1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "memory/resourceArea.hpp" 30 #include "opto/block.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/cfgnode.hpp" 34 #include "opto/idealGraphPrinter.hpp" 35 #include "opto/loopnode.hpp" 36 #include "opto/machnode.hpp" 37 #include "opto/opcodes.hpp" 38 #include "opto/phaseX.hpp" 39 #include "opto/regalloc.hpp" 40 #include "opto/rootnode.hpp" 41 #include "utilities/macros.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 44 //============================================================================= 45 #define NODE_HASH_MINIMUM_SIZE 255 46 //------------------------------NodeHash--------------------------------------- 47 NodeHash::NodeHash(uint est_max_size) : 48 _a(Thread::current()->resource_area()), 49 _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), 50 _inserts(0), _insert_limit( insert_limit() ), 51 _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) // (Node**)_a->Amalloc(_max * sizeof(Node*)) ), 52 #ifndef PRODUCT 53 , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), 54 _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), 55 _total_inserts(0), _total_insert_probes(0) 56 #endif 57 { 58 // _sentinel must be in the current node space 59 _sentinel = new ProjNode(NULL, TypeFunc::Control); 60 memset(_table,0,sizeof(Node*)*_max); 61 } 62 63 //------------------------------NodeHash--------------------------------------- 64 NodeHash::NodeHash(Arena *arena, uint est_max_size) : 65 _a(arena), 66 _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ), 67 _inserts(0), _insert_limit( insert_limit() ), 68 _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ) 69 #ifndef PRODUCT 70 , _grows(0),_look_probes(0), _lookup_hits(0), _lookup_misses(0), 71 _insert_probes(0), _delete_probes(0), _delete_hits(0), _delete_misses(0), 72 _total_inserts(0), _total_insert_probes(0) 73 #endif 74 { 75 // _sentinel must be in the current node space 76 _sentinel = new ProjNode(NULL, TypeFunc::Control); 77 memset(_table,0,sizeof(Node*)*_max); 78 } 79 80 //------------------------------NodeHash--------------------------------------- 81 NodeHash::NodeHash(NodeHash *nh) { 82 debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= 83 // just copy in all the fields 84 *this = *nh; 85 // nh->_sentinel must be in the current node space 86 } 87 88 void NodeHash::replace_with(NodeHash *nh) { 89 debug_only(_table = (Node**)badAddress); // interact correctly w/ operator= 90 // just copy in all the fields 91 *this = *nh; 92 // nh->_sentinel must be in the current node space 93 } 94 95 //------------------------------hash_find-------------------------------------- 96 // Find in hash table 97 Node *NodeHash::hash_find( const Node *n ) { 98 // ((Node*)n)->set_hash( n->hash() ); 99 uint hash = n->hash(); 100 if (hash == Node::NO_HASH) { 101 NOT_PRODUCT( _lookup_misses++ ); 102 return NULL; 103 } 104 uint key = hash & (_max-1); 105 uint stride = key | 0x01; 106 NOT_PRODUCT( _look_probes++ ); 107 Node *k = _table[key]; // Get hashed value 108 if( !k ) { // ?Miss? 109 NOT_PRODUCT( _lookup_misses++ ); 110 return NULL; // Miss! 111 } 112 113 int op = n->Opcode(); 114 uint req = n->req(); 115 while( 1 ) { // While probing hash table 116 if( k->req() == req && // Same count of inputs 117 k->Opcode() == op ) { // Same Opcode 118 for( uint i=0; i<req; i++ ) 119 if( n->in(i)!=k->in(i)) // Different inputs? 120 goto collision; // "goto" is a speed hack... 121 if( n->cmp(*k) ) { // Check for any special bits 122 NOT_PRODUCT( _lookup_hits++ ); 123 return k; // Hit! 124 } 125 } 126 collision: 127 NOT_PRODUCT( _look_probes++ ); 128 key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime 129 k = _table[key]; // Get hashed value 130 if( !k ) { // ?Miss? 131 NOT_PRODUCT( _lookup_misses++ ); 132 return NULL; // Miss! 133 } 134 } 135 ShouldNotReachHere(); 136 return NULL; 137 } 138 139 //------------------------------hash_find_insert------------------------------- 140 // Find in hash table, insert if not already present 141 // Used to preserve unique entries in hash table 142 Node *NodeHash::hash_find_insert( Node *n ) { 143 // n->set_hash( ); 144 uint hash = n->hash(); 145 if (hash == Node::NO_HASH) { 146 NOT_PRODUCT( _lookup_misses++ ); 147 return NULL; 148 } 149 uint key = hash & (_max-1); 150 uint stride = key | 0x01; // stride must be relatively prime to table siz 151 uint first_sentinel = 0; // replace a sentinel if seen. 152 NOT_PRODUCT( _look_probes++ ); 153 Node *k = _table[key]; // Get hashed value 154 if( !k ) { // ?Miss? 155 NOT_PRODUCT( _lookup_misses++ ); 156 _table[key] = n; // Insert into table! 157 debug_only(n->enter_hash_lock()); // Lock down the node while in the table. 158 check_grow(); // Grow table if insert hit limit 159 return NULL; // Miss! 160 } 161 else if( k == _sentinel ) { 162 first_sentinel = key; // Can insert here 163 } 164 165 int op = n->Opcode(); 166 uint req = n->req(); 167 while( 1 ) { // While probing hash table 168 if( k->req() == req && // Same count of inputs 169 k->Opcode() == op ) { // Same Opcode 170 for( uint i=0; i<req; i++ ) 171 if( n->in(i)!=k->in(i)) // Different inputs? 172 goto collision; // "goto" is a speed hack... 173 if( n->cmp(*k) ) { // Check for any special bits 174 NOT_PRODUCT( _lookup_hits++ ); 175 return k; // Hit! 176 } 177 } 178 collision: 179 NOT_PRODUCT( _look_probes++ ); 180 key = (key + stride) & (_max-1); // Stride through table w/ relative prime 181 k = _table[key]; // Get hashed value 182 if( !k ) { // ?Miss? 183 NOT_PRODUCT( _lookup_misses++ ); 184 key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel? 185 _table[key] = n; // Insert into table! 186 debug_only(n->enter_hash_lock()); // Lock down the node while in the table. 187 check_grow(); // Grow table if insert hit limit 188 return NULL; // Miss! 189 } 190 else if( first_sentinel == 0 && k == _sentinel ) { 191 first_sentinel = key; // Can insert here 192 } 193 194 } 195 ShouldNotReachHere(); 196 return NULL; 197 } 198 199 //------------------------------hash_insert------------------------------------ 200 // Insert into hash table 201 void NodeHash::hash_insert( Node *n ) { 202 // // "conflict" comments -- print nodes that conflict 203 // bool conflict = false; 204 // n->set_hash(); 205 uint hash = n->hash(); 206 if (hash == Node::NO_HASH) { 207 return; 208 } 209 check_grow(); 210 uint key = hash & (_max-1); 211 uint stride = key | 0x01; 212 213 while( 1 ) { // While probing hash table 214 NOT_PRODUCT( _insert_probes++ ); 215 Node *k = _table[key]; // Get hashed value 216 if( !k || (k == _sentinel) ) break; // Found a slot 217 assert( k != n, "already inserted" ); 218 // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print(" conflict: "); k->dump(); conflict = true; } 219 key = (key + stride) & (_max-1); // Stride through table w/ relative prime 220 } 221 _table[key] = n; // Insert into table! 222 debug_only(n->enter_hash_lock()); // Lock down the node while in the table. 223 // if( conflict ) { n->dump(); } 224 } 225 226 //------------------------------hash_delete------------------------------------ 227 // Replace in hash table with sentinel 228 bool NodeHash::hash_delete( const Node *n ) { 229 Node *k; 230 uint hash = n->hash(); 231 if (hash == Node::NO_HASH) { 232 NOT_PRODUCT( _delete_misses++ ); 233 return false; 234 } 235 uint key = hash & (_max-1); 236 uint stride = key | 0x01; 237 debug_only( uint counter = 0; ); 238 for( ; /* (k != NULL) && (k != _sentinel) */; ) { 239 debug_only( counter++ ); 240 NOT_PRODUCT( _delete_probes++ ); 241 k = _table[key]; // Get hashed value 242 if( !k ) { // Miss? 243 NOT_PRODUCT( _delete_misses++ ); 244 return false; // Miss! Not in chain 245 } 246 else if( n == k ) { 247 NOT_PRODUCT( _delete_hits++ ); 248 _table[key] = _sentinel; // Hit! Label as deleted entry 249 debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table. 250 return true; 251 } 252 else { 253 // collision: move through table with prime offset 254 key = (key + stride/*7*/) & (_max-1); 255 assert( counter <= _insert_limit, "Cycle in hash-table"); 256 } 257 } 258 ShouldNotReachHere(); 259 return false; 260 } 261 262 //------------------------------round_up--------------------------------------- 263 // Round up to nearest power of 2 264 uint NodeHash::round_up(uint x) { 265 x += (x >> 2); // Add 25% slop 266 return MAX2(16U, round_up_power_of_2(x)); 267 } 268 269 //------------------------------grow------------------------------------------- 270 // Grow _table to next power of 2 and insert old entries 271 void NodeHash::grow() { 272 // Record old state 273 uint old_max = _max; 274 Node **old_table = _table; 275 // Construct new table with twice the space 276 #ifndef PRODUCT 277 _grows++; 278 _total_inserts += _inserts; 279 _total_insert_probes += _insert_probes; 280 _insert_probes = 0; 281 #endif 282 _inserts = 0; 283 _max = _max << 1; 284 _table = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) ); 285 memset(_table,0,sizeof(Node*)*_max); 286 _insert_limit = insert_limit(); 287 // Insert old entries into the new table 288 for( uint i = 0; i < old_max; i++ ) { 289 Node *m = *old_table++; 290 if( !m || m == _sentinel ) continue; 291 debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table. 292 hash_insert(m); 293 } 294 } 295 296 //------------------------------clear------------------------------------------ 297 // Clear all entries in _table to NULL but keep storage 298 void NodeHash::clear() { 299 #ifdef ASSERT 300 // Unlock all nodes upon removal from table. 301 for (uint i = 0; i < _max; i++) { 302 Node* n = _table[i]; 303 if (!n || n == _sentinel) continue; 304 n->exit_hash_lock(); 305 } 306 #endif 307 308 memset( _table, 0, _max * sizeof(Node*) ); 309 } 310 311 //-----------------------remove_useless_nodes---------------------------------- 312 // Remove useless nodes from value table, 313 // implementation does not depend on hash function 314 void NodeHash::remove_useless_nodes(VectorSet &useful) { 315 316 // Dead nodes in the hash table inherited from GVN should not replace 317 // existing nodes, remove dead nodes. 