1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/flatArrayKlass.hpp"
  48 #include "oops/flatArrayOop.inline.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomicAccess.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadWXSetters.inline.hpp"
  76 #include "runtime/vframe.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/preserveException.hpp"
  81 
  82 
  83 // For debugging purposes:
  84 //  To force FullGCALot inside a runtime function, add the following two lines
  85 //
  86 //  Universe::release_fullgc_alot_dummy();
  87 //  Universe::heap()->collect();
  88 //
  89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  90 
  91 
  92 #define C2_BLOB_FIELD_DEFINE(name, type) \
  93   type* OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  94 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  95 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  96   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  97 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  98   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
  99 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 100 #undef C2_BLOB_FIELD_DEFINE
 101 #undef C2_STUB_FIELD_DEFINE
 102 #undef C2_JVMTI_STUB_FIELD_DEFINE
 103 
 104 // This should be called in an assertion at the start of OptoRuntime routines
 105 // which are entered from compiled code (all of them)
 106 #ifdef ASSERT
 107 static bool check_compiled_frame(JavaThread* thread) {
 108   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 109   RegisterMap map(thread,
 110                   RegisterMap::UpdateMap::skip,
 111                   RegisterMap::ProcessFrames::include,
 112                   RegisterMap::WalkContinuation::skip);
 113   frame caller = thread->last_frame().sender(&map);
 114   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 115   return true;
 116 }
 117 #endif // ASSERT
 118 
 119 /*
 120 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 121   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 122   if (var == nullptr) { return false; }
 123 */
 124 
 125 #define GEN_C2_BLOB(name, type)                    \
 126   BLOB_FIELD_NAME(name) =                       \
 127     generate_ ## name ## _blob();                  \
 128   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 129 
 130 // a few helper macros to conjure up generate_stub call arguments
 131 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 132 #define C2_STUB_TYPEFUNC(name) name ## _Type
 133 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 134 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id)
 135 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name))
 136 
 137 // Almost all the C functions targeted from the generated stubs are
 138 // implemented locally to OptoRuntime with names that can be generated
 139 // from the stub name by appending suffix '_C'. However, in two cases
 140 // a common target method also needs to be called from shared runtime
 141 // stubs. In these two cases the opto stubs rely on method
 142 // imlementations defined in class SharedRuntime. The following
 143 // defines temporarily rebind the generated names to reference the
 144 // relevant implementations.
 145 
 146 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 147   C2_STUB_FIELD_NAME(name) =                                          \
 148     generate_stub(env,                                                \
 149                   C2_STUB_TYPEFUNC(name),                             \
 150                   C2_STUB_C_FUNC(name),                               \
 151                   C2_STUB_NAME(name),                                 \
 152                   C2_STUB_ID(name),                                   \
 153                   fancy_jump,                                         \
 154                   pass_tls,                                           \
 155                   pass_retpc);                                        \
 156   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 157 
 158 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 159 
 160 #define GEN_C2_JVMTI_STUB(name)                                       \
 161   STUB_FIELD_NAME(name) =                                             \
 162     generate_stub(env,                                                \
 163                   notify_jvmti_vthread_Type,                          \
 164                   C2_JVMTI_STUB_C_FUNC(name),                         \
 165                   C2_STUB_NAME(name),                                 \
 166                   C2_STUB_ID(name),                                   \
 167                   0,                                                  \
 168                   true,                                               \
 169                   false);                                             \
 170   if (STUB_FIELD_NAME(name) == nullptr) { return false; }             \
 171 
 172 bool OptoRuntime::generate(ciEnv* env) {
 173 
 174   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 175 
 176   return true;
 177 }
 178 
 179 #undef GEN_C2_BLOB
 180 
 181 #undef C2_STUB_FIELD_NAME
 182 #undef C2_STUB_TYPEFUNC
 183 #undef C2_STUB_C_FUNC
 184 #undef C2_STUB_NAME
 185 #undef GEN_C2_STUB
 186 
 187 #undef C2_JVMTI_STUB_C_FUNC
 188 #undef GEN_C2_JVMTI_STUB
 189 // #undef gen
 190 
 191 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 192 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 193 const TypeFunc* OptoRuntime::_new_array_nozero_Type               = nullptr;
 194 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 195 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 196 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 197 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 198 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 199 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 200 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 201 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 202 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 203 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 204 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 205 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 206 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 207 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 208 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 209 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 210 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 211 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 212 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 213 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 214 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 215 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 216 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 217 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 218 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 219 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 220 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 221 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 222 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 223 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 224 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 225 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 226 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 227 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 228 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 229 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 230 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 231 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 232 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 233 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 234 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 235 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 236 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 237 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 238 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 239 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 240 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 241 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 242 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 243 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 244 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 245 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 246 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 247 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 248 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 249 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 250 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 251 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 252 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 254 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 255 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 256 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 257 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 258 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 259 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 260 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 261 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 262 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 263 #if INCLUDE_JFR
 264 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 265 #endif // INCLUDE_JFR
 266 #if INCLUDE_JVMTI
 267 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 268 #endif // INCLUDE_JVMTI
 269 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 270 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 271 
 272 // Helper method to do generation of RunTimeStub's
 273 address OptoRuntime::generate_stub(ciEnv* env,
 274                                    TypeFunc_generator gen, address C_function,
 275                                    const char *name, StubId stub_id,
 276                                    int is_fancy_jump, bool pass_tls,
 277                                    bool return_pc) {
 278 
 279   // Matching the default directive, we currently have no method to match.
 280   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 281   CompilationMemoryStatisticMark cmsm(directive);
 282   ResourceMark rm;
 283   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 284   DirectivesStack::release(directive);
 285   return  C.stub_entry_point();
 286 }
 287 
 288 const char* OptoRuntime::stub_name(address entry) {
 289 #ifndef PRODUCT
 290   CodeBlob* cb = CodeCache::find_blob(entry);
 291   RuntimeStub* rs =(RuntimeStub *)cb;
 292   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 293   return rs->name();
 294 #else
 295   // Fast implementation for product mode (maybe it should be inlined too)
 296   return "runtime stub";
 297 #endif
 298 }
 299 
 300 // local methods passed as arguments to stub generator that forward
 301 // control to corresponding JRT methods of SharedRuntime
 302 
 303 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 304                                    oopDesc* dest, jint dest_pos,
 305                                    jint length, JavaThread* thread) {
 306   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 307 }
 308 
 309 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 310   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 311 }
 312 
 313 
 314 //=============================================================================
 315 // Opto compiler runtime routines
 316 //=============================================================================
 317 
 318 
 319 //=============================allocation======================================
 320 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 321 // and try allocation again.
 322 
 323 // object allocation
 324 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 325   JRT_BLOCK;
 326 #ifndef PRODUCT
 327   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 328 #endif
 329   assert(check_compiled_frame(current), "incorrect caller");
 330 
 331   // These checks are cheap to make and support reflective allocation.
 332   int lh = klass->layout_helper();
 333   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 334     Handle holder(current, klass->klass_holder()); // keep the klass alive
 335     klass->check_valid_for_instantiation(false, THREAD);
 336     if (!HAS_PENDING_EXCEPTION) {
 337       InstanceKlass::cast(klass)->initialize(THREAD);
 338     }
 339   }
 340 
 341   if (!HAS_PENDING_EXCEPTION) {
 342     // Scavenge and allocate an instance.
 343     Handle holder(current, klass->klass_holder()); // keep the klass alive
 344     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 345     if (is_larval) {
 346       // Check if this is a larval buffer allocation
 347       result->set_mark(result->mark().enter_larval_state());
 348     }
 349     current->set_vm_result_oop(result);
 350 
 351     // Pass oops back through thread local storage.  Our apparent type to Java
 352     // is that we return an oop, but we can block on exit from this routine and
 353     // a GC can trash the oop in C's return register.  The generated stub will
 354     // fetch the oop from TLS after any possible GC.
 355   }
 356 
 357   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 358   JRT_BLOCK_END;
 359 
 360   // inform GC that we won't do card marks for initializing writes.
 361   SharedRuntime::on_slowpath_allocation_exit(current);
 362 JRT_END
 363 
 364 
 365 // array allocation
 366 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current))
 367   JRT_BLOCK;
 368 #ifndef PRODUCT
 369   SharedRuntime::_new_array_ctr++;            // new array requires GC
 370 #endif
 371   assert(check_compiled_frame(current), "incorrect caller");
 372 
 373   // Scavenge and allocate an instance.
 374   oop result;
 375   Handle h_init_val(current, init_val); // keep the init_val object alive
 376 
 377   if (array_type->is_flatArray_klass()) {
 378     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 379     FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
 380     InlineKlass* vk = fak->element_klass();
 381     ArrayKlass::ArrayProperties props = ArrayKlass::ArrayProperties::DEFAULT;
 382     switch(fak->layout_kind()) {
 383       case LayoutKind::ATOMIC_FLAT:
 384         props = ArrayKlass::ArrayProperties::NULL_RESTRICTED;
 385       break;
 386       case LayoutKind::NON_ATOMIC_FLAT:
 387         props = (ArrayKlass::ArrayProperties)(ArrayKlass::ArrayProperties::NULL_RESTRICTED | ArrayKlass::ArrayProperties::NON_ATOMIC);
 388       break;
 389       case LayoutKind::NULLABLE_ATOMIC_FLAT:
 390       props = ArrayKlass::ArrayProperties::NON_ATOMIC;
 391       break;
 392       default:
 393         ShouldNotReachHere();
 394     }
 395     result = oopFactory::new_flatArray(vk, len, props, fak->layout_kind(), THREAD);
 396     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 397       // Null-free arrays need to be initialized
 398       for (int i = 0; i < len; i++) {
 399         vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK);
 400       }
 401     }
 402   } else if (array_type->is_typeArray_klass()) {
 403     // The oopFactory likes to work with the element type.
