1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_PHASEX_HPP 26 #define SHARE_OPTO_PHASEX_HPP 27 28 #include "libadt/dict.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "opto/memnode.hpp" 32 #include "opto/node.hpp" 33 #include "opto/phase.hpp" 34 #include "opto/type.hpp" 35 36 class BarrierSetC2; 37 class Compile; 38 class ConINode; 39 class ConLNode; 40 class Node; 41 class Type; 42 class PhaseTransform; 43 class PhaseGVN; 44 class PhaseIterGVN; 45 class PhaseCCP; 46 class PhasePeephole; 47 class PhaseRegAlloc; 48 49 50 //----------------------------------------------------------------------------- 51 // Expandable closed hash-table of nodes, initialized to NULL. 52 // Note that the constructor just zeros things 53 // Storage is reclaimed when the Arena's lifetime is over. 54 class NodeHash : public StackObj { 55 protected: 56 Arena *_a; // Arena to allocate in 57 uint _max; // Size of table (power of 2) 58 uint _inserts; // For grow and debug, count of hash_inserts 59 uint _insert_limit; // 'grow' when _inserts reaches _insert_limit 60 Node **_table; // Hash table of Node pointers 61 Node *_sentinel; // Replaces deleted entries in hash table 62 63 public: 64 NodeHash(uint est_max_size); 65 NodeHash(Arena *arena, uint est_max_size); 66 NodeHash(NodeHash *use_this_state); 67 #ifdef ASSERT 68 ~NodeHash(); // Unlock all nodes upon destruction of table. 69 void operator=(const NodeHash&); // Unlock all nodes upon replacement of table. 70 #endif 71 Node *hash_find(const Node*);// Find an equivalent version in hash table 72 Node *hash_find_insert(Node*);// If not in table insert else return found node 73 void hash_insert(Node*); // Insert into hash table 74 bool hash_delete(const Node*);// Replace with _sentinel in hash table 75 void check_grow() { 76 _inserts++; 77 if( _inserts == _insert_limit ) { grow(); } 78 assert( _inserts <= _insert_limit, "hash table overflow"); 79 assert( _inserts < _max, "hash table overflow" ); 80 } 81 static uint round_up(uint); // Round up to nearest power of 2 82 void grow(); // Grow _table to next power of 2 and rehash 83 // Return 75% of _max, rounded up. 84 uint insert_limit() const { return _max - (_max>>2); } 85 86 void clear(); // Set all entries to NULL, keep storage. 87 // Size of hash table 88 uint size() const { return _max; } 89 // Return Node* at index in table 90 Node *at(uint table_index) { 91 assert(table_index < _max, "Must be within table"); 92 return _table[table_index]; 93 } 94 95 void remove_useless_nodes(VectorSet& useful); // replace with sentinel 96 void replace_with(NodeHash* nh); 97 void check_no_speculative_types(); // Check no speculative part for type nodes in table 98 99 Node *sentinel() { return _sentinel; } 100 101 #ifndef PRODUCT 102 Node *find_index(uint idx); // For debugging 103 void dump(); // For debugging, dump statistics 104 uint _grows; // For debugging, count of table grow()s 105 uint _look_probes; // For debugging, count of hash probes 106 uint _lookup_hits; // For debugging, count of hash_finds 107 uint _lookup_misses; // For debugging, count of hash_finds 108 uint _insert_probes; // For debugging, count of hash probes 109 uint _delete_probes; // For debugging, count of hash probes for deletes 110 uint _delete_hits; // For debugging, count of hash probes for deletes 111 uint _delete_misses; // For debugging, count of hash probes for deletes 112 uint _total_inserts; // For debugging, total inserts into hash table 113 uint _total_insert_probes; // For debugging, total probes while inserting 114 #endif 115 }; 116 117 118 //----------------------------------------------------------------------------- 119 // Map dense integer indices to Types. Uses classic doubling-array trick. 120 // Abstractly provides an infinite array of Type*'s, initialized to NULL. 121 // Note that the constructor just zeros things, and since I use Arena 122 // allocation I do not need a destructor to reclaim storage. 123 // Despite the general name, this class is customized for use by PhaseTransform. 