1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  MarkSweep::invoke(0, "Debugging");
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 
  94 
  95 // Compiled code entry points
  96 address OptoRuntime::_new_instance_Java                           = nullptr;
  97 address OptoRuntime::_new_array_Java                              = nullptr;
  98 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
  99 address OptoRuntime::_multianewarray2_Java                        = nullptr;
 100 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 101 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 102 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 103 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 104 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 105 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 106 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 107 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 108 address OptoRuntime::_rethrow_Java                                = nullptr;
 109 
 110 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 111 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 112 #if INCLUDE_JVMTI
 113 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 114 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 115 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 116 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 117 #endif
 118 
 119 ExceptionBlob* OptoRuntime::_exception_blob;
 120 
 121 // This should be called in an assertion at the start of OptoRuntime routines
 122 // which are entered from compiled code (all of them)
 123 #ifdef ASSERT
 124 static bool check_compiled_frame(JavaThread* thread) {
 125   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 126   RegisterMap map(thread,
 127                   RegisterMap::UpdateMap::skip,
 128                   RegisterMap::ProcessFrames::include,
 129                   RegisterMap::WalkContinuation::skip);
 130   frame caller = thread->last_frame().sender(&map);
 131   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 132   return true;
 133 }
 134 #endif // ASSERT
 135 
 136 
 137 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 138   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 139   if (var == nullptr) { return false; }
 140 
 141 bool OptoRuntime::generate(ciEnv* env) {
 142 
 143   generate_exception_blob();
 144 
 145   // Note: tls: Means fetching the return oop out of the thread-local storage
 146   //
 147   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 148   // -------------------------------------------------------------------------------------------------------------------------------
 149   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 150   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 151   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 152   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 153   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 154   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 155   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 156   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 157 #if INCLUDE_JVMTI
 158   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 159   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 160   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 161   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 162 #endif
 163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 164   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 165   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 170 
 171   return true;
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub(ciEnv* env,
 179                                    TypeFunc_generator gen, address C_function,
 180                                    const char *name, int is_fancy_jump,
 181                                    bool pass_tls,
 182                                    bool return_pc) {
 183 
 184   // Matching the default directive, we currently have no method to match.
 185   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 186   ResourceMark rm;
 187   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 188   DirectivesStack::release(directive);
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(current), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 225     Handle holder(current, klass->klass_holder()); // keep the klass alive
 226     klass->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(klass)->initialize(THREAD);
 229     }
 230   }
 231 
 232   if (!HAS_PENDING_EXCEPTION) {
 233     // Scavenge and allocate an instance.
 234     Handle holder(current, klass->klass_holder()); // keep the klass alive
 235     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 236     current->set_vm_result(result);
 237 
 238     // Pass oops back through thread local storage.  Our apparent type to Java
 239     // is that we return an oop, but we can block on exit from this routine and
 240     // a GC can trash the oop in C's return register.  The generated stub will
 241     // fetch the oop from TLS after any possible GC.
 242   }
 243 
 244   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 245   JRT_BLOCK_END;
 246 
 247   // inform GC that we won't do card marks for initializing writes.
 248   SharedRuntime::on_slowpath_allocation_exit(current);
 249 JRT_END
 250 
 251 
 252 // array allocation
 253 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 254   JRT_BLOCK;
 255 #ifndef PRODUCT
 256   SharedRuntime::_new_array_ctr++;            // new array requires GC
 257 #endif
 258   assert(check_compiled_frame(current), "incorrect caller");
 259 
 260   // Scavenge and allocate an instance.
 261   oop result;
 262 
 263   if (array_type->is_typeArray_klass()) {
 264     // The oopFactory likes to work with the element type.
 265     // (We could bypass the oopFactory, since it doesn't add much value.)
 266     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 267     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 268   } else {
 269     // Although the oopFactory likes to work with the elem_type,
 270     // the compiler prefers the array_type, since it must already have
 271     // that latter value in hand for the fast path.
 272     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 273     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 274     result = oopFactory::new_objArray(elem_type, len, THREAD);
 275   }
 276 
 277   // Pass oops back through thread local storage.  Our apparent type to Java
 278   // is that we return an oop, but we can block on exit from this routine and
 279   // a GC can trash the oop in C's return register.  The generated stub will
 280   // fetch the oop from TLS after any possible GC.
 281   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 282   current->set_vm_result(result);
 283   JRT_BLOCK_END;
 284 
 285   // inform GC that we won't do card marks for initializing writes.
 286   SharedRuntime::on_slowpath_allocation_exit(current);
 287 JRT_END
 288 
 289 // array allocation without zeroing
 290 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 291   JRT_BLOCK;
 292 #ifndef PRODUCT
 293   SharedRuntime::_new_array_ctr++;            // new array requires GC
 294 #endif
 295   assert(check_compiled_frame(current), "incorrect caller");
 296 
 297   // Scavenge and allocate an instance.
 298   oop result;
 299 
 300   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 301   // The oopFactory likes to work with the element type.
 302   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 303   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 304 
 305   // Pass oops back through thread local storage.  Our apparent type to Java
 306   // is that we return an oop, but we can block on exit from this routine and
 307   // a GC can trash the oop in C's return register.  The generated stub will
 308   // fetch the oop from TLS after any possible GC.
 309   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 310   current->set_vm_result(result);
 311   JRT_BLOCK_END;
 312 
 313 
 314   // inform GC that we won't do card marks for initializing writes.
 315   SharedRuntime::on_slowpath_allocation_exit(current);
 316 
 317   oop result = current->vm_result();
 318   if ((len > 0) && (result != nullptr) &&
 319       is_deoptimized_caller_frame(current)) {
 320     // Zero array here if the caller is deoptimized.
 321     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 322     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 323     const size_t hs = arrayOopDesc::header_size(elem_type);
 324     // Align to next 8 bytes to avoid trashing arrays's length.
 325     const size_t aligned_hs = align_object_offset(hs);
 326     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 327     if (aligned_hs > hs) {
 328       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 329     }
 330     // Optimized zeroing.
