1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "jvm_io.h" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/inlinetypenode.hpp" 42 #include "opto/matcher.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/mulnode.hpp" 45 #include "opto/opaquenode.hpp" 46 #include "opto/parse.hpp" 47 #include "opto/runtime.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 51 #ifndef PRODUCT 52 extern uint explicit_null_checks_inserted, 53 explicit_null_checks_elided; 54 #endif 55 56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 57 // Feed unused profile data to type speculation 58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 59 ciKlass* array_type = nullptr; 60 ciKlass* element_type = nullptr; 61 ProfilePtrKind element_ptr = ProfileMaybeNull; 62 bool flat_array = true; 63 bool null_free_array = true; 64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) { 66 ld = record_profile_for_speculation(ld, element_type, element_ptr); 67 } 68 } 69 return ld; 70 } 71 72 73 //---------------------------------array_load---------------------------------- 74 void Parse::array_load(BasicType bt) { 75 const Type* elemtype = Type::TOP; 76 Node* adr = array_addressing(bt, 0, elemtype); 77 if (stopped()) return; // guaranteed null or range check 78 79 Node* array_index = pop(); 80 Node* array = pop(); 81 82 // Handle inline type arrays 83 const TypeOopPtr* element_ptr = elemtype->make_oopptr(); 84 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 85 if (array_type->is_flat()) { 86 // Load from flat inline type array 87 Node* inline_type; 88 if (element_ptr->klass_is_exact()) { 89 inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr); 90 } else { 91 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically. 92 // Emit a runtime call to load the element from the flat array. 93 inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 94 inline_type = record_profile_for_speculation_at_array_load(inline_type); 95 } 96 push(inline_type); 97 return; 98 } 99 100 if (!array_type->is_not_flat()) { 101 // Cannot statically determine if array is a flat array, emit runtime check 102 assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() && 103 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat"); 104 IdealKit ideal(this); 105 IdealVariable res(ideal); 106 ideal.declarations_done(); 107 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 108 // Non-flat array 109 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 110 sync_kit(ideal); 111 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 112 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD; 113 if (needs_range_check(array_type->size(), array_index)) { 114 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load. 115 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot 116 // possibly float above the range check at any point. 117 decorator_set |= C2_UNKNOWN_CONTROL_LOAD; 118 } 119 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set); 120 if (element_ptr->is_inlinetypeptr()) { 121 assert(element_ptr->maybe_null(), "null free array should be handled above"); 122 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false); 123 } 124 ideal.sync_kit(this); 125 ideal.set(res, ld); 126 } ideal.else_(); { 127 // Flat array 128 sync_kit(ideal); 129 if (element_ptr->is_inlinetypeptr()) { 130 // Element type is known, cast and load from flat array layout. 131 ciInlineKlass* vk = element_ptr->inline_klass(); 132 assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized"); 133 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 134 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 135 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype)); 136 Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control()); 137 // Re-execute flat array load if buffering triggers deoptimization 138 PreserveReexecuteState preexecs(this); 139 jvms()->set_should_reexecute(true); 140 inc_sp(2); 141 Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false); 142 ideal.set(res, vt); 143 ideal.sync_kit(this); 144 } else { 145 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a 146 // runtime call to correctly load the inline type element from the flat array. 147 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 148 ideal.sync_kit(this); 149 ideal.set(res, inline_type); 150 } 151 } ideal.end_if(); 152 sync_kit(ideal); 153 Node* ld = _gvn.transform(ideal.value(res)); 154 ld = record_profile_for_speculation_at_array_load(ld); 155 push_node(bt, ld); 156 return; 157 } 158 159 if (array_type->is_null_free()) { 160 // Load from non-flat inline type array (elements can never be null) 161 bt = T_OBJECT; 162 } 163 164 if (elemtype == TypeInt::BOOL) { 165 bt = T_BOOLEAN; 166 } 167 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 168 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 169 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 170 ld = record_profile_for_speculation_at_array_load(ld); 171 // Loading an inline type from a non-flat array 172 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) { 173 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null"); 174 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null()); 175 } 176 push_node(bt, ld); 177 } 178 179 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) { 180 // Below membars keep this access to an unknown flat array correctly 181 // ordered with other unknown and known flat array accesses. 182 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 183 184 Node* call = nullptr; 185 { 186 // Re-execute flat array load if runtime call triggers deoptimization 187 PreserveReexecuteState preexecs(this); 188 jvms()->set_bci(_bci); 189 jvms()->set_should_reexecute(true); 190 inc_sp(2); 191 kill_dead_locals(); 192 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 193 OptoRuntime::load_unknown_inline_Type(), 194 OptoRuntime::load_unknown_inline_Java(), 195 nullptr, TypeRawPtr::BOTTOM, 196 array, array_index); 197 } 198 make_slow_call_ex(call, env()->Throwable_klass(), false); 199 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 200 201 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 202 203 // Keep track of the information that the inline type is in flat arrays 204 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array(); 205 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 206 } 207 208 //--------------------------------array_store---------------------------------- 209 void Parse::array_store(BasicType bt) { 210 const Type* elemtype = Type::TOP; 211 Node* adr = array_addressing(bt, type2size[bt], elemtype); 212 if (stopped()) return; // guaranteed null or range check 213 Node* stored_value_casted = nullptr; 214 if (bt == T_OBJECT) { 215 stored_value_casted = array_store_check(adr, elemtype); 216 if (stopped()) { 217 return; 218 } 219 } 220 Node* const stored_value = pop_node(bt); // Value to store 221 Node* const array_index = pop(); // Index in the array 222 Node* array = pop(); // The array itself 223 224 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 225 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 226 227 if (elemtype == TypeInt::BOOL) { 228 bt = T_BOOLEAN; 229 } else if (bt == T_OBJECT) { 230 elemtype = elemtype->make_oopptr(); 231 const Type* stored_value_casted_type = _gvn.type(stored_value_casted); 232 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 233 // This is only legal for non-null stores because the array_store_check always passes for null, even 234 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard(). 235 bool not_null_free = !stored_value_casted_type->maybe_null() && 236 !stored_value_casted_type->is_oopptr()->can_be_inline_type(); 237 bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() && 238 !stored_value_casted_type->inline_klass()->flat_in_array()); 239 if (!array_type->is_not_null_free() && not_null_free) { 240 // Storing a non-inline type, mark array as not null-free (-> not flat). 241 array_type = array_type->cast_to_not_null_free(); 242 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 243 replace_in_map(array, cast); 244 array = cast; 245 } else if (!array_type->is_not_flat() && not_flat) { 246 // Storing to a non-flat array, mark array as not flat. 247 array_type = array_type->cast_to_not_flat(); 248 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 249 replace_in_map(array, cast); 250 array = cast; 251 } 252 253 if (array_type->is_flat()) { 254 // Store to flat inline type array 255 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 256 if (array_type->klass_is_exact()) { 257 // Store to exact flat inline type array where we know the flat array layout statically. 258 // Re-execute flat array store if buffering triggers deoptimization 259 PreserveReexecuteState preexecs(this); 260 inc_sp(3); 261 jvms()->set_should_reexecute(true); 262 stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 263 } else { 264 // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically. 265 // Emit a runtime call to store the element to the flat array. 266 store_to_unknown_flat_array(array, array_index, stored_value_casted); 267 } 268 return; 269 } 270 if (array_type->is_null_free()) { 271 // Store to non-flat null-free inline type array (elements can never be null) 272 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 273 if (elemtype->inline_klass()->is_empty()) { 274 // Ignore empty inline stores, array is already initialized. 275 return; 276 } 277 } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) { 278 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient). 279 assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() && 280 !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array"); 281 IdealKit ideal(this); 282 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 283 // Non-flat array 284 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 285 sync_kit(ideal); 286 Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3); 287 inc_sp(3); 288 access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 289 dec_sp(3); 290 ideal.sync_kit(this); 291 } ideal.else_(); { 292 sync_kit(ideal); 293 // flat array 294 Node* null_ctl = top(); 295 Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl); 296 if (null_ctl != top()) { 297 PreserveJVMState pjvms(this); 298 inc_sp(3); 299 set_control(null_ctl); 300 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none); 301 dec_sp(3); 302 } 303 // Try to determine the inline klass 304 ciInlineKlass* inline_Klass = nullptr; 305 if (stored_value_casted_type->is_inlinetypeptr()) { 306 inline_Klass = stored_value_casted_type->inline_klass(); 307 } else if (elemtype->is_inlinetypeptr()) { 308 inline_Klass = elemtype->inline_klass(); 309 } 310 if (!stopped()) { 311 if (inline_Klass != nullptr) { 312 // Element type is known, cast and store to flat array layout. 313 assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized"); 314 ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true); 315 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 316 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype)); 317 Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control()); 318 if (!null_checked_stored_value_casted->is_InlineType()) { 319 assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(), 320 "inline type array elements should never be null"); 321 null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted, 322 inline_Klass); 323 } 324 // Re-execute flat array store if buffering triggers deoptimization 325 PreserveReexecuteState preexecs(this); 326 inc_sp(3); 327 jvms()->set_should_reexecute(true); 328 null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 329 } else { 330 // Element type is unknown, emit a runtime call since the flat array layout is not statically known. 331 store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted); 332 } 333 } 334 ideal.sync_kit(this); 335 } 336 ideal.end_if(); 337 sync_kit(ideal); 338 return; 339 } else if (!array_type->is_not_null_free()) { 340 // Array is not flat but may be null free 341 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free"); 342 array = inline_array_null_guard(array, stored_value_casted, 3, true); 343 } 344 } 345 inc_sp(3); 346 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 347 dec_sp(3); 348 } 349 350 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat 351 // array layout) or not exact (could have different flat array layouts at runtime). 352 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) { 353 // Below membars keep this access to an unknown flat array correctly 354 // ordered with other unknown and known flat array accesses. 355 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 356 357 make_runtime_call(RC_LEAF, 358 OptoRuntime::store_unknown_inline_Type(), 359 CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline_C), 360 "store_unknown_inline", TypeRawPtr::BOTTOM, 361 non_null_stored_value, array, idx); 362 363 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 364 } 365 366 //------------------------------array_addressing------------------------------- 367 // Pull array and index from the stack. Compute pointer-to-element. 368 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 369 Node *idx = peek(0+vals); // Get from stack without popping 370 Node *ary = peek(1+vals); // in case of exception 371 372 // Null check the array base, with correct stack contents 373 ary = null_check(ary, T_ARRAY); 374 // Compile-time detect of null-exception? 375 if (stopped()) return top(); 376 377 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 378 const TypeInt* sizetype = arytype->size(); 379 elemtype = arytype->elem(); 380 381 if (UseUniqueSubclasses) { 382 const Type* el = elemtype->make_ptr(); 383 if (el && el->isa_instptr()) { 384 const TypeInstPtr* toop = el->is_instptr(); 385 if (toop->instance_klass()->unique_concrete_subklass()) { 386 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 387 const Type* subklass = Type::get_const_type(toop->instance_klass()); 388 elemtype = subklass->join_speculative(el); 389 } 390 } 391 } 392 393 if (!arytype->is_loaded()) { 394 // Only fails for some -Xcomp runs 395 // The class is unloaded. We have to run this bytecode in the interpreter. 396 ciKlass* klass = arytype->unloaded_klass(); 397 398 uncommon_trap(Deoptimization::Reason_unloaded, 399 Deoptimization::Action_reinterpret, 400 klass, "!loaded array"); 401 return top(); 402 } 403 404 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype); 405 406 if (needs_range_check(sizetype, idx)) { 407 create_range_check(idx, ary, sizetype); 408 } else if (C->log() != nullptr) { 409 C->log()->elem("observe that='!need_range_check'"); 410 } 411 412 // Check for always knowing you are throwing a range-check exception 413 if (stopped()) return top(); 414 415 // Make array address computation control dependent to prevent it 416 // from floating above the range check during loop optimizations. 