1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "interpreter/linkResolver.hpp" 30 #include "jvm_io.h" 31 #include "memory/resourceArea.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/divnode.hpp" 38 #include "opto/idealGraphPrinter.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/memnode.hpp" 41 #include "opto/mulnode.hpp" 42 #include "opto/opaquenode.hpp" 43 #include "opto/parse.hpp" 44 #include "opto/runtime.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 48 #ifndef PRODUCT 49 extern uint explicit_null_checks_inserted, 50 explicit_null_checks_elided; 51 #endif 52 53 //---------------------------------array_load---------------------------------- 54 void Parse::array_load(BasicType bt) { 55 const Type* elemtype = Type::TOP; 56 bool big_val = bt == T_DOUBLE || bt == T_LONG; 57 Node* adr = array_addressing(bt, 0, elemtype); 58 if (stopped()) return; // guaranteed null or range check 59 60 pop(); // index (already used) 61 Node* array = pop(); // the array itself 62 63 if (elemtype == TypeInt::BOOL) { 64 bt = T_BOOLEAN; 65 } 66 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 67 68 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 69 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 70 if (big_val) { 71 push_pair(ld); 72 } else { 73 push(ld); 74 } 75 } 76 77 78 //--------------------------------array_store---------------------------------- 79 void Parse::array_store(BasicType bt) { 80 const Type* elemtype = Type::TOP; 81 bool big_val = bt == T_DOUBLE || bt == T_LONG; 82 Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype); 83 if (stopped()) return; // guaranteed null or range check 84 if (bt == T_OBJECT) { 85 array_store_check(); 86 if (stopped()) { 87 return; 88 } 89 } 90 Node* val; // Oop to store 91 if (big_val) { 92 val = pop_pair(); 93 } else { 94 val = pop(); 95 } 96 pop(); // index (already used) 97 Node* array = pop(); // the array itself 98 99 if (elemtype == TypeInt::BOOL) { 100 bt = T_BOOLEAN; 101 } 102 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 103 104 access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 105 } 106 107 108 //------------------------------array_addressing------------------------------- 109 // Pull array and index from the stack. Compute pointer-to-element. 110 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 111 Node *idx = peek(0+vals); // Get from stack without popping 112 Node *ary = peek(1+vals); // in case of exception 113 114 // Null check the array base, with correct stack contents 115 ary = null_check(ary, T_ARRAY); 116 // Compile-time detect of null-exception? 117 if (stopped()) return top(); 118 119 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 120 const TypeInt* sizetype = arytype->size(); 121 elemtype = arytype->elem(); 122 123 if (UseUniqueSubclasses) { 124 const Type* el = elemtype->make_ptr(); 125 if (el && el->isa_instptr()) { 126 const TypeInstPtr* toop = el->is_instptr(); 127 if (toop->instance_klass()->unique_concrete_subklass()) { 128 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 129 const Type* subklass = Type::get_const_type(toop->instance_klass()); 130 elemtype = subklass->join_speculative(el); 131 } 132 } 133 } 134 135 // Check for big class initializers with all constant offsets 136 // feeding into a known-size array. 137 const TypeInt* idxtype = _gvn.type(idx)->is_int(); 138 // See if the highest idx value is less than the lowest array bound, 139 // and if the idx value cannot be negative: 140 bool need_range_check = true; 141 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { 142 need_range_check = false; 143 if (C->log() != nullptr) C->log()->elem("observe that='!need_range_check'"); 144 } 145 146 if (!arytype->is_loaded()) { 147 // Only fails for some -Xcomp runs 148 // The class is unloaded. We have to run this bytecode in the interpreter. 149 ciKlass* klass = arytype->unloaded_klass(); 150 151 uncommon_trap(Deoptimization::Reason_unloaded, 152 Deoptimization::Action_reinterpret, 153 klass, "!loaded array"); 154 return top(); 155 } 156 157 // Do the range check 158 if (need_range_check) { 159 Node* tst; 160 if (sizetype->_hi <= 0) { 161 // The greatest array bound is negative, so we can conclude that we're 162 // compiling unreachable code, but the unsigned compare trick used below 163 // only works with non-negative lengths. Instead, hack "tst" to be zero so 164 // the uncommon_trap path will always be taken. 165 tst = _gvn.intcon(0); 166 } else { 167 // Range is constant in array-oop, so we can use the original state of mem 168 Node* len = load_array_length(ary); 169 170 // Test length vs index (standard trick using unsigned compare) 171 Node* chk = _gvn.transform( new CmpUNode(idx, len) ); 172 BoolTest::mask btest = BoolTest::lt; 173 tst = _gvn.transform( new BoolNode(chk, btest) ); 174 } 175 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 176 _gvn.set_type(rc, rc->Value(&_gvn)); 177 if (!tst->is_Con()) { 178 record_for_igvn(rc); 179 } 180 set_control(_gvn.transform(new IfTrueNode(rc))); 181 // Branch to failure if out of bounds 182 { 183 PreserveJVMState pjvms(this); 184 set_control(_gvn.transform(new IfFalseNode(rc))); 185 if (C->allow_range_check_smearing()) { 186 // Do not use builtin_throw, since range checks are sometimes 187 // made more stringent by an optimistic transformation. 188 // This creates "tentative" range checks at this point, 189 // which are not guaranteed to throw exceptions. 190 // See IfNode::Ideal, is_range_check, adjust_check. 191 uncommon_trap(Deoptimization::Reason_range_check, 192 Deoptimization::Action_make_not_entrant, 193 nullptr, "range_check"); 194 } else { 195 // If we have already recompiled with the range-check-widening 196 // heroic optimization turned off, then we must really be throwing 197 // range check exceptions. 198 builtin_throw(Deoptimization::Reason_range_check); 199 } 200 } 201 } 202 // Check for always knowing you are throwing a range-check exception 203 if (stopped()) return top(); 204 205 // Make array address computation control dependent to prevent it 206 // from floating above the range check during loop optimizations. 207 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 208 assert(ptr != top(), "top should go hand-in-hand with stopped"); 209 210 return ptr; 211 } 212 213 214 // returns IfNode 215 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 216 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 217 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 218 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 219 return iff; 220 } 221 222 223 // sentinel value for the target bci to mark never taken branches 224 // (according to profiling) 225 static const int never_reached = INT_MAX; 226 227 //------------------------------helper for tableswitch------------------------- 228 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 229 // True branch, use existing map info 230 { PreserveJVMState pjvms(this); 231 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 232 set_control( iftrue ); 233 if (unc) { 234 repush_if_args(); 235 uncommon_trap(Deoptimization::Reason_unstable_if, 236 Deoptimization::Action_reinterpret, 237 nullptr, 238 "taken always"); 239 } else { 240 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 241 merge_new_path(dest_bci_if_true); 242 } 243 } 244 245 // False branch 246 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 247 set_control( iffalse ); 248 } 249 250 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 251 // True branch, use existing map info 252 { PreserveJVMState pjvms(this); 253 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 254 set_control( iffalse ); 255 if (unc) { 256 repush_if_args(); 257 uncommon_trap(Deoptimization::Reason_unstable_if, 258 Deoptimization::Action_reinterpret, 259 nullptr, 260 "taken never"); 261 } else { 262 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 263 merge_new_path(dest_bci_if_true); 264 } 265 } 266 267 // False branch 268 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 269 set_control( iftrue ); 270 } 271 272 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 273 // False branch, use existing map and control() 274 if (unc) { 275 repush_if_args(); 276 uncommon_trap(Deoptimization::Reason_unstable_if, 277 Deoptimization::Action_reinterpret, 278 nullptr, 279 "taken never"); 280 } else { 281 assert(dest_bci != never_reached, "inconsistent dest"); 282 merge_new_path(dest_bci); 283 } 284 } 285 286 287 extern "C" { 288 static int jint_cmp(const void *i, const void *j) { 289 int a = *(jint *)i; 290 int b = *(jint *)j; 291 return a > b ? 1 : a < b ? -1 : 0; 292 } 293 } 294 295 296 class SwitchRange : public StackObj { 297 // a range of integers coupled with a bci destination 298 jint _lo; // inclusive lower limit 299 jint _hi; // inclusive upper limit 300 int _dest; 301 float _cnt; // how many times this range was hit according to profiling 302 303 public: 304 jint lo() const { return _lo; } 305 jint hi() const { return _hi; } 306 int dest() const { return _dest; } 307 bool is_singleton() const { return _lo == _hi; } 308 float cnt() const { return _cnt; } 309 310 void setRange(jint lo, jint hi, int dest, float cnt) { 311 assert(lo <= hi, "must be a non-empty range"); 312 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 313 assert(_cnt >= 0, ""); 314 } 315 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 316 assert(lo <= hi, "must be a non-empty range"); 317 if (lo == _hi+1) { 318 // see merge_ranges() comment below 319 if (trim_ranges) { 320 if (cnt == 0) { 321 if (_cnt != 0) { 322 return false; 323 } 324 if (dest != _dest) { 325 _dest = never_reached; 326 } 327 } else { 328 if (_cnt == 0) { 329 return false; 330 } 331 if (dest != _dest) { 332 return false; 333 } 334 } 335 } else { 336 if (dest != _dest) { 337 return false; 338 } 339 } 340 _hi = hi; 341 _cnt += cnt; 342 return true; 343 } 344 return false; 345 } 346 347 void set (jint value, int dest, float cnt) { 348 setRange(value, value, dest, cnt); 349 } 350 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 351 return adjoinRange(value, value, dest, cnt, trim_ranges); 352 } 353 bool adjoin(SwitchRange& other) { 354 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 355 } 356 357 void print() { 358 if (is_singleton()) 359 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 360 else if (lo() == min_jint) 361 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 362 else if (hi() == max_jint) 363 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 364 else 365 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 366 } 367 }; 368 369 // We try to minimize the number of ranges and the size of the taken 370 // ones using profiling data. When ranges are created, 371 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 372 // if both were never hit or both were hit to build longer unreached 373 // ranges. Here, we now merge adjoining ranges with the same 374 // destination and finally set destination of unreached ranges to the 375 // special value never_reached because it can help minimize the number 376 // of tests that are necessary. 