1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "jvm_io.h" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/inlinetypenode.hpp" 42 #include "opto/matcher.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/mulnode.hpp" 45 #include "opto/opaquenode.hpp" 46 #include "opto/parse.hpp" 47 #include "opto/runtime.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 51 #ifndef PRODUCT 52 extern uint explicit_null_checks_inserted, 53 explicit_null_checks_elided; 54 #endif 55 56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 57 // Feed unused profile data to type speculation 58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 59 ciKlass* array_type = nullptr; 60 ciKlass* element_type = nullptr; 61 ProfilePtrKind element_ptr = ProfileMaybeNull; 62 bool flat_array = true; 63 bool null_free_array = true; 64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) { 66 ld = record_profile_for_speculation(ld, element_type, element_ptr); 67 } 68 } 69 return ld; 70 } 71 72 73 //---------------------------------array_load---------------------------------- 74 void Parse::array_load(BasicType bt) { 75 const Type* elemtype = Type::TOP; 76 Node* adr = array_addressing(bt, 0, elemtype); 77 if (stopped()) return; // guaranteed null or range check 78 79 Node* idx = pop(); 80 Node* ary = pop(); 81 82 // Handle inline type arrays 83 const TypeOopPtr* elemptr = elemtype->make_oopptr(); 84 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 85 if (ary_t->is_flat()) { 86 // Load from flat inline type array 87 Node* vt = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), ary, adr); 88 push(vt); 89 return; 90 } else if (ary_t->is_null_free()) { 91 // Load from non-flat inline type array (elements can never be null) 92 bt = T_OBJECT; 93 } else if (!ary_t->is_not_flat()) { 94 // Cannot statically determine if array is a flat array, emit runtime check 95 assert(UseFlatArray && is_reference_type(bt) && elemptr->can_be_inline_type() && !ary_t->is_not_null_free() && 96 (!elemptr->is_inlinetypeptr() || elemptr->inline_klass()->flat_in_array()), "array can't be flat"); 97 IdealKit ideal(this); 98 IdealVariable res(ideal); 99 ideal.declarations_done(); 100 ideal.if_then(flat_array_test(ary, /* flat = */ false)); { 101 // non-flat array 102 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 103 sync_kit(ideal); 104 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 105 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD; 106 if (needs_range_check(ary_t->size(), idx)) { 107 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load. 108 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot 109 // possibly float above the range check at any point. 110 decorator_set |= C2_UNKNOWN_CONTROL_LOAD; 111 } 112 Node* ld = access_load_at(ary, adr, adr_type, elemptr, bt, decorator_set); 113 if (elemptr->is_inlinetypeptr()) { 114 assert(elemptr->maybe_null(), "null free array should be handled above"); 115 ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), false); 116 } 117 ideal.sync_kit(this); 118 ideal.set(res, ld); 119 } ideal.else_(); { 120 // flat array 121 sync_kit(ideal); 122 if (elemptr->is_inlinetypeptr()) { 123 // Element type is known, cast and load from flat representation 124 ciInlineKlass* vk = elemptr->inline_klass(); 125 assert(vk->flat_in_array() && elemptr->maybe_null(), "never/always flat - should be optimized"); 126 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 127 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 128 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, arytype)); 129 Node* casted_adr = array_element_address(cast, idx, T_OBJECT, ary_t->size(), control()); 130 // Re-execute flat array load if buffering triggers deoptimization 131 PreserveReexecuteState preexecs(this); 132 jvms()->set_should_reexecute(true); 133 inc_sp(2); 134 Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false); 135 ideal.set(res, vt); 136 ideal.sync_kit(this); 137 } else { 138 // Element type is unknown, emit runtime call 139 140 // Below membars keep this access to an unknown flat array correctly 141 // ordered with other unknown and known flat array accesses. 142 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 143 144 Node* call = nullptr; 145 { 146 // Re-execute flat array load if runtime call triggers deoptimization 147 PreserveReexecuteState preexecs(this); 148 jvms()->set_bci(_bci); 149 jvms()->set_should_reexecute(true); 150 inc_sp(2); 151 kill_dead_locals(); 152 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 153 OptoRuntime::load_unknown_inline_Type(), 154 OptoRuntime::load_unknown_inline_Java(), 155 nullptr, TypeRawPtr::BOTTOM, 156 ary, idx); 157 } 158 make_slow_call_ex(call, env()->Throwable_klass(), false); 159 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 160 161 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 162 163 // Keep track of the information that the inline type is in flat arrays 164 const Type* unknown_value = elemptr->is_instptr()->cast_to_flat_in_array(); 165 buffer = _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 166 167 ideal.sync_kit(this); 168 ideal.set(res, buffer); 169 } 170 } ideal.end_if(); 171 sync_kit(ideal); 172 Node* ld = _gvn.transform(ideal.value(res)); 173 ld = record_profile_for_speculation_at_array_load(ld); 174 push_node(bt, ld); 175 return; 176 } 177 178 if (elemtype == TypeInt::BOOL) { 179 bt = T_BOOLEAN; 180 } 181 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 182 Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt, 183 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 184 ld = record_profile_for_speculation_at_array_load(ld); 185 // Loading an inline type from a non-flat array 186 if (elemptr != nullptr && elemptr->is_inlinetypeptr()) { 187 assert(!ary_t->is_null_free() || !elemptr->maybe_null(), "inline type array elements should never be null"); 188 ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), !elemptr->maybe_null()); 189 } 190 push_node(bt, ld); 191 } 192 193 194 //--------------------------------array_store---------------------------------- 195 void Parse::array_store(BasicType bt) { 196 const Type* elemtype = Type::TOP; 197 Node* adr = array_addressing(bt, type2size[bt], elemtype); 198 if (stopped()) return; // guaranteed null or range check 199 Node* cast_val = nullptr; 200 if (bt == T_OBJECT) { 201 cast_val = array_store_check(adr, elemtype); 202 if (stopped()) return; 203 } 204 Node* val = pop_node(bt); // Value to store 205 Node* idx = pop(); // Index in the array 206 Node* ary = pop(); // The array itself 207 208 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 209 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 210 211 if (elemtype == TypeInt::BOOL) { 212 bt = T_BOOLEAN; 213 } else if (bt == T_OBJECT) { 214 elemtype = elemtype->make_oopptr(); 215 const Type* tval = _gvn.type(cast_val); 216 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 217 // This is only legal for non-null stores because the array_store_check always passes for null, even 218 // if the array is null-free. Null stores are handled in GraphKit::gen_inline_array_null_guard(). 219 bool not_null_free = !tval->maybe_null() && !tval->is_oopptr()->can_be_inline_type(); 220 bool not_flat = not_null_free || (tval->is_inlinetypeptr() && !tval->inline_klass()->flat_in_array()); 221 if (!ary_t->is_not_null_free() && not_null_free) { 222 // Storing a non-inline type, mark array as not null-free (-> not flat). 223 ary_t = ary_t->cast_to_not_null_free(); 224 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 225 replace_in_map(ary, cast); 226 ary = cast; 227 } else if (!ary_t->is_not_flat() && not_flat) { 228 // Storing to a non-flat array, mark array as not flat. 229 ary_t = ary_t->cast_to_not_flat(); 230 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 231 replace_in_map(ary, cast); 232 ary = cast; 233 } 234 235 if (ary_t->is_flat()) { 236 // Store to flat inline type array 237 assert(!tval->maybe_null(), "should be guaranteed by array store check"); 238 // Re-execute flat array store if buffering triggers deoptimization 239 PreserveReexecuteState preexecs(this); 240 inc_sp(3); 241 jvms()->set_should_reexecute(true); 242 cast_val->as_InlineType()->store_flat(this, ary, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 243 return; 244 } else if (ary_t->is_null_free()) { 245 // Store to non-flat inline type array (elements can never be null) 246 assert(!tval->maybe_null(), "should be guaranteed by array store check"); 247 if (elemtype->inline_klass()->is_empty()) { 248 // Ignore empty inline stores, array is already initialized. 249 return; 250 } 251 } else if (!ary_t->is_not_flat() && (tval != TypePtr::NULL_PTR || StressReflectiveCode)) { 252 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient). 253 assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() && 254 !ary_t->klass_is_exact() && !ary_t->is_not_null_free(), "array can't be a flat array"); 255 IdealKit ideal(this); 256 ideal.if_then(flat_array_test(ary, /* flat = */ false)); { 257 // non-flat array 258 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 259 sync_kit(ideal); 260 Node* cast_ary = inline_array_null_guard(ary, cast_val, 3); 261 inc_sp(3); 262 access_store_at(cast_ary, adr, adr_type, cast_val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 263 dec_sp(3); 264 ideal.sync_kit(this); 265 } ideal.else_(); { 266 sync_kit(ideal); 267 // flat array 268 Node* null_ctl = top(); 269 Node* val = null_check_oop(cast_val, &null_ctl); 270 if (null_ctl != top()) { 271 PreserveJVMState pjvms(this); 272 inc_sp(3); 273 set_control(null_ctl); 274 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none); 275 dec_sp(3); 276 } 277 // Try to determine the inline klass 278 ciInlineKlass* vk = nullptr; 279 if (tval->is_inlinetypeptr()) { 280 vk = tval->inline_klass(); 281 } else if (elemtype->is_inlinetypeptr()) { 282 vk = elemtype->inline_klass(); 283 } 284 Node* casted_ary = ary; 285 if (vk != nullptr && !stopped()) { 286 // Element type is known, cast and store to flat representation 287 assert(vk->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized"); 288 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 289 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 290 casted_ary = _gvn.transform(new CheckCastPPNode(control(), casted_ary, arytype)); 291 Node* casted_adr = array_element_address(casted_ary, idx, T_OBJECT, arytype->size(), control()); 292 if (!val->is_InlineType()) { 293 assert(!gvn().type(val)->maybe_null(), "inline type array elements should never be null"); 294 val = InlineTypeNode::make_from_oop(this, val, vk); 295 } 296 // Re-execute flat array store if buffering triggers deoptimization 297 PreserveReexecuteState preexecs(this); 298 inc_sp(3); 299 jvms()->set_should_reexecute(true); 300 val->as_InlineType()->store_flat(this, casted_ary, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 301 } else if (!stopped()) { 302 // Element type is unknown, emit runtime call 303 304 // Below membars keep this access to an unknown flat array correctly 305 // ordered with other unknown and known flat array accesses. 306 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 307 308 make_runtime_call(RC_LEAF, 309 OptoRuntime::store_unknown_inline_Type(), 310 CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline_C), 311 "store_unknown_inline", TypeRawPtr::BOTTOM, 312 val, casted_ary, idx); 313 314 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 315 } 316 ideal.sync_kit(this); 317 } 318 ideal.end_if(); 319 sync_kit(ideal); 320 return; 321 } else if (!ary_t->is_not_null_free()) { 322 // Array is not flat but may be null free 323 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free"); 324 ary = inline_array_null_guard(ary, cast_val, 3, true); 325 } 326 } 327 inc_sp(3); 328 access_store_at(ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 329 dec_sp(3); 330 } 331 332 333 //------------------------------array_addressing------------------------------- 334 // Pull array and index from the stack. Compute pointer-to-element. 335 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 336 Node *idx = peek(0+vals); // Get from stack without popping 337 Node *ary = peek(1+vals); // in case of exception 338 339 // Null check the array base, with correct stack contents 340 ary = null_check(ary, T_ARRAY); 341 // Compile-time detect of null-exception? 342 if (stopped()) return top(); 343 344 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 345 const TypeInt* sizetype = arytype->size(); 346 elemtype = arytype->elem(); 347 348 if (UseUniqueSubclasses) { 349 const Type* el = elemtype->make_ptr(); 350 if (el && el->isa_instptr()) { 351 const TypeInstPtr* toop = el->is_instptr(); 352 if (toop->instance_klass()->unique_concrete_subklass()) { 353 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 354 const Type* subklass = Type::get_const_type(toop->instance_klass()); 355 elemtype = subklass->join_speculative(el); 356 } 357 } 358 } 359 360 if (!arytype->is_loaded()) { 361 // Only fails for some -Xcomp runs 362 // The class is unloaded. We have to run this bytecode in the interpreter. 363 ciKlass* klass = arytype->unloaded_klass(); 364 365 uncommon_trap(Deoptimization::Reason_unloaded, 366 Deoptimization::Action_reinterpret, 367 klass, "!loaded array"); 368 return top(); 369 } 370 371 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype); 372 373 if (needs_range_check(sizetype, idx)) { 374 create_range_check(idx, ary, sizetype); 375 } else if (C->log() != nullptr) { 376 C->log()->elem("observe that='!need_range_check'"); 377 } 378 379 // Check for always knowing you are throwing a range-check exception 380 if (stopped()) return top(); 381 382 // Make array address computation control dependent to prevent it 383 // from floating above the range check during loop optimizations. 384 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 385 assert(ptr != top(), "top should go hand-in-hand with stopped"); 386 387 return ptr; 388 } 389 390 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could 391 // be greater or equal the smallest possible array size (i.e. out-of-bounds). 392 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const { 393 const TypeInt* index_type = _gvn.type(index)->is_int(); 394 return index_type->_hi >= size_type->_lo || index_type->_lo < 0; 395 } 396 397 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) { 398 Node* tst; 399 if (sizetype->_hi <= 0) { 400 // The greatest array bound is negative, so we can conclude that we're 401 // compiling unreachable code, but the unsigned compare trick used below 402 // only works with non-negative lengths. Instead, hack "tst" to be zero so 403 // the uncommon_trap path will always be taken. 