1 /*
2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciInstanceKlass.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/universe.hpp"
29 #include "oops/accessDecorators.hpp"
30 #include "oops/flatArrayKlass.hpp"
31 #include "oops/objArrayKlass.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/inlinetypenode.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/parse.hpp"
37 #include "opto/rootnode.hpp"
38 #include "opto/runtime.hpp"
39 #include "opto/subnode.hpp"
40 #include "runtime/deoptimization.hpp"
41 #include "runtime/handles.inline.hpp"
42
43 //=============================================================================
44 // Helper methods for _get* and _put* bytecodes
45 //=============================================================================
46
47 void Parse::do_field_access(bool is_get, bool is_field) {
48 bool will_link;
49 ciField* field = iter().get_field(will_link);
50 assert(will_link, "getfield: typeflow responsibility");
51
52 if (is_field == field->is_static()) {
53 // Interpreter will throw java_lang_IncompatibleClassChangeError
54 // Check this before allowing <clinit> methods to access static fields
55 uncommon_trap(Deoptimization::Reason_unhandled,
56 Deoptimization::Action_none);
57 return;
58 }
59
60 // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
61 ciInstanceKlass* field_holder = field->holder();
62 if (!is_get && field->is_call_site_target() &&
63 !(method()->holder() == field_holder && method()->is_object_constructor())) {
64 uncommon_trap(Deoptimization::Reason_unhandled,
65 Deoptimization::Action_reinterpret,
66 nullptr, "put to call site target field");
67 return;
68 }
69
70 if (C->needs_clinit_barrier(field, method())) {
71 clinit_barrier(field_holder, method());
72 if (stopped()) return;
73 }
74
75 assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
76
77 // Note: We do not check for an unloaded field type here any more.
78
79 // Generate code for the object pointer.
80 Node* obj;
81 if (is_field) {
82 int obj_depth = is_get ? 0 : field->type()->size();
83 obj = null_check(peek(obj_depth));
84 // Compile-time detect of null-exception?
85 if (stopped()) return;
86
87 #ifdef ASSERT
88 const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
89 assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
90 #endif
91
92 if (is_get) {
93 do_get_xxx(obj, field);
94 } else {
95 do_put_xxx(obj, field, is_field);
96 if (stopped()) {
97 return;
98 }
99 (void) pop(); // pop receiver after putting
100 }
101 } else {
102 const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
103 obj = _gvn.makecon(tip);
104 if (is_get) {
105 do_get_xxx(obj, field);
106 } else {
107 do_put_xxx(obj, field, is_field);
108 }
109 }
110 }
111
112 void Parse::do_get_xxx(Node* obj, ciField* field) {
113 obj = cast_to_non_larval(obj);
114 BasicType bt = field->layout_type();
115 // Does this field have a constant value? If so, just push the value.
116 if (field->is_constant() && !field->is_flat() &&
117 // Keep consistent with types found by ciTypeFlow: for an
118 // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
119 // speculates the field is null. The code in the rest of this
120 // method does the same. We must not bypass it and use a non
121 // null constant here.
122 (bt != T_OBJECT || field->type()->is_loaded())) {
123 // final or stable field
124 Node* con = make_constant_from_field(field, obj);
125 if (con != nullptr) {
126 if (!field->is_static()) {
127 pop();
128 }
129 push_node(field->layout_type(), con);
130 return;
131 }
132 }
133
134 if (obj->is_InlineType()) {
135 assert(!field->is_static(), "must not be a static field");
136 InlineTypeNode* vt = obj->as_InlineType();
137 Node* value = vt->field_value_by_offset(field->offset_in_bytes(), false);
138 if (value->is_InlineType()) {
139 value = value->as_InlineType()->adjust_scalarization_depth(this);
140 }
141 pop();
142 push_node(field->layout_type(), value);
143 return;
144 }
145
146 ciType* field_klass = field->type();
147 field_klass = improve_abstract_inline_type_klass(field_klass);
148 int offset = field->offset_in_bytes();
149 bool must_assert_null = false;
150 Node* adr = basic_plus_adr(obj, obj, offset);
151
152 Node* ld = nullptr;
153 if (field->is_null_free() && field_klass->as_inline_klass()->is_empty()) {
154 // Loading from a field of an empty inline type. Just return the default instance.
155 ld = InlineTypeNode::make_all_zero(_gvn, field_klass->as_inline_klass());
156 } else if (field->is_flat()) {
157 // Loading from a flat inline type field.
