1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/flatArrayKlass.hpp"
  48 #include "oops/flatArrayOop.inline.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomicAccess.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/mountUnmountDisabler.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframe_hp.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  Universe::heap()->collect();
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 #define C2_BLOB_FIELD_DEFINE(name, type) \
  94   type* OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  97   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  98 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE)
  99 #undef C2_BLOB_FIELD_DEFINE
 100 #undef C2_STUB_FIELD_DEFINE
 101 
 102 // This should be called in an assertion at the start of OptoRuntime routines
 103 // which are entered from compiled code (all of them)
 104 #ifdef ASSERT
 105 static bool check_compiled_frame(JavaThread* thread) {
 106   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 107   RegisterMap map(thread,
 108                   RegisterMap::UpdateMap::skip,
 109                   RegisterMap::ProcessFrames::include,
 110                   RegisterMap::WalkContinuation::skip);
 111   frame caller = thread->last_frame().sender(&map);
 112   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 113   return true;
 114 }
 115 #endif // ASSERT
 116 
 117 /*
 118 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 119   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 120   if (var == nullptr) { return false; }
 121 */
 122 
 123 #define GEN_C2_BLOB(name, type)                    \
 124   BLOB_FIELD_NAME(name) =                       \
 125     generate_ ## name ## _blob();                  \
 126   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 127 
 128 // a few helper macros to conjure up generate_stub call arguments
 129 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 130 #define C2_STUB_TYPEFUNC(name) name ## _Type
 131 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 132 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id)
 133 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name))
 134 
 135 // Almost all the C functions targeted from the generated stubs are
 136 // implemented locally to OptoRuntime with names that can be generated
 137 // from the stub name by appending suffix '_C'. However, in two cases
 138 // a common target method also needs to be called from shared runtime
 139 // stubs. In these two cases the opto stubs rely on method
 140 // imlementations defined in class SharedRuntime. The following
 141 // defines temporarily rebind the generated names to reference the
 142 // relevant implementations.
 143 
 144 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 145   C2_STUB_FIELD_NAME(name) =                                          \
 146     generate_stub(env,                                                \
 147                   C2_STUB_TYPEFUNC(name),                             \
 148                   C2_STUB_C_FUNC(name),                               \
 149                   C2_STUB_NAME(name),                                 \
 150                   C2_STUB_ID(name),                                   \
 151                   fancy_jump,                                         \
 152                   pass_tls,                                           \
 153                   pass_retpc);                                        \
 154   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 155 
 156 bool OptoRuntime::generate(ciEnv* env) {
 157 
 158   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB)
 159 
 160   return true;
 161 }
 162 
 163 #undef GEN_C2_BLOB
 164 
 165 #undef C2_STUB_FIELD_NAME
 166 #undef C2_STUB_TYPEFUNC
 167 #undef C2_STUB_C_FUNC
 168 #undef C2_STUB_NAME
 169 #undef GEN_C2_STUB
 170 
 171 // #undef gen
 172 
 173 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 174 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 175 const TypeFunc* OptoRuntime::_new_array_nozero_Type               = nullptr;
 176 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 177 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 178 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 179 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 180 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 181 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 182 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 183 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 184 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 185 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 186 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 187 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 188 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 189 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 190 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 191 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 192 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 193 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 194 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 195 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 196 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 197 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 198 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 199 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 200 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 201 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 202 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 203 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 204 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 205 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 206 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 207 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 208 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 209 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 210 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 211 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 212 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 213 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 214 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 215 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 216 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 217 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 218 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 219 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 220 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 221 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 222 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 223 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 224 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 225 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 226 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 227 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 228 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 229 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 230 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 231 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 232 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 233 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 234 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 235 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 236 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 237 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 238 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 239 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 240 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 241 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 242 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 244 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 245 const TypeFunc* OptoRuntime::_vthread_transition_Type             = nullptr;
 246 #if INCLUDE_JFR
 247 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 248 #endif // INCLUDE_JFR
 249 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 250 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 251 
 252 // Helper method to do generation of RunTimeStub's
 253 address OptoRuntime::generate_stub(ciEnv* env,
 254                                    TypeFunc_generator gen, address C_function,
 255                                    const char *name, StubId stub_id,
 256                                    int is_fancy_jump, bool pass_tls,
 257                                    bool return_pc) {
 258 
 259   // Matching the default directive, we currently have no method to match.
 260   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 261   CompilationMemoryStatisticMark cmsm(directive);
 262   ResourceMark rm;
 263   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 264   DirectivesStack::release(directive);
 265   return  C.stub_entry_point();
 266 }
 267 
 268 const char* OptoRuntime::stub_name(address entry) {
 269 #ifndef PRODUCT
 270   CodeBlob* cb = CodeCache::find_blob(entry);
 271   RuntimeStub* rs =(RuntimeStub *)cb;
 272   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 273   return rs->name();
 274 #else
 275   // Fast implementation for product mode (maybe it should be inlined too)
 276   return "runtime stub";
 277 #endif
 278 }
 279 
 280 // local methods passed as arguments to stub generator that forward
 281 // control to corresponding JRT methods of SharedRuntime
 282 
 283 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 284                                    oopDesc* dest, jint dest_pos,
 285                                    jint length, JavaThread* thread) {
 286   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 287 }
 288 
 289 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 290   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 291 }
 292 
 293 
 294 //=============================================================================
 295 // Opto compiler runtime routines
 296 //=============================================================================
 297 
 298 
 299 //=============================allocation======================================
 300 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 301 // and try allocation again.
 302 
 303 // object allocation
 304 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 305   JRT_BLOCK;
 306 #ifndef PRODUCT
 307   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 308 #endif
 309   assert(check_compiled_frame(current), "incorrect caller");
 310 
 311   // These checks are cheap to make and support reflective allocation.
 312   int lh = klass->layout_helper();
 313   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 314     Handle holder(current, klass->klass_holder()); // keep the klass alive
 315     klass->check_valid_for_instantiation(false, THREAD);
 316     if (!HAS_PENDING_EXCEPTION) {
 317       InstanceKlass::cast(klass)->initialize(THREAD);
 318     }
 319   }
 320 
 321   if (!HAS_PENDING_EXCEPTION) {
 322     // Scavenge and allocate an instance.
 323     Handle holder(current, klass->klass_holder()); // keep the klass alive
 324     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 325     if (is_larval) {
 326       // Check if this is a larval buffer allocation
 327       result->set_mark(result->mark().enter_larval_state());
 328     }
 329     current->set_vm_result_oop(result);
 330 
 331     // Pass oops back through thread local storage.  Our apparent type to Java
 332     // is that we return an oop, but we can block on exit from this routine and
 333     // a GC can trash the oop in C's return register.  The generated stub will
 334     // fetch the oop from TLS after any possible GC.
 335   }
 336 
 337   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 338   JRT_BLOCK_END;
 339 
 340   // inform GC that we won't do card marks for initializing writes.
 341   SharedRuntime::on_slowpath_allocation_exit(current);
 342 JRT_END
 343 
 344 
 345 // array allocation
 346 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current))
 347   JRT_BLOCK;
 348 #ifndef PRODUCT
 349   SharedRuntime::_new_array_ctr++;            // new array requires GC
 350 #endif
 351   assert(check_compiled_frame(current), "incorrect caller");
 352 
 353   // Scavenge and allocate an instance.
 354   oop result;
 355   Handle h_init_val(current, init_val); // keep the init_val object alive
 356 
 357   if (array_type->is_flatArray_klass()) {
 358     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 359     FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
 360     InlineKlass* vk = fak->element_klass();
 361     ArrayKlass::ArrayProperties props = ArrayKlass::array_properties_from_layout(fak->layout_kind());
 362     result = oopFactory::new_flatArray(vk, len, props, fak->layout_kind(), THREAD);
 363     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 364       // Null-free arrays need to be initialized
 365       for (int i = 0; i < len; i++) {
 366         vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK);
 367       }
 368     }
 369   } else if (array_type->is_typeArray_klass()) {
 370     // The oopFactory likes to work with the element type.
 371     // (We could bypass the oopFactory, since it doesn't add much value.)
 372     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 373     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 374   } else {
 375     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 376     result = oopFactory::new_refArray(array_type, len, THREAD);
 377     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 378       // Null-free arrays need to be initialized
 379       for (int i = 0; i < len; i++) {
 380         ((objArrayOop)result)->obj_at_put(i, h_init_val());
 381       }
 382     }
 383   }
 384 
 385   // Pass oops back through thread local storage.  Our apparent type to Java
 386   // is that we return an oop, but we can block on exit from this routine and
 387   // a GC can trash the oop in C's return register.  The generated stub will
 388   // fetch the oop from TLS after any possible GC.
 389   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 390   current->set_vm_result_oop(result);
 391   JRT_BLOCK_END;
 392 
 393   // inform GC that we won't do card marks for initializing writes.
 394   SharedRuntime::on_slowpath_allocation_exit(current);
 395 JRT_END
 396 
 397 // array allocation without zeroing
 398 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 399   JRT_BLOCK;
 400 #ifndef PRODUCT
 401   SharedRuntime::_new_array_ctr++;            // new array requires GC
 402 #endif
 403   assert(check_compiled_frame(current), "incorrect caller");
 404 
 405   // Scavenge and allocate an instance.
 406   oop result;
 407 
 408   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 409   // The oopFactory likes to work with the element type.
 410   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 411   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 412 
 413   // Pass oops back through thread local storage.  Our apparent type to Java
 414   // is that we return an oop, but we can block on exit from this routine and
 415   // a GC can trash the oop in C's return register.  The generated stub will
 416   // fetch the oop from TLS after any possible GC.
