1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "jvm_io.h" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/inlinetypenode.hpp" 42 #include "opto/matcher.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/mulnode.hpp" 45 #include "opto/opaquenode.hpp" 46 #include "opto/parse.hpp" 47 #include "opto/runtime.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 51 #ifndef PRODUCT 52 extern uint explicit_null_checks_inserted, 53 explicit_null_checks_elided; 54 #endif 55 56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 57 // Feed unused profile data to type speculation 58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 59 ciKlass* array_type = nullptr; 60 ciKlass* element_type = nullptr; 61 ProfilePtrKind element_ptr = ProfileMaybeNull; 62 bool flat_array = true; 63 bool null_free_array = true; 64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) { 66 ld = record_profile_for_speculation(ld, element_type, element_ptr); 67 } 68 } 69 return ld; 70 } 71 72 73 //---------------------------------array_load---------------------------------- 74 void Parse::array_load(BasicType bt) { 75 const Type* elemtype = Type::TOP; 76 Node* adr = array_addressing(bt, 0, elemtype); 77 if (stopped()) return; // guaranteed null or range check 78 79 Node* array_index = pop(); 80 Node* array = pop(); 81 82 // Handle inline type arrays 83 const TypeOopPtr* element_ptr = elemtype->make_oopptr(); 84 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 85 if (array_type->is_flat()) { 86 // Load from flat inline type array 87 Node* inline_type; 88 if (element_ptr->klass_is_exact()) { 89 inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr); 90 } else { 91 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically. 92 // Emit a runtime call to load the element from the flat array. 93 inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 94 inline_type = record_profile_for_speculation_at_array_load(inline_type); 95 } 96 push(inline_type); 97 return; 98 } 99 100 if (!array_type->is_not_flat()) { 101 // Cannot statically determine if array is a flat array, emit runtime check 102 assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() && 103 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat"); 104 IdealKit ideal(this); 105 IdealVariable res(ideal); 106 ideal.declarations_done(); 107 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 108 // Non-flat array 109 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 110 sync_kit(ideal); 111 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 112 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD; 113 if (needs_range_check(array_type->size(), array_index)) { 114 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load. 115 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot 116 // possibly float above the range check at any point. 117 decorator_set |= C2_UNKNOWN_CONTROL_LOAD; 118 } 119 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set); 120 if (element_ptr->is_inlinetypeptr()) { 121 assert(element_ptr->maybe_null(), "null free array should be handled above"); 122 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false); 123 } 124 ideal.sync_kit(this); 125 ideal.set(res, ld); 126 } ideal.else_(); { 127 // Flat array 128 sync_kit(ideal); 129 if (element_ptr->is_inlinetypeptr()) { 130 // Element type is known, cast and load from flat array layout. 131 ciInlineKlass* vk = element_ptr->inline_klass(); 132 assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized"); 133 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 134 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 135 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype)); 136 Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control()); 137 // Re-execute flat array load if buffering triggers deoptimization 138 PreserveReexecuteState preexecs(this); 139 jvms()->set_should_reexecute(true); 140 inc_sp(2); 141 Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false); 142 ideal.set(res, vt); 143 ideal.sync_kit(this); 144 } else { 145 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a 146 // runtime call to correctly load the inline type element from the flat array. 147 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 148 ideal.sync_kit(this); 149 ideal.set(res, inline_type); 150 } 151 } ideal.end_if(); 152 sync_kit(ideal); 153 Node* ld = _gvn.transform(ideal.value(res)); 154 ld = record_profile_for_speculation_at_array_load(ld); 155 push_node(bt, ld); 156 return; 157 } 158 159 if (array_type->is_null_free()) { 160 // Load from non-flat inline type array (elements can never be null) 161 bt = T_OBJECT; 162 } 163 164 if (elemtype == TypeInt::BOOL) { 165 bt = T_BOOLEAN; 166 } 167 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 168 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 169 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 170 ld = record_profile_for_speculation_at_array_load(ld); 171 // Loading an inline type from a non-flat array 172 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) { 173 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null"); 174 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null()); 175 } 176 push_node(bt, ld); 177 } 178 179 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) { 180 // Below membars keep this access to an unknown flat array correctly 181 // ordered with other unknown and known flat array accesses. 182 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 183 184 Node* call = nullptr; 185 { 186 // Re-execute flat array load if runtime call triggers deoptimization 187 PreserveReexecuteState preexecs(this); 188 jvms()->set_bci(_bci); 189 jvms()->set_should_reexecute(true); 190 inc_sp(2); 191 kill_dead_locals(); 192 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 193 OptoRuntime::load_unknown_inline_Type(), 194 OptoRuntime::load_unknown_inline_Java(), 195 nullptr, TypeRawPtr::BOTTOM, 196 array, array_index); 197 } 198 make_slow_call_ex(call, env()->Throwable_klass(), false); 199 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 200 201 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 202 203 // Keep track of the information that the inline type is in flat arrays 204 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array(); 205 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 206 } 207 208 //--------------------------------array_store---------------------------------- 209 void Parse::array_store(BasicType bt) { 210 const Type* elemtype = Type::TOP; 211 Node* adr = array_addressing(bt, type2size[bt], elemtype); 212 if (stopped()) return; // guaranteed null or range check 213 Node* stored_value_casted = nullptr; 214 if (bt == T_OBJECT) { 215 stored_value_casted = array_store_check(adr, elemtype); 216 if (stopped()) { 217 return; 218 } 219 } 220 Node* const stored_value = pop_node(bt); // Value to store 221 Node* const array_index = pop(); // Index in the array 222 Node* array = pop(); // The array itself 223 224 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 225 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 226 227 if (elemtype == TypeInt::BOOL) { 228 bt = T_BOOLEAN; 229 } else if (bt == T_OBJECT) { 230 elemtype = elemtype->make_oopptr(); 231 const Type* stored_value_casted_type = _gvn.type(stored_value_casted); 232 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 233 // This is only legal for non-null stores because the array_store_check always passes for null, even 234 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard(). 235 bool not_null_free = !stored_value_casted_type->maybe_null() && 236 !stored_value_casted_type->is_oopptr()->can_be_inline_type(); 237 bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() && 238 !stored_value_casted_type->inline_klass()->flat_in_array()); 239 if (!array_type->is_not_null_free() && not_null_free) { 240 // Storing a non-inline type, mark array as not null-free (-> not flat). 241 array_type = array_type->cast_to_not_null_free(); 242 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 243 replace_in_map(array, cast); 244 array = cast; 245 } else if (!array_type->is_not_flat() && not_flat) { 246 // Storing to a non-flat array, mark array as not flat. 247 array_type = array_type->cast_to_not_flat(); 248 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 249 replace_in_map(array, cast); 250 array = cast; 251 } 252 253 if (array_type->is_flat()) { 254 // Store to flat inline type array 255 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 256 if (array_type->klass_is_exact()) { 257 // Store to exact flat inline type array where we know the flat array layout statically. 258 // Re-execute flat array store if buffering triggers deoptimization 259 PreserveReexecuteState preexecs(this); 260 inc_sp(3); 261 jvms()->set_should_reexecute(true); 262 stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 263 } else { 264 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically. 265 // Emit a runtime call to store the element to the flat array. 266 store_to_unknown_flat_array(array, array_index, stored_value_casted); 267 } 268 return; 269 } 270 if (array_type->is_null_free()) { 271 // Store to non-flat null-free inline type array (elements can never be null) 272 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 273 if (elemtype->inline_klass()->is_empty()) { 274 // Ignore empty inline stores, array is already initialized. 275 return; 276 } 277 } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) { 278 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient). 279 assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() && 280 !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array"); 281 IdealKit ideal(this); 282 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 283 // Non-flat array 284 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 285 sync_kit(ideal); 286 Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3); 287 inc_sp(3); 288 access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 289 dec_sp(3); 290 ideal.sync_kit(this); 291 } ideal.else_(); { 292 sync_kit(ideal); 293 // flat array 294 Node* null_ctl = top(); 295 Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl); 296 if (null_ctl != top()) { 297 PreserveJVMState pjvms(this); 298 inc_sp(3); 299 set_control(null_ctl); 300 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none); 301 dec_sp(3); 302 } 303 // Try to determine the inline klass 304 ciInlineKlass* inline_Klass = nullptr; 305 if (stored_value_casted_type->is_inlinetypeptr()) { 306 inline_Klass = stored_value_casted_type->inline_klass(); 307 } else if (elemtype->is_inlinetypeptr()) { 308 inline_Klass = elemtype->inline_klass(); 309 } 310 if (!stopped()) { 311 if (inline_Klass != nullptr) { 312 // Element type is known, cast and store to flat array layout. 313 assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized"); 314 ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true); 315 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 316 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype)); 317 Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control()); 318 if (!null_checked_stored_value_casted->is_InlineType()) { 319 assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(), 320 "inline type array elements should never be null"); 321 null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted, 322 inline_Klass); 323 } 324 // Re-execute flat array store if buffering triggers deoptimization 325 PreserveReexecuteState preexecs(this); 326 inc_sp(3); 327 jvms()->set_should_reexecute(true); 328 null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 329 } else { 330 // Element type is unknown, emit a runtime call since the flat array layout is not statically known. 331 store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted); 332 } 333 } 334 ideal.sync_kit(this); 335 } 336 ideal.end_if(); 337 sync_kit(ideal); 338 return; 339 } else if (!array_type->is_not_null_free()) { 340 // Array is not flat but may be null free 341 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free"); 342 array = inline_array_null_guard(array, stored_value_casted, 3, true); 343 } 344 } 345 inc_sp(3); 346 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 347 dec_sp(3); 348 } 349 350 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat 351 // array layout) or not exact (could have different flat array layouts at runtime). 352 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) { 353 // Below membars keep this access to an unknown flat array correctly 354 // ordered with other unknown and known flat array accesses. 355 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 356 357 Node* call = nullptr; 358 { 359 // Re-execute flat array store if runtime call triggers deoptimization 360 PreserveReexecuteState preexecs(this); 361 jvms()->set_bci(_bci); 362 jvms()->set_should_reexecute(true); 363 inc_sp(3); 364 kill_dead_locals(); 365 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 366 OptoRuntime::store_unknown_inline_Type(), 367 OptoRuntime::store_unknown_inline_Java(), 368 nullptr, TypeRawPtr::BOTTOM, 369 non_null_stored_value, array, idx); 370 } 371 make_slow_call_ex(call, env()->Throwable_klass(), false); 372 373 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 374 } 375 376 //------------------------------array_addressing------------------------------- 377 // Pull array and index from the stack. Compute pointer-to-element. 378 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 379 Node *idx = peek(0+vals); // Get from stack without popping 380 Node *ary = peek(1+vals); // in case of exception 381 382 // Null check the array base, with correct stack contents 383 ary = null_check(ary, T_ARRAY); 384 // Compile-time detect of null-exception? 385 if (stopped()) return top(); 386 387 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 388 const TypeInt* sizetype = arytype->size(); 389 elemtype = arytype->elem(); 390 391 if (UseUniqueSubclasses) { 392 const Type* el = elemtype->make_ptr(); 393 if (el && el->isa_instptr()) { 394 const TypeInstPtr* toop = el->is_instptr(); 395 if (toop->instance_klass()->unique_concrete_subklass()) { 396 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 397 const Type* subklass = Type::get_const_type(toop->instance_klass()); 398 elemtype = subklass->join_speculative(el); 399 } 400 } 401 } 402 403 if (!arytype->is_loaded()) { 404 // Only fails for some -Xcomp runs 405 // The class is unloaded. We have to run this bytecode in the interpreter. 406 ciKlass* klass = arytype->unloaded_klass(); 407 408 uncommon_trap(Deoptimization::Reason_unloaded, 409 Deoptimization::Action_reinterpret, 410 klass, "!loaded array"); 411 return top(); 412 } 413 414 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype); 415 416 if (needs_range_check(sizetype, idx)) { 417 create_range_check(idx, ary, sizetype); 418 } else if (C->log() != nullptr) { 419 C->log()->elem("observe that='!need_range_check'"); 420 } 421 422 // Check for always knowing you are throwing a range-check exception 423 if (stopped()) return top(); 424 425 // Make array address computation control dependent to prevent it 426 // from floating above the range check during loop optimizations. 