jvms->bind_map(map()); 1834 set_parse_bci(old_bci); 1835 1836 if (!target->is_merged()) { // No prior mapping at this bci 1837 if (TraceOptoParse) { tty->print(" with empty state"); } 1838 1839 // If this path is dead, do not bother capturing it as a merge. 1840 // It is "as if" we had 1 fewer predecessors from the beginning. 1841 if (stopped()) { 1842 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1843 return; 1844 } 1845 1846 // Make a region if we know there are multiple or unpredictable inputs. 1847 // (Also, if this is a plain fall-through, we might see another region, 1848 // which must not be allowed into this block's map.) 1849 if (pnum > PhiNode::Input // Known multiple inputs. 1850 || target->is_handler() // These have unpredictable inputs. 1851 || target->is_loop_head() // Known multiple inputs 1852 || control()->is_Region()) { // We must hide this guy. 1853 1854 int current_bci = bci(); 1855 set_parse_bci(target->start()); // Set target bci 1856 if (target->is_SEL_head()) { 1857 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1858 if (target->start() == 0) { 1859 // Add Parse Predicates for the special case when 1860 // there are backbranches to the method entry. 1861 add_parse_predicates(); 1862 } 1863 } 1864 // Add a Region to start the new basic block. Phis will be added 1865 // later lazily. 1866 int edges = target->pred_count(); 1867 if (edges < pnum) edges = pnum; // might be a new path! 1868 RegionNode *r = new RegionNode(edges+1); 1869 gvn().set_type(r, Type::CONTROL); 1870 record_for_igvn(r); 1871 // zap all inputs to null for debugging (done in Node(uint) constructor) 1872 // for (int j = 1; j < edges+1; j++) { r->init_req(j, nullptr); } 1873 r->init_req(pnum, control()); 1874 set_control(r); 1875 target->copy_irreducible_status_to(r, jvms()); 1876 set_parse_bci(current_bci); // Restore bci 1877 } 1878 1879 // Convert the existing Parser mapping into a mapping at this bci. 1880 store_state_to(target); 1881 assert(target->is_merged(), "do not come here twice"); 1882 1883 } else { // Prior mapping at this bci 1884 if (TraceOptoParse) { tty->print(" with previous state"); } 1885 #ifdef ASSERT 1886 if (target->is_SEL_head()) { 1887 target->mark_merged_backedge(block()); 1888 } 1889 #endif 1890 1891 // We must not manufacture more phis if the target is already parsed. 1892 bool nophi = target->is_parsed(); 1893 1894 SafePointNode* newin = map();// Hang on to incoming mapping 1895 Block* save_block = block(); // Hang on to incoming block; 1896 load_state_from(target); // Get prior mapping 1897 1898 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1899 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1900 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1901 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1902 1903 // Iterate over my current mapping and the old mapping. 1904 // Where different, insert Phi functions. 1905 // Use any existing Phi functions. 1906 assert(control()->is_Region(), "must be merging to a region"); 1907 RegionNode* r = control()->as_Region(); 1908 1909 // Compute where to merge into 1910 // Merge incoming control path 1911 r->init_req(pnum, newin->control()); 1912 1913 if (pnum == 1) { // Last merge for this Region? 1914 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1915 Node* result = _gvn.transform(r); 1916 if (r != result && TraceOptoParse) { 1917 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1918 } 1919 } 1920 record_for_igvn(r); 1921 } 1922 1923 // Update all the non-control inputs to map: 1924 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1925 bool check_elide_phi = target->is_SEL_backedge(save_block); 1926 bool last_merge = (pnum == PhiNode::Input); 1927 for (uint j = 1; j < newin->req(); j++) { 1928 Node* m = map()->in(j); // Current state of target. 1929 Node* n = newin->in(j); // Incoming change to target state. 