 404     // (We could bypass the oopFactory, since it doesn't add much value.)
 405     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 406     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 407   } else {
 408     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 409     result = oopFactory::new_refArray(array_type, len, THREAD);
 410     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 411       // Null-free arrays need to be initialized
 412       for (int i = 0; i < len; i++) {
 413         ((objArrayOop)result)->obj_at_put(i, h_init_val());
 414       }
 415     }
 416   }
 417 
 418   // Pass oops back through thread local storage.  Our apparent type to Java
 419   // is that we return an oop, but we can block on exit from this routine and
 420   // a GC can trash the oop in C's return register.  The generated stub will
 421   // fetch the oop from TLS after any possible GC.
 422   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 423   current->set_vm_result_oop(result);
 424   JRT_BLOCK_END;
 425 
 426   // inform GC that we won't do card marks for initializing writes.
 427   SharedRuntime::on_slowpath_allocation_exit(current);
 428 JRT_END
 429 
 430 // array allocation without zeroing
 431 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 432   JRT_BLOCK;
 433 #ifndef PRODUCT
 434   SharedRuntime::_new_array_ctr++;            // new array requires GC
 435 #endif
 436   assert(check_compiled_frame(current), "incorrect caller");
 437 
 438   // Scavenge and allocate an instance.
 439   oop result;
 440 
 441   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 442   // The oopFactory likes to work with the element type.
 443   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 444   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 445 
 446   // Pass oops back through thread local storage.  Our apparent type to Java
 447   // is that we return an oop, but we can block on exit from this routine and
 448   // a GC can trash the oop in C's return register.  The generated stub will
 449   // fetch the oop from TLS after any possible GC.
 450   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 451   current->set_vm_result_oop(result);
 452   JRT_BLOCK_END;
 453 
 454 
 455   // inform GC that we won't do card marks for initializing writes.
 456   SharedRuntime::on_slowpath_allocation_exit(current);
 457 
 458   oop result = current->vm_result_oop();
 459   if ((len > 0) && (result != nullptr) &&
 460       is_deoptimized_caller_frame(current)) {
 461     // Zero array here if the caller is deoptimized.
 462     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 463     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 464     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 465     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 466     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 467     if (!is_aligned(hs_bytes, BytesPerLong)) {
 468       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 469       hs_bytes += BytesPerInt;
 470     }
 471 
 472     // Optimized zeroing.
 473     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 474     const size_t aligned_hs = hs_bytes / BytesPerLong;
 475     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 476   }
 477 
 478 JRT_END
 479 
 480 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 481 
 482 // multianewarray for 2 dimensions
 483 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 484 #ifndef PRODUCT
 485   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 486 #endif
 487   assert(check_compiled_frame(current), "incorrect caller");
 488   assert(elem_type->is_klass(), "not a class");
 489   jint dims[2];
 490   dims[0] = len1;
 491   dims[1] = len2;
 492   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 493   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 494   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 495   current->set_vm_result_oop(obj);
 496 JRT_END
 497 
 498 // multianewarray for 3 dimensions
 499 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 500 #ifndef PRODUCT
 501   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 502 #endif
 503   assert(check_compiled_frame(current), "incorrect caller");
 504   assert(elem_type->is_klass(), "not a class");
 505   jint dims[3];
 506   dims[0] = len1;
 507   dims[1] = len2;
 508   dims[2] = len3;
 509   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 510   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 511   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 512   current->set_vm_result_oop(obj);
 513 JRT_END
 514 
 515 // multianewarray for 4 dimensions
 516 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 517 #ifndef PRODUCT
 518   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 519 #endif
 520   assert(check_compiled_frame(current), "incorrect caller");
 521   assert(elem_type->is_klass(), "not a class");
 522   jint dims[4];
 523   dims[0] = len1;
 524   dims[1] = len2;
 525   dims[2] = len3;
 526   dims[3] = len4;
 527   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 528   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 529   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 530   current->set_vm_result_oop(obj);
 531 JRT_END
 532 
 533 // multianewarray for 5 dimensions
 534 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 535 #ifndef PRODUCT
 536   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 537 #endif
 538   assert(check_compiled_frame(current), "incorrect caller");
 539   assert(elem_type->is_klass(), "not a class");
 540   jint dims[5];
 541   dims[0] = len1;
 542   dims[1] = len2;
 543   dims[2] = len3;
 544   dims[3] = len4;
 545   dims[4] = len5;
 546   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 547   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 548   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 549   current->set_vm_result_oop(obj);
 550 JRT_END
 551 
 552 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 553   assert(check_compiled_frame(current), "incorrect caller");
 554   assert(elem_type->is_klass(), "not a class");
 555   assert(oop(dims)->is_typeArray(), "not an array");
 556 
 557   ResourceMark rm;
 558   jint len = dims->length();
 559   assert(len > 0, "Dimensions array should contain data");
 560   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 561   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 562                                        c_dims, len);
 563 
 564   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 565   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 566   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 567   current->set_vm_result_oop(obj);
 568 JRT_END
 569 
 570 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 571 
 572   // Very few notify/notifyAll operations find any threads on the waitset, so
 573   // the dominant fast-path is to simply return.
 574   // Relatedly, it's critical that notify/notifyAll be fast in order to
 575   // reduce lock hold times.
 576   if (!SafepointSynchronize::is_synchronizing()) {
 577     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 578       return;
 579     }
 580   }
 581 
 582   // This is the case the fast-path above isn't provisioned to handle.
 583   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 584   // (The fast-path is just a degenerate variant of the slow-path).
 585   // Perform the dreaded state transition and pass control into the slow-path.
 586   JRT_BLOCK;
 587   Handle h_obj(current, obj);
 588   ObjectSynchronizer::notify(h_obj, CHECK);
 589   JRT_BLOCK_END;
 590 JRT_END
 591 
 592 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 593 
 594   if (!SafepointSynchronize::is_synchronizing() ) {
 595     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 596       return;
 597     }
 598   }
 599 
 600   // This is the case the fast-path above isn't provisioned to handle.
 601   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 602   // (The fast-path is just a degenerate variant of the slow-path).
 603   // Perform the dreaded state transition and pass control into the slow-path.
 604   JRT_BLOCK;
 605   Handle h_obj(current, obj);
 606   ObjectSynchronizer::notifyall(h_obj, CHECK);
 607   JRT_BLOCK_END;
 608 JRT_END
 609 
 610 static const TypeFunc* make_new_instance_Type() {
 611   // create input type (domain)
 612   const Type **fields = TypeTuple::fields(2);
 613   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 614   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 615   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 616 
 617   // create result type (range)
 618   fields = TypeTuple::fields(1);
 619   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 620 
 621   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 622 
 623   return TypeFunc::make(domain, range);
 624 }
 625 
 626 #if INCLUDE_JVMTI
 627 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 628   // create input type (domain)
 629   const Type **fields = TypeTuple::fields(2);
 630   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 631   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 633 
 634   // no result type needed
 635   fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = nullptr; // void
 637   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 638 
 639   return TypeFunc::make(domain,range);
 640 }
 641 #endif
 642 
 643 static const TypeFunc* make_athrow_Type() {
 644   // create input type (domain)
 645   const Type **fields = TypeTuple::fields(1);
 646   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 647   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 648 
 649   // create result type (range)
 650   fields = TypeTuple::fields(0);
 651 
 652   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 653 
 654   return TypeFunc::make(domain, range);
 655 }
 656 
 657 static const TypeFunc* make_new_array_Type() {
 658   // create input type (domain)
 659   const Type **fields = TypeTuple::fields(3);
 660   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 661   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 662   fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL;       // init value
 663   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 664 
 665   // create result type (range)
 666   fields = TypeTuple::fields(1);
 667   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 668 
 669   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 670 
 671   return TypeFunc::make(domain, range);
 672 }
 673 
 674 static const TypeFunc* make_new_array_nozero_Type() {
 675   // create input type (domain)
 676   const Type **fields = TypeTuple::fields(2);
 677   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 678   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 680 
 681   // create result type (range)
 682   fields = TypeTuple::fields(1);
 683   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 684 
 685   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 686 
 687   return TypeFunc::make(domain, range);
 688 }
 689 
 690 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 691   // create input type (domain)
 692   const int nargs = ndim + 1;
 693   const Type **fields = TypeTuple::fields(nargs);
 694   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 695   for( int i = 1; i < nargs; i++ )
 696     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 697   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 698 
 699   // create result type (range)
 700   fields = TypeTuple::fields(1);
 701   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 702   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 703 
 704   return TypeFunc::make(domain, range);
 705 }
 706 
 707 static const TypeFunc* make_multianewarrayN_Type() {
 708   // create input type (domain)
 709   const Type **fields = TypeTuple::fields(2);
 710   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 711   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 712   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 713 
