1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciMethodData.hpp" 26 #include "ci/ciSymbols.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "interpreter/linkResolver.hpp" 30 #include "jvm_io.h" 31 #include "memory/resourceArea.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/divnode.hpp" 38 #include "opto/idealGraphPrinter.hpp" 39 #include "opto/idealKit.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/matcher.hpp" 42 #include "opto/memnode.hpp" 43 #include "opto/mulnode.hpp" 44 #include "opto/opaquenode.hpp" 45 #include "opto/parse.hpp" 46 #include "opto/runtime.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 50 #ifndef PRODUCT 51 extern uint explicit_null_checks_inserted, 52 explicit_null_checks_elided; 53 #endif 54 55 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 56 // Feed unused profile data to type speculation 57 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 58 ciKlass* array_type = nullptr; 59 ciKlass* element_type = nullptr; 60 ProfilePtrKind element_ptr = ProfileMaybeNull; 61 bool flat_array = true; 62 bool null_free_array = true; 63 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 64 if (element_type != nullptr || element_ptr != ProfileMaybeNull) { 65 ld = record_profile_for_speculation(ld, element_type, element_ptr); 66 } 67 } 68 return ld; 69 } 70 71 72 //---------------------------------array_load---------------------------------- 73 void Parse::array_load(BasicType bt) { 74 const Type* elemtype = Type::TOP; 75 Node* adr = array_addressing(bt, 0, elemtype); 76 if (stopped()) return; // guaranteed null or range check 77 78 Node* array_index = pop(); 79 Node* array = pop(); 80 81 // Handle inline type arrays 82 const TypeOopPtr* element_ptr = elemtype->make_oopptr(); 83 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 84 85 if (!array_type->is_not_flat()) { 86 // Cannot statically determine if array is a flat array, emit runtime check 87 assert(UseArrayFlattening && is_reference_type(bt) && element_ptr->can_be_inline_type() && 88 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat"); 89 IdealKit ideal(this); 90 IdealVariable res(ideal); 91 ideal.declarations_done(); 92 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 93 // Non-flat array 94 sync_kit(ideal); 95 if (!array_type->is_flat()) { 96 assert(array_type->is_flat() || control()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 97 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 98 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD; 99 if (needs_range_check(array_type->size(), array_index)) { 100 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load. 101 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot 102 // possibly float above the range check at any point. 103 decorator_set |= C2_UNKNOWN_CONTROL_LOAD; 104 } 105 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set); 106 if (element_ptr->is_inlinetypeptr()) { 107 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass()); 108 } 109 ideal.set(res, ld); 110 } 111 ideal.sync_kit(this); 112 } ideal.else_(); { 113 // Flat array 114 sync_kit(ideal); 115 if (!array_type->is_not_flat()) { 116 if (element_ptr->is_inlinetypeptr()) { 117 // Element type is known, cast and load from flat array layout. 118 ciInlineKlass* vk = element_ptr->inline_klass(); 119 bool is_null_free = array_type->is_null_free() || !vk->has_nullable_atomic_layout(); 120 bool is_not_null_free = array_type->is_not_null_free() || (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()); 121 if (is_null_free) { 122 // TODO 8350865 Impossible type 123 is_not_null_free = false; 124 } 125 bool is_naturally_atomic = is_null_free && vk->nof_declared_nonstatic_fields() <= 1; 126 bool may_need_atomicity = !is_naturally_atomic && ((!is_not_null_free && vk->has_atomic_layout()) || (!is_null_free && vk->has_nullable_atomic_layout())); 127 128 adr = flat_array_element_address(array, array_index, vk, is_null_free, is_not_null_free, may_need_atomicity); 129 int nm_offset = is_null_free ? -1 : vk->null_marker_offset_in_payload(); 130 Node* vt = InlineTypeNode::make_from_flat(this, vk, array, adr, array_index, nullptr, 0, may_need_atomicity, nm_offset); 131 ideal.set(res, vt); 132 } else { 133 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a 134 // runtime call to correctly load the inline type element from the flat array. 135 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 136 ideal.set(res, inline_type); 137 } 138 } 139 ideal.sync_kit(this); 140 } ideal.end_if(); 141 sync_kit(ideal); 142 Node* ld = _gvn.transform(ideal.value(res)); 143 ld = record_profile_for_speculation_at_array_load(ld); 144 push_node(bt, ld); 145 return; 146 } 147 148 if (elemtype == TypeInt::BOOL) { 149 bt = T_BOOLEAN; 150 } 151 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 152 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 153 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 154 ld = record_profile_for_speculation_at_array_load(ld); 155 // Loading an inline type from a non-flat array 156 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) { 157 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null"); 158 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass()); 159 } 160 push_node(bt, ld); 161 } 162 163 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) { 164 // Below membars keep this access to an unknown flat array correctly 165 // ordered with other unknown and known flat array accesses. 166 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 167 168 Node* call = nullptr; 169 { 170 // Re-execute flat array load if runtime call triggers deoptimization 171 PreserveReexecuteState preexecs(this); 172 jvms()->set_bci(_bci); 173 jvms()->set_should_reexecute(true); 174 inc_sp(2); 175 kill_dead_locals(); 176 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 177 OptoRuntime::load_unknown_inline_Type(), 178 OptoRuntime::load_unknown_inline_Java(), 179 nullptr, TypeRawPtr::BOTTOM, 180 array, array_index); 181 } 182 make_slow_call_ex(call, env()->Throwable_klass(), false); 183 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 184 185 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 186 187 // Keep track of the information that the inline type is in flat arrays 188 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array(); 189 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 190 } 191 192 //--------------------------------array_store---------------------------------- 193 void Parse::array_store(BasicType bt) { 194 const Type* elemtype = Type::TOP; 195 Node* adr = array_addressing(bt, type2size[bt], elemtype); 196 if (stopped()) return; // guaranteed null or range check 197 Node* stored_value_casted = nullptr; 198 if (bt == T_OBJECT) { 199 stored_value_casted = array_store_check(adr, elemtype); 200 if (stopped()) { 201 return; 202 } 203 } 204 Node* const stored_value = pop_node(bt); // Value to store 205 Node* const array_index = pop(); // Index in the array 206 Node* array = pop(); // The array itself 207 208 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 209 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 210 211 if (elemtype == TypeInt::BOOL) { 212 bt = T_BOOLEAN; 213 } else if (bt == T_OBJECT) { 214 elemtype = elemtype->make_oopptr(); 215 const Type* stored_value_casted_type = _gvn.type(stored_value_casted); 216 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 217 // This is only legal for non-null stores because the array_store_check always passes for null, even 218 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard(). 219 bool not_inline = !stored_value_casted_type->maybe_null() && !stored_value_casted_type->is_oopptr()->can_be_inline_type(); 220 bool not_null_free = not_inline; 221 bool not_flat = not_inline || ( stored_value_casted_type->is_inlinetypeptr() && 222 !stored_value_casted_type->inline_klass()->flat_in_array()); 223 if (!array_type->is_not_null_free() && not_null_free) { 224 // Storing a non-inline type, mark array as not null-free. 225 array_type = array_type->cast_to_not_null_free(); 226 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 227 replace_in_map(array, cast); 228 array = cast; 229 } 230 if (!array_type->is_not_flat() && not_flat) { 231 // Storing to a non-flat array, mark array as not flat. 232 array_type = array_type->cast_to_not_flat(); 233 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 234 replace_in_map(array, cast); 235 array = cast; 236 } 237 238 if (!array_type->is_flat() && array_type->is_null_free()) { 239 // Store to non-flat null-free inline type array (elements can never be null) 240 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 241 if (elemtype->is_inlinetypeptr() && elemtype->inline_klass()->is_empty()) { 242 // Ignore empty inline stores, array is already initialized. 243 return; 244 } 245 } else if (!array_type->is_not_flat()) { 246 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient). 247 assert(UseArrayFlattening && !not_flat && elemtype->is_oopptr()->can_be_inline_type() && 248 (!array_type->klass_is_exact() || array_type->is_flat()), "array can't be a flat array"); 249 // TODO 8350865 Depending on the available layouts, we can avoid this check in below flat/not-flat branches. Also the safe_for_replace arg is now always true. 250 array = inline_array_null_guard(array, stored_value_casted, 3, true); 251 IdealKit ideal(this); 252 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 253 // Non-flat array 254 if (!array_type->is_flat()) { 255 sync_kit(ideal); 256 assert(array_type->is_flat() || ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 257 inc_sp(3); 258 access_store_at(array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 259 dec_sp(3); 260 ideal.sync_kit(this); 261 } 262 } ideal.else_(); { 263 // Flat array 264 sync_kit(ideal); 265 if (!array_type->is_not_flat()) { 266 // Try to determine the inline klass type of the stored value 267 ciInlineKlass* vk = nullptr; 268 if (stored_value_casted_type->is_inlinetypeptr()) { 269 vk = stored_value_casted_type->inline_klass(); 270 } else if (elemtype->is_inlinetypeptr()) { 271 vk = elemtype->inline_klass(); 272 } 273 274 if (vk != nullptr) { 275 // Element type is known, cast and store to flat array layout. 276 bool is_null_free = array_type->is_null_free() || !vk->has_nullable_atomic_layout(); 277 bool is_not_null_free = array_type->is_not_null_free() || (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()); 278 if (is_null_free) { 279 // TODO 8350865 Impossible type 280 is_not_null_free = false; 281 } 282 bool is_naturally_atomic = is_null_free && vk->nof_declared_nonstatic_fields() <= 1; 283 bool may_need_atomicity = !is_naturally_atomic && ((!is_not_null_free && vk->has_atomic_layout()) || (!is_null_free && vk->has_nullable_atomic_layout())); 284 285 // Re-execute flat array store if buffering triggers deoptimization 286 PreserveReexecuteState preexecs(this); 287 jvms()->set_should_reexecute(true); 288 inc_sp(3); 289 290 if (!stored_value_casted->is_InlineType()) { 291 assert(_gvn.type(stored_value_casted) == TypePtr::NULL_PTR, "Unexpected value"); 292 stored_value_casted = InlineTypeNode::make_null(_gvn, vk); 293 } 294 adr = flat_array_element_address(array, array_index, vk, is_null_free, is_not_null_free, may_need_atomicity); 295 int nm_offset = is_null_free ? -1 : vk->null_marker_offset_in_payload(); 296 stored_value_casted->as_InlineType()->store_flat(this, array, adr, array_index, nullptr, 0, may_need_atomicity, nm_offset, MO_UNORDERED | IN_HEAP | IS_ARRAY); 297 } else { 298 // Element type is unknown, emit a runtime call since the flat array layout is not statically known. 299 store_to_unknown_flat_array(array, array_index, stored_value_casted); 300 } 301 } 302 ideal.sync_kit(this); 303 } 304 ideal.end_if(); 305 sync_kit(ideal); 306 return; 307 } else if (!array_type->is_not_null_free()) { 308 // Array is not flat but may be null free 309 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free"); 310 array = inline_array_null_guard(array, stored_value_casted, 3, true); 311 } 312 } 313 inc_sp(3); 314 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 315 dec_sp(3); 316 } 317 318 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat 319 // array layout) or not exact (could have different flat array layouts at runtime). 320 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) { 321 // Below membars keep this access to an unknown flat array correctly 322 // ordered with other unknown and known flat array accesses. 323 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 324 325 Node* call = nullptr; 326 { 327 // Re-execute flat array store if runtime call triggers deoptimization 328 PreserveReexecuteState preexecs(this); 329 jvms()->set_bci(_bci); 330 jvms()->set_should_reexecute(true); 331 inc_sp(3); 332 kill_dead_locals(); 333 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 334 OptoRuntime::store_unknown_inline_Type(), 335 OptoRuntime::store_unknown_inline_Java(), 336 nullptr, TypeRawPtr::BOTTOM, 337 non_null_stored_value, array, idx); 338 } 339 make_slow_call_ex(call, env()->Throwable_klass(), false); 340 341 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 342 } 343 344 //------------------------------array_addressing------------------------------- 345 // Pull array and index from the stack. Compute pointer-to-element. 346 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 347 Node *idx = peek(0+vals); // Get from stack without popping 348 Node *ary = peek(1+vals); // in case of exception 349 350 // Null check the array base, with correct stack contents 351 ary = null_check(ary, T_ARRAY); 352 // Compile-time detect of null-exception? 353 if (stopped()) return top(); 354 355 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 356 const TypeInt* sizetype = arytype->size(); 357 elemtype = arytype->elem(); 358 359 if (UseUniqueSubclasses) { 360 const Type* el = elemtype->make_ptr(); 361 if (el && el->isa_instptr()) { 362 const TypeInstPtr* toop = el->is_instptr(); 363 if (toop->instance_klass()->unique_concrete_subklass()) { 364 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 365 const Type* subklass = Type::get_const_type(toop->instance_klass()); 366 elemtype = subklass->join_speculative(el); 367 } 368 } 369 } 370 371 if (!arytype->is_loaded()) { 372 // Only fails for some -Xcomp runs 373 // The class is unloaded. We have to run this bytecode in the interpreter. 374 ciKlass* klass = arytype->unloaded_klass(); 375 376 uncommon_trap(Deoptimization::Reason_unloaded, 377 Deoptimization::Action_reinterpret, 378 klass, "!loaded array"); 379 return top(); 380 } 381 382 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype); 383 384 if (needs_range_check(sizetype, idx)) { 385 create_range_check(idx, ary, sizetype); 386 } else if (C->log() != nullptr) { 387 C->log()->elem("observe that='!need_range_check'"); 388 } 389 390 // Check for always knowing you are throwing a range-check exception 391 if (stopped()) return top(); 392 393 // Make array address computation control dependent to prevent it 394 // from floating above the range check during loop optimizations. 