1 /*
2 * Copyright (c) 1998, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciInstanceKlass.hpp"
26 #include "compiler/compileLog.hpp"
27 #include "interpreter/linkResolver.hpp"
28 #include "memory/universe.hpp"
29 #include "oops/accessDecorators.hpp"
30 #include "oops/flatArrayKlass.hpp"
31 #include "oops/objArrayKlass.hpp"
32 #include "opto/addnode.hpp"
33 #include "opto/castnode.hpp"
34 #include "opto/inlinetypenode.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/parse.hpp"
37 #include "opto/rootnode.hpp"
38 #include "opto/runtime.hpp"
39 #include "opto/subnode.hpp"
40 #include "runtime/deoptimization.hpp"
41 #include "runtime/handles.inline.hpp"
42
43 //=============================================================================
44 // Helper methods for _get* and _put* bytecodes
45 //=============================================================================
46
47 void Parse::do_field_access(bool is_get, bool is_field) {
48 bool will_link;
49 ciField* field = iter().get_field(will_link);
50 assert(will_link, "getfield: typeflow responsibility");
51
52 if (is_field == field->is_static()) {
53 // Interpreter will throw java_lang_IncompatibleClassChangeError
54 // Check this before allowing <clinit> methods to access static fields
55 uncommon_trap(Deoptimization::Reason_unhandled,
56 Deoptimization::Action_none);
57 return;
58 }
59
60 // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
61 ciInstanceKlass* field_holder = field->holder();
62 if (!is_get && field->is_call_site_target() &&
63 !(method()->holder() == field_holder && method()->is_object_constructor())) {
64 uncommon_trap(Deoptimization::Reason_unhandled,
65 Deoptimization::Action_reinterpret,
66 nullptr, "put to call site target field");
67 return;
68 }
69
70 if (C->needs_clinit_barrier(field, method())) {
71 clinit_barrier(field_holder, method());
72 if (stopped()) return;
73 }
74
75 assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
76
77 // Note: We do not check for an unloaded field type here any more.
78
79 // Generate code for the object pointer.
80 Node* obj;
81 if (is_field) {
82 int obj_depth = is_get ? 0 : field->type()->size();
83 obj = null_check(peek(obj_depth));
84 // Compile-time detect of null-exception?
85 if (stopped()) return;
86
87 #ifdef ASSERT
88 const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
89 assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
90 #endif
91
92 if (is_get) {
93 do_get_xxx(obj, field);
94 } else {
95 do_put_xxx(obj, field, is_field);
96 if (stopped()) {
97 return;
98 }
99 (void) pop(); // pop receiver after putting
100 }
101 } else {
102 const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
103 obj = _gvn.makecon(tip);
104 if (is_get) {
105 do_get_xxx(obj, field);
106 } else {
107 do_put_xxx(obj, field, is_field);
108 }
109 }
110 }
111
112 void Parse::do_get_xxx(Node* obj, ciField* field) {
113 obj = cast_to_non_larval(obj);
114 BasicType bt = field->layout_type();
115 // Does this field have a constant value? If so, just push the value.
116 if (field->is_constant() && !field->is_flat() &&
117 // Keep consistent with types found by ciTypeFlow: for an
118 // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
119 // speculates the field is null. The code in the rest of this
120 // method does the same. We must not bypass it and use a non
121 // null constant here.
122 (bt != T_OBJECT || field->type()->is_loaded())) {
123 // final or stable field
124 Node* con = make_constant_from_field(field, obj);
125 if (con != nullptr) {
126 if (!field->is_static()) {
127 pop();
128 }
129 push_node(field->layout_type(), con);
130 return;
131 }
132 }
133
134 if (obj->is_InlineType()) {
135 assert(!field->is_static(), "must not be a static field");
136 InlineTypeNode* vt = obj->as_InlineType();
137 Node* value = vt->field_value_by_offset(field->offset_in_bytes(), false);
138 if (value->is_InlineType()) {
139 value = value->as_InlineType()->adjust_scalarization_depth(this);
140 }
141 pop();
142 push_node(field->layout_type(), value);
143 return;
144 }
145
146 ciType* field_klass = field->type();
147 field_klass = improve_abstract_inline_type_klass(field_klass);
148 int offset = field->offset_in_bytes();
149 bool must_assert_null = false;
150 Node* adr = basic_plus_adr(obj, obj, offset);
151 assert(C->get_alias_index(C->alias_type(field)->adr_type()) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
152 "slice of address and input slice don't match");
153
154 Node* ld = nullptr;
155 if (field->is_null_free() && field_klass->as_inline_klass()->is_empty()) {
156 // Loading from a field of an empty inline type. Just return the default instance.
157 ld = InlineTypeNode::make_all_zero(_gvn, field_klass->as_inline_klass());
158 } else if (field->is_flat()) {
159 // Loading from a flat inline type field.
