1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "jvm_io.h" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/castnode.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/divnode.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/idealKit.hpp" 41 #include "opto/inlinetypenode.hpp" 42 #include "opto/matcher.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/mulnode.hpp" 45 #include "opto/opaquenode.hpp" 46 #include "opto/parse.hpp" 47 #include "opto/runtime.hpp" 48 #include "runtime/deoptimization.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 51 #ifndef PRODUCT 52 extern int explicit_null_checks_inserted, 53 explicit_null_checks_elided; 54 #endif 55 56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 57 // Feed unused profile data to type speculation 58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 59 ciKlass* array_type = NULL; 60 ciKlass* element_type = NULL; 61 ProfilePtrKind element_ptr = ProfileMaybeNull; 62 bool flat_array = true; 63 bool null_free_array = true; 64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 65 if (element_type != NULL || element_ptr != ProfileMaybeNull) { 66 ld = record_profile_for_speculation(ld, element_type, element_ptr); 67 } 68 } 69 return ld; 70 } 71 72 73 //---------------------------------array_load---------------------------------- 74 void Parse::array_load(BasicType bt) { 75 const Type* elemtype = Type::TOP; 76 Node* adr = array_addressing(bt, 0, elemtype); 77 if (stopped()) return; // guaranteed null or range check 78 79 Node* idx = pop(); 80 Node* ary = pop(); 81 82 // Handle inline type arrays 83 const TypeOopPtr* elemptr = elemtype->make_oopptr(); 84 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 85 if (ary_t->is_flat()) { 86 // Load from flattened inline type array 87 Node* vt = InlineTypeNode::make_from_flattened(this, elemtype->inline_klass(), ary, adr); 88 push(vt); 89 return; 90 } else if (ary_t->is_null_free()) { 91 // Load from non-flattened inline type array (elements can never be null) 92 bt = T_PRIMITIVE_OBJECT; 93 } else if (!ary_t->is_not_flat()) { 94 // Cannot statically determine if array is flattened, emit runtime check 95 assert(UseFlatArray && is_reference_type(bt) && elemptr->can_be_inline_type() && !ary_t->klass_is_exact() && !ary_t->is_not_null_free() && 96 (!elemptr->is_inlinetypeptr() || elemptr->inline_klass()->flatten_array()), "array can't be flattened"); 97 IdealKit ideal(this); 98 IdealVariable res(ideal); 99 ideal.declarations_done(); 100 ideal.if_then(flat_array_test(ary, /* flat = */ false)); { 101 // non-flattened 102 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 103 sync_kit(ideal); 104 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 105 Node* ld = access_load_at(ary, adr, adr_type, elemptr, bt, 106 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 107 if (elemptr->is_inlinetypeptr()) { 108 assert(elemptr->maybe_null(), "null free array should be handled above"); 109 ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), false); 110 } 111 ideal.sync_kit(this); 112 ideal.set(res, ld); 113 } ideal.else_(); { 114 // flattened 115 sync_kit(ideal); 116 if (elemptr->is_inlinetypeptr()) { 117 // Element type is known, cast and load from flattened representation 118 ciInlineKlass* vk = elemptr->inline_klass(); 119 assert(vk->flatten_array() && elemptr->maybe_null(), "never/always flat - should be optimized"); 120 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 121 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 122 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, arytype)); 123 Node* casted_adr = array_element_address(cast, idx, T_PRIMITIVE_OBJECT, ary_t->size(), control()); 124 // Re-execute flattened array load if buffering triggers deoptimization 125 PreserveReexecuteState preexecs(this); 126 jvms()->set_should_reexecute(true); 127 inc_sp(2); 128 Node* vt = InlineTypeNode::make_from_flattened(this, vk, cast, casted_adr)->buffer(this, false); 129 ideal.set(res, vt); 130 ideal.sync_kit(this); 131 } else { 132 // Element type is unknown, emit runtime call 133 134 // Below membars keep this access to an unknown flattened array correctly 135 // ordered with other unknown and known flattened array accesses. 136 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 137 138 Node* call = NULL; 139 { 140 // Re-execute flattened array load if runtime call triggers deoptimization 141 PreserveReexecuteState preexecs(this); 142 jvms()->set_bci(_bci); 143 jvms()->set_should_reexecute(true); 144 inc_sp(2); 145 kill_dead_locals(); 146 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 147 OptoRuntime::load_unknown_inline_type(), 148 OptoRuntime::load_unknown_inline_Java(), 149 NULL, TypeRawPtr::BOTTOM, 150 ary, idx); 151 } 152 make_slow_call_ex(call, env()->Throwable_klass(), false); 153 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 154 155 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 156 157 // Keep track of the information that the inline type is flattened in arrays 158 const Type* unknown_value = elemptr->is_instptr()->cast_to_flatten_array(); 159 buffer = _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 160 161 ideal.sync_kit(this); 162 ideal.set(res, buffer); 163 } 164 } ideal.end_if(); 165 sync_kit(ideal); 166 Node* ld = _gvn.transform(ideal.value(res)); 167 ld = record_profile_for_speculation_at_array_load(ld); 168 push_node(bt, ld); 169 return; 170 } 171 172 if (elemtype == TypeInt::BOOL) { 173 bt = T_BOOLEAN; 174 } 175 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 176 Node* ld = access_load_at(ary, adr, adr_type, elemtype, bt, 177 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 178 ld = record_profile_for_speculation_at_array_load(ld); 179 // Loading a non-flattened inline type 180 if (elemptr != NULL && elemptr->is_inlinetypeptr()) { 181 assert(!ary_t->is_null_free() || !elemptr->maybe_null(), "inline type array elements should never be null"); 182 ld = InlineTypeNode::make_from_oop(this, ld, elemptr->inline_klass(), !elemptr->maybe_null()); 183 } 184 push_node(bt, ld); 185 } 186 187 188 //--------------------------------array_store---------------------------------- 189 void Parse::array_store(BasicType bt) { 190 const Type* elemtype = Type::TOP; 191 Node* adr = array_addressing(bt, type2size[bt], elemtype); 192 if (stopped()) return; // guaranteed null or range check 193 Node* cast_val = NULL; 194 if (bt == T_OBJECT) { 195 cast_val = array_store_check(adr, elemtype); 196 if (stopped()) return; 197 } 198 Node* val = pop_node(bt); // Value to store 199 Node* idx = pop(); // Index in the array 200 Node* ary = pop(); // The array itself 201 202 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr(); 203 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 204 205 if (elemtype == TypeInt::BOOL) { 206 bt = T_BOOLEAN; 207 } else if (bt == T_OBJECT) { 208 elemtype = elemtype->make_oopptr(); 209 const Type* tval = _gvn.type(cast_val); 210 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 211 // This is only legal for non-null stores because the array_store_check always passes for null, even 212 // if the array is null-free. Null stores are handled in GraphKit::gen_inline_array_null_guard(). 213 bool not_null_free = !tval->maybe_null() && !tval->is_oopptr()->can_be_inline_type(); 214 bool not_flattened = not_null_free || (tval->is_inlinetypeptr() && !tval->inline_klass()->flatten_array()); 215 if (!ary_t->is_not_null_free() && not_null_free) { 216 // Storing a non-inline type, mark array as not null-free (-> not flat). 217 ary_t = ary_t->cast_to_not_null_free(); 218 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 219 replace_in_map(ary, cast); 220 ary = cast; 221 } else if (!ary_t->is_not_flat() && not_flattened) { 222 // Storing a non-flattened value, mark array as not flat. 223 ary_t = ary_t->cast_to_not_flat(); 224 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t)); 225 replace_in_map(ary, cast); 226 ary = cast; 227 } 228 229 if (ary_t->is_flat()) { 230 // Store to flattened inline type array 231 assert(!tval->maybe_null(), "should be guaranteed by array store check"); 232 // Re-execute flattened array store if buffering triggers deoptimization 233 PreserveReexecuteState preexecs(this); 234 inc_sp(3); 235 jvms()->set_should_reexecute(true); 236 cast_val->as_InlineType()->store_flattened(this, ary, adr, NULL, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 237 return; 238 } else if (ary_t->is_null_free()) { 239 // Store to non-flattened inline type array (elements can never be null) 240 assert(!tval->maybe_null(), "should be guaranteed by array store check"); 241 if (elemtype->inline_klass()->is_empty()) { 242 // Ignore empty inline stores, array is already initialized. 243 return; 244 } 245 } else if (!ary_t->is_not_flat() && (tval != TypePtr::NULL_PTR || StressReflectiveCode)) { 246 // Array might be flattened, emit runtime checks (for NULL, a simple inline_array_null_guard is sufficient). 247 assert(UseFlatArray && !not_flattened && elemtype->is_oopptr()->can_be_inline_type() && 248 !ary_t->klass_is_exact() && !ary_t->is_not_null_free(), "array can't be flattened"); 249 IdealKit ideal(this); 250 ideal.if_then(flat_array_test(ary, /* flat = */ false)); { 251 // non-flattened 252 assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 253 sync_kit(ideal); 254 Node* cast_ary = inline_array_null_guard(ary, cast_val, 3); 255 inc_sp(3); 256 access_store_at(cast_ary, adr, adr_type, cast_val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 257 dec_sp(3); 258 ideal.sync_kit(this); 259 } ideal.else_(); { 260 sync_kit(ideal); 261 // flattened 262 Node* null_ctl = top(); 263 Node* val = null_check_oop(cast_val, &null_ctl); 264 if (null_ctl != top()) { 265 PreserveJVMState pjvms(this); 266 inc_sp(3); 267 set_control(null_ctl); 268 uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none); 269 dec_sp(3); 270 } 271 // Try to determine the inline klass 272 ciInlineKlass* vk = NULL; 273 if (tval->is_inlinetypeptr()) { 274 vk = tval->inline_klass(); 275 } else if (elemtype->is_inlinetypeptr()) { 276 vk = elemtype->inline_klass(); 277 } 278 Node* casted_ary = ary; 279 if (vk != NULL && !stopped()) { 280 // Element type is known, cast and store to flattened representation 281 assert(vk->flatten_array() && elemtype->maybe_null(), "never/always flat - should be optimized"); 282 ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true); 283 const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr(); 284 casted_ary = _gvn.transform(new CheckCastPPNode(control(), casted_ary, arytype)); 285 Node* casted_adr = array_element_address(casted_ary, idx, T_OBJECT, arytype->size(), control()); 286 if (!val->is_InlineType()) { 287 assert(!gvn().type(val)->maybe_null(), "inline type array elements should never be null"); 288 val = InlineTypeNode::make_from_oop(this, val, vk); 289 } 290 // Re-execute flattened array store if buffering triggers deoptimization 291 PreserveReexecuteState preexecs(this); 292 inc_sp(3); 293 jvms()->set_should_reexecute(true); 294 val->as_InlineType()->store_flattened(this, casted_ary, casted_adr, NULL, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY); 295 } else if (!stopped()) { 296 // Element type is unknown, emit runtime call 297 298 // Below membars keep this access to an unknown flattened array correctly 299 // ordered with other unknown and known flattened array accesses. 300 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 301 302 make_runtime_call(RC_LEAF, 303 OptoRuntime::store_unknown_inline_type(), 304 CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline), 305 "store_unknown_inline", TypeRawPtr::BOTTOM, 306 val, casted_ary, idx); 307 308 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 309 } 310 ideal.sync_kit(this); 311 } 312 ideal.end_if(); 313 sync_kit(ideal); 314 return; 315 } else if (!ary_t->is_not_null_free()) { 316 // Array is not flattened but may be null free 317 assert(elemtype->is_oopptr()->can_be_inline_type() && !ary_t->klass_is_exact(), "array can't be null-free"); 318 ary = inline_array_null_guard(ary, cast_val, 3, true); 319 } 320 } 321 inc_sp(3); 322 access_store_at(ary, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 323 dec_sp(3); 324 } 325 326 327 //------------------------------array_addressing------------------------------- 328 // Pull array and index from the stack. Compute pointer-to-element. 329 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 330 Node *idx = peek(0+vals); // Get from stack without popping 331 Node *ary = peek(1+vals); // in case of exception 332 333 // Null check the array base, with correct stack contents 334 ary = null_check(ary, T_ARRAY); 335 // Compile-time detect of null-exception? 336 if (stopped()) return top(); 337 338 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 339 const TypeInt* sizetype = arytype->size(); 340 elemtype = arytype->elem(); 341 342 if (UseUniqueSubclasses) { 343 const Type* el = elemtype->make_ptr(); 344 if (el && el->isa_instptr()) { 345 const TypeInstPtr* toop = el->is_instptr(); 346 if (toop->instance_klass()->unique_concrete_subklass()) { 347 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 348 const Type* subklass = Type::get_const_type(toop->instance_klass()); 349 elemtype = subklass->join_speculative(el); 350 } 351 } 352 } 353 354 // Check for big class initializers with all constant offsets 355 // feeding into a known-size array. 356 const TypeInt* idxtype = _gvn.type(idx)->is_int(); 357 // See if the highest idx value is less than the lowest array bound, 358 // and if the idx value cannot be negative: 359 bool need_range_check = true; 360 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { 361 need_range_check = false; 362 if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'"); 363 } 364 365 if (!arytype->is_loaded()) { 366 // Only fails for some -Xcomp runs 367 // The class is unloaded. We have to run this bytecode in the interpreter. 368 ciKlass* klass = arytype->unloaded_klass(); 369 370 uncommon_trap(Deoptimization::Reason_unloaded, 371 Deoptimization::Action_reinterpret, 372 klass, "!loaded array"); 373 return top(); 374 } 375 376 // Do the range check 377 if (GenerateRangeChecks && need_range_check) { 378 Node* tst; 379 if (sizetype->_hi <= 0) { 380 // The greatest array bound is negative, so we can conclude that we're 381 // compiling unreachable code, but the unsigned compare trick used below 382 // only works with non-negative lengths. Instead, hack "tst" to be zero so 383 // the uncommon_trap path will always be taken. 