1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/heapRegion.hpp"
  38 #include "gc/shared/barrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "interpreter/bytecode.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/linkResolver.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logStream.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/flatArrayKlass.hpp"
  49 #include "oops/flatArrayOop.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/klass.inline.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "oops/typeArrayOop.inline.hpp"
  54 #include "opto/ad.hpp"
  55 #include "opto/addnode.hpp"
  56 #include "opto/callnode.hpp"
  57 #include "opto/cfgnode.hpp"
  58 #include "opto/graphKit.hpp"
  59 #include "opto/machnode.hpp"
  60 #include "opto/matcher.hpp"
  61 #include "opto/memnode.hpp"
  62 #include "opto/mulnode.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/runtime.hpp"
  65 #include "opto/subnode.hpp"
  66 #include "prims/jvmtiExport.hpp"
  67 #include "runtime/atomic.hpp"
  68 #include "runtime/frame.inline.hpp"
  69 #include "runtime/handles.inline.hpp"
  70 #include "runtime/interfaceSupport.inline.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stackWatermarkSet.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/threadCritical.hpp"
  77 #include "runtime/threadWXSetters.inline.hpp"
  78 #include "runtime/vframe.hpp"
  79 #include "runtime/vframeArray.hpp"
  80 #include "runtime/vframe_hp.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/preserveException.hpp"
  83 
  84 
  85 // For debugging purposes:
  86 //  To force FullGCALot inside a runtime function, add the following two lines
  87 //
  88 //  Universe::release_fullgc_alot_dummy();
  89 //  MarkSweep::invoke(0, "Debugging");
  90 //
  91 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  92 
  93 
  94 
  95 
  96 // Compiled code entry points
  97 address OptoRuntime::_new_instance_Java                           = nullptr;
  98 address OptoRuntime::_new_array_Java                              = nullptr;
  99 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
 100 address OptoRuntime::_multianewarray2_Java                        = nullptr;
 101 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 102 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 103 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 104 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 105 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 106 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 107 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 108 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 109 address OptoRuntime::_rethrow_Java                                = nullptr;
 110 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 111 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 112 address OptoRuntime::_load_unknown_inline                         = nullptr;
 113 #if INCLUDE_JVMTI
 114 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 115 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 116 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 117 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 118 #endif
 119 
 120 ExceptionBlob* OptoRuntime::_exception_blob;
 121 
 122 // This should be called in an assertion at the start of OptoRuntime routines
 123 // which are entered from compiled code (all of them)
 124 #ifdef ASSERT
 125 static bool check_compiled_frame(JavaThread* thread) {
 126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 127   RegisterMap map(thread,
 128                   RegisterMap::UpdateMap::skip,
 129                   RegisterMap::ProcessFrames::include,
 130                   RegisterMap::WalkContinuation::skip);
 131   frame caller = thread->last_frame().sender(&map);
 132   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 133   return true;
 134 }
 135 #endif // ASSERT
 136 
 137 
 138 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 139   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 140   if (var == nullptr) { return false; }
 141 
 142 bool OptoRuntime::generate(ciEnv* env) {
 143 
 144   generate_exception_blob();
 145 
 146   // Note: tls: Means fetching the return oop out of the thread-local storage
 147   //
 148   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 149   // -------------------------------------------------------------------------------------------------------------------------------
 150   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 151   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 152   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 153   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 154   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 155   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 156   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 157   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 158 #if INCLUDE_JVMTI
 159   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 160   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 161   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 162   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 163 #endif
 164   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 165   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 166   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 167   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 170   gen(env, _load_unknown_inline            , load_unknown_inline_type     , load_unknown_inline             ,    0 , true,  false);
 171 
 172   return true;
 173 }
 174 
 175 #undef gen
 176 
 177 
 178 // Helper method to do generation of RunTimeStub's
 179 address OptoRuntime::generate_stub(ciEnv* env,
 180                                    TypeFunc_generator gen, address C_function,
 181                                    const char *name, int is_fancy_jump,
 182                                    bool pass_tls,
 183                                    bool return_pc) {
 184 
 185   // Matching the default directive, we currently have no method to match.
 186   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 187   ResourceMark rm;
 188   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 189   DirectivesStack::release(directive);
 190   return  C.stub_entry_point();
 191 }
 192 
 193 const char* OptoRuntime::stub_name(address entry) {
 194 #ifndef PRODUCT
 195   CodeBlob* cb = CodeCache::find_blob(entry);
 196   RuntimeStub* rs =(RuntimeStub *)cb;
 197   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 198   return rs->name();
 199 #else
 200   // Fast implementation for product mode (maybe it should be inlined too)
 201   return "runtime stub";
 202 #endif
 203 }
 204 
 205 
 206 //=============================================================================
 207 // Opto compiler runtime routines
 208 //=============================================================================
 209 
 210 
 211 //=============================allocation======================================
 212 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 213 // and try allocation again.
 214 
 215 // object allocation
 216 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 217   JRT_BLOCK;
 218 #ifndef PRODUCT
 219   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 220 #endif
 221   assert(check_compiled_frame(current), "incorrect caller");
 222 
 223   // These checks are cheap to make and support reflective allocation.
 224   int lh = klass->layout_helper();
 225   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 226     Handle holder(current, klass->klass_holder()); // keep the klass alive
 227     klass->check_valid_for_instantiation(false, THREAD);
 228     if (!HAS_PENDING_EXCEPTION) {
 229       InstanceKlass::cast(klass)->initialize(THREAD);
 230     }
 231   }
 232 
 233   if (!HAS_PENDING_EXCEPTION) {
 234     // Scavenge and allocate an instance.
 235     Handle holder(current, klass->klass_holder()); // keep the klass alive
 236     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 237     if (is_larval) {
 238       // Check if this is a larval buffer allocation
 239       result->set_mark(result->mark().enter_larval_state());
 240     }
 241     current->set_vm_result(result);
 242 
 243     // Pass oops back through thread local storage.  Our apparent type to Java
 244     // is that we return an oop, but we can block on exit from this routine and
 245     // a GC can trash the oop in C's return register.  The generated stub will
 246     // fetch the oop from TLS after any possible GC.
 247   }
 248 
 249   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 250   JRT_BLOCK_END;
 251 
 252   // inform GC that we won't do card marks for initializing writes.
 253   SharedRuntime::on_slowpath_allocation_exit(current);
 254 JRT_END
 255 
 256 
 257 // array allocation
 258 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 259   JRT_BLOCK;
 260 #ifndef PRODUCT
 261   SharedRuntime::_new_array_ctr++;            // new array requires GC
 262 #endif
 263   assert(check_compiled_frame(current), "incorrect caller");
 264 
 265   // Scavenge and allocate an instance.
 266   oop result;
 267 
 268   if (array_type->is_flatArray_klass()) {
 269     Klass* elem_type = FlatArrayKlass::cast(array_type)->element_klass();
 270     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 271   } else if (array_type->is_typeArray_klass()) {
 272     // The oopFactory likes to work with the element type.
 273     // (We could bypass the oopFactory, since it doesn't add much value.)
 274     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 275     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 276   } else {
 277     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 278     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
 279   }
 280 
 281   // Pass oops back through thread local storage.  Our apparent type to Java
 282   // is that we return an oop, but we can block on exit from this routine and
 283   // a GC can trash the oop in C's return register.  The generated stub will
 284   // fetch the oop from TLS after any possible GC.
