1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/flatArrayKlass.hpp" 48 #include "oops/flatArrayOop.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadCritical.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vframe_hp.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/preserveException.hpp" 82 83 84 // For debugging purposes: 85 // To force FullGCALot inside a runtime function, add the following two lines 86 // 87 // Universe::release_fullgc_alot_dummy(); 88 // Universe::heap()->collect(); 89 // 90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 91 92 93 #define C2_BLOB_FIELD_DEFINE(name, type) \ 94 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 97 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 98 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 99 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 101 #undef C2_BLOB_FIELD_DEFINE 102 #undef C2_STUB_FIELD_DEFINE 103 #undef C2_JVMTI_STUB_FIELD_DEFINE 104 105 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 106 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 107 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 108 const char* OptoRuntime::_stub_names[] = { 109 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 110 }; 111 #undef C2_BLOB_NAME_DEFINE 112 #undef C2_STUB_NAME_DEFINE 113 #undef C2_JVMTI_STUB_NAME_DEFINE 114 115 // This should be called in an assertion at the start of OptoRuntime routines 116 // which are entered from compiled code (all of them) 117 #ifdef ASSERT 118 static bool check_compiled_frame(JavaThread* thread) { 119 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 120 RegisterMap map(thread, 121 RegisterMap::UpdateMap::skip, 122 RegisterMap::ProcessFrames::include, 123 RegisterMap::WalkContinuation::skip); 124 frame caller = thread->last_frame().sender(&map); 125 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 126 return true; 127 } 128 #endif // ASSERT 129 130 /* 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 132 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 133 if (var == nullptr) { return false; } 134 */ 135 136 #define GEN_C2_BLOB(name, type) \ 137 BLOB_FIELD_NAME(name) = \ 138 generate_ ## name ## _blob(); \ 139 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 140 141 // a few helper macros to conjure up generate_stub call arguments 142 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 143 #define C2_STUB_TYPEFUNC(name) name ## _Type 144 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 145 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 146 147 // Almost all the C functions targeted from the generated stubs are 148 // implemented locally to OptoRuntime with names that can be generated 149 // from the stub name by appending suffix '_C'. However, in two cases 150 // a common target method also needs to be called from shared runtime 151 // stubs. In these two cases the opto stubs rely on method 152 // imlementations defined in class SharedRuntime. The following 153 // defines temporarily rebind the generated names to reference the 154 // relevant implementations. 155 156 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 157 C2_STUB_FIELD_NAME(name) = \ 158 generate_stub(env, \ 159 C2_STUB_TYPEFUNC(name), \ 160 C2_STUB_C_FUNC(name), \ 161 C2_STUB_NAME(name), \ 162 fancy_jump, \ 163 pass_tls, \ 164 pass_retpc); \ 165 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 166 167 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 168 169 #define GEN_C2_JVMTI_STUB(name) \ 170 STUB_FIELD_NAME(name) = \ 171 generate_stub(env, \ 172 notify_jvmti_vthread_Type, \ 173 C2_JVMTI_STUB_C_FUNC(name), \ 174 C2_STUB_NAME(name), \ 175 0, \ 176 true, \ 177 false); \ 178 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 179 180 bool OptoRuntime::generate(ciEnv* env) { 181 182 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 183 184 return true; 185 } 186 187 #undef GEN_C2_BLOB 188 189 #undef C2_STUB_FIELD_NAME 190 #undef C2_STUB_TYPEFUNC 191 #undef C2_STUB_C_FUNC 192 #undef C2_STUB_NAME 193 #undef GEN_C2_STUB 194 195 #undef C2_JVMTI_STUB_C_FUNC 196 #undef GEN_C2_JVMTI_STUB 197 // #undef gen 198 199 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 200 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 201 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr; 202 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 203 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 204 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 205 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 206 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 207 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 208 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 209 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 210 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 211 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 212 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 213 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 214 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 215 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 216 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 217 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 218 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 219 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 220 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 221 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 222 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 223 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 224 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 225 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 226 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 227 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 228 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 229 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 230 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 231 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 232 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 233 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 234 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 235 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 236 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 237 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 238 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 239 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 240 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 241 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 242 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 243 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 244 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 245 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 246 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 247 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 248 249 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 250 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 251 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 252 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 253 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 254 255 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 256 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 257 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 258 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 259 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 260 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 261 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 262 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 263 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 264 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 265 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 266 #if INCLUDE_JFR 267 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 268 #endif // INCLUDE_JFR 269 #if INCLUDE_JVMTI 270 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 271 #endif // INCLUDE_JVMTI 272 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 273 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 274 275 // Helper method to do generation of RunTimeStub's 276 address OptoRuntime::generate_stub(ciEnv* env, 277 TypeFunc_generator gen, address C_function, 278 const char *name, int is_fancy_jump, 279 bool pass_tls, 280 bool return_pc) { 281 282 // Matching the default directive, we currently have no method to match. 283 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 284 CompilationMemoryStatisticMark cmsm(directive); 285 ResourceMark rm; 286 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 287 DirectivesStack::release(directive); 288 return C.stub_entry_point(); 289 } 290 291 const char* OptoRuntime::stub_name(address entry) { 292 #ifndef PRODUCT 293 CodeBlob* cb = CodeCache::find_blob(entry); 294 RuntimeStub* rs =(RuntimeStub *)cb; 295 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 296 return rs->name(); 297 #else 298 // Fast implementation for product mode (maybe it should be inlined too) 299 return "runtime stub"; 300 #endif 301 } 302 303 // local methods passed as arguments to stub generator that forward 304 // control to corresponding JRT methods of SharedRuntime 305 306 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 307 oopDesc* dest, jint dest_pos, 308 jint length, JavaThread* thread) { 309 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 310 } 311 312 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 313 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 314 } 315 316 317 //============================================================================= 318 // Opto compiler runtime routines 319 //============================================================================= 320 321 322 //=============================allocation====================================== 323 // We failed the fast-path allocation. Now we need to do a scavenge or GC 324 // and try allocation again. 325 326 // object allocation 327 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current)) 328 JRT_BLOCK; 329 #ifndef PRODUCT 330 SharedRuntime::_new_instance_ctr++; // new instance requires GC 331 #endif 332 assert(check_compiled_frame(current), "incorrect caller"); 333 334 // These checks are cheap to make and support reflective allocation. 