 331     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 332   }
 333 
 334 JRT_END
 335 
 336 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 337 
 338 // multianewarray for 2 dimensions
 339 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 340 #ifndef PRODUCT
 341   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 342 #endif
 343   assert(check_compiled_frame(current), "incorrect caller");
 344   assert(elem_type->is_klass(), "not a class");
 345   jint dims[2];
 346   dims[0] = len1;
 347   dims[1] = len2;
 348   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 349   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 350   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 351   current->set_vm_result(obj);
 352 JRT_END
 353 
 354 // multianewarray for 3 dimensions
 355 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 356 #ifndef PRODUCT
 357   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 358 #endif
 359   assert(check_compiled_frame(current), "incorrect caller");
 360   assert(elem_type->is_klass(), "not a class");
 361   jint dims[3];
 362   dims[0] = len1;
 363   dims[1] = len2;
 364   dims[2] = len3;
 365   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 366   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 367   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 368   current->set_vm_result(obj);
 369 JRT_END
 370 
 371 // multianewarray for 4 dimensions
 372 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 373 #ifndef PRODUCT
 374   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 375 #endif
 376   assert(check_compiled_frame(current), "incorrect caller");
 377   assert(elem_type->is_klass(), "not a class");
 378   jint dims[4];
 379   dims[0] = len1;
 380   dims[1] = len2;
 381   dims[2] = len3;
 382   dims[3] = len4;
 383   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 384   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 385   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 386   current->set_vm_result(obj);
 387 JRT_END
 388 
 389 // multianewarray for 5 dimensions
 390 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 391 #ifndef PRODUCT
 392   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 393 #endif
 394   assert(check_compiled_frame(current), "incorrect caller");
 395   assert(elem_type->is_klass(), "not a class");
 396   jint dims[5];
 397   dims[0] = len1;
 398   dims[1] = len2;
 399   dims[2] = len3;
 400   dims[3] = len4;
 401   dims[4] = len5;
 402   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 403   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 404   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 405   current->set_vm_result(obj);
 406 JRT_END
 407 
 408 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 409   assert(check_compiled_frame(current), "incorrect caller");
 410   assert(elem_type->is_klass(), "not a class");
 411   assert(oop(dims)->is_typeArray(), "not an array");
 412 
 413   ResourceMark rm;
 414   jint len = dims->length();
 415   assert(len > 0, "Dimensions array should contain data");
 416   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 417   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 418                                        c_dims, len);
 419 
 420   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 421   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 422   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 423   current->set_vm_result(obj);
 424 JRT_END
 425 
 426 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 427 
 428   // Very few notify/notifyAll operations find any threads on the waitset, so
 429   // the dominant fast-path is to simply return.
 430   // Relatedly, it's critical that notify/notifyAll be fast in order to
 431   // reduce lock hold times.
 432   if (!SafepointSynchronize::is_synchronizing()) {
 433     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 434       return;
 435     }
 436   }
 437 
 438   // This is the case the fast-path above isn't provisioned to handle.
 439   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 440   // (The fast-path is just a degenerate variant of the slow-path).
 441   // Perform the dreaded state transition and pass control into the slow-path.
 442   JRT_BLOCK;
 443   Handle h_obj(current, obj);
 444   ObjectSynchronizer::notify(h_obj, CHECK);
 445   JRT_BLOCK_END;
 446 JRT_END
 447 
 448 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 449 
 450   if (!SafepointSynchronize::is_synchronizing() ) {
 451     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 452       return;
 453     }
 454   }
 455 
 456   // This is the case the fast-path above isn't provisioned to handle.
 457   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 458   // (The fast-path is just a degenerate variant of the slow-path).
 459   // Perform the dreaded state transition and pass control into the slow-path.
 460   JRT_BLOCK;
 461   Handle h_obj(current, obj);
 462   ObjectSynchronizer::notifyall(h_obj, CHECK);
 463   JRT_BLOCK_END;
 464 JRT_END
 465 
 466 const TypeFunc *OptoRuntime::new_instance_Type() {
 467   // create input type (domain)
 468   const Type **fields = TypeTuple::fields(1);
 469   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 471 
 472   // create result type (range)
 473   fields = TypeTuple::fields(1);
 474   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 475 
 476   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 477 
 478   return TypeFunc::make(domain, range);
 479 }
 480 
 481 #if INCLUDE_JVMTI
 482 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 483   // create input type (domain)
 484   const Type **fields = TypeTuple::fields(2);
 485   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 486   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 487   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 488 
 489   // no result type needed
 490   fields = TypeTuple::fields(1);
 491   fields[TypeFunc::Parms+0] = nullptr; // void
 492   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 493 
 494   return TypeFunc::make(domain,range);
 495 }
 496 #endif
 497 
 498 const TypeFunc *OptoRuntime::athrow_Type() {
 499   // create input type (domain)
 500   const Type **fields = TypeTuple::fields(1);
 501   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 503 
 504   // create result type (range)
 505   fields = TypeTuple::fields(0);
 506 
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 508 
 509   return TypeFunc::make(domain, range);
 510 }
 511 
 512 
 513 const TypeFunc *OptoRuntime::new_array_Type() {
 514   // create input type (domain)
 515   const Type **fields = TypeTuple::fields(2);
 516   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 517   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 518   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 519 
 520   // create result type (range)
 521   fields = TypeTuple::fields(1);
 522   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 523 
 524   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 525 
 526   return TypeFunc::make(domain, range);
 527 }
 528 
 529 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 530   // create input type (domain)
 531   const int nargs = ndim + 1;
 532   const Type **fields = TypeTuple::fields(nargs);
 533   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 534   for( int i = 1; i < nargs; i++ )
 535     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 536   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 537 
 538   // create result type (range)
 539   fields = TypeTuple::fields(1);
 540   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 541   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 542 
 543   return TypeFunc::make(domain, range);
 544 }
 545 
 546 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 547   return multianewarray_Type(2);
 548 }
 549 
 550 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 551   return multianewarray_Type(3);
 552 }
 553 
 554 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 555   return multianewarray_Type(4);
 556 }
 557 
 558 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 559   return multianewarray_Type(5);
 560 }
 561 
 562 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 563   // create input type (domain)
 564   const Type **fields = TypeTuple::fields(2);
 565   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 566   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 567   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 568 
 569   // create result type (range)
 570   fields = TypeTuple::fields(1);
 571   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 578   // create input type (domain)
 579   const Type **fields = TypeTuple::fields(1);
 580   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 581   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 582 
 583   // create result type (range)
 584   fields = TypeTuple::fields(0);
 585   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 586 
 587   return TypeFunc::make(domain, range);
 588 }
 589 
 590 //-----------------------------------------------------------------------------
 591 // Monitor Handling
