1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/flatArrayKlass.hpp" 48 #include "oops/flatArrayOop.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadCritical.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vframe_hp.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/preserveException.hpp" 82 83 84 // For debugging purposes: 85 // To force FullGCALot inside a runtime function, add the following two lines 86 // 87 // Universe::release_fullgc_alot_dummy(); 88 // Universe::heap()->collect(); 89 // 90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 91 92 93 #define C2_BLOB_FIELD_DEFINE(name, type) \ 94 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 97 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 98 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 99 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 101 #undef C2_BLOB_FIELD_DEFINE 102 #undef C2_STUB_FIELD_DEFINE 103 #undef C2_JVMTI_STUB_FIELD_DEFINE 104 105 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 106 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 107 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 108 const char* OptoRuntime::_stub_names[] = { 109 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 110 }; 111 #undef C2_BLOB_NAME_DEFINE 112 #undef C2_STUB_NAME_DEFINE 113 #undef C2_JVMTI_STUB_NAME_DEFINE 114 115 // This should be called in an assertion at the start of OptoRuntime routines 116 // which are entered from compiled code (all of them) 117 #ifdef ASSERT 118 static bool check_compiled_frame(JavaThread* thread) { 119 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 120 RegisterMap map(thread, 121 RegisterMap::UpdateMap::skip, 122 RegisterMap::ProcessFrames::include, 123 RegisterMap::WalkContinuation::skip); 124 frame caller = thread->last_frame().sender(&map); 125 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 126 return true; 127 } 128 #endif // ASSERT 129 130 /* 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 132 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 133 if (var == nullptr) { return false; } 134 */ 135 136 #define GEN_C2_BLOB(name, type) \ 137 BLOB_FIELD_NAME(name) = \ 138 generate_ ## name ## _blob(); \ 139 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 140 141 // a few helper macros to conjure up generate_stub call arguments 142 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 143 #define C2_STUB_TYPEFUNC(name) name ## _Type 144 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 145 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 146 147 // Almost all the C functions targeted from the generated stubs are 148 // implemented locally to OptoRuntime with names that can be generated 149 // from the stub name by appending suffix '_C'. However, in two cases 150 // a common target method also needs to be called from shared runtime 151 // stubs. In these two cases the opto stubs rely on method 152 // imlementations defined in class SharedRuntime. The following 153 // defines temporarily rebind the generated names to reference the 154 // relevant implementations. 155 156 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 157 C2_STUB_FIELD_NAME(name) = \ 158 generate_stub(env, \ 159 C2_STUB_TYPEFUNC(name), \ 160 C2_STUB_C_FUNC(name), \ 161 C2_STUB_NAME(name), \ 162 fancy_jump, \ 163 pass_tls, \ 164 pass_retpc); \ 165 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 166 167 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 168 169 #define GEN_C2_JVMTI_STUB(name) \ 170 STUB_FIELD_NAME(name) = \ 171 generate_stub(env, \ 172 notify_jvmti_vthread_Type, \ 173 C2_JVMTI_STUB_C_FUNC(name), \ 174 C2_STUB_NAME(name), \ 175 0, \ 176 true, \ 177 false); \ 178 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 179 180 bool OptoRuntime::generate(ciEnv* env) { 181 182 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 183 184 return true; 185 } 186 187 #undef GEN_C2_BLOB 188 189 #undef C2_STUB_FIELD_NAME 190 #undef C2_STUB_TYPEFUNC 191 #undef C2_STUB_C_FUNC 192 #undef C2_STUB_NAME 193 #undef GEN_C2_STUB 194 195 #undef C2_JVMTI_STUB_C_FUNC 196 #undef GEN_C2_JVMTI_STUB 197 // #undef gen 198 199 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 200 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 201 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr; 202 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 203 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 204 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 205 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 206 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 207 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 208 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 209 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 210 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 211 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 212 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 213 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 214 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 215 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 216 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 217 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 218 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 219 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 220 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 221 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 222 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 223 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 224 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 225 