1 /*
  2  * Copyright (c) 1998, 2026, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciInstanceKlass.hpp"
 26 #include "compiler/compileLog.hpp"
 27 #include "interpreter/linkResolver.hpp"
 28 #include "memory/universe.hpp"
 29 #include "oops/accessDecorators.hpp"
 30 #include "oops/flatArrayKlass.hpp"
 31 #include "oops/objArrayKlass.hpp"
 32 #include "opto/addnode.hpp"
 33 #include "opto/castnode.hpp"
 34 #include "opto/inlinetypenode.hpp"
 35 #include "opto/memnode.hpp"
 36 #include "opto/parse.hpp"
 37 #include "opto/rootnode.hpp"
 38 #include "opto/runtime.hpp"
 39 #include "opto/subnode.hpp"
 40 #include "runtime/deoptimization.hpp"
 41 #include "runtime/handles.inline.hpp"
 42 
 43 //=============================================================================
 44 // Helper methods for _get* and _put* bytecodes
 45 //=============================================================================
 46 
 47 void Parse::do_field_access(bool is_get, bool is_field) {
 48   bool will_link;
 49   ciField* field = iter().get_field(will_link);
 50   assert(will_link, "getfield: typeflow responsibility");
 51 
 52   if (is_field == field->is_static()) {
 53     // Interpreter will throw java_lang_IncompatibleClassChangeError
 54     // Check this before allowing <clinit> methods to access static fields
 55     uncommon_trap(Deoptimization::Reason_unhandled,
 56                   Deoptimization::Action_none);
 57     return;
 58   }
 59 
 60   // Deoptimize on putfield writes to call site target field outside of CallSite ctor.
 61   ciInstanceKlass* field_holder = field->holder();
 62   if (!is_get && field->is_call_site_target() &&
 63       !(method()->holder() == field_holder && method()->is_object_constructor())) {
 64     uncommon_trap(Deoptimization::Reason_unhandled,
 65                   Deoptimization::Action_reinterpret,
 66                   nullptr, "put to call site target field");
 67     return;
 68   }
 69 
 70   if (C->needs_clinit_barrier(field, method())) {
 71     clinit_barrier(field_holder, method());
 72     if (stopped())  return;
 73   }
 74 
 75   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 76 
 77   // Note:  We do not check for an unloaded field type here any more.
 78 
 79   // Generate code for the object pointer.
 80   Node* obj;
 81   if (is_field) {
 82     int obj_depth = is_get ? 0 : field->type()->size();
 83     obj = null_check(peek(obj_depth));
 84     // Compile-time detect of null-exception?
 85     if (stopped())  return;
 86 
 87 #ifdef ASSERT
 88     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 89     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 90 #endif
 91 
 92     if (is_get) {
 93       do_get_xxx(obj, field);
 94     } else {
 95       do_put_xxx(obj, field, is_field);
 96       if (stopped()) {
 97         return;
 98       }
 99       (void) pop();  // pop receiver after putting
100     }
101   } else {
102     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
103     obj = _gvn.makecon(tip);
104     if (is_get) {
105       do_get_xxx(obj, field);
106     } else {
107       do_put_xxx(obj, field, is_field);
108     }
109   }
110 }
111 
112 void Parse::do_get_xxx(Node* obj, ciField* field) {
113   obj = cast_to_non_larval(obj);
114   BasicType bt = field->layout_type();
115   // Does this field have a constant value?  If so, just push the value.
116   if (field->is_constant() && !field->is_flat() &&
117       // Keep consistent with types found by ciTypeFlow: for an
118       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
119       // speculates the field is null. The code in the rest of this
120       // method does the same. We must not bypass it and use a non
121       // null constant here.