404 tst = _gvn.intcon(0); 405 } else { 406 // Range is constant in array-oop, so we can use the original state of mem 407 Node* len = load_array_length(ary); 408 409 // Test length vs index (standard trick using unsigned compare) 410 Node* chk = _gvn.transform(new CmpUNode(idx, len) ); 411 BoolTest::mask btest = BoolTest::lt; 412 tst = _gvn.transform(new BoolNode(chk, btest) ); 413 } 414 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 415 _gvn.set_type(rc, rc->Value(&_gvn)); 416 if (!tst->is_Con()) { 417 record_for_igvn(rc); 418 } 419 set_control(_gvn.transform(new IfTrueNode(rc))); 420 // Branch to failure if out of bounds 421 { 422 PreserveJVMState pjvms(this); 423 set_control(_gvn.transform(new IfFalseNode(rc))); 424 if (C->allow_range_check_smearing()) { 425 // Do not use builtin_throw, since range checks are sometimes 426 // made more stringent by an optimistic transformation. 427 // This creates "tentative" range checks at this point, 428 // which are not guaranteed to throw exceptions. 429 // See IfNode::Ideal, is_range_check, adjust_check. 430 uncommon_trap(Deoptimization::Reason_range_check, 431 Deoptimization::Action_make_not_entrant, 432 nullptr, "range_check"); 433 } else { 434 // If we have already recompiled with the range-check-widening 435 // heroic optimization turned off, then we must really be throwing 436 // range check exceptions. 437 builtin_throw(Deoptimization::Reason_range_check); 438 } 439 } 440 } 441 442 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness, 443 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with 444 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g. 445 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler. 446 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type, 447 const Type*& element_type) { 448 if (!array_type->is_flat() && !array_type->is_not_flat()) { 449 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that 450 // we can rely on a fixed memory layout (i.e. either a flat layout or not). 451 array = cast_to_speculative_array_type(array, array_type, element_type); 452 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 453 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data 454 // at this bci. 455 array = cast_to_profiled_array_type(array); 456 } 457 458 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data 459 // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first. 460 // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore. 461 if (!array_type->is_null_free() && !array_type->is_not_null_free()) { 462 array = speculate_non_null_free_array(array, array_type); 463 } 464 465 if (!array_type->is_flat() && !array_type->is_not_flat()) { 466 array = speculate_non_flat_array(array, array_type); 467 } 468 return array; 469 } 470 471 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be 472 // wrong. On the fast path, we add a CheckCastPP to use the exact type. 473 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) { 474 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 475 ciKlass* speculative_array_type = array_type->speculative_type(); 476 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) { 477 // No speculative type, check profile data at this bci 478 speculative_array_type = nullptr; 479 reason = Deoptimization::Reason_class_check; 480 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 481 ciKlass* profiled_element_type = nullptr; 482 ProfilePtrKind element_ptr = ProfileMaybeNull; 483 bool flat_array = true; 484 bool null_free_array = true; 485 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array, 486 null_free_array); 487 } 488 } 489 if (speculative_array_type != nullptr) { 490 // Speculate that this array has the exact type reported by profile data 491 Node* casted_array = nullptr; 492 DEBUG_ONLY(Node* old_control = control();) 493 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array); 494 if (stopped()) { 495 // The check always fails and therefore profile information is incorrect. Don't use it. 496 assert(old_control == slow_ctl, "type check should have been removed"); 497 set_control(slow_ctl); 498 } else if (!slow_ctl->is_top()) { 499 { PreserveJVMState pjvms(this); 500 set_control(slow_ctl); 501 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 502 } 503 replace_in_map(array, casted_array); 504 array_type = _gvn.type(casted_array)->is_aryptr(); 505 element_type = array_type->elem(); 506 return casted_array; 507 } 508 } 509 return array; 510 } 511 512 // Create a CheckCastPP when the speculative type can improve the current type. 513 Node* Parse::cast_to_profiled_array_type(Node* const array) { 514 ciKlass* array_type = nullptr; 515 ciKlass* element_type = nullptr; 516 ProfilePtrKind element_ptr = ProfileMaybeNull; 517 bool flat_array = true; 518 bool null_free_array = true; 519 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 520 if (array_type != nullptr) { 521 return record_profile_for_speculation(array, array_type, ProfileMaybeNull); 522 } 523 return array; 524 } 525 526 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be 527 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type. 528 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) { 529 bool null_free_array = true; 530 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 531 if (array_type->speculative() != nullptr && 532 array_type->speculative()->is_aryptr()->is_not_null_free() && 533 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 534 null_free_array = false; 535 reason = Deoptimization::Reason_speculate_class_check; 536 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 537 ciKlass* profiled_array_type = nullptr; 538 ciKlass* profiled_element_type = nullptr; 539 ProfilePtrKind element_ptr = ProfileMaybeNull; 540 bool flat_array = true; 541 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 542 null_free_array); 543 reason = Deoptimization::Reason_class_check; 544 } 545 if (!null_free_array) { 546 { // Deoptimize if null-free array 547 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX); 548 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 549 } 550 assert(!stopped(), "null-free array should have been caught earlier"); 551 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free())); 552 replace_in_map(array, casted_array); 553 array_type = _gvn.type(casted_array)->is_aryptr(); 554 return casted_array; 555 } 556 return array; 557 } 558 559 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a 560 // CheckCastPP to use the non-flat type. 561 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) { 562 bool flat_array = true; 563 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 564 if (array_type->speculative() != nullptr && 565 array_type->speculative()->is_aryptr()->is_not_flat() && 566 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 567 flat_array = false; 568 reason = Deoptimization::Reason_speculate_class_check; 569 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 570 ciKlass* profiled_array_type = nullptr; 571 ciKlass* profiled_element_type = nullptr; 572 ProfilePtrKind element_ptr = ProfileMaybeNull; 573 bool null_free_array = true; 574 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 575 null_free_array); 576 reason = Deoptimization::Reason_class_check; 577 } 578 if (!flat_array) { 579 { // Deoptimize if flat array 580 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX); 581 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 582 } 583 assert(!stopped(), "flat array should have been caught earlier"); 584 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat())); 585 replace_in_map(array, casted_array); 586 return casted_array; 587 } 588 return array; 589 } 590 591 // returns IfNode 592 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 593 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 594 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 595 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 596 return iff; 597 } 598 599 600 // sentinel value for the target bci to mark never taken branches 601 // (according to profiling) 602 static const int never_reached = INT_MAX; 603 604 //------------------------------helper for tableswitch------------------------- 605 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 606 // True branch, use existing map info 607 { PreserveJVMState pjvms(this); 608 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 609 set_control( iftrue ); 610 if (unc) { 611 repush_if_args(); 612 uncommon_trap(Deoptimization::Reason_unstable_if, 613 Deoptimization::Action_reinterpret, 614 nullptr, 615 "taken always"); 616 } else { 617 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 618 merge_new_path(dest_bci_if_true); 619 } 620 } 621 622 // False branch 623 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 624 set_control( iffalse ); 625 } 626 627 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 628 // True branch, use existing map info 629 { PreserveJVMState pjvms(this); 630 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 631 set_control( iffalse ); 632 if (unc) { 633 repush_if_args(); 634 uncommon_trap(Deoptimization::Reason_unstable_if, 635 Deoptimization::Action_reinterpret, 636 nullptr, 637 "taken never"); 638 } else { 639 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 640 merge_new_path(dest_bci_if_true); 641 } 642 } 643 644 // False branch 645 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 646 set_control( iftrue ); 647 } 648 649 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 650 // False branch, use existing map and control() 651 if (unc) { 652 repush_if_args(); 653 uncommon_trap(Deoptimization::Reason_unstable_if, 654 Deoptimization::Action_reinterpret, 655 nullptr, 656 "taken never"); 657 } else { 658 assert(dest_bci != never_reached, "inconsistent dest"); 659 merge_new_path(dest_bci); 660 } 661 } 662 663 664 extern "C" { 665 static int jint_cmp(const void *i, const void *j) { 666 int a = *(jint *)i; 667 int b = *(jint *)j; 668 return a > b ? 1 : a < b ? -1 : 0; 669 } 670 } 671 672 673 class SwitchRange : public StackObj { 674 // a range of integers coupled with a bci destination 675 jint _lo; // inclusive lower limit 676 jint _hi; // inclusive upper limit 677 int _dest; 678 float _cnt; // how many times this range was hit according to profiling 679 680 public: 681 jint lo() const { return _lo; } 682 jint hi() const { return _hi; } 683 int dest() const { return _dest; } 684 bool is_singleton() const { return _lo == _hi; } 685 float cnt() const { return _cnt; } 686 687 void setRange(jint lo, jint hi, int dest, float cnt) { 688 assert(lo <= hi, "must be a non-empty range"); 689 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 690 assert(_cnt >= 0, ""); 691 } 692 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 693 assert(lo <= hi, "must be a non-empty range"); 694 if (lo == _hi+1) { 695 // see merge_ranges() comment below 696 if (trim_ranges) { 697 if (cnt == 0) { 698 if (_cnt != 0) { 699 return false; 700 } 701 if (dest != _dest) { 702 _dest = never_reached; 703 } 704 } else { 705 if (_cnt == 0) { 706 return false; 707 } 708 if (dest != _dest) { 709 return false; 710 } 711 } 712 } else { 713 if (dest != _dest) { 714 return false; 715 } 716 } 717 _hi = hi; 718 _cnt += cnt; 719 return true; 720 } 721 return false; 722 } 723 724 void set (jint value, int dest, float cnt) { 725 setRange(value, value, dest, cnt); 726 } 727 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 728 return adjoinRange(value, value, dest, cnt, trim_ranges); 729 } 730 bool adjoin(SwitchRange& other) { 731 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 732 } 733 734 void print() { 735 if (is_singleton()) 736 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 737 else if (lo() == min_jint) 738 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 739 else if (hi() == max_jint) 740 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 741 else 742 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 743 } 744 }; 745 746 // We try to minimize the number of ranges and the size of the taken 747 // ones using profiling data. When ranges are created, 748 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 749 // if both were never hit or both were hit to build longer unreached 750 // ranges. Here, we now merge adjoining ranges with the same 751 // destination and finally set destination of unreached ranges to the 752 // special value never_reached because it can help minimize the number 753 // of tests that are necessary. 754 // 755 // For instance: 756 // [0, 1] to target1 sometimes taken 757 // [1, 2] to target1 never taken 758 // [2, 3] to target2 never taken 759 // would lead to: 760 // [0, 1] to target1 sometimes taken 761 // [1, 3] never taken 762 // 763 // (first 2 ranges to target1 are not merged) 764 static void merge_ranges(SwitchRange* ranges, int& rp) { 765 if (rp == 0) { 766 return; 767 } 768 int shift = 0; 769 for (int j = 0; j < rp; j++) { 770 SwitchRange& r1 = ranges[j-shift]; 771 SwitchRange& r2 = ranges[j+1]; 772 if (r1.adjoin(r2)) { 773 shift++; 774 } else if (shift > 0) { 775 ranges[j+1-shift] = r2; 776 } 777 } 778 rp -= shift; 779 for (int j = 0; j <= rp; j++) { 780 SwitchRange& r = ranges[j]; 781 if (r.cnt() == 0 && r.dest() != never_reached) { 782 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 783 } 784 } 785 } 786 787 //-------------------------------do_tableswitch-------------------------------- 788 void Parse::do_tableswitch() { 789 // Get information about tableswitch 790 int default_dest = iter().get_dest_table(0); 791 jint lo_index = iter().get_int_table(1); 792 jint hi_index = iter().get_int_table(2); 793 int len = hi_index - lo_index + 1; 794 795 if (len < 1) { 796 // If this is a backward branch, add safepoint 797 maybe_add_safepoint(default_dest); 798 pop(); // the effect of the instruction execution on the operand stack 799 merge(default_dest); 800 return; 801 } 802 803 ciMethodData* methodData = method()->method_data(); 804 ciMultiBranchData* profile = nullptr; 805 if (methodData->is_mature() && UseSwitchProfiling) { 806 ciProfileData* data = methodData->bci_to_data(bci()); 807 if (data != nullptr && data->is_MultiBranchData()) { 808 profile = (ciMultiBranchData*)data; 809 } 810 } 811 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 812 813 // generate decision tree, using trichotomy when possible 814 int rnum = len+2; 815 bool makes_backward_branch = (default_dest <= bci()); 816 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 817 int rp = -1; 818 if (lo_index != min_jint) { 819 float cnt = 1.0F; 820 if (profile != nullptr) { 821 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 822 } 823 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 824 } 825 for (int j = 0; j < len; j++) { 826 jint match_int = lo_index+j; 827 int dest = iter().get_dest_table(j+3); 828 makes_backward_branch |= (dest <= bci()); 829 float cnt = 1.0F; 830 if (profile != nullptr) { 831 cnt = (float)profile->count_at(j); 832 } 833 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 834 ranges[++rp].set(match_int, dest, cnt); 835 } 836 } 837 jint highest = lo_index+(len-1); 838 assert(ranges[rp].hi() == highest, ""); 839 if (highest != max_jint) { 840 float cnt = 1.0F; 841 if (profile != nullptr) { 842 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 843 } 844 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 845 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 846 } 847 } 848 assert(rp < len+2, "not too many ranges"); 849 850 if (trim_ranges) { 851 merge_ranges(ranges, rp); 852 } 853 854 // Safepoint in case if backward branch observed 855 if (makes_backward_branch) { 856 add_safepoint(); 857 } 858 859 Node* lookup = pop(); // lookup value 860 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 861 } 862 863 864 //------------------------------do_lookupswitch-------------------------------- 865 void Parse::do_lookupswitch() { 866 // Get information about lookupswitch 867 int default_dest = iter().get_dest_table(0); 868 jint len = iter().get_int_table(1); 869 870 if (len < 1) { // If this is a backward branch, add safepoint 871 maybe_add_safepoint(default_dest); 872 pop(); // the effect of the instruction execution on the operand stack 873 merge(default_dest); 874 return; 875 } 876 877 ciMethodData* methodData = method()->method_data(); 878 ciMultiBranchData* profile = nullptr; 879 if (methodData->is_mature() && UseSwitchProfiling) { 880 ciProfileData* data = methodData->bci_to_data(bci()); 881 if (data != nullptr && data->is_MultiBranchData()) { 882 profile = (ciMultiBranchData*)data; 883 } 884 } 885 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 886 887 // generate decision tree, using trichotomy when possible 888 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 889 { 890 for (int j = 0; j < len; j++) { 891 table[3*j+0] = iter().get_int_table(2+2*j); 892 table[3*j+1] = iter().get_dest_table(2+2*j+1); 893 // Handle overflow when converting from uint to jint 894 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 895 } 896 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 897 } 898 899 float default_cnt = 1.0F; 900 if (profile != nullptr) { 901 juint defaults = max_juint - len; 902 default_cnt = (float)profile->default_count()/(float)defaults; 903 } 904 905 int rnum = len*2+1; 906 bool makes_backward_branch = (default_dest <= bci()); 907 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 908 int rp = -1; 909 for (int j = 0; j < len; j++) { 910 jint match_int = table[3*j+0]; 911 jint dest = table[3*j+1]; 912 jint cnt = table[3*j+2]; 913 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 914 makes_backward_branch |= (dest <= bci()); 915 float c = default_cnt * ((float)match_int - (float)next_lo); 916 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 917 assert(default_dest != never_reached, "sentinel value for dead destinations"); 918 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 919 } 920 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 921 assert(dest != never_reached, "sentinel value for dead destinations"); 922 ranges[++rp].set(match_int, dest, (float)cnt); 923 } 924 } 925 jint highest = table[3*(len-1)]; 926 assert(ranges[rp].hi() == highest, ""); 927 if (highest != max_jint && 928 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 929 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 930 } 931 assert(rp < rnum, "not too many ranges"); 932 933 if (trim_ranges) { 934 merge_ranges(ranges, rp); 935 } 936 937 // Safepoint in case backward branch observed 938 if (makes_backward_branch) { 939 add_safepoint(); 940 } 941 942 Node *lookup = pop(); // lookup value 943 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 944 } 945 946 static float if_prob(float taken_cnt, float total_cnt) { 947 assert(taken_cnt <= total_cnt, ""); 948 if (total_cnt == 0) { 949 return PROB_FAIR; 950 } 951 float p = taken_cnt / total_cnt; 952 return clamp(p, PROB_MIN, PROB_MAX); 953 } 954 955 static float if_cnt(float cnt) { 956 if (cnt == 0) { 957 return COUNT_UNKNOWN; 958 } 959 return cnt; 960 } 961 962 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 963 float total_cnt = 0; 964 for (SwitchRange* sr = lo; sr <= hi; sr++) { 965 total_cnt += sr->cnt(); 966 } 967 return total_cnt; 968 } 969 970 class SwitchRanges : public ResourceObj { 971 public: 972 SwitchRange* _lo; 973 SwitchRange* _hi; 974 SwitchRange* _mid; 975 float _cost; 976 977 enum { 978 Start, 979 LeftDone, 980 RightDone, 981 Done 982 } _state; 983 984 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 985 : _lo(lo), _hi(hi), _mid(nullptr), 986 _cost(0), _state(Start) { 987 } 988 989 SwitchRanges() 990 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 991 _cost(0), _state(Start) {} 992 }; 993 994 // Estimate cost of performing a binary search on lo..hi 995 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 996 GrowableArray<SwitchRanges> tree; 997 SwitchRanges root(lo, hi); 998 tree.push(root); 999 1000 float cost = 0; 1001 do { 1002 SwitchRanges& r = *tree.adr_at(tree.length()-1); 1003 if (r._hi != r._lo) { 1004 if (r._mid == nullptr) { 1005 float r_cnt = sum_of_cnts(r._lo, r._hi); 1006 1007 if (r_cnt == 0) { 1008 tree.pop(); 1009 cost = 0; 1010 continue; 1011 } 1012 1013 SwitchRange* mid = nullptr; 1014 mid = r._lo; 1015 for (float cnt = 0; ; ) { 1016 assert(mid <= r._hi, "out of bounds"); 1017 cnt += mid->cnt(); 1018 if (cnt > r_cnt / 2) { 1019 break; 1020 } 1021 mid++; 1022 } 1023 assert(mid <= r._hi, "out of bounds"); 1024 r._mid = mid; 1025 r._cost = r_cnt / total_cnt; 1026 } 1027 r._cost += cost; 1028 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 1029 cost = 0; 1030 r._state = SwitchRanges::LeftDone; 1031 tree.push(SwitchRanges(r._lo, r._mid-1)); 1032 } else if (r._state < SwitchRanges::RightDone) { 1033 cost = 0; 1034 r._state = SwitchRanges::RightDone; 1035 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 1036 } else { 1037 tree.pop(); 1038 cost = r._cost; 1039 } 1040 } else { 1041 tree.pop(); 1042 cost = r._cost; 1043 } 1044 } while (tree.length() > 0); 1045 1046 1047 return cost; 1048 } 1049 1050 // It sometimes pays off to test most common ranges before the binary search 1051 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1052 uint nr = hi - lo + 1; 1053 float total_cnt = sum_of_cnts(lo, hi); 1054 1055 float min = compute_tree_cost(lo, hi, total_cnt); 1056 float extra = 1; 1057 float sub = 0; 1058 1059 SwitchRange* array1 = lo; 1060 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1061 1062 SwitchRange* ranges = nullptr; 1063 1064 while (nr >= 2) { 1065 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1066 ranges = (lo == array1) ? array2 : array1; 1067 1068 // Find highest frequency range 1069 SwitchRange* candidate = lo; 1070 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1071 if (sr->cnt() > candidate->cnt()) { 1072 candidate = sr; 1073 } 1074 } 1075 SwitchRange most_freq = *candidate; 1076 if (most_freq.cnt() == 0) { 1077 break; 1078 } 1079 1080 // Copy remaining ranges into another array 1081 int shift = 0; 1082 for (uint i = 0; i < nr; i++) { 1083 SwitchRange* sr = &lo[i]; 1084 if (sr != candidate) { 1085 ranges[i-shift] = *sr; 1086 } else { 1087 shift++; 1088 if (i > 0 && i < nr-1) { 1089 SwitchRange prev = lo[i-1]; 1090 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1091 if (prev.adjoin(lo[i+1])) { 1092 shift++; 1093 i++; 1094 } 1095 ranges[i-shift] = prev; 1096 } 1097 } 1098 } 1099 nr -= shift; 1100 1101 // Evaluate cost of testing the most common range and performing a 1102 // binary search on the other ranges 1103 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1104 if (cost >= min) { 1105 break; 1106 } 1107 // swap arrays 1108 lo = &ranges[0]; 1109 hi = &ranges[nr-1]; 1110 1111 // It pays off: emit the test for the most common range 1112 assert(most_freq.cnt() > 0, "must be taken"); 1113 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1114 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 1115 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1116 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1117 jump_if_true_fork(iff, most_freq.dest(), false); 1118 1119 sub += most_freq.cnt() / total_cnt; 1120 extra += 1 - sub; 1121 min = cost; 1122 } 1123 } 1124 1125 //----------------------------create_jump_tables------------------------------- 1126 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1127 // Are jumptables enabled 1128 if (!UseJumpTables) return false; 1129 1130 // Are jumptables supported 1131 if (!Matcher::has_match_rule(Op_Jump)) return false; 1132 1133 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1134 1135 // Decide if a guard is needed to lop off big ranges at either (or 1136 // both) end(s) of the input set. We'll call this the default target 1137 // even though we can't be sure that it is the true "default". 1138 1139 bool needs_guard = false; 1140 int default_dest; 1141 int64_t total_outlier_size = 0; 1142 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1143 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1144 1145 if (lo->dest() == hi->dest()) { 1146 total_outlier_size = hi_size + lo_size; 1147 default_dest = lo->dest(); 1148 } else if (lo_size > hi_size) { 1149 total_outlier_size = lo_size; 1150 default_dest = lo->dest(); 1151 } else { 1152 total_outlier_size = hi_size; 1153 default_dest = hi->dest(); 1154 } 1155 1156 float total = sum_of_cnts(lo, hi); 1157 float cost = compute_tree_cost(lo, hi, total); 1158 1159 // If a guard test will eliminate very sparse end ranges, then 1160 // it is worth the cost of an extra jump. 1161 float trimmed_cnt = 0; 1162 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1163 needs_guard = true; 1164 if (default_dest == lo->dest()) { 1165 trimmed_cnt += lo->cnt(); 1166 lo++; 1167 } 1168 if (default_dest == hi->dest()) { 1169 trimmed_cnt += hi->cnt(); 1170 hi--; 1171 } 1172 } 1173 1174 // Find the total number of cases and ranges 1175 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1176 int num_range = hi - lo + 1; 1177 1178 // Don't create table if: too large, too small, or too sparse. 1179 if (num_cases > MaxJumpTableSize) 1180 return false; 1181 if (UseSwitchProfiling) { 1182 // MinJumpTableSize is set so with a well balanced binary tree, 1183 // when the number of ranges is MinJumpTableSize, it's cheaper to 1184 // go through a JumpNode that a tree of IfNodes. Average cost of a 1185 // tree of IfNodes with MinJumpTableSize is 1186 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1187 // from profile data is less than log2f(MinJumpTableSize) then 1188 // going with the binary search is cheaper. 1189 if (cost < log2f(MinJumpTableSize)) { 1190 return false; 1191 } 1192 } else { 1193 if (num_cases < MinJumpTableSize) 1194 return false; 1195 } 1196 if (num_cases > (MaxJumpTableSparseness * num_range)) 1197 return false; 1198 1199 // Normalize table lookups to zero 1200 int lowval = lo->lo(); 1201 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1202 1203 // Generate a guard to protect against input keyvals that aren't 1204 // in the switch domain. 1205 if (needs_guard) { 1206 Node* size = _gvn.intcon(num_cases); 1207 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1208 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1209 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1210 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1211 1212 total -= trimmed_cnt; 1213 } 1214 1215 // Create an ideal node JumpTable that has projections 1216 // of all possible ranges for a switch statement 1217 // The key_val input must be converted to a pointer offset and scaled. 1218 // Compare Parse::array_addressing above. 1219 1220 // Clean the 32-bit int into a real 64-bit offset. 1221 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1222 // Make I2L conversion control dependent to prevent it from 1223 // floating above the range check during loop optimizations. 1224 // Do not use a narrow int type here to prevent the data path from dying 1225 // while the control path is not removed. This can happen if the type of key_val 1226 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1227 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1228 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1229 #ifdef _LP64 1230 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1231 #endif 1232 1233 // Shift the value by wordsize so we have an index into the table, rather 1234 // than a switch value 1235 Node *shiftWord = _gvn.MakeConX(wordSize); 1236 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1237 1238 // Create the JumpNode 1239 Arena* arena = C->comp_arena(); 1240 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1241 int i = 0; 1242 if (total == 0) { 1243 for (SwitchRange* r = lo; r <= hi; r++) { 1244 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1245 probs[i] = 1.0F / num_cases; 1246 } 1247 } 1248 } else { 1249 for (SwitchRange* r = lo; r <= hi; r++) { 1250 float prob = r->cnt()/total; 1251 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1252 probs[i] = prob / (r->hi() - r->lo() + 1); 1253 } 1254 } 1255 } 1256 1257 ciMethodData* methodData = method()->method_data(); 1258 ciMultiBranchData* profile = nullptr; 1259 if (methodData->is_mature()) { 1260 ciProfileData* data = methodData->bci_to_data(bci()); 1261 if (data != nullptr && data->is_MultiBranchData()) { 1262 profile = (ciMultiBranchData*)data; 1263 } 1264 } 1265 1266 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 1267 1268 // These are the switch destinations hanging off the jumpnode 1269 i = 0; 1270 for (SwitchRange* r = lo; r <= hi; r++) { 1271 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1272 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1273 { 1274 PreserveJVMState pjvms(this); 1275 set_control(input); 1276 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1277 } 1278 } 1279 } 1280 assert(i == num_cases, "miscount of cases"); 1281 stop_and_kill_map(); // no more uses for this JVMS 1282 return true; 1283 } 1284 1285 //----------------------------jump_switch_ranges------------------------------- 1286 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1287 Block* switch_block = block(); 1288 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1289 1290 if (switch_depth == 0) { 1291 // Do special processing for the top-level call. 1292 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1293 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1294 1295 // Decrement pred-numbers for the unique set of nodes. 1296 #ifdef ASSERT 1297 if (!trim_ranges) { 1298 // Ensure that the block's successors are a (duplicate-free) set. 1299 int successors_counted = 0; // block occurrences in [hi..lo] 1300 int unique_successors = switch_block->num_successors(); 1301 for (int i = 0; i < unique_successors; i++) { 1302 Block* target = switch_block->successor_at(i); 1303 1304 // Check that the set of successors is the same in both places. 