158 ciInlineKlass* vk = field->type()->as_inline_klass();
159 bool is_immutable = field->is_final() && field->is_strict();
160 bool atomic = vk->must_be_atomic() || !field->is_null_free();
161 ld = InlineTypeNode::make_from_flat(this, field_klass->as_inline_klass(), obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
162 } else {
163 // Build the resultant type of the load
164 const Type* type;
165 if (is_reference_type(bt)) {
166 if (!field_klass->is_loaded()) {
167 type = TypeInstPtr::BOTTOM;
168 must_assert_null = true;
169 } else if (field->is_static_constant()) {
170 // This can happen if the constant oop is non-perm.
171 ciObject* con = field->constant_value().as_object();
172 // Do not "join" in the previous type; it doesn't add value,
173 // and may yield a vacuous result if the field is of interface type.
174 if (con->is_null_object()) {
175 type = TypePtr::NULL_PTR;
176 } else {
177 type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
178 }
179 assert(type != nullptr, "field singleton type must be consistent");
180 } else {
181 type = TypeOopPtr::make_from_klass(field_klass->as_klass());
182 if (field->is_null_free()) {
183 type = type->join_speculative(TypePtr::NOTNULL);
184 }
185 }
186 } else {
187 type = Type::get_const_basic_type(bt);
188 }
189
190 const TypePtr* adr_type = C->alias_type(field)->adr_type();
191 DecoratorSet decorators = IN_HEAP;
192 decorators |= field->is_volatile() ? MO_SEQ_CST : MO_UNORDERED;
193 ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
194 if (field_klass->is_inlinetype()) {
195 // Load a non-flattened inline type from memory
196 ld = InlineTypeNode::make_from_oop(this, ld, field_klass->as_inline_klass());
197 }
198 }
199
200 // Adjust Java stack
201 if (!field->is_static()) {
202 pop();
203 }
204 if (type2size[bt] == 1) {
205 push(ld);
206 } else {
207 push_pair(ld);
208 }
209
210 if (must_assert_null) {
211 // Do not take a trap here. It's possible that the program
212 // will never load the field's class, and will happily see
213 // null values in this field forever. Don't stumble into a
214 // trap for such a program, or we might get a long series
215 // of useless recompilations. (Or, we might load a class
216 // which should not be loaded.) If we ever see a non-null
217 // value, we will then trap and recompile. (The trap will
218 // not need to mention the class index, since the class will
219 // already have been loaded if we ever see a non-null value.)
220 // uncommon_trap(iter().get_field_signature_index());
221 if (PrintOpto && (Verbose || WizardMode)) {
222 method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
223 }
224 if (C->log() != nullptr) {
225 C->log()->elem("assert_null reason='field' klass='%d'",
226 C->log()->identify(field_klass));
227 }
228 // If there is going to be a trap, put it at the next bytecode:
229 set_bci(iter().next_bci());
230 null_assert(peek());
231 set_bci(iter().cur_bci()); // put it back
232 }
233 }
234
235 // If the field klass is an abstract value klass (for which we do not know the layout, yet), it could have a unique
236 // concrete sub klass for which we have a fixed layout. This allows us to use InlineTypeNodes instead.
237 ciType* Parse::improve_abstract_inline_type_klass(ciType* field_klass) {
238 Dependencies* dependencies = C->dependencies();
239 if (UseUniqueSubclasses && dependencies != nullptr && field_klass->is_instance_klass()) {
240 ciInstanceKlass* instance_klass = field_klass->as_instance_klass();
241 if (instance_klass->is_loaded() && instance_klass->is_abstract_value_klass()) {
242 ciInstanceKlass* sub_klass = instance_klass->unique_concrete_subklass();
243 if (sub_klass != nullptr && sub_klass != field_klass) {
244 field_klass = sub_klass;
245 dependencies->assert_abstract_with_unique_concrete_subtype(instance_klass, sub_klass);
246 }
247 }
248 }
249 return field_klass;
250 }
251
252 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
253 bool is_vol = field->is_volatile();
254 int offset = field->offset_in_bytes();
255
256 BasicType bt = field->layout_type();
257 Node* val = type2size[bt] == 1 ? pop() : pop_pair();
258 if (field->is_null_free()) {
259 PreserveReexecuteState preexecs(this);
260 jvms()->set_should_reexecute(true);
261 inc_sp(1);
262 val = null_check(val);
263 if (stopped()) {
264 return;
265 }
266 }
267
268 val = cast_to_non_larval(val);
269 Node* adr = basic_plus_adr(obj, obj, offset);
270
271 // We cannot store into a non-larval object, so obj must not be an InlineTypeNode
272 assert(!obj->is_InlineType(), "InlineTypeNodes are non-larval value objects");
273 if (field->is_null_free() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
274 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
275 return;
276 } else if (field->is_flat()) {
277 // Storing to a flat inline type field.