1930 Node* phi; 1931 if (m->is_Phi() && m->as_Phi()->region() == r) { 1932 phi = m; 1933 } else if (m->is_InlineType() && m->as_InlineType()->has_phi_inputs(r)) { 1934 phi = m; 1935 } else { 1936 phi = nullptr; 1937 } 1938 if (m != n) { // Different; must merge 1939 switch (j) { 1940 // Frame pointer and Return Address never changes 1941 case TypeFunc::FramePtr:// Drop m, use the original value 1942 case TypeFunc::ReturnAdr: 1943 break; 1944 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1945 assert(phi == nullptr, "the merge contains phis, not vice versa"); 1946 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1947 continue; 1948 default: // All normal stuff 1949 if (phi == nullptr) { 1950 const JVMState* jvms = map()->jvms(); 1951 if (EliminateNestedLocks && 1952 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1953 // BoxLock nodes are not commoning when EliminateNestedLocks is on. 1954 // Use old BoxLock node as merged box. 1955 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1956 // This assert also tests that nodes are BoxLock. 1957 assert(BoxLockNode::same_slot(n, m), "sanity"); 1958 BoxLockNode* old_box = m->as_BoxLock(); 1959 if (n->as_BoxLock()->is_unbalanced() && !old_box->is_unbalanced()) { 1960 // Preserve Unbalanced status. 1961 // 1962 // `old_box` can have only Regular or Coarsened status 1963 // because this code is executed only during Parse phase and 1964 // Incremental Inlining before EA and Macro nodes elimination. 1965 // 1966 // Incremental Inlining is executed after IGVN optimizations 1967 // during which BoxLock can be marked as Coarsened. 1968 old_box->set_coarsened(); // Verifies state 1969 old_box->set_unbalanced(); 1970 } 1971 C->gvn_replace_by(n, m); 1972 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1973 phi = ensure_phi(j, nophi); 1974 } 1975 } 1976 break; 1977 } 1978 } 1979 // At this point, n might be top if: 1980 // - there is no phi (because TypeFlow detected a conflict), or 1981 // - the corresponding control edges is top (a dead incoming path) 1982 // It is a bug if we create a phi which sees a garbage value on a live path. 1983 1984 // Merging two inline types? 1985 if (phi != nullptr && phi->is_InlineType()) { 1986 // Reload current state because it may have been updated by ensure_phi 1987 assert(phi == map()->in(j), "unexpected value in map"); 1988 assert(phi->as_InlineType()->has_phi_inputs(r), ""); 1989 InlineTypeNode* vtm = phi->as_InlineType(); // Current inline type 1990 InlineTypeNode* vtn = n->as_InlineType(); // Incoming inline type 1991 assert(vtm == phi, "Inline type should have Phi input"); 1992 1993 #ifdef ASSERT 1994 if (TraceOptoParse) { 1995 tty->print_cr("\nMerging inline types"); 1996 tty->print_cr("Current:"); 1997 vtm->dump(2); 1998 tty->print_cr("Incoming:"); 1999 vtn->dump(2); 2000 tty->cr(); 2001 } 2002 #endif 2003 // Do the merge 2004 vtm->merge_with(&_gvn, vtn, pnum, last_merge); 2005 if (last_merge) { 2006 map()->set_req(j, _gvn.transform(vtm)); 2007 record_for_igvn(vtm); 2008 } 2009 } else if (phi != nullptr) { 2010 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 2011 assert(phi->as_Phi()->region() == r, ""); 2012 phi->set_req(pnum, n); // Then add 'n' to the merge 2013 if (last_merge) { 2014 // Last merge for this Phi. 2015 // So far, Phis have had a reasonable type from ciTypeFlow. 2016 // Now _gvn will join that with the meet of current inputs. 2017 // BOTTOM is never permissible here, 'cause pessimistically 2018 // Phis of pointers cannot lose the basic pointer type. 2019 debug_only(const Type* bt1 = phi->bottom_type()); 2020 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 2021 map()->set_req(j, _gvn.transform(phi)); 2022 debug_only(const Type* bt2 = phi->bottom_type()); 2023 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 2024 record_for_igvn(phi); 2025 } 2026 } 2027 } // End of for all values to be merged 2028 2029 if (last_merge && !r->in(0)) { // The occasional useless Region 2030 assert(control() == r, ""); 2031 set_control(r->nonnull_req()); 2032 } 2033 2034 map()->merge_replaced_nodes_with(newin); 2035 2036 // newin has been subsumed into the lazy merge, and is now dead. 2037 set_block(save_block); 2038 2039 stop(); // done with this guy, for now 2040 } 2041 2042 if (TraceOptoParse) { 2043 tty->print_cr(" on path %d", pnum); 2044 } 2045 2046 // Done with this parser state. 