 714   // create result type (range)
 715   fields = TypeTuple::fields(1);
 716   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 718 
 719   return TypeFunc::make(domain, range);
 720 }
 721 
 722 static const TypeFunc* make_uncommon_trap_Type() {
 723   // create input type (domain)
 724   const Type **fields = TypeTuple::fields(1);
 725   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 726   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 727 
 728   // create result type (range)
 729   fields = TypeTuple::fields(0);
 730   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 731 
 732   return TypeFunc::make(domain, range);
 733 }
 734 
 735 //-----------------------------------------------------------------------------
 736 // Monitor Handling
 737 
 738 static const TypeFunc* make_complete_monitor_enter_Type() {
 739   // create input type (domain)
 740   const Type **fields = TypeTuple::fields(2);
 741   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 742   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 743   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 744 
 745   // create result type (range)
 746   fields = TypeTuple::fields(0);
 747 
 748   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 749 
 750   return TypeFunc::make(domain, range);
 751 }
 752 
 753 //-----------------------------------------------------------------------------
 754 
 755 static const TypeFunc* make_complete_monitor_exit_Type() {
 756   // create input type (domain)
 757   const Type **fields = TypeTuple::fields(3);
 758   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 759   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 760   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 761   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 762 
 763   // create result type (range)
 764   fields = TypeTuple::fields(0);
 765 
 766   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 767 
 768   return TypeFunc::make(domain, range);
 769 }
 770 
 771 static const TypeFunc* make_monitor_notify_Type() {
 772   // create input type (domain)
 773   const Type **fields = TypeTuple::fields(1);
 774   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 775   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 776 
 777   // create result type (range)
 778   fields = TypeTuple::fields(0);
 779   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 780   return TypeFunc::make(domain, range);
 781 }
 782 
 783 static const TypeFunc* make_flush_windows_Type() {
 784   // create input type (domain)
 785   const Type** fields = TypeTuple::fields(1);
 786   fields[TypeFunc::Parms+0] = nullptr; // void
 787   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 788 
 789   // create result type
 790   fields = TypeTuple::fields(1);
 791   fields[TypeFunc::Parms+0] = nullptr; // void
 792   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 793 
 794   return TypeFunc::make(domain, range);
 795 }
 796 
 797 static const TypeFunc* make_l2f_Type() {
 798   // create input type (domain)
 799   const Type **fields = TypeTuple::fields(2);
 800   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 801   fields[TypeFunc::Parms+1] = Type::HALF;
 802   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 803 
 804   // create result type (range)
 805   fields = TypeTuple::fields(1);
 806   fields[TypeFunc::Parms+0] = Type::FLOAT;
 807   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 808 
 809   return TypeFunc::make(domain, range);
 810 }
 811 
 812 static const TypeFunc* make_modf_Type() {
 813   const Type **fields = TypeTuple::fields(2);
 814   fields[TypeFunc::Parms+0] = Type::FLOAT;
 815   fields[TypeFunc::Parms+1] = Type::FLOAT;
 816   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 817 
 818   // create result type (range)
 819   fields = TypeTuple::fields(1);
 820   fields[TypeFunc::Parms+0] = Type::FLOAT;
 821 
 822   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 823 
 824   return TypeFunc::make(domain, range);
 825 }
 826 
 827 static const TypeFunc* make_Math_D_D_Type() {
 828   // create input type (domain)
 829   const Type **fields = TypeTuple::fields(2);
 830   // Symbol* name of class to be loaded
 831   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 832   fields[TypeFunc::Parms+1] = Type::HALF;
 833   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 834 
 835   // create result type (range)
 836   fields = TypeTuple::fields(2);
 837   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 838   fields[TypeFunc::Parms+1] = Type::HALF;
 839   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 840 
 841   return TypeFunc::make(domain, range);
 842 }
 843 
 844 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 845   // create input type (domain)
 846   const Type **fields = TypeTuple::fields(num_arg);
 847   // Symbol* name of class to be loaded
 848   assert(num_arg > 0, "must have at least 1 input");
 849   for (uint i = 0; i < num_arg; i++) {
 850     fields[TypeFunc::Parms+i] = in_type;
 851   }
 852   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 853 
 854   // create result type (range)
 855   const uint num_ret = 1;
 856   fields = TypeTuple::fields(num_ret);
 857   fields[TypeFunc::Parms+0] = out_type;
 858   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 859 
 860   return TypeFunc::make(domain, range);
 861 }
 862 
 863 static const TypeFunc* make_Math_DD_D_Type() {
 864   const Type **fields = TypeTuple::fields(4);
 865   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 866   fields[TypeFunc::Parms+1] = Type::HALF;
 867   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 868   fields[TypeFunc::Parms+3] = Type::HALF;
 869   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 870 
 871   // create result type (range)
 872   fields = TypeTuple::fields(2);
 873   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 874   fields[TypeFunc::Parms+1] = Type::HALF;
 875   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 876 
 877   return TypeFunc::make(domain, range);
 878 }
 879 
 880 //-------------- currentTimeMillis, currentTimeNanos, etc
 881 
 882 static const TypeFunc* make_void_long_Type() {
 883   // create input type (domain)
 884   const Type **fields = TypeTuple::fields(0);
 885   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 886 
 887   // create result type (range)
 888   fields = TypeTuple::fields(2);
 889   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 890   fields[TypeFunc::Parms+1] = Type::HALF;
 891   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 892 
 893   return TypeFunc::make(domain, range);
 894 }
 895 
 896 static const TypeFunc* make_void_void_Type() {
 897   // create input type (domain)
 898   const Type **fields = TypeTuple::fields(0);
 899   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 900 
 901   // create result type (range)
 902   fields = TypeTuple::fields(0);
 903   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 904   return TypeFunc::make(domain, range);
 905 }
 906 
 907 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 908   // create input type (domain)
 909   const Type **fields = TypeTuple::fields(0);
 910   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 911 
 912   // create result type (range)
 913   fields = TypeTuple::fields(0);
 914   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 915   return TypeFunc::make(domain, range);
 916 }
 917 
 918 
 919 // Takes as parameters:
 920 // void *dest
 921 // long size
 922 // uchar byte
 923 
 924 static const TypeFunc* make_setmemory_Type() {
 925   // create input type (domain)
 926   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 927   const Type** fields = TypeTuple::fields(argcnt);
 928   int argp = TypeFunc::Parms;
 929   fields[argp++] = TypePtr::NOTNULL;        // dest
 930   fields[argp++] = TypeX_X;                 // size
 931   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 932   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 933   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 934   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 935 
 936   // no result type needed
 937   fields = TypeTuple::fields(1);
 938   fields[TypeFunc::Parms+0] = nullptr; // void
 939   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 940   return TypeFunc::make(domain, range);
 941 }
 942 
 943 // arraycopy stub variations:
 944 enum ArrayCopyType {
 945   ac_fast,                      // void(ptr, ptr, size_t)
 946   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 947   ac_slow,                      // void(ptr, int, ptr, int, int)
 948   ac_generic                    //  int(ptr, int, ptr, int, int)
 949 };
 950 
 951 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 952   // create input type (domain)
 953   int num_args      = (act == ac_fast ? 3 : 5);
 954   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 955   int argcnt = num_args;
 956   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 957   const Type** fields = TypeTuple::fields(argcnt);
 958   int argp = TypeFunc::Parms;
 959   fields[argp++] = TypePtr::NOTNULL;    // src
 960   if (num_size_args == 0) {
 961     fields[argp++] = TypeInt::INT;      // src_pos
 962   }
 963   fields[argp++] = TypePtr::NOTNULL;    // dest
 964   if (num_size_args == 0) {
 965     fields[argp++] = TypeInt::INT;      // dest_pos
 966     fields[argp++] = TypeInt::INT;      // length
 967   }
 968   while (num_size_args-- > 0) {
 969     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 970     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 971   }
 972   if (act == ac_checkcast) {
 973     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 974   }
 975   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 976   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 977 
 978   // create result type if needed
 979   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 980   fields = TypeTuple::fields(1);
 981   if (retcnt == 0)
 982     fields[TypeFunc::Parms+0] = nullptr; // void
 983   else
 984     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 985   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 986   return TypeFunc::make(domain, range);
 987 }
 988 
 989 static const TypeFunc* make_array_fill_Type() {
 990   const Type** fields;
 991   int argp = TypeFunc::Parms;
 992   // create input type (domain): pointer, int, size_t
 993   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 994   fields[argp++] = TypePtr::NOTNULL;
 995   fields[argp++] = TypeInt::INT;
 996   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 997   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 998   const TypeTuple *domain = TypeTuple::make(argp, fields);
 999 
1000   // create result type
1001   fields = TypeTuple::fields(1);
1002   fields[TypeFunc::Parms+0] = nullptr; // void
1003   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1004 
1005   return TypeFunc::make(domain, range);
1006 }
1007 
1008 static const TypeFunc* make_array_partition_Type() {
1009   // create input type (domain)
1010   int num_args = 7;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypePtr::NOTNULL;  // array
1015   fields[argp++] = TypeInt::INT;      // element type
1016   fields[argp++] = TypeInt::INT;      // low
1017   fields[argp++] = TypeInt::INT;      // end
1018   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
1019   fields[argp++] = TypeInt::INT;      // indexPivot1
1020   fields[argp++] = TypeInt::INT;      // indexPivot2
1021   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1022   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1023 
1024   // no result type needed
1025   fields = TypeTuple::fields(1);
1026   fields[TypeFunc::Parms+0] = nullptr; // void
1027   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1028   return TypeFunc::make(domain, range);
1029 }
1030 
1031 static const TypeFunc* make_array_sort_Type() {