335 int lh = klass->layout_helper(); 336 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 337 Handle holder(current, klass->klass_holder()); // keep the klass alive 338 klass->check_valid_for_instantiation(false, THREAD); 339 if (!HAS_PENDING_EXCEPTION) { 340 InstanceKlass::cast(klass)->initialize(THREAD); 341 } 342 } 343 344 if (!HAS_PENDING_EXCEPTION) { 345 // Scavenge and allocate an instance. 346 Handle holder(current, klass->klass_holder()); // keep the klass alive 347 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 348 if (is_larval) { 349 // Check if this is a larval buffer allocation 350 result->set_mark(result->mark().enter_larval_state()); 351 } 352 current->set_vm_result(result); 353 354 // Pass oops back through thread local storage. Our apparent type to Java 355 // is that we return an oop, but we can block on exit from this routine and 356 // a GC can trash the oop in C's return register. The generated stub will 357 // fetch the oop from TLS after any possible GC. 358 } 359 360 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 361 JRT_BLOCK_END; 362 363 // inform GC that we won't do card marks for initializing writes. 364 SharedRuntime::on_slowpath_allocation_exit(current); 365 JRT_END 366 367 368 // array allocation 369 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current)) 370 JRT_BLOCK; 371 #ifndef PRODUCT 372 SharedRuntime::_new_array_ctr++; // new array requires GC 373 #endif 374 assert(check_compiled_frame(current), "incorrect caller"); 375 376 // Scavenge and allocate an instance. 377 oop result; 378 Handle h_init_val(current, init_val); // keep the init_val object alive 379 380 if (array_type->is_flatArray_klass()) { 381 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 382 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type); 383 InlineKlass* vk = fak->element_klass(); 384 result = oopFactory::new_flatArray(vk, len, fak->layout_kind(), THREAD); 385 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 386 // Null-free arrays need to be initialized 387 for (int i = 0; i < len; i++) { 388 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK); 389 } 390 } 391 } else if (array_type->is_typeArray_klass()) { 392 // The oopFactory likes to work with the element type. 393 // (We could bypass the oopFactory, since it doesn't add much value.) 394 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 395 result = oopFactory::new_typeArray(elem_type, len, THREAD); 396 } else { 397 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 398 ObjArrayKlass* array_klass = ObjArrayKlass::cast(array_type); 399 result = array_klass->allocate(len, THREAD); 400 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 401 // Null-free arrays need to be initialized 402 for (int i = 0; i < len; i++) { 403 ((objArrayOop)result)->obj_at_put(i, h_init_val()); 404 } 405 } 406 } 407 408 // Pass oops back through thread local storage. Our apparent type to Java 409 // is that we return an oop, but we can block on exit from this routine and 410 // a GC can trash the oop in C's return register. The generated stub will 411 // fetch the oop from TLS after any possible GC. 412 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 413 current->set_vm_result(result); 414 JRT_BLOCK_END; 415 416 // inform GC that we won't do card marks for initializing writes. 417 SharedRuntime::on_slowpath_allocation_exit(current); 418 JRT_END 419 420 // array allocation without zeroing 421 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 422 JRT_BLOCK; 423 #ifndef PRODUCT 424 SharedRuntime::_new_array_ctr++; // new array requires GC 425 #endif 426 assert(check_compiled_frame(current), "incorrect caller"); 427 428 // Scavenge and allocate an instance. 429 oop result; 430 431 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 432 // The oopFactory likes to work with the element type. 433 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 434 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 435 436 // Pass oops back through thread local storage. Our apparent type to Java 437 // is that we return an oop, but we can block on exit from this routine and 438 // a GC can trash the oop in C's return register. The generated stub will 439 // fetch the oop from TLS after any possible GC. 440 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 441 current->set_vm_result(result); 442 JRT_BLOCK_END; 443 444 445 // inform GC that we won't do card marks for initializing writes. 446 SharedRuntime::on_slowpath_allocation_exit(current); 447 448 oop result = current->vm_result(); 449 if ((len > 0) && (result != nullptr) && 450 is_deoptimized_caller_frame(current)) { 451 // Zero array here if the caller is deoptimized. 452 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 453 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 454 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 455 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 456 HeapWord* obj = cast_from_oop<HeapWord*>(result); 457 if (!is_aligned(hs_bytes, BytesPerLong)) { 458 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 459 hs_bytes += BytesPerInt; 460 } 461 462 // Optimized zeroing. 463 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 464 const size_t aligned_hs = hs_bytes / BytesPerLong; 465 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 466 } 467 468 JRT_END 469 470 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 471 472 // multianewarray for 2 dimensions 473 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 474 #ifndef PRODUCT 475 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 476 #endif 477 assert(check_compiled_frame(current), "incorrect caller"); 478 assert(elem_type->is_klass(), "not a class"); 479 jint dims[2]; 480 dims[0] = len1; 481 dims[1] = len2; 482 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 483 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 484 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 485 current->set_vm_result(obj); 486 JRT_END 487 488 // multianewarray for 3 dimensions 489 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 490 #ifndef PRODUCT 491 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 492 #endif 493 assert(check_compiled_frame(current), "incorrect caller"); 494 assert(elem_type->is_klass(), "not a class"); 495 jint dims[3]; 496 dims[0] = len1; 497 dims[1] = len2; 498 dims[2] = len3; 499 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 500 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 501 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 502 current->set_vm_result(obj); 503 JRT_END 504 505 // multianewarray for 4 dimensions 506 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 507 #ifndef PRODUCT 508 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 509 #endif 510 assert(check_compiled_frame(current), "incorrect caller"); 511 assert(elem_type->is_klass(), "not a class"); 512 jint dims[4]; 513 dims[0] = len1; 514 dims[1] = len2; 515 dims[2] = len3; 516 dims[3] = len4; 517 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 518 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 519 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 520 current->set_vm_result(obj); 521 JRT_END 522 523 // multianewarray for 5 dimensions 524 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 525 #ifndef PRODUCT 526 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 527 #endif 528 assert(check_compiled_frame(current), "incorrect caller"); 529 assert(elem_type->is_klass(), "not a class"); 530 jint dims[5]; 531 dims[0] = len1; 532 dims[1] = len2; 533 dims[2] = len3; 534 dims[3] = len4; 535 dims[4] = len5; 536 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 537 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 538 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 539 current->set_vm_result(obj); 540 JRT_END 541 542 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 543 assert(check_compiled_frame(current), "incorrect caller"); 544 assert(elem_type->is_klass(), "not a class"); 545 assert(oop(dims)->is_typeArray(), "not an array"); 546 547 ResourceMark rm; 548 jint len = dims->length(); 549 assert(len > 0, "Dimensions array should contain data"); 550 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 551 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 552 c_dims, len); 553 554 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 555 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 556 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 557 current->set_vm_result(obj); 558 JRT_END 559 560 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 561 562 // Very few notify/notifyAll operations find any threads on the waitset, so 563 // the dominant fast-path is to simply return. 564 // Relatedly, it's critical that notify/notifyAll be fast in order to 565 // reduce lock hold times. 566 if (!SafepointSynchronize::is_synchronizing()) { 567 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 568 return; 569 } 570 } 571 572 // This is the case the fast-path above isn't provisioned to handle. 573 // The fast-path is designed to handle frequently arising cases in an efficient manner. 574 // (The fast-path is just a degenerate variant of the slow-path). 575 // Perform the dreaded state transition and pass control into the slow-path. 576 JRT_BLOCK; 577 Handle h_obj(current, obj); 578 ObjectSynchronizer::notify(h_obj, CHECK); 579 JRT_BLOCK_END; 580 JRT_END 581 582 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 583 584 if (!SafepointSynchronize::is_synchronizing() ) { 585 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 586 return; 587 } 588 } 589 590 // This is the case the fast-path above isn't provisioned to handle. 591 // The fast-path is designed to handle frequently arising cases in an efficient manner. 592 // (The fast-path is just a degenerate variant of the slow-path). 