1 /*
  2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciInstanceKlass.hpp"
 26 #include "compiler/compileLog.hpp"
 27 #include "interpreter/linkResolver.hpp"
 28 #include "memory/universe.hpp"
 29 #include "oops/accessDecorators.hpp"
 30 #include "oops/flatArrayKlass.hpp"
 31 #include "oops/objArrayKlass.hpp"
 32 #include "opto/addnode.hpp"
 33 #include "opto/castnode.hpp"
 34 #include "opto/inlinetypenode.hpp"
 35 #include "opto/memnode.hpp"
 36 #include "opto/parse.hpp"
 37 #include "opto/rootnode.hpp"
 38 #include "opto/runtime.hpp"
 39 #include "opto/subnode.hpp"
 40 #include "runtime/deoptimization.hpp"
 41 #include "runtime/handles.inline.hpp"
 42 
 43 //=============================================================================
 44 // Helper methods for _get* and _put* bytecodes
 45 //=============================================================================
 46 
 47 void Parse::do_field_access(bool is_get, bool is_field) {
 48   bool will_link;
 49   ciField* field = iter().get_field(will_link);
 50   assert(will_link, "getfield: typeflow responsibility");
 51 
 52   if (is_field == field->is_static()) {
 53     // Interpreter will throw java_lang_IncompatibleClassChangeError
 54     // Check this before allowing <clinit> methods to access static fields
 55     uncommon_trap(Deoptimization::Reason_unhandled,
 56                   Deoptimization::Action_none);
 57     return;
 58   }
 59 
 60   // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
 61   ciInstanceKlass* field_holder = field->holder();
 62   if (!is_get && field->is_call_site_target() &&
 63       !(method()->holder() == field_holder && method()->is_object_constructor())) {
 64     uncommon_trap(Deoptimization::Reason_unhandled,
 65                   Deoptimization::Action_reinterpret,
 66                   nullptr, "put to call site target field");
 67     return;
 68   }
 69 
 70   if (C->needs_clinit_barrier(field, method())) {
 71     clinit_barrier(field_holder, method());
 72     if (stopped())  return;
 73   }
 74 
 75   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 76 
 77   // Note:  We do not check for an unloaded field type here any more.
 78 
 79   // Generate code for the object pointer.
 80   Node* obj;
 81   if (is_field) {
 82     int obj_depth = is_get ? 0 : field->type()->size();
 83     obj = null_check(peek(obj_depth));
 84     // Compile-time detect of null-exception?
 85     if (stopped())  return;
 86 
 87 #ifdef ASSERT
 88     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 89     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 90 #endif
 91 
 92     if (is_get) {
 93       (void) pop();  // pop receiver before getting
 94       do_get_xxx(obj, field);
 95     } else {
 96       do_put_xxx(obj, field, is_field);
 97       if (stopped()) {
 98         return;
 99       }
100       (void) pop();  // pop receiver after putting
101     }
102   } else {
103     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
104     obj = _gvn.makecon(tip);
105     if (is_get) {
106       do_get_xxx(obj, field);
107     } else {
108       do_put_xxx(obj, field, is_field);
109     }
110   }
111 }
112 
113 void Parse::do_get_xxx(Node* obj, ciField* field) {
114   obj = cast_to_non_larval(obj);
115   BasicType bt = field->layout_type();
116   // Does this field have a constant value?  If so, just push the value.
117   if (field->is_constant() && !field->is_flat() &&
118       // Keep consistent with types found by ciTypeFlow: for an
119       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
120       // speculates the field is null. The code in the rest of this
121       // method does the same. We must not bypass it and use a non
122       // null constant here.
123       (bt != T_OBJECT || field->type()->is_loaded())) {
124     // final or stable field
125     Node* con = make_constant_from_field(field, obj);
126     if (con != nullptr) {
127       push_node(field->layout_type(), con);
128       return;
129     }
130   }
131 
132   if (obj->is_InlineType()) {
133     InlineTypeNode* vt = obj->as_InlineType();
134     Node* value = vt->field_value_by_offset(field->offset_in_bytes(), false);
135     if (value->is_InlineType()) {
136       value = value->as_InlineType()->adjust_scalarization_depth(this);
137     }
138     push_node(field->layout_type(), value);
139     return;
140   }
141 
142   ciType* field_klass = field->type();
143   field_klass = improve_abstract_inline_type_klass(field_klass);
144   int offset = field->offset_in_bytes();
145   bool must_assert_null = false;
146   Node* adr = basic_plus_adr(obj, obj, offset);
147 
148   Node* ld = nullptr;
149   if (field->is_null_free() && field_klass->as_inline_klass()->is_empty()) {
150     // Loading from a field of an empty inline type. Just return the default instance.