 285   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 286   current->set_vm_result(result);
 287   JRT_BLOCK_END;
 288 
 289   // inform GC that we won't do card marks for initializing writes.
 290   SharedRuntime::on_slowpath_allocation_exit(current);
 291 JRT_END
 292 
 293 // array allocation without zeroing
 294 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 295   JRT_BLOCK;
 296 #ifndef PRODUCT
 297   SharedRuntime::_new_array_ctr++;            // new array requires GC
 298 #endif
 299   assert(check_compiled_frame(current), "incorrect caller");
 300 
 301   // Scavenge and allocate an instance.
 302   oop result;
 303 
 304   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 305   // The oopFactory likes to work with the element type.
 306   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 307   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 308 
 309   // Pass oops back through thread local storage.  Our apparent type to Java
 310   // is that we return an oop, but we can block on exit from this routine and
 311   // a GC can trash the oop in C's return register.  The generated stub will
 312   // fetch the oop from TLS after any possible GC.
 313   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 314   current->set_vm_result(result);
 315   JRT_BLOCK_END;
 316 
 317 
 318   // inform GC that we won't do card marks for initializing writes.
 319   SharedRuntime::on_slowpath_allocation_exit(current);
 320 
 321   oop result = current->vm_result();
 322   if ((len > 0) && (result != nullptr) &&
 323       is_deoptimized_caller_frame(current)) {
 324     // Zero array here if the caller is deoptimized.
 325     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 326     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 327     const size_t hs = arrayOopDesc::header_size(elem_type);
 328     // Align to next 8 bytes to avoid trashing arrays's length.
 329     const size_t aligned_hs = align_object_offset(hs);
 330     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 331     if (aligned_hs > hs) {
 332       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 333     }
 334     // Optimized zeroing.
 335     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 336   }
 337 
 338 JRT_END
 339 
 340 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 341 
 342 // multianewarray for 2 dimensions
 343 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 344 #ifndef PRODUCT
 345   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 346 #endif
 347   assert(check_compiled_frame(current), "incorrect caller");
 348   assert(elem_type->is_klass(), "not a class");
 349   jint dims[2];
 350   dims[0] = len1;
 351   dims[1] = len2;
 352   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 353   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 354   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 355   current->set_vm_result(obj);
 356 JRT_END
 357 
 358 // multianewarray for 3 dimensions
 359 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 360 #ifndef PRODUCT
 361   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 362 #endif
 363   assert(check_compiled_frame(current), "incorrect caller");
 364   assert(elem_type->is_klass(), "not a class");
 365   jint dims[3];
 366   dims[0] = len1;
 367   dims[1] = len2;
 368   dims[2] = len3;
 369   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 370   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 371   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 372   current->set_vm_result(obj);
 373 JRT_END
 374 
 375 // multianewarray for 4 dimensions
 376 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 377 #ifndef PRODUCT
 378   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 379 #endif
 380   assert(check_compiled_frame(current), "incorrect caller");
 381   assert(elem_type->is_klass(), "not a class");
 382   jint dims[4];
 383   dims[0] = len1;
 384   dims[1] = len2;
 385   dims[2] = len3;
 386   dims[3] = len4;
 387   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 388   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 389   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 390   current->set_vm_result(obj);
 391 JRT_END
 392 
 393 // multianewarray for 5 dimensions
 394 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 395 #ifndef PRODUCT
 396   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 397 #endif
 398   assert(check_compiled_frame(current), "incorrect caller");
 399   assert(elem_type->is_klass(), "not a class");
 400   jint dims[5];
 401   dims[0] = len1;
 402   dims[1] = len2;
 403   dims[2] = len3;
 404   dims[3] = len4;
 405   dims[4] = len5;
 406   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 408   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 409   current->set_vm_result(obj);
 410 JRT_END
 411 
 412 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 413   assert(check_compiled_frame(current), "incorrect caller");
 414   assert(elem_type->is_klass(), "not a class");
 415   assert(oop(dims)->is_typeArray(), "not an array");
 416 
 417   ResourceMark rm;
 418   jint len = dims->length();
 419   assert(len > 0, "Dimensions array should contain data");
 420   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 421   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 422                                        c_dims, len);
 423 
 424   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 425   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 426   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 427   current->set_vm_result(obj);
 428 JRT_END
 429 
 430 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 431 
 432   // Very few notify/notifyAll operations find any threads on the waitset, so
 433   // the dominant fast-path is to simply return.
 434   // Relatedly, it's critical that notify/notifyAll be fast in order to
 435   // reduce lock hold times.
 436   if (!SafepointSynchronize::is_synchronizing()) {
 437     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 438       return;
 439     }
 440   }
 441 
 442   // This is the case the fast-path above isn't provisioned to handle.
 443   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 444   // (The fast-path is just a degenerate variant of the slow-path).
 445   // Perform the dreaded state transition and pass control into the slow-path.
 446   JRT_BLOCK;
 447   Handle h_obj(current, obj);
 448   ObjectSynchronizer::notify(h_obj, CHECK);
 449   JRT_BLOCK_END;
 450 JRT_END
 451 
 452 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 453 
 454   if (!SafepointSynchronize::is_synchronizing() ) {
 455     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 456       return;
 457     }
 458   }
 459 
 460   // This is the case the fast-path above isn't provisioned to handle.
 461   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 462   // (The fast-path is just a degenerate variant of the slow-path).
 463   // Perform the dreaded state transition and pass control into the slow-path.