 592 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 593   // create input type (domain)
 594   const Type **fields = TypeTuple::fields(2);
 595   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 596   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 597   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 598 
 599   // create result type (range)
 600   fields = TypeTuple::fields(0);
 601 
 602   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 603 
 604   return TypeFunc::make(domain,range);
 605 }
 606 
 607 
 608 //-----------------------------------------------------------------------------
 609 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 610   // create input type (domain)
 611   const Type **fields = TypeTuple::fields(3);
 612   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 613   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 614   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 615   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 616 
 617   // create result type (range)
 618   fields = TypeTuple::fields(0);
 619 
 620   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 621 
 622   return TypeFunc::make(domain, range);
 623 }
 624 
 625 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 626   // create input type (domain)
 627   const Type **fields = TypeTuple::fields(1);
 628   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 629   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 630 
 631   // create result type (range)
 632   fields = TypeTuple::fields(0);
 633   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 634   return TypeFunc::make(domain, range);
 635 }
 636 
 637 const TypeFunc* OptoRuntime::flush_windows_Type() {
 638   // create input type (domain)
 639   const Type** fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = nullptr; // void
 641   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 642 
 643   // create result type
 644   fields = TypeTuple::fields(1);
 645   fields[TypeFunc::Parms+0] = nullptr; // void
 646   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 647 
 648   return TypeFunc::make(domain, range);
 649 }
 650 
 651 const TypeFunc* OptoRuntime::l2f_Type() {
 652   // create input type (domain)
 653   const Type **fields = TypeTuple::fields(2);
 654   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 655   fields[TypeFunc::Parms+1] = Type::HALF;
 656   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 657 
 658   // create result type (range)
 659   fields = TypeTuple::fields(1);
 660   fields[TypeFunc::Parms+0] = Type::FLOAT;
 661   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 662 
 663   return TypeFunc::make(domain, range);
 664 }
 665 
 666 const TypeFunc* OptoRuntime::modf_Type() {
 667   const Type **fields = TypeTuple::fields(2);
 668   fields[TypeFunc::Parms+0] = Type::FLOAT;
 669   fields[TypeFunc::Parms+1] = Type::FLOAT;
 670   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 671 
 672   // create result type (range)
 673   fields = TypeTuple::fields(1);
 674   fields[TypeFunc::Parms+0] = Type::FLOAT;
 675 
 676   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 677 
 678   return TypeFunc::make(domain, range);
 679 }
 680 
 681 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 682   // create input type (domain)
 683   const Type **fields = TypeTuple::fields(2);
 684   // Symbol* name of class to be loaded
 685   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 686   fields[TypeFunc::Parms+1] = Type::HALF;
 687   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 688 
 689   // create result type (range)
 690   fields = TypeTuple::fields(2);
 691   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 692   fields[TypeFunc::Parms+1] = Type::HALF;
 693   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 694 
 695   return TypeFunc::make(domain, range);
 696 }
 697 
 698 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 699   // create input type (domain)
 700   const Type **fields = TypeTuple::fields(num_arg);
 701   // Symbol* name of class to be loaded
 702   assert(num_arg > 0, "must have at least 1 input");
 703   for (uint i = 0; i < num_arg; i++) {
 704     fields[TypeFunc::Parms+i] = in_type;
 705   }
 706   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 707 
 708   // create result type (range)
 709   const uint num_ret = 1;
 710   fields = TypeTuple::fields(num_ret);
 711   fields[TypeFunc::Parms+0] = out_type;
 712   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 713 
 714   return TypeFunc::make(domain, range);
 715 }
 716 
 717 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 718   const Type **fields = TypeTuple::fields(4);
 719   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 720   fields[TypeFunc::Parms+1] = Type::HALF;
 721   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 722   fields[TypeFunc::Parms+3] = Type::HALF;
 723   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 724 
 725   // create result type (range)
 726   fields = TypeTuple::fields(2);
 727   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 728   fields[TypeFunc::Parms+1] = Type::HALF;
 729   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 730 
 731   return TypeFunc::make(domain, range);
 732 }
 733 
 734 //-------------- currentTimeMillis, currentTimeNanos, etc
 735 
 736 const TypeFunc* OptoRuntime::void_long_Type() {
 737   // create input type (domain)
 738   const Type **fields = TypeTuple::fields(0);
 739   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 740 
 741   // create result type (range)
 742   fields = TypeTuple::fields(2);
 743   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 744   fields[TypeFunc::Parms+1] = Type::HALF;
 745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 746 
 747   return TypeFunc::make(domain, range);
 748 }
 749 
 750 const TypeFunc* OptoRuntime::void_void_Type() {
 751    // create input type (domain)
 752    const Type **fields = TypeTuple::fields(0);
 753    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 754 
 755    // create result type (range)
 756    fields = TypeTuple::fields(0);
 757    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 758    return TypeFunc::make(domain, range);
 759  }
 760 
 761  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 762    // create input type (domain)
 763    const Type **fields = TypeTuple::fields(0);
 764    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 765 
 766    // create result type (range)
 767    fields = TypeTuple::fields(0);
 768    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 769    return TypeFunc::make(domain, range);
 770  }
 771 
 772 
 773 // arraycopy stub variations:
 774 enum ArrayCopyType {
 775   ac_fast,                      // void(ptr, ptr, size_t)
 776   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 777   ac_slow,                      // void(ptr, int, ptr, int, int)
 778   ac_generic                    //  int(ptr, int, ptr, int, int)
 779 };
 780 
 781 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 782   // create input type (domain)
 783   int num_args      = (act == ac_fast ? 3 : 5);
 784   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 785   int argcnt = num_args;
 786   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 787   const Type** fields = TypeTuple::fields(argcnt);
 788   int argp = TypeFunc::Parms;
 789   fields[argp++] = TypePtr::NOTNULL;    // src
 790   if (num_size_args == 0) {
 791     fields[argp++] = TypeInt::INT;      // src_pos
 792   }
 793   fields[argp++] = TypePtr::NOTNULL;    // dest
 794   if (num_size_args == 0) {
 795     fields[argp++] = TypeInt::INT;      // dest_pos
 796     fields[argp++] = TypeInt::INT;      // length
 797   }
 798   while (num_size_args-- > 0) {
 799     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 800     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 801   }
 802   if (act == ac_checkcast) {
 803     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 804   }
 805   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 806   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 807 
 808   // create result type if needed
 809   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 810   fields = TypeTuple::fields(1);
 811   if (retcnt == 0)
 812     fields[TypeFunc::Parms+0] = nullptr; // void
 813   else
 814     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 815   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 816   return TypeFunc::make(domain, range);
 817 }
 818 
 819 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 820   // This signature is simple:  Two base pointers and a size_t.
 821   return make_arraycopy_Type(ac_fast);
 822 }
 823 
 824 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 825   // An extension of fast_arraycopy_Type which adds type checking.
 826   return make_arraycopy_Type(ac_checkcast);
 827 }
 828 
 829 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 830   // This signature is exactly the same as System.arraycopy.
 831   // There are no intptr_t (int/long) arguments.
 832   return make_arraycopy_Type(ac_slow);
 833 }
 834 
 835 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 836   // This signature is like System.arraycopy, except that it returns status.