377 // 378 // For instance: 379 // [0, 1] to target1 sometimes taken 380 // [1, 2] to target1 never taken 381 // [2, 3] to target2 never taken 382 // would lead to: 383 // [0, 1] to target1 sometimes taken 384 // [1, 3] never taken 385 // 386 // (first 2 ranges to target1 are not merged) 387 static void merge_ranges(SwitchRange* ranges, int& rp) { 388 if (rp == 0) { 389 return; 390 } 391 int shift = 0; 392 for (int j = 0; j < rp; j++) { 393 SwitchRange& r1 = ranges[j-shift]; 394 SwitchRange& r2 = ranges[j+1]; 395 if (r1.adjoin(r2)) { 396 shift++; 397 } else if (shift > 0) { 398 ranges[j+1-shift] = r2; 399 } 400 } 401 rp -= shift; 402 for (int j = 0; j <= rp; j++) { 403 SwitchRange& r = ranges[j]; 404 if (r.cnt() == 0 && r.dest() != never_reached) { 405 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 406 } 407 } 408 } 409 410 //-------------------------------do_tableswitch-------------------------------- 411 void Parse::do_tableswitch() { 412 // Get information about tableswitch 413 int default_dest = iter().get_dest_table(0); 414 jint lo_index = iter().get_int_table(1); 415 jint hi_index = iter().get_int_table(2); 416 int len = hi_index - lo_index + 1; 417 418 if (len < 1) { 419 // If this is a backward branch, add safepoint 420 maybe_add_safepoint(default_dest); 421 pop(); // the effect of the instruction execution on the operand stack 422 merge(default_dest); 423 return; 424 } 425 426 ciMethodData* methodData = method()->method_data(); 427 ciMultiBranchData* profile = nullptr; 428 if (methodData->is_mature() && UseSwitchProfiling) { 429 ciProfileData* data = methodData->bci_to_data(bci()); 430 if (data != nullptr && data->is_MultiBranchData()) { 431 profile = (ciMultiBranchData*)data; 432 } 433 } 434 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 435 436 // generate decision tree, using trichotomy when possible 437 int rnum = len+2; 438 bool makes_backward_branch = (default_dest <= bci()); 439 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 440 int rp = -1; 441 if (lo_index != min_jint) { 442 float cnt = 1.0F; 443 if (profile != nullptr) { 444 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 445 } 446 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 447 } 448 for (int j = 0; j < len; j++) { 449 jint match_int = lo_index+j; 450 int dest = iter().get_dest_table(j+3); 451 makes_backward_branch |= (dest <= bci()); 452 float cnt = 1.0F; 453 if (profile != nullptr) { 454 cnt = (float)profile->count_at(j); 455 } 456 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 457 ranges[++rp].set(match_int, dest, cnt); 458 } 459 } 460 jint highest = lo_index+(len-1); 461 assert(ranges[rp].hi() == highest, ""); 462 if (highest != max_jint) { 463 float cnt = 1.0F; 464 if (profile != nullptr) { 465 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 466 } 467 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 468 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 469 } 470 } 471 assert(rp < len+2, "not too many ranges"); 472 473 if (trim_ranges) { 474 merge_ranges(ranges, rp); 475 } 476 477 // Safepoint in case if backward branch observed 478 if (makes_backward_branch) { 479 add_safepoint(); 480 } 481 482 Node* lookup = pop(); // lookup value 483 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 484 } 485 486 487 //------------------------------do_lookupswitch-------------------------------- 488 void Parse::do_lookupswitch() { 489 // Get information about lookupswitch 490 int default_dest = iter().get_dest_table(0); 491 jint len = iter().get_int_table(1); 492 493 if (len < 1) { // If this is a backward branch, add safepoint 494 maybe_add_safepoint(default_dest); 495 pop(); // the effect of the instruction execution on the operand stack 496 merge(default_dest); 497 return; 498 } 499 500 ciMethodData* methodData = method()->method_data(); 501 ciMultiBranchData* profile = nullptr; 502 if (methodData->is_mature() && UseSwitchProfiling) { 503 ciProfileData* data = methodData->bci_to_data(bci()); 504 if (data != nullptr && data->is_MultiBranchData()) { 505 profile = (ciMultiBranchData*)data; 506 } 507 } 508 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 509 510 // generate decision tree, using trichotomy when possible 511 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 512 { 513 for (int j = 0; j < len; j++) { 514 table[3*j+0] = iter().get_int_table(2+2*j); 515 table[3*j+1] = iter().get_dest_table(2+2*j+1); 516 // Handle overflow when converting from uint to jint 517 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 518 } 519 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 520 } 521 522 float default_cnt = 1.0F; 523 if (profile != nullptr) { 524 juint defaults = max_juint - len; 525 default_cnt = (float)profile->default_count()/(float)defaults; 526 } 527 528 int rnum = len*2+1; 529 bool makes_backward_branch = (default_dest <= bci()); 530 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 531 int rp = -1; 532 for (int j = 0; j < len; j++) { 533 jint match_int = table[3*j+0]; 534 jint dest = table[3*j+1]; 535 jint cnt = table[3*j+2]; 536 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 537 makes_backward_branch |= (dest <= bci()); 538 float c = default_cnt * ((float)match_int - (float)next_lo); 539 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 540 assert(default_dest != never_reached, "sentinel value for dead destinations"); 541 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 542 } 543 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 544 assert(dest != never_reached, "sentinel value for dead destinations"); 545 ranges[++rp].set(match_int, dest, (float)cnt); 546 } 547 } 548 jint highest = table[3*(len-1)]; 549 assert(ranges[rp].hi() == highest, ""); 550 if (highest != max_jint && 551 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 552 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 553 } 554 assert(rp < rnum, "not too many ranges"); 555 556 if (trim_ranges) { 557 merge_ranges(ranges, rp); 558 } 559 560 // Safepoint in case backward branch observed 561 if (makes_backward_branch) { 562 add_safepoint(); 563 } 564 565 Node *lookup = pop(); // lookup value 566 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 567 } 568 569 static float if_prob(float taken_cnt, float total_cnt) { 570 assert(taken_cnt <= total_cnt, ""); 571 if (total_cnt == 0) { 572 return PROB_FAIR; 573 } 574 float p = taken_cnt / total_cnt; 575 return clamp(p, PROB_MIN, PROB_MAX); 576 } 577 578 static float if_cnt(float cnt) { 579 if (cnt == 0) { 580 return COUNT_UNKNOWN; 581 } 582 return cnt; 583 } 584 585 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 586 float total_cnt = 0; 587 for (SwitchRange* sr = lo; sr <= hi; sr++) { 588 total_cnt += sr->cnt(); 589 } 590 return total_cnt; 591 } 592 593 class SwitchRanges : public ResourceObj { 594 public: 595 SwitchRange* _lo; 596 SwitchRange* _hi; 597 SwitchRange* _mid; 598 float _cost; 599 600 enum { 601 Start, 602 LeftDone, 603 RightDone, 604 Done 605 } _state; 606 607 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 608 : _lo(lo), _hi(hi), _mid(nullptr), 609 _cost(0), _state(Start) { 610 } 611 612 SwitchRanges() 613 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 614 _cost(0), _state(Start) {} 615 }; 616 617 // Estimate cost of performing a binary search on lo..hi 618 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 619 GrowableArray<SwitchRanges> tree; 620 SwitchRanges root(lo, hi); 621 tree.push(root); 622 623 float cost = 0; 624 do { 625 SwitchRanges& r = *tree.adr_at(tree.length()-1); 626 if (r._hi != r._lo) { 627 if (r._mid == nullptr) { 628 float r_cnt = sum_of_cnts(r._lo, r._hi); 629 630 if (r_cnt == 0) { 631 tree.pop(); 632 cost = 0; 633 continue; 634 } 635 636 SwitchRange* mid = nullptr; 637 mid = r._lo; 638 for (float cnt = 0; ; ) { 639 assert(mid <= r._hi, "out of bounds"); 640 cnt += mid->cnt(); 641 if (cnt > r_cnt / 2) { 642 break; 643 } 644 mid++; 645 } 646 assert(mid <= r._hi, "out of bounds"); 647 r._mid = mid; 648 r._cost = r_cnt / total_cnt; 649 } 650 r._cost += cost; 651 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 652 cost = 0; 653 r._state = SwitchRanges::LeftDone; 654 tree.push(SwitchRanges(r._lo, r._mid-1)); 655 } else if (r._state < SwitchRanges::RightDone) { 656 cost = 0; 657 r._state = SwitchRanges::RightDone; 658 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 659 } else { 660 tree.pop(); 661 cost = r._cost; 662 } 663 } else { 664 tree.pop(); 665 cost = r._cost; 666 } 667 } while (tree.length() > 0); 668 669 670 return cost; 671 } 672 673 // It sometimes pays off to test most common ranges before the binary search 674 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 675 uint nr = hi - lo + 1; 676 float total_cnt = sum_of_cnts(lo, hi); 677 678 float min = compute_tree_cost(lo, hi, total_cnt); 679 float extra = 1; 680 float sub = 0; 681 682 SwitchRange* array1 = lo; 683 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 684 685 SwitchRange* ranges = nullptr; 686 687 while (nr >= 2) { 688 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 689 ranges = (lo == array1) ? array2 : array1; 690 691 // Find highest frequency range 692 SwitchRange* candidate = lo; 693 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 694 if (sr->cnt() > candidate->cnt()) { 695 candidate = sr; 696 } 697 } 698 SwitchRange most_freq = *candidate; 699 if (most_freq.cnt() == 0) { 700 break; 701 } 702 703 // Copy remaining ranges into another array 704 int shift = 0; 705 for (uint i = 0; i < nr; i++) { 706 SwitchRange* sr = &lo[i]; 707 if (sr != candidate) { 708 ranges[i-shift] = *sr; 709 } else { 710 shift++; 711 if (i > 0 && i < nr-1) { 712 SwitchRange prev = lo[i-1]; 713 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 714 if (prev.adjoin(lo[i+1])) { 715 shift++; 716 i++; 717 } 718 ranges[i-shift] = prev; 719 } 720 } 721 } 722 nr -= shift; 723 724 // Evaluate cost of testing the most common range and performing a 725 // binary search on the other ranges 726 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 727 if (cost >= min) { 728 break; 729 } 730 // swap arrays 731 lo = &ranges[0]; 732 hi = &ranges[nr-1]; 733 734 // It pays off: emit the test for the most common range 735 assert(most_freq.cnt() > 0, "must be taken"); 736 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 737 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 738 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 739 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 740 jump_if_true_fork(iff, most_freq.dest(), false); 741 742 sub += most_freq.cnt() / total_cnt; 743 extra += 1 - sub; 744 min = cost; 745 } 746 } 747 748 //----------------------------create_jump_tables------------------------------- 749 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 750 // Are jumptables enabled 751 if (!UseJumpTables) return false; 752 753 // Are jumptables supported 754 if (!Matcher::has_match_rule(Op_Jump)) return false; 755 756 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 757 758 // Decide if a guard is needed to lop off big ranges at either (or 759 // both) end(s) of the input set. We'll call this the default target 760 // even though we can't be sure that it is the true "default". 