 464   JRT_BLOCK;
 465   Handle h_obj(current, obj);
 466   ObjectSynchronizer::notifyall(h_obj, CHECK);
 467   JRT_BLOCK_END;
 468 JRT_END
 469 
 470 const TypeFunc *OptoRuntime::new_instance_Type() {
 471   // create input type (domain)
 472   const Type **fields = TypeTuple::fields(2);
 473   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 474   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 475   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 476 
 477   // create result type (range)
 478   fields = TypeTuple::fields(1);
 479   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 480 
 481   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 482 
 483   return TypeFunc::make(domain, range);
 484 }
 485 
 486 #if INCLUDE_JVMTI
 487 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 488   // create input type (domain)
 489   const Type **fields = TypeTuple::fields(2);
 490   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 491   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 492   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 493 
 494   // no result type needed
 495   fields = TypeTuple::fields(1);
 496   fields[TypeFunc::Parms+0] = nullptr; // void
 497   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 498 
 499   return TypeFunc::make(domain,range);
 500 }
 501 #endif
 502 
 503 const TypeFunc *OptoRuntime::athrow_Type() {
 504   // create input type (domain)
 505   const Type **fields = TypeTuple::fields(1);
 506   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 507   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 508 
 509   // create result type (range)
 510   fields = TypeTuple::fields(0);
 511 
 512   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 513 
 514   return TypeFunc::make(domain, range);
 515 }
 516 
 517 
 518 const TypeFunc *OptoRuntime::new_array_Type() {
 519   // create input type (domain)
 520   const Type **fields = TypeTuple::fields(2);
 521   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 522   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 523   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 524 
 525   // create result type (range)
 526   fields = TypeTuple::fields(1);
 527   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 528 
 529   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 530 
 531   return TypeFunc::make(domain, range);
 532 }
 533 
 534 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 535   // create input type (domain)
 536   const int nargs = ndim + 1;
 537   const Type **fields = TypeTuple::fields(nargs);
 538   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 539   for( int i = 1; i < nargs; i++ )
 540     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 541   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 542 
 543   // create result type (range)
 544   fields = TypeTuple::fields(1);
 545   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 546   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 547 
 548   return TypeFunc::make(domain, range);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 552   return multianewarray_Type(2);
 553 }
 554 
 555 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 556   return multianewarray_Type(3);
 557 }
 558 
 559 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 560   return multianewarray_Type(4);
 561 }
 562 
 563 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 564   return multianewarray_Type(5);
 565 }
 566 
 567 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 568   // create input type (domain)
 569   const Type **fields = TypeTuple::fields(2);
 570   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 571   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 572   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 573 
 574   // create result type (range)
 575   fields = TypeTuple::fields(1);
 576   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 578 
 579   return TypeFunc::make(domain, range);
 580 }
 581 
 582 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 583   // create input type (domain)
 584   const Type **fields = TypeTuple::fields(1);
 585   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 586   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 587 
 588   // create result type (range)
 589   fields = TypeTuple::fields(0);
 590   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 591 
 592   return TypeFunc::make(domain, range);
 593 }
 594 
 595 //-----------------------------------------------------------------------------
 596 // Monitor Handling
 597 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 598   // create input type (domain)
 599   const Type **fields = TypeTuple::fields(2);
 600   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 601   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 603 
 604   // create result type (range)
 605   fields = TypeTuple::fields(0);
 606 
 607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 608 
 609   return TypeFunc::make(domain, range);
 610 }
 611 
 612 
 613 //-----------------------------------------------------------------------------
 614 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 615   // create input type (domain)
 616   const Type **fields = TypeTuple::fields(3);
 617   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 618   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 619   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 621 
 622   // create result type (range)
 623   fields = TypeTuple::fields(0);
 624 
 625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 626 
 627   return TypeFunc::make(domain, range);
 628 }
 629 
 630 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 631   // create input type (domain)
 632   const Type **fields = TypeTuple::fields(1);
 633   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 635 
 636   // create result type (range)
 637   fields = TypeTuple::fields(0);
 638   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 639   return TypeFunc::make(domain, range);
 640 }
 641 
 642 const TypeFunc* OptoRuntime::flush_windows_Type() {
 643   // create input type (domain)
 644   const Type** fields = TypeTuple::fields(1);
 645   fields[TypeFunc::Parms+0] = nullptr; // void
 646   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 647 
 648   // create result type
 649   fields = TypeTuple::fields(1);
 650   fields[TypeFunc::Parms+0] = nullptr; // void
 651   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 652 
 653   return TypeFunc::make(domain, range);
 654 }
 655 
 656 const TypeFunc* OptoRuntime::l2f_Type() {
 657   // create input type (domain)
 658   const Type **fields = TypeTuple::fields(2);
 659   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 660   fields[TypeFunc::Parms+1] = Type::HALF;
 661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 662 
 663   // create result type (range)
 664   fields = TypeTuple::fields(1);
 665   fields[TypeFunc::Parms+0] = Type::FLOAT;
 666   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 667 
 668   return TypeFunc::make(domain, range);
 669 }
 670 
 671 const TypeFunc* OptoRuntime::modf_Type() {
 672   const Type **fields = TypeTuple::fields(2);
 673   fields[TypeFunc::Parms+0] = Type::FLOAT;
 674   fields[TypeFunc::Parms+1] = Type::FLOAT;
 675   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 676 
 677   // create result type (range)
 678   fields = TypeTuple::fields(1);
 679   fields[TypeFunc::Parms+0] = Type::FLOAT;
 680 
 681   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 682 
 683   return TypeFunc::make(domain, range);
 684 }
 685 
 686 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 687   // create input type (domain)
 688   const Type **fields = TypeTuple::fields(2);
 689   // Symbol* name of class to be loaded
 690   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 691   fields[TypeFunc::Parms+1] = Type::HALF;
 692   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 693 
 694   // create result type (range)
 695   fields = TypeTuple::fields(2);
 696   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 697   fields[TypeFunc::Parms+1] = Type::HALF;
 698   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 699 
 700   return TypeFunc::make(domain, range);
 701 }
 702 
 703 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 704   // create input type (domain)
 705   const Type **fields = TypeTuple::fields(num_arg);
 706   // Symbol* name of class to be loaded
 707   assert(num_arg > 0, "must have at least 1 input");
 708   for (uint i = 0; i < num_arg; i++) {
 709     fields[TypeFunc::Parms+i] = in_type;
 710   }
 711   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 712 
 713   // create result type (range)
 714   const uint num_ret = 1;
 715   fields = TypeTuple::fields(num_ret);
 716   fields[TypeFunc::Parms+0] = out_type;
 717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 718 
 719   return TypeFunc::make(domain, range);
 720 }
 721 
 722 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 723   const Type **fields = TypeTuple::fields(4);
 724   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 725   fields[TypeFunc::Parms+1] = Type::HALF;
 726   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 727   fields[TypeFunc::Parms+3] = Type::HALF;
 728   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 729 
 730   // create result type (range)
 731   fields = TypeTuple::fields(2);
 732   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 733   fields[TypeFunc::Parms+1] = Type::HALF;
 734   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 735 
 736   return TypeFunc::make(domain, range);
 737 }
 738 
 739 //-------------- currentTimeMillis, currentTimeNanos, etc
 740 
 741 const TypeFunc* OptoRuntime::void_long_Type() {
 742   // create input type (domain)
 743   const Type **fields = TypeTuple::fields(0);
 744   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 745 
 746   // create result type (range)
 747   fields = TypeTuple::fields(2);
 748   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 749   fields[TypeFunc::Parms+1] = Type::HALF;
 750   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 751 
 752   return TypeFunc::make(domain, range);
 753 }
 754 
 755 const TypeFunc* OptoRuntime::void_void_Type() {
 756    // create input type (domain)
 757    const Type **fields = TypeTuple::fields(0);
 758    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 759 
 760    // create result type (range)
 761    fields = TypeTuple::fields(0);
 762    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 763    return TypeFunc::make(domain, range);
 764  }
 765 
 766  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 767    // create input type (domain)
 768    const Type **fields = TypeTuple::fields(0);
 769    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 770 
 771    // create result type (range)
 772    fields = TypeTuple::fields(0);
 773    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 774    return TypeFunc::make(domain, range);
 775  }
 776 
 777 
 778 // arraycopy stub variations:
 779 enum ArrayCopyType {
 780   ac_fast,                      // void(ptr, ptr, size_t)
 781   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 782   ac_slow,                      // void(ptr, int, ptr, int, int)
 783   ac_generic                    //  int(ptr, int, ptr, int, int)
 784 };
 785 
 786 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 787   // create input type (domain)
 788   int num_args      = (act == ac_fast ? 3 : 5);
 789   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 790   int argcnt = num_args;
 791   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 792   const Type** fields = TypeTuple::fields(argcnt);
 793   int argp = TypeFunc::Parms;
 794   fields[argp++] = TypePtr::NOTNULL;    // src
 795   if (num_size_args == 0) {
 796     fields[argp++] = TypeInt::INT;      // src_pos
 797   }
 798   fields[argp++] = TypePtr::NOTNULL;    // dest
 799   if (num_size_args == 0) {
 800     fields[argp++] = TypeInt::INT;      // dest_pos
 801     fields[argp++] = TypeInt::INT;      // length
 802   }
 803   while (num_size_args-- > 0) {
 804     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 805     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 806   }
 807   if (act == ac_checkcast) {
 808     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 809   }
 810   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 811   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 812 
 813   // create result type if needed
 814   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 815   fields = TypeTuple::fields(1);
 816   if (retcnt == 0)
 817     fields[TypeFunc::Parms+0] = nullptr; // void
 818   else
 819     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 820   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 821   return TypeFunc::make(domain, range);
 822 }
 823 
 824 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 825   // This signature is simple:  Two base pointers and a size_t.