1032   // create input type (domain)
1033   int num_args      = 4;
1034   int argcnt = num_args;
1035   const Type** fields = TypeTuple::fields(argcnt);
1036   int argp = TypeFunc::Parms;
1037   fields[argp++] = TypePtr::NOTNULL;    // array
1038   fields[argp++] = TypeInt::INT;    // element type
1039   fields[argp++] = TypeInt::INT;    // fromIndex
1040   fields[argp++] = TypeInt::INT;    // toIndex
1041   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1042   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1043 
1044   // no result type needed
1045   fields = TypeTuple::fields(1);
1046   fields[TypeFunc::Parms+0] = nullptr; // void
1047   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1048   return TypeFunc::make(domain, range);
1049 }
1050 
1051 static const TypeFunc* make_aescrypt_block_Type() {
1052   // create input type (domain)
1053   int num_args      = 3;
1054   int argcnt = num_args;
1055   const Type** fields = TypeTuple::fields(argcnt);
1056   int argp = TypeFunc::Parms;
1057   fields[argp++] = TypePtr::NOTNULL;    // src
1058   fields[argp++] = TypePtr::NOTNULL;    // dest
1059   fields[argp++] = TypePtr::NOTNULL;    // k array
1060   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1061   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1062 
1063   // no result type needed
1064   fields = TypeTuple::fields(1);
1065   fields[TypeFunc::Parms+0] = nullptr; // void
1066   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1067   return TypeFunc::make(domain, range);
1068 }
1069 
1070 static const TypeFunc* make_updateBytesCRC32_Type() {
1071   // create input type (domain)
1072   int num_args      = 3;
1073   int argcnt = num_args;
1074   const Type** fields = TypeTuple::fields(argcnt);
1075   int argp = TypeFunc::Parms;
1076   fields[argp++] = TypeInt::INT;        // crc
1077   fields[argp++] = TypePtr::NOTNULL;    // src
1078   fields[argp++] = TypeInt::INT;        // len
1079   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1080   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1081 
1082   // result type needed
1083   fields = TypeTuple::fields(1);
1084   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1085   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1086   return TypeFunc::make(domain, range);
1087 }
1088 
1089 static const TypeFunc* make_updateBytesCRC32C_Type() {
1090   // create input type (domain)
1091   int num_args      = 4;
1092   int argcnt = num_args;
1093   const Type** fields = TypeTuple::fields(argcnt);
1094   int argp = TypeFunc::Parms;
1095   fields[argp++] = TypeInt::INT;        // crc
1096   fields[argp++] = TypePtr::NOTNULL;    // buf
1097   fields[argp++] = TypeInt::INT;        // len
1098   fields[argp++] = TypePtr::NOTNULL;    // table
1099   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1100   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1101 
1102   // result type needed
1103   fields = TypeTuple::fields(1);
1104   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1105   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1106   return TypeFunc::make(domain, range);
1107 }
1108 
1109 static const TypeFunc* make_updateBytesAdler32_Type() {
1110   // create input type (domain)
1111   int num_args      = 3;
1112   int argcnt = num_args;
1113   const Type** fields = TypeTuple::fields(argcnt);
1114   int argp = TypeFunc::Parms;
1115   fields[argp++] = TypeInt::INT;        // crc
1116   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1117   fields[argp++] = TypeInt::INT;        // len
1118   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1119   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1120 
1121   // result type needed
1122   fields = TypeTuple::fields(1);
1123   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1124   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1125   return TypeFunc::make(domain, range);
1126 }
1127 
1128 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1129   // create input type (domain)
1130   int num_args      = 5;
1131   int argcnt = num_args;
1132   const Type** fields = TypeTuple::fields(argcnt);
1133   int argp = TypeFunc::Parms;
1134   fields[argp++] = TypePtr::NOTNULL;    // src
1135   fields[argp++] = TypePtr::NOTNULL;    // dest
1136   fields[argp++] = TypePtr::NOTNULL;    // k array
1137   fields[argp++] = TypePtr::NOTNULL;    // r array
1138   fields[argp++] = TypeInt::INT;        // src len
1139   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1140   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1141 
1142   // returning cipher len (int)
1143   fields = TypeTuple::fields(1);
1144   fields[TypeFunc::Parms+0] = TypeInt::INT;
1145   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1146   return TypeFunc::make(domain, range);
1147 }
1148 
1149 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1150   // create input type (domain)
1151   int num_args = 4;
1152   int argcnt = num_args;
1153   const Type** fields = TypeTuple::fields(argcnt);
1154   int argp = TypeFunc::Parms;
1155   fields[argp++] = TypePtr::NOTNULL;    // src
1156   fields[argp++] = TypePtr::NOTNULL;    // dest
1157   fields[argp++] = TypePtr::NOTNULL;    // k array
1158   fields[argp++] = TypeInt::INT;        // src len
1159   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1160   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1161 
1162   // returning cipher len (int)
1163   fields = TypeTuple::fields(1);
1164   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1165   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1166   return TypeFunc::make(domain, range);
1167 }
1168 
1169 static const TypeFunc* make_counterMode_aescrypt_Type() {
1170   // create input type (domain)
1171   int num_args = 7;
1172   int argcnt = num_args;
1173   const Type** fields = TypeTuple::fields(argcnt);
1174   int argp = TypeFunc::Parms;
1175   fields[argp++] = TypePtr::NOTNULL; // src
1176   fields[argp++] = TypePtr::NOTNULL; // dest
1177   fields[argp++] = TypePtr::NOTNULL; // k array
1178   fields[argp++] = TypePtr::NOTNULL; // counter array
1179   fields[argp++] = TypeInt::INT; // src len
1180   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1181   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1182   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1183   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1184   // returning cipher len (int)
1185   fields = TypeTuple::fields(1);
1186   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1187   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1188   return TypeFunc::make(domain, range);
1189 }
1190 
1191 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1192   // create input type (domain)
1193   int num_args = 8;
1194   int argcnt = num_args;
1195   const Type** fields = TypeTuple::fields(argcnt);
1196   int argp = TypeFunc::Parms;
1197   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1198   fields[argp++] = TypeInt::INT;     // int len
1199   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1200   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1201   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1202   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1203   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1204   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1205 
1206   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1207   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1208   // returning cipher len (int)
1209   fields = TypeTuple::fields(1);
1210   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1211   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1212   return TypeFunc::make(domain, range);
1213 }
1214 
1215 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1216   // create input type (domain)
1217   int num_args = is_sha3 ? 3 : 2;
1218   int argcnt = num_args;
1219   const Type** fields = TypeTuple::fields(argcnt);
1220   int argp = TypeFunc::Parms;
1221   fields[argp++] = TypePtr::NOTNULL; // buf
1222   fields[argp++] = TypePtr::NOTNULL; // state
1223   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1224   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1225   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1226 
1227   // no result type needed
1228   fields = TypeTuple::fields(1);
1229   fields[TypeFunc::Parms+0] = nullptr; // void
1230   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1231   return TypeFunc::make(domain, range);
1232 }
1233 
1234 /*
1235  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1236  */
1237 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1238   // create input type (domain)
1239   int num_args = is_sha3 ? 5 : 4;
1240   int argcnt = num_args;
1241   const Type** fields = TypeTuple::fields(argcnt);
1242   int argp = TypeFunc::Parms;
1243   fields[argp++] = TypePtr::NOTNULL; // buf
1244   fields[argp++] = TypePtr::NOTNULL; // state
1245   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1246   fields[argp++] = TypeInt::INT;     // ofs
1247   fields[argp++] = TypeInt::INT;     // limit
1248   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1249   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1250 
1251   // returning ofs (int)
1252   fields = TypeTuple::fields(1);
1253   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1254   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1255   return TypeFunc::make(domain, range);
1256 }
1257 
1258 // SHAKE128Parallel doubleKeccak function
1259 static const TypeFunc* make_double_keccak_Type() {
1260     int argcnt = 2;
1261 
1262     const Type** fields = TypeTuple::fields(argcnt);
1263     int argp = TypeFunc::Parms;
1264     fields[argp++] = TypePtr::NOTNULL;      // status0
1265     fields[argp++] = TypePtr::NOTNULL;      // status1
1266 
1267     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1268     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1269 
1270     // result type needed
1271     fields = TypeTuple::fields(1);
1272     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1273     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1274     return TypeFunc::make(domain, range);
1275 }
1276 
1277 static const TypeFunc* make_multiplyToLen_Type() {
1278   // create input type (domain)
1279   int num_args      = 5;
1280   int argcnt = num_args;
1281   const Type** fields = TypeTuple::fields(argcnt);
1282   int argp = TypeFunc::Parms;
1283   fields[argp++] = TypePtr::NOTNULL;    // x
1284   fields[argp++] = TypeInt::INT;        // xlen
1285   fields[argp++] = TypePtr::NOTNULL;    // y
1286   fields[argp++] = TypeInt::INT;        // ylen
1287   fields[argp++] = TypePtr::NOTNULL;    // z
1288   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1289   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1290 
1291   // no result type needed
1292   fields = TypeTuple::fields(1);
1293   fields[TypeFunc::Parms+0] = nullptr;
1294   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1295   return TypeFunc::make(domain, range);
1296 }
1297 
1298 static const TypeFunc* make_squareToLen_Type() {
1299   // create input type (domain)
1300   int num_args      = 4;
1301   int argcnt = num_args;
1302   const Type** fields = TypeTuple::fields(argcnt);
1303   int argp = TypeFunc::Parms;
1304   fields[argp++] = TypePtr::NOTNULL;    // x
1305   fields[argp++] = TypeInt::INT;        // len
1306   fields[argp++] = TypePtr::NOTNULL;    // z
1307   fields[argp++] = TypeInt::INT;        // zlen
1308   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1309   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1310 
1311   // no result type needed
1312   fields = TypeTuple::fields(1);
1313   fields[TypeFunc::Parms+0] = nullptr;
1314   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1315   return TypeFunc::make(domain, range);
1316 }
1317 
1318 static const TypeFunc* make_mulAdd_Type() {
1319   // create input type (domain)
1320   int num_args      = 5;
1321   int argcnt = num_args;
1322   const Type** fields = TypeTuple::fields(argcnt);
