1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm_io.h" 27 #include "ci/ciMethodData.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "interpreter/linkResolver.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/divnode.hpp" 38 #include "opto/idealGraphPrinter.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/memnode.hpp" 41 #include "opto/mulnode.hpp" 42 #include "opto/opaquenode.hpp" 43 #include "opto/parse.hpp" 44 #include "opto/runtime.hpp" 45 #include "runtime/deoptimization.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 48 #ifndef PRODUCT 49 extern int explicit_null_checks_inserted, 50 explicit_null_checks_elided; 51 #endif 52 53 //---------------------------------array_load---------------------------------- 54 void Parse::array_load(BasicType bt) { 55 const Type* elemtype = Type::TOP; 56 bool big_val = bt == T_DOUBLE || bt == T_LONG; 57 Node* adr = array_addressing(bt, 0, elemtype); 58 if (stopped()) return; // guaranteed null or range check 59 60 pop(); // index (already used) 61 Node* array = pop(); // the array itself 62 63 if (elemtype == TypeInt::BOOL) { 64 bt = T_BOOLEAN; 65 } 66 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 67 68 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 69 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 70 if (big_val) { 71 push_pair(ld); 72 } else { 73 push(ld); 74 } 75 } 76 77 78 //--------------------------------array_store---------------------------------- 79 void Parse::array_store(BasicType bt) { 80 const Type* elemtype = Type::TOP; 81 bool big_val = bt == T_DOUBLE || bt == T_LONG; 82 Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype); 83 if (stopped()) return; // guaranteed null or range check 84 if (bt == T_OBJECT) { 85 array_store_check(); 86 if (stopped()) { 87 return; 88 } 89 } 90 Node* val; // Oop to store 91 if (big_val) { 92 val = pop_pair(); 93 } else { 94 val = pop(); 95 } 96 pop(); // index (already used) 97 Node* array = pop(); // the array itself 98 99 if (elemtype == TypeInt::BOOL) { 100 bt = T_BOOLEAN; 101 } 102 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 103 104 access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 105 } 106 107 108 //------------------------------array_addressing------------------------------- 109 // Pull array and index from the stack. Compute pointer-to-element. 110 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 111 Node *idx = peek(0+vals); // Get from stack without popping 112 Node *ary = peek(1+vals); // in case of exception 113 114 // Null check the array base, with correct stack contents 115 ary = null_check(ary, T_ARRAY); 116 // Compile-time detect of null-exception? 117 if (stopped()) return top(); 118 119 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 120 const TypeInt* sizetype = arytype->size(); 121 elemtype = arytype->elem(); 122 123 if (UseUniqueSubclasses) { 124 const Type* el = elemtype->make_ptr(); 125 if (el && el->isa_instptr()) { 126 const TypeInstPtr* toop = el->is_instptr(); 127 if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) { 128 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 129 const Type* subklass = Type::get_const_type(toop->klass()); 130 elemtype = subklass->join_speculative(el); 131 } 132 } 133 } 134 135 // Check for big class initializers with all constant offsets 136 // feeding into a known-size array. 137 const TypeInt* idxtype = _gvn.type(idx)->is_int(); 138 // See if the highest idx value is less than the lowest array bound, 139 // and if the idx value cannot be negative: 140 bool need_range_check = true; 141 if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) { 142 need_range_check = false; 143 if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'"); 144 } 145 146 ciKlass * arytype_klass = arytype->klass(); 147 if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) { 148 // Only fails for some -Xcomp runs 149 // The class is unloaded. We have to run this bytecode in the interpreter. 150 uncommon_trap(Deoptimization::Reason_unloaded, 151 Deoptimization::Action_reinterpret, 152 arytype->klass(), "!loaded array"); 153 return top(); 154 } 155 156 // Do the range check 157 if (GenerateRangeChecks && need_range_check) { 158 Node* tst; 159 if (sizetype->_hi <= 0) { 160 // The greatest array bound is negative, so we can conclude that we're 161 // compiling unreachable code, but the unsigned compare trick used below 162 // only works with non-negative lengths. Instead, hack "tst" to be zero so 163 // the uncommon_trap path will always be taken. 164 tst = _gvn.intcon(0); 165 } else { 166 // Range is constant in array-oop, so we can use the original state of mem 167 Node* len = load_array_length(ary); 168 169 // Test length vs index (standard trick using unsigned compare) 170 Node* chk = _gvn.transform( new CmpUNode(idx, len) ); 171 BoolTest::mask btest = BoolTest::lt; 172 tst = _gvn.transform( new BoolNode(chk, btest) ); 173 } 174 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 175 _gvn.set_type(rc, rc->Value(&_gvn)); 176 if (!tst->is_Con()) { 177 record_for_igvn(rc); 178 } 179 set_control(_gvn.transform(new IfTrueNode(rc))); 180 // Branch to failure if out of bounds 181 { 182 PreserveJVMState pjvms(this); 183 set_control(_gvn.transform(new IfFalseNode(rc))); 184 if (C->allow_range_check_smearing()) { 185 // Do not use builtin_throw, since range checks are sometimes 186 // made more stringent by an optimistic transformation. 187 // This creates "tentative" range checks at this point, 188 // which are not guaranteed to throw exceptions. 189 // See IfNode::Ideal, is_range_check, adjust_check. 190 uncommon_trap(Deoptimization::Reason_range_check, 191 Deoptimization::Action_make_not_entrant, 192 NULL, "range_check"); 193 } else { 194 // If we have already recompiled with the range-check-widening 195 // heroic optimization turned off, then we must really be throwing 196 // range check exceptions. 197 builtin_throw(Deoptimization::Reason_range_check, idx); 198 } 199 } 200 } 201 // Check for always knowing you are throwing a range-check exception 202 if (stopped()) return top(); 203 204 // Make array address computation control dependent to prevent it 205 // from floating above the range check during loop optimizations. 206 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 207 assert(ptr != top(), "top should go hand-in-hand with stopped"); 208 209 return ptr; 210 } 211 212 213 // returns IfNode 214 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 215 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 216 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 217 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 218 return iff; 219 } 220 221 222 // sentinel value for the target bci to mark never taken branches 223 // (according to profiling) 224 static const int never_reached = INT_MAX; 225 226 //------------------------------helper for tableswitch------------------------- 227 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 228 // True branch, use existing map info 229 { PreserveJVMState pjvms(this); 230 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 231 set_control( iftrue ); 232 if (unc) { 233 repush_if_args(); 234 uncommon_trap(Deoptimization::Reason_unstable_if, 235 Deoptimization::Action_reinterpret, 236 NULL, 237 "taken always"); 238 } else { 239 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 240 merge_new_path(dest_bci_if_true); 241 } 242 } 243 244 // False branch 245 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 246 set_control( iffalse ); 247 } 248 249 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 250 // True branch, use existing map info 251 { PreserveJVMState pjvms(this); 252 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 253 set_control( iffalse ); 254 if (unc) { 255 repush_if_args(); 256 uncommon_trap(Deoptimization::Reason_unstable_if, 257 Deoptimization::Action_reinterpret, 258 NULL, 259 "taken never"); 260 } else { 261 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 262 merge_new_path(dest_bci_if_true); 263 } 264 } 265 266 // False branch 267 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 268 set_control( iftrue ); 269 } 270 271 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 272 // False branch, use existing map and control() 273 if (unc) { 274 repush_if_args(); 275 uncommon_trap(Deoptimization::Reason_unstable_if, 276 Deoptimization::Action_reinterpret, 277 NULL, 278 "taken never"); 279 } else { 280 assert(dest_bci != never_reached, "inconsistent dest"); 281 merge_new_path(dest_bci); 282 } 283 } 284 285 286 extern "C" { 287 static int jint_cmp(const void *i, const void *j) { 288 int a = *(jint *)i; 289 int b = *(jint *)j; 290 return a > b ? 1 : a < b ? -1 : 0; 291 } 292 } 293 294 295 class SwitchRange : public StackObj { 296 // a range of integers coupled with a bci destination 297 jint _lo; // inclusive lower limit 298 jint _hi; // inclusive upper limit 299 int _dest; 300 float _cnt; // how many times this range was hit according to profiling 301 302 public: 303 jint lo() const { return _lo; } 304 jint hi() const { return _hi; } 305 int dest() const { return _dest; } 306 bool is_singleton() const { return _lo == _hi; } 307 float cnt() const { return _cnt; } 308 309 void setRange(jint lo, jint hi, int dest, float cnt) { 310 assert(lo <= hi, "must be a non-empty range"); 311 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 312 assert(_cnt >= 0, ""); 313 } 314 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 315 assert(lo <= hi, "must be a non-empty range"); 316 if (lo == _hi+1) { 317 // see merge_ranges() comment below 318 if (trim_ranges) { 319 if (cnt == 0) { 320 if (_cnt != 0) { 321 return false; 322 } 323 if (dest != _dest) { 324 _dest = never_reached; 325 } 326 } else { 327 if (_cnt == 0) { 328 return false; 329 } 330 if (dest != _dest) { 331 return false; 332 } 333 } 334 } else { 335 if (dest != _dest) { 336 return false; 337 } 338 } 339 _hi = hi; 340 _cnt += cnt; 341 return true; 342 } 343 return false; 344 } 345 346 void set (jint value, int dest, float cnt) { 347 setRange(value, value, dest, cnt); 348 } 349 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 350 return adjoinRange(value, value, dest, cnt, trim_ranges); 351 } 352 bool adjoin(SwitchRange& other) { 353 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 354 } 355 356 void print() { 357 if (is_singleton()) 358 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 359 else if (lo() == min_jint) 360 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 361 else if (hi() == max_jint) 362 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 363 else 364 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 365 } 366 }; 367 368 // We try to minimize the number of ranges and the size of the taken 369 // ones using profiling data. When ranges are created, 370 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 371 // if both were never hit or both were hit to build longer unreached 372 // ranges. Here, we now merge adjoining ranges with the same 373 // destination and finally set destination of unreached ranges to the 374 // special value never_reached because it can help minimize the number 375 // of tests that are necessary. 