318 uint max = size(); 319 Node *sentinel_node = sentinel(); 320 for( uint i = 0; i < max; ++i ) { 321 Node *n = at(i); 322 if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) { 323 debug_only(n->exit_hash_lock()); // Unlock the node when removed 324 _table[i] = sentinel_node; // Replace with placeholder 325 } 326 } 327 } 328 329 330 void NodeHash::check_no_speculative_types() { 331 #ifdef ASSERT 332 uint max = size(); 333 Unique_Node_List live_nodes; 334 Compile::current()->identify_useful_nodes(live_nodes); 335 Node *sentinel_node = sentinel(); 336 for (uint i = 0; i < max; ++i) { 337 Node *n = at(i); 338 if (n != NULL && 339 n != sentinel_node && 340 n->is_Type() && 341 live_nodes.member(n)) { 342 TypeNode* tn = n->as_Type(); 343 const Type* t = tn->type(); 344 const Type* t_no_spec = t->remove_speculative(); 345 assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup"); 346 } 347 } 348 #endif 349 } 350 351 #ifndef PRODUCT 352 //------------------------------dump------------------------------------------- 353 // Dump statistics for the hash table 354 void NodeHash::dump() { 355 _total_inserts += _inserts; 356 _total_insert_probes += _insert_probes; 357 if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) { 358 if (WizardMode) { 359 for (uint i=0; i<_max; i++) { 360 if (_table[i]) 361 tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx); 362 } 363 } 364 tty->print("\nGVN Hash stats: %d grows to %d max_size\n", _grows, _max); 365 tty->print(" %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0); 366 tty->print(" %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses)); 367 tty->print(" %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts); 368 // sentinels increase lookup cost, but not insert cost 369 assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function"); 370 assert( _inserts+(_inserts>>3) < _max, "table too full" ); 371 assert( _inserts*3+100 >= _insert_probes, "bad hash function" ); 372 } 373 } 374 375 Node *NodeHash::find_index(uint idx) { // For debugging 376 // Find an entry by its index value 377 for( uint i = 0; i < _max; i++ ) { 378 Node *m = _table[i]; 379 if( !m || m == _sentinel ) continue; 380 if( m->_idx == (uint)idx ) return m; 381 } 382 return NULL; 383 } 384 #endif 385 386 #ifdef ASSERT 387 NodeHash::~NodeHash() { 388 // Unlock all nodes upon destruction of table. 389 if (_table != (Node**)badAddress) clear(); 390 } 391 392 void NodeHash::operator=(const NodeHash& nh) { 393 // Unlock all nodes upon replacement of table. 394 if (&nh == this) return; 395 if (_table != (Node**)badAddress) clear(); 396 memcpy((void*)this, (void*)&nh, sizeof(*this)); 397 // Do not increment hash_lock counts again. 398 // Instead, be sure we never again use the source table. 399 ((NodeHash*)&nh)->_table = (Node**)badAddress; 400 } 401 402 403 #endif 404 405 406 //============================================================================= 407 //------------------------------PhaseRemoveUseless----------------------------- 408 // 1) Use a breadthfirst walk to collect useful nodes reachable from root. 409 PhaseRemoveUseless::PhaseRemoveUseless(PhaseGVN* gvn, Unique_Node_List* worklist, PhaseNumber phase_num) : Phase(phase_num) { 410 // Implementation requires an edge from root to each SafePointNode 411 // at a backward branch. Inserted in add_safepoint(). 412 413 // Identify nodes that are reachable from below, useful. 414 C->identify_useful_nodes(_useful); 415 // Update dead node list 416 C->update_dead_node_list(_useful); 417 418 // Remove all useless nodes from PhaseValues' recorded types 419 // Must be done before disconnecting nodes to preserve hash-table-invariant 420 gvn->remove_useless_nodes(_useful.member_set()); 421 422 // Remove all useless nodes from future worklist 423 worklist->remove_useless_nodes(_useful.member_set()); 424 425 // Disconnect 'useless' nodes that are adjacent to useful nodes 426 C->disconnect_useless_nodes(_useful, worklist); 427 } 428 429 //============================================================================= 430 //------------------------------PhaseRenumberLive------------------------------ 431 // First, remove useless nodes (equivalent to identifying live nodes). 432 // Then, renumber live nodes. 433 // 434 // The set of live nodes is returned by PhaseRemoveUseless in the _useful structure. 435 // If the number of live nodes is 'x' (where 'x' == _useful.size()), then the 436 // PhaseRenumberLive updates the node ID of each node (the _idx field) with a unique 437 // value in the range [0, x). 438 // 439 // At the end of the PhaseRenumberLive phase, the compiler's count of unique nodes is 440 // updated to 'x' and the list of dead nodes is reset (as there are no dead nodes). 441 // 442 // The PhaseRenumberLive phase updates two data structures with the new node IDs. 443 // (1) The worklist is used by the PhaseIterGVN phase to identify nodes that must be 444 // processed. A new worklist (with the updated node IDs) is returned in 'new_worklist'. 445 // 'worklist' is cleared upon returning. 446 // (2) Type information (the field PhaseGVN::_types) maps type information to each 447 // node ID. The mapping is updated to use the new node IDs as well. Updated type 448 // information is returned in PhaseGVN::_types. 449 // 450 // The PhaseRenumberLive phase does not preserve the order of elements in the worklist. 451 // 452 // Other data structures used by the compiler are not updated. The hash table for value 453 // numbering (the field PhaseGVN::_table) is not updated because computing the hash 454 // values is not based on node IDs. The field PhaseGVN::_nodes is not updated either 455 // because it is empty wherever PhaseRenumberLive is used. 456 PhaseRenumberLive::PhaseRenumberLive(PhaseGVN* gvn, 457 Unique_Node_List* worklist, Unique_Node_List* new_worklist, 458 PhaseNumber phase_num) : 459 PhaseRemoveUseless(gvn, worklist, Remove_Useless_And_Renumber_Live), 460 _new_type_array(C->comp_arena()), 461 _old2new_map(C->unique(), C->unique(), -1), 462 _is_pass_finished(false), 463 _live_node_count(C->live_nodes()) 464 { 465 assert(RenumberLiveNodes, "RenumberLiveNodes must be set to true for node renumbering to take place"); 466 assert(C->live_nodes() == _useful.size(), "the number of live nodes must match the number of useful nodes"); 467 assert(gvn->nodes_size() == 0, "GVN must not contain any nodes at this point"); 468 assert(_delayed.size() == 0, "should be empty"); 469 470 uint worklist_size = worklist->size(); 471 472 // Iterate over the set of live nodes. 473 for (uint current_idx = 0; current_idx < _useful.size(); current_idx++) { 474 Node* n = _useful.at(current_idx); 475 476 bool in_worklist = false; 477 if (worklist->member(n)) { 478 in_worklist = true; 479 } 480 481 const Type* type = gvn->type_or_null(n); 482 _new_type_array.map(current_idx, type); 483 484 assert(_old2new_map.at(n->_idx) == -1, "already seen"); 485 _old2new_map.at_put(n->_idx, current_idx); 486 487 n->set_idx(current_idx); // Update node ID. 488 489 if (in_worklist) { 490 new_worklist->push(n); 491 } 492 493 if (update_embedded_ids(n) < 0) { 494 _delayed.push(n); // has embedded IDs; handle later 495 } 496 } 497 498 assert(worklist_size == new_worklist->size(), "the new worklist must have the same size as the original worklist"); 499 assert(_live_node_count == _useful.size(), "all live nodes must be processed"); 500 501 _is_pass_finished = true; // pass finished; safe to process delayed updates 502 503 while (_delayed.size() > 0) { 504 Node* n = _delayed.pop(); 505 int no_of_updates = update_embedded_ids(n); 506 assert(no_of_updates > 0, "should be updated"); 507 } 508 509 // Replace the compiler's type information with the updated type information. 510 gvn->replace_types(_new_type_array); 511 512 // Update the unique node count of the compilation to the number of currently live nodes. 513 C->set_unique(_live_node_count); 514 515 // Set the dead node count to 0 and reset dead node list. 516 C->reset_dead_node_list(); 517 518 // Clear the original worklist 519 worklist->clear(); 520 } 521 522 int PhaseRenumberLive::new_index(int old_idx) { 523 assert(_is_pass_finished, "not finished"); 524 if (_old2new_map.at(old_idx) == -1) { // absent 525 // Allocate a placeholder to preserve uniqueness 526 _old2new_map.at_put(old_idx, _live_node_count); 527 _live_node_count++; 528 } 529 return _old2new_map.at(old_idx); 530 } 531 532 int PhaseRenumberLive::update_embedded_ids(Node* n) { 533 int no_of_updates = 0; 534 if (n->is_Phi()) { 535 PhiNode* phi = n->as_Phi(); 536 if (phi->_inst_id != -1) { 537 if (!_is_pass_finished) { 538 return -1; // delay 539 } 540 int new_idx = new_index(phi->_inst_id); 541 assert(new_idx != -1, ""); 542 phi->_inst_id = new_idx; 543 no_of_updates++; 544 } 545 if (phi->_inst_mem_id != -1) { 546 if (!_is_pass_finished) { 547 return -1; // delay 548 } 549 int new_idx = new_index(phi->_inst_mem_id); 550 assert(new_idx != -1, ""); 551 phi->_inst_mem_id = new_idx; 552 no_of_updates++; 553 } 554 } 555 556 const Type* type = _new_type_array.fast_lookup(n->_idx); 557 if (type != NULL && type->isa_oopptr() && type->is_oopptr()->is_known_instance()) { 558 if (!_is_pass_finished) { 559 return -1; // delay 560 } 561 int old_idx = type->is_oopptr()->instance_id(); 562 int new_idx = new_index(old_idx); 563 const Type* new_type = type->is_oopptr()->with_instance_id(new_idx); 564 _new_type_array.map(n->_idx, new_type); 565 no_of_updates++; 566 } 567 568 return no_of_updates; 569 } 570 571 //============================================================================= 572 //------------------------------PhaseTransform--------------------------------- 573 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum), 574 _arena(Thread::current()->resource_area()), 575 _nodes(_arena), 576 _types(_arena) 577 { 578 init_con_caches(); 579 #ifndef PRODUCT 580 clear_progress(); 581 clear_transforms(); 582 set_allow_progress(true); 583 #endif 584 // Force allocation for currently existing nodes 585 _types.map(C->unique(), NULL); 586 } 587 588 //------------------------------PhaseTransform--------------------------------- 589 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum), 590 _arena(arena), 591 _nodes(arena), 592 _types(arena) 593 { 594 init_con_caches(); 595 #ifndef PRODUCT 596 clear_progress(); 597 clear_transforms(); 598 set_allow_progress(true); 599 #endif 600 // Force allocation for currently existing nodes 601 _types.map(C->unique(), NULL); 602 } 603 604 //------------------------------PhaseTransform--------------------------------- 605 // Initialize with previously generated type information 606 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum), 607 _arena(pt->_arena), 608 _nodes(pt->_nodes), 609 _types(pt->_types) 610 { 611 init_con_caches(); 612 #ifndef PRODUCT 613 clear_progress(); 614 clear_transforms(); 615 set_allow_progress(true); 616 #endif 617 } 618 619 void PhaseTransform::init_con_caches() { 620 memset(_icons,0,sizeof(_icons)); 621 memset(_lcons,0,sizeof(_lcons)); 622 memset(_zcons,0,sizeof(_zcons)); 623 } 624 625 626 //--------------------------------find_int_type-------------------------------- 627 const TypeInt* PhaseTransform::find_int_type(Node* n) { 628 if (n == NULL) return NULL; 629 // Call type_or_null(n) to determine node's type since we might be in 630 // parse phase and call n->Value() may return wrong type. 631 // (For example, a phi node at the beginning of loop parsing is not ready.) 