1305 int successors_found = 0; 1306 for (SwitchRange* p = lo; p <= hi; p++) { 1307 if (p->dest() == target->start()) successors_found++; 1308 } 1309 assert(successors_found > 0, "successor must be known"); 1310 successors_counted += successors_found; 1311 } 1312 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1313 } 1314 #endif 1315 1316 // Maybe prune the inputs, based on the type of key_val. 1317 jint min_val = min_jint; 1318 jint max_val = max_jint; 1319 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1320 if (ti != nullptr) { 1321 min_val = ti->_lo; 1322 max_val = ti->_hi; 1323 assert(min_val <= max_val, "invalid int type"); 1324 } 1325 while (lo->hi() < min_val) { 1326 lo++; 1327 } 1328 if (lo->lo() < min_val) { 1329 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1330 } 1331 while (hi->lo() > max_val) { 1332 hi--; 1333 } 1334 if (hi->hi() > max_val) { 1335 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1336 } 1337 1338 linear_search_switch_ranges(key_val, lo, hi); 1339 } 1340 1341 #ifndef PRODUCT 1342 if (switch_depth == 0) { 1343 _max_switch_depth = 0; 1344 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1345 } 1346 #endif 1347 1348 assert(lo <= hi, "must be a non-empty set of ranges"); 1349 if (lo == hi) { 1350 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1351 } else { 1352 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1353 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1354 1355 if (create_jump_tables(key_val, lo, hi)) return; 1356 1357 SwitchRange* mid = nullptr; 1358 float total_cnt = sum_of_cnts(lo, hi); 1359 1360 int nr = hi - lo + 1; 1361 if (UseSwitchProfiling) { 1362 // Don't keep the binary search tree balanced: pick up mid point 1363 // that split frequencies in half. 1364 float cnt = 0; 1365 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1366 cnt += sr->cnt(); 1367 if (cnt >= total_cnt / 2) { 1368 mid = sr; 1369 break; 1370 } 1371 } 1372 } else { 1373 mid = lo + nr/2; 1374 1375 // if there is an easy choice, pivot at a singleton: 1376 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1377 1378 assert(lo < mid && mid <= hi, "good pivot choice"); 1379 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1380 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1381 } 1382 1383 1384 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1385 1386 if (mid->is_singleton()) { 1387 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1388 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1389 1390 // Special Case: If there are exactly three ranges, and the high 1391 // and low range each go to the same place, omit the "gt" test, 1392 // since it will not discriminate anything. 1393 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1394 1395 // if there is a higher range, test for it and process it: 1396 if (mid < hi && !eq_test_only) { 1397 // two comparisons of same values--should enable 1 test for 2 branches 1398 // Use BoolTest::lt instead of BoolTest::gt 1399 float cnt = sum_of_cnts(lo, mid-1); 1400 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1401 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1402 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1403 { PreserveJVMState pjvms(this); 1404 set_control(iffalse); 1405 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1406 } 1407 set_control(iftrue); 1408 } 1409 1410 } else { 1411 // mid is a range, not a singleton, so treat mid..hi as a unit 1412 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1413 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1414 1415 // if there is a higher range, test for it and process it: 1416 if (mid == hi) { 1417 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1418 } else { 1419 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1420 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1421 { PreserveJVMState pjvms(this); 1422 set_control(iftrue); 1423 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1424 } 1425 set_control(iffalse); 1426 } 1427 } 1428 1429 // in any case, process the lower range 1430 if (mid == lo) { 1431 if (mid->is_singleton()) { 1432 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1433 } else { 1434 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1435 } 1436 } else { 1437 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1438 } 1439 } 1440 1441 // Decrease pred_count for each successor after all is done. 1442 if (switch_depth == 0) { 1443 int unique_successors = switch_block->num_successors(); 1444 for (int i = 0; i < unique_successors; i++) { 1445 Block* target = switch_block->successor_at(i); 1446 // Throw away the pre-allocated path for each unique successor. 1447 target->next_path_num(); 1448 } 1449 } 1450 1451 #ifndef PRODUCT 1452 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1453 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1454 SwitchRange* r; 1455 int nsing = 0; 1456 for( r = lo; r <= hi; r++ ) { 1457 if( r->is_singleton() ) nsing++; 1458 } 1459 tty->print(">>> "); 1460 _method->print_short_name(); 1461 tty->print_cr(" switch decision tree"); 1462 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1463 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1464 if (_max_switch_depth > _est_switch_depth) { 1465 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1466 } 1467 tty->print(" "); 1468 for( r = lo; r <= hi; r++ ) { 1469 r->print(); 1470 } 1471 tty->cr(); 1472 } 1473 #endif 1474 } 1475 1476 void Parse::modf() { 1477 Node *f2 = pop(); 1478 Node *f1 = pop(); 1479 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1480 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1481 "frem", nullptr, //no memory effects 1482 f1, f2); 1483 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1484 1485 push(res); 1486 } 1487 1488 void Parse::modd() { 1489 Node *d2 = pop_pair(); 1490 Node *d1 = pop_pair(); 1491 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1492 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1493 "drem", nullptr, //no memory effects 1494 d1, top(), d2, top()); 1495 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1496 1497 #ifdef ASSERT 1498 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1499 assert(res_top == top(), "second value must be top"); 1500 #endif 1501 1502 push_pair(res_d); 1503 } 1504 1505 void Parse::l2f() { 1506 Node* f2 = pop(); 1507 Node* f1 = pop(); 1508 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1509 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1510 "l2f", nullptr, //no memory effects 1511 f1, f2); 1512 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1513 1514 push(res); 1515 } 1516 1517 // Handle jsr and jsr_w bytecode 1518 void Parse::do_jsr() { 1519 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1520 1521 // Store information about current state, tagged with new _jsr_bci 1522 int return_bci = iter().next_bci(); 1523 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1524 1525 // The way we do things now, there is only one successor block 1526 // for the jsr, because the target code is cloned by ciTypeFlow. 1527 Block* target = successor_for_bci(jsr_bci); 1528 1529 // What got pushed? 1530 const Type* ret_addr = target->peek(); 1531 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1532 1533 // Effect on jsr on stack 1534 push(_gvn.makecon(ret_addr)); 1535 1536 // Flow to the jsr. 1537 merge(jsr_bci); 1538 } 1539 1540 // Handle ret bytecode 1541 void Parse::do_ret() { 1542 // Find to whom we return. 1543 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1544 Block* target = block()->successor_at(0); 1545 assert(!target->is_ready(), "our arrival must be expected"); 1546 int pnum = target->next_path_num(); 1547 merge_common(target, pnum); 1548 } 1549 1550 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1551 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1552 // Only ::eq and ::ne are supported for profile injection. 1553 return false; 1554 } 1555 if (test->is_Cmp() && 1556 test->in(1)->Opcode() == Op_ProfileBoolean) { 1557 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1558 int false_cnt = profile->false_count(); 1559 int true_cnt = profile->true_count(); 1560 1561 // Counts matching depends on the actual test operation (::eq or ::ne). 1562 // No need to scale the counts because profile injection was designed 1563 // to feed exact counts into VM. 1564 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1565 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1566 1567 profile->consume(); 1568 return true; 1569 } 1570 return false; 1571 } 1572 1573 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1574 // We also check that individual counters are positive first, otherwise the sum can become positive. 1575 // (check for saturation, integer overflow, and immature counts) 1576 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1577 // check for saturation, including "uint" values too big to fit in "int" 1578 if (counter1 < 0 || counter2 < 0) { 1579 return false; 1580 } 1581 // check for integer overflow of the sum 1582 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1583 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1584 if (sum > INT_MAX) { 1585 return false; 1586 } 1587 // check if mature 1588 return (counter1 + counter2) >= min; 1589 } 1590 1591 //--------------------------dynamic_branch_prediction-------------------------- 1592 // Try to gather dynamic branch prediction behavior. Return a probability 1593 // of the branch being taken and set the "cnt" field. Returns a -1.0 1594 // if we need to use static prediction for some reason. 1595 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1596 ResourceMark rm; 1597 1598 cnt = COUNT_UNKNOWN; 1599 1600 int taken = 0; 1601 int not_taken = 0; 1602 1603 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1604 1605 if (use_mdo) { 1606 // Use MethodData information if it is available 1607 // FIXME: free the ProfileData structure 1608 ciMethodData* methodData = method()->method_data(); 1609 if (!methodData->is_mature()) return PROB_UNKNOWN; 1610 ciProfileData* data = methodData->bci_to_data(bci()); 1611 if (data == nullptr) { 1612 return PROB_UNKNOWN; 1613 } 1614 if (!data->is_JumpData()) return PROB_UNKNOWN; 1615 1616 // get taken and not taken values 1617 // NOTE: saturated UINT_MAX values become negative, 1618 // as do counts above INT_MAX. 1619 taken = data->as_JumpData()->taken(); 1620 not_taken = 0; 1621 if (data->is_BranchData()) { 1622 not_taken = data->as_BranchData()->not_taken(); 1623 } 1624 1625 // scale the counts to be commensurate with invocation counts: 1626 // NOTE: overflow for positive values is clamped at INT_MAX 1627 taken = method()->scale_count(taken); 1628 not_taken = method()->scale_count(not_taken); 1629 } 1630 // At this point, saturation or overflow is indicated by INT_MAX 1631 // or a negative value. 1632 1633 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1634 // We also check that individual counters are positive first, otherwise the sum can become positive. 1635 if (!counters_are_meaningful(taken, not_taken, 40)) { 1636 if (C->log() != nullptr) { 1637 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1638 } 1639 return PROB_UNKNOWN; 1640 } 1641 1642 // Compute frequency that we arrive here 1643 float sum = taken + not_taken; 1644 // Adjust, if this block is a cloned private block but the 1645 // Jump counts are shared. Taken the private counts for 1646 // just this path instead of the shared counts. 1647 if( block()->count() > 0 ) 1648 sum = block()->count(); 1649 cnt = sum / FreqCountInvocations; 1650 1651 // Pin probability to sane limits 1652 float prob; 1653 if( !taken ) 1654 prob = (0+PROB_MIN) / 2; 1655 else if( !not_taken ) 1656 prob = (1+PROB_MAX) / 2; 1657 else { // Compute probability of true path 1658 prob = (float)taken / (float)(taken + not_taken); 1659 if (prob > PROB_MAX) prob = PROB_MAX; 1660 if (prob < PROB_MIN) prob = PROB_MIN; 1661 } 1662 1663 assert((cnt > 0.0f) && (prob > 0.0f), 1664 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1665 1666 if (C->log() != nullptr) { 1667 const char* prob_str = nullptr; 1668 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1669 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1670 char prob_str_buf[30]; 1671 if (prob_str == nullptr) { 1672 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1673 prob_str = prob_str_buf; 1674 } 1675 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1676 iter().get_dest(), taken, not_taken, cnt, prob_str); 1677 } 1678 return prob; 1679 } 1680 1681 //-----------------------------branch_prediction------------------------------- 1682 float Parse::branch_prediction(float& cnt, 1683 BoolTest::mask btest, 1684 int target_bci, 1685 Node* test) { 1686 float prob = dynamic_branch_prediction(cnt, btest, test); 1687 // If prob is unknown, switch to static prediction 1688 if (prob != PROB_UNKNOWN) return prob; 1689 1690 prob = PROB_FAIR; // Set default value 1691 if (btest == BoolTest::eq) // Exactly equal test? 1692 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1693 else if (btest == BoolTest::ne) 1694 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1695 1696 // If this is a conditional test guarding a backwards branch, 1697 // assume its a loop-back edge. Make it a likely taken branch. 1698 if (target_bci < bci()) { 1699 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1700 // Since it's an OSR, we probably have profile data, but since 1701 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1702 // Let's make a special check here for completely zero counts. 1703 ciMethodData* methodData = method()->method_data(); 1704 if (!methodData->is_empty()) { 1705 ciProfileData* data = methodData->bci_to_data(bci()); 1706 // Only stop for truly zero counts, which mean an unknown part 1707 // of the OSR-ed method, and we want to deopt to gather more stats. 1708 // If you have ANY counts, then this loop is simply 'cold' relative 1709 // to the OSR loop. 1710 if (data == nullptr || 1711 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1712 // This is the only way to return PROB_UNKNOWN: 1713 return PROB_UNKNOWN; 1714 } 1715 } 1716 } 1717 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1718 } 1719 1720 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1721 return prob; 1722 } 1723 1724 // The magic constants are chosen so as to match the output of 1725 // branch_prediction() when the profile reports a zero taken count. 1726 // It is important to distinguish zero counts unambiguously, because 1727 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1728 // very small but nonzero probabilities, which if confused with zero 1729 // counts would keep the program recompiling indefinitely. 