376 // 377 // For instance: 378 // [0, 1] to target1 sometimes taken 379 // [1, 2] to target1 never taken 380 // [2, 3] to target2 never taken 381 // would lead to: 382 // [0, 1] to target1 sometimes taken 383 // [1, 3] never taken 384 // 385 // (first 2 ranges to target1 are not merged) 386 static void merge_ranges(SwitchRange* ranges, int& rp) { 387 if (rp == 0) { 388 return; 389 } 390 int shift = 0; 391 for (int j = 0; j < rp; j++) { 392 SwitchRange& r1 = ranges[j-shift]; 393 SwitchRange& r2 = ranges[j+1]; 394 if (r1.adjoin(r2)) { 395 shift++; 396 } else if (shift > 0) { 397 ranges[j+1-shift] = r2; 398 } 399 } 400 rp -= shift; 401 for (int j = 0; j <= rp; j++) { 402 SwitchRange& r = ranges[j]; 403 if (r.cnt() == 0 && r.dest() != never_reached) { 404 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 405 } 406 } 407 } 408 409 //-------------------------------do_tableswitch-------------------------------- 410 void Parse::do_tableswitch() { 411 // Get information about tableswitch 412 int default_dest = iter().get_dest_table(0); 413 jint lo_index = iter().get_int_table(1); 414 jint hi_index = iter().get_int_table(2); 415 int len = hi_index - lo_index + 1; 416 417 if (len < 1) { 418 // If this is a backward branch, add safepoint 419 maybe_add_safepoint(default_dest); 420 pop(); // the effect of the instruction execution on the operand stack 421 merge(default_dest); 422 return; 423 } 424 425 ciMethodData* methodData = method()->method_data(); 426 ciMultiBranchData* profile = NULL; 427 if (methodData->is_mature() && UseSwitchProfiling) { 428 ciProfileData* data = methodData->bci_to_data(bci()); 429 if (data != NULL && data->is_MultiBranchData()) { 430 profile = (ciMultiBranchData*)data; 431 } 432 } 433 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 434 435 // generate decision tree, using trichotomy when possible 436 int rnum = len+2; 437 bool makes_backward_branch = false; 438 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 439 int rp = -1; 440 if (lo_index != min_jint) { 441 float cnt = 1.0F; 442 if (profile != NULL) { 443 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 444 } 445 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 446 } 447 for (int j = 0; j < len; j++) { 448 jint match_int = lo_index+j; 449 int dest = iter().get_dest_table(j+3); 450 makes_backward_branch |= (dest <= bci()); 451 float cnt = 1.0F; 452 if (profile != NULL) { 453 cnt = (float)profile->count_at(j); 454 } 455 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 456 ranges[++rp].set(match_int, dest, cnt); 457 } 458 } 459 jint highest = lo_index+(len-1); 460 assert(ranges[rp].hi() == highest, ""); 461 if (highest != max_jint) { 462 float cnt = 1.0F; 463 if (profile != NULL) { 464 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 465 } 466 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 467 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 468 } 469 } 470 assert(rp < len+2, "not too many ranges"); 471 472 if (trim_ranges) { 473 merge_ranges(ranges, rp); 474 } 475 476 // Safepoint in case if backward branch observed 477 if (makes_backward_branch) { 478 add_safepoint(); 479 } 480 481 Node* lookup = pop(); // lookup value 482 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 483 } 484 485 486 //------------------------------do_lookupswitch-------------------------------- 487 void Parse::do_lookupswitch() { 488 // Get information about lookupswitch 489 int default_dest = iter().get_dest_table(0); 490 jint len = iter().get_int_table(1); 491 492 if (len < 1) { // If this is a backward branch, add safepoint 493 maybe_add_safepoint(default_dest); 494 pop(); // the effect of the instruction execution on the operand stack 495 merge(default_dest); 496 return; 497 } 498 499 ciMethodData* methodData = method()->method_data(); 500 ciMultiBranchData* profile = NULL; 501 if (methodData->is_mature() && UseSwitchProfiling) { 502 ciProfileData* data = methodData->bci_to_data(bci()); 503 if (data != NULL && data->is_MultiBranchData()) { 504 profile = (ciMultiBranchData*)data; 505 } 506 } 507 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 508 509 // generate decision tree, using trichotomy when possible 510 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 511 { 512 for (int j = 0; j < len; j++) { 513 table[3*j+0] = iter().get_int_table(2+2*j); 514 table[3*j+1] = iter().get_dest_table(2+2*j+1); 515 // Handle overflow when converting from uint to jint 516 table[3*j+2] = (profile == NULL) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 517 } 518 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 519 } 520 521 float default_cnt = 1.0F; 522 if (profile != NULL) { 523 juint defaults = max_juint - len; 524 default_cnt = (float)profile->default_count()/(float)defaults; 525 } 526 527 int rnum = len*2+1; 528 bool makes_backward_branch = false; 529 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 530 int rp = -1; 531 for (int j = 0; j < len; j++) { 532 jint match_int = table[3*j+0]; 533 jint dest = table[3*j+1]; 534 jint cnt = table[3*j+2]; 535 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 536 makes_backward_branch |= (dest <= bci()); 537 float c = default_cnt * ((float)match_int - (float)next_lo); 538 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 539 assert(default_dest != never_reached, "sentinel value for dead destinations"); 540 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 541 } 542 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 543 assert(dest != never_reached, "sentinel value for dead destinations"); 544 ranges[++rp].set(match_int, dest, (float)cnt); 545 } 546 } 547 jint highest = table[3*(len-1)]; 548 assert(ranges[rp].hi() == highest, ""); 549 if (highest != max_jint && 550 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 551 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 552 } 553 assert(rp < rnum, "not too many ranges"); 554 555 if (trim_ranges) { 556 merge_ranges(ranges, rp); 557 } 558 559 // Safepoint in case backward branch observed 560 if (makes_backward_branch) { 561 add_safepoint(); 562 } 563 564 Node *lookup = pop(); // lookup value 565 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 566 } 567 568 static float if_prob(float taken_cnt, float total_cnt) { 569 assert(taken_cnt <= total_cnt, ""); 570 if (total_cnt == 0) { 571 return PROB_FAIR; 572 } 573 float p = taken_cnt / total_cnt; 574 return clamp(p, PROB_MIN, PROB_MAX); 575 } 576 577 static float if_cnt(float cnt) { 578 if (cnt == 0) { 579 return COUNT_UNKNOWN; 580 } 581 return cnt; 582 } 583 584 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 585 float total_cnt = 0; 586 for (SwitchRange* sr = lo; sr <= hi; sr++) { 587 total_cnt += sr->cnt(); 588 } 589 return total_cnt; 590 } 591 592 class SwitchRanges : public ResourceObj { 593 public: 594 SwitchRange* _lo; 595 SwitchRange* _hi; 596 SwitchRange* _mid; 597 float _cost; 598 599 enum { 600 Start, 601 LeftDone, 602 RightDone, 603 Done 604 } _state; 605 606 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 607 : _lo(lo), _hi(hi), _mid(NULL), 608 _cost(0), _state(Start) { 609 } 610 611 SwitchRanges() 612 : _lo(NULL), _hi(NULL), _mid(NULL), 613 _cost(0), _state(Start) {} 614 }; 615 616 // Estimate cost of performing a binary search on lo..hi 617 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 618 GrowableArray<SwitchRanges> tree; 619 SwitchRanges root(lo, hi); 620 tree.push(root); 621 622 float cost = 0; 623 do { 624 SwitchRanges& r = *tree.adr_at(tree.length()-1); 625 if (r._hi != r._lo) { 626 if (r._mid == NULL) { 627 float r_cnt = sum_of_cnts(r._lo, r._hi); 628 629 if (r_cnt == 0) { 630 tree.pop(); 631 cost = 0; 632 continue; 633 } 634 635 SwitchRange* mid = NULL; 636 mid = r._lo; 637 for (float cnt = 0; ; ) { 638 assert(mid <= r._hi, "out of bounds"); 639 cnt += mid->cnt(); 640 if (cnt > r_cnt / 2) { 641 break; 642 } 643 mid++; 644 } 645 assert(mid <= r._hi, "out of bounds"); 646 r._mid = mid; 647 r._cost = r_cnt / total_cnt; 648 } 649 r._cost += cost; 650 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 651 cost = 0; 652 r._state = SwitchRanges::LeftDone; 653 tree.push(SwitchRanges(r._lo, r._mid-1)); 654 } else if (r._state < SwitchRanges::RightDone) { 655 cost = 0; 656 r._state = SwitchRanges::RightDone; 657 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 658 } else { 659 tree.pop(); 660 cost = r._cost; 661 } 662 } else { 663 tree.pop(); 664 cost = r._cost; 665 } 666 } while (tree.length() > 0); 667 668 669 return cost; 670 } 671 672 // It sometimes pays off to test most common ranges before the binary search 673 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 674 uint nr = hi - lo + 1; 675 float total_cnt = sum_of_cnts(lo, hi); 676 677 float min = compute_tree_cost(lo, hi, total_cnt); 678 float extra = 1; 679 float sub = 0; 680 681 SwitchRange* array1 = lo; 682 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 683 684 SwitchRange* ranges = NULL; 685 686 while (nr >= 2) { 687 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 688 ranges = (lo == array1) ? array2 : array1; 689 690 // Find highest frequency range 691 SwitchRange* candidate = lo; 692 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 693 if (sr->cnt() > candidate->cnt()) { 694 candidate = sr; 695 } 696 } 697 SwitchRange most_freq = *candidate; 698 if (most_freq.cnt() == 0) { 699 break; 700 } 701 702 // Copy remaining ranges into another array 703 int shift = 0; 704 for (uint i = 0; i < nr; i++) { 705 SwitchRange* sr = &lo[i]; 706 if (sr != candidate) { 707 ranges[i-shift] = *sr; 708 } else { 709 shift++; 710 if (i > 0 && i < nr-1) { 711 SwitchRange prev = lo[i-1]; 712 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 713 if (prev.adjoin(lo[i+1])) { 714 shift++; 715 i++; 716 } 717 ranges[i-shift] = prev; 718 } 719 } 720 } 721 nr -= shift; 722 723 // Evaluate cost of testing the most common range and performing a 724 // binary search on the other ranges 725 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 726 if (cost >= min) { 727 break; 728 } 729 // swap arrays 730 lo = &ranges[0]; 731 hi = &ranges[nr-1]; 732 733 // It pays off: emit the test for the most common range 734 assert(most_freq.cnt() > 0, "must be taken"); 735 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 736 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo()))); 737 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 738 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 739 jump_if_true_fork(iff, most_freq.dest(), false); 740 741 sub += most_freq.cnt() / total_cnt; 742 extra += 1 - sub; 743 min = cost; 744 } 745 } 746 747 //----------------------------create_jump_tables------------------------------- 748 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 749 // Are jumptables enabled 750 if (!UseJumpTables) return false; 751 752 // Are jumptables supported 753 if (!Matcher::has_match_rule(Op_Jump)) return false; 754 755 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 756 757 // Decide if a guard is needed to lop off big ranges at either (or 758 // both) end(s) of the input set. We'll call this the default target 759 // even though we can't be sure that it is the true "default". 