632 const Type* t = type_or_null(n); 633 if (t == NULL) return NULL; 634 return t->isa_int(); 635 } 636 637 638 //-------------------------------find_long_type-------------------------------- 639 const TypeLong* PhaseTransform::find_long_type(Node* n) { 640 if (n == NULL) return NULL; 641 // (See comment above on type_or_null.) 642 const Type* t = type_or_null(n); 643 if (t == NULL) return NULL; 644 return t->isa_long(); 645 } 646 647 648 #ifndef PRODUCT 649 void PhaseTransform::dump_old2new_map() const { 650 _nodes.dump(); 651 } 652 653 void PhaseTransform::dump_new( uint nidx ) const { 654 for( uint i=0; i<_nodes.Size(); i++ ) 655 if( _nodes[i] && _nodes[i]->_idx == nidx ) { 656 _nodes[i]->dump(); 657 tty->cr(); 658 tty->print_cr("Old index= %d",i); 659 return; 660 } 661 tty->print_cr("Node %d not found in the new indices", nidx); 662 } 663 664 //------------------------------dump_types------------------------------------- 665 void PhaseTransform::dump_types( ) const { 666 _types.dump(); 667 } 668 669 //------------------------------dump_nodes_and_types--------------------------- 670 void PhaseTransform::dump_nodes_and_types(const Node* root, uint depth, bool only_ctrl) { 671 VectorSet visited; 672 dump_nodes_and_types_recur(root, depth, only_ctrl, visited); 673 } 674 675 //------------------------------dump_nodes_and_types_recur--------------------- 676 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) { 677 if( !n ) return; 678 if( depth == 0 ) return; 679 if( visited.test_set(n->_idx) ) return; 680 for( uint i=0; i<n->len(); i++ ) { 681 if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue; 682 dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited ); 683 } 684 n->dump(); 685 if (type_or_null(n) != NULL) { 686 tty->print(" "); type(n)->dump(); tty->cr(); 687 } 688 } 689 690 #endif 691 692 693 //============================================================================= 694 //------------------------------PhaseValues------------------------------------ 695 // Set minimum table size to "255" 696 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) 697 : PhaseTransform(arena, GVN), _table(arena, est_max_size), _iterGVN(false) { 698 NOT_PRODUCT( clear_new_values(); ) 699 } 700 701 //------------------------------PhaseValues------------------------------------ 702 // Set minimum table size to "255" 703 PhaseValues::PhaseValues(PhaseValues* ptv) 704 : PhaseTransform(ptv, GVN), _table(&ptv->_table), _iterGVN(false) { 705 NOT_PRODUCT( clear_new_values(); ) 706 } 707 708 //------------------------------~PhaseValues----------------------------------- 709 #ifndef PRODUCT 710 PhaseValues::~PhaseValues() { 711 _table.dump(); 712 713 // Statistics for value progress and efficiency 714 if( PrintCompilation && Verbose && WizardMode ) { 715 tty->print("\n%sValues: %d nodes ---> %d/%d (%d)", 716 is_IterGVN() ? "Iter" : " ", C->unique(), made_progress(), made_transforms(), made_new_values()); 717 if( made_transforms() != 0 ) { 718 tty->print_cr(" ratio %f", made_progress()/(float)made_transforms() ); 719 } else { 720 tty->cr(); 721 } 722 } 723 } 724 #endif 725 726 //------------------------------makecon---------------------------------------- 727 ConNode* PhaseTransform::makecon(const Type *t) { 728 assert(t->singleton(), "must be a constant"); 729 assert(!t->empty() || t == Type::TOP, "must not be vacuous range"); 730 switch (t->base()) { // fast paths 731 case Type::Half: 732 case Type::Top: return (ConNode*) C->top(); 733 case Type::Int: return intcon( t->is_int()->get_con() ); 734 case Type::Long: return longcon( t->is_long()->get_con() ); 735 default: break; 736 } 737 if (t->is_zero_type()) 738 return zerocon(t->basic_type()); 739 return uncached_makecon(t); 740 } 741 742 //--------------------------uncached_makecon----------------------------------- 743 // Make an idealized constant - one of ConINode, ConPNode, etc. 744 ConNode* PhaseValues::uncached_makecon(const Type *t) { 745 assert(t->singleton(), "must be a constant"); 746 ConNode* x = ConNode::make(t); 747 ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering 748 if (k == NULL) { 749 set_type(x, t); // Missed, provide type mapping 750 GrowableArray<Node_Notes*>* nna = C->node_note_array(); 751 if (nna != NULL) { 752 Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true); 753 loc->clear(); // do not put debug info on constants 754 } 755 } else { 756 x->destruct(this); // Hit, destroy duplicate constant 757 x = k; // use existing constant 758 } 759 return x; 760 } 761 762 //------------------------------intcon----------------------------------------- 763 // Fast integer constant. Same as "transform(new ConINode(TypeInt::make(i)))" 764 ConINode* PhaseTransform::intcon(jint i) { 765 // Small integer? Check cache! Check that cached node is not dead 766 if (i >= _icon_min && i <= _icon_max) { 767 ConINode* icon = _icons[i-_icon_min]; 768 if (icon != NULL && icon->in(TypeFunc::Control) != NULL) 769 return icon; 770 } 771 ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i)); 772 assert(icon->is_Con(), ""); 773 if (i >= _icon_min && i <= _icon_max) 774 _icons[i-_icon_min] = icon; // Cache small integers 775 return icon; 776 } 777 778 //------------------------------longcon---------------------------------------- 779 // Fast long constant. 780 ConLNode* PhaseTransform::longcon(jlong l) { 781 // Small integer? Check cache! Check that cached node is not dead 782 if (l >= _lcon_min && l <= _lcon_max) { 783 ConLNode* lcon = _lcons[l-_lcon_min]; 784 if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL) 785 return lcon; 786 } 787 ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l)); 788 assert(lcon->is_Con(), ""); 789 if (l >= _lcon_min && l <= _lcon_max) 790 _lcons[l-_lcon_min] = lcon; // Cache small integers 791 return lcon; 792 } 793 ConNode* PhaseTransform::integercon(jlong l, BasicType bt) { 794 if (bt == T_INT) { 795 return intcon(checked_cast<jint>(l)); 796 } 797 assert(bt == T_LONG, "not an integer"); 798 return longcon(l); 799 } 800 801 802 //------------------------------zerocon----------------------------------------- 803 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))" 804 ConNode* PhaseTransform::zerocon(BasicType bt) { 805 assert((uint)bt <= _zcon_max, "domain check"); 806 ConNode* zcon = _zcons[bt]; 807 if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL) 808 return zcon; 809 zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt)); 810 _zcons[bt] = zcon; 811 return zcon; 812 } 813 814 815 816 //============================================================================= 817 Node* PhaseGVN::apply_ideal(Node* k, bool can_reshape) { 818 Node* i = BarrierSet::barrier_set()->barrier_set_c2()->ideal_node(this, k, can_reshape); 819 if (i == NULL) { 820 i = k->Ideal(this, can_reshape); 821 } 822 return i; 823 } 824 825 //------------------------------transform-------------------------------------- 826 // Return a node which computes the same function as this node, but in a 827 // faster or cheaper fashion. 828 Node *PhaseGVN::transform( Node *n ) { 829 return transform_no_reclaim(n); 830 } 831 832 //------------------------------transform-------------------------------------- 833 // Return a node which computes the same function as this node, but 834 // in a faster or cheaper fashion. 835 Node *PhaseGVN::transform_no_reclaim(Node *n) { 836 NOT_PRODUCT( set_transforms(); ) 837 838 // Apply the Ideal call in a loop until it no longer applies 839 Node* k = n; 840 Node* i = apply_ideal(k, /*can_reshape=*/false); 841 NOT_PRODUCT(uint loop_count = 1;) 842 while (i != NULL) { 843 assert(i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" ); 844 k = i; 845 #ifdef ASSERT 846 if (loop_count >= K + C->live_nodes()) { 847 dump_infinite_loop_info(i, "PhaseGVN::transform_no_reclaim"); 848 } 849 #endif 850 i = apply_ideal(k, /*can_reshape=*/false); 851 NOT_PRODUCT(loop_count++;) 852 } 853 NOT_PRODUCT(if (loop_count != 0) { set_progress(); }) 854 855 // If brand new node, make space in type array. 856 ensure_type_or_null(k); 857 858 // Since I just called 'Value' to compute the set of run-time values 859 // for this Node, and 'Value' is non-local (and therefore expensive) I'll 860 // cache Value. Later requests for the local phase->type of this Node can 861 // use the cached Value instead of suffering with 'bottom_type'. 862 const Type* t = k->Value(this); // Get runtime Value set 863 assert(t != NULL, "value sanity"); 864 if (type_or_null(k) != t) { 865 #ifndef PRODUCT 866 // Do not count initial visit to node as a transformation 867 if (type_or_null(k) == NULL) { 868 inc_new_values(); 869 set_progress(); 870 } 871 #endif 872 set_type(k, t); 873 // If k is a TypeNode, capture any more-precise type permanently into Node 874 k->raise_bottom_type(t); 875 } 876 877 if (t->singleton() && !k->is_Con()) { 878 NOT_PRODUCT(set_progress();) 879 return makecon(t); // Turn into a constant 880 } 881 882 // Now check for Identities 883 i = k->Identity(this); // Look for a nearby replacement 884 if (i != k) { // Found? Return replacement! 885 NOT_PRODUCT(set_progress();) 886 return i; 887 } 888 889 // Global Value Numbering 890 i = hash_find_insert(k); // Insert if new 891 if (i && (i != k)) { 892 // Return the pre-existing node 893 NOT_PRODUCT(set_progress();) 894 return i; 895 } 896 897 // Return Idealized original 898 return k; 899 } 900 901 bool PhaseGVN::is_dominator_helper(Node *d, Node *n, bool linear_only) { 902 if (d->is_top() || (d->is_Proj() && d->in(0)->is_top())) { 903 return false; 904 } 905 if (n->is_top() || (n->is_Proj() && n->in(0)->is_top())) { 906 return false; 907 } 908 assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes"); 909 int i = 0; 910 while (d != n) { 911 n = IfNode::up_one_dom(n, linear_only); 912 i++; 913 if (n == NULL || i >= 100) { 914 return false; 915 } 916 } 917 return true; 918 } 919 920 #ifdef ASSERT 921 //------------------------------dead_loop_check-------------------------------- 922 // Check for a simple dead loop when a data node references itself directly 923 // or through an other data node excluding cons and phis. 924 void PhaseGVN::dead_loop_check( Node *n ) { 925 // Phi may reference itself in a loop 926 if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) { 927 // Do 2 levels check and only data inputs. 928 bool no_dead_loop = true; 929 uint cnt = n->req(); 930 for (uint i = 1; i < cnt && no_dead_loop; i++) { 931 Node *in = n->in(i); 932 if (in == n) { 933 no_dead_loop = false; 934 } else if (in != NULL && !in->is_dead_loop_safe()) { 935 uint icnt = in->req(); 936 for (uint j = 1; j < icnt && no_dead_loop; j++) { 937 if (in->in(j) == n || in->in(j) == in) 938 no_dead_loop = false; 939 } 940 } 941 } 942 if (!no_dead_loop) n->dump(3); 943 assert(no_dead_loop, "dead loop detected"); 944 } 945 } 946 947 948 /** 949 * Dumps information that can help to debug the problem. A debug 950 * build fails with an assert. 