2047 assert(stopped(), ""); 2048 } 2049 2050 2051 //--------------------------merge_memory_edges--------------------------------- 2052 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 2053 // (nophi means we must not create phis, because we already parsed here) 2054 assert(n != nullptr, ""); 2055 // Merge the inputs to the MergeMems 2056 MergeMemNode* m = merged_memory(); 2057 2058 assert(control()->is_Region(), "must be merging to a region"); 2059 RegionNode* r = control()->as_Region(); 2060 2061 PhiNode* base = nullptr; 2062 MergeMemNode* remerge = nullptr; 2063 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 2064 Node *p = mms.force_memory(); 2065 Node *q = mms.memory2(); 2066 if (mms.is_empty() && nophi) { 2067 // Trouble: No new splits allowed after a loop body is parsed. 2068 // Instead, wire the new split into a MergeMem on the backedge. 2069 // The optimizer will sort it out, slicing the phi. 2070 if (remerge == nullptr) { 2071 guarantee(base != nullptr, ""); 2072 assert(base->in(0) != nullptr, "should not be xformed away"); 2073 remerge = MergeMemNode::make(base->in(pnum)); 2074 gvn().set_type(remerge, Type::MEMORY); 2075 base->set_req(pnum, remerge); 2076 } 2077 remerge->set_memory_at(mms.alias_idx(), q); 2078 continue; 2079 } 2080 assert(!q->is_MergeMem(), ""); 2081 PhiNode* phi; 2082 if (p != q) { 2083 phi = ensure_memory_phi(mms.alias_idx(), nophi); 2084 } else { 2085 if (p->is_Phi() && p->as_Phi()->region() == r) 2086 phi = p->as_Phi(); 2087 else 2088 phi = nullptr; 2089 } 2090 // Insert q into local phi 2091 if (phi != nullptr) { 2092 assert(phi->region() == r, ""); 2093 p = phi; 2094 phi->set_req(pnum, q); 2095 if (mms.at_base_memory()) { 2096 base = phi; // delay transforming it 2097 } else if (pnum == 1) { 2098 record_for_igvn(phi); 2099 p = _gvn.transform(phi); 2100 } 2101 mms.set_memory(p);// store back through the iterator 2102 } 2103 } 2104 // Transform base last, in case we must fiddle with remerging. 2105 if (base != nullptr && pnum == 1) { 2106 record_for_igvn(base); 2107 m->set_base_memory(_gvn.transform(base)); 2108 } 2109 } 2110 2111 2112 //------------------------ensure_phis_everywhere------------------------------- 2113 void Parse::ensure_phis_everywhere() { 2114 ensure_phi(TypeFunc::I_O); 2115 2116 // Ensure a phi on all currently known memories. 2117 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 2118 ensure_memory_phi(mms.alias_idx()); 2119 debug_only(mms.set_memory()); // keep the iterator happy 2120 } 2121 2122 // Note: This is our only chance to create phis for memory slices. 2123 // If we miss a slice that crops up later, it will have to be 2124 // merged into the base-memory phi that we are building here. 2125 // Later, the optimizer will comb out the knot, and build separate 2126 // phi-loops for each memory slice that matters. 2127 2128 // Monitors must nest nicely and not get confused amongst themselves. 2129 // Phi-ify everything up to the monitors, though. 2130 uint monoff = map()->jvms()->monoff(); 2131 uint nof_monitors = map()->jvms()->nof_monitors(); 2132 2133 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 2134 bool check_elide_phi = block()->is_SEL_head(); 2135 for (uint i = TypeFunc::Parms; i < monoff; i++) { 2136 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 2137 ensure_phi(i); 2138 } 2139 } 2140 2141 // Even monitors need Phis, though they are well-structured. 2142 // This is true for OSR methods, and also for the rare cases where 2143 // a monitor object is the subject of a replace_in_map operation. 2144 // See bugs 4426707 and 5043395. 2145 for (uint m = 0; m < nof_monitors; m++) { 2146 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 2147 } 2148 } 2149 2150 2151 //-----------------------------add_new_path------------------------------------ 2152 // Add a previously unaccounted predecessor to this block. 2153 int Parse::Block::add_new_path() { 2154 // If there is no map, return the lowest unused path number. 