 837   return make_arraycopy_Type(ac_generic);
 838 }
 839 
 840 
 841 const TypeFunc* OptoRuntime::array_fill_Type() {
 842   const Type** fields;
 843   int argp = TypeFunc::Parms;
 844   // create input type (domain): pointer, int, size_t
 845   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 846   fields[argp++] = TypePtr::NOTNULL;
 847   fields[argp++] = TypeInt::INT;
 848   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 849   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 850   const TypeTuple *domain = TypeTuple::make(argp, fields);
 851 
 852   // create result type
 853   fields = TypeTuple::fields(1);
 854   fields[TypeFunc::Parms+0] = nullptr; // void
 855   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 856 
 857   return TypeFunc::make(domain, range);
 858 }
 859 
 860 const TypeFunc* OptoRuntime::array_partition_Type() {
 861   // create input type (domain)
 862   int num_args = 7;
 863   int argcnt = num_args;
 864   const Type** fields = TypeTuple::fields(argcnt);
 865   int argp = TypeFunc::Parms;
 866   fields[argp++] = TypePtr::NOTNULL;  // array
 867   fields[argp++] = TypeInt::INT;      // element type
 868   fields[argp++] = TypeInt::INT;      // low
 869   fields[argp++] = TypeInt::INT;      // end
 870   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 871   fields[argp++] = TypeInt::INT;      // indexPivot1
 872   fields[argp++] = TypeInt::INT;      // indexPivot2
 873   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 874   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 875 
 876   // no result type needed
 877   fields = TypeTuple::fields(1);
 878   fields[TypeFunc::Parms+0] = nullptr; // void
 879   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 880   return TypeFunc::make(domain, range);
 881 }
 882 
 883 const TypeFunc* OptoRuntime::array_sort_Type() {
 884   // create input type (domain)
 885   int num_args      = 4;
 886   int argcnt = num_args;
 887   const Type** fields = TypeTuple::fields(argcnt);
 888   int argp = TypeFunc::Parms;
 889   fields[argp++] = TypePtr::NOTNULL;    // array
 890   fields[argp++] = TypeInt::INT;    // element type
 891   fields[argp++] = TypeInt::INT;    // fromIndex
 892   fields[argp++] = TypeInt::INT;    // toIndex
 893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 895 
 896   // no result type needed
 897   fields = TypeTuple::fields(1);
 898   fields[TypeFunc::Parms+0] = nullptr; // void
 899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 904 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 905   // create input type (domain)
 906   int num_args      = 3;
 907   int argcnt = num_args;
 908   const Type** fields = TypeTuple::fields(argcnt);
 909   int argp = TypeFunc::Parms;
 910   fields[argp++] = TypePtr::NOTNULL;    // src
 911   fields[argp++] = TypePtr::NOTNULL;    // dest
 912   fields[argp++] = TypePtr::NOTNULL;    // k array
 913   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 914   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 915 
 916   // no result type needed
 917   fields = TypeTuple::fields(1);
 918   fields[TypeFunc::Parms+0] = nullptr; // void
 919   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 920   return TypeFunc::make(domain, range);
 921 }
 922 
 923 /**
 924  * int updateBytesCRC32(int crc, byte* b, int len)
 925  */
 926 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 927   // create input type (domain)
 928   int num_args      = 3;
 929   int argcnt = num_args;
 930   const Type** fields = TypeTuple::fields(argcnt);
 931   int argp = TypeFunc::Parms;
 932   fields[argp++] = TypeInt::INT;        // crc
 933   fields[argp++] = TypePtr::NOTNULL;    // src
 934   fields[argp++] = TypeInt::INT;        // len
 935   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 936   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 937 
 938   // result type needed
 939   fields = TypeTuple::fields(1);
 940   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 941   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 942   return TypeFunc::make(domain, range);
 943 }
 944 
 945 /**
 946  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 947  */
 948 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 949   // create input type (domain)
 950   int num_args      = 4;
 951   int argcnt = num_args;
 952   const Type** fields = TypeTuple::fields(argcnt);
 953   int argp = TypeFunc::Parms;
 954   fields[argp++] = TypeInt::INT;        // crc
 955   fields[argp++] = TypePtr::NOTNULL;    // buf
 956   fields[argp++] = TypeInt::INT;        // len
 957   fields[argp++] = TypePtr::NOTNULL;    // table
 958   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 959   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 960 
 961   // result type needed
 962   fields = TypeTuple::fields(1);
 963   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 964   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 965   return TypeFunc::make(domain, range);
 966 }
 967 
 968 /**
 969 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 970 */
 971 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 972   // create input type (domain)
 973   int num_args      = 3;
 974   int argcnt = num_args;
 975   const Type** fields = TypeTuple::fields(argcnt);
 976   int argp = TypeFunc::Parms;
 977   fields[argp++] = TypeInt::INT;        // crc
 978   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 979   fields[argp++] = TypeInt::INT;        // len
 980   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 981   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 982 
 983   // result type needed
 984   fields = TypeTuple::fields(1);
 985   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 986   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 987   return TypeFunc::make(domain, range);
 988 }
 989 
 990 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 991 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 992   // create input type (domain)
 993   int num_args      = 5;
 994   int argcnt = num_args;
 995   const Type** fields = TypeTuple::fields(argcnt);
 996   int argp = TypeFunc::Parms;
 997   fields[argp++] = TypePtr::NOTNULL;    // src
 998   fields[argp++] = TypePtr::NOTNULL;    // dest
 999   fields[argp++] = TypePtr::NOTNULL;    // k array
1000   fields[argp++] = TypePtr::NOTNULL;    // r array
1001   fields[argp++] = TypeInt::INT;        // src len
1002   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1003   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1004 
1005   // returning cipher len (int)
1006   fields = TypeTuple::fields(1);
1007   fields[TypeFunc::Parms+0] = TypeInt::INT;
1008   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1009   return TypeFunc::make(domain, range);
1010 }
1011 
1012 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
1013 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
1014   // create input type (domain)
1015   int num_args = 4;
1016   int argcnt = num_args;
1017   const Type** fields = TypeTuple::fields(argcnt);
1018   int argp = TypeFunc::Parms;
1019   fields[argp++] = TypePtr::NOTNULL;    // src
1020   fields[argp++] = TypePtr::NOTNULL;    // dest
1021   fields[argp++] = TypePtr::NOTNULL;    // k array
1022   fields[argp++] = TypeInt::INT;        // src len
1023   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1024   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1025 
1026   // returning cipher len (int)
1027   fields = TypeTuple::fields(1);
1028   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1029   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1030   return TypeFunc::make(domain, range);
1031 }
1032 
1033 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1034 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
1035   // create input type (domain)
1036   int num_args = 7;
1037   int argcnt = num_args;
1038   const Type** fields = TypeTuple::fields(argcnt);
