1 /*
2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciInlineKlass.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciSymbols.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "compiler/compileLog.hpp"
30 #include "interpreter/linkResolver.hpp"
31 #include "jvm_io.h"
32 #include "memory/resourceArea.hpp"
33 #include "memory/universe.hpp"
34 #include "oops/oop.inline.hpp"
35 #include "opto/addnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/divnode.hpp"
39 #include "opto/idealGraphPrinter.hpp"
40 #include "opto/idealKit.hpp"
41 #include "opto/inlinetypenode.hpp"
42 #include "opto/matcher.hpp"
43 #include "opto/memnode.hpp"
44 #include "opto/mulnode.hpp"
45 #include "opto/opaquenode.hpp"
46 #include "opto/parse.hpp"
47 #include "opto/runtime.hpp"
48 #include "runtime/deoptimization.hpp"
49 #include "runtime/sharedRuntime.hpp"
50
51 #ifndef PRODUCT
52 extern uint explicit_null_checks_inserted,
53 explicit_null_checks_elided;
54 #endif
55
56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
57 // Feed unused profile data to type speculation
58 if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
59 ciKlass* array_type = nullptr;
60 ciKlass* element_type = nullptr;
61 ProfilePtrKind element_ptr = ProfileMaybeNull;
62 bool flat_array = true;
63 bool null_free_array = true;
64 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
65 if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
66 ld = record_profile_for_speculation(ld, element_type, element_ptr);
67 }
68 }
69 return ld;
70 }
71
72
73 //---------------------------------array_load----------------------------------
74 void Parse::array_load(BasicType bt) {
75 const Type* elemtype = Type::TOP;
76 Node* adr = array_addressing(bt, 0, elemtype);
77 if (stopped()) return; // guaranteed null or range check
78
79 Node* array_index = pop();
80 Node* array = pop();
81
82 // Handle inline type arrays
83 const TypeOopPtr* element_ptr = elemtype->make_oopptr();
84 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
85
86 if (!array_type->is_not_flat()) {
87 // Cannot statically determine if array is a flat array, emit runtime check
88 assert(UseArrayFlattening && is_reference_type(bt) && element_ptr->can_be_inline_type() &&
89 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->maybe_flat_in_array()), "array can't be flat");
90 IdealKit ideal(this);
91 IdealVariable res(ideal);
92 ideal.declarations_done();
93 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
94 // Non-flat array
95 sync_kit(ideal);
96 if (!array_type->is_flat()) {
97 assert(array_type->is_flat() || control()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
98 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
99 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
100 if (needs_range_check(array_type->size(), array_index)) {
101 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
102 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
103 // possibly float above the range check at any point.
104 decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
105 }
106 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
107 if (element_ptr->is_inlinetypeptr()) {
108 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass());
109 }
110 ideal.set(res, ld);
111 }
112 ideal.sync_kit(this);
113 } ideal.else_(); {
114 // Flat array
115 sync_kit(ideal);
116 if (!array_type->is_not_flat()) {
117 if (element_ptr->is_inlinetypeptr()) {
118 ciInlineKlass* vk = element_ptr->inline_klass();
119 Node* flat_array = cast_to_flat_array(array, vk, false, false, false);
120 Node* vt = InlineTypeNode::make_from_flat_array(this, vk, flat_array, array_index);
121 ideal.set(res, vt);
122 } else {
123 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
124 // runtime call to correctly load the inline type element from the flat array.
125 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
126 bool is_null_free = array_type->is_null_free() || !UseNullableValueFlattening;
127 if (is_null_free) {
128 inline_type = cast_not_null(inline_type);
129 }
130 ideal.set(res, inline_type);
131 }
132 }
133 ideal.sync_kit(this);
134 } ideal.end_if();
135 sync_kit(ideal);
136 Node* ld = _gvn.transform(ideal.value(res));
137 ld = record_profile_for_speculation_at_array_load(ld);
138 push_node(bt, ld);
139 return;
140 }
141
142 if (elemtype == TypeInt::BOOL) {
143 bt = T_BOOLEAN;
144 }
145 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
146 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
147 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
148 ld = record_profile_for_speculation_at_array_load(ld);
149 // Loading an inline type from a non-flat array
150 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
151 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
152 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass());
153 }
154 push_node(bt, ld);
155 }
156
157 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
158 // Below membars keep this access to an unknown flat array correctly
159 // ordered with other unknown and known flat array accesses.
160 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
161
162 Node* call = nullptr;
163 {
164 // Re-execute flat array load if runtime call triggers deoptimization
165 PreserveReexecuteState preexecs(this);
166 jvms()->set_bci(_bci);
167 jvms()->set_should_reexecute(true);
168 inc_sp(2);
169 kill_dead_locals();
170 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
171 OptoRuntime::load_unknown_inline_Type(),
172 OptoRuntime::load_unknown_inline_Java(),
173 nullptr, TypeRawPtr::BOTTOM,
174 array, array_index);
175 }
176 make_slow_call_ex(call, env()->Throwable_klass(), false);
177 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
178
179 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
180
181 // Keep track of the information that the inline type is in flat arrays
182 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
183 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
184 }
185
186 //--------------------------------array_store----------------------------------
187 void Parse::array_store(BasicType bt) {
188 const Type* elemtype = Type::TOP;
189 Node* adr = array_addressing(bt, type2size[bt], elemtype);
190 if (stopped()) return; // guaranteed null or range check
191 Node* stored_value_casted = nullptr;
192 if (bt == T_OBJECT) {
193 stored_value_casted = array_store_check(adr, elemtype);
194 if (stopped()) {
195 return;
196 }
197 }
198 Node* const stored_value = pop_node(bt); // Value to store
199 Node* const array_index = pop(); // Index in the array
200 Node* array = pop(); // The array itself
201
202 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
203 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
204
205 if (elemtype == TypeInt::BOOL) {
206 bt = T_BOOLEAN;
207 } else if (bt == T_OBJECT) {
208 elemtype = elemtype->make_oopptr();
209 const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
210 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
211 // This is only legal for non-null stores because the array_store_check always passes for null, even
212 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
213 bool not_inline = !stored_value_casted_type->maybe_null() && !stored_value_casted_type->is_oopptr()->can_be_inline_type();
214 bool not_null_free = not_inline;
215 bool not_flat = not_inline || ( stored_value_casted_type->is_inlinetypeptr() &&
216 !stored_value_casted_type->inline_klass()->maybe_flat_in_array());
217 if (!array_type->is_not_null_free() && not_null_free) {
218 // Storing a non-inline type, mark array as not null-free.
219 array_type = array_type->cast_to_not_null_free();
220 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
221 replace_in_map(array, cast);
222 array = cast;
223 }
224 if (!array_type->is_not_flat() && not_flat) {
225 // Storing to a non-flat array, mark array as not flat.
226 array_type = array_type->cast_to_not_flat();
227 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
228 replace_in_map(array, cast);
229 array = cast;
230 }
231
232 if (!array_type->is_flat() && array_type->is_null_free()) {
233 // Store to non-flat null-free inline type array (elements can never be null)
234 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
235 if (elemtype->is_inlinetypeptr() && elemtype->inline_klass()->is_empty()) {
236 // Ignore empty inline stores, array is already initialized.
237 return;
238 }
239 } else if (!array_type->is_not_flat()) {
240 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
241 assert(UseArrayFlattening && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
242 (!array_type->klass_is_exact() || array_type->is_flat()), "array can't be a flat array");
243 // TODO 8350865 Depending on the available layouts, we can avoid this check in below flat/not-flat branches. Also the safe_for_replace arg is now always true.
244 array = inline_array_null_guard(array, stored_value_casted, 3, true);
245 IdealKit ideal(this);
246 ideal.if_then(flat_array_test(array, /* flat = */ false)); {
247 // Non-flat array
248 if (!array_type->is_flat()) {
249 sync_kit(ideal);
250 assert(array_type->is_flat() || ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
251 inc_sp(3);
252 access_store_at(array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
253 dec_sp(3);
254 ideal.sync_kit(this);
255 }
256 } ideal.else_(); {
257 // Flat array
258 sync_kit(ideal);
259 if (!array_type->is_not_flat()) {
260 // Try to determine the inline klass type of the stored value
261 ciInlineKlass* vk = nullptr;
262 if (stored_value_casted_type->is_inlinetypeptr()) {
263 vk = stored_value_casted_type->inline_klass();
264 } else if (elemtype->is_inlinetypeptr()) {
265 vk = elemtype->inline_klass();
266 }
267
268 if (vk != nullptr) {
269 // Element type is known, cast and store to flat array layout.
270 Node* flat_array = cast_to_flat_array(array, vk, false, false, false);
271
272 // Re-execute flat array store if buffering triggers deoptimization
273 PreserveReexecuteState preexecs(this);
274 jvms()->set_should_reexecute(true);
275 inc_sp(3);
276
277 if (!stored_value_casted->is_InlineType()) {
278 assert(_gvn.type(stored_value_casted) == TypePtr::NULL_PTR, "Unexpected value");
279 stored_value_casted = InlineTypeNode::make_null(_gvn, vk);
280 }
281
282 stored_value_casted->as_InlineType()->store_flat_array(this, flat_array, array_index);
283 } else {
284 // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
285 store_to_unknown_flat_array(array, array_index, stored_value_casted);
286 }
287 }
288 ideal.sync_kit(this);
289 }
290 ideal.end_if();
291 sync_kit(ideal);
292 return;
293 } else if (!array_type->is_not_null_free()) {
294 // Array is not flat but may be null free
295 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
296 array = inline_array_null_guard(array, stored_value_casted, 3, true);
297 }
298 }
299 inc_sp(3);
300 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
301 dec_sp(3);
302 }
303
304 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
305 // array layout) or not exact (could have different flat array layouts at runtime).
306 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
307 // Below membars keep this access to an unknown flat array correctly
308 // ordered with other unknown and known flat array accesses.
309 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
310
311 Node* call = nullptr;
312 {
313 // Re-execute flat array store if runtime call triggers deoptimization
314 PreserveReexecuteState preexecs(this);
315 jvms()->set_bci(_bci);
316 jvms()->set_should_reexecute(true);
317 inc_sp(3);
318 kill_dead_locals();
319 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
320 OptoRuntime::store_unknown_inline_Type(),
321 OptoRuntime::store_unknown_inline_Java(),
322 nullptr, TypeRawPtr::BOTTOM,
323 non_null_stored_value, array, idx);
324 }
325 make_slow_call_ex(call, env()->Throwable_klass(), false);
326
327 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
328 }
329
330 //------------------------------array_addressing-------------------------------
331 // Pull array and index from the stack. Compute pointer-to-element.
332 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
333 Node *idx = peek(0+vals); // Get from stack without popping
334 Node *ary = peek(1+vals); // in case of exception
335
336 // Null check the array base, with correct stack contents
337 ary = null_check(ary, T_ARRAY);
338 // Compile-time detect of null-exception?
339 if (stopped()) return top();
340
341 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
342 const TypeInt* sizetype = arytype->size();
343 elemtype = arytype->elem();
344
345 if (UseUniqueSubclasses) {
346 const Type* el = elemtype->make_ptr();
347 if (el && el->isa_instptr()) {
348 const TypeInstPtr* toop = el->is_instptr();
349 if (toop->instance_klass()->unique_concrete_subklass()) {
350 // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
351 const Type* subklass = Type::get_const_type(toop->instance_klass());
352 elemtype = subklass->join_speculative(el);
353 }
354 }
355 }
356
357 if (!arytype->is_loaded()) {
358 // Only fails for some -Xcomp runs
359 // The class is unloaded. We have to run this bytecode in the interpreter.
360 ciKlass* klass = arytype->unloaded_klass();
361
362 uncommon_trap(Deoptimization::Reason_unloaded,
363 Deoptimization::Action_reinterpret,
364 klass, "!loaded array");
365 return top();
366 }
367
368 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);
369
370 if (needs_range_check(sizetype, idx)) {
371 create_range_check(idx, ary, sizetype);
372 } else if (C->log() != nullptr) {
373 C->log()->elem("observe that='!need_range_check'");
374 }
375
376 // Check for always knowing you are throwing a range-check exception
377 if (stopped()) return top();
378
379 // Make array address computation control dependent to prevent it
380 // from floating above the range check during loop optimizations.
381 Node* ptr = array_element_address(ary, idx, type, sizetype, control());
382 assert(ptr != top(), "top should go hand-in-hand with stopped");
383
384 return ptr;
385 }
386
387 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
388 // be greater or equal the smallest possible array size (i.e. out-of-bounds).
389 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
390 const TypeInt* index_type = _gvn.type(index)->is_int();
391 return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
392 }
393
394 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
395 Node* tst;
396 if (sizetype->_hi <= 0) {
397 // The greatest array bound is negative, so we can conclude that we're
398 // compiling unreachable code, but the unsigned compare trick used below
399 // only works with non-negative lengths. Instead, hack "tst" to be zero so
400 // the uncommon_trap path will always be taken.
401 tst = _gvn.intcon(0);
402 } else {
403 // Range is constant in array-oop, so we can use the original state of mem
404 Node* len = load_array_length(ary);
405
406 // Test length vs index (standard trick using unsigned compare)
407 Node* chk = _gvn.transform(new CmpUNode(idx, len) );
408 BoolTest::mask btest = BoolTest::lt;
409 tst = _gvn.transform(new BoolNode(chk, btest) );
410 }
411 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
412 _gvn.set_type(rc, rc->Value(&_gvn));
413 if (!tst->is_Con()) {
414 record_for_igvn(rc);
415 }
416 set_control(_gvn.transform(new IfTrueNode(rc)));
417 // Branch to failure if out of bounds
418 {
419 PreserveJVMState pjvms(this);
420 set_control(_gvn.transform(new IfFalseNode(rc)));
421 if (C->allow_range_check_smearing()) {
422 // Do not use builtin_throw, since range checks are sometimes
423 // made more stringent by an optimistic transformation.
424 // This creates "tentative" range checks at this point,
425 // which are not guaranteed to throw exceptions.
426 // See IfNode::Ideal, is_range_check, adjust_check.
427 uncommon_trap(Deoptimization::Reason_range_check,
428 Deoptimization::Action_make_not_entrant,
429 nullptr, "range_check");
430 } else {
431 // If we have already recompiled with the range-check-widening
432 // heroic optimization turned off, then we must really be throwing
433 // range check exceptions.
434 builtin_throw(Deoptimization::Reason_range_check);
435 }
436 }
437 }
438
439 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
440 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
441 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
442 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
443 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
444 const Type*& element_type) {
445 if (!array_type->is_flat() && !array_type->is_not_flat()) {
446 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
447 // we can rely on a fixed memory layout (i.e. either a flat layout or not).