761 762 bool needs_guard = false; 763 int default_dest; 764 int64_t total_outlier_size = 0; 765 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 766 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 767 768 if (lo->dest() == hi->dest()) { 769 total_outlier_size = hi_size + lo_size; 770 default_dest = lo->dest(); 771 } else if (lo_size > hi_size) { 772 total_outlier_size = lo_size; 773 default_dest = lo->dest(); 774 } else { 775 total_outlier_size = hi_size; 776 default_dest = hi->dest(); 777 } 778 779 float total = sum_of_cnts(lo, hi); 780 float cost = compute_tree_cost(lo, hi, total); 781 782 // If a guard test will eliminate very sparse end ranges, then 783 // it is worth the cost of an extra jump. 784 float trimmed_cnt = 0; 785 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 786 needs_guard = true; 787 if (default_dest == lo->dest()) { 788 trimmed_cnt += lo->cnt(); 789 lo++; 790 } 791 if (default_dest == hi->dest()) { 792 trimmed_cnt += hi->cnt(); 793 hi--; 794 } 795 } 796 797 // Find the total number of cases and ranges 798 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 799 int num_range = hi - lo + 1; 800 801 // Don't create table if: too large, too small, or too sparse. 802 if (num_cases > MaxJumpTableSize) 803 return false; 804 if (UseSwitchProfiling) { 805 // MinJumpTableSize is set so with a well balanced binary tree, 806 // when the number of ranges is MinJumpTableSize, it's cheaper to 807 // go through a JumpNode that a tree of IfNodes. Average cost of a 808 // tree of IfNodes with MinJumpTableSize is 809 // log2f(MinJumpTableSize) comparisons. So if the cost computed 810 // from profile data is less than log2f(MinJumpTableSize) then 811 // going with the binary search is cheaper. 812 if (cost < log2f(MinJumpTableSize)) { 813 return false; 814 } 815 } else { 816 if (num_cases < MinJumpTableSize) 817 return false; 818 } 819 if (num_cases > (MaxJumpTableSparseness * num_range)) 820 return false; 821 822 // Normalize table lookups to zero 823 int lowval = lo->lo(); 824 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 825 826 // Generate a guard to protect against input keyvals that aren't 827 // in the switch domain. 828 if (needs_guard) { 829 Node* size = _gvn.intcon(num_cases); 830 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 831 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 832 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 833 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 834 835 total -= trimmed_cnt; 836 } 837 838 // Create an ideal node JumpTable that has projections 839 // of all possible ranges for a switch statement 840 // The key_val input must be converted to a pointer offset and scaled. 841 // Compare Parse::array_addressing above. 842 843 // Clean the 32-bit int into a real 64-bit offset. 844 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 845 // Make I2L conversion control dependent to prevent it from 846 // floating above the range check during loop optimizations. 847 // Do not use a narrow int type here to prevent the data path from dying 848 // while the control path is not removed. This can happen if the type of key_val 849 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 850 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 851 // Set _carry_dependency for the cast to avoid being removed by IGVN. 852 #ifdef _LP64 853 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 854 #endif 855 856 // Shift the value by wordsize so we have an index into the table, rather 857 // than a switch value 858 Node *shiftWord = _gvn.MakeConX(wordSize); 859 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 860 861 // Create the JumpNode 862 Arena* arena = C->comp_arena(); 863 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 864 int i = 0; 865 if (total == 0) { 866 for (SwitchRange* r = lo; r <= hi; r++) { 867 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 868 probs[i] = 1.0F / num_cases; 869 } 870 } 871 } else { 872 for (SwitchRange* r = lo; r <= hi; r++) { 873 float prob = r->cnt()/total; 874 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 875 probs[i] = prob / (r->hi() - r->lo() + 1); 876 } 877 } 878 } 879 880 ciMethodData* methodData = method()->method_data(); 881 ciMultiBranchData* profile = nullptr; 882 if (methodData->is_mature()) { 883 ciProfileData* data = methodData->bci_to_data(bci()); 884 if (data != nullptr && data->is_MultiBranchData()) { 885 profile = (ciMultiBranchData*)data; 886 } 887 } 888 889 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 890 891 // These are the switch destinations hanging off the jumpnode 892 i = 0; 893 for (SwitchRange* r = lo; r <= hi; r++) { 894 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 895 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 896 { 897 PreserveJVMState pjvms(this); 898 set_control(input); 899 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 900 } 901 } 902 } 903 assert(i == num_cases, "miscount of cases"); 904 stop_and_kill_map(); // no more uses for this JVMS 905 return true; 906 } 907 908 //----------------------------jump_switch_ranges------------------------------- 909 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 910 Block* switch_block = block(); 911 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 912 913 if (switch_depth == 0) { 914 // Do special processing for the top-level call. 915 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 916 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 917 918 // Decrement pred-numbers for the unique set of nodes. 919 #ifdef ASSERT 920 if (!trim_ranges) { 921 // Ensure that the block's successors are a (duplicate-free) set. 922 int successors_counted = 0; // block occurrences in [hi..lo] 923 int unique_successors = switch_block->num_successors(); 924 for (int i = 0; i < unique_successors; i++) { 925 Block* target = switch_block->successor_at(i); 926 927 // Check that the set of successors is the same in both places. 928 int successors_found = 0; 929 for (SwitchRange* p = lo; p <= hi; p++) { 930 if (p->dest() == target->start()) successors_found++; 931 } 932 assert(successors_found > 0, "successor must be known"); 933 successors_counted += successors_found; 934 } 935 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 936 } 937 #endif 938 939 // Maybe prune the inputs, based on the type of key_val. 940 jint min_val = min_jint; 941 jint max_val = max_jint; 942 const TypeInt* ti = key_val->bottom_type()->isa_int(); 943 if (ti != nullptr) { 944 min_val = ti->_lo; 945 max_val = ti->_hi; 946 assert(min_val <= max_val, "invalid int type"); 947 } 948 while (lo->hi() < min_val) { 949 lo++; 950 } 951 if (lo->lo() < min_val) { 952 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 953 } 954 while (hi->lo() > max_val) { 955 hi--; 956 } 957 if (hi->hi() > max_val) { 958 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 959 } 960 961 linear_search_switch_ranges(key_val, lo, hi); 962 } 963 964 #ifndef PRODUCT 965 if (switch_depth == 0) { 966 _max_switch_depth = 0; 967 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 968 } 969 #endif 970 971 assert(lo <= hi, "must be a non-empty set of ranges"); 972 if (lo == hi) { 973 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 974 } else { 975 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 976 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 977 978 if (create_jump_tables(key_val, lo, hi)) return; 979 980 SwitchRange* mid = nullptr; 981 float total_cnt = sum_of_cnts(lo, hi); 982 983 int nr = hi - lo + 1; 984 if (UseSwitchProfiling) { 985 // Don't keep the binary search tree balanced: pick up mid point 986 // that split frequencies in half. 987 float cnt = 0; 988 for (SwitchRange* sr = lo; sr <= hi; sr++) { 989 cnt += sr->cnt(); 990 if (cnt >= total_cnt / 2) { 991 mid = sr; 992 break; 993 } 994 } 995 } else { 996 mid = lo + nr/2; 997 998 // if there is an easy choice, pivot at a singleton: 999 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1000 1001 assert(lo < mid && mid <= hi, "good pivot choice"); 1002 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1003 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1004 } 1005 1006 1007 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1008 1009 if (mid->is_singleton()) { 1010 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1011 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1012 1013 // Special Case: If there are exactly three ranges, and the high 1014 // and low range each go to the same place, omit the "gt" test, 1015 // since it will not discriminate anything. 1016 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1017 1018 // if there is a higher range, test for it and process it: 1019 if (mid < hi && !eq_test_only) { 1020 // two comparisons of same values--should enable 1 test for 2 branches 1021 // Use BoolTest::lt instead of BoolTest::gt 1022 float cnt = sum_of_cnts(lo, mid-1); 1023 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1024 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1025 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1026 { PreserveJVMState pjvms(this); 1027 set_control(iffalse); 1028 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1029 } 1030 set_control(iftrue); 1031 } 1032 1033 } else { 1034 // mid is a range, not a singleton, so treat mid..hi as a unit 1035 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1036 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1037 1038 // if there is a higher range, test for it and process it: 1039 if (mid == hi) { 1040 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1041 } else { 1042 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1043 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1044 { PreserveJVMState pjvms(this); 1045 set_control(iftrue); 1046 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1047 } 1048 set_control(iffalse); 1049 } 1050 } 1051 1052 // in any case, process the lower range 1053 if (mid == lo) { 1054 if (mid->is_singleton()) { 1055 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1056 } else { 1057 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1058 } 1059 } else { 1060 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1061 } 1062 } 1063 1064 // Decrease pred_count for each successor after all is done. 1065 if (switch_depth == 0) { 1066 int unique_successors = switch_block->num_successors(); 1067 for (int i = 0; i < unique_successors; i++) { 1068 Block* target = switch_block->successor_at(i); 1069 // Throw away the pre-allocated path for each unique successor. 