951 */ 952 void PhaseGVN::dump_infinite_loop_info(Node* n, const char* where) { 953 n->dump(4); 954 assert(false, "infinite loop in %s", where); 955 } 956 #endif 957 958 //============================================================================= 959 //------------------------------PhaseIterGVN----------------------------------- 960 // Initialize with previous PhaseIterGVN info; used by PhaseCCP 961 PhaseIterGVN::PhaseIterGVN(PhaseIterGVN* igvn) : PhaseGVN(igvn), 962 _delay_transform(igvn->_delay_transform), 963 _stack(igvn->_stack ), 964 _worklist(igvn->_worklist) 965 { 966 _iterGVN = true; 967 } 968 969 //------------------------------PhaseIterGVN----------------------------------- 970 // Initialize with previous PhaseGVN info from Parser 971 PhaseIterGVN::PhaseIterGVN(PhaseGVN* gvn) : PhaseGVN(gvn), 972 _delay_transform(false), 973 // TODO: Before incremental inlining it was allocated only once and it was fine. Now that 974 // the constructor is used in incremental inlining, this consumes too much memory: 975 // _stack(C->live_nodes() >> 1), 976 // So, as a band-aid, we replace this by: 977 _stack(C->comp_arena(), 32), 978 _worklist(*C->for_igvn()) 979 { 980 _iterGVN = true; 981 uint max; 982 983 // Dead nodes in the hash table inherited from GVN were not treated as 984 // roots during def-use info creation; hence they represent an invisible 985 // use. Clear them out. 986 max = _table.size(); 987 for( uint i = 0; i < max; ++i ) { 988 Node *n = _table.at(i); 989 if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) { 990 if( n->is_top() ) continue; 991 // If remove_useless_nodes() has run, we expect no such nodes left. 992 assert(false, "remove_useless_nodes missed this node"); 993 hash_delete(n); 994 } 995 } 996 997 // Any Phis or Regions on the worklist probably had uses that could not 998 // make more progress because the uses were made while the Phis and Regions 999 // were in half-built states. Put all uses of Phis and Regions on worklist. 1000 max = _worklist.size(); 1001 for( uint j = 0; j < max; j++ ) { 1002 Node *n = _worklist.at(j); 1003 uint uop = n->Opcode(); 1004 if( uop == Op_Phi || uop == Op_Region || 1005 n->is_Type() || 1006 n->is_Mem() ) 1007 add_users_to_worklist(n); 1008 } 1009 } 1010 1011 void PhaseIterGVN::shuffle_worklist() { 1012 if (_worklist.size() < 2) return; 1013 for (uint i = _worklist.size() - 1; i >= 1; i--) { 1014 uint j = C->random() % (i + 1); 1015 swap(_worklist.adr()[i], _worklist.adr()[j]); 1016 } 1017 } 1018 1019 #ifndef PRODUCT 1020 void PhaseIterGVN::verify_step(Node* n) { 1021 if (VerifyIterativeGVN) { 1022 ResourceMark rm; 1023 VectorSet visited; 1024 Node_List worklist; 1025 1026 _verify_window[_verify_counter % _verify_window_size] = n; 1027 ++_verify_counter; 1028 if (C->unique() < 1000 || 0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) { 1029 ++_verify_full_passes; 1030 worklist.push(C->root()); 1031 Node::verify(-1, visited, worklist); 1032 return; 1033 } 1034 for (int i = 0; i < _verify_window_size; i++) { 1035 Node* n = _verify_window[i]; 1036 if (n == NULL) { 1037 continue; 1038 } 1039 if (n->in(0) == NodeSentinel) { // xform_idom 1040 _verify_window[i] = n->in(1); 1041 --i; 1042 continue; 1043 } 1044 // Typical fanout is 1-2, so this call visits about 6 nodes. 1045 if (!visited.test_set(n->_idx)) { 1046 worklist.push(n); 1047 } 1048 } 1049 Node::verify(4, visited, worklist); 1050 } 1051 } 1052 1053 void PhaseIterGVN::trace_PhaseIterGVN(Node* n, Node* nn, const Type* oldtype) { 1054 if (TraceIterativeGVN) { 1055 uint wlsize = _worklist.size(); 1056 const Type* newtype = type_or_null(n); 1057 if (nn != n) { 1058 // print old node 1059 tty->print("< "); 1060 if (oldtype != newtype && oldtype != NULL) { 1061 oldtype->dump(); 1062 } 1063 do { tty->print("\t"); } while (tty->position() < 16); 1064 tty->print("<"); 1065 n->dump(); 1066 } 1067 if (oldtype != newtype || nn != n) { 1068 // print new node and/or new type 1069 if (oldtype == NULL) { 1070 tty->print("* "); 1071 } else if (nn != n) { 1072 tty->print("> "); 1073 } else { 1074 tty->print("= "); 1075 } 1076 if (newtype == NULL) { 1077 tty->print("null"); 1078 } else { 1079 newtype->dump(); 1080 } 1081 do { tty->print("\t"); } while (tty->position() < 16); 1082 nn->dump(); 1083 } 1084 if (Verbose && wlsize < _worklist.size()) { 1085 tty->print(" Push {"); 1086 while (wlsize != _worklist.size()) { 1087 Node* pushed = _worklist.at(wlsize++); 1088 tty->print(" %d", pushed->_idx); 1089 } 1090 tty->print_cr(" }"); 1091 } 1092 if (nn != n) { 1093 // ignore n, it might be subsumed 1094 verify_step((Node*) NULL); 1095 } 1096 } 1097 } 1098 1099 void PhaseIterGVN::init_verifyPhaseIterGVN() { 1100 _verify_counter = 0; 1101 _verify_full_passes = 0; 1102 for (int i = 0; i < _verify_window_size; i++) { 1103 _verify_window[i] = NULL; 1104 } 1105 #ifdef ASSERT 1106 // Verify that all modified nodes are on _worklist 1107 Unique_Node_List* modified_list = C->modified_nodes(); 1108 while (modified_list != NULL && modified_list->size()) { 1109 Node* n = modified_list->pop(); 1110 if (!n->is_Con() && !_worklist.member(n)) { 1111 n->dump(); 1112 fatal("modified node is not on IGVN._worklist"); 1113 } 1114 } 1115 #endif 1116 } 1117 1118 void PhaseIterGVN::verify_PhaseIterGVN() { 1119 #ifdef ASSERT 1120 // Verify nodes with changed inputs. 1121 Unique_Node_List* modified_list = C->modified_nodes(); 1122 while (modified_list != NULL && modified_list->size()) { 1123 Node* n = modified_list->pop(); 1124 if (!n->is_Con()) { // skip Con nodes 1125 n->dump(); 1126 fatal("modified node was not processed by IGVN.transform_old()"); 1127 } 1128 } 1129 #endif 1130 1131 C->verify_graph_edges(); 1132 if (VerifyIterativeGVN && PrintOpto) { 1133 if (_verify_counter == _verify_full_passes) { 1134 tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes", 1135 (int) _verify_full_passes); 1136 } else { 1137 tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes", 1138 (int) _verify_counter, (int) _verify_full_passes); 1139 } 1140 } 1141 1142 #ifdef ASSERT 1143 if (modified_list != NULL) { 1144 while (modified_list->size() > 0) { 1145 Node* n = modified_list->pop(); 1146 n->dump(); 1147 assert(false, "VerifyIterativeGVN: new modified node was added"); 1148 } 1149 } 1150 #endif 1151 } 1152 #endif /* PRODUCT */ 1153 1154 #ifdef ASSERT 1155 /** 1156 * Dumps information that can help to debug the problem. A debug 1157 * build fails with an assert. 1158 */ 1159 void PhaseIterGVN::dump_infinite_loop_info(Node* n, const char* where) { 1160 n->dump(4); 1161 _worklist.dump(); 1162 assert(false, "infinite loop in %s", where); 1163 } 1164 1165 /** 1166 * Prints out information about IGVN if the 'verbose' option is used. 1167 */ 1168 void PhaseIterGVN::trace_PhaseIterGVN_verbose(Node* n, int num_processed) { 1169 if (TraceIterativeGVN && Verbose) { 1170 tty->print(" Pop "); 1171 n->dump(); 1172 if ((num_processed % 100) == 0) { 1173 _worklist.print_set(); 1174 } 1175 } 1176 } 1177 #endif /* ASSERT */ 1178 1179 void PhaseIterGVN::optimize() { 1180 DEBUG_ONLY(uint num_processed = 0;) 1181 NOT_PRODUCT(init_verifyPhaseIterGVN();) 1182 if (StressIGVN) { 1183 shuffle_worklist(); 1184 } 1185 1186 uint loop_count = 0; 1187 // Pull from worklist and transform the node. If the node has changed, 1188 // update edge info and put uses on worklist. 1189 while(_worklist.size()) { 1190 if (C->check_node_count(NodeLimitFudgeFactor * 2, "Out of nodes")) { 1191 return; 1192 } 1193 Node* n = _worklist.pop(); 1194 if (loop_count >= K * C->live_nodes()) { 1195 DEBUG_ONLY(dump_infinite_loop_info(n, "PhaseIterGVN::optimize");) 1196 C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize"); 1197 return; 1198 } 1199 DEBUG_ONLY(trace_PhaseIterGVN_verbose(n, num_processed++);) 1200 if (n->outcnt() != 0) { 1201 NOT_PRODUCT(const Type* oldtype = type_or_null(n)); 1202 // Do the transformation 1203 Node* nn = transform_old(n); 1204 NOT_PRODUCT(trace_PhaseIterGVN(n, nn, oldtype);) 1205 } else if (!n->is_top()) { 1206 remove_dead_node(n); 1207 } 1208 loop_count++; 1209 } 1210 NOT_PRODUCT(verify_PhaseIterGVN();) 1211 } 1212 1213 1214 /** 1215 * Register a new node with the optimizer. Update the types array, the def-use 1216 * info. Put on worklist. 1217 */ 1218 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) { 1219 set_type_bottom(n); 1220 _worklist.push(n); 1221 if (orig != NULL) C->copy_node_notes_to(n, orig); 1222 return n; 1223 } 1224 1225 //------------------------------transform-------------------------------------- 1226 // Non-recursive: idealize Node 'n' with respect to its inputs and its value 1227 Node *PhaseIterGVN::transform( Node *n ) { 1228 // If brand new node, make space in type array, and give it a type. 1229 ensure_type_or_null(n); 1230 if (type_or_null(n) == NULL) { 1231 set_type_bottom(n); 1232 } 1233 1234 if (_delay_transform) { 1235 // Add the node to the worklist but don't optimize for now 1236 _worklist.push(n); 1237 return n; 1238 } 1239 1240 return transform_old(n); 1241 } 1242 1243 Node *PhaseIterGVN::transform_old(Node* n) { 1244 NOT_PRODUCT(set_transforms()); 1245 // Remove 'n' from hash table in case it gets modified 1246 _table.hash_delete(n); 1247 if (VerifyIterativeGVN) { 1248 assert(!_table.find_index(n->_idx), "found duplicate entry in table"); 1249 } 1250 1251 // Allow Bool -> Cmp idealisation in late inlining intrinsics that return a bool 1252 if (n->is_Cmp()) { 1253 add_users_to_worklist(n); 1254 } 1255 1256 // Apply the Ideal call in a loop until it no longer applies 1257 Node* k = n; 1258 DEBUG_ONLY(dead_loop_check(k);) 1259 DEBUG_ONLY(bool is_new = (k->outcnt() == 0);) 1260 C->remove_modified_node(k); 1261 Node* i = apply_ideal(k, /*can_reshape=*/true); 1262 assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes"); 1263 #ifndef PRODUCT 1264 verify_step(k); 1265 #endif 1266 1267 DEBUG_ONLY(uint loop_count = 1;) 1268 while (i != NULL) { 1269 #ifdef ASSERT 1270 if (loop_count >= K + C->live_nodes()) { 1271 dump_infinite_loop_info(i, "PhaseIterGVN::transform_old"); 1272 } 1273 #endif 1274 assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes"); 1275 // Made a change; put users of original Node on worklist 1276 add_users_to_worklist(k); 1277 // Replacing root of transform tree? 1278 if (k != i) { 1279 // Make users of old Node now use new. 1280 subsume_node(k, i); 1281 k = i; 1282 } 1283 DEBUG_ONLY(dead_loop_check(k);) 1284 // Try idealizing again 1285 DEBUG_ONLY(is_new = (k->outcnt() == 0);) 1286 C->remove_modified_node(k); 1287 i = apply_ideal(k, /*can_reshape=*/true); 1288 assert(i != k || is_new || (i->outcnt() > 0), "don't return dead nodes"); 1289 #ifndef PRODUCT 1290 verify_step(k); 1291 #endif 1292 DEBUG_ONLY(loop_count++;) 1293 } 1294 1295 // If brand new node, make space in type array. 