2155 if (!is_merged()) return pred_count()+1; // there will be a map shortly 2156 2157 SafePointNode* map = start_map(); 2158 if (!map->control()->is_Region()) 2159 return pred_count()+1; // there may be a region some day 2160 RegionNode* r = map->control()->as_Region(); 2161 2162 // Add new path to the region. 2163 uint pnum = r->req(); 2164 r->add_req(nullptr); 2165 2166 for (uint i = 1; i < map->req(); i++) { 2167 Node* n = map->in(i); 2168 if (i == TypeFunc::Memory) { 2169 // Ensure a phi on all currently known memories. 2170 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 2171 Node* phi = mms.memory(); 2172 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 2173 assert(phi->req() == pnum, "must be same size as region"); 2174 phi->add_req(nullptr); 2175 } 2176 } 2177 } else { 2178 if (n->is_Phi() && n->as_Phi()->region() == r) { 2179 assert(n->req() == pnum, "must be same size as region"); 2180 n->add_req(nullptr); 2181 } else if (n->is_InlineType() && n->as_InlineType()->has_phi_inputs(r)) { 2182 n->as_InlineType()->add_new_path(r); 2183 } 2184 } 2185 } 2186 2187 return pnum; 2188 } 2189 2190 //------------------------------ensure_phi------------------------------------- 2191 // Turn the idx'th entry of the current map into a Phi 2192 Node* Parse::ensure_phi(int idx, bool nocreate) { 2193 SafePointNode* map = this->map(); 2194 Node* region = map->control(); 2195 assert(region->is_Region(), ""); 2196 2197 Node* o = map->in(idx); 2198 assert(o != nullptr, ""); 2199 2200 if (o == top()) return nullptr; // TOP always merges into TOP 2201 2202 if (o->is_Phi() && o->as_Phi()->region() == region) { 2203 return o->as_Phi(); 2204 } 2205 InlineTypeNode* vt = o->isa_InlineType(); 2206 if (vt != nullptr && vt->has_phi_inputs(region)) { 2207 return vt; 2208 } 2209 2210 // Now use a Phi here for merging 2211 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2212 const JVMState* jvms = map->jvms(); 2213 const Type* t = nullptr; 2214 if (jvms->is_loc(idx)) { 2215 t = block()->local_type_at(idx - jvms->locoff()); 2216 } else if (jvms->is_stk(idx)) { 2217 t = block()->stack_type_at(idx - jvms->stkoff()); 2218 } else if (jvms->is_mon(idx)) { 2219 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 2220 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 2221 } else if ((uint)idx < TypeFunc::Parms) { 2222 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 2223 } else { 2224 assert(false, "no type information for this phi"); 2225 } 2226 2227 // If the type falls to bottom, then this must be a local that 2228 // is already dead or is mixing ints and oops or some such. 2229 // Forcing it to top makes it go dead. 2230 if (t == Type::BOTTOM) { 2231 map->set_req(idx, top()); 2232 return nullptr; 2233 } 2234 2235 // Do not create phis for top either. 2236 // A top on a non-null control flow must be an unused even after the.phi. 2237 if (t == Type::TOP || t == Type::HALF) { 2238 map->set_req(idx, top()); 2239 return nullptr; 2240 } 2241 2242 if (vt != nullptr && t->is_inlinetypeptr()) { 2243 // Inline types are merged by merging their field values. 2244 // Create a cloned InlineTypeNode with phi inputs that 2245 // represents the merged inline type and update the map. 2246 vt = vt->clone_with_phis(&_gvn, region); 2247 map->set_req(idx, vt); 2248 return vt; 2249 } else { 2250 PhiNode* phi = PhiNode::make(region, o, t); 2251 gvn().set_type(phi, t); 2252 if (C->do_escape_analysis()) record_for_igvn(phi); 2253 map->set_req(idx, phi); 2254 return phi; 2255 } 2256 } 2257 2258 //--------------------------ensure_memory_phi---------------------------------- 2259 // Turn the idx'th slice of the current memory into a Phi 2260 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2261 MergeMemNode* mem = merged_memory(); 2262 Node* region = control(); 2263 assert(region->is_Region(), ""); 2264 2265 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2266 assert(o != nullptr && o != top(), ""); 2267 2268 PhiNode* phi; 2269 if (o->is_Phi() && o->as_Phi()->region() == region) { 2270 phi = o->as_Phi(); 2271 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2272 // clone the shared base memory phi to make a new memory split 2273 