151     ld = InlineTypeNode::make_all_zero(_gvn, field_klass->as_inline_klass());
152   } else if (field->is_flat()) {
153     // Loading from a flat inline type field.
154     ciInlineKlass* vk = field->type()->as_inline_klass();
155     bool is_immutable = field->is_final() && field->is_strict();
156     bool atomic = vk->must_be_atomic() || !field->is_null_free();
157     ld = InlineTypeNode::make_from_flat(this, field_klass->as_inline_klass(), obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
158   } else {
159     // Build the resultant type of the load
160     const Type* type;
161     if (is_reference_type(bt)) {
162       if (!field_klass->is_loaded()) {
163         type = TypeInstPtr::BOTTOM;
164         must_assert_null = true;
165       } else if (field->is_static_constant()) {
166         // This can happen if the constant oop is non-perm.
167         ciObject* con = field->constant_value().as_object();
168         // Do not "join" in the previous type; it doesn't add value,
169         // and may yield a vacuous result if the field is of interface type.
170         if (con->is_null_object()) {
171           type = TypePtr::NULL_PTR;
172         } else {
173           type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
174         }
175         assert(type != nullptr, "field singleton type must be consistent");
176       } else {
177         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
178         if (field->is_null_free()) {
179           type = type->join_speculative(TypePtr::NOTNULL);
180         }
181       }
182     } else {
183       type = Type::get_const_basic_type(bt);
184     }
185 
186     const TypePtr* adr_type = C->alias_type(field)->adr_type();
187     DecoratorSet decorators = IN_HEAP;
188     decorators |= field->is_volatile() ? MO_SEQ_CST : MO_UNORDERED;
189     ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
190     if (field_klass->is_inlinetype()) {
191       // Load a non-flattened inline type from memory
192       ld = InlineTypeNode::make_from_oop(this, ld, field_klass->as_inline_klass());
193     }
194   }
195 
196   // Adjust Java stack
197   if (type2size[bt] == 1)
198     push(ld);
199   else
200     push_pair(ld);
201 
202   if (must_assert_null) {
203     // Do not take a trap here.  It's possible that the program
204     // will never load the field's class, and will happily see
205     // null values in this field forever.  Don't stumble into a
206     // trap for such a program, or we might get a long series
207     // of useless recompilations.  (Or, we might load a class
208     // which should not be loaded.)  If we ever see a non-null
209     // value, we will then trap and recompile.  (The trap will
210     // not need to mention the class index, since the class will
211     // already have been loaded if we ever see a non-null value.)
212     // uncommon_trap(iter().get_field_signature_index());
213     if (PrintOpto && (Verbose || WizardMode)) {
214       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
215     }
216     if (C->log() != nullptr) {
217       C->log()->elem("assert_null reason='field' klass='%d'",
218                      C->log()->identify(field_klass));
219     }
220     // If there is going to be a trap, put it at the next bytecode:
221     set_bci(iter().next_bci());
222     null_assert(peek());
223     set_bci(iter().cur_bci()); // put it back
224   }
225 }
226 
227 // If the field klass is an abstract value klass (for which we do not know the layout, yet), it could have a unique
228 // concrete sub klass for which we have a fixed layout. This allows us to use InlineTypeNodes instead.
229 ciType* Parse::improve_abstract_inline_type_klass(ciType* field_klass) {
230   Dependencies* dependencies = C->dependencies();
231   if (UseUniqueSubclasses && dependencies != nullptr && field_klass->is_instance_klass()) {
232     ciInstanceKlass* instance_klass = field_klass->as_instance_klass();
233     if (instance_klass->is_loaded() && instance_klass->is_abstract_value_klass()) {
234       ciInstanceKlass* sub_klass = instance_klass->unique_concrete_subklass();
235       if (sub_klass != nullptr && sub_klass != field_klass) {
236         field_klass = sub_klass;
237         dependencies->assert_abstract_with_unique_concrete_subtype(instance_klass, sub_klass);
238       }
239     }
240   }
241   return field_klass;
242 }
243 
244 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
245   bool is_vol = field->is_volatile();
246   int offset = field->offset_in_bytes();
247 
248   BasicType bt = field->layout_type();
249   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
250   if (field->is_null_free()) {
251     PreserveReexecuteState preexecs(this);
252     jvms()->set_should_reexecute(true);
253     inc_sp(1);
254     val = null_check(val);
255     if (stopped()) {
256       return;
257     }
258   }
259 
260   val = cast_to_non_larval(val);
261   Node* adr = basic_plus_adr(obj, obj, offset);
262 
263   // We cannot store into a non-larval object, so obj must not be an InlineTypeNode
264   assert(!obj->is_InlineType(), "InlineTypeNodes are non-larval value objects");
265   if (field->is_null_free() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
266     // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
267     return;
268   } else if (field->is_flat()) {
269     // Storing to a flat inline type field.