384 tst = _gvn.intcon(0); 385 } else { 386 // Range is constant in array-oop, so we can use the original state of mem 387 Node* len = load_array_length(ary); 388 389 // Test length vs index (standard trick using unsigned compare) 390 Node* chk = _gvn.transform( new CmpUNode(idx, len) ); 391 BoolTest::mask btest = BoolTest::lt; 392 tst = _gvn.transform( new BoolNode(chk, btest) ); 393 } 394 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 395 _gvn.set_type(rc, rc->Value(&_gvn)); 396 if (!tst->is_Con()) { 397 record_for_igvn(rc); 398 } 399 set_control(_gvn.transform(new IfTrueNode(rc))); 400 // Branch to failure if out of bounds 401 { 402 PreserveJVMState pjvms(this); 403 set_control(_gvn.transform(new IfFalseNode(rc))); 404 if (C->allow_range_check_smearing()) { 405 // Do not use builtin_throw, since range checks are sometimes 406 // made more stringent by an optimistic transformation. 407 // This creates "tentative" range checks at this point, 408 // which are not guaranteed to throw exceptions. 409 // See IfNode::Ideal, is_range_check, adjust_check. 410 uncommon_trap(Deoptimization::Reason_range_check, 411 Deoptimization::Action_make_not_entrant, 412 NULL, "range_check"); 413 } else { 414 // If we have already recompiled with the range-check-widening 415 // heroic optimization turned off, then we must really be throwing 416 // range check exceptions. 417 builtin_throw(Deoptimization::Reason_range_check); 418 } 419 } 420 } 421 // Check for always knowing you are throwing a range-check exception 422 if (stopped()) return top(); 423 424 // This could be an access to an inline type array. We can't tell if it's 425 // flat or not. Knowing the exact type avoids runtime checks and leads to 426 // a much simpler graph shape. Check profile information. 427 if (!arytype->is_flat() && !arytype->is_not_flat()) { 428 // First check the speculative type 429 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 430 ciKlass* array_type = arytype->speculative_type(); 431 if (too_many_traps_or_recompiles(reason) || array_type == NULL) { 432 // No speculative type, check profile data at this bci 433 array_type = NULL; 434 reason = Deoptimization::Reason_class_check; 435 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 436 ciKlass* element_type = NULL; 437 ProfilePtrKind element_ptr = ProfileMaybeNull; 438 bool flat_array = true; 439 bool null_free_array = true; 440 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 441 } 442 } 443 if (array_type != NULL) { 444 // Speculate that this array has the exact type reported by profile data 445 Node* better_ary = NULL; 446 DEBUG_ONLY(Node* old_control = control();) 447 Node* slow_ctl = type_check_receiver(ary, array_type, 1.0, &better_ary); 448 if (stopped()) { 449 // The check always fails and therefore profile information is incorrect. Don't use it. 450 assert(old_control == slow_ctl, "type check should have been removed"); 451 set_control(slow_ctl); 452 } else if (!slow_ctl->is_top()) { 453 { PreserveJVMState pjvms(this); 454 set_control(slow_ctl); 455 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 456 } 457 replace_in_map(ary, better_ary); 458 ary = better_ary; 459 arytype = _gvn.type(ary)->is_aryptr(); 460 elemtype = arytype->elem(); 461 } 462 } 463 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 464 // No need to speculate: feed profile data at this bci for the 465 // array to type speculation 466 ciKlass* array_type = NULL; 467 ciKlass* element_type = NULL; 468 ProfilePtrKind element_ptr = ProfileMaybeNull; 469 bool flat_array = true; 470 bool null_free_array = true; 471 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 472 if (array_type != NULL) { 473 ary = record_profile_for_speculation(ary, array_type, ProfileMaybeNull); 474 } 475 } 476 477 // We have no exact array type from profile data. Check profile data 478 // for a non null-free or non flat array. Non null-free implies non 479 // flat so check this one first. Speculating on a non null-free 480 // array doesn't help aaload but could be profitable for a 481 // subsequent aastore. 482 if (!arytype->is_null_free() && !arytype->is_not_null_free()) { 483 bool null_free_array = true; 484 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 485 if (arytype->speculative() != NULL && 486 arytype->speculative()->is_aryptr()->is_not_null_free() && 487 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 488 null_free_array = false; 489 reason = Deoptimization::Reason_speculate_class_check; 490 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 491 ciKlass* array_type = NULL; 492 ciKlass* element_type = NULL; 493 ProfilePtrKind element_ptr = ProfileMaybeNull; 494 bool flat_array = true; 495 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 496 reason = Deoptimization::Reason_class_check; 497 } 498 if (!null_free_array) { 499 { // Deoptimize if null-free array 500 BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX); 501 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 502 } 503 assert(!stopped(), "null-free array should have been caught earlier"); 504 Node* better_ary = _gvn.transform(new CheckCastPPNode(control(), ary, arytype->cast_to_not_null_free())); 505 replace_in_map(ary, better_ary); 506 ary = better_ary; 507 arytype = _gvn.type(ary)->is_aryptr(); 508 } 509 } 510 511 if (!arytype->is_flat() && !arytype->is_not_flat()) { 512 bool flat_array = true; 513 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 514 if (arytype->speculative() != NULL && 515 arytype->speculative()->is_aryptr()->is_not_flat() && 516 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 517 flat_array = false; 518 reason = Deoptimization::Reason_speculate_class_check; 519 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 520 ciKlass* array_type = NULL; 521 ciKlass* element_type = NULL; 522 ProfilePtrKind element_ptr = ProfileMaybeNull; 523 bool null_free_array = true; 524 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 525 reason = Deoptimization::Reason_class_check; 526 } 527 if (!flat_array) { 528 { // Deoptimize if flat array 529 BuildCutout unless(this, flat_array_test(ary, /* flat = */ false), PROB_MAX); 530 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 531 } 532 assert(!stopped(), "flat array should have been caught earlier"); 533 Node* better_ary = _gvn.transform(new CheckCastPPNode(control(), ary, arytype->cast_to_not_flat())); 534 replace_in_map(ary, better_ary); 535 ary = better_ary; 536 arytype = _gvn.type(ary)->is_aryptr(); 537 } 538 } 539 540 // Make array address computation control dependent to prevent it 541 // from floating above the range check during loop optimizations. 542 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 543 assert(ptr != top(), "top should go hand-in-hand with stopped"); 544 545 return ptr; 546 } 547 548 549 // returns IfNode 550 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 551 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 552 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 553 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 554 return iff; 555 } 556 557 558 // sentinel value for the target bci to mark never taken branches 559 // (according to profiling) 560 static const int never_reached = INT_MAX; 561 562 //------------------------------helper for tableswitch------------------------- 563 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 564 // True branch, use existing map info 565 { PreserveJVMState pjvms(this); 566 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 567 set_control( iftrue ); 568 if (unc) { 569 repush_if_args(); 570 uncommon_trap(Deoptimization::Reason_unstable_if, 571 Deoptimization::Action_reinterpret, 572 NULL, 573 "taken always"); 574 } else { 575 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 576 merge_new_path(dest_bci_if_true); 577 } 578 } 579 580 // False branch 581 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 582 set_control( iffalse ); 583 } 584 585 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 586 // True branch, use existing map info 587 { PreserveJVMState pjvms(this); 588 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 589 set_control( iffalse ); 590 if (unc) { 591 repush_if_args(); 592 uncommon_trap(Deoptimization::Reason_unstable_if, 593 Deoptimization::Action_reinterpret, 594 NULL, 595 "taken never"); 596 } else { 597 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 598 merge_new_path(dest_bci_if_true); 599 } 600 } 601 602 // False branch 603 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 604 set_control( iftrue ); 605 } 606 607 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 608 // False branch, use existing map and control() 609 if (unc) { 610 repush_if_args(); 611 uncommon_trap(Deoptimization::Reason_unstable_if, 612 Deoptimization::Action_reinterpret, 613 NULL, 614 "taken never"); 615 } else { 616 assert(dest_bci != never_reached, "inconsistent dest"); 617 merge_new_path(dest_bci); 618 } 619 } 620 621 622 extern "C" { 623 static int jint_cmp(const void *i, const void *j) { 624 int a = *(jint *)i; 625 int b = *(jint *)j; 626 return a > b ? 1 : a < b ? -1 : 0; 627 } 628 } 629 630 631 class SwitchRange : public StackObj { 632 // a range of integers coupled with a bci destination 633 jint _lo; // inclusive lower limit 634 jint _hi; // inclusive upper limit 635 int _dest; 636 float _cnt; // how many times this range was hit according to profiling 637 638 public: 639 jint lo() const { return _lo; } 640 jint hi() const { return _hi; } 641 int dest() const { return _dest; } 642 bool is_singleton() const { return _lo == _hi; } 643 float cnt() const { return _cnt; } 644 645 void setRange(jint lo, jint hi, int dest, float cnt) { 646 assert(lo <= hi, "must be a non-empty range"); 647 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 648 assert(_cnt >= 0, ""); 649 } 650 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 651 assert(lo <= hi, "must be a non-empty range"); 652 if (lo == _hi+1) { 653 // see merge_ranges() comment below 654 if (trim_ranges) { 655 if (cnt == 0) { 656 if (_cnt != 0) { 657 return false; 658 } 659 if (dest != _dest) { 660 _dest = never_reached; 661 } 662 } else { 663 if (_cnt == 0) { 664 return false; 665 } 666 if (dest != _dest) { 667 return false; 668 } 669 } 670 } else { 671 if (dest != _dest) { 672 return false; 673 } 674 } 675 _hi = hi; 676 _cnt += cnt; 677 return true; 678 } 679 return false; 680 } 681 682 void set (jint value, int dest, float cnt) { 683 setRange(value, value, dest, cnt); 684 } 685 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 686 return adjoinRange(value, value, dest, cnt, trim_ranges); 687 } 688 bool adjoin(SwitchRange& other) { 689 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 690 } 691 692 void print() { 693 if (is_singleton()) 694 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 695 else if (lo() == min_jint) 696 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 697 else if (hi() == max_jint) 698 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 699 else 700 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 701 } 702 }; 703 704 // We try to minimize the number of ranges and the size of the taken 705 // ones using profiling data. When ranges are created, 706 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 707 // if both were never hit or both were hit to build longer unreached 708 // ranges. Here, we now merge adjoining ranges with the same 709 // destination and finally set destination of unreached ranges to the 710 // special value never_reached because it can help minimize the number 711 // of tests that are necessary. 712 // 713 // For instance: 714 // [0, 1] to target1 sometimes taken 715 // [1, 2] to target1 never taken 716 // [2, 3] to target2 never taken 717 // would lead to: 718 // [0, 1] to target1 sometimes taken 719 // [1, 3] never taken 720 // 721 // (first 2 ranges to target1 are not merged) 722 static void merge_ranges(SwitchRange* ranges, int& rp) { 723 if (rp == 0) { 724 return; 725 } 726 int shift = 0; 727 for (int j = 0; j < rp; j++) { 728 SwitchRange& r1 = ranges[j-shift]; 729 SwitchRange& r2 = ranges[j+1]; 730 if (r1.adjoin(r2)) { 731 shift++; 732 } else if (shift > 0) { 733 ranges[j+1-shift] = r2; 734 } 735 } 736 rp -= shift; 737 for (int j = 0; j <= rp; j++) { 738 SwitchRange& r = ranges[j]; 739 if (r.cnt() == 0 && r.dest() != never_reached) { 740 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 741 } 742 } 743 } 744 745 //-------------------------------do_tableswitch-------------------------------- 746 void Parse::do_tableswitch() { 747 // Get information about tableswitch 748 int default_dest = iter().get_dest_table(0); 749 jint lo_index = iter().get_int_table(1); 750 jint hi_index = iter().get_int_table(2); 751 int len = hi_index - lo_index + 1; 752 753 if (len < 1) { 754 // If this is a backward branch, add safepoint 755 maybe_add_safepoint(default_dest); 756 pop(); // the effect of the instruction execution on the operand stack 757 merge(default_dest); 758 return; 759 } 760 761 ciMethodData* methodData = method()->method_data(); 762 ciMultiBranchData* profile = NULL; 763 if (methodData->is_mature() && UseSwitchProfiling) { 764 ciProfileData* data = methodData->bci_to_data(bci()); 765 if (data != NULL && data->is_MultiBranchData()) { 766 profile = (ciMultiBranchData*)data; 767 } 768 } 769 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 770 771 // generate decision tree, using trichotomy when possible 772 int rnum = len+2; 773 bool makes_backward_branch = false; 774 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 775 int rp = -1; 776 if (lo_index != min_jint) { 777 float cnt = 1.0F; 778 if (profile != NULL) { 779 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 780 } 781 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 782 } 783 for (int j = 0; j < len; j++) { 784 jint match_int = lo_index+j; 785 int dest = iter().get_dest_table(j+3); 786 makes_backward_branch |= (dest <= bci()); 787 float cnt = 1.0F; 788 if (profile != NULL) { 789 cnt = (float)profile->count_at(j); 790 } 791 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 792 ranges[++rp].set(match_int, dest, cnt); 793 } 794 } 795 jint highest = lo_index+(len-1); 796 assert(ranges[rp].hi() == highest, ""); 797 if (highest != max_jint) { 798 float cnt = 1.0F; 799 if (profile != NULL) { 800 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 801 } 802 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 803 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 804 } 805 } 806 assert(rp < len+2, "not too many ranges"); 807 808 if (trim_ranges) { 809 merge_ranges(ranges, rp); 810 } 811 812 // Safepoint in case if backward branch observed 813 if (makes_backward_branch) { 814 add_safepoint(); 815 } 816 817 Node* lookup = pop(); // lookup value 818 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 819 } 820 821 822 //------------------------------do_lookupswitch-------------------------------- 823 void Parse::do_lookupswitch() { 824 // Get information about lookupswitch 825 int default_dest = iter().get_dest_table(0); 826 jint len = iter().get_int_table(1); 827 828 if (len < 1) { // If this is a backward branch, add safepoint 829 maybe_add_safepoint(default_dest); 830 pop(); // the effect of the instruction execution on the operand stack 831 merge(default_dest); 832 return; 833 } 834 835 ciMethodData* methodData = method()->method_data(); 836 ciMultiBranchData* profile = NULL; 837 if (methodData->is_mature() && UseSwitchProfiling) { 838 ciProfileData* data = methodData->bci_to_data(bci()); 839 if (data != NULL && data->is_MultiBranchData()) { 840 profile = (ciMultiBranchData*)data; 841 } 842 } 843 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 844 845 // generate decision tree, using trichotomy when possible 846 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 847 { 848 for (int j = 0; j < len; j++) { 849 table[3*j+0] = iter().get_int_table(2+2*j); 850 table[3*j+1] = iter().get_dest_table(2+2*j+1); 851 // Handle overflow when converting from uint to jint 852 table[3*j+2] = (profile == NULL) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 853 } 854 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 855 } 856 857 float default_cnt = 1.0F; 858 if (profile != NULL) { 859 juint defaults = max_juint - len; 860 default_cnt = (float)profile->default_count()/(float)defaults; 861 } 862 863 int rnum = len*2+1; 864 bool makes_backward_branch = false; 865 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 866 int rp = -1; 867 for (int j = 0; j < len; j++) { 868 jint match_int = table[3*j+0]; 869 jint dest = table[3*j+1]; 870 jint cnt = table[3*j+2]; 871 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 872 makes_backward_branch |= (dest <= bci()); 873 float c = default_cnt * ((float)match_int - (float)next_lo); 874 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 875 assert(default_dest != never_reached, "sentinel value for dead destinations"); 876 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 877 } 878 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 879 assert(dest != never_reached, "sentinel value for dead destinations"); 880 ranges[++rp].set(match_int, dest, (float)cnt); 881 } 882 } 883 jint highest = table[3*(len-1)]; 884 assert(ranges[rp].hi() == highest, ""); 885 if (highest != max_jint && 886 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 887 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 888 } 889 assert(rp < rnum, "not too many ranges"); 890 891 if (trim_ranges) { 892 merge_ranges(ranges, rp); 893 } 894 895 // Safepoint in case backward branch observed 896 if (makes_backward_branch) { 897 add_safepoint(); 898 } 899 900 Node *lookup = pop(); // lookup value 901 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 902 } 903 904 static float if_prob(float taken_cnt, float total_cnt) { 905 assert(taken_cnt <= total_cnt, ""); 906 if (total_cnt == 0) { 907 return PROB_FAIR; 908 } 909 float p = taken_cnt / total_cnt; 910 return clamp(p, PROB_MIN, PROB_MAX); 911 } 912 913 static float if_cnt(float cnt) { 914 if (cnt == 0) { 915 return COUNT_UNKNOWN; 916 } 917 return cnt; 918 } 919 920 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 921 float total_cnt = 0; 922 for (SwitchRange* sr = lo; sr <= hi; sr++) { 923 total_cnt += sr->cnt(); 924 } 925 return total_cnt; 926 } 927 928 class SwitchRanges : public ResourceObj { 929 public: 930 SwitchRange* _lo; 931 SwitchRange* _hi; 932 SwitchRange* _mid; 933 float _cost; 934 935 enum { 936 Start, 937 LeftDone, 938 RightDone, 939 Done 940 } _state; 941 942 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 943 : _lo(lo), _hi(hi), _mid(NULL), 944 _cost(0), _state(Start) { 945 } 946 947 SwitchRanges() 948 : _lo(NULL), _hi(NULL), _mid(NULL), 949 _cost(0), _state(Start) {} 950 }; 951 952 // Estimate cost of performing a binary search on lo..hi 953 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 954 GrowableArray<SwitchRanges> tree; 955 SwitchRanges root(lo, hi); 956 tree.push(root); 957 958 float cost = 0; 959 do { 960 SwitchRanges& r = *tree.adr_at(tree.length()-1); 961 if (r._hi != r._lo) { 962 if (r._mid == NULL) { 963 float r_cnt = sum_of_cnts(r._lo, r._hi); 964 965 if (r_cnt == 0) { 966 tree.pop(); 967 cost = 0; 968 continue; 969 } 970 971 SwitchRange* mid = NULL; 972 mid = r._lo; 973 for (float cnt = 0; ; ) { 974 assert(mid <= r._hi, "out of bounds"); 975 cnt += mid->cnt(); 976 if (cnt > r_cnt / 2) { 977 break; 978 } 979 mid++; 980 } 981 assert(mid <= r._hi, "out of bounds"); 982 r._mid = mid; 983 r._cost = r_cnt / total_cnt; 984 } 985 r._cost += cost; 986 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 987 cost = 0; 988 r._state = SwitchRanges::LeftDone; 989 tree.push(SwitchRanges(r._lo, r._mid-1)); 990 } else if (r._state < SwitchRanges::RightDone) { 991 cost = 0; 992 r._state = SwitchRanges::RightDone; 993 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 994 } else { 995 tree.pop(); 996 cost = r._cost; 997 } 998 } else { 999 tree.pop(); 1000 cost = r._cost; 1001 } 1002 } while (tree.length() > 0); 1003 1004 1005 return cost; 1006 } 1007 1008 // It sometimes pays off to test most common ranges before the binary search 1009 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1010 uint nr = hi - lo + 1; 1011 float total_cnt = sum_of_cnts(lo, hi); 1012 1013 float min = compute_tree_cost(lo, hi, total_cnt); 1014 float extra = 1; 1015 float sub = 0; 1016 1017 SwitchRange* array1 = lo; 1018 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1019 1020 SwitchRange* ranges = NULL; 1021 1022 while (nr >= 2) { 1023 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1024 ranges = (lo == array1) ? array2 : array1; 1025 1026 // Find highest frequency range 1027 SwitchRange* candidate = lo; 1028 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1029 if (sr->cnt() > candidate->cnt()) { 1030 candidate = sr; 1031 } 1032 } 1033 SwitchRange most_freq = *candidate; 1034 if (most_freq.cnt() == 0) { 1035 break; 1036 } 1037 1038 // Copy remaining ranges into another array 1039 int shift = 0; 1040 for (uint i = 0; i < nr; i++) { 1041 SwitchRange* sr = &lo[i]; 1042 if (sr != candidate) { 1043 ranges[i-shift] = *sr; 1044 } else { 1045 shift++; 1046 if (i > 0 && i < nr-1) { 1047 SwitchRange prev = lo[i-1]; 1048 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1049 if (prev.adjoin(lo[i+1])) { 1050 shift++; 1051 i++; 1052 } 1053 ranges[i-shift] = prev; 1054 } 1055 } 1056 } 1057 nr -= shift; 1058 1059 // Evaluate cost of testing the most common range and performing a 1060 // binary search on the other ranges 1061 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1062 if (cost >= min) { 1063 break; 1064 } 1065 // swap arrays 1066 lo = &ranges[0]; 1067 hi = &ranges[nr-1]; 1068 1069 // It pays off: emit the test for the most common range 1070 assert(most_freq.cnt() > 0, "must be taken"); 1071 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1072 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo()))); 1073 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1074 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1075 jump_if_true_fork(iff, most_freq.dest(), false); 1076 1077 sub += most_freq.cnt() / total_cnt; 1078 extra += 1 - sub; 1079 min = cost; 1080 } 1081 } 1082 1083 //----------------------------create_jump_tables------------------------------- 1084 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1085 // Are jumptables enabled 1086 if (!UseJumpTables) return false; 1087 1088 // Are jumptables supported 1089 if (!Matcher::has_match_rule(Op_Jump)) return false; 1090 1091 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1092 1093 // Decide if a guard is needed to lop off big ranges at either (or 1094 // both) end(s) of the input set. We'll call this the default target 1095 // even though we can't be sure that it is the true "default". 1096 1097 bool needs_guard = false; 1098 int default_dest; 1099 int64_t total_outlier_size = 0; 1100 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1101 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1102 1103 if (lo->dest() == hi->dest()) { 1104 total_outlier_size = hi_size + lo_size; 1105 default_dest = lo->dest(); 1106 } else if (lo_size > hi_size) { 1107 total_outlier_size = lo_size; 1108 default_dest = lo->dest(); 1109 } else { 1110 total_outlier_size = hi_size; 1111 default_dest = hi->dest(); 1112 } 1113 1114 float total = sum_of_cnts(lo, hi); 1115 float cost = compute_tree_cost(lo, hi, total); 1116 1117 // If a guard test will eliminate very sparse end ranges, then 1118 // it is worth the cost of an extra jump. 1119 float trimmed_cnt = 0; 1120 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1121 needs_guard = true; 1122 if (default_dest == lo->dest()) { 1123 trimmed_cnt += lo->cnt(); 1124 lo++; 1125 } 1126 if (default_dest == hi->dest()) { 1127 trimmed_cnt += hi->cnt(); 1128 hi--; 1129 } 1130 } 1131 1132 // Find the total number of cases and ranges 1133 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1134 int num_range = hi - lo + 1; 1135 1136 // Don't create table if: too large, too small, or too sparse. 1137 if (num_cases > MaxJumpTableSize) 1138 return false; 1139 if (UseSwitchProfiling) { 1140 // MinJumpTableSize is set so with a well balanced binary tree, 1141 // when the number of ranges is MinJumpTableSize, it's cheaper to 1142 // go through a JumpNode that a tree of IfNodes. Average cost of a 1143 // tree of IfNodes with MinJumpTableSize is 1144 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1145 // from profile data is less than log2f(MinJumpTableSize) then 1146 // going with the binary search is cheaper. 1147 if (cost < log2f(MinJumpTableSize)) { 1148 return false; 1149 } 1150 } else { 1151 if (num_cases < MinJumpTableSize) 1152 return false; 1153 } 1154 if (num_cases > (MaxJumpTableSparseness * num_range)) 1155 return false; 1156 1157 // Normalize table lookups to zero 1158 int lowval = lo->lo(); 1159 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1160 1161 // Generate a guard to protect against input keyvals that aren't 1162 // in the switch domain. 1163 if (needs_guard) { 1164 Node* size = _gvn.intcon(num_cases); 1165 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1166 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1167 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1168 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1169 1170 total -= trimmed_cnt; 1171 } 1172 1173 // Create an ideal node JumpTable that has projections 1174 // of all possible ranges for a switch statement 1175 // The key_val input must be converted to a pointer offset and scaled. 1176 // Compare Parse::array_addressing above. 1177 1178 // Clean the 32-bit int into a real 64-bit offset. 1179 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1180 // Make I2L conversion control dependent to prevent it from 1181 // floating above the range check during loop optimizations. 1182 // Do not use a narrow int type here to prevent the data path from dying 1183 // while the control path is not removed. This can happen if the type of key_val 1184 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1185 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1186 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1187 #ifdef _LP64 1188 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1189 #endif 1190 1191 // Shift the value by wordsize so we have an index into the table, rather 1192 // than a switch value 1193 Node *shiftWord = _gvn.MakeConX(wordSize); 1194 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1195 1196 // Create the JumpNode 1197 Arena* arena = C->comp_arena(); 1198 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1199 int i = 0; 1200 if (total == 0) { 1201 for (SwitchRange* r = lo; r <= hi; r++) { 1202 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1203 probs[i] = 1.0F / num_cases; 1204 } 1205 } 1206 } else { 1207 for (SwitchRange* r = lo; r <= hi; r++) { 1208 float prob = r->cnt()/total; 1209 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1210 probs[i] = prob / (r->hi() - r->lo() + 1); 1211 } 1212 } 1213 } 1214 1215 ciMethodData* methodData = method()->method_data(); 1216 ciMultiBranchData* profile = NULL; 1217 if (methodData->is_mature()) { 1218 ciProfileData* data = methodData->bci_to_data(bci()); 1219 if (data != NULL && data->is_MultiBranchData()) { 1220 profile = (ciMultiBranchData*)data; 1221 } 1222 } 1223 1224 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total)); 1225 1226 // These are the switch destinations hanging off the jumpnode 1227 i = 0; 1228 for (SwitchRange* r = lo; r <= hi; r++) { 1229 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1230 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1231 { 1232 PreserveJVMState pjvms(this); 1233 set_control(input); 1234 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1235 } 1236 } 1237 } 1238 assert(i == num_cases, "miscount of cases"); 1239 stop_and_kill_map(); // no more uses for this JVMS 1240 return true; 1241 } 1242 1243 //----------------------------jump_switch_ranges------------------------------- 1244 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1245 Block* switch_block = block(); 1246 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1247 1248 if (switch_depth == 0) { 1249 // Do special processing for the top-level call. 1250 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1251 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1252 1253 // Decrement pred-numbers for the unique set of nodes. 