1323   int argp = TypeFunc::Parms;
1324   fields[argp++] = TypePtr::NOTNULL;    // out
1325   fields[argp++] = TypePtr::NOTNULL;    // in
1326   fields[argp++] = TypeInt::INT;        // offset
1327   fields[argp++] = TypeInt::INT;        // len
1328   fields[argp++] = TypeInt::INT;        // k
1329   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1330   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1331 
1332   // returning carry (int)
1333   fields = TypeTuple::fields(1);
1334   fields[TypeFunc::Parms+0] = TypeInt::INT;
1335   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1336   return TypeFunc::make(domain, range);
1337 }
1338 
1339 static const TypeFunc* make_montgomeryMultiply_Type() {
1340   // create input type (domain)
1341   int num_args      = 7;
1342   int argcnt = num_args;
1343   const Type** fields = TypeTuple::fields(argcnt);
1344   int argp = TypeFunc::Parms;
1345   fields[argp++] = TypePtr::NOTNULL;    // a
1346   fields[argp++] = TypePtr::NOTNULL;    // b
1347   fields[argp++] = TypePtr::NOTNULL;    // n
1348   fields[argp++] = TypeInt::INT;        // len
1349   fields[argp++] = TypeLong::LONG;      // inv
1350   fields[argp++] = Type::HALF;
1351   fields[argp++] = TypePtr::NOTNULL;    // result
1352   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1353   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1354 
1355   // result type needed
1356   fields = TypeTuple::fields(1);
1357   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1358 
1359   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1360   return TypeFunc::make(domain, range);
1361 }
1362 
1363 static const TypeFunc* make_montgomerySquare_Type() {
1364   // create input type (domain)
1365   int num_args      = 6;
1366   int argcnt = num_args;
1367   const Type** fields = TypeTuple::fields(argcnt);
1368   int argp = TypeFunc::Parms;
1369   fields[argp++] = TypePtr::NOTNULL;    // a
1370   fields[argp++] = TypePtr::NOTNULL;    // n
1371   fields[argp++] = TypeInt::INT;        // len
1372   fields[argp++] = TypeLong::LONG;      // inv
1373   fields[argp++] = Type::HALF;
1374   fields[argp++] = TypePtr::NOTNULL;    // result
1375   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1376   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1377 
1378   // result type needed
1379   fields = TypeTuple::fields(1);
1380   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1381 
1382   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1383   return TypeFunc::make(domain, range);
1384 }
1385 
1386 static const TypeFunc* make_bigIntegerShift_Type() {
1387   int argcnt = 5;
1388   const Type** fields = TypeTuple::fields(argcnt);
1389   int argp = TypeFunc::Parms;
1390   fields[argp++] = TypePtr::NOTNULL;    // newArr
1391   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1392   fields[argp++] = TypeInt::INT;        // newIdx
1393   fields[argp++] = TypeInt::INT;        // shiftCount
1394   fields[argp++] = TypeInt::INT;        // numIter
1395   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1396   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1397 
1398   // no result type needed
1399   fields = TypeTuple::fields(1);
1400   fields[TypeFunc::Parms + 0] = nullptr;
1401   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1402   return TypeFunc::make(domain, range);
1403 }
1404 
1405 static const TypeFunc* make_vectorizedMismatch_Type() {
1406   // create input type (domain)
1407   int num_args = 4;
1408   int argcnt = num_args;
1409   const Type** fields = TypeTuple::fields(argcnt);
1410   int argp = TypeFunc::Parms;
1411   fields[argp++] = TypePtr::NOTNULL;    // obja
1412   fields[argp++] = TypePtr::NOTNULL;    // objb
1413   fields[argp++] = TypeInt::INT;        // length, number of elements
1414   fields[argp++] = TypeInt::INT;        // log2scale, element size
1415   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1416   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1417 
1418   //return mismatch index (int)
1419   fields = TypeTuple::fields(1);
1420   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1421   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1422   return TypeFunc::make(domain, range);
1423 }
1424 
1425 static const TypeFunc* make_ghash_processBlocks_Type() {
1426   int argcnt = 4;
1427 
1428   const Type** fields = TypeTuple::fields(argcnt);
1429   int argp = TypeFunc::Parms;
1430   fields[argp++] = TypePtr::NOTNULL;    // state
1431   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1432   fields[argp++] = TypePtr::NOTNULL;    // data
1433   fields[argp++] = TypeInt::INT;        // blocks
1434   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1435   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1436 
1437   // result type needed
1438   fields = TypeTuple::fields(1);
1439   fields[TypeFunc::Parms+0] = nullptr; // void
1440   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1441   return TypeFunc::make(domain, range);
1442 }
1443 
1444 static const TypeFunc* make_chacha20Block_Type() {
1445   int argcnt = 2;
1446 
1447   const Type** fields = TypeTuple::fields(argcnt);
1448   int argp = TypeFunc::Parms;
1449   fields[argp++] = TypePtr::NOTNULL;      // state
1450   fields[argp++] = TypePtr::NOTNULL;      // result
1451 
1452   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1453   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1454 
1455   // result type needed
1456   fields = TypeTuple::fields(1);
1457   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1458   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1459   return TypeFunc::make(domain, range);
1460 }
1461 
1462 // Kyber NTT function
1463 static const TypeFunc* make_kyberNtt_Type() {
1464     int argcnt = 2;
1465 
1466     const Type** fields = TypeTuple::fields(argcnt);
1467     int argp = TypeFunc::Parms;
1468     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1469     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1470 
1471     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1472     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1473 
1474     // result type needed
1475     fields = TypeTuple::fields(1);
1476     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1477     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1478     return TypeFunc::make(domain, range);
1479 }
1480 
1481 // Kyber inverse NTT function
1482 static const TypeFunc* make_kyberInverseNtt_Type() {
1483     int argcnt = 2;
1484 
1485     const Type** fields = TypeTuple::fields(argcnt);
1486     int argp = TypeFunc::Parms;
1487     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1488     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1489 
1490     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1491     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1492 
1493     // result type needed
1494     fields = TypeTuple::fields(1);
1495     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1496     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1497     return TypeFunc::make(domain, range);
1498 }
1499 
1500 // Kyber NTT multiply function
1501 static const TypeFunc* make_kyberNttMult_Type() {
1502     int argcnt = 4;
1503 
1504     const Type** fields = TypeTuple::fields(argcnt);
1505     int argp = TypeFunc::Parms;
1506     fields[argp++] = TypePtr::NOTNULL;      // result
1507     fields[argp++] = TypePtr::NOTNULL;      // ntta
1508     fields[argp++] = TypePtr::NOTNULL;      // nttb
1509     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1510 
1511     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1512     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1513 
1514     // result type needed
1515     fields = TypeTuple::fields(1);
1516     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1517     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1518     return TypeFunc::make(domain, range);
1519 }
1520 
1521 // Kyber add 2 polynomials function
1522 static const TypeFunc* make_kyberAddPoly_2_Type() {
1523     int argcnt = 3;
1524 
1525     const Type** fields = TypeTuple::fields(argcnt);
1526     int argp = TypeFunc::Parms;
1527     fields[argp++] = TypePtr::NOTNULL;      // result
1528     fields[argp++] = TypePtr::NOTNULL;      // a
1529     fields[argp++] = TypePtr::NOTNULL;      // b
1530 
1531     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1532     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1533 
1534     // result type needed
1535     fields = TypeTuple::fields(1);
1536     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1537     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1538     return TypeFunc::make(domain, range);
1539 }
1540 
1541 
1542 // Kyber add 3 polynomials function
1543 static const TypeFunc* make_kyberAddPoly_3_Type() {
1544     int argcnt = 4;
1545 
1546     const Type** fields = TypeTuple::fields(argcnt);
1547     int argp = TypeFunc::Parms;
1548     fields[argp++] = TypePtr::NOTNULL;      // result
1549     fields[argp++] = TypePtr::NOTNULL;      // a
1550     fields[argp++] = TypePtr::NOTNULL;      // b
1551     fields[argp++] = TypePtr::NOTNULL;      // c
1552 
1553     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1554     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1555 
1556     // result type needed
1557     fields = TypeTuple::fields(1);
1558     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1559     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1560     return TypeFunc::make(domain, range);
1561 }
1562 
1563 
1564 // Kyber XOF output parsing into polynomial coefficients candidates
1565 // or decompress(12,...) function
1566 static const TypeFunc* make_kyber12To16_Type() {
1567     int argcnt = 4;
1568 
1569     const Type** fields = TypeTuple::fields(argcnt);
1570     int argp = TypeFunc::Parms;
1571     fields[argp++] = TypePtr::NOTNULL;      // condensed
1572     fields[argp++] = TypeInt::INT;          // condensedOffs
1573     fields[argp++] = TypePtr::NOTNULL;      // parsed
1574     fields[argp++] = TypeInt::INT;          // parsedLength
1575 
1576     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1577     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1578 
1579     // result type needed
1580     fields = TypeTuple::fields(1);
1581     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1582     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1583     return TypeFunc::make(domain, range);
1584 }
1585 
1586 // Kyber Barrett reduce function
1587 static const TypeFunc* make_kyberBarrettReduce_Type() {
1588     int argcnt = 1;
1589 
1590     const Type** fields = TypeTuple::fields(argcnt);
1591     int argp = TypeFunc::Parms;
1592     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1593 
1594     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1595     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1596 
1597     // result type needed
1598     fields = TypeTuple::fields(1);
1599     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1600     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1601     return TypeFunc::make(domain, range);
1602 }
1603 
1604 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1605 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1606     int argcnt = 2;
1607 
1608     const Type** fields = TypeTuple::fields(argcnt);
1609     int argp = TypeFunc::Parms;
1610     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1611     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1612 
1613     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1614     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1615 
1616     // result type needed
1617     fields = TypeTuple::fields(1);
1618     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1619     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1620     return TypeFunc::make(domain, range);
1621 }
1622 
1623 // Dilithium inverse NTT function except the final mod Q division by 2^256
1624 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1625     int argcnt = 2;