1730 bool Parse::seems_never_taken(float prob) const { 1731 return prob < PROB_MIN; 1732 } 1733 1734 //-------------------------------repush_if_args-------------------------------- 1735 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1736 inline int Parse::repush_if_args() { 1737 if (PrintOpto && WizardMode) { 1738 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1739 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1740 method()->print_name(); tty->cr(); 1741 } 1742 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1743 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1744 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1745 assert(argument(0) != nullptr, "must exist"); 1746 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1747 inc_sp(bc_depth); 1748 return bc_depth; 1749 } 1750 1751 // Used by StressUnstableIfTraps 1752 static volatile int _trap_stress_counter = 0; 1753 1754 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1755 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1756 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1757 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1758 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1759 } 1760 1761 //----------------------------------do_ifnull---------------------------------- 1762 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1763 int target_bci = iter().get_dest(); 1764 1765 Node* counter = nullptr; 1766 Node* incr_store = nullptr; 1767 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1768 if (do_stress_trap) { 1769 increment_trap_stress_counter(counter, incr_store); 1770 } 1771 1772 Block* branch_block = successor_for_bci(target_bci); 1773 Block* next_block = successor_for_bci(iter().next_bci()); 1774 1775 float cnt; 1776 float prob = branch_prediction(cnt, btest, target_bci, c); 1777 if (prob == PROB_UNKNOWN) { 1778 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1779 if (PrintOpto && Verbose) { 1780 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1781 } 1782 repush_if_args(); // to gather stats on loop 1783 uncommon_trap(Deoptimization::Reason_unreached, 1784 Deoptimization::Action_reinterpret, 1785 nullptr, "cold"); 1786 if (C->eliminate_boxing()) { 1787 // Mark the successor blocks as parsed 1788 branch_block->next_path_num(); 1789 next_block->next_path_num(); 1790 } 1791 return; 1792 } 1793 1794 NOT_PRODUCT(explicit_null_checks_inserted++); 1795 1796 // Generate real control flow 1797 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1798 1799 // Sanity check the probability value 1800 assert(prob > 0.0f,"Bad probability in Parser"); 1801 // Need xform to put node in hash table 1802 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1803 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1804 // True branch 1805 { PreserveJVMState pjvms(this); 1806 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1807 set_control(iftrue); 1808 1809 if (stopped()) { // Path is dead? 1810 NOT_PRODUCT(explicit_null_checks_elided++); 1811 if (C->eliminate_boxing()) { 1812 // Mark the successor block as parsed 1813 branch_block->next_path_num(); 1814 } 1815 } else { // Path is live. 1816 adjust_map_after_if(btest, c, prob, branch_block); 1817 if (!stopped()) { 1818 merge(target_bci); 1819 } 1820 } 1821 } 1822 1823 // False branch 1824 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1825 set_control(iffalse); 1826 1827 if (stopped()) { // Path is dead? 1828 NOT_PRODUCT(explicit_null_checks_elided++); 1829 if (C->eliminate_boxing()) { 1830 // Mark the successor block as parsed 1831 next_block->next_path_num(); 1832 } 1833 } else { // Path is live. 1834 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1835 } 1836 1837 if (do_stress_trap) { 1838 stress_trap(iff, counter, incr_store); 1839 } 1840 } 1841 1842 //------------------------------------do_if------------------------------------ 1843 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) { 1844 int target_bci = iter().get_dest(); 1845 1846 Block* branch_block = successor_for_bci(target_bci); 1847 Block* next_block = successor_for_bci(iter().next_bci()); 1848 1849 float cnt; 1850 float prob = branch_prediction(cnt, btest, target_bci, c); 1851 float untaken_prob = 1.0 - prob; 1852 1853 if (prob == PROB_UNKNOWN) { 1854 if (PrintOpto && Verbose) { 1855 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1856 } 1857 repush_if_args(); // to gather stats on loop 1858 uncommon_trap(Deoptimization::Reason_unreached, 1859 Deoptimization::Action_reinterpret, 1860 nullptr, "cold"); 1861 if (C->eliminate_boxing()) { 1862 // Mark the successor blocks as parsed 1863 branch_block->next_path_num(); 1864 next_block->next_path_num(); 1865 } 1866 return; 1867 } 1868 1869 Node* counter = nullptr; 1870 Node* incr_store = nullptr; 1871 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1872 if (do_stress_trap) { 1873 increment_trap_stress_counter(counter, incr_store); 1874 } 1875 1876 // Sanity check the probability value 1877 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1878 1879 bool taken_if_true = true; 1880 // Convert BoolTest to canonical form: 1881 if (!BoolTest(btest).is_canonical()) { 1882 btest = BoolTest(btest).negate(); 1883 taken_if_true = false; 1884 // prob is NOT updated here; it remains the probability of the taken 1885 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1886 } 1887 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1888 1889 Node* tst0 = new BoolNode(c, btest); 1890 Node* tst = _gvn.transform(tst0); 1891 BoolTest::mask taken_btest = BoolTest::illegal; 1892 BoolTest::mask untaken_btest = BoolTest::illegal; 1893 1894 if (tst->is_Bool()) { 1895 // Refresh c from the transformed bool node, since it may be 1896 // simpler than the original c. Also re-canonicalize btest. 1897 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1898 // That can arise from statements like: if (x instanceof C) ... 1899 if (tst != tst0) { 1900 // Canonicalize one more time since transform can change it. 1901 btest = tst->as_Bool()->_test._test; 1902 if (!BoolTest(btest).is_canonical()) { 1903 // Reverse edges one more time... 1904 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1905 btest = tst->as_Bool()->_test._test; 1906 assert(BoolTest(btest).is_canonical(), "sanity"); 1907 taken_if_true = !taken_if_true; 1908 } 1909 c = tst->in(1); 1910 } 1911 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1912 taken_btest = taken_if_true ? btest : neg_btest; 1913 untaken_btest = taken_if_true ? neg_btest : btest; 1914 } 1915 1916 // Generate real control flow 1917 float true_prob = (taken_if_true ? prob : untaken_prob); 1918 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1919 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1920 Node* taken_branch = new IfTrueNode(iff); 1921 Node* untaken_branch = new IfFalseNode(iff); 1922 if (!taken_if_true) { // Finish conversion to canonical form 1923 Node* tmp = taken_branch; 1924 taken_branch = untaken_branch; 1925 untaken_branch = tmp; 1926 } 1927 1928 // Branch is taken: 1929 { PreserveJVMState pjvms(this); 1930 taken_branch = _gvn.transform(taken_branch); 1931 set_control(taken_branch); 1932 1933 if (stopped()) { 1934 if (C->eliminate_boxing() && !new_path) { 1935 // Mark the successor block as parsed (if we haven't created a new path) 1936 branch_block->next_path_num(); 1937 } 1938 } else { 1939 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap); 1940 if (!stopped()) { 1941 if (new_path) { 1942 // Merge by using a new path 1943 merge_new_path(target_bci); 1944 } else if (ctrl_taken != nullptr) { 1945 // Don't merge but save taken branch to be wired by caller 1946 *ctrl_taken = control(); 1947 } else { 1948 merge(target_bci); 1949 } 1950 } 1951 } 1952 } 1953 1954 untaken_branch = _gvn.transform(untaken_branch); 1955 set_control(untaken_branch); 1956 1957 // Branch not taken. 1958 if (stopped() && ctrl_taken == nullptr) { 1959 if (C->eliminate_boxing()) { 1960 // Mark the successor block as parsed (if caller does not re-wire control flow) 1961 next_block->next_path_num(); 1962 } 1963 } else { 1964 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap); 1965 } 1966 1967 if (do_stress_trap) { 1968 stress_trap(iff, counter, incr_store); 1969 } 1970 } 1971 1972 1973 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 1974 if (t->speculative() == nullptr) { 1975 return ProfileUnknownNull; 1976 } 1977 if (t->speculative_always_null()) { 1978 return ProfileAlwaysNull; 1979 } 1980 if (t->speculative_maybe_null()) { 1981 return ProfileMaybeNull; 1982 } 1983 return ProfileNeverNull; 1984 } 1985 1986 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 1987 inc_sp(2); 1988 Node* cast = null_check_common(input, T_OBJECT, true, nullptr, 1989 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 1990 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 1991 dec_sp(2); 1992 if (btest == BoolTest::ne) { 1993 { 1994 PreserveJVMState pjvms(this); 1995 replace_in_map(input, cast); 1996 int target_bci = iter().get_dest(); 1997 merge(target_bci); 1998 } 1999 record_for_igvn(eq_region); 2000 set_control(_gvn.transform(eq_region)); 2001 } else { 2002 replace_in_map(input, cast); 2003 } 2004 } 2005 2006 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 2007 inc_sp(2); 2008 null_ctl = top(); 2009 Node* cast = null_check_oop(input, &null_ctl, 2010 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 2011 false, 2012 speculative_ptr_kind(tinput) == ProfileNeverNull && 2013 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 2014 dec_sp(2); 2015 assert(!stopped(), "null input should have been caught earlier"); 2016 return cast; 2017 } 2018 2019 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 2020 Node* ne_region = new RegionNode(1); 2021 Node* null_ctl; 2022 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2023 ne_region->add_req(null_ctl); 2024 2025 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 2026 { 2027 PreserveJVMState pjvms(this); 2028 inc_sp(2); 2029 set_control(slow_ctl); 2030 Deoptimization::DeoptReason reason; 2031 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2032 reason = Deoptimization::Reason_speculate_class_check; 2033 } else { 2034 reason = Deoptimization::Reason_class_check; 2035 } 2036 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2037 } 2038 ne_region->add_req(control()); 2039 2040 record_for_igvn(ne_region); 2041 set_control(_gvn.transform(ne_region)); 2042 if (btest == BoolTest::ne) { 2043 { 2044 PreserveJVMState pjvms(this); 2045 if (null_ctl == top()) { 2046 replace_in_map(input, cast); 2047 } 2048 int target_bci = iter().get_dest(); 2049 merge(target_bci); 2050 } 2051 record_for_igvn(eq_region); 2052 set_control(_gvn.transform(eq_region)); 2053 } else { 2054 if (null_ctl == top()) { 2055 replace_in_map(input, cast); 2056 } 2057 set_control(_gvn.transform(ne_region)); 2058 } 2059 } 2060 2061 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 2062 Node* ne_region = new RegionNode(1); 2063 Node* null_ctl; 2064 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2065 ne_region->add_req(null_ctl); 2066 2067 { 2068 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 2069 inc_sp(2); 2070 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 2071 } 2072 2073 ne_region->add_req(control()); 2074 2075 record_for_igvn(ne_region); 2076 set_control(_gvn.transform(ne_region)); 2077 if (btest == BoolTest::ne) { 2078 { 2079 PreserveJVMState pjvms(this); 2080 if (null_ctl == top()) { 2081 replace_in_map(input, cast); 2082 } 2083 int target_bci = iter().get_dest(); 2084 merge(target_bci); 2085 } 2086 record_for_igvn(eq_region); 2087 set_control(_gvn.transform(eq_region)); 2088 } else { 2089 if (null_ctl == top()) { 2090 replace_in_map(input, cast); 2091 } 2092 set_control(_gvn.transform(ne_region)); 2093 } 2094 } 2095 2096 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2097 ciKlass* left_type = nullptr; 2098 ciKlass* right_type = nullptr; 2099 ProfilePtrKind left_ptr = ProfileUnknownNull; 2100 ProfilePtrKind right_ptr = ProfileUnknownNull; 2101 bool left_inline_type = true; 2102 bool right_inline_type = true; 2103 2104 // Leverage profiling at acmp 2105 if (UseACmpProfile) { 2106 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2107 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2108 left_type = nullptr; 2109 right_type = nullptr; 2110 left_inline_type = true; 2111 right_inline_type = true; 2112 } 2113 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2114 left_ptr = ProfileUnknownNull; 2115 right_ptr = ProfileUnknownNull; 2116 } 2117 } 2118 2119 if (UseTypeSpeculation) { 2120 record_profile_for_speculation(left, left_type, left_ptr); 2121 record_profile_for_speculation(right, right_type, right_ptr); 2122 } 2123 2124 if (!EnableValhalla) { 2125 Node* cmp = CmpP(left, right); 2126 cmp = optimize_cmp_with_klass(cmp); 2127 do_if(btest, cmp); 2128 return; 2129 } 2130 2131 // Check for equality before potentially allocating 2132 if (left == right) { 2133 do_if(btest, makecon(TypeInt::CC_EQ)); 2134 return; 2135 } 2136 2137 // Allocate inline type operands and re-execute on deoptimization 2138 if (left->is_InlineType()) { 2139 if (_gvn.type(right)->is_zero_type() || 2140 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2141 // Null checking a scalarized but nullable inline type. Check the IsInit 2142 // input instead of the oop input to avoid keeping buffer allocations alive. 2143 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2144 do_if(btest, cmp); 2145 return; 2146 } else { 2147 PreserveReexecuteState preexecs(this); 2148 inc_sp(2); 2149 jvms()->set_should_reexecute(true); 2150 left = left->as_InlineType()->buffer(this)->get_oop(); 2151 } 2152 } 2153 if (right->is_InlineType()) { 2154 PreserveReexecuteState preexecs(this); 2155 inc_sp(2); 2156 jvms()->set_should_reexecute(true); 2157 right = right->as_InlineType()->buffer(this)->get_oop(); 2158 } 2159 2160 // First, do a normal pointer comparison 2161 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2162 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2163 Node* cmp = CmpP(left, right); 2164 cmp = optimize_cmp_with_klass(cmp); 2165 if (tleft == nullptr || !tleft->can_be_inline_type() || 2166 tright == nullptr || !tright->can_be_inline_type()) { 2167 // This is sufficient, if one of the operands can't be an inline type 2168 do_if(btest, cmp); 2169 return; 2170 } 2171 2172 // Don't add traps to unstable if branches because additional checks are required to 2173 // decide if the operands are equal/substitutable and we therefore shouldn't prune 2174 // branches for one if based on the profiling of the acmp branches. 2175 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it 2176 // assumes that there is a 1-1 mapping between the if and the acmp branches and that 2177 // hitting a trap means that we will take the corresponding acmp branch on re-execution. 