427 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 428 assert(ptr != top(), "top should go hand-in-hand with stopped"); 429 430 return ptr; 431 } 432 433 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could 434 // be greater or equal the smallest possible array size (i.e. out-of-bounds). 435 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const { 436 const TypeInt* index_type = _gvn.type(index)->is_int(); 437 return index_type->_hi >= size_type->_lo || index_type->_lo < 0; 438 } 439 440 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) { 441 Node* tst; 442 if (sizetype->_hi <= 0) { 443 // The greatest array bound is negative, so we can conclude that we're 444 // compiling unreachable code, but the unsigned compare trick used below 445 // only works with non-negative lengths. Instead, hack "tst" to be zero so 446 // the uncommon_trap path will always be taken. 447 tst = _gvn.intcon(0); 448 } else { 449 // Range is constant in array-oop, so we can use the original state of mem 450 Node* len = load_array_length(ary); 451 452 // Test length vs index (standard trick using unsigned compare) 453 Node* chk = _gvn.transform(new CmpUNode(idx, len) ); 454 BoolTest::mask btest = BoolTest::lt; 455 tst = _gvn.transform(new BoolNode(chk, btest) ); 456 } 457 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 458 _gvn.set_type(rc, rc->Value(&_gvn)); 459 if (!tst->is_Con()) { 460 record_for_igvn(rc); 461 } 462 set_control(_gvn.transform(new IfTrueNode(rc))); 463 // Branch to failure if out of bounds 464 { 465 PreserveJVMState pjvms(this); 466 set_control(_gvn.transform(new IfFalseNode(rc))); 467 if (C->allow_range_check_smearing()) { 468 // Do not use builtin_throw, since range checks are sometimes 469 // made more stringent by an optimistic transformation. 470 // This creates "tentative" range checks at this point, 471 // which are not guaranteed to throw exceptions. 472 // See IfNode::Ideal, is_range_check, adjust_check. 473 uncommon_trap(Deoptimization::Reason_range_check, 474 Deoptimization::Action_make_not_entrant, 475 nullptr, "range_check"); 476 } else { 477 // If we have already recompiled with the range-check-widening 478 // heroic optimization turned off, then we must really be throwing 479 // range check exceptions. 480 builtin_throw(Deoptimization::Reason_range_check); 481 } 482 } 483 } 484 485 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness, 486 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with 487 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g. 488 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler. 489 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type, 490 const Type*& element_type) { 491 if (!array_type->is_flat() && !array_type->is_not_flat()) { 492 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that 493 // we can rely on a fixed memory layout (i.e. either a flat layout or not). 494 array = cast_to_speculative_array_type(array, array_type, element_type); 495 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 496 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data 497 // at this bci. 498 array = cast_to_profiled_array_type(array); 499 } 500 501 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data 502 // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first. 503 // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore. 504 if (!array_type->is_null_free() && !array_type->is_not_null_free()) { 505 array = speculate_non_null_free_array(array, array_type); 506 } 507 508 if (!array_type->is_flat() && !array_type->is_not_flat()) { 509 array = speculate_non_flat_array(array, array_type); 510 } 511 return array; 512 } 513 514 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be 515 // wrong. On the fast path, we add a CheckCastPP to use the exact type. 516 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) { 517 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 518 ciKlass* speculative_array_type = array_type->speculative_type(); 519 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) { 520 // No speculative type, check profile data at this bci 521 speculative_array_type = nullptr; 522 reason = Deoptimization::Reason_class_check; 523 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 524 ciKlass* profiled_element_type = nullptr; 525 ProfilePtrKind element_ptr = ProfileMaybeNull; 526 bool flat_array = true; 527 bool null_free_array = true; 528 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array, 529 null_free_array); 530 } 531 } 532 if (speculative_array_type != nullptr) { 533 // Speculate that this array has the exact type reported by profile data 534 Node* casted_array = nullptr; 535 DEBUG_ONLY(Node* old_control = control();) 536 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array); 537 if (stopped()) { 538 // The check always fails and therefore profile information is incorrect. Don't use it. 539 assert(old_control == slow_ctl, "type check should have been removed"); 540 set_control(slow_ctl); 541 } else if (!slow_ctl->is_top()) { 542 { PreserveJVMState pjvms(this); 543 set_control(slow_ctl); 544 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 545 } 546 replace_in_map(array, casted_array); 547 array_type = _gvn.type(casted_array)->is_aryptr(); 548 element_type = array_type->elem(); 549 return casted_array; 550 } 551 } 552 return array; 553 } 554 555 // Create a CheckCastPP when the speculative type can improve the current type. 556 Node* Parse::cast_to_profiled_array_type(Node* const array) { 557 ciKlass* array_type = nullptr; 558 ciKlass* element_type = nullptr; 559 ProfilePtrKind element_ptr = ProfileMaybeNull; 560 bool flat_array = true; 561 bool null_free_array = true; 562 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 563 if (array_type != nullptr) { 564 return record_profile_for_speculation(array, array_type, ProfileMaybeNull); 565 } 566 return array; 567 } 568 569 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be 570 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type. 571 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) { 572 bool null_free_array = true; 573 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 574 if (array_type->speculative() != nullptr && 575 array_type->speculative()->is_aryptr()->is_not_null_free() && 576 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 577 null_free_array = false; 578 reason = Deoptimization::Reason_speculate_class_check; 579 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 580 ciKlass* profiled_array_type = nullptr; 581 ciKlass* profiled_element_type = nullptr; 582 ProfilePtrKind element_ptr = ProfileMaybeNull; 583 bool flat_array = true; 584 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 585 null_free_array); 586 reason = Deoptimization::Reason_class_check; 587 } 588 if (!null_free_array) { 589 { // Deoptimize if null-free array 590 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX); 591 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 592 } 593 assert(!stopped(), "null-free array should have been caught earlier"); 594 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free())); 595 replace_in_map(array, casted_array); 596 array_type = _gvn.type(casted_array)->is_aryptr(); 597 return casted_array; 598 } 599 return array; 600 } 601 602 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a 603 // CheckCastPP to use the non-flat type. 604 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) { 605 bool flat_array = true; 606 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 607 if (array_type->speculative() != nullptr && 608 array_type->speculative()->is_aryptr()->is_not_flat() && 609 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 610 flat_array = false; 611 reason = Deoptimization::Reason_speculate_class_check; 612 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 613 ciKlass* profiled_array_type = nullptr; 614 ciKlass* profiled_element_type = nullptr; 615 ProfilePtrKind element_ptr = ProfileMaybeNull; 616 bool null_free_array = true; 617 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 618 null_free_array); 619 reason = Deoptimization::Reason_class_check; 620 } 621 if (!flat_array) { 622 { // Deoptimize if flat array 623 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX); 624 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 625 } 626 assert(!stopped(), "flat array should have been caught earlier"); 627 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat())); 628 replace_in_map(array, casted_array); 629 return casted_array; 630 } 631 return array; 632 } 633 634 // returns IfNode 635 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 636 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 637 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 638 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 639 return iff; 640 } 641 642 643 // sentinel value for the target bci to mark never taken branches 644 // (according to profiling) 645 static const int never_reached = INT_MAX; 646 647 //------------------------------helper for tableswitch------------------------- 648 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 649 // True branch, use existing map info 650 { PreserveJVMState pjvms(this); 651 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 652 set_control( iftrue ); 653 if (unc) { 654 repush_if_args(); 655 uncommon_trap(Deoptimization::Reason_unstable_if, 656 Deoptimization::Action_reinterpret, 657 nullptr, 658 "taken always"); 659 } else { 660 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 661 merge_new_path(dest_bci_if_true); 662 } 663 } 664 665 // False branch 666 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 667 set_control( iffalse ); 668 } 669 670 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 671 // True branch, use existing map info 672 { PreserveJVMState pjvms(this); 673 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 674 set_control( iffalse ); 675 if (unc) { 676 repush_if_args(); 677 uncommon_trap(Deoptimization::Reason_unstable_if, 678 Deoptimization::Action_reinterpret, 679 nullptr, 680 "taken never"); 681 } else { 682 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 683 merge_new_path(dest_bci_if_true); 684 } 685 } 686 687 // False branch 688 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 689 set_control( iftrue ); 690 } 691 692 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 693 // False branch, use existing map and control() 694 if (unc) { 695 repush_if_args(); 696 uncommon_trap(Deoptimization::Reason_unstable_if, 697 Deoptimization::Action_reinterpret, 698 nullptr, 699 "taken never"); 700 } else { 701 assert(dest_bci != never_reached, "inconsistent dest"); 702 merge_new_path(dest_bci); 703 } 704 } 705 706 707 extern "C" { 708 static int jint_cmp(const void *i, const void *j) { 709 int a = *(jint *)i; 710 int b = *(jint *)j; 711 return a > b ? 1 : a < b ? -1 : 0; 712 } 713 } 714 715 716 class SwitchRange : public StackObj { 717 // a range of integers coupled with a bci destination 718 jint _lo; // inclusive lower limit 719 jint _hi; // inclusive upper limit 720 int _dest; 721 float _cnt; // how many times this range was hit according to profiling 722 723 public: 724 jint lo() const { return _lo; } 725 jint hi() const { return _hi; } 726 int dest() const { return _dest; } 727 bool is_singleton() const { return _lo == _hi; } 728 float cnt() const { return _cnt; } 729 730 void setRange(jint lo, jint hi, int dest, float cnt) { 731 assert(lo <= hi, "must be a non-empty range"); 732 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 733 assert(_cnt >= 0, ""); 734 } 735 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 736 assert(lo <= hi, "must be a non-empty range"); 737 if (lo == _hi+1) { 738 // see merge_ranges() comment below 739 if (trim_ranges) { 740 if (cnt == 0) { 741 if (_cnt != 0) { 742 return false; 743 } 744 if (dest != _dest) { 745 _dest = never_reached; 746 } 747 } else { 748 if (_cnt == 0) { 749 return false; 750 } 751 if (dest != _dest) { 752 return false; 753 } 754 } 755 } else { 756 if (dest != _dest) { 757 return false; 758 } 759 } 760 _hi = hi; 761 _cnt += cnt; 762 return true; 763 } 764 return false; 765 } 766 767 void set (jint value, int dest, float cnt) { 768 setRange(value, value, dest, cnt); 769 } 770 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 771 return adjoinRange(value, value, dest, cnt, trim_ranges); 772 } 773 bool adjoin(SwitchRange& other) { 774 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 775 } 776 777 void print() { 778 if (is_singleton()) 779 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 780 else if (lo() == min_jint) 781 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 782 else if (hi() == max_jint) 783 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 784 else 785 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 786 } 787 }; 788 789 // We try to minimize the number of ranges and the size of the taken 790 // ones using profiling data. When ranges are created, 791 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 792 // if both were never hit or both were hit to build longer unreached 793 // ranges. Here, we now merge adjoining ranges with the same 794 // destination and finally set destination of unreached ranges to the 795 // special value never_reached because it can help minimize the number 796 // of tests that are necessary. 