270     ciInlineKlass* vk = field->type()->as_inline_klass();
271     if (!val->is_InlineType()) {
272       assert(gvn().type(val) == TypePtr::NULL_PTR, "Unexpected value");
273       val = InlineTypeNode::make_null(gvn(), vk);
274     }
275     inc_sp(1);
276     bool is_immutable = field->is_final() && field->is_strict();
277     bool atomic = vk->must_be_atomic() || !field->is_null_free();
278     val->as_InlineType()->store_flat(this, obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
279     dec_sp(1);
280   } else {
281     // Store the value.
282     const Type* field_type;
283     if (!field->type()->is_loaded()) {
284       field_type = TypeInstPtr::BOTTOM;
285     } else {
286       if (is_reference_type(bt)) {
287         field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
288       } else {
289         field_type = Type::BOTTOM;
290       }
291     }
292 
293     const TypePtr* adr_type = C->alias_type(field)->adr_type();
294     DecoratorSet decorators = IN_HEAP;
295     decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
296     inc_sp(1);
297     access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
298     dec_sp(1);
299   }
300 
301   if (is_field) {
302     // Remember we wrote a volatile field.
303     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
304     // in constructors which have such stores. See do_exits() in parse1.cpp.
305     if (is_vol) {
306       set_wrote_volatile(true);
307     }
308     set_wrote_fields(true);
309 
310     // If the field is final, the rules of Java say we are in <init> or <clinit>.
311     // If the field is @Stable, we can be in any method, but we only care about
312     // constructors at this point.
313     //
314     // Note the presence of writes to final/@Stable non-static fields, so that we
315     // can insert a memory barrier later on to keep the writes from floating
316     // out of the constructor.
317     if (field->is_final() || field->is_stable()) {
318       if (field->is_final()) {
319         set_wrote_final(true);
320       }
321       if (field->is_stable()) {
322         set_wrote_stable(true);
323       }
324       if (AllocateNode::Ideal_allocation(obj) != nullptr) {
325         // Preserve allocation ptr to create precedent edge to it in membar
326         // generated on exit from constructor.
327         set_alloc_with_final_or_stable(obj);
328       }
329     }
330   }
331 }
332 
333 //=============================================================================
334 
335 void Parse::do_newarray() {
336   bool will_link;
337   ciKlass* klass = iter().get_klass(will_link);
338 
339   // Uncommon Trap when class that array contains is not loaded
340   // we need the loaded class for the rest of graph; do not
341   // initialize the container class (see Java spec)!!!
342   assert(will_link, "newarray: typeflow responsibility");
343 
344   ciArrayKlass* array_klass = ciArrayKlass::make(klass);
345 
346   // Check that array_klass object is loaded
347   if (!array_klass->is_loaded()) {
348     // Generate uncommon_trap for unloaded array_class
349     uncommon_trap(Deoptimization::Reason_unloaded,
350                   Deoptimization::Action_reinterpret,
351                   array_klass);
352     return;
353   } else if (array_klass->element_klass() != nullptr &&
354              array_klass->element_klass()->is_inlinetype() &&
355              !array_klass->element_klass()->as_inline_klass()->is_initialized()) {
356     uncommon_trap(Deoptimization::Reason_uninitialized,
357                   Deoptimization::Action_reinterpret,
358                   nullptr);
359     return;
360   }
361 
362   kill_dead_locals();
363 
364   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces);
365   Node* count_val = pop();
366   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
367   push(obj);
368 }
369 
370 
371 void Parse::do_newarray(BasicType elem_type) {
372   kill_dead_locals();
373 
374   Node*   count_val = pop();
375   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
376   Node*   obj = new_array(makecon(array_klass), count_val, 1);
377   // Push resultant oop onto stack
378   push(obj);
379 }
380 
381 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
382 // Also handle the degenerate 1-dimensional case of anewarray.