2178 const bool can_trap = true; 2179 2180 Node* eq_region = nullptr; 2181 if (btest == BoolTest::eq) { 2182 do_if(btest, cmp, !can_trap, true); 2183 if (stopped()) { 2184 // Pointers are equal, operands must be equal 2185 return; 2186 } 2187 } else { 2188 assert(btest == BoolTest::ne, "only eq or ne"); 2189 Node* is_not_equal = nullptr; 2190 eq_region = new RegionNode(3); 2191 { 2192 PreserveJVMState pjvms(this); 2193 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable 2194 do_if(btest, cmp, !can_trap, false, &is_not_equal); 2195 if (!stopped()) { 2196 eq_region->init_req(1, control()); 2197 } 2198 } 2199 if (is_not_equal == nullptr || is_not_equal->is_top()) { 2200 record_for_igvn(eq_region); 2201 set_control(_gvn.transform(eq_region)); 2202 return; 2203 } 2204 set_control(is_not_equal); 2205 } 2206 2207 // Prefer speculative types if available 2208 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2209 if (tleft->speculative_type() != nullptr) { 2210 left_type = tleft->speculative_type(); 2211 } 2212 if (tright->speculative_type() != nullptr) { 2213 right_type = tright->speculative_type(); 2214 } 2215 } 2216 2217 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2218 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2219 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2220 left_ptr = speculative_left_ptr; 2221 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2222 left_ptr = speculative_left_ptr; 2223 } 2224 } 2225 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2226 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2227 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2228 right_ptr = speculative_right_ptr; 2229 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2230 right_ptr = speculative_right_ptr; 2231 } 2232 } 2233 2234 if (left_ptr == ProfileAlwaysNull) { 2235 // Comparison with null. Assert the input is indeed null and we're done. 2236 acmp_always_null_input(left, tleft, btest, eq_region); 2237 return; 2238 } 2239 if (right_ptr == ProfileAlwaysNull) { 2240 // Comparison with null. Assert the input is indeed null and we're done. 2241 acmp_always_null_input(right, tright, btest, eq_region); 2242 return; 2243 } 2244 if (left_type != nullptr && !left_type->is_inlinetype()) { 2245 // Comparison with an object of known type 2246 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2247 return; 2248 } 2249 if (right_type != nullptr && !right_type->is_inlinetype()) { 2250 // Comparison with an object of known type 2251 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2252 return; 2253 } 2254 if (!left_inline_type) { 2255 // Comparison with an object known not to be an inline type 2256 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2257 return; 2258 } 2259 if (!right_inline_type) { 2260 // Comparison with an object known not to be an inline type 2261 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2262 return; 2263 } 2264 2265 // Pointers are not equal, check if first operand is non-null 2266 Node* ne_region = new RegionNode(6); 2267 Node* null_ctl; 2268 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2269 ne_region->init_req(1, null_ctl); 2270 2271 // First operand is non-null, check if it is an inline type 2272 Node* is_value = inline_type_test(not_null_right); 2273 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2274 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2275 ne_region->init_req(2, not_value); 2276 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2277 2278 // The first operand is an inline type, check if the second operand is non-null 2279 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2280 ne_region->init_req(3, null_ctl); 2281 2282 // Check if both operands are of the same class. 2283 Node* kls_left = load_object_klass(not_null_left); 2284 Node* kls_right = load_object_klass(not_null_right); 2285 Node* kls_cmp = CmpP(kls_left, kls_right); 2286 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2287 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2288 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2289 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2290 ne_region->init_req(4, kls_ne); 2291 2292 if (stopped()) { 2293 record_for_igvn(ne_region); 2294 set_control(_gvn.transform(ne_region)); 2295 if (btest == BoolTest::ne) { 2296 { 2297 PreserveJVMState pjvms(this); 2298 int target_bci = iter().get_dest(); 2299 merge(target_bci); 2300 } 2301 record_for_igvn(eq_region); 2302 set_control(_gvn.transform(eq_region)); 2303 } 2304 return; 2305 } 2306 2307 // Both operands are values types of the same class, we need to perform a 2308 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2309 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2310 Node* mem = reset_memory(); 2311 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2312 2313 Node* eq_io_phi = nullptr; 2314 Node* eq_mem_phi = nullptr; 2315 if (eq_region != nullptr) { 2316 eq_io_phi = PhiNode::make(eq_region, i_o()); 2317 eq_mem_phi = PhiNode::make(eq_region, mem); 2318 } 2319 2320 set_all_memory(mem); 2321 2322 kill_dead_locals(); 2323 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2324 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2325 call->set_override_symbolic_info(true); 2326 call->init_req(TypeFunc::Parms, not_null_left); 2327 call->init_req(TypeFunc::Parms+1, not_null_right); 2328 inc_sp(2); 2329 set_edges_for_java_call(call, false, false); 2330 Node* ret = set_results_for_java_call(call, false, true); 2331 dec_sp(2); 2332 2333 // Test the return value of ValueObjectMethods::isSubstitutable() 2334 // This is the last check, do_if can emit traps now. 2335 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2336 Node* ctl = C->top(); 2337 if (btest == BoolTest::eq) { 2338 PreserveJVMState pjvms(this); 2339 do_if(btest, subst_cmp, can_trap); 2340 if (!stopped()) { 2341 ctl = control(); 2342 } 2343 } else { 2344 assert(btest == BoolTest::ne, "only eq or ne"); 2345 PreserveJVMState pjvms(this); 2346 do_if(btest, subst_cmp, can_trap, false, &ctl); 2347 if (!stopped()) { 2348 eq_region->init_req(2, control()); 2349 eq_io_phi->init_req(2, i_o()); 2350 eq_mem_phi->init_req(2, reset_memory()); 2351 } 2352 } 2353 ne_region->init_req(5, ctl); 2354 ne_io_phi->init_req(5, i_o()); 2355 ne_mem_phi->init_req(5, reset_memory()); 2356 2357 record_for_igvn(ne_region); 2358 set_control(_gvn.transform(ne_region)); 2359 set_i_o(_gvn.transform(ne_io_phi)); 2360 set_all_memory(_gvn.transform(ne_mem_phi)); 2361 2362 if (btest == BoolTest::ne) { 2363 { 2364 PreserveJVMState pjvms(this); 2365 int target_bci = iter().get_dest(); 2366 merge(target_bci); 2367 } 2368 2369 record_for_igvn(eq_region); 2370 set_control(_gvn.transform(eq_region)); 2371 set_i_o(_gvn.transform(eq_io_phi)); 2372 set_all_memory(_gvn.transform(eq_mem_phi)); 2373 } 2374 } 2375 2376 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 2377 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 2378 // then either takes the trap or executes the original, unstable if. 2379 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 2380 // Search for an unstable if trap 2381 CallStaticJavaNode* trap = nullptr; 2382 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 2383 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 2384 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 2385 // No suitable trap found. Remove unused counter load and increment. 2386 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 2387 return; 2388 } 2389 2390 // Remove trap from optimization list since we add another path to the trap. 2391 bool success = C->remove_unstable_if_trap(trap, true); 2392 assert(success, "Trap already modified"); 2393 2394 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 2395 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 2396 Node* mask = intcon(right_n_bits(freq_log)); 2397 counter = _gvn.transform(new AndINode(counter, mask)); 2398 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 2399 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 2400 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 2401 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 2402 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 2403 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 2404 2405 // Trap 2406 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 2407 2408 Node* trap_region = new RegionNode(3); 2409 trap_region->set_req(1, trap_proj); 2410 trap_region->set_req(2, if_true); 2411 trap->set_req(0, _gvn.transform(trap_region)); 2412 2413 // Don't trap, execute original if 2414 orig_iff->set_req(0, if_false); 2415 } 2416 2417 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2418 // Randomly skip emitting an uncommon trap 2419 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 2420 return false; 2421 } 2422 // Don't want to speculate on uncommon traps when running with -Xcomp 2423 if (!UseInterpreter) { 2424 return false; 2425 } 2426 return seems_never_taken(prob) && 2427 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 2428 } 2429 2430 void Parse::maybe_add_predicate_after_if(Block* path) { 2431 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2432 // Add predicates at bci of if dominating the loop so traps can be 2433 // recorded on the if's profile data 2434 int bc_depth = repush_if_args(); 2435 add_parse_predicates(); 2436 dec_sp(bc_depth); 2437 path->set_has_predicates(); 2438 } 2439 } 2440 2441 2442 //----------------------------adjust_map_after_if------------------------------ 2443 // Adjust the JVM state to reflect the result of taking this path. 2444 // Basically, it means inspecting the CmpNode controlling this 2445 // branch, seeing how it constrains a tested value, and then 2446 // deciding if it's worth our while to encode this constraint 2447 // as graph nodes in the current abstract interpretation map. 2448 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) { 2449 if (!c->is_Cmp()) { 2450 maybe_add_predicate_after_if(path); 2451 return; 2452 } 2453 2454 if (stopped() || btest == BoolTest::illegal) { 2455 return; // nothing to do 2456 } 2457 2458 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2459 2460 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) { 2461 repush_if_args(); 2462 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2463 Deoptimization::Action_reinterpret, 2464 nullptr, 2465 (is_fallthrough ? "taken always" : "taken never")); 2466 2467 if (call != nullptr) { 2468 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2469 } 2470 return; 2471 } 2472 2473 Node* val = c->in(1); 2474 Node* con = c->in(2); 2475 const Type* tcon = _gvn.type(con); 2476 const Type* tval = _gvn.type(val); 2477 bool have_con = tcon->singleton(); 2478 if (tval->singleton()) { 2479 if (!have_con) { 2480 // Swap, so constant is in con. 2481 con = val; 2482 tcon = tval; 2483 val = c->in(2); 2484 tval = _gvn.type(val); 2485 btest = BoolTest(btest).commute(); 2486 have_con = true; 2487 } else { 2488 // Do we have two constants? Then leave well enough alone. 2489 have_con = false; 2490 } 2491 } 2492 if (!have_con) { // remaining adjustments need a con 2493 maybe_add_predicate_after_if(path); 2494 return; 2495 } 2496 2497 sharpen_type_after_if(btest, con, tcon, val, tval); 2498 maybe_add_predicate_after_if(path); 2499 } 2500 2501 2502 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2503 Node* ldk; 2504 if (n->is_DecodeNKlass()) { 2505 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2506 return nullptr; 2507 } else { 2508 ldk = n->in(1); 2509 } 2510 } else if (n->Opcode() != Op_LoadKlass) { 2511 return nullptr; 2512 } else { 2513 ldk = n; 2514 } 2515 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2516 2517 Node* adr = ldk->in(MemNode::Address); 2518 intptr_t off = 0; 2519 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2520 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2521 return nullptr; 2522 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2523 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2524 return nullptr; 2525 2526 return obj; 2527 } 2528 2529 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2530 Node* con, const Type* tcon, 2531 Node* val, const Type* tval) { 2532 // Look for opportunities to sharpen the type of a node 2533 // whose klass is compared with a constant klass. 2534 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2535 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2536 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2537 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2538 // Found: 2539 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2540 // or the narrowOop equivalent. 2541 const Type* obj_type = _gvn.type(obj); 2542 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2543 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 2544 tboth->higher_equal(obj_type)) { 2545 // obj has to be of the exact type Foo if the CmpP succeeds. 2546 int obj_in_map = map()->find_edge(obj); 2547 JVMState* jvms = this->jvms(); 2548 if (obj_in_map >= 0 && 2549 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2550 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2551 const Type* tcc = ccast->as_Type()->type(); 2552 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2553 // Delay transform() call to allow recovery of pre-cast value 2554 // at the control merge. 2555 _gvn.set_type_bottom(ccast); 2556 record_for_igvn(ccast); 2557 if (tboth->is_inlinetypeptr()) { 2558 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass()); 2559 } 2560 // Here's the payoff. 2561 replace_in_map(obj, ccast); 2562 } 2563 } 2564 } 2565 } 2566 2567 int val_in_map = map()->find_edge(val); 2568 if (val_in_map < 0) return; // replace_in_map would be useless 2569 { 2570 JVMState* jvms = this->jvms(); 2571 if (!(jvms->is_loc(val_in_map) || 2572 jvms->is_stk(val_in_map))) 2573 return; // again, it would be useless 2574 } 2575 2576 // Check for a comparison to a constant, and "know" that the compared 2577 // value is constrained on this path. 2578 assert(tcon->singleton(), ""); 2579 ConstraintCastNode* ccast = nullptr; 2580 Node* cast = nullptr; 2581 2582 switch (btest) { 2583 case BoolTest::eq: // Constant test? 2584 { 2585 const Type* tboth = tcon->join_speculative(tval); 2586 if (tboth == tval) break; // Nothing to gain. 2587 if (tcon->isa_int()) { 2588 ccast = new CastIINode(control(), val, tboth); 2589 } else if (tcon == TypePtr::NULL_PTR) { 2590 // Cast to null, but keep the pointer identity temporarily live. 2591 ccast = new CastPPNode(control(), val, tboth); 2592 } else { 2593 const TypeF* tf = tcon->isa_float_constant(); 2594 const TypeD* td = tcon->isa_double_constant(); 2595 // Exclude tests vs float/double 0 as these could be 2596 // either +0 or -0. Just because you are equal to +0 2597 // doesn't mean you ARE +0! 2598 // Note, following code also replaces Long and Oop values. 2599 if ((!tf || tf->_f != 0.0) && 2600 (!td || td->_d != 0.0)) 2601 cast = con; // Replace non-constant val by con. 2602 } 2603 } 2604 break; 2605 2606 case BoolTest::ne: 2607 if (tcon == TypePtr::NULL_PTR) { 2608 cast = cast_not_null(val, false); 2609 } 2610 break; 2611 2612 default: 2613 // (At this point we could record int range types with CastII.) 