1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/universe.hpp" 29 #include "oops/objArrayKlass.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/castnode.hpp" 32 #include "opto/memnode.hpp" 33 #include "opto/parse.hpp" 34 #include "opto/rootnode.hpp" 35 #include "opto/runtime.hpp" 36 #include "opto/subnode.hpp" 37 #include "runtime/deoptimization.hpp" 38 #include "runtime/handles.inline.hpp" 39 40 //============================================================================= 41 // Helper methods for _get* and _put* bytecodes 42 //============================================================================= 43 void Parse::do_field_access(bool is_get, bool is_field) { 44 bool will_link; 45 ciField* field = iter().get_field(will_link); 46 assert(will_link, "getfield: typeflow responsibility"); 47 48 ciInstanceKlass* field_holder = field->holder(); 49 50 if (is_field == field->is_static()) { 51 // Interpreter will throw java_lang_IncompatibleClassChangeError 52 // Check this before allowing <clinit> methods to access static fields 53 uncommon_trap(Deoptimization::Reason_unhandled, 54 Deoptimization::Action_none); 55 return; 56 } 57 58 // Deoptimize on putfield writes to call site target field outside of CallSite ctor. 59 if (!is_get && field->is_call_site_target() && 60 !(method()->holder() == field_holder && method()->is_object_initializer())) { 61 uncommon_trap(Deoptimization::Reason_unhandled, 62 Deoptimization::Action_reinterpret, 63 nullptr, "put to call site target field"); 64 return; 65 } 66 67 if (C->needs_clinit_barrier(field, method())) { 68 clinit_barrier(field_holder, method()); 69 if (stopped()) return; 70 } 71 72 assert(field->will_link(method(), bc()), "getfield: typeflow responsibility"); 73 74 // Note: We do not check for an unloaded field type here any more. 75 76 // Generate code for the object pointer. 77 Node* obj; 78 if (is_field) { 79 int obj_depth = is_get ? 0 : field->type()->size(); 80 obj = null_check(peek(obj_depth)); 81 // Compile-time detect of null-exception? 82 if (stopped()) return; 83 84 #ifdef ASSERT 85 const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder()); 86 assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed"); 87 #endif 88 89 if (is_get) { 90 (void) pop(); // pop receiver before getting 91 do_get_xxx(obj, field, is_field); 92 } else { 93 do_put_xxx(obj, field, is_field); 94 (void) pop(); // pop receiver after putting 95 } 96 } else { 97 const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror()); 98 obj = _gvn.makecon(tip); 99 if (is_get) { 100 do_get_xxx(obj, field, is_field); 101 } else { 102 do_put_xxx(obj, field, is_field); 103 } 104 } 105 } 106 107 108 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) { 109 BasicType bt = field->layout_type(); 110 111 // Does this field have a constant value? If so, just push the value. 112 if (field->is_constant() && 113 // Keep consistent with types found by ciTypeFlow: for an 114 // unloaded field type, ciTypeFlow::StateVector::do_getstatic() 115 // speculates the field is null. The code in the rest of this 116 // method does the same. We must not bypass it and use a non 117 // null constant here. 118 (bt != T_OBJECT || field->type()->is_loaded())) { 119 // final or stable field 120 Node* con = make_constant_from_field(field, obj); 121 if (con != nullptr) { 122 push_node(field->layout_type(), con); 123 return; 124 } 125 } 126 127 ciType* field_klass = field->type(); 128 bool is_vol = field->is_volatile(); 129 130 // Compute address and memory type. 131 int offset = field->offset_in_bytes(); 132 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 133 Node *adr = basic_plus_adr(obj, obj, offset); 134 135 // Build the resultant type of the load 136 const Type *type; 137 138 bool must_assert_null = false; 139 140 DecoratorSet decorators = IN_HEAP; 141 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED; 142 143 bool is_obj = is_reference_type(bt); 144 145 if (is_obj) { 146 if (!field->type()->is_loaded()) { 147 type = TypeInstPtr::BOTTOM; 148 must_assert_null = true; 149 } else if (field->is_static_constant()) { 150 // This can happen if the constant oop is non-perm. 151 ciObject* con = field->constant_value().as_object(); 152 // Do not "join" in the previous type; it doesn't add value, 153 // and may yield a vacuous result if the field is of interface type. 154 if (con->is_null_object()) { 155 type = TypePtr::NULL_PTR; 156 } else { 157 type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 158 } 159 assert(type != nullptr, "field singleton type must be consistent"); 160 } else { 161 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 162 } 163 } else { 164 type = Type::get_const_basic_type(bt); 165 } 166 167 Node* ld = access_load_at(obj, adr, adr_type, type, bt, decorators); 168 169 // Adjust Java stack 170 if (type2size[bt] == 1) 171 push(ld); 172 else 173 push_pair(ld); 174 175 if (must_assert_null) { 176 // Do not take a trap here. It's possible that the program 177 // will never load the field's class, and will happily see 178 // null values in this field forever. Don't stumble into a 179 // trap for such a program, or we might get a long series 180 // of useless recompilations. (Or, we might load a class 181 // which should not be loaded.) If we ever see a non-null 182 // value, we will then trap and recompile. (The trap will 183 // not need to mention the class index, since the class will 184 // already have been loaded if we ever see a non-null value.) 