1039   int argp = TypeFunc::Parms;
1040   fields[argp++] = TypePtr::NOTNULL; // src
1041   fields[argp++] = TypePtr::NOTNULL; // dest
1042   fields[argp++] = TypePtr::NOTNULL; // k array
1043   fields[argp++] = TypePtr::NOTNULL; // counter array
1044   fields[argp++] = TypeInt::INT; // src len
1045   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1046   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1047   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1048   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1049   // returning cipher len (int)
1050   fields = TypeTuple::fields(1);
1051   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1052   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1053   return TypeFunc::make(domain, range);
1054 }
1055 
1056 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1057 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1058   // create input type (domain)
1059   int num_args = 8;
1060   int argcnt = num_args;
1061   const Type** fields = TypeTuple::fields(argcnt);
1062   int argp = TypeFunc::Parms;
1063   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1064   fields[argp++] = TypeInt::INT;     // int len
1065   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1066   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1067   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1068   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1069   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1070   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1071 
1072   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1073   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1074   // returning cipher len (int)
1075   fields = TypeTuple::fields(1);
1076   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1077   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1078   return TypeFunc::make(domain, range);
1079 }
1080 
1081 /*
1082  * void implCompress(byte[] buf, int ofs)
1083  */
1084 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1085   // create input type (domain)
1086   int num_args = is_sha3 ? 3 : 2;
1087   int argcnt = num_args;
1088   const Type** fields = TypeTuple::fields(argcnt);
1089   int argp = TypeFunc::Parms;
1090   fields[argp++] = TypePtr::NOTNULL; // buf
1091   fields[argp++] = TypePtr::NOTNULL; // state
1092   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1093   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1094   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1095 
1096   // no result type needed
1097   fields = TypeTuple::fields(1);
1098   fields[TypeFunc::Parms+0] = nullptr; // void
1099   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1100   return TypeFunc::make(domain, range);
1101 }
1102 
1103 /*
1104  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1105  */
1106 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1107   // create input type (domain)
1108   int num_args = is_sha3 ? 5 : 4;
1109   int argcnt = num_args;
1110   const Type** fields = TypeTuple::fields(argcnt);
1111   int argp = TypeFunc::Parms;
1112   fields[argp++] = TypePtr::NOTNULL; // buf
1113   fields[argp++] = TypePtr::NOTNULL; // state
1114   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1115   fields[argp++] = TypeInt::INT;     // ofs
1116   fields[argp++] = TypeInt::INT;     // limit
1117   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119 
1120   // returning ofs (int)
1121   fields = TypeTuple::fields(1);
1122   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1123   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1124   return TypeFunc::make(domain, range);
1125 }
1126 
1127 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1128   // create input type (domain)
1129   int num_args      = 6;
1130   int argcnt = num_args;
1131   const Type** fields = TypeTuple::fields(argcnt);
1132   int argp = TypeFunc::Parms;
1133   fields[argp++] = TypePtr::NOTNULL;    // x
1134   fields[argp++] = TypeInt::INT;        // xlen
1135   fields[argp++] = TypePtr::NOTNULL;    // y
1136   fields[argp++] = TypeInt::INT;        // ylen
1137   fields[argp++] = TypePtr::NOTNULL;    // z
1138   fields[argp++] = TypeInt::INT;        // zlen
1139   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1140   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1141 
1142   // no result type needed
1143   fields = TypeTuple::fields(1);
1144   fields[TypeFunc::Parms+0] = nullptr;
1145   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1146   return TypeFunc::make(domain, range);
1147 }
1148 
1149 const TypeFunc* OptoRuntime::squareToLen_Type() {
1150   // create input type (domain)
1151   int num_args      = 4;
1152   int argcnt = num_args;
1153   const Type** fields = TypeTuple::fields(argcnt);
1154   int argp = TypeFunc::Parms;
1155   fields[argp++] = TypePtr::NOTNULL;    // x
1156   fields[argp++] = TypeInt::INT;        // len
1157   fields[argp++] = TypePtr::NOTNULL;    // z
1158   fields[argp++] = TypeInt::INT;        // zlen
1159   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1160   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1161 
1162   // no result type needed
1163   fields = TypeTuple::fields(1);
1164   fields[TypeFunc::Parms+0] = nullptr;
1165   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1166   return TypeFunc::make(domain, range);
1167 }
1168 
1169 // for mulAdd calls, 2 pointers and 3 ints, returning int
1170 const TypeFunc* OptoRuntime::mulAdd_Type() {
1171   // create input type (domain)
1172   int num_args      = 5;
1173   int argcnt = num_args;
1174   const Type** fields = TypeTuple::fields(argcnt);
1175   int argp = TypeFunc::Parms;
1176   fields[argp++] = TypePtr::NOTNULL;    // out
1177   fields[argp++] = TypePtr::NOTNULL;    // in
1178   fields[argp++] = TypeInt::INT;        // offset
1179   fields[argp++] = TypeInt::INT;        // len
1180   fields[argp++] = TypeInt::INT;        // k
1181   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1182   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1183 
1184   // returning carry (int)
1185   fields = TypeTuple::fields(1);
1186   fields[TypeFunc::Parms+0] = TypeInt::INT;
1187   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1188   return TypeFunc::make(domain, range);
1189 }
1190 
1191 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1192   // create input type (domain)
1193   int num_args      = 7;
1194   int argcnt = num_args;
1195   const Type** fields = TypeTuple::fields(argcnt);
1196   int argp = TypeFunc::Parms;
1197   fields[argp++] = TypePtr::NOTNULL;    // a
1198   fields[argp++] = TypePtr::NOTNULL;    // b
1199   fields[argp++] = TypePtr::NOTNULL;    // n
1200   fields[argp++] = TypeInt::INT;        // len
1201   fields[argp++] = TypeLong::LONG;      // inv
1202   fields[argp++] = Type::HALF;
1203   fields[argp++] = TypePtr::NOTNULL;    // result
1204   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1205   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1206 
1207   // result type needed
1208   fields = TypeTuple::fields(1);
1209   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1210 
1211   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1212   return TypeFunc::make(domain, range);
1213 }
1214 
1215 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1216   // create input type (domain)
1217   int num_args      = 6;
1218   int argcnt = num_args;
1219   const Type** fields = TypeTuple::fields(argcnt);
1220   int argp = TypeFunc::Parms;
1221   fields[argp++] = TypePtr::NOTNULL;    // a
1222   fields[argp++] = TypePtr::NOTNULL;    // n
1223   fields[argp++] = TypeInt::INT;        // len
1224   fields[argp++] = TypeLong::LONG;      // inv
1225   fields[argp++] = Type::HALF;
1226   fields[argp++] = TypePtr::NOTNULL;    // result
1227   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1228   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1229 
1230   // result type needed