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 226 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 227 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 228 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 229 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 230 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 231 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 232 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 233 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 234 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 235 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 236 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 237 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 238 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 239 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 240 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 241 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 242 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 243 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 244 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 245 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 246 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 247 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 248 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 249 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 250 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 251 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 252 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 253 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 254 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 255 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 256 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 257 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 258 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 259 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 260 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 261 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 262 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 263 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 264 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 265 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 266 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 267 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 268 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 269 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 270 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 271 #if INCLUDE_JFR 272 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 273 #endif // INCLUDE_JFR 274 #if INCLUDE_JVMTI 275 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 276 #endif // INCLUDE_JVMTI 277 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 278 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 279 280 // Helper method to do generation of RunTimeStub's 281 address OptoRuntime::generate_stub(ciEnv* env, 282 TypeFunc_generator gen, address C_function, 283 const char *name, int is_fancy_jump, 284 bool pass_tls, 285 bool return_pc) { 286 287 // Matching the default directive, we currently have no method to match. 288 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 289 CompilationMemoryStatisticMark cmsm(directive); 290 ResourceMark rm; 291 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 292 DirectivesStack::release(directive); 293 return C.stub_entry_point(); 294 } 295 296 const char* OptoRuntime::stub_name(address entry) { 297 #ifndef PRODUCT 298 CodeBlob* cb = CodeCache::find_blob(entry); 299 RuntimeStub* rs =(RuntimeStub *)cb; 300 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 301 return rs->name(); 302 #else 303 // Fast implementation for product mode (maybe it should be inlined too) 304 return "runtime stub"; 305 #endif 306 } 307 308 // local methods passed as arguments to stub generator that forward 309 // control to corresponding JRT methods of SharedRuntime 310 311 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 312 oopDesc* dest, jint dest_pos, 313 jint length, JavaThread* thread) { 314 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 315 } 316 317 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 318 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 319 } 320 321 322 //============================================================================= 323 // Opto compiler runtime routines 324 //============================================================================= 325 326 327 //=============================allocation====================================== 328 // We failed the fast-path allocation. Now we need to do a scavenge or GC 329 // and try allocation again. 330 331 // object allocation 332 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current)) 333 JRT_BLOCK; 334 #ifndef PRODUCT 335 SharedRuntime::_new_instance_ctr++; // new instance requires GC 336 #endif 337 assert(check_compiled_frame(current), "incorrect caller"); 338 339 // These checks are cheap to make and support reflective allocation. 340 int lh = klass->layout_helper(); 341 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 342 Handle holder(current, klass->klass_holder()); // keep the klass alive 343 klass->check_valid_for_instantiation(false, THREAD); 344 if (!HAS_PENDING_EXCEPTION) { 345 InstanceKlass::cast(klass)->initialize(THREAD); 346 } 347 } 348 349 if (!HAS_PENDING_EXCEPTION) { 350 // Scavenge and allocate an instance. 