1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/synchronizer.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/threadWXSetters.inline.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/preserveException.hpp"
  80 
  81 
  82 // For debugging purposes:
  83 //  To force FullGCALot inside a runtime function, add the following two lines
  84 //
  85 //  Universe::release_fullgc_alot_dummy();
  86 //  Universe::heap()->collect();
  87 //
  88 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  89 
  90 
  91 
  92 
  93 // Compiled code entry points
  94 address OptoRuntime::_new_instance_Java                           = nullptr;
  95 address OptoRuntime::_new_array_Java                              = nullptr;
  96 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
  97 address OptoRuntime::_multianewarray2_Java                        = nullptr;
  98 address OptoRuntime::_multianewarray3_Java                        = nullptr;
  99 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 100 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 101 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 102 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 103 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 104 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 105 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 106 address OptoRuntime::_rethrow_Java                                = nullptr;
 107 
 108 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 109 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 110 #if INCLUDE_JVMTI
 111 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 112 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 113 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 114 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 115 #endif
 116 
 117 UncommonTrapBlob*   OptoRuntime::_uncommon_trap_blob;
 118 ExceptionBlob*      OptoRuntime::_exception_blob;
 119 
 120 // This should be called in an assertion at the start of OptoRuntime routines
 121 // which are entered from compiled code (all of them)
 122 #ifdef ASSERT
 123 static bool check_compiled_frame(JavaThread* thread) {
 124   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 125   RegisterMap map(thread,
 126                   RegisterMap::UpdateMap::skip,
 127                   RegisterMap::ProcessFrames::include,
 128                   RegisterMap::WalkContinuation::skip);
 129   frame caller = thread->last_frame().sender(&map);
 130   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 131   return true;
 132 }
 133 #endif // ASSERT
 134 
 135 
 136 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 137   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 138   if (var == nullptr) { return false; }
 139 
 140 bool OptoRuntime::generate(ciEnv* env) {
 141 
 142   generate_uncommon_trap_blob();
 143   generate_exception_blob();
 144 
 145   // Note: tls: Means fetching the return oop out of the thread-local storage
 146   //
 147   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 148   // -------------------------------------------------------------------------------------------------------------------------------
 149   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 150   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 151   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 152   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 153   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 154   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 155   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 156   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 157 #if INCLUDE_JVMTI
 158   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 159   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 160   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 161   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 162 #endif
 163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 164   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 165   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 170 
 171   return true;
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub(ciEnv* env,
 179                                    TypeFunc_generator gen, address C_function,
 180                                    const char *name, int is_fancy_jump,
 181                                    bool pass_tls,
 182                                    bool return_pc) {
 183 
 184   // Matching the default directive, we currently have no method to match.
 185   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 186   ResourceMark rm;
 187   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 188   DirectivesStack::release(directive);
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(current), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 225     Handle holder(current, klass->klass_holder()); // keep the klass alive
 226     klass->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(klass)->initialize(THREAD);
 229     }
 230   }
 231 
 232   if (!HAS_PENDING_EXCEPTION) {
 233     // Scavenge and allocate an instance.
 234     Handle holder(current, klass->klass_holder()); // keep the klass alive
 235     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 236     current->set_vm_result(result);
 237 
 238     // Pass oops back through thread local storage.  Our apparent type to Java
 239     // is that we return an oop, but we can block on exit from this routine and
 240     // a GC can trash the oop in C's return register.  The generated stub will
 241     // fetch the oop from TLS after any possible GC.
 242   }
 243 
 244   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 245   JRT_BLOCK_END;
 246 
 247   // inform GC that we won't do card marks for initializing writes.
 248   SharedRuntime::on_slowpath_allocation_exit(current);
 249 JRT_END
 250 
 251 
 252 // array allocation
 253 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 254   JRT_BLOCK;
 255 #ifndef PRODUCT
 256   SharedRuntime::_new_array_ctr++;            // new array requires GC
 257 #endif
 258   assert(check_compiled_frame(current), "incorrect caller");
 259 
 260   // Scavenge and allocate an instance.
 261   oop result;
 262 
 263   if (array_type->is_typeArray_klass()) {
 264     // The oopFactory likes to work with the element type.
 265     // (We could bypass the oopFactory, since it doesn't add much value.)
 266     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 267     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 268   } else {
 269     // Although the oopFactory likes to work with the elem_type,
 270     // the compiler prefers the array_type, since it must already have
 271     // that latter value in hand for the fast path.
 272     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 273     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 274     result = oopFactory::new_objArray(elem_type, len, THREAD);
 275   }
 276 
 277   // Pass oops back through thread local storage.  Our apparent type to Java
 278   // is that we return an oop, but we can block on exit from this routine and
 279   // a GC can trash the oop in C's return register.  The generated stub will
 280   // fetch the oop from TLS after any possible GC.
 281   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 282   current->set_vm_result(result);
 283   JRT_BLOCK_END;
 284 
 285   // inform GC that we won't do card marks for initializing writes.
 286   SharedRuntime::on_slowpath_allocation_exit(current);
 287 JRT_END
 288 
 289 // array allocation without zeroing
 290 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 291   JRT_BLOCK;
 292 #ifndef PRODUCT
 293   SharedRuntime::_new_array_ctr++;            // new array requires GC
 294 #endif
 295   assert(check_compiled_frame(current), "incorrect caller");
 296 
 297   // Scavenge and allocate an instance.
 298   oop result;
 299 
 300   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 301   // The oopFactory likes to work with the element type.
 302   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 303   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 304 
 305   // Pass oops back through thread local storage.  Our apparent type to Java
 306   // is that we return an oop, but we can block on exit from this routine and
 307   // a GC can trash the oop in C's return register.  The generated stub will
 308   // fetch the oop from TLS after any possible GC.
 309   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 310   current->set_vm_result(result);
 311   JRT_BLOCK_END;
 312 
 313 
 314   // inform GC that we won't do card marks for initializing writes.
 315   SharedRuntime::on_slowpath_allocation_exit(current);
 316 
 317   oop result = current->vm_result();
 318   if ((len > 0) && (result != nullptr) &&
 319       is_deoptimized_caller_frame(current)) {
 320     // Zero array here if the caller is deoptimized.
 321     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 322     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 323     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 324     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 325     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 326     if (!is_aligned(hs_bytes, BytesPerLong)) {
 327       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 328       hs_bytes += BytesPerInt;
 329     }
 330 
 331     // Optimized zeroing.