278 ciInlineKlass* vk = field->type()->as_inline_klass();
279 if (!val->is_InlineType()) {
280 assert(gvn().type(val) == TypePtr::NULL_PTR, "Unexpected value");
281 val = InlineTypeNode::make_null(gvn(), vk);
282 }
283 inc_sp(1);
284 bool is_immutable = field->is_final() && field->is_strict();
285 bool atomic = vk->must_be_atomic() || !field->is_null_free();
286 val->as_InlineType()->store_flat(this, obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
287 dec_sp(1);
288 } else {
289 // Store the value.
290 const Type* field_type;
291 if (!field->type()->is_loaded()) {
292 field_type = TypeInstPtr::BOTTOM;
293 } else {
294 if (is_reference_type(bt)) {
295 field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
296 } else {
297 field_type = Type::BOTTOM;
298 }
299 }
300
301 const TypePtr* adr_type = C->alias_type(field)->adr_type();
302 DecoratorSet decorators = IN_HEAP;
303 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
304 inc_sp(1);
305 access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
306 dec_sp(1);
307 }
308
309 if (is_field) {
310 // Remember we wrote a volatile field.
311 // For not multiple copy atomic cpu (ppc64) a barrier should be issued
312 // in constructors which have such stores. See do_exits() in parse1.cpp.
313 if (is_vol) {
314 set_wrote_volatile(true);
315 }
316 set_wrote_fields(true);
317
318 // If the field is final, the rules of Java say we are in <init> or <clinit>.
319 // If the field is @Stable, we can be in any method, but we only care about
320 // constructors at this point.
321 //
322 // Note the presence of writes to final/@Stable non-static fields, so that we
323 // can insert a memory barrier later on to keep the writes from floating
324 // out of the constructor.
325 if (field->is_final() || field->is_stable()) {
326 if (field->is_final()) {
327 set_wrote_final(true);
328 }
329 if (field->is_stable()) {
330 set_wrote_stable(true);
331 }
332 if (AllocateNode::Ideal_allocation(obj) != nullptr) {
333 // Preserve allocation ptr to create precedent edge to it in membar
334 // generated on exit from constructor.
335 set_alloc_with_final_or_stable(obj);
336 }
337 }
338 }
339 }
340
341 //=============================================================================
342
343 void Parse::do_newarray() {
344 bool will_link;
345 ciKlass* klass = iter().get_klass(will_link);
346
347 // Uncommon Trap when class that array contains is not loaded
348 // we need the loaded class for the rest of graph; do not
349 // initialize the container class (see Java spec)!!!
350 assert(will_link, "newarray: typeflow responsibility");
351
352 ciArrayKlass* array_klass = ciArrayKlass::make(klass);
353
354 // Check that array_klass object is loaded
355 if (!array_klass->is_loaded()) {
356 // Generate uncommon_trap for unloaded array_class
357 uncommon_trap(Deoptimization::Reason_unloaded,
358 Deoptimization::Action_reinterpret,
359 array_klass);
360 return;
361 } else if (array_klass->element_klass() != nullptr &&
362 array_klass->element_klass()->is_inlinetype() &&
363 !array_klass->element_klass()->as_inline_klass()->is_initialized()) {
364 uncommon_trap(Deoptimization::Reason_uninitialized,
365 Deoptimization::Action_reinterpret,
366 nullptr);
367 return;
368 }
369
370 kill_dead_locals();
371
372 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
373 array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
374 Node* count_val = pop();
375 Node* obj = new_array(makecon(array_klass_type), count_val, 1);
376 push(obj);
377 }
378
379
380 void Parse::do_newarray(BasicType elem_type) {
381 kill_dead_locals();
382
383 Node* count_val = pop();
384 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
385 Node* obj = new_array(makecon(array_klass), count_val, 1);
386 // Push resultant oop onto stack
387 push(obj);
388 }
389
390 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
391 // Also handle the degenerate 1-dimensional case of anewarray.
392 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
393 Node* length = lengths[0];
394 assert(length != nullptr, "");
395 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
396 array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
397 Node* array = new_array(makecon(array_klass_type), length, nargs);
398 if (ndimensions > 1) {
399 jint length_con = find_int_con(length, -1);
400 guarantee(length_con >= 0, "non-constant multianewarray");
401 ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
402 const TypePtr* adr_type = TypeAryPtr::OOPS;
403 const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
404 const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
405 for (jint i = 0; i < length_con; i++) {
406 Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
407 intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
408 Node* eaddr = basic_plus_adr(array, offset);
409 access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
410 }
411 }
412 return array;
413 }
414
415 void Parse::do_multianewarray() {
416 int ndimensions = iter().get_dimensions();
417
418 // the m-dimensional array
419 bool will_link;
420 ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
421 assert(will_link, "multianewarray: typeflow responsibility");
422
423 // Note: Array classes are always initialized; no is_initialized check.