1254 #ifdef ASSERT 1255 if (!trim_ranges) { 1256 // Ensure that the block's successors are a (duplicate-free) set. 1257 int successors_counted = 0; // block occurrences in [hi..lo] 1258 int unique_successors = switch_block->num_successors(); 1259 for (int i = 0; i < unique_successors; i++) { 1260 Block* target = switch_block->successor_at(i); 1261 1262 // Check that the set of successors is the same in both places. 1263 int successors_found = 0; 1264 for (SwitchRange* p = lo; p <= hi; p++) { 1265 if (p->dest() == target->start()) successors_found++; 1266 } 1267 assert(successors_found > 0, "successor must be known"); 1268 successors_counted += successors_found; 1269 } 1270 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1271 } 1272 #endif 1273 1274 // Maybe prune the inputs, based on the type of key_val. 1275 jint min_val = min_jint; 1276 jint max_val = max_jint; 1277 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1278 if (ti != NULL) { 1279 min_val = ti->_lo; 1280 max_val = ti->_hi; 1281 assert(min_val <= max_val, "invalid int type"); 1282 } 1283 while (lo->hi() < min_val) { 1284 lo++; 1285 } 1286 if (lo->lo() < min_val) { 1287 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1288 } 1289 while (hi->lo() > max_val) { 1290 hi--; 1291 } 1292 if (hi->hi() > max_val) { 1293 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1294 } 1295 1296 linear_search_switch_ranges(key_val, lo, hi); 1297 } 1298 1299 #ifndef PRODUCT 1300 if (switch_depth == 0) { 1301 _max_switch_depth = 0; 1302 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1303 } 1304 #endif 1305 1306 assert(lo <= hi, "must be a non-empty set of ranges"); 1307 if (lo == hi) { 1308 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1309 } else { 1310 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1311 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1312 1313 if (create_jump_tables(key_val, lo, hi)) return; 1314 1315 SwitchRange* mid = NULL; 1316 float total_cnt = sum_of_cnts(lo, hi); 1317 1318 int nr = hi - lo + 1; 1319 if (UseSwitchProfiling) { 1320 // Don't keep the binary search tree balanced: pick up mid point 1321 // that split frequencies in half. 1322 float cnt = 0; 1323 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1324 cnt += sr->cnt(); 1325 if (cnt >= total_cnt / 2) { 1326 mid = sr; 1327 break; 1328 } 1329 } 1330 } else { 1331 mid = lo + nr/2; 1332 1333 // if there is an easy choice, pivot at a singleton: 1334 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1335 1336 assert(lo < mid && mid <= hi, "good pivot choice"); 1337 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1338 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1339 } 1340 1341 1342 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1343 1344 if (mid->is_singleton()) { 1345 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1346 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1347 1348 // Special Case: If there are exactly three ranges, and the high 1349 // and low range each go to the same place, omit the "gt" test, 1350 // since it will not discriminate anything. 1351 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1352 1353 // if there is a higher range, test for it and process it: 1354 if (mid < hi && !eq_test_only) { 1355 // two comparisons of same values--should enable 1 test for 2 branches 1356 // Use BoolTest::lt instead of BoolTest::gt 1357 float cnt = sum_of_cnts(lo, mid-1); 1358 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1359 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1360 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1361 { PreserveJVMState pjvms(this); 1362 set_control(iffalse); 1363 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1364 } 1365 set_control(iftrue); 1366 } 1367 1368 } else { 1369 // mid is a range, not a singleton, so treat mid..hi as a unit 1370 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1371 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1372 1373 // if there is a higher range, test for it and process it: 1374 if (mid == hi) { 1375 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1376 } else { 1377 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1378 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1379 { PreserveJVMState pjvms(this); 1380 set_control(iftrue); 1381 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1382 } 1383 set_control(iffalse); 1384 } 1385 } 1386 1387 // in any case, process the lower range 1388 if (mid == lo) { 1389 if (mid->is_singleton()) { 1390 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1391 } else { 1392 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1393 } 1394 } else { 1395 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1396 } 1397 } 1398 1399 // Decrease pred_count for each successor after all is done. 1400 if (switch_depth == 0) { 1401 int unique_successors = switch_block->num_successors(); 1402 for (int i = 0; i < unique_successors; i++) { 1403 Block* target = switch_block->successor_at(i); 1404 // Throw away the pre-allocated path for each unique successor. 1405 target->next_path_num(); 1406 } 1407 } 1408 1409 #ifndef PRODUCT 1410 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1411 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1412 SwitchRange* r; 1413 int nsing = 0; 1414 for( r = lo; r <= hi; r++ ) { 1415 if( r->is_singleton() ) nsing++; 1416 } 1417 tty->print(">>> "); 1418 _method->print_short_name(); 1419 tty->print_cr(" switch decision tree"); 1420 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1421 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1422 if (_max_switch_depth > _est_switch_depth) { 1423 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1424 } 1425 tty->print(" "); 1426 for( r = lo; r <= hi; r++ ) { 1427 r->print(); 1428 } 1429 tty->cr(); 1430 } 1431 #endif 1432 } 1433 1434 void Parse::modf() { 1435 Node *f2 = pop(); 1436 Node *f1 = pop(); 1437 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1438 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1439 "frem", NULL, //no memory effects 1440 f1, f2); 1441 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1442 1443 push(res); 1444 } 1445 1446 void Parse::modd() { 1447 Node *d2 = pop_pair(); 1448 Node *d1 = pop_pair(); 1449 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1450 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1451 "drem", NULL, //no memory effects 1452 d1, top(), d2, top()); 1453 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1454 1455 #ifdef ASSERT 1456 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1457 assert(res_top == top(), "second value must be top"); 1458 #endif 1459 1460 push_pair(res_d); 1461 } 1462 1463 void Parse::l2f() { 1464 Node* f2 = pop(); 1465 Node* f1 = pop(); 1466 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1467 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1468 "l2f", NULL, //no memory effects 1469 f1, f2); 1470 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1471 1472 push(res); 1473 } 1474 1475 // Handle jsr and jsr_w bytecode 1476 void Parse::do_jsr() { 1477 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1478 1479 // Store information about current state, tagged with new _jsr_bci 1480 int return_bci = iter().next_bci(); 1481 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1482 1483 // The way we do things now, there is only one successor block 1484 // for the jsr, because the target code is cloned by ciTypeFlow. 1485 Block* target = successor_for_bci(jsr_bci); 1486 1487 // What got pushed? 1488 const Type* ret_addr = target->peek(); 1489 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1490 1491 // Effect on jsr on stack 1492 push(_gvn.makecon(ret_addr)); 1493 1494 // Flow to the jsr. 1495 merge(jsr_bci); 1496 } 1497 1498 // Handle ret bytecode 1499 void Parse::do_ret() { 1500 // Find to whom we return. 1501 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1502 Block* target = block()->successor_at(0); 1503 assert(!target->is_ready(), "our arrival must be expected"); 1504 int pnum = target->next_path_num(); 1505 merge_common(target, pnum); 1506 } 1507 1508 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1509 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1510 // Only ::eq and ::ne are supported for profile injection. 1511 return false; 1512 } 1513 if (test->is_Cmp() && 1514 test->in(1)->Opcode() == Op_ProfileBoolean) { 1515 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1516 int false_cnt = profile->false_count(); 1517 int true_cnt = profile->true_count(); 1518 1519 // Counts matching depends on the actual test operation (::eq or ::ne). 1520 // No need to scale the counts because profile injection was designed 1521 // to feed exact counts into VM. 1522 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1523 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1524 1525 profile->consume(); 1526 return true; 1527 } 1528 return false; 1529 } 1530 //--------------------------dynamic_branch_prediction-------------------------- 1531 // Try to gather dynamic branch prediction behavior. Return a probability 1532 // of the branch being taken and set the "cnt" field. Returns a -1.0 1533 // if we need to use static prediction for some reason. 1534 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1535 ResourceMark rm; 1536 1537 cnt = COUNT_UNKNOWN; 1538 1539 int taken = 0; 1540 int not_taken = 0; 1541 1542 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1543 1544 if (use_mdo) { 1545 // Use MethodData information if it is available 1546 // FIXME: free the ProfileData structure 1547 ciMethodData* methodData = method()->method_data(); 1548 if (!methodData->is_mature()) return PROB_UNKNOWN; 1549 ciProfileData* data = methodData->bci_to_data(bci()); 1550 if (data == NULL) { 1551 return PROB_UNKNOWN; 1552 } 1553 if (!data->is_JumpData()) return PROB_UNKNOWN; 1554 1555 // get taken and not taken values 1556 taken = data->as_JumpData()->taken(); 1557 not_taken = 0; 1558 if (data->is_BranchData()) { 1559 not_taken = data->as_BranchData()->not_taken(); 1560 } 1561 1562 // scale the counts to be commensurate with invocation counts: 1563 taken = method()->scale_count(taken); 1564 not_taken = method()->scale_count(not_taken); 1565 } 1566 1567 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1568 // We also check that individual counters are positive first, otherwise the sum can become positive. 1569 if (taken < 0 || not_taken < 0 || taken + not_taken < 40) { 1570 if (C->log() != NULL) { 1571 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1572 } 1573 return PROB_UNKNOWN; 1574 } 1575 1576 // Compute frequency that we arrive here 1577 float sum = taken + not_taken; 1578 // Adjust, if this block is a cloned private block but the 1579 // Jump counts are shared. Taken the private counts for 1580 // just this path instead of the shared counts. 1581 if( block()->count() > 0 ) 1582 sum = block()->count(); 1583 cnt = sum / FreqCountInvocations; 1584 1585 // Pin probability to sane limits 1586 float prob; 1587 if( !taken ) 1588 prob = (0+PROB_MIN) / 2; 1589 else if( !not_taken ) 1590 prob = (1+PROB_MAX) / 2; 1591 else { // Compute probability of true path 1592 prob = (float)taken / (float)(taken + not_taken); 1593 if (prob > PROB_MAX) prob = PROB_MAX; 1594 if (prob < PROB_MIN) prob = PROB_MIN; 1595 } 1596 1597 assert((cnt > 0.0f) && (prob > 0.0f), 1598 "Bad frequency assignment in if"); 1599 1600 if (C->log() != NULL) { 1601 const char* prob_str = NULL; 1602 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1603 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1604 char prob_str_buf[30]; 1605 if (prob_str == NULL) { 1606 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1607 prob_str = prob_str_buf; 1608 } 1609 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1610 iter().get_dest(), taken, not_taken, cnt, prob_str); 1611 } 1612 return prob; 1613 } 1614 1615 //-----------------------------branch_prediction------------------------------- 1616 float Parse::branch_prediction(float& cnt, 1617 BoolTest::mask btest, 1618 int target_bci, 1619 Node* test) { 1620 float prob = dynamic_branch_prediction(cnt, btest, test); 1621 // If prob is unknown, switch to static prediction 1622 if (prob != PROB_UNKNOWN) return prob; 1623 1624 prob = PROB_FAIR; // Set default value 1625 if (btest == BoolTest::eq) // Exactly equal test? 1626 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1627 else if (btest == BoolTest::ne) 1628 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1629 1630 // If this is a conditional test guarding a backwards branch, 1631 // assume its a loop-back edge. Make it a likely taken branch. 1632 if (target_bci < bci()) { 1633 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1634 // Since it's an OSR, we probably have profile data, but since 1635 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1636 // Let's make a special check here for completely zero counts. 1637 ciMethodData* methodData = method()->method_data(); 1638 if (!methodData->is_empty()) { 1639 ciProfileData* data = methodData->bci_to_data(bci()); 1640 // Only stop for truly zero counts, which mean an unknown part 1641 // of the OSR-ed method, and we want to deopt to gather more stats. 1642 // If you have ANY counts, then this loop is simply 'cold' relative 1643 // to the OSR loop. 1644 if (data == NULL || 1645 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1646 // This is the only way to return PROB_UNKNOWN: 1647 return PROB_UNKNOWN; 1648 } 1649 } 1650 } 1651 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1652 } 1653 1654 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1655 return prob; 1656 } 1657 1658 // The magic constants are chosen so as to match the output of 1659 // branch_prediction() when the profile reports a zero taken count. 