1231   fields = TypeTuple::fields(1);
1232   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1233 
1234   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1235   return TypeFunc::make(domain, range);
1236 }
1237 
1238 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1239   int argcnt = 5;
1240   const Type** fields = TypeTuple::fields(argcnt);
1241   int argp = TypeFunc::Parms;
1242   fields[argp++] = TypePtr::NOTNULL;    // newArr
1243   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1244   fields[argp++] = TypeInt::INT;        // newIdx
1245   fields[argp++] = TypeInt::INT;        // shiftCount
1246   fields[argp++] = TypeInt::INT;        // numIter
1247   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1248   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1249 
1250   // no result type needed
1251   fields = TypeTuple::fields(1);
1252   fields[TypeFunc::Parms + 0] = nullptr;
1253   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1254   return TypeFunc::make(domain, range);
1255 }
1256 
1257 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1258   // create input type (domain)
1259   int num_args = 4;
1260   int argcnt = num_args;
1261   const Type** fields = TypeTuple::fields(argcnt);
1262   int argp = TypeFunc::Parms;
1263   fields[argp++] = TypePtr::NOTNULL;    // obja
1264   fields[argp++] = TypePtr::NOTNULL;    // objb
1265   fields[argp++] = TypeInt::INT;        // length, number of elements
1266   fields[argp++] = TypeInt::INT;        // log2scale, element size
1267   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1268   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1269 
1270   //return mismatch index (int)
1271   fields = TypeTuple::fields(1);
1272   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1273   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1274   return TypeFunc::make(domain, range);
1275 }
1276 
1277 // GHASH block processing
1278 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1279     int argcnt = 4;
1280 
1281     const Type** fields = TypeTuple::fields(argcnt);
1282     int argp = TypeFunc::Parms;
1283     fields[argp++] = TypePtr::NOTNULL;    // state
1284     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1285     fields[argp++] = TypePtr::NOTNULL;    // data
1286     fields[argp++] = TypeInt::INT;        // blocks
1287     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1288     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1289 
1290     // result type needed
1291     fields = TypeTuple::fields(1);
1292     fields[TypeFunc::Parms+0] = nullptr; // void
1293     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1294     return TypeFunc::make(domain, range);
1295 }
1296 
1297 // ChaCha20 Block function
1298 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1299     int argcnt = 2;
1300 
1301     const Type** fields = TypeTuple::fields(argcnt);
1302     int argp = TypeFunc::Parms;
1303     fields[argp++] = TypePtr::NOTNULL;      // state
1304     fields[argp++] = TypePtr::NOTNULL;      // result
1305 
1306     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1307     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1308 
1309     // result type needed
1310     fields = TypeTuple::fields(1);
1311     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1312     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1313     return TypeFunc::make(domain, range);
1314 }
1315 
1316 // Base64 encode function
1317 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1318   int argcnt = 6;
1319 
1320   const Type** fields = TypeTuple::fields(argcnt);
1321   int argp = TypeFunc::Parms;
1322   fields[argp++] = TypePtr::NOTNULL;    // src array
1323   fields[argp++] = TypeInt::INT;        // offset
1324   fields[argp++] = TypeInt::INT;        // length
1325   fields[argp++] = TypePtr::NOTNULL;    // dest array
1326   fields[argp++] = TypeInt::INT;       // dp
1327   fields[argp++] = TypeInt::BOOL;       // isURL
1328   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1329   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1330 
1331   // result type needed
1332   fields = TypeTuple::fields(1);
1333   fields[TypeFunc::Parms + 0] = nullptr; // void
1334   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1335   return TypeFunc::make(domain, range);
1336 }
1337 // Base64 decode function
1338 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1339   int argcnt = 7;
1340 
1341   const Type** fields = TypeTuple::fields(argcnt);
1342   int argp = TypeFunc::Parms;
1343   fields[argp++] = TypePtr::NOTNULL;    // src array
1344   fields[argp++] = TypeInt::INT;        // src offset
1345   fields[argp++] = TypeInt::INT;        // src length
1346   fields[argp++] = TypePtr::NOTNULL;    // dest array
1347   fields[argp++] = TypeInt::INT;        // dest offset
1348   fields[argp++] = TypeInt::BOOL;       // isURL
1349   fields[argp++] = TypeInt::BOOL;       // isMIME
1350   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1351   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1352 
1353   // result type needed
1354   fields = TypeTuple::fields(1);
1355   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1356   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1357   return TypeFunc::make(domain, range);
1358 }
1359 
1360 // Poly1305 processMultipleBlocks function
1361 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1362   int argcnt = 4;
1363 
1364   const Type** fields = TypeTuple::fields(argcnt);
1365   int argp = TypeFunc::Parms;
1366   fields[argp++] = TypePtr::NOTNULL;    // input array
1367   fields[argp++] = TypeInt::INT;        // input length
1368   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1369   fields[argp++] = TypePtr::NOTNULL;    // r array
1370   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1371   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1372 
1373   // result type needed
1374   fields = TypeTuple::fields(1);
1375   fields[TypeFunc::Parms + 0] = nullptr; // void
1376   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1377   return TypeFunc::make(domain, range);
1378 }
1379 
1380 //------------- Interpreter state access for on stack replacement
1381 const TypeFunc* OptoRuntime::osr_end_Type() {
1382   // create input type (domain)
1383   const Type **fields = TypeTuple::fields(1);
1384   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1385   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1386 
1387   // create result type
1388   fields = TypeTuple::fields(1);
1389   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1390   fields[TypeFunc::Parms+0] = nullptr; // void
1391   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1392   return TypeFunc::make(domain, range);
1393 }
1394 
1395 //-------------------------------------------------------------------------------------
1396 // register policy
1397 
1398 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1399   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1400   switch (register_save_policy[reg]) {
1401     case 'C': return false; //SOC
1402     case 'E': return true ; //SOE
1403     case 'N': return false; //NS
1404     case 'A': return false; //AS
1405   }
1406   ShouldNotReachHere();
1407   return false;
1408 }
1409 
1410 //-----------------------------------------------------------------------
1411 // Exceptions
1412 //
1413 
1414 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1415 
1416 // The method is an entry that is always called by a C++ method not
1417 // directly from compiled code. Compiled code will call the C++ method following.
1418 // We can't allow async exception to be installed during  exception processing.
1419 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1420   // The frame we rethrow the exception to might not have been processed by the GC yet.
1421   // The stack watermark barrier takes care of detecting that and ensuring the frame
1422   // has updated oops.