1070 target->next_path_num(); 1071 } 1072 } 1073 1074 #ifndef PRODUCT 1075 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1076 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1077 SwitchRange* r; 1078 int nsing = 0; 1079 for( r = lo; r <= hi; r++ ) { 1080 if( r->is_singleton() ) nsing++; 1081 } 1082 tty->print(">>> "); 1083 _method->print_short_name(); 1084 tty->print_cr(" switch decision tree"); 1085 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1086 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1087 if (_max_switch_depth > _est_switch_depth) { 1088 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1089 } 1090 tty->print(" "); 1091 for( r = lo; r <= hi; r++ ) { 1092 r->print(); 1093 } 1094 tty->cr(); 1095 } 1096 #endif 1097 } 1098 1099 void Parse::modf() { 1100 Node *f2 = pop(); 1101 Node *f1 = pop(); 1102 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1103 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1104 "frem", nullptr, //no memory effects 1105 f1, f2); 1106 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1107 1108 push(res); 1109 } 1110 1111 void Parse::modd() { 1112 Node *d2 = pop_pair(); 1113 Node *d1 = pop_pair(); 1114 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1115 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1116 "drem", nullptr, //no memory effects 1117 d1, top(), d2, top()); 1118 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1119 1120 #ifdef ASSERT 1121 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1122 assert(res_top == top(), "second value must be top"); 1123 #endif 1124 1125 push_pair(res_d); 1126 } 1127 1128 void Parse::l2f() { 1129 Node* f2 = pop(); 1130 Node* f1 = pop(); 1131 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1132 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1133 "l2f", nullptr, //no memory effects 1134 f1, f2); 1135 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1136 1137 push(res); 1138 } 1139 1140 // Handle jsr and jsr_w bytecode 1141 void Parse::do_jsr() { 1142 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1143 1144 // Store information about current state, tagged with new _jsr_bci 1145 int return_bci = iter().next_bci(); 1146 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1147 1148 // The way we do things now, there is only one successor block 1149 // for the jsr, because the target code is cloned by ciTypeFlow. 1150 Block* target = successor_for_bci(jsr_bci); 1151 1152 // What got pushed? 1153 const Type* ret_addr = target->peek(); 1154 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1155 1156 // Effect on jsr on stack 1157 push(_gvn.makecon(ret_addr)); 1158 1159 // Flow to the jsr. 1160 merge(jsr_bci); 1161 } 1162 1163 // Handle ret bytecode 1164 void Parse::do_ret() { 1165 // Find to whom we return. 1166 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1167 Block* target = block()->successor_at(0); 1168 assert(!target->is_ready(), "our arrival must be expected"); 1169 int pnum = target->next_path_num(); 1170 merge_common(target, pnum); 1171 } 1172 1173 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1174 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1175 // Only ::eq and ::ne are supported for profile injection. 1176 return false; 1177 } 1178 if (test->is_Cmp() && 1179 test->in(1)->Opcode() == Op_ProfileBoolean) { 1180 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1181 int false_cnt = profile->false_count(); 1182 int true_cnt = profile->true_count(); 1183 1184 // Counts matching depends on the actual test operation (::eq or ::ne). 1185 // No need to scale the counts because profile injection was designed 1186 // to feed exact counts into VM. 1187 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1188 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1189 1190 profile->consume(); 1191 return true; 1192 } 1193 return false; 1194 } 1195 1196 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1197 // We also check that individual counters are positive first, otherwise the sum can become positive. 1198 // (check for saturation, integer overflow, and immature counts) 1199 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1200 // check for saturation, including "uint" values too big to fit in "int" 1201 if (counter1 < 0 || counter2 < 0) { 1202 return false; 1203 } 1204 // check for integer overflow of the sum 1205 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1206 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1207 if (sum > INT_MAX) { 1208 return false; 1209 } 1210 // check if mature 1211 return (counter1 + counter2) >= min; 1212 } 1213 1214 //--------------------------dynamic_branch_prediction-------------------------- 1215 // Try to gather dynamic branch prediction behavior. Return a probability 1216 // of the branch being taken and set the "cnt" field. Returns a -1.0 1217 // if we need to use static prediction for some reason. 1218 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1219 ResourceMark rm; 1220 1221 cnt = COUNT_UNKNOWN; 1222 1223 int taken = 0; 1224 int not_taken = 0; 1225 1226 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1227 1228 if (use_mdo) { 1229 // Use MethodData information if it is available 1230 // FIXME: free the ProfileData structure 1231 ciMethodData* methodData = method()->method_data(); 1232 if (!methodData->is_mature()) return PROB_UNKNOWN; 1233 ciProfileData* data = methodData->bci_to_data(bci()); 1234 if (data == nullptr) { 1235 return PROB_UNKNOWN; 1236 } 1237 if (!data->is_JumpData()) return PROB_UNKNOWN; 1238 1239 // get taken and not taken values 1240 // NOTE: saturated UINT_MAX values become negative, 1241 // as do counts above INT_MAX. 1242 taken = data->as_JumpData()->taken(); 1243 not_taken = 0; 1244 if (data->is_BranchData()) { 1245 not_taken = data->as_BranchData()->not_taken(); 1246 } 1247 1248 // scale the counts to be commensurate with invocation counts: 1249 // NOTE: overflow for positive values is clamped at INT_MAX 1250 taken = method()->scale_count(taken); 1251 not_taken = method()->scale_count(not_taken); 1252 } 1253 // At this point, saturation or overflow is indicated by INT_MAX 1254 // or a negative value. 1255 1256 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1257 // We also check that individual counters are positive first, otherwise the sum can become positive. 1258 if (!counters_are_meaningful(taken, not_taken, 40)) { 1259 if (C->log() != nullptr) { 1260 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1261 } 1262 return PROB_UNKNOWN; 1263 } 1264 1265 // Compute frequency that we arrive here 1266 float sum = taken + not_taken; 1267 // Adjust, if this block is a cloned private block but the 1268 // Jump counts are shared. Taken the private counts for 1269 // just this path instead of the shared counts. 1270 if( block()->count() > 0 ) 1271 sum = block()->count(); 1272 cnt = sum / FreqCountInvocations; 1273 1274 // Pin probability to sane limits 1275 float prob; 1276 if( !taken ) 1277 prob = (0+PROB_MIN) / 2; 1278 else if( !not_taken ) 1279 prob = (1+PROB_MAX) / 2; 1280 else { // Compute probability of true path 1281 prob = (float)taken / (float)(taken + not_taken); 1282 if (prob > PROB_MAX) prob = PROB_MAX; 1283 if (prob < PROB_MIN) prob = PROB_MIN; 1284 } 1285 1286 assert((cnt > 0.0f) && (prob > 0.0f), 1287 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1288 1289 if (C->log() != nullptr) { 1290 const char* prob_str = nullptr; 1291 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1292 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1293 char prob_str_buf[30]; 1294 if (prob_str == nullptr) { 1295 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1296 prob_str = prob_str_buf; 1297 } 1298 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1299 iter().get_dest(), taken, not_taken, cnt, prob_str); 1300 } 1301 return prob; 1302 } 1303 1304 //-----------------------------branch_prediction------------------------------- 1305 float Parse::branch_prediction(float& cnt, 1306 BoolTest::mask btest, 1307 int target_bci, 1308 Node* test) { 1309 float prob = dynamic_branch_prediction(cnt, btest, test); 1310 // If prob is unknown, switch to static prediction 1311 if (prob != PROB_UNKNOWN) return prob; 1312 1313 prob = PROB_FAIR; // Set default value 1314 if (btest == BoolTest::eq) // Exactly equal test? 1315 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1316 else if (btest == BoolTest::ne) 1317 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1318 1319 // If this is a conditional test guarding a backwards branch, 1320 // assume its a loop-back edge. Make it a likely taken branch. 1321 if (target_bci < bci()) { 1322 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1323 // Since it's an OSR, we probably have profile data, but since 1324 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1325 // Let's make a special check here for completely zero counts. 1326 ciMethodData* methodData = method()->method_data(); 1327 if (!methodData->is_empty()) { 1328 ciProfileData* data = methodData->bci_to_data(bci()); 1329 // Only stop for truly zero counts, which mean an unknown part 1330 // of the OSR-ed method, and we want to deopt to gather more stats. 1331 // If you have ANY counts, then this loop is simply 'cold' relative 1332 // to the OSR loop. 1333 if (data == nullptr || 1334 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1335 // This is the only way to return PROB_UNKNOWN: 1336 return PROB_UNKNOWN; 1337 } 1338 } 1339 } 1340 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1341 } 1342 1343 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1344 return prob; 1345 } 1346 1347 // The magic constants are chosen so as to match the output of 1348 // branch_prediction() when the profile reports a zero taken count. 1349 // It is important to distinguish zero counts unambiguously, because 1350 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1351 // very small but nonzero probabilities, which if confused with zero 1352 // counts would keep the program recompiling indefinitely. 