160 ciInlineKlass* vk = field->type()->as_inline_klass();
161 bool is_immutable = field->is_final() && field->is_strict();
162 bool atomic = field->is_atomic();
163 ld = InlineTypeNode::make_from_flat(this, field_klass->as_inline_klass(), obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
164 } else {
165 // Build the resultant type of the load
166 const Type* type;
167 if (is_reference_type(bt)) {
168 if (!field_klass->is_loaded()) {
169 type = TypeInstPtr::BOTTOM;
170 must_assert_null = true;
171 } else if (field->is_static_constant()) {
172 // This can happen if the constant oop is non-perm.
173 ciObject* con = field->constant_value().as_object();
174 // Do not "join" in the previous type; it doesn't add value,
175 // and may yield a vacuous result if the field is of interface type.
176 if (con->is_null_object()) {
177 type = TypePtr::NULL_PTR;
178 } else {
179 type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
180 }
181 assert(type != nullptr, "field singleton type must be consistent");
182 } else {
183 type = TypeOopPtr::make_from_klass(field_klass->as_klass());
184 if (field->is_null_free()) {
185 type = type->join_speculative(TypePtr::NOTNULL);
186 }
187 }
188 } else {
189 type = Type::get_const_basic_type(bt);
190 }
191
192 const TypePtr* adr_type = C->alias_type(field)->adr_type();
193 DecoratorSet decorators = IN_HEAP;
194 decorators |= field->is_volatile() ? MO_SEQ_CST : MO_UNORDERED;
195 ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
196 if (field_klass->is_inlinetype()) {
197 // Load a non-flattened inline type from memory
198 ld = InlineTypeNode::make_from_oop(this, ld, field_klass->as_inline_klass());
199 }
200 }
201
202 // Adjust Java stack
203 if (!field->is_static()) {
204 pop();
205 }
206 if (type2size[bt] == 1) {
207 push(ld);
208 } else {
209 push_pair(ld);
210 }
211
212 if (must_assert_null) {
213 // Do not take a trap here. It's possible that the program
214 // will never load the field's class, and will happily see
215 // null values in this field forever. Don't stumble into a
216 // trap for such a program, or we might get a long series
217 // of useless recompilations. (Or, we might load a class
218 // which should not be loaded.) If we ever see a non-null
219 // value, we will then trap and recompile. (The trap will
220 // not need to mention the class index, since the class will
221 // already have been loaded if we ever see a non-null value.)
222 // uncommon_trap(iter().get_field_signature_index());
223 if (PrintOpto && (Verbose || WizardMode)) {
224 method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
225 }
226 if (C->log() != nullptr) {
227 C->log()->elem("assert_null reason='field' klass='%d'",
228 C->log()->identify(field_klass));
229 }
230 // If there is going to be a trap, put it at the next bytecode:
231 set_bci(iter().next_bci());
232 null_assert(peek());
233 set_bci(iter().cur_bci()); // put it back
234 }
235 }
236
237 // If the field klass is an abstract value klass (for which we do not know the layout, yet), it could have a unique
238 // concrete sub klass for which we have a fixed layout. This allows us to use InlineTypeNodes instead.
239 ciType* Parse::improve_abstract_inline_type_klass(ciType* field_klass) {
240 Dependencies* dependencies = C->dependencies();
241 if (UseUniqueSubclasses && dependencies != nullptr && field_klass->is_instance_klass()) {
242 ciInstanceKlass* instance_klass = field_klass->as_instance_klass();
243 if (instance_klass->is_loaded() && instance_klass->is_abstract_value_klass()) {
244 ciInstanceKlass* sub_klass = instance_klass->unique_concrete_subklass();
245 if (sub_klass != nullptr && sub_klass != field_klass) {
246 field_klass = sub_klass;
247 dependencies->assert_abstract_with_unique_concrete_subtype(instance_klass, sub_klass);
248 }
249 }
250 }
251 return field_klass;
252 }
253
254 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
255 bool is_vol = field->is_volatile();
256 int offset = field->offset_in_bytes();
257
258 BasicType bt = field->layout_type();
259 Node* val = type2size[bt] == 1 ? pop() : pop_pair();
260 if (field->is_null_free()) {
261 PreserveReexecuteState preexecs(this);
262 jvms()->set_should_reexecute(true);
263 inc_sp(1);
264 val = null_check(val);
265 if (stopped()) {
266 return;
267 }
268 }
269
270 val = cast_to_non_larval(val);
271 Node* adr = basic_plus_adr(obj, obj, offset);
272
273 // We cannot store into a non-larval object, so obj must not be an InlineTypeNode
274 assert(!obj->is_InlineType(), "InlineTypeNodes are non-larval value objects");
275 if (field->is_null_free() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
276 // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
277 return;
278 } else if (field->is_flat()) {
279 // Storing to a flat inline type field.