760 761 bool needs_guard = false; 762 int default_dest; 763 int64_t total_outlier_size = 0; 764 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 765 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 766 767 if (lo->dest() == hi->dest()) { 768 total_outlier_size = hi_size + lo_size; 769 default_dest = lo->dest(); 770 } else if (lo_size > hi_size) { 771 total_outlier_size = lo_size; 772 default_dest = lo->dest(); 773 } else { 774 total_outlier_size = hi_size; 775 default_dest = hi->dest(); 776 } 777 778 float total = sum_of_cnts(lo, hi); 779 float cost = compute_tree_cost(lo, hi, total); 780 781 // If a guard test will eliminate very sparse end ranges, then 782 // it is worth the cost of an extra jump. 783 float trimmed_cnt = 0; 784 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 785 needs_guard = true; 786 if (default_dest == lo->dest()) { 787 trimmed_cnt += lo->cnt(); 788 lo++; 789 } 790 if (default_dest == hi->dest()) { 791 trimmed_cnt += hi->cnt(); 792 hi--; 793 } 794 } 795 796 // Find the total number of cases and ranges 797 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 798 int num_range = hi - lo + 1; 799 800 // Don't create table if: too large, too small, or too sparse. 801 if (num_cases > MaxJumpTableSize) 802 return false; 803 if (UseSwitchProfiling) { 804 // MinJumpTableSize is set so with a well balanced binary tree, 805 // when the number of ranges is MinJumpTableSize, it's cheaper to 806 // go through a JumpNode that a tree of IfNodes. Average cost of a 807 // tree of IfNodes with MinJumpTableSize is 808 // log2f(MinJumpTableSize) comparisons. So if the cost computed 809 // from profile data is less than log2f(MinJumpTableSize) then 810 // going with the binary search is cheaper. 811 if (cost < log2f(MinJumpTableSize)) { 812 return false; 813 } 814 } else { 815 if (num_cases < MinJumpTableSize) 816 return false; 817 } 818 if (num_cases > (MaxJumpTableSparseness * num_range)) 819 return false; 820 821 // Normalize table lookups to zero 822 int lowval = lo->lo(); 823 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 824 825 // Generate a guard to protect against input keyvals that aren't 826 // in the switch domain. 827 if (needs_guard) { 828 Node* size = _gvn.intcon(num_cases); 829 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 830 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 831 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 832 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 833 834 total -= trimmed_cnt; 835 } 836 837 // Create an ideal node JumpTable that has projections 838 // of all possible ranges for a switch statement 839 // The key_val input must be converted to a pointer offset and scaled. 840 // Compare Parse::array_addressing above. 841 842 // Clean the 32-bit int into a real 64-bit offset. 843 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 844 // Make I2L conversion control dependent to prevent it from 845 // floating above the range check during loop optimizations. 846 // Do not use a narrow int type here to prevent the data path from dying 847 // while the control path is not removed. This can happen if the type of key_val 848 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 849 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 850 // Set _carry_dependency for the cast to avoid being removed by IGVN. 851 #ifdef _LP64 852 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 853 #endif 854 855 // Shift the value by wordsize so we have an index into the table, rather 856 // than a switch value 857 Node *shiftWord = _gvn.MakeConX(wordSize); 858 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 859 860 // Create the JumpNode 861 Arena* arena = C->comp_arena(); 862 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 863 int i = 0; 864 if (total == 0) { 865 for (SwitchRange* r = lo; r <= hi; r++) { 866 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 867 probs[i] = 1.0F / num_cases; 868 } 869 } 870 } else { 871 for (SwitchRange* r = lo; r <= hi; r++) { 872 float prob = r->cnt()/total; 873 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 874 probs[i] = prob / (r->hi() - r->lo() + 1); 875 } 876 } 877 } 878 879 ciMethodData* methodData = method()->method_data(); 880 ciMultiBranchData* profile = NULL; 881 if (methodData->is_mature()) { 882 ciProfileData* data = methodData->bci_to_data(bci()); 883 if (data != NULL && data->is_MultiBranchData()) { 884 profile = (ciMultiBranchData*)data; 885 } 886 } 887 888 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total)); 889 890 // These are the switch destinations hanging off the jumpnode 891 i = 0; 892 for (SwitchRange* r = lo; r <= hi; r++) { 893 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 894 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 895 { 896 PreserveJVMState pjvms(this); 897 set_control(input); 898 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 899 } 900 } 901 } 902 assert(i == num_cases, "miscount of cases"); 903 stop_and_kill_map(); // no more uses for this JVMS 904 return true; 905 } 906 907 //----------------------------jump_switch_ranges------------------------------- 908 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 909 Block* switch_block = block(); 910 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 911 912 if (switch_depth == 0) { 913 // Do special processing for the top-level call. 914 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 915 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 916 917 // Decrement pred-numbers for the unique set of nodes. 918 #ifdef ASSERT 919 if (!trim_ranges) { 920 // Ensure that the block's successors are a (duplicate-free) set. 921 int successors_counted = 0; // block occurrences in [hi..lo] 922 int unique_successors = switch_block->num_successors(); 923 for (int i = 0; i < unique_successors; i++) { 924 Block* target = switch_block->successor_at(i); 925 926 // Check that the set of successors is the same in both places. 927 int successors_found = 0; 928 for (SwitchRange* p = lo; p <= hi; p++) { 929 if (p->dest() == target->start()) successors_found++; 930 } 931 assert(successors_found > 0, "successor must be known"); 932 successors_counted += successors_found; 933 } 934 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 935 } 936 #endif 937 938 // Maybe prune the inputs, based on the type of key_val. 939 jint min_val = min_jint; 940 jint max_val = max_jint; 941 const TypeInt* ti = key_val->bottom_type()->isa_int(); 942 if (ti != NULL) { 943 min_val = ti->_lo; 944 max_val = ti->_hi; 945 assert(min_val <= max_val, "invalid int type"); 946 } 947 while (lo->hi() < min_val) { 948 lo++; 949 } 950 if (lo->lo() < min_val) { 951 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 952 } 953 while (hi->lo() > max_val) { 954 hi--; 955 } 956 if (hi->hi() > max_val) { 957 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 958 } 959 960 linear_search_switch_ranges(key_val, lo, hi); 961 } 962 963 #ifndef PRODUCT 964 if (switch_depth == 0) { 965 _max_switch_depth = 0; 966 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 967 } 968 #endif 969 970 assert(lo <= hi, "must be a non-empty set of ranges"); 971 if (lo == hi) { 972 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 973 } else { 974 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 975 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 976 977 if (create_jump_tables(key_val, lo, hi)) return; 978 979 SwitchRange* mid = NULL; 980 float total_cnt = sum_of_cnts(lo, hi); 981 982 int nr = hi - lo + 1; 983 if (UseSwitchProfiling) { 984 // Don't keep the binary search tree balanced: pick up mid point 985 // that split frequencies in half. 986 float cnt = 0; 987 for (SwitchRange* sr = lo; sr <= hi; sr++) { 988 cnt += sr->cnt(); 989 if (cnt >= total_cnt / 2) { 990 mid = sr; 991 break; 992 } 993 } 994 } else { 995 mid = lo + nr/2; 996 997 // if there is an easy choice, pivot at a singleton: 998 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 999 1000 assert(lo < mid && mid <= hi, "good pivot choice"); 1001 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1002 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1003 } 1004 1005 1006 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1007 1008 if (mid->is_singleton()) { 1009 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1010 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1011 1012 // Special Case: If there are exactly three ranges, and the high 1013 // and low range each go to the same place, omit the "gt" test, 1014 // since it will not discriminate anything. 1015 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1016 1017 // if there is a higher range, test for it and process it: 1018 if (mid < hi && !eq_test_only) { 1019 // two comparisons of same values--should enable 1 test for 2 branches 1020 // Use BoolTest::lt instead of BoolTest::gt 1021 float cnt = sum_of_cnts(lo, mid-1); 1022 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1023 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1024 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1025 { PreserveJVMState pjvms(this); 1026 set_control(iffalse); 1027 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1028 } 1029 set_control(iftrue); 1030 } 1031 1032 } else { 1033 // mid is a range, not a singleton, so treat mid..hi as a unit 1034 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1035 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1036 1037 // if there is a higher range, test for it and process it: 1038 if (mid == hi) { 1039 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1040 } else { 1041 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1042 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1043 { PreserveJVMState pjvms(this); 1044 set_control(iftrue); 1045 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1046 } 1047 set_control(iffalse); 1048 } 1049 } 1050 1051 // in any case, process the lower range 1052 if (mid == lo) { 1053 if (mid->is_singleton()) { 1054 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1055 } else { 1056 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1057 } 1058 } else { 1059 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1060 } 1061 } 1062 1063 // Decrease pred_count for each successor after all is done. 1064 if (switch_depth == 0) { 1065 int unique_successors = switch_block->num_successors(); 1066 for (int i = 0; i < unique_successors; i++) { 1067 Block* target = switch_block->successor_at(i); 1068 // Throw away the pre-allocated path for each unique successor. 