1353 bool Parse::seems_never_taken(float prob) const { 1354 return prob < PROB_MIN; 1355 } 1356 1357 //-------------------------------repush_if_args-------------------------------- 1358 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1359 inline int Parse::repush_if_args() { 1360 if (PrintOpto && WizardMode) { 1361 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1362 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1363 method()->print_name(); tty->cr(); 1364 } 1365 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1366 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1367 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1368 assert(argument(0) != nullptr, "must exist"); 1369 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1370 inc_sp(bc_depth); 1371 return bc_depth; 1372 } 1373 1374 //----------------------------------do_ifnull---------------------------------- 1375 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1376 int target_bci = iter().get_dest(); 1377 1378 Block* branch_block = successor_for_bci(target_bci); 1379 Block* next_block = successor_for_bci(iter().next_bci()); 1380 1381 float cnt; 1382 float prob = branch_prediction(cnt, btest, target_bci, c); 1383 if (prob == PROB_UNKNOWN) { 1384 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1385 if (PrintOpto && Verbose) { 1386 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1387 } 1388 repush_if_args(); // to gather stats on loop 1389 uncommon_trap(Deoptimization::Reason_unreached, 1390 Deoptimization::Action_reinterpret, 1391 nullptr, "cold"); 1392 if (C->eliminate_boxing()) { 1393 // Mark the successor blocks as parsed 1394 branch_block->next_path_num(); 1395 next_block->next_path_num(); 1396 } 1397 return; 1398 } 1399 1400 NOT_PRODUCT(explicit_null_checks_inserted++); 1401 1402 // Generate real control flow 1403 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1404 1405 // Sanity check the probability value 1406 assert(prob > 0.0f,"Bad probability in Parser"); 1407 // Need xform to put node in hash table 1408 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1409 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1410 // True branch 1411 { PreserveJVMState pjvms(this); 1412 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1413 set_control(iftrue); 1414 1415 if (stopped()) { // Path is dead? 1416 NOT_PRODUCT(explicit_null_checks_elided++); 1417 if (C->eliminate_boxing()) { 1418 // Mark the successor block as parsed 1419 branch_block->next_path_num(); 1420 } 1421 } else { // Path is live. 1422 adjust_map_after_if(btest, c, prob, branch_block); 1423 if (!stopped()) { 1424 merge(target_bci); 1425 } 1426 } 1427 } 1428 1429 // False branch 1430 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1431 set_control(iffalse); 1432 1433 if (stopped()) { // Path is dead? 1434 NOT_PRODUCT(explicit_null_checks_elided++); 1435 if (C->eliminate_boxing()) { 1436 // Mark the successor block as parsed 1437 next_block->next_path_num(); 1438 } 1439 } else { // Path is live. 1440 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1441 } 1442 } 1443 1444 //------------------------------------do_if------------------------------------ 1445 void Parse::do_if(BoolTest::mask btest, Node* c) { 1446 int target_bci = iter().get_dest(); 1447 1448 Block* branch_block = successor_for_bci(target_bci); 1449 Block* next_block = successor_for_bci(iter().next_bci()); 1450 1451 float cnt; 1452 float prob = branch_prediction(cnt, btest, target_bci, c); 1453 float untaken_prob = 1.0 - prob; 1454 1455 if (prob == PROB_UNKNOWN) { 1456 if (PrintOpto && Verbose) { 1457 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1458 } 1459 repush_if_args(); // to gather stats on loop 1460 uncommon_trap(Deoptimization::Reason_unreached, 1461 Deoptimization::Action_reinterpret, 1462 nullptr, "cold"); 1463 if (C->eliminate_boxing()) { 1464 // Mark the successor blocks as parsed 1465 branch_block->next_path_num(); 1466 next_block->next_path_num(); 1467 } 1468 return; 1469 } 1470 1471 // Sanity check the probability value 1472 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1473 1474 bool taken_if_true = true; 1475 // Convert BoolTest to canonical form: 1476 if (!BoolTest(btest).is_canonical()) { 1477 btest = BoolTest(btest).negate(); 1478 taken_if_true = false; 1479 // prob is NOT updated here; it remains the probability of the taken 1480 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1481 } 1482 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1483 1484 Node* tst0 = new BoolNode(c, btest); 1485 Node* tst = _gvn.transform(tst0); 1486 BoolTest::mask taken_btest = BoolTest::illegal; 1487 BoolTest::mask untaken_btest = BoolTest::illegal; 1488 1489 if (tst->is_Bool()) { 1490 // Refresh c from the transformed bool node, since it may be 1491 // simpler than the original c. Also re-canonicalize btest. 1492 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1493 // That can arise from statements like: if (x instanceof C) ... 1494 if (tst != tst0) { 1495 // Canonicalize one more time since transform can change it. 1496 btest = tst->as_Bool()->_test._test; 1497 if (!BoolTest(btest).is_canonical()) { 1498 // Reverse edges one more time... 1499 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1500 btest = tst->as_Bool()->_test._test; 1501 assert(BoolTest(btest).is_canonical(), "sanity"); 1502 taken_if_true = !taken_if_true; 1503 } 1504 c = tst->in(1); 1505 } 1506 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1507 taken_btest = taken_if_true ? btest : neg_btest; 1508 untaken_btest = taken_if_true ? neg_btest : btest; 1509 } 1510 1511 // Generate real control flow 1512 float true_prob = (taken_if_true ? prob : untaken_prob); 1513 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1514 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1515 Node* taken_branch = new IfTrueNode(iff); 1516 Node* untaken_branch = new IfFalseNode(iff); 1517 if (!taken_if_true) { // Finish conversion to canonical form 1518 Node* tmp = taken_branch; 1519 taken_branch = untaken_branch; 1520 untaken_branch = tmp; 1521 } 1522 1523 // Branch is taken: 1524 { PreserveJVMState pjvms(this); 1525 taken_branch = _gvn.transform(taken_branch); 1526 set_control(taken_branch); 1527 1528 if (stopped()) { 1529 if (C->eliminate_boxing()) { 1530 // Mark the successor block as parsed 1531 branch_block->next_path_num(); 1532 } 1533 } else { 1534 adjust_map_after_if(taken_btest, c, prob, branch_block); 1535 if (!stopped()) { 1536 merge(target_bci); 1537 } 1538 } 1539 } 1540 1541 untaken_branch = _gvn.transform(untaken_branch); 1542 set_control(untaken_branch); 1543 1544 // Branch not taken. 1545 if (stopped()) { 1546 if (C->eliminate_boxing()) { 1547 // Mark the successor block as parsed 1548 next_block->next_path_num(); 1549 } 1550 } else { 1551 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block); 1552 } 1553 } 1554 1555 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 1556 // Don't want to speculate on uncommon traps when running with -Xcomp 1557 if (!UseInterpreter) { 1558 return false; 1559 } 1560 return seems_never_taken(prob) && 1561 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1562 } 1563 1564 void Parse::maybe_add_predicate_after_if(Block* path) { 1565 if (path->is_SEL_head() && path->preds_parsed() == 0) { 1566 // Add predicates at bci of if dominating the loop so traps can be 1567 // recorded on the if's profile data 1568 int bc_depth = repush_if_args(); 1569 add_parse_predicates(); 1570 dec_sp(bc_depth); 1571 path->set_has_predicates(); 1572 } 1573 } 1574 1575 1576 //----------------------------adjust_map_after_if------------------------------ 1577 // Adjust the JVM state to reflect the result of taking this path. 1578 // Basically, it means inspecting the CmpNode controlling this 1579 // branch, seeing how it constrains a tested value, and then 1580 // deciding if it's worth our while to encode this constraint 1581 // as graph nodes in the current abstract interpretation map. 1582 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) { 1583 if (!c->is_Cmp()) { 1584 maybe_add_predicate_after_if(path); 1585 return; 1586 } 1587 1588 if (stopped() || btest == BoolTest::illegal) { 1589 return; // nothing to do 1590 } 1591 1592 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 1593 1594 if (path_is_suitable_for_uncommon_trap(prob)) { 1595 repush_if_args(); 1596 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 1597 Deoptimization::Action_reinterpret, 1598 nullptr, 1599 (is_fallthrough ? "taken always" : "taken never")); 1600 1601 if (call != nullptr) { 1602 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 1603 } 1604 return; 1605 } 1606 1607 Node* val = c->in(1); 1608 Node* con = c->in(2); 1609 const Type* tcon = _gvn.type(con); 1610 const Type* tval = _gvn.type(val); 1611 bool have_con = tcon->singleton(); 1612 if (tval->singleton()) { 1613 if (!have_con) { 1614 // Swap, so constant is in con. 1615 con = val; 1616 tcon = tval; 1617 val = c->in(2); 1618 tval = _gvn.type(val); 1619 btest = BoolTest(btest).commute(); 1620 have_con = true; 1621 } else { 1622 // Do we have two constants? Then leave well enough alone. 1623 have_con = false; 1624 } 1625 } 1626 if (!have_con) { // remaining adjustments need a con 1627 maybe_add_predicate_after_if(path); 1628 return; 1629 } 1630 1631 sharpen_type_after_if(btest, con, tcon, val, tval); 1632 maybe_add_predicate_after_if(path); 1633 } 1634 1635 1636 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 1637 Node* ldk; 1638 if (n->is_DecodeNKlass()) { 1639 if (n->in(1)->Opcode() != Op_LoadNKlass) { 1640 return nullptr; 1641 } else { 1642 ldk = n->in(1); 1643 } 1644 } else if (n->Opcode() != Op_LoadKlass) { 1645 return nullptr; 1646 } else { 1647 ldk = n; 1648 } 1649 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 1650 1651 Node* adr = ldk->in(MemNode::Address); 1652 intptr_t off = 0; 1653 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 1654 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 1655 return nullptr; 1656 const TypePtr* tp = gvn->type(obj)->is_ptr(); 1657 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 1658 return nullptr; 1659 1660 return obj; 1661 } 1662 1663 void Parse::sharpen_type_after_if(BoolTest::mask btest, 1664 Node* con, const Type* tcon, 1665 Node* val, const Type* tval) { 1666 // Look for opportunities to sharpen the type of a node 1667 // whose klass is compared with a constant klass. 1668 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 1669 Node* obj = extract_obj_from_klass_load(&_gvn, val); 1670 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 1671 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 1672 // Found: 1673 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 1674 // or the narrowOop equivalent. 