122       (bt != T_OBJECT || field->type()->is_loaded())) {
123     // final or stable field
124     Node* con = make_constant_from_field(field, obj);
125     if (con != nullptr) {
126       if (!field->is_static()) {
127         pop();
128       }
129       push_node(field->layout_type(), con);
130       return;
131     }
132   }
133 
134   if (obj->is_InlineType()) {
135     assert(!field->is_static(), "must not be a static field");
136     InlineTypeNode* vt = obj->as_InlineType();
137     Node* value = vt->field_value_by_offset(field->offset_in_bytes(), false);
138     if (value->is_InlineType()) {
139       value = value->as_InlineType()->adjust_scalarization_depth(this);
140     }
141     pop();
142     push_node(field->layout_type(), value);
143     return;
144   }
145 
146   ciType* field_klass = field->type();
147   field_klass = improve_abstract_inline_type_klass(field_klass);
148   int offset = field->offset_in_bytes();
149   bool must_assert_null = false;
150   Node* adr = basic_plus_adr(obj, obj, offset);
151   assert(C->get_alias_index(C->alias_type(field)->adr_type()) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
152          "slice of address and input slice don't match");
153 
154   Node* ld = nullptr;
155   if (field->is_null_free() && field_klass->as_inline_klass()->is_empty()) {
156     // Loading from a field of an empty inline type. Just return the default instance.
157     ld = InlineTypeNode::make_all_zero(_gvn, field_klass->as_inline_klass());
158   } else if (field->is_flat()) {
159     // Loading from a flat inline type field.
160     ciInlineKlass* vk = field->type()->as_inline_klass();
161     bool is_immutable = field->is_final() && field->is_strict();
162     bool atomic = field->is_atomic();
163     ld = InlineTypeNode::make_from_flat(this, field_klass->as_inline_klass(), obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
164   } else {
165     // Build the resultant type of the load
166     const Type* type;
167     if (is_reference_type(bt)) {
168       if (!field_klass->is_loaded()) {
169         type = TypeInstPtr::BOTTOM;
170         must_assert_null = true;
171       } else if (field->is_static_constant()) {
172         // This can happen if the constant oop is non-perm.
173         ciObject* con = field->constant_value().as_object();
174         // Do not "join" in the previous type; it doesn't add value,
175         // and may yield a vacuous result if the field is of interface type.
176         if (con->is_null_object()) {
177           type = TypePtr::NULL_PTR;
178         } else {
179           type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
180         }
181         assert(type != nullptr, "field singleton type must be consistent");
182       } else {
183         type = TypeOopPtr::make_from_klass(field_klass->as_klass());
184         if (field->is_null_free()) {
185           type = type->join_speculative(TypePtr::NOTNULL);
186         }
187       }
188     } else {
189       type = Type::get_const_basic_type(bt);
190     }
191 
192     const TypePtr* adr_type = C->alias_type(field)->adr_type();
193     DecoratorSet decorators = IN_HEAP;
194     decorators |= field->is_volatile() ? MO_SEQ_CST : MO_UNORDERED;
195     ld = access_load_at(obj, adr, adr_type, type, bt, decorators);
196     if (field_klass->is_inlinetype()) {
197       // Load a non-flattened inline type from memory
198       ld = InlineTypeNode::make_from_oop(this, ld, field_klass->as_inline_klass());
199     }
200   }
201 
202   // Adjust Java stack
203   if (!field->is_static()) {
204     pop();
205   }
206   if (type2size[bt] == 1) {
207     push(ld);
208   } else {
209     push_pair(ld);
210   }
211 
212   if (must_assert_null) {
213     // Do not take a trap here.  It's possible that the program
214     // will never load the field's class, and will happily see
215     // null values in this field forever.  Don't stumble into a
216     // trap for such a program, or we might get a long series
217     // of useless recompilations.  (Or, we might load a class
218     // which should not be loaded.)  If we ever see a non-null
219     // value, we will then trap and recompile.  (The trap will
220     // not need to mention the class index, since the class will
221     // already have been loaded if we ever see a non-null value.)