395 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 396 assert(ptr != top(), "top should go hand-in-hand with stopped"); 397 398 return ptr; 399 } 400 401 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could 402 // be greater or equal the smallest possible array size (i.e. out-of-bounds). 403 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const { 404 const TypeInt* index_type = _gvn.type(index)->is_int(); 405 return index_type->_hi >= size_type->_lo || index_type->_lo < 0; 406 } 407 408 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) { 409 Node* tst; 410 if (sizetype->_hi <= 0) { 411 // The greatest array bound is negative, so we can conclude that we're 412 // compiling unreachable code, but the unsigned compare trick used below 413 // only works with non-negative lengths. Instead, hack "tst" to be zero so 414 // the uncommon_trap path will always be taken. 415 tst = _gvn.intcon(0); 416 } else { 417 // Range is constant in array-oop, so we can use the original state of mem 418 Node* len = load_array_length(ary); 419 420 // Test length vs index (standard trick using unsigned compare) 421 Node* chk = _gvn.transform(new CmpUNode(idx, len) ); 422 BoolTest::mask btest = BoolTest::lt; 423 tst = _gvn.transform(new BoolNode(chk, btest) ); 424 } 425 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 426 _gvn.set_type(rc, rc->Value(&_gvn)); 427 if (!tst->is_Con()) { 428 record_for_igvn(rc); 429 } 430 set_control(_gvn.transform(new IfTrueNode(rc))); 431 // Branch to failure if out of bounds 432 { 433 PreserveJVMState pjvms(this); 434 set_control(_gvn.transform(new IfFalseNode(rc))); 435 if (C->allow_range_check_smearing()) { 436 // Do not use builtin_throw, since range checks are sometimes 437 // made more stringent by an optimistic transformation. 438 // This creates "tentative" range checks at this point, 439 // which are not guaranteed to throw exceptions. 440 // See IfNode::Ideal, is_range_check, adjust_check. 441 uncommon_trap(Deoptimization::Reason_range_check, 442 Deoptimization::Action_make_not_entrant, 443 nullptr, "range_check"); 444 } else { 445 // If we have already recompiled with the range-check-widening 446 // heroic optimization turned off, then we must really be throwing 447 // range check exceptions. 448 builtin_throw(Deoptimization::Reason_range_check); 449 } 450 } 451 } 452 453 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness, 454 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with 455 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g. 456 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler. 457 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type, 458 const Type*& element_type) { 459 if (!array_type->is_flat() && !array_type->is_not_flat()) { 460 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that 461 // we can rely on a fixed memory layout (i.e. either a flat layout or not). 462 array = cast_to_speculative_array_type(array, array_type, element_type); 463 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 464 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data 465 // at this bci. 466 array = cast_to_profiled_array_type(array); 467 } 468 469 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data 470 // whether we have a non-null-free or non-flat array. Speculating on a non-null-free array doesn't help aaload but could 471 // be profitable for a subsequent aastore. 472 if (!array_type->is_null_free() && !array_type->is_not_null_free()) { 473 array = speculate_non_null_free_array(array, array_type); 474 } 475 if (!array_type->is_flat() && !array_type->is_not_flat()) { 476 array = speculate_non_flat_array(array, array_type); 477 } 478 return array; 479 } 480 481 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be 482 // wrong. On the fast path, we add a CheckCastPP to use the exact type. 483 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) { 484 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 485 ciKlass* speculative_array_type = array_type->speculative_type(); 486 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) { 487 // No speculative type, check profile data at this bci 488 speculative_array_type = nullptr; 489 reason = Deoptimization::Reason_class_check; 490 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 491 ciKlass* profiled_element_type = nullptr; 492 ProfilePtrKind element_ptr = ProfileMaybeNull; 493 bool flat_array = true; 494 bool null_free_array = true; 495 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array, 496 null_free_array); 497 } 498 } 499 if (speculative_array_type != nullptr) { 500 // Speculate that this array has the exact type reported by profile data 501 Node* casted_array = nullptr; 502 DEBUG_ONLY(Node* old_control = control();) 503 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array); 504 if (stopped()) { 505 // The check always fails and therefore profile information is incorrect. Don't use it. 506 assert(old_control == slow_ctl, "type check should have been removed"); 507 set_control(slow_ctl); 508 } else if (!slow_ctl->is_top()) { 509 { PreserveJVMState pjvms(this); 510 set_control(slow_ctl); 511 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 512 } 513 replace_in_map(array, casted_array); 514 array_type = _gvn.type(casted_array)->is_aryptr(); 515 element_type = array_type->elem(); 516 return casted_array; 517 } 518 } 519 return array; 520 } 521 522 // Create a CheckCastPP when the speculative type can improve the current type. 523 Node* Parse::cast_to_profiled_array_type(Node* const array) { 524 ciKlass* array_type = nullptr; 525 ciKlass* element_type = nullptr; 526 ProfilePtrKind element_ptr = ProfileMaybeNull; 527 bool flat_array = true; 528 bool null_free_array = true; 529 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 530 if (array_type != nullptr) { 531 return record_profile_for_speculation(array, array_type, ProfileMaybeNull); 532 } 533 return array; 534 } 535 536 // Speculate that the array is non-null-free. We emit a trap when this turns out to be 537 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type. 538 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) { 539 bool null_free_array = true; 540 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 541 if (array_type->speculative() != nullptr && 542 array_type->speculative()->is_aryptr()->is_not_null_free() && 543 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 544 null_free_array = false; 545 reason = Deoptimization::Reason_speculate_class_check; 546 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 547 ciKlass* profiled_array_type = nullptr; 548 ciKlass* profiled_element_type = nullptr; 549 ProfilePtrKind element_ptr = ProfileMaybeNull; 550 bool flat_array = true; 551 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 552 null_free_array); 553 reason = Deoptimization::Reason_class_check; 554 } 555 if (!null_free_array) { 556 { // Deoptimize if null-free array 557 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX); 558 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 559 } 560 assert(!stopped(), "null-free array should have been caught earlier"); 561 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free())); 562 replace_in_map(array, casted_array); 563 array_type = _gvn.type(casted_array)->is_aryptr(); 564 return casted_array; 565 } 566 return array; 567 } 568 569 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. 570 // On the fast path, we add a CheckCastPP to use the non-flat type. 571 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) { 572 bool flat_array = true; 573 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 574 if (array_type->speculative() != nullptr && 575 array_type->speculative()->is_aryptr()->is_not_flat() && 576 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 577 flat_array = false; 578 reason = Deoptimization::Reason_speculate_class_check; 579 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 580 ciKlass* profiled_array_type = nullptr; 581 ciKlass* profiled_element_type = nullptr; 582 ProfilePtrKind element_ptr = ProfileMaybeNull; 583 bool null_free_array = true; 584 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 585 null_free_array); 586 reason = Deoptimization::Reason_class_check; 587 } 588 if (!flat_array) { 589 { // Deoptimize if flat array 590 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX); 591 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 592 } 593 assert(!stopped(), "flat array should have been caught earlier"); 594 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat())); 595 replace_in_map(array, casted_array); 596 return casted_array; 597 } 598 return array; 599 } 600 601 // returns IfNode 602 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 603 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 604 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 605 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 606 return iff; 607 } 608 609 610 // sentinel value for the target bci to mark never taken branches 611 // (according to profiling) 612 static const int never_reached = INT_MAX; 613 614 //------------------------------helper for tableswitch------------------------- 615 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 616 // True branch, use existing map info 617 { PreserveJVMState pjvms(this); 618 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 619 set_control( iftrue ); 620 if (unc) { 621 repush_if_args(); 622 uncommon_trap(Deoptimization::Reason_unstable_if, 623 Deoptimization::Action_reinterpret, 624 nullptr, 625 "taken always"); 626 } else { 627 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 628 merge_new_path(dest_bci_if_true); 629 } 630 } 631 632 // False branch 633 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 634 set_control( iffalse ); 635 } 636 637 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 638 // True branch, use existing map info 639 { PreserveJVMState pjvms(this); 640 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 641 set_control( iffalse ); 642 if (unc) { 643 repush_if_args(); 644 uncommon_trap(Deoptimization::Reason_unstable_if, 645 Deoptimization::Action_reinterpret, 646 nullptr, 647 "taken never"); 648 } else { 649 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 650 merge_new_path(dest_bci_if_true); 651 } 652 } 653 654 // False branch 655 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 656 set_control( iftrue ); 657 } 658 659 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 660 // False branch, use existing map and control() 661 if (unc) { 662 repush_if_args(); 663 uncommon_trap(Deoptimization::Reason_unstable_if, 664 Deoptimization::Action_reinterpret, 665 nullptr, 666 "taken never"); 667 } else { 668 assert(dest_bci != never_reached, "inconsistent dest"); 669 merge_new_path(dest_bci); 670 } 671 } 672 673 674 extern "C" { 675 static int jint_cmp(const void *i, const void *j) { 676 int a = *(jint *)i; 677 int b = *(jint *)j; 678 return a > b ? 1 : a < b ? -1 : 0; 679 } 680 } 681 682 683 class SwitchRange : public StackObj { 684 // a range of integers coupled with a bci destination 685 jint _lo; // inclusive lower limit 686 jint _hi; // inclusive upper limit 687 int _dest; 688 float _cnt; // how many times this range was hit according to profiling 689 690 public: 691 jint lo() const { return _lo; } 692 jint hi() const { return _hi; } 693 int dest() const { return _dest; } 694 bool is_singleton() const { return _lo == _hi; } 695 float cnt() const { return _cnt; } 696 697 void setRange(jint lo, jint hi, int dest, float cnt) { 698 assert(lo <= hi, "must be a non-empty range"); 699 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 700 assert(_cnt >= 0, ""); 701 } 702 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 703 assert(lo <= hi, "must be a non-empty range"); 704 if (lo == _hi+1) { 705 // see merge_ranges() comment below 706 if (trim_ranges) { 707 if (cnt == 0) { 708 if (_cnt != 0) { 709 return false; 710 } 711 if (dest != _dest) { 712 _dest = never_reached; 713 } 714 } else { 715 if (_cnt == 0) { 716 return false; 717 } 718 if (dest != _dest) { 719 return false; 720 } 721 } 722 } else { 723 if (dest != _dest) { 724 return false; 725 } 726 } 727 _hi = hi; 728 _cnt += cnt; 729 return true; 730 } 731 return false; 732 } 733 734 void set (jint value, int dest, float cnt) { 735 setRange(value, value, dest, cnt); 736 } 737 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 738 return adjoinRange(value, value, dest, cnt, trim_ranges); 739 } 740 bool adjoin(SwitchRange& other) { 741 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 742 } 743 744 void print() { 745 if (is_singleton()) 746 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 747 else if (lo() == min_jint) 748 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 749 else if (hi() == max_jint) 750 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 751 else 752 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 753 } 754 }; 755 756 // We try to minimize the number of ranges and the size of the taken 757 // ones using profiling data. When ranges are created, 758 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 759 // if both were never hit or both were hit to build longer unreached 760 // ranges. Here, we now merge adjoining ranges with the same 761 // destination and finally set destination of unreached ranges to the 762 // special value never_reached because it can help minimize the number 763 // of tests that are necessary. 