797 // 798 // For instance: 799 // [0, 1] to target1 sometimes taken 800 // [1, 2] to target1 never taken 801 // [2, 3] to target2 never taken 802 // would lead to: 803 // [0, 1] to target1 sometimes taken 804 // [1, 3] never taken 805 // 806 // (first 2 ranges to target1 are not merged) 807 static void merge_ranges(SwitchRange* ranges, int& rp) { 808 if (rp == 0) { 809 return; 810 } 811 int shift = 0; 812 for (int j = 0; j < rp; j++) { 813 SwitchRange& r1 = ranges[j-shift]; 814 SwitchRange& r2 = ranges[j+1]; 815 if (r1.adjoin(r2)) { 816 shift++; 817 } else if (shift > 0) { 818 ranges[j+1-shift] = r2; 819 } 820 } 821 rp -= shift; 822 for (int j = 0; j <= rp; j++) { 823 SwitchRange& r = ranges[j]; 824 if (r.cnt() == 0 && r.dest() != never_reached) { 825 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 826 } 827 } 828 } 829 830 //-------------------------------do_tableswitch-------------------------------- 831 void Parse::do_tableswitch() { 832 // Get information about tableswitch 833 int default_dest = iter().get_dest_table(0); 834 jint lo_index = iter().get_int_table(1); 835 jint hi_index = iter().get_int_table(2); 836 int len = hi_index - lo_index + 1; 837 838 if (len < 1) { 839 // If this is a backward branch, add safepoint 840 maybe_add_safepoint(default_dest); 841 pop(); // the effect of the instruction execution on the operand stack 842 merge(default_dest); 843 return; 844 } 845 846 ciMethodData* methodData = method()->method_data(); 847 ciMultiBranchData* profile = nullptr; 848 if (methodData->is_mature() && UseSwitchProfiling) { 849 ciProfileData* data = methodData->bci_to_data(bci()); 850 if (data != nullptr && data->is_MultiBranchData()) { 851 profile = (ciMultiBranchData*)data; 852 } 853 } 854 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 855 856 // generate decision tree, using trichotomy when possible 857 int rnum = len+2; 858 bool makes_backward_branch = (default_dest <= bci()); 859 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 860 int rp = -1; 861 if (lo_index != min_jint) { 862 float cnt = 1.0F; 863 if (profile != nullptr) { 864 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 865 } 866 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 867 } 868 for (int j = 0; j < len; j++) { 869 jint match_int = lo_index+j; 870 int dest = iter().get_dest_table(j+3); 871 makes_backward_branch |= (dest <= bci()); 872 float cnt = 1.0F; 873 if (profile != nullptr) { 874 cnt = (float)profile->count_at(j); 875 } 876 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 877 ranges[++rp].set(match_int, dest, cnt); 878 } 879 } 880 jint highest = lo_index+(len-1); 881 assert(ranges[rp].hi() == highest, ""); 882 if (highest != max_jint) { 883 float cnt = 1.0F; 884 if (profile != nullptr) { 885 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 886 } 887 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 888 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 889 } 890 } 891 assert(rp < len+2, "not too many ranges"); 892 893 if (trim_ranges) { 894 merge_ranges(ranges, rp); 895 } 896 897 // Safepoint in case if backward branch observed 898 if (makes_backward_branch) { 899 add_safepoint(); 900 } 901 902 Node* lookup = pop(); // lookup value 903 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 904 } 905 906 907 //------------------------------do_lookupswitch-------------------------------- 908 void Parse::do_lookupswitch() { 909 // Get information about lookupswitch 910 int default_dest = iter().get_dest_table(0); 911 jint len = iter().get_int_table(1); 912 913 if (len < 1) { // If this is a backward branch, add safepoint 914 maybe_add_safepoint(default_dest); 915 pop(); // the effect of the instruction execution on the operand stack 916 merge(default_dest); 917 return; 918 } 919 920 ciMethodData* methodData = method()->method_data(); 921 ciMultiBranchData* profile = nullptr; 922 if (methodData->is_mature() && UseSwitchProfiling) { 923 ciProfileData* data = methodData->bci_to_data(bci()); 924 if (data != nullptr && data->is_MultiBranchData()) { 925 profile = (ciMultiBranchData*)data; 926 } 927 } 928 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 929 930 // generate decision tree, using trichotomy when possible 931 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 932 { 933 for (int j = 0; j < len; j++) { 934 table[3*j+0] = iter().get_int_table(2+2*j); 935 table[3*j+1] = iter().get_dest_table(2+2*j+1); 936 // Handle overflow when converting from uint to jint 937 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 938 } 939 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 940 } 941 942 float default_cnt = 1.0F; 943 if (profile != nullptr) { 944 juint defaults = max_juint - len; 945 default_cnt = (float)profile->default_count()/(float)defaults; 946 } 947 948 int rnum = len*2+1; 949 bool makes_backward_branch = (default_dest <= bci()); 950 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 951 int rp = -1; 952 for (int j = 0; j < len; j++) { 953 jint match_int = table[3*j+0]; 954 jint dest = table[3*j+1]; 955 jint cnt = table[3*j+2]; 956 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 957 makes_backward_branch |= (dest <= bci()); 958 float c = default_cnt * ((float)match_int - (float)next_lo); 959 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 960 assert(default_dest != never_reached, "sentinel value for dead destinations"); 961 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 962 } 963 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 964 assert(dest != never_reached, "sentinel value for dead destinations"); 965 ranges[++rp].set(match_int, dest, (float)cnt); 966 } 967 } 968 jint highest = table[3*(len-1)]; 969 assert(ranges[rp].hi() == highest, ""); 970 if (highest != max_jint && 971 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 972 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 973 } 974 assert(rp < rnum, "not too many ranges"); 975 976 if (trim_ranges) { 977 merge_ranges(ranges, rp); 978 } 979 980 // Safepoint in case backward branch observed 981 if (makes_backward_branch) { 982 add_safepoint(); 983 } 984 985 Node *lookup = pop(); // lookup value 986 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 987 } 988 989 static float if_prob(float taken_cnt, float total_cnt) { 990 assert(taken_cnt <= total_cnt, ""); 991 if (total_cnt == 0) { 992 return PROB_FAIR; 993 } 994 float p = taken_cnt / total_cnt; 995 return clamp(p, PROB_MIN, PROB_MAX); 996 } 997 998 static float if_cnt(float cnt) { 999 if (cnt == 0) { 1000 return COUNT_UNKNOWN; 1001 } 1002 return cnt; 1003 } 1004 1005 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 1006 float total_cnt = 0; 1007 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1008 total_cnt += sr->cnt(); 1009 } 1010 return total_cnt; 1011 } 1012 1013 class SwitchRanges : public ResourceObj { 1014 public: 1015 SwitchRange* _lo; 1016 SwitchRange* _hi; 1017 SwitchRange* _mid; 1018 float _cost; 1019 1020 enum { 1021 Start, 1022 LeftDone, 1023 RightDone, 1024 Done 1025 } _state; 1026 1027 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 1028 : _lo(lo), _hi(hi), _mid(nullptr), 1029 _cost(0), _state(Start) { 1030 } 1031 1032 SwitchRanges() 1033 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 1034 _cost(0), _state(Start) {} 1035 }; 1036 1037 // Estimate cost of performing a binary search on lo..hi 1038 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 1039 GrowableArray<SwitchRanges> tree; 1040 SwitchRanges root(lo, hi); 1041 tree.push(root); 1042 1043 float cost = 0; 1044 do { 1045 SwitchRanges& r = *tree.adr_at(tree.length()-1); 1046 if (r._hi != r._lo) { 1047 if (r._mid == nullptr) { 1048 float r_cnt = sum_of_cnts(r._lo, r._hi); 1049 1050 if (r_cnt == 0) { 1051 tree.pop(); 1052 cost = 0; 1053 continue; 1054 } 1055 1056 SwitchRange* mid = nullptr; 1057 mid = r._lo; 1058 for (float cnt = 0; ; ) { 1059 assert(mid <= r._hi, "out of bounds"); 1060 cnt += mid->cnt(); 1061 if (cnt > r_cnt / 2) { 1062 break; 1063 } 1064 mid++; 1065 } 1066 assert(mid <= r._hi, "out of bounds"); 1067 r._mid = mid; 1068 r._cost = r_cnt / total_cnt; 1069 } 1070 r._cost += cost; 1071 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 1072 cost = 0; 1073 r._state = SwitchRanges::LeftDone; 1074 tree.push(SwitchRanges(r._lo, r._mid-1)); 1075 } else if (r._state < SwitchRanges::RightDone) { 1076 cost = 0; 1077 r._state = SwitchRanges::RightDone; 1078 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 1079 } else { 1080 tree.pop(); 1081 cost = r._cost; 1082 } 1083 } else { 1084 tree.pop(); 1085 cost = r._cost; 1086 } 1087 } while (tree.length() > 0); 1088 1089 1090 return cost; 1091 } 1092 1093 // It sometimes pays off to test most common ranges before the binary search 1094 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1095 uint nr = hi - lo + 1; 1096 float total_cnt = sum_of_cnts(lo, hi); 1097 1098 float min = compute_tree_cost(lo, hi, total_cnt); 1099 float extra = 1; 1100 float sub = 0; 1101 1102 SwitchRange* array1 = lo; 1103 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1104 1105 SwitchRange* ranges = nullptr; 1106 1107 while (nr >= 2) { 1108 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1109 ranges = (lo == array1) ? array2 : array1; 1110 1111 // Find highest frequency range 1112 SwitchRange* candidate = lo; 1113 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1114 if (sr->cnt() > candidate->cnt()) { 1115 candidate = sr; 1116 } 1117 } 1118 SwitchRange most_freq = *candidate; 1119 if (most_freq.cnt() == 0) { 1120 break; 1121 } 1122 1123 // Copy remaining ranges into another array 1124 int shift = 0; 1125 for (uint i = 0; i < nr; i++) { 1126 SwitchRange* sr = &lo[i]; 1127 if (sr != candidate) { 1128 ranges[i-shift] = *sr; 1129 } else { 1130 shift++; 1131 if (i > 0 && i < nr-1) { 1132 SwitchRange prev = lo[i-1]; 1133 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1134 if (prev.adjoin(lo[i+1])) { 1135 shift++; 1136 i++; 1137 } 1138 ranges[i-shift] = prev; 1139 } 1140 } 1141 } 1142 nr -= shift; 1143 1144 // Evaluate cost of testing the most common range and performing a 1145 // binary search on the other ranges 1146 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1147 if (cost >= min) { 1148 break; 1149 } 1150 // swap arrays 1151 lo = &ranges[0]; 1152 hi = &ranges[nr-1]; 1153 1154 // It pays off: emit the test for the most common range 1155 assert(most_freq.cnt() > 0, "must be taken"); 1156 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1157 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 1158 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1159 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1160 jump_if_true_fork(iff, most_freq.dest(), false); 1161 1162 sub += most_freq.cnt() / total_cnt; 1163 extra += 1 - sub; 1164 min = cost; 1165 } 1166 } 1167 1168 //----------------------------create_jump_tables------------------------------- 1169 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1170 // Are jumptables enabled 1171 if (!UseJumpTables) return false; 1172 1173 // Are jumptables supported 1174 if (!Matcher::has_match_rule(Op_Jump)) return false; 1175 1176 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1177 1178 // Decide if a guard is needed to lop off big ranges at either (or 1179 // both) end(s) of the input set. We'll call this the default target 1180 // even though we can't be sure that it is the true "default". 1181 1182 bool needs_guard = false; 1183 int default_dest; 1184 int64_t total_outlier_size = 0; 1185 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1186 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1187 1188 if (lo->dest() == hi->dest()) { 1189 total_outlier_size = hi_size + lo_size; 1190 default_dest = lo->dest(); 1191 } else if (lo_size > hi_size) { 1192 total_outlier_size = lo_size; 1193 default_dest = lo->dest(); 1194 } else { 1195 total_outlier_size = hi_size; 1196 default_dest = hi->dest(); 1197 } 1198 1199 float total = sum_of_cnts(lo, hi); 1200 float cost = compute_tree_cost(lo, hi, total); 1201 1202 // If a guard test will eliminate very sparse end ranges, then 1203 // it is worth the cost of an extra jump. 1204 float trimmed_cnt = 0; 1205 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1206 needs_guard = true; 1207 if (default_dest == lo->dest()) { 1208 trimmed_cnt += lo->cnt(); 1209 lo++; 1210 } 1211 if (default_dest == hi->dest()) { 1212 trimmed_cnt += hi->cnt(); 1213 hi--; 1214 } 1215 } 1216 1217 // Find the total number of cases and ranges 1218 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1219 int num_range = hi - lo + 1; 1220 1221 // Don't create table if: too large, too small, or too sparse. 1222 if (num_cases > MaxJumpTableSize) 1223 return false; 1224 if (UseSwitchProfiling) { 1225 // MinJumpTableSize is set so with a well balanced binary tree, 1226 // when the number of ranges is MinJumpTableSize, it's cheaper to 1227 // go through a JumpNode that a tree of IfNodes. Average cost of a 1228 // tree of IfNodes with MinJumpTableSize is 1229 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1230 // from profile data is less than log2f(MinJumpTableSize) then 1231 // going with the binary search is cheaper. 1232 if (cost < log2f(MinJumpTableSize)) { 1233 return false; 1234 } 1235 } else { 1236 if (num_cases < MinJumpTableSize) 1237 return false; 1238 } 1239 if (num_cases > (MaxJumpTableSparseness * num_range)) 1240 return false; 1241 1242 // Normalize table lookups to zero 1243 int lowval = lo->lo(); 1244 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1245 1246 // Generate a guard to protect against input keyvals that aren't 1247 // in the switch domain. 1248 if (needs_guard) { 1249 Node* size = _gvn.intcon(num_cases); 1250 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1251 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1252 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1253 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1254 1255 total -= trimmed_cnt; 1256 } 1257 1258 // Create an ideal node JumpTable that has projections 1259 // of all possible ranges for a switch statement 1260 // The key_val input must be converted to a pointer offset and scaled. 1261 // Compare Parse::array_addressing above. 1262 1263 // Clean the 32-bit int into a real 64-bit offset. 1264 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1265 // Make I2L conversion control dependent to prevent it from 1266 // floating above the range check during loop optimizations. 1267 // Do not use a narrow int type here to prevent the data path from dying 1268 // while the control path is not removed. This can happen if the type of key_val 1269 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1270 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1271 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1272 #ifdef _LP64 1273 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1274 #endif 1275 1276 // Shift the value by wordsize so we have an index into the table, rather 1277 // than a switch value 1278 Node *shiftWord = _gvn.MakeConX(wordSize); 1279 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1280 1281 // Create the JumpNode 1282 Arena* arena = C->comp_arena(); 1283 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1284 int i = 0; 1285 if (total == 0) { 1286 for (SwitchRange* r = lo; r <= hi; r++) { 1287 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1288 probs[i] = 1.0F / num_cases; 1289 } 1290 } 1291 } else { 1292 for (SwitchRange* r = lo; r <= hi; r++) { 1293 float prob = r->cnt()/total; 1294 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1295 probs[i] = prob / (r->hi() - r->lo() + 1); 1296 } 1297 } 1298 } 1299 1300 ciMethodData* methodData = method()->method_data(); 1301 ciMultiBranchData* profile = nullptr; 1302 if (methodData->is_mature()) { 1303 ciProfileData* data = methodData->bci_to_data(bci()); 1304 if (data != nullptr && data->is_MultiBranchData()) { 1305 profile = (ciMultiBranchData*)data; 1306 } 1307 } 1308 1309 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 1310 1311 // These are the switch destinations hanging off the jumpnode 1312 i = 0; 1313 for (SwitchRange* r = lo; r <= hi; r++) { 1314 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1315 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1316 { 1317 PreserveJVMState pjvms(this); 1318 set_control(input); 1319 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1320 } 1321 } 1322 } 1323 assert(i == num_cases, "miscount of cases"); 1324 stop_and_kill_map(); // no more uses for this JVMS 1325 return true; 1326 } 1327 1328 //----------------------------jump_switch_ranges------------------------------- 1329 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1330 Block* switch_block = block(); 1331 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1332 1333 if (switch_depth == 0) { 1334 // Do special processing for the top-level call. 1335 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1336 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1337 1338 // Decrement pred-numbers for the unique set of nodes. 