1069 target->next_path_num(); 1070 } 1071 } 1072 1073 #ifndef PRODUCT 1074 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1075 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1076 SwitchRange* r; 1077 int nsing = 0; 1078 for( r = lo; r <= hi; r++ ) { 1079 if( r->is_singleton() ) nsing++; 1080 } 1081 tty->print(">>> "); 1082 _method->print_short_name(); 1083 tty->print_cr(" switch decision tree"); 1084 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1085 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1086 if (_max_switch_depth > _est_switch_depth) { 1087 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1088 } 1089 tty->print(" "); 1090 for( r = lo; r <= hi; r++ ) { 1091 r->print(); 1092 } 1093 tty->cr(); 1094 } 1095 #endif 1096 } 1097 1098 void Parse::modf() { 1099 Node *f2 = pop(); 1100 Node *f1 = pop(); 1101 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(), 1102 CAST_FROM_FN_PTR(address, SharedRuntime::frem), 1103 "frem", NULL, //no memory effects 1104 f1, f2); 1105 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1106 1107 push(res); 1108 } 1109 1110 void Parse::modd() { 1111 Node *d2 = pop_pair(); 1112 Node *d1 = pop_pair(); 1113 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), 1114 CAST_FROM_FN_PTR(address, SharedRuntime::drem), 1115 "drem", NULL, //no memory effects 1116 d1, top(), d2, top()); 1117 Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1118 1119 #ifdef ASSERT 1120 Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1)); 1121 assert(res_top == top(), "second value must be top"); 1122 #endif 1123 1124 push_pair(res_d); 1125 } 1126 1127 void Parse::l2f() { 1128 Node* f2 = pop(); 1129 Node* f1 = pop(); 1130 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1131 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1132 "l2f", NULL, //no memory effects 1133 f1, f2); 1134 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1135 1136 push(res); 1137 } 1138 1139 // Handle jsr and jsr_w bytecode 1140 void Parse::do_jsr() { 1141 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1142 1143 // Store information about current state, tagged with new _jsr_bci 1144 int return_bci = iter().next_bci(); 1145 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1146 1147 // The way we do things now, there is only one successor block 1148 // for the jsr, because the target code is cloned by ciTypeFlow. 1149 Block* target = successor_for_bci(jsr_bci); 1150 1151 // What got pushed? 1152 const Type* ret_addr = target->peek(); 1153 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1154 1155 // Effect on jsr on stack 1156 push(_gvn.makecon(ret_addr)); 1157 1158 // Flow to the jsr. 1159 merge(jsr_bci); 1160 } 1161 1162 // Handle ret bytecode 1163 void Parse::do_ret() { 1164 // Find to whom we return. 1165 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1166 Block* target = block()->successor_at(0); 1167 assert(!target->is_ready(), "our arrival must be expected"); 1168 int pnum = target->next_path_num(); 1169 merge_common(target, pnum); 1170 } 1171 1172 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1173 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1174 // Only ::eq and ::ne are supported for profile injection. 1175 return false; 1176 } 1177 if (test->is_Cmp() && 1178 test->in(1)->Opcode() == Op_ProfileBoolean) { 1179 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1180 int false_cnt = profile->false_count(); 1181 int true_cnt = profile->true_count(); 1182 1183 // Counts matching depends on the actual test operation (::eq or ::ne). 1184 // No need to scale the counts because profile injection was designed 1185 // to feed exact counts into VM. 1186 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1187 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1188 1189 profile->consume(); 1190 return true; 1191 } 1192 return false; 1193 } 1194 //--------------------------dynamic_branch_prediction-------------------------- 1195 // Try to gather dynamic branch prediction behavior. Return a probability 1196 // of the branch being taken and set the "cnt" field. Returns a -1.0 1197 // if we need to use static prediction for some reason. 1198 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1199 ResourceMark rm; 1200 1201 cnt = COUNT_UNKNOWN; 1202 1203 int taken = 0; 1204 int not_taken = 0; 1205 1206 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1207 1208 if (use_mdo) { 1209 // Use MethodData information if it is available 1210 // FIXME: free the ProfileData structure 1211 ciMethodData* methodData = method()->method_data(); 1212 if (!methodData->is_mature()) return PROB_UNKNOWN; 1213 ciProfileData* data = methodData->bci_to_data(bci()); 1214 if (data == NULL) { 1215 return PROB_UNKNOWN; 1216 } 1217 if (!data->is_JumpData()) return PROB_UNKNOWN; 1218 1219 // get taken and not taken values 1220 taken = data->as_JumpData()->taken(); 1221 not_taken = 0; 1222 if (data->is_BranchData()) { 1223 not_taken = data->as_BranchData()->not_taken(); 1224 } 1225 1226 // scale the counts to be commensurate with invocation counts: 1227 taken = method()->scale_count(taken); 1228 not_taken = method()->scale_count(not_taken); 1229 } 1230 1231 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1232 // We also check that individual counters are positive first, otherwise the sum can become positive. 1233 if (taken < 0 || not_taken < 0 || taken + not_taken < 40) { 1234 if (C->log() != NULL) { 1235 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1236 } 1237 return PROB_UNKNOWN; 1238 } 1239 1240 // Compute frequency that we arrive here 1241 float sum = taken + not_taken; 1242 // Adjust, if this block is a cloned private block but the 1243 // Jump counts are shared. Taken the private counts for 1244 // just this path instead of the shared counts. 1245 if( block()->count() > 0 ) 1246 sum = block()->count(); 1247 cnt = sum / FreqCountInvocations; 1248 1249 // Pin probability to sane limits 1250 float prob; 1251 if( !taken ) 1252 prob = (0+PROB_MIN) / 2; 1253 else if( !not_taken ) 1254 prob = (1+PROB_MAX) / 2; 1255 else { // Compute probability of true path 1256 prob = (float)taken / (float)(taken + not_taken); 1257 if (prob > PROB_MAX) prob = PROB_MAX; 1258 if (prob < PROB_MIN) prob = PROB_MIN; 1259 } 1260 1261 assert((cnt > 0.0f) && (prob > 0.0f), 1262 "Bad frequency assignment in if"); 1263 1264 if (C->log() != NULL) { 1265 const char* prob_str = NULL; 1266 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1267 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1268 char prob_str_buf[30]; 1269 if (prob_str == NULL) { 1270 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1271 prob_str = prob_str_buf; 1272 } 1273 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1274 iter().get_dest(), taken, not_taken, cnt, prob_str); 1275 } 1276 return prob; 1277 } 1278 1279 //-----------------------------branch_prediction------------------------------- 1280 float Parse::branch_prediction(float& cnt, 1281 BoolTest::mask btest, 1282 int target_bci, 1283 Node* test) { 1284 float prob = dynamic_branch_prediction(cnt, btest, test); 1285 // If prob is unknown, switch to static prediction 1286 if (prob != PROB_UNKNOWN) return prob; 1287 1288 prob = PROB_FAIR; // Set default value 1289 if (btest == BoolTest::eq) // Exactly equal test? 1290 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1291 else if (btest == BoolTest::ne) 1292 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1293 1294 // If this is a conditional test guarding a backwards branch, 1295 // assume its a loop-back edge. Make it a likely taken branch. 1296 if (target_bci < bci()) { 1297 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1298 // Since it's an OSR, we probably have profile data, but since 1299 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1300 // Let's make a special check here for completely zero counts. 1301 ciMethodData* methodData = method()->method_data(); 1302 if (!methodData->is_empty()) { 1303 ciProfileData* data = methodData->bci_to_data(bci()); 1304 // Only stop for truly zero counts, which mean an unknown part 1305 // of the OSR-ed method, and we want to deopt to gather more stats. 1306 // If you have ANY counts, then this loop is simply 'cold' relative 1307 // to the OSR loop. 1308 if (data == NULL || 1309 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1310 // This is the only way to return PROB_UNKNOWN: 1311 return PROB_UNKNOWN; 1312 } 1313 } 1314 } 1315 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1316 } 1317 1318 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1319 return prob; 1320 } 1321 1322 // The magic constants are chosen so as to match the output of 1323 // branch_prediction() when the profile reports a zero taken count. 1324 // It is important to distinguish zero counts unambiguously, because 1325 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1326 // very small but nonzero probabilities, which if confused with zero 1327 // counts would keep the program recompiling indefinitely. 