1626 
1627     const Type** fields = TypeTuple::fields(argcnt);
1628     int argp = TypeFunc::Parms;
1629     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1630     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1631 
1632     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1633     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1634 
1635     // result type needed
1636     fields = TypeTuple::fields(1);
1637     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1638     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1639     return TypeFunc::make(domain, range);
1640 }
1641 
1642 // Dilithium NTT multiply function
1643 static const TypeFunc* make_dilithiumNttMult_Type() {
1644     int argcnt = 3;
1645 
1646     const Type** fields = TypeTuple::fields(argcnt);
1647     int argp = TypeFunc::Parms;
1648     fields[argp++] = TypePtr::NOTNULL;      // result
1649     fields[argp++] = TypePtr::NOTNULL;      // ntta
1650     fields[argp++] = TypePtr::NOTNULL;      // nttb
1651 
1652     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1653     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1654 
1655     // result type needed
1656     fields = TypeTuple::fields(1);
1657     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1658     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1659     return TypeFunc::make(domain, range);
1660 }
1661 
1662 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1663 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1664     int argcnt = 2;
1665 
1666     const Type** fields = TypeTuple::fields(argcnt);
1667     int argp = TypeFunc::Parms;
1668     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1669     fields[argp++] = TypeInt::INT;          // constant multiplier
1670 
1671     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1672     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1673 
1674     // result type needed
1675     fields = TypeTuple::fields(1);
1676     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1677     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1678     return TypeFunc::make(domain, range);
1679 }
1680 
1681 // Dilithium decompose polynomial
1682 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1683     int argcnt = 5;
1684 
1685     const Type** fields = TypeTuple::fields(argcnt);
1686     int argp = TypeFunc::Parms;
1687     fields[argp++] = TypePtr::NOTNULL;      // input
1688     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1689     fields[argp++] = TypePtr::NOTNULL;      // highPart
1690     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1691     fields[argp++] = TypeInt::INT;          // multiplier
1692 
1693     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1694     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1695 
1696     // result type needed
1697     fields = TypeTuple::fields(1);
1698     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1699     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1700     return TypeFunc::make(domain, range);
1701 }
1702 
1703 static const TypeFunc* make_base64_encodeBlock_Type() {
1704   int argcnt = 6;
1705 
1706   const Type** fields = TypeTuple::fields(argcnt);
1707   int argp = TypeFunc::Parms;
1708   fields[argp++] = TypePtr::NOTNULL;    // src array
1709   fields[argp++] = TypeInt::INT;        // offset
1710   fields[argp++] = TypeInt::INT;        // length
1711   fields[argp++] = TypePtr::NOTNULL;    // dest array
1712   fields[argp++] = TypeInt::INT;       // dp
1713   fields[argp++] = TypeInt::BOOL;       // isURL
1714   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1715   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1716 
1717   // result type needed
1718   fields = TypeTuple::fields(1);
1719   fields[TypeFunc::Parms + 0] = nullptr; // void
1720   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1721   return TypeFunc::make(domain, range);
1722 }
1723 
1724 static const TypeFunc* make_string_IndexOf_Type() {
1725   int argcnt = 4;
1726 
1727   const Type** fields = TypeTuple::fields(argcnt);
1728   int argp = TypeFunc::Parms;
1729   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1730   fields[argp++] = TypeInt::INT;        // haystack length
1731   fields[argp++] = TypePtr::NOTNULL;    // needle array
1732   fields[argp++] = TypeInt::INT;        // needle length
1733   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1734   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1735 
1736   // result type needed
1737   fields = TypeTuple::fields(1);
1738   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1739   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1740   return TypeFunc::make(domain, range);
1741 }
1742 
1743 static const TypeFunc* make_base64_decodeBlock_Type() {
1744   int argcnt = 7;
1745 
1746   const Type** fields = TypeTuple::fields(argcnt);
1747   int argp = TypeFunc::Parms;
1748   fields[argp++] = TypePtr::NOTNULL;    // src array
1749   fields[argp++] = TypeInt::INT;        // src offset
1750   fields[argp++] = TypeInt::INT;        // src length
1751   fields[argp++] = TypePtr::NOTNULL;    // dest array
1752   fields[argp++] = TypeInt::INT;        // dest offset
1753   fields[argp++] = TypeInt::BOOL;       // isURL
1754   fields[argp++] = TypeInt::BOOL;       // isMIME
1755   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1756   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1757 
1758   // result type needed
1759   fields = TypeTuple::fields(1);
1760   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1761   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1762   return TypeFunc::make(domain, range);
1763 }
1764 
1765 static const TypeFunc* make_poly1305_processBlocks_Type() {
1766   int argcnt = 4;
1767 
1768   const Type** fields = TypeTuple::fields(argcnt);
1769   int argp = TypeFunc::Parms;
1770   fields[argp++] = TypePtr::NOTNULL;    // input array
1771   fields[argp++] = TypeInt::INT;        // input length
1772   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1773   fields[argp++] = TypePtr::NOTNULL;    // r array
1774   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1775   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1776 
1777   // result type needed
1778   fields = TypeTuple::fields(1);
1779   fields[TypeFunc::Parms + 0] = nullptr; // void
1780   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1781   return TypeFunc::make(domain, range);
1782 }
1783 
1784 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1785   int argcnt = 3;
1786 
1787   const Type** fields = TypeTuple::fields(argcnt);
1788   int argp = TypeFunc::Parms;
1789   fields[argp++] = TypePtr::NOTNULL;    // a array
1790   fields[argp++] = TypePtr::NOTNULL;    // b array
1791   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1792   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1793   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1794 
1795   // result type needed
1796   fields = TypeTuple::fields(1);
1797   fields[TypeFunc::Parms + 0] = nullptr; // void
1798   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1799   return TypeFunc::make(domain, range);
1800 }
1801 
1802 static const TypeFunc* make_intpoly_assign_Type() {
1803   int argcnt = 4;
1804 
1805   const Type** fields = TypeTuple::fields(argcnt);
1806   int argp = TypeFunc::Parms;
1807   fields[argp++] = TypeInt::INT;        // set flag
1808   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1809   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1810   fields[argp++] = TypeInt::INT;        // array length
1811   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1812   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1813 
1814   // result type needed
1815   fields = TypeTuple::fields(1);
1816   fields[TypeFunc::Parms + 0] = nullptr; // void
1817   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1818   return TypeFunc::make(domain, range);
1819 }
1820 
1821 //------------- Interpreter state for on stack replacement
1822 static const TypeFunc* make_osr_end_Type() {
1823   // create input type (domain)
1824   const Type **fields = TypeTuple::fields(1);
1825   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1826   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1827 
1828   // create result type
1829   fields = TypeTuple::fields(1);
1830   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1831   fields[TypeFunc::Parms+0] = nullptr; // void
1832   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1833   return TypeFunc::make(domain, range);
1834 }
1835 
1836 #ifndef PRODUCT
1837 static void debug_print_convert_type(const Type** fields, int* argp, Node *parm) {
1838   const BasicType bt = parm->bottom_type()->basic_type();
1839   fields[(*argp)++] = Type::get_const_basic_type(bt);
1840   if (bt == T_LONG || bt == T_DOUBLE) {
1841     fields[(*argp)++] = Type::HALF;
1842   }
1843 }
1844 
1845 static void update_arg_cnt(const Node* parm, int* arg_cnt) {
1846   (*arg_cnt)++;
1847   const BasicType bt = parm->bottom_type()->basic_type();
1848   if (bt == T_LONG || bt == T_DOUBLE) {
1849     (*arg_cnt)++;
1850   }
1851 }
1852 
1853 const TypeFunc* OptoRuntime::debug_print_Type(Node* parm0, Node* parm1,
1854                                         Node* parm2, Node* parm3,
1855                                         Node* parm4, Node* parm5,
1856                                         Node* parm6) {
1857   int argcnt = 1;
1858   if (parm0 != nullptr) { update_arg_cnt(parm0, &argcnt);
1859   if (parm1 != nullptr) { update_arg_cnt(parm1, &argcnt);
1860   if (parm2 != nullptr) { update_arg_cnt(parm2, &argcnt);
1861   if (parm3 != nullptr) { update_arg_cnt(parm3, &argcnt);
1862   if (parm4 != nullptr) { update_arg_cnt(parm4, &argcnt);
1863   if (parm5 != nullptr) { update_arg_cnt(parm5, &argcnt);
1864   if (parm6 != nullptr) { update_arg_cnt(parm6, &argcnt);
1865   /* close each nested if ===> */  } } } } } } }
1866 
1867   // create input type (domain)
1868   const Type** fields = TypeTuple::fields(argcnt);
1869   int argp = TypeFunc::Parms;
1870   fields[argp++] = TypePtr::NOTNULL;    // static string pointer
1871 
1872   if (parm0 != nullptr) { debug_print_convert_type(fields, &argp, parm0);
1873   if (parm1 != nullptr) { debug_print_convert_type(fields, &argp, parm1);
1874   if (parm2 != nullptr) { debug_print_convert_type(fields, &argp, parm2);
1875   if (parm3 != nullptr) { debug_print_convert_type(fields, &argp, parm3);
1876   if (parm4 != nullptr) { debug_print_convert_type(fields, &argp, parm4);
1877   if (parm5 != nullptr) { debug_print_convert_type(fields, &argp, parm5);
1878   if (parm6 != nullptr) { debug_print_convert_type(fields, &argp, parm6);
1879   /* close each nested if ===> */  } } } } } } }
1880 
1881   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1882   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1883 
1884   // no result type needed
1885   fields = TypeTuple::fields(1);
1886   fields[TypeFunc::Parms+0] = nullptr; // void
1887   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1888   return TypeFunc::make(domain, range);
1889 }
1890 #endif // PRODUCT
1891 
1892 //-------------------------------------------------------------------------------------
1893 // register policy
1894 
1895 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1896   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1897   switch (register_save_policy[reg]) {
1898     case 'C': return false; //SOC
1899     case 'E': return true ; //SOE
1900     case 'N': return false; //NS
1901     case 'A': return false; //AS
1902   }
1903   ShouldNotReachHere();
1904   return false;
1905 }
1906 
1907 //-----------------------------------------------------------------------
1908 // Exceptions
1909 //
1910 
1911 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1912 
1913 // The method is an entry that is always called by a C++ method not
1914 // directly from compiled code. Compiled code will call the C++ method following.