764 // 765 // For instance: 766 // [0, 1] to target1 sometimes taken 767 // [1, 2] to target1 never taken 768 // [2, 3] to target2 never taken 769 // would lead to: 770 // [0, 1] to target1 sometimes taken 771 // [1, 3] never taken 772 // 773 // (first 2 ranges to target1 are not merged) 774 static void merge_ranges(SwitchRange* ranges, int& rp) { 775 if (rp == 0) { 776 return; 777 } 778 int shift = 0; 779 for (int j = 0; j < rp; j++) { 780 SwitchRange& r1 = ranges[j-shift]; 781 SwitchRange& r2 = ranges[j+1]; 782 if (r1.adjoin(r2)) { 783 shift++; 784 } else if (shift > 0) { 785 ranges[j+1-shift] = r2; 786 } 787 } 788 rp -= shift; 789 for (int j = 0; j <= rp; j++) { 790 SwitchRange& r = ranges[j]; 791 if (r.cnt() == 0 && r.dest() != never_reached) { 792 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 793 } 794 } 795 } 796 797 //-------------------------------do_tableswitch-------------------------------- 798 void Parse::do_tableswitch() { 799 // Get information about tableswitch 800 int default_dest = iter().get_dest_table(0); 801 jint lo_index = iter().get_int_table(1); 802 jint hi_index = iter().get_int_table(2); 803 int len = hi_index - lo_index + 1; 804 805 if (len < 1) { 806 // If this is a backward branch, add safepoint 807 maybe_add_safepoint(default_dest); 808 pop(); // the effect of the instruction execution on the operand stack 809 merge(default_dest); 810 return; 811 } 812 813 ciMethodData* methodData = method()->method_data(); 814 ciMultiBranchData* profile = nullptr; 815 if (methodData->is_mature() && UseSwitchProfiling) { 816 ciProfileData* data = methodData->bci_to_data(bci()); 817 if (data != nullptr && data->is_MultiBranchData()) { 818 profile = (ciMultiBranchData*)data; 819 } 820 } 821 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 822 823 // generate decision tree, using trichotomy when possible 824 int rnum = len+2; 825 bool makes_backward_branch = (default_dest <= bci()); 826 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 827 int rp = -1; 828 if (lo_index != min_jint) { 829 float cnt = 1.0F; 830 if (profile != nullptr) { 831 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 832 } 833 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 834 } 835 for (int j = 0; j < len; j++) { 836 jint match_int = lo_index+j; 837 int dest = iter().get_dest_table(j+3); 838 makes_backward_branch |= (dest <= bci()); 839 float cnt = 1.0F; 840 if (profile != nullptr) { 841 cnt = (float)profile->count_at(j); 842 } 843 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 844 ranges[++rp].set(match_int, dest, cnt); 845 } 846 } 847 jint highest = lo_index+(len-1); 848 assert(ranges[rp].hi() == highest, ""); 849 if (highest != max_jint) { 850 float cnt = 1.0F; 851 if (profile != nullptr) { 852 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 853 } 854 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 855 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 856 } 857 } 858 assert(rp < len+2, "not too many ranges"); 859 860 if (trim_ranges) { 861 merge_ranges(ranges, rp); 862 } 863 864 // Safepoint in case if backward branch observed 865 if (makes_backward_branch) { 866 add_safepoint(); 867 } 868 869 Node* lookup = pop(); // lookup value 870 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 871 } 872 873 874 //------------------------------do_lookupswitch-------------------------------- 875 void Parse::do_lookupswitch() { 876 // Get information about lookupswitch 877 int default_dest = iter().get_dest_table(0); 878 jint len = iter().get_int_table(1); 879 880 if (len < 1) { // If this is a backward branch, add safepoint 881 maybe_add_safepoint(default_dest); 882 pop(); // the effect of the instruction execution on the operand stack 883 merge(default_dest); 884 return; 885 } 886 887 ciMethodData* methodData = method()->method_data(); 888 ciMultiBranchData* profile = nullptr; 889 if (methodData->is_mature() && UseSwitchProfiling) { 890 ciProfileData* data = methodData->bci_to_data(bci()); 891 if (data != nullptr && data->is_MultiBranchData()) { 892 profile = (ciMultiBranchData*)data; 893 } 894 } 895 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 896 897 // generate decision tree, using trichotomy when possible 898 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 899 { 900 for (int j = 0; j < len; j++) { 901 table[3*j+0] = iter().get_int_table(2+2*j); 902 table[3*j+1] = iter().get_dest_table(2+2*j+1); 903 // Handle overflow when converting from uint to jint 904 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 905 } 906 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 907 } 908 909 float default_cnt = 1.0F; 910 if (profile != nullptr) { 911 juint defaults = max_juint - len; 912 default_cnt = (float)profile->default_count()/(float)defaults; 913 } 914 915 int rnum = len*2+1; 916 bool makes_backward_branch = (default_dest <= bci()); 917 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 918 int rp = -1; 919 for (int j = 0; j < len; j++) { 920 jint match_int = table[3*j+0]; 921 jint dest = table[3*j+1]; 922 jint cnt = table[3*j+2]; 923 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 924 makes_backward_branch |= (dest <= bci()); 925 float c = default_cnt * ((float)match_int - (float)next_lo); 926 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 927 assert(default_dest != never_reached, "sentinel value for dead destinations"); 928 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 929 } 930 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 931 assert(dest != never_reached, "sentinel value for dead destinations"); 932 ranges[++rp].set(match_int, dest, (float)cnt); 933 } 934 } 935 jint highest = table[3*(len-1)]; 936 assert(ranges[rp].hi() == highest, ""); 937 if (highest != max_jint && 938 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 939 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 940 } 941 assert(rp < rnum, "not too many ranges"); 942 943 if (trim_ranges) { 944 merge_ranges(ranges, rp); 945 } 946 947 // Safepoint in case backward branch observed 948 if (makes_backward_branch) { 949 add_safepoint(); 950 } 951 952 Node *lookup = pop(); // lookup value 953 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 954 } 955 956 static float if_prob(float taken_cnt, float total_cnt) { 957 assert(taken_cnt <= total_cnt, ""); 958 if (total_cnt == 0) { 959 return PROB_FAIR; 960 } 961 float p = taken_cnt / total_cnt; 962 return clamp(p, PROB_MIN, PROB_MAX); 963 } 964 965 static float if_cnt(float cnt) { 966 if (cnt == 0) { 967 return COUNT_UNKNOWN; 968 } 969 return cnt; 970 } 971 972 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 973 float total_cnt = 0; 974 for (SwitchRange* sr = lo; sr <= hi; sr++) { 975 total_cnt += sr->cnt(); 976 } 977 return total_cnt; 978 } 979 980 class SwitchRanges : public ResourceObj { 981 public: 982 SwitchRange* _lo; 983 SwitchRange* _hi; 984 SwitchRange* _mid; 985 float _cost; 986 987 enum { 988 Start, 989 LeftDone, 990 RightDone, 991 Done 992 } _state; 993 994 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 995 : _lo(lo), _hi(hi), _mid(nullptr), 996 _cost(0), _state(Start) { 997 } 998 999 SwitchRanges() 1000 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 1001 _cost(0), _state(Start) {} 1002 }; 1003 1004 // Estimate cost of performing a binary search on lo..hi 1005 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 1006 GrowableArray<SwitchRanges> tree; 1007 SwitchRanges root(lo, hi); 1008 tree.push(root); 1009 1010 float cost = 0; 1011 do { 1012 SwitchRanges& r = *tree.adr_at(tree.length()-1); 1013 if (r._hi != r._lo) { 1014 if (r._mid == nullptr) { 1015 float r_cnt = sum_of_cnts(r._lo, r._hi); 1016 1017 if (r_cnt == 0) { 1018 tree.pop(); 1019 cost = 0; 1020 continue; 1021 } 1022 1023 SwitchRange* mid = nullptr; 1024 mid = r._lo; 1025 for (float cnt = 0; ; ) { 1026 assert(mid <= r._hi, "out of bounds"); 1027 cnt += mid->cnt(); 1028 if (cnt > r_cnt / 2) { 1029 break; 1030 } 1031 mid++; 1032 } 1033 assert(mid <= r._hi, "out of bounds"); 1034 r._mid = mid; 1035 r._cost = r_cnt / total_cnt; 1036 } 1037 r._cost += cost; 1038 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 1039 cost = 0; 1040 r._state = SwitchRanges::LeftDone; 1041 tree.push(SwitchRanges(r._lo, r._mid-1)); 1042 } else if (r._state < SwitchRanges::RightDone) { 1043 cost = 0; 1044 r._state = SwitchRanges::RightDone; 1045 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 1046 } else { 1047 tree.pop(); 1048 cost = r._cost; 1049 } 1050 } else { 1051 tree.pop(); 1052 cost = r._cost; 1053 } 1054 } while (tree.length() > 0); 1055 1056 1057 return cost; 1058 } 1059 1060 // It sometimes pays off to test most common ranges before the binary search 1061 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1062 uint nr = hi - lo + 1; 1063 float total_cnt = sum_of_cnts(lo, hi); 1064 1065 float min = compute_tree_cost(lo, hi, total_cnt); 1066 float extra = 1; 1067 float sub = 0; 1068 1069 SwitchRange* array1 = lo; 1070 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1071 1072 SwitchRange* ranges = nullptr; 1073 1074 while (nr >= 2) { 1075 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1076 ranges = (lo == array1) ? array2 : array1; 1077 1078 // Find highest frequency range 1079 SwitchRange* candidate = lo; 1080 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1081 if (sr->cnt() > candidate->cnt()) { 1082 candidate = sr; 1083 } 1084 } 1085 SwitchRange most_freq = *candidate; 1086 if (most_freq.cnt() == 0) { 1087 break; 1088 } 1089 1090 // Copy remaining ranges into another array 1091 int shift = 0; 1092 for (uint i = 0; i < nr; i++) { 1093 SwitchRange* sr = &lo[i]; 1094 if (sr != candidate) { 1095 ranges[i-shift] = *sr; 1096 } else { 1097 shift++; 1098 if (i > 0 && i < nr-1) { 1099 SwitchRange prev = lo[i-1]; 1100 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1101 if (prev.adjoin(lo[i+1])) { 1102 shift++; 1103 i++; 1104 } 1105 ranges[i-shift] = prev; 1106 } 1107 } 1108 } 1109 nr -= shift; 1110 1111 // Evaluate cost of testing the most common range and performing a 1112 // binary search on the other ranges 1113 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1114 if (cost >= min) { 1115 break; 1116 } 1117 // swap arrays 1118 lo = &ranges[0]; 1119 hi = &ranges[nr-1]; 1120 1121 // It pays off: emit the test for the most common range 1122 assert(most_freq.cnt() > 0, "must be taken"); 1123 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1124 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 1125 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1126 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1127 jump_if_true_fork(iff, most_freq.dest(), false); 1128 1129 sub += most_freq.cnt() / total_cnt; 1130 extra += 1 - sub; 1131 min = cost; 1132 } 1133 } 1134 1135 //----------------------------create_jump_tables------------------------------- 1136 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1137 // Are jumptables enabled 1138 if (!UseJumpTables) return false; 1139 1140 // Are jumptables supported 1141 if (!Matcher::has_match_rule(Op_Jump)) return false; 1142 1143 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1144 1145 // Decide if a guard is needed to lop off big ranges at either (or 1146 // both) end(s) of the input set. We'll call this the default target 1147 // even though we can't be sure that it is the true "default". 1148 1149 bool needs_guard = false; 1150 int default_dest; 1151 int64_t total_outlier_size = 0; 1152 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1153 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1154 1155 if (lo->dest() == hi->dest()) { 1156 total_outlier_size = hi_size + lo_size; 1157 default_dest = lo->dest(); 1158 } else if (lo_size > hi_size) { 1159 total_outlier_size = lo_size; 1160 default_dest = lo->dest(); 1161 } else { 1162 total_outlier_size = hi_size; 1163 default_dest = hi->dest(); 1164 } 1165 1166 float total = sum_of_cnts(lo, hi); 1167 float cost = compute_tree_cost(lo, hi, total); 1168 1169 // If a guard test will eliminate very sparse end ranges, then 1170 // it is worth the cost of an extra jump. 1171 float trimmed_cnt = 0; 1172 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1173 needs_guard = true; 1174 if (default_dest == lo->dest()) { 1175 trimmed_cnt += lo->cnt(); 1176 lo++; 1177 } 1178 if (default_dest == hi->dest()) { 1179 trimmed_cnt += hi->cnt(); 1180 hi--; 1181 } 1182 } 1183 1184 // Find the total number of cases and ranges 1185 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1186 int num_range = hi - lo + 1; 1187 1188 // Don't create table if: too large, too small, or too sparse. 1189 if (num_cases > MaxJumpTableSize) 1190 return false; 1191 if (UseSwitchProfiling) { 1192 // MinJumpTableSize is set so with a well balanced binary tree, 1193 // when the number of ranges is MinJumpTableSize, it's cheaper to 1194 // go through a JumpNode that a tree of IfNodes. Average cost of a 1195 // tree of IfNodes with MinJumpTableSize is 1196 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1197 // from profile data is less than log2f(MinJumpTableSize) then 1198 // going with the binary search is cheaper. 1199 if (cost < log2f(MinJumpTableSize)) { 1200 return false; 1201 } 1202 } else { 1203 if (num_cases < MinJumpTableSize) 1204 return false; 1205 } 1206 if (num_cases > (MaxJumpTableSparseness * num_range)) 1207 return false; 1208 1209 // Normalize table lookups to zero 1210 int lowval = lo->lo(); 1211 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1212 1213 // Generate a guard to protect against input keyvals that aren't 1214 // in the switch domain. 1215 if (needs_guard) { 1216 Node* size = _gvn.intcon(num_cases); 1217 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1218 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1219 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1220 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1221 1222 total -= trimmed_cnt; 1223 } 1224 1225 // Create an ideal node JumpTable that has projections 1226 // of all possible ranges for a switch statement 1227 // The key_val input must be converted to a pointer offset and scaled. 1228 // Compare Parse::array_addressing above. 1229 1230 // Clean the 32-bit int into a real 64-bit offset. 1231 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1232 // Make I2L conversion control dependent to prevent it from 1233 // floating above the range check during loop optimizations. 1234 // Do not use a narrow int type here to prevent the data path from dying 1235 // while the control path is not removed. This can happen if the type of key_val 1236 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1237 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1238 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1239 #ifdef _LP64 1240 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1241 #endif 1242 1243 // Shift the value by wordsize so we have an index into the table, rather 1244 // than a switch value 1245 Node *shiftWord = _gvn.MakeConX(wordSize); 1246 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1247 1248 // Create the JumpNode 1249 Arena* arena = C->comp_arena(); 1250 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1251 int i = 0; 1252 if (total == 0) { 1253 for (SwitchRange* r = lo; r <= hi; r++) { 1254 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1255 probs[i] = 1.0F / num_cases; 1256 } 1257 } 1258 } else { 1259 for (SwitchRange* r = lo; r <= hi; r++) { 1260 float prob = r->cnt()/total; 1261 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1262 probs[i] = prob / (r->hi() - r->lo() + 1); 1263 } 1264 } 1265 } 1266 1267 ciMethodData* methodData = method()->method_data(); 1268 ciMultiBranchData* profile = nullptr; 1269 if (methodData->is_mature()) { 1270 ciProfileData* data = methodData->bci_to_data(bci()); 1271 if (data != nullptr && data->is_MultiBranchData()) { 1272 profile = (ciMultiBranchData*)data; 1273 } 1274 } 1275 1276 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 1277 1278 // These are the switch destinations hanging off the jumpnode 1279 i = 0; 1280 for (SwitchRange* r = lo; r <= hi; r++) { 1281 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1282 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1283 { 1284 PreserveJVMState pjvms(this); 1285 set_control(input); 1286 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1287 } 1288 } 1289 } 1290 assert(i == num_cases, "miscount of cases"); 1291 stop_and_kill_map(); // no more uses for this JVMS 1292 return true; 1293 } 1294 1295 //----------------------------jump_switch_ranges------------------------------- 1296 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1297 Block* switch_block = block(); 1298 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1299 1300 if (switch_depth == 0) { 1301 // Do special processing for the top-level call. 1302 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1303 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1304 1305 // Decrement pred-numbers for the unique set of nodes. 