185 // uncommon_trap(iter().get_field_signature_index()); 186 if (PrintOpto && (Verbose || WizardMode)) { 187 method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci()); 188 } 189 if (C->log() != nullptr) { 190 C->log()->elem("assert_null reason='field' klass='%d'", 191 C->log()->identify(field->type())); 192 } 193 // If there is going to be a trap, put it at the next bytecode: 194 set_bci(iter().next_bci()); 195 null_assert(peek()); 196 set_bci(iter().cur_bci()); // put it back 197 } 198 } 199 200 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) { 201 bool is_vol = field->is_volatile(); 202 203 // Compute address and memory type. 204 int offset = field->offset_in_bytes(); 205 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 206 Node* adr = basic_plus_adr(obj, obj, offset); 207 BasicType bt = field->layout_type(); 208 // Value to be stored 209 Node* val = type2size[bt] == 1 ? pop() : pop_pair(); 210 211 DecoratorSet decorators = IN_HEAP; 212 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED; 213 214 bool is_obj = is_reference_type(bt); 215 216 // Store the value. 217 const Type* field_type; 218 if (!field->type()->is_loaded()) { 219 field_type = TypeInstPtr::BOTTOM; 220 } else { 221 if (is_obj) { 222 field_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); 223 } else { 224 field_type = Type::BOTTOM; 225 } 226 } 227 access_store_at(obj, adr, adr_type, val, field_type, bt, decorators); 228 229 if (is_field) { 230 // Remember we wrote a volatile field. 231 // For not multiple copy atomic cpu (ppc64) a barrier should be issued 232 // in constructors which have such stores. See do_exits() in parse1.cpp. 233 if (is_vol) { 234 set_wrote_volatile(true); 235 } 236 set_wrote_fields(true); 237 238 // If the field is final, the rules of Java say we are in <init> or <clinit>. 239 // If the field is @Stable, we can be in any method, but we only care about 240 // constructors at this point. 241 // 242 // Note the presence of writes to final/@Stable non-static fields, so that we 243 // can insert a memory barrier later on to keep the writes from floating 244 // out of the constructor. 245 if (field->is_final() || field->is_stable()) { 246 if (field->is_final()) { 247 set_wrote_final(true); 248 } 249 if (field->is_stable()) { 250 set_wrote_stable(true); 251 } 252 if (AllocateNode::Ideal_allocation(obj) != nullptr) { 253 // Preserve allocation ptr to create precedent edge to it in membar 254 // generated on exit from constructor. 255 set_alloc_with_final_or_stable(obj); 256 } 257 } 258 } 259 } 260 261 //============================================================================= 262 void Parse::do_anewarray() { 263 bool will_link; 264 ciKlass* klass = iter().get_klass(will_link); 265 266 // Uncommon Trap when class that array contains is not loaded 267 // we need the loaded class for the rest of graph; do not 268 // initialize the container class (see Java spec)!!! 269 assert(will_link, "anewarray: typeflow responsibility"); 270 271 ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass); 272 // Check that array_klass object is loaded 273 if (!array_klass->is_loaded()) { 274 // Generate uncommon_trap for unloaded array_class 275 uncommon_trap(Deoptimization::Reason_unloaded, 276 Deoptimization::Action_reinterpret, 277 array_klass); 278 return; 279 } 280 281 kill_dead_locals(); 282 283 const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces); 284 Node* count_val = pop(); 285 Node* obj = new_array(makecon(array_klass_type), count_val, 1); 286 push(obj); 287 } 288 289 290 void Parse::do_newarray(BasicType elem_type) { 291 kill_dead_locals(); 292 293 Node* count_val = pop(); 294 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type)); 295 Node* obj = new_array(makecon(array_klass), count_val, 1); 296 // Push resultant oop onto stack 297 push(obj); 298 } 299 300 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen]. 301 // Also handle the degenerate 1-dimensional case of anewarray. 302 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) { 303 Node* length = lengths[0]; 304 assert(length != nullptr, ""); 305 Node* array = new_array(makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)), length, nargs); 306 if (ndimensions > 1) { 307 jint length_con = find_int_con(length, -1); 308 guarantee(length_con >= 0, "non-constant multianewarray"); 309 ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass(); 310 const TypePtr* adr_type = TypeAryPtr::OOPS; 311 const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr(); 312 const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT); 313 for (jint i = 0; i < length_con; i++) { 314 Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs); 315 intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop); 316 Node* eaddr = basic_plus_adr(array, offset); 317 access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY); 318 } 319 } 320 return array; 321 } 322 323 void Parse::do_multianewarray() { 324 int ndimensions = iter().get_dimensions(); 325 326 // the m-dimensional array 327 bool will_link; 328 ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass(); 329 assert(will_link, "multianewarray: typeflow responsibility"); 330 331 // Note: Array classes are always initialized; no is_initialized check. 