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2274 const Type* t = phi->bottom_type(); 2275 const TypePtr* adr_type = C->get_adr_type(idx); 2276 phi = phi->slice_memory(adr_type); 2277 gvn().set_type(phi, t); 2278 } 2279 return phi; 2280 } 2281 2282 // Now use a Phi here for merging 2283 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2284 const Type* t = o->bottom_type(); 2285 const TypePtr* adr_type = C->get_adr_type(idx); 2286 phi = PhiNode::make(region, o, t, adr_type); 2287 gvn().set_type(phi, t); 2288 if (idx == Compile::AliasIdxBot) 2289 mem->set_base_memory(phi); 2290 else 2291 mem->set_memory_at(idx, phi); 2292 return phi; 2293 } 2294 2295 //------------------------------call_register_finalizer----------------------- 2296 // Check the klass of the receiver and call register_finalizer if the 2297 // class need finalization. 2298 void Parse::call_register_finalizer() { 2299 Node* receiver = local(0); 2300 assert(receiver != nullptr && receiver->bottom_type()->isa_instptr() != nullptr, 2301 "must have non-null instance type"); 2302 2303 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2304 if (tinst != nullptr && tinst->is_loaded() && !tinst->klass_is_exact()) { 2305 // The type isn't known exactly so see if CHA tells us anything. 2306 ciInstanceKlass* ik = tinst->instance_klass(); 2307 if (!Dependencies::has_finalizable_subclass(ik)) { 2308 // No finalizable subclasses so skip the dynamic check. 2309 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2310 return; 2311 } 2312 } 2313 2314 // Insert a dynamic test for whether the instance needs 2315 // finalization. In general this will fold up since the concrete 2316 // class is often visible so the access flags are constant. 2317 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2318 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2319 2320 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::misc_flags_offset())); 2321 Node* access_flags = make_load(nullptr, access_flags_addr, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2322 2323 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(KlassFlags::_misc_has_finalizer))); 2324 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2325 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2326 2327 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2328 2329 RegionNode* result_rgn = new RegionNode(3); 2330 record_for_igvn(result_rgn); 2331 2332 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2333 result_rgn->init_req(1, skip_register); 2334 2335 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2336 set_control(needs_register); 2337 if (stopped()) { 2338 // There is no slow path. 2339 result_rgn->init_req(2, top()); 2340 } else { 2341 Node *call = make_runtime_call(RC_NO_LEAF, 2342 OptoRuntime::register_finalizer_Type(), 2343 OptoRuntime::register_finalizer_Java(), 2344 nullptr, TypePtr::BOTTOM, 2345 receiver); 2346 make_slow_call_ex(call, env()->Throwable_klass(), true); 2347 2348 Node* fast_io = call->in(TypeFunc::I_O); 2349 Node* fast_mem = call->in(TypeFunc::Memory); 2350 // These two phis are pre-filled with copies of of the fast IO and Memory 2351 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2352 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2353 2354 result_rgn->init_req(2, control()); 2355 io_phi ->init_req(2, i_o()); 2356 mem_phi ->init_req(2, reset_memory()); 2357 2358 set_all_memory( _gvn.transform(mem_phi) ); 2359 set_i_o( _gvn.transform(io_phi) ); 2360 } 2361 2362 set_control( _gvn.transform(result_rgn) ); 2363 } 2364 2365 // Add check to deoptimize once holder klass is fully initialized. 