351 Handle holder(current, klass->klass_holder()); // keep the klass alive 352 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 353 if (is_larval) { 354 // Check if this is a larval buffer allocation 355 result->set_mark(result->mark().enter_larval_state()); 356 } 357 current->set_vm_result_oop(result); 358 359 // Pass oops back through thread local storage. Our apparent type to Java 360 // is that we return an oop, but we can block on exit from this routine and 361 // a GC can trash the oop in C's return register. The generated stub will 362 // fetch the oop from TLS after any possible GC. 363 } 364 365 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 366 JRT_BLOCK_END; 367 368 // inform GC that we won't do card marks for initializing writes. 369 SharedRuntime::on_slowpath_allocation_exit(current); 370 JRT_END 371 372 373 // array allocation 374 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current)) 375 JRT_BLOCK; 376 #ifndef PRODUCT 377 SharedRuntime::_new_array_ctr++; // new array requires GC 378 #endif 379 assert(check_compiled_frame(current), "incorrect caller"); 380 381 // Scavenge and allocate an instance. 382 oop result; 383 Handle h_init_val(current, init_val); // keep the init_val object alive 384 385 if (array_type->is_flatArray_klass()) { 386 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 387 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type); 388 InlineKlass* vk = fak->element_klass(); 389 result = oopFactory::new_flatArray(vk, len, fak->layout_kind(), THREAD); 390 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 391 // Null-free arrays need to be initialized 392 for (int i = 0; i < len; i++) { 393 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK); 394 } 395 } 396 } else if (array_type->is_typeArray_klass()) { 397 // The oopFactory likes to work with the element type. 398 // (We could bypass the oopFactory, since it doesn't add much value.) 399 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 400 result = oopFactory::new_typeArray(elem_type, len, THREAD); 401 } else { 402 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 403 ObjArrayKlass* array_klass = ObjArrayKlass::cast(array_type); 404 result = array_klass->allocate(len, THREAD); 405 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 406 // Null-free arrays need to be initialized 407 for (int i = 0; i < len; i++) { 408 ((objArrayOop)result)->obj_at_put(i, h_init_val()); 409 } 410 } 411 } 412 413 // Pass oops back through thread local storage. Our apparent type to Java 414 // is that we return an oop, but we can block on exit from this routine and 415 // a GC can trash the oop in C's return register. The generated stub will 416 // fetch the oop from TLS after any possible GC. 417 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 418 current->set_vm_result_oop(result); 419 JRT_BLOCK_END; 420 421 // inform GC that we won't do card marks for initializing writes. 422 SharedRuntime::on_slowpath_allocation_exit(current); 423 JRT_END 424 425 // array allocation without zeroing 426 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 427 JRT_BLOCK; 428 #ifndef PRODUCT 429 SharedRuntime::_new_array_ctr++; // new array requires GC 430 #endif 431 assert(check_compiled_frame(current), "incorrect caller"); 432 433 // Scavenge and allocate an instance. 434 oop result; 435 436 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 437 // The oopFactory likes to work with the element type. 438 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 439 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 440 441 // Pass oops back through thread local storage. Our apparent type to Java 442 // is that we return an oop, but we can block on exit from this routine and 443 // a GC can trash the oop in C's return register. The generated stub will 444 // fetch the oop from TLS after any possible GC. 445 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 446 current->set_vm_result_oop(result); 447 JRT_BLOCK_END; 448 449 450 // inform GC that we won't do card marks for initializing writes. 451 SharedRuntime::on_slowpath_allocation_exit(current); 452 453 oop result = current->vm_result_oop(); 454 if ((len > 0) && (result != nullptr) && 455 is_deoptimized_caller_frame(current)) { 456 // Zero array here if the caller is deoptimized. 457 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 458 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 459 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 460 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 461 HeapWord* obj = cast_from_oop<HeapWord*>(result); 462 if (!is_aligned(hs_bytes, BytesPerLong)) { 463 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 464 hs_bytes += BytesPerInt; 465 } 466 467 // Optimized zeroing. 468 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 469 const size_t aligned_hs = hs_bytes / BytesPerLong; 470 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 471 } 472 473 JRT_END 474 475 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 476 477 // multianewarray for 2 dimensions 478 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 479 #ifndef PRODUCT 480 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 481 #endif 482 assert(check_compiled_frame(current), "incorrect caller"); 483 assert(elem_type->is_klass(), "not a class"); 484 jint dims[2]; 485 dims[0] = len1; 486 dims[1] = len2; 487 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 488 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 489 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 490 current->set_vm_result_oop(obj); 491 JRT_END 492 493 // multianewarray for 3 dimensions 494 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 495 #ifndef PRODUCT 496 