280 ciInlineKlass* vk = field->type()->as_inline_klass();
281 if (!val->is_InlineType()) {
282 assert(gvn().type(val) == TypePtr::NULL_PTR, "Unexpected value");
283 val = InlineTypeNode::make_null(gvn(), vk);
284 }
285 inc_sp(1);
286 bool is_immutable = field->is_final() && field->is_strict();
287 bool atomic = field->is_atomic();
288 val->as_InlineType()->store_flat(this, obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
289 dec_sp(1);
290 } else {
291 // Store the value.
292 const Type* field_type;
293 if (!field->type()->is_loaded()) {
294 field_type = TypeInstPtr::BOTTOM;
295 } else {
296 if (is_reference_type(bt)) {
297 field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
298 } else {
299 field_type = Type::BOTTOM;
300 }
301 }
302
303 const TypePtr* adr_type = C->alias_type(field)->adr_type();
304 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
305 "slice of address and input slice don't match");
306 DecoratorSet decorators = IN_HEAP;
307 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
308 inc_sp(1);
309 access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
310 dec_sp(1);
311 }
312
313 if (is_field) {
314 // Remember we wrote a volatile field.
315 // For not multiple copy atomic cpu (ppc64) a barrier should be issued
316 // in constructors which have such stores. See do_exits() in parse1.cpp.
317 if (is_vol) {
318 set_wrote_volatile(true);
319 }
320 set_wrote_fields(true);
321
322 // If the field is final, the rules of Java say we are in <init> or <clinit>.
323 // If the field is @Stable, we can be in any method, but we only care about
324 // constructors at this point.
325 //
326 // Note the presence of writes to final/@Stable non-static fields, so that we
327 // can insert a memory barrier later on to keep the writes from floating
328 // out of the constructor.
329 if (field->is_final() || field->is_stable()) {
330 if (field->is_final()) {
331 set_wrote_final(true);
332 }
333 if (field->is_stable()) {
334 set_wrote_stable(true);
335 }
336 if (AllocateNode::Ideal_allocation(obj) != nullptr) {
337 // Preserve allocation ptr to create precedent edge to it in membar
338 // generated on exit from constructor.
339 set_alloc_with_final_or_stable(obj);
340 }
341 }
342 }
343 }
344
345 //=============================================================================
346
347 void Parse::do_newarray() {
348 bool will_link;
349 ciKlass* klass = iter().get_klass(will_link);
350
351 // Uncommon Trap when class that array contains is not loaded
352 // we need the loaded class for the rest of graph; do not
353 // initialize the container class (see Java spec)!!!
354 assert(will_link, "newarray: typeflow responsibility");
355
356 ciArrayKlass* array_klass = ciArrayKlass::make(klass);
357
358 // Check that array_klass object is loaded
359 if (!array_klass->is_loaded()) {
360 // Generate uncommon_trap for unloaded array_class
361 uncommon_trap(Deoptimization::Reason_unloaded,
362 Deoptimization::Action_reinterpret,
363 array_klass);
364 return;
365 } else if (array_klass->element_klass() != nullptr &&
366 array_klass->element_klass()->is_inlinetype() &&
367 !array_klass->element_klass()->as_inline_klass()->is_initialized()) {
368 uncommon_trap(Deoptimization::Reason_uninitialized,
369 Deoptimization::Action_reinterpret,
370 nullptr);
371 return;
372 }
373
374 kill_dead_locals();
375
376 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
377 array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
378 Node* count_val = pop();
379 Node* obj = new_array(makecon(array_klass_type), count_val, 1);
380 push(obj);
381 }
382
383
384 void Parse::do_newarray(BasicType elem_type) {
385 kill_dead_locals();
386
387 Node* count_val = pop();
388 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
389 Node* obj = new_array(makecon(array_klass), count_val, 1);
390 // Push resultant oop onto stack
391 push(obj);
392 }
393
394 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
395 // Also handle the degenerate 1-dimensional case of anewarray.
396 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
397 Node* length = lengths[0];
398 assert(length != nullptr, "");
399 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
400 array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
401 Node* array = new_array(makecon(array_klass_type), length, nargs);
402 if (ndimensions > 1) {
403 jint length_con = find_int_con(length, -1);
404 guarantee(length_con >= 0, "non-constant multianewarray");
405 ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
406 const TypePtr* adr_type = TypeAryPtr::OOPS;
407 const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
408 const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
409 for (jint i = 0; i < length_con; i++) {
410 Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
411 intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
412 Node* eaddr = basic_plus_adr(array, offset);
413 access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
414 }
415 }
416 return array;
417 }
418
419 void Parse::do_multianewarray() {
420 int ndimensions = iter().get_dimensions();
421
422 // the m-dimensional array
423 bool will_link;
424 ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
425 assert(will_link, "multianewarray: typeflow responsibility");
426
427 // Note: Array classes are always initialized; no is_initialized check.