593 // Perform the dreaded state transition and pass control into the slow-path. 594 JRT_BLOCK; 595 Handle h_obj(current, obj); 596 ObjectSynchronizer::notifyall(h_obj, CHECK); 597 JRT_BLOCK_END; 598 JRT_END 599 600 static const TypeFunc* make_new_instance_Type() { 601 // create input type (domain) 602 const Type **fields = TypeTuple::fields(2); 603 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 604 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval 605 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 606 607 // create result type (range) 608 fields = TypeTuple::fields(1); 609 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 610 611 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 612 613 return TypeFunc::make(domain, range); 614 } 615 616 #if INCLUDE_JVMTI 617 static const TypeFunc* make_notify_jvmti_vthread_Type() { 618 // create input type (domain) 619 const Type **fields = TypeTuple::fields(2); 620 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 621 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 622 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 623 624 // no result type needed 625 fields = TypeTuple::fields(1); 626 fields[TypeFunc::Parms+0] = nullptr; // void 627 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 628 629 return TypeFunc::make(domain,range); 630 } 631 #endif 632 633 static const TypeFunc* make_athrow_Type() { 634 // create input type (domain) 635 const Type **fields = TypeTuple::fields(1); 636 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 637 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 638 639 // create result type (range) 640 fields = TypeTuple::fields(0); 641 642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 643 644 return TypeFunc::make(domain, range); 645 } 646 647 static const TypeFunc* make_new_array_Type() { 648 // create input type (domain) 649 const Type **fields = TypeTuple::fields(3); 650 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 651 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 652 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value 653 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 654 655 // create result type (range) 656 fields = TypeTuple::fields(1); 657 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 658 659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 660 661 return TypeFunc::make(domain, range); 662 } 663 664 static const TypeFunc* make_new_array_nozero_Type() { 665 // create input type (domain) 666 const Type **fields = TypeTuple::fields(2); 667 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 668 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 669 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 670 671 // create result type (range) 672 fields = TypeTuple::fields(1); 673 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 674 675 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 676 677 return TypeFunc::make(domain, range); 678 } 679 680 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 681 // create input type (domain) 682 const int nargs = ndim + 1; 683 const Type **fields = TypeTuple::fields(nargs); 684 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 685 for( int i = 1; i < nargs; i++ ) 686 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 687 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 688 689 // create result type (range) 690 fields = TypeTuple::fields(1); 691 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 692 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 693 694 return TypeFunc::make(domain, range); 695 } 696 697 static const TypeFunc* make_multianewarrayN_Type() { 698 // create input type (domain) 699 const Type **fields = TypeTuple::fields(2); 700 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 701 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 702 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 703 704 // create result type (range) 705 fields = TypeTuple::fields(1); 706 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 707 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 708 709 return TypeFunc::make(domain, range); 710 } 711 712 static const TypeFunc* make_uncommon_trap_Type() { 713 // create input type (domain) 714 const Type **fields = TypeTuple::fields(1); 715 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 716 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 717 718 // create result type (range) 719 fields = TypeTuple::fields(0); 720 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 721 722 return TypeFunc::make(domain, range); 723 } 724 725 //----------------------------------------------------------------------------- 726 // Monitor Handling 727 728 static const TypeFunc* make_complete_monitor_enter_Type() { 729 // create input type (domain) 730 const Type **fields = TypeTuple::fields(2); 731 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 732 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 733 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 734 735 // create result type (range) 736 fields = TypeTuple::fields(0); 737 738 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 739 740 return TypeFunc::make(domain, range); 741 } 742 743 //----------------------------------------------------------------------------- 744 745 static const TypeFunc* make_complete_monitor_exit_Type() { 746 // create input type (domain) 747 const Type **fields = TypeTuple::fields(3); 748 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 749 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 750 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 751 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 752 753 // create result type (range) 754 fields = TypeTuple::fields(0); 755 756 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 757 758 return TypeFunc::make(domain, range); 759 } 760 761 static const TypeFunc* make_monitor_notify_Type() { 762 // create input type (domain) 763 const Type **fields = TypeTuple::fields(1); 764 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 765 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 766 767 // create result type (range) 768 fields = TypeTuple::fields(0); 769 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 770 return TypeFunc::make(domain, range); 771 } 772 773 static const TypeFunc* make_flush_windows_Type() { 774 // create input type (domain) 775 const Type** fields = TypeTuple::fields(1); 776 fields[TypeFunc::Parms+0] = nullptr; // void 777 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 778 779 // create result type 780 fields = TypeTuple::fields(1); 781 fields[TypeFunc::Parms+0] = nullptr; // void 782 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 783 784 return TypeFunc::make(domain, range); 785 } 786 787 static const TypeFunc* make_l2f_Type() { 788 // create input type (domain) 789 const Type **fields = TypeTuple::fields(2); 790 fields[TypeFunc::Parms+0] = TypeLong::LONG; 791 fields[TypeFunc::Parms+1] = Type::HALF; 792 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 793 794 // create result type (range) 795 fields = TypeTuple::fields(1); 796 fields[TypeFunc::Parms+0] = Type::FLOAT; 797 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 798 799 return TypeFunc::make(domain, range); 800 } 801 802 static const TypeFunc* make_modf_Type() { 803 const Type **fields = TypeTuple::fields(2); 804 fields[TypeFunc::Parms+0] = Type::FLOAT; 805 fields[TypeFunc::Parms+1] = Type::FLOAT; 806 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 807 808 // create result type (range) 809 fields = TypeTuple::fields(1); 810 fields[TypeFunc::Parms+0] = Type::FLOAT; 811 812 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 813 814 return TypeFunc::make(domain, range); 815 } 816 817 static const TypeFunc* make_Math_D_D_Type() { 818 // create input type (domain) 819 const Type **fields = TypeTuple::fields(2); 820 // Symbol* name of class to be loaded 821 fields[TypeFunc::Parms+0] = Type::DOUBLE; 822 fields[TypeFunc::Parms+1] = Type::HALF; 823 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 824 825 // create result type (range) 826 fields = TypeTuple::fields(2); 827 fields[TypeFunc::Parms+0] = Type::DOUBLE; 828 fields[TypeFunc::Parms+1] = Type::HALF; 829 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 830 831 return TypeFunc::make(domain, range); 832 } 833 834 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 835 // create input type (domain) 836 const Type **fields = TypeTuple::fields(num_arg); 837 // Symbol* name of class to be loaded 838 assert(num_arg > 0, "must have at least 1 input"); 839 for (uint i = 0; i < num_arg; i++) { 840 fields[TypeFunc::Parms+i] = in_type; 841 } 842 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 843 844 // create result type (range) 845 const uint num_ret = 1; 846 fields = TypeTuple::fields(num_ret); 847 fields[TypeFunc::Parms+0] = out_type; 848 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 849 850 return TypeFunc::make(domain, range); 851 } 852 853 static const TypeFunc* make_Math_DD_D_Type() { 854 const Type **fields = TypeTuple::fields(4); 855 fields[TypeFunc::Parms+0] = Type::DOUBLE; 856 fields[TypeFunc::Parms+1] = Type::HALF; 857 fields[TypeFunc::Parms+2] = Type::DOUBLE; 858 fields[TypeFunc::Parms+3] = Type::HALF; 859 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 860 861 // create result type (range) 862 fields = TypeTuple::fields(2); 863 fields[TypeFunc::Parms+0] = Type::DOUBLE; 864 fields[TypeFunc::Parms+1] = Type::HALF; 865 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 866 867 return TypeFunc::make(domain, range); 868 } 869 870 //-------------- currentTimeMillis, currentTimeNanos, etc 871 872 static const TypeFunc* make_void_long_Type() { 873 // create input type (domain) 874 const Type **fields = TypeTuple::fields(0); 875 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 876 877 // create result type (range) 878 fields = TypeTuple::fields(2); 879 fields[TypeFunc::Parms+0] = TypeLong::LONG; 880 fields[TypeFunc::Parms+1] = Type::HALF; 881 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 882 883 return TypeFunc::make(domain, range); 884 } 885 886 static const TypeFunc* make_void_void_Type() { 887 // create input type (domain) 888 const Type **fields = TypeTuple::fields(0); 889 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 890 891 // create result type (range) 892 fields = TypeTuple::fields(0); 893 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 894 return TypeFunc::make(domain, range); 895 } 896 897 static const TypeFunc* make_jfr_write_checkpoint_Type() { 898 // create input type (domain) 899 const Type **fields = TypeTuple::fields(0); 900 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 901 902 // create result type (range) 903 fields = TypeTuple::fields(0); 904 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 905 return TypeFunc::make(domain, range); 906 } 907 908 909 // Takes as parameters: 910 // void *dest 911 // long size 912 // uchar byte 913 914 static const TypeFunc* make_setmemory_Type() { 915 // create input type (domain) 916 int argcnt = NOT_LP64(3) LP64_ONLY(4); 917 const Type** fields = TypeTuple::fields(argcnt); 918 int argp = TypeFunc::Parms; 919 fields[argp++] = TypePtr::NOTNULL; // dest 920 fields[argp++] = TypeX_X; // size 921 LP64_ONLY(fields[argp++] = Type::HALF); // size 922 fields[argp++] = TypeInt::UBYTE; // bytevalue 923 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 924 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 925 926 // no result type needed 927 fields = TypeTuple::fields(1); 928 fields[TypeFunc::Parms+0] = nullptr; // void 929 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 930 return TypeFunc::make(domain, range); 931 } 932 933 // arraycopy stub variations: 934 enum ArrayCopyType { 935 ac_fast, // void(ptr, ptr, size_t) 936 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 937 ac_slow, // void(ptr, int, ptr, int, int) 938 ac_generic // int(ptr, int, ptr, int, int) 939 }; 940 941 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 942 // create input type (domain) 943 int num_args = (act == ac_fast ? 