1675 const Type* obj_type = _gvn.type(obj); 1676 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 1677 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 1678 tboth->higher_equal(obj_type)) { 1679 // obj has to be of the exact type Foo if the CmpP succeeds. 1680 int obj_in_map = map()->find_edge(obj); 1681 JVMState* jvms = this->jvms(); 1682 if (obj_in_map >= 0 && 1683 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 1684 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 1685 const Type* tcc = ccast->as_Type()->type(); 1686 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 1687 // Delay transform() call to allow recovery of pre-cast value 1688 // at the control merge. 1689 _gvn.set_type_bottom(ccast); 1690 record_for_igvn(ccast); 1691 // Here's the payoff. 1692 replace_in_map(obj, ccast); 1693 } 1694 } 1695 } 1696 } 1697 1698 int val_in_map = map()->find_edge(val); 1699 if (val_in_map < 0) return; // replace_in_map would be useless 1700 { 1701 JVMState* jvms = this->jvms(); 1702 if (!(jvms->is_loc(val_in_map) || 1703 jvms->is_stk(val_in_map))) 1704 return; // again, it would be useless 1705 } 1706 1707 // Check for a comparison to a constant, and "know" that the compared 1708 // value is constrained on this path. 1709 assert(tcon->singleton(), ""); 1710 ConstraintCastNode* ccast = nullptr; 1711 Node* cast = nullptr; 1712 1713 switch (btest) { 1714 case BoolTest::eq: // Constant test? 1715 { 1716 const Type* tboth = tcon->join_speculative(tval); 1717 if (tboth == tval) break; // Nothing to gain. 1718 if (tcon->isa_int()) { 1719 ccast = new CastIINode(control(), val, tboth); 1720 } else if (tcon == TypePtr::NULL_PTR) { 1721 // Cast to null, but keep the pointer identity temporarily live. 1722 ccast = new CastPPNode(control(), val, tboth); 1723 } else { 1724 const TypeF* tf = tcon->isa_float_constant(); 1725 const TypeD* td = tcon->isa_double_constant(); 1726 // Exclude tests vs float/double 0 as these could be 1727 // either +0 or -0. Just because you are equal to +0 1728 // doesn't mean you ARE +0! 1729 // Note, following code also replaces Long and Oop values. 1730 if ((!tf || tf->_f != 0.0) && 1731 (!td || td->_d != 0.0)) 1732 cast = con; // Replace non-constant val by con. 1733 } 1734 } 1735 break; 1736 1737 case BoolTest::ne: 1738 if (tcon == TypePtr::NULL_PTR) { 1739 cast = cast_not_null(val, false); 1740 } 1741 break; 1742 1743 default: 1744 // (At this point we could record int range types with CastII.) 1745 break; 1746 } 1747 1748 if (ccast != nullptr) { 1749 const Type* tcc = ccast->as_Type()->type(); 1750 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 1751 // Delay transform() call to allow recovery of pre-cast value 1752 // at the control merge. 1753 _gvn.set_type_bottom(ccast); 1754 record_for_igvn(ccast); 1755 cast = ccast; 1756 } 1757 1758 if (cast != nullptr) { // Here's the payoff. 1759 replace_in_map(val, cast); 1760 } 1761 } 1762 1763 /** 1764 * Use speculative type to optimize CmpP node: if comparison is 1765 * against the low level class, cast the object to the speculative 1766 * type if any. CmpP should then go away. 1767 * 1768 * @param c expected CmpP node 1769 * @return result of CmpP on object casted to speculative type 1770 * 1771 */ 1772 Node* Parse::optimize_cmp_with_klass(Node* c) { 1773 // If this is transformed by the _gvn to a comparison with the low 1774 // level klass then we may be able to use speculation 1775 if (c->Opcode() == Op_CmpP && 1776 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 1777 c->in(2)->is_Con()) { 1778 Node* load_klass = nullptr; 1779 Node* decode = nullptr; 1780 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 1781 decode = c->in(1); 1782 load_klass = c->in(1)->in(1); 1783 } else { 1784 load_klass = c->in(1); 1785 } 1786 if (load_klass->in(2)->is_AddP()) { 1787 Node* addp = load_klass->in(2); 1788 Node* obj = addp->in(AddPNode::Address); 1789 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 1790 if (obj_type->speculative_type_not_null() != nullptr) { 1791 ciKlass* k = obj_type->speculative_type(); 1792 inc_sp(2); 1793 obj = maybe_cast_profiled_obj(obj, k); 1794 dec_sp(2); 1795 // Make the CmpP use the casted obj 1796 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 1797 load_klass = load_klass->clone(); 1798 load_klass->set_req(2, addp); 1799 load_klass = _gvn.transform(load_klass); 1800 if (decode != nullptr) { 1801 decode = decode->clone(); 1802 decode->set_req(1, load_klass); 1803 load_klass = _gvn.transform(decode); 1804 } 1805 c = c->clone(); 1806 c->set_req(1, load_klass); 1807 c = _gvn.transform(c); 1808 } 1809 } 1810 } 1811 return c; 1812 } 1813 1814 //------------------------------do_one_bytecode-------------------------------- 1815 // Parse this bytecode, and alter the Parsers JVM->Node mapping 1816 void Parse::do_one_bytecode() { 1817 Node *a, *b, *c, *d; // Handy temps 1818 BoolTest::mask btest; 1819 int i; 1820 1821 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 1822 1823 if (C->check_node_count(NodeLimitFudgeFactor * 5, 1824 "out of nodes parsing method")) { 1825 return; 1826 } 1827 1828 #ifdef ASSERT 1829 // for setting breakpoints 1830 if (TraceOptoParse) { 1831 tty->print(" @"); 1832 dump_bci(bci()); 1833 tty->print(" %s", Bytecodes::name(bc())); 1834 tty->cr(); 1835 } 1836 #endif 1837 1838 switch (bc()) { 1839 case Bytecodes::_nop: 1840 // do nothing 1841 break; 1842 case Bytecodes::_lconst_0: 1843 push_pair(longcon(0)); 1844 break; 1845 1846 case Bytecodes::_lconst_1: 1847 push_pair(longcon(1)); 1848 break; 1849 1850 case Bytecodes::_fconst_0: 1851 push(zerocon(T_FLOAT)); 1852 break; 1853 1854 case Bytecodes::_fconst_1: 1855 push(makecon(TypeF::ONE)); 1856 break; 1857 1858 case Bytecodes::_fconst_2: 1859 push(makecon(TypeF::make(2.0f))); 1860 break; 1861 1862 case Bytecodes::_dconst_0: 1863 push_pair(zerocon(T_DOUBLE)); 1864 break; 1865 1866 case Bytecodes::_dconst_1: 1867 push_pair(makecon(TypeD::ONE)); 1868 break; 1869 1870 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 1871 case Bytecodes::_iconst_0: push(intcon( 0)); break; 1872 case Bytecodes::_iconst_1: push(intcon( 1)); break; 1873 case Bytecodes::_iconst_2: push(intcon( 2)); break; 1874 case Bytecodes::_iconst_3: push(intcon( 3)); break; 1875 case Bytecodes::_iconst_4: push(intcon( 4)); break; 1876 case Bytecodes::_iconst_5: push(intcon( 5)); break; 1877 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 1878 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 1879 case Bytecodes::_aconst_null: push(null()); break; 1880 1881 case Bytecodes::_ldc: 1882 case Bytecodes::_ldc_w: 1883 case Bytecodes::_ldc2_w: { 1884 ciConstant constant = iter().get_constant(); 1885 if (constant.is_loaded()) { 1886 const Type* con_type = Type::make_from_constant(constant); 1887 if (con_type != nullptr) { 1888 push_node(con_type->basic_type(), makecon(con_type)); 1889 } 1890 } else { 1891 // If the constant is unresolved or in error state, run this BC in the interpreter. 1892 if (iter().is_in_error()) { 1893 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 1894 Deoptimization::Action_none), 1895 nullptr, "constant in error state", true /* must_throw */); 1896 1897 } else { 1898 int index = iter().get_constant_pool_index(); 1899 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unloaded, 1900 Deoptimization::Action_reinterpret, 1901 index), 1902 nullptr, "unresolved constant", false /* must_throw */); 1903 } 1904 } 1905 break; 1906 } 1907 1908 case Bytecodes::_aload_0: 1909 push( local(0) ); 1910 break; 1911 case Bytecodes::_aload_1: 1912 push( local(1) ); 1913 break; 1914 case Bytecodes::_aload_2: 1915 push( local(2) ); 1916 break; 1917 case Bytecodes::_aload_3: 1918 push( local(3) ); 1919 break; 1920 case Bytecodes::_aload: 1921 push( local(iter().get_index()) ); 1922 break; 1923 1924 case Bytecodes::_fload_0: 1925 case Bytecodes::_iload_0: 1926 push( local(0) ); 1927 break; 1928 case Bytecodes::_fload_1: 1929 case Bytecodes::_iload_1: 1930 push( local(1) ); 1931 break; 1932 case Bytecodes::_fload_2: 1933 case Bytecodes::_iload_2: 1934 push( local(2) ); 1935 break; 1936 case Bytecodes::_fload_3: 1937 case Bytecodes::_iload_3: 1938 push( local(3) ); 1939 break; 1940 case Bytecodes::_fload: 1941 case Bytecodes::_iload: 1942 push( local(iter().get_index()) ); 1943 break; 1944 case Bytecodes::_lload_0: 1945 push_pair_local( 0 ); 1946 break; 1947 case Bytecodes::_lload_1: 1948 push_pair_local( 1 ); 1949 break; 1950 case Bytecodes::_lload_2: 1951 push_pair_local( 2 ); 1952 break; 1953 case Bytecodes::_lload_3: 1954 push_pair_local( 3 ); 1955 break; 1956 case Bytecodes::_lload: 1957 push_pair_local( iter().get_index() ); 1958 break; 1959 1960 case Bytecodes::_dload_0: 1961 push_pair_local(0); 1962 break; 1963 case Bytecodes::_dload_1: 1964 push_pair_local(1); 1965 break; 1966 case Bytecodes::_dload_2: 1967 push_pair_local(2); 1968 break; 1969 case Bytecodes::_dload_3: 1970 push_pair_local(3); 1971 break; 1972 case Bytecodes::_dload: 1973 push_pair_local(iter().get_index()); 1974 break; 1975 case Bytecodes::_fstore_0: 1976 case Bytecodes::_istore_0: 1977 case Bytecodes::_astore_0: 1978 set_local( 0, pop() ); 1979 break; 1980 case Bytecodes::_fstore_1: 1981 case Bytecodes::_istore_1: 1982 case Bytecodes::_astore_1: 1983 set_local( 1, pop() ); 1984 break; 1985 case Bytecodes::_fstore_2: 1986 case Bytecodes::_istore_2: 1987 case Bytecodes::_astore_2: 1988 set_local( 2, pop() ); 1989 break; 1990 case Bytecodes::_fstore_3: 1991 case Bytecodes::_istore_3: 1992 case Bytecodes::_astore_3: 1993 set_local( 3, pop() ); 1994 break; 1995 case Bytecodes::_fstore: 1996 case Bytecodes::_istore: 1997 case Bytecodes::_astore: 1998 set_local( iter().get_index(), pop() ); 1999 break; 2000 // long stores 2001 case Bytecodes::_lstore_0: 2002 set_pair_local( 0, pop_pair() ); 2003 break; 2004 case Bytecodes::_lstore_1: 2005 set_pair_local( 1, pop_pair() ); 2006 break; 2007 case Bytecodes::_lstore_2: 2008 set_pair_local( 2, pop_pair() ); 2009 break; 2010 case Bytecodes::_lstore_3: 2011 set_pair_local( 3, pop_pair() ); 2012 break; 2013 case Bytecodes::_lstore: 2014 set_pair_local( iter().get_index(), pop_pair() ); 2015 break; 2016 2017 // double stores 2018 case Bytecodes::_dstore_0: 2019 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2020 break; 2021 case Bytecodes::_dstore_1: 2022 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2023 break; 2024 case Bytecodes::_dstore_2: 2025 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2026 break; 2027 case Bytecodes::_dstore_3: 2028 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2029 break; 2030 case Bytecodes::_dstore: 2031 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2032 break; 2033 2034 case Bytecodes::_pop: dec_sp(1); break; 2035 case Bytecodes::_pop2: dec_sp(2); break; 2036 case Bytecodes::_swap: 2037 a = pop(); 2038 b = pop(); 2039 push(a); 2040 push(b); 2041 break; 2042 case Bytecodes::_dup: 2043 a = pop(); 2044 push(a); 2045 push(a); 2046 break; 2047 case Bytecodes::_dup_x1: 2048 a = pop(); 2049 b = pop(); 2050 push( a ); 2051 push( b ); 2052 push( a ); 2053 break; 2054 case Bytecodes::_dup_x2: 2055 a = pop(); 2056 b = pop(); 2057 c = pop(); 2058 push( a ); 2059 push( c ); 2060 push( b ); 2061 push( a ); 2062 break; 2063 case Bytecodes::_dup2: 2064 a = pop(); 2065 b = pop(); 2066 push( b ); 2067 push( a ); 2068 push( b ); 2069 push( a ); 2070 break; 2071 2072 case Bytecodes::_dup2_x1: 2073 // before: .. c, b, a 2074 // after: .. b, a, c, b, a 2075 // not tested 2076 a = pop(); 2077 b = pop(); 2078 c = pop(); 2079 push( b ); 2080 push( a ); 2081 push( c ); 2082 push( b ); 2083 push( a ); 2084 break; 2085 case Bytecodes::_dup2_x2: 2086 // before: .. d, c, b, a 2087 // after: .. b, a, d, c, b, a 2088 // not tested 2089 a = pop(); 2090 b = pop(); 2091 c = pop(); 2092 d = pop(); 2093 push( b ); 2094 push( a ); 2095 push( d ); 2096 push( c ); 2097 push( b ); 2098 push( a ); 2099 break; 2100 2101 case Bytecodes::_arraylength: { 2102 // Must do null-check with value on expression stack 2103 Node *ary = null_check(peek(), T_ARRAY); 2104 // Compile-time detect of null-exception? 