1306 #ifdef ASSERT 1307 if (!trim_ranges) { 1308 // Ensure that the block's successors are a (duplicate-free) set. 1309 int successors_counted = 0; // block occurrences in [hi..lo] 1310 int unique_successors = switch_block->num_successors(); 1311 for (int i = 0; i < unique_successors; i++) { 1312 Block* target = switch_block->successor_at(i); 1313 1314 // Check that the set of successors is the same in both places. 1315 int successors_found = 0; 1316 for (SwitchRange* p = lo; p <= hi; p++) { 1317 if (p->dest() == target->start()) successors_found++; 1318 } 1319 assert(successors_found > 0, "successor must be known"); 1320 successors_counted += successors_found; 1321 } 1322 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1323 } 1324 #endif 1325 1326 // Maybe prune the inputs, based on the type of key_val. 1327 jint min_val = min_jint; 1328 jint max_val = max_jint; 1329 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1330 if (ti != nullptr) { 1331 min_val = ti->_lo; 1332 max_val = ti->_hi; 1333 assert(min_val <= max_val, "invalid int type"); 1334 } 1335 while (lo->hi() < min_val) { 1336 lo++; 1337 } 1338 if (lo->lo() < min_val) { 1339 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1340 } 1341 while (hi->lo() > max_val) { 1342 hi--; 1343 } 1344 if (hi->hi() > max_val) { 1345 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1346 } 1347 1348 linear_search_switch_ranges(key_val, lo, hi); 1349 } 1350 1351 #ifndef PRODUCT 1352 if (switch_depth == 0) { 1353 _max_switch_depth = 0; 1354 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1355 } 1356 #endif 1357 1358 assert(lo <= hi, "must be a non-empty set of ranges"); 1359 if (lo == hi) { 1360 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1361 } else { 1362 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1363 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1364 1365 if (create_jump_tables(key_val, lo, hi)) return; 1366 1367 SwitchRange* mid = nullptr; 1368 float total_cnt = sum_of_cnts(lo, hi); 1369 1370 int nr = hi - lo + 1; 1371 if (UseSwitchProfiling) { 1372 // Don't keep the binary search tree balanced: pick up mid point 1373 // that split frequencies in half. 1374 float cnt = 0; 1375 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1376 cnt += sr->cnt(); 1377 if (cnt >= total_cnt / 2) { 1378 mid = sr; 1379 break; 1380 } 1381 } 1382 } else { 1383 mid = lo + nr/2; 1384 1385 // if there is an easy choice, pivot at a singleton: 1386 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1387 1388 assert(lo < mid && mid <= hi, "good pivot choice"); 1389 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1390 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1391 } 1392 1393 1394 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1395 1396 if (mid->is_singleton()) { 1397 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1398 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1399 1400 // Special Case: If there are exactly three ranges, and the high 1401 // and low range each go to the same place, omit the "gt" test, 1402 // since it will not discriminate anything. 1403 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1404 1405 // if there is a higher range, test for it and process it: 1406 if (mid < hi && !eq_test_only) { 1407 // two comparisons of same values--should enable 1 test for 2 branches 1408 // Use BoolTest::lt instead of BoolTest::gt 1409 float cnt = sum_of_cnts(lo, mid-1); 1410 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1411 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1412 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1413 { PreserveJVMState pjvms(this); 1414 set_control(iffalse); 1415 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1416 } 1417 set_control(iftrue); 1418 } 1419 1420 } else { 1421 // mid is a range, not a singleton, so treat mid..hi as a unit 1422 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1423 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1424 1425 // if there is a higher range, test for it and process it: 1426 if (mid == hi) { 1427 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1428 } else { 1429 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1430 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1431 { PreserveJVMState pjvms(this); 1432 set_control(iftrue); 1433 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1434 } 1435 set_control(iffalse); 1436 } 1437 } 1438 1439 // in any case, process the lower range 1440 if (mid == lo) { 1441 if (mid->is_singleton()) { 1442 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1443 } else { 1444 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1445 } 1446 } else { 1447 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1448 } 1449 } 1450 1451 // Decrease pred_count for each successor after all is done. 1452 if (switch_depth == 0) { 1453 int unique_successors = switch_block->num_successors(); 1454 for (int i = 0; i < unique_successors; i++) { 1455 Block* target = switch_block->successor_at(i); 1456 // Throw away the pre-allocated path for each unique successor. 1457 target->next_path_num(); 1458 } 1459 } 1460 1461 #ifndef PRODUCT 1462 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1463 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1464 SwitchRange* r; 1465 int nsing = 0; 1466 for( r = lo; r <= hi; r++ ) { 1467 if( r->is_singleton() ) nsing++; 1468 } 1469 tty->print(">>> "); 1470 _method->print_short_name(); 1471 tty->print_cr(" switch decision tree"); 1472 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1473 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1474 if (_max_switch_depth > _est_switch_depth) { 1475 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1476 } 1477 tty->print(" "); 1478 for( r = lo; r <= hi; r++ ) { 1479 r->print(); 1480 } 1481 tty->cr(); 1482 } 1483 #endif 1484 } 1485 1486 Node* Parse::floating_point_mod(Node* a, Node* b, BasicType type) { 1487 assert(type == BasicType::T_FLOAT || type == BasicType::T_DOUBLE, "only float and double are floating points"); 1488 CallNode* mod = type == BasicType::T_DOUBLE ? static_cast<CallNode*>(new ModDNode(C, a, b)) : new ModFNode(C, a, b); 1489 1490 Node* prev_mem = set_predefined_input_for_runtime_call(mod); 1491 mod = _gvn.transform(mod)->as_Call(); 1492 set_predefined_output_for_runtime_call(mod, prev_mem, TypeRawPtr::BOTTOM); 1493 Node* result = _gvn.transform(new ProjNode(mod, TypeFunc::Parms + 0)); 1494 record_for_igvn(mod); 1495 return result; 1496 } 1497 1498 void Parse::l2f() { 1499 Node* f2 = pop(); 1500 Node* f1 = pop(); 1501 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1502 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1503 "l2f", nullptr, //no memory effects 1504 f1, f2); 1505 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1506 1507 push(res); 1508 } 1509 1510 // Handle jsr and jsr_w bytecode 1511 void Parse::do_jsr() { 1512 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1513 1514 // Store information about current state, tagged with new _jsr_bci 1515 int return_bci = iter().next_bci(); 1516 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1517 1518 // The way we do things now, there is only one successor block 1519 // for the jsr, because the target code is cloned by ciTypeFlow. 1520 Block* target = successor_for_bci(jsr_bci); 1521 1522 // What got pushed? 1523 const Type* ret_addr = target->peek(); 1524 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1525 1526 // Effect on jsr on stack 1527 push(_gvn.makecon(ret_addr)); 1528 1529 // Flow to the jsr. 1530 merge(jsr_bci); 1531 } 1532 1533 // Handle ret bytecode 1534 void Parse::do_ret() { 1535 // Find to whom we return. 1536 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1537 Block* target = block()->successor_at(0); 1538 assert(!target->is_ready(), "our arrival must be expected"); 1539 int pnum = target->next_path_num(); 1540 merge_common(target, pnum); 1541 } 1542 1543 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1544 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1545 // Only ::eq and ::ne are supported for profile injection. 1546 return false; 1547 } 1548 if (test->is_Cmp() && 1549 test->in(1)->Opcode() == Op_ProfileBoolean) { 1550 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1551 int false_cnt = profile->false_count(); 1552 int true_cnt = profile->true_count(); 1553 1554 // Counts matching depends on the actual test operation (::eq or ::ne). 1555 // No need to scale the counts because profile injection was designed 1556 // to feed exact counts into VM. 1557 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1558 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1559 1560 profile->consume(); 1561 return true; 1562 } 1563 return false; 1564 } 1565 1566 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1567 // We also check that individual counters are positive first, otherwise the sum can become positive. 1568 // (check for saturation, integer overflow, and immature counts) 1569 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1570 // check for saturation, including "uint" values too big to fit in "int" 1571 if (counter1 < 0 || counter2 < 0) { 1572 return false; 1573 } 1574 // check for integer overflow of the sum 1575 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1576 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1577 if (sum > INT_MAX) { 1578 return false; 1579 } 1580 // check if mature 1581 return (counter1 + counter2) >= min; 1582 } 1583 1584 //--------------------------dynamic_branch_prediction-------------------------- 1585 // Try to gather dynamic branch prediction behavior. Return a probability 1586 // of the branch being taken and set the "cnt" field. Returns a -1.0 1587 // if we need to use static prediction for some reason. 1588 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1589 ResourceMark rm; 1590 1591 cnt = COUNT_UNKNOWN; 1592 1593 int taken = 0; 1594 int not_taken = 0; 1595 1596 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1597 1598 if (use_mdo) { 1599 // Use MethodData information if it is available 1600 // FIXME: free the ProfileData structure 1601 ciMethodData* methodData = method()->method_data(); 1602 if (!methodData->is_mature()) return PROB_UNKNOWN; 1603 ciProfileData* data = methodData->bci_to_data(bci()); 1604 if (data == nullptr) { 1605 return PROB_UNKNOWN; 1606 } 1607 if (!data->is_JumpData()) return PROB_UNKNOWN; 1608 1609 // get taken and not taken values 1610 // NOTE: saturated UINT_MAX values become negative, 1611 // as do counts above INT_MAX. 1612 taken = data->as_JumpData()->taken(); 1613 not_taken = 0; 1614 if (data->is_BranchData()) { 1615 not_taken = data->as_BranchData()->not_taken(); 1616 } 1617 1618 // scale the counts to be commensurate with invocation counts: 1619 // NOTE: overflow for positive values is clamped at INT_MAX 1620 taken = method()->scale_count(taken); 1621 not_taken = method()->scale_count(not_taken); 1622 } 1623 // At this point, saturation or overflow is indicated by INT_MAX 1624 // or a negative value. 1625 1626 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1627 // We also check that individual counters are positive first, otherwise the sum can become positive. 1628 if (!counters_are_meaningful(taken, not_taken, 40)) { 1629 if (C->log() != nullptr) { 1630 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1631 } 1632 return PROB_UNKNOWN; 1633 } 1634 1635 // Compute frequency that we arrive here 1636 float sum = taken + not_taken; 1637 // Adjust, if this block is a cloned private block but the 1638 // Jump counts are shared. Taken the private counts for 1639 // just this path instead of the shared counts. 1640 if( block()->count() > 0 ) 1641 sum = block()->count(); 1642 cnt = sum / FreqCountInvocations; 1643 1644 // Pin probability to sane limits 1645 float prob; 1646 if( !taken ) 1647 prob = (0+PROB_MIN) / 2; 1648 else if( !not_taken ) 1649 prob = (1+PROB_MAX) / 2; 1650 else { // Compute probability of true path 1651 prob = (float)taken / (float)(taken + not_taken); 1652 if (prob > PROB_MAX) prob = PROB_MAX; 1653 if (prob < PROB_MIN) prob = PROB_MIN; 1654 } 1655 1656 assert((cnt > 0.0f) && (prob > 0.0f), 1657 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1658 1659 if (C->log() != nullptr) { 1660 const char* prob_str = nullptr; 1661 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1662 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1663 char prob_str_buf[30]; 1664 if (prob_str == nullptr) { 1665 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1666 prob_str = prob_str_buf; 1667 } 1668 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1669 iter().get_dest(), taken, not_taken, cnt, prob_str); 1670 } 1671 return prob; 1672 } 1673 1674 //-----------------------------branch_prediction------------------------------- 1675 float Parse::branch_prediction(float& cnt, 1676 BoolTest::mask btest, 1677 int target_bci, 1678 Node* test) { 1679 float prob = dynamic_branch_prediction(cnt, btest, test); 1680 // If prob is unknown, switch to static prediction 1681 if (prob != PROB_UNKNOWN) return prob; 1682 1683 prob = PROB_FAIR; // Set default value 1684 if (btest == BoolTest::eq) // Exactly equal test? 1685 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1686 else if (btest == BoolTest::ne) 1687 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1688 1689 // If this is a conditional test guarding a backwards branch, 1690 // assume its a loop-back edge. Make it a likely taken branch. 1691 if (target_bci < bci()) { 1692 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1693 // Since it's an OSR, we probably have profile data, but since 1694 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1695 // Let's make a special check here for completely zero counts. 