124 class Type_Array : public StackObj { 125 Arena *_a; // Arena to allocate in 126 uint _max; 127 const Type **_types; 128 void grow( uint i ); // Grow array node to fit 129 const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped 130 { return (i<_max) ? _types[i] : (Type*)NULL; } 131 friend class PhaseTransform; 132 public: 133 Type_Array(Arena *a) : _a(a), _max(0), _types(0) {} 134 Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { } 135 const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];} 136 // Extend the mapping: index i maps to Type *n. 137 void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; } 138 uint Size() const { return _max; } 139 #ifndef PRODUCT 140 void dump() const; 141 #endif 142 }; 143 144 145 //------------------------------PhaseRemoveUseless----------------------------- 146 // Remove useless nodes from GVN hash-table, worklist, and graph 147 class PhaseRemoveUseless : public Phase { 148 protected: 149 Unique_Node_List _useful; // Nodes reachable from root 150 // list is allocated from current resource area 151 public: 152 PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless); 153 154 Unique_Node_List *get_useful() { return &_useful; } 155 }; 156 157 //------------------------------PhaseRenumber---------------------------------- 158 // Phase that first performs a PhaseRemoveUseless, then it renumbers compiler 159 // structures accordingly. 160 class PhaseRenumberLive : public PhaseRemoveUseless { 161 protected: 162 Type_Array _new_type_array; // Storage for the updated type information. 163 GrowableArray<int> _old2new_map; 164 Node_List _delayed; 165 bool _is_pass_finished; 166 uint _live_node_count; 167 168 int update_embedded_ids(Node* n); 169 int new_index(int old_idx); 170 171 public: 172 PhaseRenumberLive(PhaseGVN* gvn, 173 Unique_Node_List* worklist, Unique_Node_List* new_worklist, 174 PhaseNumber phase_num = Remove_Useless_And_Renumber_Live); 175 }; 176 177 178 //------------------------------PhaseTransform--------------------------------- 179 // Phases that analyze, then transform. Constructing the Phase object does any 180 // global or slow analysis. The results are cached later for a fast 181 // transformation pass. When the Phase object is deleted the cached analysis 182 // results are deleted. 183 class PhaseTransform : public Phase { 184 protected: 185 Arena* _arena; 186 Node_List _nodes; // Map old node indices to new nodes. 187 Type_Array _types; // Map old node indices to Types. 188 189 // ConNode caches: 190 enum { _icon_min = -1 * HeapWordSize, 191 _icon_max = 16 * HeapWordSize, 192 _lcon_min = _icon_min, 193 _lcon_max = _icon_max, 194 _zcon_max = (uint)T_CONFLICT 195 }; 196 ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes 197 ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes 198 ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes 199 void init_con_caches(); 200 201 // Support both int and long caches because either might be an intptr_t, 202 // so they show up frequently in address computations. 203 204 public: 205 PhaseTransform( PhaseNumber pnum ); 206 PhaseTransform( Arena *arena, PhaseNumber pnum ); 207 PhaseTransform( PhaseTransform *phase, PhaseNumber pnum ); 208 209 Arena* arena() { return _arena; } 210 Type_Array& types() { return _types; } 211 void replace_types(Type_Array new_types) { 212 _types = new_types; 213 } 214 // _nodes is used in varying ways by subclasses, which define local accessors 215 uint nodes_size() { 216 return _nodes.size(); 217 } 218 219 public: 220 // Get a previously recorded type for the node n. 221 // This type must already have been recorded. 222 // If you want the type of a very new (untransformed) node, 223 // you must use type_or_null, and test the result for NULL. 224 const Type* type(const Node* n) const { 225 assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop"); 226 assert(n != NULL, "must not be null"); 227 const Type* t = _types.fast_lookup(n->_idx); 228 assert(t != NULL, "must set before get"); 229 return t; 230 } 231 // Get a previously recorded type for the node n, 232 // or else return NULL if there is none. 233 const Type* type_or_null(const Node* n) const { 234 assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop"); 235 return _types.fast_lookup(n->_idx); 236 } 237 // Record a type for a node. 238 void set_type(const Node* n, const Type *t) { 239 assert(t != NULL, "type must not be null"); 240 _types.map(n->_idx, t); 241 } 242 // Record an initial type for a node, the node's bottom type. 243 void set_type_bottom(const Node* n) { 244 // Use this for initialization when bottom_type() (or better) is not handy. 