 417   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 418   current->set_vm_result_oop(result);
 419   JRT_BLOCK_END;
 420 
 421 
 422   // inform GC that we won't do card marks for initializing writes.
 423   SharedRuntime::on_slowpath_allocation_exit(current);
 424 
 425   oop result = current->vm_result_oop();
 426   if ((len > 0) && (result != nullptr) &&
 427       is_deoptimized_caller_frame(current)) {
 428     // Zero array here if the caller is deoptimized.
 429     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 430     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 431     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 432     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 433     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 434     if (!is_aligned(hs_bytes, BytesPerLong)) {
 435       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 436       hs_bytes += BytesPerInt;
 437     }
 438 
 439     // Optimized zeroing.
 440     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 441     const size_t aligned_hs = hs_bytes / BytesPerLong;
 442     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 443   }
 444 
 445 JRT_END
 446 
 447 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 448 
 449 // multianewarray for 2 dimensions
 450 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 451 #ifndef PRODUCT
 452   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 453 #endif
 454   assert(check_compiled_frame(current), "incorrect caller");
 455   assert(elem_type->is_klass(), "not a class");
 456   jint dims[2];
 457   dims[0] = len1;
 458   dims[1] = len2;
 459   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 460   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 461   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 462   current->set_vm_result_oop(obj);
 463 JRT_END
 464 
 465 // multianewarray for 3 dimensions
 466 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 467 #ifndef PRODUCT
 468   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 469 #endif
 470   assert(check_compiled_frame(current), "incorrect caller");
 471   assert(elem_type->is_klass(), "not a class");
 472   jint dims[3];
 473   dims[0] = len1;
 474   dims[1] = len2;
 475   dims[2] = len3;
 476   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 477   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 478   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 479   current->set_vm_result_oop(obj);
 480 JRT_END
 481 
 482 // multianewarray for 4 dimensions
 483 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 484 #ifndef PRODUCT
 485   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 486 #endif
 487   assert(check_compiled_frame(current), "incorrect caller");
 488   assert(elem_type->is_klass(), "not a class");
 489   jint dims[4];
 490   dims[0] = len1;
 491   dims[1] = len2;
 492   dims[2] = len3;
 493   dims[3] = len4;
 494   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 495   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 496   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 497   current->set_vm_result_oop(obj);
 498 JRT_END
 499 
 500 // multianewarray for 5 dimensions
 501 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 502 #ifndef PRODUCT
 503   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 504 #endif
 505   assert(check_compiled_frame(current), "incorrect caller");
 506   assert(elem_type->is_klass(), "not a class");
 507   jint dims[5];
 508   dims[0] = len1;
 509   dims[1] = len2;
 510   dims[2] = len3;
 511   dims[3] = len4;
 512   dims[4] = len5;
 513   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 514   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 515   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 516   current->set_vm_result_oop(obj);
 517 JRT_END
 518 
 519 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 520   assert(check_compiled_frame(current), "incorrect caller");
 521   assert(elem_type->is_klass(), "not a class");
 522   assert(oop(dims)->is_typeArray(), "not an array");
 523 
 524   ResourceMark rm;
 525   jint len = dims->length();
 526   assert(len > 0, "Dimensions array should contain data");
 527   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 528   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 529                                        c_dims, len);
 530 
 531   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 532   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 533   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 534   current->set_vm_result_oop(obj);
 535 JRT_END
 536 
 537 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 538 
 539   // Very few notify/notifyAll operations find any threads on the waitset, so
 540   // the dominant fast-path is to simply return.
 541   // Relatedly, it's critical that notify/notifyAll be fast in order to
 542   // reduce lock hold times.
 543   if (!SafepointSynchronize::is_synchronizing()) {
 544     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 545       return;
 546     }
 547   }
 548 
 549   // This is the case the fast-path above isn't provisioned to handle.
 550   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 551   // (The fast-path is just a degenerate variant of the slow-path).
 552   // Perform the dreaded state transition and pass control into the slow-path.
 553   JRT_BLOCK;
 554   Handle h_obj(current, obj);
 555   ObjectSynchronizer::notify(h_obj, CHECK);
 556   JRT_BLOCK_END;
 557 JRT_END
 558 
 559 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 560 
 561   if (!SafepointSynchronize::is_synchronizing() ) {
 562     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 563       return;
 564     }
 565   }
 566 
 567   // This is the case the fast-path above isn't provisioned to handle.
 568   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 569   // (The fast-path is just a degenerate variant of the slow-path).
 570   // Perform the dreaded state transition and pass control into the slow-path.
 571   JRT_BLOCK;
 572   Handle h_obj(current, obj);
 573   ObjectSynchronizer::notifyall(h_obj, CHECK);
 574   JRT_BLOCK_END;
 575 JRT_END
 576 
 577 JRT_ENTRY(void, OptoRuntime::vthread_end_first_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 578   MountUnmountDisabler::end_transition(current, vt, true /*is_mount*/, true /*is_thread_start*/);
 579 JRT_END
 580 
 581 JRT_ENTRY(void, OptoRuntime::vthread_start_final_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 582   java_lang_Thread::set_is_in_vthread_transition(vt, false);
 583   current->set_is_in_vthread_transition(false);
 584   MountUnmountDisabler::start_transition(current, vt, false /*is_mount */, true /*is_thread_end*/);
 585 JRT_END
 586 
 587 JRT_ENTRY(void, OptoRuntime::vthread_start_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 588   java_lang_Thread::set_is_in_vthread_transition(vt, false);
 589   current->set_is_in_vthread_transition(false);
 590   MountUnmountDisabler::start_transition(current, vt, is_mount, false /*is_thread_end*/);
 591 JRT_END
 592 
 593 JRT_ENTRY(void, OptoRuntime::vthread_end_transition_C(oopDesc* vt, jboolean is_mount, JavaThread* current))
 594   MountUnmountDisabler::end_transition(current, vt, is_mount, false /*is_thread_start*/);
 595 JRT_END
 596 
 597 static const TypeFunc* make_new_instance_Type() {
 598   // create input type (domain)
 599   const Type **fields = TypeTuple::fields(2);
 600   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 601   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 603 
 604   // create result type (range)
 605   fields = TypeTuple::fields(1);
 606   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 607 
 608   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 609 
 610   return TypeFunc::make(domain, range);
 611 }
 612 
 613 static const TypeFunc* make_vthread_transition_Type() {
 614   // create input type (domain)
 615   const Type **fields = TypeTuple::fields(2);
 616   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 617   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 619 
 620   // no result type needed
 621   fields = TypeTuple::fields(1);
 622   fields[TypeFunc::Parms+0] = nullptr; // void
 623   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 624 
 625   return TypeFunc::make(domain,range);
 626 }
 627 
 628 static const TypeFunc* make_athrow_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(0);
 636 
 637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 638 
 639   return TypeFunc::make(domain, range);
 640 }
 641 
 642 static const TypeFunc* make_new_array_Type() {
 643   // create input type (domain)
 644   const Type **fields = TypeTuple::fields(3);
 645   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 646   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 647   fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL;       // init value
 648   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 649 
 650   // create result type (range)
 651   fields = TypeTuple::fields(1);
 652   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 653 
 654   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 655 
 656   return TypeFunc::make(domain, range);
 657 }
 658 
 659 static const TypeFunc* make_new_array_nozero_Type() {
 660   // create input type (domain)
 661   const Type **fields = TypeTuple::fields(2);
 662   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 663   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 664   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 665 
 666   // create result type (range)
 667   fields = TypeTuple::fields(1);
 668   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 669 
 670   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 671 
 672   return TypeFunc::make(domain, range);
 673 }
 674 
 675 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 676   // create input type (domain)
 677   const int nargs = ndim + 1;
 678   const Type **fields = TypeTuple::fields(nargs);
 679   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 680   for( int i = 1; i < nargs; i++ )
 681     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(1);
 686   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 687   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 688 
 689   return TypeFunc::make(domain, range);
 690 }
 691 
 692 static const TypeFunc* make_multianewarrayN_Type() {
 693   // create input type (domain)
 694   const Type **fields = TypeTuple::fields(2);
 695   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 696   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 698 
 699   // create result type (range)
 700   fields = TypeTuple::fields(1);
 701   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 702   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 703 
 704   return TypeFunc::make(domain, range);
 705 }
 706 
 707 static const TypeFunc* make_uncommon_trap_Type() {
 708   // create input type (domain)
 709   const Type **fields = TypeTuple::fields(1);
 710   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 711   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 712 
 713   // create result type (range)
 714   fields = TypeTuple::fields(0);
 715   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 716 
 717   return TypeFunc::make(domain, range);
 718 }
 719 
 720 //-----------------------------------------------------------------------------
 721 // Monitor Handling
 722 
 723 static const TypeFunc* make_complete_monitor_enter_Type() {
 724   // create input type (domain)
 725   const Type **fields = TypeTuple::fields(2);