417 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 418 assert(ptr != top(), "top should go hand-in-hand with stopped"); 419 420 return ptr; 421 } 422 423 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could 424 // be greater or equal the smallest possible array size (i.e. out-of-bounds). 425 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const { 426 const TypeInt* index_type = _gvn.type(index)->is_int(); 427 return index_type->_hi >= size_type->_lo || index_type->_lo < 0; 428 } 429 430 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) { 431 Node* tst; 432 if (sizetype->_hi <= 0) { 433 // The greatest array bound is negative, so we can conclude that we're 434 // compiling unreachable code, but the unsigned compare trick used below 435 // only works with non-negative lengths. Instead, hack "tst" to be zero so 436 // the uncommon_trap path will always be taken. 437 tst = _gvn.intcon(0); 438 } else { 439 // Range is constant in array-oop, so we can use the original state of mem 440 Node* len = load_array_length(ary); 441 442 // Test length vs index (standard trick using unsigned compare) 443 Node* chk = _gvn.transform(new CmpUNode(idx, len) ); 444 BoolTest::mask btest = BoolTest::lt; 445 tst = _gvn.transform(new BoolNode(chk, btest) ); 446 } 447 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 448 _gvn.set_type(rc, rc->Value(&_gvn)); 449 if (!tst->is_Con()) { 450 record_for_igvn(rc); 451 } 452 set_control(_gvn.transform(new IfTrueNode(rc))); 453 // Branch to failure if out of bounds 454 { 455 PreserveJVMState pjvms(this); 456 set_control(_gvn.transform(new IfFalseNode(rc))); 457 if (C->allow_range_check_smearing()) { 458 // Do not use builtin_throw, since range checks are sometimes 459 // made more stringent by an optimistic transformation. 460 // This creates "tentative" range checks at this point, 461 // which are not guaranteed to throw exceptions. 462 // See IfNode::Ideal, is_range_check, adjust_check. 463 uncommon_trap(Deoptimization::Reason_range_check, 464 Deoptimization::Action_make_not_entrant, 465 nullptr, "range_check"); 466 } else { 467 // If we have already recompiled with the range-check-widening 468 // heroic optimization turned off, then we must really be throwing 469 // range check exceptions. 470 builtin_throw(Deoptimization::Reason_range_check); 471 } 472 } 473 } 474 475 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness, 476 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with 477 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g. 478 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler. 479 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type, 480 const Type*& element_type) { 481 if (!array_type->is_flat() && !array_type->is_not_flat()) { 482 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that 483 // we can rely on a fixed memory layout (i.e. either a flat layout or not). 484 array = cast_to_speculative_array_type(array, array_type, element_type); 485 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 486 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data 487 // at this bci. 488 array = cast_to_profiled_array_type(array); 489 } 490 491 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data 492 // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first. 493 // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore. 494 if (!array_type->is_null_free() && !array_type->is_not_null_free()) { 495 array = speculate_non_null_free_array(array, array_type); 496 } 497 498 if (!array_type->is_flat() && !array_type->is_not_flat()) { 499 array = speculate_non_flat_array(array, array_type); 500 } 501 return array; 502 } 503 504 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be 505 // wrong. On the fast path, we add a CheckCastPP to use the exact type. 506 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) { 507 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 508 ciKlass* speculative_array_type = array_type->speculative_type(); 509 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) { 510 // No speculative type, check profile data at this bci 511 speculative_array_type = nullptr; 512 reason = Deoptimization::Reason_class_check; 513 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 514 ciKlass* profiled_element_type = nullptr; 515 ProfilePtrKind element_ptr = ProfileMaybeNull; 516 bool flat_array = true; 517 bool null_free_array = true; 518 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array, 519 null_free_array); 520 } 521 } 522 if (speculative_array_type != nullptr) { 523 // Speculate that this array has the exact type reported by profile data 524 Node* casted_array = nullptr; 525 DEBUG_ONLY(Node* old_control = control();) 526 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array); 527 if (stopped()) { 528 // The check always fails and therefore profile information is incorrect. Don't use it. 529 assert(old_control == slow_ctl, "type check should have been removed"); 530 set_control(slow_ctl); 531 } else if (!slow_ctl->is_top()) { 532 { PreserveJVMState pjvms(this); 533 set_control(slow_ctl); 534 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 535 } 536 replace_in_map(array, casted_array); 537 array_type = _gvn.type(casted_array)->is_aryptr(); 538 element_type = array_type->elem(); 539 return casted_array; 540 } 541 } 542 return array; 543 } 544 545 // Create a CheckCastPP when the speculative type can improve the current type. 546 Node* Parse::cast_to_profiled_array_type(Node* const array) { 547 ciKlass* array_type = nullptr; 548 ciKlass* element_type = nullptr; 549 ProfilePtrKind element_ptr = ProfileMaybeNull; 550 bool flat_array = true; 551 bool null_free_array = true; 552 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 553 if (array_type != nullptr) { 554 return record_profile_for_speculation(array, array_type, ProfileMaybeNull); 555 } 556 return array; 557 } 558 559 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be 560 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type. 561 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) { 562 bool null_free_array = true; 563 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 564 if (array_type->speculative() != nullptr && 565 array_type->speculative()->is_aryptr()->is_not_null_free() && 566 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 567 null_free_array = false; 568 reason = Deoptimization::Reason_speculate_class_check; 569 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 570 ciKlass* profiled_array_type = nullptr; 571 ciKlass* profiled_element_type = nullptr; 572 ProfilePtrKind element_ptr = ProfileMaybeNull; 573 bool flat_array = true; 574 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 575 null_free_array); 576 reason = Deoptimization::Reason_class_check; 577 } 578 if (!null_free_array) { 579 { // Deoptimize if null-free array 580 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX); 581 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 582 } 583 assert(!stopped(), "null-free array should have been caught earlier"); 584 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free())); 585 replace_in_map(array, casted_array); 586 array_type = _gvn.type(casted_array)->is_aryptr(); 587 return casted_array; 588 } 589 return array; 590 } 591 592 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a 593 // CheckCastPP to use the non-flat type. 594 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) { 595 bool flat_array = true; 596 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 597 if (array_type->speculative() != nullptr && 598 array_type->speculative()->is_aryptr()->is_not_flat() && 599 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 600 flat_array = false; 601 reason = Deoptimization::Reason_speculate_class_check; 602 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 603 ciKlass* profiled_array_type = nullptr; 604 ciKlass* profiled_element_type = nullptr; 605 ProfilePtrKind element_ptr = ProfileMaybeNull; 606 bool null_free_array = true; 607 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 608 null_free_array); 609 reason = Deoptimization::Reason_class_check; 610 } 611 if (!flat_array) { 612 { // Deoptimize if flat array 613 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX); 614 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 615 } 616 assert(!stopped(), "flat array should have been caught earlier"); 617 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat())); 618 replace_in_map(array, casted_array); 619 return casted_array; 620 } 621 return array; 622 } 623 624 // returns IfNode 625 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 626 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 627 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 628 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 629 return iff; 630 } 631 632 633 // sentinel value for the target bci to mark never taken branches 634 // (according to profiling) 635 static const int never_reached = INT_MAX; 636 637 //------------------------------helper for tableswitch------------------------- 638 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 639 // True branch, use existing map info 640 { PreserveJVMState pjvms(this); 641 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 642 set_control( iftrue ); 643 if (unc) { 644 repush_if_args(); 645 uncommon_trap(Deoptimization::Reason_unstable_if, 646 Deoptimization::Action_reinterpret, 647 nullptr, 648 "taken always"); 649 } else { 650 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 651 merge_new_path(dest_bci_if_true); 652 } 653 } 654 655 // False branch 656 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 657 set_control( iffalse ); 658 } 659 660 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 661 // True branch, use existing map info 662 { PreserveJVMState pjvms(this); 663 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 664 set_control( iffalse ); 665 if (unc) { 666 repush_if_args(); 667 uncommon_trap(Deoptimization::Reason_unstable_if, 668 Deoptimization::Action_reinterpret, 669 nullptr, 670 "taken never"); 671 } else { 672 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 673 merge_new_path(dest_bci_if_true); 674 } 675 } 676 677 // False branch 678 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 679 set_control( iftrue ); 680 } 681 682 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 683 // False branch, use existing map and control() 684 if (unc) { 685 repush_if_args(); 686 uncommon_trap(Deoptimization::Reason_unstable_if, 687 Deoptimization::Action_reinterpret, 688 nullptr, 689 "taken never"); 690 } else { 691 assert(dest_bci != never_reached, "inconsistent dest"); 692 merge_new_path(dest_bci); 693 } 694 } 695 696 697 extern "C" { 698 static int jint_cmp(const void *i, const void *j) { 699 int a = *(jint *)i; 700 int b = *(jint *)j; 701 return a > b ? 1 : a < b ? -1 : 0; 702 } 703 } 704 705 706 class SwitchRange : public StackObj { 707 // a range of integers coupled with a bci destination 708 jint _lo; // inclusive lower limit 709 jint _hi; // inclusive upper limit 710 int _dest; 711 float _cnt; // how many times this range was hit according to profiling 712 713 public: 714 jint lo() const { return _lo; } 715 jint hi() const { return _hi; } 716 int dest() const { return _dest; } 717 bool is_singleton() const { return _lo == _hi; } 718 float cnt() const { return _cnt; } 719 720 void setRange(jint lo, jint hi, int dest, float cnt) { 721 assert(lo <= hi, "must be a non-empty range"); 722 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 723 assert(_cnt >= 0, ""); 724 } 725 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 726 assert(lo <= hi, "must be a non-empty range"); 727 if (lo == _hi+1) { 728 // see merge_ranges() comment below 729 if (trim_ranges) { 730 if (cnt == 0) { 731 if (_cnt != 0) { 732 return false; 733 } 734 if (dest != _dest) { 735 _dest = never_reached; 736 } 737 } else { 738 if (_cnt == 0) { 739 return false; 740 } 741 if (dest != _dest) { 742 return false; 743 } 744 } 745 } else { 746 if (dest != _dest) { 747 return false; 748 } 749 } 750 _hi = hi; 751 _cnt += cnt; 752 return true; 753 } 754 return false; 755 } 756 757 void set (jint value, int dest, float cnt) { 758 setRange(value, value, dest, cnt); 759 } 760 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 761 return adjoinRange(value, value, dest, cnt, trim_ranges); 762 } 763 bool adjoin(SwitchRange& other) { 764 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 765 } 766 767 void print() { 768 if (is_singleton()) 769 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 770 else if (lo() == min_jint) 771 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 772 else if (hi() == max_jint) 773 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 774 else 775 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 776 } 777 }; 778 779 // We try to minimize the number of ranges and the size of the taken 780 // ones using profiling data. When ranges are created, 781 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 782 // if both were never hit or both were hit to build longer unreached 783 // ranges. Here, we now merge adjoining ranges with the same 784 // destination and finally set destination of unreached ranges to the 785 // special value never_reached because it can help minimize the number 786 // of tests that are necessary. 