245 // Usually the initialization should be to n->Value(this) instead, 246 // or a hand-optimized value like Type::MEMORY or Type::CONTROL. 247 assert(_types[n->_idx] == NULL, "must set the initial type just once"); 248 _types.map(n->_idx, n->bottom_type()); 249 } 250 // Make sure the types array is big enough to record a size for the node n. 251 // (In product builds, we never want to do range checks on the types array!) 252 void ensure_type_or_null(const Node* n) { 253 if (n->_idx >= _types.Size()) 254 _types.map(n->_idx, NULL); // Grow the types array as needed. 255 } 256 257 // Utility functions: 258 const TypeInt* find_int_type( Node* n); 259 const TypeLong* find_long_type(Node* n); 260 jint find_int_con( Node* n, jint value_if_unknown) { 261 const TypeInt* t = find_int_type(n); 262 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 263 } 264 jlong find_long_con(Node* n, jlong value_if_unknown) { 265 const TypeLong* t = find_long_type(n); 266 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 267 } 268 269 // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc. 270 // Same as transform(ConNode::make(t)). 271 ConNode* makecon(const Type* t); 272 virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues 273 { ShouldNotCallThis(); return NULL; } 274 275 // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l). 276 ConINode* intcon(jint i); 277 ConLNode* longcon(jlong l); 278 ConNode* integercon(jlong l, BasicType bt); 279 280 // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)). 281 ConNode* zerocon(BasicType bt); 282 283 // Return a node which computes the same function as this node, but 284 // in a faster or cheaper fashion. 285 virtual Node *transform( Node *n ) = 0; 286 287 // For pessimistic passes, the return type must monotonically narrow. 288 // For optimistic passes, the return type must monotonically widen. 289 // It is possible to get into a "death march" in either type of pass, 290 // where the types are continually moving but it will take 2**31 or 291 // more steps to converge. This doesn't happen on most normal loops. 292 // 293 // Here is an example of a deadly loop for an optimistic pass, along 294 // with a partial trace of inferred types: 295 // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L; 296 // 0 1 join([0..max], 1) 297 // [0..1] [1..2] join([0..max], [1..2]) 298 // [0..2] [1..3] join([0..max], [1..3]) 299 // ... ... ... 300 // [0..max] [min]u[1..max] join([0..max], [min..max]) 301 // [0..max] ==> fixpoint 302 // We would have proven, the hard way, that the iteration space is all 303 // non-negative ints, with the loop terminating due to 32-bit overflow. 304 // 305 // Here is the corresponding example for a pessimistic pass: 306 // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L; 307 // int int join([0..max], int) 308 // [0..max] [-1..max-1] join([0..max], [-1..max-1]) 309 // [0..max-1] [-1..max-2] join([0..max], [-1..max-2]) 310 // ... ... ... 311 // [0..1] [-1..0] join([0..max], [-1..0]) 312 // 0 -1 join([0..max], -1) 313 // 0 == fixpoint 314 // We would have proven, the hard way, that the iteration space is {0}. 315 // (Usually, other optimizations will make the "if (x >= 0)" fold up 316 // before we get into trouble. But not always.) 317 // 318 // It's a pleasant thing to observe that the pessimistic pass 319 // will make short work of the optimistic pass's deadly loop, 320 // and vice versa. That is a good example of the complementary 321 // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases. 322 // 323 // In any case, only widen or narrow a few times before going to the 324 // correct flavor of top or bottom. 325 // 326 // This call only needs to be made once as the data flows around any 327 // given cycle. We do it at Phis, and nowhere else. 328 // The types presented are the new type of a phi (computed by PhiNode::Value) 329 // and the previously computed type, last time the phi was visited. 330 // 331 // The third argument is upper limit for the saturated value, 332 // if the phase wishes to widen the new_type. 333 // If the phase is narrowing, the old type provides a lower limit. 