2614 break; 2615 } 2616 2617 if (ccast != nullptr) { 2618 const Type* tcc = ccast->as_Type()->type(); 2619 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2620 // Delay transform() call to allow recovery of pre-cast value 2621 // at the control merge. 2622 _gvn.set_type_bottom(ccast); 2623 record_for_igvn(ccast); 2624 cast = ccast; 2625 } 2626 2627 if (cast != nullptr) { // Here's the payoff. 2628 replace_in_map(val, cast); 2629 } 2630 } 2631 2632 /** 2633 * Use speculative type to optimize CmpP node: if comparison is 2634 * against the low level class, cast the object to the speculative 2635 * type if any. CmpP should then go away. 2636 * 2637 * @param c expected CmpP node 2638 * @return result of CmpP on object casted to speculative type 2639 * 2640 */ 2641 Node* Parse::optimize_cmp_with_klass(Node* c) { 2642 // If this is transformed by the _gvn to a comparison with the low 2643 // level klass then we may be able to use speculation 2644 if (c->Opcode() == Op_CmpP && 2645 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2646 c->in(2)->is_Con()) { 2647 Node* load_klass = nullptr; 2648 Node* decode = nullptr; 2649 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2650 decode = c->in(1); 2651 load_klass = c->in(1)->in(1); 2652 } else { 2653 load_klass = c->in(1); 2654 } 2655 if (load_klass->in(2)->is_AddP()) { 2656 Node* addp = load_klass->in(2); 2657 Node* obj = addp->in(AddPNode::Address); 2658 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2659 if (obj_type->speculative_type_not_null() != nullptr) { 2660 ciKlass* k = obj_type->speculative_type(); 2661 inc_sp(2); 2662 obj = maybe_cast_profiled_obj(obj, k); 2663 dec_sp(2); 2664 if (obj->is_InlineType()) { 2665 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2666 obj = obj->as_InlineType()->get_oop(); 2667 } 2668 // Make the CmpP use the casted obj 2669 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2670 load_klass = load_klass->clone(); 2671 load_klass->set_req(2, addp); 2672 load_klass = _gvn.transform(load_klass); 2673 if (decode != nullptr) { 2674 decode = decode->clone(); 2675 decode->set_req(1, load_klass); 2676 load_klass = _gvn.transform(decode); 2677 } 2678 c = c->clone(); 2679 c->set_req(1, load_klass); 2680 c = _gvn.transform(c); 2681 } 2682 } 2683 } 2684 return c; 2685 } 2686 2687 //------------------------------do_one_bytecode-------------------------------- 2688 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2689 void Parse::do_one_bytecode() { 2690 Node *a, *b, *c, *d; // Handy temps 2691 BoolTest::mask btest; 2692 int i; 2693 2694 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2695 2696 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2697 "out of nodes parsing method")) { 2698 return; 2699 } 2700 2701 #ifdef ASSERT 2702 // for setting breakpoints 2703 if (TraceOptoParse) { 2704 tty->print(" @"); 2705 dump_bci(bci()); 2706 tty->print(" %s", Bytecodes::name(bc())); 2707 tty->cr(); 2708 } 2709 #endif 2710 2711 switch (bc()) { 2712 case Bytecodes::_nop: 2713 // do nothing 2714 break; 2715 case Bytecodes::_lconst_0: 2716 push_pair(longcon(0)); 2717 break; 2718 2719 case Bytecodes::_lconst_1: 2720 push_pair(longcon(1)); 2721 break; 2722 2723 case Bytecodes::_fconst_0: 2724 push(zerocon(T_FLOAT)); 2725 break; 2726 2727 case Bytecodes::_fconst_1: 2728 push(makecon(TypeF::ONE)); 2729 break; 2730 2731 case Bytecodes::_fconst_2: 2732 push(makecon(TypeF::make(2.0f))); 2733 break; 2734 2735 case Bytecodes::_dconst_0: 2736 push_pair(zerocon(T_DOUBLE)); 2737 break; 2738 2739 case Bytecodes::_dconst_1: 2740 push_pair(makecon(TypeD::ONE)); 2741 break; 2742 2743 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2744 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2745 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2746 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2747 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2748 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2749 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2750 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2751 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2752 case Bytecodes::_aconst_null: push(null()); break; 2753 2754 case Bytecodes::_ldc: 2755 case Bytecodes::_ldc_w: 2756 case Bytecodes::_ldc2_w: { 2757 ciConstant constant = iter().get_constant(); 2758 if (constant.is_loaded()) { 2759 const Type* con_type = Type::make_from_constant(constant); 2760 if (con_type != nullptr) { 2761 push_node(con_type->basic_type(), makecon(con_type)); 2762 } 2763 } else { 2764 // If the constant is unresolved or in error state, run this BC in the interpreter. 2765 if (iter().is_in_error()) { 2766 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 2767 Deoptimization::Action_none), 2768 nullptr, "constant in error state", true /* must_throw */); 2769 2770 } else { 2771 int index = iter().get_constant_pool_index(); 2772 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unloaded, 2773 Deoptimization::Action_reinterpret, 2774 index), 2775 nullptr, "unresolved constant", false /* must_throw */); 2776 } 2777 } 2778 break; 2779 } 2780 2781 case Bytecodes::_aload_0: 2782 push( local(0) ); 2783 break; 2784 case Bytecodes::_aload_1: 2785 push( local(1) ); 2786 break; 2787 case Bytecodes::_aload_2: 2788 push( local(2) ); 2789 break; 2790 case Bytecodes::_aload_3: 2791 push( local(3) ); 2792 break; 2793 case Bytecodes::_aload: 2794 push( local(iter().get_index()) ); 2795 break; 2796 2797 case Bytecodes::_fload_0: 2798 case Bytecodes::_iload_0: 2799 push( local(0) ); 2800 break; 2801 case Bytecodes::_fload_1: 2802 case Bytecodes::_iload_1: 2803 push( local(1) ); 2804 break; 2805 case Bytecodes::_fload_2: 2806 case Bytecodes::_iload_2: 2807 push( local(2) ); 2808 break; 2809 case Bytecodes::_fload_3: 2810 case Bytecodes::_iload_3: 2811 push( local(3) ); 2812 break; 2813 case Bytecodes::_fload: 2814 case Bytecodes::_iload: 2815 push( local(iter().get_index()) ); 2816 break; 2817 case Bytecodes::_lload_0: 2818 push_pair_local( 0 ); 2819 break; 2820 case Bytecodes::_lload_1: 2821 push_pair_local( 1 ); 2822 break; 2823 case Bytecodes::_lload_2: 2824 push_pair_local( 2 ); 2825 break; 2826 case Bytecodes::_lload_3: 2827 push_pair_local( 3 ); 2828 break; 2829 case Bytecodes::_lload: 2830 push_pair_local( iter().get_index() ); 2831 break; 2832 2833 case Bytecodes::_dload_0: 2834 push_pair_local(0); 2835 break; 2836 case Bytecodes::_dload_1: 2837 push_pair_local(1); 2838 break; 2839 case Bytecodes::_dload_2: 2840 push_pair_local(2); 2841 break; 2842 case Bytecodes::_dload_3: 2843 push_pair_local(3); 2844 break; 2845 case Bytecodes::_dload: 2846 push_pair_local(iter().get_index()); 2847 break; 2848 case Bytecodes::_fstore_0: 2849 case Bytecodes::_istore_0: 2850 case Bytecodes::_astore_0: 2851 set_local( 0, pop() ); 2852 break; 2853 case Bytecodes::_fstore_1: 2854 case Bytecodes::_istore_1: 2855 case Bytecodes::_astore_1: 2856 set_local( 1, pop() ); 2857 break; 2858 case Bytecodes::_fstore_2: 2859 case Bytecodes::_istore_2: 2860 case Bytecodes::_astore_2: 2861 set_local( 2, pop() ); 2862 break; 2863 case Bytecodes::_fstore_3: 2864 case Bytecodes::_istore_3: 2865 case Bytecodes::_astore_3: 2866 set_local( 3, pop() ); 2867 break; 2868 case Bytecodes::_fstore: 2869 case Bytecodes::_istore: 2870 case Bytecodes::_astore: 2871 set_local( iter().get_index(), pop() ); 2872 break; 2873 // long stores 2874 case Bytecodes::_lstore_0: 2875 set_pair_local( 0, pop_pair() ); 2876 break; 2877 case Bytecodes::_lstore_1: 2878 set_pair_local( 1, pop_pair() ); 2879 break; 2880 case Bytecodes::_lstore_2: 2881 set_pair_local( 2, pop_pair() ); 2882 break; 2883 case Bytecodes::_lstore_3: 2884 set_pair_local( 3, pop_pair() ); 2885 break; 2886 case Bytecodes::_lstore: 2887 set_pair_local( iter().get_index(), pop_pair() ); 2888 break; 2889 2890 // double stores 2891 case Bytecodes::_dstore_0: 2892 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2893 break; 2894 case Bytecodes::_dstore_1: 2895 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2896 break; 2897 case Bytecodes::_dstore_2: 2898 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2899 break; 2900 case Bytecodes::_dstore_3: 2901 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2902 break; 2903 case Bytecodes::_dstore: 2904 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2905 break; 2906 2907 case Bytecodes::_pop: dec_sp(1); break; 2908 case Bytecodes::_pop2: dec_sp(2); break; 2909 case Bytecodes::_swap: 2910 a = pop(); 2911 b = pop(); 2912 push(a); 2913 push(b); 2914 break; 2915 case Bytecodes::_dup: 2916 a = pop(); 2917 push(a); 2918 push(a); 2919 break; 2920 case Bytecodes::_dup_x1: 2921 a = pop(); 2922 b = pop(); 2923 push( a ); 2924 push( b ); 2925 push( a ); 2926 break; 2927 case Bytecodes::_dup_x2: 2928 a = pop(); 2929 b = pop(); 2930 c = pop(); 2931 push( a ); 2932 push( c ); 2933 push( b ); 2934 push( a ); 2935 break; 2936 case Bytecodes::_dup2: 2937 a = pop(); 2938 b = pop(); 2939 push( b ); 2940 push( a ); 2941 push( b ); 2942 push( a ); 2943 break; 2944 2945 case Bytecodes::_dup2_x1: 2946 // before: .. c, b, a 2947 // after: .. b, a, c, b, a 2948 // not tested 2949 a = pop(); 2950 b = pop(); 2951 c = pop(); 2952 push( b ); 2953 push( a ); 2954 push( c ); 2955 push( b ); 2956 push( a ); 2957 break; 2958 case Bytecodes::_dup2_x2: 2959 // before: .. d, c, b, a 2960 // after: .. b, a, d, c, b, a 2961 // not tested 2962 a = pop(); 2963 b = pop(); 2964 c = pop(); 2965 d = pop(); 2966 push( b ); 2967 push( a ); 2968 push( d ); 2969 push( c ); 2970 push( b ); 2971 push( a ); 2972 break; 2973 2974 case Bytecodes::_arraylength: { 2975 // Must do null-check with value on expression stack 2976 Node *ary = null_check(peek(), T_ARRAY); 2977 // Compile-time detect of null-exception? 2978 if (stopped()) return; 2979 a = pop(); 2980 push(load_array_length(a)); 2981 break; 2982 } 2983 2984 case Bytecodes::_baload: array_load(T_BYTE); break; 2985 case Bytecodes::_caload: array_load(T_CHAR); break; 2986 case Bytecodes::_iaload: array_load(T_INT); break; 2987 case Bytecodes::_saload: array_load(T_SHORT); break; 2988 case Bytecodes::_faload: array_load(T_FLOAT); break; 2989 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2990 case Bytecodes::_laload: array_load(T_LONG); break; 2991 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2992 case Bytecodes::_bastore: array_store(T_BYTE); break; 2993 case Bytecodes::_castore: array_store(T_CHAR); break; 2994 case Bytecodes::_iastore: array_store(T_INT); break; 2995 case Bytecodes::_sastore: array_store(T_SHORT); break; 2996 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2997 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2998 case Bytecodes::_lastore: array_store(T_LONG); break; 2999 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 3000 3001 case Bytecodes::_getfield: 3002 do_getfield(); 3003 break; 3004 3005 case Bytecodes::_getstatic: 3006 do_getstatic(); 3007 break; 3008 3009 case Bytecodes::_putfield: 3010 do_putfield(); 3011 break; 3012 3013 case Bytecodes::_putstatic: 3014 do_putstatic(); 3015 break; 3016 3017 case Bytecodes::_irem: 3018 // Must keep both values on the expression-stack during null-check 3019 zero_check_int(peek()); 3020 // Compile-time detect of null-exception? 3021 if (stopped()) return; 3022 b = pop(); 3023 a = pop(); 3024 push(_gvn.transform(new ModINode(control(), a, b))); 3025 break; 3026 case Bytecodes::_idiv: 3027 // Must keep both values on the expression-stack during null-check 3028 zero_check_int(peek()); 3029 // Compile-time detect of null-exception? 3030 if (stopped()) return; 3031 b = pop(); 3032 a = pop(); 3033 push( _gvn.transform( new DivINode(control(),a,b) ) ); 3034 break; 3035 case Bytecodes::_imul: 3036 b = pop(); a = pop(); 3037 push( _gvn.transform( new MulINode(a,b) ) ); 3038 break; 3039 case Bytecodes::_iadd: 3040 b = pop(); a = pop(); 3041 push( _gvn.transform( new AddINode(a,b) ) ); 3042 break; 3043 case Bytecodes::_ineg: 3044 a = pop(); 3045 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 3046 break; 3047 case Bytecodes::_isub: 3048 b = pop(); a = pop(); 3049 push( _gvn.transform( new SubINode(a,b) ) ); 3050 break; 3051 case Bytecodes::_iand: 3052 b = pop(); a = pop(); 3053 push( _gvn.transform( new AndINode(a,b) ) ); 3054 break; 3055 case Bytecodes::_ior: 3056 b = pop(); a = pop(); 3057 push( _gvn.transform( new OrINode(a,b) ) ); 3058 break; 3059 case Bytecodes::_ixor: 3060 b = pop(); a = pop(); 3061 push( _gvn.transform( new XorINode(a,b) ) ); 3062 break; 3063 case Bytecodes::_ishl: 3064 b = pop(); a = pop(); 3065 push( _gvn.transform( new LShiftINode(a,b) ) ); 3066 break; 3067 case Bytecodes::_ishr: 3068 b = pop(); a = pop(); 3069 push( _gvn.transform( new RShiftINode(a,b) ) ); 3070 break; 3071 case Bytecodes::_iushr: 3072 b = pop(); a = pop(); 3073 push( _gvn.transform( new URShiftINode(a,b) ) ); 3074 break; 3075 3076 case Bytecodes::_fneg: 3077 a = pop(); 3078 b = _gvn.transform(new NegFNode (a)); 3079 push(b); 3080 break; 3081 3082 case Bytecodes::_fsub: 3083 b = pop(); 3084 a = pop(); 3085 c = _gvn.transform( new SubFNode(a,b) ); 3086 d = precision_rounding(c); 3087 push( d ); 3088 break; 3089 3090 case Bytecodes::_fadd: 3091 b = pop(); 3092 a = pop(); 3093 c = _gvn.transform( new AddFNode(a,b) ); 3094 d = precision_rounding(c); 3095 push( d ); 3096 break; 3097 3098 case Bytecodes::_fmul: 3099 b = pop(); 3100 a = pop(); 3101 c = _gvn.transform( new MulFNode(a,b) ); 3102 d = precision_rounding(c); 3103 push( d ); 3104 break; 3105 3106 case Bytecodes::_fdiv: 3107 b = pop(); 3108 a = pop(); 3109 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 3110 d = precision_rounding(c); 3111 push( d ); 3112 break; 3113 3114 case Bytecodes::_frem: 3115 if (Matcher::has_match_rule(Op_ModF)) { 3116 // Generate a ModF node. 3117 b = pop(); 3118 a = pop(); 3119 c = _gvn.transform( new ModFNode(nullptr,a,b) ); 3120 d = precision_rounding(c); 3121 push( d ); 3122 } 3123 else { 3124 // Generate a call. 3125 modf(); 3126 } 3127 break; 3128 3129 case Bytecodes::_fcmpl: 3130 b = pop(); 3131 a = pop(); 3132 c = _gvn.transform( new CmpF3Node( a, b)); 3133 push(c); 3134 break; 3135 case Bytecodes::_fcmpg: 3136 b = pop(); 3137 a = pop(); 3138 3139 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 3140 // which negates the result sign except for unordered. Flip the unordered 3141 // as well by using CmpF3 which implements unordered-lesser instead of 3142 // unordered-greater semantics. Finally, commute the result bits. Result 3143 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3144 c = _gvn.transform( new CmpF3Node( b, a)); 3145 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3146 push(c); 3147 break; 3148 3149 case Bytecodes::_f2i: 3150 a = pop(); 3151 push(_gvn.transform(new ConvF2INode(a))); 3152 break; 3153 3154 case Bytecodes::_d2i: 3155 a = pop_pair(); 3156 b = _gvn.transform(new ConvD2INode(a)); 3157 push( b ); 3158 break; 3159 3160 case Bytecodes::_f2d: 3161 a = pop(); 3162 b = _gvn.transform( new ConvF2DNode(a)); 3163 push_pair( b ); 3164 break; 3165 3166 case Bytecodes::_d2f: 3167 a = pop_pair(); 3168 b = _gvn.transform( new ConvD2FNode(a)); 3169 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 3170 //b = _gvn.transform(new RoundFloatNode(nullptr, b) ); 3171 push( b ); 3172 break; 3173 3174 case Bytecodes::_l2f: 3175 if (Matcher::convL2FSupported()) { 3176 a = pop_pair(); 3177 b = _gvn.transform( new ConvL2FNode(a)); 3178 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 3179 // Rather than storing the result into an FP register then pushing 3180 // out to memory to round, the machine instruction that implements 3181 // ConvL2D is responsible for rounding. 