787 // 788 // For instance: 789 // [0, 1] to target1 sometimes taken 790 // [1, 2] to target1 never taken 791 // [2, 3] to target2 never taken 792 // would lead to: 793 // [0, 1] to target1 sometimes taken 794 // [1, 3] never taken 795 // 796 // (first 2 ranges to target1 are not merged) 797 static void merge_ranges(SwitchRange* ranges, int& rp) { 798 if (rp == 0) { 799 return; 800 } 801 int shift = 0; 802 for (int j = 0; j < rp; j++) { 803 SwitchRange& r1 = ranges[j-shift]; 804 SwitchRange& r2 = ranges[j+1]; 805 if (r1.adjoin(r2)) { 806 shift++; 807 } else if (shift > 0) { 808 ranges[j+1-shift] = r2; 809 } 810 } 811 rp -= shift; 812 for (int j = 0; j <= rp; j++) { 813 SwitchRange& r = ranges[j]; 814 if (r.cnt() == 0 && r.dest() != never_reached) { 815 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 816 } 817 } 818 } 819 820 //-------------------------------do_tableswitch-------------------------------- 821 void Parse::do_tableswitch() { 822 // Get information about tableswitch 823 int default_dest = iter().get_dest_table(0); 824 jint lo_index = iter().get_int_table(1); 825 jint hi_index = iter().get_int_table(2); 826 int len = hi_index - lo_index + 1; 827 828 if (len < 1) { 829 // If this is a backward branch, add safepoint 830 maybe_add_safepoint(default_dest); 831 pop(); // the effect of the instruction execution on the operand stack 832 merge(default_dest); 833 return; 834 } 835 836 ciMethodData* methodData = method()->method_data(); 837 ciMultiBranchData* profile = nullptr; 838 if (methodData->is_mature() && UseSwitchProfiling) { 839 ciProfileData* data = methodData->bci_to_data(bci()); 840 if (data != nullptr && data->is_MultiBranchData()) { 841 profile = (ciMultiBranchData*)data; 842 } 843 } 844 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 845 846 // generate decision tree, using trichotomy when possible 847 int rnum = len+2; 848 bool makes_backward_branch = (default_dest <= bci()); 849 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 850 int rp = -1; 851 if (lo_index != min_jint) { 852 float cnt = 1.0F; 853 if (profile != nullptr) { 854 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 855 } 856 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 857 } 858 for (int j = 0; j < len; j++) { 859 jint match_int = lo_index+j; 860 int dest = iter().get_dest_table(j+3); 861 makes_backward_branch |= (dest <= bci()); 862 float cnt = 1.0F; 863 if (profile != nullptr) { 864 cnt = (float)profile->count_at(j); 865 } 866 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 867 ranges[++rp].set(match_int, dest, cnt); 868 } 869 } 870 jint highest = lo_index+(len-1); 871 assert(ranges[rp].hi() == highest, ""); 872 if (highest != max_jint) { 873 float cnt = 1.0F; 874 if (profile != nullptr) { 875 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 876 } 877 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 878 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 879 } 880 } 881 assert(rp < len+2, "not too many ranges"); 882 883 if (trim_ranges) { 884 merge_ranges(ranges, rp); 885 } 886 887 // Safepoint in case if backward branch observed 888 if (makes_backward_branch) { 889 add_safepoint(); 890 } 891 892 Node* lookup = pop(); // lookup value 893 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 894 } 895 896 897 //------------------------------do_lookupswitch-------------------------------- 898 void Parse::do_lookupswitch() { 899 // Get information about lookupswitch 900 int default_dest = iter().get_dest_table(0); 901 jint len = iter().get_int_table(1); 902 903 if (len < 1) { // If this is a backward branch, add safepoint 904 maybe_add_safepoint(default_dest); 905 pop(); // the effect of the instruction execution on the operand stack 906 merge(default_dest); 907 return; 908 } 909 910 ciMethodData* methodData = method()->method_data(); 911 ciMultiBranchData* profile = nullptr; 912 if (methodData->is_mature() && UseSwitchProfiling) { 913 ciProfileData* data = methodData->bci_to_data(bci()); 914 if (data != nullptr && data->is_MultiBranchData()) { 915 profile = (ciMultiBranchData*)data; 916 } 917 } 918 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 919 920 // generate decision tree, using trichotomy when possible 921 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 922 { 923 for (int j = 0; j < len; j++) { 924 table[3*j+0] = iter().get_int_table(2+2*j); 925 table[3*j+1] = iter().get_dest_table(2+2*j+1); 926 // Handle overflow when converting from uint to jint 927 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 928 } 929 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 930 } 931 932 float default_cnt = 1.0F; 933 if (profile != nullptr) { 934 juint defaults = max_juint - len; 935 default_cnt = (float)profile->default_count()/(float)defaults; 936 } 937 938 int rnum = len*2+1; 939 bool makes_backward_branch = (default_dest <= bci()); 940 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 941 int rp = -1; 942 for (int j = 0; j < len; j++) { 943 jint match_int = table[3*j+0]; 944 jint dest = table[3*j+1]; 945 jint cnt = table[3*j+2]; 946 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 947 makes_backward_branch |= (dest <= bci()); 948 float c = default_cnt * ((float)match_int - (float)next_lo); 949 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 950 assert(default_dest != never_reached, "sentinel value for dead destinations"); 951 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 952 } 953 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 954 assert(dest != never_reached, "sentinel value for dead destinations"); 955 ranges[++rp].set(match_int, dest, (float)cnt); 956 } 957 } 958 jint highest = table[3*(len-1)]; 959 assert(ranges[rp].hi() == highest, ""); 960 if (highest != max_jint && 961 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 962 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 963 } 964 assert(rp < rnum, "not too many ranges"); 965 966 if (trim_ranges) { 967 merge_ranges(ranges, rp); 968 } 969 970 // Safepoint in case backward branch observed 971 if (makes_backward_branch) { 972 add_safepoint(); 973 } 974 975 Node *lookup = pop(); // lookup value 976 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 977 } 978 979 static float if_prob(float taken_cnt, float total_cnt) { 980 assert(taken_cnt <= total_cnt, ""); 981 if (total_cnt == 0) { 982 return PROB_FAIR; 983 } 984 float p = taken_cnt / total_cnt; 985 return clamp(p, PROB_MIN, PROB_MAX); 986 } 987 988 static float if_cnt(float cnt) { 989 if (cnt == 0) { 990 return COUNT_UNKNOWN; 991 } 992 return cnt; 993 } 994 995 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 996 float total_cnt = 0; 997 for (SwitchRange* sr = lo; sr <= hi; sr++) { 998 total_cnt += sr->cnt(); 999 } 1000 return total_cnt; 1001 } 1002 1003 class SwitchRanges : public ResourceObj { 1004 public: 1005 SwitchRange* _lo; 1006 SwitchRange* _hi; 1007 SwitchRange* _mid; 1008 float _cost; 1009 1010 enum { 1011 Start, 1012 LeftDone, 1013 RightDone, 1014 Done 1015 } _state; 1016 1017 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 1018 : _lo(lo), _hi(hi), _mid(nullptr), 1019 _cost(0), _state(Start) { 1020 } 1021 1022 SwitchRanges() 1023 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 1024 _cost(0), _state(Start) {} 1025 }; 1026 1027 // Estimate cost of performing a binary search on lo..hi 1028 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 1029 GrowableArray<SwitchRanges> tree; 1030 SwitchRanges root(lo, hi); 1031 tree.push(root); 1032 1033 float cost = 0; 1034 do { 1035 SwitchRanges& r = *tree.adr_at(tree.length()-1); 1036 if (r._hi != r._lo) { 1037 if (r._mid == nullptr) { 1038 float r_cnt = sum_of_cnts(r._lo, r._hi); 1039 1040 if (r_cnt == 0) { 1041 tree.pop(); 1042 cost = 0; 1043 continue; 1044 } 1045 1046 SwitchRange* mid = nullptr; 1047 mid = r._lo; 1048 for (float cnt = 0; ; ) { 1049 assert(mid <= r._hi, "out of bounds"); 1050 cnt += mid->cnt(); 1051 if (cnt > r_cnt / 2) { 1052 break; 1053 } 1054 mid++; 1055 } 1056 assert(mid <= r._hi, "out of bounds"); 1057 r._mid = mid; 1058 r._cost = r_cnt / total_cnt; 1059 } 1060 r._cost += cost; 1061 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 1062 cost = 0; 1063 r._state = SwitchRanges::LeftDone; 1064 tree.push(SwitchRanges(r._lo, r._mid-1)); 1065 } else if (r._state < SwitchRanges::RightDone) { 1066 cost = 0; 1067 r._state = SwitchRanges::RightDone; 1068 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 1069 } else { 1070 tree.pop(); 1071 cost = r._cost; 1072 } 1073 } else { 1074 tree.pop(); 1075 cost = r._cost; 1076 } 1077 } while (tree.length() > 0); 1078 1079 1080 return cost; 1081 } 1082 1083 // It sometimes pays off to test most common ranges before the binary search 1084 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1085 uint nr = hi - lo + 1; 1086 float total_cnt = sum_of_cnts(lo, hi); 1087 1088 float min = compute_tree_cost(lo, hi, total_cnt); 1089 float extra = 1; 1090 float sub = 0; 1091 1092 SwitchRange* array1 = lo; 1093 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1094 1095 SwitchRange* ranges = nullptr; 1096 1097 while (nr >= 2) { 1098 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1099 ranges = (lo == array1) ? array2 : array1; 1100 1101 // Find highest frequency range 1102 SwitchRange* candidate = lo; 1103 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1104 if (sr->cnt() > candidate->cnt()) { 1105 candidate = sr; 1106 } 1107 } 1108 SwitchRange most_freq = *candidate; 1109 if (most_freq.cnt() == 0) { 1110 break; 1111 } 1112 1113 // Copy remaining ranges into another array 1114 int shift = 0; 1115 for (uint i = 0; i < nr; i++) { 1116 SwitchRange* sr = &lo[i]; 1117 if (sr != candidate) { 1118 ranges[i-shift] = *sr; 1119 } else { 1120 shift++; 1121 if (i > 0 && i < nr-1) { 1122 SwitchRange prev = lo[i-1]; 1123 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1124 if (prev.adjoin(lo[i+1])) { 1125 shift++; 1126 i++; 1127 } 1128 ranges[i-shift] = prev; 1129 } 1130 } 1131 } 1132 nr -= shift; 1133 1134 // Evaluate cost of testing the most common range and performing a 1135 // binary search on the other ranges 1136 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1137 if (cost >= min) { 1138 break; 1139 } 1140 // swap arrays 1141 lo = &ranges[0]; 1142 hi = &ranges[nr-1]; 1143 1144 // It pays off: emit the test for the most common range 1145 assert(most_freq.cnt() > 0, "must be taken"); 1146 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1147 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 1148 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1149 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1150 jump_if_true_fork(iff, most_freq.dest(), false); 1151 1152 sub += most_freq.cnt() / total_cnt; 1153 extra += 1 - sub; 1154 min = cost; 1155 } 1156 } 1157 1158 //----------------------------create_jump_tables------------------------------- 1159 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1160 // Are jumptables enabled 1161 if (!UseJumpTables) return false; 1162 1163 // Are jumptables supported 1164 if (!Matcher::has_match_rule(Op_Jump)) return false; 1165 1166 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1167 1168 // Decide if a guard is needed to lop off big ranges at either (or 1169 // both) end(s) of the input set. We'll call this the default target 1170 // even though we can't be sure that it is the true "default". 1171 1172 bool needs_guard = false; 1173 int default_dest; 1174 int64_t total_outlier_size = 0; 1175 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1176 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1177 1178 if (lo->dest() == hi->dest()) { 1179 total_outlier_size = hi_size + lo_size; 1180 default_dest = lo->dest(); 1181 } else if (lo_size > hi_size) { 1182 total_outlier_size = lo_size; 1183 default_dest = lo->dest(); 1184 } else { 1185 total_outlier_size = hi_size; 1186 default_dest = hi->dest(); 1187 } 1188 1189 float total = sum_of_cnts(lo, hi); 1190 float cost = compute_tree_cost(lo, hi, total); 1191 1192 // If a guard test will eliminate very sparse end ranges, then 1193 // it is worth the cost of an extra jump. 1194 float trimmed_cnt = 0; 1195 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1196 needs_guard = true; 1197 if (default_dest == lo->dest()) { 1198 trimmed_cnt += lo->cnt(); 1199 lo++; 1200 } 1201 if (default_dest == hi->dest()) { 1202 trimmed_cnt += hi->cnt(); 1203 hi--; 1204 } 1205 } 1206 1207 // Find the total number of cases and ranges 1208 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1209 int num_range = hi - lo + 1; 1210 1211 // Don't create table if: too large, too small, or too sparse. 1212 if (num_cases > MaxJumpTableSize) 1213 return false; 1214 if (UseSwitchProfiling) { 1215 // MinJumpTableSize is set so with a well balanced binary tree, 1216 // when the number of ranges is MinJumpTableSize, it's cheaper to 1217 // go through a JumpNode that a tree of IfNodes. Average cost of a 1218 // tree of IfNodes with MinJumpTableSize is 1219 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1220 // from profile data is less than log2f(MinJumpTableSize) then 1221 // going with the binary search is cheaper. 1222 if (cost < log2f(MinJumpTableSize)) { 1223 return false; 1224 } 1225 } else { 1226 if (num_cases < MinJumpTableSize) 1227 return false; 1228 } 1229 if (num_cases > (MaxJumpTableSparseness * num_range)) 1230 return false; 1231 1232 // Normalize table lookups to zero 1233 int lowval = lo->lo(); 1234 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1235 1236 // Generate a guard to protect against input keyvals that aren't 1237 // in the switch domain. 1238 if (needs_guard) { 1239 Node* size = _gvn.intcon(num_cases); 1240 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1241 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1242 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1243 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1244 1245 total -= trimmed_cnt; 1246 } 1247 1248 // Create an ideal node JumpTable that has projections 1249 // of all possible ranges for a switch statement 1250 // The key_val input must be converted to a pointer offset and scaled. 1251 // Compare Parse::array_addressing above. 1252 1253 // Clean the 32-bit int into a real 64-bit offset. 1254 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1255 // Make I2L conversion control dependent to prevent it from 1256 // floating above the range check during loop optimizations. 1257 // Do not use a narrow int type here to prevent the data path from dying 1258 // while the control path is not removed. This can happen if the type of key_val 1259 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1260 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1261 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1262 #ifdef _LP64 1263 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1264 #endif 1265 1266 // Shift the value by wordsize so we have an index into the table, rather 1267 // than a switch value 1268 Node *shiftWord = _gvn.MakeConX(wordSize); 1269 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1270 1271 // Create the JumpNode 1272 Arena* arena = C->comp_arena(); 1273 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1274 int i = 0; 1275 if (total == 0) { 1276 for (SwitchRange* r = lo; r <= hi; r++) { 1277 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1278 probs[i] = 1.0F / num_cases; 1279 } 1280 } 1281 } else { 1282 for (SwitchRange* r = lo; r <= hi; r++) { 1283 float prob = r->cnt()/total; 1284 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1285 probs[i] = prob / (r->hi() - r->lo() + 1); 1286 } 1287 } 1288 } 1289 1290 ciMethodData* methodData = method()->method_data(); 1291 ciMultiBranchData* profile = nullptr; 1292 if (methodData->is_mature()) { 1293 ciProfileData* data = methodData->bci_to_data(bci()); 1294 if (data != nullptr && data->is_MultiBranchData()) { 1295 profile = (ciMultiBranchData*)data; 1296 } 1297 } 1298 1299 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 1300 1301 // These are the switch destinations hanging off the jumpnode 1302 i = 0; 1303 for (SwitchRange* r = lo; r <= hi; r++) { 1304 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1305 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1306 { 1307 PreserveJVMState pjvms(this); 1308 set_control(input); 1309 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1310 } 1311 } 1312 } 1313 assert(i == num_cases, "miscount of cases"); 1314 stop_and_kill_map(); // no more uses for this JVMS 1315 return true; 1316 } 1317 1318 //----------------------------jump_switch_ranges------------------------------- 1319 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1320 Block* switch_block = block(); 1321 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1322 1323 if (switch_depth == 0) { 1324 // Do special processing for the top-level call. 1325 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1326 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1327 1328 // Decrement pred-numbers for the unique set of nodes. 