334 // Caller guarantees that old_type and new_type are no higher than limit_type. 335 virtual const Type* saturate(const Type* new_type, const Type* old_type, 336 const Type* limit_type) const 337 { ShouldNotCallThis(); return NULL; } 338 339 // true if CFG node d dominates CFG node n 340 virtual bool is_dominator(Node *d, Node *n) { fatal("unimplemented for this pass"); return false; }; 341 342 #ifndef PRODUCT 343 void dump_old2new_map() const; 344 void dump_new( uint new_lidx ) const; 345 void dump_types() const; 346 void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true); 347 void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited); 348 349 uint _count_progress; // For profiling, count transforms that make progress 350 void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); } 351 void clear_progress() { _count_progress = 0; } 352 uint made_progress() const { return _count_progress; } 353 354 uint _count_transforms; // For profiling, count transforms performed 355 void set_transforms() { ++_count_transforms; } 356 void clear_transforms() { _count_transforms = 0; } 357 uint made_transforms() const{ return _count_transforms; } 358 359 bool _allow_progress; // progress not allowed during verification pass 360 void set_allow_progress(bool allow) { _allow_progress = allow; } 361 bool allow_progress() { return _allow_progress; } 362 #endif 363 }; 364 365 //------------------------------PhaseValues------------------------------------ 366 // Phase infrastructure to support values 367 class PhaseValues : public PhaseTransform { 368 protected: 369 NodeHash _table; // Hash table for value-numbering 370 bool _iterGVN; 371 public: 372 PhaseValues(Arena* arena, uint est_max_size); 373 PhaseValues(PhaseValues* pt); 374 NOT_PRODUCT(~PhaseValues();) 375 PhaseIterGVN* is_IterGVN() { return (_iterGVN) ? (PhaseIterGVN*)this : NULL; } 376 377 // Some Ideal and other transforms delete --> modify --> insert values 378 bool hash_delete(Node* n) { return _table.hash_delete(n); } 379 void hash_insert(Node* n) { _table.hash_insert(n); } 380 Node* hash_find_insert(Node* n){ return _table.hash_find_insert(n); } 381 Node* hash_find(const Node* n) { return _table.hash_find(n); } 382 383 // Used after parsing to eliminate values that are no longer in program 384 void remove_useless_nodes(VectorSet &useful) { 385 _table.remove_useless_nodes(useful); 386 // this may invalidate cached cons so reset the cache 387 init_con_caches(); 388 } 389 390 virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform 391 392 const Type* saturate(const Type* new_type, const Type* old_type, 393 const Type* limit_type) const 394 { return new_type; } 395 396 #ifndef PRODUCT 397 uint _count_new_values; // For profiling, count new values produced 398 void inc_new_values() { ++_count_new_values; } 399 void clear_new_values() { _count_new_values = 0; } 400 uint made_new_values() const { return _count_new_values; } 401 #endif 402 }; 403 404 405 //------------------------------PhaseGVN--------------------------------------- 406 // Phase for performing local, pessimistic GVN-style optimizations. 407 class PhaseGVN : public PhaseValues { 408 protected: 409 bool is_dominator_helper(Node *d, Node *n, bool linear_only); 410 411 public: 412 PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {} 413 PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {} 414 415 // Return a node which computes the same function as this node, but 416 // in a faster or cheaper fashion. 417 Node *transform( Node *n ); 418 Node *transform_no_reclaim( Node *n ); 419 virtual void record_for_igvn(Node *n) { 420 C->record_for_igvn(n); 421 } 422 423 void replace_with(PhaseGVN* gvn) { 424 _table.replace_with(&gvn->_table); 425 _types = gvn->_types; 426 } 427 428 bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, true); } 429 430 // Helper to call Node::Ideal() and BarrierSetC2::ideal_node(). 431 Node* apply_ideal(Node* i, bool can_reshape); 432 433 #ifdef ASSERT 434 void dump_infinite_loop_info(Node* n, const char* where); 435 // Check for a simple dead loop when a data node references itself. 