1339 #ifdef ASSERT 1340 if (!trim_ranges) { 1341 // Ensure that the block's successors are a (duplicate-free) set. 1342 int successors_counted = 0; // block occurrences in [hi..lo] 1343 int unique_successors = switch_block->num_successors(); 1344 for (int i = 0; i < unique_successors; i++) { 1345 Block* target = switch_block->successor_at(i); 1346 1347 // Check that the set of successors is the same in both places. 1348 int successors_found = 0; 1349 for (SwitchRange* p = lo; p <= hi; p++) { 1350 if (p->dest() == target->start()) successors_found++; 1351 } 1352 assert(successors_found > 0, "successor must be known"); 1353 successors_counted += successors_found; 1354 } 1355 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1356 } 1357 #endif 1358 1359 // Maybe prune the inputs, based on the type of key_val. 1360 jint min_val = min_jint; 1361 jint max_val = max_jint; 1362 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1363 if (ti != nullptr) { 1364 min_val = ti->_lo; 1365 max_val = ti->_hi; 1366 assert(min_val <= max_val, "invalid int type"); 1367 } 1368 while (lo->hi() < min_val) { 1369 lo++; 1370 } 1371 if (lo->lo() < min_val) { 1372 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1373 } 1374 while (hi->lo() > max_val) { 1375 hi--; 1376 } 1377 if (hi->hi() > max_val) { 1378 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1379 } 1380 1381 linear_search_switch_ranges(key_val, lo, hi); 1382 } 1383 1384 #ifndef PRODUCT 1385 if (switch_depth == 0) { 1386 _max_switch_depth = 0; 1387 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1388 } 1389 #endif 1390 1391 assert(lo <= hi, "must be a non-empty set of ranges"); 1392 if (lo == hi) { 1393 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1394 } else { 1395 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1396 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1397 1398 if (create_jump_tables(key_val, lo, hi)) return; 1399 1400 SwitchRange* mid = nullptr; 1401 float total_cnt = sum_of_cnts(lo, hi); 1402 1403 int nr = hi - lo + 1; 1404 if (UseSwitchProfiling) { 1405 // Don't keep the binary search tree balanced: pick up mid point 1406 // that split frequencies in half. 1407 float cnt = 0; 1408 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1409 cnt += sr->cnt(); 1410 if (cnt >= total_cnt / 2) { 1411 mid = sr; 1412 break; 1413 } 1414 } 1415 } else { 1416 mid = lo + nr/2; 1417 1418 // if there is an easy choice, pivot at a singleton: 1419 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1420 1421 assert(lo < mid && mid <= hi, "good pivot choice"); 1422 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1423 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1424 } 1425 1426 1427 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1428 1429 if (mid->is_singleton()) { 1430 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1431 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1432 1433 // Special Case: If there are exactly three ranges, and the high 1434 // and low range each go to the same place, omit the "gt" test, 1435 // since it will not discriminate anything. 1436 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1437 1438 // if there is a higher range, test for it and process it: 1439 if (mid < hi && !eq_test_only) { 1440 // two comparisons of same values--should enable 1 test for 2 branches 1441 // Use BoolTest::lt instead of BoolTest::gt 1442 float cnt = sum_of_cnts(lo, mid-1); 1443 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1444 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1445 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1446 { PreserveJVMState pjvms(this); 1447 set_control(iffalse); 1448 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1449 } 1450 set_control(iftrue); 1451 } 1452 1453 } else { 1454 // mid is a range, not a singleton, so treat mid..hi as a unit 1455 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1456 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1457 1458 // if there is a higher range, test for it and process it: 1459 if (mid == hi) { 1460 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1461 } else { 1462 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1463 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1464 { PreserveJVMState pjvms(this); 1465 set_control(iftrue); 1466 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1467 } 1468 set_control(iffalse); 1469 } 1470 } 1471 1472 // in any case, process the lower range 1473 if (mid == lo) { 1474 if (mid->is_singleton()) { 1475 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1476 } else { 1477 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1478 } 1479 } else { 1480 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1481 } 1482 } 1483 1484 // Decrease pred_count for each successor after all is done. 1485 if (switch_depth == 0) { 1486 int unique_successors = switch_block->num_successors(); 1487 for (int i = 0; i < unique_successors; i++) { 1488 Block* target = switch_block->successor_at(i); 1489 // Throw away the pre-allocated path for each unique successor. 1490 target->next_path_num(); 1491 } 1492 } 1493 1494 #ifndef PRODUCT 1495 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1496 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1497 SwitchRange* r; 1498 int nsing = 0; 1499 for( r = lo; r <= hi; r++ ) { 1500 if( r->is_singleton() ) nsing++; 1501 } 1502 tty->print(">>> "); 1503 _method->print_short_name(); 1504 tty->print_cr(" switch decision tree"); 1505 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1506 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1507 if (_max_switch_depth > _est_switch_depth) { 1508 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1509 } 1510 tty->print(" "); 1511 for( r = lo; r <= hi; r++ ) { 1512 r->print(); 1513 } 1514 tty->cr(); 1515 } 1516 #endif 1517 } 1518 1519 void Parse::modf() { 1520 Node *f2 = pop(); 1521 Node *f1 = pop(); 1522 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1523 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1524 "frem", nullptr, //no memory effects 1525 f1, f2); 1526 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1527 1528 push(res); 1529 } 1530 1531 void Parse::modd() { 1532 Node *d2 = pop_pair(); 1533 Node *d1 = pop_pair(); 1534 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1535 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1536 "drem", nullptr, //no memory effects 1537 d1, top(), d2, top()); 1538 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1539 1540 #ifdef ASSERT 1541 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1542 assert(res_top == top(), "second value must be top"); 1543 #endif 1544 1545 push_pair(res_d); 1546 } 1547 1548 void Parse::l2f() { 1549 Node* f2 = pop(); 1550 Node* f1 = pop(); 1551 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1552 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1553 "l2f", nullptr, //no memory effects 1554 f1, f2); 1555 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1556 1557 push(res); 1558 } 1559 1560 // Handle jsr and jsr_w bytecode 1561 void Parse::do_jsr() { 1562 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1563 1564 // Store information about current state, tagged with new _jsr_bci 1565 int return_bci = iter().next_bci(); 1566 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1567 1568 // The way we do things now, there is only one successor block 1569 // for the jsr, because the target code is cloned by ciTypeFlow. 1570 Block* target = successor_for_bci(jsr_bci); 1571 1572 // What got pushed? 1573 const Type* ret_addr = target->peek(); 1574 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1575 1576 // Effect on jsr on stack 1577 push(_gvn.makecon(ret_addr)); 1578 1579 // Flow to the jsr. 1580 merge(jsr_bci); 1581 } 1582 1583 // Handle ret bytecode 1584 void Parse::do_ret() { 1585 // Find to whom we return. 1586 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1587 Block* target = block()->successor_at(0); 1588 assert(!target->is_ready(), "our arrival must be expected"); 1589 int pnum = target->next_path_num(); 1590 merge_common(target, pnum); 1591 } 1592 1593 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1594 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1595 // Only ::eq and ::ne are supported for profile injection. 1596 return false; 1597 } 1598 if (test->is_Cmp() && 1599 test->in(1)->Opcode() == Op_ProfileBoolean) { 1600 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1601 int false_cnt = profile->false_count(); 1602 int true_cnt = profile->true_count(); 1603 1604 // Counts matching depends on the actual test operation (::eq or ::ne). 1605 // No need to scale the counts because profile injection was designed 1606 // to feed exact counts into VM. 1607 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1608 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1609 1610 profile->consume(); 1611 return true; 1612 } 1613 return false; 1614 } 1615 1616 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1617 // We also check that individual counters are positive first, otherwise the sum can become positive. 1618 // (check for saturation, integer overflow, and immature counts) 1619 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1620 // check for saturation, including "uint" values too big to fit in "int" 1621 if (counter1 < 0 || counter2 < 0) { 1622 return false; 1623 } 1624 // check for integer overflow of the sum 1625 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1626 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1627 if (sum > INT_MAX) { 1628 return false; 1629 } 1630 // check if mature 1631 return (counter1 + counter2) >= min; 1632 } 1633 1634 //--------------------------dynamic_branch_prediction-------------------------- 1635 // Try to gather dynamic branch prediction behavior. Return a probability 1636 // of the branch being taken and set the "cnt" field. Returns a -1.0 1637 // if we need to use static prediction for some reason. 1638 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1639 ResourceMark rm; 1640 1641 cnt = COUNT_UNKNOWN; 1642 1643 int taken = 0; 1644 int not_taken = 0; 1645 1646 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1647 1648 if (use_mdo) { 1649 // Use MethodData information if it is available 1650 // FIXME: free the ProfileData structure 1651 ciMethodData* methodData = method()->method_data(); 1652 if (!methodData->is_mature()) return PROB_UNKNOWN; 1653 ciProfileData* data = methodData->bci_to_data(bci()); 1654 if (data == nullptr) { 1655 return PROB_UNKNOWN; 1656 } 1657 if (!data->is_JumpData()) return PROB_UNKNOWN; 1658 1659 // get taken and not taken values 1660 // NOTE: saturated UINT_MAX values become negative, 1661 // as do counts above INT_MAX. 1662 taken = data->as_JumpData()->taken(); 1663 not_taken = 0; 1664 if (data->is_BranchData()) { 1665 not_taken = data->as_BranchData()->not_taken(); 1666 } 1667 1668 // scale the counts to be commensurate with invocation counts: 1669 // NOTE: overflow for positive values is clamped at INT_MAX 1670 taken = method()->scale_count(taken); 1671 not_taken = method()->scale_count(not_taken); 1672 } 1673 // At this point, saturation or overflow is indicated by INT_MAX 1674 // or a negative value. 1675 1676 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1677 // We also check that individual counters are positive first, otherwise the sum can become positive. 1678 if (!counters_are_meaningful(taken, not_taken, 40)) { 1679 if (C->log() != nullptr) { 1680 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1681 } 1682 return PROB_UNKNOWN; 1683 } 1684 1685 // Compute frequency that we arrive here 1686 float sum = taken + not_taken; 1687 // Adjust, if this block is a cloned private block but the 1688 // Jump counts are shared. Taken the private counts for 1689 // just this path instead of the shared counts. 1690 if( block()->count() > 0 ) 1691 sum = block()->count(); 1692 cnt = sum / FreqCountInvocations; 1693 1694 // Pin probability to sane limits 1695 float prob; 1696 if( !taken ) 1697 prob = (0+PROB_MIN) / 2; 1698 else if( !not_taken ) 1699 prob = (1+PROB_MAX) / 2; 1700 else { // Compute probability of true path 1701 prob = (float)taken / (float)(taken + not_taken); 1702 if (prob > PROB_MAX) prob = PROB_MAX; 1703 if (prob < PROB_MIN) prob = PROB_MIN; 1704 } 1705 1706 assert((cnt > 0.0f) && (prob > 0.0f), 1707 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1708 1709 if (C->log() != nullptr) { 1710 const char* prob_str = nullptr; 1711 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1712 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1713 char prob_str_buf[30]; 1714 if (prob_str == nullptr) { 1715 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1716 prob_str = prob_str_buf; 1717 } 1718 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1719 iter().get_dest(), taken, not_taken, cnt, prob_str); 1720 } 1721 return prob; 1722 } 1723 1724 //-----------------------------branch_prediction------------------------------- 1725 float Parse::branch_prediction(float& cnt, 1726 BoolTest::mask btest, 1727 int target_bci, 1728 Node* test) { 1729 float prob = dynamic_branch_prediction(cnt, btest, test); 1730 // If prob is unknown, switch to static prediction 1731 if (prob != PROB_UNKNOWN) return prob; 1732 1733 prob = PROB_FAIR; // Set default value 1734 if (btest == BoolTest::eq) // Exactly equal test? 1735 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1736 else if (btest == BoolTest::ne) 1737 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1738 1739 // If this is a conditional test guarding a backwards branch, 1740 // assume its a loop-back edge. Make it a likely taken branch. 1741 if (target_bci < bci()) { 1742 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1743 // Since it's an OSR, we probably have profile data, but since 1744 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1745 // Let's make a special check here for completely zero counts. 1746 ciMethodData* methodData = method()->method_data(); 1747 if (!methodData->is_empty()) { 1748 ciProfileData* data = methodData->bci_to_data(bci()); 1749 // Only stop for truly zero counts, which mean an unknown part 1750 // of the OSR-ed method, and we want to deopt to gather more stats. 