 726   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 727   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 728   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 729 
 730   // create result type (range)
 731   fields = TypeTuple::fields(0);
 732 
 733   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 734 
 735   return TypeFunc::make(domain, range);
 736 }
 737 
 738 //-----------------------------------------------------------------------------
 739 
 740 static const TypeFunc* make_complete_monitor_exit_Type() {
 741   // create input type (domain)
 742   const Type **fields = TypeTuple::fields(3);
 743   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 744   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 745   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 746   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 747 
 748   // create result type (range)
 749   fields = TypeTuple::fields(0);
 750 
 751   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 752 
 753   return TypeFunc::make(domain, range);
 754 }
 755 
 756 static const TypeFunc* make_monitor_notify_Type() {
 757   // create input type (domain)
 758   const Type **fields = TypeTuple::fields(1);
 759   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 760   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 761 
 762   // create result type (range)
 763   fields = TypeTuple::fields(0);
 764   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 765   return TypeFunc::make(domain, range);
 766 }
 767 
 768 static const TypeFunc* make_flush_windows_Type() {
 769   // create input type (domain)
 770   const Type** fields = TypeTuple::fields(1);
 771   fields[TypeFunc::Parms+0] = nullptr; // void
 772   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 773 
 774   // create result type
 775   fields = TypeTuple::fields(1);
 776   fields[TypeFunc::Parms+0] = nullptr; // void
 777   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 778 
 779   return TypeFunc::make(domain, range);
 780 }
 781 
 782 static const TypeFunc* make_l2f_Type() {
 783   // create input type (domain)
 784   const Type **fields = TypeTuple::fields(2);
 785   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 786   fields[TypeFunc::Parms+1] = Type::HALF;
 787   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 788 
 789   // create result type (range)
 790   fields = TypeTuple::fields(1);
 791   fields[TypeFunc::Parms+0] = Type::FLOAT;
 792   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 793 
 794   return TypeFunc::make(domain, range);
 795 }
 796 
 797 static const TypeFunc* make_modf_Type() {
 798   const Type **fields = TypeTuple::fields(2);
 799   fields[TypeFunc::Parms+0] = Type::FLOAT;
 800   fields[TypeFunc::Parms+1] = Type::FLOAT;
 801   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 802 
 803   // create result type (range)
 804   fields = TypeTuple::fields(1);
 805   fields[TypeFunc::Parms+0] = Type::FLOAT;
 806 
 807   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 808 
 809   return TypeFunc::make(domain, range);
 810 }
 811 
 812 static const TypeFunc* make_Math_D_D_Type() {
 813   // create input type (domain)
 814   const Type **fields = TypeTuple::fields(2);
 815   // Symbol* name of class to be loaded
 816   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 817   fields[TypeFunc::Parms+1] = Type::HALF;
 818   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 819 
 820   // create result type (range)
 821   fields = TypeTuple::fields(2);
 822   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 823   fields[TypeFunc::Parms+1] = Type::HALF;
 824   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 825 
 826   return TypeFunc::make(domain, range);
 827 }
 828 
 829 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 830   // create input type (domain)
 831   const Type **fields = TypeTuple::fields(num_arg);
 832   // Symbol* name of class to be loaded
 833   assert(num_arg > 0, "must have at least 1 input");
 834   for (uint i = 0; i < num_arg; i++) {
 835     fields[TypeFunc::Parms+i] = in_type;
 836   }
 837   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 838 
 839   // create result type (range)
 840   const uint num_ret = 1;
 841   fields = TypeTuple::fields(num_ret);
 842   fields[TypeFunc::Parms+0] = out_type;
 843   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 844 
 845   return TypeFunc::make(domain, range);
 846 }
 847 
 848 static const TypeFunc* make_Math_DD_D_Type() {
 849   const Type **fields = TypeTuple::fields(4);
 850   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 851   fields[TypeFunc::Parms+1] = Type::HALF;
 852   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 853   fields[TypeFunc::Parms+3] = Type::HALF;
 854   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 855 
 856   // create result type (range)
 857   fields = TypeTuple::fields(2);
 858   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 859   fields[TypeFunc::Parms+1] = Type::HALF;
 860   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 861 
 862   return TypeFunc::make(domain, range);
 863 }
 864 
 865 //-------------- currentTimeMillis, currentTimeNanos, etc
 866 
 867 static const TypeFunc* make_void_long_Type() {
 868   // create input type (domain)
 869   const Type **fields = TypeTuple::fields(0);
 870   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 871 
 872   // create result type (range)
 873   fields = TypeTuple::fields(2);
 874   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 875   fields[TypeFunc::Parms+1] = Type::HALF;
 876   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 877 
 878   return TypeFunc::make(domain, range);
 879 }
 880 
 881 static const TypeFunc* make_void_void_Type() {
 882   // create input type (domain)
 883   const Type **fields = TypeTuple::fields(0);
 884   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 885 
 886   // create result type (range)
 887   fields = TypeTuple::fields(0);
 888   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 889   return TypeFunc::make(domain, range);
 890 }
 891 
 892 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 893   // create input type (domain)
 894   const Type **fields = TypeTuple::fields(0);
 895   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 896 
 897   // create result type (range)
 898   fields = TypeTuple::fields(1);
 899   fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
 900   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 901   return TypeFunc::make(domain, range);
 902 }
 903 
 904 
 905 // Takes as parameters:
 906 // void *dest
 907 // long size
 908 // uchar byte
 909 
 910 static const TypeFunc* make_setmemory_Type() {
 911   // create input type (domain)
 912   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 913   const Type** fields = TypeTuple::fields(argcnt);
 914   int argp = TypeFunc::Parms;
 915   fields[argp++] = TypePtr::NOTNULL;        // dest
 916   fields[argp++] = TypeX_X;                 // size
 917   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 918   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 919   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 920   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 921 
 922   // no result type needed
 923   fields = TypeTuple::fields(1);
 924   fields[TypeFunc::Parms+0] = nullptr; // void
 925   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 926   return TypeFunc::make(domain, range);
 927 }
 928 
 929 // arraycopy stub variations:
 930 enum ArrayCopyType {
 931   ac_fast,                      // void(ptr, ptr, size_t)
 932   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 933   ac_slow,                      // void(ptr, int, ptr, int, int)
 934   ac_generic                    //  int(ptr, int, ptr, int, int)
 935 };
 936 
 937 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 938   // create input type (domain)
 939   int num_args      = (act == ac_fast ? 3 : 5);
 940   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 941   int argcnt = num_args;
 942   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 943   const Type** fields = TypeTuple::fields(argcnt);
 944   int argp = TypeFunc::Parms;
 945   fields[argp++] = TypePtr::NOTNULL;    // src
 946   if (num_size_args == 0) {
 947     fields[argp++] = TypeInt::INT;      // src_pos
 948   }
 949   fields[argp++] = TypePtr::NOTNULL;    // dest
 950   if (num_size_args == 0) {
 951     fields[argp++] = TypeInt::INT;      // dest_pos
 952     fields[argp++] = TypeInt::INT;      // length
 953   }
 954   while (num_size_args-- > 0) {
 955     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 956     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 957   }
 958   if (act == ac_checkcast) {
 959     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 960   }
 961   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 962   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 963 
 964   // create result type if needed
 965   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 966   fields = TypeTuple::fields(1);
 967   if (retcnt == 0)
 968     fields[TypeFunc::Parms+0] = nullptr; // void
 969   else
 970     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 971   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 972   return TypeFunc::make(domain, range);
 973 }
 974 
 975 static const TypeFunc* make_array_fill_Type() {
 976   const Type** fields;
 977   int argp = TypeFunc::Parms;
 978   // create input type (domain): pointer, int, size_t
 979   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 980   fields[argp++] = TypePtr::NOTNULL;
 981   fields[argp++] = TypeInt::INT;
 982   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 983   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 984   const TypeTuple *domain = TypeTuple::make(argp, fields);
 985 
 986   // create result type
 987   fields = TypeTuple::fields(1);
 988   fields[TypeFunc::Parms+0] = nullptr; // void
 989   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 990 
 991   return TypeFunc::make(domain, range);
 992 }
 993 
 994 static const TypeFunc* make_array_partition_Type() {
 995   // create input type (domain)
 996   int num_args = 7;
 997   int argcnt = num_args;
 998   const Type** fields = TypeTuple::fields(argcnt);
 999   int argp = TypeFunc::Parms;
1000   fields[argp++] = TypePtr::NOTNULL;  // array
1001   fields[argp++] = TypeInt::INT;      // element type
1002   fields[argp++] = TypeInt::INT;      // low
1003   fields[argp++] = TypeInt::INT;      // end
1004   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
1005   fields[argp++] = TypeInt::INT;      // indexPivot1
1006   fields[argp++] = TypeInt::INT;      // indexPivot2
1007   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1009 
1010   // no result type needed
1011   fields = TypeTuple::fields(1);
1012   fields[TypeFunc::Parms+0] = nullptr; // void
1013   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1014   return TypeFunc::make(domain, range);
1015 }
1016 
1017 static const TypeFunc* make_array_sort_Type() {
1018   // create input type (domain)
1019   int num_args      = 4;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // array
1024   fields[argp++] = TypeInt::INT;    // element type
1025   fields[argp++] = TypeInt::INT;    // fromIndex
1026   fields[argp++] = TypeInt::INT;    // toIndex
1027   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1028   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1029 
1030   // no result type needed
1031   fields = TypeTuple::fields(1);
1032   fields[TypeFunc::Parms+0] = nullptr; // void
1033   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1034   return TypeFunc::make(domain, range);
1035 }
1036 
1037 static const TypeFunc* make_aescrypt_block_Type() {