222     // uncommon_trap(iter().get_field_signature_index());
223     if (PrintOpto && (Verbose || WizardMode)) {
224       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
225     }
226     if (C->log() != nullptr) {
227       C->log()->elem("assert_null reason='field' klass='%d'",
228                      C->log()->identify(field_klass));
229     }
230     // If there is going to be a trap, put it at the next bytecode:
231     set_bci(iter().next_bci());
232     null_assert(peek());
233     set_bci(iter().cur_bci()); // put it back
234   }
235 }
236 
237 // If the field klass is an abstract value klass (for which we do not know the layout, yet), it could have a unique
238 // concrete sub klass for which we have a fixed layout. This allows us to use InlineTypeNodes instead.
239 ciType* Parse::improve_abstract_inline_type_klass(ciType* field_klass) {
240   Dependencies* dependencies = C->dependencies();
241   if (UseUniqueSubclasses && dependencies != nullptr && field_klass->is_instance_klass()) {
242     ciInstanceKlass* instance_klass = field_klass->as_instance_klass();
243     if (instance_klass->is_loaded() && instance_klass->is_abstract_value_klass()) {
244       ciInstanceKlass* sub_klass = instance_klass->unique_concrete_subklass();
245       if (sub_klass != nullptr && sub_klass != field_klass) {
246         field_klass = sub_klass;
247         dependencies->assert_abstract_with_unique_concrete_subtype(instance_klass, sub_klass);
248       }
249     }
250   }
251   return field_klass;
252 }
253 
254 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
255   bool is_vol = field->is_volatile();
256   int offset = field->offset_in_bytes();
257 
258   BasicType bt = field->layout_type();
259   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
260   if (field->is_null_free()) {
261     PreserveReexecuteState preexecs(this);
262     jvms()->set_should_reexecute(true);
263     inc_sp(1);
264     val = null_check(val);
265     if (stopped()) {
266       return;
267     }
268   }
269 
270   val = cast_to_non_larval(val);
271   Node* adr = basic_plus_adr(obj, obj, offset);
272 
273   // We cannot store into a non-larval object, so obj must not be an InlineTypeNode
274   assert(!obj->is_InlineType(), "InlineTypeNodes are non-larval value objects");
275   if (field->is_null_free() && field->type()->as_inline_klass()->is_empty() && (!method()->is_object_constructor() || field->is_flat())) {
276     // Storing to a field of an empty, null-free inline type that is already initialized. Ignore.
277     return;
278   } else if (field->is_flat()) {
279     // Storing to a flat inline type field.
280     ciInlineKlass* vk = field->type()->as_inline_klass();
281     if (!val->is_InlineType()) {
282       assert(gvn().type(val) == TypePtr::NULL_PTR, "Unexpected value");
283       val = InlineTypeNode::make_null(gvn(), vk);
284     }
285     inc_sp(1);
286     bool is_immutable = field->is_final() && field->is_strict();
287     bool atomic = field->is_atomic();
288     val->as_InlineType()->store_flat(this, obj, adr, atomic, is_immutable, field->is_null_free(), IN_HEAP | MO_UNORDERED);
289     dec_sp(1);
290   } else {
291     // Store the value.
292     const Type* field_type;
293     if (!field->type()->is_loaded()) {
294       field_type = TypeInstPtr::BOTTOM;
295     } else {
296       if (is_reference_type(bt)) {
297         field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
298       } else {
299         field_type = Type::BOTTOM;
300       }
301     }
302 
303     const TypePtr* adr_type = C->alias_type(field)->adr_type();
304     assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
305            "slice of address and input slice don't match");
306     DecoratorSet decorators = IN_HEAP;
307     decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED;
308     inc_sp(1);
309     access_store_at(obj, adr, adr_type, val, field_type, bt, decorators);
310     dec_sp(1);
311   }
312 
313   if (is_field) {
314     // Remember we wrote a volatile field.
315     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
316     // in constructors which have such stores. See do_exits() in parse1.cpp.