448 array = cast_to_speculative_array_type(array, array_type, element_type);
449 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
450 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
451 // at this bci.
452 array = cast_to_profiled_array_type(array);
453 }
454
455 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
456 // whether we have a non-null-free or non-flat array. Speculating on a non-null-free array doesn't help aaload but could
457 // be profitable for a subsequent aastore.
458 if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
459 array = speculate_non_null_free_array(array, array_type);
460 }
461 if (!array_type->is_flat() && !array_type->is_not_flat()) {
462 array = speculate_non_flat_array(array, array_type);
463 }
464 return array;
465 }
466
467 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
468 // wrong. On the fast path, we add a CheckCastPP to use the exact type.
469 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
470 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
471 ciKlass* speculative_array_type = array_type->speculative_type();
472 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
473 // No speculative type, check profile data at this bci
474 speculative_array_type = nullptr;
475 reason = Deoptimization::Reason_class_check;
476 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
477 ciKlass* profiled_element_type = nullptr;
478 ProfilePtrKind element_ptr = ProfileMaybeNull;
479 bool flat_array = true;
480 bool null_free_array = true;
481 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
482 null_free_array);
483 }
484 }
485 if (speculative_array_type != nullptr) {
486 // Speculate that this array has the exact type reported by profile data
487 Node* casted_array = nullptr;
488 DEBUG_ONLY(Node* old_control = control();)
489 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
490 if (stopped()) {
491 // The check always fails and therefore profile information is incorrect. Don't use it.
492 assert(old_control == slow_ctl, "type check should have been removed");
493 set_control(slow_ctl);
494 } else if (!slow_ctl->is_top()) {
495 { PreserveJVMState pjvms(this);
496 set_control(slow_ctl);
497 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
498 }
499 replace_in_map(array, casted_array);
500 array_type = _gvn.type(casted_array)->is_aryptr();
501 element_type = array_type->elem();
502 return casted_array;
503 }
504 }
505 return array;
506 }
507
508 // Create a CheckCastPP when the speculative type can improve the current type.
509 Node* Parse::cast_to_profiled_array_type(Node* const array) {
510 ciKlass* array_type = nullptr;
511 ciKlass* element_type = nullptr;
512 ProfilePtrKind element_ptr = ProfileMaybeNull;
513 bool flat_array = true;
514 bool null_free_array = true;
515 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
516 if (array_type != nullptr) {
517 return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
518 }
519 return array;
520 }
521
522 // Speculate that the array is non-null-free. We emit a trap when this turns out to be
523 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
524 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
525 bool null_free_array = true;
526 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
527 if (array_type->speculative() != nullptr &&
528 array_type->speculative()->is_aryptr()->is_not_null_free() &&
529 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
530 null_free_array = false;
531 reason = Deoptimization::Reason_speculate_class_check;
532 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
533 ciKlass* profiled_array_type = nullptr;
534 ciKlass* profiled_element_type = nullptr;
535 ProfilePtrKind element_ptr = ProfileMaybeNull;
536 bool flat_array = true;
537 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
538 null_free_array);
539 reason = Deoptimization::Reason_class_check;
540 }
541 if (!null_free_array) {
542 { // Deoptimize if null-free array
543 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
544 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
545 }
546 assert(!stopped(), "null-free array should have been caught earlier");
547 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
548 replace_in_map(array, casted_array);
549 array_type = _gvn.type(casted_array)->is_aryptr();
550 return casted_array;
551 }
552 return array;
553 }
554
555 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong.
556 // On the fast path, we add a CheckCastPP to use the non-flat type.
557 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
558 bool flat_array = true;
559 Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
560 if (array_type->speculative() != nullptr &&
561 array_type->speculative()->is_aryptr()->is_not_flat() &&
562 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
563 flat_array = false;
564 reason = Deoptimization::Reason_speculate_class_check;
565 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
566 ciKlass* profiled_array_type = nullptr;
567 ciKlass* profiled_element_type = nullptr;
568 ProfilePtrKind element_ptr = ProfileMaybeNull;
569 bool null_free_array = true;
570 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
571 null_free_array);
572 reason = Deoptimization::Reason_class_check;
573 }
574 if (!flat_array) {
575 { // Deoptimize if flat array
576 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
577 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
578 }
579 assert(!stopped(), "flat array should have been caught earlier");
580 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
581 replace_in_map(array, casted_array);
582 return casted_array;
583 }
584 return array;
585 }
586
587 // returns IfNode
588 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
589 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
590 Node *tst = _gvn.transform(new BoolNode(cmp, mask));
591 IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
592 return iff;
593 }
594
595
596 // sentinel value for the target bci to mark never taken branches
597 // (according to profiling)
598 static const int never_reached = INT_MAX;
599
600 //------------------------------helper for tableswitch-------------------------
601 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
602 // True branch, use existing map info
603 { PreserveJVMState pjvms(this);
604 Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
605 set_control( iftrue );
606 if (unc) {
607 repush_if_args();
608 uncommon_trap(Deoptimization::Reason_unstable_if,
609 Deoptimization::Action_reinterpret,
610 nullptr,
611 "taken always");
612 } else {
613 assert(dest_bci_if_true != never_reached, "inconsistent dest");
614 merge_new_path(dest_bci_if_true);
615 }
616 }
617
618 // False branch
619 Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
620 set_control( iffalse );
621 }
622
623 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
624 // True branch, use existing map info
625 { PreserveJVMState pjvms(this);
626 Node *iffalse = _gvn.transform( new IfFalseNode (iff) );
627 set_control( iffalse );
628 if (unc) {
629 repush_if_args();
630 uncommon_trap(Deoptimization::Reason_unstable_if,
631 Deoptimization::Action_reinterpret,
632 nullptr,
633 "taken never");
634 } else {
635 assert(dest_bci_if_true != never_reached, "inconsistent dest");
636 merge_new_path(dest_bci_if_true);
637 }
638 }
639
640 // False branch
641 Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
642 set_control( iftrue );
643 }
644
645 void Parse::jump_if_always_fork(int dest_bci, bool unc) {
646 // False branch, use existing map and control()
647 if (unc) {
648 repush_if_args();
649 uncommon_trap(Deoptimization::Reason_unstable_if,
650 Deoptimization::Action_reinterpret,
651 nullptr,
652 "taken never");
653 } else {
654 assert(dest_bci != never_reached, "inconsistent dest");
655 merge_new_path(dest_bci);
656 }
657 }
658
659
660 extern "C" {
661 static int jint_cmp(const void *i, const void *j) {
662 int a = *(jint *)i;
663 int b = *(jint *)j;
664 return a > b ? 1 : a < b ? -1 : 0;
665 }
666 }
667
668
669 class SwitchRange : public StackObj {
670 // a range of integers coupled with a bci destination
671 jint _lo; // inclusive lower limit
672 jint _hi; // inclusive upper limit
673 int _dest;
674 float _cnt; // how many times this range was hit according to profiling
675
676 public:
677 jint lo() const { return _lo; }
678 jint hi() const { return _hi; }
679 int dest() const { return _dest; }
680 bool is_singleton() const { return _lo == _hi; }
681 float cnt() const { return _cnt; }
682
683 void setRange(jint lo, jint hi, int dest, float cnt) {
684 assert(lo <= hi, "must be a non-empty range");
685 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt;
686 assert(_cnt >= 0, "");
687 }
688 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) {
689 assert(lo <= hi, "must be a non-empty range");
690 if (lo == _hi+1) {
691 // see merge_ranges() comment below
692 if (trim_ranges) {
693 if (cnt == 0) {
694 if (_cnt != 0) {
695 return false;
696 }
697 if (dest != _dest) {
698 _dest = never_reached;
699 }
700 } else {
701 if (_cnt == 0) {
702 return false;
703 }
704 if (dest != _dest) {
705 return false;
706 }
707 }
708 } else {
709 if (dest != _dest) {
710 return false;
711 }
712 }
713 _hi = hi;
714 _cnt += cnt;
715 return true;
716 }
717 return false;
718 }
719
720 void set (jint value, int dest, float cnt) {
721 setRange(value, value, dest, cnt);
722 }
723 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) {
724 return adjoinRange(value, value, dest, cnt, trim_ranges);
725 }
726 bool adjoin(SwitchRange& other) {
727 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false);
728 }
729
730 void print() {
731 if (is_singleton())
732 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt());
733 else if (lo() == min_jint)
734 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt());
735 else if (hi() == max_jint)
736 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt());
737 else
738 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt());
739 }
740 };
741
742 // We try to minimize the number of ranges and the size of the taken
743 // ones using profiling data. When ranges are created,
744 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge
745 // if both were never hit or both were hit to build longer unreached
746 // ranges. Here, we now merge adjoining ranges with the same
747 // destination and finally set destination of unreached ranges to the
748 // special value never_reached because it can help minimize the number
749 // of tests that are necessary.
750 //
751 // For instance:
752 // [0, 1] to target1 sometimes taken
753 // [1, 2] to target1 never taken
754 // [2, 3] to target2 never taken
755 // would lead to:
756 // [0, 1] to target1 sometimes taken
757 // [1, 3] never taken
758 //
759 // (first 2 ranges to target1 are not merged)
760 static void merge_ranges(SwitchRange* ranges, int& rp) {
761 if (rp == 0) {
762 return;
763 }
764 int shift = 0;
765 for (int j = 0; j < rp; j++) {
766 SwitchRange& r1 = ranges[j-shift];
767 SwitchRange& r2 = ranges[j+1];
768 if (r1.adjoin(r2)) {
769 shift++;
770 } else if (shift > 0) {
771 ranges[j+1-shift] = r2;
772 }
773 }
774 rp -= shift;
775 for (int j = 0; j <= rp; j++) {
776 SwitchRange& r = ranges[j];
777 if (r.cnt() == 0 && r.dest() != never_reached) {
778 r.setRange(r.lo(), r.hi(), never_reached, r.cnt());
779 }
780 }
781 }
782
783 //-------------------------------do_tableswitch--------------------------------
784 void Parse::do_tableswitch() {
785 // Get information about tableswitch
786 int default_dest = iter().get_dest_table(0);
787 jint lo_index = iter().get_int_table(1);
788 jint hi_index = iter().get_int_table(2);
789 int len = hi_index - lo_index + 1;
790
791 if (len < 1) {
792 // If this is a backward branch, add safepoint
793 maybe_add_safepoint(default_dest);
794 pop(); // the effect of the instruction execution on the operand stack
795 merge(default_dest);
796 return;
797 }
798
799 ciMethodData* methodData = method()->method_data();
800 ciMultiBranchData* profile = nullptr;
801 if (methodData->is_mature() && UseSwitchProfiling) {
802 ciProfileData* data = methodData->bci_to_data(bci());
803 if (data != nullptr && data->is_MultiBranchData()) {
804 profile = (ciMultiBranchData*)data;
805 }
806 }
807 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
808
809 // generate decision tree, using trichotomy when possible
810 int rnum = len+2;
811 bool makes_backward_branch = (default_dest <= bci());
812 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
813 int rp = -1;
814 if (lo_index != min_jint) {
815 float cnt = 1.0F;
816 if (profile != nullptr) {
817 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F);
818 }
819 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt);
820 }
821 for (int j = 0; j < len; j++) {
822 jint match_int = lo_index+j;
823 int dest = iter().get_dest_table(j+3);
824 makes_backward_branch |= (dest <= bci());
825 float cnt = 1.0F;
826 if (profile != nullptr) {
827 cnt = (float)profile->count_at(j);
828 }
829 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) {
830 ranges[++rp].set(match_int, dest, cnt);
831 }
832 }
833 jint highest = lo_index+(len-1);
834 assert(ranges[rp].hi() == highest, "");
835 if (highest != max_jint) {
836 float cnt = 1.0F;
837 if (profile != nullptr) {
838 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F);
839 }
840 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) {
841 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt);
842 }
843 }
844 assert(rp < len+2, "not too many ranges");
845
846 if (trim_ranges) {
847 merge_ranges(ranges, rp);
848 }
849
850 // Safepoint in case if backward branch observed
851 if (makes_backward_branch) {
852 add_safepoint();
853 }
854
855 Node* lookup = pop(); // lookup value
856 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
857 }
858
859
860 //------------------------------do_lookupswitch--------------------------------
861 void Parse::do_lookupswitch() {
862 // Get information about lookupswitch
863 int default_dest = iter().get_dest_table(0);
864 jint len = iter().get_int_table(1);
865
866 if (len < 1) { // If this is a backward branch, add safepoint
867 maybe_add_safepoint(default_dest);
868 pop(); // the effect of the instruction execution on the operand stack
869 merge(default_dest);
870 return;
871 }
872
873 ciMethodData* methodData = method()->method_data();
874 ciMultiBranchData* profile = nullptr;
875 if (methodData->is_mature() && UseSwitchProfiling) {
876 ciProfileData* data = methodData->bci_to_data(bci());
877 if (data != nullptr && data->is_MultiBranchData()) {
878 profile = (ciMultiBranchData*)data;
879 }
880 }
881 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
882
883 // generate decision tree, using trichotomy when possible
884 jint* table = NEW_RESOURCE_ARRAY(jint, len*3);
885 {
886 for (int j = 0; j < len; j++) {
887 table[3*j+0] = iter().get_int_table(2+2*j);
888 table[3*j+1] = iter().get_dest_table(2+2*j+1);
889 // Handle overflow when converting from uint to jint
890 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j));
891 }
892 qsort(table, len, 3*sizeof(table[0]), jint_cmp);
893 }
894
895 float default_cnt = 1.0F;
896 if (profile != nullptr) {
897 juint defaults = max_juint - len;
898 default_cnt = (float)profile->default_count()/(float)defaults;
899 }
900
901 int rnum = len*2+1;
902 bool makes_backward_branch = (default_dest <= bci());
903 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