1038   // create input type (domain)
1039   int num_args      = 3;
1040   int argcnt = num_args;
1041   const Type** fields = TypeTuple::fields(argcnt);
1042   int argp = TypeFunc::Parms;
1043   fields[argp++] = TypePtr::NOTNULL;    // src
1044   fields[argp++] = TypePtr::NOTNULL;    // dest
1045   fields[argp++] = TypePtr::NOTNULL;    // k array
1046   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1047   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1048 
1049   // no result type needed
1050   fields = TypeTuple::fields(1);
1051   fields[TypeFunc::Parms+0] = nullptr; // void
1052   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1053   return TypeFunc::make(domain, range);
1054 }
1055 
1056 static const TypeFunc* make_updateBytesCRC32_Type() {
1057   // create input type (domain)
1058   int num_args      = 3;
1059   int argcnt = num_args;
1060   const Type** fields = TypeTuple::fields(argcnt);
1061   int argp = TypeFunc::Parms;
1062   fields[argp++] = TypeInt::INT;        // crc
1063   fields[argp++] = TypePtr::NOTNULL;    // src
1064   fields[argp++] = TypeInt::INT;        // len
1065   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1066   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1067 
1068   // result type needed
1069   fields = TypeTuple::fields(1);
1070   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1071   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1072   return TypeFunc::make(domain, range);
1073 }
1074 
1075 static const TypeFunc* make_updateBytesCRC32C_Type() {
1076   // create input type (domain)
1077   int num_args      = 4;
1078   int argcnt = num_args;
1079   const Type** fields = TypeTuple::fields(argcnt);
1080   int argp = TypeFunc::Parms;
1081   fields[argp++] = TypeInt::INT;        // crc
1082   fields[argp++] = TypePtr::NOTNULL;    // buf
1083   fields[argp++] = TypeInt::INT;        // len
1084   fields[argp++] = TypePtr::NOTNULL;    // table
1085   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1086   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1087 
1088   // result type needed
1089   fields = TypeTuple::fields(1);
1090   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1091   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1092   return TypeFunc::make(domain, range);
1093 }
1094 
1095 static const TypeFunc* make_updateBytesAdler32_Type() {
1096   // create input type (domain)
1097   int num_args      = 3;
1098   int argcnt = num_args;
1099   const Type** fields = TypeTuple::fields(argcnt);
1100   int argp = TypeFunc::Parms;
1101   fields[argp++] = TypeInt::INT;        // crc
1102   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1103   fields[argp++] = TypeInt::INT;        // len
1104   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1105   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1106 
1107   // result type needed
1108   fields = TypeTuple::fields(1);
1109   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1110   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1111   return TypeFunc::make(domain, range);
1112 }
1113 
1114 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1115   // create input type (domain)
1116   int num_args      = 5;
1117   int argcnt = num_args;
1118   const Type** fields = TypeTuple::fields(argcnt);
1119   int argp = TypeFunc::Parms;
1120   fields[argp++] = TypePtr::NOTNULL;    // src
1121   fields[argp++] = TypePtr::NOTNULL;    // dest
1122   fields[argp++] = TypePtr::NOTNULL;    // k array
1123   fields[argp++] = TypePtr::NOTNULL;    // r array
1124   fields[argp++] = TypeInt::INT;        // src len
1125   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1126   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1127 
1128   // returning cipher len (int)
1129   fields = TypeTuple::fields(1);
1130   fields[TypeFunc::Parms+0] = TypeInt::INT;
1131   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1132   return TypeFunc::make(domain, range);
1133 }
1134 
1135 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1136   // create input type (domain)
1137   int num_args = 4;
1138   int argcnt = num_args;
1139   const Type** fields = TypeTuple::fields(argcnt);
1140   int argp = TypeFunc::Parms;
1141   fields[argp++] = TypePtr::NOTNULL;    // src
1142   fields[argp++] = TypePtr::NOTNULL;    // dest
1143   fields[argp++] = TypePtr::NOTNULL;    // k array
1144   fields[argp++] = TypeInt::INT;        // src len
1145   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1146   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1147 
1148   // returning cipher len (int)
1149   fields = TypeTuple::fields(1);
1150   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1151   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1152   return TypeFunc::make(domain, range);
1153 }
1154 
1155 static const TypeFunc* make_counterMode_aescrypt_Type() {
1156   // create input type (domain)
1157   int num_args = 7;
1158   int argcnt = num_args;
1159   const Type** fields = TypeTuple::fields(argcnt);
1160   int argp = TypeFunc::Parms;
1161   fields[argp++] = TypePtr::NOTNULL; // src
1162   fields[argp++] = TypePtr::NOTNULL; // dest
1163   fields[argp++] = TypePtr::NOTNULL; // k array
1164   fields[argp++] = TypePtr::NOTNULL; // counter array
1165   fields[argp++] = TypeInt::INT; // src len
1166   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1167   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1168   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1169   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1170   // returning cipher len (int)
1171   fields = TypeTuple::fields(1);
1172   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1173   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1174   return TypeFunc::make(domain, range);
1175 }
1176 
1177 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1178   // create input type (domain)
1179   int num_args = 8;
1180   int argcnt = num_args;
1181   const Type** fields = TypeTuple::fields(argcnt);
1182   int argp = TypeFunc::Parms;
1183   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1184   fields[argp++] = TypeInt::INT;     // int len
1185   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1186   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1187   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1188   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1189   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1190   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1191 
1192   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1193   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1194   // returning cipher len (int)
1195   fields = TypeTuple::fields(1);
1196   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1197   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1198   return TypeFunc::make(domain, range);
1199 }
1200 
1201 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1202   // create input type (domain)
1203   int num_args = is_sha3 ? 3 : 2;
1204   int argcnt = num_args;
1205   const Type** fields = TypeTuple::fields(argcnt);
1206   int argp = TypeFunc::Parms;
1207   fields[argp++] = TypePtr::NOTNULL; // buf
1208   fields[argp++] = TypePtr::NOTNULL; // state
1209   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1210   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1211   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1212 
1213   // no result type needed
1214   fields = TypeTuple::fields(1);
1215   fields[TypeFunc::Parms+0] = nullptr; // void
1216   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1217   return TypeFunc::make(domain, range);
1218 }
1219 
1220 /*
1221  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1222  */
1223 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1224   // create input type (domain)
1225   int num_args = is_sha3 ? 5 : 4;
1226   int argcnt = num_args;
1227   const Type** fields = TypeTuple::fields(argcnt);
1228   int argp = TypeFunc::Parms;
1229   fields[argp++] = TypePtr::NOTNULL; // buf
1230   fields[argp++] = TypePtr::NOTNULL; // state
1231   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1232   fields[argp++] = TypeInt::INT;     // ofs
1233   fields[argp++] = TypeInt::INT;     // limit
1234   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1235   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1236 
1237   // returning ofs (int)
1238   fields = TypeTuple::fields(1);
1239   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1240   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1241   return TypeFunc::make(domain, range);
1242 }
1243 
1244 // SHAKE128Parallel doubleKeccak function
1245 static const TypeFunc* make_double_keccak_Type() {
1246     int argcnt = 2;
1247 
1248     const Type** fields = TypeTuple::fields(argcnt);
1249     int argp = TypeFunc::Parms;
1250     fields[argp++] = TypePtr::NOTNULL;      // status0
1251     fields[argp++] = TypePtr::NOTNULL;      // status1
1252 
1253     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1254     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1255 
1256     // result type needed
1257     fields = TypeTuple::fields(1);
1258     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1259     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1260     return TypeFunc::make(domain, range);
1261 }
1262 
1263 static const TypeFunc* make_multiplyToLen_Type() {
1264   // create input type (domain)
1265   int num_args      = 5;
1266   int argcnt = num_args;
1267   const Type** fields = TypeTuple::fields(argcnt);
1268   int argp = TypeFunc::Parms;
1269   fields[argp++] = TypePtr::NOTNULL;    // x
1270   fields[argp++] = TypeInt::INT;        // xlen
1271   fields[argp++] = TypePtr::NOTNULL;    // y
1272   fields[argp++] = TypeInt::INT;        // ylen
1273   fields[argp++] = TypePtr::NOTNULL;    // z
1274   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1275   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1276 
1277   // no result type needed
1278   fields = TypeTuple::fields(1);
1279   fields[TypeFunc::Parms+0] = nullptr;
1280   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1281   return TypeFunc::make(domain, range);
1282 }
1283 
1284 static const TypeFunc* make_squareToLen_Type() {
1285   // create input type (domain)
1286   int num_args      = 4;
1287   int argcnt = num_args;
1288   const Type** fields = TypeTuple::fields(argcnt);
1289   int argp = TypeFunc::Parms;
1290   fields[argp++] = TypePtr::NOTNULL;    // x
1291   fields[argp++] = TypeInt::INT;        // len
1292   fields[argp++] = TypePtr::NOTNULL;    // z
1293   fields[argp++] = TypeInt::INT;        // zlen
1294   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1295   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1296 
1297   // no result type needed
1298   fields = TypeTuple::fields(1);
1299   fields[TypeFunc::Parms+0] = nullptr;
1300   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1301   return TypeFunc::make(domain, range);
1302 }
1303 
1304 static const TypeFunc* make_mulAdd_Type() {
1305   // create input type (domain)
1306   int num_args      = 5;
1307   int argcnt = num_args;
1308   const Type** fields = TypeTuple::fields(argcnt);
1309   int argp = TypeFunc::Parms;
1310   fields[argp++] = TypePtr::NOTNULL;    // out
1311   fields[argp++] = TypePtr::NOTNULL;    // in
1312   fields[argp++] = TypeInt::INT;        // offset
1313   fields[argp++] = TypeInt::INT;        // len
1314   fields[argp++] = TypeInt::INT;        // k
1315   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1316   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1317 
1318   // returning carry (int)
1319   fields = TypeTuple::fields(1);
1320   fields[TypeFunc::Parms+0] = TypeInt::INT;