 826   return make_arraycopy_Type(ac_fast);
 827 }
 828 
 829 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 830   // An extension of fast_arraycopy_Type which adds type checking.
 831   return make_arraycopy_Type(ac_checkcast);
 832 }
 833 
 834 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 835   // This signature is exactly the same as System.arraycopy.
 836   // There are no intptr_t (int/long) arguments.
 837   return make_arraycopy_Type(ac_slow);
 838 }
 839 
 840 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 841   // This signature is like System.arraycopy, except that it returns status.
 842   return make_arraycopy_Type(ac_generic);
 843 }
 844 
 845 
 846 const TypeFunc* OptoRuntime::array_fill_Type() {
 847   const Type** fields;
 848   int argp = TypeFunc::Parms;
 849   // create input type (domain): pointer, int, size_t
 850   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 851   fields[argp++] = TypePtr::NOTNULL;
 852   fields[argp++] = TypeInt::INT;
 853   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 854   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 855   const TypeTuple *domain = TypeTuple::make(argp, fields);
 856 
 857   // create result type
 858   fields = TypeTuple::fields(1);
 859   fields[TypeFunc::Parms+0] = nullptr; // void
 860   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 861 
 862   return TypeFunc::make(domain, range);
 863 }
 864 
 865 const TypeFunc* OptoRuntime::array_partition_Type() {
 866   // create input type (domain)
 867   int num_args = 7;
 868   int argcnt = num_args;
 869   const Type** fields = TypeTuple::fields(argcnt);
 870   int argp = TypeFunc::Parms;
 871   fields[argp++] = TypePtr::NOTNULL;  // array
 872   fields[argp++] = TypeInt::INT;      // element type
 873   fields[argp++] = TypeInt::INT;      // low
 874   fields[argp++] = TypeInt::INT;      // end
 875   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 876   fields[argp++] = TypeInt::INT;      // indexPivot1
 877   fields[argp++] = TypeInt::INT;      // indexPivot2
 878   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 879   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 880 
 881   // no result type needed
 882   fields = TypeTuple::fields(1);
 883   fields[TypeFunc::Parms+0] = nullptr; // void
 884   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 885   return TypeFunc::make(domain, range);
 886 }
 887 
 888 const TypeFunc* OptoRuntime::array_sort_Type() {
 889   // create input type (domain)
 890   int num_args      = 4;
 891   int argcnt = num_args;
 892   const Type** fields = TypeTuple::fields(argcnt);
 893   int argp = TypeFunc::Parms;
 894   fields[argp++] = TypePtr::NOTNULL;    // array
 895   fields[argp++] = TypeInt::INT;    // element type
 896   fields[argp++] = TypeInt::INT;    // fromIndex
 897   fields[argp++] = TypeInt::INT;    // toIndex
 898   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 899   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 900 
 901   // no result type needed
 902   fields = TypeTuple::fields(1);
 903   fields[TypeFunc::Parms+0] = nullptr; // void
 904   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 905   return TypeFunc::make(domain, range);
 906 }
 907 
 908 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 909 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 910   // create input type (domain)
 911   int num_args      = 3;
 912   int argcnt = num_args;
 913   const Type** fields = TypeTuple::fields(argcnt);
 914   int argp = TypeFunc::Parms;
 915   fields[argp++] = TypePtr::NOTNULL;    // src
 916   fields[argp++] = TypePtr::NOTNULL;    // dest
 917   fields[argp++] = TypePtr::NOTNULL;    // k array
 918   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 919   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 920 
 921   // no result type needed
 922   fields = TypeTuple::fields(1);
 923   fields[TypeFunc::Parms+0] = nullptr; // void
 924   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 925   return TypeFunc::make(domain, range);
 926 }
 927 
 928 /**
 929  * int updateBytesCRC32(int crc, byte* b, int len)
 930  */
 931 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 932   // create input type (domain)
 933   int num_args      = 3;
 934   int argcnt = num_args;
 935   const Type** fields = TypeTuple::fields(argcnt);
 936   int argp = TypeFunc::Parms;
 937   fields[argp++] = TypeInt::INT;        // crc
 938   fields[argp++] = TypePtr::NOTNULL;    // src
 939   fields[argp++] = TypeInt::INT;        // len
 940   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 941   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 942 
 943   // result type needed
 944   fields = TypeTuple::fields(1);
 945   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 946   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 947   return TypeFunc::make(domain, range);
 948 }
 949 
 950 /**
 951  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 952  */
 953 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 954   // create input type (domain)
 955   int num_args      = 4;
 956   int argcnt = num_args;
 957   const Type** fields = TypeTuple::fields(argcnt);
 958   int argp = TypeFunc::Parms;
 959   fields[argp++] = TypeInt::INT;        // crc
 960   fields[argp++] = TypePtr::NOTNULL;    // buf
 961   fields[argp++] = TypeInt::INT;        // len
 962   fields[argp++] = TypePtr::NOTNULL;    // table
 963   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 964   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 965 
 966   // result type needed
 967   fields = TypeTuple::fields(1);
 968   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 969   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 970   return TypeFunc::make(domain, range);
 971 }
 972 
 973 /**
 974 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 975 */
 976 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 977   // create input type (domain)
 978   int num_args      = 3;
 979   int argcnt = num_args;
 980   const Type** fields = TypeTuple::fields(argcnt);
 981   int argp = TypeFunc::Parms;
 982   fields[argp++] = TypeInt::INT;        // crc
 983   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 984   fields[argp++] = TypeInt::INT;        // len
 985   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 986   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 987 
 988   // result type needed
 989   fields = TypeTuple::fields(1);
 990   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 991   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 992   return TypeFunc::make(domain, range);
 993 }
 994 
 995 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 996 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 997   // create input type (domain)
 998   int num_args      = 5;
 999   int argcnt = num_args;
1000   const Type** fields = TypeTuple::fields(argcnt);
1001   int argp = TypeFunc::Parms;
1002   fields[argp++] = TypePtr::NOTNULL;    // src
1003   fields[argp++] = TypePtr::NOTNULL;    // dest
1004   fields[argp++] = TypePtr::NOTNULL;    // k array
1005   fields[argp++] = TypePtr::NOTNULL;    // r array
1006   fields[argp++] = TypeInt::INT;        // src len
1007   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1009 
1010   // returning cipher len (int)
1011   fields = TypeTuple::fields(1);
1012   fields[TypeFunc::Parms+0] = TypeInt::INT;
1013   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1014   return TypeFunc::make(domain, range);
1015 }
1016 
1017 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
1018 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
1019   // create input type (domain)
1020   int num_args = 4;
1021   int argcnt = num_args;
1022   const Type** fields = TypeTuple::fields(argcnt);
1023   int argp = TypeFunc::Parms;
1024   fields[argp++] = TypePtr::NOTNULL;    // src
1025   fields[argp++] = TypePtr::NOTNULL;    // dest
1026   fields[argp++] = TypePtr::NOTNULL;    // k array
1027   fields[argp++] = TypeInt::INT;        // src len
1028   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1029   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1030 
1031   // returning cipher len (int)
1032   fields = TypeTuple::fields(1);
1033   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1034   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1035   return TypeFunc::make(domain, range);
1036 }
1037 
1038 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1039 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
1040   // create input type (domain)
1041   int num_args = 7;
1042   int argcnt = num_args;
1043   const Type** fields = TypeTuple::fields(argcnt);
1044   int argp = TypeFunc::Parms;
1045   fields[argp++] = TypePtr::NOTNULL; // src
1046   fields[argp++] = TypePtr::NOTNULL; // dest
1047   fields[argp++] = TypePtr::NOTNULL; // k array