1329 #ifdef ASSERT 1330 if (!trim_ranges) { 1331 // Ensure that the block's successors are a (duplicate-free) set. 1332 int successors_counted = 0; // block occurrences in [hi..lo] 1333 int unique_successors = switch_block->num_successors(); 1334 for (int i = 0; i < unique_successors; i++) { 1335 Block* target = switch_block->successor_at(i); 1336 1337 // Check that the set of successors is the same in both places. 1338 int successors_found = 0; 1339 for (SwitchRange* p = lo; p <= hi; p++) { 1340 if (p->dest() == target->start()) successors_found++; 1341 } 1342 assert(successors_found > 0, "successor must be known"); 1343 successors_counted += successors_found; 1344 } 1345 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1346 } 1347 #endif 1348 1349 // Maybe prune the inputs, based on the type of key_val. 1350 jint min_val = min_jint; 1351 jint max_val = max_jint; 1352 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1353 if (ti != nullptr) { 1354 min_val = ti->_lo; 1355 max_val = ti->_hi; 1356 assert(min_val <= max_val, "invalid int type"); 1357 } 1358 while (lo->hi() < min_val) { 1359 lo++; 1360 } 1361 if (lo->lo() < min_val) { 1362 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1363 } 1364 while (hi->lo() > max_val) { 1365 hi--; 1366 } 1367 if (hi->hi() > max_val) { 1368 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1369 } 1370 1371 linear_search_switch_ranges(key_val, lo, hi); 1372 } 1373 1374 #ifndef PRODUCT 1375 if (switch_depth == 0) { 1376 _max_switch_depth = 0; 1377 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1378 } 1379 #endif 1380 1381 assert(lo <= hi, "must be a non-empty set of ranges"); 1382 if (lo == hi) { 1383 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1384 } else { 1385 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1386 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1387 1388 if (create_jump_tables(key_val, lo, hi)) return; 1389 1390 SwitchRange* mid = nullptr; 1391 float total_cnt = sum_of_cnts(lo, hi); 1392 1393 int nr = hi - lo + 1; 1394 if (UseSwitchProfiling) { 1395 // Don't keep the binary search tree balanced: pick up mid point 1396 // that split frequencies in half. 1397 float cnt = 0; 1398 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1399 cnt += sr->cnt(); 1400 if (cnt >= total_cnt / 2) { 1401 mid = sr; 1402 break; 1403 } 1404 } 1405 } else { 1406 mid = lo + nr/2; 1407 1408 // if there is an easy choice, pivot at a singleton: 1409 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1410 1411 assert(lo < mid && mid <= hi, "good pivot choice"); 1412 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1413 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1414 } 1415 1416 1417 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1418 1419 if (mid->is_singleton()) { 1420 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1421 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1422 1423 // Special Case: If there are exactly three ranges, and the high 1424 // and low range each go to the same place, omit the "gt" test, 1425 // since it will not discriminate anything. 1426 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1427 1428 // if there is a higher range, test for it and process it: 1429 if (mid < hi && !eq_test_only) { 1430 // two comparisons of same values--should enable 1 test for 2 branches 1431 // Use BoolTest::lt instead of BoolTest::gt 1432 float cnt = sum_of_cnts(lo, mid-1); 1433 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1434 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1435 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1436 { PreserveJVMState pjvms(this); 1437 set_control(iffalse); 1438 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1439 } 1440 set_control(iftrue); 1441 } 1442 1443 } else { 1444 // mid is a range, not a singleton, so treat mid..hi as a unit 1445 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1446 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1447 1448 // if there is a higher range, test for it and process it: 1449 if (mid == hi) { 1450 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1451 } else { 1452 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1453 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1454 { PreserveJVMState pjvms(this); 1455 set_control(iftrue); 1456 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1457 } 1458 set_control(iffalse); 1459 } 1460 } 1461 1462 // in any case, process the lower range 1463 if (mid == lo) { 1464 if (mid->is_singleton()) { 1465 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1466 } else { 1467 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1468 } 1469 } else { 1470 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1471 } 1472 } 1473 1474 // Decrease pred_count for each successor after all is done. 1475 if (switch_depth == 0) { 1476 int unique_successors = switch_block->num_successors(); 1477 for (int i = 0; i < unique_successors; i++) { 1478 Block* target = switch_block->successor_at(i); 1479 // Throw away the pre-allocated path for each unique successor. 1480 target->next_path_num(); 1481 } 1482 } 1483 1484 #ifndef PRODUCT 1485 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1486 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1487 SwitchRange* r; 1488 int nsing = 0; 1489 for( r = lo; r <= hi; r++ ) { 1490 if( r->is_singleton() ) nsing++; 1491 } 1492 tty->print(">>> "); 1493 _method->print_short_name(); 1494 tty->print_cr(" switch decision tree"); 1495 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1496 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1497 if (_max_switch_depth > _est_switch_depth) { 1498 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1499 } 1500 tty->print(" "); 1501 for( r = lo; r <= hi; r++ ) { 1502 r->print(); 1503 } 1504 tty->cr(); 1505 } 1506 #endif 1507 } 1508 1509 void Parse::modf() { 1510 Node *f2 = pop(); 1511 Node *f1 = pop(); 1512 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1513 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1514 "frem", nullptr, //no memory effects 1515 f1, f2); 1516 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1517 1518 push(res); 1519 } 1520 1521 void Parse::modd() { 1522 Node *d2 = pop_pair(); 1523 Node *d1 = pop_pair(); 1524 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1525 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1526 "drem", nullptr, //no memory effects 1527 d1, top(), d2, top()); 1528 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1529 1530 #ifdef ASSERT 1531 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1532 assert(res_top == top(), "second value must be top"); 1533 #endif 1534 1535 push_pair(res_d); 1536 } 1537 1538 void Parse::l2f() { 1539 Node* f2 = pop(); 1540 Node* f1 = pop(); 1541 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1542 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1543 "l2f", nullptr, //no memory effects 1544 f1, f2); 1545 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1546 1547 push(res); 1548 } 1549 1550 // Handle jsr and jsr_w bytecode 1551 void Parse::do_jsr() { 1552 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1553 1554 // Store information about current state, tagged with new _jsr_bci 1555 int return_bci = iter().next_bci(); 1556 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1557 1558 // The way we do things now, there is only one successor block 1559 // for the jsr, because the target code is cloned by ciTypeFlow. 1560 Block* target = successor_for_bci(jsr_bci); 1561 1562 // What got pushed? 1563 const Type* ret_addr = target->peek(); 1564 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1565 1566 // Effect on jsr on stack 1567 push(_gvn.makecon(ret_addr)); 1568 1569 // Flow to the jsr. 1570 merge(jsr_bci); 1571 } 1572 1573 // Handle ret bytecode 1574 void Parse::do_ret() { 1575 // Find to whom we return. 1576 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1577 Block* target = block()->successor_at(0); 1578 assert(!target->is_ready(), "our arrival must be expected"); 1579 int pnum = target->next_path_num(); 1580 merge_common(target, pnum); 1581 } 1582 1583 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1584 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1585 // Only ::eq and ::ne are supported for profile injection. 1586 return false; 1587 } 1588 if (test->is_Cmp() && 1589 test->in(1)->Opcode() == Op_ProfileBoolean) { 1590 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1591 int false_cnt = profile->false_count(); 1592 int true_cnt = profile->true_count(); 1593 1594 // Counts matching depends on the actual test operation (::eq or ::ne). 1595 // No need to scale the counts because profile injection was designed 1596 // to feed exact counts into VM. 1597 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1598 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1599 1600 profile->consume(); 1601 return true; 1602 } 1603 return false; 1604 } 1605 1606 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1607 // We also check that individual counters are positive first, otherwise the sum can become positive. 1608 // (check for saturation, integer overflow, and immature counts) 1609 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1610 // check for saturation, including "uint" values too big to fit in "int" 1611 if (counter1 < 0 || counter2 < 0) { 1612 return false; 1613 } 1614 // check for integer overflow of the sum 1615 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1616 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1617 if (sum > INT_MAX) { 1618 return false; 1619 } 1620 // check if mature 1621 return (counter1 + counter2) >= min; 1622 } 1623 1624 //--------------------------dynamic_branch_prediction-------------------------- 1625 // Try to gather dynamic branch prediction behavior. Return a probability 1626 // of the branch being taken and set the "cnt" field. Returns a -1.0 1627 // if we need to use static prediction for some reason. 1628 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1629 ResourceMark rm; 1630 1631 cnt = COUNT_UNKNOWN; 1632 1633 int taken = 0; 1634 int not_taken = 0; 1635 1636 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1637 1638 if (use_mdo) { 1639 // Use MethodData information if it is available 1640 // FIXME: free the ProfileData structure 1641 ciMethodData* methodData = method()->method_data(); 1642 if (!methodData->is_mature()) return PROB_UNKNOWN; 1643 ciProfileData* data = methodData->bci_to_data(bci()); 1644 if (data == nullptr) { 1645 return PROB_UNKNOWN; 1646 } 1647 if (!data->is_JumpData()) return PROB_UNKNOWN; 1648 1649 // get taken and not taken values 1650 // NOTE: saturated UINT_MAX values become negative, 1651 // as do counts above INT_MAX. 1652 taken = data->as_JumpData()->taken(); 1653 not_taken = 0; 1654 if (data->is_BranchData()) { 1655 not_taken = data->as_BranchData()->not_taken(); 1656 } 1657 1658 // scale the counts to be commensurate with invocation counts: 1659 // NOTE: overflow for positive values is clamped at INT_MAX 1660 taken = method()->scale_count(taken); 1661 not_taken = method()->scale_count(not_taken); 1662 } 1663 // At this point, saturation or overflow is indicated by INT_MAX 1664 // or a negative value. 1665 1666 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1667 // We also check that individual counters are positive first, otherwise the sum can become positive. 1668 if (!counters_are_meaningful(taken, not_taken, 40)) { 1669 if (C->log() != nullptr) { 1670 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1671 } 1672 return PROB_UNKNOWN; 1673 } 1674 1675 // Compute frequency that we arrive here 1676 float sum = taken + not_taken; 1677 // Adjust, if this block is a cloned private block but the 1678 // Jump counts are shared. Taken the private counts for 1679 // just this path instead of the shared counts. 1680 if( block()->count() > 0 ) 1681 sum = block()->count(); 1682 cnt = sum / FreqCountInvocations; 1683 1684 // Pin probability to sane limits 1685 float prob; 1686 if( !taken ) 1687 prob = (0+PROB_MIN) / 2; 1688 else if( !not_taken ) 1689 prob = (1+PROB_MAX) / 2; 1690 else { // Compute probability of true path 1691 prob = (float)taken / (float)(taken + not_taken); 1692 if (prob > PROB_MAX) prob = PROB_MAX; 1693 if (prob < PROB_MIN) prob = PROB_MIN; 1694 } 1695 1696 assert((cnt > 0.0f) && (prob > 0.0f), 1697 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1698 1699 if (C->log() != nullptr) { 1700 const char* prob_str = nullptr; 1701 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1702 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1703 char prob_str_buf[30]; 1704 if (prob_str == nullptr) { 1705 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1706 prob_str = prob_str_buf; 1707 } 1708 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1709 iter().get_dest(), taken, not_taken, cnt, prob_str); 1710 } 1711 return prob; 1712 } 1713 1714 //-----------------------------branch_prediction------------------------------- 1715 float Parse::branch_prediction(float& cnt, 1716 BoolTest::mask btest, 1717 int target_bci, 1718 Node* test) { 1719 float prob = dynamic_branch_prediction(cnt, btest, test); 1720 // If prob is unknown, switch to static prediction 1721 if (prob != PROB_UNKNOWN) return prob; 1722 1723 prob = PROB_FAIR; // Set default value 1724 if (btest == BoolTest::eq) // Exactly equal test? 1725 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1726 else if (btest == BoolTest::ne) 1727 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1728 1729 // If this is a conditional test guarding a backwards branch, 1730 // assume its a loop-back edge. Make it a likely taken branch. 1731 if (target_bci < bci()) { 1732 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1733 // Since it's an OSR, we probably have profile data, but since 1734 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1735 // Let's make a special check here for completely zero counts. 1736 ciMethodData* methodData = method()->method_data(); 1737 if (!methodData->is_empty()) { 1738 ciProfileData* data = methodData->bci_to_data(bci()); 1739 // Only stop for truly zero counts, which mean an unknown part 1740 // of the OSR-ed method, and we want to deopt to gather more stats. 1741 // If you have ANY counts, then this loop is simply 'cold' relative 1742 // to the OSR loop. 1743 if (data == nullptr || 1744 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1745 // This is the only way to return PROB_UNKNOWN: 1746 return PROB_UNKNOWN; 1747 } 1748 } 1749 } 1750 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1751 } 1752 1753 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1754 return prob; 1755 } 1756 1757 // The magic constants are chosen so as to match the output of 1758 // branch_prediction() when the profile reports a zero taken count. 