1321   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1322   return TypeFunc::make(domain, range);
1323 }
1324 
1325 static const TypeFunc* make_montgomeryMultiply_Type() {
1326   // create input type (domain)
1327   int num_args      = 7;
1328   int argcnt = num_args;
1329   const Type** fields = TypeTuple::fields(argcnt);
1330   int argp = TypeFunc::Parms;
1331   fields[argp++] = TypePtr::NOTNULL;    // a
1332   fields[argp++] = TypePtr::NOTNULL;    // b
1333   fields[argp++] = TypePtr::NOTNULL;    // n
1334   fields[argp++] = TypeInt::INT;        // len
1335   fields[argp++] = TypeLong::LONG;      // inv
1336   fields[argp++] = Type::HALF;
1337   fields[argp++] = TypePtr::NOTNULL;    // result
1338   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1339   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1340 
1341   // result type needed
1342   fields = TypeTuple::fields(1);
1343   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1344 
1345   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1346   return TypeFunc::make(domain, range);
1347 }
1348 
1349 static const TypeFunc* make_montgomerySquare_Type() {
1350   // create input type (domain)
1351   int num_args      = 6;
1352   int argcnt = num_args;
1353   const Type** fields = TypeTuple::fields(argcnt);
1354   int argp = TypeFunc::Parms;
1355   fields[argp++] = TypePtr::NOTNULL;    // a
1356   fields[argp++] = TypePtr::NOTNULL;    // n
1357   fields[argp++] = TypeInt::INT;        // len
1358   fields[argp++] = TypeLong::LONG;      // inv
1359   fields[argp++] = Type::HALF;
1360   fields[argp++] = TypePtr::NOTNULL;    // result
1361   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1362   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1363 
1364   // result type needed
1365   fields = TypeTuple::fields(1);
1366   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1367 
1368   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1369   return TypeFunc::make(domain, range);
1370 }
1371 
1372 static const TypeFunc* make_bigIntegerShift_Type() {
1373   int argcnt = 5;
1374   const Type** fields = TypeTuple::fields(argcnt);
1375   int argp = TypeFunc::Parms;
1376   fields[argp++] = TypePtr::NOTNULL;    // newArr
1377   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1378   fields[argp++] = TypeInt::INT;        // newIdx
1379   fields[argp++] = TypeInt::INT;        // shiftCount
1380   fields[argp++] = TypeInt::INT;        // numIter
1381   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1382   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1383 
1384   // no result type needed
1385   fields = TypeTuple::fields(1);
1386   fields[TypeFunc::Parms + 0] = nullptr;
1387   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1388   return TypeFunc::make(domain, range);
1389 }
1390 
1391 static const TypeFunc* make_vectorizedMismatch_Type() {
1392   // create input type (domain)
1393   int num_args = 4;
1394   int argcnt = num_args;
1395   const Type** fields = TypeTuple::fields(argcnt);
1396   int argp = TypeFunc::Parms;
1397   fields[argp++] = TypePtr::NOTNULL;    // obja
1398   fields[argp++] = TypePtr::NOTNULL;    // objb
1399   fields[argp++] = TypeInt::INT;        // length, number of elements
1400   fields[argp++] = TypeInt::INT;        // log2scale, element size
1401   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1402   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1403 
1404   //return mismatch index (int)
1405   fields = TypeTuple::fields(1);
1406   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1407   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1408   return TypeFunc::make(domain, range);
1409 }
1410 
1411 static const TypeFunc* make_ghash_processBlocks_Type() {
1412   int argcnt = 4;
1413 
1414   const Type** fields = TypeTuple::fields(argcnt);
1415   int argp = TypeFunc::Parms;
1416   fields[argp++] = TypePtr::NOTNULL;    // state
1417   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1418   fields[argp++] = TypePtr::NOTNULL;    // data
1419   fields[argp++] = TypeInt::INT;        // blocks
1420   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1421   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1422 
1423   // result type needed
1424   fields = TypeTuple::fields(1);
1425   fields[TypeFunc::Parms+0] = nullptr; // void
1426   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1427   return TypeFunc::make(domain, range);
1428 }
1429 
1430 static const TypeFunc* make_chacha20Block_Type() {
1431   int argcnt = 2;
1432 
1433   const Type** fields = TypeTuple::fields(argcnt);
1434   int argp = TypeFunc::Parms;
1435   fields[argp++] = TypePtr::NOTNULL;      // state
1436   fields[argp++] = TypePtr::NOTNULL;      // result
1437 
1438   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1439   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1440 
1441   // result type needed
1442   fields = TypeTuple::fields(1);
1443   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1444   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1445   return TypeFunc::make(domain, range);
1446 }
1447 
1448 // Kyber NTT function
1449 static const TypeFunc* make_kyberNtt_Type() {
1450     int argcnt = 2;
1451 
1452     const Type** fields = TypeTuple::fields(argcnt);
1453     int argp = TypeFunc::Parms;
1454     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1455     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1456 
1457     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1458     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1459 
1460     // result type needed
1461     fields = TypeTuple::fields(1);
1462     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1463     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1464     return TypeFunc::make(domain, range);
1465 }
1466 
1467 // Kyber inverse NTT function
1468 static const TypeFunc* make_kyberInverseNtt_Type() {
1469     int argcnt = 2;
1470 
1471     const Type** fields = TypeTuple::fields(argcnt);
1472     int argp = TypeFunc::Parms;
1473     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1474     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1475 
1476     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1477     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1478 
1479     // result type needed
1480     fields = TypeTuple::fields(1);
1481     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1482     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1483     return TypeFunc::make(domain, range);
1484 }
1485 
1486 // Kyber NTT multiply function
1487 static const TypeFunc* make_kyberNttMult_Type() {
1488     int argcnt = 4;
1489 
1490     const Type** fields = TypeTuple::fields(argcnt);
1491     int argp = TypeFunc::Parms;
1492     fields[argp++] = TypePtr::NOTNULL;      // result
1493     fields[argp++] = TypePtr::NOTNULL;      // ntta
1494     fields[argp++] = TypePtr::NOTNULL;      // nttb
1495     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1496 
1497     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1498     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1499 
1500     // result type needed
1501     fields = TypeTuple::fields(1);
1502     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1503     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1504     return TypeFunc::make(domain, range);
1505 }
1506 
1507 // Kyber add 2 polynomials function
1508 static const TypeFunc* make_kyberAddPoly_2_Type() {
1509     int argcnt = 3;
1510 
1511     const Type** fields = TypeTuple::fields(argcnt);
1512     int argp = TypeFunc::Parms;
1513     fields[argp++] = TypePtr::NOTNULL;      // result
1514     fields[argp++] = TypePtr::NOTNULL;      // a
1515     fields[argp++] = TypePtr::NOTNULL;      // b
1516 
1517     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1518     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1519 
1520     // result type needed
1521     fields = TypeTuple::fields(1);
1522     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1523     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1524     return TypeFunc::make(domain, range);
1525 }
1526 
1527 
1528 // Kyber add 3 polynomials function
1529 static const TypeFunc* make_kyberAddPoly_3_Type() {
1530     int argcnt = 4;
1531 
1532     const Type** fields = TypeTuple::fields(argcnt);
1533     int argp = TypeFunc::Parms;
1534     fields[argp++] = TypePtr::NOTNULL;      // result
1535     fields[argp++] = TypePtr::NOTNULL;      // a
1536     fields[argp++] = TypePtr::NOTNULL;      // b
1537     fields[argp++] = TypePtr::NOTNULL;      // c
1538 
1539     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1540     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1541 
1542     // result type needed
1543     fields = TypeTuple::fields(1);
1544     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1545     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1546     return TypeFunc::make(domain, range);
1547 }
1548 
1549 
1550 // Kyber XOF output parsing into polynomial coefficients candidates
1551 // or decompress(12,...) function
1552 static const TypeFunc* make_kyber12To16_Type() {
1553     int argcnt = 4;
1554 
1555     const Type** fields = TypeTuple::fields(argcnt);
1556     int argp = TypeFunc::Parms;
1557     fields[argp++] = TypePtr::NOTNULL;      // condensed
1558     fields[argp++] = TypeInt::INT;          // condensedOffs
1559     fields[argp++] = TypePtr::NOTNULL;      // parsed
1560     fields[argp++] = TypeInt::INT;          // parsedLength
1561 
1562     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1563     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1564 
1565     // result type needed
1566     fields = TypeTuple::fields(1);
1567     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1568     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1569     return TypeFunc::make(domain, range);
1570 }
1571 
1572 // Kyber Barrett reduce function
1573 static const TypeFunc* make_kyberBarrettReduce_Type() {
1574     int argcnt = 1;
1575 
1576     const Type** fields = TypeTuple::fields(argcnt);
1577     int argp = TypeFunc::Parms;
1578     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1579 
1580     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1581     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1582 
1583     // result type needed
1584     fields = TypeTuple::fields(1);
1585     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1586     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1587     return TypeFunc::make(domain, range);
1588 }
1589 
1590 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1591 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1592     int argcnt = 2;
1593 
1594     const Type** fields = TypeTuple::fields(argcnt);
1595     int argp = TypeFunc::Parms;
1596     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1597     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1598 
1599     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1600     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1601 
1602     // result type needed
1603     fields = TypeTuple::fields(1);
1604     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1605     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1606     return TypeFunc::make(domain, range);
1607 }
1608 
1609 // Dilithium inverse NTT function except the final mod Q division by 2^256
1610 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1611     int argcnt = 2;
1612 
1613     const Type** fields = TypeTuple::fields(argcnt);
1614     int argp = TypeFunc::Parms;
1615     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1616     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1617 