1328 bool Parse::seems_never_taken(float prob) const { 1329 return prob < PROB_MIN; 1330 } 1331 1332 // True if the comparison seems to be the kind that will not change its 1333 // statistics from true to false. See comments in adjust_map_after_if. 1334 // This question is only asked along paths which are already 1335 // classifed as untaken (by seems_never_taken), so really, 1336 // if a path is never taken, its controlling comparison is 1337 // already acting in a stable fashion. If the comparison 1338 // seems stable, we will put an expensive uncommon trap 1339 // on the untaken path. 1340 bool Parse::seems_stable_comparison() const { 1341 if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) { 1342 return false; 1343 } 1344 return true; 1345 } 1346 1347 //-------------------------------repush_if_args-------------------------------- 1348 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1349 inline int Parse::repush_if_args() { 1350 if (PrintOpto && WizardMode) { 1351 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1352 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1353 method()->print_name(); tty->cr(); 1354 } 1355 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1356 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1357 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1358 assert(argument(0) != NULL, "must exist"); 1359 assert(bc_depth == 1 || argument(1) != NULL, "two must exist"); 1360 inc_sp(bc_depth); 1361 return bc_depth; 1362 } 1363 1364 //----------------------------------do_ifnull---------------------------------- 1365 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1366 int target_bci = iter().get_dest(); 1367 1368 Block* branch_block = successor_for_bci(target_bci); 1369 Block* next_block = successor_for_bci(iter().next_bci()); 1370 1371 float cnt; 1372 float prob = branch_prediction(cnt, btest, target_bci, c); 1373 if (prob == PROB_UNKNOWN) { 1374 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1375 if (PrintOpto && Verbose) { 1376 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1377 } 1378 repush_if_args(); // to gather stats on loop 1379 uncommon_trap(Deoptimization::Reason_unreached, 1380 Deoptimization::Action_reinterpret, 1381 NULL, "cold"); 1382 if (C->eliminate_boxing()) { 1383 // Mark the successor blocks as parsed 1384 branch_block->next_path_num(); 1385 next_block->next_path_num(); 1386 } 1387 return; 1388 } 1389 1390 NOT_PRODUCT(explicit_null_checks_inserted++); 1391 1392 // Generate real control flow 1393 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1394 1395 // Sanity check the probability value 1396 assert(prob > 0.0f,"Bad probability in Parser"); 1397 // Need xform to put node in hash table 1398 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1399 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1400 // True branch 1401 { PreserveJVMState pjvms(this); 1402 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1403 set_control(iftrue); 1404 1405 if (stopped()) { // Path is dead? 1406 NOT_PRODUCT(explicit_null_checks_elided++); 1407 if (C->eliminate_boxing()) { 1408 // Mark the successor block as parsed 1409 branch_block->next_path_num(); 1410 } 1411 } else { // Path is live. 1412 adjust_map_after_if(btest, c, prob, branch_block, next_block); 1413 if (!stopped()) { 1414 merge(target_bci); 1415 } 1416 } 1417 } 1418 1419 // False branch 1420 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1421 set_control(iffalse); 1422 1423 if (stopped()) { // Path is dead? 1424 NOT_PRODUCT(explicit_null_checks_elided++); 1425 if (C->eliminate_boxing()) { 1426 // Mark the successor block as parsed 1427 next_block->next_path_num(); 1428 } 1429 } else { // Path is live. 1430 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, 1431 next_block, branch_block); 1432 } 1433 } 1434 1435 //------------------------------------do_if------------------------------------ 1436 void Parse::do_if(BoolTest::mask btest, Node* c) { 1437 int target_bci = iter().get_dest(); 1438 1439 Block* branch_block = successor_for_bci(target_bci); 1440 Block* next_block = successor_for_bci(iter().next_bci()); 1441 1442 float cnt; 1443 float prob = branch_prediction(cnt, btest, target_bci, c); 1444 float untaken_prob = 1.0 - prob; 1445 1446 if (prob == PROB_UNKNOWN) { 1447 if (PrintOpto && Verbose) { 1448 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1449 } 1450 repush_if_args(); // to gather stats on loop 1451 uncommon_trap(Deoptimization::Reason_unreached, 1452 Deoptimization::Action_reinterpret, 1453 NULL, "cold"); 1454 if (C->eliminate_boxing()) { 1455 // Mark the successor blocks as parsed 1456 branch_block->next_path_num(); 1457 next_block->next_path_num(); 1458 } 1459 return; 1460 } 1461 1462 // Sanity check the probability value 1463 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1464 1465 bool taken_if_true = true; 1466 // Convert BoolTest to canonical form: 1467 if (!BoolTest(btest).is_canonical()) { 1468 btest = BoolTest(btest).negate(); 1469 taken_if_true = false; 1470 // prob is NOT updated here; it remains the probability of the taken 1471 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1472 } 1473 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1474 1475 Node* tst0 = new BoolNode(c, btest); 1476 Node* tst = _gvn.transform(tst0); 1477 BoolTest::mask taken_btest = BoolTest::illegal; 1478 BoolTest::mask untaken_btest = BoolTest::illegal; 1479 1480 if (tst->is_Bool()) { 1481 // Refresh c from the transformed bool node, since it may be 1482 // simpler than the original c. Also re-canonicalize btest. 1483 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)). 1484 // That can arise from statements like: if (x instanceof C) ... 1485 if (tst != tst0) { 1486 // Canonicalize one more time since transform can change it. 1487 btest = tst->as_Bool()->_test._test; 1488 if (!BoolTest(btest).is_canonical()) { 1489 // Reverse edges one more time... 1490 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1491 btest = tst->as_Bool()->_test._test; 1492 assert(BoolTest(btest).is_canonical(), "sanity"); 1493 taken_if_true = !taken_if_true; 1494 } 1495 c = tst->in(1); 1496 } 1497 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1498 taken_btest = taken_if_true ? btest : neg_btest; 1499 untaken_btest = taken_if_true ? neg_btest : btest; 1500 } 1501 1502 // Generate real control flow 1503 float true_prob = (taken_if_true ? prob : untaken_prob); 1504 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1505 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1506 Node* taken_branch = new IfTrueNode(iff); 1507 Node* untaken_branch = new IfFalseNode(iff); 1508 if (!taken_if_true) { // Finish conversion to canonical form 1509 Node* tmp = taken_branch; 1510 taken_branch = untaken_branch; 1511 untaken_branch = tmp; 1512 } 1513 1514 // Branch is taken: 1515 { PreserveJVMState pjvms(this); 1516 taken_branch = _gvn.transform(taken_branch); 1517 set_control(taken_branch); 1518 1519 if (stopped()) { 1520 if (C->eliminate_boxing()) { 1521 // Mark the successor block as parsed 1522 branch_block->next_path_num(); 1523 } 1524 } else { 1525 adjust_map_after_if(taken_btest, c, prob, branch_block, next_block); 1526 if (!stopped()) { 1527 merge(target_bci); 1528 } 1529 } 1530 } 1531 1532 untaken_branch = _gvn.transform(untaken_branch); 1533 set_control(untaken_branch); 1534 1535 // Branch not taken. 1536 if (stopped()) { 1537 if (C->eliminate_boxing()) { 1538 // Mark the successor block as parsed 1539 next_block->next_path_num(); 1540 } 1541 } else { 1542 adjust_map_after_if(untaken_btest, c, untaken_prob, 1543 next_block, branch_block); 1544 } 1545 } 1546 1547 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 1548 // Don't want to speculate on uncommon traps when running with -Xcomp 1549 if (!UseInterpreter) { 1550 return false; 1551 } 1552 return (seems_never_taken(prob) && seems_stable_comparison()); 1553 } 1554 1555 void Parse::maybe_add_predicate_after_if(Block* path) { 1556 if (path->is_SEL_head() && path->preds_parsed() == 0) { 1557 // Add predicates at bci of if dominating the loop so traps can be 1558 // recorded on the if's profile data 1559 int bc_depth = repush_if_args(); 1560 add_empty_predicates(); 1561 dec_sp(bc_depth); 1562 path->set_has_predicates(); 1563 } 1564 } 1565 1566 1567 //----------------------------adjust_map_after_if------------------------------ 1568 // Adjust the JVM state to reflect the result of taking this path. 1569 // Basically, it means inspecting the CmpNode controlling this 1570 // branch, seeing how it constrains a tested value, and then 1571 // deciding if it's worth our while to encode this constraint 1572 // as graph nodes in the current abstract interpretation map. 1573 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, 1574 Block* path, Block* other_path) { 1575 if (!c->is_Cmp()) { 1576 maybe_add_predicate_after_if(path); 1577 return; 1578 } 1579 1580 if (stopped() || btest == BoolTest::illegal) { 1581 return; // nothing to do 1582 } 1583 1584 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 1585 1586 if (path_is_suitable_for_uncommon_trap(prob)) { 1587 repush_if_args(); 1588 uncommon_trap(Deoptimization::Reason_unstable_if, 1589 Deoptimization::Action_reinterpret, 1590 NULL, 1591 (is_fallthrough ? "taken always" : "taken never")); 1592 return; 1593 } 1594 1595 Node* val = c->in(1); 1596 Node* con = c->in(2); 1597 const Type* tcon = _gvn.type(con); 1598 const Type* tval = _gvn.type(val); 1599 bool have_con = tcon->singleton(); 1600 if (tval->singleton()) { 1601 if (!have_con) { 1602 // Swap, so constant is in con. 1603 con = val; 1604 tcon = tval; 1605 val = c->in(2); 1606 tval = _gvn.type(val); 1607 btest = BoolTest(btest).commute(); 1608 have_con = true; 1609 } else { 1610 // Do we have two constants? Then leave well enough alone. 1611 have_con = false; 1612 } 1613 } 1614 if (!have_con) { // remaining adjustments need a con 1615 maybe_add_predicate_after_if(path); 1616 return; 1617 } 1618 1619 sharpen_type_after_if(btest, con, tcon, val, tval); 1620 maybe_add_predicate_after_if(path); 1621 } 1622 1623 1624 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 1625 Node* ldk; 1626 if (n->is_DecodeNKlass()) { 1627 if (n->in(1)->Opcode() != Op_LoadNKlass) { 1628 return NULL; 1629 } else { 1630 ldk = n->in(1); 1631 } 1632 } else if (n->Opcode() != Op_LoadKlass) { 1633 return NULL; 1634 } else { 1635 ldk = n; 1636 } 1637 assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 1638 1639 Node* adr = ldk->in(MemNode::Address); 1640 intptr_t off = 0; 1641 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 1642 if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 1643 return NULL; 1644 const TypePtr* tp = gvn->type(obj)->is_ptr(); 1645 if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 1646 return NULL; 1647 1648 return obj; 1649 } 1650 1651 void Parse::sharpen_type_after_if(BoolTest::mask btest, 1652 Node* con, const Type* tcon, 1653 Node* val, const Type* tval) { 1654 // Look for opportunities to sharpen the type of a node 1655 // whose klass is compared with a constant klass. 1656 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 1657 Node* obj = extract_obj_from_klass_load(&_gvn, val); 1658 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 1659 if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) { 1660 // Found: 1661 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 1662 // or the narrowOop equivalent. 