2105 if (stopped()) return; 2106 a = pop(); 2107 push(load_array_length(a)); 2108 break; 2109 } 2110 2111 case Bytecodes::_baload: array_load(T_BYTE); break; 2112 case Bytecodes::_caload: array_load(T_CHAR); break; 2113 case Bytecodes::_iaload: array_load(T_INT); break; 2114 case Bytecodes::_saload: array_load(T_SHORT); break; 2115 case Bytecodes::_faload: array_load(T_FLOAT); break; 2116 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2117 case Bytecodes::_laload: array_load(T_LONG); break; 2118 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2119 case Bytecodes::_bastore: array_store(T_BYTE); break; 2120 case Bytecodes::_castore: array_store(T_CHAR); break; 2121 case Bytecodes::_iastore: array_store(T_INT); break; 2122 case Bytecodes::_sastore: array_store(T_SHORT); break; 2123 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2124 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2125 case Bytecodes::_lastore: array_store(T_LONG); break; 2126 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2127 2128 case Bytecodes::_getfield: 2129 do_getfield(); 2130 break; 2131 2132 case Bytecodes::_getstatic: 2133 do_getstatic(); 2134 break; 2135 2136 case Bytecodes::_putfield: 2137 do_putfield(); 2138 break; 2139 2140 case Bytecodes::_putstatic: 2141 do_putstatic(); 2142 break; 2143 2144 case Bytecodes::_irem: 2145 // Must keep both values on the expression-stack during null-check 2146 zero_check_int(peek()); 2147 // Compile-time detect of null-exception? 2148 if (stopped()) return; 2149 b = pop(); 2150 a = pop(); 2151 push(_gvn.transform(new ModINode(control(), a, b))); 2152 break; 2153 case Bytecodes::_idiv: 2154 // Must keep both values on the expression-stack during null-check 2155 zero_check_int(peek()); 2156 // Compile-time detect of null-exception? 2157 if (stopped()) return; 2158 b = pop(); 2159 a = pop(); 2160 push( _gvn.transform( new DivINode(control(),a,b) ) ); 2161 break; 2162 case Bytecodes::_imul: 2163 b = pop(); a = pop(); 2164 push( _gvn.transform( new MulINode(a,b) ) ); 2165 break; 2166 case Bytecodes::_iadd: 2167 b = pop(); a = pop(); 2168 push( _gvn.transform( new AddINode(a,b) ) ); 2169 break; 2170 case Bytecodes::_ineg: 2171 a = pop(); 2172 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 2173 break; 2174 case Bytecodes::_isub: 2175 b = pop(); a = pop(); 2176 push( _gvn.transform( new SubINode(a,b) ) ); 2177 break; 2178 case Bytecodes::_iand: 2179 b = pop(); a = pop(); 2180 push( _gvn.transform( new AndINode(a,b) ) ); 2181 break; 2182 case Bytecodes::_ior: 2183 b = pop(); a = pop(); 2184 push( _gvn.transform( new OrINode(a,b) ) ); 2185 break; 2186 case Bytecodes::_ixor: 2187 b = pop(); a = pop(); 2188 push( _gvn.transform( new XorINode(a,b) ) ); 2189 break; 2190 case Bytecodes::_ishl: 2191 b = pop(); a = pop(); 2192 push( _gvn.transform( new LShiftINode(a,b) ) ); 2193 break; 2194 case Bytecodes::_ishr: 2195 b = pop(); a = pop(); 2196 push( _gvn.transform( new RShiftINode(a,b) ) ); 2197 break; 2198 case Bytecodes::_iushr: 2199 b = pop(); a = pop(); 2200 push( _gvn.transform( new URShiftINode(a,b) ) ); 2201 break; 2202 2203 case Bytecodes::_fneg: 2204 a = pop(); 2205 b = _gvn.transform(new NegFNode (a)); 2206 push(b); 2207 break; 2208 2209 case Bytecodes::_fsub: 2210 b = pop(); 2211 a = pop(); 2212 c = _gvn.transform( new SubFNode(a,b) ); 2213 d = precision_rounding(c); 2214 push( d ); 2215 break; 2216 2217 case Bytecodes::_fadd: 2218 b = pop(); 2219 a = pop(); 2220 c = _gvn.transform( new AddFNode(a,b) ); 2221 d = precision_rounding(c); 2222 push( d ); 2223 break; 2224 2225 case Bytecodes::_fmul: 2226 b = pop(); 2227 a = pop(); 2228 c = _gvn.transform( new MulFNode(a,b) ); 2229 d = precision_rounding(c); 2230 push( d ); 2231 break; 2232 2233 case Bytecodes::_fdiv: 2234 b = pop(); 2235 a = pop(); 2236 c = _gvn.transform( new DivFNode(0,a,b) ); 2237 d = precision_rounding(c); 2238 push( d ); 2239 break; 2240 2241 case Bytecodes::_frem: 2242 if (Matcher::has_match_rule(Op_ModF)) { 2243 // Generate a ModF node. 2244 b = pop(); 2245 a = pop(); 2246 c = _gvn.transform( new ModFNode(0,a,b) ); 2247 d = precision_rounding(c); 2248 push( d ); 2249 } 2250 else { 2251 // Generate a call. 2252 modf(); 2253 } 2254 break; 2255 2256 case Bytecodes::_fcmpl: 2257 b = pop(); 2258 a = pop(); 2259 c = _gvn.transform( new CmpF3Node( a, b)); 2260 push(c); 2261 break; 2262 case Bytecodes::_fcmpg: 2263 b = pop(); 2264 a = pop(); 2265 2266 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 2267 // which negates the result sign except for unordered. Flip the unordered 2268 // as well by using CmpF3 which implements unordered-lesser instead of 2269 // unordered-greater semantics. Finally, commute the result bits. Result 2270 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 2271 c = _gvn.transform( new CmpF3Node( b, a)); 2272 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2273 push(c); 2274 break; 2275 2276 case Bytecodes::_f2i: 2277 a = pop(); 2278 push(_gvn.transform(new ConvF2INode(a))); 2279 break; 2280 2281 case Bytecodes::_d2i: 2282 a = pop_pair(); 2283 b = _gvn.transform(new ConvD2INode(a)); 2284 push( b ); 2285 break; 2286 2287 case Bytecodes::_f2d: 2288 a = pop(); 2289 b = _gvn.transform( new ConvF2DNode(a)); 2290 push_pair( b ); 2291 break; 2292 2293 case Bytecodes::_d2f: 2294 a = pop_pair(); 2295 b = _gvn.transform( new ConvD2FNode(a)); 2296 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 2297 //b = _gvn.transform(new RoundFloatNode(0, b) ); 2298 push( b ); 2299 break; 2300 2301 case Bytecodes::_l2f: 2302 if (Matcher::convL2FSupported()) { 2303 a = pop_pair(); 2304 b = _gvn.transform( new ConvL2FNode(a)); 2305 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 2306 // Rather than storing the result into an FP register then pushing 2307 // out to memory to round, the machine instruction that implements 2308 // ConvL2D is responsible for rounding. 2309 // c = precision_rounding(b); 2310 push(b); 2311 } else { 2312 l2f(); 2313 } 2314 break; 2315 2316 case Bytecodes::_l2d: 2317 a = pop_pair(); 2318 b = _gvn.transform( new ConvL2DNode(a)); 2319 // For x86_32.ad, rounding is always necessary (see _l2f above). 2320 // c = dprecision_rounding(b); 2321 push_pair(b); 2322 break; 2323 2324 case Bytecodes::_f2l: 2325 a = pop(); 2326 b = _gvn.transform( new ConvF2LNode(a)); 2327 push_pair(b); 2328 break; 2329 2330 case Bytecodes::_d2l: 2331 a = pop_pair(); 2332 b = _gvn.transform( new ConvD2LNode(a)); 2333 push_pair(b); 2334 break; 2335 2336 case Bytecodes::_dsub: 2337 b = pop_pair(); 2338 a = pop_pair(); 2339 c = _gvn.transform( new SubDNode(a,b) ); 2340 d = dprecision_rounding(c); 2341 push_pair( d ); 2342 break; 2343 2344 case Bytecodes::_dadd: 2345 b = pop_pair(); 2346 a = pop_pair(); 2347 c = _gvn.transform( new AddDNode(a,b) ); 2348 d = dprecision_rounding(c); 2349 push_pair( d ); 2350 break; 2351 2352 case Bytecodes::_dmul: 2353 b = pop_pair(); 2354 a = pop_pair(); 2355 c = _gvn.transform( new MulDNode(a,b) ); 2356 d = dprecision_rounding(c); 2357 push_pair( d ); 2358 break; 2359 2360 case Bytecodes::_ddiv: 2361 b = pop_pair(); 2362 a = pop_pair(); 2363 c = _gvn.transform( new DivDNode(0,a,b) ); 2364 d = dprecision_rounding(c); 2365 push_pair( d ); 2366 break; 2367 2368 case Bytecodes::_dneg: 2369 a = pop_pair(); 2370 b = _gvn.transform(new NegDNode (a)); 2371 push_pair(b); 2372 break; 2373 2374 case Bytecodes::_drem: 2375 if (Matcher::has_match_rule(Op_ModD)) { 2376 // Generate a ModD node. 2377 b = pop_pair(); 2378 a = pop_pair(); 2379 // a % b 2380 2381 c = _gvn.transform( new ModDNode(0,a,b) ); 2382 d = dprecision_rounding(c); 2383 push_pair( d ); 2384 } 2385 else { 2386 // Generate a call. 2387 modd(); 2388 } 2389 break; 2390 2391 case Bytecodes::_dcmpl: 2392 b = pop_pair(); 2393 a = pop_pair(); 2394 c = _gvn.transform( new CmpD3Node( a, b)); 2395 push(c); 2396 break; 2397 2398 case Bytecodes::_dcmpg: 2399 b = pop_pair(); 2400 a = pop_pair(); 2401 // Same as dcmpl but need to flip the unordered case. 2402 // Commute the inputs, which negates the result sign except for unordered. 2403 // Flip the unordered as well by using CmpD3 which implements 2404 // unordered-lesser instead of unordered-greater semantics. 2405 // Finally, negate the result bits. Result is same as using a 2406 // CmpD3Greater except we did it with CmpD3 alone. 2407 c = _gvn.transform( new CmpD3Node( b, a)); 2408 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2409 push(c); 2410 break; 2411 2412 2413 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 2414 case Bytecodes::_land: 2415 b = pop_pair(); 2416 a = pop_pair(); 2417 c = _gvn.transform( new AndLNode(a,b) ); 2418 push_pair(c); 2419 break; 2420 case Bytecodes::_lor: 2421 b = pop_pair(); 2422 a = pop_pair(); 2423 c = _gvn.transform( new OrLNode(a,b) ); 2424 push_pair(c); 2425 break; 2426 case Bytecodes::_lxor: 2427 b = pop_pair(); 2428 a = pop_pair(); 2429 c = _gvn.transform( new XorLNode(a,b) ); 2430 push_pair(c); 2431 break; 2432 2433 case Bytecodes::_lshl: 2434 b = pop(); // the shift count 2435 a = pop_pair(); // value to be shifted 2436 c = _gvn.transform( new LShiftLNode(a,b) ); 2437 push_pair(c); 2438 break; 2439 case Bytecodes::_lshr: 2440 b = pop(); // the shift count 2441 a = pop_pair(); // value to be shifted 2442 c = _gvn.transform( new RShiftLNode(a,b) ); 2443 push_pair(c); 2444 break; 2445 case Bytecodes::_lushr: 2446 b = pop(); // the shift count 2447 a = pop_pair(); // value to be shifted 2448 c = _gvn.transform( new URShiftLNode(a,b) ); 2449 push_pair(c); 2450 break; 2451 case Bytecodes::_lmul: 2452 b = pop_pair(); 2453 a = pop_pair(); 2454 c = _gvn.transform( new MulLNode(a,b) ); 2455 push_pair(c); 2456 break; 2457 2458 case Bytecodes::_lrem: 2459 // Must keep both values on the expression-stack during null-check 2460 assert(peek(0) == top(), "long word order"); 2461 zero_check_long(peek(1)); 2462 // Compile-time detect of null-exception? 