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 497 #endif 498 assert(check_compiled_frame(current), "incorrect caller"); 499 assert(elem_type->is_klass(), "not a class"); 500 jint dims[3]; 501 dims[0] = len1; 502 dims[1] = len2; 503 dims[2] = len3; 504 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 505 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 506 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 507 current->set_vm_result_oop(obj); 508 JRT_END 509 510 // multianewarray for 4 dimensions 511 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 512 #ifndef PRODUCT 513 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 514 #endif 515 assert(check_compiled_frame(current), "incorrect caller"); 516 assert(elem_type->is_klass(), "not a class"); 517 jint dims[4]; 518 dims[0] = len1; 519 dims[1] = len2; 520 dims[2] = len3; 521 dims[3] = len4; 522 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 523 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 524 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 525 current->set_vm_result_oop(obj); 526 JRT_END 527 528 // multianewarray for 5 dimensions 529 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 530 #ifndef PRODUCT 531 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 532 #endif 533 assert(check_compiled_frame(current), "incorrect caller"); 534 assert(elem_type->is_klass(), "not a class"); 535 jint dims[5]; 536 dims[0] = len1; 537 dims[1] = len2; 538 dims[2] = len3; 539 dims[3] = len4; 540 dims[4] = len5; 541 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 542 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 543 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 544 current->set_vm_result_oop(obj); 545 JRT_END 546 547 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 548 assert(check_compiled_frame(current), "incorrect caller"); 549 assert(elem_type->is_klass(), "not a class"); 550 assert(oop(dims)->is_typeArray(), "not an array"); 551 552 ResourceMark rm; 553 jint len = dims->length(); 554 assert(len > 0, "Dimensions array should contain data"); 555 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 556 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 557 c_dims, len); 558 559 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 560 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 561 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 562 current->set_vm_result_oop(obj); 563 JRT_END 564 565 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 566 567 // Very few notify/notifyAll operations find any threads on the waitset, so 568 // the dominant fast-path is to simply return. 569 // Relatedly, it's critical that notify/notifyAll be fast in order to 570 // reduce lock hold times. 571 if (!SafepointSynchronize::is_synchronizing()) { 572 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 573 return; 574 } 575 } 576 577 // This is the case the fast-path above isn't provisioned to handle. 578 // The fast-path is designed to handle frequently arising cases in an efficient manner. 579 // (The fast-path is just a degenerate variant of the slow-path). 580 // Perform the dreaded state transition and pass control into the slow-path. 581 JRT_BLOCK; 582 Handle h_obj(current, obj); 583 ObjectSynchronizer::notify(h_obj, CHECK); 584 JRT_BLOCK_END; 585 JRT_END 586 587 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 588 589 if (!SafepointSynchronize::is_synchronizing() ) { 590 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 591 return; 592 } 593 } 594 595 // This is the case the fast-path above isn't provisioned to handle. 596 // The fast-path is designed to handle frequently arising cases in an efficient manner. 597 // (The fast-path is just a degenerate variant of the slow-path). 598 // Perform the dreaded state transition and pass control into the slow-path. 599 JRT_BLOCK; 600 Handle h_obj(current, obj); 601 ObjectSynchronizer::notifyall(h_obj, CHECK); 602 JRT_BLOCK_END; 603 JRT_END 604 605 static const TypeFunc* make_new_instance_Type() { 606 // create input type (domain) 607 const Type **fields = TypeTuple::fields(2); 608 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 609 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval 610 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 611 612 // create result type (range) 613 fields = TypeTuple::fields(1); 614 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 615 616 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 617 618 return TypeFunc::make(domain, range); 619 } 620 621 #if INCLUDE_JVMTI 622 static const TypeFunc* make_notify_jvmti_vthread_Type() { 623 // create input type (domain) 624 const Type **fields = TypeTuple::fields(2); 625 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 626 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 627 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 628 629 // no result type needed 630 fields = TypeTuple::fields(1); 631 fields[TypeFunc::Parms+0] = nullptr; // void 632 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 633 634 return TypeFunc::make(domain,range); 635 } 636 #endif 637 638 static const TypeFunc* make_athrow_Type() { 639 // create input type (domain) 640 const Type **fields = TypeTuple::fields(1); 641 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 642 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 643 644 // create result type (range) 645 fields = TypeTuple::fields(0); 646 647 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 648 649 return TypeFunc::make(domain, range); 650 } 651 652 static const TypeFunc* make_new_array_Type() { 653 // create input type (domain) 654 const Type **fields = TypeTuple::fields(3); 655 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 656 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 657 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value 658 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 659 660 // create result type (range) 661 fields = TypeTuple::fields(1); 662 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 663 664 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 665 666 return TypeFunc::make(domain, range); 667 } 668 669 static const TypeFunc* make_new_array_nozero_Type() { 670 // create input type (domain) 671 const Type **fields = TypeTuple::fields(2); 672 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 673 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 674 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 675 676 // create result type (range) 677 fields = TypeTuple::fields(1); 678 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 679 680 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 681 682 return TypeFunc::make(domain, range); 683 } 684 685 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 686 // create input type (domain) 687 const int nargs = ndim + 1; 688 const Type **fields = TypeTuple::fields(nargs); 689 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 690 for( int i = 1; i < nargs; i++ ) 691 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 692 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 693 694 // create result type (range) 695 fields = TypeTuple::fields(1); 696 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 697 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 698 699 return TypeFunc::make(domain, range); 700 } 701 702 static const TypeFunc* make_multianewarrayN_Type() { 703 // create input type (domain) 704 const Type **fields = TypeTuple::fields(2); 705 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 706 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 707 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 708 709 // create result type (range) 710 fields = TypeTuple::fields(1); 711 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 712 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 713 714 return TypeFunc::make(domain, range); 715 } 716 717 static const TypeFunc* make_uncommon_trap_Type() { 718 // create input type (domain) 719 const Type **fields = TypeTuple::fields(1); 720 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 721 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 722 723 // create result type (range) 724 fields = TypeTuple::fields(0); 725 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 726 727 return TypeFunc::make(domain, range); 728 } 729 730 //----------------------------------------------------------------------------- 731 // Monitor Handling 732 733 static const TypeFunc* make_complete_monitor_enter_Type() { 734 // create input type (domain) 735 const Type **fields = TypeTuple::fields(2); 736 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 737 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 738 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 739 740 // create result type (range) 741 fields = TypeTuple::fields(0); 742 743 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 744 745 return TypeFunc::make(domain, range); 746 } 747 748 //----------------------------------------------------------------------------- 749 750 static const TypeFunc* make_complete_monitor_exit_Type() { 751 // create input type (domain) 752 const Type **fields = TypeTuple::fields(3); 753 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 754 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 755 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 756 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 757 758 // create result type (range) 759 fields = TypeTuple::fields(0); 760 761 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 762 763 return TypeFunc::make(domain, range); 764 } 765 766 static const TypeFunc* make_monitor_notify_Type() { 767 // create input type (domain) 768 const Type **fields = TypeTuple::fields(1); 769 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 770 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 771 772 // create result type (range) 773 fields = TypeTuple::fields(0); 774 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 775 return TypeFunc::make(domain, range); 776 } 777 778 static const TypeFunc* make_flush_windows_Type() { 779 // create input type (domain) 780 const Type** fields = TypeTuple::fields(1); 781 fields[TypeFunc::Parms+0] = nullptr; // void 782 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 783 784 // create result type 785 fields = TypeTuple::fields(1); 786 fields[TypeFunc::Parms+0] = nullptr; // void 787 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 788 789 return TypeFunc::make(domain, range); 790 } 791 792 static const TypeFunc* make_l2f_Type() { 793 // create input type (domain) 794 const Type **fields = TypeTuple::fields(2); 795 fields[TypeFunc::Parms+0] = TypeLong::LONG; 796 fields[TypeFunc::Parms+1] = Type::HALF; 797 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 798 799 // create result type (range) 800 fields = TypeTuple::fields(1); 801 fields[TypeFunc::Parms+0] = Type::FLOAT; 802 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 803 804 return TypeFunc::make(domain, range); 805 } 806 807 static const TypeFunc* make_modf_Type() { 808 const Type **fields = TypeTuple::fields(2); 809 fields[TypeFunc::Parms+0] = Type::FLOAT; 810 fields[TypeFunc::Parms+1] = Type::FLOAT; 811 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 812 813 // create