3 : 5); 944 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 945 int argcnt = num_args; 946 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 947 const Type** fields = TypeTuple::fields(argcnt); 948 int argp = TypeFunc::Parms; 949 fields[argp++] = TypePtr::NOTNULL; // src 950 if (num_size_args == 0) { 951 fields[argp++] = TypeInt::INT; // src_pos 952 } 953 fields[argp++] = TypePtr::NOTNULL; // dest 954 if (num_size_args == 0) { 955 fields[argp++] = TypeInt::INT; // dest_pos 956 fields[argp++] = TypeInt::INT; // length 957 } 958 while (num_size_args-- > 0) { 959 fields[argp++] = TypeX_X; // size in whatevers (size_t) 960 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 961 } 962 if (act == ac_checkcast) { 963 fields[argp++] = TypePtr::NOTNULL; // super_klass 964 } 965 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 966 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 967 968 // create result type if needed 969 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 970 fields = TypeTuple::fields(1); 971 if (retcnt == 0) 972 fields[TypeFunc::Parms+0] = nullptr; // void 973 else 974 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 975 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 976 return TypeFunc::make(domain, range); 977 } 978 979 static const TypeFunc* make_array_fill_Type() { 980 const Type** fields; 981 int argp = TypeFunc::Parms; 982 // create input type (domain): pointer, int, size_t 983 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 984 fields[argp++] = TypePtr::NOTNULL; 985 fields[argp++] = TypeInt::INT; 986 fields[argp++] = TypeX_X; // size in whatevers (size_t) 987 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 988 const TypeTuple *domain = TypeTuple::make(argp, fields); 989 990 // create result type 991 fields = TypeTuple::fields(1); 992 fields[TypeFunc::Parms+0] = nullptr; // void 993 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 994 995 return TypeFunc::make(domain, range); 996 } 997 998 static const TypeFunc* make_array_partition_Type() { 999 // create input type (domain) 1000 int num_args = 7; 1001 int argcnt = num_args; 1002 const Type** fields = TypeTuple::fields(argcnt); 1003 int argp = TypeFunc::Parms; 1004 fields[argp++] = TypePtr::NOTNULL; // array 1005 fields[argp++] = TypeInt::INT; // element type 1006 fields[argp++] = TypeInt::INT; // low 1007 fields[argp++] = TypeInt::INT; // end 1008 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 1009 fields[argp++] = TypeInt::INT; // indexPivot1 1010 fields[argp++] = TypeInt::INT; // indexPivot2 1011 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1012 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1013 1014 // no result type needed 1015 fields = TypeTuple::fields(1); 1016 fields[TypeFunc::Parms+0] = nullptr; // void 1017 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1018 return TypeFunc::make(domain, range); 1019 } 1020 1021 static const TypeFunc* make_array_sort_Type() { 1022 // create input type (domain) 1023 int num_args = 4; 1024 int argcnt = num_args; 1025 const Type** fields = TypeTuple::fields(argcnt); 1026 int argp = TypeFunc::Parms; 1027 fields[argp++] = TypePtr::NOTNULL; // array 1028 fields[argp++] = TypeInt::INT; // element type 1029 fields[argp++] = TypeInt::INT; // fromIndex 1030 fields[argp++] = TypeInt::INT; // toIndex 1031 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1032 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1033 1034 // no result type needed 1035 fields = TypeTuple::fields(1); 1036 fields[TypeFunc::Parms+0] = nullptr; // void 1037 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1038 return TypeFunc::make(domain, range); 1039 } 1040 1041 static const TypeFunc* make_aescrypt_block_Type() { 1042 // create input type (domain) 1043 int num_args = 3; 1044 int argcnt = num_args; 1045 const Type** fields = TypeTuple::fields(argcnt); 1046 int argp = TypeFunc::Parms; 1047 fields[argp++] = TypePtr::NOTNULL; // src 1048 fields[argp++] = TypePtr::NOTNULL; // dest 1049 fields[argp++] = TypePtr::NOTNULL; // k array 1050 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1051 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1052 1053 // no result type needed 1054 fields = TypeTuple::fields(1); 1055 fields[TypeFunc::Parms+0] = nullptr; // void 1056 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1057 return TypeFunc::make(domain, range); 1058 } 1059 1060 static const TypeFunc* make_updateBytesCRC32_Type() { 1061 // create input type (domain) 1062 int num_args = 3; 1063 int argcnt = num_args; 1064 const Type** fields = TypeTuple::fields(argcnt); 1065 int argp = TypeFunc::Parms; 1066 fields[argp++] = TypeInt::INT; // crc 1067 fields[argp++] = TypePtr::NOTNULL; // src 1068 fields[argp++] = TypeInt::INT; // len 1069 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1070 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1071 1072 // result type needed 1073 fields = TypeTuple::fields(1); 1074 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1075 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1076 return TypeFunc::make(domain, range); 1077 } 1078 1079 static const TypeFunc* make_updateBytesCRC32C_Type() { 1080 // create input type (domain) 1081 int num_args = 4; 1082 int argcnt = num_args; 1083 const Type** fields = TypeTuple::fields(argcnt); 1084 int argp = TypeFunc::Parms; 1085 fields[argp++] = TypeInt::INT; // crc 1086 fields[argp++] = TypePtr::NOTNULL; // buf 1087 fields[argp++] = TypeInt::INT; // len 1088 fields[argp++] = TypePtr::NOTNULL; // table 1089 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1090 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1091 1092 // result type needed 1093 fields = TypeTuple::fields(1); 1094 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1095 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1096 return TypeFunc::make(domain, range); 1097 } 1098 1099 static const TypeFunc* make_updateBytesAdler32_Type() { 1100 // create input type (domain) 1101 int num_args = 3; 1102 int argcnt = num_args; 1103 const Type** fields = TypeTuple::fields(argcnt); 1104 int argp = TypeFunc::Parms; 1105 fields[argp++] = TypeInt::INT; // crc 1106 fields[argp++] = TypePtr::NOTNULL; // src + offset 1107 fields[argp++] = TypeInt::INT; // len 1108 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1109 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1110 1111 // result type needed 1112 fields = TypeTuple::fields(1); 1113 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1114 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1115 return TypeFunc::make(domain, range); 1116 } 1117 1118 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1119 // create input type (domain) 1120 int num_args = 5; 1121 int argcnt = num_args; 1122 const Type** fields = TypeTuple::fields(argcnt); 1123 int argp = TypeFunc::Parms; 1124 fields[argp++] = TypePtr::NOTNULL; // src 1125 fields[argp++] = TypePtr::NOTNULL; // dest 1126 fields[argp++] = TypePtr::NOTNULL; // k array 1127 fields[argp++] = TypePtr::NOTNULL; // r array 1128 fields[argp++] = TypeInt::INT; // src len 1129 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1130 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1131 1132 // returning cipher len (int) 1133 fields = TypeTuple::fields(1); 1134 fields[TypeFunc::Parms+0] = TypeInt::INT; 1135 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1136 return TypeFunc::make(domain, range); 1137 } 1138 1139 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1140 // create input type (domain) 1141 int num_args = 4; 1142 int argcnt = num_args; 1143 const Type** fields = TypeTuple::fields(argcnt); 1144 int argp = TypeFunc::Parms; 1145 fields[argp++] = TypePtr::NOTNULL; // src 1146 fields[argp++] = TypePtr::NOTNULL; // dest 1147 fields[argp++] = TypePtr::NOTNULL; // k array 1148 fields[argp++] = TypeInt::INT; // src len 1149 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1150 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1151 1152 // returning cipher len (int) 1153 fields = TypeTuple::fields(1); 1154 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1155 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1156 return TypeFunc::make(domain, range); 1157 } 1158 1159 static const TypeFunc* make_counterMode_aescrypt_Type() { 1160 // create input type (domain) 1161 int num_args = 7; 1162 int argcnt = num_args; 1163 const Type** fields = TypeTuple::fields(argcnt); 1164 int argp = TypeFunc::Parms; 1165 fields[argp++] = TypePtr::NOTNULL; // src 1166 fields[argp++] = TypePtr::NOTNULL; // dest 1167 fields[argp++] = TypePtr::NOTNULL; // k array 1168 fields[argp++] = TypePtr::NOTNULL; // counter array 1169 fields[argp++] = TypeInt::INT; // src len 1170 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1171 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1172 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1173 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1174 // returning cipher len (int) 1175 fields = TypeTuple::fields(1); 1176 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1177 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1178 return TypeFunc::make(domain, range); 1179 } 1180 1181 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1182 // create input type (domain) 1183 int num_args = 8; 1184 int argcnt = num_args; 1185 const Type** fields = TypeTuple::fields(argcnt); 1186 int argp = TypeFunc::Parms; 1187 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1188 fields[argp++] = TypeInt::INT; // int len 1189 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1190 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1191 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1192 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1193 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1194 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1195 1196 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1197 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1198 // returning cipher len (int) 1199 fields = TypeTuple::fields(1); 1200 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1201 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1202 return TypeFunc::make(domain, range); 1203 } 1204 1205 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1206 // create input type (domain) 1207 int num_args = is_sha3 ? 