1696 ciMethodData* methodData = method()->method_data(); 1697 if (!methodData->is_empty()) { 1698 ciProfileData* data = methodData->bci_to_data(bci()); 1699 // Only stop for truly zero counts, which mean an unknown part 1700 // of the OSR-ed method, and we want to deopt to gather more stats. 1701 // If you have ANY counts, then this loop is simply 'cold' relative 1702 // to the OSR loop. 1703 if (data == nullptr || 1704 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1705 // This is the only way to return PROB_UNKNOWN: 1706 return PROB_UNKNOWN; 1707 } 1708 } 1709 } 1710 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1711 } 1712 1713 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1714 return prob; 1715 } 1716 1717 // The magic constants are chosen so as to match the output of 1718 // branch_prediction() when the profile reports a zero taken count. 1719 // It is important to distinguish zero counts unambiguously, because 1720 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1721 // very small but nonzero probabilities, which if confused with zero 1722 // counts would keep the program recompiling indefinitely. 1723 bool Parse::seems_never_taken(float prob) const { 1724 return prob < PROB_MIN; 1725 } 1726 1727 //-------------------------------repush_if_args-------------------------------- 1728 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1729 inline int Parse::repush_if_args() { 1730 if (PrintOpto && WizardMode) { 1731 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1732 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1733 method()->print_name(); tty->cr(); 1734 } 1735 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1736 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1737 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1738 assert(argument(0) != nullptr, "must exist"); 1739 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1740 inc_sp(bc_depth); 1741 return bc_depth; 1742 } 1743 1744 // Used by StressUnstableIfTraps 1745 static volatile int _trap_stress_counter = 0; 1746 1747 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1748 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1749 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, MemNode::unordered); 1750 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1751 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, MemNode::unordered); 1752 } 1753 1754 //----------------------------------do_ifnull---------------------------------- 1755 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1756 int target_bci = iter().get_dest(); 1757 1758 Node* counter = nullptr; 1759 Node* incr_store = nullptr; 1760 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1761 if (do_stress_trap) { 1762 increment_trap_stress_counter(counter, incr_store); 1763 } 1764 1765 Block* branch_block = successor_for_bci(target_bci); 1766 Block* next_block = successor_for_bci(iter().next_bci()); 1767 1768 float cnt; 1769 float prob = branch_prediction(cnt, btest, target_bci, c); 1770 if (prob == PROB_UNKNOWN) { 1771 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1772 if (PrintOpto && Verbose) { 1773 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1774 } 1775 repush_if_args(); // to gather stats on loop 1776 uncommon_trap(Deoptimization::Reason_unreached, 1777 Deoptimization::Action_reinterpret, 1778 nullptr, "cold"); 1779 if (C->eliminate_boxing()) { 1780 // Mark the successor blocks as parsed 1781 branch_block->next_path_num(); 1782 next_block->next_path_num(); 1783 } 1784 return; 1785 } 1786 1787 NOT_PRODUCT(explicit_null_checks_inserted++); 1788 1789 // Generate real control flow 1790 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1791 1792 // Sanity check the probability value 1793 assert(prob > 0.0f,"Bad probability in Parser"); 1794 // Need xform to put node in hash table 1795 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1796 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1797 // True branch 1798 { PreserveJVMState pjvms(this); 1799 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1800 set_control(iftrue); 1801 1802 if (stopped()) { // Path is dead? 1803 NOT_PRODUCT(explicit_null_checks_elided++); 1804 if (C->eliminate_boxing()) { 1805 // Mark the successor block as parsed 1806 branch_block->next_path_num(); 1807 } 1808 } else { // Path is live. 1809 adjust_map_after_if(btest, c, prob, branch_block); 1810 if (!stopped()) { 1811 merge(target_bci); 1812 } 1813 } 1814 } 1815 1816 // False branch 1817 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1818 set_control(iffalse); 1819 1820 if (stopped()) { // Path is dead? 1821 NOT_PRODUCT(explicit_null_checks_elided++); 1822 if (C->eliminate_boxing()) { 1823 // Mark the successor block as parsed 1824 next_block->next_path_num(); 1825 } 1826 } else { // Path is live. 1827 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1828 } 1829 1830 if (do_stress_trap) { 1831 stress_trap(iff, counter, incr_store); 1832 } 1833 } 1834 1835 //------------------------------------do_if------------------------------------ 1836 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) { 1837 int target_bci = iter().get_dest(); 1838 1839 Block* branch_block = successor_for_bci(target_bci); 1840 Block* next_block = successor_for_bci(iter().next_bci()); 1841 1842 float cnt; 1843 float prob = branch_prediction(cnt, btest, target_bci, c); 1844 float untaken_prob = 1.0 - prob; 1845 1846 if (prob == PROB_UNKNOWN) { 1847 if (PrintOpto && Verbose) { 1848 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1849 } 1850 repush_if_args(); // to gather stats on loop 1851 uncommon_trap(Deoptimization::Reason_unreached, 1852 Deoptimization::Action_reinterpret, 1853 nullptr, "cold"); 1854 if (C->eliminate_boxing()) { 1855 // Mark the successor blocks as parsed 1856 branch_block->next_path_num(); 1857 next_block->next_path_num(); 1858 } 1859 return; 1860 } 1861 1862 Node* counter = nullptr; 1863 Node* incr_store = nullptr; 1864 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1865 if (do_stress_trap) { 1866 increment_trap_stress_counter(counter, incr_store); 1867 } 1868 1869 // Sanity check the probability value 1870 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1871 1872 bool taken_if_true = true; 1873 // Convert BoolTest to canonical form: 1874 if (!BoolTest(btest).is_canonical()) { 1875 btest = BoolTest(btest).negate(); 1876 taken_if_true = false; 1877 // prob is NOT updated here; it remains the probability of the taken 1878 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1879 } 1880 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1881 1882 Node* tst0 = new BoolNode(c, btest); 1883 Node* tst = _gvn.transform(tst0); 1884 BoolTest::mask taken_btest = BoolTest::illegal; 1885 BoolTest::mask untaken_btest = BoolTest::illegal; 1886 1887 if (tst->is_Bool()) { 1888 // Refresh c from the transformed bool node, since it may be 1889 // simpler than the original c. Also re-canonicalize btest. 1890 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1891 // That can arise from statements like: if (x instanceof C) ... 1892 if (tst != tst0) { 1893 // Canonicalize one more time since transform can change it. 1894 btest = tst->as_Bool()->_test._test; 1895 if (!BoolTest(btest).is_canonical()) { 1896 // Reverse edges one more time... 1897 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1898 btest = tst->as_Bool()->_test._test; 1899 assert(BoolTest(btest).is_canonical(), "sanity"); 1900 taken_if_true = !taken_if_true; 1901 } 1902 c = tst->in(1); 1903 } 1904 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1905 taken_btest = taken_if_true ? btest : neg_btest; 1906 untaken_btest = taken_if_true ? neg_btest : btest; 1907 } 1908 1909 // Generate real control flow 1910 float true_prob = (taken_if_true ? prob : untaken_prob); 1911 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1912 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1913 Node* taken_branch = new IfTrueNode(iff); 1914 Node* untaken_branch = new IfFalseNode(iff); 1915 if (!taken_if_true) { // Finish conversion to canonical form 1916 Node* tmp = taken_branch; 1917 taken_branch = untaken_branch; 1918 untaken_branch = tmp; 1919 } 1920 1921 // Branch is taken: 1922 { PreserveJVMState pjvms(this); 1923 taken_branch = _gvn.transform(taken_branch); 1924 set_control(taken_branch); 1925 1926 if (stopped()) { 1927 if (C->eliminate_boxing() && !new_path) { 1928 // Mark the successor block as parsed (if we haven't created a new path) 1929 branch_block->next_path_num(); 1930 } 1931 } else { 1932 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap); 1933 if (!stopped()) { 1934 if (new_path) { 1935 // Merge by using a new path 1936 merge_new_path(target_bci); 1937 } else if (ctrl_taken != nullptr) { 1938 // Don't merge but save taken branch to be wired by caller 1939 *ctrl_taken = control(); 1940 } else { 1941 merge(target_bci); 1942 } 1943 } 1944 } 1945 } 1946 1947 untaken_branch = _gvn.transform(untaken_branch); 1948 set_control(untaken_branch); 1949 1950 // Branch not taken. 1951 if (stopped() && ctrl_taken == nullptr) { 1952 if (C->eliminate_boxing()) { 1953 // Mark the successor block as parsed (if caller does not re-wire control flow) 1954 next_block->next_path_num(); 1955 } 1956 } else { 1957 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap); 1958 } 1959 1960 if (do_stress_trap) { 1961 stress_trap(iff, counter, incr_store); 1962 } 1963 } 1964 1965 1966 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 1967 if (t->speculative() == nullptr) { 1968 return ProfileUnknownNull; 1969 } 1970 if (t->speculative_always_null()) { 1971 return ProfileAlwaysNull; 1972 } 1973 if (t->speculative_maybe_null()) { 1974 return ProfileMaybeNull; 1975 } 1976 return ProfileNeverNull; 1977 } 1978 1979 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 1980 inc_sp(2); 1981 Node* cast = null_check_common(input, T_OBJECT, true, nullptr, 1982 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 1983 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 1984 dec_sp(2); 1985 if (btest == BoolTest::ne) { 1986 { 1987 PreserveJVMState pjvms(this); 1988 replace_in_map(input, cast); 1989 int target_bci = iter().get_dest(); 1990 merge(target_bci); 1991 } 1992 record_for_igvn(eq_region); 1993 set_control(_gvn.transform(eq_region)); 1994 } else { 1995 replace_in_map(input, cast); 1996 } 1997 } 1998 1999 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 2000 inc_sp(2); 2001 null_ctl = top(); 2002 Node* cast = null_check_oop(input, &null_ctl, 2003 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 2004 false, 2005 speculative_ptr_kind(tinput) == ProfileNeverNull && 2006 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 2007 dec_sp(2); 2008 assert(!stopped(), "null input should have been caught earlier"); 2009 return cast; 2010 } 2011 2012 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 2013 Node* ne_region = new RegionNode(1); 2014 Node* null_ctl; 2015 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2016 ne_region->add_req(null_ctl); 2017 2018 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 2019 { 2020 PreserveJVMState pjvms(this); 2021 inc_sp(2); 2022 set_control(slow_ctl); 2023 Deoptimization::DeoptReason reason; 2024 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2025 reason = Deoptimization::Reason_speculate_class_check; 2026 } else { 2027 reason = Deoptimization::Reason_class_check; 2028 } 2029 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2030 } 2031 ne_region->add_req(control()); 2032 2033 record_for_igvn(ne_region); 2034 set_control(_gvn.transform(ne_region)); 2035 if (btest == BoolTest::ne) { 2036 { 2037 PreserveJVMState pjvms(this); 2038 if (null_ctl == top()) { 2039 replace_in_map(input, cast); 2040 } 2041 int target_bci = iter().get_dest(); 2042 merge(target_bci); 2043 } 2044 record_for_igvn(eq_region); 2045 set_control(_gvn.transform(eq_region)); 2046 } else { 2047 if (null_ctl == top()) { 2048 replace_in_map(input, cast); 2049 } 2050 set_control(_gvn.transform(ne_region)); 2051 } 2052 } 2053 2054 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 2055 Node* ne_region = new RegionNode(1); 2056 Node* null_ctl; 2057 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2058 ne_region->add_req(null_ctl); 2059 2060 { 2061 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 2062 inc_sp(2); 2063 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 2064 } 2065 2066 ne_region->add_req(control()); 2067 2068 record_for_igvn(ne_region); 2069 set_control(_gvn.transform(ne_region)); 2070 if (btest == BoolTest::ne) { 2071 { 2072 PreserveJVMState pjvms(this); 2073 if (null_ctl == top()) { 2074 replace_in_map(input, cast); 2075 } 2076 int target_bci = iter().get_dest(); 2077 merge(target_bci); 2078 } 2079 record_for_igvn(eq_region); 2080 set_control(_gvn.transform(eq_region)); 2081 } else { 2082 if (null_ctl == top()) { 2083 replace_in_map(input, cast); 2084 } 2085 set_control(_gvn.transform(ne_region)); 2086 } 2087 } 2088 2089 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2090 ciKlass* left_type = nullptr; 2091 ciKlass* right_type = nullptr; 2092 ProfilePtrKind left_ptr = ProfileUnknownNull; 2093 ProfilePtrKind right_ptr = ProfileUnknownNull; 2094 bool left_inline_type = true; 2095 bool right_inline_type = true; 2096 2097 // Leverage profiling at acmp 2098 if (UseACmpProfile) { 2099 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2100 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2101 left_type = nullptr; 2102 right_type = nullptr; 2103 left_inline_type = true; 2104 right_inline_type = true; 2105 } 2106 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2107 left_ptr = ProfileUnknownNull; 2108 right_ptr = ProfileUnknownNull; 2109 } 2110 } 2111 2112 if (UseTypeSpeculation) { 2113 record_profile_for_speculation(left, left_type, left_ptr); 2114 record_profile_for_speculation(right, right_type, right_ptr); 2115 } 2116 2117 if (!EnableValhalla) { 2118 Node* cmp = CmpP(left, right); 2119 cmp = optimize_cmp_with_klass(cmp); 2120 do_if(btest, cmp); 2121 return; 2122 } 2123 2124 // Check for equality before potentially allocating 2125 if (left == right) { 2126 do_if(btest, makecon(TypeInt::CC_EQ)); 2127 return; 2128 } 2129 2130 // Allocate inline type operands and re-execute on deoptimization 2131 if (left->is_InlineType()) { 2132 if (_gvn.type(right)->is_zero_type() || 2133 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2134 // Null checking a scalarized but nullable inline type. Check the IsInit 2135 // input instead of the oop input to avoid keeping buffer allocations alive. 