904 int rp = -1;
905 for (int j = 0; j < len; j++) {
906 jint match_int = table[3*j+0];
907 jint dest = table[3*j+1];
908 jint cnt = table[3*j+2];
909 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1;
910 makes_backward_branch |= (dest <= bci());
911 float c = default_cnt * ((float)match_int - (float)next_lo);
912 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) {
913 assert(default_dest != never_reached, "sentinel value for dead destinations");
914 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c);
915 }
916 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) {
917 assert(dest != never_reached, "sentinel value for dead destinations");
918 ranges[++rp].set(match_int, dest, (float)cnt);
919 }
920 }
921 jint highest = table[3*(len-1)];
922 assert(ranges[rp].hi() == highest, "");
923 if (highest != max_jint &&
924 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) {
925 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest));
926 }
927 assert(rp < rnum, "not too many ranges");
928
929 if (trim_ranges) {
930 merge_ranges(ranges, rp);
931 }
932
933 // Safepoint in case backward branch observed
934 if (makes_backward_branch) {
935 add_safepoint();
936 }
937
938 Node *lookup = pop(); // lookup value
939 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
940 }
941
942 static float if_prob(float taken_cnt, float total_cnt) {
943 assert(taken_cnt <= total_cnt, "");
944 if (total_cnt == 0) {
945 return PROB_FAIR;
946 }
947 float p = taken_cnt / total_cnt;
948 return clamp(p, PROB_MIN, PROB_MAX);
949 }
950
951 static float if_cnt(float cnt) {
952 if (cnt == 0) {
953 return COUNT_UNKNOWN;
954 }
955 return cnt;
956 }
957
958 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) {
959 float total_cnt = 0;
960 for (SwitchRange* sr = lo; sr <= hi; sr++) {
961 total_cnt += sr->cnt();
962 }
963 return total_cnt;
964 }
965
966 class SwitchRanges : public ResourceObj {
967 public:
968 SwitchRange* _lo;
969 SwitchRange* _hi;
970 SwitchRange* _mid;
971 float _cost;
972
973 enum {
974 Start,
975 LeftDone,
976 RightDone,
977 Done
978 } _state;
979
980 SwitchRanges(SwitchRange *lo, SwitchRange *hi)
981 : _lo(lo), _hi(hi), _mid(nullptr),
982 _cost(0), _state(Start) {
983 }
984
985 SwitchRanges()
986 : _lo(nullptr), _hi(nullptr), _mid(nullptr),
987 _cost(0), _state(Start) {}
988 };
989
990 // Estimate cost of performing a binary search on lo..hi
991 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) {
992 GrowableArray<SwitchRanges> tree;
993 SwitchRanges root(lo, hi);
994 tree.push(root);
995
996 float cost = 0;
997 do {
998 SwitchRanges& r = *tree.adr_at(tree.length()-1);
999 if (r._hi != r._lo) {
1000 if (r._mid == nullptr) {
1001 float r_cnt = sum_of_cnts(r._lo, r._hi);
1002
1003 if (r_cnt == 0) {
1004 tree.pop();
1005 cost = 0;
1006 continue;
1007 }
1008
1009 SwitchRange* mid = nullptr;
1010 mid = r._lo;
1011 for (float cnt = 0; ; ) {
1012 assert(mid <= r._hi, "out of bounds");
1013 cnt += mid->cnt();
1014 if (cnt > r_cnt / 2) {
1015 break;
1016 }
1017 mid++;
1018 }
1019 assert(mid <= r._hi, "out of bounds");
1020 r._mid = mid;
1021 r._cost = r_cnt / total_cnt;
1022 }
1023 r._cost += cost;
1024 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) {
1025 cost = 0;
1026 r._state = SwitchRanges::LeftDone;
1027 tree.push(SwitchRanges(r._lo, r._mid-1));
1028 } else if (r._state < SwitchRanges::RightDone) {
1029 cost = 0;
1030 r._state = SwitchRanges::RightDone;
1031 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi));
1032 } else {
1033 tree.pop();
1034 cost = r._cost;
1035 }
1036 } else {
1037 tree.pop();
1038 cost = r._cost;
1039 }
1040 } while (tree.length() > 0);
1041
1042
1043 return cost;
1044 }
1045
1046 // It sometimes pays off to test most common ranges before the binary search
1047 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) {
1048 uint nr = hi - lo + 1;
1049 float total_cnt = sum_of_cnts(lo, hi);
1050
1051 float min = compute_tree_cost(lo, hi, total_cnt);
1052 float extra = 1;
1053 float sub = 0;
1054
1055 SwitchRange* array1 = lo;
1056 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr);
1057
1058 SwitchRange* ranges = nullptr;
1059
1060 while (nr >= 2) {
1061 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays");
1062 ranges = (lo == array1) ? array2 : array1;
1063
1064 // Find highest frequency range
1065 SwitchRange* candidate = lo;
1066 for (SwitchRange* sr = lo+1; sr <= hi; sr++) {
1067 if (sr->cnt() > candidate->cnt()) {
1068 candidate = sr;
1069 }
1070 }
1071 SwitchRange most_freq = *candidate;
1072 if (most_freq.cnt() == 0) {
1073 break;
1074 }
1075
1076 // Copy remaining ranges into another array
1077 int shift = 0;
1078 for (uint i = 0; i < nr; i++) {
1079 SwitchRange* sr = &lo[i];
1080 if (sr != candidate) {
1081 ranges[i-shift] = *sr;
1082 } else {
1083 shift++;
1084 if (i > 0 && i < nr-1) {
1085 SwitchRange prev = lo[i-1];
1086 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt());
1087 if (prev.adjoin(lo[i+1])) {
1088 shift++;
1089 i++;
1090 }
1091 ranges[i-shift] = prev;
1092 }
1093 }
1094 }
1095 nr -= shift;
1096
1097 // Evaluate cost of testing the most common range and performing a
1098 // binary search on the other ranges
1099 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt);
1100 if (cost >= min) {
1101 break;
1102 }
1103 // swap arrays
1104 lo = &ranges[0];
1105 hi = &ranges[nr-1];
1106
1107 // It pays off: emit the test for the most common range
1108 assert(most_freq.cnt() > 0, "must be taken");
1109 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo())));
1110 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo()))));
1111 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1112 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt()));
1113 jump_if_true_fork(iff, most_freq.dest(), false);
1114
1115 sub += most_freq.cnt() / total_cnt;
1116 extra += 1 - sub;
1117 min = cost;
1118 }
1119 }
1120
1121 //----------------------------create_jump_tables-------------------------------
1122 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
1123 // Are jumptables enabled
1124 if (!UseJumpTables) return false;
1125
1126 // Are jumptables supported
1127 if (!Matcher::has_match_rule(Op_Jump)) return false;
1128
1129 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
1130
1131 // Decide if a guard is needed to lop off big ranges at either (or
1132 // both) end(s) of the input set. We'll call this the default target
1133 // even though we can't be sure that it is the true "default".
1134
1135 bool needs_guard = false;
1136 int default_dest;
1137 int64_t total_outlier_size = 0;
1138 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
1139 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
1140
1141 if (lo->dest() == hi->dest()) {
1142 total_outlier_size = hi_size + lo_size;
1143 default_dest = lo->dest();
1144 } else if (lo_size > hi_size) {
1145 total_outlier_size = lo_size;
1146 default_dest = lo->dest();
1147 } else {
1148 total_outlier_size = hi_size;
1149 default_dest = hi->dest();
1150 }
1151
1152 float total = sum_of_cnts(lo, hi);
1153 float cost = compute_tree_cost(lo, hi, total);
1154
1155 // If a guard test will eliminate very sparse end ranges, then
1156 // it is worth the cost of an extra jump.
1157 float trimmed_cnt = 0;
1158 if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
1159 needs_guard = true;
1160 if (default_dest == lo->dest()) {
1161 trimmed_cnt += lo->cnt();
1162 lo++;
1163 }
1164 if (default_dest == hi->dest()) {
1165 trimmed_cnt += hi->cnt();
1166 hi--;
1167 }
1168 }
1169
1170 // Find the total number of cases and ranges
1171 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
1172 int num_range = hi - lo + 1;
1173
1174 // Don't create table if: too large, too small, or too sparse.
1175 if (num_cases > MaxJumpTableSize)
1176 return false;
1177 if (UseSwitchProfiling) {
1178 // MinJumpTableSize is set so with a well balanced binary tree,
1179 // when the number of ranges is MinJumpTableSize, it's cheaper to
1180 // go through a JumpNode that a tree of IfNodes. Average cost of a
1181 // tree of IfNodes with MinJumpTableSize is
1182 // log2f(MinJumpTableSize) comparisons. So if the cost computed
1183 // from profile data is less than log2f(MinJumpTableSize) then
1184 // going with the binary search is cheaper.
1185 if (cost < log2f(MinJumpTableSize)) {
1186 return false;
1187 }
1188 } else {
1189 if (num_cases < MinJumpTableSize)
1190 return false;
1191 }
1192 if (num_cases > (MaxJumpTableSparseness * num_range))
1193 return false;
1194
1195 // Normalize table lookups to zero
1196 int lowval = lo->lo();
1197 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
1198
1199 // Generate a guard to protect against input keyvals that aren't
1200 // in the switch domain.
1201 if (needs_guard) {
1202 Node* size = _gvn.intcon(num_cases);
1203 Node* cmp = _gvn.transform(new CmpUNode(key_val, size));
1204 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge));
1205 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt));
1206 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0);
1207
1208 total -= trimmed_cnt;
1209 }
1210
1211 // Create an ideal node JumpTable that has projections
1212 // of all possible ranges for a switch statement
1213 // The key_val input must be converted to a pointer offset and scaled.
1214 // Compare Parse::array_addressing above.
1215
1216 // Clean the 32-bit int into a real 64-bit offset.
1217 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
1218 // Make I2L conversion control dependent to prevent it from
1219 // floating above the range check during loop optimizations.
1220 // Do not use a narrow int type here to prevent the data path from dying
1221 // while the control path is not removed. This can happen if the type of key_val
1222 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast
1223 // would be replaced by TOP while C2 is not able to fold the corresponding range checks.
1224 // Set _carry_dependency for the cast to avoid being removed by IGVN.
1225 #ifdef _LP64
1226 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */);
1227 #endif
1228
1229 // Shift the value by wordsize so we have an index into the table, rather
1230 // than a switch value
1231 Node *shiftWord = _gvn.MakeConX(wordSize);
1232 key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
1233
1234 // Create the JumpNode
1235 Arena* arena = C->comp_arena();
1236 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases);
1237 int i = 0;
1238 if (total == 0) {
1239 for (SwitchRange* r = lo; r <= hi; r++) {
1240 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1241 probs[i] = 1.0F / num_cases;
1242 }
1243 }
1244 } else {
1245 for (SwitchRange* r = lo; r <= hi; r++) {
1246 float prob = r->cnt()/total;
1247 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1248 probs[i] = prob / (r->hi() - r->lo() + 1);
1249 }
1250 }
1251 }
1252
1253 ciMethodData* methodData = method()->method_data();
1254 ciMultiBranchData* profile = nullptr;
1255 if (methodData->is_mature()) {
1256 ciProfileData* data = methodData->bci_to_data(bci());
1257 if (data != nullptr && data->is_MultiBranchData()) {
1258 profile = (ciMultiBranchData*)data;
1259 }
1260 }
1261
1262 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total));
1263
1264 // These are the switch destinations hanging off the jumpnode
1265 i = 0;
1266 for (SwitchRange* r = lo; r <= hi; r++) {
1267 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
1268 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
1269 {
1270 PreserveJVMState pjvms(this);
1271 set_control(input);
1272 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0);
1273 }
1274 }
1275 }
1276 assert(i == num_cases, "miscount of cases");
1277 stop_and_kill_map(); // no more uses for this JVMS
1278 return true;
1279 }
1280
1281 //----------------------------jump_switch_ranges-------------------------------
1282 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
1283 Block* switch_block = block();
1284 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
1285
1286 if (switch_depth == 0) {
1287 // Do special processing for the top-level call.
1288 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
1289 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
1290
1291 // Decrement pred-numbers for the unique set of nodes.
1292 #ifdef ASSERT
1293 if (!trim_ranges) {
1294 // Ensure that the block's successors are a (duplicate-free) set.
1295 int successors_counted = 0; // block occurrences in [hi..lo]
1296 int unique_successors = switch_block->num_successors();
1297 for (int i = 0; i < unique_successors; i++) {
1298 Block* target = switch_block->successor_at(i);
1299
1300 // Check that the set of successors is the same in both places.
1301 int successors_found = 0;
1302 for (SwitchRange* p = lo; p <= hi; p++) {
1303 if (p->dest() == target->start()) successors_found++;
1304 }
1305 assert(successors_found > 0, "successor must be known");
1306 successors_counted += successors_found;
1307 }
1308 assert(successors_counted == (hi-lo)+1, "no unexpected successors");
1309 }
1310 #endif
1311
1312 // Maybe prune the inputs, based on the type of key_val.
1313 jint min_val = min_jint;
1314 jint max_val = max_jint;
1315 const TypeInt* ti = key_val->bottom_type()->isa_int();
1316 if (ti != nullptr) {
1317 min_val = ti->_lo;
1318 max_val = ti->_hi;
1319 assert(min_val <= max_val, "invalid int type");
1320 }
1321 while (lo->hi() < min_val) {
1322 lo++;
1323 }
1324 if (lo->lo() < min_val) {
1325 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt());
1326 }
1327 while (hi->lo() > max_val) {
1328 hi--;
1329 }
1330 if (hi->hi() > max_val) {
1331 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt());
1332 }
1333
1334 linear_search_switch_ranges(key_val, lo, hi);
1335 }
1336
1337 #ifndef PRODUCT
1338 if (switch_depth == 0) {
1339 _max_switch_depth = 0;
1340 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1;
1341 }
1342 #endif
1343
1344 assert(lo <= hi, "must be a non-empty set of ranges");
1345 if (lo == hi) {
1346 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0);
1347 } else {
1348 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
1349 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
1350
1351 if (create_jump_tables(key_val, lo, hi)) return;
1352
1353 SwitchRange* mid = nullptr;
1354 float total_cnt = sum_of_cnts(lo, hi);
1355
1356 int nr = hi - lo + 1;
1357 if (UseSwitchProfiling) {
1358 // Don't keep the binary search tree balanced: pick up mid point
1359 // that split frequencies in half.
1360 float cnt = 0;
1361 for (SwitchRange* sr = lo; sr <= hi; sr++) {
1362 cnt += sr->cnt();
1363 if (cnt >= total_cnt / 2) {
1364 mid = sr;
1365 break;
1366 }
1367 }
1368 } else {
1369 mid = lo + nr/2;
1370
1371 // if there is an easy choice, pivot at a singleton:
1372 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--;
1373
1374 assert(lo < mid && mid <= hi, "good pivot choice");
1375 assert(nr != 2 || mid == hi, "should pick higher of 2");
1376 assert(nr != 3 || mid == hi-1, "should pick middle of 3");
1377 }
1378
1379
1380 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo());
1381
1382 if (mid->is_singleton()) {
1383 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt()));
1384 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0);
1385
1386 // Special Case: If there are exactly three ranges, and the high
1387 // and low range each go to the same place, omit the "gt" test,
1388 // since it will not discriminate anything.