1296 ensure_type_or_null(k); 1297 1298 // See what kind of values 'k' takes on at runtime 1299 const Type* t = k->Value(this); 1300 assert(t != NULL, "value sanity"); 1301 1302 // Since I just called 'Value' to compute the set of run-time values 1303 // for this Node, and 'Value' is non-local (and therefore expensive) I'll 1304 // cache Value. Later requests for the local phase->type of this Node can 1305 // use the cached Value instead of suffering with 'bottom_type'. 1306 if (type_or_null(k) != t) { 1307 #ifndef PRODUCT 1308 inc_new_values(); 1309 set_progress(); 1310 #endif 1311 set_type(k, t); 1312 // If k is a TypeNode, capture any more-precise type permanently into Node 1313 k->raise_bottom_type(t); 1314 // Move users of node to worklist 1315 add_users_to_worklist(k); 1316 } 1317 // If 'k' computes a constant, replace it with a constant 1318 if (t->singleton() && !k->is_Con()) { 1319 NOT_PRODUCT(set_progress();) 1320 Node* con = makecon(t); // Make a constant 1321 add_users_to_worklist(k); 1322 subsume_node(k, con); // Everybody using k now uses con 1323 return con; 1324 } 1325 1326 // Now check for Identities 1327 i = k->Identity(this); // Look for a nearby replacement 1328 if (i != k) { // Found? Return replacement! 1329 NOT_PRODUCT(set_progress();) 1330 add_users_to_worklist(k); 1331 subsume_node(k, i); // Everybody using k now uses i 1332 return i; 1333 } 1334 1335 // Global Value Numbering 1336 i = hash_find_insert(k); // Check for pre-existing node 1337 if (i && (i != k)) { 1338 // Return the pre-existing node if it isn't dead 1339 NOT_PRODUCT(set_progress();) 1340 add_users_to_worklist(k); 1341 subsume_node(k, i); // Everybody using k now uses i 1342 return i; 1343 } 1344 1345 // Return Idealized original 1346 return k; 1347 } 1348 1349 //---------------------------------saturate------------------------------------ 1350 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type, 1351 const Type* limit_type) const { 1352 return new_type->narrow(old_type); 1353 } 1354 1355 //------------------------------remove_globally_dead_node---------------------- 1356 // Kill a globally dead Node. All uses are also globally dead and are 1357 // aggressively trimmed. 1358 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) { 1359 enum DeleteProgress { 1360 PROCESS_INPUTS, 1361 PROCESS_OUTPUTS 1362 }; 1363 assert(_stack.is_empty(), "not empty"); 1364 _stack.push(dead, PROCESS_INPUTS); 1365 1366 while (_stack.is_nonempty()) { 1367 dead = _stack.node(); 1368 if (dead->Opcode() == Op_SafePoint) { 1369 dead->as_SafePoint()->disconnect_from_root(this); 1370 } 1371 uint progress_state = _stack.index(); 1372 assert(dead != C->root(), "killing root, eh?"); 1373 assert(!dead->is_top(), "add check for top when pushing"); 1374 NOT_PRODUCT( set_progress(); ) 1375 if (progress_state == PROCESS_INPUTS) { 1376 // After following inputs, continue to outputs 1377 _stack.set_index(PROCESS_OUTPUTS); 1378 if (!dead->is_Con()) { // Don't kill cons but uses 1379 bool recurse = false; 1380 // Remove from hash table 1381 _table.hash_delete( dead ); 1382 // Smash all inputs to 'dead', isolating him completely 1383 for (uint i = 0; i < dead->req(); i++) { 1384 Node *in = dead->in(i); 1385 if (in != NULL && in != C->top()) { // Points to something? 1386 int nrep = dead->replace_edge(in, NULL, this); // Kill edges 1387 assert((nrep > 0), "sanity"); 1388 if (in->outcnt() == 0) { // Made input go dead? 1389 _stack.push(in, PROCESS_INPUTS); // Recursively remove 1390 recurse = true; 1391 } else if (in->outcnt() == 1 && 1392 in->has_special_unique_user()) { 1393 _worklist.push(in->unique_out()); 1394 } else if (in->outcnt() <= 2 && dead->is_Phi()) { 1395 if (in->Opcode() == Op_Region) { 1396 _worklist.push(in); 1397 } else if (in->is_Store()) { 1398 DUIterator_Fast imax, i = in->fast_outs(imax); 1399 _worklist.push(in->fast_out(i)); 1400 i++; 1401 if (in->outcnt() == 2) { 1402 _worklist.push(in->fast_out(i)); 1403 i++; 1404 } 1405 assert(!(i < imax), "sanity"); 1406 } 1407 } else { 1408 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(this, in); 1409 } 1410 if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory && 1411 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) { 1412 // A Load that directly follows an InitializeNode is 1413 // going away. The Stores that follow are candidates 1414 // again to be captured by the InitializeNode. 1415 for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) { 1416 Node *n = in->fast_out(j); 1417 if (n->is_Store()) { 1418 _worklist.push(n); 1419 } 1420 } 1421 } 1422 } // if (in != NULL && in != C->top()) 1423 } // for (uint i = 0; i < dead->req(); i++) 1424 if (recurse) { 1425 continue; 1426 } 1427 } // if (!dead->is_Con()) 1428 } // if (progress_state == PROCESS_INPUTS) 1429 1430 // Aggressively kill globally dead uses 1431 // (Rather than pushing all the outs at once, we push one at a time, 1432 // plus the parent to resume later, because of the indefinite number 1433 // of edge deletions per loop trip.) 1434 if (dead->outcnt() > 0) { 1435 // Recursively remove output edges 1436 _stack.push(dead->raw_out(0), PROCESS_INPUTS); 1437 } else { 1438 // Finished disconnecting all input and output edges. 1439 _stack.pop(); 1440 // Remove dead node from iterative worklist 1441 _worklist.remove(dead); 1442 C->remove_useless_node(dead); 1443 } 1444 } // while (_stack.is_nonempty()) 1445 } 1446 1447 //------------------------------subsume_node----------------------------------- 1448 // Remove users from node 'old' and add them to node 'nn'. 1449 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) { 1450 if (old->Opcode() == Op_SafePoint) { 1451 old->as_SafePoint()->disconnect_from_root(this); 1452 } 1453 assert( old != hash_find(old), "should already been removed" ); 1454 assert( old != C->top(), "cannot subsume top node"); 1455 // Copy debug or profile information to the new version: 1456 C->copy_node_notes_to(nn, old); 1457 // Move users of node 'old' to node 'nn' 1458 for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) { 1459 Node* use = old->last_out(i); // for each use... 1460 // use might need re-hashing (but it won't if it's a new node) 1461 rehash_node_delayed(use); 1462 // Update use-def info as well 1463 // We remove all occurrences of old within use->in, 1464 // so as to avoid rehashing any node more than once. 1465 // The hash table probe swamps any outer loop overhead. 1466 uint num_edges = 0; 1467 for (uint jmax = use->len(), j = 0; j < jmax; j++) { 1468 if (use->in(j) == old) { 1469 use->set_req(j, nn); 1470 ++num_edges; 1471 } 1472 } 1473 i -= num_edges; // we deleted 1 or more copies of this edge 1474 } 1475 1476 // Search for instance field data PhiNodes in the same region pointing to the old 1477 // memory PhiNode and update their instance memory ids to point to the new node. 1478 if (old->is_Phi() && old->as_Phi()->type()->has_memory() && old->in(0) != NULL) { 1479 Node* region = old->in(0); 1480 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1481 PhiNode* phi = region->fast_out(i)->isa_Phi(); 1482 if (phi != NULL && phi->inst_mem_id() == (int)old->_idx) { 1483 phi->set_inst_mem_id((int)nn->_idx); 1484 } 1485 } 1486 } 1487 1488 // Smash all inputs to 'old', isolating him completely 1489 Node *temp = new Node(1); 1490 temp->init_req(0,nn); // Add a use to nn to prevent him from dying 1491 remove_dead_node( old ); 1492 temp->del_req(0); // Yank bogus edge 1493 if (nn != NULL && nn->outcnt() == 0) { 1494 _worklist.push(nn); 1495 } 1496 #ifndef PRODUCT 1497 if( VerifyIterativeGVN ) { 1498 for ( int i = 0; i < _verify_window_size; i++ ) { 1499 if ( _verify_window[i] == old ) 1500 _verify_window[i] = nn; 1501 } 1502 } 1503 #endif 1504 temp->destruct(this); // reuse the _idx of this little guy 1505 } 1506 1507 void PhaseIterGVN::replace_in_uses(Node* n, Node* m) { 1508 assert(n != NULL, "sanity"); 1509 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1510 Node* u = n->fast_out(i); 1511 if (u != n) { 1512 rehash_node_delayed(u); 1513 int nb = u->replace_edge(n, m); 1514 --i, imax -= nb; 1515 } 1516 } 1517 assert(n->outcnt() == 0, "all uses must be deleted"); 1518 } 1519 1520 //------------------------------add_users_to_worklist-------------------------- 1521 void PhaseIterGVN::add_users_to_worklist0( Node *n ) { 1522 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1523 _worklist.push(n->fast_out(i)); // Push on worklist 1524 } 1525 } 1526 1527 // Return counted loop Phi if as a counted loop exit condition, cmp 1528 // compares the induction variable with n 1529 static PhiNode* countedloop_phi_from_cmp(CmpNode* cmp, Node* n) { 1530 for (DUIterator_Fast imax, i = cmp->fast_outs(imax); i < imax; i++) { 1531 Node* bol = cmp->fast_out(i); 1532 for (DUIterator_Fast i2max, i2 = bol->fast_outs(i2max); i2 < i2max; i2++) { 1533 Node* iff = bol->fast_out(i2); 1534 if (iff->is_BaseCountedLoopEnd()) { 1535 BaseCountedLoopEndNode* cle = iff->as_BaseCountedLoopEnd(); 1536 if (cle->limit() == n) { 1537 PhiNode* phi = cle->phi(); 1538 if (phi != NULL) { 1539 return phi; 1540 } 1541 } 1542 } 1543 } 1544 } 1545 return NULL; 1546 } 1547 1548 void PhaseIterGVN::add_users_to_worklist( Node *n ) { 1549 add_users_to_worklist0(n); 1550 1551 // Move users of node to worklist 1552 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1553 Node* use = n->fast_out(i); // Get use 1554 1555 if( use->is_Multi() || // Multi-definer? Push projs on worklist 1556 use->is_Store() ) // Enable store/load same address 1557 add_users_to_worklist0(use); 1558 1559 // If we changed the receiver type to a call, we need to revisit 1560 // the Catch following the call. It's looking for a non-NULL 1561 // receiver to know when to enable the regular fall-through path 1562 // in addition to the NullPtrException path. 1563 if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) { 1564 Node* p = use->as_CallDynamicJava()->proj_out_or_null(TypeFunc::Control); 1565 if (p != NULL) { 1566 add_users_to_worklist0(p); 1567 } 1568 } 1569 1570 uint use_op = use->Opcode(); 1571 if(use->is_Cmp()) { // Enable CMP/BOOL optimization 1572 add_users_to_worklist(use); // Put Bool on worklist 1573 if (use->outcnt() > 0) { 1574 Node* bol = use->raw_out(0); 1575 if (bol->outcnt() > 0) { 1576 Node* iff = bol->raw_out(0); 1577 if (iff->outcnt() == 2) { 1578 // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the 1579 // phi merging either 0 or 1 onto the worklist 1580 Node* ifproj0 = iff->raw_out(0); 1581 Node* ifproj1 = iff->raw_out(1); 1582 if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) { 1583 Node* region0 = ifproj0->raw_out(0); 1584 Node* region1 = ifproj1->raw_out(0); 1585 if( region0 == region1 ) 1586 add_users_to_worklist0(region0); 1587 } 1588 } 1589 } 1590 } 1591 if (use_op == Op_CmpI) { 1592 Node* phi = countedloop_phi_from_cmp((CmpINode*)use, n); 1593 if (phi != NULL) { 1594 // If an opaque node feeds into the limit condition of a 1595 // CountedLoop, we need to process the Phi node for the 1596 // induction variable when the opaque node is removed: 1597 // the range of values taken by the Phi is now known and 1598 // so its type is also known. 