2366 void Parse::clinit_deopt() { 2367 assert(C->has_method(), "only for normal compilations"); 2368 assert(depth() == 1, "only for main compiled method"); 2369 assert(is_normal_parse(), "no barrier needed on osr entry"); 2370 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2371 2372 set_parse_bci(0); 2373 2374 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2375 guard_klass_being_initialized(holder); 2376 } 2377 2378 //------------------------------return_current--------------------------------- 2379 // Append current _map to _exit_return 2380 void Parse::return_current(Node* value) { 2381 if (method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2382 call_register_finalizer(); 2383 } 2384 2385 // frame pointer is always same, already captured 2386 if (value != nullptr) { 2387 Node* phi = _exits.argument(0); 2388 const Type* return_type = phi->bottom_type(); 2389 const TypeInstPtr* tr = return_type->isa_instptr(); 2390 if ((tf()->returns_inline_type_as_fields() || (_caller->has_method() && !Compile::current()->inlining_incrementally())) && 2391 return_type->is_inlinetypeptr()) { 2392 // Inline type is returned as fields, make sure it is scalarized 2393 if (!value->is_InlineType()) { 2394 value = InlineTypeNode::make_from_oop(this, value, return_type->inline_klass()); 2395 } 2396 if (!_caller->has_method() || Compile::current()->inlining_incrementally()) { 2397 // Returning from root or an incrementally inlined method. Make sure all non-flat 2398 // fields are buffered and re-execute if allocation triggers deoptimization. 2399 PreserveReexecuteState preexecs(this); 2400 assert(tf()->returns_inline_type_as_fields(), "must be returned as fields"); 2401 jvms()->set_should_reexecute(true); 2402 inc_sp(1); 2403 value = value->as_InlineType()->allocate_fields(this); 2404 } 2405 } else if (value->is_InlineType()) { 2406 // Inline type is returned as oop, make sure it is buffered and re-execute 2407 // if allocation triggers deoptimization. 2408 PreserveReexecuteState preexecs(this); 2409 jvms()->set_should_reexecute(true); 2410 inc_sp(1); 2411 value = value->as_InlineType()->buffer(this); 2412 } 2413 // ...else 2414 // If returning oops to an interface-return, there is a silent free 2415 // cast from oop to interface allowed by the Verifier. Make it explicit here. 2416 phi->add_req(value); 2417 } 2418 2419 // Do not set_parse_bci, so that return goo is credited to the return insn. 2420 set_bci(InvocationEntryBci); 2421 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2422 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2423 } 2424 if (C->env()->dtrace_method_probes()) { 2425 make_dtrace_method_exit(method()); 2426 } 2427 2428 SafePointNode* exit_return = _exits.map(); 2429 exit_return->in( TypeFunc::Control )->add_req( control() ); 2430 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2431 Node *mem = exit_return->in( TypeFunc::Memory ); 2432 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2433 if (mms.is_empty()) { 2434 // get a copy of the base memory, and patch just this one input 2435 const TypePtr* adr_type = mms.adr_type(C); 2436 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2437 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2438 gvn().set_type_bottom(phi); 2439 phi->del_req(phi->req()-1); // prepare to re-patch 2440 mms.set_memory(phi); 2441 } 2442 mms.memory()->add_req(mms.memory2()); 2443 } 2444 2445 if (_first_return) { 2446 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2447 _first_return = false; 2448 } else { 2449 _exits.map()->merge_replaced_nodes_with(map()); 2450 } 2451 2452 stop_and_kill_map(); // This CFG path dies here 2453 } 2454 2455 2456 //------------------------------add_safepoint---------------------------------- 2457 void Parse::add_safepoint() { 2458 uint parms = TypeFunc::Parms+1; 2459 2460 // Clear out dead values from the debug info. 2461 kill_dead_locals(); 2462 2463 // Clone the JVM State 2464 SafePointNode *sfpnt = new SafePointNode(parms, nullptr); 2465 2466 // Capture memory state BEFORE a SafePoint. Since we can block at a 2467 // SafePoint we need our GC state to be safe; i.e. we need all our current 2468 // write barriers (card marks) to not float down after the SafePoint so we 2469 // must read raw memory. Likewise we need all oop stores to match the card 2470 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2471 // state on a deopt). 2472 2473 // We do not need to WRITE the memory state after a SafePoint. The control 2474 // edge will keep card-marks and oop-stores from floating up from below a 2475 // SafePoint and our true dependency added here will keep them from floating 2476 // down below a SafePoint. 