1660 // It is important to distinguish zero counts unambiguously, because 1661 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1662 // very small but nonzero probabilities, which if confused with zero 1663 // counts would keep the program recompiling indefinitely. 1664 bool Parse::seems_never_taken(float prob) const { 1665 return prob < PROB_MIN; 1666 } 1667 1668 // True if the comparison seems to be the kind that will not change its 1669 // statistics from true to false. See comments in adjust_map_after_if. 1670 // This question is only asked along paths which are already 1671 // classified as untaken (by seems_never_taken), so really, 1672 // if a path is never taken, its controlling comparison is 1673 // already acting in a stable fashion. If the comparison 1674 // seems stable, we will put an expensive uncommon trap 1675 // on the untaken path. 1676 bool Parse::seems_stable_comparison() const { 1677 if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) { 1678 return false; 1679 } 1680 return true; 1681 } 1682 1683 //-------------------------------repush_if_args-------------------------------- 1684 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1685 inline int Parse::repush_if_args() { 1686 if (PrintOpto && WizardMode) { 1687 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1688 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1689 method()->print_name(); tty->cr(); 1690 } 1691 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1692 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1693 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1694 assert(argument(0) != NULL, "must exist"); 1695 assert(bc_depth == 1 || argument(1) != NULL, "two must exist"); 1696 inc_sp(bc_depth); 1697 return bc_depth; 1698 } 1699 1700 //----------------------------------do_ifnull---------------------------------- 1701 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1702 int target_bci = iter().get_dest(); 1703 1704 Block* branch_block = successor_for_bci(target_bci); 1705 Block* next_block = successor_for_bci(iter().next_bci()); 1706 1707 float cnt; 1708 float prob = branch_prediction(cnt, btest, target_bci, c); 1709 if (prob == PROB_UNKNOWN) { 1710 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1711 if (PrintOpto && Verbose) { 1712 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1713 } 1714 repush_if_args(); // to gather stats on loop 1715 uncommon_trap(Deoptimization::Reason_unreached, 1716 Deoptimization::Action_reinterpret, 1717 NULL, "cold"); 1718 if (C->eliminate_boxing()) { 1719 // Mark the successor blocks as parsed 1720 branch_block->next_path_num(); 1721 next_block->next_path_num(); 1722 } 1723 return; 1724 } 1725 1726 NOT_PRODUCT(explicit_null_checks_inserted++); 1727 1728 // Generate real control flow 1729 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1730 1731 // Sanity check the probability value 1732 assert(prob > 0.0f,"Bad probability in Parser"); 1733 // Need xform to put node in hash table 1734 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1735 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1736 // True branch 1737 { PreserveJVMState pjvms(this); 1738 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1739 set_control(iftrue); 1740 1741 if (stopped()) { // Path is dead? 1742 NOT_PRODUCT(explicit_null_checks_elided++); 1743 if (C->eliminate_boxing()) { 1744 // Mark the successor block as parsed 1745 branch_block->next_path_num(); 1746 } 1747 } else { // Path is live. 1748 adjust_map_after_if(btest, c, prob, branch_block); 1749 if (!stopped()) { 1750 merge(target_bci); 1751 } 1752 } 1753 } 1754 1755 // False branch 1756 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1757 set_control(iffalse); 1758 1759 if (stopped()) { // Path is dead? 1760 NOT_PRODUCT(explicit_null_checks_elided++); 1761 if (C->eliminate_boxing()) { 1762 // Mark the successor block as parsed 1763 next_block->next_path_num(); 1764 } 1765 } else { // Path is live. 1766 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1767 } 1768 } 1769 1770 //------------------------------------do_if------------------------------------ 1771 void Parse::do_if(BoolTest::mask btest, Node* c, bool new_path, Node** ctrl_taken) { 1772 int target_bci = iter().get_dest(); 1773 1774 Block* branch_block = successor_for_bci(target_bci); 1775 Block* next_block = successor_for_bci(iter().next_bci()); 1776 1777 float cnt; 1778 float prob = branch_prediction(cnt, btest, target_bci, c); 1779 float untaken_prob = 1.0 - prob; 1780 1781 if (prob == PROB_UNKNOWN) { 1782 if (PrintOpto && Verbose) { 1783 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1784 } 1785 repush_if_args(); // to gather stats on loop 1786 uncommon_trap(Deoptimization::Reason_unreached, 1787 Deoptimization::Action_reinterpret, 1788 NULL, "cold"); 1789 if (C->eliminate_boxing()) { 1790 // Mark the successor blocks as parsed 1791 branch_block->next_path_num(); 1792 next_block->next_path_num(); 1793 } 1794 return; 1795 } 1796 1797 // Sanity check the probability value 1798 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1799 1800 bool taken_if_true = true; 1801 // Convert BoolTest to canonical form: 1802 if (!BoolTest(btest).is_canonical()) { 1803 btest = BoolTest(btest).negate(); 1804 taken_if_true = false; 1805 // prob is NOT updated here; it remains the probability of the taken 1806 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1807 } 1808 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1809 1810 Node* tst0 = new BoolNode(c, btest); 1811 Node* tst = _gvn.transform(tst0); 1812 BoolTest::mask taken_btest = BoolTest::illegal; 1813 BoolTest::mask untaken_btest = BoolTest::illegal; 1814 1815 if (tst->is_Bool()) { 1816 // Refresh c from the transformed bool node, since it may be 1817 // simpler than the original c. Also re-canonicalize btest. 1818 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)). 1819 // That can arise from statements like: if (x instanceof C) ... 1820 if (tst != tst0) { 1821 // Canonicalize one more time since transform can change it. 1822 btest = tst->as_Bool()->_test._test; 1823 if (!BoolTest(btest).is_canonical()) { 1824 // Reverse edges one more time... 1825 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1826 btest = tst->as_Bool()->_test._test; 1827 assert(BoolTest(btest).is_canonical(), "sanity"); 1828 taken_if_true = !taken_if_true; 1829 } 1830 c = tst->in(1); 1831 } 1832 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1833 taken_btest = taken_if_true ? btest : neg_btest; 1834 untaken_btest = taken_if_true ? neg_btest : btest; 1835 } 1836 1837 // Generate real control flow 1838 float true_prob = (taken_if_true ? prob : untaken_prob); 1839 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1840 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1841 Node* taken_branch = new IfTrueNode(iff); 1842 Node* untaken_branch = new IfFalseNode(iff); 1843 if (!taken_if_true) { // Finish conversion to canonical form 1844 Node* tmp = taken_branch; 1845 taken_branch = untaken_branch; 1846 untaken_branch = tmp; 1847 } 1848 1849 // Branch is taken: 1850 { PreserveJVMState pjvms(this); 1851 taken_branch = _gvn.transform(taken_branch); 1852 set_control(taken_branch); 1853 1854 if (stopped()) { 1855 if (C->eliminate_boxing() && !new_path) { 1856 // Mark the successor block as parsed (if we haven't created a new path) 1857 branch_block->next_path_num(); 1858 } 1859 } else { 1860 adjust_map_after_if(taken_btest, c, prob, branch_block); 1861 if (!stopped()) { 1862 if (new_path) { 1863 // Merge by using a new path 1864 merge_new_path(target_bci); 1865 } else if (ctrl_taken != NULL) { 1866 // Don't merge but save taken branch to be wired by caller 1867 *ctrl_taken = control(); 1868 } else { 1869 merge(target_bci); 1870 } 1871 } 1872 } 1873 } 1874 1875 untaken_branch = _gvn.transform(untaken_branch); 1876 set_control(untaken_branch); 1877 1878 // Branch not taken. 1879 if (stopped() && ctrl_taken == NULL) { 1880 if (C->eliminate_boxing()) { 1881 // Mark the successor block as parsed (if caller does not re-wire control flow) 1882 next_block->next_path_num(); 1883 } 1884 } else { 1885 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block); 1886 } 1887 } 1888 1889 1890 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 1891 if (t->speculative() == NULL) { 1892 return ProfileUnknownNull; 1893 } 1894 if (t->speculative_always_null()) { 1895 return ProfileAlwaysNull; 1896 } 1897 if (t->speculative_maybe_null()) { 1898 return ProfileMaybeNull; 1899 } 1900 return ProfileNeverNull; 1901 } 1902 1903 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 1904 inc_sp(2); 1905 Node* cast = null_check_common(input, T_OBJECT, true, NULL, 1906 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 1907 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 1908 dec_sp(2); 1909 if (btest == BoolTest::ne) { 1910 { 1911 PreserveJVMState pjvms(this); 1912 replace_in_map(input, cast); 1913 int target_bci = iter().get_dest(); 1914 merge(target_bci); 1915 } 1916 record_for_igvn(eq_region); 1917 set_control(_gvn.transform(eq_region)); 1918 } else { 1919 replace_in_map(input, cast); 1920 } 1921 } 1922 1923 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 1924 inc_sp(2); 1925 null_ctl = top(); 1926 Node* cast = null_check_oop(input, &null_ctl, 1927 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 1928 false, 1929 speculative_ptr_kind(tinput) == ProfileNeverNull && 1930 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 1931 dec_sp(2); 1932 assert(!stopped(), "null input should have been caught earlier"); 1933 return cast; 1934 } 1935 1936 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 1937 Node* ne_region = new RegionNode(1); 1938 Node* null_ctl; 1939 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 1940 ne_region->add_req(null_ctl); 1941 1942 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 1943 { 1944 PreserveJVMState pjvms(this); 1945 inc_sp(2); 1946 set_control(slow_ctl); 1947 Deoptimization::DeoptReason reason; 1948 if (tinput->speculative_type() != NULL && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 1949 reason = Deoptimization::Reason_speculate_class_check; 1950 } else { 1951 reason = Deoptimization::Reason_class_check; 1952 } 1953 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 1954 } 1955 ne_region->add_req(control()); 1956 1957 record_for_igvn(ne_region); 1958 set_control(_gvn.transform(ne_region)); 1959 if (btest == BoolTest::ne) { 1960 { 1961 PreserveJVMState pjvms(this); 1962 if (null_ctl == top()) { 1963 replace_in_map(input, cast); 1964 } 1965 int target_bci = iter().get_dest(); 1966 merge(target_bci); 1967 } 1968 record_for_igvn(eq_region); 1969 set_control(_gvn.transform(eq_region)); 1970 } else { 1971 if (null_ctl == top()) { 1972 replace_in_map(input, cast); 1973 } 1974 set_control(_gvn.transform(ne_region)); 1975 } 1976 } 1977 1978 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 1979 Node* ne_region = new RegionNode(1); 1980 Node* null_ctl; 1981 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 1982 ne_region->add_req(null_ctl); 1983 1984 { 1985 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 1986 inc_sp(2); 1987 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 1988 } 1989 1990 ne_region->add_req(control()); 1991 1992 record_for_igvn(ne_region); 1993 set_control(_gvn.transform(ne_region)); 1994 if (btest == BoolTest::ne) { 1995 { 1996 PreserveJVMState pjvms(this); 1997 if (null_ctl == top()) { 1998 replace_in_map(input, cast); 1999 } 2000 int target_bci = iter().get_dest(); 2001 merge(target_bci); 2002 } 2003 record_for_igvn(eq_region); 2004 set_control(_gvn.transform(eq_region)); 2005 } else { 2006 if (null_ctl == top()) { 2007 replace_in_map(input, cast); 2008 } 2009 set_control(_gvn.transform(ne_region)); 2010 } 2011 } 2012 2013 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2014 ciKlass* left_type = NULL; 2015 ciKlass* right_type = NULL; 2016 ProfilePtrKind left_ptr = ProfileUnknownNull; 2017 ProfilePtrKind right_ptr = ProfileUnknownNull; 2018 bool left_inline_type = true; 2019 bool right_inline_type = true; 2020 2021 // Leverage profiling at acmp 2022 if (UseACmpProfile) { 2023 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2024 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2025 left_type = NULL; 2026 right_type = NULL; 2027 left_inline_type = true; 2028 right_inline_type = true; 2029 } 2030 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2031 left_ptr = ProfileUnknownNull; 2032 right_ptr = ProfileUnknownNull; 2033 } 2034 } 2035 2036 if (UseTypeSpeculation) { 2037 record_profile_for_speculation(left, left_type, left_ptr); 2038 record_profile_for_speculation(right, right_type, right_ptr); 2039 } 2040 2041 if (!EnableValhalla) { 2042 Node* cmp = CmpP(left, right); 2043 cmp = optimize_cmp_with_klass(cmp); 2044 do_if(btest, cmp); 2045 return; 2046 } 2047 2048 // Check for equality before potentially allocating 2049 if (left == right) { 2050 do_if(btest, makecon(TypeInt::CC_EQ)); 2051 return; 2052 } 2053 2054 // Allocate inline type operands and re-execute on deoptimization 2055 if (left->is_InlineType()) { 2056 if (_gvn.type(right)->is_zero_type() || 2057 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2058 // Null checking a scalarized but nullable inline type. Check the IsInit 2059 // input instead of the oop input to avoid keeping buffer allocations alive. 