1599 _worklist.push(phi); 1600 } 1601 Node* in1 = use->in(1); 1602 for (uint i = 0; i < in1->outcnt(); i++) { 1603 if (in1->raw_out(i)->Opcode() == Op_CastII) { 1604 Node* castii = in1->raw_out(i); 1605 if (castii->in(0) != NULL && castii->in(0)->in(0) != NULL && castii->in(0)->in(0)->is_If()) { 1606 Node* ifnode = castii->in(0)->in(0); 1607 if (ifnode->in(1) != NULL && ifnode->in(1)->is_Bool() && ifnode->in(1)->in(1) == use) { 1608 // Reprocess a CastII node that may depend on an 1609 // opaque node value when the opaque node is 1610 // removed. In case it carries a dependency we can do 1611 // a better job of computing its type. 1612 _worklist.push(castii); 1613 } 1614 } 1615 } 1616 } 1617 } 1618 } 1619 1620 // Inline type nodes can have other inline types as users. If an input gets 1621 // updated, make sure that inline type users get a chance for optimization. 1622 if (use->is_InlineType()) { 1623 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1624 Node* u = use->fast_out(i2); 1625 if (u->is_InlineType()) 1626 _worklist.push(u); 1627 } 1628 } 1629 // If changed Cast input, check Phi users for simple cycles 1630 if (use->is_ConstraintCast()) { 1631 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1632 Node* u = use->fast_out(i2); 1633 if (u->is_Phi()) 1634 _worklist.push(u); 1635 } 1636 } 1637 // If changed LShift inputs, check RShift users for useless sign-ext 1638 if( use_op == Op_LShiftI ) { 1639 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1640 Node* u = use->fast_out(i2); 1641 if (u->Opcode() == Op_RShiftI) 1642 _worklist.push(u); 1643 } 1644 } 1645 // If changed AddI/SubI inputs, check CmpU for range check optimization. 1646 if (use_op == Op_AddI || use_op == Op_SubI) { 1647 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1648 Node* u = use->fast_out(i2); 1649 if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) { 1650 _worklist.push(u); 1651 } 1652 } 1653 } 1654 // If changed AddP inputs, check Stores for loop invariant 1655 if( use_op == Op_AddP ) { 1656 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1657 Node* u = use->fast_out(i2); 1658 if (u->is_Mem()) 1659 _worklist.push(u); 1660 } 1661 } 1662 // If changed initialization activity, check dependent Stores 1663 if (use_op == Op_Allocate || use_op == Op_AllocateArray) { 1664 InitializeNode* init = use->as_Allocate()->initialization(); 1665 if (init != NULL) { 1666 Node* imem = init->proj_out_or_null(TypeFunc::Memory); 1667 if (imem != NULL) add_users_to_worklist0(imem); 1668 } 1669 } 1670 // If the ValidLengthTest input changes then the fallthrough path out of the AllocateArray may have become dead. 1671 // CatchNode::Value() is responsible for killing that path. The CatchNode has to be explicitly enqueued for igvn 1672 // to guarantee the change is not missed. 1673 if (use_op == Op_AllocateArray && n == use->in(AllocateNode::ValidLengthTest)) { 1674 Node* p = use->as_AllocateArray()->proj_out_or_null(TypeFunc::Control); 1675 if (p != NULL) { 1676 add_users_to_worklist0(p); 1677 } 1678 } 1679 1680 if (use_op == Op_Initialize) { 1681 Node* imem = use->as_Initialize()->proj_out_or_null(TypeFunc::Memory); 1682 if (imem != NULL) add_users_to_worklist0(imem); 1683 } 1684 if (use_op == Op_CastP2X) { 1685 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1686 Node* u = use->fast_out(i2); 1687 if (u->Opcode() == Op_AndX) { 1688 _worklist.push(u); 1689 } 1690 } 1691 } 1692 // Loading the java mirror from a Klass requires two loads and the type 1693 // of the mirror load depends on the type of 'n'. See LoadNode::Value(). 1694 // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) 1695 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1696 bool has_load_barrier_nodes = bs->has_load_barrier_nodes(); 1697 1698 if (use_op == Op_LoadP && use->bottom_type()->isa_rawptr()) { 1699 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 1700 Node* u = use->fast_out(i2); 1701 const Type* ut = u->bottom_type(); 1702 if (u->Opcode() == Op_LoadP && ut->isa_instptr()) { 1703 if (has_load_barrier_nodes) { 1704 // Search for load barriers behind the load 1705 for (DUIterator_Fast i3max, i3 = u->fast_outs(i3max); i3 < i3max; i3++) { 1706 Node* b = u->fast_out(i3); 1707 if (bs->is_gc_barrier_node(b)) { 1708 _worklist.push(b); 1709 } 1710 } 1711 } 1712 _worklist.push(u); 1713 } 1714 } 1715 } 1716 1717 // Give CallStaticJavaNode::remove_useless_allocation a chance to run 1718 if (use->is_Region()) { 1719 Node* c = use; 1720 do { 1721 c = c->unique_ctrl_out_or_null(); 1722 } while (c != NULL && c->is_Region()); 1723 if (c != NULL && c->is_CallStaticJava() && c->as_CallStaticJava()->uncommon_trap_request() != 0) { 1724 _worklist.push(c); 1725 } 1726 } 1727 if (use->Opcode() == Op_OpaqueZeroTripGuard) { 1728 assert(use->outcnt() <= 1, "OpaqueZeroTripGuard can't be shared"); 1729 if (use->outcnt() == 1) { 1730 Node* cmp = use->unique_out(); 1731 _worklist.push(cmp); 1732 } 1733 } 1734 } 1735 } 1736 1737 /** 1738 * Remove the speculative part of all types that we know of 1739 */ 1740 void PhaseIterGVN::remove_speculative_types() { 1741 assert(UseTypeSpeculation, "speculation is off"); 1742 for (uint i = 0; i < _types.Size(); i++) { 1743 const Type* t = _types.fast_lookup(i); 1744 if (t != NULL) { 1745 _types.map(i, t->remove_speculative()); 1746 } 1747 } 1748 _table.check_no_speculative_types(); 1749 } 1750 1751 // Check if the type of a divisor of a Div or Mod node includes zero. 1752 bool PhaseIterGVN::no_dependent_zero_check(Node* n) const { 1753 switch (n->Opcode()) { 1754 case Op_DivI: 1755 case Op_ModI: { 1756 // Type of divisor includes 0? 1757 if (type(n->in(2)) == Type::TOP) { 1758 // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations. 1759 return false; 1760 } 1761 const TypeInt* type_divisor = type(n->in(2))->is_int(); 1762 return (type_divisor->_hi < 0 || type_divisor->_lo > 0); 1763 } 1764 case Op_DivL: 1765 case Op_ModL: { 1766 // Type of divisor includes 0? 1767 if (type(n->in(2)) == Type::TOP) { 1768 // 'n' is dead. Treat as if zero check is still there to avoid any further optimizations. 1769 return false; 1770 } 1771 const TypeLong* type_divisor = type(n->in(2))->is_long(); 1772 return (type_divisor->_hi < 0 || type_divisor->_lo > 0); 1773 } 1774 } 1775 return true; 1776 } 1777 1778 //============================================================================= 1779 #ifndef PRODUCT 1780 uint PhaseCCP::_total_invokes = 0; 1781 uint PhaseCCP::_total_constants = 0; 1782 #endif 1783 //------------------------------PhaseCCP--------------------------------------- 1784 // Conditional Constant Propagation, ala Wegman & Zadeck 1785 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) { 1786 NOT_PRODUCT( clear_constants(); ) 1787 assert( _worklist.size() == 0, "" ); 1788 // Clear out _nodes from IterGVN. Must be clear to transform call. 1789 _nodes.clear(); // Clear out from IterGVN 1790 analyze(); 1791 } 1792 1793 #ifndef PRODUCT 1794 //------------------------------~PhaseCCP-------------------------------------- 1795 PhaseCCP::~PhaseCCP() { 1796 inc_invokes(); 1797 _total_constants += count_constants(); 1798 } 1799 #endif 1800 1801 1802 #ifdef ASSERT 1803 static bool ccp_type_widens(const Type* t, const Type* t0) { 1804 assert(t->meet(t0) == t->remove_speculative(), "Not monotonic"); 1805 switch (t->base() == t0->base() ? t->base() : Type::Top) { 1806 case Type::Int: 1807 assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases"); 1808 break; 1809 case Type::Long: 1810 assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases"); 1811 break; 1812 default: 1813 break; 1814 } 1815 return true; 1816 } 1817 #endif //ASSERT 1818 1819 // In this analysis, all types are initially set to TOP. We iteratively call Value() on all nodes of the graph until 1820 // we reach a fixed-point (i.e. no types change anymore). We start with a list that only contains the root node. Each time 1821 // a new type is set, we push all uses of that node back to the worklist (in some cases, we also push grandchildren 1822 // or nodes even further down back to the worklist because their type could change as a result of the current type 1823 // change). 1824 void PhaseCCP::analyze() { 1825 // Initialize all types to TOP, optimistic analysis 1826 for (uint i = 0; i < C->unique(); i++) { 1827 _types.map(i, Type::TOP); 1828 } 1829 1830 // Push root onto worklist 1831 Unique_Node_List worklist; 1832 worklist.push(C->root()); 1833 DEBUG_ONLY(Unique_Node_List worklist_verify;) 1834 1835 assert(_root_and_safepoints.size() == 0, "must be empty (unused)"); 1836 _root_and_safepoints.push(C->root()); 1837 1838 // Pull from worklist; compute new value; push changes out. 1839 // This loop is the meat of CCP. 1840 while (worklist.size() != 0) { 1841 Node* n = fetch_next_node(worklist); 1842 DEBUG_ONLY(worklist_verify.push(n);) 1843 if (n->is_SafePoint()) { 1844 // Make sure safepoints are processed by PhaseCCP::transform even if they are 1845 // not reachable from the bottom. Otherwise, infinite loops would be removed. 1846 _root_and_safepoints.push(n); 1847 } 1848 const Type* new_type = n->Value(this); 1849 if (new_type != type(n)) { 1850 assert(ccp_type_widens(new_type, type(n)), "ccp type must widen"); 1851 dump_type_and_node(n, new_type); 1852 set_type(n, new_type); 1853 push_child_nodes_to_worklist(worklist, n); 1854 } 1855 } 1856 DEBUG_ONLY(verify_analyze(worklist_verify);) 1857 } 1858 1859 #ifdef ASSERT 1860 // For every node n on verify list, check if type(n) == n->Value() 1861 // We have a list of exceptions, see comments in code. 1862 void PhaseCCP::verify_analyze(Unique_Node_List& worklist_verify) { 1863 bool failure = false; 1864 while (worklist_verify.size()) { 1865 Node* n = worklist_verify.pop(); 1866 const Type* told = type(n); 1867 const Type* tnew = n->Value(this); 1868 if (told != tnew) { 1869 // Check special cases that are ok 1870 if (told->isa_integer(tnew->basic_type()) != nullptr) { // both either int or long 1871 const TypeInteger* t0 = told->is_integer(tnew->basic_type()); 1872 const TypeInteger* t1 = tnew->is_integer(tnew->basic_type()); 1873 if (t0->lo_as_long() == t1->lo_as_long() && 1874 t0->hi_as_long() == t1->hi_as_long()) { 1875 continue; // ignore integer widen 1876 } 1877 } 1878 if (n->is_Load()) { 1879 // MemNode::can_see_stored_value looks up through many memory nodes, 1880 // which means we would need to notify modifications from far up in 1881 // the inputs all the way down to the LoadNode. We don't do that. 1882 continue; 1883 } 1884 tty->cr(); 1885 tty->print_cr("Missed optimization (PhaseCCP):"); 1886 n->dump_bfs(1, 0, ""); 1887 tty->print_cr("Current type:"); 1888 told->dump_on(tty); 1889 tty->cr(); 1890 tty->print_cr("Optimized type:"); 1891 tnew->dump_on(tty); 1892 tty->cr(); 1893 failure = true; 1894 } 1895 } 1896 // If we get this assert, check why the reported nodes were not processed again in CCP. 1897 // We should either make sure that these nodes are properly added back to the CCP worklist 1898 // in PhaseCCP::push_child_nodes_to_worklist() to update their type or add an exception 1899 // in the verification code above if that is not possible for some reason (like Load nodes). 