1618     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1619     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1620 
1621     // result type needed
1622     fields = TypeTuple::fields(1);
1623     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1624     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1625     return TypeFunc::make(domain, range);
1626 }
1627 
1628 // Dilithium NTT multiply function
1629 static const TypeFunc* make_dilithiumNttMult_Type() {
1630     int argcnt = 3;
1631 
1632     const Type** fields = TypeTuple::fields(argcnt);
1633     int argp = TypeFunc::Parms;
1634     fields[argp++] = TypePtr::NOTNULL;      // result
1635     fields[argp++] = TypePtr::NOTNULL;      // ntta
1636     fields[argp++] = TypePtr::NOTNULL;      // nttb
1637 
1638     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1639     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1640 
1641     // result type needed
1642     fields = TypeTuple::fields(1);
1643     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1644     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1645     return TypeFunc::make(domain, range);
1646 }
1647 
1648 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1649 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1650     int argcnt = 2;
1651 
1652     const Type** fields = TypeTuple::fields(argcnt);
1653     int argp = TypeFunc::Parms;
1654     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1655     fields[argp++] = TypeInt::INT;          // constant multiplier
1656 
1657     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1658     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1659 
1660     // result type needed
1661     fields = TypeTuple::fields(1);
1662     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1663     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1664     return TypeFunc::make(domain, range);
1665 }
1666 
1667 // Dilithium decompose polynomial
1668 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1669     int argcnt = 5;
1670 
1671     const Type** fields = TypeTuple::fields(argcnt);
1672     int argp = TypeFunc::Parms;
1673     fields[argp++] = TypePtr::NOTNULL;      // input
1674     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1675     fields[argp++] = TypePtr::NOTNULL;      // highPart
1676     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1677     fields[argp++] = TypeInt::INT;          // multiplier
1678 
1679     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1680     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1681 
1682     // result type needed
1683     fields = TypeTuple::fields(1);
1684     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1685     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1686     return TypeFunc::make(domain, range);
1687 }
1688 
1689 static const TypeFunc* make_base64_encodeBlock_Type() {
1690   int argcnt = 6;
1691 
1692   const Type** fields = TypeTuple::fields(argcnt);
1693   int argp = TypeFunc::Parms;
1694   fields[argp++] = TypePtr::NOTNULL;    // src array
1695   fields[argp++] = TypeInt::INT;        // offset
1696   fields[argp++] = TypeInt::INT;        // length
1697   fields[argp++] = TypePtr::NOTNULL;    // dest array
1698   fields[argp++] = TypeInt::INT;       // dp
1699   fields[argp++] = TypeInt::BOOL;       // isURL
1700   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1701   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1702 
1703   // result type needed
1704   fields = TypeTuple::fields(1);
1705   fields[TypeFunc::Parms + 0] = nullptr; // void
1706   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1707   return TypeFunc::make(domain, range);
1708 }
1709 
1710 static const TypeFunc* make_string_IndexOf_Type() {
1711   int argcnt = 4;
1712 
1713   const Type** fields = TypeTuple::fields(argcnt);
1714   int argp = TypeFunc::Parms;
1715   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1716   fields[argp++] = TypeInt::INT;        // haystack length
1717   fields[argp++] = TypePtr::NOTNULL;    // needle array
1718   fields[argp++] = TypeInt::INT;        // needle length
1719   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1720   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1721 
1722   // result type needed
1723   fields = TypeTuple::fields(1);
1724   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1725   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1726   return TypeFunc::make(domain, range);
1727 }
1728 
1729 static const TypeFunc* make_base64_decodeBlock_Type() {
1730   int argcnt = 7;
1731 
1732   const Type** fields = TypeTuple::fields(argcnt);
1733   int argp = TypeFunc::Parms;
1734   fields[argp++] = TypePtr::NOTNULL;    // src array
1735   fields[argp++] = TypeInt::INT;        // src offset
1736   fields[argp++] = TypeInt::INT;        // src length
1737   fields[argp++] = TypePtr::NOTNULL;    // dest array
1738   fields[argp++] = TypeInt::INT;        // dest offset
1739   fields[argp++] = TypeInt::BOOL;       // isURL
1740   fields[argp++] = TypeInt::BOOL;       // isMIME
1741   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1742   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1743 
1744   // result type needed
1745   fields = TypeTuple::fields(1);
1746   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1747   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1748   return TypeFunc::make(domain, range);
1749 }
1750 
1751 static const TypeFunc* make_poly1305_processBlocks_Type() {
1752   int argcnt = 4;
1753 
1754   const Type** fields = TypeTuple::fields(argcnt);
1755   int argp = TypeFunc::Parms;
1756   fields[argp++] = TypePtr::NOTNULL;    // input array
1757   fields[argp++] = TypeInt::INT;        // input length
1758   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1759   fields[argp++] = TypePtr::NOTNULL;    // r array
1760   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1761   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1762 
1763   // result type needed
1764   fields = TypeTuple::fields(1);
1765   fields[TypeFunc::Parms + 0] = nullptr; // void
1766   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1767   return TypeFunc::make(domain, range);
1768 }
1769 
1770 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1771   int argcnt = 3;
1772 
1773   const Type** fields = TypeTuple::fields(argcnt);
1774   int argp = TypeFunc::Parms;
1775   fields[argp++] = TypePtr::NOTNULL;    // a array
1776   fields[argp++] = TypePtr::NOTNULL;    // b array
1777   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1778   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1779   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1780 
1781   // result type needed
1782   fields = TypeTuple::fields(1);
1783   fields[TypeFunc::Parms + 0] = nullptr; // void
1784   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1785   return TypeFunc::make(domain, range);
1786 }
1787 
1788 static const TypeFunc* make_intpoly_assign_Type() {
1789   int argcnt = 4;
1790 
1791   const Type** fields = TypeTuple::fields(argcnt);
1792   int argp = TypeFunc::Parms;
1793   fields[argp++] = TypeInt::INT;        // set flag
1794   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1795   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1796   fields[argp++] = TypeInt::INT;        // array length
1797   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1798   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1799 
1800   // result type needed
1801   fields = TypeTuple::fields(1);
1802   fields[TypeFunc::Parms + 0] = nullptr; // void
1803   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1804   return TypeFunc::make(domain, range);
1805 }
1806 
1807 //------------- Interpreter state for on stack replacement
1808 static const TypeFunc* make_osr_end_Type() {
1809   // create input type (domain)
1810   const Type **fields = TypeTuple::fields(1);
1811   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1812   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1813 
1814   // create result type
1815   fields = TypeTuple::fields(1);
1816   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1817   fields[TypeFunc::Parms+0] = nullptr; // void
1818   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1819   return TypeFunc::make(domain, range);
1820 }
1821 
1822 #ifndef PRODUCT
1823 static void debug_print_convert_type(const Type** fields, int* argp, Node *parm) {
1824   const BasicType bt = parm->bottom_type()->basic_type();
1825   fields[(*argp)++] = Type::get_const_basic_type(bt);
1826   if (bt == T_LONG || bt == T_DOUBLE) {
1827     fields[(*argp)++] = Type::HALF;
1828   }
1829 }
1830 
1831 static void update_arg_cnt(const Node* parm, int* arg_cnt) {
1832   (*arg_cnt)++;
1833   const BasicType bt = parm->bottom_type()->basic_type();
1834   if (bt == T_LONG || bt == T_DOUBLE) {
1835     (*arg_cnt)++;
1836   }
1837 }
1838 
1839 const TypeFunc* OptoRuntime::debug_print_Type(Node* parm0, Node* parm1,
1840                                         Node* parm2, Node* parm3,
1841                                         Node* parm4, Node* parm5,
1842                                         Node* parm6) {
1843   int argcnt = 1;
1844   if (parm0 != nullptr) { update_arg_cnt(parm0, &argcnt);
1845   if (parm1 != nullptr) { update_arg_cnt(parm1, &argcnt);
1846   if (parm2 != nullptr) { update_arg_cnt(parm2, &argcnt);
1847   if (parm3 != nullptr) { update_arg_cnt(parm3, &argcnt);
1848   if (parm4 != nullptr) { update_arg_cnt(parm4, &argcnt);
1849   if (parm5 != nullptr) { update_arg_cnt(parm5, &argcnt);
1850   if (parm6 != nullptr) { update_arg_cnt(parm6, &argcnt);
1851   /* close each nested if ===> */  } } } } } } }
1852 
1853   // create input type (domain)
1854   const Type** fields = TypeTuple::fields(argcnt);
1855   int argp = TypeFunc::Parms;
1856   fields[argp++] = TypePtr::NOTNULL;    // static string pointer
1857 
1858   if (parm0 != nullptr) { debug_print_convert_type(fields, &argp, parm0);
1859   if (parm1 != nullptr) { debug_print_convert_type(fields, &argp, parm1);
1860   if (parm2 != nullptr) { debug_print_convert_type(fields, &argp, parm2);
1861   if (parm3 != nullptr) { debug_print_convert_type(fields, &argp, parm3);
1862   if (parm4 != nullptr) { debug_print_convert_type(fields, &argp, parm4);
1863   if (parm5 != nullptr) { debug_print_convert_type(fields, &argp, parm5);
1864   if (parm6 != nullptr) { debug_print_convert_type(fields, &argp, parm6);
1865   /* close each nested if ===> */  } } } } } } }
1866 
1867   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1868   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1869 
1870   // no result type needed
1871   fields = TypeTuple::fields(1);
1872   fields[TypeFunc::Parms+0] = nullptr; // void
1873   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1874   return TypeFunc::make(domain, range);
1875 }
1876 #endif // PRODUCT
1877 
1878 //-------------------------------------------------------------------------------------
1879 // register policy
1880 
1881 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1882   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1883   switch (register_save_policy[reg]) {
1884     case 'C': return false; //SOC
1885     case 'E': return true ; //SOE
1886     case 'N': return false; //NS
1887     case 'A': return false; //AS
1888   }
1889   ShouldNotReachHere();
1890   return false;
1891 }
1892 
1893 //-----------------------------------------------------------------------
1894 // Exceptions
1895 //
1896 
1897 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1898 
1899 // The method is an entry that is always called by a C++ method not
1900 // directly from compiled code. Compiled code will call the C++ method following.