1759 // It is important to distinguish zero counts unambiguously, because 1760 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1761 // very small but nonzero probabilities, which if confused with zero 1762 // counts would keep the program recompiling indefinitely. 1763 bool Parse::seems_never_taken(float prob) const { 1764 return prob < PROB_MIN; 1765 } 1766 1767 //-------------------------------repush_if_args-------------------------------- 1768 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1769 inline int Parse::repush_if_args() { 1770 if (PrintOpto && WizardMode) { 1771 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1772 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1773 method()->print_name(); tty->cr(); 1774 } 1775 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1776 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1777 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1778 assert(argument(0) != nullptr, "must exist"); 1779 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1780 inc_sp(bc_depth); 1781 return bc_depth; 1782 } 1783 1784 // Used by StressUnstableIfTraps 1785 static volatile int _trap_stress_counter = 0; 1786 1787 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1788 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1789 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1790 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1791 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 1792 } 1793 1794 //----------------------------------do_ifnull---------------------------------- 1795 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1796 int target_bci = iter().get_dest(); 1797 1798 Node* counter = nullptr; 1799 Node* incr_store = nullptr; 1800 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1801 if (do_stress_trap) { 1802 increment_trap_stress_counter(counter, incr_store); 1803 } 1804 1805 Block* branch_block = successor_for_bci(target_bci); 1806 Block* next_block = successor_for_bci(iter().next_bci()); 1807 1808 float cnt; 1809 float prob = branch_prediction(cnt, btest, target_bci, c); 1810 if (prob == PROB_UNKNOWN) { 1811 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1812 if (PrintOpto && Verbose) { 1813 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1814 } 1815 repush_if_args(); // to gather stats on loop 1816 uncommon_trap(Deoptimization::Reason_unreached, 1817 Deoptimization::Action_reinterpret, 1818 nullptr, "cold"); 1819 if (C->eliminate_boxing()) { 1820 // Mark the successor blocks as parsed 1821 branch_block->next_path_num(); 1822 next_block->next_path_num(); 1823 } 1824 return; 1825 } 1826 1827 NOT_PRODUCT(explicit_null_checks_inserted++); 1828 1829 // Generate real control flow 1830 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1831 1832 // Sanity check the probability value 1833 assert(prob > 0.0f,"Bad probability in Parser"); 1834 // Need xform to put node in hash table 1835 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1836 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1837 // True branch 1838 { PreserveJVMState pjvms(this); 1839 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1840 set_control(iftrue); 1841 1842 if (stopped()) { // Path is dead? 1843 NOT_PRODUCT(explicit_null_checks_elided++); 1844 if (C->eliminate_boxing()) { 1845 // Mark the successor block as parsed 1846 branch_block->next_path_num(); 1847 } 1848 } else { // Path is live. 1849 adjust_map_after_if(btest, c, prob, branch_block); 1850 if (!stopped()) { 1851 merge(target_bci); 1852 } 1853 } 1854 } 1855 1856 // False branch 1857 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1858 set_control(iffalse); 1859 1860 if (stopped()) { // Path is dead? 1861 NOT_PRODUCT(explicit_null_checks_elided++); 1862 if (C->eliminate_boxing()) { 1863 // Mark the successor block as parsed 1864 next_block->next_path_num(); 1865 } 1866 } else { // Path is live. 1867 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1868 } 1869 1870 if (do_stress_trap) { 1871 stress_trap(iff, counter, incr_store); 1872 } 1873 } 1874 1875 //------------------------------------do_if------------------------------------ 1876 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) { 1877 int target_bci = iter().get_dest(); 1878 1879 Block* branch_block = successor_for_bci(target_bci); 1880 Block* next_block = successor_for_bci(iter().next_bci()); 1881 1882 float cnt; 1883 float prob = branch_prediction(cnt, btest, target_bci, c); 1884 float untaken_prob = 1.0 - prob; 1885 1886 if (prob == PROB_UNKNOWN) { 1887 if (PrintOpto && Verbose) { 1888 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1889 } 1890 repush_if_args(); // to gather stats on loop 1891 uncommon_trap(Deoptimization::Reason_unreached, 1892 Deoptimization::Action_reinterpret, 1893 nullptr, "cold"); 1894 if (C->eliminate_boxing()) { 1895 // Mark the successor blocks as parsed 1896 branch_block->next_path_num(); 1897 next_block->next_path_num(); 1898 } 1899 return; 1900 } 1901 1902 Node* counter = nullptr; 1903 Node* incr_store = nullptr; 1904 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1905 if (do_stress_trap) { 1906 increment_trap_stress_counter(counter, incr_store); 1907 } 1908 1909 // Sanity check the probability value 1910 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1911 1912 bool taken_if_true = true; 1913 // Convert BoolTest to canonical form: 1914 if (!BoolTest(btest).is_canonical()) { 1915 btest = BoolTest(btest).negate(); 1916 taken_if_true = false; 1917 // prob is NOT updated here; it remains the probability of the taken 1918 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1919 } 1920 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1921 1922 Node* tst0 = new BoolNode(c, btest); 1923 Node* tst = _gvn.transform(tst0); 1924 BoolTest::mask taken_btest = BoolTest::illegal; 1925 BoolTest::mask untaken_btest = BoolTest::illegal; 1926 1927 if (tst->is_Bool()) { 1928 // Refresh c from the transformed bool node, since it may be 1929 // simpler than the original c. Also re-canonicalize btest. 1930 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1931 // That can arise from statements like: if (x instanceof C) ... 1932 if (tst != tst0) { 1933 // Canonicalize one more time since transform can change it. 1934 btest = tst->as_Bool()->_test._test; 1935 if (!BoolTest(btest).is_canonical()) { 1936 // Reverse edges one more time... 1937 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1938 btest = tst->as_Bool()->_test._test; 1939 assert(BoolTest(btest).is_canonical(), "sanity"); 1940 taken_if_true = !taken_if_true; 1941 } 1942 c = tst->in(1); 1943 } 1944 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1945 taken_btest = taken_if_true ? btest : neg_btest; 1946 untaken_btest = taken_if_true ? neg_btest : btest; 1947 } 1948 1949 // Generate real control flow 1950 float true_prob = (taken_if_true ? prob : untaken_prob); 1951 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1952 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1953 Node* taken_branch = new IfTrueNode(iff); 1954 Node* untaken_branch = new IfFalseNode(iff); 1955 if (!taken_if_true) { // Finish conversion to canonical form 1956 Node* tmp = taken_branch; 1957 taken_branch = untaken_branch; 1958 untaken_branch = tmp; 1959 } 1960 1961 // Branch is taken: 1962 { PreserveJVMState pjvms(this); 1963 taken_branch = _gvn.transform(taken_branch); 1964 set_control(taken_branch); 1965 1966 if (stopped()) { 1967 if (C->eliminate_boxing() && !new_path) { 1968 // Mark the successor block as parsed (if we haven't created a new path) 1969 branch_block->next_path_num(); 1970 } 1971 } else { 1972 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap); 1973 if (!stopped()) { 1974 if (new_path) { 1975 // Merge by using a new path 1976 merge_new_path(target_bci); 1977 } else if (ctrl_taken != nullptr) { 1978 // Don't merge but save taken branch to be wired by caller 1979 *ctrl_taken = control(); 1980 } else { 1981 merge(target_bci); 1982 } 1983 } 1984 } 1985 } 1986 1987 untaken_branch = _gvn.transform(untaken_branch); 1988 set_control(untaken_branch); 1989 1990 // Branch not taken. 1991 if (stopped() && ctrl_taken == nullptr) { 1992 if (C->eliminate_boxing()) { 1993 // Mark the successor block as parsed (if caller does not re-wire control flow) 1994 next_block->next_path_num(); 1995 } 1996 } else { 1997 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap); 1998 } 1999 2000 if (do_stress_trap) { 2001 stress_trap(iff, counter, incr_store); 2002 } 2003 } 2004 2005 2006 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 2007 if (t->speculative() == nullptr) { 2008 return ProfileUnknownNull; 2009 } 2010 if (t->speculative_always_null()) { 2011 return ProfileAlwaysNull; 2012 } 2013 if (t->speculative_maybe_null()) { 2014 return ProfileMaybeNull; 2015 } 2016 return ProfileNeverNull; 2017 } 2018 2019 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 2020 inc_sp(2); 2021 Node* cast = null_check_common(input, T_OBJECT, true, nullptr, 2022 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 2023 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 2024 dec_sp(2); 2025 if (btest == BoolTest::ne) { 2026 { 2027 PreserveJVMState pjvms(this); 2028 replace_in_map(input, cast); 2029 int target_bci = iter().get_dest(); 2030 merge(target_bci); 2031 } 2032 record_for_igvn(eq_region); 2033 set_control(_gvn.transform(eq_region)); 2034 } else { 2035 replace_in_map(input, cast); 2036 } 2037 } 2038 2039 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 2040 inc_sp(2); 2041 null_ctl = top(); 2042 Node* cast = null_check_oop(input, &null_ctl, 2043 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 2044 false, 2045 speculative_ptr_kind(tinput) == ProfileNeverNull && 2046 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 2047 dec_sp(2); 2048 assert(!stopped(), "null input should have been caught earlier"); 2049 return cast; 2050 } 2051 2052 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 2053 Node* ne_region = new RegionNode(1); 2054 Node* null_ctl; 2055 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2056 ne_region->add_req(null_ctl); 2057 2058 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 2059 { 2060 PreserveJVMState pjvms(this); 2061 inc_sp(2); 2062 set_control(slow_ctl); 2063 Deoptimization::DeoptReason reason; 2064 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2065 reason = Deoptimization::Reason_speculate_class_check; 2066 } else { 2067 reason = Deoptimization::Reason_class_check; 2068 } 2069 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2070 } 2071 ne_region->add_req(control()); 2072 2073 record_for_igvn(ne_region); 2074 set_control(_gvn.transform(ne_region)); 2075 if (btest == BoolTest::ne) { 2076 { 2077 PreserveJVMState pjvms(this); 2078 if (null_ctl == top()) { 2079 replace_in_map(input, cast); 2080 } 2081 int target_bci = iter().get_dest(); 2082 merge(target_bci); 2083 } 2084 record_for_igvn(eq_region); 2085 set_control(_gvn.transform(eq_region)); 2086 } else { 2087 if (null_ctl == top()) { 2088 replace_in_map(input, cast); 2089 } 2090 set_control(_gvn.transform(ne_region)); 2091 } 2092 } 2093 2094 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 2095 Node* ne_region = new RegionNode(1); 2096 Node* null_ctl; 2097 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2098 ne_region->add_req(null_ctl); 2099 2100 { 2101 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 2102 inc_sp(2); 2103 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 2104 } 2105 2106 ne_region->add_req(control()); 2107 2108 record_for_igvn(ne_region); 2109 set_control(_gvn.transform(ne_region)); 2110 if (btest == BoolTest::ne) { 2111 { 2112 PreserveJVMState pjvms(this); 2113 if (null_ctl == top()) { 2114 replace_in_map(input, cast); 2115 } 2116 int target_bci = iter().get_dest(); 2117 merge(target_bci); 2118 } 2119 record_for_igvn(eq_region); 2120 set_control(_gvn.transform(eq_region)); 2121 } else { 2122 if (null_ctl == top()) { 2123 replace_in_map(input, cast); 2124 } 2125 set_control(_gvn.transform(ne_region)); 2126 } 2127 } 2128 2129 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2130 ciKlass* left_type = nullptr; 2131 ciKlass* right_type = nullptr; 2132 ProfilePtrKind left_ptr = ProfileUnknownNull; 2133 ProfilePtrKind right_ptr = ProfileUnknownNull; 2134 bool left_inline_type = true; 2135 bool right_inline_type = true; 2136 2137 // Leverage profiling at acmp 2138 if (UseACmpProfile) { 2139 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2140 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2141 left_type = nullptr; 2142 right_type = nullptr; 2143 left_inline_type = true; 2144 right_inline_type = true; 2145 } 2146 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2147 left_ptr = ProfileUnknownNull; 2148 right_ptr = ProfileUnknownNull; 2149 } 2150 } 2151 2152 if (UseTypeSpeculation) { 2153 record_profile_for_speculation(left, left_type, left_ptr); 2154 record_profile_for_speculation(right, right_type, right_ptr); 2155 } 2156 2157 if (!EnableValhalla) { 2158 Node* cmp = CmpP(left, right); 2159 cmp = optimize_cmp_with_klass(cmp); 2160 do_if(btest, cmp); 2161 return; 2162 } 2163 2164 // Check for equality before potentially allocating 2165 if (left == right) { 2166 do_if(btest, makecon(TypeInt::CC_EQ)); 2167 return; 2168 } 2169 2170 // Allocate inline type operands and re-execute on deoptimization 2171 if (left->is_InlineType()) { 2172 if (_gvn.type(right)->is_zero_type() || 2173 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2174 // Null checking a scalarized but nullable inline type. Check the IsInit 2175 // input instead of the oop input to avoid keeping buffer allocations alive. 2176 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2177 do_if(btest, cmp); 2178 return; 2179 } else { 2180 PreserveReexecuteState preexecs(this); 2181 inc_sp(2); 2182 jvms()->set_should_reexecute(true); 2183 left = left->as_InlineType()->buffer(this)->get_oop(); 2184 } 2185 } 2186 if (right->is_InlineType()) { 2187 PreserveReexecuteState preexecs(this); 2188 inc_sp(2); 2189 jvms()->set_should_reexecute(true); 2190 right = right->as_InlineType()->buffer(this)->get_oop(); 2191 } 2192 2193 // First, do a normal pointer comparison 2194 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2195 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2196 Node* cmp = CmpP(left, right); 2197 cmp = optimize_cmp_with_klass(cmp); 2198 if (tleft == nullptr || !tleft->can_be_inline_type() || 2199 tright == nullptr || !tright->can_be_inline_type()) { 2200 // This is sufficient, if one of the operands can't be an inline type 2201 do_if(btest, cmp); 2202 return; 2203 } 2204 2205 // Don't add traps to unstable if branches because additional checks are required to 2206 // decide if the operands are equal/substitutable and we therefore shouldn't prune 2207 // branches for one if based on the profiling of the acmp branches. 