317     if (is_vol) {
318       set_wrote_volatile(true);
319     }
320     set_wrote_fields(true);
321 
322     // If the field is final, the rules of Java say we are in <init> or <clinit>.
323     // If the field is @Stable, we can be in any method, but we only care about
324     // constructors at this point.
325     //
326     // Note the presence of writes to final/@Stable non-static fields, so that we
327     // can insert a memory barrier later on to keep the writes from floating
328     // out of the constructor.
329     if (field->is_final() || field->is_stable()) {
330       if (field->is_final()) {
331         set_wrote_final(true);
332       }
333       if (field->is_stable()) {
334         set_wrote_stable(true);
335       }
336       if (AllocateNode::Ideal_allocation(obj) != nullptr) {
337         // Preserve allocation ptr to create precedent edge to it in membar
338         // generated on exit from constructor.
339         set_alloc_with_final_or_stable(obj);
340       }
341     }
342   }
343 }
344 
345 //=============================================================================
346 
347 void Parse::do_newarray() {
348   bool will_link;
349   ciKlass* klass = iter().get_klass(will_link);
350 
351   // Uncommon Trap when class that array contains is not loaded
352   // we need the loaded class for the rest of graph; do not
353   // initialize the container class (see Java spec)!!!
354   assert(will_link, "newarray: typeflow responsibility");
355 
356   ciArrayKlass* array_klass = ciArrayKlass::make(klass);
357 
358   // Check that array_klass object is loaded
359   if (!array_klass->is_loaded()) {
360     // Generate uncommon_trap for unloaded array_class
361     uncommon_trap(Deoptimization::Reason_unloaded,
362                   Deoptimization::Action_reinterpret,
363                   array_klass);
364     return;
365   } else if (array_klass->element_klass() != nullptr &&
366              array_klass->element_klass()->is_inlinetype() &&
367              !array_klass->element_klass()->as_inline_klass()->is_initialized()) {
368     uncommon_trap(Deoptimization::Reason_uninitialized,
369                   Deoptimization::Action_reinterpret,
370                   nullptr);
371     return;
372   }
373 
374   kill_dead_locals();
375 
376   const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
377   array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
378   Node* count_val = pop();
379   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
380   push(obj);
381 }
382 
383 
384 void Parse::do_newarray(BasicType elem_type) {
385   kill_dead_locals();
386 
387   Node*   count_val = pop();
388   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
389   Node*   obj = new_array(makecon(array_klass), count_val, 1);
390   // Push resultant oop onto stack
391   push(obj);
392 }
393 
394 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
395 // Also handle the degenerate 1-dimensional case of anewarray.
396 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
397   Node* length = lengths[0];
398   assert(length != nullptr, "");
399   const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
400   array_klass_type = array_klass_type->cast_to_refined_array_klass_ptr();
401   Node* array = new_array(makecon(array_klass_type), length, nargs);
402   if (ndimensions > 1) {
403     jint length_con = find_int_con(length, -1);
404     guarantee(length_con >= 0, "non-constant multianewarray");
405     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
406     const TypePtr* adr_type = TypeAryPtr::OOPS;
407     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
408     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
409     for (jint i = 0; i < length_con; i++) {
410       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
411       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
412       Node*    eaddr  = basic_plus_adr(array, offset);
413       access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY);
414     }
415   }
416   return array;
417 }
418 
419 void Parse::do_multianewarray() {
420   int ndimensions = iter().get_dimensions();
421 
422   // the m-dimensional array
423   bool will_link;
424   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
425   assert(will_link, "multianewarray: typeflow responsibility");
426 
427   // Note:  Array classes are always initialized; no is_initialized check.