1901 // We can't allow async exception to be installed during  exception processing.
1902 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1903   // The frame we rethrow the exception to might not have been processed by the GC yet.
1904   // The stack watermark barrier takes care of detecting that and ensuring the frame
1905   // has updated oops.
1906   StackWatermarkSet::after_unwind(current);
1907 
1908   // Do not confuse exception_oop with pending_exception. The exception_oop
1909   // is only used to pass arguments into the method. Not for general
1910   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1911   // the runtime stubs checks this on exit.
1912   assert(current->exception_oop() != nullptr, "exception oop is found");
1913   address handler_address = nullptr;
1914 
1915   Handle exception(current, current->exception_oop());
1916   address pc = current->exception_pc();
1917 
1918   // Clear out the exception oop and pc since looking up an
1919   // exception handler can cause class loading, which might throw an
1920   // exception and those fields are expected to be clear during
1921   // normal bytecode execution.
1922   current->clear_exception_oop_and_pc();
1923 
1924   LogTarget(Info, exceptions) lt;
1925   if (lt.is_enabled()) {
1926     LogStream ls(lt);
1927     trace_exception(&ls, exception(), pc, "");
1928   }
1929 
1930   // for AbortVMOnException flag
1931   Exceptions::debug_check_abort(exception);
1932 
1933 #ifdef ASSERT
1934   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1935     // should throw an exception here
1936     ShouldNotReachHere();
1937   }
1938 #endif
1939 
1940   // new exception handling: this method is entered only from adapters
1941   // exceptions from compiled java methods are handled in compiled code
1942   // using rethrow node
1943 
1944   nm = CodeCache::find_nmethod(pc);
1945   assert(nm != nullptr, "No NMethod found");
1946   if (nm->is_native_method()) {
1947     fatal("Native method should not have path to exception handling");
1948   } else {
1949     // we are switching to old paradigm: search for exception handler in caller_frame
1950     // instead in exception handler of caller_frame.sender()
1951 
1952     if (JvmtiExport::can_post_on_exceptions()) {
1953       // "Full-speed catching" is not necessary here,
1954       // since we're notifying the VM on every catch.
1955       // Force deoptimization and the rest of the lookup
1956       // will be fine.
1957       deoptimize_caller_frame(current);
1958     }
1959 
1960     // Check the stack guard pages.  If enabled, look for handler in this frame;
1961     // otherwise, forcibly unwind the frame.
1962     //
1963     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1964     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1965     bool deopting = false;
1966     if (nm->is_deopt_pc(pc)) {
1967       deopting = true;
1968       RegisterMap map(current,
1969                       RegisterMap::UpdateMap::skip,
1970                       RegisterMap::ProcessFrames::include,
1971                       RegisterMap::WalkContinuation::skip);
1972       frame deoptee = current->last_frame().sender(&map);
1973       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1974       // Adjust the pc back to the original throwing pc
1975       pc = deoptee.pc();
1976     }
1977 
1978     // If we are forcing an unwind because of stack overflow then deopt is
1979     // irrelevant since we are throwing the frame away anyway.
1980 
1981     if (deopting && !force_unwind) {
1982       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1983     } else {
1984 
1985       handler_address =
1986         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1987 
1988       if (handler_address == nullptr) {
1989         bool recursive_exception = false;
1990         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1991         assert (handler_address != nullptr, "must have compiled handler");
1992         // Update the exception cache only when the unwind was not forced
1993         // and there didn't happen another exception during the computation of the
1994         // compiled exception handler. Checking for exception oop equality is not
1995         // sufficient because some exceptions are pre-allocated and reused.
1996         if (!force_unwind && !recursive_exception) {
1997           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1998         }
1999       } else {
2000 #ifdef ASSERT
2001         bool recursive_exception = false;
2002         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
2003         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
2004                  p2i(handler_address), p2i(computed_address));
2005 #endif
2006       }
2007     }
2008 
2009     current->set_exception_pc(pc);
2010     current->set_exception_handler_pc(handler_address);
2011   }
2012 
2013   // Restore correct return pc.  Was saved above.
2014   current->set_exception_oop(exception());
2015   return handler_address;
2016 
2017 JRT_END
2018 
2019 // We are entering here from exception_blob
2020 // If there is a compiled exception handler in this method, we will continue there;
2021 // otherwise we will unwind the stack and continue at the caller of top frame method
2022 // Note we enter without the usual JRT wrapper. We will call a helper routine that
2023 // will do the normal VM entry. We do it this way so that we can see if the nmethod
2024 // we looked up the handler for has been deoptimized in the meantime. If it has been
2025 // we must not use the handler and instead return the deopt blob.
2026 address OptoRuntime::handle_exception_C(JavaThread* current) {
2027 //
2028 // We are in Java not VM and in debug mode we have a NoHandleMark
2029 //
2030 #ifndef PRODUCT
2031   SharedRuntime::_find_handler_ctr++;          // find exception handler
2032 #endif
2033   DEBUG_ONLY(NoHandleMark __hm;)
2034   nmethod* nm = nullptr;
2035   address handler_address = nullptr;
2036   {
2037     // Enter the VM
2038 
2039     ResetNoHandleMark rnhm;
2040     handler_address = handle_exception_C_helper(current, nm);
2041   }
2042 
2043   // Back in java: Use no oops, DON'T safepoint
2044 
2045   // Now check to see if the handler we are returning is in a now
2046   // deoptimized frame
2047 
2048   if (nm != nullptr) {
2049     RegisterMap map(current,
2050                     RegisterMap::UpdateMap::skip,
2051                     RegisterMap::ProcessFrames::skip,
2052                     RegisterMap::WalkContinuation::skip);
2053     frame caller = current->last_frame().sender(&map);
2054 #ifdef ASSERT
2055     assert(caller.is_compiled_frame(), "must be");
2056 #endif // ASSERT
2057     if (caller.is_deoptimized_frame()) {
2058       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
2059     }
2060   }
2061   return handler_address;
2062 }
2063 
2064 //------------------------------rethrow----------------------------------------
2065 // We get here after compiled code has executed a 'RethrowNode'.  The callee
2066 // is either throwing or rethrowing an exception.  The callee-save registers
2067 // have been restored, synchronized objects have been unlocked and the callee
2068 // stack frame has been removed.  The return address was passed in.
2069 // Exception oop is passed as the 1st argument.  This routine is then called
2070 // from the stub.  On exit, we know where to jump in the caller's code.
2071 // After this C code exits, the stub will pop his frame and end in a jump
2072 // (instead of a return).  We enter the caller's default handler.
2073 //
2074 // This must be JRT_LEAF:
2075 //     - caller will not change its state as we cannot block on exit,
2076 //       therefore raw_exception_handler_for_return_address is all it takes
2077 //       to handle deoptimized blobs
2078 //
2079 // However, there needs to be a safepoint check in the middle!  So compiled
2080 // safepoints are completely watertight.
2081 //
2082 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2083 //
2084 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2085 //
2086 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2087   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2088   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2089 
2090 #ifndef PRODUCT
2091   SharedRuntime::_rethrow_ctr++;               // count rethrows
2092 #endif
2093   assert (exception != nullptr, "should have thrown a NullPointerException");
2094 #ifdef ASSERT
2095   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2096     // should throw an exception here
2097     ShouldNotReachHere();
2098   }
2099 #endif
2100 
2101   thread->set_vm_result_oop(exception);
2102   // Frame not compiled (handles deoptimization blob)
2103   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2104 }
2105 
2106 static const TypeFunc* make_rethrow_Type() {
2107   // create input type (domain)
2108   const Type **fields = TypeTuple::fields(1);
2109   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2110   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2111 
2112   // create result type (range)
2113   fields = TypeTuple::fields(1);
2114   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2115   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2116 
2117   return TypeFunc::make(domain, range);
2118 }
2119 
2120 
2121 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2122   // Deoptimize the caller before continuing, as the compiled
2123   // exception handler table may not be valid.
2124   if (DeoptimizeOnAllocationException && doit) {
2125     deoptimize_caller_frame(thread);
2126   }
2127 }
2128 
2129 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2130   // Called from within the owner thread, so no need for safepoint
2131   RegisterMap reg_map(thread,
2132                       RegisterMap::UpdateMap::include,
2133                       RegisterMap::ProcessFrames::include,
2134                       RegisterMap::WalkContinuation::skip);
2135   frame stub_frame = thread->last_frame();
2136   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2137   frame caller_frame = stub_frame.sender(&reg_map);
2138 
2139   // Deoptimize the caller frame.