1663 const Type* obj_type = _gvn.type(obj); 1664 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 1665 if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type && 1666 tboth->higher_equal(obj_type)) { 1667 // obj has to be of the exact type Foo if the CmpP succeeds. 1668 int obj_in_map = map()->find_edge(obj); 1669 JVMState* jvms = this->jvms(); 1670 if (obj_in_map >= 0 && 1671 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 1672 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 1673 const Type* tcc = ccast->as_Type()->type(); 1674 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 1675 // Delay transform() call to allow recovery of pre-cast value 1676 // at the control merge. 1677 _gvn.set_type_bottom(ccast); 1678 record_for_igvn(ccast); 1679 // Here's the payoff. 1680 replace_in_map(obj, ccast); 1681 } 1682 } 1683 } 1684 } 1685 1686 int val_in_map = map()->find_edge(val); 1687 if (val_in_map < 0) return; // replace_in_map would be useless 1688 { 1689 JVMState* jvms = this->jvms(); 1690 if (!(jvms->is_loc(val_in_map) || 1691 jvms->is_stk(val_in_map))) 1692 return; // again, it would be useless 1693 } 1694 1695 // Check for a comparison to a constant, and "know" that the compared 1696 // value is constrained on this path. 1697 assert(tcon->singleton(), ""); 1698 ConstraintCastNode* ccast = NULL; 1699 Node* cast = NULL; 1700 1701 switch (btest) { 1702 case BoolTest::eq: // Constant test? 1703 { 1704 const Type* tboth = tcon->join_speculative(tval); 1705 if (tboth == tval) break; // Nothing to gain. 1706 if (tcon->isa_int()) { 1707 ccast = new CastIINode(val, tboth); 1708 } else if (tcon == TypePtr::NULL_PTR) { 1709 // Cast to null, but keep the pointer identity temporarily live. 1710 ccast = new CastPPNode(val, tboth); 1711 } else { 1712 const TypeF* tf = tcon->isa_float_constant(); 1713 const TypeD* td = tcon->isa_double_constant(); 1714 // Exclude tests vs float/double 0 as these could be 1715 // either +0 or -0. Just because you are equal to +0 1716 // doesn't mean you ARE +0! 1717 // Note, following code also replaces Long and Oop values. 1718 if ((!tf || tf->_f != 0.0) && 1719 (!td || td->_d != 0.0)) 1720 cast = con; // Replace non-constant val by con. 1721 } 1722 } 1723 break; 1724 1725 case BoolTest::ne: 1726 if (tcon == TypePtr::NULL_PTR) { 1727 cast = cast_not_null(val, false); 1728 } 1729 break; 1730 1731 default: 1732 // (At this point we could record int range types with CastII.) 1733 break; 1734 } 1735 1736 if (ccast != NULL) { 1737 const Type* tcc = ccast->as_Type()->type(); 1738 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 1739 // Delay transform() call to allow recovery of pre-cast value 1740 // at the control merge. 1741 ccast->set_req(0, control()); 1742 _gvn.set_type_bottom(ccast); 1743 record_for_igvn(ccast); 1744 cast = ccast; 1745 } 1746 1747 if (cast != NULL) { // Here's the payoff. 1748 replace_in_map(val, cast); 1749 } 1750 } 1751 1752 /** 1753 * Use speculative type to optimize CmpP node: if comparison is 1754 * against the low level class, cast the object to the speculative 1755 * type if any. CmpP should then go away. 1756 * 1757 * @param c expected CmpP node 1758 * @return result of CmpP on object casted to speculative type 1759 * 1760 */ 1761 Node* Parse::optimize_cmp_with_klass(Node* c) { 1762 // If this is transformed by the _gvn to a comparison with the low 1763 // level klass then we may be able to use speculation 1764 if (c->Opcode() == Op_CmpP && 1765 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 1766 c->in(2)->is_Con()) { 1767 Node* load_klass = NULL; 1768 Node* decode = NULL; 1769 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 1770 decode = c->in(1); 1771 load_klass = c->in(1)->in(1); 1772 } else { 1773 load_klass = c->in(1); 1774 } 1775 if (load_klass->in(2)->is_AddP()) { 1776 Node* addp = load_klass->in(2); 1777 Node* obj = addp->in(AddPNode::Address); 1778 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 1779 if (obj_type->speculative_type_not_null() != NULL) { 1780 ciKlass* k = obj_type->speculative_type(); 1781 inc_sp(2); 1782 obj = maybe_cast_profiled_obj(obj, k); 1783 dec_sp(2); 1784 // Make the CmpP use the casted obj 1785 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 1786 load_klass = load_klass->clone(); 1787 load_klass->set_req(2, addp); 1788 load_klass = _gvn.transform(load_klass); 1789 if (decode != NULL) { 1790 decode = decode->clone(); 1791 decode->set_req(1, load_klass); 1792 load_klass = _gvn.transform(decode); 1793 } 1794 c = c->clone(); 1795 c->set_req(1, load_klass); 1796 c = _gvn.transform(c); 1797 } 1798 } 1799 } 1800 return c; 1801 } 1802 1803 //------------------------------do_one_bytecode-------------------------------- 1804 // Parse this bytecode, and alter the Parsers JVM->Node mapping 1805 void Parse::do_one_bytecode() { 1806 Node *a, *b, *c, *d; // Handy temps 1807 BoolTest::mask btest; 1808 int i; 1809 1810 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 1811 1812 if (C->check_node_count(NodeLimitFudgeFactor * 5, 1813 "out of nodes parsing method")) { 1814 return; 1815 } 1816 1817 #ifdef ASSERT 1818 // for setting breakpoints 1819 if (TraceOptoParse) { 1820 tty->print(" @"); 1821 dump_bci(bci()); 1822 tty->cr(); 1823 } 1824 #endif 1825 1826 switch (bc()) { 1827 case Bytecodes::_nop: 1828 // do nothing 1829 break; 1830 case Bytecodes::_lconst_0: 1831 push_pair(longcon(0)); 1832 break; 1833 1834 case Bytecodes::_lconst_1: 1835 push_pair(longcon(1)); 1836 break; 1837 1838 case Bytecodes::_fconst_0: 1839 push(zerocon(T_FLOAT)); 1840 break; 1841 1842 case Bytecodes::_fconst_1: 1843 push(makecon(TypeF::ONE)); 1844 break; 1845 1846 case Bytecodes::_fconst_2: 1847 push(makecon(TypeF::make(2.0f))); 1848 break; 1849 1850 case Bytecodes::_dconst_0: 1851 push_pair(zerocon(T_DOUBLE)); 1852 break; 1853 1854 case Bytecodes::_dconst_1: 1855 push_pair(makecon(TypeD::ONE)); 1856 break; 1857 1858 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 1859 case Bytecodes::_iconst_0: push(intcon( 0)); break; 1860 case Bytecodes::_iconst_1: push(intcon( 1)); break; 1861 case Bytecodes::_iconst_2: push(intcon( 2)); break; 1862 case Bytecodes::_iconst_3: push(intcon( 3)); break; 1863 case Bytecodes::_iconst_4: push(intcon( 4)); break; 1864 case Bytecodes::_iconst_5: push(intcon( 5)); break; 1865 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 1866 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 1867 case Bytecodes::_aconst_null: push(null()); break; 1868 1869 case Bytecodes::_ldc: 1870 case Bytecodes::_ldc_w: 1871 case Bytecodes::_ldc2_w: { 1872 ciConstant constant = iter().get_constant(); 1873 if (constant.is_loaded()) { 1874 const Type* con_type = Type::make_from_constant(constant); 1875 if (con_type != NULL) { 1876 push_node(con_type->basic_type(), makecon(con_type)); 1877 } 1878 } else { 1879 // If the constant is unresolved or in error state, run this BC in the interpreter. 1880 if (iter().is_in_error()) { 1881 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unhandled, 1882 Deoptimization::Action_none), 1883 NULL, "constant in error state", true /* must_throw */); 1884 1885 } else { 1886 int index = iter().get_constant_pool_index(); 1887 uncommon_trap(Deoptimization::make_trap_request(Deoptimization::Reason_unloaded, 1888 Deoptimization::Action_reinterpret, 1889 index), 1890 NULL, "unresolved constant", false /* must_throw */); 1891 } 1892 } 1893 break; 1894 } 1895 1896 case Bytecodes::_aload_0: 1897 push( local(0) ); 1898 break; 1899 case Bytecodes::_aload_1: 1900 push( local(1) ); 1901 break; 1902 case Bytecodes::_aload_2: 1903 push( local(2) ); 1904 break; 1905 case Bytecodes::_aload_3: 1906 push( local(3) ); 1907 break; 1908 case Bytecodes::_aload: 1909 push( local(iter().get_index()) ); 1910 break; 1911 1912 case Bytecodes::_fload_0: 1913 case Bytecodes::_iload_0: 1914 push( local(0) ); 1915 break; 1916 case Bytecodes::_fload_1: 1917 case Bytecodes::_iload_1: 1918 push( local(1) ); 1919 break; 1920 case Bytecodes::_fload_2: 1921 case Bytecodes::_iload_2: 1922 push( local(2) ); 1923 break; 1924 case Bytecodes::_fload_3: 1925 case Bytecodes::_iload_3: 1926 push( local(3) ); 1927 break; 1928 case Bytecodes::_fload: 1929 case Bytecodes::_iload: 1930 push( local(iter().get_index()) ); 1931 break; 1932 case Bytecodes::_lload_0: 1933 push_pair_local( 0 ); 1934 break; 1935 case Bytecodes::_lload_1: 1936 push_pair_local( 1 ); 1937 break; 1938 case Bytecodes::_lload_2: 1939 push_pair_local( 2 ); 1940 break; 1941 case Bytecodes::_lload_3: 1942 push_pair_local( 3 ); 1943 break; 1944 case Bytecodes::_lload: 1945 push_pair_local( iter().get_index() ); 1946 break; 1947 1948 case Bytecodes::_dload_0: 1949 push_pair_local(0); 1950 break; 1951 case Bytecodes::_dload_1: 1952 push_pair_local(1); 1953 break; 1954 case Bytecodes::_dload_2: 1955 push_pair_local(2); 1956 break; 1957 case Bytecodes::_dload_3: 1958 push_pair_local(3); 1959 break; 1960 case Bytecodes::_dload: 1961 push_pair_local(iter().get_index()); 1962 break; 1963 case Bytecodes::_fstore_0: 1964 case Bytecodes::_istore_0: 1965 case Bytecodes::_astore_0: 1966 set_local( 0, pop() ); 1967 break; 1968 case Bytecodes::_fstore_1: 1969 case Bytecodes::_istore_1: 1970 case Bytecodes::_astore_1: 1971 set_local( 1, pop() ); 1972 break; 1973 case Bytecodes::_fstore_2: 1974 case Bytecodes::_istore_2: 1975 case Bytecodes::_astore_2: 1976 set_local( 2, pop() ); 1977 break; 1978 case Bytecodes::_fstore_3: 1979 case Bytecodes::_istore_3: 1980 case Bytecodes::_astore_3: 1981 set_local( 3, pop() ); 1982 break; 1983 case Bytecodes::_fstore: 1984 case Bytecodes::_istore: 1985 case Bytecodes::_astore: 1986 set_local( iter().get_index(), pop() ); 1987 break; 1988 // long stores 1989 case Bytecodes::_lstore_0: 1990 set_pair_local( 0, pop_pair() ); 1991 break; 1992 case Bytecodes::_lstore_1: 1993 set_pair_local( 1, pop_pair() ); 1994 break; 1995 case Bytecodes::_lstore_2: 1996 set_pair_local( 2, pop_pair() ); 1997 break; 1998 case Bytecodes::_lstore_3: 1999 set_pair_local( 3, pop_pair() ); 2000 break; 2001 case Bytecodes::_lstore: 2002 set_pair_local( iter().get_index(), pop_pair() ); 2003 break; 2004 2005 // double stores 2006 case Bytecodes::_dstore_0: 2007 set_pair_local( 0, dprecision_rounding(pop_pair()) ); 2008 break; 2009 case Bytecodes::_dstore_1: 2010 set_pair_local( 1, dprecision_rounding(pop_pair()) ); 2011 break; 2012 case Bytecodes::_dstore_2: 2013 set_pair_local( 2, dprecision_rounding(pop_pair()) ); 2014 break; 2015 case Bytecodes::_dstore_3: 2016 set_pair_local( 3, dprecision_rounding(pop_pair()) ); 2017 break; 2018 case Bytecodes::_dstore: 2019 set_pair_local( iter().get_index(), dprecision_rounding(pop_pair()) ); 2020 break; 2021 2022 case Bytecodes::_pop: dec_sp(1); break; 2023 case Bytecodes::_pop2: dec_sp(2); break; 2024 case Bytecodes::_swap: 2025 a = pop(); 2026 b = pop(); 2027 push(a); 2028 push(b); 2029 break; 2030 case Bytecodes::_dup: 2031 a = pop(); 2032 push(a); 2033 push(a); 2034 break; 2035 case Bytecodes::_dup_x1: 2036 a = pop(); 2037 b = pop(); 2038 push( a ); 2039 push( b ); 2040 push( a ); 2041 break; 2042 case Bytecodes::_dup_x2: 2043 a = pop(); 2044 b = pop(); 2045 c = pop(); 2046 push( a ); 2047 push( c ); 2048 push( b ); 2049 push( a ); 2050 break; 2051 case Bytecodes::_dup2: 2052 a = pop(); 2053 b = pop(); 2054 push( b ); 2055 push( a ); 2056 push( b ); 2057 push( a ); 2058 break; 2059 2060 case Bytecodes::_dup2_x1: 2061 // before: .. c, b, a 2062 // after: .. b, a, c, b, a 2063 // not tested 2064 a = pop(); 2065 b = pop(); 2066 c = pop(); 2067 push( b ); 2068 push( a ); 2069 push( c ); 2070 push( b ); 2071 push( a ); 2072 break; 2073 case Bytecodes::_dup2_x2: 2074 // before: .. d, c, b, a 2075 // after: .. b, a, d, c, b, a 2076 // not tested 2077 a = pop(); 2078 b = pop(); 2079 c = pop(); 2080 d = pop(); 2081 push( b ); 2082 push( a ); 2083 push( d ); 2084 push( c ); 2085 push( b ); 2086 push( a ); 2087 break; 2088 2089 case Bytecodes::_arraylength: { 2090 // Must do null-check with value on expression stack 2091 Node *ary = null_check(peek(), T_ARRAY); 2092 // Compile-time detect of null-exception? 