1423   StackWatermarkSet::after_unwind(current);
1424 
1425   // Do not confuse exception_oop with pending_exception. The exception_oop
1426   // is only used to pass arguments into the method. Not for general
1427   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1428   // the runtime stubs checks this on exit.
1429   assert(current->exception_oop() != nullptr, "exception oop is found");
1430   address handler_address = nullptr;
1431 
1432   Handle exception(current, current->exception_oop());
1433   address pc = current->exception_pc();
1434 
1435   // Clear out the exception oop and pc since looking up an
1436   // exception handler can cause class loading, which might throw an
1437   // exception and those fields are expected to be clear during
1438   // normal bytecode execution.
1439   current->clear_exception_oop_and_pc();
1440 
1441   LogTarget(Info, exceptions) lt;
1442   if (lt.is_enabled()) {
1443     ResourceMark rm;
1444     LogStream ls(lt);
1445     trace_exception(&ls, exception(), pc, "");
1446   }
1447 
1448   // for AbortVMOnException flag
1449   Exceptions::debug_check_abort(exception);
1450 
1451 #ifdef ASSERT
1452   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1453     // should throw an exception here
1454     ShouldNotReachHere();
1455   }
1456 #endif
1457 
1458   // new exception handling: this method is entered only from adapters
1459   // exceptions from compiled java methods are handled in compiled code
1460   // using rethrow node
1461 
1462   nm = CodeCache::find_nmethod(pc);
1463   assert(nm != nullptr, "No NMethod found");
1464   if (nm->is_native_method()) {
1465     fatal("Native method should not have path to exception handling");
1466   } else {
1467     // we are switching to old paradigm: search for exception handler in caller_frame
1468     // instead in exception handler of caller_frame.sender()
1469 
1470     if (JvmtiExport::can_post_on_exceptions()) {
1471       // "Full-speed catching" is not necessary here,
1472       // since we're notifying the VM on every catch.
1473       // Force deoptimization and the rest of the lookup
1474       // will be fine.
1475       deoptimize_caller_frame(current);
1476     }
1477 
1478     // Check the stack guard pages.  If enabled, look for handler in this frame;
1479     // otherwise, forcibly unwind the frame.
1480     //
1481     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1482     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1483     bool deopting = false;
1484     if (nm->is_deopt_pc(pc)) {
1485       deopting = true;
1486       RegisterMap map(current,
1487                       RegisterMap::UpdateMap::skip,
1488                       RegisterMap::ProcessFrames::include,
1489                       RegisterMap::WalkContinuation::skip);
1490       frame deoptee = current->last_frame().sender(&map);
1491       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1492       // Adjust the pc back to the original throwing pc
1493       pc = deoptee.pc();
1494     }
1495 
1496     // If we are forcing an unwind because of stack overflow then deopt is
1497     // irrelevant since we are throwing the frame away anyway.
1498 
1499     if (deopting && !force_unwind) {
1500       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1501     } else {
1502 
1503       handler_address =
1504         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1505 
1506       if (handler_address == nullptr) {
1507         bool recursive_exception = false;
1508         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1509         assert (handler_address != nullptr, "must have compiled handler");
1510         // Update the exception cache only when the unwind was not forced
1511         // and there didn't happen another exception during the computation of the
1512         // compiled exception handler. Checking for exception oop equality is not
1513         // sufficient because some exceptions are pre-allocated and reused.
1514         if (!force_unwind && !recursive_exception) {
1515           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1516         }
1517       } else {
1518 #ifdef ASSERT
1519         bool recursive_exception = false;
1520         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1521         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1522                  p2i(handler_address), p2i(computed_address));
1523 #endif
1524       }
1525     }
1526 
1527     current->set_exception_pc(pc);
1528     current->set_exception_handler_pc(handler_address);
1529 
1530     // Check if the exception PC is a MethodHandle call site.
1531     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1532   }
1533 
1534   // Restore correct return pc.  Was saved above.
1535   current->set_exception_oop(exception());
1536   return handler_address;
1537 
1538 JRT_END
1539 
1540 // We are entering here from exception_blob
1541 // If there is a compiled exception handler in this method, we will continue there;
1542 // otherwise we will unwind the stack and continue at the caller of top frame method
1543 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1544 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1545 // we looked up the handler for has been deoptimized in the meantime. If it has been
1546 // we must not use the handler and instead return the deopt blob.
1547 address OptoRuntime::handle_exception_C(JavaThread* current) {
1548 //
1549 // We are in Java not VM and in debug mode we have a NoHandleMark
1550 //
1551 #ifndef PRODUCT
1552   SharedRuntime::_find_handler_ctr++;          // find exception handler
1553 #endif
1554   debug_only(NoHandleMark __hm;)
1555   nmethod* nm = nullptr;
1556   address handler_address = nullptr;
1557   {
1558     // Enter the VM
1559 
1560     ResetNoHandleMark rnhm;
1561     handler_address = handle_exception_C_helper(current, nm);
1562   }
1563 
1564   // Back in java: Use no oops, DON'T safepoint
1565 
1566   // Now check to see if the handler we are returning is in a now
1567   // deoptimized frame
1568 
1569   if (nm != nullptr) {
1570     RegisterMap map(current,
1571                     RegisterMap::UpdateMap::skip,
1572                     RegisterMap::ProcessFrames::skip,
1573                     RegisterMap::WalkContinuation::skip);
1574     frame caller = current->last_frame().sender(&map);
1575 #ifdef ASSERT
1576     assert(caller.is_compiled_frame(), "must be");
1577 #endif // ASSERT
1578     if (caller.is_deoptimized_frame()) {
1579       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1580     }
1581   }
1582   return handler_address;
1583 }
1584 
1585 //------------------------------rethrow----------------------------------------
1586 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1587 // is either throwing or rethrowing an exception.  The callee-save registers
1588 // have been restored, synchronized objects have been unlocked and the callee
1589 // stack frame has been removed.  The return address was passed in.
1590 // Exception oop is passed as the 1st argument.  This routine is then called
1591 // from the stub.  On exit, we know where to jump in the caller's code.
1592 // After this C code exits, the stub will pop his frame and end in a jump
1593 // (instead of a return).  We enter the caller's default handler.
1594 //
1595 // This must be JRT_LEAF:
1596 //     - caller will not change its state as we cannot block on exit,
1597 //       therefore raw_exception_handler_for_return_address is all it takes
1598 //       to handle deoptimized blobs
1599 //
1600 // However, there needs to be a safepoint check in the middle!  So compiled
1601 // safepoints are completely watertight.