3 : 2; 1208 int argcnt = num_args; 1209 const Type** fields = TypeTuple::fields(argcnt); 1210 int argp = TypeFunc::Parms; 1211 fields[argp++] = TypePtr::NOTNULL; // buf 1212 fields[argp++] = TypePtr::NOTNULL; // state 1213 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1214 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1215 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1216 1217 // no result type needed 1218 fields = TypeTuple::fields(1); 1219 fields[TypeFunc::Parms+0] = nullptr; // void 1220 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1221 return TypeFunc::make(domain, range); 1222 } 1223 1224 /* 1225 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1226 */ 1227 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1228 // create input type (domain) 1229 int num_args = is_sha3 ? 5 : 4; 1230 int argcnt = num_args; 1231 const Type** fields = TypeTuple::fields(argcnt); 1232 int argp = TypeFunc::Parms; 1233 fields[argp++] = TypePtr::NOTNULL; // buf 1234 fields[argp++] = TypePtr::NOTNULL; // state 1235 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1236 fields[argp++] = TypeInt::INT; // ofs 1237 fields[argp++] = TypeInt::INT; // limit 1238 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1239 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1240 1241 // returning ofs (int) 1242 fields = TypeTuple::fields(1); 1243 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1244 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1245 return TypeFunc::make(domain, range); 1246 } 1247 1248 // SHAKE128Parallel doubleKeccak function 1249 static const TypeFunc* make_double_keccak_Type() { 1250 int argcnt = 2; 1251 1252 const Type** fields = TypeTuple::fields(argcnt); 1253 int argp = TypeFunc::Parms; 1254 fields[argp++] = TypePtr::NOTNULL; // status0 1255 fields[argp++] = TypePtr::NOTNULL; // status1 1256 1257 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1258 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1259 1260 // result type needed 1261 fields = TypeTuple::fields(1); 1262 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1263 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1264 return TypeFunc::make(domain, range); 1265 } 1266 1267 static const TypeFunc* make_multiplyToLen_Type() { 1268 // create input type (domain) 1269 int num_args = 5; 1270 int argcnt = num_args; 1271 const Type** fields = TypeTuple::fields(argcnt); 1272 int argp = TypeFunc::Parms; 1273 fields[argp++] = TypePtr::NOTNULL; // x 1274 fields[argp++] = TypeInt::INT; // xlen 1275 fields[argp++] = TypePtr::NOTNULL; // y 1276 fields[argp++] = TypeInt::INT; // ylen 1277 fields[argp++] = TypePtr::NOTNULL; // z 1278 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1279 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1280 1281 // no result type needed 1282 fields = TypeTuple::fields(1); 1283 fields[TypeFunc::Parms+0] = nullptr; 1284 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1285 return TypeFunc::make(domain, range); 1286 } 1287 1288 static const TypeFunc* make_squareToLen_Type() { 1289 // create input type (domain) 1290 int num_args = 4; 1291 int argcnt = num_args; 1292 const Type** fields = TypeTuple::fields(argcnt); 1293 int argp = TypeFunc::Parms; 1294 fields[argp++] = TypePtr::NOTNULL; // x 1295 fields[argp++] = TypeInt::INT; // len 1296 fields[argp++] = TypePtr::NOTNULL; // z 1297 fields[argp++] = TypeInt::INT; // zlen 1298 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1299 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1300 1301 // no result type needed 1302 fields = TypeTuple::fields(1); 1303 fields[TypeFunc::Parms+0] = nullptr; 1304 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1305 return TypeFunc::make(domain, range); 1306 } 1307 1308 static const TypeFunc* make_mulAdd_Type() { 1309 // create input type (domain) 1310 int num_args = 5; 1311 int argcnt = num_args; 1312 const Type** fields = TypeTuple::fields(argcnt); 1313 int argp = TypeFunc::Parms; 1314 fields[argp++] = TypePtr::NOTNULL; // out 1315 fields[argp++] = TypePtr::NOTNULL; // in 1316 fields[argp++] = TypeInt::INT; // offset 1317 fields[argp++] = TypeInt::INT; // len 1318 fields[argp++] = TypeInt::INT; // k 1319 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1320 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1321 1322 // returning carry (int) 1323 fields = TypeTuple::fields(1); 1324 fields[TypeFunc::Parms+0] = TypeInt::INT; 1325 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1326 return TypeFunc::make(domain, range); 1327 } 1328 1329 static const TypeFunc* make_montgomeryMultiply_Type() { 1330 // create input type (domain) 1331 int num_args = 7; 1332 int argcnt = num_args; 1333 const Type** fields = TypeTuple::fields(argcnt); 1334 int argp = TypeFunc::Parms; 1335 fields[argp++] = TypePtr::NOTNULL; // a 1336 fields[argp++] = TypePtr::NOTNULL; // b 1337 fields[argp++] = TypePtr::NOTNULL; // n 1338 fields[argp++] = TypeInt::INT; // len 1339 fields[argp++] = TypeLong::LONG; // inv 1340 fields[argp++] = Type::HALF; 1341 fields[argp++] = TypePtr::NOTNULL; // result 1342 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1343 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1344 1345 // result type needed 1346 fields = TypeTuple::fields(1); 1347 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1348 1349 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1350 return TypeFunc::make(domain, range); 1351 } 1352 1353 static const TypeFunc* make_montgomerySquare_Type() { 1354 // create input type (domain) 1355 int num_args = 6; 1356 int argcnt = num_args; 1357 const Type** fields = TypeTuple::fields(argcnt); 1358 int argp = TypeFunc::Parms; 1359 fields[argp++] = TypePtr::NOTNULL; // a 1360 fields[argp++] = TypePtr::NOTNULL; // n 1361 fields[argp++] = TypeInt::INT; // len 1362 fields[argp++] = TypeLong::LONG; // inv 1363 fields[argp++] = Type::HALF; 1364 fields[argp++] = TypePtr::NOTNULL; // result 1365 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1366 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1367 1368 // result type needed 1369 fields = TypeTuple::fields(1); 1370 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1371 1372 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1373 return TypeFunc::make(domain, range); 1374 } 1375 1376 static const TypeFunc* make_bigIntegerShift_Type() { 1377 int argcnt = 5; 1378 const Type** fields = TypeTuple::fields(argcnt); 1379 int argp = TypeFunc::Parms; 1380 fields[argp++] = TypePtr::NOTNULL; // newArr 1381 fields[argp++] = TypePtr::NOTNULL; // oldArr 1382 fields[argp++] = TypeInt::INT; // newIdx 1383 fields[argp++] = TypeInt::INT; // shiftCount 1384 fields[argp++] = TypeInt::INT; // numIter 1385 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1386 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1387 1388 // no result type needed 1389 fields = TypeTuple::fields(1); 1390 fields[TypeFunc::Parms + 0] = nullptr; 1391 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1392 return TypeFunc::make(domain, range); 1393 } 1394 1395 static const TypeFunc* make_vectorizedMismatch_Type() { 1396 // create input type (domain) 1397 int num_args = 4; 1398 int argcnt = num_args; 1399 const Type** fields = TypeTuple::fields(argcnt); 1400 int argp = TypeFunc::Parms; 1401 fields[argp++] = TypePtr::NOTNULL; // obja 1402 fields[argp++] = TypePtr::NOTNULL; // objb 1403 fields[argp++] = TypeInt::INT; // length, number of elements 1404 fields[argp++] = TypeInt::INT; // log2scale, element size 1405 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1406 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1407 1408 //return mismatch index (int) 1409 fields = TypeTuple::fields(1); 1410 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1411 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1412 return TypeFunc::make(domain, range); 1413 } 1414 1415 static const TypeFunc* make_ghash_processBlocks_Type() { 1416 int argcnt = 4; 1417 1418 const Type** fields = TypeTuple::fields(argcnt); 1419 int argp = TypeFunc::Parms; 1420 fields[argp++] = TypePtr::NOTNULL; // state 1421 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1422 fields[argp++] = TypePtr::NOTNULL; // data 1423 fields[argp++] = TypeInt::INT; // blocks 1424 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1425 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1426 1427 // result type needed 1428 fields = TypeTuple::fields(1); 1429 fields[TypeFunc::Parms+0] = nullptr; // void 1430 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1431 return TypeFunc::make(domain, range); 1432 } 1433 1434 static const TypeFunc* make_chacha20Block_Type() { 1435 int argcnt = 2; 1436 1437 const Type** fields = TypeTuple::fields(argcnt); 1438 int argp = TypeFunc::Parms; 1439 fields[argp++] = TypePtr::NOTNULL; // state 1440 fields[argp++] = TypePtr::NOTNULL; // result 1441 1442 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1443 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1444 1445 // result type needed 1446 fields = TypeTuple::fields(1); 1447 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1448 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1449 return TypeFunc::make(domain, range); 1450 } 1451 1452 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1453 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1454 int argcnt = 2; 1455 1456 const Type** fields = TypeTuple::fields(argcnt); 1457 int argp = TypeFunc::Parms; 1458 fields[argp++] = TypePtr::NOTNULL; // coeffs 1459 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1460 1461 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1462 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1463 1464 // result type needed 1465 fields = TypeTuple::fields(1); 1466 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1467 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1468 return TypeFunc::make(domain, range); 1469 } 1470 1471 // Dilithium inverse NTT function except the final mod Q division by 2^256 1472 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1473 int argcnt = 2; 1474 1475 const Type** fields = TypeTuple::fields(argcnt); 1476 int argp = TypeFunc::Parms; 1477 fields[argp++] = TypePtr::NOTNULL; // coeffs 1478 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1479 