2093 if (stopped()) return; 2094 a = pop(); 2095 push(load_array_length(a)); 2096 break; 2097 } 2098 2099 case Bytecodes::_baload: array_load(T_BYTE); break; 2100 case Bytecodes::_caload: array_load(T_CHAR); break; 2101 case Bytecodes::_iaload: array_load(T_INT); break; 2102 case Bytecodes::_saload: array_load(T_SHORT); break; 2103 case Bytecodes::_faload: array_load(T_FLOAT); break; 2104 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2105 case Bytecodes::_laload: array_load(T_LONG); break; 2106 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2107 case Bytecodes::_bastore: array_store(T_BYTE); break; 2108 case Bytecodes::_castore: array_store(T_CHAR); break; 2109 case Bytecodes::_iastore: array_store(T_INT); break; 2110 case Bytecodes::_sastore: array_store(T_SHORT); break; 2111 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2112 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2113 case Bytecodes::_lastore: array_store(T_LONG); break; 2114 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2115 2116 case Bytecodes::_getfield: 2117 do_getfield(); 2118 break; 2119 2120 case Bytecodes::_getstatic: 2121 do_getstatic(); 2122 break; 2123 2124 case Bytecodes::_putfield: 2125 do_putfield(); 2126 break; 2127 2128 case Bytecodes::_putstatic: 2129 do_putstatic(); 2130 break; 2131 2132 case Bytecodes::_irem: 2133 // Must keep both values on the expression-stack during null-check 2134 zero_check_int(peek()); 2135 // Compile-time detect of null-exception? 2136 if (stopped()) return; 2137 b = pop(); 2138 a = pop(); 2139 push(_gvn.transform(new ModINode(control(), a, b))); 2140 break; 2141 case Bytecodes::_idiv: 2142 // Must keep both values on the expression-stack during null-check 2143 zero_check_int(peek()); 2144 // Compile-time detect of null-exception? 2145 if (stopped()) return; 2146 b = pop(); 2147 a = pop(); 2148 push( _gvn.transform( new DivINode(control(),a,b) ) ); 2149 break; 2150 case Bytecodes::_imul: 2151 b = pop(); a = pop(); 2152 push( _gvn.transform( new MulINode(a,b) ) ); 2153 break; 2154 case Bytecodes::_iadd: 2155 b = pop(); a = pop(); 2156 push( _gvn.transform( new AddINode(a,b) ) ); 2157 break; 2158 case Bytecodes::_ineg: 2159 a = pop(); 2160 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 2161 break; 2162 case Bytecodes::_isub: 2163 b = pop(); a = pop(); 2164 push( _gvn.transform( new SubINode(a,b) ) ); 2165 break; 2166 case Bytecodes::_iand: 2167 b = pop(); a = pop(); 2168 push( _gvn.transform( new AndINode(a,b) ) ); 2169 break; 2170 case Bytecodes::_ior: 2171 b = pop(); a = pop(); 2172 push( _gvn.transform( new OrINode(a,b) ) ); 2173 break; 2174 case Bytecodes::_ixor: 2175 b = pop(); a = pop(); 2176 push( _gvn.transform( new XorINode(a,b) ) ); 2177 break; 2178 case Bytecodes::_ishl: 2179 b = pop(); a = pop(); 2180 push( _gvn.transform( new LShiftINode(a,b) ) ); 2181 break; 2182 case Bytecodes::_ishr: 2183 b = pop(); a = pop(); 2184 push( _gvn.transform( new RShiftINode(a,b) ) ); 2185 break; 2186 case Bytecodes::_iushr: 2187 b = pop(); a = pop(); 2188 push( _gvn.transform( new URShiftINode(a,b) ) ); 2189 break; 2190 2191 case Bytecodes::_fneg: 2192 a = pop(); 2193 b = _gvn.transform(new NegFNode (a)); 2194 push(b); 2195 break; 2196 2197 case Bytecodes::_fsub: 2198 b = pop(); 2199 a = pop(); 2200 c = _gvn.transform( new SubFNode(a,b) ); 2201 d = precision_rounding(c); 2202 push( d ); 2203 break; 2204 2205 case Bytecodes::_fadd: 2206 b = pop(); 2207 a = pop(); 2208 c = _gvn.transform( new AddFNode(a,b) ); 2209 d = precision_rounding(c); 2210 push( d ); 2211 break; 2212 2213 case Bytecodes::_fmul: 2214 b = pop(); 2215 a = pop(); 2216 c = _gvn.transform( new MulFNode(a,b) ); 2217 d = precision_rounding(c); 2218 push( d ); 2219 break; 2220 2221 case Bytecodes::_fdiv: 2222 b = pop(); 2223 a = pop(); 2224 c = _gvn.transform( new DivFNode(0,a,b) ); 2225 d = precision_rounding(c); 2226 push( d ); 2227 break; 2228 2229 case Bytecodes::_frem: 2230 if (Matcher::has_match_rule(Op_ModF)) { 2231 // Generate a ModF node. 2232 b = pop(); 2233 a = pop(); 2234 c = _gvn.transform( new ModFNode(0,a,b) ); 2235 d = precision_rounding(c); 2236 push( d ); 2237 } 2238 else { 2239 // Generate a call. 2240 modf(); 2241 } 2242 break; 2243 2244 case Bytecodes::_fcmpl: 2245 b = pop(); 2246 a = pop(); 2247 c = _gvn.transform( new CmpF3Node( a, b)); 2248 push(c); 2249 break; 2250 case Bytecodes::_fcmpg: 2251 b = pop(); 2252 a = pop(); 2253 2254 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 2255 // which negates the result sign except for unordered. Flip the unordered 2256 // as well by using CmpF3 which implements unordered-lesser instead of 2257 // unordered-greater semantics. Finally, commute the result bits. Result 2258 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 2259 c = _gvn.transform( new CmpF3Node( b, a)); 2260 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2261 push(c); 2262 break; 2263 2264 case Bytecodes::_f2i: 2265 a = pop(); 2266 push(_gvn.transform(new ConvF2INode(a))); 2267 break; 2268 2269 case Bytecodes::_d2i: 2270 a = pop_pair(); 2271 b = _gvn.transform(new ConvD2INode(a)); 2272 push( b ); 2273 break; 2274 2275 case Bytecodes::_f2d: 2276 a = pop(); 2277 b = _gvn.transform( new ConvF2DNode(a)); 2278 push_pair( b ); 2279 break; 2280 2281 case Bytecodes::_d2f: 2282 a = pop_pair(); 2283 b = _gvn.transform( new ConvD2FNode(a)); 2284 // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed) 2285 //b = _gvn.transform(new RoundFloatNode(0, b) ); 2286 push( b ); 2287 break; 2288 2289 case Bytecodes::_l2f: 2290 if (Matcher::convL2FSupported()) { 2291 a = pop_pair(); 2292 b = _gvn.transform( new ConvL2FNode(a)); 2293 // For x86_32.ad, FILD doesn't restrict precision to 24 or 53 bits. 2294 // Rather than storing the result into an FP register then pushing 2295 // out to memory to round, the machine instruction that implements 2296 // ConvL2D is responsible for rounding. 2297 // c = precision_rounding(b); 2298 push(b); 2299 } else { 2300 l2f(); 2301 } 2302 break; 2303 2304 case Bytecodes::_l2d: 2305 a = pop_pair(); 2306 b = _gvn.transform( new ConvL2DNode(a)); 2307 // For x86_32.ad, rounding is always necessary (see _l2f above). 2308 // c = dprecision_rounding(b); 2309 push_pair(b); 2310 break; 2311 2312 case Bytecodes::_f2l: 2313 a = pop(); 2314 b = _gvn.transform( new ConvF2LNode(a)); 2315 push_pair(b); 2316 break; 2317 2318 case Bytecodes::_d2l: 2319 a = pop_pair(); 2320 b = _gvn.transform( new ConvD2LNode(a)); 2321 push_pair(b); 2322 break; 2323 2324 case Bytecodes::_dsub: 2325 b = pop_pair(); 2326 a = pop_pair(); 2327 c = _gvn.transform( new SubDNode(a,b) ); 2328 d = dprecision_rounding(c); 2329 push_pair( d ); 2330 break; 2331 2332 case Bytecodes::_dadd: 2333 b = pop_pair(); 2334 a = pop_pair(); 2335 c = _gvn.transform( new AddDNode(a,b) ); 2336 d = dprecision_rounding(c); 2337 push_pair( d ); 2338 break; 2339 2340 case Bytecodes::_dmul: 2341 b = pop_pair(); 2342 a = pop_pair(); 2343 c = _gvn.transform( new MulDNode(a,b) ); 2344 d = dprecision_rounding(c); 2345 push_pair( d ); 2346 break; 2347 2348 case Bytecodes::_ddiv: 2349 b = pop_pair(); 2350 a = pop_pair(); 2351 c = _gvn.transform( new DivDNode(0,a,b) ); 2352 d = dprecision_rounding(c); 2353 push_pair( d ); 2354 break; 2355 2356 case Bytecodes::_dneg: 2357 a = pop_pair(); 2358 b = _gvn.transform(new NegDNode (a)); 2359 push_pair(b); 2360 break; 2361 2362 case Bytecodes::_drem: 2363 if (Matcher::has_match_rule(Op_ModD)) { 2364 // Generate a ModD node. 2365 b = pop_pair(); 2366 a = pop_pair(); 2367 // a % b 2368 2369 c = _gvn.transform( new ModDNode(0,a,b) ); 2370 d = dprecision_rounding(c); 2371 push_pair( d ); 2372 } 2373 else { 2374 // Generate a call. 2375 modd(); 2376 } 2377 break; 2378 2379 case Bytecodes::_dcmpl: 2380 b = pop_pair(); 2381 a = pop_pair(); 2382 c = _gvn.transform( new CmpD3Node( a, b)); 2383 push(c); 2384 break; 2385 2386 case Bytecodes::_dcmpg: 2387 b = pop_pair(); 2388 a = pop_pair(); 2389 // Same as dcmpl but need to flip the unordered case. 2390 // Commute the inputs, which negates the result sign except for unordered. 2391 // Flip the unordered as well by using CmpD3 which implements 2392 // unordered-lesser instead of unordered-greater semantics. 2393 // Finally, negate the result bits. Result is same as using a 2394 // CmpD3Greater except we did it with CmpD3 alone. 2395 c = _gvn.transform( new CmpD3Node( b, a)); 2396 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 2397 push(c); 2398 break; 2399 2400 2401 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 2402 case Bytecodes::_land: 2403 b = pop_pair(); 2404 a = pop_pair(); 2405 c = _gvn.transform( new AndLNode(a,b) ); 2406 push_pair(c); 2407 break; 2408 case Bytecodes::_lor: 2409 b = pop_pair(); 2410 a = pop_pair(); 2411 c = _gvn.transform( new OrLNode(a,b) ); 2412 push_pair(c); 2413 break; 2414 case Bytecodes::_lxor: 2415 b = pop_pair(); 2416 a = pop_pair(); 2417 c = _gvn.transform( new XorLNode(a,b) ); 2418 push_pair(c); 2419 break; 2420 2421 case Bytecodes::_lshl: 2422 b = pop(); // the shift count 2423 a = pop_pair(); // value to be shifted 2424 c = _gvn.transform( new LShiftLNode(a,b) ); 2425 push_pair(c); 2426 break; 2427 case Bytecodes::_lshr: 2428 b = pop(); // the shift count 2429 a = pop_pair(); // value to be shifted 2430 c = _gvn.transform( new RShiftLNode(a,b) ); 2431 push_pair(c); 2432 break; 2433 case Bytecodes::_lushr: 2434 b = pop(); // the shift count 2435 a = pop_pair(); // value to be shifted 2436 c = _gvn.transform( new URShiftLNode(a,b) ); 2437 push_pair(c); 2438 break; 2439 case Bytecodes::_lmul: 2440 b = pop_pair(); 2441 a = pop_pair(); 2442 c = _gvn.transform( new MulLNode(a,b) ); 2443 push_pair(c); 2444 break; 2445 2446 case Bytecodes::_lrem: 2447 // Must keep both values on the expression-stack during null-check 2448 assert(peek(0) == top(), "long word order"); 2449 zero_check_long(peek(1)); 2450 // Compile-time detect of null-exception? 