383 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
384   Node* length = lengths[0];
385   assert(length != nullptr, "");
386   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)), length, nargs);
387   if (ndimensions > 1) {
388     jint length_con = find_int_con(length, -1);
389     guarantee(length_con >= 0, "non-constant multianewarray");
390     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
391     const TypePtr* adr_type = TypeAryPtr::OOPS;
392     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
393     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
394     for (jint i = 0; i < length_con; i++) {
395       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
396       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
397       Node*    eaddr  = basic_plus_adr(array, offset);
398       access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
399     }
400   }
401   return array;
402 }
403 
404 void Parse::do_multianewarray() {
405   int ndimensions = iter().get_dimensions();
406 
407   // the m-dimensional array
408   bool will_link;
409   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
410   assert(will_link, "multianewarray: typeflow responsibility");
411 
412   // Note:  Array classes are always initialized; no is_initialized check.
413 
414   kill_dead_locals();
415 
416   // get the lengths from the stack (first dimension is on top)
417   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
418   length[ndimensions] = nullptr;  // terminating null for make_runtime_call
419   int j;
420   ciKlass* elem_klass = array_klass;
421   for (j = ndimensions-1; j >= 0; j--) {
422     length[j] = pop();
423     elem_klass = elem_klass->as_array_klass()->element_klass();
424   }
425   if (elem_klass != nullptr && elem_klass->is_inlinetype() && !elem_klass->as_inline_klass()->is_initialized()) {
426     inc_sp(ndimensions);
427     uncommon_trap(Deoptimization::Reason_uninitialized,
428                   Deoptimization::Action_reinterpret,
429                   nullptr);
430     return;
431   }
432 
433   // The original expression was of this form: new T[length0][length1]...
434   // It is often the case that the lengths are small (except the last).
435   // If that happens, use the fast 1-d creator a constant number of times.
436   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
437   int64_t expand_count = 1;        // count of allocations in the expansion
438   int64_t expand_fanout = 1;       // running total fanout
439   for (j = 0; j < ndimensions-1; j++) {
440     int dim_con = find_int_con(length[j], -1);
441     // To prevent overflow, we use 64-bit values.  Alternatively,
442     // we could clamp dim_con like so:
443     // dim_con = MIN2(dim_con, expand_limit);
444     expand_fanout *= dim_con;
445     expand_count  += expand_fanout; // count the level-J sub-arrays
446     if (dim_con <= 0
447         || dim_con > expand_limit
448         || expand_count > expand_limit) {
449       expand_count = 0;
450       break;
451     }
452   }
453 
454   // Can use multianewarray instead of [a]newarray if only one dimension,
455   // or if all non-final dimensions are small constants.
456   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
457     Node* obj = nullptr;
458     // Set the original stack and the reexecute bit for the interpreter
459     // to reexecute the multianewarray bytecode if deoptimization happens.
460     // Do it unconditionally even for one dimension multianewarray.
461     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
462     // when AllocateArray node for newarray is created.
463     { PreserveReexecuteState preexecs(this);
464       inc_sp(ndimensions);
465       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
466       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
467     } //original reexecute and sp are set back here
468     push(obj);
469     return;
470   }
471 
472   address fun = nullptr;
473   switch (ndimensions) {
474   case 1: ShouldNotReachHere(); break;
475   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
476   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
477   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
478   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
479   };
480   Node* c = nullptr;
481 
482   if (fun != nullptr) {
483     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
484                           OptoRuntime::multianewarray_Type(ndimensions),
485                           fun, nullptr, TypeRawPtr::BOTTOM,
486                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
487                           length[0], length[1], length[2],
488                           (ndimensions > 2) ? length[3] : nullptr,
489                           (ndimensions > 3) ? length[4] : nullptr);
490   } else {
491     // Create a java array for dimension sizes
492     Node* dims = nullptr;
493     { PreserveReexecuteState preexecs(this);
494       inc_sp(ndimensions);
495       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
496       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
497 
498       // Fill-in it with values
499       for (j = 0; j < ndimensions; j++) {
500         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
501         store_to_memory(control(), dims_elem, length[j], T_INT, MemNode::unordered);
502       }
503     }
504 
505     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
506                           OptoRuntime::multianewarrayN_Type(),
507                           OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM,
508                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
509                           dims);
510   }
511   make_slow_call_ex(c, env()->Throwable_klass(), false);
512 
513   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
514 
515   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces);
516 
517   // Improve the type:  We know it's not null, exact, and of a given length.
518   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
519   type = type->is_aryptr()->cast_to_exactness(true);
520 
521   const TypeInt* ltype = _gvn.find_int_type(length[0]);
522   if (ltype != nullptr)
523     type = type->is_aryptr()->cast_to_size(ltype);
524 
525     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
526 
527   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
528   push(cast);
529 
530   // Possible improvements:
531   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
532   // - Issue CastII against length[*] values, to TypeInt::POS.
533 }