1048   fields[argp++] = TypePtr::NOTNULL; // counter array
1049   fields[argp++] = TypeInt::INT; // src len
1050   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1051   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1052   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1053   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1054   // returning cipher len (int)
1055   fields = TypeTuple::fields(1);
1056   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1057   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1058   return TypeFunc::make(domain, range);
1059 }
1060 
1061 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1062 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1063   // create input type (domain)
1064   int num_args = 8;
1065   int argcnt = num_args;
1066   const Type** fields = TypeTuple::fields(argcnt);
1067   int argp = TypeFunc::Parms;
1068   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1069   fields[argp++] = TypeInt::INT;     // int len
1070   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1071   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1072   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1073   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1074   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1075   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1076 
1077   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1078   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1079   // returning cipher len (int)
1080   fields = TypeTuple::fields(1);
1081   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1082   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1083   return TypeFunc::make(domain, range);
1084 }
1085 
1086 /*
1087  * void implCompress(byte[] buf, int ofs)
1088  */
1089 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1090   // create input type (domain)
1091   int num_args = is_sha3 ? 3 : 2;
1092   int argcnt = num_args;
1093   const Type** fields = TypeTuple::fields(argcnt);
1094   int argp = TypeFunc::Parms;
1095   fields[argp++] = TypePtr::NOTNULL; // buf
1096   fields[argp++] = TypePtr::NOTNULL; // state
1097   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1098   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1099   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1100 
1101   // no result type needed
1102   fields = TypeTuple::fields(1);
1103   fields[TypeFunc::Parms+0] = nullptr; // void
1104   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1105   return TypeFunc::make(domain, range);
1106 }
1107 
1108 /*
1109  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1110  */
1111 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1112   // create input type (domain)
1113   int num_args = is_sha3 ? 5 : 4;
1114   int argcnt = num_args;
1115   const Type** fields = TypeTuple::fields(argcnt);
1116   int argp = TypeFunc::Parms;
1117   fields[argp++] = TypePtr::NOTNULL; // buf
1118   fields[argp++] = TypePtr::NOTNULL; // state
1119   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1120   fields[argp++] = TypeInt::INT;     // ofs
1121   fields[argp++] = TypeInt::INT;     // limit
1122   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1123   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1124 
1125   // returning ofs (int)
1126   fields = TypeTuple::fields(1);
1127   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1128   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1129   return TypeFunc::make(domain, range);
1130 }
1131 
1132 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1133   // create input type (domain)
1134   int num_args      = 6;
1135   int argcnt = num_args;
1136   const Type** fields = TypeTuple::fields(argcnt);
1137   int argp = TypeFunc::Parms;
1138   fields[argp++] = TypePtr::NOTNULL;    // x
1139   fields[argp++] = TypeInt::INT;        // xlen
1140   fields[argp++] = TypePtr::NOTNULL;    // y
1141   fields[argp++] = TypeInt::INT;        // ylen
1142   fields[argp++] = TypePtr::NOTNULL;    // z
1143   fields[argp++] = TypeInt::INT;        // zlen
1144   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1145   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1146 
1147   // no result type needed
1148   fields = TypeTuple::fields(1);
1149   fields[TypeFunc::Parms+0] = nullptr;
1150   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1151   return TypeFunc::make(domain, range);
1152 }
1153 
1154 const TypeFunc* OptoRuntime::squareToLen_Type() {
1155   // create input type (domain)
1156   int num_args      = 4;
1157   int argcnt = num_args;
1158   const Type** fields = TypeTuple::fields(argcnt);
1159   int argp = TypeFunc::Parms;
1160   fields[argp++] = TypePtr::NOTNULL;    // x
1161   fields[argp++] = TypeInt::INT;        // len
1162   fields[argp++] = TypePtr::NOTNULL;    // z
1163   fields[argp++] = TypeInt::INT;        // zlen
1164   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1165   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1166 
1167   // no result type needed
1168   fields = TypeTuple::fields(1);
1169   fields[TypeFunc::Parms+0] = nullptr;
1170   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1171   return TypeFunc::make(domain, range);
1172 }
1173 
1174 // for mulAdd calls, 2 pointers and 3 ints, returning int
1175 const TypeFunc* OptoRuntime::mulAdd_Type() {
1176   // create input type (domain)
1177   int num_args      = 5;
1178   int argcnt = num_args;
1179   const Type** fields = TypeTuple::fields(argcnt);
1180   int argp = TypeFunc::Parms;
1181   fields[argp++] = TypePtr::NOTNULL;    // out
1182   fields[argp++] = TypePtr::NOTNULL;    // in
1183   fields[argp++] = TypeInt::INT;        // offset
1184   fields[argp++] = TypeInt::INT;        // len
1185   fields[argp++] = TypeInt::INT;        // k
1186   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1187   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1188 
1189   // returning carry (int)
1190   fields = TypeTuple::fields(1);
1191   fields[TypeFunc::Parms+0] = TypeInt::INT;
1192   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1193   return TypeFunc::make(domain, range);
1194 }
1195 
1196 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1197   // create input type (domain)
1198   int num_args      = 7;
1199   int argcnt = num_args;
1200   const Type** fields = TypeTuple::fields(argcnt);
1201   int argp = TypeFunc::Parms;
1202   fields[argp++] = TypePtr::NOTNULL;    // a
1203   fields[argp++] = TypePtr::NOTNULL;    // b
1204   fields[argp++] = TypePtr::NOTNULL;    // n
1205   fields[argp++] = TypeInt::INT;        // len
1206   fields[argp++] = TypeLong::LONG;      // inv
1207   fields[argp++] = Type::HALF;
1208   fields[argp++] = TypePtr::NOTNULL;    // result
1209   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1210   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1211 
1212   // result type needed
1213   fields = TypeTuple::fields(1);
1214   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1215 
1216   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1217   return TypeFunc::make(domain, range);
1218 }
1219 
1220 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1221   // create input type (domain)
1222   int num_args      = 6;
1223   int argcnt = num_args;
1224   const Type** fields = TypeTuple::fields(argcnt);
1225   int argp = TypeFunc::Parms;
1226   fields[argp++] = TypePtr::NOTNULL;    // a
1227   fields[argp++] = TypePtr::NOTNULL;    // n
1228   fields[argp++] = TypeInt::INT;        // len
1229   fields[argp++] = TypeLong::LONG;      // inv
1230   fields[argp++] = Type::HALF;
1231   fields[argp++] = TypePtr::NOTNULL;    // result
1232   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1233   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1234 
1235   // result type needed
1236   fields = TypeTuple::fields(1);
1237   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1238 
1239   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1240   return TypeFunc::make(domain, range);
1241 }
1242 
1243 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1244   int argcnt = 5;
1245   const Type** fields = TypeTuple::fields(argcnt);
1246   int argp = TypeFunc::Parms;
1247   fields[argp++] = TypePtr::NOTNULL;    // newArr
1248   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1249   fields[argp++] = TypeInt::INT;        // newIdx
1250   fields[argp++] = TypeInt::INT;        // shiftCount
1251   fields[argp++] = TypeInt::INT;        // numIter
1252   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1253   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1254 
1255   // no result type needed
1256   fields = TypeTuple::fields(1);
1257   fields[TypeFunc::Parms + 0] = nullptr;
1258   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1259   return TypeFunc::make(domain, range);
1260 }
1261 
1262 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1263   // create input type (domain)