1389 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo;
1390
1391 // if there is a higher range, test for it and process it:
1392 if (mid < hi && !eq_test_only) {
1393 // two comparisons of same values--should enable 1 test for 2 branches
1394 // Use BoolTest::lt instead of BoolTest::gt
1395 float cnt = sum_of_cnts(lo, mid-1);
1396 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt));
1397 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) );
1398 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) );
1399 { PreserveJVMState pjvms(this);
1400 set_control(iffalse);
1401 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
1402 }
1403 set_control(iftrue);
1404 }
1405
1406 } else {
1407 // mid is a range, not a singleton, so treat mid..hi as a unit
1408 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi);
1409 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt));
1410
1411 // if there is a higher range, test for it and process it:
1412 if (mid == hi) {
1413 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0);
1414 } else {
1415 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) );
1416 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
1417 { PreserveJVMState pjvms(this);
1418 set_control(iftrue);
1419 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1);
1420 }
1421 set_control(iffalse);
1422 }
1423 }
1424
1425 // in any case, process the lower range
1426 if (mid == lo) {
1427 if (mid->is_singleton()) {
1428 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1);
1429 } else {
1430 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0);
1431 }
1432 } else {
1433 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
1434 }
1435 }
1436
1437 // Decrease pred_count for each successor after all is done.
1438 if (switch_depth == 0) {
1439 int unique_successors = switch_block->num_successors();
1440 for (int i = 0; i < unique_successors; i++) {
1441 Block* target = switch_block->successor_at(i);
1442 // Throw away the pre-allocated path for each unique successor.
1443 target->next_path_num();
1444 }
1445 }
1446
1447 #ifndef PRODUCT
1448 _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
1449 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
1450 SwitchRange* r;
1451 int nsing = 0;
1452 for( r = lo; r <= hi; r++ ) {
1453 if( r->is_singleton() ) nsing++;
1454 }
1455 tty->print(">>> ");
1456 _method->print_short_name();
1457 tty->print_cr(" switch decision tree");
1458 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d",
1459 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
1460 if (_max_switch_depth > _est_switch_depth) {
1461 tty->print_cr("******** BAD SWITCH DEPTH ********");
1462 }
1463 tty->print(" ");
1464 for( r = lo; r <= hi; r++ ) {
1465 r->print();
1466 }
1467 tty->cr();
1468 }
1469 #endif
1470 }
1471
1472 Node* Parse::floating_point_mod(Node* a, Node* b, BasicType type) {
1473 assert(type == BasicType::T_FLOAT || type == BasicType::T_DOUBLE, "only float and double are floating points");
1474 CallLeafPureNode* mod = type == BasicType::T_DOUBLE ? static_cast<CallLeafPureNode*>(new ModDNode(C, a, b)) : new ModFNode(C, a, b);
1475
1476 set_predefined_input_for_runtime_call(mod);
1477 mod = _gvn.transform(mod)->as_CallLeafPure();
1478 set_predefined_output_for_runtime_call(mod);
1479 Node* result = _gvn.transform(new ProjNode(mod, TypeFunc::Parms + 0));
1480 record_for_igvn(mod);
1481 return result;
1482 }
1483
1484 void Parse::l2f() {
1485 Node* f2 = pop();
1486 Node* f1 = pop();
1487 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
1488 CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
1489 "l2f", nullptr, //no memory effects
1490 f1, f2);
1491 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1492
1493 push(res);
1494 }
1495
1496 // Handle jsr and jsr_w bytecode
1497 void Parse::do_jsr() {
1498 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
1499
1500 // Store information about current state, tagged with new _jsr_bci
1501 int return_bci = iter().next_bci();
1502 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
1503
1504 // The way we do things now, there is only one successor block
1505 // for the jsr, because the target code is cloned by ciTypeFlow.
1506 Block* target = successor_for_bci(jsr_bci);
1507
1508 // What got pushed?
1509 const Type* ret_addr = target->peek();
1510 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
1511
1512 // Effect on jsr on stack
1513 push(_gvn.makecon(ret_addr));
1514
1515 // Flow to the jsr.
1516 merge(jsr_bci);
1517 }
1518
1519 // Handle ret bytecode
1520 void Parse::do_ret() {
1521 // Find to whom we return.
1522 assert(block()->num_successors() == 1, "a ret can only go one place now");
1523 Block* target = block()->successor_at(0);
1524 assert(!target->is_ready(), "our arrival must be expected");
1525 int pnum = target->next_path_num();
1526 merge_common(target, pnum);
1527 }
1528
1529 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
1530 if (btest != BoolTest::eq && btest != BoolTest::ne) {
1531 // Only ::eq and ::ne are supported for profile injection.
1532 return false;
1533 }
1534 if (test->is_Cmp() &&
1535 test->in(1)->Opcode() == Op_ProfileBoolean) {
1536 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
1537 int false_cnt = profile->false_count();
1538 int true_cnt = profile->true_count();
1539
1540 // Counts matching depends on the actual test operation (::eq or ::ne).
1541 // No need to scale the counts because profile injection was designed
1542 // to feed exact counts into VM.
1543 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt;
1544 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt;
1545
1546 profile->consume();
1547 return true;
1548 }
1549 return false;
1550 }
1551
1552 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
1553 // We also check that individual counters are positive first, otherwise the sum can become positive.
1554 // (check for saturation, integer overflow, and immature counts)
1555 static bool counters_are_meaningful(int counter1, int counter2, int min) {
1556 // check for saturation, including "uint" values too big to fit in "int"
1557 if (counter1 < 0 || counter2 < 0) {
1558 return false;
1559 }
1560 // check for integer overflow of the sum
1561 int64_t sum = (int64_t)counter1 + (int64_t)counter2;
1562 STATIC_ASSERT(sizeof(counter1) < sizeof(sum));
1563 if (sum > INT_MAX) {
1564 return false;
1565 }
1566 // check if mature
1567 return (counter1 + counter2) >= min;
1568 }
1569
1570 //--------------------------dynamic_branch_prediction--------------------------
1571 // Try to gather dynamic branch prediction behavior. Return a probability
1572 // of the branch being taken and set the "cnt" field. Returns a -1.0
1573 // if we need to use static prediction for some reason.
1574 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
1575 ResourceMark rm;
1576
1577 cnt = COUNT_UNKNOWN;
1578
1579 int taken = 0;
1580 int not_taken = 0;
1581
1582 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
1583
1584 if (use_mdo) {
1585 // Use MethodData information if it is available
1586 // FIXME: free the ProfileData structure
1587 ciMethodData* methodData = method()->method_data();
1588 if (!methodData->is_mature()) return PROB_UNKNOWN;
1589 ciProfileData* data = methodData->bci_to_data(bci());
1590 if (data == nullptr) {
1591 return PROB_UNKNOWN;
1592 }
1593 if (!data->is_JumpData()) return PROB_UNKNOWN;
1594
1595 // get taken and not taken values
1596 // NOTE: saturated UINT_MAX values become negative,
1597 // as do counts above INT_MAX.
1598 taken = data->as_JumpData()->taken();
1599 not_taken = 0;
1600 if (data->is_BranchData()) {
1601 not_taken = data->as_BranchData()->not_taken();
1602 }
1603
1604 // scale the counts to be commensurate with invocation counts:
1605 // NOTE: overflow for positive values is clamped at INT_MAX
1606 taken = method()->scale_count(taken);
1607 not_taken = method()->scale_count(not_taken);
1608 }
1609 // At this point, saturation or overflow is indicated by INT_MAX
1610 // or a negative value.
1611
1612 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
1613 // We also check that individual counters are positive first, otherwise the sum can become positive.
1614 if (!counters_are_meaningful(taken, not_taken, 40)) {
1615 if (C->log() != nullptr) {
1616 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
1617 }
1618 return PROB_UNKNOWN;
1619 }
1620
1621 // Compute frequency that we arrive here
1622 float sum = taken + not_taken;
1623 // Adjust, if this block is a cloned private block but the
1624 // Jump counts are shared. Taken the private counts for
1625 // just this path instead of the shared counts.
1626 if( block()->count() > 0 )
1627 sum = block()->count();
1628 cnt = sum / FreqCountInvocations;
1629
1630 // Pin probability to sane limits
1631 float prob;
1632 if( !taken )
1633 prob = (0+PROB_MIN) / 2;
1634 else if( !not_taken )
1635 prob = (1+PROB_MAX) / 2;
1636 else { // Compute probability of true path
1637 prob = (float)taken / (float)(taken + not_taken);
1638 if (prob > PROB_MAX) prob = PROB_MAX;
1639 if (prob < PROB_MIN) prob = PROB_MIN;
1640 }
1641
1642 assert((cnt > 0.0f) && (prob > 0.0f),
1643 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken);
1644
1645 if (C->log() != nullptr) {
1646 const char* prob_str = nullptr;
1647 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always";
1648 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never";
1649 char prob_str_buf[30];
1650 if (prob_str == nullptr) {
1651 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob);
1652 prob_str = prob_str_buf;
1653 }
1654 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
1655 iter().get_dest(), taken, not_taken, cnt, prob_str);
1656 }
1657 return prob;
1658 }
1659
1660 //-----------------------------branch_prediction-------------------------------
1661 float Parse::branch_prediction(float& cnt,
1662 BoolTest::mask btest,
1663 int target_bci,
1664 Node* test) {
1665 float prob = dynamic_branch_prediction(cnt, btest, test);
1666 // If prob is unknown, switch to static prediction
1667 if (prob != PROB_UNKNOWN) return prob;
1668
1669 prob = PROB_FAIR; // Set default value
1670 if (btest == BoolTest::eq) // Exactly equal test?
1671 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent
1672 else if (btest == BoolTest::ne)
1673 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent
1674
1675 // If this is a conditional test guarding a backwards branch,
1676 // assume its a loop-back edge. Make it a likely taken branch.
1677 if (target_bci < bci()) {
1678 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt
1679 // Since it's an OSR, we probably have profile data, but since
1680 // branch_prediction returned PROB_UNKNOWN, the counts are too small.
1681 // Let's make a special check here for completely zero counts.
1682 ciMethodData* methodData = method()->method_data();
1683 if (!methodData->is_empty()) {
1684 ciProfileData* data = methodData->bci_to_data(bci());
1685 // Only stop for truly zero counts, which mean an unknown part
1686 // of the OSR-ed method, and we want to deopt to gather more stats.
1687 // If you have ANY counts, then this loop is simply 'cold' relative
1688 // to the OSR loop.
1689 if (data == nullptr ||
1690 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) {
1691 // This is the only way to return PROB_UNKNOWN:
1692 return PROB_UNKNOWN;
1693 }
1694 }
1695 }
1696 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch
1697 }
1698
1699 assert(prob != PROB_UNKNOWN, "must have some guess at this point");
1700 return prob;
1701 }
1702
1703 // The magic constants are chosen so as to match the output of
1704 // branch_prediction() when the profile reports a zero taken count.
1705 // It is important to distinguish zero counts unambiguously, because
1706 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
1707 // very small but nonzero probabilities, which if confused with zero
1708 // counts would keep the program recompiling indefinitely.
1709 bool Parse::seems_never_taken(float prob) const {
1710 return prob < PROB_MIN;
1711 }
1712
1713 //-------------------------------repush_if_args--------------------------------
1714 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
1715 inline int Parse::repush_if_args() {
1716 if (PrintOpto && WizardMode) {
1717 tty->print("defending against excessive implicit null exceptions on %s @%d in ",
1718 Bytecodes::name(iter().cur_bc()), iter().cur_bci());
1719 method()->print_name(); tty->cr();
1720 }
1721 int bc_depth = - Bytecodes::depth(iter().cur_bc());
1722 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
1723 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms
1724 assert(argument(0) != nullptr, "must exist");
1725 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist");
1726 inc_sp(bc_depth);
1727 return bc_depth;
1728 }
1729
1730 // Used by StressUnstableIfTraps
1731 static volatile int _trap_stress_counter = 0;
1732
1733 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) {
1734 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter));
1735 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, MemNode::unordered);
1736 counter = _gvn.transform(new AddINode(counter, intcon(1)));
1737 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, MemNode::unordered);
1738 }
1739
1740 //----------------------------------do_ifnull----------------------------------
1741 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
1742 int target_bci = iter().get_dest();
1743
1744 Node* counter = nullptr;
1745 Node* incr_store = nullptr;
1746 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0);
1747 if (do_stress_trap) {
1748 increment_trap_stress_counter(counter, incr_store);
1749 }
1750
1751 Block* branch_block = successor_for_bci(target_bci);
1752 Block* next_block = successor_for_bci(iter().next_bci());
1753
1754 float cnt;
1755 float prob = branch_prediction(cnt, btest, target_bci, c);
1756 if (prob == PROB_UNKNOWN) {
1757 // (An earlier version of do_ifnull omitted this trap for OSR methods.)
1758 if (PrintOpto && Verbose) {
1759 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1760 }
1761 repush_if_args(); // to gather stats on loop
1762 uncommon_trap(Deoptimization::Reason_unreached,
1763 Deoptimization::Action_reinterpret,
1764 nullptr, "cold");
1765 if (C->eliminate_boxing()) {
1766 // Mark the successor blocks as parsed
1767 branch_block->next_path_num();
1768 next_block->next_path_num();
1769 }
1770 return;
1771 }
1772
1773 NOT_PRODUCT(explicit_null_checks_inserted++);
1774
1775 // Generate real control flow
1776 Node *tst = _gvn.transform( new BoolNode( c, btest ) );
1777
1778 // Sanity check the probability value
1779 assert(prob > 0.0f,"Bad probability in Parser");
1780 // Need xform to put node in hash table
1781 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1782 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1783 // True branch
1784 { PreserveJVMState pjvms(this);
1785 Node* iftrue = _gvn.transform( new IfTrueNode (iff) );
1786 set_control(iftrue);
1787
1788 if (stopped()) { // Path is dead?
1789 NOT_PRODUCT(explicit_null_checks_elided++);
1790 if (C->eliminate_boxing()) {
1791 // Mark the successor block as parsed
1792 branch_block->next_path_num();
1793 }
1794 } else { // Path is live.
1795 adjust_map_after_if(btest, c, prob, branch_block);
1796 if (!stopped()) {
1797 merge(target_bci);
1798 }
1799 }
1800 }
1801
1802 // False branch
1803 Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1804 set_control(iffalse);
1805
1806 if (stopped()) { // Path is dead?
1807 NOT_PRODUCT(explicit_null_checks_elided++);
1808 if (C->eliminate_boxing()) {
1809 // Mark the successor block as parsed
1810 next_block->next_path_num();
1811 }
1812 } else { // Path is live.