 332     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 333     const size_t aligned_hs = hs_bytes / BytesPerLong;
 334     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 335   }
 336 
 337 JRT_END
 338 
 339 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 340 
 341 // multianewarray for 2 dimensions
 342 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 343 #ifndef PRODUCT
 344   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 345 #endif
 346   assert(check_compiled_frame(current), "incorrect caller");
 347   assert(elem_type->is_klass(), "not a class");
 348   jint dims[2];
 349   dims[0] = len1;
 350   dims[1] = len2;
 351   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 352   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 353   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 354   current->set_vm_result(obj);
 355 JRT_END
 356 
 357 // multianewarray for 3 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 359 #ifndef PRODUCT
 360   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 361 #endif
 362   assert(check_compiled_frame(current), "incorrect caller");
 363   assert(elem_type->is_klass(), "not a class");
 364   jint dims[3];
 365   dims[0] = len1;
 366   dims[1] = len2;
 367   dims[2] = len3;
 368   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 369   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 370   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 371   current->set_vm_result(obj);
 372 JRT_END
 373 
 374 // multianewarray for 4 dimensions
 375 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 376 #ifndef PRODUCT
 377   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 378 #endif
 379   assert(check_compiled_frame(current), "incorrect caller");
 380   assert(elem_type->is_klass(), "not a class");
 381   jint dims[4];
 382   dims[0] = len1;
 383   dims[1] = len2;
 384   dims[2] = len3;
 385   dims[3] = len4;
 386   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 388   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 389   current->set_vm_result(obj);
 390 JRT_END
 391 
 392 // multianewarray for 5 dimensions
 393 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 394 #ifndef PRODUCT
 395   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 396 #endif
 397   assert(check_compiled_frame(current), "incorrect caller");
 398   assert(elem_type->is_klass(), "not a class");
 399   jint dims[5];
 400   dims[0] = len1;
 401   dims[1] = len2;
 402   dims[2] = len3;
 403   dims[3] = len4;
 404   dims[4] = len5;
 405   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 406   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 407   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 408   current->set_vm_result(obj);
 409 JRT_END
 410 
 411 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 412   assert(check_compiled_frame(current), "incorrect caller");
 413   assert(elem_type->is_klass(), "not a class");
 414   assert(oop(dims)->is_typeArray(), "not an array");
 415 
 416   ResourceMark rm;
 417   jint len = dims->length();
 418   assert(len > 0, "Dimensions array should contain data");
 419   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 420   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 421                                        c_dims, len);
 422 
 423   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 424   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 425   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 426   current->set_vm_result(obj);
 427 JRT_END
 428 
 429 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 430 
 431   // Very few notify/notifyAll operations find any threads on the waitset, so
 432   // the dominant fast-path is to simply return.
 433   // Relatedly, it's critical that notify/notifyAll be fast in order to
 434   // reduce lock hold times.
 435   if (!SafepointSynchronize::is_synchronizing()) {
 436     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 437       return;
 438     }
 439   }
 440 
 441   // This is the case the fast-path above isn't provisioned to handle.
 442   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 443   // (The fast-path is just a degenerate variant of the slow-path).
 444   // Perform the dreaded state transition and pass control into the slow-path.
 445   JRT_BLOCK;
 446   Handle h_obj(current, obj);
 447   ObjectSynchronizer::notify(h_obj, CHECK);
 448   JRT_BLOCK_END;
 449 JRT_END
 450 
 451 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 452 
 453   if (!SafepointSynchronize::is_synchronizing() ) {
 454     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 455       return;
 456     }
 457   }
 458 
 459   // This is the case the fast-path above isn't provisioned to handle.
 460   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 461   // (The fast-path is just a degenerate variant of the slow-path).
 462   // Perform the dreaded state transition and pass control into the slow-path.
 463   JRT_BLOCK;
 464   Handle h_obj(current, obj);
 465   ObjectSynchronizer::notifyall(h_obj, CHECK);
 466   JRT_BLOCK_END;
 467 JRT_END
 468 
 469 const TypeFunc *OptoRuntime::new_instance_Type() {
 470   // create input type (domain)
 471   const Type **fields = TypeTuple::fields(1);
 472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 473   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   // create result type (range)
 476   fields = TypeTuple::fields(1);
 477   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 478 
 479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 480 
 481   return TypeFunc::make(domain, range);
 482 }
 483 
 484 #if INCLUDE_JVMTI
 485 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 486   // create input type (domain)
 487   const Type **fields = TypeTuple::fields(2);
 488   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 489   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 490   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 491 
 492   // no result type needed
 493   fields = TypeTuple::fields(1);
 494   fields[TypeFunc::Parms+0] = nullptr; // void
 495   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 496 
 497   return TypeFunc::make(domain,range);
 498 }
 499 #endif
 500 
 501 const TypeFunc *OptoRuntime::athrow_Type() {
 502   // create input type (domain)
 503   const Type **fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 505   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   // create result type (range)
 508   fields = TypeTuple::fields(0);
 509 
 510   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 511 
 512   return TypeFunc::make(domain, range);
 513 }
 514 
 515 
 516 const TypeFunc *OptoRuntime::new_array_Type() {
 517   // create input type (domain)
 518   const Type **fields = TypeTuple::fields(2);
 519   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 520   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 522 
 523   // create result type (range)
 524   fields = TypeTuple::fields(1);
 525   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 526 
 527   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 528 
 529   return TypeFunc::make(domain, range);
 530 }
 531 
 532 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 533   // create input type (domain)
 534   const int nargs = ndim + 1;
 535   const Type **fields = TypeTuple::fields(nargs);
 536   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 537   for( int i = 1; i < nargs; i++ )
 538     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 539   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 540 
 541   // create result type (range)
 542   fields = TypeTuple::fields(1);
 543   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 545 
 546   return TypeFunc::make(domain, range);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 550   return multianewarray_Type(2);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 554   return multianewarray_Type(3);
 555 }
 556 
 557 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 558   return multianewarray_Type(4);
 559 }
 560 
 561 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 562   return multianewarray_Type(5);
 563 }
 564 
 565 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 566   // create input type (domain)
 567   const Type **fields = TypeTuple::fields(2);
 568   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 569   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 570   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 571 
 572   // create result type (range)
 573   fields = TypeTuple::fields(1);
 574   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 576 
 577   return TypeFunc::make(domain, range);
 578 }
 579 
 580 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 581   // create input type (domain)
 582   const Type **fields = TypeTuple::fields(1);
 583   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 585 
 586   // create result type (range)
 587   fields = TypeTuple::fields(0);
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 //-----------------------------------------------------------------------------