2477 2478 // Clone the current memory state 2479 Node* mem = MergeMemNode::make(map()->memory()); 2480 2481 mem = _gvn.transform(mem); 2482 2483 // Pass control through the safepoint 2484 sfpnt->init_req(TypeFunc::Control , control()); 2485 // Fix edges normally used by a call 2486 sfpnt->init_req(TypeFunc::I_O , top() ); 2487 sfpnt->init_req(TypeFunc::Memory , mem ); 2488 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2489 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2490 2491 // Create a node for the polling address 2492 Node *polladr; 2493 Node *thread = _gvn.transform(new ThreadLocalNode()); 2494 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2495 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2496 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2497 2498 // Fix up the JVM State edges 2499 add_safepoint_edges(sfpnt); 2500 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2501 set_control(transformed_sfpnt); 2502 2503 // Provide an edge from root to safepoint. This makes the safepoint 2504 // appear useful until the parse has completed. 2505 if (transformed_sfpnt->is_SafePoint()) { 2506 assert(C->root() != nullptr, "Expect parse is still valid"); 2507 C->root()->add_prec(transformed_sfpnt); 2508 } 2509 } 2510 2511 #ifndef PRODUCT 2512 //------------------------show_parse_info-------------------------------------- 2513 void Parse::show_parse_info() { 2514 InlineTree* ilt = nullptr; 2515 if (C->ilt() != nullptr) { 2516 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2517 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2518 } 2519 if (PrintCompilation && Verbose) { 2520 if (depth() == 1) { 2521 if( ilt->count_inlines() ) { 2522 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2523 ilt->count_inline_bcs()); 2524 tty->cr(); 2525 } 2526 } else { 2527 if (method()->is_synchronized()) tty->print("s"); 2528 if (method()->has_exception_handlers()) tty->print("!"); 2529 // Check this is not the final compiled version 2530 if (C->trap_can_recompile()) { 2531 tty->print("-"); 2532 } else { 2533 tty->print(" "); 2534 } 2535 method()->print_short_name(); 2536 if (is_osr_parse()) { 2537 tty->print(" @ %d", osr_bci()); 2538 } 2539 tty->print(" (%d bytes)",method()->code_size()); 2540 if (ilt->count_inlines()) { 2541 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2542 ilt->count_inline_bcs()); 2543 } 2544 tty->cr(); 2545 } 2546 } 2547 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2548 // Print that we succeeded; suppress this message on the first osr parse. 2549 2550 if (method()->is_synchronized()) tty->print("s"); 2551 if (method()->has_exception_handlers()) tty->print("!"); 2552 // Check this is not the final compiled version 2553 if (C->trap_can_recompile() && depth() == 1) { 2554 tty->print("-"); 2555 } else { 2556 tty->print(" "); 2557 } 2558 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2559 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2560 method()->print_short_name(); 2561 if (is_osr_parse()) { 2562 tty->print(" @ %d", osr_bci()); 2563 } 2564 if (ilt->caller_bci() != -1) { 2565 tty->print(" @ %d", ilt->caller_bci()); 2566 } 2567 tty->print(" (%d bytes)",method()->code_size()); 2568 if (ilt->count_inlines()) { 2569 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2570 ilt->count_inline_bcs()); 2571 } 2572 tty->cr(); 2573 } 2574 } 2575 2576 2577 //------------------------------dump------------------------------------------- 2578 // Dump information associated with the bytecodes of current _method 2579 void Parse::dump() { 2580 if( method() != nullptr ) { 2581 // Iterate over bytecodes 2582 ciBytecodeStream iter(method()); 2583 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2584 dump_bci( iter.cur_bci() ); 2585 tty->cr(); 2586 } 2587 } 2588 } 2589 2590 // Dump information associated with a byte code index, 'bci' 2591 void Parse::dump_bci(int bci) { 2592 // Output info on merge-points, cloning, and within _jsr..._ret 2593 // NYI 2594 tty->print(" bci:%d", bci); 2595 } 2596 2597 #endif