result type (range) 814 fields = TypeTuple::fields(1); 815 fields[TypeFunc::Parms+0] = Type::FLOAT; 816 817 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 818 819 return TypeFunc::make(domain, range); 820 } 821 822 static const TypeFunc* make_Math_D_D_Type() { 823 // create input type (domain) 824 const Type **fields = TypeTuple::fields(2); 825 // Symbol* name of class to be loaded 826 fields[TypeFunc::Parms+0] = Type::DOUBLE; 827 fields[TypeFunc::Parms+1] = Type::HALF; 828 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 829 830 // create result type (range) 831 fields = TypeTuple::fields(2); 832 fields[TypeFunc::Parms+0] = Type::DOUBLE; 833 fields[TypeFunc::Parms+1] = Type::HALF; 834 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 835 836 return TypeFunc::make(domain, range); 837 } 838 839 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 840 // create input type (domain) 841 const Type **fields = TypeTuple::fields(num_arg); 842 // Symbol* name of class to be loaded 843 assert(num_arg > 0, "must have at least 1 input"); 844 for (uint i = 0; i < num_arg; i++) { 845 fields[TypeFunc::Parms+i] = in_type; 846 } 847 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 848 849 // create result type (range) 850 const uint num_ret = 1; 851 fields = TypeTuple::fields(num_ret); 852 fields[TypeFunc::Parms+0] = out_type; 853 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 854 855 return TypeFunc::make(domain, range); 856 } 857 858 static const TypeFunc* make_Math_DD_D_Type() { 859 const Type **fields = TypeTuple::fields(4); 860 fields[TypeFunc::Parms+0] = Type::DOUBLE; 861 fields[TypeFunc::Parms+1] = Type::HALF; 862 fields[TypeFunc::Parms+2] = Type::DOUBLE; 863 fields[TypeFunc::Parms+3] = Type::HALF; 864 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 865 866 // create result type (range) 867 fields = TypeTuple::fields(2); 868 fields[TypeFunc::Parms+0] = Type::DOUBLE; 869 fields[TypeFunc::Parms+1] = Type::HALF; 870 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 871 872 return TypeFunc::make(domain, range); 873 } 874 875 //-------------- currentTimeMillis, currentTimeNanos, etc 876 877 static const TypeFunc* make_void_long_Type() { 878 // create input type (domain) 879 const Type **fields = TypeTuple::fields(0); 880 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 881 882 // create result type (range) 883 fields = TypeTuple::fields(2); 884 fields[TypeFunc::Parms+0] = TypeLong::LONG; 885 fields[TypeFunc::Parms+1] = Type::HALF; 886 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 887 888 return TypeFunc::make(domain, range); 889 } 890 891 static const TypeFunc* make_void_void_Type() { 892 // create input type (domain) 893 const Type **fields = TypeTuple::fields(0); 894 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 895 896 // create result type (range) 897 fields = TypeTuple::fields(0); 898 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 899 return TypeFunc::make(domain, range); 900 } 901 902 static const TypeFunc* make_jfr_write_checkpoint_Type() { 903 // create input type (domain) 904 const Type **fields = TypeTuple::fields(0); 905 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 906 907 // create result type (range) 908 fields = TypeTuple::fields(0); 909 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 910 return TypeFunc::make(domain, range); 911 } 912 913 914 // Takes as parameters: 915 // void *dest 916 // long size 917 // uchar byte 918 919 static const TypeFunc* make_setmemory_Type() { 920 // create input type (domain) 921 int argcnt = NOT_LP64(3) LP64_ONLY(4); 922 const Type** fields = TypeTuple::fields(argcnt); 923 int argp = TypeFunc::Parms; 924 fields[argp++] = TypePtr::NOTNULL; // dest 925 fields[argp++] = TypeX_X; // size 926 LP64_ONLY(fields[argp++] = Type::HALF); // size 927 fields[argp++] = TypeInt::UBYTE; // bytevalue 928 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 929 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 930 931 // no result type needed 932 fields = TypeTuple::fields(1); 933 fields[TypeFunc::Parms+0] = nullptr; // void 934 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 935 return TypeFunc::make(domain, range); 936 } 937 938 // arraycopy stub variations: 939 enum ArrayCopyType { 940 ac_fast, // void(ptr, ptr, size_t) 941 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 942 ac_slow, // void(ptr, int, ptr, int, int) 943 ac_generic // int(ptr, int, ptr, int, int) 944 }; 945 946 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 947 // create input type (domain) 948 int num_args = (act == ac_fast ? 3 : 5); 949 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 950 int argcnt = num_args; 951 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 952 const Type** fields = TypeTuple::fields(argcnt); 953 int argp = TypeFunc::Parms; 954 fields[argp++] = TypePtr::NOTNULL; // src 955 if (num_size_args == 0) { 956 fields[argp++] = TypeInt::INT; // src_pos 957 } 958 fields[argp++] = TypePtr::NOTNULL; // dest 959 if (num_size_args == 0) { 960 fields[argp++] = TypeInt::INT; // dest_pos 961 fields[argp++] = TypeInt::INT; // length 962 } 963 while (num_size_args-- > 0) { 964 fields[argp++] = TypeX_X; // size in whatevers (size_t) 965 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 966 } 967 if (act == ac_checkcast) { 968 fields[argp++] = TypePtr::NOTNULL; // super_klass 969 } 970 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 971 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 972 973 // create result type if needed 974 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 975 fields = TypeTuple::fields(1); 976 if (retcnt == 0) 977 