1915 // We can't allow async exception to be installed during  exception processing.
1916 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1917   // The frame we rethrow the exception to might not have been processed by the GC yet.
1918   // The stack watermark barrier takes care of detecting that and ensuring the frame
1919   // has updated oops.
1920   StackWatermarkSet::after_unwind(current);
1921 
1922   // Do not confuse exception_oop with pending_exception. The exception_oop
1923   // is only used to pass arguments into the method. Not for general
1924   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1925   // the runtime stubs checks this on exit.
1926   assert(current->exception_oop() != nullptr, "exception oop is found");
1927   address handler_address = nullptr;
1928 
1929   Handle exception(current, current->exception_oop());
1930   address pc = current->exception_pc();
1931 
1932   // Clear out the exception oop and pc since looking up an
1933   // exception handler can cause class loading, which might throw an
1934   // exception and those fields are expected to be clear during
1935   // normal bytecode execution.
1936   current->clear_exception_oop_and_pc();
1937 
1938   LogTarget(Info, exceptions) lt;
1939   if (lt.is_enabled()) {
1940     LogStream ls(lt);
1941     trace_exception(&ls, exception(), pc, "");
1942   }
1943 
1944   // for AbortVMOnException flag
1945   Exceptions::debug_check_abort(exception);
1946 
1947 #ifdef ASSERT
1948   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1949     // should throw an exception here
1950     ShouldNotReachHere();
1951   }
1952 #endif
1953 
1954   // new exception handling: this method is entered only from adapters
1955   // exceptions from compiled java methods are handled in compiled code
1956   // using rethrow node
1957 
1958   nm = CodeCache::find_nmethod(pc);
1959   assert(nm != nullptr, "No NMethod found");
1960   if (nm->is_native_method()) {
1961     fatal("Native method should not have path to exception handling");
1962   } else {
1963     // we are switching to old paradigm: search for exception handler in caller_frame
1964     // instead in exception handler of caller_frame.sender()
1965 
1966     if (JvmtiExport::can_post_on_exceptions()) {
1967       // "Full-speed catching" is not necessary here,
1968       // since we're notifying the VM on every catch.
1969       // Force deoptimization and the rest of the lookup
1970       // will be fine.
1971       deoptimize_caller_frame(current);
1972     }
1973 
1974     // Check the stack guard pages.  If enabled, look for handler in this frame;
1975     // otherwise, forcibly unwind the frame.
1976     //
1977     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1978     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1979     bool deopting = false;
1980     if (nm->is_deopt_pc(pc)) {
1981       deopting = true;
1982       RegisterMap map(current,
1983                       RegisterMap::UpdateMap::skip,
1984                       RegisterMap::ProcessFrames::include,
1985                       RegisterMap::WalkContinuation::skip);
1986       frame deoptee = current->last_frame().sender(&map);
1987       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1988       // Adjust the pc back to the original throwing pc
1989       pc = deoptee.pc();
1990     }
1991 
1992     // If we are forcing an unwind because of stack overflow then deopt is
1993     // irrelevant since we are throwing the frame away anyway.
1994 
1995     if (deopting && !force_unwind) {
1996       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1997     } else {
1998 
1999       handler_address =
2000         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
2001 
2002       if (handler_address == nullptr) {
2003         bool recursive_exception = false;
2004         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
2005         assert (handler_address != nullptr, "must have compiled handler");
2006         // Update the exception cache only when the unwind was not forced
2007         // and there didn't happen another exception during the computation of the
2008         // compiled exception handler. Checking for exception oop equality is not
2009         // sufficient because some exceptions are pre-allocated and reused.
2010         if (!force_unwind && !recursive_exception) {
2011           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
2012         }
2013       } else {
2014 #ifdef ASSERT
2015         bool recursive_exception = false;
2016         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
2017         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
2018                  p2i(handler_address), p2i(computed_address));
2019 #endif
2020       }
2021     }
2022 
2023     current->set_exception_pc(pc);
2024     current->set_exception_handler_pc(handler_address);
2025   }
2026 
2027   // Restore correct return pc.  Was saved above.
2028   current->set_exception_oop(exception());
2029   return handler_address;
2030 
2031 JRT_END
2032 
2033 // We are entering here from exception_blob
2034 // If there is a compiled exception handler in this method, we will continue there;
2035 // otherwise we will unwind the stack and continue at the caller of top frame method
2036 // Note we enter without the usual JRT wrapper. We will call a helper routine that
2037 // will do the normal VM entry. We do it this way so that we can see if the nmethod
2038 // we looked up the handler for has been deoptimized in the meantime. If it has been
2039 // we must not use the handler and instead return the deopt blob.
2040 address OptoRuntime::handle_exception_C(JavaThread* current) {
2041 //
2042 // We are in Java not VM and in debug mode we have a NoHandleMark
2043 //
2044 #ifndef PRODUCT
2045   SharedRuntime::_find_handler_ctr++;          // find exception handler
2046 #endif
2047   DEBUG_ONLY(NoHandleMark __hm;)
2048   nmethod* nm = nullptr;
2049   address handler_address = nullptr;
2050   {
2051     // Enter the VM
2052 
2053     ResetNoHandleMark rnhm;
2054     handler_address = handle_exception_C_helper(current, nm);
2055   }
2056 
2057   // Back in java: Use no oops, DON'T safepoint
2058 
2059   // Now check to see if the handler we are returning is in a now
2060   // deoptimized frame
2061 
2062   if (nm != nullptr) {
2063     RegisterMap map(current,
2064                     RegisterMap::UpdateMap::skip,
2065                     RegisterMap::ProcessFrames::skip,
2066                     RegisterMap::WalkContinuation::skip);
2067     frame caller = current->last_frame().sender(&map);
2068 #ifdef ASSERT
2069     assert(caller.is_compiled_frame(), "must be");
2070 #endif // ASSERT
2071     if (caller.is_deoptimized_frame()) {
2072       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
2073     }
2074   }
2075   return handler_address;
2076 }
2077 
2078 //------------------------------rethrow----------------------------------------
2079 // We get here after compiled code has executed a 'RethrowNode'.  The callee
2080 // is either throwing or rethrowing an exception.  The callee-save registers
2081 // have been restored, synchronized objects have been unlocked and the callee
2082 // stack frame has been removed.  The return address was passed in.
2083 // Exception oop is passed as the 1st argument.  This routine is then called
2084 // from the stub.  On exit, we know where to jump in the caller's code.
2085 // After this C code exits, the stub will pop his frame and end in a jump
2086 // (instead of a return).  We enter the caller's default handler.
2087 //
2088 // This must be JRT_LEAF:
2089 //     - caller will not change its state as we cannot block on exit,
2090 //       therefore raw_exception_handler_for_return_address is all it takes
2091 //       to handle deoptimized blobs
2092 //
2093 // However, there needs to be a safepoint check in the middle!  So compiled
2094 // safepoints are completely watertight.
2095 //
2096 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2097 //
2098 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2099 //
2100 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2101   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2102   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2103 
2104 #ifndef PRODUCT
2105   SharedRuntime::_rethrow_ctr++;               // count rethrows
2106 #endif
2107   assert (exception != nullptr, "should have thrown a NullPointerException");
2108 #ifdef ASSERT
2109   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2110     // should throw an exception here
2111     ShouldNotReachHere();
2112   }
2113 #endif
2114 
2115   thread->set_vm_result_oop(exception);
2116   // Frame not compiled (handles deoptimization blob)
2117   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2118 }
2119 
2120 static const TypeFunc* make_rethrow_Type() {
2121   // create input type (domain)
2122   const Type **fields = TypeTuple::fields(1);
2123   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2124   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2125 
2126   // create result type (range)
2127   fields = TypeTuple::fields(1);
2128   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2129   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2130 
2131   return TypeFunc::make(domain, range);
2132 }
2133 
2134 
2135 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2136   // Deoptimize the caller before continuing, as the compiled
2137   // exception handler table may not be valid.
2138   if (DeoptimizeOnAllocationException && doit) {
2139     deoptimize_caller_frame(thread);
2140   }
2141 }
2142 
2143 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2144   // Called from within the owner thread, so no need for safepoint
2145   RegisterMap reg_map(thread,
2146                       RegisterMap::UpdateMap::include,
2147                       RegisterMap::ProcessFrames::include,
2148                       RegisterMap::WalkContinuation::skip);
2149   frame stub_frame = thread->last_frame();
2150   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2151   frame caller_frame = stub_frame.sender(&reg_map);
2152 
2153   // Deoptimize the caller frame.