436 void dead_loop_check(Node *n); 437 #endif 438 }; 439 440 //------------------------------PhaseIterGVN----------------------------------- 441 // Phase for iteratively performing local, pessimistic GVN-style optimizations. 442 // and ideal transformations on the graph. 443 class PhaseIterGVN : public PhaseGVN { 444 private: 445 bool _delay_transform; // When true simply register the node when calling transform 446 // instead of actually optimizing it 447 448 // Idealize old Node 'n' with respect to its inputs and its value 449 virtual Node *transform_old( Node *a_node ); 450 451 // Subsume users of node 'old' into node 'nn' 452 void subsume_node( Node *old, Node *nn ); 453 454 Node_Stack _stack; // Stack used to avoid recursion 455 protected: 456 457 // Shuffle worklist, for stress testing 458 void shuffle_worklist(); 459 460 virtual const Type* saturate(const Type* new_type, const Type* old_type, 461 const Type* limit_type) const; 462 // Usually returns new_type. Returns old_type if new_type is only a slight 463 // improvement, such that it would take many (>>10) steps to reach 2**32. 464 465 public: 466 PhaseIterGVN(PhaseIterGVN* igvn); // Used by CCP constructor 467 PhaseIterGVN(PhaseGVN* gvn); // Used after Parser 468 469 // Idealize new Node 'n' with respect to its inputs and its value 470 virtual Node *transform( Node *a_node ); 471 virtual void record_for_igvn(Node *n) { } 472 473 Unique_Node_List _worklist; // Iterative worklist 474 475 // Given def-use info and an initial worklist, apply Node::Ideal, 476 // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU 477 // and dominator info to a fixed point. 478 void optimize(); 479 480 #ifndef PRODUCT 481 void trace_PhaseIterGVN(Node* n, Node* nn, const Type* old_type); 482 void init_verifyPhaseIterGVN(); 483 void verify_PhaseIterGVN(); 484 #endif 485 486 #ifdef ASSERT 487 void dump_infinite_loop_info(Node* n, const char* where); 488 void trace_PhaseIterGVN_verbose(Node* n, int num_processed); 489 #endif 490 491 // Register a new node with the iter GVN pass without transforming it. 492 // Used when we need to restructure a Region/Phi area and all the Regions 493 // and Phis need to complete this one big transform before any other 494 // transforms can be triggered on the region. 495 // Optional 'orig' is an earlier version of this node. 496 // It is significant only for debugging and profiling. 497 Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL); 498 499 // Kill a globally dead Node. All uses are also globally dead and are 500 // aggressively trimmed. 501 void remove_globally_dead_node( Node *dead ); 502 503 // Kill all inputs to a dead node, recursively making more dead nodes. 504 // The Node must be dead locally, i.e., have no uses. 505 void remove_dead_node( Node *dead ) { 506 assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead"); 507 remove_globally_dead_node(dead); 508 } 509 510 // Add users of 'n' to worklist 511 void add_users_to_worklist0( Node *n ); 512 void add_users_to_worklist ( Node *n ); 513 514 // Replace old node with new one. 515 void replace_node( Node *old, Node *nn ) { 516 add_users_to_worklist(old); 517 hash_delete(old); // Yank from hash before hacking edges 518 subsume_node(old, nn); 519 } 520 521 // Delayed node rehash: remove a node from the hash table and rehash it during 522 // next optimizing pass 523 void rehash_node_delayed(Node* n) { 524 hash_delete(n); 525 _worklist.push(n); 526 } 527 528 // Replace ith edge of "n" with "in" 529 void replace_input_of(Node* n, int i, Node* in) { 530 rehash_node_delayed(n); 531 n->set_req_X(i, in, this); 532 } 533 534 // Add "in" as input (req) of "n" 535 void add_input_to(Node* n, Node* in) { 536 rehash_node_delayed(n); 537 n->add_req(in); 538 } 539 540 // Delete ith edge of "n" 541 void delete_input_of(Node* n, int i) { 542 rehash_node_delayed(n); 543 n->del_req(i); 544 } 545 546 // Delete precedence edge i of "n" 547 void delete_precedence_of(Node* n, int i) { 548 rehash_node_delayed(n); 549 n->rm_prec(i); 550 } 551 552 bool delay_transform() const { return _delay_transform; } 553 554 void set_delay_transform(bool delay) { 555 _delay_transform = delay; 556 } 557 558 void remove_speculative_types(); 559 void check_no_speculative_types() { 560 _table.check_no_speculative_types(); 561 } 562 563 bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, false); } 564 bool no_dependent_zero_check(Node* n) const; 565 566 #ifndef PRODUCT 567 protected: 568 // Sub-quadratic implementation of VerifyIterativeGVN. 