1264   int num_args = 4;
1265   int argcnt = num_args;
1266   const Type** fields = TypeTuple::fields(argcnt);
1267   int argp = TypeFunc::Parms;
1268   fields[argp++] = TypePtr::NOTNULL;    // obja
1269   fields[argp++] = TypePtr::NOTNULL;    // objb
1270   fields[argp++] = TypeInt::INT;        // length, number of elements
1271   fields[argp++] = TypeInt::INT;        // log2scale, element size
1272   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1273   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1274 
1275   //return mismatch index (int)
1276   fields = TypeTuple::fields(1);
1277   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1278   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1279   return TypeFunc::make(domain, range);
1280 }
1281 
1282 // GHASH block processing
1283 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1284     int argcnt = 4;
1285 
1286     const Type** fields = TypeTuple::fields(argcnt);
1287     int argp = TypeFunc::Parms;
1288     fields[argp++] = TypePtr::NOTNULL;    // state
1289     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1290     fields[argp++] = TypePtr::NOTNULL;    // data
1291     fields[argp++] = TypeInt::INT;        // blocks
1292     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1293     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1294 
1295     // result type needed
1296     fields = TypeTuple::fields(1);
1297     fields[TypeFunc::Parms+0] = nullptr; // void
1298     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1299     return TypeFunc::make(domain, range);
1300 }
1301 
1302 // ChaCha20 Block function
1303 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1304     int argcnt = 2;
1305 
1306     const Type** fields = TypeTuple::fields(argcnt);
1307     int argp = TypeFunc::Parms;
1308     fields[argp++] = TypePtr::NOTNULL;      // state
1309     fields[argp++] = TypePtr::NOTNULL;      // result
1310 
1311     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1312     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1313 
1314     // result type needed
1315     fields = TypeTuple::fields(1);
1316     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1317     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1318     return TypeFunc::make(domain, range);
1319 }
1320 
1321 // Base64 encode function
1322 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1323   int argcnt = 6;
1324 
1325   const Type** fields = TypeTuple::fields(argcnt);
1326   int argp = TypeFunc::Parms;
1327   fields[argp++] = TypePtr::NOTNULL;    // src array
1328   fields[argp++] = TypeInt::INT;        // offset
1329   fields[argp++] = TypeInt::INT;        // length
1330   fields[argp++] = TypePtr::NOTNULL;    // dest array
1331   fields[argp++] = TypeInt::INT;       // dp
1332   fields[argp++] = TypeInt::BOOL;       // isURL
1333   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1334   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1335 
1336   // result type needed
1337   fields = TypeTuple::fields(1);
1338   fields[TypeFunc::Parms + 0] = nullptr; // void
1339   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1340   return TypeFunc::make(domain, range);
1341 }
1342 // Base64 decode function
1343 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1344   int argcnt = 7;
1345 
1346   const Type** fields = TypeTuple::fields(argcnt);
1347   int argp = TypeFunc::Parms;
1348   fields[argp++] = TypePtr::NOTNULL;    // src array
1349   fields[argp++] = TypeInt::INT;        // src offset
1350   fields[argp++] = TypeInt::INT;        // src length
1351   fields[argp++] = TypePtr::NOTNULL;    // dest array
1352   fields[argp++] = TypeInt::INT;        // dest offset
1353   fields[argp++] = TypeInt::BOOL;       // isURL
1354   fields[argp++] = TypeInt::BOOL;       // isMIME
1355   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1356   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1357 
1358   // result type needed
1359   fields = TypeTuple::fields(1);
1360   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1361   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1362   return TypeFunc::make(domain, range);
1363 }
1364 
1365 // Poly1305 processMultipleBlocks function
1366 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1367   int argcnt = 4;
1368 
1369   const Type** fields = TypeTuple::fields(argcnt);
1370   int argp = TypeFunc::Parms;
1371   fields[argp++] = TypePtr::NOTNULL;    // input array
1372   fields[argp++] = TypeInt::INT;        // input length
1373   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1374   fields[argp++] = TypePtr::NOTNULL;    // r array
1375   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1376   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1377 
1378   // result type needed
1379   fields = TypeTuple::fields(1);
1380   fields[TypeFunc::Parms + 0] = nullptr; // void
1381   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1382   return TypeFunc::make(domain, range);
1383 }
1384 
1385 //------------- Interpreter state access for on stack replacement
1386 const TypeFunc* OptoRuntime::osr_end_Type() {
1387   // create input type (domain)
1388   const Type **fields = TypeTuple::fields(1);
1389   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1390   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1391 
1392   // create result type
1393   fields = TypeTuple::fields(1);
1394   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1395   fields[TypeFunc::Parms+0] = nullptr; // void
1396   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1397   return TypeFunc::make(domain, range);
1398 }
1399 
1400 //-------------------------------------------------------------------------------------
1401 // register policy
1402 
1403 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1404   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1405   switch (register_save_policy[reg]) {
1406     case 'C': return false; //SOC
1407     case 'E': return true ; //SOE
1408     case 'N': return false; //NS
1409     case 'A': return false; //AS
1410   }
1411   ShouldNotReachHere();
1412   return false;
1413 }
1414 
1415 //-----------------------------------------------------------------------
1416 // Exceptions
1417 //
1418 
1419 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1420 
1421 // The method is an entry that is always called by a C++ method not
1422 // directly from compiled code. Compiled code will call the C++ method following.
1423 // We can't allow async exception to be installed during  exception processing.
1424 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1425   // The frame we rethrow the exception to might not have been processed by the GC yet.
1426   // The stack watermark barrier takes care of detecting that and ensuring the frame
1427   // has updated oops.
1428   StackWatermarkSet::after_unwind(current);
1429 
1430   // Do not confuse exception_oop with pending_exception. The exception_oop
1431   // is only used to pass arguments into the method. Not for general
1432   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1433   // the runtime stubs checks this on exit.
1434   assert(current->exception_oop() != nullptr, "exception oop is found");
1435   address handler_address = nullptr;
1436 
1437   Handle exception(current, current->exception_oop());
1438   address pc = current->exception_pc();
1439 
1440   // Clear out the exception oop and pc since looking up an
1441   // exception handler can cause class loading, which might throw an
1442   // exception and those fields are expected to be clear during
1443   // normal bytecode execution.
1444   current->clear_exception_oop_and_pc();
1445 
1446   LogTarget(Info, exceptions) lt;
1447   if (lt.is_enabled()) {
1448     ResourceMark rm;
1449     LogStream ls(lt);
1450     trace_exception(&ls, exception(), pc, "");
1451   }
1452 
1453   // for AbortVMOnException flag
1454   Exceptions::debug_check_abort(exception);
1455 
1456 #ifdef ASSERT
1457   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1458     // should throw an exception here
1459     ShouldNotReachHere();
1460   }
1461 #endif
1462 
1463   // new exception handling: this method is entered only from adapters
1464   // exceptions from compiled java methods are handled in compiled code
1465   // using rethrow node
1466 
1467   nm = CodeCache::find_nmethod(pc);
1468   assert(nm != nullptr, "No NMethod found");
1469   if (nm->is_native_method()) {
1470     fatal("Native method should not have path to exception handling");
1471   } else {
1472     // we are switching to old paradigm: search for exception handler in caller_frame
1473     // instead in exception handler of caller_frame.sender()
1474 
1475     if (JvmtiExport::can_post_on_exceptions()) {
1476       // "Full-speed catching" is not necessary here,
1477       // since we're notifying the VM on every catch.