332 333 kill_dead_locals(); 334 335 // get the lengths from the stack (first dimension is on top) 336 Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1); 337 length[ndimensions] = nullptr; // terminating null for make_runtime_call 338 int j; 339 for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop(); 340 341 // The original expression was of this form: new T[length0][length1]... 342 // It is often the case that the lengths are small (except the last). 343 // If that happens, use the fast 1-d creator a constant number of times. 344 const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100); 345 int64_t expand_count = 1; // count of allocations in the expansion 346 int64_t expand_fanout = 1; // running total fanout 347 for (j = 0; j < ndimensions-1; j++) { 348 int dim_con = find_int_con(length[j], -1); 349 // To prevent overflow, we use 64-bit values. Alternatively, 350 // we could clamp dim_con like so: 351 // dim_con = MIN2(dim_con, expand_limit); 352 expand_fanout *= dim_con; 353 expand_count += expand_fanout; // count the level-J sub-arrays 354 if (dim_con <= 0 355 || dim_con > expand_limit 356 || expand_count > expand_limit) { 357 expand_count = 0; 358 break; 359 } 360 } 361 362 // Can use multianewarray instead of [a]newarray if only one dimension, 363 // or if all non-final dimensions are small constants. 364 if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) { 365 Node* obj = nullptr; 366 // Set the original stack and the reexecute bit for the interpreter 367 // to reexecute the multianewarray bytecode if deoptimization happens. 368 // Do it unconditionally even for one dimension multianewarray. 369 // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges() 370 // when AllocateArray node for newarray is created. 371 { PreserveReexecuteState preexecs(this); 372 inc_sp(ndimensions); 373 // Pass 0 as nargs since uncommon trap code does not need to restore stack. 374 obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0); 375 } //original reexecute and sp are set back here 376 push(obj); 377 return; 378 } 379 380 address fun = nullptr; 381 switch (ndimensions) { 382 case 1: ShouldNotReachHere(); break; 383 case 2: fun = OptoRuntime::multianewarray2_Java(); break; 384 case 3: fun = OptoRuntime::multianewarray3_Java(); break; 385 case 4: fun = OptoRuntime::multianewarray4_Java(); break; 386 case 5: fun = OptoRuntime::multianewarray5_Java(); break; 387 }; 388 Node* c = nullptr; 389 390 if (fun != nullptr) { 391 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 392 OptoRuntime::multianewarray_Type(ndimensions), 393 fun, nullptr, TypeRawPtr::BOTTOM, 394 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)), 395 length[0], length[1], length[2], 396 (ndimensions > 2) ? length[3] : nullptr, 397 (ndimensions > 3) ? length[4] : nullptr); 398 } else { 399 // Create a java array for dimension sizes 400 Node* dims = nullptr; 401 { PreserveReexecuteState preexecs(this); 402 inc_sp(ndimensions); 403 Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT)))); 404 dims = new_array(dims_array_klass, intcon(ndimensions), 0); 405 406 // Fill-in it with values 407 for (j = 0; j < ndimensions; j++) { 408 Node *dims_elem = array_element_address(dims, intcon(j), T_INT); 409 store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered); 410 } 411 } 412 413 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 414 OptoRuntime::multianewarrayN_Type(), 415 OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM, 416 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)), 417 dims); 418 } 419 make_slow_call_ex(c, env()->Throwable_klass(), false); 420 421 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms)); 422 423 const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces); 424 425 // Improve the type: We know it's not null, exact, and of a given length. 426 type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull); 427 type = type->is_aryptr()->cast_to_exactness(true); 428 429 const TypeInt* ltype = _gvn.find_int_type(length[0]); 430 if (ltype != nullptr) 431 type = type->is_aryptr()->cast_to_size(ltype); 432 433 // We cannot sharpen the nested sub-arrays, since the top level is mutable. 434 435 Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) ); 436 push(cast); 437 438 // Possible improvements: 439 // - Make a fast path for small multi-arrays. (W/ implicit init. loops.) 440 // - Issue CastII against length[*] values, to TypeInt::POS. 441 }