1751 // If you have ANY counts, then this loop is simply 'cold' relative 1752 // to the OSR loop. 1753 if (data == nullptr || 1754 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1755 // This is the only way to return PROB_UNKNOWN: 1756 return PROB_UNKNOWN; 1757 } 1758 } 1759 } 1760 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1761 } 1762 1763 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1764 return prob; 1765 } 1766 1767 // The magic constants are chosen so as to match the output of 1768 // branch_prediction() when the profile reports a zero taken count. 1769 // It is important to distinguish zero counts unambiguously, because 1770 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1771 // very small but nonzero probabilities, which if confused with zero 1772 // counts would keep the program recompiling indefinitely. 1773 bool Parse::seems_never_taken(float prob) const { 1774 return prob < PROB_MIN; 1775 } 1776 1777 //-------------------------------repush_if_args-------------------------------- 1778 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1779 inline int Parse::repush_if_args() { 1780 if (PrintOpto && WizardMode) { 1781 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1782 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1783 method()->print_name(); tty->cr(); 1784 } 1785 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1786 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1787 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1788 assert(argument(0) != nullptr, "must exist"); 1789 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1790 inc_sp(bc_depth); 1791 return bc_depth; 1792 } 1793 1794 // Used by StressUnstableIfTraps 1795 static volatile int _trap_stress_counter = 0; 1796 1797 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1798 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1799 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1800 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1801 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1802 } 1803 1804 //----------------------------------do_ifnull---------------------------------- 1805 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1806 int target_bci = iter().get_dest(); 1807 1808 Node* counter = nullptr; 1809 Node* incr_store = nullptr; 1810 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1811 if (do_stress_trap) { 1812 increment_trap_stress_counter(counter, incr_store); 1813 } 1814 1815 Block* branch_block = successor_for_bci(target_bci); 1816 Block* next_block = successor_for_bci(iter().next_bci()); 1817 1818 float cnt; 1819 float prob = branch_prediction(cnt, btest, target_bci, c); 1820 if (prob == PROB_UNKNOWN) { 1821 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1822 if (PrintOpto && Verbose) { 1823 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1824 } 1825 repush_if_args(); // to gather stats on loop 1826 uncommon_trap(Deoptimization::Reason_unreached, 1827 Deoptimization::Action_reinterpret, 1828 nullptr, "cold"); 1829 if (C->eliminate_boxing()) { 1830 // Mark the successor blocks as parsed 1831 branch_block->next_path_num(); 1832 next_block->next_path_num(); 1833 } 1834 return; 1835 } 1836 1837 NOT_PRODUCT(explicit_null_checks_inserted++); 1838 1839 // Generate real control flow 1840 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1841 1842 // Sanity check the probability value 1843 assert(prob > 0.0f,"Bad probability in Parser"); 1844 // Need xform to put node in hash table 1845 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1846 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1847 // True branch 1848 { PreserveJVMState pjvms(this); 1849 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1850 set_control(iftrue); 1851 1852 if (stopped()) { // Path is dead? 1853 NOT_PRODUCT(explicit_null_checks_elided++); 1854 if (C->eliminate_boxing()) { 1855 // Mark the successor block as parsed 1856 branch_block->next_path_num(); 1857 } 1858 } else { // Path is live. 1859 adjust_map_after_if(btest, c, prob, branch_block); 1860 if (!stopped()) { 1861 merge(target_bci); 1862 } 1863 } 1864 } 1865 1866 // False branch 1867 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1868 set_control(iffalse); 1869 1870 if (stopped()) { // Path is dead? 1871 NOT_PRODUCT(explicit_null_checks_elided++); 1872 if (C->eliminate_boxing()) { 1873 // Mark the successor block as parsed 1874 next_block->next_path_num(); 1875 } 1876 } else { // Path is live. 1877 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1878 } 1879 1880 if (do_stress_trap) { 1881 stress_trap(iff, counter, incr_store); 1882 } 1883 } 1884 1885 //------------------------------------do_if------------------------------------ 1886 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) { 1887 int target_bci = iter().get_dest(); 1888 1889 Block* branch_block = successor_for_bci(target_bci); 1890 Block* next_block = successor_for_bci(iter().next_bci()); 1891 1892 float cnt; 1893 float prob = branch_prediction(cnt, btest, target_bci, c); 1894 float untaken_prob = 1.0 - prob; 1895 1896 if (prob == PROB_UNKNOWN) { 1897 if (PrintOpto && Verbose) { 1898 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1899 } 1900 repush_if_args(); // to gather stats on loop 1901 uncommon_trap(Deoptimization::Reason_unreached, 1902 Deoptimization::Action_reinterpret, 1903 nullptr, "cold"); 1904 if (C->eliminate_boxing()) { 1905 // Mark the successor blocks as parsed 1906 branch_block->next_path_num(); 1907 next_block->next_path_num(); 1908 } 1909 return; 1910 } 1911 1912 Node* counter = nullptr; 1913 Node* incr_store = nullptr; 1914 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1915 if (do_stress_trap) { 1916 increment_trap_stress_counter(counter, incr_store); 1917 } 1918 1919 // Sanity check the probability value 1920 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1921 1922 bool taken_if_true = true; 1923 // Convert BoolTest to canonical form: 1924 if (!BoolTest(btest).is_canonical()) { 1925 btest = BoolTest(btest).negate(); 1926 taken_if_true = false; 1927 // prob is NOT updated here; it remains the probability of the taken 1928 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1929 } 1930 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1931 1932 Node* tst0 = new BoolNode(c, btest); 1933 Node* tst = _gvn.transform(tst0); 1934 BoolTest::mask taken_btest = BoolTest::illegal; 1935 BoolTest::mask untaken_btest = BoolTest::illegal; 1936 1937 if (tst->is_Bool()) { 1938 // Refresh c from the transformed bool node, since it may be 1939 // simpler than the original c. Also re-canonicalize btest. 1940 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1941 // That can arise from statements like: if (x instanceof C) ... 1942 if (tst != tst0) { 1943 // Canonicalize one more time since transform can change it. 1944 btest = tst->as_Bool()->_test._test; 1945 if (!BoolTest(btest).is_canonical()) { 1946 // Reverse edges one more time... 1947 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1948 btest = tst->as_Bool()->_test._test; 1949 assert(BoolTest(btest).is_canonical(), "sanity"); 1950 taken_if_true = !taken_if_true; 1951 } 1952 c = tst->in(1); 1953 } 1954 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1955 taken_btest = taken_if_true ? btest : neg_btest; 1956 untaken_btest = taken_if_true ? neg_btest : btest; 1957 } 1958 1959 // Generate real control flow 1960 float true_prob = (taken_if_true ? prob : untaken_prob); 1961 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1962 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1963 Node* taken_branch = new IfTrueNode(iff); 1964 Node* untaken_branch = new IfFalseNode(iff); 1965 if (!taken_if_true) { // Finish conversion to canonical form 1966 Node* tmp = taken_branch; 1967 taken_branch = untaken_branch; 1968 untaken_branch = tmp; 1969 } 1970 1971 // Branch is taken: 1972 { PreserveJVMState pjvms(this); 1973 taken_branch = _gvn.transform(taken_branch); 1974 set_control(taken_branch); 1975 1976 if (stopped()) { 1977 if (C->eliminate_boxing() && !new_path) { 1978 // Mark the successor block as parsed (if we haven't created a new path) 1979 branch_block->next_path_num(); 1980 } 1981 } else { 1982 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap); 1983 if (!stopped()) { 1984 if (new_path) { 1985 // Merge by using a new path 1986 merge_new_path(target_bci); 1987 } else if (ctrl_taken != nullptr) { 1988 // Don't merge but save taken branch to be wired by caller 1989 *ctrl_taken = control(); 1990 } else { 1991 merge(target_bci); 1992 } 1993 } 1994 } 1995 } 1996 1997 untaken_branch = _gvn.transform(untaken_branch); 1998 set_control(untaken_branch); 1999 2000 // Branch not taken. 2001 if (stopped() && ctrl_taken == nullptr) { 2002 if (C->eliminate_boxing()) { 2003 // Mark the successor block as parsed (if caller does not re-wire control flow) 2004 next_block->next_path_num(); 2005 } 2006 } else { 2007 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap); 2008 } 2009 2010 if (do_stress_trap) { 2011 stress_trap(iff, counter, incr_store); 2012 } 2013 } 2014 2015 2016 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 2017 if (t->speculative() == nullptr) { 2018 return ProfileUnknownNull; 2019 } 2020 if (t->speculative_always_null()) { 2021 return ProfileAlwaysNull; 2022 } 2023 if (t->speculative_maybe_null()) { 2024 return ProfileMaybeNull; 2025 } 2026 return ProfileNeverNull; 2027 } 2028 2029 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 2030 inc_sp(2); 2031 Node* cast = null_check_common(input, T_OBJECT, true, nullptr, 2032 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 2033 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 2034 dec_sp(2); 2035 if (btest == BoolTest::ne) { 2036 { 2037 PreserveJVMState pjvms(this); 2038 replace_in_map(input, cast); 2039 int target_bci = iter().get_dest(); 2040 merge(target_bci); 2041 } 2042 record_for_igvn(eq_region); 2043 set_control(_gvn.transform(eq_region)); 2044 } else { 2045 replace_in_map(input, cast); 2046 } 2047 } 2048 2049 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 2050 inc_sp(2); 2051 null_ctl = top(); 2052 Node* cast = null_check_oop(input, &null_ctl, 2053 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 2054 false, 2055 speculative_ptr_kind(tinput) == ProfileNeverNull && 2056 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 2057 dec_sp(2); 2058 assert(!stopped(), "null input should have been caught earlier"); 2059 return cast; 2060 } 2061 2062 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 2063 Node* ne_region = new RegionNode(1); 2064 Node* null_ctl; 2065 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2066 ne_region->add_req(null_ctl); 2067 2068 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 2069 { 2070 PreserveJVMState pjvms(this); 2071 inc_sp(2); 2072 set_control(slow_ctl); 2073 Deoptimization::DeoptReason reason; 2074 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2075 reason = Deoptimization::Reason_speculate_class_check; 2076 } else { 2077 reason = Deoptimization::Reason_class_check; 2078 } 2079 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2080 } 2081 ne_region->add_req(control()); 2082 2083 record_for_igvn(ne_region); 2084 set_control(_gvn.transform(ne_region)); 2085 if (btest == BoolTest::ne) { 2086 { 2087 PreserveJVMState pjvms(this); 2088 if (null_ctl == top()) { 2089 replace_in_map(input, cast); 2090 } 2091 int target_bci = iter().get_dest(); 2092 merge(target_bci); 2093 } 2094 record_for_igvn(eq_region); 2095 set_control(_gvn.transform(eq_region)); 2096 } else { 2097 if (null_ctl == top()) { 2098 replace_in_map(input, cast); 2099 } 2100 set_control(_gvn.transform(ne_region)); 2101 } 2102 } 2103 2104 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 2105 Node* ne_region = new RegionNode(1); 2106 Node* null_ctl; 2107 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2108 ne_region->add_req(null_ctl); 2109 2110 { 2111 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 2112 inc_sp(2); 2113 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 2114 } 2115 2116 ne_region->add_req(control()); 2117 2118 record_for_igvn(ne_region); 2119 set_control(_gvn.transform(ne_region)); 2120 if (btest == BoolTest::ne) { 2121 { 2122 PreserveJVMState pjvms(this); 2123 if (null_ctl == top()) { 2124 replace_in_map(input, cast); 2125 } 2126 int target_bci = iter().get_dest(); 2127 merge(target_bci); 2128 } 2129 record_for_igvn(eq_region); 2130 set_control(_gvn.transform(eq_region)); 2131 } else { 2132 if (null_ctl == top()) { 2133 replace_in_map(input, cast); 2134 } 2135 set_control(_gvn.transform(ne_region)); 2136 } 2137 } 2138 2139 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2140 ciKlass* left_type = nullptr; 2141 ciKlass* right_type = nullptr; 2142 ProfilePtrKind left_ptr = ProfileUnknownNull; 2143 ProfilePtrKind right_ptr = ProfileUnknownNull; 2144 bool left_inline_type = true; 2145 bool right_inline_type = true; 2146 2147 // Leverage profiling at acmp 2148 if (UseACmpProfile) { 2149 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2150 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2151 left_type = nullptr; 2152 right_type = nullptr; 2153 left_inline_type = true; 2154 right_inline_type = true; 2155 } 2156 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2157 left_ptr = ProfileUnknownNull; 2158 right_ptr = ProfileUnknownNull; 2159 } 2160 } 2161 2162 if (UseTypeSpeculation) { 2163 record_profile_for_speculation(left, left_type, left_ptr); 2164 record_profile_for_speculation(right, right_type, right_ptr); 2165 } 2166 2167 if (!EnableValhalla) { 2168 Node* cmp = CmpP(left, right); 2169 cmp = optimize_cmp_with_klass(cmp); 2170 do_if(btest, cmp); 2171 return; 2172 } 2173 2174 // Check for equality before potentially allocating 2175 if (left == right) { 2176 do_if(btest, makecon(TypeInt::CC_EQ)); 2177 return; 2178 } 2179 2180 // Allocate inline type operands and re-execute on deoptimization 2181 if (left->is_InlineType()) { 2182 if (_gvn.type(right)->is_zero_type() || 2183 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2184 // Null checking a scalarized but nullable inline type. Check the IsInit 2185 // input instead of the oop input to avoid keeping buffer allocations alive. 2186 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2187 do_if(btest, cmp); 2188 return; 2189 } else { 2190 PreserveReexecuteState preexecs(this); 2191 inc_sp(2); 2192 jvms()->set_should_reexecute(true); 2193 left = left->as_InlineType()->buffer(this)->get_oop(); 2194 } 2195 } 2196 if (right->is_InlineType()) { 2197 PreserveReexecuteState preexecs(this); 2198 inc_sp(2); 2199 jvms()->set_should_reexecute(true); 2200 right = right->as_InlineType()->buffer(this)->get_oop(); 2201 } 2202 2203 // First, do a normal pointer comparison 2204 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2205 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2206 Node* cmp = CmpP(left, right); 2207 cmp = optimize_cmp_with_klass(cmp); 2208 if (tleft == nullptr || !tleft->can_be_inline_type() || 2209 tright == nullptr || !tright->can_be_inline_type()) { 2210 // This is sufficient, if one of the operands can't be an inline type 2211 do_if(btest, cmp); 2212 return; 2213 } 2214 2215 // Don't add traps to unstable if branches because additional checks are required to 2216 // decide if the operands are equal/substitutable and we therefore shouldn't prune 2217 // branches for one if based on the profiling of the acmp branches. 