 594 // Monitor Handling
 595 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(2);
 598   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 599   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 601 
 602   // create result type (range)
 603   fields = TypeTuple::fields(0);
 604 
 605   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 606 
 607   return TypeFunc::make(domain,range);
 608 }
 609 
 610 
 611 //-----------------------------------------------------------------------------
 612 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 613   // create input type (domain)
 614   const Type **fields = TypeTuple::fields(3);
 615   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 616   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 617   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(0);
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(0);
 636   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 const TypeFunc* OptoRuntime::flush_windows_Type() {
 641   // create input type (domain)
 642   const Type** fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = nullptr; // void
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 645 
 646   // create result type
 647   fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = nullptr; // void
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 650 
 651   return TypeFunc::make(domain, range);
 652 }
 653 
 654 const TypeFunc* OptoRuntime::l2f_Type() {
 655   // create input type (domain)
 656   const Type **fields = TypeTuple::fields(2);
 657   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 658   fields[TypeFunc::Parms+1] = Type::HALF;
 659   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 660 
 661   // create result type (range)
 662   fields = TypeTuple::fields(1);
 663   fields[TypeFunc::Parms+0] = Type::FLOAT;
 664   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 665 
 666   return TypeFunc::make(domain, range);
 667 }
 668 
 669 const TypeFunc* OptoRuntime::modf_Type() {
 670   const Type **fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = Type::FLOAT;
 672   fields[TypeFunc::Parms+1] = Type::FLOAT;
 673   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   // create result type (range)
 676   fields = TypeTuple::fields(1);
 677   fields[TypeFunc::Parms+0] = Type::FLOAT;
 678 
 679   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 680 
 681   return TypeFunc::make(domain, range);
 682 }
 683 
 684 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 685   // create input type (domain)
 686   const Type **fields = TypeTuple::fields(2);
 687   // Symbol* name of class to be loaded
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(2);
 694   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 695   fields[TypeFunc::Parms+1] = Type::HALF;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 702   // create input type (domain)
 703   const Type **fields = TypeTuple::fields(num_arg);
 704   // Symbol* name of class to be loaded
 705   assert(num_arg > 0, "must have at least 1 input");
 706   for (uint i = 0; i < num_arg; i++) {
 707     fields[TypeFunc::Parms+i] = in_type;
 708   }
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 710 
 711   // create result type (range)
 712   const uint num_ret = 1;
 713   fields = TypeTuple::fields(num_ret);
 714   fields[TypeFunc::Parms+0] = out_type;
 715   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 716 
 717   return TypeFunc::make(domain, range);
 718 }
 719 
 720 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 721   const Type **fields = TypeTuple::fields(4);
 722   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 723   fields[TypeFunc::Parms+1] = Type::HALF;
 724   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 725   fields[TypeFunc::Parms+3] = Type::HALF;
 726   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 727 
 728   // create result type (range)
 729   fields = TypeTuple::fields(2);
 730   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 731   fields[TypeFunc::Parms+1] = Type::HALF;
 732   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 733 
 734   return TypeFunc::make(domain, range);
 735 }
 736 
 737 //-------------- currentTimeMillis, currentTimeNanos, etc
 738 
 739 const TypeFunc* OptoRuntime::void_long_Type() {
 740   // create input type (domain)
 741   const Type **fields = TypeTuple::fields(0);
 742   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 743 
 744   // create result type (range)
 745   fields = TypeTuple::fields(2);
 746   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 747   fields[TypeFunc::Parms+1] = Type::HALF;
 748   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 749 
 750   return TypeFunc::make(domain, range);
 751 }
 752 
 753 const TypeFunc* OptoRuntime::void_void_Type() {
 754    // create input type (domain)
 755    const Type **fields = TypeTuple::fields(0);
 756    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 757 
 758    // create result type (range)
 759    fields = TypeTuple::fields(0);
 760    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 761    return TypeFunc::make(domain, range);
 762  }
 763 
 764  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 765    // create input type (domain)
 766    const Type **fields = TypeTuple::fields(0);
 767    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 768 
 769    // create result type (range)
 770    fields = TypeTuple::fields(0);
 771    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 772    return TypeFunc::make(domain, range);
 773  }
 774 
 775 
 776 // Takes as parameters:
 777 // void *dest
 778 // long size
 779 // uchar byte
 780 const TypeFunc* OptoRuntime::make_setmemory_Type() {
 781   // create input type (domain)
 782   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 783   const Type** fields = TypeTuple::fields(argcnt);
 784   int argp = TypeFunc::Parms;
 785   fields[argp++] = TypePtr::NOTNULL;        // dest
 786   fields[argp++] = TypeX_X;                 // size
 787   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 788   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 789   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 790   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 791 
 792   // no result type needed
 793   fields = TypeTuple::fields(1);
 794   fields[TypeFunc::Parms+0] = nullptr; // void
 795   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 796   return TypeFunc::make(domain, range);
 797 }
 798 
 799 // arraycopy stub variations:
 800 enum ArrayCopyType {
 801   ac_fast,                      // void(ptr, ptr, size_t)
 802   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 803   ac_slow,                      // void(ptr, int, ptr, int, int)
 804   ac_generic                    //  int(ptr, int, ptr, int, int)
 805 };
 806 
 807 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 808   // create input type (domain)
 809   int num_args      = (act == ac_fast ? 3 : 5);
 810   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 811   int argcnt = num_args;
 812   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 813   const Type** fields = TypeTuple::fields(argcnt);
 814   int argp = TypeFunc::Parms;
 815   fields[argp++] = TypePtr::NOTNULL;    // src
 816   if (num_size_args == 0) {
 817     fields[argp++] = TypeInt::INT;      // src_pos
 818   }
 819   fields[argp++] = TypePtr::NOTNULL;    // dest
 820   if (num_size_args == 0) {
 821     fields[argp++] = TypeInt::INT;      // dest_pos
 822     fields[argp++] = TypeInt::INT;      // length
 823   }
 824   while (num_size_args-- > 0) {
 825     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 826     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 827   }
 828   if (act == ac_checkcast) {
 829     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 830   }
 831   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 832   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 833 
 834   // create result type if needed
 835   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 836   fields = TypeTuple::fields(1);
 837   if (retcnt == 0)
 838     fields[TypeFunc::Parms+0] = nullptr; // void
 839   else
 840     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 841   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 842   return TypeFunc::make(domain, range);
 843 }
 844 
 845 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 846   // This signature is simple:  Two base pointers and a size_t.
 847   return make_arraycopy_Type(ac_fast);
 848 }
 849 
 850 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 851   // An extension of fast_arraycopy_Type which adds type checking.
 852   return make_arraycopy_Type(ac_checkcast);
 853 }
 854 
 855 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 856   // This signature is exactly the same as System.arraycopy.
 857   // There are no intptr_t (int/long) arguments.
 858   return make_arraycopy_Type(ac_slow);
 859 }
 860 
 861 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 862   // This signature is like System.arraycopy, except that it returns status.