1900 assert(!failure, "Missed optimization opportunity in PhaseCCP"); 1901 } 1902 #endif 1903 1904 // Fetch next node from worklist to be examined in this iteration. 1905 Node* PhaseCCP::fetch_next_node(Unique_Node_List& worklist) { 1906 if (StressCCP) { 1907 return worklist.remove(C->random() % worklist.size()); 1908 } else { 1909 return worklist.pop(); 1910 } 1911 } 1912 1913 #ifndef PRODUCT 1914 void PhaseCCP::dump_type_and_node(const Node* n, const Type* t) { 1915 if (TracePhaseCCP) { 1916 t->dump(); 1917 do { 1918 tty->print("\t"); 1919 } while (tty->position() < 16); 1920 n->dump(); 1921 } 1922 } 1923 #endif 1924 1925 // We need to propagate the type change of 'n' to all its uses. Depending on the kind of node, additional nodes 1926 // (grandchildren or even further down) need to be revisited as their types could also be improved as a result 1927 // of the new type of 'n'. Push these nodes to the worklist. 1928 void PhaseCCP::push_child_nodes_to_worklist(Unique_Node_List& worklist, Node* n) const { 1929 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1930 Node* use = n->fast_out(i); 1931 push_if_not_bottom_type(worklist, use); 1932 push_more_uses(worklist, n, use); 1933 } 1934 } 1935 1936 void PhaseCCP::push_if_not_bottom_type(Unique_Node_List& worklist, Node* n) const { 1937 if (n->bottom_type() != type(n)) { 1938 worklist.push(n); 1939 } 1940 } 1941 1942 // For some nodes, we need to propagate the type change to grandchildren or even further down. 1943 // Add them back to the worklist. 1944 void PhaseCCP::push_more_uses(Unique_Node_List& worklist, Node* parent, const Node* use) const { 1945 push_phis(worklist, use); 1946 push_catch(worklist, use); 1947 push_cmpu(worklist, use); 1948 push_counted_loop_phi(worklist, parent, use); 1949 push_cast(worklist, use); 1950 push_loadp(worklist, use); 1951 push_and(worklist, parent, use); 1952 push_cast_ii(worklist, parent, use); 1953 push_opaque_zero_trip_guard(worklist, use); 1954 } 1955 1956 1957 // We must recheck Phis too if use is a Region. 1958 void PhaseCCP::push_phis(Unique_Node_List& worklist, const Node* use) const { 1959 if (use->is_Region()) { 1960 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 1961 push_if_not_bottom_type(worklist, use->fast_out(i)); 1962 } 1963 } 1964 } 1965 1966 // If we changed the receiver type to a call, we need to revisit the Catch node following the call. It's looking for a 1967 // non-NULL receiver to know when to enable the regular fall-through path in addition to the NullPtrException path. 1968 // Same is true if the type of a ValidLengthTest input to an AllocateArrayNode changes. 1969 void PhaseCCP::push_catch(Unique_Node_List& worklist, const Node* use) { 1970 if (use->is_Call()) { 1971 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 1972 Node* proj = use->fast_out(i); 1973 if (proj->is_Proj() && proj->as_Proj()->_con == TypeFunc::Control) { 1974 Node* catch_node = proj->find_out_with(Op_Catch); 1975 if (catch_node != NULL) { 1976 worklist.push(catch_node); 1977 } 1978 } 1979 } 1980 } 1981 } 1982 1983 // CmpU nodes can get their type information from two nodes up in the graph (instead of from the nodes immediately 1984 // above). Make sure they are added to the worklist if nodes they depend on are updated since they could be missed 1985 // and get wrong types otherwise. 1986 void PhaseCCP::push_cmpu(Unique_Node_List& worklist, const Node* use) const { 1987 uint use_op = use->Opcode(); 1988 if (use_op == Op_AddI || use_op == Op_SubI) { 1989 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 1990 Node* cmpu = use->fast_out(i); 1991 if (cmpu->Opcode() == Op_CmpU) { 1992 // Got a CmpU which might need the new type information from node n. 1993 push_if_not_bottom_type(worklist, cmpu); 1994 } 1995 } 1996 } 1997 } 1998 1999 // If n is used in a counted loop exit condition, then the type of the counted loop's Phi depends on the type of 'n'. 2000 // Seem PhiNode::Value(). 2001 void PhaseCCP::push_counted_loop_phi(Unique_Node_List& worklist, Node* parent, const Node* use) { 2002 uint use_op = use->Opcode(); 2003 if (use_op == Op_CmpI || use_op == Op_CmpL) { 2004 PhiNode* phi = countedloop_phi_from_cmp(use->as_Cmp(), parent); 2005 if (phi != NULL) { 2006 worklist.push(phi); 2007 } 2008 } 2009 } 2010 2011 void PhaseCCP::push_cast(Unique_Node_List& worklist, const Node* use) { 2012 uint use_op = use->Opcode(); 2013 if (use_op == Op_CastP2X) { 2014 for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) { 2015 Node* u = use->fast_out(i2); 2016 if (u->Opcode() == Op_AndX) { 2017 worklist.push(u); 2018 } 2019 } 2020 } 2021 } 2022 2023 // Loading the java mirror from a Klass requires two loads and the type of the mirror load depends on the type of 'n'. 2024 // See LoadNode::Value(). 2025 void PhaseCCP::push_loadp(Unique_Node_List& worklist, const Node* use) const { 2026 BarrierSetC2* barrier_set = BarrierSet::barrier_set()->barrier_set_c2(); 2027 bool has_load_barrier_nodes = barrier_set->has_load_barrier_nodes(); 2028 2029 if (use->Opcode() == Op_LoadP && use->bottom_type()->isa_rawptr()) { 2030 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 2031 Node* loadp = use->fast_out(i); 2032 const Type* ut = loadp->bottom_type(); 2033 if (loadp->Opcode() == Op_LoadP && ut->isa_instptr() && ut != type(loadp)) { 2034 if (has_load_barrier_nodes) { 2035 // Search for load barriers behind the load 2036 push_load_barrier(worklist, barrier_set, loadp); 2037 } 2038 worklist.push(loadp); 2039 } 2040 } 2041 } 2042 } 2043 2044 void PhaseCCP::push_load_barrier(Unique_Node_List& worklist, const BarrierSetC2* barrier_set, const Node* use) { 2045 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 2046 Node* barrier_node = use->fast_out(i); 2047 if (barrier_set->is_gc_barrier_node(barrier_node)) { 2048 worklist.push(barrier_node); 2049 } 2050 } 2051 } 2052 2053 // AndI/L::Value() optimizes patterns similar to (v << 2) & 3 to zero if they are bitwise disjoint. 2054 // Add the AndI/L nodes back to the worklist to re-apply Value() in case the shift value changed. 2055 void PhaseCCP::push_and(Unique_Node_List& worklist, const Node* parent, const Node* use) const { 2056 uint use_op = use->Opcode(); 2057 if ((use_op == Op_LShiftI || use_op == Op_LShiftL) 2058 && use->in(2) == parent) { // is shift value (right-hand side of LShift) 2059 for (DUIterator_Fast imax, i = use->fast_outs(imax); i < imax; i++) { 2060 Node* and_node = use->fast_out(i); 2061 uint and_node_op = and_node->Opcode(); 2062 if (and_node_op == Op_AndI || and_node_op == Op_AndL) { 2063 push_if_not_bottom_type(worklist, and_node); 2064 } 2065 } 2066 } 2067 } 2068 2069 // CastII::Value() optimizes CmpI/If patterns if the right input of the CmpI has a constant type. If the CastII input is 2070 // the same node as the left input into the CmpI node, the type of the CastII node can be improved accordingly. Add the 2071 // CastII node back to the worklist to re-apply Value() to either not miss this optimization or to undo it because it 2072 // cannot be applied anymore. We could have optimized the type of the CastII before but now the type of the right input 2073 // of the CmpI (i.e. 'parent') is no longer constant. The type of the CastII must be widened in this case. 2074 void PhaseCCP::push_cast_ii(Unique_Node_List& worklist, const Node* parent, const Node* use) const { 2075 if (use->Opcode() == Op_CmpI && use->in(2) == parent) { 2076 Node* other_cmp_input = use->in(1); 2077 for (DUIterator_Fast imax, i = other_cmp_input->fast_outs(imax); i < imax; i++) { 2078 Node* cast_ii = other_cmp_input->fast_out(i); 2079 if (cast_ii->is_CastII()) { 2080 push_if_not_bottom_type(worklist, cast_ii); 2081 } 2082 } 2083 } 2084 } 2085 2086 void PhaseCCP::push_opaque_zero_trip_guard(Unique_Node_List& worklist, const Node* use) const { 2087 if (use->Opcode() == Op_OpaqueZeroTripGuard) { 2088 push_if_not_bottom_type(worklist, use->unique_out()); 2089 } 2090 } 2091 2092 //------------------------------do_transform----------------------------------- 2093 // Top level driver for the recursive transformer 2094 void PhaseCCP::do_transform() { 2095 // Correct leaves of new-space Nodes; they point to old-space. 2096 C->set_root( transform(C->root())->as_Root() ); 2097 assert( C->top(), "missing TOP node" ); 2098 assert( C->root(), "missing root" ); 2099 } 2100 2101 //------------------------------transform-------------------------------------- 2102 // Given a Node in old-space, clone him into new-space. 2103 // Convert any of his old-space children into new-space children. 2104 Node *PhaseCCP::transform( Node *n ) { 2105 Node *new_node = _nodes[n->_idx]; // Check for transformed node 2106 if( new_node != NULL ) 2107 return new_node; // Been there, done that, return old answer 2108 2109 assert(n->is_Root(), "traversal must start at root"); 2110 assert(_root_and_safepoints.member(n), "root (n) must be in list"); 2111 2112 // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc 2113 GrowableArray <Node *> transform_stack(C->live_nodes() >> 1); 2114 Unique_Node_List useful; // track all visited nodes, so that we can remove the complement 2115 2116 // Initialize the traversal. 2117 // This CCP pass may prove that no exit test for a loop ever succeeds (i.e. the loop is infinite). In that case, 2118 // the logic below doesn't follow any path from Root to the loop body: there's at least one such path but it's proven 2119 // never taken (its type is TOP). As a consequence the node on the exit path that's input to Root (let's call it n) is 2120 // replaced by the top node and the inputs of that node n are not enqueued for further processing. If CCP only works 2121 // through the graph from Root, this causes the loop body to never be processed here even when it's not dead (that 2122 // is reachable from Root following its uses). To prevent that issue, transform() starts walking the graph from Root 2123 // and all safepoints. 