2218 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it 2219 // assumes that there is a 1-1 mapping between the if and the acmp branches and that 2220 // hitting a trap means that we will take the corresponding acmp branch on re-execution. 2221 const bool can_trap = true; 2222 2223 Node* eq_region = nullptr; 2224 if (btest == BoolTest::eq) { 2225 do_if(btest, cmp, !can_trap, true); 2226 if (stopped()) { 2227 // Pointers are equal, operands must be equal 2228 return; 2229 } 2230 } else { 2231 assert(btest == BoolTest::ne, "only eq or ne"); 2232 Node* is_not_equal = nullptr; 2233 eq_region = new RegionNode(3); 2234 { 2235 PreserveJVMState pjvms(this); 2236 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable 2237 do_if(btest, cmp, !can_trap, false, &is_not_equal); 2238 if (!stopped()) { 2239 eq_region->init_req(1, control()); 2240 } 2241 } 2242 if (is_not_equal == nullptr || is_not_equal->is_top()) { 2243 record_for_igvn(eq_region); 2244 set_control(_gvn.transform(eq_region)); 2245 return; 2246 } 2247 set_control(is_not_equal); 2248 } 2249 2250 // Prefer speculative types if available 2251 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2252 if (tleft->speculative_type() != nullptr) { 2253 left_type = tleft->speculative_type(); 2254 } 2255 if (tright->speculative_type() != nullptr) { 2256 right_type = tright->speculative_type(); 2257 } 2258 } 2259 2260 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2261 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2262 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2263 left_ptr = speculative_left_ptr; 2264 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2265 left_ptr = speculative_left_ptr; 2266 } 2267 } 2268 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2269 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2270 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2271 right_ptr = speculative_right_ptr; 2272 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2273 right_ptr = speculative_right_ptr; 2274 } 2275 } 2276 2277 if (left_ptr == ProfileAlwaysNull) { 2278 // Comparison with null. Assert the input is indeed null and we're done. 2279 acmp_always_null_input(left, tleft, btest, eq_region); 2280 return; 2281 } 2282 if (right_ptr == ProfileAlwaysNull) { 2283 // Comparison with null. Assert the input is indeed null and we're done. 2284 acmp_always_null_input(right, tright, btest, eq_region); 2285 return; 2286 } 2287 if (left_type != nullptr && !left_type->is_inlinetype()) { 2288 // Comparison with an object of known type 2289 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2290 return; 2291 } 2292 if (right_type != nullptr && !right_type->is_inlinetype()) { 2293 // Comparison with an object of known type 2294 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2295 return; 2296 } 2297 if (!left_inline_type) { 2298 // Comparison with an object known not to be an inline type 2299 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2300 return; 2301 } 2302 if (!right_inline_type) { 2303 // Comparison with an object known not to be an inline type 2304 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2305 return; 2306 } 2307 2308 // Pointers are not equal, check if first operand is non-null 2309 Node* ne_region = new RegionNode(6); 2310 Node* null_ctl; 2311 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2312 ne_region->init_req(1, null_ctl); 2313 2314 // First operand is non-null, check if it is an inline type 2315 Node* is_value = inline_type_test(not_null_right); 2316 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2317 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2318 ne_region->init_req(2, not_value); 2319 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2320 2321 // The first operand is an inline type, check if the second operand is non-null 2322 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2323 ne_region->init_req(3, null_ctl); 2324 2325 // Check if both operands are of the same class. 2326 Node* kls_left = load_object_klass(not_null_left); 2327 Node* kls_right = load_object_klass(not_null_right); 2328 Node* kls_cmp = CmpP(kls_left, kls_right); 2329 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2330 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2331 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2332 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2333 ne_region->init_req(4, kls_ne); 2334 2335 if (stopped()) { 2336 record_for_igvn(ne_region); 2337 set_control(_gvn.transform(ne_region)); 2338 if (btest == BoolTest::ne) { 2339 { 2340 PreserveJVMState pjvms(this); 2341 int target_bci = iter().get_dest(); 2342 merge(target_bci); 2343 } 2344 record_for_igvn(eq_region); 2345 set_control(_gvn.transform(eq_region)); 2346 } 2347 return; 2348 } 2349 2350 // Both operands are values types of the same class, we need to perform a 2351 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2352 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2353 Node* mem = reset_memory(); 2354 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2355 2356 Node* eq_io_phi = nullptr; 2357 Node* eq_mem_phi = nullptr; 2358 if (eq_region != nullptr) { 2359 eq_io_phi = PhiNode::make(eq_region, i_o()); 2360 eq_mem_phi = PhiNode::make(eq_region, mem); 2361 } 2362 2363 set_all_memory(mem); 2364 2365 kill_dead_locals(); 2366 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2367 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2368 call->set_override_symbolic_info(true); 2369 call->init_req(TypeFunc::Parms, not_null_left); 2370 call->init_req(TypeFunc::Parms+1, not_null_right); 2371 inc_sp(2); 2372 set_edges_for_java_call(call, false, false); 2373 Node* ret = set_results_for_java_call(call, false, true); 2374 dec_sp(2); 2375 2376 // Test the return value of ValueObjectMethods::isSubstitutable() 2377 // This is the last check, do_if can emit traps now. 2378 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2379 Node* ctl = C->top(); 2380 if (btest == BoolTest::eq) { 2381 PreserveJVMState pjvms(this); 2382 do_if(btest, subst_cmp, can_trap); 2383 if (!stopped()) { 2384 ctl = control(); 2385 } 2386 } else { 2387 assert(btest == BoolTest::ne, "only eq or ne"); 2388 PreserveJVMState pjvms(this); 2389 do_if(btest, subst_cmp, can_trap, false, &ctl); 2390 if (!stopped()) { 2391 eq_region->init_req(2, control()); 2392 eq_io_phi->init_req(2, i_o()); 2393 eq_mem_phi->init_req(2, reset_memory()); 2394 } 2395 } 2396 ne_region->init_req(5, ctl); 2397 ne_io_phi->init_req(5, i_o()); 2398 ne_mem_phi->init_req(5, reset_memory()); 2399 2400 record_for_igvn(ne_region); 2401 set_control(_gvn.transform(ne_region)); 2402 set_i_o(_gvn.transform(ne_io_phi)); 2403 set_all_memory(_gvn.transform(ne_mem_phi)); 2404 2405 if (btest == BoolTest::ne) { 2406 { 2407 PreserveJVMState pjvms(this); 2408 int target_bci = iter().get_dest(); 2409 merge(target_bci); 2410 } 2411 2412 record_for_igvn(eq_region); 2413 set_control(_gvn.transform(eq_region)); 2414 set_i_o(_gvn.transform(eq_io_phi)); 2415 set_all_memory(_gvn.transform(eq_mem_phi)); 2416 } 2417 } 2418 2419 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 2420 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 2421 // then either takes the trap or executes the original, unstable if. 2422 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 2423 // Search for an unstable if trap 2424 CallStaticJavaNode* trap = nullptr; 2425 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 2426 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 2427 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 2428 // No suitable trap found. Remove unused counter load and increment. 2429 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 2430 return; 2431 } 2432 2433 // Remove trap from optimization list since we add another path to the trap. 2434 bool success = C->remove_unstable_if_trap(trap, true); 2435 assert(success, "Trap already modified"); 2436 2437 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 2438 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 2439 Node* mask = intcon(right_n_bits(freq_log)); 2440 counter = _gvn.transform(new AndINode(counter, mask)); 2441 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 2442 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 2443 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 2444 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 2445 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 2446 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 2447 2448 // Trap 2449 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 2450 2451 Node* trap_region = new RegionNode(3); 2452 trap_region->set_req(1, trap_proj); 2453 trap_region->set_req(2, if_true); 2454 trap->set_req(0, _gvn.transform(trap_region)); 2455 2456 // Don't trap, execute original if 2457 orig_iff->set_req(0, if_false); 2458 } 2459 2460 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2461 // Randomly skip emitting an uncommon trap 2462 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 2463 return false; 2464 } 2465 // Don't want to speculate on uncommon traps when running with -Xcomp 2466 if (!UseInterpreter) { 2467 return false; 2468 } 2469 return seems_never_taken(prob) && 2470 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 2471 } 2472 2473 void Parse::maybe_add_predicate_after_if(Block* path) { 2474 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2475 // Add predicates at bci of if dominating the loop so traps can be 2476 // recorded on the if's profile data 2477 int bc_depth = repush_if_args(); 2478 add_parse_predicates(); 2479 dec_sp(bc_depth); 2480 path->set_has_predicates(); 2481 } 2482 } 2483 2484 2485 //----------------------------adjust_map_after_if------------------------------ 2486 // Adjust the JVM state to reflect the result of taking this path. 2487 // Basically, it means inspecting the CmpNode controlling this 2488 // branch, seeing how it constrains a tested value, and then 2489 // deciding if it's worth our while to encode this constraint 2490 // as graph nodes in the current abstract interpretation map. 2491 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) { 2492 if (!c->is_Cmp()) { 2493 maybe_add_predicate_after_if(path); 2494 return; 2495 } 2496 2497 if (stopped() || btest == BoolTest::illegal) { 2498 return; // nothing to do 2499 } 2500 2501 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2502 2503 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) { 2504 repush_if_args(); 2505 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2506 Deoptimization::Action_reinterpret, 2507 nullptr, 2508 (is_fallthrough ? "taken always" : "taken never")); 2509 2510 if (call != nullptr) { 2511 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2512 } 2513 return; 2514 } 2515 2516 Node* val = c->in(1); 2517 Node* con = c->in(2); 2518 const Type* tcon = _gvn.type(con); 2519 const Type* tval = _gvn.type(val); 2520 bool have_con = tcon->singleton(); 2521 if (tval->singleton()) { 2522 if (!have_con) { 2523 // Swap, so constant is in con. 2524 con = val; 2525 tcon = tval; 2526 val = c->in(2); 2527 tval = _gvn.type(val); 2528 btest = BoolTest(btest).commute(); 2529 have_con = true; 2530 } else { 2531 // Do we have two constants? Then leave well enough alone. 2532 have_con = false; 2533 } 2534 } 2535 if (!have_con) { // remaining adjustments need a con 2536 maybe_add_predicate_after_if(path); 2537 return; 2538 } 2539 2540 sharpen_type_after_if(btest, con, tcon, val, tval); 2541 maybe_add_predicate_after_if(path); 2542 } 2543 2544 2545 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2546 Node* ldk; 2547 if (n->is_DecodeNKlass()) { 2548 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2549 return nullptr; 2550 } else { 2551 ldk = n->in(1); 2552 } 2553 } else if (n->Opcode() != Op_LoadKlass) { 2554 return nullptr; 2555 } else { 2556 ldk = n; 2557 } 2558 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2559 2560 Node* adr = ldk->in(MemNode::Address); 2561 intptr_t off = 0; 2562 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2563 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2564 return nullptr; 2565 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2566 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2567 return nullptr; 2568 2569 return obj; 2570 } 2571 2572 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2573 Node* con, const Type* tcon, 2574 Node* val, const Type* tval) { 2575 // Look for opportunities to sharpen the type of a node 2576 // whose klass is compared with a constant klass. 2577 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2578 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2579 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2580 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2581 // Found: 2582 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2583 // or the narrowOop equivalent. 2584 const Type* obj_type = _gvn.type(obj); 2585 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2586 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 2587 tboth->higher_equal(obj_type)) { 2588 // obj has to be of the exact type Foo if the CmpP succeeds. 2589 int obj_in_map = map()->find_edge(obj); 2590 JVMState* jvms = this->jvms(); 2591 if (obj_in_map >= 0 && 2592 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2593 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2594 const Type* tcc = ccast->as_Type()->type(); 2595 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2596 // Delay transform() call to allow recovery of pre-cast value 2597 // at the control merge. 2598 _gvn.set_type_bottom(ccast); 2599 record_for_igvn(ccast); 2600 if (tboth->is_inlinetypeptr()) { 2601 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass()); 2602 } 2603 // Here's the payoff. 2604 replace_in_map(obj, ccast); 2605 } 2606 } 2607 } 2608 } 2609 2610 int val_in_map = map()->find_edge(val); 2611 if (val_in_map < 0) return; // replace_in_map would be useless 2612 { 2613 JVMState* jvms = this->jvms(); 2614 if (!(jvms->is_loc(val_in_map) || 2615 jvms->is_stk(val_in_map))) 2616 return; // again, it would be useless 2617 } 2618 2619 // Check for a comparison to a constant, and "know" that the compared 2620 // value is constrained on this path. 2621 assert(tcon->singleton(), ""); 2622 ConstraintCastNode* ccast = nullptr; 2623 Node* cast = nullptr; 2624 2625 switch (btest) { 2626 case BoolTest::eq: // Constant test? 2627 { 2628 const Type* tboth = tcon->join_speculative(tval); 2629 if (tboth == tval) break; // Nothing to gain. 2630 if (tcon->isa_int()) { 2631 ccast = new CastIINode(control(), val, tboth); 2632 } else if (tcon == TypePtr::NULL_PTR) { 2633 // Cast to null, but keep the pointer identity temporarily live. 2634 ccast = new CastPPNode(control(), val, tboth); 2635 } else { 2636 const TypeF* tf = tcon->isa_float_constant(); 2637 const TypeD* td = tcon->isa_double_constant(); 2638 // Exclude tests vs float/double 0 as these could be 2639 // either +0 or -0. Just because you are equal to +0 2640 // doesn't mean you ARE +0! 