 863   return make_arraycopy_Type(ac_generic);
 864 }
 865 
 866 
 867 const TypeFunc* OptoRuntime::array_fill_Type() {
 868   const Type** fields;
 869   int argp = TypeFunc::Parms;
 870   // create input type (domain): pointer, int, size_t
 871   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 872   fields[argp++] = TypePtr::NOTNULL;
 873   fields[argp++] = TypeInt::INT;
 874   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 875   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 876   const TypeTuple *domain = TypeTuple::make(argp, fields);
 877 
 878   // create result type
 879   fields = TypeTuple::fields(1);
 880   fields[TypeFunc::Parms+0] = nullptr; // void
 881   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 882 
 883   return TypeFunc::make(domain, range);
 884 }
 885 
 886 const TypeFunc* OptoRuntime::array_partition_Type() {
 887   // create input type (domain)
 888   int num_args = 7;
 889   int argcnt = num_args;
 890   const Type** fields = TypeTuple::fields(argcnt);
 891   int argp = TypeFunc::Parms;
 892   fields[argp++] = TypePtr::NOTNULL;  // array
 893   fields[argp++] = TypeInt::INT;      // element type
 894   fields[argp++] = TypeInt::INT;      // low
 895   fields[argp++] = TypeInt::INT;      // end
 896   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 897   fields[argp++] = TypeInt::INT;      // indexPivot1
 898   fields[argp++] = TypeInt::INT;      // indexPivot2
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // no result type needed
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = nullptr; // void
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 const TypeFunc* OptoRuntime::array_sort_Type() {
 910   // create input type (domain)
 911   int num_args      = 4;
 912   int argcnt = num_args;
 913   const Type** fields = TypeTuple::fields(argcnt);
 914   int argp = TypeFunc::Parms;
 915   fields[argp++] = TypePtr::NOTNULL;    // array
 916   fields[argp++] = TypeInt::INT;    // element type
 917   fields[argp++] = TypeInt::INT;    // fromIndex
 918   fields[argp++] = TypeInt::INT;    // toIndex
 919   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 920   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 921 
 922   // no result type needed
 923   fields = TypeTuple::fields(1);
 924   fields[TypeFunc::Parms+0] = nullptr; // void
 925   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 926   return TypeFunc::make(domain, range);
 927 }
 928 
 929 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 930 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 931   // create input type (domain)
 932   int num_args      = 3;
 933   int argcnt = num_args;
 934   const Type** fields = TypeTuple::fields(argcnt);
 935   int argp = TypeFunc::Parms;
 936   fields[argp++] = TypePtr::NOTNULL;    // src
 937   fields[argp++] = TypePtr::NOTNULL;    // dest
 938   fields[argp++] = TypePtr::NOTNULL;    // k array
 939   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 940   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 941 
 942   // no result type needed
 943   fields = TypeTuple::fields(1);
 944   fields[TypeFunc::Parms+0] = nullptr; // void
 945   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 946   return TypeFunc::make(domain, range);
 947 }
 948 
 949 /**
 950  * int updateBytesCRC32(int crc, byte* b, int len)
 951  */
 952 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 953   // create input type (domain)
 954   int num_args      = 3;
 955   int argcnt = num_args;
 956   const Type** fields = TypeTuple::fields(argcnt);
 957   int argp = TypeFunc::Parms;
 958   fields[argp++] = TypeInt::INT;        // crc
 959   fields[argp++] = TypePtr::NOTNULL;    // src
 960   fields[argp++] = TypeInt::INT;        // len
 961   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 962   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 963 
 964   // result type needed
 965   fields = TypeTuple::fields(1);
 966   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 967   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 968   return TypeFunc::make(domain, range);
 969 }
 970 
 971 /**
 972  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 973  */
 974 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 975   // create input type (domain)
 976   int num_args      = 4;
 977   int argcnt = num_args;
 978   const Type** fields = TypeTuple::fields(argcnt);
 979   int argp = TypeFunc::Parms;
 980   fields[argp++] = TypeInt::INT;        // crc
 981   fields[argp++] = TypePtr::NOTNULL;    // buf
 982   fields[argp++] = TypeInt::INT;        // len
 983   fields[argp++] = TypePtr::NOTNULL;    // table
 984   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 985   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 986 
 987   // result type needed
 988   fields = TypeTuple::fields(1);
 989   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 990   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 991   return TypeFunc::make(domain, range);
 992 }
 993 
 994 /**
 995 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 996 */
 997 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 998   // create input type (domain)
 999   int num_args      = 3;
1000   int argcnt = num_args;
1001   const Type** fields = TypeTuple::fields(argcnt);
1002   int argp = TypeFunc::Parms;
1003   fields[argp++] = TypeInt::INT;        // crc
1004   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1005   fields[argp++] = TypeInt::INT;        // len
1006   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1007   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1008 
1009   // result type needed
1010   fields = TypeTuple::fields(1);
1011   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1012   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1013   return TypeFunc::make(domain, range);
1014 }
1015 
1016 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1017 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
1018   // create input type (domain)
1019   int num_args      = 5;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // src
1024   fields[argp++] = TypePtr::NOTNULL;    // dest
1025   fields[argp++] = TypePtr::NOTNULL;    // k array
1026   fields[argp++] = TypePtr::NOTNULL;    // r array
1027   fields[argp++] = TypeInt::INT;        // src len
1028   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1029   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1030 
1031   // returning cipher len (int)
1032   fields = TypeTuple::fields(1);
1033   fields[TypeFunc::Parms+0] = TypeInt::INT;
1034   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1035   return TypeFunc::make(domain, range);
1036 }
1037 
1038 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
1039 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
1040   // create input type (domain)
1041   int num_args = 4;
1042   int argcnt = num_args;
1043   const Type** fields = TypeTuple::fields(argcnt);
1044   int argp = TypeFunc::Parms;
1045   fields[argp++] = TypePtr::NOTNULL;    // src
1046   fields[argp++] = TypePtr::NOTNULL;    // dest
1047   fields[argp++] = TypePtr::NOTNULL;    // k array
1048   fields[argp++] = TypeInt::INT;        // src len
1049   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1050   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1051 
1052   // returning cipher len (int)
1053   fields = TypeTuple::fields(1);
1054   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1055   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1056   return TypeFunc::make(domain, range);
1057 }
1058 
1059 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1060 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
1061   // create input type (domain)
1062   int num_args = 7;
1063   int argcnt = num_args;
1064   const Type** fields = TypeTuple::fields(argcnt);
1065   int argp = TypeFunc::Parms;
1066   fields[argp++] = TypePtr::NOTNULL; // src
1067   fields[argp++] = TypePtr::NOTNULL; // dest
1068   fields[argp++] = TypePtr::NOTNULL; // k array
1069   fields[argp++] = TypePtr::NOTNULL; // counter array
1070   fields[argp++] = TypeInt::INT; // src len
1071   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1072   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1073   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1074   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1075   // returning cipher len (int)
1076   fields = TypeTuple::fields(1);
1077   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1078   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1079   return TypeFunc::make(domain, range);