2208 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it 2209 // assumes that there is a 1-1 mapping between the if and the acmp branches and that 2210 // hitting a trap means that we will take the corresponding acmp branch on re-execution. 2211 const bool can_trap = true; 2212 2213 Node* eq_region = nullptr; 2214 if (btest == BoolTest::eq) { 2215 do_if(btest, cmp, !can_trap, true); 2216 if (stopped()) { 2217 // Pointers are equal, operands must be equal 2218 return; 2219 } 2220 } else { 2221 assert(btest == BoolTest::ne, "only eq or ne"); 2222 Node* is_not_equal = nullptr; 2223 eq_region = new RegionNode(3); 2224 { 2225 PreserveJVMState pjvms(this); 2226 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable 2227 do_if(btest, cmp, !can_trap, false, &is_not_equal); 2228 if (!stopped()) { 2229 eq_region->init_req(1, control()); 2230 } 2231 } 2232 if (is_not_equal == nullptr || is_not_equal->is_top()) { 2233 record_for_igvn(eq_region); 2234 set_control(_gvn.transform(eq_region)); 2235 return; 2236 } 2237 set_control(is_not_equal); 2238 } 2239 2240 // Prefer speculative types if available 2241 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2242 if (tleft->speculative_type() != nullptr) { 2243 left_type = tleft->speculative_type(); 2244 } 2245 if (tright->speculative_type() != nullptr) { 2246 right_type = tright->speculative_type(); 2247 } 2248 } 2249 2250 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2251 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2252 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2253 left_ptr = speculative_left_ptr; 2254 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2255 left_ptr = speculative_left_ptr; 2256 } 2257 } 2258 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2259 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2260 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2261 right_ptr = speculative_right_ptr; 2262 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2263 right_ptr = speculative_right_ptr; 2264 } 2265 } 2266 2267 if (left_ptr == ProfileAlwaysNull) { 2268 // Comparison with null. Assert the input is indeed null and we're done. 2269 acmp_always_null_input(left, tleft, btest, eq_region); 2270 return; 2271 } 2272 if (right_ptr == ProfileAlwaysNull) { 2273 // Comparison with null. Assert the input is indeed null and we're done. 2274 acmp_always_null_input(right, tright, btest, eq_region); 2275 return; 2276 } 2277 if (left_type != nullptr && !left_type->is_inlinetype()) { 2278 // Comparison with an object of known type 2279 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2280 return; 2281 } 2282 if (right_type != nullptr && !right_type->is_inlinetype()) { 2283 // Comparison with an object of known type 2284 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2285 return; 2286 } 2287 if (!left_inline_type) { 2288 // Comparison with an object known not to be an inline type 2289 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2290 return; 2291 } 2292 if (!right_inline_type) { 2293 // Comparison with an object known not to be an inline type 2294 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2295 return; 2296 } 2297 2298 // Pointers are not equal, check if first operand is non-null 2299 Node* ne_region = new RegionNode(6); 2300 Node* null_ctl; 2301 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2302 ne_region->init_req(1, null_ctl); 2303 2304 // First operand is non-null, check if it is an inline type 2305 Node* is_value = inline_type_test(not_null_right); 2306 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2307 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2308 ne_region->init_req(2, not_value); 2309 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2310 2311 // The first operand is an inline type, check if the second operand is non-null 2312 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2313 ne_region->init_req(3, null_ctl); 2314 2315 // Check if both operands are of the same class. 2316 Node* kls_left = load_object_klass(not_null_left); 2317 Node* kls_right = load_object_klass(not_null_right); 2318 Node* kls_cmp = CmpP(kls_left, kls_right); 2319 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2320 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2321 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2322 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2323 ne_region->init_req(4, kls_ne); 2324 2325 if (stopped()) { 2326 record_for_igvn(ne_region); 2327 set_control(_gvn.transform(ne_region)); 2328 if (btest == BoolTest::ne) { 2329 { 2330 PreserveJVMState pjvms(this); 2331 int target_bci = iter().get_dest(); 2332 merge(target_bci); 2333 } 2334 record_for_igvn(eq_region); 2335 set_control(_gvn.transform(eq_region)); 2336 } 2337 return; 2338 } 2339 2340 // Both operands are values types of the same class, we need to perform a 2341 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2342 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2343 Node* mem = reset_memory(); 2344 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2345 2346 Node* eq_io_phi = nullptr; 2347 Node* eq_mem_phi = nullptr; 2348 if (eq_region != nullptr) { 2349 eq_io_phi = PhiNode::make(eq_region, i_o()); 2350 eq_mem_phi = PhiNode::make(eq_region, mem); 2351 } 2352 2353 set_all_memory(mem); 2354 2355 kill_dead_locals(); 2356 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2357 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2358 call->set_override_symbolic_info(true); 2359 call->init_req(TypeFunc::Parms, not_null_left); 2360 call->init_req(TypeFunc::Parms+1, not_null_right); 2361 inc_sp(2); 2362 set_edges_for_java_call(call, false, false); 2363 Node* ret = set_results_for_java_call(call, false, true); 2364 dec_sp(2); 2365 2366 // Test the return value of ValueObjectMethods::isSubstitutable() 2367 // This is the last check, do_if can emit traps now. 2368 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2369 Node* ctl = C->top(); 2370 if (btest == BoolTest::eq) { 2371 PreserveJVMState pjvms(this); 2372 do_if(btest, subst_cmp, can_trap); 2373 if (!stopped()) { 2374 ctl = control(); 2375 } 2376 } else { 2377 assert(btest == BoolTest::ne, "only eq or ne"); 2378 PreserveJVMState pjvms(this); 2379 do_if(btest, subst_cmp, can_trap, false, &ctl); 2380 if (!stopped()) { 2381 eq_region->init_req(2, control()); 2382 eq_io_phi->init_req(2, i_o()); 2383 eq_mem_phi->init_req(2, reset_memory()); 2384 } 2385 } 2386 ne_region->init_req(5, ctl); 2387 ne_io_phi->init_req(5, i_o()); 2388 ne_mem_phi->init_req(5, reset_memory()); 2389 2390 record_for_igvn(ne_region); 2391 set_control(_gvn.transform(ne_region)); 2392 set_i_o(_gvn.transform(ne_io_phi)); 2393 set_all_memory(_gvn.transform(ne_mem_phi)); 2394 2395 if (btest == BoolTest::ne) { 2396 { 2397 PreserveJVMState pjvms(this); 2398 int target_bci = iter().get_dest(); 2399 merge(target_bci); 2400 } 2401 2402 record_for_igvn(eq_region); 2403 set_control(_gvn.transform(eq_region)); 2404 set_i_o(_gvn.transform(eq_io_phi)); 2405 set_all_memory(_gvn.transform(eq_mem_phi)); 2406 } 2407 } 2408 2409 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 2410 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 2411 // then either takes the trap or executes the original, unstable if. 2412 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 2413 // Search for an unstable if trap 2414 CallStaticJavaNode* trap = nullptr; 2415 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 2416 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 2417 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 2418 // No suitable trap found. Remove unused counter load and increment. 2419 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 2420 return; 2421 } 2422 2423 // Remove trap from optimization list since we add another path to the trap. 2424 bool success = C->remove_unstable_if_trap(trap, true); 2425 assert(success, "Trap already modified"); 2426 2427 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 2428 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 2429 Node* mask = intcon(right_n_bits(freq_log)); 2430 counter = _gvn.transform(new AndINode(counter, mask)); 2431 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 2432 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 2433 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 2434 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 2435 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 2436 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 2437 2438 // Trap 2439 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 2440 2441 Node* trap_region = new RegionNode(3); 2442 trap_region->set_req(1, trap_proj); 2443 trap_region->set_req(2, if_true); 2444 trap->set_req(0, _gvn.transform(trap_region)); 2445 2446 // Don't trap, execute original if 2447 orig_iff->set_req(0, if_false); 2448 } 2449 2450 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2451 // Randomly skip emitting an uncommon trap 2452 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 2453 return false; 2454 } 2455 // Don't want to speculate on uncommon traps when running with -Xcomp 2456 if (!UseInterpreter) { 2457 return false; 2458 } 2459 return seems_never_taken(prob) && 2460 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 2461 } 2462 2463 void Parse::maybe_add_predicate_after_if(Block* path) { 2464 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2465 // Add predicates at bci of if dominating the loop so traps can be 2466 // recorded on the if's profile data 2467 int bc_depth = repush_if_args(); 2468 add_parse_predicates(); 2469 dec_sp(bc_depth); 2470 path->set_has_predicates(); 2471 } 2472 } 2473 2474 2475 //----------------------------adjust_map_after_if------------------------------ 2476 // Adjust the JVM state to reflect the result of taking this path. 2477 // Basically, it means inspecting the CmpNode controlling this 2478 // branch, seeing how it constrains a tested value, and then 2479 // deciding if it's worth our while to encode this constraint 2480 // as graph nodes in the current abstract interpretation map. 2481 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) { 2482 if (!c->is_Cmp()) { 2483 maybe_add_predicate_after_if(path); 2484 return; 2485 } 2486 2487 if (stopped() || btest == BoolTest::illegal) { 2488 return; // nothing to do 2489 } 2490 2491 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2492 2493 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) { 2494 repush_if_args(); 2495 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2496 Deoptimization::Action_reinterpret, 2497 nullptr, 2498 (is_fallthrough ? "taken always" : "taken never")); 2499 2500 if (call != nullptr) { 2501 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2502 } 2503 return; 2504 } 2505 2506 Node* val = c->in(1); 2507 Node* con = c->in(2); 2508 const Type* tcon = _gvn.type(con); 2509 const Type* tval = _gvn.type(val); 2510 bool have_con = tcon->singleton(); 2511 if (tval->singleton()) { 2512 if (!have_con) { 2513 // Swap, so constant is in con. 2514 con = val; 2515 tcon = tval; 2516 val = c->in(2); 2517 tval = _gvn.type(val); 2518 btest = BoolTest(btest).commute(); 2519 have_con = true; 2520 } else { 2521 // Do we have two constants? Then leave well enough alone. 2522 have_con = false; 2523 } 2524 } 2525 if (!have_con) { // remaining adjustments need a con 2526 maybe_add_predicate_after_if(path); 2527 return; 2528 } 2529 2530 sharpen_type_after_if(btest, con, tcon, val, tval); 2531 maybe_add_predicate_after_if(path); 2532 } 2533 2534 2535 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2536 Node* ldk; 2537 if (n->is_DecodeNKlass()) { 2538 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2539 return nullptr; 2540 } else { 2541 ldk = n->in(1); 2542 } 2543 } else if (n->Opcode() != Op_LoadKlass) { 2544 return nullptr; 2545 } else { 2546 ldk = n; 2547 } 2548 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2549 2550 Node* adr = ldk->in(MemNode::Address); 2551 intptr_t off = 0; 2552 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2553 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2554 return nullptr; 2555 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2556 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2557 return nullptr; 2558 2559 return obj; 2560 } 2561 2562 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2563 Node* con, const Type* tcon, 2564 Node* val, const Type* tval) { 2565 // Look for opportunities to sharpen the type of a node 2566 // whose klass is compared with a constant klass. 2567 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2568 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2569 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2570 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2571 // Found: 2572 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2573 // or the narrowOop equivalent. 2574 const Type* obj_type = _gvn.type(obj); 2575 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2576 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 2577 tboth->higher_equal(obj_type)) { 2578 // obj has to be of the exact type Foo if the CmpP succeeds. 2579 int obj_in_map = map()->find_edge(obj); 2580 JVMState* jvms = this->jvms(); 2581 if (obj_in_map >= 0 && 2582 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2583 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2584 const Type* tcc = ccast->as_Type()->type(); 2585 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2586 // Delay transform() call to allow recovery of pre-cast value 2587 // at the control merge. 2588 _gvn.set_type_bottom(ccast); 2589 record_for_igvn(ccast); 2590 if (tboth->is_inlinetypeptr()) { 2591 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass()); 2592 } 2593 // Here's the payoff. 2594 replace_in_map(obj, ccast); 2595 } 2596 } 2597 } 2598 } 2599 2600 int val_in_map = map()->find_edge(val); 2601 if (val_in_map < 0) return; // replace_in_map would be useless 2602 { 2603 JVMState* jvms = this->jvms(); 2604 if (!(jvms->is_loc(val_in_map) || 2605 jvms->is_stk(val_in_map))) 2606 return; // again, it would be useless 2607 } 2608 2609 // Check for a comparison to a constant, and "know" that the compared 2610 // value is constrained on this path. 2611 assert(tcon->singleton(), ""); 2612 ConstraintCastNode* ccast = nullptr; 2613 Node* cast = nullptr; 2614 2615 switch (btest) { 2616 case BoolTest::eq: // Constant test? 2617 { 2618 const Type* tboth = tcon->join_speculative(tval); 2619 if (tboth == tval) break; // Nothing to gain. 2620 if (tcon->isa_int()) { 2621 ccast = new CastIINode(control(), val, tboth); 2622 } else if (tcon == TypePtr::NULL_PTR) { 2623 // Cast to null, but keep the pointer identity temporarily live. 2624 ccast = new CastPPNode(control(), val, tboth); 2625 } else { 2626 const TypeF* tf = tcon->isa_float_constant(); 2627 const TypeD* td = tcon->isa_double_constant(); 2628 // Exclude tests vs float/double 0 as these could be 2629 // either +0 or -0. Just because you are equal to +0 2630 // doesn't mean you ARE +0! 