428
429 kill_dead_locals();
430
431 // get the lengths from the stack (first dimension is on top)
432 Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
433 length[ndimensions] = nullptr; // terminating null for make_runtime_call
434 int j;
435 ciKlass* elem_klass = array_klass;
436 for (j = ndimensions-1; j >= 0; j--) {
437 length[j] = pop();
438 elem_klass = elem_klass->as_array_klass()->element_klass();
439 }
440 if (elem_klass != nullptr && elem_klass->is_inlinetype() && !elem_klass->as_inline_klass()->is_initialized()) {
441 inc_sp(ndimensions);
442 uncommon_trap(Deoptimization::Reason_uninitialized,
443 Deoptimization::Action_reinterpret,
444 nullptr);
445 return;
446 }
447
448 // The original expression was of this form: new T[length0][length1]...
449 // It is often the case that the lengths are small (except the last).
450 // If that happens, use the fast 1-d creator a constant number of times.
451 const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
452 int64_t expand_count = 1; // count of allocations in the expansion
453 int64_t expand_fanout = 1; // running total fanout
454 for (j = 0; j < ndimensions-1; j++) {
455 int dim_con = find_int_con(length[j], -1);
456 // To prevent overflow, we use 64-bit values. Alternatively,
457 // we could clamp dim_con like so:
458 // dim_con = MIN2(dim_con, expand_limit);
459 expand_fanout *= dim_con;
460 expand_count += expand_fanout; // count the level-J sub-arrays
461 if (dim_con <= 0
462 || dim_con > expand_limit
463 || expand_count > expand_limit) {
464 expand_count = 0;
465 break;
466 }
467 }
468
469 // Can use multianewarray instead of [a]newarray if only one dimension,
470 // or if all non-final dimensions are small constants.
471 if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
472 Node* obj = nullptr;
473 // Set the original stack and the reexecute bit for the interpreter
474 // to reexecute the multianewarray bytecode if deoptimization happens.
475 // Do it unconditionally even for one dimension multianewarray.
476 // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
477 // when AllocateArray node for newarray is created.
478 { PreserveReexecuteState preexecs(this);
479 inc_sp(ndimensions);
480 // Pass 0 as nargs since uncommon trap code does not need to restore stack.
481 obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
482 } //original reexecute and sp are set back here
483 push(obj);
484 return;
485 }
486
487 address fun = nullptr;
488 switch (ndimensions) {
489 case 1: ShouldNotReachHere(); break;
490 case 2: fun = OptoRuntime::multianewarray2_Java(); break;
491 case 3: fun = OptoRuntime::multianewarray3_Java(); break;
492 case 4: fun = OptoRuntime::multianewarray4_Java(); break;
493 case 5: fun = OptoRuntime::multianewarray5_Java(); break;
494 };
495 Node* c = nullptr;
496
497 if (fun != nullptr) {
498 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
499 OptoRuntime::multianewarray_Type(ndimensions),
500 fun, nullptr, TypeRawPtr::BOTTOM,
501 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
502 length[0], length[1], length[2],
503 (ndimensions > 2) ? length[3] : nullptr,
504 (ndimensions > 3) ? length[4] : nullptr);
505 } else {
506 // Create a java array for dimension sizes
507 Node* dims = nullptr;
508 { PreserveReexecuteState preexecs(this);
509 inc_sp(ndimensions);
510 Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
511 dims = new_array(dims_array_klass, intcon(ndimensions), 0);
512
513 // Fill-in it with values
514 for (j = 0; j < ndimensions; j++) {
515 Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
516 store_to_memory(control(), dims_elem, length[j], T_INT, MemNode::unordered);
517 }
518 }
519
520 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
521 OptoRuntime::multianewarrayN_Type(),
522 OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM,
523 makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
524 dims);
525 }
526 make_slow_call_ex(c, env()->Throwable_klass(), false);
527
528 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
529
530 const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces);
531
532 // Improve the type: We know it's not null, exact, and of a given length.
533 type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
534 type = type->is_aryptr()->cast_to_exactness(true);
535
536 const TypeInt* ltype = _gvn.find_int_type(length[0]);
537 if (ltype != nullptr)
538 type = type->is_aryptr()->cast_to_size(ltype);
539
540 // We cannot sharpen the nested sub-arrays, since the top level is mutable.
541
542 Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
543 push(cast);
544
545 // Possible improvements:
546 // - Make a fast path for small multi-arrays. (W/ implicit init. loops.)
547 // - Issue CastII against length[*] values, to TypeInt::POS.
548 }