2124 for (uint i = 0; i < _root_and_safepoints.size(); ++i) { 2125 Node* nn = _root_and_safepoints.at(i); 2126 Node* new_node = _nodes[nn->_idx]; 2127 assert(new_node == NULL, ""); 2128 new_node = transform_once(nn); // Check for constant 2129 _nodes.map(nn->_idx, new_node); // Flag as having been cloned 2130 transform_stack.push(new_node); // Process children of cloned node 2131 useful.push(new_node); 2132 } 2133 2134 while (transform_stack.is_nonempty()) { 2135 Node* clone = transform_stack.pop(); 2136 uint cnt = clone->req(); 2137 for( uint i = 0; i < cnt; i++ ) { // For all inputs do 2138 Node *input = clone->in(i); 2139 if( input != NULL ) { // Ignore NULLs 2140 Node *new_input = _nodes[input->_idx]; // Check for cloned input node 2141 if( new_input == NULL ) { 2142 new_input = transform_once(input); // Check for constant 2143 _nodes.map( input->_idx, new_input );// Flag as having been cloned 2144 transform_stack.push(new_input); // Process children of cloned node 2145 useful.push(new_input); 2146 } 2147 assert( new_input == clone->in(i), "insanity check"); 2148 } 2149 } 2150 } 2151 2152 // The above transformation might lead to subgraphs becoming unreachable from the 2153 // bottom while still being reachable from the top. As a result, nodes in that 2154 // subgraph are not transformed and their bottom types are not updated, leading to 2155 // an inconsistency between bottom_type() and type(). In rare cases, LoadNodes in 2156 // such a subgraph, might be re-enqueued for IGVN indefinitely by MemNode::Ideal_common 2157 // because their address type is inconsistent. Therefore, we aggressively remove 2158 // all useless nodes here even before PhaseIdealLoop::build_loop_late gets a chance 2159 // to remove them anyway. 2160 if (C->cached_top_node()) { 2161 useful.push(C->cached_top_node()); 2162 } 2163 C->update_dead_node_list(useful); 2164 remove_useless_nodes(useful.member_set()); 2165 _worklist.remove_useless_nodes(useful.member_set()); 2166 C->disconnect_useless_nodes(useful, &_worklist); 2167 2168 Node* new_root = _nodes[n->_idx]; 2169 assert(new_root->is_Root(), "transformed root node must be a root node"); 2170 return new_root; 2171 } 2172 2173 2174 //------------------------------transform_once--------------------------------- 2175 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant. 2176 Node *PhaseCCP::transform_once( Node *n ) { 2177 const Type *t = type(n); 2178 // Constant? Use constant Node instead 2179 if( t->singleton() ) { 2180 Node *nn = n; // Default is to return the original constant 2181 if( t == Type::TOP ) { 2182 // cache my top node on the Compile instance 2183 if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) { 2184 C->set_cached_top_node(ConNode::make(Type::TOP)); 2185 set_type(C->top(), Type::TOP); 2186 } 2187 nn = C->top(); 2188 } 2189 if( !n->is_Con() ) { 2190 if( t != Type::TOP ) { 2191 nn = makecon(t); // ConNode::make(t); 2192 NOT_PRODUCT( inc_constants(); ) 2193 } else if( n->is_Region() ) { // Unreachable region 2194 // Note: nn == C->top() 2195 n->set_req(0, NULL); // Cut selfreference 2196 bool progress = true; 2197 uint max = n->outcnt(); 2198 DUIterator i; 2199 while (progress) { 2200 progress = false; 2201 // Eagerly remove dead phis to avoid phis copies creation. 2202 for (i = n->outs(); n->has_out(i); i++) { 2203 Node* m = n->out(i); 2204 if (m->is_Phi()) { 2205 assert(type(m) == Type::TOP, "Unreachable region should not have live phis."); 2206 replace_node(m, nn); 2207 if (max != n->outcnt()) { 2208 progress = true; 2209 i = n->refresh_out_pos(i); 2210 max = n->outcnt(); 2211 } 2212 } 2213 } 2214 } 2215 } 2216 replace_node(n,nn); // Update DefUse edges for new constant 2217 } 2218 return nn; 2219 } 2220 2221 // If x is a TypeNode, capture any more-precise type permanently into Node 2222 if (t != n->bottom_type()) { 2223 hash_delete(n); // changing bottom type may force a rehash 2224 n->raise_bottom_type(t); 2225 _worklist.push(n); // n re-enters the hash table via the worklist 2226 } 2227 2228 // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks 2229 switch( n->Opcode() ) { 2230 case Op_CallStaticJava: // Give post-parse call devirtualization a chance 2231 case Op_CallDynamicJava: 2232 case Op_FastLock: // Revisit FastLocks for lock coarsening 2233 case Op_If: 2234 case Op_CountedLoopEnd: 2235 case Op_Region: 2236 case Op_Loop: 2237 case Op_CountedLoop: 2238 case Op_Conv2B: 2239 case Op_Opaque1: 2240 _worklist.push(n); 2241 break; 2242 default: 2243 break; 2244 } 2245 2246 return n; 2247 } 2248 2249 //---------------------------------saturate------------------------------------ 2250 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type, 2251 const Type* limit_type) const { 2252 const Type* wide_type = new_type->widen(old_type, limit_type); 2253 if (wide_type != new_type) { // did we widen? 2254 // If so, we may have widened beyond the limit type. Clip it back down. 2255 new_type = wide_type->filter(limit_type); 2256 } 2257 return new_type; 2258 } 2259 2260 //------------------------------print_statistics------------------------------- 2261 #ifndef PRODUCT 2262 void PhaseCCP::print_statistics() { 2263 tty->print_cr("CCP: %d constants found: %d", _total_invokes, _total_constants); 2264 } 2265 #endif 2266 2267 2268 //============================================================================= 2269 #ifndef PRODUCT 2270 uint PhasePeephole::_total_peepholes = 0; 2271 #endif 2272 //------------------------------PhasePeephole---------------------------------- 2273 // Conditional Constant Propagation, ala Wegman & Zadeck 2274 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ) 2275 : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) { 2276 NOT_PRODUCT( clear_peepholes(); ) 2277 } 2278 2279 #ifndef PRODUCT 2280 //------------------------------~PhasePeephole--------------------------------- 2281 PhasePeephole::~PhasePeephole() { 2282 _total_peepholes += count_peepholes(); 2283 } 2284 #endif 2285 2286 //------------------------------transform-------------------------------------- 2287 Node *PhasePeephole::transform( Node *n ) { 2288 ShouldNotCallThis(); 2289 return NULL; 2290 } 2291 2292 //------------------------------do_transform----------------------------------- 2293 void PhasePeephole::do_transform() { 2294 bool method_name_not_printed = true; 2295 2296 // Examine each basic block 2297 for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) { 2298 Block* block = _cfg.get_block(block_number); 2299 bool block_not_printed = true; 2300 2301 for (bool progress = true; progress;) { 2302 progress = false; 2303 // block->end_idx() not valid after PhaseRegAlloc 2304 uint end_index = block->number_of_nodes(); 2305 for( uint instruction_index = end_index - 1; instruction_index > 0; --instruction_index ) { 2306 Node *n = block->get_node(instruction_index); 2307 if( n->is_Mach() ) { 2308 MachNode *m = n->as_Mach(); 2309 // check for peephole opportunities 2310 int result = m->peephole(block, instruction_index, &_cfg, _regalloc); 2311 if( result != -1 ) { 2312 #ifndef PRODUCT 2313 if( PrintOptoPeephole ) { 2314 // Print method, first time only 2315 if( C->method() && method_name_not_printed ) { 2316 C->method()->print_short_name(); tty->cr(); 2317 method_name_not_printed = false; 2318 } 2319 // Print this block 2320 if( Verbose && block_not_printed) { 2321 tty->print_cr("in block"); 2322 block->dump(); 2323 block_not_printed = false; 2324 } 2325 // Print the peephole number 2326 tty->print_cr("peephole number: %d", result); 2327 } 2328 inc_peepholes(); 2329 #endif 2330 // Set progress, start again 2331 progress = true; 2332 break; 2333 } 2334 } 2335 } 2336 } 2337 } 2338 } 2339 2340 //------------------------------print_statistics------------------------------- 2341 #ifndef PRODUCT 2342 void PhasePeephole::print_statistics() { 2343 tty->print_cr("Peephole: peephole rules applied: %d", _total_peepholes); 2344 } 2345 #endif 2346 2347 2348 //============================================================================= 2349 //------------------------------set_req_X-------------------------------------- 2350 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) { 2351 assert( is_not_dead(n), "can not use dead node"); 2352 assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" ); 2353 Node *old = in(i); 2354 set_req(i, n); 2355 2356 // old goes dead? 2357 if( old ) { 2358 switch (old->outcnt()) { 2359 case 0: 2360 // Put into the worklist to kill later. We do not kill it now because the 2361 // recursive kill will delete the current node (this) if dead-loop exists 2362 if (!old->is_top()) 2363 igvn->_worklist.push( old ); 2364 break; 2365 case 1: 2366 if( old->is_Store() || old->has_special_unique_user() ) 2367 igvn->add_users_to_worklist( old ); 2368 break; 2369 case 2: 2370 if( old->is_Store() ) 2371 igvn->add_users_to_worklist( old ); 2372 if( old->Opcode() == Op_Region ) 2373 igvn->_worklist.push(old); 2374 break; 2375 case 3: 2376 if( old->Opcode() == Op_Region ) { 2377 igvn->_worklist.push(old); 2378 igvn->add_users_to_worklist( old ); 2379 } 2380 break; 2381 default: 2382 break; 2383 } 2384 2385 BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, old); 2386 } 2387 } 2388 2389 void Node::set_req_X(uint i, Node *n, PhaseGVN *gvn) { 2390 PhaseIterGVN* igvn = gvn->is_IterGVN(); 2391 if (igvn == NULL) { 2392 set_req(i, n); 2393 return; 2394 } 2395 set_req_X(i, n, igvn); 2396 } 2397 2398 //-------------------------------replace_by----------------------------------- 2399 // Using def-use info, replace one node for another. Follow the def-use info 2400 // to all users of the OLD node. Then make all uses point to the NEW node. 2401 void Node::replace_by(Node *new_node) { 2402 assert(!is_top(), "top node has no DU info"); 2403 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) { 2404 Node* use = last_out(i); 2405 uint uses_found = 0; 2406 for (uint j = 0; j < use->len(); j++) { 2407 if (use->in(j) == this) { 2408 if (j < use->req()) 2409 use->set_req(j, new_node); 2410 else use->set_prec(j, new_node); 2411 uses_found++; 2412 } 2413 } 2414 i -= uses_found; // we deleted 1 or more copies of this edge 2415 } 2416 } 2417 2418 //============================================================================= 2419 //----------------------------------------------------------------------------- 2420 void Type_Array::grow( uint i ) { 2421 if( !_max ) { 2422 _max = 1; 2423 _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) ); 2424 _types[0] = NULL; 2425 } 2426 uint old = _max; 2427 _max = next_power_of_2(i); 2428 _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*)); 2429 memset( &_types[old], 0, (_max-old)*sizeof(Type*) ); 2430 } 2431 2432 //------------------------------dump------------------------------------------- 2433 #ifndef PRODUCT 2434 void Type_Array::dump() const { 2435 uint max = Size(); 2436 for( uint i = 0; i < max; i++ ) { 2437 if( _types[i] != NULL ) { 2438 tty->print(" %d\t== ", i); _types[i]->dump(); tty->cr(); 2439 } 2440 } 2441 } 2442 #endif