2631 // Note, following code also replaces Long and Oop values. 2632 if ((!tf || tf->_f != 0.0) && 2633 (!td || td->_d != 0.0)) 2634 cast = con; // Replace non-constant val by con. 2635 } 2636 } 2637 break; 2638 2639 case BoolTest::ne: 2640 if (tcon == TypePtr::NULL_PTR) { 2641 cast = cast_not_null(val, false); 2642 } 2643 break; 2644 2645 default: 2646 // (At this point we could record int range types with CastII.) 2647 break; 2648 } 2649 2650 if (ccast != nullptr) { 2651 const Type* tcc = ccast->as_Type()->type(); 2652 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2653 // Delay transform() call to allow recovery of pre-cast value 2654 // at the control merge. 2655 _gvn.set_type_bottom(ccast); 2656 record_for_igvn(ccast); 2657 cast = ccast; 2658 } 2659 2660 if (cast != nullptr) { // Here's the payoff. 2661 replace_in_map(val, cast); 2662 } 2663 } 2664 2665 /** 2666 * Use speculative type to optimize CmpP node: if comparison is 2667 * against the low level class, cast the object to the speculative 2668 * type if any. CmpP should then go away. 2669 * 2670 * @param c expected CmpP node 2671 * @return result of CmpP on object casted to speculative type 2672 * 2673 */ 2674 Node* Parse::optimize_cmp_with_klass(Node* c) { 2675 // If this is transformed by the _gvn to a comparison with the low 2676 // level klass then we may be able to use speculation 2677 if (c->Opcode() == Op_CmpP && 2678 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2679 c->in(2)->is_Con()) { 2680 Node* load_klass = nullptr; 2681 Node* decode = nullptr; 2682 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2683 decode = c->in(1); 2684 load_klass = c->in(1)->in(1); 2685 } else { 2686 load_klass = c->in(1); 2687 } 2688 if (load_klass->in(2)->is_AddP()) { 2689 Node* addp = load_klass->in(2); 2690 Node* obj = addp->in(AddPNode::Address); 2691 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2692 if (obj_type->speculative_type_not_null() != nullptr) { 2693 ciKlass* k = obj_type->speculative_type(); 2694 inc_sp(2); 2695 obj = maybe_cast_profiled_obj(obj, k); 2696 dec_sp(2); 2697 if (obj->is_InlineType()) { 2698 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2699 obj = obj->as_InlineType()->get_oop(); 2700 } 2701 // Make the CmpP use the casted obj 2702 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2703 load_klass = load_klass->clone(); 2704 load_klass->set_req(2, addp); 2705 load_klass = _gvn.transform(load_klass); 2706 if (decode != nullptr) { 2707 decode = decode->clone(); 2708 decode->set_req(1, load_klass); 2709 load_klass = _gvn.transform(decode); 2710 } 2711 c = c->clone(); 2712 c->set_req(1, load_klass); 2713 c = _gvn.transform(c); 2714 } 2715 } 2716 } 2717 return c; 2718 } 2719 2720 //------------------------------do_one_bytecode-------------------------------- 2721 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2722 void Parse::do_one_bytecode() { 2723 Node *a, *b, *c, *d; // Handy temps 2724 BoolTest::mask btest; 2725 int i; 2726 2727 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2728 2729 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2730 "out of nodes parsing method")) { 2731 return; 2732 } 2733 2734 #ifdef ASSERT 2735 // for setting breakpoints 2736 if (TraceOptoParse) { 2737 tty->print(" @"); 2738 dump_bci(bci()); 2739 tty->print(" %s", Bytecodes::name(bc())); 2740 tty->cr(); 2741 } 2742 #endif 2743 2744 switch (bc()) { 2745 case Bytecodes::_nop: 2746 // do nothing 2747 break; 2748 case Bytecodes::_lconst_0: 2749 push_pair(longcon(0)); 2750 break; 2751 2752 case Bytecodes::_lconst_1: 2753 push_pair(longcon(1)); 2754 break; 2755 2756 case Bytecodes::_fconst_0: 2757 push(zerocon(T_FLOAT)); 2758 break; 2759 2760 case Bytecodes::_fconst_1: 2761 push(makecon(TypeF::ONE)); 2762 break; 2763 2764 case Bytecodes::_fconst_2: 2765 push(makecon(TypeF::make(2.0f))); 2766 break; 2767 2768 case Bytecodes::_dconst_0: 2769 push_pair(zerocon(T_DOUBLE)); 2770 break; 2771 2772 case Bytecodes::_dconst_1: 2773 push_pair(makecon(TypeD::ONE)); 2774 break; 2775 2776 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2777 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2778 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2779 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2780 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2781 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2782 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2783 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2784 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2785 case Bytecodes::_aconst_null: push(null()); break; 2786 2787 case Bytecodes::_ldc: 2788 case Bytecodes::_ldc_w: 2789 case Bytecodes::_ldc2_w: { 2790 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded 2791 assert(!iter().is_in_error(), "ldc is in error state"); 2792 ciConstant constant = iter().get_constant(); 2793 assert(constant.is_loaded(), "constant is not loaded"); 2794 const Type* con_type = Type::make_from_constant(constant); 2795 if (con_type != nullptr) { 2796 push_node(con_type->basic_type(), makecon(con_type)); 2797 } 2798 break; 2799 } 2800 2801 case Bytecodes::_aload_0: 2802 push( local(0) ); 2803 break; 2804 case Bytecodes::_aload_1: 2805 push( local(1) ); 2806 break; 2807 case Bytecodes::_aload_2: 2808 push( local(2) ); 2809 break; 2810 case Bytecodes::_aload_3: 2811 push( local(3) ); 2812 break; 2813 case Bytecodes::_aload: 2814 push( local(iter().get_index()) ); 2815 break; 2816 2817 case Bytecodes::_fload_0: 2818 case Bytecodes::_iload_0: 2819 push( local(0) ); 2820 break; 2821 case Bytecodes::_fload_1: 2822 case Bytecodes::_iload_1: 2823 push( local(1) ); 2824 break; 2825 case Bytecodes::_fload_2: 2826 case Bytecodes::_iload_2: 2827 push( local(2) ); 2828 break; 2829 case Bytecodes::_fload_3: 2830 case Bytecodes::_iload_3: 2831 push( local(3) ); 2832 break; 2833 case Bytecodes::_fload: 2834 case Bytecodes::_iload: 2835 push( local(iter().get_index()) ); 2836 break; 2837 case Bytecodes::_lload_0: 2838 push_pair_local( 0 ); 2839 break; 2840 case Bytecodes::_lload_1: 2841 push_pair_local( 1 ); 2842 break; 2843 case Bytecodes::_lload_2: 2844 push_pair_local( 2 ); 2845 break; 2846 case Bytecodes::_lload_3: 2847 push_pair_local( 3 ); 2848 break; 2849 case Bytecodes::_lload: 2850 push_pair_local( iter().get_index() ); 2851 break; 2852 2853 case Bytecodes::_dload_0: 2854 push_pair_local(0); 2855 break; 2856 case Bytecodes::_dload_1: 2857 push_pair_local(1); 2858 break; 2859 case Bytecodes::_dload_2: 2860 push_pair_local(2); 2861 break; 2862 case Bytecodes::_dload_3: 2863 push_pair_local(3); 2864 break; 2865 case Bytecodes::_dload: 2866 push_pair_local(iter().get_index()); 2867 break; 2868 case Bytecodes::_fstore_0: 2869 case Bytecodes::_istore_0: 2870 case Bytecodes::_astore_0: 2871 set_local( 0, pop() ); 2872 break; 2873 case Bytecodes::_fstore_1: 2874 case Bytecodes::_istore_1: 2875 case Bytecodes::_astore_1: 2876 set_local( 1, pop() ); 2877 break; 2878 case Bytecodes::_fstore_2: 2879 case Bytecodes::_istore_2: 2880 case Bytecodes::_astore_2: 2881 set_local( 2, pop() ); 2882 break; 2883 case Bytecodes::_fstore_3: 2884 case Bytecodes::_istore_3: 2885 case Bytecodes::_astore_3: 2886 set_local( 3, pop() ); 2887 break; 2888 case Bytecodes::_fstore: 2889 case Bytecodes::_istore: 2890 case Bytecodes::_astore: 2891 set_local( iter().get_index(), pop() ); 2892 break; 2893 // long stores 2894 case Bytecodes::_lstore_0: 2895 set_pair_local( 0, pop_pair() ); 2896 break; 2897 case Bytecodes::_lstore_1: 2898 set_pair_local( 1, pop_pair() ); 2899 break; 2900 case Bytecodes::_lstore_2: 2901 set_pair_local( 2, pop_pair() ); 2902 break; 2903 case Bytecodes::_lstore_3: 2904 set_pair_local( 3, pop_pair() ); 2905 break; 2906 case Bytecodes::_lstore: 2907 set_pair_local( iter().get_index(), pop_pair() ); 2908 break; 2909 2910 // double stores 2911 case Bytecodes::_dstore_0: 2912 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2913 break; 2914 case Bytecodes::_dstore_1: 2915 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2916 break; 2917 case Bytecodes::_dstore_2: 2918 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2919 break; 2920 case Bytecodes::_dstore_3: 2921 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2922 break; 2923 case Bytecodes::_dstore: 2924 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2925 break; 2926 2927 case Bytecodes::_pop: dec_sp(1); break; 2928 case Bytecodes::_pop2: dec_sp(2); break; 2929 case Bytecodes::_swap: 2930 a = pop(); 2931 b = pop(); 2932 push(a); 2933 push(b); 2934 break; 2935 case Bytecodes::_dup: 2936 a = pop(); 2937 push(a); 2938 push(a); 2939 break; 2940 case Bytecodes::_dup_x1: 2941 a = pop(); 2942 b = pop(); 2943 push( a ); 2944 push( b ); 2945 push( a ); 2946 break; 2947 case Bytecodes::_dup_x2: 2948 a = pop(); 2949 b = pop(); 2950 c = pop(); 2951 push( a ); 2952 push( c ); 2953 push( b ); 2954 push( a ); 2955 break; 2956 case Bytecodes::_dup2: 2957 a = pop(); 2958 b = pop(); 2959 push( b ); 2960 push( a ); 2961 push( b ); 2962 push( a ); 2963 break; 2964 2965 case Bytecodes::_dup2_x1: 2966 // before: .. c, b, a 2967 // after: .. b, a, c, b, a 2968 // not tested 2969 a = pop(); 2970 b = pop(); 2971 c = pop(); 2972 push( b ); 2973 push( a ); 2974 push( c ); 2975 push( b ); 2976 push( a ); 2977 break; 2978 case Bytecodes::_dup2_x2: 2979 // before: .. d, c, b, a 2980 // after: .. b, a, d, c, b, a 2981 // not tested 2982 a = pop(); 2983 b = pop(); 2984 c = pop(); 2985 d = pop(); 2986 push( b ); 2987 push( a ); 2988 push( d ); 2989 push( c ); 2990 push( b ); 2991 push( a ); 2992 break; 2993 2994 case Bytecodes::_arraylength: { 2995 // Must do null-check with value on expression stack 2996 Node *ary = null_check(peek(), T_ARRAY); 2997 // Compile-time detect of null-exception? 2998 if (stopped()) return; 2999 a = pop(); 3000 push(load_array_length(a)); 3001 break; 3002 } 3003 3004 case Bytecodes::_baload: array_load(T_BYTE); break; 3005 case Bytecodes::_caload: array_load(T_CHAR); break; 3006 case Bytecodes::_iaload: array_load(T_INT); break; 3007 case Bytecodes::_saload: array_load(T_SHORT); break; 3008 case Bytecodes::_faload: array_load(T_FLOAT); break; 3009 case Bytecodes::_aaload: array_load(T_OBJECT); break; 3010 case Bytecodes::_laload: array_load(T_LONG); break; 3011 case Bytecodes::_daload: array_load(T_DOUBLE); break; 3012 case Bytecodes::_bastore: array_store(T_BYTE); break; 3013 case Bytecodes::_castore: array_store(T_CHAR); break; 3014 case Bytecodes::_iastore: array_store(T_INT); break; 3015 case Bytecodes::_sastore: array_store(T_SHORT); break; 3016 case Bytecodes::_fastore: array_store(T_FLOAT); break; 3017 case Bytecodes::_aastore: array_store(T_OBJECT); break; 3018 case Bytecodes::_lastore: array_store(T_LONG); break; 3019 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 3020 3021 case Bytecodes::_getfield: 3022 do_getfield(); 3023 break; 3024 3025 case Bytecodes::_getstatic: 3026 do_getstatic(); 3027 break; 3028 3029 case Bytecodes::_putfield: 3030 do_putfield(); 3031 break; 3032 3033 case Bytecodes::_putstatic: 3034 do_putstatic(); 3035 break; 3036 3037 case Bytecodes::_irem: 3038 // Must keep both values on the expression-stack during null-check 3039 zero_check_int(peek()); 3040 // Compile-time detect of null-exception? 3041 if (stopped()) return; 3042 b = pop(); 3043 a = pop(); 3044 push(_gvn.transform(new ModINode(control(), a, b))); 3045 break; 3046 case Bytecodes::_idiv: 3047 // Must keep both values on the expression-stack during null-check 3048 zero_check_int(peek()); 3049 // Compile-time detect of null-exception? 3050 if (stopped()) return; 3051 b = pop(); 3052 a = pop(); 3053 push( _gvn.transform( new DivINode(control(),a,b) ) ); 3054 break; 3055 case Bytecodes::_imul: 3056 b = pop(); a = pop(); 3057 push( _gvn.transform( new MulINode(a,b) ) ); 3058 break; 3059 case Bytecodes::_iadd: 3060 b = pop(); a = pop(); 3061 push( _gvn.transform( new AddINode(a,b) ) ); 3062 break; 3063 case Bytecodes::_ineg: 3064 a = pop(); 3065 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 3066 break; 3067 case Bytecodes::_isub: 3068 b = pop(); a = pop(); 3069 push( _gvn.transform( new SubINode(a,b) ) ); 3070 break; 3071 case Bytecodes::_iand: 3072 b = pop(); a = pop(); 3073 push( _gvn.transform( new AndINode(a,b) ) ); 3074 break; 3075 case Bytecodes::_ior: 3076 b = pop(); a = pop(); 3077 push( _gvn.transform( new OrINode(a,b) ) ); 3078 break; 3079 case Bytecodes::_ixor: 3080 b = pop(); a = pop(); 3081 push( _gvn.transform( new XorINode(a,b) ) ); 3082 break; 3083 case Bytecodes::_ishl: 3084 b = pop(); a = pop(); 3085 push( _gvn.transform( new LShiftINode(a,b) ) ); 3086 break; 3087 case Bytecodes::_ishr: 3088 b = pop(); a = pop(); 3089 push( _gvn.transform( new RShiftINode(a,b) ) ); 3090 break; 3091 case Bytecodes::_iushr: 3092 b = pop(); a = pop(); 3093 push( _gvn.transform( new URShiftINode(a,b) ) ); 3094 break; 3095 3096 case Bytecodes::_fneg: 3097 a = pop(); 3098 b = _gvn.transform(new NegFNode (a)); 3099 push(b); 3100 break; 3101 3102 case Bytecodes::_fsub: 3103 b = pop(); 3104 a = pop(); 3105 c = _gvn.transform( new SubFNode(a,b) ); 3106 d = precision_rounding(c); 3107 push( d ); 3108 break; 3109 3110 case Bytecodes::_fadd: 3111 b = pop(); 3112 a = pop(); 3113 c = _gvn.transform( new AddFNode(a,b) ); 3114 d = precision_rounding(c); 3115 push( d ); 3116 break; 3117 3118 case Bytecodes::_fmul: 3119 b = pop(); 3120 a = pop(); 3121 c = _gvn.transform( new MulFNode(a,b) ); 3122 d = precision_rounding(c); 3123 push( d ); 3124 break; 3125 3126 case Bytecodes::_fdiv: 3127 b = pop(); 3128 a = pop(); 3129 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 3130 d = precision_rounding(c); 3131 push( d ); 3132 break; 3133 3134 case Bytecodes::_frem: 3135 if (Matcher::has_match_rule(Op_ModF)) { 3136 // Generate a ModF node. 3137 b = pop(); 3138 a = pop(); 3139 c = _gvn.transform( new ModFNode(nullptr,a,b) ); 3140 d = precision_rounding(c); 3141 push( d ); 3142 } 3143 else { 3144 // Generate a call. 3145 modf(); 3146 } 3147 break; 3148 3149 case Bytecodes::_fcmpl: 3150 b = pop(); 3151 a = pop(); 3152 c = _gvn.transform( new CmpF3Node( a, b)); 3153 push(c); 3154 break; 3155 case Bytecodes::_fcmpg: 3156 b = pop(); 3157 a = pop(); 3158 3159 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 3160 // which negates the result sign except for unordered. Flip the unordered 3161 // as well by using CmpF3 which implements unordered-lesser instead of 3162 // unordered-greater semantics. Finally, commute the result bits. Result 3163 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3164 c = _gvn.transform( new CmpF3Node( b, a)); 3165 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3166 push(c); 3167 break; 3168 3169 case Bytecodes::_f2i: 3170 a = pop(); 3171 push(_gvn.transform(new ConvF2INode(a))); 3172 break; 3173 3174 case Bytecodes::_d2i: 3175 a = pop_pair(); 3176 b = _gvn.transform(new ConvD2INode(a)); 3177 push( b ); 3178 break; 3179 3180 case Bytecodes::_f2d: 3181 a = pop(); 3182 b = _gvn.transform( new ConvF2DNode(a)); 3183 push_pair( b ); 3184 break; 3185 3186 case Bytecodes::_d2f: 3187 a = pop_pair(); 3188 b = _gvn.transform( new ConvD2FNode(a)); 3189 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 3190 //b = _gvn.transform(new RoundFloatNode(nullptr, b) ); 3191 push( b ); 3192 break; 3193 3194 case Bytecodes::_l2f: 3195 if (Matcher::convL2FSupported()) { 3196 a = pop_pair(); 3197 b = _gvn.transform( new ConvL2FNode(a)); 3198 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 3199 // Rather than storing the result into an FP register then pushing 3200 // out to memory to round, the machine instruction that implements 3201 // ConvL2D is responsible for rounding. 