1602 //
1603 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1604 //
1605 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1606 //
1607 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1608   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1609   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1610 
1611 #ifndef PRODUCT
1612   SharedRuntime::_rethrow_ctr++;               // count rethrows
1613 #endif
1614   assert (exception != nullptr, "should have thrown a NullPointerException");
1615 #ifdef ASSERT
1616   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1617     // should throw an exception here
1618     ShouldNotReachHere();
1619   }
1620 #endif
1621 
1622   thread->set_vm_result(exception);
1623   // Frame not compiled (handles deoptimization blob)
1624   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1625 }
1626 
1627 
1628 const TypeFunc *OptoRuntime::rethrow_Type() {
1629   // create input type (domain)
1630   const Type **fields = TypeTuple::fields(1);
1631   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1633 
1634   // create result type (range)
1635   fields = TypeTuple::fields(1);
1636   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1638 
1639   return TypeFunc::make(domain, range);
1640 }
1641 
1642 
1643 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1644   // Deoptimize the caller before continuing, as the compiled
1645   // exception handler table may not be valid.
1646   if (!StressCompiledExceptionHandlers && doit) {
1647     deoptimize_caller_frame(thread);
1648   }
1649 }
1650 
1651 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1652   // Called from within the owner thread, so no need for safepoint
1653   RegisterMap reg_map(thread,
1654                       RegisterMap::UpdateMap::include,
1655                       RegisterMap::ProcessFrames::include,
1656                       RegisterMap::WalkContinuation::skip);
1657   frame stub_frame = thread->last_frame();
1658   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1659   frame caller_frame = stub_frame.sender(&reg_map);
1660 
1661   // Deoptimize the caller frame.
1662   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1663 }
1664 
1665 
1666 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1667   // Called from within the owner thread, so no need for safepoint
1668   RegisterMap reg_map(thread,
1669                       RegisterMap::UpdateMap::include,
1670                       RegisterMap::ProcessFrames::include,
1671                       RegisterMap::WalkContinuation::skip);
1672   frame stub_frame = thread->last_frame();
1673   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1674   frame caller_frame = stub_frame.sender(&reg_map);
1675   return caller_frame.is_deoptimized_frame();
1676 }
1677 
1678 
1679 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1680   // create input type (domain)
1681   const Type **fields = TypeTuple::fields(1);
1682   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1683   // // The JavaThread* is passed to each routine as the last argument
1684   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1685   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1686 
1687   // create result type (range)
1688   fields = TypeTuple::fields(0);
1689 
1690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1691 
1692   return TypeFunc::make(domain,range);
1693 }
1694 
1695 #if INCLUDE_JFR
1696 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1697   // create input type (domain)
1698   const Type **fields = TypeTuple::fields(1);
1699   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1701 
1702   // create result type (range)
1703   fields = TypeTuple::fields(0);
1704 
1705   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1706 
1707   return TypeFunc::make(domain,range);
1708 }
1709 #endif
1710 
1711 //-----------------------------------------------------------------------------
1712 // Dtrace support.  entry and exit probes have the same signature
1713 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1714   // create input type (domain)
1715   const Type **fields = TypeTuple::fields(2);
1716   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1717   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1719 
1720   // create result type (range)
1721   fields = TypeTuple::fields(0);
1722 
1723   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1724 
1725   return TypeFunc::make(domain,range);
1726 }
1727 
1728 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1729   // create input type (domain)
1730   const Type **fields = TypeTuple::fields(2);
1731   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1732   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1733 
1734   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1735 
1736   // create result type (range)
1737   fields = TypeTuple::fields(0);
1738 
1739   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1740 
1741   return TypeFunc::make(domain,range);
1742 }
1743 
1744 
1745 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1746   assert(oopDesc::is_oop(obj), "must be a valid oop");
1747   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1748   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1749 JRT_END
1750 
1751 //-----------------------------------------------------------------------------
1752 
1753 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1754 
1755 //
1756 // dump the collected NamedCounters.
1757 //
1758 void OptoRuntime::print_named_counters() {
1759   int total_lock_count = 0;
1760   int eliminated_lock_count = 0;
1761 
1762   NamedCounter* c = _named_counters;
1763   while (c) {
1764     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1765       int count = c->count();
1766       if (count > 0) {
1767         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1768         if (Verbose) {
1769           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1770         }
1771         total_lock_count += count;
1772         if (eliminated) {
1773           eliminated_lock_count += count;
1774         }
1775       }
1776 #if INCLUDE_RTM_OPT
1777     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1778       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1779       if (rlc->nonzero()) {
1780         tty->print_cr("%s", c->name());
1781         rlc->print_on(tty);
1782       }
1783 #endif
1784     }
1785     c = c->next();
1786   }
1787   if (total_lock_count > 0) {
1788     tty->print_cr("dynamic locks: %d", total_lock_count);
1789     if (eliminated_lock_count) {
1790       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1791                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1792     }
1793   }
1794 }
1795 
1796 //
1797 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1798 //  name which consists of method@line for the inlining tree.
1799 //
1800 
1801 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1802   int max_depth = youngest_jvms->depth();
1803 
1804   // Visit scopes from youngest to oldest.
1805   bool first = true;
1806   stringStream st;
1807   for (int depth = max_depth; depth >= 1; depth--) {
1808     JVMState* jvms = youngest_jvms->of_depth(depth);
1809     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1810     if (!first) {
1811       st.print(" ");
1812     } else {
1813       first = false;
1814     }
1815     int bci = jvms->bci();
1816     if (bci < 0) bci = 0;
1817     if (m != nullptr) {
1818       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1819     } else {
1820       st.print("no method");
1821     }
1822     st.print("@%d", bci);
1823     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1824   }
1825   NamedCounter* c;
1826   if (tag == NamedCounter::RTMLockingCounter) {
1827     c = new RTMLockingNamedCounter(st.freeze());
1828   } else {
1829     c = new NamedCounter(st.freeze(), tag);
1830   }
1831 
1832   // atomically add the new counter to the head of the list.  We only
1833   // add counters so this is safe.
1834   NamedCounter* head;
1835   do {
1836     c->set_next(nullptr);
1837     head = _named_counters;
1838     c->set_next(head);
1839   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1840   return c;
1841 }
1842 
1843 int trace_exception_counter = 0;
1844 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1845   trace_exception_counter++;
1846   stringStream tempst;
1847 
1848   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1849   exception_oop->print_value_on(&tempst);
1850   tempst.print(" in ");
1851   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1852   if (blob->is_compiled()) {
1853     CompiledMethod* cm = blob->as_compiled_method_or_null();
1854     cm->method()->print_value_on(&tempst);
1855   } else if (blob->is_runtime_stub()) {
1856     tempst.print("<runtime-stub>");
1857   } else {
1858     tempst.print("<unknown>");
1859   }
1860   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1861   tempst.print("]");
1862 
1863   st->print_raw_cr(tempst.freeze());
1864 }