2136 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2137 do_if(btest, cmp); 2138 return; 2139 } else { 2140 PreserveReexecuteState preexecs(this); 2141 inc_sp(2); 2142 jvms()->set_should_reexecute(true); 2143 left = left->as_InlineType()->buffer(this)->get_oop(); 2144 } 2145 } 2146 if (right->is_InlineType()) { 2147 PreserveReexecuteState preexecs(this); 2148 inc_sp(2); 2149 jvms()->set_should_reexecute(true); 2150 right = right->as_InlineType()->buffer(this)->get_oop(); 2151 } 2152 2153 // First, do a normal pointer comparison 2154 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2155 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2156 Node* cmp = CmpP(left, right); 2157 cmp = optimize_cmp_with_klass(cmp); 2158 if (tleft == nullptr || !tleft->can_be_inline_type() || 2159 tright == nullptr || !tright->can_be_inline_type()) { 2160 // This is sufficient, if one of the operands can't be an inline type 2161 do_if(btest, cmp); 2162 return; 2163 } 2164 2165 // Don't add traps to unstable if branches because additional checks are required to 2166 // decide if the operands are equal/substitutable and we therefore shouldn't prune 2167 // branches for one if based on the profiling of the acmp branches. 2168 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it 2169 // assumes that there is a 1-1 mapping between the if and the acmp branches and that 2170 // hitting a trap means that we will take the corresponding acmp branch on re-execution. 2171 const bool can_trap = true; 2172 2173 Node* eq_region = nullptr; 2174 if (btest == BoolTest::eq) { 2175 do_if(btest, cmp, !can_trap, true); 2176 if (stopped()) { 2177 // Pointers are equal, operands must be equal 2178 return; 2179 } 2180 } else { 2181 assert(btest == BoolTest::ne, "only eq or ne"); 2182 Node* is_not_equal = nullptr; 2183 eq_region = new RegionNode(3); 2184 { 2185 PreserveJVMState pjvms(this); 2186 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable 2187 do_if(btest, cmp, !can_trap, false, &is_not_equal); 2188 if (!stopped()) { 2189 eq_region->init_req(1, control()); 2190 } 2191 } 2192 if (is_not_equal == nullptr || is_not_equal->is_top()) { 2193 record_for_igvn(eq_region); 2194 set_control(_gvn.transform(eq_region)); 2195 return; 2196 } 2197 set_control(is_not_equal); 2198 } 2199 2200 // Prefer speculative types if available 2201 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2202 if (tleft->speculative_type() != nullptr) { 2203 left_type = tleft->speculative_type(); 2204 } 2205 if (tright->speculative_type() != nullptr) { 2206 right_type = tright->speculative_type(); 2207 } 2208 } 2209 2210 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2211 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2212 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2213 left_ptr = speculative_left_ptr; 2214 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2215 left_ptr = speculative_left_ptr; 2216 } 2217 } 2218 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2219 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2220 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2221 right_ptr = speculative_right_ptr; 2222 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2223 right_ptr = speculative_right_ptr; 2224 } 2225 } 2226 2227 if (left_ptr == ProfileAlwaysNull) { 2228 // Comparison with null. Assert the input is indeed null and we're done. 2229 acmp_always_null_input(left, tleft, btest, eq_region); 2230 return; 2231 } 2232 if (right_ptr == ProfileAlwaysNull) { 2233 // Comparison with null. Assert the input is indeed null and we're done. 2234 acmp_always_null_input(right, tright, btest, eq_region); 2235 return; 2236 } 2237 if (left_type != nullptr && !left_type->is_inlinetype()) { 2238 // Comparison with an object of known type 2239 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2240 return; 2241 } 2242 if (right_type != nullptr && !right_type->is_inlinetype()) { 2243 // Comparison with an object of known type 2244 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2245 return; 2246 } 2247 if (!left_inline_type) { 2248 // Comparison with an object known not to be an inline type 2249 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2250 return; 2251 } 2252 if (!right_inline_type) { 2253 // Comparison with an object known not to be an inline type 2254 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2255 return; 2256 } 2257 2258 // Pointers are not equal, check if first operand is non-null 2259 Node* ne_region = new RegionNode(6); 2260 Node* null_ctl; 2261 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2262 ne_region->init_req(1, null_ctl); 2263 2264 // First operand is non-null, check if it is an inline type 2265 Node* is_value = inline_type_test(not_null_right); 2266 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2267 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2268 ne_region->init_req(2, not_value); 2269 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2270 2271 // The first operand is an inline type, check if the second operand is non-null 2272 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2273 ne_region->init_req(3, null_ctl); 2274 2275 // Check if both operands are of the same class. 2276 Node* kls_left = load_object_klass(not_null_left); 2277 Node* kls_right = load_object_klass(not_null_right); 2278 Node* kls_cmp = CmpP(kls_left, kls_right); 2279 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2280 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2281 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2282 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2283 ne_region->init_req(4, kls_ne); 2284 2285 if (stopped()) { 2286 record_for_igvn(ne_region); 2287 set_control(_gvn.transform(ne_region)); 2288 if (btest == BoolTest::ne) { 2289 { 2290 PreserveJVMState pjvms(this); 2291 int target_bci = iter().get_dest(); 2292 merge(target_bci); 2293 } 2294 record_for_igvn(eq_region); 2295 set_control(_gvn.transform(eq_region)); 2296 } 2297 return; 2298 } 2299 2300 // Both operands are values types of the same class, we need to perform a 2301 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2302 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2303 Node* mem = reset_memory(); 2304 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2305 2306 Node* eq_io_phi = nullptr; 2307 Node* eq_mem_phi = nullptr; 2308 if (eq_region != nullptr) { 2309 eq_io_phi = PhiNode::make(eq_region, i_o()); 2310 eq_mem_phi = PhiNode::make(eq_region, mem); 2311 } 2312 2313 set_all_memory(mem); 2314 2315 kill_dead_locals(); 2316 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2317 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2318 call->set_override_symbolic_info(true); 2319 call->init_req(TypeFunc::Parms, not_null_left); 2320 call->init_req(TypeFunc::Parms+1, not_null_right); 2321 inc_sp(2); 2322 set_edges_for_java_call(call, false, false); 2323 Node* ret = set_results_for_java_call(call, false, true); 2324 dec_sp(2); 2325 2326 // Test the return value of ValueObjectMethods::isSubstitutable() 2327 // This is the last check, do_if can emit traps now. 2328 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2329 Node* ctl = C->top(); 2330 if (btest == BoolTest::eq) { 2331 PreserveJVMState pjvms(this); 2332 do_if(btest, subst_cmp, can_trap); 2333 if (!stopped()) { 2334 ctl = control(); 2335 } 2336 } else { 2337 assert(btest == BoolTest::ne, "only eq or ne"); 2338 PreserveJVMState pjvms(this); 2339 do_if(btest, subst_cmp, can_trap, false, &ctl); 2340 if (!stopped()) { 2341 eq_region->init_req(2, control()); 2342 eq_io_phi->init_req(2, i_o()); 2343 eq_mem_phi->init_req(2, reset_memory()); 2344 } 2345 } 2346 ne_region->init_req(5, ctl); 2347 ne_io_phi->init_req(5, i_o()); 2348 ne_mem_phi->init_req(5, reset_memory()); 2349 2350 record_for_igvn(ne_region); 2351 set_control(_gvn.transform(ne_region)); 2352 set_i_o(_gvn.transform(ne_io_phi)); 2353 set_all_memory(_gvn.transform(ne_mem_phi)); 2354 2355 if (btest == BoolTest::ne) { 2356 { 2357 PreserveJVMState pjvms(this); 2358 int target_bci = iter().get_dest(); 2359 merge(target_bci); 2360 } 2361 2362 record_for_igvn(eq_region); 2363 set_control(_gvn.transform(eq_region)); 2364 set_i_o(_gvn.transform(eq_io_phi)); 2365 set_all_memory(_gvn.transform(eq_mem_phi)); 2366 } 2367 } 2368 2369 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 2370 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 2371 // then either takes the trap or executes the original, unstable if. 2372 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 2373 // Search for an unstable if trap 2374 CallStaticJavaNode* trap = nullptr; 2375 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 2376 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 2377 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 2378 // No suitable trap found. Remove unused counter load and increment. 2379 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 2380 return; 2381 } 2382 2383 // Remove trap from optimization list since we add another path to the trap. 2384 bool success = C->remove_unstable_if_trap(trap, true); 2385 assert(success, "Trap already modified"); 2386 2387 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 2388 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 2389 Node* mask = intcon(right_n_bits(freq_log)); 2390 counter = _gvn.transform(new AndINode(counter, mask)); 2391 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 2392 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 2393 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 2394 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 2395 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 2396 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 2397 2398 // Trap 2399 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 2400 2401 Node* trap_region = new RegionNode(3); 2402 trap_region->set_req(1, trap_proj); 2403 trap_region->set_req(2, if_true); 2404 trap->set_req(0, _gvn.transform(trap_region)); 2405 2406 // Don't trap, execute original if 2407 orig_iff->set_req(0, if_false); 2408 } 2409 2410 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2411 // Randomly skip emitting an uncommon trap 2412 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 2413 return false; 2414 } 2415 // Don't want to speculate on uncommon traps when running with -Xcomp 2416 if (!UseInterpreter) { 2417 return false; 2418 } 2419 return seems_never_taken(prob) && 2420 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 2421 } 2422 2423 void Parse::maybe_add_predicate_after_if(Block* path) { 2424 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2425 // Add predicates at bci of if dominating the loop so traps can be 2426 // recorded on the if's profile data 2427 int bc_depth = repush_if_args(); 2428 add_parse_predicates(); 2429 dec_sp(bc_depth); 2430 path->set_has_predicates(); 2431 } 2432 } 2433 2434 2435 //----------------------------adjust_map_after_if------------------------------ 2436 // Adjust the JVM state to reflect the result of taking this path. 2437 // Basically, it means inspecting the CmpNode controlling this 2438 // branch, seeing how it constrains a tested value, and then 2439 // deciding if it's worth our while to encode this constraint 2440 // as graph nodes in the current abstract interpretation map. 2441 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) { 2442 if (!c->is_Cmp()) { 2443 maybe_add_predicate_after_if(path); 2444 return; 2445 } 2446 2447 if (stopped() || btest == BoolTest::illegal) { 2448 return; // nothing to do 2449 } 2450 2451 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2452 2453 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) { 2454 repush_if_args(); 2455 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2456 Deoptimization::Action_reinterpret, 2457 nullptr, 2458 (is_fallthrough ? "taken always" : "taken never")); 2459 2460 if (call != nullptr) { 2461 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2462 } 2463 return; 2464 } 2465 2466 Node* val = c->in(1); 2467 Node* con = c->in(2); 2468 const Type* tcon = _gvn.type(con); 2469 const Type* tval = _gvn.type(val); 2470 bool have_con = tcon->singleton(); 2471 if (tval->singleton()) { 2472 if (!have_con) { 2473 // Swap, so constant is in con. 2474 con = val; 2475 tcon = tval; 2476 val = c->in(2); 2477 tval = _gvn.type(val); 2478 btest = BoolTest(btest).commute(); 2479 have_con = true; 2480 } else { 2481 // Do we have two constants? Then leave well enough alone. 2482 have_con = false; 2483 } 2484 } 2485 if (!have_con) { // remaining adjustments need a con 2486 maybe_add_predicate_after_if(path); 2487 return; 2488 } 2489 2490 sharpen_type_after_if(btest, con, tcon, val, tval); 2491 maybe_add_predicate_after_if(path); 2492 } 2493 2494 2495 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2496 Node* ldk; 2497 if (n->is_DecodeNKlass()) { 2498 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2499 return nullptr; 2500 } else { 2501 ldk = n->in(1); 2502 } 2503 } else if (n->Opcode() != Op_LoadKlass) { 2504 return nullptr; 2505 } else { 2506 ldk = n; 2507 } 2508 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2509 2510 Node* adr = ldk->in(MemNode::Address); 2511 intptr_t off = 0; 2512 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2513 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2514 return nullptr; 2515 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2516 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2517 return nullptr; 2518 2519 return obj; 2520 } 2521 2522 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2523 Node* con, const Type* tcon, 2524 Node* val, const Type* tval) { 2525 // Look for opportunities to sharpen the type of a node 2526 // whose klass is compared with a constant klass. 2527 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2528 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2529 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2530 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2531 // Found: 2532 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2533 // or the narrowOop equivalent. 2534 const Type* obj_type = _gvn.type(obj); 2535 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2536 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 2537 tboth->higher_equal(obj_type)) { 2538 // obj has to be of the exact type Foo if the CmpP succeeds. 2539 int obj_in_map = map()->find_edge(obj); 2540 JVMState* jvms = this->jvms(); 2541 if (obj_in_map >= 0 && 2542 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2543 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2544 const Type* tcc = ccast->as_Type()->type(); 2545 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2546 // Delay transform() call to allow recovery of pre-cast value 2547 // at the control merge. 2548 _gvn.set_type_bottom(ccast); 2549 record_for_igvn(ccast); 2550 if (tboth->is_inlinetypeptr()) { 2551 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass()); 2552 } 2553 // Here's the payoff. 2554 replace_in_map(obj, ccast); 2555 } 2556 } 2557 } 2558 } 2559 2560 int val_in_map = map()->find_edge(val); 2561 if (val_in_map < 0) return; // replace_in_map would be useless 2562 { 2563 JVMState* jvms = this->jvms(); 2564 if (!