3182 // c = precision_rounding(b); 3183 push(b); 3184 } else { 3185 l2f(); 3186 } 3187 break; 3188 3189 case Bytecodes::_l2d: 3190 a = pop_pair(); 3191 b = _gvn.transform( new ConvL2DNode(a)); 3192 // For x86_32.ad, rounding is always necessary (see _l2f above). 3193 // c = dprecision_rounding(b); 3194 push_pair(b); 3195 break; 3196 3197 case Bytecodes::_f2l: 3198 a = pop(); 3199 b = _gvn.transform( new ConvF2LNode(a)); 3200 push_pair(b); 3201 break; 3202 3203 case Bytecodes::_d2l: 3204 a = pop_pair(); 3205 b = _gvn.transform( new ConvD2LNode(a)); 3206 push_pair(b); 3207 break; 3208 3209 case Bytecodes::_dsub: 3210 b = pop_pair(); 3211 a = pop_pair(); 3212 c = _gvn.transform( new SubDNode(a,b) ); 3213 d = dprecision_rounding(c); 3214 push_pair( d ); 3215 break; 3216 3217 case Bytecodes::_dadd: 3218 b = pop_pair(); 3219 a = pop_pair(); 3220 c = _gvn.transform( new AddDNode(a,b) ); 3221 d = dprecision_rounding(c); 3222 push_pair( d ); 3223 break; 3224 3225 case Bytecodes::_dmul: 3226 b = pop_pair(); 3227 a = pop_pair(); 3228 c = _gvn.transform( new MulDNode(a,b) ); 3229 d = dprecision_rounding(c); 3230 push_pair( d ); 3231 break; 3232 3233 case Bytecodes::_ddiv: 3234 b = pop_pair(); 3235 a = pop_pair(); 3236 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 3237 d = dprecision_rounding(c); 3238 push_pair( d ); 3239 break; 3240 3241 case Bytecodes::_dneg: 3242 a = pop_pair(); 3243 b = _gvn.transform(new NegDNode (a)); 3244 push_pair(b); 3245 break; 3246 3247 case Bytecodes::_drem: 3248 if (Matcher::has_match_rule(Op_ModD)) { 3249 // Generate a ModD node. 3250 b = pop_pair(); 3251 a = pop_pair(); 3252 // a % b 3253 3254 c = _gvn.transform( new ModDNode(nullptr,a,b) ); 3255 d = dprecision_rounding(c); 3256 push_pair( d ); 3257 } 3258 else { 3259 // Generate a call. 3260 modd(); 3261 } 3262 break; 3263 3264 case Bytecodes::_dcmpl: 3265 b = pop_pair(); 3266 a = pop_pair(); 3267 c = _gvn.transform( new CmpD3Node( a, b)); 3268 push(c); 3269 break; 3270 3271 case Bytecodes::_dcmpg: 3272 b = pop_pair(); 3273 a = pop_pair(); 3274 // Same as dcmpl but need to flip the unordered case. 3275 // Commute the inputs, which negates the result sign except for unordered. 3276 // Flip the unordered as well by using CmpD3 which implements 3277 // unordered-lesser instead of unordered-greater semantics. 3278 // Finally, negate the result bits. Result is same as using a 3279 // CmpD3Greater except we did it with CmpD3 alone. 3280 c = _gvn.transform( new CmpD3Node( b, a)); 3281 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3282 push(c); 3283 break; 3284 3285 3286 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3287 case Bytecodes::_land: 3288 b = pop_pair(); 3289 a = pop_pair(); 3290 c = _gvn.transform( new AndLNode(a,b) ); 3291 push_pair(c); 3292 break; 3293 case Bytecodes::_lor: 3294 b = pop_pair(); 3295 a = pop_pair(); 3296 c = _gvn.transform( new OrLNode(a,b) ); 3297 push_pair(c); 3298 break; 3299 case Bytecodes::_lxor: 3300 b = pop_pair(); 3301 a = pop_pair(); 3302 c = _gvn.transform( new XorLNode(a,b) ); 3303 push_pair(c); 3304 break; 3305 3306 case Bytecodes::_lshl: 3307 b = pop(); // the shift count 3308 a = pop_pair(); // value to be shifted 3309 c = _gvn.transform( new LShiftLNode(a,b) ); 3310 push_pair(c); 3311 break; 3312 case Bytecodes::_lshr: 3313 b = pop(); // the shift count 3314 a = pop_pair(); // value to be shifted 3315 c = _gvn.transform( new RShiftLNode(a,b) ); 3316 push_pair(c); 3317 break; 3318 case Bytecodes::_lushr: 3319 b = pop(); // the shift count 3320 a = pop_pair(); // value to be shifted 3321 c = _gvn.transform( new URShiftLNode(a,b) ); 3322 push_pair(c); 3323 break; 3324 case Bytecodes::_lmul: 3325 b = pop_pair(); 3326 a = pop_pair(); 3327 c = _gvn.transform( new MulLNode(a,b) ); 3328 push_pair(c); 3329 break; 3330 3331 case Bytecodes::_lrem: 3332 // Must keep both values on the expression-stack during null-check 3333 assert(peek(0) == top(), "long word order"); 3334 zero_check_long(peek(1)); 3335 // Compile-time detect of null-exception? 3336 if (stopped()) return; 3337 b = pop_pair(); 3338 a = pop_pair(); 3339 c = _gvn.transform( new ModLNode(control(),a,b) ); 3340 push_pair(c); 3341 break; 3342 3343 case Bytecodes::_ldiv: 3344 // Must keep both values on the expression-stack during null-check 3345 assert(peek(0) == top(), "long word order"); 3346 zero_check_long(peek(1)); 3347 // Compile-time detect of null-exception? 3348 if (stopped()) return; 3349 b = pop_pair(); 3350 a = pop_pair(); 3351 c = _gvn.transform( new DivLNode(control(),a,b) ); 3352 push_pair(c); 3353 break; 3354 3355 case Bytecodes::_ladd: 3356 b = pop_pair(); 3357 a = pop_pair(); 3358 c = _gvn.transform( new AddLNode(a,b) ); 3359 push_pair(c); 3360 break; 3361 case Bytecodes::_lsub: 3362 b = pop_pair(); 3363 a = pop_pair(); 3364 c = _gvn.transform( new SubLNode(a,b) ); 3365 push_pair(c); 3366 break; 3367 case Bytecodes::_lcmp: 3368 // Safepoints are now inserted _before_ branches. The long-compare 3369 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3370 // slew of control flow. These are usually followed by a CmpI vs zero and 3371 // a branch; this pattern then optimizes to the obvious long-compare and 3372 // branch. However, if the branch is backwards there's a Safepoint 3373 // inserted. The inserted Safepoint captures the JVM state at the 3374 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3375 // long-compare is used to control a loop the debug info will force 3376 // computation of the 3-way value, even though the generated code uses a 3377 // long-compare and branch. We try to rectify the situation by inserting 3378 // a SafePoint here and have it dominate and kill the safepoint added at a 3379 // following backwards branch. At this point the JVM state merely holds 2 3380 // longs but not the 3-way value. 3381 switch (iter().next_bc()) { 3382 case Bytecodes::_ifgt: 3383 case Bytecodes::_iflt: 3384 case Bytecodes::_ifge: 3385 case Bytecodes::_ifle: 3386 case Bytecodes::_ifne: 3387 case Bytecodes::_ifeq: 3388 // If this is a backwards branch in the bytecodes, add Safepoint 3389 maybe_add_safepoint(iter().next_get_dest()); 3390 default: 3391 break; 3392 } 3393 b = pop_pair(); 3394 a = pop_pair(); 3395 c = _gvn.transform( new CmpL3Node( a, b )); 3396 push(c); 3397 break; 3398 3399 case Bytecodes::_lneg: 3400 a = pop_pair(); 3401 b = _gvn.transform( new SubLNode(longcon(0),a)); 3402 push_pair(b); 3403 break; 3404 case Bytecodes::_l2i: 3405 a = pop_pair(); 3406 push( _gvn.transform( new ConvL2INode(a))); 3407 break; 3408 case Bytecodes::_i2l: 3409 a = pop(); 3410 b = _gvn.transform( new ConvI2LNode(a)); 3411 push_pair(b); 3412 break; 3413 case Bytecodes::_i2b: 3414 // Sign extend 3415 a = pop(); 3416 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 3417 push(a); 3418 break; 3419 case Bytecodes::_i2s: 3420 a = pop(); 3421 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 3422 push(a); 3423 break; 3424 case Bytecodes::_i2c: 3425 a = pop(); 3426 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 3427 push(a); 3428 break; 3429 3430 case Bytecodes::_i2f: 3431 a = pop(); 3432 b = _gvn.transform( new ConvI2FNode(a) ) ; 3433 c = precision_rounding(b); 3434 push (b); 3435 break; 3436 3437 case Bytecodes::_i2d: 3438 a = pop(); 3439 b = _gvn.transform( new ConvI2DNode(a)); 3440 push_pair(b); 3441 break; 3442 3443 case Bytecodes::_iinc: // Increment local 3444 i = iter().get_index(); // Get local index 3445 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3446 break; 3447 3448 // Exit points of synchronized methods must have an unlock node 3449 case Bytecodes::_return: 3450 return_current(nullptr); 3451 break; 3452 3453 case Bytecodes::_ireturn: 3454 case Bytecodes::_areturn: 3455 case Bytecodes::_freturn: 3456 return_current(pop()); 3457 break; 3458 case Bytecodes::_lreturn: 3459 return_current(pop_pair()); 3460 break; 3461 case Bytecodes::_dreturn: 3462 return_current(pop_pair()); 3463 break; 3464 3465 case Bytecodes::_athrow: 3466 // null exception oop throws null pointer exception 3467 null_check(peek()); 3468 if (stopped()) return; 3469 // Hook the thrown exception directly to subsequent handlers. 3470 if (BailoutToInterpreterForThrows) { 3471 // Keep method interpreted from now on. 3472 uncommon_trap(Deoptimization::Reason_unhandled, 3473 Deoptimization::Action_make_not_compilable); 3474 return; 3475 } 3476 if (env()->jvmti_can_post_on_exceptions()) { 3477 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3478 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3479 } 3480 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3481 add_exception_state(make_exception_state(peek())); 3482 break; 3483 3484 case Bytecodes::_goto: // fall through 3485 case Bytecodes::_goto_w: { 3486 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3487 3488 // If this is a backwards branch in the bytecodes, add Safepoint 3489 maybe_add_safepoint(target_bci); 3490 3491 // Merge the current control into the target basic block 3492 merge(target_bci); 3493 3494 // See if we can get some profile data and hand it off to the next block 3495 Block *target_block = block()->successor_for_bci(target_bci); 3496 if (target_block->pred_count() != 1) break; 3497 ciMethodData* methodData = method()->method_data(); 3498 if (!methodData->is_mature()) break; 3499 ciProfileData* data = methodData->bci_to_data(bci()); 3500 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 3501 int taken = ((ciJumpData*)data)->taken(); 3502 taken = method()->scale_count(taken); 3503 target_block->set_count(taken); 3504 break; 3505 } 3506 3507 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3508 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3509 handle_if_null: 3510 // If this is a backwards branch in the bytecodes, add Safepoint 3511 maybe_add_safepoint(iter().get_dest()); 3512 a = null(); 3513 b = pop(); 3514 if (b->is_InlineType()) { 3515 // Null checking a scalarized but nullable inline type. Check the IsInit 3516 // input instead of the oop input to avoid keeping buffer allocations alive 3517 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3518 } else { 3519 if (!_gvn.type(b)->speculative_maybe_null() && 3520 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3521 inc_sp(1); 3522 Node* null_ctl = top(); 3523 b = null_check_oop(b, &null_ctl, true, true, true); 3524 assert(null_ctl->is_top(), "no null control here"); 3525 dec_sp(1); 3526 } else if (_gvn.type(b)->speculative_always_null() && 3527 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3528 inc_sp(1); 3529 b = null_assert(b); 3530 dec_sp(1); 3531 } 3532 c = _gvn.transform( new CmpPNode(b, a) ); 3533 } 3534 do_ifnull(btest, c); 3535 break; 3536 3537 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3538 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3539 handle_if_acmp: 3540 // If this is a backwards branch in the bytecodes, add Safepoint 3541 maybe_add_safepoint(iter().get_dest()); 3542 a = pop(); 3543 b = pop(); 3544 do_acmp(btest, b, a); 3545 break; 3546 3547 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3548 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3549 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3550 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3551 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3552 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3553 handle_ifxx: 3554 // If this is a backwards branch in the bytecodes, add Safepoint 3555 maybe_add_safepoint(iter().get_dest()); 3556 a = _gvn.intcon(0); 3557 b = pop(); 3558 c = _gvn.transform( new CmpINode(b, a) ); 3559 do_if(btest, c); 3560 break; 3561 3562 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3563 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3564 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3565 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3566 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3567 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3568 handle_if_icmp: 3569 // If this is a backwards branch in the bytecodes, add Safepoint 3570 maybe_add_safepoint(iter().get_dest()); 3571 a = pop(); 3572 b = pop(); 3573 c = _gvn.transform( new CmpINode( b, a ) ); 3574 do_if(btest, c); 3575 break; 3576 3577 case Bytecodes::_tableswitch: 3578 do_tableswitch(); 3579 break; 3580 3581 case Bytecodes::_lookupswitch: 3582 do_lookupswitch(); 3583 break; 3584 3585 case Bytecodes::_invokestatic: 3586 case Bytecodes::_invokedynamic: 3587 case Bytecodes::_invokespecial: 3588 case Bytecodes::_invokevirtual: 3589 case Bytecodes::_invokeinterface: 3590 do_call(); 3591 break; 3592 case Bytecodes::_checkcast: 3593 do_checkcast(); 3594 break; 3595 case Bytecodes::_instanceof: 3596 do_instanceof(); 3597 break; 3598 case Bytecodes::_anewarray: 3599 do_newarray(); 3600 break; 3601 case Bytecodes::_newarray: 3602 do_newarray((BasicType)iter().get_index()); 3603 break; 3604 case Bytecodes::_multianewarray: 3605 do_multianewarray(); 3606 break; 3607 case Bytecodes::_new: 3608 do_new(); 3609 break; 3610 3611 case Bytecodes::_jsr: 3612 case Bytecodes::_jsr_w: 3613 do_jsr(); 3614 break; 3615 3616 case Bytecodes::_ret: 3617 do_ret(); 3618 break; 3619 3620 3621 case Bytecodes::_monitorenter: 3622 do_monitor_enter(); 3623 break; 3624 3625 case Bytecodes::_monitorexit: 3626 do_monitor_exit(); 3627 break; 3628 3629 case Bytecodes::_breakpoint: 3630 // Breakpoint set concurrently to compile 3631 // %%% use an uncommon trap? 3632 C->record_failure("breakpoint in method"); 3633 return; 3634 3635 default: 3636 #ifndef PRODUCT 3637 map()->dump(99); 3638 #endif 3639 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3640 ShouldNotReachHere(); 3641 } 3642 3643 #ifndef PRODUCT 3644 if (failing()) { return; } 3645 constexpr int perBytecode = 6; 3646 if (C->should_print_igv(perBytecode)) { 3647 IdealGraphPrinter* printer = C->igv_printer(); 3648 char buffer[256]; 3649 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3650 bool old = printer->traverse_outs(); 3651 printer->set_traverse_outs(true); 3652 printer->print_method(buffer, perBytecode); 3653 printer->set_traverse_outs(old); 3654 } 3655 #endif 3656 }