428 
429   kill_dead_locals();
430 
431   // get the lengths from the stack (first dimension is on top)
432   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
433   length[ndimensions] = nullptr;  // terminating null for make_runtime_call
434   int j;
435   ciKlass* elem_klass = array_klass;
436   for (j = ndimensions-1; j >= 0; j--) {
437     length[j] = pop();
438     elem_klass = elem_klass->as_array_klass()->element_klass();
439   }
440   if (elem_klass != nullptr && elem_klass->is_inlinetype() && !elem_klass->as_inline_klass()->is_initialized()) {
441     inc_sp(ndimensions);
442     uncommon_trap(Deoptimization::Reason_uninitialized,
443                   Deoptimization::Action_reinterpret,
444                   nullptr);
445     return;
446   }
447 
448   // The original expression was of this form: new T[length0][length1]...
449   // It is often the case that the lengths are small (except the last).
450   // If that happens, use the fast 1-d creator a constant number of times.
451   const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100);
452   int64_t expand_count = 1;        // count of allocations in the expansion
453   int64_t expand_fanout = 1;       // running total fanout
454   for (j = 0; j < ndimensions-1; j++) {
455     int dim_con = find_int_con(length[j], -1);
456     // To prevent overflow, we use 64-bit values.  Alternatively,
457     // we could clamp dim_con like so:
458     // dim_con = MIN2(dim_con, expand_limit);
459     expand_fanout *= dim_con;
460     expand_count  += expand_fanout; // count the level-J sub-arrays
461     if (dim_con <= 0
462         || dim_con > expand_limit
463         || expand_count > expand_limit) {
464       expand_count = 0;
465       break;
466     }
467   }
468 
469   // Can use multianewarray instead of [a]newarray if only one dimension,
470   // or if all non-final dimensions are small constants.
471   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
472     Node* obj = nullptr;
473     // Set the original stack and the reexecute bit for the interpreter
474     // to reexecute the multianewarray bytecode if deoptimization happens.
475     // Do it unconditionally even for one dimension multianewarray.
476     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
477     // when AllocateArray node for newarray is created.
478     { PreserveReexecuteState preexecs(this);
479       inc_sp(ndimensions);
480       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
481       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
482     } //original reexecute and sp are set back here
483     push(obj);
484     return;
485   }
486 
487   address fun = nullptr;
488   switch (ndimensions) {
489   case 1: ShouldNotReachHere(); break;
490   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
491   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
492   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
493   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
494   };
495   Node* c = nullptr;
496 
497   if (fun != nullptr) {
498     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
499                           OptoRuntime::multianewarray_Type(ndimensions),
500                           fun, nullptr, TypeRawPtr::BOTTOM,
501                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
502                           length[0], length[1], length[2],
503                           (ndimensions > 2) ? length[3] : nullptr,
504                           (ndimensions > 3) ? length[4] : nullptr);
505   } else {
506     // Create a java array for dimension sizes
507     Node* dims = nullptr;
508     { PreserveReexecuteState preexecs(this);
509       inc_sp(ndimensions);
510       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
511       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
512 
513       // Fill-in it with values
514       for (j = 0; j < ndimensions; j++) {
515         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
516         store_to_memory(control(), dims_elem, length[j], T_INT, MemNode::unordered);
517       }
518     }
519 
520     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
521                           OptoRuntime::multianewarrayN_Type(),
522                           OptoRuntime::multianewarrayN_Java(), nullptr, TypeRawPtr::BOTTOM,
523                           makecon(TypeKlassPtr::make(array_klass, Type::trust_interfaces)),
524                           dims);
525   }
526   make_slow_call_ex(c, env()->Throwable_klass(), false);
527 
528   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
529 
530   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass, Type::trust_interfaces);
531 
532   // Improve the type:  We know it's not null, exact, and of a given length.
533   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
534   type = type->is_aryptr()->cast_to_exactness(true);
535 
536   const TypeInt* ltype = _gvn.find_int_type(length[0]);
537   if (ltype != nullptr)
538     type = type->is_aryptr()->cast_to_size(ltype);
539 
540     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
541 
542   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
543   push(cast);
544 
545   // Possible improvements:
546   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
547   // - Issue CastII against length[*] values, to TypeInt::POS.
548 }