1480 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1481 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1482 1483 // result type needed 1484 fields = TypeTuple::fields(1); 1485 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1486 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1487 return TypeFunc::make(domain, range); 1488 } 1489 1490 // Dilithium NTT multiply function 1491 static const TypeFunc* make_dilithiumNttMult_Type() { 1492 int argcnt = 3; 1493 1494 const Type** fields = TypeTuple::fields(argcnt); 1495 int argp = TypeFunc::Parms; 1496 fields[argp++] = TypePtr::NOTNULL; // result 1497 fields[argp++] = TypePtr::NOTNULL; // ntta 1498 fields[argp++] = TypePtr::NOTNULL; // nttb 1499 1500 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1501 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1502 1503 // result type needed 1504 fields = TypeTuple::fields(1); 1505 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1506 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1507 return TypeFunc::make(domain, range); 1508 } 1509 1510 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1511 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1512 int argcnt = 2; 1513 1514 const Type** fields = TypeTuple::fields(argcnt); 1515 int argp = TypeFunc::Parms; 1516 fields[argp++] = TypePtr::NOTNULL; // coeffs 1517 fields[argp++] = TypeInt::INT; // constant multiplier 1518 1519 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1520 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1521 1522 // result type needed 1523 fields = TypeTuple::fields(1); 1524 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1525 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1526 return TypeFunc::make(domain, range); 1527 } 1528 1529 // Dilithium decompose polynomial 1530 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1531 int argcnt = 5; 1532 1533 const Type** fields = TypeTuple::fields(argcnt); 1534 int argp = TypeFunc::Parms; 1535 fields[argp++] = TypePtr::NOTNULL; // input 1536 fields[argp++] = TypePtr::NOTNULL; // lowPart 1537 fields[argp++] = TypePtr::NOTNULL; // highPart 1538 fields[argp++] = TypeInt::INT; // 2 * gamma2 1539 fields[argp++] = TypeInt::INT; // multiplier 1540 1541 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1542 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1543 1544 // result type needed 1545 fields = TypeTuple::fields(1); 1546 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1547 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1548 return TypeFunc::make(domain, range); 1549 } 1550 1551 static const TypeFunc* make_base64_encodeBlock_Type() { 1552 int argcnt = 6; 1553 1554 const Type** fields = TypeTuple::fields(argcnt); 1555 int argp = TypeFunc::Parms; 1556 fields[argp++] = TypePtr::NOTNULL; // src array 1557 fields[argp++] = TypeInt::INT; // offset 1558 fields[argp++] = TypeInt::INT; // length 1559 fields[argp++] = TypePtr::NOTNULL; // dest array 1560 fields[argp++] = TypeInt::INT; // dp 1561 fields[argp++] = TypeInt::BOOL; // isURL 1562 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1563 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1564 1565 // result type needed 1566 fields = TypeTuple::fields(1); 1567 fields[TypeFunc::Parms + 0] = nullptr; // void 1568 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1569 return TypeFunc::make(domain, range); 1570 } 1571 1572 static const TypeFunc* make_string_IndexOf_Type() { 1573 int argcnt = 4; 1574 1575 const Type** fields = TypeTuple::fields(argcnt); 1576 int argp = TypeFunc::Parms; 1577 fields[argp++] = TypePtr::NOTNULL; // haystack array 1578 fields[argp++] = TypeInt::INT; // haystack length 1579 fields[argp++] = TypePtr::NOTNULL; // needle array 1580 fields[argp++] = TypeInt::INT; // needle length 1581 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1582 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1583 1584 // result type needed 1585 fields = TypeTuple::fields(1); 1586 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1587 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1588 return TypeFunc::make(domain, range); 1589 } 1590 1591 static const TypeFunc* make_base64_decodeBlock_Type() { 1592 int argcnt = 7; 1593 1594 const Type** fields = TypeTuple::fields(argcnt); 1595 int argp = TypeFunc::Parms; 1596 fields[argp++] = TypePtr::NOTNULL; // src array 1597 fields[argp++] = TypeInt::INT; // src offset 1598 fields[argp++] = TypeInt::INT; // src length 1599 fields[argp++] = TypePtr::NOTNULL; // dest array 1600 fields[argp++] = TypeInt::INT; // dest offset 1601 fields[argp++] = TypeInt::BOOL; // isURL 1602 fields[argp++] = TypeInt::BOOL; // isMIME 1603 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1604 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1605 1606 // result type needed 1607 fields = TypeTuple::fields(1); 1608 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1609 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1610 return TypeFunc::make(domain, range); 1611 } 1612 1613 static const TypeFunc* make_poly1305_processBlocks_Type() { 1614 int argcnt = 4; 1615 1616 const Type** fields = TypeTuple::fields(argcnt); 1617 int argp = TypeFunc::Parms; 1618 fields[argp++] = TypePtr::NOTNULL; // input array 1619 fields[argp++] = TypeInt::INT; // input length 1620 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1621 fields[argp++] = TypePtr::NOTNULL; // r array 1622 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1623 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1624 1625 // result type needed 1626 fields = TypeTuple::fields(1); 1627 fields[TypeFunc::Parms + 0] = nullptr; // void 1628 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1629 return TypeFunc::make(domain, range); 1630 } 1631 1632 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1633 int argcnt = 3; 1634 1635 const Type** fields = TypeTuple::fields(argcnt); 1636 int argp = TypeFunc::Parms; 1637 fields[argp++] = TypePtr::NOTNULL; // a array 1638 fields[argp++] = TypePtr::NOTNULL; // b array 1639 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1640 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1641 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1642 1643 // result type needed 1644 fields = TypeTuple::fields(1); 1645 fields[TypeFunc::Parms + 0] = nullptr; // void 1646 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1647 return TypeFunc::make(domain, range); 1648 } 1649 1650 static const TypeFunc* make_intpoly_assign_Type() { 1651 int argcnt = 4; 1652 1653 const Type** fields = TypeTuple::fields(argcnt); 1654 int argp = TypeFunc::Parms; 1655 fields[argp++] = TypeInt::INT; // set flag 1656 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1657 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1658 fields[argp++] = TypeInt::INT; // array length 1659 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1660 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1661 1662 // result type needed 1663 fields = TypeTuple::fields(1); 1664 fields[TypeFunc::Parms + 0] = nullptr; // void 1665 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1666 return TypeFunc::make(domain, range); 1667 } 1668 1669 //------------- Interpreter state for on stack replacement 1670 static const TypeFunc* make_osr_end_Type() { 1671 // create input type (domain) 1672 const Type **fields = TypeTuple::fields(1); 1673 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1674 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1675 1676 // create result type 1677 fields = TypeTuple::fields(1); 1678 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1679 fields[TypeFunc::Parms+0] = nullptr; // void 1680 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1681 return TypeFunc::make(domain, range); 1682 } 1683 1684 //------------------------------------------------------------------------------------- 1685 // register policy 1686 1687 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1688 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1689 switch (register_save_policy[reg]) { 1690 case 'C': return false; //SOC 1691 case 'E': return true ; //SOE 1692 case 'N': return false; //NS 1693 case 'A': return false; //AS 1694 } 1695 ShouldNotReachHere(); 1696 return false; 1697 } 1698 1699 //----------------------------------------------------------------------- 1700 // Exceptions 1701 // 1702 1703 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1704 1705 // The method is an entry that is always called by a C++ method not 1706 // directly from compiled code. Compiled code will call the C++ method following. 1707 // We can't allow async exception to be installed during exception processing. 1708 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1709 // The frame we rethrow the exception to might not have been processed by the GC yet. 1710 // The stack watermark barrier takes care of detecting that and ensuring the frame 1711 // has updated oops. 1712 StackWatermarkSet::after_unwind(current); 1713 1714 // Do not confuse exception_oop with pending_exception. The exception_oop 1715 // is only used to pass arguments into the method. Not for general 1716 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1717 // the runtime stubs checks this on exit. 1718 assert(current->exception_oop() != nullptr, "exception oop is found"); 1719 address handler_address = nullptr; 1720 1721 Handle exception(current, current->exception_oop()); 1722 address pc = current->exception_pc(); 1723 1724 // Clear out the exception oop and pc since looking up an 1725 // exception handler can cause class loading, which might throw an 1726 // exception and those fields are expected to be clear during 1727 // normal bytecode execution. 1728 current->clear_exception_oop_and_pc(); 1729 1730 LogTarget(Info, exceptions) lt; 1731 if (lt.is_enabled()) { 1732 LogStream ls(lt); 1733 trace_exception(&ls, exception(), pc, ""); 1734 } 1735 1736 // for AbortVMOnException flag 1737 Exceptions::debug_check_abort(exception); 1738 1739 #ifdef ASSERT 1740 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1741 // should throw an exception here 1742 ShouldNotReachHere(); 1743 } 1744 #endif 1745 1746 // new exception handling: this method is entered only from adapters 1747 // exceptions from compiled java methods are handled in compiled code 1748 // using rethrow node 1749 1750 nm = CodeCache::find_nmethod(pc); 1751 assert(nm != nullptr, "No NMethod found"); 1752 if (nm->is_native_method()) { 1753 fatal("Native method should not have path to exception handling"); 1754 } else { 1755 // we are switching to old paradigm: search for exception handler in caller_frame 1756 // instead in exception handler of caller_frame.sender() 1757 1758 if (JvmtiExport::can_post_on_exceptions()) { 1759 // "Full-speed catching" is not necessary here, 1760 // since we're notifying the VM on every catch. 