2641 // Note, following code also replaces Long and Oop values. 2642 if ((!tf || tf->_f != 0.0) && 2643 (!td || td->_d != 0.0)) 2644 cast = con; // Replace non-constant val by con. 2645 } 2646 } 2647 break; 2648 2649 case BoolTest::ne: 2650 if (tcon == TypePtr::NULL_PTR) { 2651 cast = cast_not_null(val, false); 2652 } 2653 break; 2654 2655 default: 2656 // (At this point we could record int range types with CastII.) 2657 break; 2658 } 2659 2660 if (ccast != nullptr) { 2661 const Type* tcc = ccast->as_Type()->type(); 2662 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2663 // Delay transform() call to allow recovery of pre-cast value 2664 // at the control merge. 2665 _gvn.set_type_bottom(ccast); 2666 record_for_igvn(ccast); 2667 cast = ccast; 2668 } 2669 2670 if (cast != nullptr) { // Here's the payoff. 2671 replace_in_map(val, cast); 2672 } 2673 } 2674 2675 /** 2676 * Use speculative type to optimize CmpP node: if comparison is 2677 * against the low level class, cast the object to the speculative 2678 * type if any. CmpP should then go away. 2679 * 2680 * @param c expected CmpP node 2681 * @return result of CmpP on object casted to speculative type 2682 * 2683 */ 2684 Node* Parse::optimize_cmp_with_klass(Node* c) { 2685 // If this is transformed by the _gvn to a comparison with the low 2686 // level klass then we may be able to use speculation 2687 if (c->Opcode() == Op_CmpP && 2688 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2689 c->in(2)->is_Con()) { 2690 Node* load_klass = nullptr; 2691 Node* decode = nullptr; 2692 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2693 decode = c->in(1); 2694 load_klass = c->in(1)->in(1); 2695 } else { 2696 load_klass = c->in(1); 2697 } 2698 if (load_klass->in(2)->is_AddP()) { 2699 Node* addp = load_klass->in(2); 2700 Node* obj = addp->in(AddPNode::Address); 2701 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2702 if (obj_type->speculative_type_not_null() != nullptr) { 2703 ciKlass* k = obj_type->speculative_type(); 2704 inc_sp(2); 2705 obj = maybe_cast_profiled_obj(obj, k); 2706 dec_sp(2); 2707 if (obj->is_InlineType()) { 2708 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2709 obj = obj->as_InlineType()->get_oop(); 2710 } 2711 // Make the CmpP use the casted obj 2712 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2713 load_klass = load_klass->clone(); 2714 load_klass->set_req(2, addp); 2715 load_klass = _gvn.transform(load_klass); 2716 if (decode != nullptr) { 2717 decode = decode->clone(); 2718 decode->set_req(1, load_klass); 2719 load_klass = _gvn.transform(decode); 2720 } 2721 c = c->clone(); 2722 c->set_req(1, load_klass); 2723 c = _gvn.transform(c); 2724 } 2725 } 2726 } 2727 return c; 2728 } 2729 2730 //------------------------------do_one_bytecode-------------------------------- 2731 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2732 void Parse::do_one_bytecode() { 2733 Node *a, *b, *c, *d; // Handy temps 2734 BoolTest::mask btest; 2735 int i; 2736 2737 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2738 2739 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2740 "out of nodes parsing method")) { 2741 return; 2742 } 2743 2744 #ifdef ASSERT 2745 // for setting breakpoints 2746 if (TraceOptoParse) { 2747 tty->print(" @"); 2748 dump_bci(bci()); 2749 tty->print(" %s", Bytecodes::name(bc())); 2750 tty->cr(); 2751 } 2752 #endif 2753 2754 switch (bc()) { 2755 case Bytecodes::_nop: 2756 // do nothing 2757 break; 2758 case Bytecodes::_lconst_0: 2759 push_pair(longcon(0)); 2760 break; 2761 2762 case Bytecodes::_lconst_1: 2763 push_pair(longcon(1)); 2764 break; 2765 2766 case Bytecodes::_fconst_0: 2767 push(zerocon(T_FLOAT)); 2768 break; 2769 2770 case Bytecodes::_fconst_1: 2771 push(makecon(TypeF::ONE)); 2772 break; 2773 2774 case Bytecodes::_fconst_2: 2775 push(makecon(TypeF::make(2.0f))); 2776 break; 2777 2778 case Bytecodes::_dconst_0: 2779 push_pair(zerocon(T_DOUBLE)); 2780 break; 2781 2782 case Bytecodes::_dconst_1: 2783 push_pair(makecon(TypeD::ONE)); 2784 break; 2785 2786 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2787 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2788 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2789 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2790 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2791 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2792 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2793 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2794 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2795 case Bytecodes::_aconst_null: push(null()); break; 2796 2797 case Bytecodes::_ldc: 2798 case Bytecodes::_ldc_w: 2799 case Bytecodes::_ldc2_w: { 2800 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded 2801 assert(!iter().is_in_error(), "ldc is in error state"); 2802 ciConstant constant = iter().get_constant(); 2803 assert(constant.is_loaded(), "constant is not loaded"); 2804 const Type* con_type = Type::make_from_constant(constant); 2805 if (con_type != nullptr) { 2806 push_node(con_type->basic_type(), makecon(con_type)); 2807 } 2808 break; 2809 } 2810 2811 case Bytecodes::_aload_0: 2812 push( local(0) ); 2813 break; 2814 case Bytecodes::_aload_1: 2815 push( local(1) ); 2816 break; 2817 case Bytecodes::_aload_2: 2818 push( local(2) ); 2819 break; 2820 case Bytecodes::_aload_3: 2821 push( local(3) ); 2822 break; 2823 case Bytecodes::_aload: 2824 push( local(iter().get_index()) ); 2825 break; 2826 2827 case Bytecodes::_fload_0: 2828 case Bytecodes::_iload_0: 2829 push( local(0) ); 2830 break; 2831 case Bytecodes::_fload_1: 2832 case Bytecodes::_iload_1: 2833 push( local(1) ); 2834 break; 2835 case Bytecodes::_fload_2: 2836 case Bytecodes::_iload_2: 2837 push( local(2) ); 2838 break; 2839 case Bytecodes::_fload_3: 2840 case Bytecodes::_iload_3: 2841 push( local(3) ); 2842 break; 2843 case Bytecodes::_fload: 2844 case Bytecodes::_iload: 2845 push( local(iter().get_index()) ); 2846 break; 2847 case Bytecodes::_lload_0: 2848 push_pair_local( 0 ); 2849 break; 2850 case Bytecodes::_lload_1: 2851 push_pair_local( 1 ); 2852 break; 2853 case Bytecodes::_lload_2: 2854 push_pair_local( 2 ); 2855 break; 2856 case Bytecodes::_lload_3: 2857 push_pair_local( 3 ); 2858 break; 2859 case Bytecodes::_lload: 2860 push_pair_local( iter().get_index() ); 2861 break; 2862 2863 case Bytecodes::_dload_0: 2864 push_pair_local(0); 2865 break; 2866 case Bytecodes::_dload_1: 2867 push_pair_local(1); 2868 break; 2869 case Bytecodes::_dload_2: 2870 push_pair_local(2); 2871 break; 2872 case Bytecodes::_dload_3: 2873 push_pair_local(3); 2874 break; 2875 case Bytecodes::_dload: 2876 push_pair_local(iter().get_index()); 2877 break; 2878 case Bytecodes::_fstore_0: 2879 case Bytecodes::_istore_0: 2880 case Bytecodes::_astore_0: 2881 set_local( 0, pop() ); 2882 break; 2883 case Bytecodes::_fstore_1: 2884 case Bytecodes::_istore_1: 2885 case Bytecodes::_astore_1: 2886 set_local( 1, pop() ); 2887 break; 2888 case Bytecodes::_fstore_2: 2889 case Bytecodes::_istore_2: 2890 case Bytecodes::_astore_2: 2891 set_local( 2, pop() ); 2892 break; 2893 case Bytecodes::_fstore_3: 2894 case Bytecodes::_istore_3: 2895 case Bytecodes::_astore_3: 2896 set_local( 3, pop() ); 2897 break; 2898 case Bytecodes::_fstore: 2899 case Bytecodes::_istore: 2900 case Bytecodes::_astore: 2901 set_local( iter().get_index(), pop() ); 2902 break; 2903 // long stores 2904 case Bytecodes::_lstore_0: 2905 set_pair_local( 0, pop_pair() ); 2906 break; 2907 case Bytecodes::_lstore_1: 2908 set_pair_local( 1, pop_pair() ); 2909 break; 2910 case Bytecodes::_lstore_2: 2911 set_pair_local( 2, pop_pair() ); 2912 break; 2913 case Bytecodes::_lstore_3: 2914 set_pair_local( 3, pop_pair() ); 2915 break; 2916 case Bytecodes::_lstore: 2917 set_pair_local( iter().get_index(), pop_pair() ); 2918 break; 2919 2920 // double stores 2921 case Bytecodes::_dstore_0: 2922 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2923 break; 2924 case Bytecodes::_dstore_1: 2925 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2926 break; 2927 case Bytecodes::_dstore_2: 2928 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2929 break; 2930 case Bytecodes::_dstore_3: 2931 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2932 break; 2933 case Bytecodes::_dstore: 2934 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2935 break; 2936 2937 case Bytecodes::_pop: dec_sp(1); break; 2938 case Bytecodes::_pop2: dec_sp(2); break; 2939 case Bytecodes::_swap: 2940 a = pop(); 2941 b = pop(); 2942 push(a); 2943 push(b); 2944 break; 2945 case Bytecodes::_dup: 2946 a = pop(); 2947 push(a); 2948 push(a); 2949 break; 2950 case Bytecodes::_dup_x1: 2951 a = pop(); 2952 b = pop(); 2953 push( a ); 2954 push( b ); 2955 push( a ); 2956 break; 2957 case Bytecodes::_dup_x2: 2958 a = pop(); 2959 b = pop(); 2960 c = pop(); 2961 push( a ); 2962 push( c ); 2963 push( b ); 2964 push( a ); 2965 break; 2966 case Bytecodes::_dup2: 2967 a = pop(); 2968 b = pop(); 2969 push( b ); 2970 push( a ); 2971 push( b ); 2972 push( a ); 2973 break; 2974 2975 case Bytecodes::_dup2_x1: 2976 // before: .. c, b, a 2977 // after: .. b, a, c, b, a 2978 // not tested 2979 a = pop(); 2980 b = pop(); 2981 c = pop(); 2982 push( b ); 2983 push( a ); 2984 push( c ); 2985 push( b ); 2986 push( a ); 2987 break; 2988 case Bytecodes::_dup2_x2: 2989 // before: .. d, c, b, a 2990 // after: .. b, a, d, c, b, a 2991 // not tested 2992 a = pop(); 2993 b = pop(); 2994 c = pop(); 2995 d = pop(); 2996 push( b ); 2997 push( a ); 2998 push( d ); 2999 push( c ); 3000 push( b ); 3001 push( a ); 3002 break; 3003 3004 case Bytecodes::_arraylength: { 3005 // Must do null-check with value on expression stack 3006 Node *ary = null_check(peek(), T_ARRAY); 3007 // Compile-time detect of null-exception? 3008 if (stopped()) return; 3009 a = pop(); 3010 push(load_array_length(a)); 3011 break; 3012 } 3013 3014 case Bytecodes::_baload: array_load(T_BYTE); break; 3015 case Bytecodes::_caload: array_load(T_CHAR); break; 3016 case Bytecodes::_iaload: array_load(T_INT); break; 3017 case Bytecodes::_saload: array_load(T_SHORT); break; 3018 case Bytecodes::_faload: array_load(T_FLOAT); break; 3019 case Bytecodes::_aaload: array_load(T_OBJECT); break; 3020 case Bytecodes::_laload: array_load(T_LONG); break; 3021 case Bytecodes::_daload: array_load(T_DOUBLE); break; 3022 case Bytecodes::_bastore: array_store(T_BYTE); break; 3023 case Bytecodes::_castore: array_store(T_CHAR); break; 3024 case Bytecodes::_iastore: array_store(T_INT); break; 3025 case Bytecodes::_sastore: array_store(T_SHORT); break; 3026 case Bytecodes::_fastore: array_store(T_FLOAT); break; 3027 case Bytecodes::_aastore: array_store(T_OBJECT); break; 3028 case Bytecodes::_lastore: array_store(T_LONG); break; 3029 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 3030 3031 case Bytecodes::_getfield: 3032 do_getfield(); 3033 break; 3034 3035 case Bytecodes::_getstatic: 3036 do_getstatic(); 3037 break; 3038 3039 case Bytecodes::_putfield: 3040 do_putfield(); 3041 break; 3042 3043 case Bytecodes::_putstatic: 3044 do_putstatic(); 3045 break; 3046 3047 case Bytecodes::_irem: 3048 // Must keep both values on the expression-stack during null-check 3049 zero_check_int(peek()); 3050 // Compile-time detect of null-exception? 3051 if (stopped()) return; 3052 b = pop(); 3053 a = pop(); 3054 push(_gvn.transform(new ModINode(control(), a, b))); 3055 break; 3056 case Bytecodes::_idiv: 3057 // Must keep both values on the expression-stack during null-check 3058 zero_check_int(peek()); 3059 // Compile-time detect of null-exception? 3060 if (stopped()) return; 3061 b = pop(); 3062 a = pop(); 3063 push( _gvn.transform( new DivINode(control(),a,b) ) ); 3064 break; 3065 case Bytecodes::_imul: 3066 b = pop(); a = pop(); 3067 push( _gvn.transform( new MulINode(a,b) ) ); 3068 break; 3069 case Bytecodes::_iadd: 3070 b = pop(); a = pop(); 3071 push( _gvn.transform( new AddINode(a,b) ) ); 3072 break; 3073 case Bytecodes::_ineg: 3074 a = pop(); 3075 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 3076 break; 3077 case Bytecodes::_isub: 3078 b = pop(); a = pop(); 3079 push( _gvn.transform( new SubINode(a,b) ) ); 3080 break; 3081 case Bytecodes::_iand: 3082 b = pop(); a = pop(); 3083 push( _gvn.transform( new AndINode(a,b) ) ); 3084 break; 3085 case Bytecodes::_ior: 3086 b = pop(); a = pop(); 3087 push( _gvn.transform( new OrINode(a,b) ) ); 3088 break; 3089 case Bytecodes::_ixor: 3090 b = pop(); a = pop(); 3091 push( _gvn.transform( new XorINode(a,b) ) ); 3092 break; 3093 case Bytecodes::_ishl: 3094 b = pop(); a = pop(); 3095 push( _gvn.transform( new LShiftINode(a,b) ) ); 3096 break; 3097 case Bytecodes::_ishr: 3098 b = pop(); a = pop(); 3099 push( _gvn.transform( new RShiftINode(a,b) ) ); 3100 break; 3101 case Bytecodes::_iushr: 3102 b = pop(); a = pop(); 3103 push( _gvn.transform( new URShiftINode(a,b) ) ); 3104 break; 3105 3106 case Bytecodes::_fneg: 3107 a = pop(); 3108 b = _gvn.transform(new NegFNode (a)); 3109 push(b); 3110 break; 3111 3112 case Bytecodes::_fsub: 3113 b = pop(); 3114 a = pop(); 3115 c = _gvn.transform( new SubFNode(a,b) ); 3116 d = precision_rounding(c); 3117 push( d ); 3118 break; 3119 3120 case Bytecodes::_fadd: 3121 b = pop(); 3122 a = pop(); 3123 c = _gvn.transform( new AddFNode(a,b) ); 3124 d = precision_rounding(c); 3125 push( d ); 3126 break; 3127 3128 case Bytecodes::_fmul: 3129 b = pop(); 3130 a = pop(); 3131 c = _gvn.transform( new MulFNode(a,b) ); 3132 d = precision_rounding(c); 3133 push( d ); 3134 break; 3135 3136 case Bytecodes::_fdiv: 3137 b = pop(); 3138 a = pop(); 3139 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 3140 d = precision_rounding(c); 3141 push( d ); 3142 break; 3143 3144 case Bytecodes::_frem: 3145 if (Matcher::has_match_rule(Op_ModF)) { 3146 // Generate a ModF node. 3147 b = pop(); 3148 a = pop(); 3149 c = _gvn.transform( new ModFNode(nullptr,a,b) ); 3150 d = precision_rounding(c); 3151 push( d ); 3152 } 3153 else { 3154 // Generate a call. 3155 modf(); 3156 } 3157 break; 3158 3159 case Bytecodes::_fcmpl: 3160 b = pop(); 3161 a = pop(); 3162 c = _gvn.transform( new CmpF3Node( a, b)); 3163 push(c); 3164 break; 3165 case Bytecodes::_fcmpg: 3166 b = pop(); 3167 a = pop(); 3168 3169 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 3170 // which negates the result sign except for unordered. Flip the unordered 3171 // as well by using CmpF3 which implements unordered-lesser instead of 3172 // unordered-greater semantics. Finally, commute the result bits. Result 3173 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3174 c = _gvn.transform( new CmpF3Node( b, a)); 3175 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3176 push(c); 3177 break; 3178 3179 case Bytecodes::_f2i: 3180 a = pop(); 3181 push(_gvn.transform(new ConvF2INode(a))); 3182 break; 3183 3184 case Bytecodes::_d2i: 3185 a = pop_pair(); 3186 b = _gvn.transform(new ConvD2INode(a)); 3187 push( b ); 3188 break; 3189 3190 case Bytecodes::_f2d: 3191 a = pop(); 3192 b = _gvn.transform( new ConvF2DNode(a)); 3193 push_pair( b ); 3194 break; 3195 3196 case Bytecodes::_d2f: 3197 a = pop_pair(); 3198 b = _gvn.transform( new ConvD2FNode(a)); 3199 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 3200 //b = _gvn.transform(new RoundFloatNode(nullptr, b) ); 3201 push( b ); 3202 break; 3203 3204 case Bytecodes::_l2f: 3205 if (Matcher::convL2FSupported()) { 3206 a = pop_pair(); 3207 b = _gvn.transform( new ConvL2FNode(a)); 3208 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 3209 // Rather than storing the result into an FP register then pushing 3210 // out to memory to round, the machine instruction that implements 3211 // ConvL2D is responsible for rounding. 