1080 }
1081 
1082 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1083 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1084   // create input type (domain)
1085   int num_args = 8;
1086   int argcnt = num_args;
1087   const Type** fields = TypeTuple::fields(argcnt);
1088   int argp = TypeFunc::Parms;
1089   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1090   fields[argp++] = TypeInt::INT;     // int len
1091   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1092   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1093   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1094   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1095   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1096   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1097 
1098   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1099   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1100   // returning cipher len (int)
1101   fields = TypeTuple::fields(1);
1102   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1103   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1104   return TypeFunc::make(domain, range);
1105 }
1106 
1107 /*
1108  * void implCompress(byte[] buf, int ofs)
1109  */
1110 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1111   // create input type (domain)
1112   int num_args = is_sha3 ? 3 : 2;
1113   int argcnt = num_args;
1114   const Type** fields = TypeTuple::fields(argcnt);
1115   int argp = TypeFunc::Parms;
1116   fields[argp++] = TypePtr::NOTNULL; // buf
1117   fields[argp++] = TypePtr::NOTNULL; // state
1118   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1119   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1120   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1121 
1122   // no result type needed
1123   fields = TypeTuple::fields(1);
1124   fields[TypeFunc::Parms+0] = nullptr; // void
1125   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1126   return TypeFunc::make(domain, range);
1127 }
1128 
1129 /*
1130  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1131  */
1132 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1133   // create input type (domain)
1134   int num_args = is_sha3 ? 5 : 4;
1135   int argcnt = num_args;
1136   const Type** fields = TypeTuple::fields(argcnt);
1137   int argp = TypeFunc::Parms;
1138   fields[argp++] = TypePtr::NOTNULL; // buf
1139   fields[argp++] = TypePtr::NOTNULL; // state
1140   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1141   fields[argp++] = TypeInt::INT;     // ofs
1142   fields[argp++] = TypeInt::INT;     // limit
1143   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1144   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1145 
1146   // returning ofs (int)
1147   fields = TypeTuple::fields(1);
1148   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1149   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1150   return TypeFunc::make(domain, range);
1151 }
1152 
1153 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1154   // create input type (domain)
1155   int num_args      = 5;
1156   int argcnt = num_args;
1157   const Type** fields = TypeTuple::fields(argcnt);
1158   int argp = TypeFunc::Parms;
1159   fields[argp++] = TypePtr::NOTNULL;    // x
1160   fields[argp++] = TypeInt::INT;        // xlen
1161   fields[argp++] = TypePtr::NOTNULL;    // y
1162   fields[argp++] = TypeInt::INT;        // ylen
1163   fields[argp++] = TypePtr::NOTNULL;    // z
1164   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1165   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1166 
1167   // no result type needed
1168   fields = TypeTuple::fields(1);
1169   fields[TypeFunc::Parms+0] = nullptr;
1170   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1171   return TypeFunc::make(domain, range);
1172 }
1173 
1174 const TypeFunc* OptoRuntime::squareToLen_Type() {
1175   // create input type (domain)
1176   int num_args      = 4;
1177   int argcnt = num_args;
1178   const Type** fields = TypeTuple::fields(argcnt);
1179   int argp = TypeFunc::Parms;
1180   fields[argp++] = TypePtr::NOTNULL;    // x
1181   fields[argp++] = TypeInt::INT;        // len
1182   fields[argp++] = TypePtr::NOTNULL;    // z
1183   fields[argp++] = TypeInt::INT;        // zlen
1184   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1185   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1186 
1187   // no result type needed
1188   fields = TypeTuple::fields(1);
1189   fields[TypeFunc::Parms+0] = nullptr;
1190   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1191   return TypeFunc::make(domain, range);
1192 }
1193 
1194 // for mulAdd calls, 2 pointers and 3 ints, returning int
1195 const TypeFunc* OptoRuntime::mulAdd_Type() {
1196   // create input type (domain)
1197   int num_args      = 5;
1198   int argcnt = num_args;
1199   const Type** fields = TypeTuple::fields(argcnt);
1200   int argp = TypeFunc::Parms;
1201   fields[argp++] = TypePtr::NOTNULL;    // out
1202   fields[argp++] = TypePtr::NOTNULL;    // in
1203   fields[argp++] = TypeInt::INT;        // offset
1204   fields[argp++] = TypeInt::INT;        // len
1205   fields[argp++] = TypeInt::INT;        // k
1206   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1207   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1208 
1209   // returning carry (int)
1210   fields = TypeTuple::fields(1);
1211   fields[TypeFunc::Parms+0] = TypeInt::INT;
1212   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1213   return TypeFunc::make(domain, range);
1214 }
1215 
1216 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1217   // create input type (domain)
1218   int num_args      = 7;
1219   int argcnt = num_args;
1220   const Type** fields = TypeTuple::fields(argcnt);
1221   int argp = TypeFunc::Parms;
1222   fields[argp++] = TypePtr::NOTNULL;    // a
1223   fields[argp++] = TypePtr::NOTNULL;    // b
1224   fields[argp++] = TypePtr::NOTNULL;    // n
1225   fields[argp++] = TypeInt::INT;        // len
1226   fields[argp++] = TypeLong::LONG;      // inv
1227   fields[argp++] = Type::HALF;
1228   fields[argp++] = TypePtr::NOTNULL;    // result
1229   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1230   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1231 
1232   // result type needed
1233   fields = TypeTuple::fields(1);
1234   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1235 
1236   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1237   return TypeFunc::make(domain, range);
1238 }
1239 
1240 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1241   // create input type (domain)
1242   int num_args      = 6;
1243   int argcnt = num_args;
1244   const Type** fields = TypeTuple::fields(argcnt);
1245   int argp = TypeFunc::Parms;
1246   fields[argp++] = TypePtr::NOTNULL;    // a
1247   fields[argp++] = TypePtr::NOTNULL;    // n
1248   fields[argp++] = TypeInt::INT;        // len
1249   fields[argp++] = TypeLong::LONG;      // inv
1250   fields[argp++] = Type::HALF;
1251   fields[argp++] = TypePtr::NOTNULL;    // result
1252   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1253   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1254 
1255   // result type needed
1256   fields = TypeTuple::fields(1);
1257   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1258 
1259   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1260   return TypeFunc::make(domain, range);
1261 }
1262 
1263 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1264   int argcnt = 5;
1265   const Type** fields = TypeTuple::fields(argcnt);
1266   int argp = TypeFunc::Parms;
1267   fields[argp++] = TypePtr::NOTNULL;    // newArr
1268   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1269   fields[argp++] = TypeInt::INT;        // newIdx
1270   fields[argp++] = TypeInt::INT;        // shiftCount
1271   fields[argp++] = TypeInt::INT;        // numIter
1272   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1273   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1274 
1275   // no result type needed
1276   fields = TypeTuple::fields(1);
1277   fields[TypeFunc::Parms + 0] = nullptr;
1278   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1279   return TypeFunc::make(domain, range);
1280 }
1281 
1282 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1283   // create input type (domain)
1284   int num_args = 4;
1285   int argcnt = num_args;
1286   const Type** fields = TypeTuple::fields(argcnt);
1287   int argp = TypeFunc::Parms;
1288   fields[argp++] = TypePtr::NOTNULL;    // obja
1289   fields[argp++] = TypePtr::NOTNULL;    // objb