3202 // c = precision_rounding(b); 3203 push(b); 3204 } else { 3205 l2f(); 3206 } 3207 break; 3208 3209 case Bytecodes::_l2d: 3210 a = pop_pair(); 3211 b = _gvn.transform( new ConvL2DNode(a)); 3212 // For x86_32.ad, rounding is always necessary (see _l2f above). 3213 // c = dprecision_rounding(b); 3214 push_pair(b); 3215 break; 3216 3217 case Bytecodes::_f2l: 3218 a = pop(); 3219 b = _gvn.transform( new ConvF2LNode(a)); 3220 push_pair(b); 3221 break; 3222 3223 case Bytecodes::_d2l: 3224 a = pop_pair(); 3225 b = _gvn.transform( new ConvD2LNode(a)); 3226 push_pair(b); 3227 break; 3228 3229 case Bytecodes::_dsub: 3230 b = pop_pair(); 3231 a = pop_pair(); 3232 c = _gvn.transform( new SubDNode(a,b) ); 3233 d = dprecision_rounding(c); 3234 push_pair( d ); 3235 break; 3236 3237 case Bytecodes::_dadd: 3238 b = pop_pair(); 3239 a = pop_pair(); 3240 c = _gvn.transform( new AddDNode(a,b) ); 3241 d = dprecision_rounding(c); 3242 push_pair( d ); 3243 break; 3244 3245 case Bytecodes::_dmul: 3246 b = pop_pair(); 3247 a = pop_pair(); 3248 c = _gvn.transform( new MulDNode(a,b) ); 3249 d = dprecision_rounding(c); 3250 push_pair( d ); 3251 break; 3252 3253 case Bytecodes::_ddiv: 3254 b = pop_pair(); 3255 a = pop_pair(); 3256 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 3257 d = dprecision_rounding(c); 3258 push_pair( d ); 3259 break; 3260 3261 case Bytecodes::_dneg: 3262 a = pop_pair(); 3263 b = _gvn.transform(new NegDNode (a)); 3264 push_pair(b); 3265 break; 3266 3267 case Bytecodes::_drem: 3268 if (Matcher::has_match_rule(Op_ModD)) { 3269 // Generate a ModD node. 3270 b = pop_pair(); 3271 a = pop_pair(); 3272 // a % b 3273 3274 c = _gvn.transform( new ModDNode(nullptr,a,b) ); 3275 d = dprecision_rounding(c); 3276 push_pair( d ); 3277 } 3278 else { 3279 // Generate a call. 3280 modd(); 3281 } 3282 break; 3283 3284 case Bytecodes::_dcmpl: 3285 b = pop_pair(); 3286 a = pop_pair(); 3287 c = _gvn.transform( new CmpD3Node( a, b)); 3288 push(c); 3289 break; 3290 3291 case Bytecodes::_dcmpg: 3292 b = pop_pair(); 3293 a = pop_pair(); 3294 // Same as dcmpl but need to flip the unordered case. 3295 // Commute the inputs, which negates the result sign except for unordered. 3296 // Flip the unordered as well by using CmpD3 which implements 3297 // unordered-lesser instead of unordered-greater semantics. 3298 // Finally, negate the result bits. Result is same as using a 3299 // CmpD3Greater except we did it with CmpD3 alone. 3300 c = _gvn.transform( new CmpD3Node( b, a)); 3301 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3302 push(c); 3303 break; 3304 3305 3306 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3307 case Bytecodes::_land: 3308 b = pop_pair(); 3309 a = pop_pair(); 3310 c = _gvn.transform( new AndLNode(a,b) ); 3311 push_pair(c); 3312 break; 3313 case Bytecodes::_lor: 3314 b = pop_pair(); 3315 a = pop_pair(); 3316 c = _gvn.transform( new OrLNode(a,b) ); 3317 push_pair(c); 3318 break; 3319 case Bytecodes::_lxor: 3320 b = pop_pair(); 3321 a = pop_pair(); 3322 c = _gvn.transform( new XorLNode(a,b) ); 3323 push_pair(c); 3324 break; 3325 3326 case Bytecodes::_lshl: 3327 b = pop(); // the shift count 3328 a = pop_pair(); // value to be shifted 3329 c = _gvn.transform( new LShiftLNode(a,b) ); 3330 push_pair(c); 3331 break; 3332 case Bytecodes::_lshr: 3333 b = pop(); // the shift count 3334 a = pop_pair(); // value to be shifted 3335 c = _gvn.transform( new RShiftLNode(a,b) ); 3336 push_pair(c); 3337 break; 3338 case Bytecodes::_lushr: 3339 b = pop(); // the shift count 3340 a = pop_pair(); // value to be shifted 3341 c = _gvn.transform( new URShiftLNode(a,b) ); 3342 push_pair(c); 3343 break; 3344 case Bytecodes::_lmul: 3345 b = pop_pair(); 3346 a = pop_pair(); 3347 c = _gvn.transform( new MulLNode(a,b) ); 3348 push_pair(c); 3349 break; 3350 3351 case Bytecodes::_lrem: 3352 // Must keep both values on the expression-stack during null-check 3353 assert(peek(0) == top(), "long word order"); 3354 zero_check_long(peek(1)); 3355 // Compile-time detect of null-exception? 3356 if (stopped()) return; 3357 b = pop_pair(); 3358 a = pop_pair(); 3359 c = _gvn.transform( new ModLNode(control(),a,b) ); 3360 push_pair(c); 3361 break; 3362 3363 case Bytecodes::_ldiv: 3364 // Must keep both values on the expression-stack during null-check 3365 assert(peek(0) == top(), "long word order"); 3366 zero_check_long(peek(1)); 3367 // Compile-time detect of null-exception? 3368 if (stopped()) return; 3369 b = pop_pair(); 3370 a = pop_pair(); 3371 c = _gvn.transform( new DivLNode(control(),a,b) ); 3372 push_pair(c); 3373 break; 3374 3375 case Bytecodes::_ladd: 3376 b = pop_pair(); 3377 a = pop_pair(); 3378 c = _gvn.transform( new AddLNode(a,b) ); 3379 push_pair(c); 3380 break; 3381 case Bytecodes::_lsub: 3382 b = pop_pair(); 3383 a = pop_pair(); 3384 c = _gvn.transform( new SubLNode(a,b) ); 3385 push_pair(c); 3386 break; 3387 case Bytecodes::_lcmp: 3388 // Safepoints are now inserted _before_ branches. The long-compare 3389 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3390 // slew of control flow. These are usually followed by a CmpI vs zero and 3391 // a branch; this pattern then optimizes to the obvious long-compare and 3392 // branch. However, if the branch is backwards there's a Safepoint 3393 // inserted. The inserted Safepoint captures the JVM state at the 3394 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3395 // long-compare is used to control a loop the debug info will force 3396 // computation of the 3-way value, even though the generated code uses a 3397 // long-compare and branch. We try to rectify the situation by inserting 3398 // a SafePoint here and have it dominate and kill the safepoint added at a 3399 // following backwards branch. At this point the JVM state merely holds 2 3400 // longs but not the 3-way value. 3401 switch (iter().next_bc()) { 3402 case Bytecodes::_ifgt: 3403 case Bytecodes::_iflt: 3404 case Bytecodes::_ifge: 3405 case Bytecodes::_ifle: 3406 case Bytecodes::_ifne: 3407 case Bytecodes::_ifeq: 3408 // If this is a backwards branch in the bytecodes, add Safepoint 3409 maybe_add_safepoint(iter().next_get_dest()); 3410 default: 3411 break; 3412 } 3413 b = pop_pair(); 3414 a = pop_pair(); 3415 c = _gvn.transform( new CmpL3Node( a, b )); 3416 push(c); 3417 break; 3418 3419 case Bytecodes::_lneg: 3420 a = pop_pair(); 3421 b = _gvn.transform( new SubLNode(longcon(0),a)); 3422 push_pair(b); 3423 break; 3424 case Bytecodes::_l2i: 3425 a = pop_pair(); 3426 push( _gvn.transform( new ConvL2INode(a))); 3427 break; 3428 case Bytecodes::_i2l: 3429 a = pop(); 3430 b = _gvn.transform( new ConvI2LNode(a)); 3431 push_pair(b); 3432 break; 3433 case Bytecodes::_i2b: 3434 // Sign extend 3435 a = pop(); 3436 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 3437 push(a); 3438 break; 3439 case Bytecodes::_i2s: 3440 a = pop(); 3441 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 3442 push(a); 3443 break; 3444 case Bytecodes::_i2c: 3445 a = pop(); 3446 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 3447 push(a); 3448 break; 3449 3450 case Bytecodes::_i2f: 3451 a = pop(); 3452 b = _gvn.transform( new ConvI2FNode(a) ) ; 3453 c = precision_rounding(b); 3454 push (b); 3455 break; 3456 3457 case Bytecodes::_i2d: 3458 a = pop(); 3459 b = _gvn.transform( new ConvI2DNode(a)); 3460 push_pair(b); 3461 break; 3462 3463 case Bytecodes::_iinc: // Increment local 3464 i = iter().get_index(); // Get local index 3465 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3466 break; 3467 3468 // Exit points of synchronized methods must have an unlock node 3469 case Bytecodes::_return: 3470 return_current(nullptr); 3471 break; 3472 3473 case Bytecodes::_ireturn: 3474 case Bytecodes::_areturn: 3475 case Bytecodes::_freturn: 3476 return_current(pop()); 3477 break; 3478 case Bytecodes::_lreturn: 3479 return_current(pop_pair()); 3480 break; 3481 case Bytecodes::_dreturn: 3482 return_current(pop_pair()); 3483 break; 3484 3485 case Bytecodes::_athrow: 3486 // null exception oop throws null pointer exception 3487 null_check(peek()); 3488 if (stopped()) return; 3489 // Hook the thrown exception directly to subsequent handlers. 3490 if (BailoutToInterpreterForThrows) { 3491 // Keep method interpreted from now on. 3492 uncommon_trap(Deoptimization::Reason_unhandled, 3493 Deoptimization::Action_make_not_compilable); 3494 return; 3495 } 3496 if (env()->jvmti_can_post_on_exceptions()) { 3497 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3498 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3499 } 3500 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3501 add_exception_state(make_exception_state(peek())); 3502 break; 3503 3504 case Bytecodes::_goto: // fall through 3505 case Bytecodes::_goto_w: { 3506 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3507 3508 // If this is a backwards branch in the bytecodes, add Safepoint 3509 maybe_add_safepoint(target_bci); 3510 3511 // Merge the current control into the target basic block 3512 merge(target_bci); 3513 3514 // See if we can get some profile data and hand it off to the next block 3515 Block *target_block = block()->successor_for_bci(target_bci); 3516 if (target_block->pred_count() != 1) break; 3517 ciMethodData* methodData = method()->method_data(); 3518 if (!methodData->is_mature()) break; 3519 ciProfileData* data = methodData->bci_to_data(bci()); 3520 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 3521 int taken = ((ciJumpData*)data)->taken(); 3522 taken = method()->scale_count(taken); 3523 target_block->set_count(taken); 3524 break; 3525 } 3526 3527 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3528 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3529 handle_if_null: 3530 // If this is a backwards branch in the bytecodes, add Safepoint 3531 maybe_add_safepoint(iter().get_dest()); 3532 a = null(); 3533 b = pop(); 3534 if (b->is_InlineType()) { 3535 // Null checking a scalarized but nullable inline type. Check the IsInit 3536 // input instead of the oop input to avoid keeping buffer allocations alive 3537 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3538 } else { 3539 if (!_gvn.type(b)->speculative_maybe_null() && 3540 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3541 inc_sp(1); 3542 Node* null_ctl = top(); 3543 b = null_check_oop(b, &null_ctl, true, true, true); 3544 assert(null_ctl->is_top(), "no null control here"); 3545 dec_sp(1); 3546 } else if (_gvn.type(b)->speculative_always_null() && 3547 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3548 inc_sp(1); 3549 b = null_assert(b); 3550 dec_sp(1); 3551 } 3552 c = _gvn.transform( new CmpPNode(b, a) ); 3553 } 3554 do_ifnull(btest, c); 3555 break; 3556 3557 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3558 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3559 handle_if_acmp: 3560 // If this is a backwards branch in the bytecodes, add Safepoint 3561 maybe_add_safepoint(iter().get_dest()); 3562 a = pop(); 3563 b = pop(); 3564 do_acmp(btest, b, a); 3565 break; 3566 3567 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3568 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3569 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3570 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3571 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3572 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3573 handle_ifxx: 3574 // If this is a backwards branch in the bytecodes, add Safepoint 3575 maybe_add_safepoint(iter().get_dest()); 3576 a = _gvn.intcon(0); 3577 b = pop(); 3578 c = _gvn.transform( new CmpINode(b, a) ); 3579 do_if(btest, c); 3580 break; 3581 3582 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3583 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3584 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3585 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3586 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3587 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3588 handle_if_icmp: 3589 // If this is a backwards branch in the bytecodes, add Safepoint 3590 maybe_add_safepoint(iter().get_dest()); 3591 a = pop(); 3592 b = pop(); 3593 c = _gvn.transform( new CmpINode( b, a ) ); 3594 do_if(btest, c); 3595 break; 3596 3597 case Bytecodes::_tableswitch: 3598 do_tableswitch(); 3599 break; 3600 3601 case Bytecodes::_lookupswitch: 3602 do_lookupswitch(); 3603 break; 3604 3605 case Bytecodes::_invokestatic: 3606 case Bytecodes::_invokedynamic: 3607 case Bytecodes::_invokespecial: 3608 case Bytecodes::_invokevirtual: 3609 case Bytecodes::_invokeinterface: 3610 do_call(); 3611 break; 3612 case Bytecodes::_checkcast: 3613 do_checkcast(); 3614 break; 3615 case Bytecodes::_instanceof: 3616 do_instanceof(); 3617 break; 3618 case Bytecodes::_anewarray: 3619 do_newarray(); 3620 break; 3621 case Bytecodes::_newarray: 3622 do_newarray((BasicType)iter().get_index()); 3623 break; 3624 case Bytecodes::_multianewarray: 3625 do_multianewarray(); 3626 break; 3627 case Bytecodes::_new: 3628 do_new(); 3629 break; 3630 3631 case Bytecodes::_jsr: 3632 case Bytecodes::_jsr_w: 3633 do_jsr(); 3634 break; 3635 3636 case Bytecodes::_ret: 3637 do_ret(); 3638 break; 3639 3640 3641 case Bytecodes::_monitorenter: 3642 do_monitor_enter(); 3643 break; 3644 3645 case Bytecodes::_monitorexit: 3646 do_monitor_exit(); 3647 break; 3648 3649 case Bytecodes::_breakpoint: 3650 // Breakpoint set concurrently to compile 3651 // %%% use an uncommon trap? 3652 C->record_failure("breakpoint in method"); 3653 return; 3654 3655 default: 3656 #ifndef PRODUCT 3657 map()->dump(99); 3658 #endif 3659 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3660 ShouldNotReachHere(); 3661 } 3662 3663 #ifndef PRODUCT 3664 if (failing()) { return; } 3665 constexpr int perBytecode = 6; 3666 if (C->should_print_igv(perBytecode)) { 3667 IdealGraphPrinter* printer = C->igv_printer(); 3668 char buffer[256]; 3669 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3670 bool old = printer->traverse_outs(); 3671 printer->set_traverse_outs(true); 3672 printer->print_method(buffer, perBytecode); 3673 printer->set_traverse_outs(old); 3674 } 3675 #endif 3676 }