1761 // Force deoptimization and the rest of the lookup 1762 // will be fine. 1763 deoptimize_caller_frame(current); 1764 } 1765 1766 // Check the stack guard pages. If enabled, look for handler in this frame; 1767 // otherwise, forcibly unwind the frame. 1768 // 1769 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1770 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1771 bool deopting = false; 1772 if (nm->is_deopt_pc(pc)) { 1773 deopting = true; 1774 RegisterMap map(current, 1775 RegisterMap::UpdateMap::skip, 1776 RegisterMap::ProcessFrames::include, 1777 RegisterMap::WalkContinuation::skip); 1778 frame deoptee = current->last_frame().sender(&map); 1779 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1780 // Adjust the pc back to the original throwing pc 1781 pc = deoptee.pc(); 1782 } 1783 1784 // If we are forcing an unwind because of stack overflow then deopt is 1785 // irrelevant since we are throwing the frame away anyway. 1786 1787 if (deopting && !force_unwind) { 1788 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1789 } else { 1790 1791 handler_address = 1792 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1793 1794 if (handler_address == nullptr) { 1795 bool recursive_exception = false; 1796 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1797 assert (handler_address != nullptr, "must have compiled handler"); 1798 // Update the exception cache only when the unwind was not forced 1799 // and there didn't happen another exception during the computation of the 1800 // compiled exception handler. Checking for exception oop equality is not 1801 // sufficient because some exceptions are pre-allocated and reused. 1802 if (!force_unwind && !recursive_exception) { 1803 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1804 } 1805 } else { 1806 #ifdef ASSERT 1807 bool recursive_exception = false; 1808 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1809 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1810 p2i(handler_address), p2i(computed_address)); 1811 #endif 1812 } 1813 } 1814 1815 current->set_exception_pc(pc); 1816 current->set_exception_handler_pc(handler_address); 1817 1818 // Check if the exception PC is a MethodHandle call site. 1819 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1820 } 1821 1822 // Restore correct return pc. Was saved above. 1823 current->set_exception_oop(exception()); 1824 return handler_address; 1825 1826 JRT_END 1827 1828 // We are entering here from exception_blob 1829 // If there is a compiled exception handler in this method, we will continue there; 1830 // otherwise we will unwind the stack and continue at the caller of top frame method 1831 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1832 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1833 // we looked up the handler for has been deoptimized in the meantime. If it has been 1834 // we must not use the handler and instead return the deopt blob. 1835 address OptoRuntime::handle_exception_C(JavaThread* current) { 1836 // 1837 // We are in Java not VM and in debug mode we have a NoHandleMark 1838 // 1839 #ifndef PRODUCT 1840 SharedRuntime::_find_handler_ctr++; // find exception handler 1841 #endif 1842 debug_only(NoHandleMark __hm;) 1843 nmethod* nm = nullptr; 1844 address handler_address = nullptr; 1845 { 1846 // Enter the VM 1847 1848 ResetNoHandleMark rnhm; 1849 handler_address = handle_exception_C_helper(current, nm); 1850 } 1851 1852 // Back in java: Use no oops, DON'T safepoint 1853 1854 // Now check to see if the handler we are returning is in a now 1855 // deoptimized frame 1856 1857 if (nm != nullptr) { 1858 RegisterMap map(current, 1859 RegisterMap::UpdateMap::skip, 1860 RegisterMap::ProcessFrames::skip, 1861 RegisterMap::WalkContinuation::skip); 1862 frame caller = current->last_frame().sender(&map); 1863 #ifdef ASSERT 1864 assert(caller.is_compiled_frame(), "must be"); 1865 #endif // ASSERT 1866 if (caller.is_deoptimized_frame()) { 1867 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1868 } 1869 } 1870 return handler_address; 1871 } 1872 1873 //------------------------------rethrow---------------------------------------- 1874 // We get here after compiled code has executed a 'RethrowNode'. The callee 1875 // is either throwing or rethrowing an exception. The callee-save registers 1876 // have been restored, synchronized objects have been unlocked and the callee 1877 // stack frame has been removed. The return address was passed in. 1878 // Exception oop is passed as the 1st argument. This routine is then called 1879 // from the stub. On exit, we know where to jump in the caller's code. 1880 // After this C code exits, the stub will pop his frame and end in a jump 1881 // (instead of a return). We enter the caller's default handler. 1882 // 1883 // This must be JRT_LEAF: 1884 // - caller will not change its state as we cannot block on exit, 1885 // therefore raw_exception_handler_for_return_address is all it takes 1886 // to handle deoptimized blobs 1887 // 1888 // However, there needs to be a safepoint check in the middle! So compiled 1889 // safepoints are completely watertight. 1890 // 1891 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1892 // 1893 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1894 // 1895 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1896 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1897 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 1898 1899 #ifndef PRODUCT 1900 SharedRuntime::_rethrow_ctr++; // count rethrows 1901 #endif 1902 assert (exception != nullptr, "should have thrown a NullPointerException"); 1903 #ifdef ASSERT 1904 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1905 // should throw an exception here 1906 ShouldNotReachHere(); 1907 } 1908 #endif 1909 1910 thread->set_vm_result(exception); 1911 // Frame not compiled (handles deoptimization blob) 1912 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1913 } 1914 1915 static const TypeFunc* make_rethrow_Type() { 1916 // create input type (domain) 1917 const Type **fields = TypeTuple::fields(1); 1918 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1919 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1920 1921 // create result type (range) 1922 fields = TypeTuple::fields(1); 1923 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1924 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1925 1926 return TypeFunc::make(domain, range); 1927 } 1928 1929 1930 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1931 // Deoptimize the caller before continuing, as the compiled 1932 // exception handler table may not be valid. 1933 if (!StressCompiledExceptionHandlers && doit) { 1934 deoptimize_caller_frame(thread); 1935 } 1936 } 1937 1938 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1939 // Called from within the owner thread, so no need for safepoint 1940 RegisterMap reg_map(thread, 1941 RegisterMap::UpdateMap::include, 1942 RegisterMap::ProcessFrames::include, 1943 RegisterMap::WalkContinuation::skip); 1944 frame stub_frame = thread->last_frame(); 1945 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1946 frame caller_frame = stub_frame.sender(®_map); 1947 1948 // Deoptimize the caller frame. 1949 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1950 } 1951 1952 1953 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1954 // Called from within the owner thread, so no need for safepoint 1955 RegisterMap reg_map(thread, 1956 RegisterMap::UpdateMap::include, 1957 RegisterMap::ProcessFrames::include, 1958 RegisterMap::WalkContinuation::skip); 1959 frame stub_frame = thread->last_frame(); 1960 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1961 frame caller_frame = stub_frame.sender(®_map); 1962 return caller_frame.is_deoptimized_frame(); 1963 } 1964 1965 static const TypeFunc* make_register_finalizer_Type() { 1966 // create input type (domain) 1967 const Type **fields = TypeTuple::fields(1); 1968 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1969 // // The JavaThread* is passed to each routine as the last argument 1970 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1971 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1972 1973 // create result type (range) 1974 fields = TypeTuple::fields(0); 1975 1976 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1977 1978 return TypeFunc::make(domain, range); 1979 } 1980 1981 #if INCLUDE_JFR 1982 static const TypeFunc* make_class_id_load_barrier_Type() { 1983 // create input type (domain) 1984 const Type **fields = TypeTuple::fields(1); 1985 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1986 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1987 1988 // create result type (range) 1989 fields = TypeTuple::fields(0); 1990 1991 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1992 1993 return TypeFunc::make(domain,range); 1994 } 1995 #endif // INCLUDE_JFR 1996 1997 //----------------------------------------------------------------------------- 1998 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 1999 // create input type (domain) 2000 const Type **fields = TypeTuple::fields(2); 2001 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2002 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2003 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2004 2005 // create result type (range) 2006 fields = TypeTuple::fields(0); 2007 2008 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2009 2010 return TypeFunc::make(domain, range); 2011 } 2012 2013 static const TypeFunc* make_dtrace_object_alloc_Type() { 2014 // create input type (domain) 2015 const Type **fields = TypeTuple::fields(2); 2016 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2017 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2018 2019 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2020 2021 // create result type (range) 2022 fields = TypeTuple::fields(0); 2023 2024 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2025 2026 return TypeFunc::make(domain, range); 2027 } 2028 2029 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2030 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2031 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2032 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2033 JRT_END 2034 2035 //----------------------------------------------------------------------------- 2036 2037 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2038 2039 // 2040 // dump the collected NamedCounters. 