3212 // c = precision_rounding(b); 3213 push(b); 3214 } else { 3215 l2f(); 3216 } 3217 break; 3218 3219 case Bytecodes::_l2d: 3220 a = pop_pair(); 3221 b = _gvn.transform( new ConvL2DNode(a)); 3222 // For x86_32.ad, rounding is always necessary (see _l2f above). 3223 // c = dprecision_rounding(b); 3224 push_pair(b); 3225 break; 3226 3227 case Bytecodes::_f2l: 3228 a = pop(); 3229 b = _gvn.transform( new ConvF2LNode(a)); 3230 push_pair(b); 3231 break; 3232 3233 case Bytecodes::_d2l: 3234 a = pop_pair(); 3235 b = _gvn.transform( new ConvD2LNode(a)); 3236 push_pair(b); 3237 break; 3238 3239 case Bytecodes::_dsub: 3240 b = pop_pair(); 3241 a = pop_pair(); 3242 c = _gvn.transform( new SubDNode(a,b) ); 3243 d = dprecision_rounding(c); 3244 push_pair( d ); 3245 break; 3246 3247 case Bytecodes::_dadd: 3248 b = pop_pair(); 3249 a = pop_pair(); 3250 c = _gvn.transform( new AddDNode(a,b) ); 3251 d = dprecision_rounding(c); 3252 push_pair( d ); 3253 break; 3254 3255 case Bytecodes::_dmul: 3256 b = pop_pair(); 3257 a = pop_pair(); 3258 c = _gvn.transform( new MulDNode(a,b) ); 3259 d = dprecision_rounding(c); 3260 push_pair( d ); 3261 break; 3262 3263 case Bytecodes::_ddiv: 3264 b = pop_pair(); 3265 a = pop_pair(); 3266 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 3267 d = dprecision_rounding(c); 3268 push_pair( d ); 3269 break; 3270 3271 case Bytecodes::_dneg: 3272 a = pop_pair(); 3273 b = _gvn.transform(new NegDNode (a)); 3274 push_pair(b); 3275 break; 3276 3277 case Bytecodes::_drem: 3278 if (Matcher::has_match_rule(Op_ModD)) { 3279 // Generate a ModD node. 3280 b = pop_pair(); 3281 a = pop_pair(); 3282 // a % b 3283 3284 c = _gvn.transform( new ModDNode(nullptr,a,b) ); 3285 d = dprecision_rounding(c); 3286 push_pair( d ); 3287 } 3288 else { 3289 // Generate a call. 3290 modd(); 3291 } 3292 break; 3293 3294 case Bytecodes::_dcmpl: 3295 b = pop_pair(); 3296 a = pop_pair(); 3297 c = _gvn.transform( new CmpD3Node( a, b)); 3298 push(c); 3299 break; 3300 3301 case Bytecodes::_dcmpg: 3302 b = pop_pair(); 3303 a = pop_pair(); 3304 // Same as dcmpl but need to flip the unordered case. 3305 // Commute the inputs, which negates the result sign except for unordered. 3306 // Flip the unordered as well by using CmpD3 which implements 3307 // unordered-lesser instead of unordered-greater semantics. 3308 // Finally, negate the result bits. Result is same as using a 3309 // CmpD3Greater except we did it with CmpD3 alone. 3310 c = _gvn.transform( new CmpD3Node( b, a)); 3311 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3312 push(c); 3313 break; 3314 3315 3316 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3317 case Bytecodes::_land: 3318 b = pop_pair(); 3319 a = pop_pair(); 3320 c = _gvn.transform( new AndLNode(a,b) ); 3321 push_pair(c); 3322 break; 3323 case Bytecodes::_lor: 3324 b = pop_pair(); 3325 a = pop_pair(); 3326 c = _gvn.transform( new OrLNode(a,b) ); 3327 push_pair(c); 3328 break; 3329 case Bytecodes::_lxor: 3330 b = pop_pair(); 3331 a = pop_pair(); 3332 c = _gvn.transform( new XorLNode(a,b) ); 3333 push_pair(c); 3334 break; 3335 3336 case Bytecodes::_lshl: 3337 b = pop(); // the shift count 3338 a = pop_pair(); // value to be shifted 3339 c = _gvn.transform( new LShiftLNode(a,b) ); 3340 push_pair(c); 3341 break; 3342 case Bytecodes::_lshr: 3343 b = pop(); // the shift count 3344 a = pop_pair(); // value to be shifted 3345 c = _gvn.transform( new RShiftLNode(a,b) ); 3346 push_pair(c); 3347 break; 3348 case Bytecodes::_lushr: 3349 b = pop(); // the shift count 3350 a = pop_pair(); // value to be shifted 3351 c = _gvn.transform( new URShiftLNode(a,b) ); 3352 push_pair(c); 3353 break; 3354 case Bytecodes::_lmul: 3355 b = pop_pair(); 3356 a = pop_pair(); 3357 c = _gvn.transform( new MulLNode(a,b) ); 3358 push_pair(c); 3359 break; 3360 3361 case Bytecodes::_lrem: 3362 // Must keep both values on the expression-stack during null-check 3363 assert(peek(0) == top(), "long word order"); 3364 zero_check_long(peek(1)); 3365 // Compile-time detect of null-exception? 3366 if (stopped()) return; 3367 b = pop_pair(); 3368 a = pop_pair(); 3369 c = _gvn.transform( new ModLNode(control(),a,b) ); 3370 push_pair(c); 3371 break; 3372 3373 case Bytecodes::_ldiv: 3374 // Must keep both values on the expression-stack during null-check 3375 assert(peek(0) == top(), "long word order"); 3376 zero_check_long(peek(1)); 3377 // Compile-time detect of null-exception? 3378 if (stopped()) return; 3379 b = pop_pair(); 3380 a = pop_pair(); 3381 c = _gvn.transform( new DivLNode(control(),a,b) ); 3382 push_pair(c); 3383 break; 3384 3385 case Bytecodes::_ladd: 3386 b = pop_pair(); 3387 a = pop_pair(); 3388 c = _gvn.transform( new AddLNode(a,b) ); 3389 push_pair(c); 3390 break; 3391 case Bytecodes::_lsub: 3392 b = pop_pair(); 3393 a = pop_pair(); 3394 c = _gvn.transform( new SubLNode(a,b) ); 3395 push_pair(c); 3396 break; 3397 case Bytecodes::_lcmp: 3398 // Safepoints are now inserted _before_ branches. The long-compare 3399 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3400 // slew of control flow. These are usually followed by a CmpI vs zero and 3401 // a branch; this pattern then optimizes to the obvious long-compare and 3402 // branch. However, if the branch is backwards there's a Safepoint 3403 // inserted. The inserted Safepoint captures the JVM state at the 3404 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3405 // long-compare is used to control a loop the debug info will force 3406 // computation of the 3-way value, even though the generated code uses a 3407 // long-compare and branch. We try to rectify the situation by inserting 3408 // a SafePoint here and have it dominate and kill the safepoint added at a 3409 // following backwards branch. At this point the JVM state merely holds 2 3410 // longs but not the 3-way value. 3411 switch (iter().next_bc()) { 3412 case Bytecodes::_ifgt: 3413 case Bytecodes::_iflt: 3414 case Bytecodes::_ifge: 3415 case Bytecodes::_ifle: 3416 case Bytecodes::_ifne: 3417 case Bytecodes::_ifeq: 3418 // If this is a backwards branch in the bytecodes, add Safepoint 3419 maybe_add_safepoint(iter().next_get_dest()); 3420 default: 3421 break; 3422 } 3423 b = pop_pair(); 3424 a = pop_pair(); 3425 c = _gvn.transform( new CmpL3Node( a, b )); 3426 push(c); 3427 break; 3428 3429 case Bytecodes::_lneg: 3430 a = pop_pair(); 3431 b = _gvn.transform( new SubLNode(longcon(0),a)); 3432 push_pair(b); 3433 break; 3434 case Bytecodes::_l2i: 3435 a = pop_pair(); 3436 push( _gvn.transform( new ConvL2INode(a))); 3437 break; 3438 case Bytecodes::_i2l: 3439 a = pop(); 3440 b = _gvn.transform( new ConvI2LNode(a)); 3441 push_pair(b); 3442 break; 3443 case Bytecodes::_i2b: 3444 // Sign extend 3445 a = pop(); 3446 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 3447 push(a); 3448 break; 3449 case Bytecodes::_i2s: 3450 a = pop(); 3451 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 3452 push(a); 3453 break; 3454 case Bytecodes::_i2c: 3455 a = pop(); 3456 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 3457 push(a); 3458 break; 3459 3460 case Bytecodes::_i2f: 3461 a = pop(); 3462 b = _gvn.transform( new ConvI2FNode(a) ) ; 3463 c = precision_rounding(b); 3464 push (b); 3465 break; 3466 3467 case Bytecodes::_i2d: 3468 a = pop(); 3469 b = _gvn.transform( new ConvI2DNode(a)); 3470 push_pair(b); 3471 break; 3472 3473 case Bytecodes::_iinc: // Increment local 3474 i = iter().get_index(); // Get local index 3475 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3476 break; 3477 3478 // Exit points of synchronized methods must have an unlock node 3479 case Bytecodes::_return: 3480 return_current(nullptr); 3481 break; 3482 3483 case Bytecodes::_ireturn: 3484 case Bytecodes::_areturn: 3485 case Bytecodes::_freturn: 3486 return_current(pop()); 3487 break; 3488 case Bytecodes::_lreturn: 3489 return_current(pop_pair()); 3490 break; 3491 case Bytecodes::_dreturn: 3492 return_current(pop_pair()); 3493 break; 3494 3495 case Bytecodes::_athrow: 3496 // null exception oop throws null pointer exception 3497 null_check(peek()); 3498 if (stopped()) return; 3499 // Hook the thrown exception directly to subsequent handlers. 3500 if (BailoutToInterpreterForThrows) { 3501 // Keep method interpreted from now on. 3502 uncommon_trap(Deoptimization::Reason_unhandled, 3503 Deoptimization::Action_make_not_compilable); 3504 return; 3505 } 3506 if (env()->jvmti_can_post_on_exceptions()) { 3507 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3508 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3509 } 3510 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3511 add_exception_state(make_exception_state(peek())); 3512 break; 3513 3514 case Bytecodes::_goto: // fall through 3515 case Bytecodes::_goto_w: { 3516 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3517 3518 // If this is a backwards branch in the bytecodes, add Safepoint 3519 maybe_add_safepoint(target_bci); 3520 3521 // Merge the current control into the target basic block 3522 merge(target_bci); 3523 3524 // See if we can get some profile data and hand it off to the next block 3525 Block *target_block = block()->successor_for_bci(target_bci); 3526 if (target_block->pred_count() != 1) break; 3527 ciMethodData* methodData = method()->method_data(); 3528 if (!methodData->is_mature()) break; 3529 ciProfileData* data = methodData->bci_to_data(bci()); 3530 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 3531 int taken = ((ciJumpData*)data)->taken(); 3532 taken = method()->scale_count(taken); 3533 target_block->set_count(taken); 3534 break; 3535 } 3536 3537 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3538 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3539 handle_if_null: 3540 // If this is a backwards branch in the bytecodes, add Safepoint 3541 maybe_add_safepoint(iter().get_dest()); 3542 a = null(); 3543 b = pop(); 3544 if (b->is_InlineType()) { 3545 // Null checking a scalarized but nullable inline type. Check the IsInit 3546 // input instead of the oop input to avoid keeping buffer allocations alive 3547 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3548 } else { 3549 if (!_gvn.type(b)->speculative_maybe_null() && 3550 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3551 inc_sp(1); 3552 Node* null_ctl = top(); 3553 b = null_check_oop(b, &null_ctl, true, true, true); 3554 assert(null_ctl->is_top(), "no null control here"); 3555 dec_sp(1); 3556 } else if (_gvn.type(b)->speculative_always_null() && 3557 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3558 inc_sp(1); 3559 b = null_assert(b); 3560 dec_sp(1); 3561 } 3562 c = _gvn.transform( new CmpPNode(b, a) ); 3563 } 3564 do_ifnull(btest, c); 3565 break; 3566 3567 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3568 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3569 handle_if_acmp: 3570 // If this is a backwards branch in the bytecodes, add Safepoint 3571 maybe_add_safepoint(iter().get_dest()); 3572 a = pop(); 3573 b = pop(); 3574 do_acmp(btest, b, a); 3575 break; 3576 3577 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3578 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3579 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3580 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3581 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3582 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3583 handle_ifxx: 3584 // If this is a backwards branch in the bytecodes, add Safepoint 3585 maybe_add_safepoint(iter().get_dest()); 3586 a = _gvn.intcon(0); 3587 b = pop(); 3588 c = _gvn.transform( new CmpINode(b, a) ); 3589 do_if(btest, c); 3590 break; 3591 3592 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3593 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3594 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3595 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3596 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3597 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3598 handle_if_icmp: 3599 // If this is a backwards branch in the bytecodes, add Safepoint 3600 maybe_add_safepoint(iter().get_dest()); 3601 a = pop(); 3602 b = pop(); 3603 c = _gvn.transform( new CmpINode( b, a ) ); 3604 do_if(btest, c); 3605 break; 3606 3607 case Bytecodes::_tableswitch: 3608 do_tableswitch(); 3609 break; 3610 3611 case Bytecodes::_lookupswitch: 3612 do_lookupswitch(); 3613 break; 3614 3615 case Bytecodes::_invokestatic: 3616 case Bytecodes::_invokedynamic: 3617 case Bytecodes::_invokespecial: 3618 case Bytecodes::_invokevirtual: 3619 case Bytecodes::_invokeinterface: 3620 do_call(); 3621 break; 3622 case Bytecodes::_checkcast: 3623 do_checkcast(); 3624 break; 3625 case Bytecodes::_instanceof: 3626 do_instanceof(); 3627 break; 3628 case Bytecodes::_anewarray: 3629 do_newarray(); 3630 break; 3631 case Bytecodes::_newarray: 3632 do_newarray((BasicType)iter().get_index()); 3633 break; 3634 case Bytecodes::_multianewarray: 3635 do_multianewarray(); 3636 break; 3637 case Bytecodes::_new: 3638 do_new(); 3639 break; 3640 3641 case Bytecodes::_jsr: 3642 case Bytecodes::_jsr_w: 3643 do_jsr(); 3644 break; 3645 3646 case Bytecodes::_ret: 3647 do_ret(); 3648 break; 3649 3650 3651 case Bytecodes::_monitorenter: 3652 do_monitor_enter(); 3653 break; 3654 3655 case Bytecodes::_monitorexit: 3656 do_monitor_exit(); 3657 break; 3658 3659 case Bytecodes::_breakpoint: 3660 // Breakpoint set concurrently to compile 3661 // %%% use an uncommon trap? 3662 C->record_failure("breakpoint in method"); 3663 return; 3664 3665 default: 3666 #ifndef PRODUCT 3667 map()->dump(99); 3668 #endif 3669 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3670 ShouldNotReachHere(); 3671 } 3672 3673 #ifndef PRODUCT 3674 if (failing()) { return; } 3675 constexpr int perBytecode = 6; 3676 if (C->should_print_igv(perBytecode)) { 3677 IdealGraphPrinter* printer = C->igv_printer(); 3678 char buffer[256]; 3679 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3680 bool old = printer->traverse_outs(); 3681 printer->set_traverse_outs(true); 3682 printer->print_method(buffer, perBytecode); 3683 printer->set_traverse_outs(old); 3684 } 3685 #endif 3686 }