1478       // Force deoptimization and the rest of the lookup
1479       // will be fine.
1480       deoptimize_caller_frame(current);
1481     }
1482 
1483     // Check the stack guard pages.  If enabled, look for handler in this frame;
1484     // otherwise, forcibly unwind the frame.
1485     //
1486     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1487     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1488     bool deopting = false;
1489     if (nm->is_deopt_pc(pc)) {
1490       deopting = true;
1491       RegisterMap map(current,
1492                       RegisterMap::UpdateMap::skip,
1493                       RegisterMap::ProcessFrames::include,
1494                       RegisterMap::WalkContinuation::skip);
1495       frame deoptee = current->last_frame().sender(&map);
1496       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1497       // Adjust the pc back to the original throwing pc
1498       pc = deoptee.pc();
1499     }
1500 
1501     // If we are forcing an unwind because of stack overflow then deopt is
1502     // irrelevant since we are throwing the frame away anyway.
1503 
1504     if (deopting && !force_unwind) {
1505       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1506     } else {
1507 
1508       handler_address =
1509         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1510 
1511       if (handler_address == nullptr) {
1512         bool recursive_exception = false;
1513         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1514         assert (handler_address != nullptr, "must have compiled handler");
1515         // Update the exception cache only when the unwind was not forced
1516         // and there didn't happen another exception during the computation of the
1517         // compiled exception handler. Checking for exception oop equality is not
1518         // sufficient because some exceptions are pre-allocated and reused.
1519         if (!force_unwind && !recursive_exception) {
1520           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1521         }
1522       } else {
1523 #ifdef ASSERT
1524         bool recursive_exception = false;
1525         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1526         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1527                  p2i(handler_address), p2i(computed_address));
1528 #endif
1529       }
1530     }
1531 
1532     current->set_exception_pc(pc);
1533     current->set_exception_handler_pc(handler_address);
1534 
1535     // Check if the exception PC is a MethodHandle call site.
1536     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1537   }
1538 
1539   // Restore correct return pc.  Was saved above.
1540   current->set_exception_oop(exception());
1541   return handler_address;
1542 
1543 JRT_END
1544 
1545 // We are entering here from exception_blob
1546 // If there is a compiled exception handler in this method, we will continue there;
1547 // otherwise we will unwind the stack and continue at the caller of top frame method
1548 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1549 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1550 // we looked up the handler for has been deoptimized in the meantime. If it has been
1551 // we must not use the handler and instead return the deopt blob.
1552 address OptoRuntime::handle_exception_C(JavaThread* current) {
1553 //
1554 // We are in Java not VM and in debug mode we have a NoHandleMark
1555 //
1556 #ifndef PRODUCT
1557   SharedRuntime::_find_handler_ctr++;          // find exception handler
1558 #endif
1559   debug_only(NoHandleMark __hm;)
1560   nmethod* nm = nullptr;
1561   address handler_address = nullptr;
1562   {
1563     // Enter the VM
1564 
1565     ResetNoHandleMark rnhm;
1566     handler_address = handle_exception_C_helper(current, nm);
1567   }
1568 
1569   // Back in java: Use no oops, DON'T safepoint
1570 
1571   // Now check to see if the handler we are returning is in a now
1572   // deoptimized frame
1573 
1574   if (nm != nullptr) {
1575     RegisterMap map(current,
1576                     RegisterMap::UpdateMap::skip,
1577                     RegisterMap::ProcessFrames::skip,
1578                     RegisterMap::WalkContinuation::skip);
1579     frame caller = current->last_frame().sender(&map);
1580 #ifdef ASSERT
1581     assert(caller.is_compiled_frame(), "must be");
1582 #endif // ASSERT
1583     if (caller.is_deoptimized_frame()) {
1584       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1585     }
1586   }
1587   return handler_address;
1588 }
1589 
1590 //------------------------------rethrow----------------------------------------
1591 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1592 // is either throwing or rethrowing an exception.  The callee-save registers
1593 // have been restored, synchronized objects have been unlocked and the callee
1594 // stack frame has been removed.  The return address was passed in.
1595 // Exception oop is passed as the 1st argument.  This routine is then called
1596 // from the stub.  On exit, we know where to jump in the caller's code.
1597 // After this C code exits, the stub will pop his frame and end in a jump
1598 // (instead of a return).  We enter the caller's default handler.
1599 //
1600 // This must be JRT_LEAF:
1601 //     - caller will not change its state as we cannot block on exit,
1602 //       therefore raw_exception_handler_for_return_address is all it takes
1603 //       to handle deoptimized blobs
1604 //
1605 // However, there needs to be a safepoint check in the middle!  So compiled
1606 // safepoints are completely watertight.
1607 //
1608 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1609 //
1610 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1611 //
1612 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1613   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1614   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1615 
1616 #ifndef PRODUCT
1617   SharedRuntime::_rethrow_ctr++;               // count rethrows
1618 #endif
1619   assert (exception != nullptr, "should have thrown a NullPointerException");
1620 #ifdef ASSERT
1621   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1622     // should throw an exception here
1623     ShouldNotReachHere();
1624   }
1625 #endif
1626 
1627   thread->set_vm_result(exception);
1628   // Frame not compiled (handles deoptimization blob)
1629   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1630 }
1631 
1632 
1633 const TypeFunc *OptoRuntime::rethrow_Type() {
1634   // create input type (domain)
1635   const Type **fields = TypeTuple::fields(1);
1636   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1638 
1639   // create result type (range)
1640   fields = TypeTuple::fields(1);
1641   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1643 
1644   return TypeFunc::make(domain, range);
1645 }
1646 
1647 
1648 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1649   // Deoptimize the caller before continuing, as the compiled
1650   // exception handler table may not be valid.
1651   if (!StressCompiledExceptionHandlers && doit) {
1652     deoptimize_caller_frame(thread);
1653   }
1654 }
1655 
1656 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1657   // Called from within the owner thread, so no need for safepoint
1658   RegisterMap reg_map(thread,
1659                       RegisterMap::UpdateMap::include,
1660                       RegisterMap::ProcessFrames::include,
1661                       RegisterMap::WalkContinuation::skip);
1662   frame stub_frame = thread->last_frame();
1663   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1664   frame caller_frame = stub_frame.sender(&reg_map);
1665 
1666   // Deoptimize the caller frame.