2463 if (stopped()) return; 2464 b = pop_pair(); 2465 a = pop_pair(); 2466 c = _gvn.transform( new ModLNode(control(),a,b) ); 2467 push_pair(c); 2468 break; 2469 2470 case Bytecodes::_ldiv: 2471 // Must keep both values on the expression-stack during null-check 2472 assert(peek(0) == top(), "long word order"); 2473 zero_check_long(peek(1)); 2474 // Compile-time detect of null-exception? 2475 if (stopped()) return; 2476 b = pop_pair(); 2477 a = pop_pair(); 2478 c = _gvn.transform( new DivLNode(control(),a,b) ); 2479 push_pair(c); 2480 break; 2481 2482 case Bytecodes::_ladd: 2483 b = pop_pair(); 2484 a = pop_pair(); 2485 c = _gvn.transform( new AddLNode(a,b) ); 2486 push_pair(c); 2487 break; 2488 case Bytecodes::_lsub: 2489 b = pop_pair(); 2490 a = pop_pair(); 2491 c = _gvn.transform( new SubLNode(a,b) ); 2492 push_pair(c); 2493 break; 2494 case Bytecodes::_lcmp: 2495 // Safepoints are now inserted _before_ branches. The long-compare 2496 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 2497 // slew of control flow. These are usually followed by a CmpI vs zero and 2498 // a branch; this pattern then optimizes to the obvious long-compare and 2499 // branch. However, if the branch is backwards there's a Safepoint 2500 // inserted. The inserted Safepoint captures the JVM state at the 2501 // pre-branch point, i.e. it captures the 3-way value. Thus if a 2502 // long-compare is used to control a loop the debug info will force 2503 // computation of the 3-way value, even though the generated code uses a 2504 // long-compare and branch. We try to rectify the situation by inserting 2505 // a SafePoint here and have it dominate and kill the safepoint added at a 2506 // following backwards branch. At this point the JVM state merely holds 2 2507 // longs but not the 3-way value. 2508 switch (iter().next_bc()) { 2509 case Bytecodes::_ifgt: 2510 case Bytecodes::_iflt: 2511 case Bytecodes::_ifge: 2512 case Bytecodes::_ifle: 2513 case Bytecodes::_ifne: 2514 case Bytecodes::_ifeq: 2515 // If this is a backwards branch in the bytecodes, add Safepoint 2516 maybe_add_safepoint(iter().next_get_dest()); 2517 default: 2518 break; 2519 } 2520 b = pop_pair(); 2521 a = pop_pair(); 2522 c = _gvn.transform( new CmpL3Node( a, b )); 2523 push(c); 2524 break; 2525 2526 case Bytecodes::_lneg: 2527 a = pop_pair(); 2528 b = _gvn.transform( new SubLNode(longcon(0),a)); 2529 push_pair(b); 2530 break; 2531 case Bytecodes::_l2i: 2532 a = pop_pair(); 2533 push( _gvn.transform( new ConvL2INode(a))); 2534 break; 2535 case Bytecodes::_i2l: 2536 a = pop(); 2537 b = _gvn.transform( new ConvI2LNode(a)); 2538 push_pair(b); 2539 break; 2540 case Bytecodes::_i2b: 2541 // Sign extend 2542 a = pop(); 2543 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 2544 push(a); 2545 break; 2546 case Bytecodes::_i2s: 2547 a = pop(); 2548 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 2549 push(a); 2550 break; 2551 case Bytecodes::_i2c: 2552 a = pop(); 2553 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 2554 push(a); 2555 break; 2556 2557 case Bytecodes::_i2f: 2558 a = pop(); 2559 b = _gvn.transform( new ConvI2FNode(a) ) ; 2560 c = precision_rounding(b); 2561 push (b); 2562 break; 2563 2564 case Bytecodes::_i2d: 2565 a = pop(); 2566 b = _gvn.transform( new ConvI2DNode(a)); 2567 push_pair(b); 2568 break; 2569 2570 case Bytecodes::_iinc: // Increment local 2571 i = iter().get_index(); // Get local index 2572 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 2573 break; 2574 2575 // Exit points of synchronized methods must have an unlock node 2576 case Bytecodes::_return: 2577 return_current(nullptr); 2578 break; 2579 2580 case Bytecodes::_ireturn: 2581 case Bytecodes::_areturn: 2582 case Bytecodes::_freturn: 2583 return_current(pop()); 2584 break; 2585 case Bytecodes::_lreturn: 2586 return_current(pop_pair()); 2587 break; 2588 case Bytecodes::_dreturn: 2589 return_current(pop_pair()); 2590 break; 2591 2592 case Bytecodes::_athrow: 2593 // null exception oop throws null pointer exception 2594 null_check(peek()); 2595 if (stopped()) return; 2596 // Hook the thrown exception directly to subsequent handlers. 2597 if (BailoutToInterpreterForThrows) { 2598 // Keep method interpreted from now on. 2599 uncommon_trap(Deoptimization::Reason_unhandled, 2600 Deoptimization::Action_make_not_compilable); 2601 return; 2602 } 2603 if (env()->jvmti_can_post_on_exceptions()) { 2604 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 2605 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 2606 } 2607 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 2608 add_exception_state(make_exception_state(peek())); 2609 break; 2610 2611 case Bytecodes::_goto: // fall through 2612 case Bytecodes::_goto_w: { 2613 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 2614 2615 // If this is a backwards branch in the bytecodes, add Safepoint 2616 maybe_add_safepoint(target_bci); 2617 2618 // Merge the current control into the target basic block 2619 merge(target_bci); 2620 2621 // See if we can get some profile data and hand it off to the next block 2622 Block *target_block = block()->successor_for_bci(target_bci); 2623 if (target_block->pred_count() != 1) break; 2624 ciMethodData* methodData = method()->method_data(); 2625 if (!methodData->is_mature()) break; 2626 ciProfileData* data = methodData->bci_to_data(bci()); 2627 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 2628 int taken = ((ciJumpData*)data)->taken(); 2629 taken = method()->scale_count(taken); 2630 target_block->set_count(taken); 2631 break; 2632 } 2633 2634 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 2635 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 2636 handle_if_null: 2637 // If this is a backwards branch in the bytecodes, add Safepoint 2638 maybe_add_safepoint(iter().get_dest()); 2639 a = null(); 2640 b = pop(); 2641 if (!_gvn.type(b)->speculative_maybe_null() && 2642 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2643 inc_sp(1); 2644 Node* null_ctl = top(); 2645 b = null_check_oop(b, &null_ctl, true, true, true); 2646 assert(null_ctl->is_top(), "no null control here"); 2647 dec_sp(1); 2648 } else if (_gvn.type(b)->speculative_always_null() && 2649 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2650 inc_sp(1); 2651 b = null_assert(b); 2652 dec_sp(1); 2653 } 2654 c = _gvn.transform( new CmpPNode(b, a) ); 2655 do_ifnull(btest, c); 2656 break; 2657 2658 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 2659 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 2660 handle_if_acmp: 2661 // If this is a backwards branch in the bytecodes, add Safepoint 2662 maybe_add_safepoint(iter().get_dest()); 2663 a = pop(); 2664 b = pop(); 2665 c = _gvn.transform( new CmpPNode(b, a) ); 2666 c = optimize_cmp_with_klass(c); 2667 do_if(btest, c); 2668 break; 2669 2670 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 2671 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 2672 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 2673 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 2674 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 2675 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 2676 handle_ifxx: 2677 // If this is a backwards branch in the bytecodes, add Safepoint 2678 maybe_add_safepoint(iter().get_dest()); 2679 a = _gvn.intcon(0); 2680 b = pop(); 2681 c = _gvn.transform( new CmpINode(b, a) ); 2682 do_if(btest, c); 2683 break; 2684 2685 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 2686 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 2687 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 2688 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 2689 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 2690 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 2691 handle_if_icmp: 2692 // If this is a backwards branch in the bytecodes, add Safepoint 2693 maybe_add_safepoint(iter().get_dest()); 2694 a = pop(); 2695 b = pop(); 2696 c = _gvn.transform( new CmpINode( b, a ) ); 2697 do_if(btest, c); 2698 break; 2699 2700 case Bytecodes::_tableswitch: 2701 do_tableswitch(); 2702 break; 2703 2704 case Bytecodes::_lookupswitch: 2705 do_lookupswitch(); 2706 break; 2707 2708 case Bytecodes::_invokestatic: 2709 case Bytecodes::_invokedynamic: 2710 case Bytecodes::_invokespecial: 2711 case Bytecodes::_invokevirtual: 2712 case Bytecodes::_invokeinterface: 2713 do_call(); 2714 break; 2715 case Bytecodes::_checkcast: 2716 do_checkcast(); 2717 break; 2718 case Bytecodes::_instanceof: 2719 do_instanceof(); 2720 break; 2721 case Bytecodes::_anewarray: 2722 do_anewarray(); 2723 break; 2724 case Bytecodes::_newarray: 2725 do_newarray((BasicType)iter().get_index()); 2726 break; 2727 case Bytecodes::_multianewarray: 2728 do_multianewarray(); 2729 break; 2730 case Bytecodes::_new: 2731 do_new(); 2732 break; 2733 2734 case Bytecodes::_jsr: 2735 case Bytecodes::_jsr_w: 2736 do_jsr(); 2737 break; 2738 2739 case Bytecodes::_ret: 2740 do_ret(); 2741 break; 2742 2743 2744 case Bytecodes::_monitorenter: 2745 do_monitor_enter(); 2746 break; 2747 2748 case Bytecodes::_monitorexit: 2749 do_monitor_exit(); 2750 break; 2751 2752 case Bytecodes::_breakpoint: 2753 // Breakpoint set concurrently to compile 2754 // %%% use an uncommon trap? 2755 C->record_failure("breakpoint in method"); 2756 return; 2757 2758 default: 2759 #ifndef PRODUCT 2760 map()->dump(99); 2761 #endif 2762 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 2763 ShouldNotReachHere(); 2764 } 2765 2766 #ifndef PRODUCT 2767 if (failing()) { return; } 2768 constexpr int perBytecode = 6; 2769 if (C->should_print_igv(perBytecode)) { 2770 IdealGraphPrinter* printer = C->igv_printer(); 2771 char buffer[256]; 2772 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 2773 bool old = printer->traverse_outs(); 2774 printer->set_traverse_outs(true); 2775 printer->print_method(buffer, perBytecode); 2776 printer->set_traverse_outs(old); 2777 } 2778 #endif 2779 }