2140   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2141 }
2142 
2143 
2144 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2145   // Called from within the owner thread, so no need for safepoint
2146   RegisterMap reg_map(thread,
2147                       RegisterMap::UpdateMap::include,
2148                       RegisterMap::ProcessFrames::include,
2149                       RegisterMap::WalkContinuation::skip);
2150   frame stub_frame = thread->last_frame();
2151   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2152   frame caller_frame = stub_frame.sender(&reg_map);
2153   return caller_frame.is_deoptimized_frame();
2154 }
2155 
2156 static const TypeFunc* make_register_finalizer_Type() {
2157   // create input type (domain)
2158   const Type **fields = TypeTuple::fields(1);
2159   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2160   // // The JavaThread* is passed to each routine as the last argument
2161   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2162   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2163 
2164   // create result type (range)
2165   fields = TypeTuple::fields(0);
2166 
2167   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2168 
2169   return TypeFunc::make(domain, range);
2170 }
2171 
2172 #if INCLUDE_JFR
2173 static const TypeFunc* make_class_id_load_barrier_Type() {
2174   // create input type (domain)
2175   const Type **fields = TypeTuple::fields(1);
2176   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2177   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2178 
2179   // create result type (range)
2180   fields = TypeTuple::fields(0);
2181 
2182   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2183 
2184   return TypeFunc::make(domain,range);
2185 }
2186 #endif // INCLUDE_JFR
2187 
2188 //-----------------------------------------------------------------------------
2189 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2190   // create input type (domain)
2191   const Type **fields = TypeTuple::fields(2);
2192   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2193   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2194   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2195 
2196   // create result type (range)
2197   fields = TypeTuple::fields(0);
2198 
2199   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2200 
2201   return TypeFunc::make(domain, range);
2202 }
2203 
2204 static const TypeFunc* make_dtrace_object_alloc_Type() {
2205   // create input type (domain)
2206   const Type **fields = TypeTuple::fields(2);
2207   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2208   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2209 
2210   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2211 
2212   // create result type (range)
2213   fields = TypeTuple::fields(0);
2214 
2215   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2216 
2217   return TypeFunc::make(domain, range);
2218 }
2219 
2220 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2221   assert(oopDesc::is_oop(obj), "must be a valid oop");
2222   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2223   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2224 JRT_END
2225 
2226 //-----------------------------------------------------------------------------
2227 
2228 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2229 
2230 //
2231 // dump the collected NamedCounters.
2232 //
2233 void OptoRuntime::print_named_counters() {
2234   int total_lock_count = 0;
2235   int eliminated_lock_count = 0;
2236 
2237   NamedCounter* c = _named_counters;
2238   while (c) {
2239     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2240       int count = c->count();
2241       if (count > 0) {
2242         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2243         if (Verbose) {
2244           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2245         }
2246         total_lock_count += count;
2247         if (eliminated) {
2248           eliminated_lock_count += count;
2249         }
2250       }
2251     }
2252     c = c->next();
2253   }
2254   if (total_lock_count > 0) {
2255     tty->print_cr("dynamic locks: %d", total_lock_count);
2256     if (eliminated_lock_count) {
2257       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2258                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2259     }
2260   }
2261 }
2262 
2263 //
2264 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2265 //  name which consists of method@line for the inlining tree.
2266 //
2267 
2268 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2269   int max_depth = youngest_jvms->depth();
2270 
2271   // Visit scopes from youngest to oldest.
2272   bool first = true;
2273   stringStream st;
2274   for (int depth = max_depth; depth >= 1; depth--) {
2275     JVMState* jvms = youngest_jvms->of_depth(depth);
2276     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2277     if (!first) {
2278       st.print(" ");
2279     } else {
2280       first = false;
2281     }
2282     int bci = jvms->bci();
2283     if (bci < 0) bci = 0;
2284     if (m != nullptr) {
2285       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2286     } else {
2287       st.print("no method");
2288     }
2289     st.print("@%d", bci);
2290     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2291   }
2292   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2293 
2294   // atomically add the new counter to the head of the list.  We only
2295   // add counters so this is safe.
2296   NamedCounter* head;
2297   do {
2298     c->set_next(nullptr);
2299     head = _named_counters;
2300     c->set_next(head);
2301   } while (AtomicAccess::cmpxchg(&_named_counters, head, c) != head);
2302   return c;
2303 }
2304 
2305 void OptoRuntime::initialize_types() {
2306   _new_instance_Type                  = make_new_instance_Type();
2307   _new_array_Type                     = make_new_array_Type();
2308   _new_array_nozero_Type              = make_new_array_nozero_Type();
2309   _multianewarray2_Type               = multianewarray_Type(2);
2310   _multianewarray3_Type               = multianewarray_Type(3);
2311   _multianewarray4_Type               = multianewarray_Type(4);
2312   _multianewarray5_Type               = multianewarray_Type(5);
2313   _multianewarrayN_Type               = make_multianewarrayN_Type();
2314   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2315   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2316   _monitor_notify_Type                = make_monitor_notify_Type();
2317   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2318   _athrow_Type                        = make_athrow_Type();
2319   _rethrow_Type                       = make_rethrow_Type();
2320   _Math_D_D_Type                      = make_Math_D_D_Type();
2321   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2322   _modf_Type                          = make_modf_Type();
2323   _l2f_Type                           = make_l2f_Type();
2324   _void_long_Type                     = make_void_long_Type();
2325   _void_void_Type                     = make_void_void_Type();
2326   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2327   _flush_windows_Type                 = make_flush_windows_Type();
2328   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2329   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2330   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2331   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2332   _unsafe_setmemory_Type              = make_setmemory_Type();
2333   _array_fill_Type                    = make_array_fill_Type();
2334   _array_sort_Type                    = make_array_sort_Type();
2335   _array_partition_Type               = make_array_partition_Type();
2336   _aescrypt_block_Type                = make_aescrypt_block_Type();
2337   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2338   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2339   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2340   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2341   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2342   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2343   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2344   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2345   _double_keccak_Type                 = make_double_keccak_Type();
2346   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2347   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2348   _montgomerySquare_Type              = make_montgomerySquare_Type();
2349   _squareToLen_Type                   = make_squareToLen_Type();
2350   _mulAdd_Type                        = make_mulAdd_Type();
2351   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2352   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2353   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2354   _chacha20Block_Type                 = make_chacha20Block_Type();
2355   _kyberNtt_Type                      = make_kyberNtt_Type();
2356   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2357   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2358   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2359   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2360   _kyber12To16_Type                   = make_kyber12To16_Type();
2361   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2362   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2363   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2364   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2365   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2366   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2367   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2368   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2369   _string_IndexOf_Type                = make_string_IndexOf_Type();
2370   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2371   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2372   _intpoly_assign_Type                = make_intpoly_assign_Type();
2373   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2374   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2375   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2376   _osr_end_Type                       = make_osr_end_Type();
2377   _register_finalizer_Type            = make_register_finalizer_Type();
2378   _vthread_transition_Type            = make_vthread_transition_Type();
2379   JFR_ONLY(
2380     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2381   )
2382   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2383   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2384 }
2385 
2386 int trace_exception_counter = 0;
2387 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2388   trace_exception_counter++;
2389   stringStream tempst;
2390 
2391   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2392   exception_oop->print_value_on(&tempst);
2393   tempst.print(" in ");
2394   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2395   if (blob->is_nmethod()) {
2396     blob->as_nmethod()->method()->print_value_on(&tempst);
2397   } else if (blob->is_runtime_stub()) {
2398     tempst.print("<runtime-stub>");
2399   } else {
2400     tempst.print("<unknown>");
2401   }
2402   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2403   tempst.print("]");
2404 
2405   st->print_raw_cr(tempst.freeze());
2406 }
2407 
2408 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2409   // create input type (domain)
2410   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2411   const Type **fields = TypeTuple::fields(total);
2412   // We don't know the number of returned values and their
2413   // types. Assume all registers available to the return convention
2414   // are used.
2415   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2416   uint i = 1;
2417   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2418     fields[TypeFunc::Parms+i] = TypeInt::INT;
2419   }
2420   for (; i < total; i+=2) {
2421     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2422     fields[TypeFunc::Parms+i+1] = Type::HALF;
2423   }
2424   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2425 
2426   // create result type (range)
2427   fields = TypeTuple::fields(1);
2428   fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM;
2429 
2430   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2431 
2432   return TypeFunc::make(domain, range);
2433 }
2434 
2435 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2436   // create input type (domain)
2437   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2438   const Type **fields = TypeTuple::fields(total);
2439   // We don't know the number of returned values and their
2440   // types. Assume all registers available to the return convention
2441   // are used.
2442   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2443   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2444   uint i = 2;
2445   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2446     fields[TypeFunc::Parms+i] = TypeInt::INT;
2447   }
2448   for (; i < total; i+=2) {
2449     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2450     fields[TypeFunc::Parms+i+1] = Type::HALF;
2451   }
2452   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2453 
2454   // create result type (range)
2455   fields = TypeTuple::fields(1);
2456   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2457 
2458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2459 
2460   return TypeFunc::make(domain, range);
2461 }
2462 
2463 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2464   JRT_BLOCK;
2465   oop buffer = array->obj_at(index, THREAD);
2466   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2467   current->set_vm_result_oop(buffer);
2468   JRT_BLOCK_END;
2469 JRT_END
2470 
2471 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2472   // create input type (domain)
2473   const Type** fields = TypeTuple::fields(2);
2474   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2475   fields[TypeFunc::Parms+1] = TypeInt::POS;
2476 
2477   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2478 
2479   // create result type (range)
2480   fields = TypeTuple::fields(1);
2481   fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
2482 
2483   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2484 
2485   return TypeFunc::make(domain, range);
2486 }
2487 
2488 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2489   JRT_BLOCK;
2490   array->obj_at_put(index, buffer, THREAD);
2491   if (HAS_PENDING_EXCEPTION) {
2492       fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2493   }
2494   JRT_BLOCK_END;
2495 JRT_END
2496 
2497 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2498   // create input type (domain)
2499   const Type** fields = TypeTuple::fields(3);
2500   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2501   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2502   fields[TypeFunc::Parms+2] = TypeInt::POS;
2503 
2504   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2505 
2506   // create result type (range)
2507   fields = TypeTuple::fields(0);
2508   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2509 
2510   return TypeFunc::make(domain, range);
2511 }