1290   fields[argp++] = TypeInt::INT;        // length, number of elements
1291   fields[argp++] = TypeInt::INT;        // log2scale, element size
1292   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1293   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1294 
1295   //return mismatch index (int)
1296   fields = TypeTuple::fields(1);
1297   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1298   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1299   return TypeFunc::make(domain, range);
1300 }
1301 
1302 // GHASH block processing
1303 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1304     int argcnt = 4;
1305 
1306     const Type** fields = TypeTuple::fields(argcnt);
1307     int argp = TypeFunc::Parms;
1308     fields[argp++] = TypePtr::NOTNULL;    // state
1309     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1310     fields[argp++] = TypePtr::NOTNULL;    // data
1311     fields[argp++] = TypeInt::INT;        // blocks
1312     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1313     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1314 
1315     // result type needed
1316     fields = TypeTuple::fields(1);
1317     fields[TypeFunc::Parms+0] = nullptr; // void
1318     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1319     return TypeFunc::make(domain, range);
1320 }
1321 
1322 // ChaCha20 Block function
1323 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1324     int argcnt = 2;
1325 
1326     const Type** fields = TypeTuple::fields(argcnt);
1327     int argp = TypeFunc::Parms;
1328     fields[argp++] = TypePtr::NOTNULL;      // state
1329     fields[argp++] = TypePtr::NOTNULL;      // result
1330 
1331     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1332     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1333 
1334     // result type needed
1335     fields = TypeTuple::fields(1);
1336     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1337     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1338     return TypeFunc::make(domain, range);
1339 }
1340 
1341 // Base64 encode function
1342 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1343   int argcnt = 6;
1344 
1345   const Type** fields = TypeTuple::fields(argcnt);
1346   int argp = TypeFunc::Parms;
1347   fields[argp++] = TypePtr::NOTNULL;    // src array
1348   fields[argp++] = TypeInt::INT;        // offset
1349   fields[argp++] = TypeInt::INT;        // length
1350   fields[argp++] = TypePtr::NOTNULL;    // dest array
1351   fields[argp++] = TypeInt::INT;       // dp
1352   fields[argp++] = TypeInt::BOOL;       // isURL
1353   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1354   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1355 
1356   // result type needed
1357   fields = TypeTuple::fields(1);
1358   fields[TypeFunc::Parms + 0] = nullptr; // void
1359   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1360   return TypeFunc::make(domain, range);
1361 }
1362 
1363 // String IndexOf function
1364 const TypeFunc* OptoRuntime::string_IndexOf_Type() {
1365   int argcnt = 4;
1366 
1367   const Type** fields = TypeTuple::fields(argcnt);
1368   int argp = TypeFunc::Parms;
1369   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1370   fields[argp++] = TypeInt::INT;        // haystack length
1371   fields[argp++] = TypePtr::NOTNULL;    // needle array
1372   fields[argp++] = TypeInt::INT;        // needle length
1373   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1374   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1375 
1376   // result type needed
1377   fields = TypeTuple::fields(1);
1378   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1379   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1380   return TypeFunc::make(domain, range);
1381 }
1382 
1383 // Base64 decode function
1384 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1385   int argcnt = 7;
1386 
1387   const Type** fields = TypeTuple::fields(argcnt);
1388   int argp = TypeFunc::Parms;
1389   fields[argp++] = TypePtr::NOTNULL;    // src array
1390   fields[argp++] = TypeInt::INT;        // src offset
1391   fields[argp++] = TypeInt::INT;        // src length
1392   fields[argp++] = TypePtr::NOTNULL;    // dest array
1393   fields[argp++] = TypeInt::INT;        // dest offset
1394   fields[argp++] = TypeInt::BOOL;       // isURL
1395   fields[argp++] = TypeInt::BOOL;       // isMIME
1396   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1397   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1398 
1399   // result type needed
1400   fields = TypeTuple::fields(1);
1401   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1402   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1403   return TypeFunc::make(domain, range);
1404 }
1405 
1406 // Poly1305 processMultipleBlocks function
1407 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1408   int argcnt = 4;
1409 
1410   const Type** fields = TypeTuple::fields(argcnt);
1411   int argp = TypeFunc::Parms;
1412   fields[argp++] = TypePtr::NOTNULL;    // input array
1413   fields[argp++] = TypeInt::INT;        // input length
1414   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1415   fields[argp++] = TypePtr::NOTNULL;    // r array
1416   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1417   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1418 
1419   // result type needed
1420   fields = TypeTuple::fields(1);
1421   fields[TypeFunc::Parms + 0] = nullptr; // void
1422   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1423   return TypeFunc::make(domain, range);
1424 }
1425 
1426 // MontgomeryIntegerPolynomialP256 multiply function
1427 const TypeFunc* OptoRuntime::intpoly_montgomeryMult_P256_Type() {
1428   int argcnt = 3;
1429 
1430   const Type** fields = TypeTuple::fields(argcnt);
1431   int argp = TypeFunc::Parms;
1432   fields[argp++] = TypePtr::NOTNULL;    // a array
1433   fields[argp++] = TypePtr::NOTNULL;    // b array
1434   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1435   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1436   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1437 
1438   // result type needed
1439   fields = TypeTuple::fields(1);
1440   fields[TypeFunc::Parms + 0] = nullptr; // void
1441   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1442   return TypeFunc::make(domain, range);
1443 }
1444 
1445 // IntegerPolynomial constant time assignment function
1446 const TypeFunc* OptoRuntime::intpoly_assign_Type() {
1447   int argcnt = 4;
1448 
1449   const Type** fields = TypeTuple::fields(argcnt);
1450   int argp = TypeFunc::Parms;
1451   fields[argp++] = TypeInt::INT;        // set flag
1452   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1453   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1454   fields[argp++] = TypeInt::INT;        // array length
1455   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1456   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1457 
1458   // result type needed
1459   fields = TypeTuple::fields(1);
1460   fields[TypeFunc::Parms + 0] = nullptr; // void
1461   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1462   return TypeFunc::make(domain, range);
1463 }
1464 
1465 //------------- Interpreter state access for on stack replacement
1466 const TypeFunc* OptoRuntime::osr_end_Type() {
1467   // create input type (domain)
1468   const Type **fields = TypeTuple::fields(1);
1469   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1471 
1472   // create result type
1473   fields = TypeTuple::fields(1);
1474   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1475   fields[TypeFunc::Parms+0] = nullptr; // void
1476   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1477   return TypeFunc::make(domain, range);
1478 }
1479 
1480 //-------------------------------------------------------------------------------------
1481 // register policy
1482 
1483 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1484   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1485   switch (register_save_policy[reg]) {
1486     case 'C': return false; //SOC
1487     case 'E': return true ; //SOE
1488     case 'N': return false; //NS
1489     case 'A': return false; //AS
1490   }
1491   ShouldNotReachHere();
1492   return false;
1493 }
1494 
1495 //-----------------------------------------------------------------------
1496 // Exceptions
1497 //
1498 
1499 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1500 
1501 // The method is an entry that is always called by a C++ method not
1502 // directly from compiled code. Compiled code will call the C++ method following.