2154   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2155 }
2156 
2157 
2158 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2159   // Called from within the owner thread, so no need for safepoint
2160   RegisterMap reg_map(thread,
2161                       RegisterMap::UpdateMap::include,
2162                       RegisterMap::ProcessFrames::include,
2163                       RegisterMap::WalkContinuation::skip);
2164   frame stub_frame = thread->last_frame();
2165   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2166   frame caller_frame = stub_frame.sender(&reg_map);
2167   return caller_frame.is_deoptimized_frame();
2168 }
2169 
2170 static const TypeFunc* make_register_finalizer_Type() {
2171   // create input type (domain)
2172   const Type **fields = TypeTuple::fields(1);
2173   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2174   // // The JavaThread* is passed to each routine as the last argument
2175   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2176   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2177 
2178   // create result type (range)
2179   fields = TypeTuple::fields(0);
2180 
2181   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2182 
2183   return TypeFunc::make(domain, range);
2184 }
2185 
2186 #if INCLUDE_JFR
2187 static const TypeFunc* make_class_id_load_barrier_Type() {
2188   // create input type (domain)
2189   const Type **fields = TypeTuple::fields(1);
2190   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2191   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2192 
2193   // create result type (range)
2194   fields = TypeTuple::fields(0);
2195 
2196   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2197 
2198   return TypeFunc::make(domain,range);
2199 }
2200 #endif // INCLUDE_JFR
2201 
2202 //-----------------------------------------------------------------------------
2203 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2204   // create input type (domain)
2205   const Type **fields = TypeTuple::fields(2);
2206   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2207   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2208   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2209 
2210   // create result type (range)
2211   fields = TypeTuple::fields(0);
2212 
2213   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2214 
2215   return TypeFunc::make(domain, range);
2216 }
2217 
2218 static const TypeFunc* make_dtrace_object_alloc_Type() {
2219   // create input type (domain)
2220   const Type **fields = TypeTuple::fields(2);
2221   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2222   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2223 
2224   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2225 
2226   // create result type (range)
2227   fields = TypeTuple::fields(0);
2228 
2229   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2230 
2231   return TypeFunc::make(domain, range);
2232 }
2233 
2234 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2235   assert(oopDesc::is_oop(obj), "must be a valid oop");
2236   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2237   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2238 JRT_END
2239 
2240 //-----------------------------------------------------------------------------
2241 
2242 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2243 
2244 //
2245 // dump the collected NamedCounters.
2246 //
2247 void OptoRuntime::print_named_counters() {
2248   int total_lock_count = 0;
2249   int eliminated_lock_count = 0;
2250 
2251   NamedCounter* c = _named_counters;
2252   while (c) {
2253     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2254       int count = c->count();
2255       if (count > 0) {
2256         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2257         if (Verbose) {
2258           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2259         }
2260         total_lock_count += count;
2261         if (eliminated) {
2262           eliminated_lock_count += count;
2263         }
2264       }
2265     }
2266     c = c->next();
2267   }
2268   if (total_lock_count > 0) {
2269     tty->print_cr("dynamic locks: %d", total_lock_count);
2270     if (eliminated_lock_count) {
2271       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2272                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2273     }
2274   }
2275 }
2276 
2277 //
2278 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2279 //  name which consists of method@line for the inlining tree.
2280 //
2281 
2282 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2283   int max_depth = youngest_jvms->depth();
2284 
2285   // Visit scopes from youngest to oldest.
2286   bool first = true;
2287   stringStream st;
2288   for (int depth = max_depth; depth >= 1; depth--) {
2289     JVMState* jvms = youngest_jvms->of_depth(depth);
2290     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2291     if (!first) {
2292       st.print(" ");
2293     } else {
2294       first = false;
2295     }
2296     int bci = jvms->bci();
2297     if (bci < 0) bci = 0;
2298     if (m != nullptr) {
2299       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2300     } else {
2301       st.print("no method");
2302     }
2303     st.print("@%d", bci);
2304     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2305   }
2306   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2307 
2308   // atomically add the new counter to the head of the list.  We only
2309   // add counters so this is safe.
2310   NamedCounter* head;
2311   do {
2312     c->set_next(nullptr);
2313     head = _named_counters;
2314     c->set_next(head);
2315   } while (AtomicAccess::cmpxchg(&_named_counters, head, c) != head);
2316   return c;
2317 }
2318 
2319 void OptoRuntime::initialize_types() {
2320   _new_instance_Type                  = make_new_instance_Type();
2321   _new_array_Type                     = make_new_array_Type();
2322   _new_array_nozero_Type              = make_new_array_nozero_Type();
2323   _multianewarray2_Type               = multianewarray_Type(2);
2324   _multianewarray3_Type               = multianewarray_Type(3);
2325   _multianewarray4_Type               = multianewarray_Type(4);
2326   _multianewarray5_Type               = multianewarray_Type(5);
2327   _multianewarrayN_Type               = make_multianewarrayN_Type();
2328   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2329   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2330   _monitor_notify_Type                = make_monitor_notify_Type();
2331   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2332   _athrow_Type                        = make_athrow_Type();
2333   _rethrow_Type                       = make_rethrow_Type();
2334   _Math_D_D_Type                      = make_Math_D_D_Type();
2335   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2336   _modf_Type                          = make_modf_Type();
2337   _l2f_Type                           = make_l2f_Type();
2338   _void_long_Type                     = make_void_long_Type();
2339   _void_void_Type                     = make_void_void_Type();
2340   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2341   _flush_windows_Type                 = make_flush_windows_Type();
2342   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2343   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2344   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2345   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2346   _unsafe_setmemory_Type              = make_setmemory_Type();
2347   _array_fill_Type                    = make_array_fill_Type();
2348   _array_sort_Type                    = make_array_sort_Type();
2349   _array_partition_Type               = make_array_partition_Type();
2350   _aescrypt_block_Type                = make_aescrypt_block_Type();
2351   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2352   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2353   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2354   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2355   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2356   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2357   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2358   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2359   _double_keccak_Type                 = make_double_keccak_Type();
2360   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2361   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2362   _montgomerySquare_Type              = make_montgomerySquare_Type();
2363   _squareToLen_Type                   = make_squareToLen_Type();
2364   _mulAdd_Type                        = make_mulAdd_Type();
2365   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2366   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2367   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2368   _chacha20Block_Type                 = make_chacha20Block_Type();
2369   _kyberNtt_Type                      = make_kyberNtt_Type();
2370   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2371   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2372   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2373   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2374   _kyber12To16_Type                   = make_kyber12To16_Type();
2375   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2376   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2377   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2378   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2379   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2380   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2381   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2382   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2383   _string_IndexOf_Type                = make_string_IndexOf_Type();
2384   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2385   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2386   _intpoly_assign_Type                = make_intpoly_assign_Type();
2387   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2388   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2389   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2390   _osr_end_Type                       = make_osr_end_Type();
2391   _register_finalizer_Type            = make_register_finalizer_Type();
2392   JFR_ONLY(
2393     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2394   )
2395 #if INCLUDE_JVMTI
2396   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2397 #endif // INCLUDE_JVMTI
2398   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2399   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2400 }
2401 
2402 int trace_exception_counter = 0;
2403 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2404   trace_exception_counter++;
2405   stringStream tempst;
2406 
2407   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2408   exception_oop->print_value_on(&tempst);
2409   tempst.print(" in ");
2410   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2411   if (blob->is_nmethod()) {
2412     blob->as_nmethod()->method()->print_value_on(&tempst);
2413   } else if (blob->is_runtime_stub()) {
2414     tempst.print("<runtime-stub>");
2415   } else {
2416     tempst.print("<unknown>");
2417   }
2418   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2419   tempst.print("]");
2420 
2421   st->print_raw_cr(tempst.freeze());
2422 }
2423 
2424 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2425   // create input type (domain)
2426   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2427   const Type **fields = TypeTuple::fields(total);
2428   // We don't know the number of returned values and their
2429   // types. Assume all registers available to the return convention
2430   // are used.
2431   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2432   uint i = 1;
2433   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2434     fields[TypeFunc::Parms+i] = TypeInt::INT;
2435   }
2436   for (; i < total; i+=2) {
2437     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2438     fields[TypeFunc::Parms+i+1] = Type::HALF;
2439   }
2440   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2441 
2442   // create result type (range)
2443   fields = TypeTuple::fields(1);
2444   fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM;
2445 
2446   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2447 
2448   return TypeFunc::make(domain, range);
2449 }
2450 
2451 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2452   // create input type (domain)
2453   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2454   const Type **fields = TypeTuple::fields(total);
2455   // We don't know the number of returned values and their
2456   // types. Assume all registers available to the return convention
2457   // are used.
2458   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2459   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2460   uint i = 2;
2461   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2462     fields[TypeFunc::Parms+i] = TypeInt::INT;
2463   }
2464   for (; i < total; i+=2) {
2465     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2466     fields[TypeFunc::Parms+i+1] = Type::HALF;
2467   }
2468   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2469 
2470   // create result type (range)
2471   fields = TypeTuple::fields(1);
2472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2473 
2474   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2475 
2476   return TypeFunc::make(domain, range);
2477 }
2478 
2479 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2480   JRT_BLOCK;
2481   oop buffer = array->obj_at(index, THREAD);
2482   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2483   current->set_vm_result_oop(buffer);
2484   JRT_BLOCK_END;
2485 JRT_END
2486 
2487 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2488   // create input type (domain)
2489   const Type** fields = TypeTuple::fields(2);
2490   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2491   fields[TypeFunc::Parms+1] = TypeInt::POS;
2492 
2493   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2494 
2495   // create result type (range)
2496   fields = TypeTuple::fields(1);
2497   fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
2498 
2499   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2500 
2501   return TypeFunc::make(domain, range);
2502 }
2503 
2504 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2505   JRT_BLOCK;
2506   array->obj_at_put(index, buffer, THREAD);
2507   if (HAS_PENDING_EXCEPTION) {
2508       fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2509   }
2510   JRT_BLOCK_END;
2511 JRT_END
2512 
2513 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2514   // create input type (domain)
2515   const Type** fields = TypeTuple::fields(3);
2516   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2517   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2518   fields[TypeFunc::Parms+2] = TypeInt::POS;
2519 
2520   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2521 
2522   // create result type (range)
2523   fields = TypeTuple::fields(0);
2524   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2525 
2526   return TypeFunc::make(domain, range);
2527 }