569 julong _verify_counter; 570 julong _verify_full_passes; 571 enum { _verify_window_size = 30 }; 572 Node* _verify_window[_verify_window_size]; 573 void verify_step(Node* n); 574 #endif 575 }; 576 577 //------------------------------PhaseCCP--------------------------------------- 578 // Phase for performing global Conditional Constant Propagation. 579 // Should be replaced with combined CCP & GVN someday. 580 class PhaseCCP : public PhaseIterGVN { 581 Unique_Node_List _root_and_safepoints; 582 // Non-recursive. Use analysis to transform single Node. 583 virtual Node* transform_once(Node* n); 584 585 Node* fetch_next_node(Unique_Node_List& worklist); 586 static void dump_type_and_node(const Node* n, const Type* t) PRODUCT_RETURN; 587 588 void push_child_nodes_to_worklist(Unique_Node_List& worklist, Node* n) const; 589 void push_if_not_bottom_type(Unique_Node_List& worklist, Node* n) const; 590 void push_more_uses(Unique_Node_List& worklist, Node* parent, const Node* use) const; 591 void push_phis(Unique_Node_List& worklist, const Node* use) const; 592 static void push_catch(Unique_Node_List& worklist, const Node* use); 593 void push_cmpu(Unique_Node_List& worklist, const Node* use) const; 594 static void push_counted_loop_phi(Unique_Node_List& worklist, Node* parent, const Node* use); 595 void push_loadp(Unique_Node_List& worklist, const Node* use) const; 596 static void push_load_barrier(Unique_Node_List& worklist, const BarrierSetC2* barrier_set, const Node* use); 597 void push_and(Unique_Node_List& worklist, const Node* parent, const Node* use) const; 598 void push_cast_ii(Unique_Node_List& worklist, const Node* parent, const Node* use) const; 599 void push_opaque_zero_trip_guard(Unique_Node_List& worklist, const Node* use) const; 600 601 public: 602 PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants 603 NOT_PRODUCT( ~PhaseCCP(); ) 604 605 // Worklist algorithm identifies constants 606 void analyze(); 607 #ifdef ASSERT 608 // For every node n on verify list, check if type(n) == n->Value() 609 void verify_analyze(Unique_Node_List& worklist_verify); 610 #endif 611 // Recursive traversal of program. Used analysis to modify program. 612 virtual Node *transform( Node *n ); 613 // Do any transformation after analysis 614 void do_transform(); 615 616 virtual const Type* saturate(const Type* new_type, const Type* old_type, 617 const Type* limit_type) const; 618 // Returns new_type->widen(old_type), which increments the widen bits until 619 // giving up with TypeInt::INT or TypeLong::LONG. 620 // Result is clipped to limit_type if necessary. 621 622 #ifndef PRODUCT 623 static uint _total_invokes; // For profiling, count invocations 624 void inc_invokes() { ++PhaseCCP::_total_invokes; } 625 626 static uint _total_constants; // For profiling, count constants found 627 uint _count_constants; 628 void clear_constants() { _count_constants = 0; } 629 void inc_constants() { ++_count_constants; } 630 uint count_constants() const { return _count_constants; } 631 632 static void print_statistics(); 633 #endif 634 }; 635 636 637 //------------------------------PhasePeephole---------------------------------- 638 // Phase for performing peephole optimizations on register allocated basic blocks. 639 class PhasePeephole : public PhaseTransform { 640 PhaseRegAlloc *_regalloc; 641 PhaseCFG &_cfg; 642 // Recursive traversal of program. Pure function is unused in this phase 643 virtual Node *transform( Node *n ); 644 645 public: 646 PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ); 647 NOT_PRODUCT( ~PhasePeephole(); ) 648 649 // Do any transformation after analysis 650 void do_transform(); 651 652 #ifndef PRODUCT 653 static uint _total_peepholes; // For profiling, count peephole rules applied 654 uint _count_peepholes; 655 void clear_peepholes() { _count_peepholes = 0; } 656 void inc_peepholes() { ++_count_peepholes; } 657 uint count_peepholes() const { return _count_peepholes; } 658 659 static void print_statistics(); 660 #endif 661 }; 662 663 #endif // SHARE_OPTO_PHASEX_HPP