1503 // We can't allow async exception to be installed during  exception processing.
1504 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1505   // The frame we rethrow the exception to might not have been processed by the GC yet.
1506   // The stack watermark barrier takes care of detecting that and ensuring the frame
1507   // has updated oops.
1508   StackWatermarkSet::after_unwind(current);
1509 
1510   // Do not confuse exception_oop with pending_exception. The exception_oop
1511   // is only used to pass arguments into the method. Not for general
1512   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1513   // the runtime stubs checks this on exit.
1514   assert(current->exception_oop() != nullptr, "exception oop is found");
1515   address handler_address = nullptr;
1516 
1517   Handle exception(current, current->exception_oop());
1518   address pc = current->exception_pc();
1519 
1520   // Clear out the exception oop and pc since looking up an
1521   // exception handler can cause class loading, which might throw an
1522   // exception and those fields are expected to be clear during
1523   // normal bytecode execution.
1524   current->clear_exception_oop_and_pc();
1525 
1526   LogTarget(Info, exceptions) lt;
1527   if (lt.is_enabled()) {
1528     ResourceMark rm;
1529     LogStream ls(lt);
1530     trace_exception(&ls, exception(), pc, "");
1531   }
1532 
1533   // for AbortVMOnException flag
1534   Exceptions::debug_check_abort(exception);
1535 
1536 #ifdef ASSERT
1537   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1538     // should throw an exception here
1539     ShouldNotReachHere();
1540   }
1541 #endif
1542 
1543   // new exception handling: this method is entered only from adapters
1544   // exceptions from compiled java methods are handled in compiled code
1545   // using rethrow node
1546 
1547   nm = CodeCache::find_nmethod(pc);
1548   assert(nm != nullptr, "No NMethod found");
1549   if (nm->is_native_method()) {
1550     fatal("Native method should not have path to exception handling");
1551   } else {
1552     // we are switching to old paradigm: search for exception handler in caller_frame
1553     // instead in exception handler of caller_frame.sender()
1554 
1555     if (JvmtiExport::can_post_on_exceptions()) {
1556       // "Full-speed catching" is not necessary here,
1557       // since we're notifying the VM on every catch.
1558       // Force deoptimization and the rest of the lookup
1559       // will be fine.
1560       deoptimize_caller_frame(current);
1561     }
1562 
1563     // Check the stack guard pages.  If enabled, look for handler in this frame;
1564     // otherwise, forcibly unwind the frame.
1565     //
1566     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1567     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1568     bool deopting = false;
1569     if (nm->is_deopt_pc(pc)) {
1570       deopting = true;
1571       RegisterMap map(current,
1572                       RegisterMap::UpdateMap::skip,
1573                       RegisterMap::ProcessFrames::include,
1574                       RegisterMap::WalkContinuation::skip);
1575       frame deoptee = current->last_frame().sender(&map);
1576       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1577       // Adjust the pc back to the original throwing pc
1578       pc = deoptee.pc();
1579     }
1580 
1581     // If we are forcing an unwind because of stack overflow then deopt is
1582     // irrelevant since we are throwing the frame away anyway.
1583 
1584     if (deopting && !force_unwind) {
1585       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1586     } else {
1587 
1588       handler_address =
1589         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1590 
1591       if (handler_address == nullptr) {
1592         bool recursive_exception = false;
1593         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1594         assert (handler_address != nullptr, "must have compiled handler");
1595         // Update the exception cache only when the unwind was not forced
1596         // and there didn't happen another exception during the computation of the
1597         // compiled exception handler. Checking for exception oop equality is not
1598         // sufficient because some exceptions are pre-allocated and reused.
1599         if (!force_unwind && !recursive_exception) {
1600           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1601         }
1602       } else {
1603 #ifdef ASSERT
1604         bool recursive_exception = false;
1605         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1606         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1607                  p2i(handler_address), p2i(computed_address));
1608 #endif
1609       }
1610     }
1611 
1612     current->set_exception_pc(pc);
1613     current->set_exception_handler_pc(handler_address);
1614 
1615     // Check if the exception PC is a MethodHandle call site.
1616     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1617   }
1618 
1619   // Restore correct return pc.  Was saved above.
1620   current->set_exception_oop(exception());
1621   return handler_address;
1622 
1623 JRT_END
1624 
1625 // We are entering here from exception_blob
1626 // If there is a compiled exception handler in this method, we will continue there;
1627 // otherwise we will unwind the stack and continue at the caller of top frame method
1628 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1629 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1630 // we looked up the handler for has been deoptimized in the meantime. If it has been
1631 // we must not use the handler and instead return the deopt blob.
1632 address OptoRuntime::handle_exception_C(JavaThread* current) {
1633 //
1634 // We are in Java not VM and in debug mode we have a NoHandleMark
1635 //
1636 #ifndef PRODUCT
1637   SharedRuntime::_find_handler_ctr++;          // find exception handler
1638 #endif
1639   debug_only(NoHandleMark __hm;)
1640   nmethod* nm = nullptr;
1641   address handler_address = nullptr;
1642   {
1643     // Enter the VM
1644 
1645     ResetNoHandleMark rnhm;
1646     handler_address = handle_exception_C_helper(current, nm);
1647   }
1648 
1649   // Back in java: Use no oops, DON'T safepoint
1650 
1651   // Now check to see if the handler we are returning is in a now
1652   // deoptimized frame
1653 
1654   if (nm != nullptr) {
1655     RegisterMap map(current,
1656                     RegisterMap::UpdateMap::skip,
1657                     RegisterMap::ProcessFrames::skip,
1658                     RegisterMap::WalkContinuation::skip);
1659     frame caller = current->last_frame().sender(&map);
1660 #ifdef ASSERT
1661     assert(caller.is_compiled_frame(), "must be");
1662 #endif // ASSERT
1663     if (caller.is_deoptimized_frame()) {
1664       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1665     }
1666   }
1667   return handler_address;
1668 }
1669 
1670 //------------------------------rethrow----------------------------------------
1671 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1672 // is either throwing or rethrowing an exception.  The callee-save registers
1673 // have been restored, synchronized objects have been unlocked and the callee
1674 // stack frame has been removed.  The return address was passed in.
1675 // Exception oop is passed as the 1st argument.  This routine is then called
1676 // from the stub.  On exit, we know where to jump in the caller's code.
1677 // After this C code exits, the stub will pop his frame and end in a jump
1678 // (instead of a return).  We enter the caller's default handler.