2060 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2061 do_if(btest, cmp); 2062 return; 2063 } else { 2064 PreserveReexecuteState preexecs(this); 2065 inc_sp(2); 2066 jvms()->set_should_reexecute(true); 2067 left = left->as_InlineType()->buffer(this)->get_oop(); 2068 } 2069 } 2070 if (right->is_InlineType()) { 2071 PreserveReexecuteState preexecs(this); 2072 inc_sp(2); 2073 jvms()->set_should_reexecute(true); 2074 right = right->as_InlineType()->buffer(this)->get_oop(); 2075 } 2076 2077 // First, do a normal pointer comparison 2078 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2079 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2080 Node* cmp = CmpP(left, right); 2081 cmp = optimize_cmp_with_klass(cmp); 2082 if (tleft == NULL || !tleft->can_be_inline_type() || 2083 tright == NULL || !tright->can_be_inline_type()) { 2084 // This is sufficient, if one of the operands can't be an inline type 2085 do_if(btest, cmp); 2086 return; 2087 } 2088 Node* eq_region = NULL; 2089 if (btest == BoolTest::eq) { 2090 do_if(btest, cmp, true); 2091 if (stopped()) { 2092 return; 2093 } 2094 } else { 2095 assert(btest == BoolTest::ne, "only eq or ne"); 2096 Node* is_not_equal = NULL; 2097 eq_region = new RegionNode(3); 2098 { 2099 PreserveJVMState pjvms(this); 2100 do_if(btest, cmp, false, &is_not_equal); 2101 if (!stopped()) { 2102 eq_region->init_req(1, control()); 2103 } 2104 } 2105 if (is_not_equal == NULL || is_not_equal->is_top()) { 2106 record_for_igvn(eq_region); 2107 set_control(_gvn.transform(eq_region)); 2108 return; 2109 } 2110 set_control(is_not_equal); 2111 } 2112 2113 // Prefer speculative types if available 2114 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2115 if (tleft->speculative_type() != NULL) { 2116 left_type = tleft->speculative_type(); 2117 } 2118 if (tright->speculative_type() != NULL) { 2119 right_type = tright->speculative_type(); 2120 } 2121 } 2122 2123 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2124 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2125 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2126 left_ptr = speculative_left_ptr; 2127 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2128 left_ptr = speculative_left_ptr; 2129 } 2130 } 2131 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2132 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2133 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2134 right_ptr = speculative_right_ptr; 2135 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2136 right_ptr = speculative_right_ptr; 2137 } 2138 } 2139 2140 if (left_ptr == ProfileAlwaysNull) { 2141 // Comparison with null. Assert the input is indeed null and we're done. 2142 acmp_always_null_input(left, tleft, btest, eq_region); 2143 return; 2144 } 2145 if (right_ptr == ProfileAlwaysNull) { 2146 // Comparison with null. Assert the input is indeed null and we're done. 2147 acmp_always_null_input(right, tright, btest, eq_region); 2148 return; 2149 } 2150 if (left_type != NULL && !left_type->is_inlinetype()) { 2151 // Comparison with an object of known type 2152 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2153 return; 2154 } 2155 if (right_type != NULL && !right_type->is_inlinetype()) { 2156 // Comparison with an object of known type 2157 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2158 return; 2159 } 2160 if (!left_inline_type) { 2161 // Comparison with an object known not to be an inline type 2162 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2163 return; 2164 } 2165 if (!right_inline_type) { 2166 // Comparison with an object known not to be an inline type 2167 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2168 return; 2169 } 2170 2171 // Pointers are not equal, check if first operand is non-null 2172 Node* ne_region = new RegionNode(6); 2173 Node* null_ctl; 2174 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2175 ne_region->init_req(1, null_ctl); 2176 2177 // First operand is non-null, check if it is an inline type 2178 Node* is_value = inline_type_test(not_null_right); 2179 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2180 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2181 ne_region->init_req(2, not_value); 2182 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2183 2184 // The first operand is an inline type, check if the second operand is non-null 2185 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2186 ne_region->init_req(3, null_ctl); 2187 2188 // Check if both operands are of the same class. 2189 Node* kls_left = load_object_klass(not_null_left); 2190 Node* kls_right = load_object_klass(not_null_right); 2191 Node* kls_cmp = CmpP(kls_left, kls_right); 2192 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2193 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2194 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2195 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2196 ne_region->init_req(4, kls_ne); 2197 2198 if (stopped()) { 2199 record_for_igvn(ne_region); 2200 set_control(_gvn.transform(ne_region)); 2201 if (btest == BoolTest::ne) { 2202 { 2203 PreserveJVMState pjvms(this); 2204 int target_bci = iter().get_dest(); 2205 merge(target_bci); 2206 } 2207 record_for_igvn(eq_region); 2208 set_control(_gvn.transform(eq_region)); 2209 } 2210 return; 2211 } 2212 2213 // Both operands are values types of the same class, we need to perform a 2214 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2215 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2216 Node* mem = reset_memory(); 2217 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2218 2219 Node* eq_io_phi = NULL; 2220 Node* eq_mem_phi = NULL; 2221 if (eq_region != NULL) { 2222 eq_io_phi = PhiNode::make(eq_region, i_o()); 2223 eq_mem_phi = PhiNode::make(eq_region, mem); 2224 } 2225 2226 set_all_memory(mem); 2227 2228 kill_dead_locals(); 2229 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2230 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2231 call->set_override_symbolic_info(true); 2232 call->init_req(TypeFunc::Parms, not_null_left); 2233 call->init_req(TypeFunc::Parms+1, not_null_right); 2234 inc_sp(2); 2235 set_edges_for_java_call(call, false, false); 2236 Node* ret = set_results_for_java_call(call, false, true); 2237 dec_sp(2); 2238 2239 // Test the return value of ValueObjectMethods::isSubstitutable() 2240 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2241 Node* ctl = C->top(); 2242 if (btest == BoolTest::eq) { 2243 PreserveJVMState pjvms(this); 2244 do_if(btest, subst_cmp); 2245 if (!stopped()) { 2246 ctl = control(); 2247 } 2248 } else { 2249 assert(btest == BoolTest::ne, "only eq or ne"); 2250 PreserveJVMState pjvms(this); 2251 do_if(btest, subst_cmp, false, &ctl); 2252 if (!stopped()) { 2253 eq_region->init_req(2, control()); 2254 eq_io_phi->init_req(2, i_o()); 2255 eq_mem_phi->init_req(2, reset_memory()); 2256 } 2257 } 2258 ne_region->init_req(5, ctl); 2259 ne_io_phi->init_req(5, i_o()); 2260 ne_mem_phi->init_req(5, reset_memory()); 2261 2262 record_for_igvn(ne_region); 2263 set_control(_gvn.transform(ne_region)); 2264 set_i_o(_gvn.transform(ne_io_phi)); 2265 set_all_memory(_gvn.transform(ne_mem_phi)); 2266 2267 if (btest == BoolTest::ne) { 2268 { 2269 PreserveJVMState pjvms(this); 2270 int target_bci = iter().get_dest(); 2271 merge(target_bci); 2272 } 2273 2274 record_for_igvn(eq_region); 2275 set_control(_gvn.transform(eq_region)); 2276 set_i_o(_gvn.transform(eq_io_phi)); 2277 set_all_memory(_gvn.transform(eq_mem_phi)); 2278 } 2279 } 2280 2281 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2282 // Don't want to speculate on uncommon traps when running with -Xcomp 2283 if (!UseInterpreter) { 2284 return false; 2285 } 2286 return (seems_never_taken(prob) && seems_stable_comparison()); 2287 } 2288 2289 void Parse::maybe_add_predicate_after_if(Block* path) { 2290 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2291 // Add predicates at bci of if dominating the loop so traps can be 2292 // recorded on the if's profile data 2293 int bc_depth = repush_if_args(); 2294 add_empty_predicates(); 2295 dec_sp(bc_depth); 2296 path->set_has_predicates(); 2297 } 2298 } 2299 2300 2301 //----------------------------adjust_map_after_if------------------------------ 2302 // Adjust the JVM state to reflect the result of taking this path. 2303 // Basically, it means inspecting the CmpNode controlling this 2304 // branch, seeing how it constrains a tested value, and then 2305 // deciding if it's worth our while to encode this constraint 2306 // as graph nodes in the current abstract interpretation map. 2307 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) { 2308 if (!c->is_Cmp()) { 2309 maybe_add_predicate_after_if(path); 2310 return; 2311 } 2312 2313 if (stopped() || btest == BoolTest::illegal) { 2314 return; // nothing to do 2315 } 2316 2317 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2318 2319 if (path_is_suitable_for_uncommon_trap(prob)) { 2320 repush_if_args(); 2321 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2322 Deoptimization::Action_reinterpret, 2323 NULL, 2324 (is_fallthrough ? "taken always" : "taken never")); 2325 2326 if (call != nullptr) { 2327 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2328 } 2329 return; 2330 } 2331 2332 Node* val = c->in(1); 2333 Node* con = c->in(2); 2334 const Type* tcon = _gvn.type(con); 2335 const Type* tval = _gvn.type(val); 2336 bool have_con = tcon->singleton(); 2337 if (tval->singleton()) { 2338 if (!have_con) { 2339 // Swap, so constant is in con. 2340 con = val; 2341 tcon = tval; 2342 val = c->in(2); 2343 tval = _gvn.type(val); 2344 btest = BoolTest(btest).commute(); 2345 have_con = true; 2346 } else { 2347 // Do we have two constants? Then leave well enough alone. 2348 have_con = false; 2349 } 2350 } 2351 if (!have_con) { // remaining adjustments need a con 2352 maybe_add_predicate_after_if(path); 2353 return; 2354 } 2355 2356 sharpen_type_after_if(btest, con, tcon, val, tval); 2357 maybe_add_predicate_after_if(path); 2358 } 2359 2360 2361 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2362 Node* ldk; 2363 if (n->is_DecodeNKlass()) { 2364 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2365 return NULL; 2366 } else { 2367 ldk = n->in(1); 2368 } 2369 } else if (n->Opcode() != Op_LoadKlass) { 2370 return NULL; 2371 } else { 2372 ldk = n; 2373 } 2374 assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2375 2376 Node* adr = ldk->in(MemNode::Address); 2377 intptr_t off = 0; 2378 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2379 if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2380 return NULL; 2381 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2382 if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2383 return NULL; 2384 2385 return obj; 2386 } 2387 2388 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2389 Node* con, const Type* tcon, 2390 Node* val, const Type* tval) { 2391 // Look for opportunities to sharpen the type of a node 2392 // whose klass is compared with a constant klass. 2393 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2394 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2395 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2396 if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2397 // Found: 2398 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2399 // or the narrowOop equivalent. 2400 const Type* obj_type = _gvn.type(obj); 2401 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2402 if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type && 2403 tboth->higher_equal(obj_type)) { 2404 // obj has to be of the exact type Foo if the CmpP succeeds. 2405 int obj_in_map = map()->find_edge(obj); 2406 JVMState* jvms = this->jvms(); 2407 if (obj_in_map >= 0 && 2408 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2409 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2410 const Type* tcc = ccast->as_Type()->type(); 2411 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2412 // Delay transform() call to allow recovery of pre-cast value 2413 // at the control merge. 2414 _gvn.set_type_bottom(ccast); 2415 record_for_igvn(ccast); 2416 // Here's the payoff. 2417 replace_in_map(obj, ccast); 2418 } 2419 } 2420 } 2421 } 2422 2423 int val_in_map = map()->find_edge(val); 2424 if (val_in_map < 0) return; // replace_in_map would be useless 2425 { 2426 JVMState* jvms = this->jvms(); 2427 if (!(jvms->is_loc(val_in_map) || 2428 jvms->is_stk(val_in_map))) 2429 return; // again, it would be useless 2430 } 2431 2432 // Check for a comparison to a constant, and "know" that the compared 2433 // value is constrained on this path. 2434 assert(tcon->singleton(), ""); 2435 ConstraintCastNode* ccast = NULL; 2436 Node* cast = NULL; 2437 2438 switch (btest) { 2439 case BoolTest::eq: // Constant test? 2440 { 2441 const Type* tboth = tcon->join_speculative(tval); 2442 if (tboth == tval) break; // Nothing to gain. 2443 if (tcon->isa_int()) { 2444 ccast = new CastIINode(val, tboth); 2445 } else if (tcon == TypePtr::NULL_PTR) { 2446 // Cast to null, but keep the pointer identity temporarily live. 2447 ccast = new CastPPNode(val, tboth); 2448 } else { 2449 const TypeF* tf = tcon->isa_float_constant(); 2450 const TypeD* td = tcon->isa_double_constant(); 2451 // Exclude tests vs float/double 0 as these could be 2452 // either +0 or -0. Just because you are equal to +0 2453 // doesn't mean you ARE +0! 2454 // Note, following code also replaces Long and Oop values. 2455 if ((!tf || tf->_f != 0.0) && 2456 (!td || td->_d != 0.0)) 2457 cast = con; // Replace non-constant val by con. 2458 } 2459 } 2460 break; 2461 2462 case BoolTest::ne: 2463 if (tcon == TypePtr::NULL_PTR) { 2464 cast = cast_not_null(val, false); 2465 } 2466 break; 2467 2468 default: 2469 // (At this point we could record int range types with CastII.) 2470 break; 2471 } 2472 2473 if (ccast != NULL) { 2474 const Type* tcc = ccast->as_Type()->type(); 2475 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2476 // Delay transform() call to allow recovery of pre-cast value 2477 // at the control merge. 2478 ccast->set_req(0, control()); 2479 _gvn.set_type_bottom(ccast); 2480 record_for_igvn(ccast); 2481 cast = ccast; 2482 } 2483 2484 if (cast != NULL) { // Here's the payoff. 