2041 // 2042 void OptoRuntime::print_named_counters() { 2043 int total_lock_count = 0; 2044 int eliminated_lock_count = 0; 2045 2046 NamedCounter* c = _named_counters; 2047 while (c) { 2048 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2049 int count = c->count(); 2050 if (count > 0) { 2051 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2052 if (Verbose) { 2053 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2054 } 2055 total_lock_count += count; 2056 if (eliminated) { 2057 eliminated_lock_count += count; 2058 } 2059 } 2060 } 2061 c = c->next(); 2062 } 2063 if (total_lock_count > 0) { 2064 tty->print_cr("dynamic locks: %d", total_lock_count); 2065 if (eliminated_lock_count) { 2066 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2067 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2068 } 2069 } 2070 } 2071 2072 // 2073 // Allocate a new NamedCounter. The JVMState is used to generate the 2074 // name which consists of method@line for the inlining tree. 2075 // 2076 2077 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2078 int max_depth = youngest_jvms->depth(); 2079 2080 // Visit scopes from youngest to oldest. 2081 bool first = true; 2082 stringStream st; 2083 for (int depth = max_depth; depth >= 1; depth--) { 2084 JVMState* jvms = youngest_jvms->of_depth(depth); 2085 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2086 if (!first) { 2087 st.print(" "); 2088 } else { 2089 first = false; 2090 } 2091 int bci = jvms->bci(); 2092 if (bci < 0) bci = 0; 2093 if (m != nullptr) { 2094 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2095 } else { 2096 st.print("no method"); 2097 } 2098 st.print("@%d", bci); 2099 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2100 } 2101 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2102 2103 // atomically add the new counter to the head of the list. We only 2104 // add counters so this is safe. 2105 NamedCounter* head; 2106 do { 2107 c->set_next(nullptr); 2108 head = _named_counters; 2109 c->set_next(head); 2110 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2111 return c; 2112 } 2113 2114 void OptoRuntime::initialize_types() { 2115 _new_instance_Type = make_new_instance_Type(); 2116 _new_array_Type = make_new_array_Type(); 2117 _new_array_nozero_Type = make_new_array_nozero_Type(); 2118 _multianewarray2_Type = multianewarray_Type(2); 2119 _multianewarray3_Type = multianewarray_Type(3); 2120 _multianewarray4_Type = multianewarray_Type(4); 2121 _multianewarray5_Type = multianewarray_Type(5); 2122 _multianewarrayN_Type = make_multianewarrayN_Type(); 2123 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2124 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2125 _monitor_notify_Type = make_monitor_notify_Type(); 2126 _uncommon_trap_Type = make_uncommon_trap_Type(); 2127 _athrow_Type = make_athrow_Type(); 2128 _rethrow_Type = make_rethrow_Type(); 2129 _Math_D_D_Type = make_Math_D_D_Type(); 2130 _Math_DD_D_Type = make_Math_DD_D_Type(); 2131 _modf_Type = make_modf_Type(); 2132 _l2f_Type = make_l2f_Type(); 2133 _void_long_Type = make_void_long_Type(); 2134 _void_void_Type = make_void_void_Type(); 2135 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2136 _flush_windows_Type = make_flush_windows_Type(); 2137 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2138 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2139 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2140 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2141 _unsafe_setmemory_Type = make_setmemory_Type(); 2142 _array_fill_Type = make_array_fill_Type(); 2143 _array_sort_Type = make_array_sort_Type(); 2144 _array_partition_Type = make_array_partition_Type(); 2145 _aescrypt_block_Type = make_aescrypt_block_Type(); 2146 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2147 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2148 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2149 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2150 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2151 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2152 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2153 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2154 _double_keccak_Type = make_double_keccak_Type(); 2155 _multiplyToLen_Type = make_multiplyToLen_Type(); 2156 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2157 _montgomerySquare_Type = make_montgomerySquare_Type(); 2158 _squareToLen_Type = make_squareToLen_Type(); 2159 _mulAdd_Type = make_mulAdd_Type(); 2160 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2161 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2162 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2163 _chacha20Block_Type = make_chacha20Block_Type(); 2164 2165 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2166 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2167 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2168 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2169 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2170 2171 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2172 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2173 _string_IndexOf_Type = make_string_IndexOf_Type(); 2174 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2175 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2176 _intpoly_assign_Type = make_intpoly_assign_Type(); 2177 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2178 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2179 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2180 _osr_end_Type = make_osr_end_Type(); 2181 _register_finalizer_Type = make_register_finalizer_Type(); 2182 JFR_ONLY( 2183 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2184 ) 2185 #if INCLUDE_JVMTI 2186 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2187 #endif // INCLUDE_JVMTI 2188 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2189 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2190 } 2191 2192 int trace_exception_counter = 0; 2193 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2194 trace_exception_counter++; 2195 stringStream tempst; 2196 2197 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2198 exception_oop->print_value_on(&tempst); 2199 tempst.print(" in "); 2200 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2201 if (blob->is_nmethod()) { 2202 blob->as_nmethod()->method()->print_value_on(&tempst); 2203 } else if (blob->is_runtime_stub()) { 2204 tempst.print("<runtime-stub>"); 2205 } else { 2206 tempst.print("<unknown>"); 2207 } 2208 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2209 tempst.print("]"); 2210 2211 st->print_raw_cr(tempst.freeze()); 2212 } 2213 2214 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() { 2215 // create input type (domain) 2216 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2217 const Type **fields = TypeTuple::fields(total); 2218 // We don't know the number of returned values and their 2219 // types. Assume all registers available to the return convention 2220 // are used. 2221 fields[TypeFunc::Parms] = TypePtr::BOTTOM; 2222 uint i = 1; 2223 for (; i < SharedRuntime::java_return_convention_max_int; i++) { 2224 fields[TypeFunc::Parms+i] = TypeInt::INT; 2225 } 2226 for (; i < total; i+=2) { 2227 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2228 fields[TypeFunc::Parms+i+1] = Type::HALF; 2229 } 2230 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2231 2232 // create result type (range) 2233 fields = TypeTuple::fields(1); 2234 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2235 2236 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2237 2238 return TypeFunc::make(domain, range); 2239 } 2240 2241 const TypeFunc *OptoRuntime::pack_inline_type_Type() { 2242 // create input type (domain) 2243 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2244 const Type **fields = TypeTuple::fields(total); 2245 // We don't know the number of returned values and their 2246 // types. Assume all registers available to the return convention 2247 // are used. 2248 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM; 2249 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; 2250 uint i = 2; 2251 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) { 2252 fields[TypeFunc::Parms+i] = TypeInt::INT; 2253 } 2254 for (; i < total; i+=2) { 2255 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2256 fields[TypeFunc::Parms+i+1] = Type::HALF; 2257 } 2258 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2259 2260 // create result type (range) 2261 fields = TypeTuple::fields(1); 2262 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2263 2264 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2265 2266 return TypeFunc::make(domain, range); 2267 } 2268 2269 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current)) 2270 JRT_BLOCK; 2271 oop buffer = array->read_value_from_flat_array(index, THREAD); 2272 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 2273 current->set_vm_result(buffer); 2274 JRT_BLOCK_END; 2275 JRT_END 2276 2277 const TypeFunc* OptoRuntime::load_unknown_inline_Type() { 2278 // create input type (domain) 2279 const Type** fields = TypeTuple::fields(2); 2280 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL; 2281 fields[TypeFunc::Parms+1] = TypeInt::POS; 2282 2283 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields); 2284 2285 // create result type (range) 2286 fields = TypeTuple::fields(1); 2287 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2288 2289 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 2290 2291 return TypeFunc::make(domain, range); 2292 } 2293 2294 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current)) 2295 JRT_BLOCK; 2296 array->write_value_to_flat_array(buffer, index, THREAD); 2297 if (HAS_PENDING_EXCEPTION) { 2298 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception"); 2299 } 2300 JRT_BLOCK_END; 2301 JRT_END 2302 2303 const TypeFunc* OptoRuntime::store_unknown_inline_Type() { 2304 // create input type (domain) 2305 const Type** fields = TypeTuple::fields(3); 2306 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2307 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL; 2308 fields[TypeFunc::Parms+2] = TypeInt::POS; 2309 2310 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields); 2311 2312 // create result type (range) 2313 fields = TypeTuple::fields(0); 2314 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 2315 2316 return TypeFunc::make(domain, range); 2317 }