(jvms->is_loc(val_in_map) || 2565 jvms->is_stk(val_in_map))) 2566 return; // again, it would be useless 2567 } 2568 2569 // Check for a comparison to a constant, and "know" that the compared 2570 // value is constrained on this path. 2571 assert(tcon->singleton(), ""); 2572 ConstraintCastNode* ccast = nullptr; 2573 Node* cast = nullptr; 2574 2575 switch (btest) { 2576 case BoolTest::eq: // Constant test? 2577 { 2578 const Type* tboth = tcon->join_speculative(tval); 2579 if (tboth == tval) break; // Nothing to gain. 2580 if (tcon->isa_int()) { 2581 ccast = new CastIINode(control(), val, tboth); 2582 } else if (tcon == TypePtr::NULL_PTR) { 2583 // Cast to null, but keep the pointer identity temporarily live. 2584 ccast = new CastPPNode(control(), val, tboth); 2585 } else { 2586 const TypeF* tf = tcon->isa_float_constant(); 2587 const TypeD* td = tcon->isa_double_constant(); 2588 // Exclude tests vs float/double 0 as these could be 2589 // either +0 or -0. Just because you are equal to +0 2590 // doesn't mean you ARE +0! 2591 // Note, following code also replaces Long and Oop values. 2592 if ((!tf || tf->_f != 0.0) && 2593 (!td || td->_d != 0.0)) 2594 cast = con; // Replace non-constant val by con. 2595 } 2596 } 2597 break; 2598 2599 case BoolTest::ne: 2600 if (tcon == TypePtr::NULL_PTR) { 2601 cast = cast_not_null(val, false); 2602 } 2603 break; 2604 2605 default: 2606 // (At this point we could record int range types with CastII.) 2607 break; 2608 } 2609 2610 if (ccast != nullptr) { 2611 const Type* tcc = ccast->as_Type()->type(); 2612 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2613 // Delay transform() call to allow recovery of pre-cast value 2614 // at the control merge. 2615 _gvn.set_type_bottom(ccast); 2616 record_for_igvn(ccast); 2617 cast = ccast; 2618 } 2619 2620 if (cast != nullptr) { // Here's the payoff. 2621 replace_in_map(val, cast); 2622 } 2623 } 2624 2625 /** 2626 * Use speculative type to optimize CmpP node: if comparison is 2627 * against the low level class, cast the object to the speculative 2628 * type if any. CmpP should then go away. 2629 * 2630 * @param c expected CmpP node 2631 * @return result of CmpP on object casted to speculative type 2632 * 2633 */ 2634 Node* Parse::optimize_cmp_with_klass(Node* c) { 2635 // If this is transformed by the _gvn to a comparison with the low 2636 // level klass then we may be able to use speculation 2637 if (c->Opcode() == Op_CmpP && 2638 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2639 c->in(2)->is_Con()) { 2640 Node* load_klass = nullptr; 2641 Node* decode = nullptr; 2642 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2643 decode = c->in(1); 2644 load_klass = c->in(1)->in(1); 2645 } else { 2646 load_klass = c->in(1); 2647 } 2648 if (load_klass->in(2)->is_AddP()) { 2649 Node* addp = load_klass->in(2); 2650 Node* obj = addp->in(AddPNode::Address); 2651 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2652 if (obj_type->speculative_type_not_null() != nullptr) { 2653 ciKlass* k = obj_type->speculative_type(); 2654 inc_sp(2); 2655 obj = maybe_cast_profiled_obj(obj, k); 2656 dec_sp(2); 2657 if (obj->is_InlineType()) { 2658 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2659 obj = obj->as_InlineType()->get_oop(); 2660 } 2661 // Make the CmpP use the casted obj 2662 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2663 load_klass = load_klass->clone(); 2664 load_klass->set_req(2, addp); 2665 load_klass = _gvn.transform(load_klass); 2666 if (decode != nullptr) { 2667 decode = decode->clone(); 2668 decode->set_req(1, load_klass); 2669 load_klass = _gvn.transform(decode); 2670 } 2671 c = c->clone(); 2672 c->set_req(1, load_klass); 2673 c = _gvn.transform(c); 2674 } 2675 } 2676 } 2677 return c; 2678 } 2679 2680 //------------------------------do_one_bytecode-------------------------------- 2681 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2682 void Parse::do_one_bytecode() { 2683 Node *a, *b, *c, *d; // Handy temps 2684 BoolTest::mask btest; 2685 int i; 2686 2687 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2688 2689 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2690 "out of nodes parsing method")) { 2691 return; 2692 } 2693 2694 #ifdef ASSERT 2695 // for setting breakpoints 2696 if (TraceOptoParse) { 2697 tty->print(" @"); 2698 dump_bci(bci()); 2699 tty->print(" %s", Bytecodes::name(bc())); 2700 tty->cr(); 2701 } 2702 #endif 2703 2704 switch (bc()) { 2705 case Bytecodes::_nop: 2706 // do nothing 2707 break; 2708 case Bytecodes::_lconst_0: 2709 push_pair(longcon(0)); 2710 break; 2711 2712 case Bytecodes::_lconst_1: 2713 push_pair(longcon(1)); 2714 break; 2715 2716 case Bytecodes::_fconst_0: 2717 push(zerocon(T_FLOAT)); 2718 break; 2719 2720 case Bytecodes::_fconst_1: 2721 push(makecon(TypeF::ONE)); 2722 break; 2723 2724 case Bytecodes::_fconst_2: 2725 push(makecon(TypeF::make(2.0f))); 2726 break; 2727 2728 case Bytecodes::_dconst_0: 2729 push_pair(zerocon(T_DOUBLE)); 2730 break; 2731 2732 case Bytecodes::_dconst_1: 2733 push_pair(makecon(TypeD::ONE)); 2734 break; 2735 2736 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2737 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2738 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2739 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2740 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2741 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2742 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2743 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2744 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2745 case Bytecodes::_aconst_null: push(null()); break; 2746 2747 case Bytecodes::_ldc: 2748 case Bytecodes::_ldc_w: 2749 case Bytecodes::_ldc2_w: { 2750 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded 2751 assert(!iter().is_in_error(), "ldc is in error state"); 2752 ciConstant constant = iter().get_constant(); 2753 assert(constant.is_loaded(), "constant is not loaded"); 2754 const Type* con_type = Type::make_from_constant(constant); 2755 if (con_type != nullptr) { 2756 push_node(con_type->basic_type(), makecon(con_type)); 2757 } 2758 break; 2759 } 2760 2761 case Bytecodes::_aload_0: 2762 push( local(0) ); 2763 break; 2764 case Bytecodes::_aload_1: 2765 push( local(1) ); 2766 break; 2767 case Bytecodes::_aload_2: 2768 push( local(2) ); 2769 break; 2770 case Bytecodes::_aload_3: 2771 push( local(3) ); 2772 break; 2773 case Bytecodes::_aload: 2774 push( local(iter().get_index()) ); 2775 break; 2776 2777 case Bytecodes::_fload_0: 2778 case Bytecodes::_iload_0: 2779 push( local(0) ); 2780 break; 2781 case Bytecodes::_fload_1: 2782 case Bytecodes::_iload_1: 2783 push( local(1) ); 2784 break; 2785 case Bytecodes::_fload_2: 2786 case Bytecodes::_iload_2: 2787 push( local(2) ); 2788 break; 2789 case Bytecodes::_fload_3: 2790 case Bytecodes::_iload_3: 2791 push( local(3) ); 2792 break; 2793 case Bytecodes::_fload: 2794 case Bytecodes::_iload: 2795 push( local(iter().get_index()) ); 2796 break; 2797 case Bytecodes::_lload_0: 2798 push_pair_local( 0 ); 2799 break; 2800 case Bytecodes::_lload_1: 2801 push_pair_local( 1 ); 2802 break; 2803 case Bytecodes::_lload_2: 2804 push_pair_local( 2 ); 2805 break; 2806 case Bytecodes::_lload_3: 2807 push_pair_local( 3 ); 2808 break; 2809 case Bytecodes::_lload: 2810 push_pair_local( iter().get_index() ); 2811 break; 2812 2813 case Bytecodes::_dload_0: 2814 push_pair_local(0); 2815 break; 2816 case Bytecodes::_dload_1: 2817 push_pair_local(1); 2818 break; 2819 case Bytecodes::_dload_2: 2820 push_pair_local(2); 2821 break; 2822 case Bytecodes::_dload_3: 2823 push_pair_local(3); 2824 break; 2825 case Bytecodes::_dload: 2826 push_pair_local(iter().get_index()); 2827 break; 2828 case Bytecodes::_fstore_0: 2829 case Bytecodes::_istore_0: 2830 case Bytecodes::_astore_0: 2831 set_local( 0, pop() ); 2832 break; 2833 case Bytecodes::_fstore_1: 2834 case Bytecodes::_istore_1: 2835 case Bytecodes::_astore_1: 2836 set_local( 1, pop() ); 2837 break; 2838 case Bytecodes::_fstore_2: 2839 case Bytecodes::_istore_2: 2840 case Bytecodes::_astore_2: 2841 set_local( 2, pop() ); 2842 break; 2843 case Bytecodes::_fstore_3: 2844 case Bytecodes::_istore_3: 2845 case Bytecodes::_astore_3: 2846 set_local( 3, pop() ); 2847 break; 2848 case Bytecodes::_fstore: 2849 case Bytecodes::_istore: 2850 case Bytecodes::_astore: 2851 set_local( iter().get_index(), pop() ); 2852 break; 2853 // long stores 2854 case Bytecodes::_lstore_0: 2855 set_pair_local( 0, pop_pair() ); 2856 break; 2857 case Bytecodes::_lstore_1: 2858 set_pair_local( 1, pop_pair() ); 2859 break; 2860 case Bytecodes::_lstore_2: 2861 set_pair_local( 2, pop_pair() ); 2862 break; 2863 case Bytecodes::_lstore_3: 2864 set_pair_local( 3, pop_pair() ); 2865 break; 2866 case Bytecodes::_lstore: 2867 set_pair_local( iter().get_index(), pop_pair() ); 2868 break; 2869 2870 // double stores 2871 case Bytecodes::_dstore_0: 2872 set_pair_local( 0, pop_pair() ); 2873 break; 2874 case Bytecodes::_dstore_1: 2875 set_pair_local( 1, pop_pair() ); 2876 break; 2877 case Bytecodes::_dstore_2: 2878 set_pair_local( 2, pop_pair() ); 2879 break; 2880 case Bytecodes::_dstore_3: 2881 set_pair_local( 3, pop_pair() ); 2882 break; 2883 case Bytecodes::_dstore: 2884 set_pair_local( iter().get_index(), pop_pair() ); 2885 break; 2886 2887 case Bytecodes::_pop: dec_sp(1); break; 2888 case Bytecodes::_pop2: dec_sp(2); break; 2889 case Bytecodes::_swap: 2890 a = pop(); 2891 b = pop(); 2892 push(a); 2893 push(b); 2894 break; 2895 case Bytecodes::_dup: 2896 a = pop(); 2897 push(a); 2898 push(a); 2899 break; 2900 case Bytecodes::_dup_x1: 2901 a = pop(); 2902 b = pop(); 2903 push( a ); 2904 push( b ); 2905 push( a ); 2906 break; 2907 case Bytecodes::_dup_x2: 2908 a = pop(); 2909 b = pop(); 2910 c = pop(); 2911 push( a ); 2912 push( c ); 2913 push( b ); 2914 push( a ); 2915 break; 2916 case Bytecodes::_dup2: 2917 a = pop(); 2918 b = pop(); 2919 push( b ); 2920 push( a ); 2921 push( b ); 2922 push( a ); 2923 break; 2924 2925 case Bytecodes::_dup2_x1: 2926 // before: .. c, b, a 2927 // after: .. b, a, c, b, a 2928 // not tested 2929 a = pop(); 2930 b = pop(); 2931 c = pop(); 2932 push( b ); 2933 push( a ); 2934 push( c ); 2935 push( b ); 2936 push( a ); 2937 break; 2938 case Bytecodes::_dup2_x2: 2939 // before: .. d, c, b, a 2940 // after: .. b, a, d, c, b, a 2941 // not tested 2942 a = pop(); 2943 b = pop(); 2944 c = pop(); 2945 d = pop(); 2946 push( b ); 2947 push( a ); 2948 push( d ); 2949 push( c ); 2950 push( b ); 2951 push( a ); 2952 break; 2953 2954 case Bytecodes::_arraylength: { 2955 // Must do null-check with value on expression stack 2956 Node *ary = null_check(peek(), T_ARRAY); 2957 // Compile-time detect of null-exception? 2958 if (stopped()) return; 2959 a = pop(); 2960 push(load_array_length(a)); 2961 break; 2962 } 2963 2964 case Bytecodes::_baload: array_load(T_BYTE); break; 2965 case Bytecodes::_caload: array_load(T_CHAR); break; 2966 case Bytecodes::_iaload: array_load(T_INT); break; 2967 case Bytecodes::_saload: array_load(T_SHORT); break; 2968 case Bytecodes::_faload: array_load(T_FLOAT); break; 2969 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2970 case Bytecodes::_laload: array_load(T_LONG); break; 2971 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2972 case Bytecodes::_bastore: array_store(T_BYTE); break; 2973 case Bytecodes::_castore: array_store(T_CHAR); break; 2974 case Bytecodes::_iastore: array_store(T_INT); break; 2975 case Bytecodes::_sastore: array_store(T_SHORT); break; 2976 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2977 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2978 case Bytecodes::_lastore: array_store(T_LONG); break; 2979 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2980 2981 case Bytecodes::_getfield: 2982 do_getfield(); 2983 break; 2984 2985 case Bytecodes::_getstatic: 2986 do_getstatic(); 2987 break; 2988 2989 case Bytecodes::_putfield: 2990 do_putfield(); 2991 break; 2992 2993 case Bytecodes::_putstatic: 2994 do_putstatic(); 2995 break; 2996 2997 case Bytecodes::_irem: 2998 // Must keep both values on the expression-stack during null-check 2999 zero_check_int(peek()); 3000 // Compile-time detect of null-exception? 3001 if (stopped()) return; 3002 b = pop(); 3003 a = pop(); 3004 push(_gvn.transform(new ModINode(control(), a, b))); 3005 break; 3006 case Bytecodes::_idiv: 3007 // Must keep both values on the expression-stack during null-check 3008 zero_check_int(peek()); 3009 // Compile-time detect of null-exception? 3010 if (stopped()) return; 3011 b = pop(); 3012 a = pop(); 3013 push( _gvn.transform( new DivINode(control(),a,b) ) ); 3014 break; 3015 case Bytecodes::_imul: 3016 b = pop(); a = pop(); 3017 push( _gvn.transform( new MulINode(a,b) ) ); 3018 break; 3019 case Bytecodes::_iadd: 3020 b = pop(); a = pop(); 3021 push( _gvn.transform( new AddINode(a,b) ) ); 3022 break; 3023 case Bytecodes::_ineg: 3024 a = pop(); 3025 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 3026 break; 3027 case Bytecodes::_isub: 3028 b = pop(); a = pop(); 3029 push( _gvn.transform( new SubINode(a,b) ) ); 3030 break; 3031 case Bytecodes::_iand: 3032 b = pop(); a = pop(); 3033 push( _gvn.transform( new AndINode(a,b) ) ); 3034 break; 3035 case Bytecodes::_ior: 3036 b = pop(); a = pop(); 3037 push( _gvn.transform( new OrINode(a,b) ) ); 3038 break; 3039 case Bytecodes::_ixor: 3040 b = pop(); a = pop(); 3041 push( _gvn.transform( new XorINode(a,b) ) ); 3042 break; 3043 case Bytecodes::_ishl: 3044 b = pop(); a = pop(); 3045 push( _gvn.transform( new LShiftINode(a,b) ) ); 3046 break; 3047 case Bytecodes::_ishr: 3048 b = pop(); a = pop(); 3049 push( _gvn.transform( new RShiftINode(a,b) ) ); 3050 break; 3051 case Bytecodes::_iushr: 3052 b = pop(); a = pop(); 3053 push( _gvn.transform( new URShiftINode(a,b) ) ); 3054 break; 3055 3056 case Bytecodes::_fneg: 3057 a = pop(); 3058 b = _gvn.transform(new NegFNode (a)); 3059 push(b); 3060 break; 3061 3062 case Bytecodes::_fsub: 3063 b = pop(); 3064 a = pop(); 3065 c = _gvn.transform( new SubFNode(a,b) ); 3066 push(c); 3067 break; 3068 3069 case Bytecodes::_fadd: 3070 b = pop(); 3071 a = pop(); 3072 c = _gvn.transform( new AddFNode(a,b) ); 3073 push(c); 3074 break; 3075 3076 case Bytecodes::_fmul: 3077 b = pop(); 3078 a = pop(); 3079 c = _gvn.transform( new MulFNode(a,b) ); 3080 push(c); 3081 break; 3082 3083 case Bytecodes::_fdiv: 3084 b = pop(); 3085 a = pop(); 3086 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 3087 push(c); 3088 break; 3089 3090 case Bytecodes::_frem: 3091 // Generate a ModF node. 3092 b = pop(); 3093 a = pop(); 3094 push(floating_point_mod(a, b, BasicType::T_FLOAT)); 3095 break; 3096 3097 case Bytecodes::_fcmpl: 3098 b = pop(); 3099 a = pop(); 3100 c = _gvn.transform( new CmpF3Node( a, b)); 3101 push(c); 3102 break; 3103 case Bytecodes::_fcmpg: 3104 b = pop(); 3105 a = pop(); 3106 3107 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 3108 // which negates the result sign except for unordered. Flip the unordered 3109 // as well by using CmpF3 which implements unordered-lesser instead of 3110 // unordered-greater semantics. Finally, commute the result bits. Result 3111 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3112 c = _gvn.transform( new CmpF3Node( b, a)); 3113 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3114 push(c); 3115 break; 3116 3117 case Bytecodes::_f2i: 3118 a = pop(); 3119 push(_gvn.transform(new ConvF2INode(a))); 3120 break; 3121 3122 case Bytecodes::_d2i: 3123 a = pop_pair(); 3124 b = _gvn.transform(new ConvD2INode(a)); 3125 push( b ); 3126 break; 3127 3128 case Bytecodes::_f2d: 3129 a = pop(); 3130 b = _gvn.transform( new ConvF2DNode(a)); 3131 push_pair( b ); 3132 break; 3133 3134 case Bytecodes::_d2f: 3135 a = pop_pair(); 3136 b = _gvn.transform( new ConvD2FNode(a)); 3137 push( b ); 3138 break; 3139 3140 case Bytecodes::_l2f: 3141 if (Matcher::convL2FSupported()) { 3142 a = pop_pair(); 3143 b = _gvn.transform( new ConvL2FNode(a)); 3144 push(b); 3145 } else { 3146 l2f(); 3147 } 3148 break; 3149 3150 case Bytecodes::_l2d: 3151 a = pop_pair(); 3152 b = _gvn.transform( new ConvL2DNode(a)); 3153 push_pair(b); 3154 break; 3155 3156 case Bytecodes::_f2l: 3157 a = pop(); 3158 b = _gvn.transform( new ConvF2LNode(a)); 3159 push_pair(b); 3160 break; 3161 3162 case Bytecodes::_d2l: 3163 a = pop_pair(); 3164 b = _gvn.transform( new ConvD2LNode(a)); 3165 push_pair(b); 3166 break; 3167 3168 case Bytecodes::_dsub: 3169 b = pop_pair(); 3170 a = pop_pair(); 3171 c = _gvn.transform( new SubDNode(a,b) ); 3172 push_pair(c); 3173 break; 3174 3175 case Bytecodes::_dadd: 3176 b = pop_pair(); 3177 a = pop_pair(); 3178 c = _gvn.transform( new AddDNode(a,b) ); 3179 push_pair(c); 3180 break; 3181 3182 case Bytecodes::_dmul: 3183 b = pop_pair(); 3184 a = pop_pair(); 3185 c = _gvn.transform( new MulDNode(a,b) ); 3186 push_pair(c); 3187 break; 3188 3189 case Bytecodes::_ddiv: 3190 b = pop_pair(); 3191 a = pop_pair(); 3192 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 3193 push_pair(c); 3194 break; 3195 3196 case Bytecodes::_dneg: 3197 a = pop_pair(); 3198 b = _gvn.transform(new NegDNode (a)); 3199 push_pair(b); 3200 break; 3201 3202 case Bytecodes::_drem: 3203 // Generate a ModD node. 3204 b = pop_pair(); 3205 a = pop_pair(); 3206 push_pair(floating_point_mod(a, b, BasicType::T_DOUBLE)); 3207 break; 3208 3209 case Bytecodes::_dcmpl: 3210 b = pop_pair(); 3211 a = pop_pair(); 3212 c = _gvn.transform( new CmpD3Node( a, b)); 3213 push(c); 3214 break; 3215 3216 case Bytecodes::_dcmpg: 3217 b = pop_pair(); 3218 a = pop_pair(); 3219 // Same as dcmpl but need to flip the unordered case. 3220 // Commute the inputs, which negates the result sign except for unordered. 3221 // Flip the unordered as well by using CmpD3 which implements 3222 // unordered-lesser instead of unordered-greater semantics. 3223 // Finally, negate the result bits. Result is same as using a 3224 // CmpD3Greater except we did it with CmpD3 alone. 3225 c = _gvn.transform( new CmpD3Node( b, a)); 3226 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3227 push(c); 3228 break; 3229 3230 3231 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3232 case Bytecodes::_land: 3233 b = pop_pair(); 3234 a = pop_pair(); 3235 c = _gvn.transform( new AndLNode(a,b) ); 3236 push_pair(c); 3237 break; 3238 case Bytecodes::_lor: 3239 b = pop_pair(); 3240 a = pop_pair(); 3241 c = _gvn.transform( new OrLNode(a,b) ); 3242 push_pair(c); 3243 break; 3244 case Bytecodes::_lxor: 3245 b = pop_pair(); 3246 a = pop_pair(); 3247 c = _gvn.transform( new XorLNode(a,b) ); 3248 push_pair(c); 3249 break; 3250 3251 case Bytecodes::_lshl: 3252 b = pop(); // the shift count 3253 a = pop_pair(); // value to be shifted 3254 c = _gvn.transform( new LShiftLNode(a,b) ); 3255 push_pair(c); 3256 break; 3257 case Bytecodes::_lshr: 3258 b = pop(); // the shift count 3259 a = pop_pair(); // value to be shifted 3260 c = _gvn.transform( new RShiftLNode(a,b) ); 3261 push_pair(c); 3262 break; 3263 case Bytecodes::_lushr: 3264 b = pop(); // the shift count 3265 a = pop_pair(); // value to be shifted 3266 c = _gvn.transform( new URShiftLNode(a,b) ); 3267 push_pair(c); 3268 break; 3269 case Bytecodes::_lmul: 3270 b = pop_pair(); 3271 a = pop_pair(); 3272 c = _gvn.transform( new MulLNode(a,b) ); 3273 push_pair(c); 3274 break; 3275 3276 case Bytecodes::_lrem: 3277 // Must keep both values on the expression-stack during null-check 3278 assert(peek(0) == top(), "long word order"); 3279 zero_check_long(peek(1)); 3280 // Compile-time detect of null-exception? 3281 if (stopped()) return; 3282 b = pop_pair(); 3283 a = pop_pair(); 3284 c = _gvn.transform( new ModLNode(control(),a,b) ); 3285 push_pair(c); 3286 break; 3287 3288 case Bytecodes::_ldiv: 3289 // Must keep both values on the expression-stack during null-check 3290 assert(peek(0) == top(), "long word order"); 3291 zero_check_long(peek(1)); 3292 // Compile-time detect of null-exception? 3293 if (stopped()) return; 3294 b = pop_pair(); 3295 a = pop_pair(); 3296 c = _gvn.transform( new DivLNode(control(),a,b) ); 3297 push_pair(c); 3298 break; 3299 3300 case Bytecodes::_ladd: 3301 b = pop_pair(); 3302 a = pop_pair(); 3303 c = _gvn.transform( new AddLNode(a,b) ); 3304 push_pair(c); 3305 break; 3306 case Bytecodes::_lsub: 3307 b = pop_pair(); 3308 a = pop_pair(); 3309 c = _gvn.transform( new SubLNode(a,b) ); 3310 push_pair(c); 3311 break; 3312 case Bytecodes::_lcmp: 3313 // Safepoints are now inserted _before_ branches. The long-compare 3314 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3315 // slew of control flow. These are usually followed by a CmpI vs zero and 3316 // a branch; this pattern then optimizes to the obvious long-compare and 3317 // branch. However, if the branch is backwards there's a Safepoint 3318 // inserted. The inserted Safepoint captures the JVM state at the 3319 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3320 // long-compare is used to control a loop the debug info will force 3321 // computation of the 3-way value, even though the generated code uses a 3322 // long-compare and branch. We try to rectify the situation by inserting 3323 // a SafePoint here and have it dominate and kill the safepoint added at a 3324 // following backwards branch. At this point the JVM state merely holds 2 3325 // longs but not the 3-way value. 3326 switch (iter().next_bc()) { 3327 case Bytecodes::_ifgt: 3328 case Bytecodes::_iflt: 3329 case Bytecodes::_ifge: 3330 case Bytecodes::_ifle: 3331 case Bytecodes::_ifne: 3332 case Bytecodes::_ifeq: 3333 // If this is a backwards branch in the bytecodes, add Safepoint 3334 maybe_add_safepoint(iter().next_get_dest()); 3335 default: 3336 break; 3337 } 3338 b = pop_pair(); 3339 a = pop_pair(); 3340 c = _gvn.transform( new CmpL3Node( a, b )); 3341 push(c); 3342 break; 3343 3344 case Bytecodes::_lneg: 3345 a = pop_pair(); 3346 b = _gvn.transform( new SubLNode(longcon(0),a)); 3347 push_pair(b); 3348 break; 3349 case Bytecodes::_l2i: 3350 a = pop_pair(); 3351 push( _gvn.transform( new ConvL2INode(a))); 3352 break; 3353 case Bytecodes::_i2l: 3354 a = pop(); 3355 b = _gvn.transform( new ConvI2LNode(a)); 3356 push_pair(b); 3357 break; 3358 case Bytecodes::_i2b: 3359 // Sign extend 3360 a = pop(); 3361 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 3362 push(a); 3363 break; 3364 case Bytecodes::_i2s: 3365 a = pop(); 3366 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 3367 push(a); 3368 break; 3369 case Bytecodes::_i2c: 3370 a = pop(); 3371 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 3372 push(a); 3373 break; 3374 3375 case Bytecodes::_i2f: 3376 a = pop(); 3377 b = _gvn.transform( new ConvI2FNode(a) ) ; 3378 push(b); 3379 break; 3380 3381 case Bytecodes::_i2d: 3382 a = pop(); 3383 b = _gvn.transform( new ConvI2DNode(a)); 3384 push_pair(b); 3385 break; 3386 3387 case Bytecodes::_iinc: // Increment local 3388 i = iter().get_index(); // Get local index 3389 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3390 break; 3391 3392 // Exit points of synchronized methods must have an unlock node 3393 case Bytecodes::_return: 3394 return_current(nullptr); 3395 break; 3396 3397 case Bytecodes::_ireturn: 3398 case Bytecodes::_areturn: 3399 case Bytecodes::_freturn: 3400 return_current(pop()); 3401 break; 3402 case Bytecodes::_lreturn: 3403 return_current(pop_pair()); 3404 break; 3405 case Bytecodes::_dreturn: 3406 return_current(pop_pair()); 3407 break; 3408 3409 case Bytecodes::_athrow: 3410 // null exception oop throws null pointer exception 3411 null_check(peek()); 3412 if (stopped()) return; 3413 // Hook the thrown exception directly to subsequent handlers. 3414 if (BailoutToInterpreterForThrows) { 3415 // Keep method interpreted from now on. 3416 uncommon_trap(Deoptimization::Reason_unhandled, 3417 Deoptimization::Action_make_not_compilable); 3418 return; 3419 } 3420 if (env()->jvmti_can_post_on_exceptions()) { 3421 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3422 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3423 } 3424 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3425 add_exception_state(make_exception_state(peek())); 3426 break; 3427 3428 case Bytecodes::_goto: // fall through 3429 case Bytecodes::_goto_w: { 3430 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3431 3432 // If this is a backwards branch in the bytecodes, add Safepoint 3433 maybe_add_safepoint(target_bci); 3434 3435 // Merge the current control into the target basic block 3436 merge(target_bci); 3437 3438 // See if we can get some profile data and hand it off to the next block 3439 Block *target_block = block()->successor_for_bci(target_bci); 3440 if (target_block->pred_count() != 1) break; 3441 ciMethodData* methodData = method()->method_data(); 3442 if (!methodData->is_mature()) break; 3443 ciProfileData* data = methodData->bci_to_data(bci()); 3444 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 3445 int taken = ((ciJumpData*)data)->taken(); 3446 taken = method()->scale_count(taken); 3447 target_block->set_count(taken); 3448 break; 3449 } 3450 3451 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3452 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3453 handle_if_null: 3454 // If this is a backwards branch in the bytecodes, add Safepoint 3455 maybe_add_safepoint(iter().get_dest()); 3456 a = null(); 3457 b = pop(); 3458 if (b->is_InlineType()) { 3459 // Null checking a scalarized but nullable inline type. Check the IsInit 3460 // input instead of the oop input to avoid keeping buffer allocations alive 3461 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3462 } else { 3463 if (!_gvn.type(b)->speculative_maybe_null() && 3464 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3465 inc_sp(1); 3466 Node* null_ctl = top(); 3467 b = null_check_oop(b, &null_ctl, true, true, true); 3468 assert(null_ctl->is_top(), "no null control here"); 3469 dec_sp(1); 3470 } else if (_gvn.type(b)->speculative_always_null() && 3471 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3472 inc_sp(1); 3473 b = null_assert(b); 3474 dec_sp(1); 3475 } 3476 c = _gvn.transform( new CmpPNode(b, a) ); 3477 } 3478 do_ifnull(btest, c); 3479 break; 3480 3481 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3482 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3483 handle_if_acmp: 3484 // If this is a backwards branch in the bytecodes, add Safepoint 3485 maybe_add_safepoint(iter().get_dest()); 3486 a = pop(); 3487 b = pop(); 3488 do_acmp(btest, b, a); 3489 break; 3490 3491 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3492 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3493 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3494 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3495 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3496 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3497 handle_ifxx: 3498 // If this is a backwards branch in the bytecodes, add Safepoint 3499 maybe_add_safepoint(iter().get_dest()); 3500 a = _gvn.intcon(0); 3501 b = pop(); 3502 c = _gvn.transform( new CmpINode(b, a) ); 3503 do_if(btest, c); 3504 break; 3505 3506 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3507 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3508 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3509 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3510 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3511 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3512 handle_if_icmp: 3513 // If this is a backwards branch in the bytecodes, add Safepoint 3514 maybe_add_safepoint(iter().get_dest()); 3515 a = pop(); 3516 b = pop(); 3517 c = _gvn.transform( new CmpINode( b, a ) ); 3518 do_if(btest, c); 3519 break; 3520 3521 case Bytecodes::_tableswitch: 3522 do_tableswitch(); 3523 break; 3524 3525 case Bytecodes::_lookupswitch: 3526 do_lookupswitch(); 3527 break; 3528 3529 case Bytecodes::_invokestatic: 3530 case Bytecodes::_invokedynamic: 3531 case Bytecodes::_invokespecial: 3532 case Bytecodes::_invokevirtual: 3533 case Bytecodes::_invokeinterface: 3534 do_call(); 3535 break; 3536 case Bytecodes::_checkcast: 3537 do_checkcast(); 3538 break; 3539 case Bytecodes::_instanceof: 3540 do_instanceof(); 3541 break; 3542 case Bytecodes::_anewarray: 3543 do_newarray(); 3544 break; 3545 case Bytecodes::_newarray: 3546 do_newarray((BasicType)iter().get_index()); 3547 break; 3548 case Bytecodes::_multianewarray: 3549 do_multianewarray(); 3550 break; 3551 case Bytecodes::_new: 3552 do_new(); 3553 break; 3554 3555 case Bytecodes::_jsr: 3556 case Bytecodes::_jsr_w: 3557 do_jsr(); 3558 break; 3559 3560 case Bytecodes::_ret: 3561 do_ret(); 3562 break; 3563 3564 3565 case Bytecodes::_monitorenter: 3566 do_monitor_enter(); 3567 break; 3568 3569 case Bytecodes::_monitorexit: 3570 do_monitor_exit(); 3571 break; 3572 3573 case Bytecodes::_breakpoint: 3574 // Breakpoint set concurrently to compile 3575 // %%% use an uncommon trap? 3576 C->record_failure("breakpoint in method"); 3577 return; 3578 3579 default: 3580 #ifndef PRODUCT 3581 map()->dump(99); 3582 #endif 3583 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3584 ShouldNotReachHere(); 3585 } 3586 3587 #ifndef PRODUCT 3588 if (failing()) { return; } 3589 constexpr int perBytecode = 6; 3590 if (C->should_print_igv(perBytecode)) { 3591 IdealGraphPrinter* printer = C->igv_printer(); 3592 char buffer[256]; 3593 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3594 bool old = printer->traverse_outs(); 3595 printer->set_traverse_outs(true); 3596 printer->print_graph(buffer); 3597 printer->set_traverse_outs(old); 3598 } 3599 #endif 3600 }