424
425 kill_dead_locals();
426
427 // get the lengths from the stack (first dimension is on top)
428 Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
429 length[ndimensions] = nullptr; // terminating null for make_runtime_call
430 int j;
431 ciKlass* elem_klass = array_klass;
432 for (j = ndimensions-1; j >= 0; j--) {
433 length[j] = pop();
434 elem_klass = elem_klass->as_array_klass()->element_klass();
435 }
436 if (elem_klass != nullptr && elem_klass->is_inlinetype() && !elem_klass->as_inline_klass()->is_initialized()) {
437 inc_sp(ndimensions);
438 uncommon_trap(Deoptimization::Reason_uninitialized,
439 Deoptimization::Action_reinterpret,
440 nullptr);
441 return;
442 }
443
444 // The original expression was of this form: new T[length0][length1]...
445 // It is often the case that the lengths are small (except the last).
446 // If that happens, use the fast 1-d creator a constant number of times.
447 const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
448 int64_t expand_count = 1; // count of allocations in the expansion
449 int64_t expand_fanout = 1; // running total fanout
450 for (j = 0; j < ndimensions-1; j++) {
451 int dim_con = find_int_con(length[j], -1);
452 // To prevent overflow, we use 64-bit values. Alternatively,
453 // we could clamp dim_con like so:
454 // dim_con = MIN2(dim_con, expand_limit);
455 expand_fanout *= dim_con;
456 expand_count += expand_fanout; // count the level-J sub-arrays
457 if (dim_con <= 0
458 || dim_con > expand_limit
459 || expand_count > expand_limit) {
460 expand_count = 0;
461 break;
462 }
463 }
464
465 // Can use multianewarray instead of [a]newarray if only one dimension,
466 // or if all non-final dimensions are small constants.
467 if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
468 Node* obj = nullptr;
469 // Set the original stack and the reexecute bit for the interpreter
470 // to reexecute the multianewarray bytecode if deoptimization happens.
471 // Do it unconditionally even for one dimension multianewarray.
472 // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
473 // when AllocateArray node for newarray is created.
474 { PreserveReexecuteState preexecs(this);
475 inc_sp(ndimensions);
476 // Pass 0 as nargs since uncommon trap code does not need to restore stack.
477 obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
478 } //original reexecute and sp are set back here
479 push(obj);
480 return;
481 }
482
483 address fun = nullptr;
484 switch (ndimensions) {
485 case 1: ShouldNotReachHere(); break;
486 case 2: fun = OptoRuntime::multianewarray2_Java(); break;
487 case 3: fun = OptoRuntime::multianewarray3_Java(); break;
488 case 4: fun = OptoRuntime::multianewarray4_Java(); break;
489 case 5: fun = OptoRuntime::multianewarray5_Java(); break;
490 };
491 Node* c = nullptr;
492
493 if (fun != nullptr) {
494 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
495 OptoRuntime::multianewarray_Type(ndimensions),
496 fun, nullptr, TypeRawPtr::BOTTOM,
497 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
498 length[0], length[1], length[2],
499 (ndimensions > 2) ? length[3] : nullptr,
500 (ndimensions > 3) ? length[4] : nullptr);
501 } else {
502 // Create a java array for dimension sizes
503 Node* dims = nullptr;
504 { PreserveReexecuteState preexecs(this);
505 inc_sp(ndimensions);
506 Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
507 dims = new_array(dims_array_klass, intcon(ndimensions), 0);
508
509 // Fill-in it with values
510 for (j = 0; j < ndimensions; j++) {
511 Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
512 store_to_memory(control(), dims_elem, length[j], T_INT, MemNode::unordered);
513 }
514 }
515
516 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
517 OptoRuntime::multianewarrayN_Type(),
518 OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM,
519 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
520 dims);
521 }
522 make_slow_call_ex(c, env()->Throwable_klass(), false);
523
524 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
525
526 const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces);
527
528 // Improve the type: We know it's not null, exact, and of a given length.
529 type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
530 type = type->is_aryptr()->cast_to_exactness(true);
531
532 const TypeInt* ltype = _gvn.find_int_type(length[0]);
533 if (ltype != nullptr)
534 type = type->is_aryptr()->cast_to_size(ltype);
535
536 // We cannot sharpen the nested sub-arrays, since the top level is mutable.
537
538 Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
539 push(cast);
540
541 // Possible improvements:
542 // - Make a fast path for small multi-arrays. (W/ implicit init. loops.)
543 // - Issue CastII against length[*] values, to TypeInt::POS.
544 }