2485 replace_in_map(val, cast); 2486 } 2487 } 2488 2489 /** 2490 * Use speculative type to optimize CmpP node: if comparison is 2491 * against the low level class, cast the object to the speculative 2492 * type if any. CmpP should then go away. 2493 * 2494 * @param c expected CmpP node 2495 * @return result of CmpP on object casted to speculative type 2496 * 2497 */ 2498 Node* Parse::optimize_cmp_with_klass(Node* c) { 2499 // If this is transformed by the _gvn to a comparison with the low 2500 // level klass then we may be able to use speculation 2501 if (c->Opcode() == Op_CmpP && 2502 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2503 c->in(2)->is_Con()) { 2504 Node* load_klass = NULL; 2505 Node* decode = NULL; 2506 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2507 decode = c->in(1); 2508 load_klass = c->in(1)->in(1); 2509 } else { 2510 load_klass = c->in(1); 2511 } 2512 if (load_klass->in(2)->is_AddP()) { 2513 Node* addp = load_klass->in(2); 2514 Node* obj = addp->in(AddPNode::Address); 2515 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2516 if (obj_type->speculative_type_not_null() != NULL) { 2517 ciKlass* k = obj_type->speculative_type(); 2518 inc_sp(2); 2519 obj = maybe_cast_profiled_obj(obj, k); 2520 dec_sp(2); 2521 if (obj->is_InlineType()) { 2522 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2523 obj = obj->as_InlineType()->get_oop(); 2524 } 2525 // Make the CmpP use the casted obj 2526 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2527 load_klass = load_klass->clone(); 2528 load_klass->set_req(2, addp); 2529 load_klass = _gvn.transform(load_klass); 2530 if (decode != NULL) { 2531 decode = decode->clone(); 2532 decode->set_req(1, load_klass); 2533 load_klass = _gvn.transform(decode); 2534 } 2535 c = c->clone(); 2536 c->set_req(1, load_klass); 2537 c = _gvn.transform(c); 2538 } 2539 } 2540 } 2541 return c; 2542 } 2543 2544 //------------------------------do_one_bytecode-------------------------------- 2545 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2546 void Parse::do_one_bytecode() { 2547 Node *a, *b, *c, *d; // Handy temps 2548 BoolTest::mask btest; 2549 int i; 2550 2551 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2552 2553 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2554 "out of nodes parsing method")) { 2555 return; 2556 } 2557 2558 #ifdef ASSERT 2559 // for setting breakpoints 2560 if (TraceOptoParse) { 2561 tty->print(" @"); 2562 dump_bci(bci()); 2563 tty->print(" %s", Bytecodes::name(bc())); 2564 tty->cr(); 2565 } 2566 #endif 2567 2568 switch (bc()) { 2569 case Bytecodes::_nop: 2570 // do nothing 2571 break; 2572 case Bytecodes::_lconst_0: 2573 push_pair(longcon(0)); 2574 break; 2575 2576 case Bytecodes::_lconst_1: 2577 push_pair(longcon(1)); 2578 break; 2579 2580 case Bytecodes::_fconst_0: 2581 push(zerocon(T_FLOAT)); 2582 break; 2583 2584 case Bytecodes::_fconst_1: 2585 push(makecon(TypeF::ONE)); 2586 break; 2587 2588 case Bytecodes::_fconst_2: 2589 push(makecon(TypeF::make(2.0f))); 2590 break; 2591 2592 case Bytecodes::_dconst_0: 2593 push_pair(zerocon(T_DOUBLE)); 2594 break; 2595 2596 case Bytecodes::_dconst_1: 2597 push_pair(makecon(TypeD::ONE)); 2598 break; 2599 2600 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2601 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2602 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2603 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2604 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2605 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2606 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2607 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2608 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2609 case Bytecodes::_aconst_null: push(null()); break; 2610 2611 case Bytecodes::_ldc: 2612 case Bytecodes::_ldc_w: 2613 case Bytecodes::_ldc2_w: { 2614 ciConstant constant = iter().get_constant(); 2615 if (constant.is_loaded()) { 2616 const Type* con_type = Type::make_from_constant(constant); 2617 if (con_type != NULL) { 2618 push_node(con_type->basic_type(), makecon(con_type)); 2619 } 2620 } else { 2621 // If the constant is unresolved or in error state, run this BC in the interpreter. 2622 if (iter().is_in_error()) { 2623 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 2624 Deoptimization::Action_none), 2625 NULL, "constant in error state", true /* must_throw */); 2626 2627 } else { 2628 int index = iter().get_constant_pool_index(); 2629 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unloaded, 2630 Deoptimization::Action_reinterpret, 2631 index), 2632 NULL, "unresolved constant", false /* must_throw */); 2633 } 2634 } 2635 break; 2636 } 2637 2638 case Bytecodes::_aload_0: 2639 push( local(0) ); 2640 break; 2641 case Bytecodes::_aload_1: 2642 push( local(1) ); 2643 break; 2644 case Bytecodes::_aload_2: 2645 push( local(2) ); 2646 break; 2647 case Bytecodes::_aload_3: 2648 push( local(3) ); 2649 break; 2650 case Bytecodes::_aload: 2651 push( local(iter().get_index()) ); 2652 break; 2653 2654 case Bytecodes::_fload_0: 2655 case Bytecodes::_iload_0: 2656 push( local(0) ); 2657 break; 2658 case Bytecodes::_fload_1: 2659 case Bytecodes::_iload_1: 2660 push( local(1) ); 2661 break; 2662 case Bytecodes::_fload_2: 2663 case Bytecodes::_iload_2: 2664 push( local(2) ); 2665 break; 2666 case Bytecodes::_fload_3: 2667 case Bytecodes::_iload_3: 2668 push( local(3) ); 2669 break; 2670 case Bytecodes::_fload: 2671 case Bytecodes::_iload: 2672 push( local(iter().get_index()) ); 2673 break; 2674 case Bytecodes::_lload_0: 2675 push_pair_local( 0 ); 2676 break; 2677 case Bytecodes::_lload_1: 2678 push_pair_local( 1 ); 2679 break; 2680 case Bytecodes::_lload_2: 2681 push_pair_local( 2 ); 2682 break; 2683 case Bytecodes::_lload_3: 2684 push_pair_local( 3 ); 2685 break; 2686 case Bytecodes::_lload: 2687 push_pair_local( iter().get_index() ); 2688 break; 2689 2690 case Bytecodes::_dload_0: 2691 push_pair_local(0); 2692 break; 2693 case Bytecodes::_dload_1: 2694 push_pair_local(1); 2695 break; 2696 case Bytecodes::_dload_2: 2697 push_pair_local(2); 2698 break; 2699 case Bytecodes::_dload_3: 2700 push_pair_local(3); 2701 break; 2702 case Bytecodes::_dload: 2703 push_pair_local(iter().get_index()); 2704 break; 2705 case Bytecodes::_fstore_0: 2706 case Bytecodes::_istore_0: 2707 case Bytecodes::_astore_0: 2708 set_local( 0, pop() ); 2709 break; 2710 case Bytecodes::_fstore_1: 2711 case Bytecodes::_istore_1: 2712 case Bytecodes::_astore_1: 2713 set_local( 1, pop() ); 2714 break; 2715 case Bytecodes::_fstore_2: 2716 case Bytecodes::_istore_2: 2717 case Bytecodes::_astore_2: 2718 set_local( 2, pop() ); 2719 break; 2720 case Bytecodes::_fstore_3: 2721 case Bytecodes::_istore_3: 2722 case Bytecodes::_astore_3: 2723 set_local( 3, pop() ); 2724 break; 2725 case Bytecodes::_fstore: 2726 case Bytecodes::_istore: 2727 case Bytecodes::_astore: 2728 set_local( iter().get_index(), pop() ); 2729 break; 2730 // long stores 2731 case Bytecodes::_lstore_0: 2732 set_pair_local( 0, pop_pair() ); 2733 break; 2734 case Bytecodes::_lstore_1: 2735 set_pair_local( 1, pop_pair() ); 2736 break; 2737 case Bytecodes::_lstore_2: 2738 set_pair_local( 2, pop_pair() ); 2739 break; 2740 case Bytecodes::_lstore_3: 2741 set_pair_local( 3, pop_pair() ); 2742 break; 2743 case Bytecodes::_lstore: 2744 set_pair_local( iter().get_index(), pop_pair() ); 2745 break; 2746 2747 // double stores 2748 case Bytecodes::_dstore_0: 2749 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2750 break; 2751 case Bytecodes::_dstore_1: 2752 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2753 break; 2754 case Bytecodes::_dstore_2: 2755 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2756 break; 2757 case Bytecodes::_dstore_3: 2758 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2759 break; 2760 case Bytecodes::_dstore: 2761 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2762 break; 2763 2764 case Bytecodes::_pop: dec_sp(1); break; 2765 case Bytecodes::_pop2: dec_sp(2); break; 2766 case Bytecodes::_swap: 2767 a = pop(); 2768 b = pop(); 2769 push(a); 2770 push(b); 2771 break; 2772 case Bytecodes::_dup: 2773 a = pop(); 2774 push(a); 2775 push(a); 2776 break; 2777 case Bytecodes::_dup_x1: 2778 a = pop(); 2779 b = pop(); 2780 push( a ); 2781 push( b ); 2782 push( a ); 2783 break; 2784 case Bytecodes::_dup_x2: 2785 a = pop(); 2786 b = pop(); 2787 c = pop(); 2788 push( a ); 2789 push( c ); 2790 push( b ); 2791 push( a ); 2792 break; 2793 case Bytecodes::_dup2: 2794 a = pop(); 2795 b = pop(); 2796 push( b ); 2797 push( a ); 2798 push( b ); 2799 push( a ); 2800 break; 2801 2802 case Bytecodes::_dup2_x1: 2803 // before: .. c, b, a 2804 // after: .. b, a, c, b, a 2805 // not tested 2806 a = pop(); 2807 b = pop(); 2808 c = pop(); 2809 push( b ); 2810 push( a ); 2811 push( c ); 2812 push( b ); 2813 push( a ); 2814 break; 2815 case Bytecodes::_dup2_x2: 2816 // before: .. d, c, b, a 2817 // after: .. b, a, d, c, b, a 2818 // not tested 2819 a = pop(); 2820 b = pop(); 2821 c = pop(); 2822 d = pop(); 2823 push( b ); 2824 push( a ); 2825 push( d ); 2826 push( c ); 2827 push( b ); 2828 push( a ); 2829 break; 2830 2831 case Bytecodes::_arraylength: { 2832 // Must do null-check with value on expression stack 2833 Node *ary = null_check(peek(), T_ARRAY); 2834 // Compile-time detect of null-exception? 2835 if (stopped()) return; 2836 a = pop(); 2837 push(load_array_length(a)); 2838 break; 2839 } 2840 2841 case Bytecodes::_baload: array_load(T_BYTE); break; 2842 case Bytecodes::_caload: array_load(T_CHAR); break; 2843 case Bytecodes::_iaload: array_load(T_INT); break; 2844 case Bytecodes::_saload: array_load(T_SHORT); break; 2845 case Bytecodes::_faload: array_load(T_FLOAT); break; 2846 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2847 case Bytecodes::_laload: array_load(T_LONG); break; 2848 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2849 case Bytecodes::_bastore: array_store(T_BYTE); break; 2850 case Bytecodes::_castore: array_store(T_CHAR); break; 2851 case Bytecodes::_iastore: array_store(T_INT); break; 2852 case Bytecodes::_sastore: array_store(T_SHORT); break; 2853 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2854 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2855 case Bytecodes::_lastore: array_store(T_LONG); break; 2856 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2857 2858 case Bytecodes::_getfield: 2859 do_getfield(); 2860 break; 2861 2862 case Bytecodes::_getstatic: 2863 do_getstatic(); 2864 break; 2865 2866 case Bytecodes::_putfield: 2867 do_putfield(); 2868 break; 2869 2870 case Bytecodes::_putstatic: 2871 do_putstatic(); 2872 break; 2873 2874 case Bytecodes::_irem: 2875 // Must keep both values on the expression-stack during null-check 2876 zero_check_int(peek()); 2877 // Compile-time detect of null-exception? 2878 if (stopped()) return; 2879 b = pop(); 2880 a = pop(); 2881 push(_gvn.transform(new ModINode(control(), a, b))); 2882 break; 2883 case Bytecodes::_idiv: 2884 // Must keep both values on the expression-stack during null-check 2885 zero_check_int(peek()); 2886 // Compile-time detect of null-exception? 2887 if (stopped()) return; 2888 b = pop(); 2889 a = pop(); 2890 push( _gvn.transform( new DivINode(control(),a,b) ) ); 2891 break; 2892 case Bytecodes::_imul: 2893 b = pop(); a = pop(); 2894 push( _gvn.transform( new MulINode(a,b) ) ); 2895 break; 2896 case Bytecodes::_iadd: 2897 b = pop(); a = pop(); 2898 push( _gvn.transform( new AddINode(a,b) ) ); 2899 break; 2900 case Bytecodes::_ineg: 2901 a = pop(); 2902 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 2903 break; 2904 case Bytecodes::_isub: 2905 b = pop(); a = pop(); 2906 push( _gvn.transform( new SubINode(a,b) ) ); 2907 break; 2908 case Bytecodes::_iand: 2909 b = pop(); a = pop(); 2910 push( _gvn.transform( new AndINode(a,b) ) ); 2911 break; 2912 case Bytecodes::_ior: 2913 b = pop(); a = pop(); 2914 push( _gvn.transform( new OrINode(a,b) ) ); 2915 break; 2916 case Bytecodes::_ixor: 2917 b = pop(); a = pop(); 2918 push( _gvn.transform( new XorINode(a,b) ) ); 2919 break; 2920 case Bytecodes::_ishl: 2921 b = pop(); a = pop(); 2922 push( _gvn.transform( new LShiftINode(a,b) ) ); 2923 break; 2924 case Bytecodes::_ishr: 2925 b = pop(); a = pop(); 2926 push( _gvn.transform( new RShiftINode(a,b) ) ); 2927 break; 2928 case Bytecodes::_iushr: 2929 b = pop(); a = pop(); 2930 push( _gvn.transform( new URShiftINode(a,b) ) ); 2931 break; 2932 2933 case Bytecodes::_fneg: 2934 a = pop(); 2935 b = _gvn.transform(new NegFNode (a)); 2936 push(b); 2937 break; 2938 2939 case Bytecodes::_fsub: 2940 b = pop(); 2941 a = pop(); 2942 c = _gvn.transform( new SubFNode(a,b) ); 2943 d = precision_rounding(c); 2944 push( d ); 2945 break; 2946 2947 case Bytecodes::_fadd: 2948 b = pop(); 2949 a = pop(); 2950 c = _gvn.transform( new AddFNode(a,b) ); 2951 d = precision_rounding(c); 2952 push( d ); 2953 break; 2954 2955 case Bytecodes::_fmul: 2956 b = pop(); 2957 a = pop(); 2958 c = _gvn.transform( new MulFNode(a,b) ); 2959 d = precision_rounding(c); 2960 push( d ); 2961 break; 2962 2963 case Bytecodes::_fdiv: 2964 b = pop(); 2965 a = pop(); 2966 c = _gvn.transform( new DivFNode(0,a,b) ); 2967 d = precision_rounding(c); 2968 push( d ); 2969 break; 2970 2971 case Bytecodes::_frem: 2972 if (Matcher::has_match_rule(Op_ModF)) { 2973 // Generate a ModF node. 2974 b = pop(); 2975 a = pop(); 2976 c = _gvn.transform( new ModFNode(0,a,b) ); 2977 d = precision_rounding(c); 2978 push( d ); 2979 } 2980 else { 2981 // Generate a call. 2982 modf(); 2983 } 2984 break; 2985 2986 case Bytecodes::_fcmpl: 2987 b = pop(); 2988 a = pop(); 2989 c = _gvn.transform( new CmpF3Node( a, b)); 2990 push(c); 2991 break; 2992 case Bytecodes::_fcmpg: 2993 b = pop(); 2994 a = pop(); 2995 2996 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 2997 // which negates the result sign except for unordered. Flip the unordered 2998 // as well by using CmpF3 which implements unordered-lesser instead of 2999 // unordered-greater semantics. Finally, commute the result bits. Result 3000 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3001 c = _gvn.transform( new CmpF3Node( b, a)); 3002 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3003 push(c); 3004 break; 3005 3006 case Bytecodes::_f2i: 3007 a = pop(); 3008 push(_gvn.transform(new ConvF2INode(a))); 3009 break; 3010 3011 case Bytecodes::_d2i: 3012 a = pop_pair(); 3013 b = _gvn.transform(new ConvD2INode(a)); 3014 push( b ); 3015 break; 3016 3017 case Bytecodes::_f2d: 3018 a = pop(); 3019 b = _gvn.transform( new ConvF2DNode(a)); 3020 push_pair( b ); 3021 break; 3022 3023 case Bytecodes::_d2f: 3024 a = pop_pair(); 3025 b = _gvn.transform( new ConvD2FNode(a)); 3026 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 3027 //b = _gvn.transform(new RoundFloatNode(0, b) ); 3028 push( b ); 3029 break; 3030 3031 case Bytecodes::_l2f: 3032 if (Matcher::convL2FSupported()) { 3033 a = pop_pair(); 3034 b = _gvn.transform( new ConvL2FNode(a)); 3035 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 3036 // Rather than storing the result into an FP register then pushing 3037 // out to memory to round, the machine instruction that implements 3038 // ConvL2D is responsible for rounding. 