1813 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1814 }
1815
1816 if (do_stress_trap) {
1817 stress_trap(iff, counter, incr_store);
1818 }
1819 }
1820
1821 //------------------------------------do_if------------------------------------
1822 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
1823 int target_bci = iter().get_dest();
1824
1825 Block* branch_block = successor_for_bci(target_bci);
1826 Block* next_block = successor_for_bci(iter().next_bci());
1827
1828 float cnt;
1829 float prob = branch_prediction(cnt, btest, target_bci, c);
1830 float untaken_prob = 1.0 - prob;
1831
1832 if (prob == PROB_UNKNOWN) {
1833 if (PrintOpto && Verbose) {
1834 tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1835 }
1836 repush_if_args(); // to gather stats on loop
1837 uncommon_trap(Deoptimization::Reason_unreached,
1838 Deoptimization::Action_reinterpret,
1839 nullptr, "cold");
1840 if (C->eliminate_boxing()) {
1841 // Mark the successor blocks as parsed
1842 branch_block->next_path_num();
1843 next_block->next_path_num();
1844 }
1845 return;
1846 }
1847
1848 Node* counter = nullptr;
1849 Node* incr_store = nullptr;
1850 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0);
1851 if (do_stress_trap) {
1852 increment_trap_stress_counter(counter, incr_store);
1853 }
1854
1855 // Sanity check the probability value
1856 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1857
1858 bool taken_if_true = true;
1859 // Convert BoolTest to canonical form:
1860 if (!BoolTest(btest).is_canonical()) {
1861 btest = BoolTest(btest).negate();
1862 taken_if_true = false;
1863 // prob is NOT updated here; it remains the probability of the taken
1864 // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1865 }
1866 assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1867
1868 Node* tst0 = new BoolNode(c, btest);
1869 Node* tst = _gvn.transform(tst0);
1870 BoolTest::mask taken_btest = BoolTest::illegal;
1871 BoolTest::mask untaken_btest = BoolTest::illegal;
1872
1873 if (tst->is_Bool()) {
1874 // Refresh c from the transformed bool node, since it may be
1875 // simpler than the original c. Also re-canonicalize btest.
1876 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)).
1877 // That can arise from statements like: if (x instanceof C) ...
1878 if (tst != tst0) {
1879 // Canonicalize one more time since transform can change it.
1880 btest = tst->as_Bool()->_test._test;
1881 if (!BoolTest(btest).is_canonical()) {
1882 // Reverse edges one more time...
1883 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1884 btest = tst->as_Bool()->_test._test;
1885 assert(BoolTest(btest).is_canonical(), "sanity");
1886 taken_if_true = !taken_if_true;
1887 }
1888 c = tst->in(1);
1889 }
1890 BoolTest::mask neg_btest = BoolTest(btest).negate();
1891 taken_btest = taken_if_true ? btest : neg_btest;
1892 untaken_btest = taken_if_true ? neg_btest : btest;
1893 }
1894
1895 // Generate real control flow
1896 float true_prob = (taken_if_true ? prob : untaken_prob);
1897 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1898 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1899 Node* taken_branch = new IfTrueNode(iff);
1900 Node* untaken_branch = new IfFalseNode(iff);
1901 if (!taken_if_true) { // Finish conversion to canonical form
1902 Node* tmp = taken_branch;
1903 taken_branch = untaken_branch;
1904 untaken_branch = tmp;
1905 }
1906
1907 // Branch is taken:
1908 { PreserveJVMState pjvms(this);
1909 taken_branch = _gvn.transform(taken_branch);
1910 set_control(taken_branch);
1911
1912 if (stopped()) {
1913 if (C->eliminate_boxing() && !new_path) {
1914 // Mark the successor block as parsed (if we haven't created a new path)
1915 branch_block->next_path_num();
1916 }
1917 } else {
1918 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
1919 if (!stopped()) {
1920 if (new_path) {
1921 // Merge by using a new path
1922 merge_new_path(target_bci);
1923 } else if (ctrl_taken != nullptr) {
1924 // Don't merge but save taken branch to be wired by caller
1925 *ctrl_taken = control();
1926 } else {
1927 merge(target_bci);
1928 }
1929 }
1930 }
1931 }
1932
1933 untaken_branch = _gvn.transform(untaken_branch);
1934 set_control(untaken_branch);
1935
1936 // Branch not taken.
1937 if (stopped() && ctrl_taken == nullptr) {
1938 if (C->eliminate_boxing()) {
1939 // Mark the successor block as parsed (if caller does not re-wire control flow)
1940 next_block->next_path_num();
1941 }
1942 } else {
1943 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
1944 }
1945
1946 if (do_stress_trap) {
1947 stress_trap(iff, counter, incr_store);
1948 }
1949 }
1950
1951
1952 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
1953 if (t->speculative() == nullptr) {
1954 return ProfileUnknownNull;
1955 }
1956 if (t->speculative_always_null()) {
1957 return ProfileAlwaysNull;
1958 }
1959 if (t->speculative_maybe_null()) {
1960 return ProfileMaybeNull;
1961 }
1962 return ProfileNeverNull;
1963 }
1964
1965 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
1966 inc_sp(2);
1967 Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
1968 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
1969 speculative_ptr_kind(tinput) == ProfileAlwaysNull);
1970 dec_sp(2);
1971 if (btest == BoolTest::ne) {
1972 {
1973 PreserveJVMState pjvms(this);
1974 replace_in_map(input, cast);
1975 int target_bci = iter().get_dest();
1976 merge(target_bci);
1977 }
1978 record_for_igvn(eq_region);
1979 set_control(_gvn.transform(eq_region));
1980 } else {
1981 replace_in_map(input, cast);
1982 }
1983 }
1984
1985 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
1986 inc_sp(2);
1987 null_ctl = top();
1988 Node* cast = null_check_oop(input, &null_ctl,
1989 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
1990 false,
1991 speculative_ptr_kind(tinput) == ProfileNeverNull &&
1992 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
1993 dec_sp(2);
1994 assert(!stopped(), "null input should have been caught earlier");
1995 return cast;
1996 }
1997
1998 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
1999 Node* ne_region = new RegionNode(1);
2000 Node* null_ctl;
2001 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2002 ne_region->add_req(null_ctl);
2003
2004 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
2005 {
2006 PreserveJVMState pjvms(this);
2007 inc_sp(2);
2008 set_control(slow_ctl);
2009 Deoptimization::DeoptReason reason;
2010 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2011 reason = Deoptimization::Reason_speculate_class_check;
2012 } else {
2013 reason = Deoptimization::Reason_class_check;
2014 }
2015 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2016 }
2017 ne_region->add_req(control());
2018
2019 record_for_igvn(ne_region);
2020 set_control(_gvn.transform(ne_region));
2021 if (btest == BoolTest::ne) {
2022 {
2023 PreserveJVMState pjvms(this);
2024 if (null_ctl == top()) {
2025 replace_in_map(input, cast);
2026 }
2027 int target_bci = iter().get_dest();
2028 merge(target_bci);
2029 }
2030 record_for_igvn(eq_region);
2031 set_control(_gvn.transform(eq_region));
2032 } else {
2033 if (null_ctl == top()) {
2034 replace_in_map(input, cast);
2035 }
2036 set_control(_gvn.transform(ne_region));
2037 }
2038 }
2039
2040 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
2041 Node* ne_region = new RegionNode(1);
2042 Node* null_ctl;
2043 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2044 ne_region->add_req(null_ctl);
2045
2046 {
2047 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
2048 inc_sp(2);
2049 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
2050 }
2051
2052 ne_region->add_req(control());
2053
2054 record_for_igvn(ne_region);
2055 set_control(_gvn.transform(ne_region));
2056 if (btest == BoolTest::ne) {
2057 {
2058 PreserveJVMState pjvms(this);
2059 if (null_ctl == top()) {
2060 replace_in_map(input, cast);
2061 }
2062 int target_bci = iter().get_dest();
2063 merge(target_bci);
2064 }
2065 record_for_igvn(eq_region);
2066 set_control(_gvn.transform(eq_region));
2067 } else {
2068 if (null_ctl == top()) {
2069 replace_in_map(input, cast);
2070 }
2071 set_control(_gvn.transform(ne_region));
2072 }
2073 }
2074
2075 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
2076 ciKlass* left_type = nullptr;
2077 ciKlass* right_type = nullptr;
2078 ProfilePtrKind left_ptr = ProfileUnknownNull;
2079 ProfilePtrKind right_ptr = ProfileUnknownNull;
2080 bool left_inline_type = true;
2081 bool right_inline_type = true;
2082
2083 // Leverage profiling at acmp
2084 if (UseACmpProfile) {
2085 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
2086 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
2087 left_type = nullptr;
2088 right_type = nullptr;
2089 left_inline_type = true;
2090 right_inline_type = true;
2091 }
2092 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
2093 left_ptr = ProfileUnknownNull;
2094 right_ptr = ProfileUnknownNull;
2095 }
2096 }
2097
2098 if (UseTypeSpeculation) {
2099 record_profile_for_speculation(left, left_type, left_ptr);
2100 record_profile_for_speculation(right, right_type, right_ptr);
2101 }
2102
2103 if (!EnableValhalla) {
2104 Node* cmp = CmpP(left, right);
2105 cmp = optimize_cmp_with_klass(cmp);
2106 do_if(btest, cmp);
2107 return;
2108 }
2109
2110 // Check for equality before potentially allocating
2111 if (left == right) {
2112 do_if(btest, makecon(TypeInt::CC_EQ));
2113 return;
2114 }
2115
2116 // Allocate inline type operands and re-execute on deoptimization
2117 if (left->is_InlineType()) {
2118 if (_gvn.type(right)->is_zero_type() ||
2119 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_null_marker())->is_zero_type())) {
2120 // Null checking a scalarized but nullable inline type. Check the null marker
2121 // input instead of the oop input to avoid keeping buffer allocations alive.
2122 Node* cmp = CmpI(left->as_InlineType()->get_null_marker(), intcon(0));
2123 do_if(btest, cmp);
2124 return;
2125 } else {
2126 PreserveReexecuteState preexecs(this);
2127 inc_sp(2);
2128 jvms()->set_should_reexecute(true);
2129 left = left->as_InlineType()->buffer(this)->get_oop();
2130 }
2131 }
2132 if (right->is_InlineType()) {
2133 PreserveReexecuteState preexecs(this);
2134 inc_sp(2);
2135 jvms()->set_should_reexecute(true);
2136 right = right->as_InlineType()->buffer(this)->get_oop();
2137 }
2138
2139 // First, do a normal pointer comparison
2140 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
2141 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
2142 Node* cmp = CmpP(left, right);
2143 cmp = optimize_cmp_with_klass(cmp);
2144 if (tleft == nullptr || !tleft->can_be_inline_type() ||
2145 tright == nullptr || !tright->can_be_inline_type()) {
2146 // This is sufficient, if one of the operands can't be an inline type
2147 do_if(btest, cmp);
2148 return;
2149 }
2150
2151 // Don't add traps to unstable if branches because additional checks are required to
2152 // decide if the operands are equal/substitutable and we therefore shouldn't prune
2153 // branches for one if based on the profiling of the acmp branches.
2154 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
2155 // assumes that there is a 1-1 mapping between the if and the acmp branches and that
2156 // hitting a trap means that we will take the corresponding acmp branch on re-execution.
2157 const bool can_trap = true;
2158
2159 Node* eq_region = nullptr;
2160 if (btest == BoolTest::eq) {
2161 do_if(btest, cmp, !can_trap, true);
2162 if (stopped()) {
2163 // Pointers are equal, operands must be equal
2164 return;
2165 }
2166 } else {
2167 assert(btest == BoolTest::ne, "only eq or ne");
2168 Node* is_not_equal = nullptr;
2169 eq_region = new RegionNode(3);
2170 {
2171 PreserveJVMState pjvms(this);
2172 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
2173 do_if(btest, cmp, !can_trap, false, &is_not_equal);
2174 if (!stopped()) {
2175 eq_region->init_req(1, control());
2176 }
2177 }
2178 if (is_not_equal == nullptr || is_not_equal->is_top()) {
2179 record_for_igvn(eq_region);
2180 set_control(_gvn.transform(eq_region));
2181 return;
2182 }
2183 set_control(is_not_equal);
2184 }
2185
2186 // Prefer speculative types if available
2187 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2188 if (tleft->speculative_type() != nullptr) {
2189 left_type = tleft->speculative_type();
2190 }
2191 if (tright->speculative_type() != nullptr) {
2192 right_type = tright->speculative_type();
2193 }
2194 }
2195
2196 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
2197 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
2198 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2199 left_ptr = speculative_left_ptr;
2200 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2201 left_ptr = speculative_left_ptr;
2202 }
2203 }
2204 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
2205 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
2206 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2207 right_ptr = speculative_right_ptr;
2208 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2209 right_ptr = speculative_right_ptr;
2210 }
2211 }
2212
2213 if (left_ptr == ProfileAlwaysNull) {
2214 // Comparison with null. Assert the input is indeed null and we're done.
2215 acmp_always_null_input(left, tleft, btest, eq_region);
2216 return;
2217 }
2218 if (right_ptr == ProfileAlwaysNull) {
2219 // Comparison with null. Assert the input is indeed null and we're done.
2220 acmp_always_null_input(right, tright, btest, eq_region);
2221 return;
2222 }
2223 if (left_type != nullptr && !left_type->is_inlinetype()) {
2224 // Comparison with an object of known type
2225 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
2226 return;
2227 }
2228 if (right_type != nullptr && !right_type->is_inlinetype()) {
2229 // Comparison with an object of known type
2230 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
2231 return;
2232 }
2233 if (!left_inline_type) {
2234 // Comparison with an object known not to be an inline type
2235 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
2236 return;
2237 }
2238 if (!right_inline_type) {
2239 // Comparison with an object known not to be an inline type
2240 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
2241 return;
2242 }
2243
2244 // Pointers are not equal, check if first operand is non-null
2245 Node* ne_region = new RegionNode(6);
2246 Node* null_ctl;
2247 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
2248 ne_region->init_req(1, null_ctl);
2249
2250 // First operand is non-null, check if it is an inline type
2251 Node* is_value = inline_type_test(not_null_right);
2252 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
2253 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
2254 ne_region->init_req(2, not_value);
2255 set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
2256
2257 // The first operand is an inline type, check if the second operand is non-null
2258 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
2259 ne_region->init_req(3, null_ctl);
2260
2261 // Check if both operands are of the same class.