1679 //
1680 // This must be JRT_LEAF:
1681 //     - caller will not change its state as we cannot block on exit,
1682 //       therefore raw_exception_handler_for_return_address is all it takes
1683 //       to handle deoptimized blobs
1684 //
1685 // However, there needs to be a safepoint check in the middle!  So compiled
1686 // safepoints are completely watertight.
1687 //
1688 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1689 //
1690 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1691 //
1692 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1693   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1694   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1695 
1696 #ifndef PRODUCT
1697   SharedRuntime::_rethrow_ctr++;               // count rethrows
1698 #endif
1699   assert (exception != nullptr, "should have thrown a NullPointerException");
1700 #ifdef ASSERT
1701   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1702     // should throw an exception here
1703     ShouldNotReachHere();
1704   }
1705 #endif
1706 
1707   thread->set_vm_result(exception);
1708   // Frame not compiled (handles deoptimization blob)
1709   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1710 }
1711 
1712 
1713 const TypeFunc *OptoRuntime::rethrow_Type() {
1714   // create input type (domain)
1715   const Type **fields = TypeTuple::fields(1);
1716   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1717   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1718 
1719   // create result type (range)
1720   fields = TypeTuple::fields(1);
1721   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1723 
1724   return TypeFunc::make(domain, range);
1725 }
1726 
1727 
1728 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1729   // Deoptimize the caller before continuing, as the compiled
1730   // exception handler table may not be valid.
1731   if (!StressCompiledExceptionHandlers && doit) {
1732     deoptimize_caller_frame(thread);
1733   }
1734 }
1735 
1736 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1737   // Called from within the owner thread, so no need for safepoint
1738   RegisterMap reg_map(thread,
1739                       RegisterMap::UpdateMap::include,
1740                       RegisterMap::ProcessFrames::include,
1741                       RegisterMap::WalkContinuation::skip);
1742   frame stub_frame = thread->last_frame();
1743   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1744   frame caller_frame = stub_frame.sender(&reg_map);
1745 
1746   // Deoptimize the caller frame.
1747   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1748 }
1749 
1750 
1751 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1752   // Called from within the owner thread, so no need for safepoint
1753   RegisterMap reg_map(thread,
1754                       RegisterMap::UpdateMap::include,
1755                       RegisterMap::ProcessFrames::include,
1756                       RegisterMap::WalkContinuation::skip);
1757   frame stub_frame = thread->last_frame();
1758   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1759   frame caller_frame = stub_frame.sender(&reg_map);
1760   return caller_frame.is_deoptimized_frame();
1761 }
1762 
1763 
1764 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1765   // create input type (domain)
1766   const Type **fields = TypeTuple::fields(1);
1767   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1768   // // The JavaThread* is passed to each routine as the last argument
1769   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1770   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1771 
1772   // create result type (range)
1773   fields = TypeTuple::fields(0);
1774 
1775   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1776 
1777   return TypeFunc::make(domain,range);
1778 }
1779 
1780 #if INCLUDE_JFR
1781 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1782   // create input type (domain)
1783   const Type **fields = TypeTuple::fields(1);
1784   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1785   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1786 
1787   // create result type (range)
1788   fields = TypeTuple::fields(0);
1789 
1790   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1791 
1792   return TypeFunc::make(domain,range);
1793 }
1794 #endif
1795 
1796 //-----------------------------------------------------------------------------
1797 // Dtrace support.  entry and exit probes have the same signature
1798 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1799   // create input type (domain)
1800   const Type **fields = TypeTuple::fields(2);
1801   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1802   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1803   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1804 
1805   // create result type (range)
1806   fields = TypeTuple::fields(0);
1807 
1808   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1809 
1810   return TypeFunc::make(domain,range);
1811 }
1812 
1813 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1814   // create input type (domain)
1815   const Type **fields = TypeTuple::fields(2);
1816   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1817   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1818 
1819   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1820 
1821   // create result type (range)
1822   fields = TypeTuple::fields(0);
1823 
1824   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1825 
1826   return TypeFunc::make(domain,range);
1827 }
1828 
1829 
1830 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1831   assert(oopDesc::is_oop(obj), "must be a valid oop");
1832   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1833   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1834 JRT_END
1835 
1836 //-----------------------------------------------------------------------------
1837 
1838 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1839 
1840 //
1841 // dump the collected NamedCounters.
1842 //
1843 void OptoRuntime::print_named_counters() {
1844   int total_lock_count = 0;
1845   int eliminated_lock_count = 0;
1846 
1847   NamedCounter* c = _named_counters;
1848   while (c) {
1849     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1850       int count = c->count();
1851       if (count > 0) {
1852         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1853         if (Verbose) {
1854           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1855         }
1856         total_lock_count += count;
1857         if (eliminated) {
1858           eliminated_lock_count += count;
1859         }
1860       }
1861     }
1862     c = c->next();
1863   }
1864   if (total_lock_count > 0) {
1865     tty->print_cr("dynamic locks: %d", total_lock_count);
1866     if (eliminated_lock_count) {
1867       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1868                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1869     }
1870   }
1871 }
1872 
1873 //
1874 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1875 //  name which consists of method@line for the inlining tree.
1876 //
1877 
1878 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1879   int max_depth = youngest_jvms->depth();
1880 
1881   // Visit scopes from youngest to oldest.
1882   bool first = true;
1883   stringStream st;
1884   for (int depth = max_depth; depth >= 1; depth--) {
1885     JVMState* jvms = youngest_jvms->of_depth(depth);
1886     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1887     if (!first) {
1888       st.print(" ");
1889     } else {
1890       first = false;
1891     }
1892     int bci = jvms->bci();
1893     if (bci < 0) bci = 0;
1894     if (m != nullptr) {
1895       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1896     } else {
1897       st.print("no method");
1898     }
1899     st.print("@%d", bci);
1900     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1901   }
1902   NamedCounter* c = new NamedCounter(st.freeze(), tag);
1903 
1904   // atomically add the new counter to the head of the list.  We only
1905   // add counters so this is safe.
1906   NamedCounter* head;
1907   do {
1908     c->set_next(nullptr);
1909     head = _named_counters;
1910     c->set_next(head);
1911   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1912   return c;
1913 }
1914 
1915 int trace_exception_counter = 0;
1916 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1917   trace_exception_counter++;
1918   stringStream tempst;
1919 
1920   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1921   exception_oop->print_value_on(&tempst);
1922   tempst.print(" in ");
1923   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1924   if (blob->is_nmethod()) {
1925     blob->as_nmethod()->method()->print_value_on(&tempst);
1926   } else if (blob->is_runtime_stub()) {
1927     tempst.print("<runtime-stub>");
1928   } else {
1929     tempst.print("<unknown>");
1930   }
1931   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1932   tempst.print("]");
1933 
1934   st->print_raw_cr(tempst.freeze());
1935 }