fields[TypeFunc::Parms+0] = nullptr; // void 978 else 979 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 980 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 981 return TypeFunc::make(domain, range); 982 } 983 984 static const TypeFunc* make_array_fill_Type() { 985 const Type** fields; 986 int argp = TypeFunc::Parms; 987 // create input type (domain): pointer, int, size_t 988 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 989 fields[argp++] = TypePtr::NOTNULL; 990 fields[argp++] = TypeInt::INT; 991 fields[argp++] = TypeX_X; // size in whatevers (size_t) 992 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 993 const TypeTuple *domain = TypeTuple::make(argp, fields); 994 995 // create result type 996 fields = TypeTuple::fields(1); 997 fields[TypeFunc::Parms+0] = nullptr; // void 998 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 999 1000 return TypeFunc::make(domain, range); 1001 } 1002 1003 static const TypeFunc* make_array_partition_Type() { 1004 // create input type (domain) 1005 int num_args = 7; 1006 int argcnt = num_args; 1007 const Type** fields = TypeTuple::fields(argcnt); 1008 int argp = TypeFunc::Parms; 1009 fields[argp++] = TypePtr::NOTNULL; // array 1010 fields[argp++] = TypeInt::INT; // element type 1011 fields[argp++] = TypeInt::INT; // low 1012 fields[argp++] = TypeInt::INT; // end 1013 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 1014 fields[argp++] = TypeInt::INT; // indexPivot1 1015 fields[argp++] = TypeInt::INT; // indexPivot2 1016 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1017 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1018 1019 // no result type needed 1020 fields = TypeTuple::fields(1); 1021 fields[TypeFunc::Parms+0] = nullptr; // void 1022 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1023 return TypeFunc::make(domain, range); 1024 } 1025 1026 static const TypeFunc* make_array_sort_Type() { 1027 // create input type (domain) 1028 int num_args = 4; 1029 int argcnt = num_args; 1030 const Type** fields = TypeTuple::fields(argcnt); 1031 int argp = TypeFunc::Parms; 1032 fields[argp++] = TypePtr::NOTNULL; // array 1033 fields[argp++] = TypeInt::INT; // element type 1034 fields[argp++] = TypeInt::INT; // fromIndex 1035 fields[argp++] = TypeInt::INT; // toIndex 1036 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1037 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1038 1039 // no result type needed 1040 fields = TypeTuple::fields(1); 1041 fields[TypeFunc::Parms+0] = nullptr; // void 1042 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1043 return TypeFunc::make(domain, range); 1044 } 1045 1046 static const TypeFunc* make_aescrypt_block_Type() { 1047 // create input type (domain) 1048 int num_args = 3; 1049 int argcnt = num_args; 1050 const Type** fields = TypeTuple::fields(argcnt); 1051 int argp = TypeFunc::Parms; 1052 fields[argp++] = TypePtr::NOTNULL; // src 1053 fields[argp++] = TypePtr::NOTNULL; // dest 1054 fields[argp++] = TypePtr::NOTNULL; // k array 1055 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1056 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1057 1058 // no result type needed 1059 fields = TypeTuple::fields(1); 1060 fields[TypeFunc::Parms+0] = nullptr; // void 1061 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1062 return TypeFunc::make(domain, range); 1063 } 1064 1065 static const TypeFunc* make_updateBytesCRC32_Type() { 1066 // create input type (domain) 1067 int num_args = 3; 1068 int argcnt = num_args; 1069 const Type** fields = TypeTuple::fields(argcnt); 1070 int argp = TypeFunc::Parms; 1071 fields[argp++] = TypeInt::INT; // crc 1072 fields[argp++] = TypePtr::NOTNULL; // src 1073 fields[argp++] = TypeInt::INT; // len 1074 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1075 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1076 1077 // result type needed 1078 fields = TypeTuple::fields(1); 1079 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1080 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1081 return TypeFunc::make(domain, range); 1082 } 1083 1084 static const TypeFunc* make_updateBytesCRC32C_Type() { 1085 // create input type (domain) 1086 int num_args = 4; 1087 int argcnt = num_args; 1088 const Type** fields = TypeTuple::fields(argcnt); 1089 int argp = TypeFunc::Parms; 1090 fields[argp++] = TypeInt::INT; // crc 1091 fields[argp++] = TypePtr::NOTNULL; // buf 1092 fields[argp++] = TypeInt::INT; // len 1093 fields[argp++] = TypePtr::NOTNULL; // table 1094 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1095 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1096 1097 // result type needed 1098 fields = TypeTuple::fields(1); 1099 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1100 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1101 return TypeFunc::make(domain, range); 1102 } 1103 1104 static const TypeFunc* make_updateBytesAdler32_Type() { 1105 // create input type (domain) 1106 int num_args = 3; 1107 int argcnt = num_args; 1108 const Type** fields = TypeTuple::fields(argcnt); 1109 int argp = TypeFunc::Parms; 1110 fields[argp++] = TypeInt::INT; // crc 1111 fields[argp++] = TypePtr::NOTNULL; // src + offset 1112 fields[argp++] = TypeInt::INT; // len 1113 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1114 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1115 1116 // result type needed 1117 fields = TypeTuple::fields(1); 1118 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1119 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1120 return TypeFunc::make(domain, range); 1121 } 1122 1123 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1124 // create input type (domain) 