2451 if (stopped()) return; 2452 b = pop_pair(); 2453 a = pop_pair(); 2454 c = _gvn.transform( new ModLNode(control(),a,b) ); 2455 push_pair(c); 2456 break; 2457 2458 case Bytecodes::_ldiv: 2459 // Must keep both values on the expression-stack during null-check 2460 assert(peek(0) == top(), "long word order"); 2461 zero_check_long(peek(1)); 2462 // Compile-time detect of null-exception? 2463 if (stopped()) return; 2464 b = pop_pair(); 2465 a = pop_pair(); 2466 c = _gvn.transform( new DivLNode(control(),a,b) ); 2467 push_pair(c); 2468 break; 2469 2470 case Bytecodes::_ladd: 2471 b = pop_pair(); 2472 a = pop_pair(); 2473 c = _gvn.transform( new AddLNode(a,b) ); 2474 push_pair(c); 2475 break; 2476 case Bytecodes::_lsub: 2477 b = pop_pair(); 2478 a = pop_pair(); 2479 c = _gvn.transform( new SubLNode(a,b) ); 2480 push_pair(c); 2481 break; 2482 case Bytecodes::_lcmp: 2483 // Safepoints are now inserted _before_ branches. The long-compare 2484 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 2485 // slew of control flow. These are usually followed by a CmpI vs zero and 2486 // a branch; this pattern then optimizes to the obvious long-compare and 2487 // branch. However, if the branch is backwards there's a Safepoint 2488 // inserted. The inserted Safepoint captures the JVM state at the 2489 // pre-branch point, i.e. it captures the 3-way value. Thus if a 2490 // long-compare is used to control a loop the debug info will force 2491 // computation of the 3-way value, even though the generated code uses a 2492 // long-compare and branch. We try to rectify the situation by inserting 2493 // a SafePoint here and have it dominate and kill the safepoint added at a 2494 // following backwards branch. At this point the JVM state merely holds 2 2495 // longs but not the 3-way value. 2496 switch (iter().next_bc()) { 2497 case Bytecodes::_ifgt: 2498 case Bytecodes::_iflt: 2499 case Bytecodes::_ifge: 2500 case Bytecodes::_ifle: 2501 case Bytecodes::_ifne: 2502 case Bytecodes::_ifeq: 2503 // If this is a backwards branch in the bytecodes, add Safepoint 2504 maybe_add_safepoint(iter().next_get_dest()); 2505 default: 2506 break; 2507 } 2508 b = pop_pair(); 2509 a = pop_pair(); 2510 c = _gvn.transform( new CmpL3Node( a, b )); 2511 push(c); 2512 break; 2513 2514 case Bytecodes::_lneg: 2515 a = pop_pair(); 2516 b = _gvn.transform( new SubLNode(longcon(0),a)); 2517 push_pair(b); 2518 break; 2519 case Bytecodes::_l2i: 2520 a = pop_pair(); 2521 push( _gvn.transform( new ConvL2INode(a))); 2522 break; 2523 case Bytecodes::_i2l: 2524 a = pop(); 2525 b = _gvn.transform( new ConvI2LNode(a)); 2526 push_pair(b); 2527 break; 2528 case Bytecodes::_i2b: 2529 // Sign extend 2530 a = pop(); 2531 a = Compile::narrow_value(T_BYTE, a, NULL, &_gvn, true); 2532 push(a); 2533 break; 2534 case Bytecodes::_i2s: 2535 a = pop(); 2536 a = Compile::narrow_value(T_SHORT, a, NULL, &_gvn, true); 2537 push(a); 2538 break; 2539 case Bytecodes::_i2c: 2540 a = pop(); 2541 a = Compile::narrow_value(T_CHAR, a, NULL, &_gvn, true); 2542 push(a); 2543 break; 2544 2545 case Bytecodes::_i2f: 2546 a = pop(); 2547 b = _gvn.transform( new ConvI2FNode(a) ) ; 2548 c = precision_rounding(b); 2549 push (b); 2550 break; 2551 2552 case Bytecodes::_i2d: 2553 a = pop(); 2554 b = _gvn.transform( new ConvI2DNode(a)); 2555 push_pair(b); 2556 break; 2557 2558 case Bytecodes::_iinc: // Increment local 2559 i = iter().get_index(); // Get local index 2560 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 2561 break; 2562 2563 // Exit points of synchronized methods must have an unlock node 2564 case Bytecodes::_return: 2565 return_current(NULL); 2566 break; 2567 2568 case Bytecodes::_ireturn: 2569 case Bytecodes::_areturn: 2570 case Bytecodes::_freturn: 2571 return_current(pop()); 2572 break; 2573 case Bytecodes::_lreturn: 2574 return_current(pop_pair()); 2575 break; 2576 case Bytecodes::_dreturn: 2577 return_current(pop_pair()); 2578 break; 2579 2580 case Bytecodes::_athrow: 2581 // null exception oop throws NULL pointer exception 2582 null_check(peek()); 2583 if (stopped()) return; 2584 // Hook the thrown exception directly to subsequent handlers. 2585 if (BailoutToInterpreterForThrows) { 2586 // Keep method interpreted from now on. 2587 uncommon_trap(Deoptimization::Reason_unhandled, 2588 Deoptimization::Action_make_not_compilable); 2589 return; 2590 } 2591 if (env()->jvmti_can_post_on_exceptions()) { 2592 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 2593 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 2594 } 2595 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 2596 add_exception_state(make_exception_state(peek())); 2597 break; 2598 2599 case Bytecodes::_goto: // fall through 2600 case Bytecodes::_goto_w: { 2601 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 2602 2603 // If this is a backwards branch in the bytecodes, add Safepoint 2604 maybe_add_safepoint(target_bci); 2605 2606 // Merge the current control into the target basic block 2607 merge(target_bci); 2608 2609 // See if we can get some profile data and hand it off to the next block 2610 Block *target_block = block()->successor_for_bci(target_bci); 2611 if (target_block->pred_count() != 1) break; 2612 ciMethodData* methodData = method()->method_data(); 2613 if (!methodData->is_mature()) break; 2614 ciProfileData* data = methodData->bci_to_data(bci()); 2615 assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch"); 2616 int taken = ((ciJumpData*)data)->taken(); 2617 taken = method()->scale_count(taken); 2618 target_block->set_count(taken); 2619 break; 2620 } 2621 2622 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 2623 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 2624 handle_if_null: 2625 // If this is a backwards branch in the bytecodes, add Safepoint 2626 maybe_add_safepoint(iter().get_dest()); 2627 a = null(); 2628 b = pop(); 2629 if (!_gvn.type(b)->speculative_maybe_null() && 2630 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2631 inc_sp(1); 2632 Node* null_ctl = top(); 2633 b = null_check_oop(b, &null_ctl, true, true, true); 2634 assert(null_ctl->is_top(), "no null control here"); 2635 dec_sp(1); 2636 } else if (_gvn.type(b)->speculative_always_null() && 2637 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2638 inc_sp(1); 2639 b = null_assert(b); 2640 dec_sp(1); 2641 } 2642 c = _gvn.transform( new CmpPNode(b, a) ); 2643 do_ifnull(btest, c); 2644 break; 2645 2646 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 2647 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 2648 handle_if_acmp: 2649 // If this is a backwards branch in the bytecodes, add Safepoint 2650 maybe_add_safepoint(iter().get_dest()); 2651 a = pop(); 2652 b = pop(); 2653 c = _gvn.transform( new CmpPNode(b, a) ); 2654 c = optimize_cmp_with_klass(c); 2655 do_if(btest, c); 2656 break; 2657 2658 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 2659 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 2660 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 2661 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 2662 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 2663 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 2664 handle_ifxx: 2665 // If this is a backwards branch in the bytecodes, add Safepoint 2666 maybe_add_safepoint(iter().get_dest()); 2667 a = _gvn.intcon(0); 2668 b = pop(); 2669 c = _gvn.transform( new CmpINode(b, a) ); 2670 do_if(btest, c); 2671 break; 2672 2673 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 2674 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 2675 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 2676 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 2677 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 2678 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 2679 handle_if_icmp: 2680 // If this is a backwards branch in the bytecodes, add Safepoint 2681 maybe_add_safepoint(iter().get_dest()); 2682 a = pop(); 2683 b = pop(); 2684 c = _gvn.transform( new CmpINode( b, a ) ); 2685 do_if(btest, c); 2686 break; 2687 2688 case Bytecodes::_tableswitch: 2689 do_tableswitch(); 2690 break; 2691 2692 case Bytecodes::_lookupswitch: 2693 do_lookupswitch(); 2694 break; 2695 2696 case Bytecodes::_invokestatic: 2697 case Bytecodes::_invokedynamic: 2698 case Bytecodes::_invokespecial: 2699 case Bytecodes::_invokevirtual: 2700 case Bytecodes::_invokeinterface: 2701 do_call(); 2702 break; 2703 case Bytecodes::_checkcast: 2704 do_checkcast(); 2705 break; 2706 case Bytecodes::_instanceof: 2707 do_instanceof(); 2708 break; 2709 case Bytecodes::_anewarray: 2710 do_anewarray(); 2711 break; 2712 case Bytecodes::_newarray: 2713 do_newarray((BasicType)iter().get_index()); 2714 break; 2715 case Bytecodes::_multianewarray: 2716 do_multianewarray(); 2717 break; 2718 case Bytecodes::_new: 2719 do_new(); 2720 break; 2721 2722 case Bytecodes::_jsr: 2723 case Bytecodes::_jsr_w: 2724 do_jsr(); 2725 break; 2726 2727 case Bytecodes::_ret: 2728 do_ret(); 2729 break; 2730 2731 2732 case Bytecodes::_monitorenter: 2733 do_monitor_enter(); 2734 break; 2735 2736 case Bytecodes::_monitorexit: 2737 do_monitor_exit(); 2738 break; 2739 2740 case Bytecodes::_breakpoint: 2741 // Breakpoint set concurrently to compile 2742 // %%% use an uncommon trap? 2743 C->record_failure("breakpoint in method"); 2744 return; 2745 2746 default: 2747 #ifndef PRODUCT 2748 map()->dump(99); 2749 #endif 2750 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 2751 ShouldNotReachHere(); 2752 } 2753 2754 #ifndef PRODUCT 2755 if (C->should_print_igv(1)) { 2756 IdealGraphPrinter* printer = C->igv_printer(); 2757 char buffer[256]; 2758 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 2759 bool old = printer->traverse_outs(); 2760 printer->set_traverse_outs(true); 2761 printer->print_method(buffer, 4); 2762 printer->set_traverse_outs(old); 2763 } 2764 #endif 2765 } --- EOF ---