2262 Node* kls_left = load_object_klass(not_null_left);
2263 Node* kls_right = load_object_klass(not_null_right);
2264 Node* kls_cmp = CmpP(kls_left, kls_right);
2265 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
2266 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
2267 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
2268 set_control(_gvn.transform(new IfFalseNode(kls_iff)));
2269 ne_region->init_req(4, kls_ne);
2270
2271 if (stopped()) {
2272 record_for_igvn(ne_region);
2273 set_control(_gvn.transform(ne_region));
2274 if (btest == BoolTest::ne) {
2275 {
2276 PreserveJVMState pjvms(this);
2277 int target_bci = iter().get_dest();
2278 merge(target_bci);
2279 }
2280 record_for_igvn(eq_region);
2281 set_control(_gvn.transform(eq_region));
2282 }
2283 return;
2284 }
2285
2286 // Both operands are values types of the same class, we need to perform a
2287 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
2288 Node* ne_io_phi = PhiNode::make(ne_region, i_o());
2289 Node* mem = reset_memory();
2290 Node* ne_mem_phi = PhiNode::make(ne_region, mem);
2291
2292 Node* eq_io_phi = nullptr;
2293 Node* eq_mem_phi = nullptr;
2294 if (eq_region != nullptr) {
2295 eq_io_phi = PhiNode::make(eq_region, i_o());
2296 eq_mem_phi = PhiNode::make(eq_region, mem);
2297 }
2298
2299 set_all_memory(mem);
2300
2301 kill_dead_locals();
2302 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
2303 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
2304 call->set_override_symbolic_info(true);
2305 call->init_req(TypeFunc::Parms, not_null_left);
2306 call->init_req(TypeFunc::Parms+1, not_null_right);
2307 inc_sp(2);
2308 set_edges_for_java_call(call, false, false);
2309 Node* ret = set_results_for_java_call(call, false, true);
2310 dec_sp(2);
2311
2312 // Test the return value of ValueObjectMethods::isSubstitutable()
2313 // This is the last check, do_if can emit traps now.
2314 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
2315 Node* ctl = C->top();
2316 if (btest == BoolTest::eq) {
2317 PreserveJVMState pjvms(this);
2318 do_if(btest, subst_cmp, can_trap);
2319 if (!stopped()) {
2320 ctl = control();
2321 }
2322 } else {
2323 assert(btest == BoolTest::ne, "only eq or ne");
2324 PreserveJVMState pjvms(this);
2325 do_if(btest, subst_cmp, can_trap, false, &ctl);
2326 if (!stopped()) {
2327 eq_region->init_req(2, control());
2328 eq_io_phi->init_req(2, i_o());
2329 eq_mem_phi->init_req(2, reset_memory());
2330 }
2331 }
2332 ne_region->init_req(5, ctl);
2333 ne_io_phi->init_req(5, i_o());
2334 ne_mem_phi->init_req(5, reset_memory());
2335
2336 record_for_igvn(ne_region);
2337 set_control(_gvn.transform(ne_region));
2338 set_i_o(_gvn.transform(ne_io_phi));
2339 set_all_memory(_gvn.transform(ne_mem_phi));
2340
2341 if (btest == BoolTest::ne) {
2342 {
2343 PreserveJVMState pjvms(this);
2344 int target_bci = iter().get_dest();
2345 merge(target_bci);
2346 }
2347
2348 record_for_igvn(eq_region);
2349 set_control(_gvn.transform(eq_region));
2350 set_i_o(_gvn.transform(eq_io_phi));
2351 set_all_memory(_gvn.transform(eq_mem_phi));
2352 }
2353 }
2354
2355 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
2356 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
2357 // then either takes the trap or executes the original, unstable if.
2358 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
2359 // Search for an unstable if trap
2360 CallStaticJavaNode* trap = nullptr;
2361 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
2362 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
2363 if (trap == nullptr || !trap->jvms()->should_reexecute()) {
2364 // No suitable trap found. Remove unused counter load and increment.
2365 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
2366 return;
2367 }
2368
2369 // Remove trap from optimization list since we add another path to the trap.
2370 bool success = C->remove_unstable_if_trap(trap, true);
2371 assert(success, "Trap already modified");
2372
2373 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
2374 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]
2375 Node* mask = intcon(right_n_bits(freq_log));
2376 counter = _gvn.transform(new AndINode(counter, mask));
2377 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0)));
2378 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq));
2379 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If();
2380 Node* if_true = _gvn.transform(new IfTrueNode(iff));
2381 Node* if_false = _gvn.transform(new IfFalseNode(iff));
2382 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken");
2383
2384 // Trap
2385 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection");
2386
2387 Node* trap_region = new RegionNode(3);
2388 trap_region->set_req(1, trap_proj);
2389 trap_region->set_req(2, if_true);
2390 trap->set_req(0, _gvn.transform(trap_region));
2391
2392 // Don't trap, execute original if
2393 orig_iff->set_req(0, if_false);
2394 }
2395
2396 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
2397 // Randomly skip emitting an uncommon trap
2398 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) {
2399 return false;
2400 }
2401 // Don't want to speculate on uncommon traps when running with -Xcomp
2402 if (!UseInterpreter) {
2403 return false;
2404 }
2405 return seems_never_taken(prob) &&
2406 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
2407 }
2408
2409 void Parse::maybe_add_predicate_after_if(Block* path) {
2410 if (path->is_SEL_head() && path->preds_parsed() == 0) {
2411 // Add predicates at bci of if dominating the loop so traps can be
2412 // recorded on the if's profile data
2413 int bc_depth = repush_if_args();
2414 add_parse_predicates();
2415 dec_sp(bc_depth);
2416 path->set_has_predicates();
2417 }
2418 }
2419
2420
2421 //----------------------------adjust_map_after_if------------------------------
2422 // Adjust the JVM state to reflect the result of taking this path.
2423 // Basically, it means inspecting the CmpNode controlling this
2424 // branch, seeing how it constrains a tested value, and then
2425 // deciding if it's worth our while to encode this constraint
2426 // as graph nodes in the current abstract interpretation map.
2427 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
2428 if (!c->is_Cmp()) {
2429 maybe_add_predicate_after_if(path);
2430 return;
2431 }
2432
2433 if (stopped() || btest == BoolTest::illegal) {
2434 return; // nothing to do
2435 }
2436
2437 bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
2438
2439 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
2440 repush_if_args();
2441 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
2442 Deoptimization::Action_reinterpret,
2443 nullptr,
2444 (is_fallthrough ? "taken always" : "taken never"));
2445
2446 if (call != nullptr) {
2447 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
2448 }
2449 return;
2450 }
2451
2452 Node* val = c->in(1);
2453 Node* con = c->in(2);
2454 const Type* tcon = _gvn.type(con);
2455 const Type* tval = _gvn.type(val);
2456 bool have_con = tcon->singleton();
2457 if (tval->singleton()) {
2458 if (!have_con) {
2459 // Swap, so constant is in con.
2460 con = val;
2461 tcon = tval;
2462 val = c->in(2);
2463 tval = _gvn.type(val);
2464 btest = BoolTest(btest).commute();
2465 have_con = true;
2466 } else {
2467 // Do we have two constants? Then leave well enough alone.
2468 have_con = false;
2469 }
2470 }
2471 if (!have_con) { // remaining adjustments need a con
2472 maybe_add_predicate_after_if(path);
2473 return;
2474 }
2475
2476 sharpen_type_after_if(btest, con, tcon, val, tval);
2477 maybe_add_predicate_after_if(path);
2478 }
2479
2480
2481 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
2482 Node* ldk;
2483 if (n->is_DecodeNKlass()) {
2484 if (n->in(1)->Opcode() != Op_LoadNKlass) {
2485 return nullptr;
2486 } else {
2487 ldk = n->in(1);
2488 }
2489 } else if (n->Opcode() != Op_LoadKlass) {
2490 return nullptr;
2491 } else {
2492 ldk = n;
2493 }
2494 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
2495
2496 Node* adr = ldk->in(MemNode::Address);
2497 intptr_t off = 0;
2498 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
2499 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
2500 return nullptr;
2501 const TypePtr* tp = gvn->type(obj)->is_ptr();
2502 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
2503 return nullptr;
2504
2505 return obj;
2506 }
2507
2508 void Parse::sharpen_type_after_if(BoolTest::mask btest,
2509 Node* con, const Type* tcon,
2510 Node* val, const Type* tval) {
2511 // Look for opportunities to sharpen the type of a node
2512 // whose klass is compared with a constant klass.
2513 if (btest == BoolTest::eq && tcon->isa_klassptr()) {
2514 Node* obj = extract_obj_from_klass_load(&_gvn, val);
2515 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
2516 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2517 // Found:
2518 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2519 // or the narrowOop equivalent.
2520 const Type* obj_type = _gvn.type(obj);
2521 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2522 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
2523 tboth->higher_equal(obj_type)) {
2524 // obj has to be of the exact type Foo if the CmpP succeeds.
2525 int obj_in_map = map()->find_edge(obj);
2526 JVMState* jvms = this->jvms();
2527 if (obj_in_map >= 0 &&
2528 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2529 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2530 const Type* tcc = ccast->as_Type()->type();
2531 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2532 // Delay transform() call to allow recovery of pre-cast value
2533 // at the control merge.
2534 _gvn.set_type_bottom(ccast);
2535 record_for_igvn(ccast);
2536 if (tboth->is_inlinetypeptr()) {
2537 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
2538 }
2539 // Here's the payoff.
2540 replace_in_map(obj, ccast);
2541 }
2542 }
2543 }
2544 }
2545
2546 int val_in_map = map()->find_edge(val);
2547 if (val_in_map < 0) return; // replace_in_map would be useless
2548 {
2549 JVMState* jvms = this->jvms();
2550 if (!(jvms->is_loc(val_in_map) ||
2551 jvms->is_stk(val_in_map)))
2552 return; // again, it would be useless
2553 }
2554
2555 // Check for a comparison to a constant, and "know" that the compared
2556 // value is constrained on this path.
2557 assert(tcon->singleton(), "");
2558 ConstraintCastNode* ccast = nullptr;
2559 Node* cast = nullptr;
2560
2561 switch (btest) {
2562 case BoolTest::eq: // Constant test?
2563 {
2564 const Type* tboth = tcon->join_speculative(tval);
2565 if (tboth == tval) break; // Nothing to gain.
2566 if (tcon->isa_int()) {
2567 ccast = new CastIINode(control(), val, tboth);
2568 } else if (tcon == TypePtr::NULL_PTR) {
2569 // Cast to null, but keep the pointer identity temporarily live.
2570 ccast = new CastPPNode(control(), val, tboth);
2571 } else {
2572 const TypeF* tf = tcon->isa_float_constant();
2573 const TypeD* td = tcon->isa_double_constant();
2574 // Exclude tests vs float/double 0 as these could be
2575 // either +0 or -0. Just because you are equal to +0
2576 // doesn't mean you ARE +0!
2577 // Note, following code also replaces Long and Oop values.
2578 if ((!tf || tf->_f != 0.0) &&
2579 (!td || td->_d != 0.0))
2580 cast = con; // Replace non-constant val by con.
2581 }
2582 }
2583 break;
2584
2585 case BoolTest::ne:
2586 if (tcon == TypePtr::NULL_PTR) {
2587 cast = cast_not_null(val, false);
2588 }
2589 break;
2590
2591 default:
2592 // (At this point we could record int range types with CastII.)
2593 break;
2594 }
2595
2596 if (ccast != nullptr) {
2597 const Type* tcc = ccast->as_Type()->type();
2598 assert(tcc != tval && tcc->higher_equal(tval), "must improve");
2599 // Delay transform() call to allow recovery of pre-cast value
2600 // at the control merge.
2601 _gvn.set_type_bottom(ccast);
2602 record_for_igvn(ccast);
2603 cast = ccast;
2604 }
2605
2606 if (cast != nullptr) { // Here's the payoff.
2607 replace_in_map(val, cast);
2608 }
2609 }
2610
2611 /**
2612 * Use speculative type to optimize CmpP node: if comparison is
2613 * against the low level class, cast the object to the speculative
2614 * type if any. CmpP should then go away.