3039 // c = precision_rounding(b); 3040 push(b); 3041 } else { 3042 l2f(); 3043 } 3044 break; 3045 3046 case Bytecodes::_l2d: 3047 a = pop_pair(); 3048 b = _gvn.transform( new ConvL2DNode(a)); 3049 // For x86_32.ad, rounding is always necessary (see _l2f above). 3050 // c = dprecision_rounding(b); 3051 push_pair(b); 3052 break; 3053 3054 case Bytecodes::_f2l: 3055 a = pop(); 3056 b = _gvn.transform( new ConvF2LNode(a)); 3057 push_pair(b); 3058 break; 3059 3060 case Bytecodes::_d2l: 3061 a = pop_pair(); 3062 b = _gvn.transform( new ConvD2LNode(a)); 3063 push_pair(b); 3064 break; 3065 3066 case Bytecodes::_dsub: 3067 b = pop_pair(); 3068 a = pop_pair(); 3069 c = _gvn.transform( new SubDNode(a,b) ); 3070 d = dprecision_rounding(c); 3071 push_pair( d ); 3072 break; 3073 3074 case Bytecodes::_dadd: 3075 b = pop_pair(); 3076 a = pop_pair(); 3077 c = _gvn.transform( new AddDNode(a,b) ); 3078 d = dprecision_rounding(c); 3079 push_pair( d ); 3080 break; 3081 3082 case Bytecodes::_dmul: 3083 b = pop_pair(); 3084 a = pop_pair(); 3085 c = _gvn.transform( new MulDNode(a,b) ); 3086 d = dprecision_rounding(c); 3087 push_pair( d ); 3088 break; 3089 3090 case Bytecodes::_ddiv: 3091 b = pop_pair(); 3092 a = pop_pair(); 3093 c = _gvn.transform( new DivDNode(0,a,b) ); 3094 d = dprecision_rounding(c); 3095 push_pair( d ); 3096 break; 3097 3098 case Bytecodes::_dneg: 3099 a = pop_pair(); 3100 b = _gvn.transform(new NegDNode (a)); 3101 push_pair(b); 3102 break; 3103 3104 case Bytecodes::_drem: 3105 if (Matcher::has_match_rule(Op_ModD)) { 3106 // Generate a ModD node. 3107 b = pop_pair(); 3108 a = pop_pair(); 3109 // a % b 3110 3111 c = _gvn.transform( new ModDNode(0,a,b) ); 3112 d = dprecision_rounding(c); 3113 push_pair( d ); 3114 } 3115 else { 3116 // Generate a call. 3117 modd(); 3118 } 3119 break; 3120 3121 case Bytecodes::_dcmpl: 3122 b = pop_pair(); 3123 a = pop_pair(); 3124 c = _gvn.transform( new CmpD3Node( a, b)); 3125 push(c); 3126 break; 3127 3128 case Bytecodes::_dcmpg: 3129 b = pop_pair(); 3130 a = pop_pair(); 3131 // Same as dcmpl but need to flip the unordered case. 3132 // Commute the inputs, which negates the result sign except for unordered. 3133 // Flip the unordered as well by using CmpD3 which implements 3134 // unordered-lesser instead of unordered-greater semantics. 3135 // Finally, negate the result bits. Result is same as using a 3136 // CmpD3Greater except we did it with CmpD3 alone. 3137 c = _gvn.transform( new CmpD3Node( b, a)); 3138 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3139 push(c); 3140 break; 3141 3142 3143 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3144 case Bytecodes::_land: 3145 b = pop_pair(); 3146 a = pop_pair(); 3147 c = _gvn.transform( new AndLNode(a,b) ); 3148 push_pair(c); 3149 break; 3150 case Bytecodes::_lor: 3151 b = pop_pair(); 3152 a = pop_pair(); 3153 c = _gvn.transform( new OrLNode(a,b) ); 3154 push_pair(c); 3155 break; 3156 case Bytecodes::_lxor: 3157 b = pop_pair(); 3158 a = pop_pair(); 3159 c = _gvn.transform( new XorLNode(a,b) ); 3160 push_pair(c); 3161 break; 3162 3163 case Bytecodes::_lshl: 3164 b = pop(); // the shift count 3165 a = pop_pair(); // value to be shifted 3166 c = _gvn.transform( new LShiftLNode(a,b) ); 3167 push_pair(c); 3168 break; 3169 case Bytecodes::_lshr: 3170 b = pop(); // the shift count 3171 a = pop_pair(); // value to be shifted 3172 c = _gvn.transform( new RShiftLNode(a,b) ); 3173 push_pair(c); 3174 break; 3175 case Bytecodes::_lushr: 3176 b = pop(); // the shift count 3177 a = pop_pair(); // value to be shifted 3178 c = _gvn.transform( new URShiftLNode(a,b) ); 3179 push_pair(c); 3180 break; 3181 case Bytecodes::_lmul: 3182 b = pop_pair(); 3183 a = pop_pair(); 3184 c = _gvn.transform( new MulLNode(a,b) ); 3185 push_pair(c); 3186 break; 3187 3188 case Bytecodes::_lrem: 3189 // Must keep both values on the expression-stack during null-check 3190 assert(peek(0) == top(), "long word order"); 3191 zero_check_long(peek(1)); 3192 // Compile-time detect of null-exception? 3193 if (stopped()) return; 3194 b = pop_pair(); 3195 a = pop_pair(); 3196 c = _gvn.transform( new ModLNode(control(),a,b) ); 3197 push_pair(c); 3198 break; 3199 3200 case Bytecodes::_ldiv: 3201 // Must keep both values on the expression-stack during null-check 3202 assert(peek(0) == top(), "long word order"); 3203 zero_check_long(peek(1)); 3204 // Compile-time detect of null-exception? 3205 if (stopped()) return; 3206 b = pop_pair(); 3207 a = pop_pair(); 3208 c = _gvn.transform( new DivLNode(control(),a,b) ); 3209 push_pair(c); 3210 break; 3211 3212 case Bytecodes::_ladd: 3213 b = pop_pair(); 3214 a = pop_pair(); 3215 c = _gvn.transform( new AddLNode(a,b) ); 3216 push_pair(c); 3217 break; 3218 case Bytecodes::_lsub: 3219 b = pop_pair(); 3220 a = pop_pair(); 3221 c = _gvn.transform( new SubLNode(a,b) ); 3222 push_pair(c); 3223 break; 3224 case Bytecodes::_lcmp: 3225 // Safepoints are now inserted _before_ branches. The long-compare 3226 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3227 // slew of control flow. These are usually followed by a CmpI vs zero and 3228 // a branch; this pattern then optimizes to the obvious long-compare and 3229 // branch. However, if the branch is backwards there's a Safepoint 3230 // inserted. The inserted Safepoint captures the JVM state at the 3231 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3232 // long-compare is used to control a loop the debug info will force 3233 // computation of the 3-way value, even though the generated code uses a 3234 // long-compare and branch. We try to rectify the situation by inserting 3235 // a SafePoint here and have it dominate and kill the safepoint added at a 3236 // following backwards branch. At this point the JVM state merely holds 2 3237 // longs but not the 3-way value. 3238 switch (iter().next_bc()) { 3239 case Bytecodes::_ifgt: 3240 case Bytecodes::_iflt: 3241 case Bytecodes::_ifge: 3242 case Bytecodes::_ifle: 3243 case Bytecodes::_ifne: 3244 case Bytecodes::_ifeq: 3245 // If this is a backwards branch in the bytecodes, add Safepoint 3246 maybe_add_safepoint(iter().next_get_dest()); 3247 default: 3248 break; 3249 } 3250 b = pop_pair(); 3251 a = pop_pair(); 3252 c = _gvn.transform( new CmpL3Node( a, b )); 3253 push(c); 3254 break; 3255 3256 case Bytecodes::_lneg: 3257 a = pop_pair(); 3258 b = _gvn.transform( new SubLNode(longcon(0),a)); 3259 push_pair(b); 3260 break; 3261 case Bytecodes::_l2i: 3262 a = pop_pair(); 3263 push( _gvn.transform( new ConvL2INode(a))); 3264 break; 3265 case Bytecodes::_i2l: 3266 a = pop(); 3267 b = _gvn.transform( new ConvI2LNode(a)); 3268 push_pair(b); 3269 break; 3270 case Bytecodes::_i2b: 3271 // Sign extend 3272 a = pop(); 3273 a = Compile::narrow_value(T_BYTE, a, NULL, &_gvn, true); 3274 push(a); 3275 break; 3276 case Bytecodes::_i2s: 3277 a = pop(); 3278 a = Compile::narrow_value(T_SHORT, a, NULL, &_gvn, true); 3279 push(a); 3280 break; 3281 case Bytecodes::_i2c: 3282 a = pop(); 3283 a = Compile::narrow_value(T_CHAR, a, NULL, &_gvn, true); 3284 push(a); 3285 break; 3286 3287 case Bytecodes::_i2f: 3288 a = pop(); 3289 b = _gvn.transform( new ConvI2FNode(a) ) ; 3290 c = precision_rounding(b); 3291 push (b); 3292 break; 3293 3294 case Bytecodes::_i2d: 3295 a = pop(); 3296 b = _gvn.transform( new ConvI2DNode(a)); 3297 push_pair(b); 3298 break; 3299 3300 case Bytecodes::_iinc: // Increment local 3301 i = iter().get_index(); // Get local index 3302 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3303 break; 3304 3305 // Exit points of synchronized methods must have an unlock node 3306 case Bytecodes::_return: 3307 return_current(NULL); 3308 break; 3309 3310 case Bytecodes::_ireturn: 3311 case Bytecodes::_areturn: 3312 case Bytecodes::_freturn: 3313 return_current(pop()); 3314 break; 3315 case Bytecodes::_lreturn: 3316 return_current(pop_pair()); 3317 break; 3318 case Bytecodes::_dreturn: 3319 return_current(pop_pair()); 3320 break; 3321 3322 case Bytecodes::_athrow: 3323 // null exception oop throws NULL pointer exception 3324 null_check(peek()); 3325 if (stopped()) return; 3326 // Hook the thrown exception directly to subsequent handlers. 3327 if (BailoutToInterpreterForThrows) { 3328 // Keep method interpreted from now on. 3329 uncommon_trap(Deoptimization::Reason_unhandled, 3330 Deoptimization::Action_make_not_compilable); 3331 return; 3332 } 3333 if (env()->jvmti_can_post_on_exceptions()) { 3334 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3335 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3336 } 3337 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3338 add_exception_state(make_exception_state(peek())); 3339 break; 3340 3341 case Bytecodes::_goto: // fall through 3342 case Bytecodes::_goto_w: { 3343 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3344 3345 // If this is a backwards branch in the bytecodes, add Safepoint 3346 maybe_add_safepoint(target_bci); 3347 3348 // Merge the current control into the target basic block 3349 merge(target_bci); 3350 3351 // See if we can get some profile data and hand it off to the next block 3352 Block *target_block = block()->successor_for_bci(target_bci); 3353 if (target_block->pred_count() != 1) break; 3354 ciMethodData* methodData = method()->method_data(); 3355 if (!methodData->is_mature()) break; 3356 ciProfileData* data = methodData->bci_to_data(bci()); 3357 assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch"); 3358 int taken = ((ciJumpData*)data)->taken(); 3359 taken = method()->scale_count(taken); 3360 target_block->set_count(taken); 3361 break; 3362 } 3363 3364 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3365 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3366 handle_if_null: 3367 // If this is a backwards branch in the bytecodes, add Safepoint 3368 maybe_add_safepoint(iter().get_dest()); 3369 a = null(); 3370 b = pop(); 3371 if (b->is_InlineType()) { 3372 // Null checking a scalarized but nullable inline type. Check the IsInit 3373 // input instead of the oop input to avoid keeping buffer allocations alive 3374 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3375 } else { 3376 if (!_gvn.type(b)->speculative_maybe_null() && 3377 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3378 inc_sp(1); 3379 Node* null_ctl = top(); 3380 b = null_check_oop(b, &null_ctl, true, true, true); 3381 assert(null_ctl->is_top(), "no null control here"); 3382 dec_sp(1); 3383 } else if (_gvn.type(b)->speculative_always_null() && 3384 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3385 inc_sp(1); 3386 b = null_assert(b); 3387 dec_sp(1); 3388 } 3389 c = _gvn.transform( new CmpPNode(b, a) ); 3390 } 3391 do_ifnull(btest, c); 3392 break; 3393 3394 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3395 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3396 handle_if_acmp: 3397 // If this is a backwards branch in the bytecodes, add Safepoint 3398 maybe_add_safepoint(iter().get_dest()); 3399 a = pop(); 3400 b = pop(); 3401 do_acmp(btest, b, a); 3402 break; 3403 3404 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3405 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3406 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3407 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3408 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3409 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3410 handle_ifxx: 3411 // If this is a backwards branch in the bytecodes, add Safepoint 3412 maybe_add_safepoint(iter().get_dest()); 3413 a = _gvn.intcon(0); 3414 b = pop(); 3415 c = _gvn.transform( new CmpINode(b, a) ); 3416 do_if(btest, c); 3417 break; 3418 3419 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3420 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3421 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3422 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3423 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3424 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3425 handle_if_icmp: 3426 // If this is a backwards branch in the bytecodes, add Safepoint 3427 maybe_add_safepoint(iter().get_dest()); 3428 a = pop(); 3429 b = pop(); 3430 c = _gvn.transform( new CmpINode( b, a ) ); 3431 do_if(btest, c); 3432 break; 3433 3434 case Bytecodes::_tableswitch: 3435 do_tableswitch(); 3436 break; 3437 3438 case Bytecodes::_lookupswitch: 3439 do_lookupswitch(); 3440 break; 3441 3442 case Bytecodes::_invokestatic: 3443 case Bytecodes::_invokedynamic: 3444 case Bytecodes::_invokespecial: 3445 case Bytecodes::_invokevirtual: 3446 case Bytecodes::_invokeinterface: 3447 do_call(); 3448 break; 3449 case Bytecodes::_checkcast: 3450 do_checkcast(); 3451 break; 3452 case Bytecodes::_instanceof: 3453 do_instanceof(); 3454 break; 3455 case Bytecodes::_anewarray: 3456 do_newarray(); 3457 break; 3458 case Bytecodes::_newarray: 3459 do_newarray((BasicType)iter().get_index()); 3460 break; 3461 case Bytecodes::_multianewarray: 3462 do_multianewarray(); 3463 break; 3464 case Bytecodes::_new: 3465 do_new(); 3466 break; 3467 case Bytecodes::_aconst_init: 3468 do_aconst_init(); 3469 break; 3470 case Bytecodes::_withfield: 3471 do_withfield(); 3472 break; 3473 3474 case Bytecodes::_jsr: 3475 case Bytecodes::_jsr_w: 3476 do_jsr(); 3477 break; 3478 3479 case Bytecodes::_ret: 3480 do_ret(); 3481 break; 3482 3483 3484 case Bytecodes::_monitorenter: 3485 do_monitor_enter(); 3486 break; 3487 3488 case Bytecodes::_monitorexit: 3489 do_monitor_exit(); 3490 break; 3491 3492 case Bytecodes::_breakpoint: 3493 // Breakpoint set concurrently to compile 3494 // %%% use an uncommon trap? 3495 C->record_failure("breakpoint in method"); 3496 return; 3497 3498 default: 3499 #ifndef PRODUCT 3500 map()->dump(99); 3501 #endif 3502 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3503 ShouldNotReachHere(); 3504 } 3505 3506 #ifndef PRODUCT 3507 if (C->should_print_igv(1)) { 3508 IdealGraphPrinter* printer = C->igv_printer(); 3509 char buffer[256]; 3510 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3511 bool old = printer->traverse_outs(); 3512 printer->set_traverse_outs(true); 3513 printer->print_method(buffer, 4); 3514 printer->set_traverse_outs(old); 3515 } 3516 #endif 3517 }