1667   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1668 }
1669 
1670 
1671 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1672   // Called from within the owner thread, so no need for safepoint
1673   RegisterMap reg_map(thread,
1674                       RegisterMap::UpdateMap::include,
1675                       RegisterMap::ProcessFrames::include,
1676                       RegisterMap::WalkContinuation::skip);
1677   frame stub_frame = thread->last_frame();
1678   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1679   frame caller_frame = stub_frame.sender(&reg_map);
1680   return caller_frame.is_deoptimized_frame();
1681 }
1682 
1683 
1684 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1685   // create input type (domain)
1686   const Type **fields = TypeTuple::fields(1);
1687   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1688   // // The JavaThread* is passed to each routine as the last argument
1689   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1691 
1692   // create result type (range)
1693   fields = TypeTuple::fields(0);
1694 
1695   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1696 
1697   return TypeFunc::make(domain, range);
1698 }
1699 
1700 #if INCLUDE_JFR
1701 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1702   // create input type (domain)
1703   const Type **fields = TypeTuple::fields(1);
1704   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1705   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1706 
1707   // create result type (range)
1708   fields = TypeTuple::fields(0);
1709 
1710   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1711 
1712   return TypeFunc::make(domain,range);
1713 }
1714 #endif
1715 
1716 //-----------------------------------------------------------------------------
1717 // Dtrace support.  entry and exit probes have the same signature
1718 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1719   // create input type (domain)
1720   const Type **fields = TypeTuple::fields(2);
1721   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1722   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1723   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1724 
1725   // create result type (range)
1726   fields = TypeTuple::fields(0);
1727 
1728   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1729 
1730   return TypeFunc::make(domain, range);
1731 }
1732 
1733 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1734   // create input type (domain)
1735   const Type **fields = TypeTuple::fields(2);
1736   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1737   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1738 
1739   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1740 
1741   // create result type (range)
1742   fields = TypeTuple::fields(0);
1743 
1744   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1745 
1746   return TypeFunc::make(domain, range);
1747 }
1748 
1749 
1750 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1751   assert(oopDesc::is_oop(obj), "must be a valid oop");
1752   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1753   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1754 JRT_END
1755 
1756 //-----------------------------------------------------------------------------
1757 
1758 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1759 
1760 //
1761 // dump the collected NamedCounters.
1762 //
1763 void OptoRuntime::print_named_counters() {
1764   int total_lock_count = 0;
1765   int eliminated_lock_count = 0;
1766 
1767   NamedCounter* c = _named_counters;
1768   while (c) {
1769     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1770       int count = c->count();
1771       if (count > 0) {
1772         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1773         if (Verbose) {
1774           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1775         }
1776         total_lock_count += count;
1777         if (eliminated) {
1778           eliminated_lock_count += count;
1779         }
1780       }
1781 #if INCLUDE_RTM_OPT
1782     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1783       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1784       if (rlc->nonzero()) {
1785         tty->print_cr("%s", c->name());
1786         rlc->print_on(tty);
1787       }
1788 #endif
1789     }
1790     c = c->next();
1791   }
1792   if (total_lock_count > 0) {
1793     tty->print_cr("dynamic locks: %d", total_lock_count);
1794     if (eliminated_lock_count) {
1795       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1796                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1797     }
1798   }
1799 }
1800 
1801 //
1802 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1803 //  name which consists of method@line for the inlining tree.
1804 //
1805 
1806 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1807   int max_depth = youngest_jvms->depth();
1808 
1809   // Visit scopes from youngest to oldest.
1810   bool first = true;
1811   stringStream st;
1812   for (int depth = max_depth; depth >= 1; depth--) {
1813     JVMState* jvms = youngest_jvms->of_depth(depth);
1814     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1815     if (!first) {
1816       st.print(" ");
1817     } else {
1818       first = false;
1819     }
1820     int bci = jvms->bci();
1821     if (bci < 0) bci = 0;
1822     if (m != nullptr) {
1823       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1824     } else {
1825       st.print("no method");
1826     }
1827     st.print("@%d", bci);
1828     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1829   }
1830   NamedCounter* c;
1831   if (tag == NamedCounter::RTMLockingCounter) {
1832     c = new RTMLockingNamedCounter(st.freeze());
1833   } else {
1834     c = new NamedCounter(st.freeze(), tag);
1835   }
1836 
1837   // atomically add the new counter to the head of the list.  We only
1838   // add counters so this is safe.
1839   NamedCounter* head;
1840   do {
1841     c->set_next(nullptr);
1842     head = _named_counters;
1843     c->set_next(head);
1844   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1845   return c;
1846 }
1847 
1848 int trace_exception_counter = 0;
1849 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1850   trace_exception_counter++;
1851   stringStream tempst;
1852 
1853   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1854   exception_oop->print_value_on(&tempst);
1855   tempst.print(" in ");
1856   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1857   if (blob->is_compiled()) {
1858     CompiledMethod* cm = blob->as_compiled_method_or_null();
1859     cm->method()->print_value_on(&tempst);
1860   } else if (blob->is_runtime_stub()) {
1861     tempst.print("<runtime-stub>");
1862   } else {
1863     tempst.print("<unknown>");
1864   }
1865   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1866   tempst.print("]");
1867 
1868   st->print_raw_cr(tempst.freeze());
1869 }
1870 
1871 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
1872   // create input type (domain)
1873   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1874   const Type **fields = TypeTuple::fields(total);
1875   // We don't know the number of returned values and their
1876   // types. Assume all registers available to the return convention
1877   // are used.
1878   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1879   uint i = 1;
1880   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1881     fields[TypeFunc::Parms+i] = TypeInt::INT;
1882   }
1883   for (; i < total; i+=2) {
1884     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1885     fields[TypeFunc::Parms+i+1] = Type::HALF;
1886   }
1887   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1888 
1889   // create result type (range)
1890   fields = TypeTuple::fields(1);
1891   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1892 
1893   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1894 
1895   return TypeFunc::make(domain, range);
1896 }
1897 
1898 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
1899   // create input type (domain)
1900   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1901   const Type **fields = TypeTuple::fields(total);
1902   // We don't know the number of returned values and their
1903   // types. Assume all registers available to the return convention
1904   // are used.
1905   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
1906   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
1907   uint i = 2;
1908   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
1909     fields[TypeFunc::Parms+i] = TypeInt::INT;
1910   }
1911   for (; i < total; i+=2) {
1912     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1913     fields[TypeFunc::Parms+i+1] = Type::HALF;
1914   }
1915   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1916 
1917   // create result type (range)
1918   fields = TypeTuple::fields(1);
1919   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1920 
1921   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1922 
1923   return TypeFunc::make(domain, range);
1924 }
1925 
1926 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline(flatArrayOopDesc* array, int index, JavaThread* current))
1927   JRT_BLOCK;
1928   flatArrayHandle vah(current, array);
1929   oop buffer = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, THREAD);
1930   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
1931   current->set_vm_result(buffer);
1932   JRT_BLOCK_END;
1933 JRT_END
1934 
1935 const TypeFunc* OptoRuntime::load_unknown_inline_type() {
1936   // create input type (domain)
1937   const Type** fields = TypeTuple::fields(2);
1938   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
1939   fields[TypeFunc::Parms+1] = TypeInt::POS;
1940 
1941   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1942 
1943   // create result type (range)
1944   fields = TypeTuple::fields(1);
1945   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
1946 
1947   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1948 
1949   return TypeFunc::make(domain, range);
1950 }
1951 
1952 JRT_LEAF(void, OptoRuntime::store_unknown_inline(instanceOopDesc* buffer, flatArrayOopDesc* array, int index))
1953 {
1954   assert(buffer != nullptr, "can't store null into flat array");
1955   array->value_copy_to_index(buffer, index);
1956 }
1957 JRT_END
1958 
1959 const TypeFunc* OptoRuntime::store_unknown_inline_type() {
1960   // create input type (domain)
1961   const Type** fields = TypeTuple::fields(3);
1962   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
1963   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
1964   fields[TypeFunc::Parms+2] = TypeInt::POS;
1965 
1966   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
1967 
1968   // create result type (range)
1969   fields = TypeTuple::fields(0);
1970   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1971 
1972   return TypeFunc::make(domain, range);
1973 }