2615 *
2616 * @param c expected CmpP node
2617 * @return result of CmpP on object casted to speculative type
2618 *
2619 */
2620 Node* Parse::optimize_cmp_with_klass(Node* c) {
2621 // If this is transformed by the _gvn to a comparison with the low
2622 // level klass then we may be able to use speculation
2623 if (c->Opcode() == Op_CmpP &&
2624 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2625 c->in(2)->is_Con()) {
2626 Node* load_klass = nullptr;
2627 Node* decode = nullptr;
2628 if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2629 decode = c->in(1);
2630 load_klass = c->in(1)->in(1);
2631 } else {
2632 load_klass = c->in(1);
2633 }
2634 if (load_klass->in(2)->is_AddP()) {
2635 Node* addp = load_klass->in(2);
2636 Node* obj = addp->in(AddPNode::Address);
2637 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2638 if (obj_type->speculative_type_not_null() != nullptr) {
2639 ciKlass* k = obj_type->speculative_type();
2640 inc_sp(2);
2641 obj = maybe_cast_profiled_obj(obj, k);
2642 dec_sp(2);
2643 if (obj->is_InlineType()) {
2644 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
2645 obj = obj->as_InlineType()->get_oop();
2646 }
2647 // Make the CmpP use the casted obj
2648 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2649 load_klass = load_klass->clone();
2650 load_klass->set_req(2, addp);
2651 load_klass = _gvn.transform(load_klass);
2652 if (decode != nullptr) {
2653 decode = decode->clone();
2654 decode->set_req(1, load_klass);
2655 load_klass = _gvn.transform(decode);
2656 }
2657 c = c->clone();
2658 c->set_req(1, load_klass);
2659 c = _gvn.transform(c);
2660 }
2661 }
2662 }
2663 return c;
2664 }
2665
2666 //------------------------------do_one_bytecode--------------------------------
2667 // Parse this bytecode, and alter the Parsers JVM->Node mapping
2668 void Parse::do_one_bytecode() {
2669 Node *a, *b, *c, *d; // Handy temps
2670 BoolTest::mask btest;
2671 int i;
2672
2673 assert(!has_exceptions(), "bytecode entry state must be clear of throws");
2674
2675 if (C->check_node_count(NodeLimitFudgeFactor * 5,
2676 "out of nodes parsing method")) {
2677 return;
2678 }
2679
2680 #ifdef ASSERT
2681 // for setting breakpoints
2682 if (TraceOptoParse) {
2683 tty->print(" @");
2684 dump_bci(bci());
2685 tty->print(" %s", Bytecodes::name(bc()));
2686 tty->cr();
2687 }
2688 #endif
2689
2690 switch (bc()) {
2691 case Bytecodes::_nop:
2692 // do nothing
2693 break;
2694 case Bytecodes::_lconst_0:
2695 push_pair(longcon(0));
2696 break;
2697
2698 case Bytecodes::_lconst_1:
2699 push_pair(longcon(1));
2700 break;
2701
2702 case Bytecodes::_fconst_0:
2703 push(zerocon(T_FLOAT));
2704 break;
2705
2706 case Bytecodes::_fconst_1:
2707 push(makecon(TypeF::ONE));
2708 break;
2709
2710 case Bytecodes::_fconst_2:
2711 push(makecon(TypeF::make(2.0f)));
2712 break;
2713
2714 case Bytecodes::_dconst_0:
2715 push_pair(zerocon(T_DOUBLE));
2716 break;
2717
2718 case Bytecodes::_dconst_1:
2719 push_pair(makecon(TypeD::ONE));
2720 break;
2721
2722 case Bytecodes::_iconst_m1:push(intcon(-1)); break;
2723 case Bytecodes::_iconst_0: push(intcon( 0)); break;
2724 case Bytecodes::_iconst_1: push(intcon( 1)); break;
2725 case Bytecodes::_iconst_2: push(intcon( 2)); break;
2726 case Bytecodes::_iconst_3: push(intcon( 3)); break;
2727 case Bytecodes::_iconst_4: push(intcon( 4)); break;
2728 case Bytecodes::_iconst_5: push(intcon( 5)); break;
2729 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break;
2730 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break;
2731 case Bytecodes::_aconst_null: push(null()); break;
2732
2733 case Bytecodes::_ldc:
2734 case Bytecodes::_ldc_w:
2735 case Bytecodes::_ldc2_w: {
2736 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded
2737 assert(!iter().is_in_error(), "ldc is in error state");
2738 ciConstant constant = iter().get_constant();
2739 assert(constant.is_loaded(), "constant is not loaded");
2740 const Type* con_type = Type::make_from_constant(constant);
2741 if (con_type != nullptr) {
2742 push_node(con_type->basic_type(), makecon(con_type));
2743 }
2744 break;
2745 }
2746
2747 case Bytecodes::_aload_0:
2748 push( local(0) );
2749 break;
2750 case Bytecodes::_aload_1:
2751 push( local(1) );
2752 break;
2753 case Bytecodes::_aload_2:
2754 push( local(2) );
2755 break;
2756 case Bytecodes::_aload_3:
2757 push( local(3) );
2758 break;
2759 case Bytecodes::_aload:
2760 push( local(iter().get_index()) );
2761 break;
2762
2763 case Bytecodes::_fload_0:
2764 case Bytecodes::_iload_0:
2765 push( local(0) );
2766 break;
2767 case Bytecodes::_fload_1:
2768 case Bytecodes::_iload_1:
2769 push( local(1) );
2770 break;
2771 case Bytecodes::_fload_2:
2772 case Bytecodes::_iload_2:
2773 push( local(2) );
2774 break;
2775 case Bytecodes::_fload_3:
2776 case Bytecodes::_iload_3:
2777 push( local(3) );
2778 break;
2779 case Bytecodes::_fload:
2780 case Bytecodes::_iload:
2781 push( local(iter().get_index()) );
2782 break;
2783 case Bytecodes::_lload_0:
2784 push_pair_local( 0 );
2785 break;
2786 case Bytecodes::_lload_1:
2787 push_pair_local( 1 );
2788 break;
2789 case Bytecodes::_lload_2:
2790 push_pair_local( 2 );
2791 break;
2792 case Bytecodes::_lload_3:
2793 push_pair_local( 3 );
2794 break;
2795 case Bytecodes::_lload:
2796 push_pair_local( iter().get_index() );
2797 break;
2798
2799 case Bytecodes::_dload_0:
2800 push_pair_local(0);
2801 break;
2802 case Bytecodes::_dload_1:
2803 push_pair_local(1);
2804 break;
2805 case Bytecodes::_dload_2:
2806 push_pair_local(2);
2807 break;
2808 case Bytecodes::_dload_3:
2809 push_pair_local(3);
2810 break;
2811 case Bytecodes::_dload:
2812 push_pair_local(iter().get_index());
2813 break;
2814 case Bytecodes::_fstore_0:
2815 case Bytecodes::_istore_0:
2816 case Bytecodes::_astore_0:
2817 set_local( 0, pop() );
2818 break;
2819 case Bytecodes::_fstore_1:
2820 case Bytecodes::_istore_1:
2821 case Bytecodes::_astore_1:
2822 set_local( 1, pop() );
2823 break;
2824 case Bytecodes::_fstore_2:
2825 case Bytecodes::_istore_2:
2826 case Bytecodes::_astore_2:
2827 set_local( 2, pop() );
2828 break;
2829 case Bytecodes::_fstore_3:
2830 case Bytecodes::_istore_3:
2831 case Bytecodes::_astore_3:
2832 set_local( 3, pop() );
2833 break;
2834 case Bytecodes::_fstore:
2835 case Bytecodes::_istore:
2836 case Bytecodes::_astore:
2837 set_local( iter().get_index(), pop() );
2838 break;
2839 // long stores
2840 case Bytecodes::_lstore_0:
2841 set_pair_local( 0, pop_pair() );
2842 break;
2843 case Bytecodes::_lstore_1:
2844 set_pair_local( 1, pop_pair() );
2845 break;
2846 case Bytecodes::_lstore_2:
2847 set_pair_local( 2, pop_pair() );
2848 break;
2849 case Bytecodes::_lstore_3:
2850 set_pair_local( 3, pop_pair() );
2851 break;
2852 case Bytecodes::_lstore:
2853 set_pair_local( iter().get_index(), pop_pair() );
2854 break;
2855
2856 // double stores
2857 case Bytecodes::_dstore_0:
2858 set_pair_local( 0, pop_pair() );
2859 break;
2860 case Bytecodes::_dstore_1:
2861 set_pair_local( 1, pop_pair() );
2862 break;
2863 case Bytecodes::_dstore_2:
2864 set_pair_local( 2, pop_pair() );
2865 break;
2866 case Bytecodes::_dstore_3:
2867 set_pair_local( 3, pop_pair() );
2868 break;
2869 case Bytecodes::_dstore:
2870 set_pair_local( iter().get_index(), pop_pair() );
2871 break;
2872
2873 case Bytecodes::_pop: dec_sp(1); break;
2874 case Bytecodes::_pop2: dec_sp(2); break;
2875 case Bytecodes::_swap:
2876 a = pop();
2877 b = pop();
2878 push(a);
2879 push(b);
2880 break;
2881 case Bytecodes::_dup:
2882 a = pop();
2883 push(a);
2884 push(a);
2885 break;
2886 case Bytecodes::_dup_x1:
2887 a = pop();
2888 b = pop();
2889 push( a );
2890 push( b );
2891 push( a );
2892 break;
2893 case Bytecodes::_dup_x2:
2894 a = pop();
2895 b = pop();
2896 c = pop();
2897 push( a );
2898 push( c );
2899 push( b );
2900 push( a );
2901 break;
2902 case Bytecodes::_dup2:
2903 a = pop();
2904 b = pop();
2905 push( b );
2906 push( a );
2907 push( b );
2908 push( a );
2909 break;
2910
2911 case Bytecodes::_dup2_x1:
2912 // before: .. c, b, a
2913 // after: .. b, a, c, b, a
2914 // not tested
2915 a = pop();
2916 b = pop();
2917 c = pop();
2918 push( b );
2919 push( a );
2920 push( c );
2921 push( b );
2922 push( a );
2923 break;
2924 case Bytecodes::_dup2_x2:
2925 // before: .. d, c, b, a
2926 // after: .. b, a, d, c, b, a
2927 // not tested
2928 a = pop();
2929 b = pop();
2930 c = pop();
2931 d = pop();
2932 push( b );
2933 push( a );
2934 push( d );
2935 push( c );
2936 push( b );
2937 push( a );
2938 break;
2939
2940 case Bytecodes::_arraylength: {
2941 // Must do null-check with value on expression stack
2942 Node *ary = null_check(peek(), T_ARRAY);
2943 // Compile-time detect of null-exception?
2944 if (stopped()) return;
2945 a = pop();
2946 push(load_array_length(a));
2947 break;
2948 }
2949
2950 case Bytecodes::_baload: array_load(T_BYTE); break;
2951 case Bytecodes::_caload: array_load(T_CHAR); break;
2952 case Bytecodes::_iaload: array_load(T_INT); break;
2953 case Bytecodes::_saload: array_load(T_SHORT); break;
2954 case Bytecodes::_faload: array_load(T_FLOAT); break;
2955 case Bytecodes::_aaload: array_load(T_OBJECT); break;
2956 case Bytecodes::_laload: array_load(T_LONG); break;
2957 case Bytecodes::_daload: array_load(T_DOUBLE); break;
2958 case Bytecodes::_bastore: array_store(T_BYTE); break;
2959 case Bytecodes::_castore: array_store(T_CHAR); break;
2960 case Bytecodes::_iastore: array_store(T_INT); break;
2961 case Bytecodes::_sastore: array_store(T_SHORT); break;
2962 case Bytecodes::_fastore: array_store(T_FLOAT); break;
2963 case Bytecodes::_aastore: array_store(T_OBJECT); break;
2964 case Bytecodes::_lastore: array_store(T_LONG); break;
2965 case Bytecodes::_dastore: array_store(T_DOUBLE); break;
2966
2967 case Bytecodes::_getfield:
2968 do_getfield();
2969 break;
2970
2971 case Bytecodes::_getstatic:
2972 do_getstatic();
2973 break;
2974
2975 case Bytecodes::_putfield:
2976 do_putfield();
2977 break;
2978
2979 case Bytecodes::_putstatic:
2980 do_putstatic();
2981 break;
2982
2983 case Bytecodes::_irem:
2984 // Must keep both values on the expression-stack during null-check
2985 zero_check_int(peek());
2986 // Compile-time detect of null-exception?
2987 if (stopped()) return;
2988 b = pop();
2989 a = pop();
2990 push(_gvn.transform(new ModINode(control(), a, b)));
2991 break;
2992 case Bytecodes::_idiv:
2993 // Must keep both values on the expression-stack during null-check
2994 zero_check_int(peek());
2995 // Compile-time detect of null-exception?
2996 if (stopped()) return;
2997 b = pop();
2998 a = pop();
2999 push( _gvn.transform( new DivINode(control(),a,b) ) );
3000 break;
3001 case Bytecodes::_imul:
3002 b = pop(); a = pop();
3003 push( _gvn.transform( new MulINode(a,b) ) );
3004 break;
3005 case Bytecodes::_iadd:
3006 b = pop(); a = pop();
3007 push( _gvn.transform( new AddINode(a,b) ) );
3008 break;
3009 case Bytecodes::_ineg:
3010 a = pop();
3011 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
3012 break;
3013 case Bytecodes::_isub:
3014 b = pop(); a = pop();
3015 push( _gvn.transform( new SubINode(a,b) ) );
3016 break;
3017 case Bytecodes::_iand:
3018 b = pop(); a = pop();
3019 push( _gvn.transform( new AndINode(a,b) ) );
3020 break;
3021 case Bytecodes::_ior:
3022 b = pop(); a = pop();
3023 push( _gvn.transform( new OrINode(a,b) ) );
3024 break;
3025 case Bytecodes::_ixor:
3026 b = pop(); a = pop();
3027 push( _gvn.transform( new XorINode(a,b) ) );
3028 break;
3029 case Bytecodes::_ishl:
3030 b = pop(); a = pop();
3031 push( _gvn.transform( new LShiftINode(a,b) ) );
3032 break;
3033 case Bytecodes::_ishr:
3034 b = pop(); a = pop();
3035 push( _gvn.transform( new RShiftINode(a,b) ) );
3036 break;
3037 case Bytecodes::_iushr:
3038 b = pop(); a = pop();
3039 push( _gvn.transform( new URShiftINode(a,b) ) );
3040 break;
3041
3042 case Bytecodes::_fneg:
3043 a = pop();
3044 b = _gvn.transform(new NegFNode (a));
3045 push(b);
3046 break;
3047
3048 case Bytecodes::_fsub:
3049 b = pop();
3050 a = pop();
3051 c = _gvn.transform( new SubFNode(a,b) );
3052 push(c);
3053 break;
3054
3055 case Bytecodes::_fadd:
3056 b = pop();
3057 a = pop();
3058 c = _gvn.transform( new AddFNode(a,b) );
3059 push(c);
3060 break;
3061
3062 case Bytecodes::_fmul:
3063 b = pop();
3064 a = pop();
3065 c = _gvn.transform( new MulFNode(a,b) );
3066 push(c);
3067 break;
3068
3069 case Bytecodes::_fdiv:
3070 b = pop();
3071 a = pop();
3072 c = _gvn.transform( new DivFNode(nullptr,a,b) );
3073 push(c);
3074 break;
3075
3076 case Bytecodes::_frem:
3077 // Generate a ModF node.
3078 b = pop();
3079 a = pop();
3080 push(floating_point_mod(a, b, BasicType::T_FLOAT));
3081 break;
3082
3083 case Bytecodes::_fcmpl:
3084 b = pop();
3085 a = pop();
3086 c = _gvn.transform( new CmpF3Node( a, b));
3087 push(c);
3088 break;
3089 case Bytecodes::_fcmpg:
3090 b = pop();
3091 a = pop();
3092
3093 // Same as fcmpl but need to flip the unordered case. Swap the inputs,
3094 // which negates the result sign except for unordered. Flip the unordered
3095 // as well by using CmpF3 which implements unordered-lesser instead of
3096 // unordered-greater semantics. Finally, commute the result bits. Result
3097 // is same as using a CmpF3Greater except we did it with CmpF3 alone.
3098 c = _gvn.transform( new CmpF3Node( b, a));
3099 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
3100 push(c);
3101 break;
3102
3103 case Bytecodes::_f2i:
3104 a = pop();
3105 push(_gvn.transform(new ConvF2INode(a)));
3106 break;
3107
3108 case Bytecodes::_d2i:
3109 a = pop_pair();
3110 b = _gvn.transform(new ConvD2INode(a));
3111 push( b );
3112 break;
3113
3114 case Bytecodes::_f2d:
3115 a = pop();
3116 b = _gvn.transform( new ConvF2DNode(a));
3117 push_pair( b );
3118 break;
3119
3120 case Bytecodes::_d2f:
3121 a = pop_pair();
3122 b = _gvn.transform( new ConvD2FNode(a));
3123 push( b );
3124 break;
3125
3126 case Bytecodes::_l2f:
3127 if (Matcher::convL2FSupported()) {
3128 a = pop_pair();
3129 b = _gvn.transform( new ConvL2FNode(a));
3130 push(b);
3131 } else {
3132 l2f();
3133 }
3134 break;
3135
3136 case Bytecodes::_l2d:
3137 a = pop_pair();
3138 b = _gvn.transform( new ConvL2DNode(a));
3139 push_pair(b);
3140 break;
3141
3142 case Bytecodes::_f2l:
3143 a = pop();
3144 b = _gvn.transform( new ConvF2LNode(a));
3145 push_pair(b);
3146 break;
3147
3148 case Bytecodes::_d2l:
3149 a = pop_pair();
3150 b = _gvn.transform( new ConvD2LNode(a));
3151 push_pair(b);
3152 break;
3153
3154 case Bytecodes::_dsub:
3155 b = pop_pair();
3156 a = pop_pair();
3157 c = _gvn.transform( new SubDNode(a,b) );
3158 push_pair(c);
3159 break;
3160
3161 case Bytecodes::_dadd:
3162 b = pop_pair();
3163 a = pop_pair();
3164 c = _gvn.transform( new AddDNode(a,b) );
3165 push_pair(c);
3166 break;
3167
3168 case Bytecodes::_dmul:
3169 b = pop_pair();
3170 a = pop_pair();
3171 c = _gvn.transform( new MulDNode(a,b) );
3172 push_pair(c);
3173 break;
3174
3175 case Bytecodes::_ddiv:
3176 b = pop_pair();
3177 a = pop_pair();
3178 c = _gvn.transform( new DivDNode(nullptr,a,b) );
3179 push_pair(c);
3180 break;
3181
3182 case Bytecodes::_dneg:
3183 a = pop_pair();
3184 b = _gvn.transform(new NegDNode (a));
3185 push_pair(b);
3186 break;
3187
3188 case Bytecodes::_drem:
3189 // Generate a ModD node.
3190 b = pop_pair();
3191 a = pop_pair();
3192 push_pair(floating_point_mod(a, b, BasicType::T_DOUBLE));
3193 break;
3194
3195 case Bytecodes::_dcmpl:
3196 b = pop_pair();
3197 a = pop_pair();
3198 c = _gvn.transform( new CmpD3Node( a, b));
3199 push(c);
3200 break;
3201
3202 case Bytecodes::_dcmpg:
3203 b = pop_pair();
3204 a = pop_pair();
3205 // Same as dcmpl but need to flip the unordered case.
3206 // Commute the inputs, which negates the result sign except for unordered.
3207 // Flip the unordered as well by using CmpD3 which implements
3208 // unordered-lesser instead of unordered-greater semantics.
3209 // Finally, negate the result bits. Result is same as using a
3210 // CmpD3Greater except we did it with CmpD3 alone.
3211 c = _gvn.transform( new CmpD3Node( b, a));
3212 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
3213 push(c);
3214 break;
3215
3216
3217 // Note for longs -> lo word is on TOS, hi word is on TOS - 1
3218 case Bytecodes::_land:
3219 b = pop_pair();
3220 a = pop_pair();
3221 c = _gvn.transform( new AndLNode(a,b) );
3222 push_pair(c);
3223 break;
3224 case Bytecodes::_lor:
3225 b = pop_pair();
3226 a = pop_pair();
3227 c = _gvn.transform( new OrLNode(a,b) );
3228 push_pair(c);
3229 break;
3230 case Bytecodes::_lxor:
3231 b = pop_pair();
3232 a = pop_pair();
3233 c = _gvn.transform( new XorLNode(a,b) );
3234 push_pair(c);
3235 break;
3236
3237 case Bytecodes::_lshl:
3238 b = pop(); // the shift count
3239 a = pop_pair(); // value to be shifted
3240 c = _gvn.transform( new LShiftLNode(a,b) );
3241 push_pair(c);
3242 break;
3243 case Bytecodes::_lshr:
3244 b = pop(); // the shift count
3245 a = pop_pair(); // value to be shifted
3246 c = _gvn.transform( new RShiftLNode(a,b) );
3247 push_pair(c);
3248 break;
3249 case Bytecodes::_lushr:
3250 b = pop(); // the shift count
3251 a = pop_pair(); // value to be shifted
3252 c = _gvn.transform( new URShiftLNode(a,b) );
3253 push_pair(c);
3254 break;
3255 case Bytecodes::_lmul:
3256 b = pop_pair();
3257 a = pop_pair();
3258 c = _gvn.transform( new MulLNode(a,b) );
3259 push_pair(c);
3260 break;
3261
3262 case Bytecodes::_lrem:
3263 // Must keep both values on the expression-stack during null-check
3264 assert(peek(0) == top(), "long word order");
3265 zero_check_long(peek(1));
3266 // Compile-time detect of null-exception?
3267 if (stopped()) return;
3268 b = pop_pair();
3269 a = pop_pair();
3270 c = _gvn.transform( new ModLNode(control(),a,b) );
3271 push_pair(c);
3272 break;
3273
3274 case Bytecodes::_ldiv:
3275 // Must keep both values on the expression-stack during null-check
3276 assert(peek(0) == top(), "long word order");
3277 zero_check_long(peek(1));
3278 // Compile-time detect of null-exception?
3279 if (stopped()) return;
3280 b = pop_pair();
3281 a = pop_pair();
3282 c = _gvn.transform( new DivLNode(control(),a,b) );
3283 push_pair(c);
3284 break;
3285
3286 case Bytecodes::_ladd:
3287 b = pop_pair();
3288 a = pop_pair();
3289 c = _gvn.transform( new AddLNode(a,b) );
3290 push_pair(c);
3291 break;
3292 case Bytecodes::_lsub:
3293 b = pop_pair();
3294 a = pop_pair();
3295 c = _gvn.transform( new SubLNode(a,b) );
3296 push_pair(c);
3297 break;
3298 case Bytecodes::_lcmp:
3299 // Safepoints are now inserted _before_ branches. The long-compare
3300 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
3301 // slew of control flow. These are usually followed by a CmpI vs zero and
3302 // a branch; this pattern then optimizes to the obvious long-compare and
3303 // branch. However, if the branch is backwards there's a Safepoint
3304 // inserted. The inserted Safepoint captures the JVM state at the
3305 // pre-branch point, i.e. it captures the 3-way value. Thus if a
3306 // long-compare is used to control a loop the debug info will force
3307 // computation of the 3-way value, even though the generated code uses a
3308 // long-compare and branch. We try to rectify the situation by inserting
3309 // a SafePoint here and have it dominate and kill the safepoint added at a
3310 // following backwards branch. At this point the JVM state merely holds 2
3311 // longs but not the 3-way value.
3312 switch (iter().next_bc()) {
3313 case Bytecodes::_ifgt:
3314 case Bytecodes::_iflt:
3315 case Bytecodes::_ifge:
3316 case Bytecodes::_ifle:
3317 case Bytecodes::_ifne:
3318 case Bytecodes::_ifeq:
3319 // If this is a backwards branch in the bytecodes, add Safepoint
3320 maybe_add_safepoint(iter().next_get_dest());
3321 default:
3322 break;
3323 }
3324 b = pop_pair();
3325 a = pop_pair();
3326 c = _gvn.transform( new CmpL3Node( a, b ));
3327 push(c);
3328 break;
3329
3330 case Bytecodes::_lneg:
3331 a = pop_pair();
3332 b = _gvn.transform( new SubLNode(longcon(0),a));
3333 push_pair(b);
3334 break;
3335 case Bytecodes::_l2i:
3336 a = pop_pair();
3337 push( _gvn.transform( new ConvL2INode(a)));
3338 break;
3339 case Bytecodes::_i2l:
3340 a = pop();
3341 b = _gvn.transform( new ConvI2LNode(a));
3342 push_pair(b);
3343 break;
3344 case Bytecodes::_i2b:
3345 // Sign extend
3346 a = pop();
3347 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true);
3348 push(a);
3349 break;
3350 case Bytecodes::_i2s:
3351 a = pop();
3352 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true);
3353 push(a);
3354 break;
3355 case Bytecodes::_i2c:
3356 a = pop();
3357 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true);
3358 push(a);
3359 break;
3360
3361 case Bytecodes::_i2f:
3362 a = pop();
3363 b = _gvn.transform( new ConvI2FNode(a) ) ;
3364 push(b);
3365 break;
3366
3367 case Bytecodes::_i2d:
3368 a = pop();
3369 b = _gvn.transform( new ConvI2DNode(a));
3370 push_pair(b);
3371 break;
3372
3373 case Bytecodes::_iinc: // Increment local
3374 i = iter().get_index(); // Get local index
3375 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
3376 break;
3377
3378 // Exit points of synchronized methods must have an unlock node
3379 case Bytecodes::_return:
3380 return_current(nullptr);
3381 break;
3382
3383 case Bytecodes::_ireturn:
3384 case Bytecodes::_areturn:
3385 case Bytecodes::_freturn:
3386 return_current(cast_to_non_larval(pop()));
3387 break;
3388 case Bytecodes::_lreturn:
3389 case Bytecodes::_dreturn:
3390 return_current(pop_pair());
3391 break;
3392
3393 case Bytecodes::_athrow:
3394 // null exception oop throws null pointer exception
3395 null_check(peek());
3396 if (stopped()) return;
3397 // Hook the thrown exception directly to subsequent handlers.
3398 if (BailoutToInterpreterForThrows) {
3399 // Keep method interpreted from now on.
3400 uncommon_trap(Deoptimization::Reason_unhandled,
3401 Deoptimization::Action_make_not_compilable);
3402 return;
3403 }
3404 if (env()->jvmti_can_post_on_exceptions()) {
3405 // check if we must post exception events, take uncommon trap if so (with must_throw = false)
3406 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
3407 }
3408 // Here if either can_post_on_exceptions or should_post_on_exceptions is false
3409 add_exception_state(make_exception_state(peek()));
3410 break;
3411
3412 case Bytecodes::_goto: // fall through
3413 case Bytecodes::_goto_w: {
3414 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
3415
3416 // If this is a backwards branch in the bytecodes, add Safepoint
3417 maybe_add_safepoint(target_bci);
3418
3419 // Merge the current control into the target basic block
3420 merge(target_bci);
3421
3422 // See if we can get some profile data and hand it off to the next block
3423 Block *target_block = block()->successor_for_bci(target_bci);
3424 if (target_block->pred_count() != 1) break;
3425 ciMethodData* methodData = method()->method_data();
3426 if (!methodData->is_mature()) break;
3427 ciProfileData* data = methodData->bci_to_data(bci());
3428 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
3429 int taken = ((ciJumpData*)data)->taken();
3430 taken = method()->scale_count(taken);
3431 target_block->set_count(taken);
3432 break;
3433 }
3434
3435 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
3436 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3437 handle_if_null:
3438 // If this is a backwards branch in the bytecodes, add Safepoint
3439 maybe_add_safepoint(iter().get_dest());
3440 a = null();
3441 b = cast_to_non_larval(pop());
3442 if (b->is_InlineType()) {
3443 // Null checking a scalarized but nullable inline type. Check the null marker
3444 // input instead of the oop input to avoid keeping buffer allocations alive
3445 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_null_marker(), zerocon(T_INT)));
3446 } else {
3447 if (!_gvn.type(b)->speculative_maybe_null() &&
3448 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3449 inc_sp(1);
3450 Node* null_ctl = top();
3451 b = null_check_oop(b, &null_ctl, true, true, true);
3452 assert(null_ctl->is_top(), "no null control here");
3453 dec_sp(1);
3454 } else if (_gvn.type(b)->speculative_always_null() &&
3455 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3456 inc_sp(1);
3457 b = null_assert(b);
3458 dec_sp(1);
3459 }
3460 c = _gvn.transform( new CmpPNode(b, a) );
3461 }
3462 do_ifnull(btest, c);
3463 break;
3464
3465 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3466 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3467 handle_if_acmp:
3468 // If this is a backwards branch in the bytecodes, add Safepoint
3469 maybe_add_safepoint(iter().get_dest());
3470 a = cast_to_non_larval(pop());
3471 b = cast_to_non_larval(pop());
3472 do_acmp(btest, b, a);
3473 break;
3474
3475 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3476 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3477 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3478 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3479 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3480 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3481 handle_ifxx:
3482 // If this is a backwards branch in the bytecodes, add Safepoint
3483 maybe_add_safepoint(iter().get_dest());
3484 a = _gvn.intcon(0);
3485 b = pop();
3486 c = _gvn.transform( new CmpINode(b, a) );
3487 do_if(btest, c);
3488 break;
3489
3490 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3491 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3492 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
3493 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
3494 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
3495 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
3496 handle_if_icmp:
3497 // If this is a backwards branch in the bytecodes, add Safepoint
3498 maybe_add_safepoint(iter().get_dest());
3499 a = pop();
3500 b = pop();
3501 c = _gvn.transform( new CmpINode( b, a ) );
3502 do_if(btest, c);
3503 break;
3504
3505 case Bytecodes::_tableswitch:
3506 do_tableswitch();
3507 break;
3508
3509 case Bytecodes::_lookupswitch:
3510 do_lookupswitch();
3511 break;
3512
3513 case Bytecodes::_invokestatic:
3514 case Bytecodes::_invokedynamic:
3515 case Bytecodes::_invokespecial:
3516 case Bytecodes::_invokevirtual:
3517 case Bytecodes::_invokeinterface:
3518 do_call();
3519 break;
3520 case Bytecodes::_checkcast:
3521 do_checkcast();
3522 break;
3523 case Bytecodes::_instanceof:
3524 do_instanceof();
3525 break;
3526 case Bytecodes::_anewarray:
3527 do_newarray();
3528 break;
3529 case Bytecodes::_newarray:
3530 do_newarray((BasicType)iter().get_index());
3531 break;
3532 case Bytecodes::_multianewarray:
3533 do_multianewarray();
3534 break;
3535 case Bytecodes::_new:
3536 do_new();
3537 break;
3538
3539 case Bytecodes::_jsr:
3540 case Bytecodes::_jsr_w:
3541 do_jsr();
3542 break;
3543
3544 case Bytecodes::_ret:
3545 do_ret();
3546 break;
3547
3548
3549 case Bytecodes::_monitorenter:
3550 do_monitor_enter();
3551 break;
3552
3553 case Bytecodes::_monitorexit:
3554 do_monitor_exit();
3555 break;
3556
3557 case Bytecodes::_breakpoint:
3558 // Breakpoint set concurrently to compile
3559 // %%% use an uncommon trap?
3560 C->record_failure("breakpoint in method");
3561 return;
3562
3563 default:
3564 #ifndef PRODUCT
3565 map()->dump(99);
3566 #endif
3567 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
3568 ShouldNotReachHere();
3569 }
3570
3571 #ifndef PRODUCT
3572 if (failing()) { return; }
3573 constexpr int perBytecode = 6;
3574 if (C->should_print_igv(perBytecode)) {
3575 IdealGraphPrinter* printer = C->igv_printer();
3576 char buffer[256];
3577 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s, map: %d", bci(), Bytecodes::name(bc()), map() == nullptr ? -1 : map()->_idx);
3578 bool old = printer->traverse_outs();
3579 printer->set_traverse_outs(true);
3580 printer->print_graph(buffer);
3581 printer->set_traverse_outs(old);
3582 }
3583 #endif
3584 }