1125 int num_args = 5; 1126 int argcnt = num_args; 1127 const Type** fields = TypeTuple::fields(argcnt); 1128 int argp = TypeFunc::Parms; 1129 fields[argp++] = TypePtr::NOTNULL; // src 1130 fields[argp++] = TypePtr::NOTNULL; // dest 1131 fields[argp++] = TypePtr::NOTNULL; // k array 1132 fields[argp++] = TypePtr::NOTNULL; // r array 1133 fields[argp++] = TypeInt::INT; // src len 1134 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1135 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1136 1137 // returning cipher len (int) 1138 fields = TypeTuple::fields(1); 1139 fields[TypeFunc::Parms+0] = TypeInt::INT; 1140 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1141 return TypeFunc::make(domain, range); 1142 } 1143 1144 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1145 // create input type (domain) 1146 int num_args = 4; 1147 int argcnt = num_args; 1148 const Type** fields = TypeTuple::fields(argcnt); 1149 int argp = TypeFunc::Parms; 1150 fields[argp++] = TypePtr::NOTNULL; // src 1151 fields[argp++] = TypePtr::NOTNULL; // dest 1152 fields[argp++] = TypePtr::NOTNULL; // k array 1153 fields[argp++] = TypeInt::INT; // src len 1154 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1155 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1156 1157 // returning cipher len (int) 1158 fields = TypeTuple::fields(1); 1159 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1160 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1161 return TypeFunc::make(domain, range); 1162 } 1163 1164 static const TypeFunc* make_counterMode_aescrypt_Type() { 1165 // create input type (domain) 1166 int num_args = 7; 1167 int argcnt = num_args; 1168 const Type** fields = TypeTuple::fields(argcnt); 1169 int argp = TypeFunc::Parms; 1170 fields[argp++] = TypePtr::NOTNULL; // src 1171 fields[argp++] = TypePtr::NOTNULL; // dest 1172 fields[argp++] = TypePtr::NOTNULL; // k array 1173 fields[argp++] = TypePtr::NOTNULL; // counter array 1174 fields[argp++] = TypeInt::INT; // src len 1175 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1176 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1177 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1178 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1179 // returning cipher len (int) 1180 fields = TypeTuple::fields(1); 1181 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1182 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1183 return TypeFunc::make(domain, range); 1184 } 1185 1186 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1187 // create input type (domain) 1188 int num_args = 8; 1189 int argcnt = num_args; 1190 const Type** fields = TypeTuple::fields(argcnt); 1191 int argp = TypeFunc::Parms; 1192 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1193 fields[argp++] = TypeInt::INT; // int len 1194 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1195 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1196 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1197 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1198 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1199 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1200 1201 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1202 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1203 // returning cipher len (int) 1204 fields = TypeTuple::fields(1); 1205 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1206 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1207 return TypeFunc::make(domain, range); 1208 } 1209 1210 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1211 // create input type (domain) 1212 int num_args = is_sha3 ? 3 : 2; 1213 int argcnt = num_args; 1214 const Type** fields = TypeTuple::fields(argcnt); 1215 int argp = TypeFunc::Parms; 1216 fields[argp++] = TypePtr::NOTNULL; // buf 1217 fields[argp++] = TypePtr::NOTNULL; // state 1218 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1219 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1220 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1221 1222 // no result type needed 1223 fields = TypeTuple::fields(1); 1224 fields[TypeFunc::Parms+0] = nullptr; // void 1225 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1226 return TypeFunc::make(domain, range); 1227 } 1228 1229 /* 1230 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1231 */ 1232 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1233 // create input type (domain) 1234 int num_args = is_sha3 ? 5 : 4; 1235 int argcnt = num_args; 1236 const Type** fields = TypeTuple::fields(argcnt); 1237 int argp = TypeFunc::Parms; 1238 fields[argp++] = TypePtr::NOTNULL; // buf 1239 fields[argp++] = TypePtr::NOTNULL; // state 1240 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1241 fields[argp++] = TypeInt::INT; // ofs 1242 fields[argp++] = TypeInt::INT; // limit 1243 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1244 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1245 1246 // returning ofs (int) 1247 fields = TypeTuple::fields(1); 1248 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1249 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1250 return TypeFunc::make(domain, range); 1251 } 1252 1253 // SHAKE128Parallel doubleKeccak function 1254 static const TypeFunc* make_double_keccak_Type() { 1255 int argcnt = 2; 1256 1257 const Type** fields = TypeTuple::fields(argcnt); 1258 int argp = TypeFunc::Parms; 1259 fields[argp++] = TypePtr::NOTNULL; // status0 1260 fields[argp++] = TypePtr::NOTNULL; // status1 1261 1262 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1263 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1264 1265 // result type needed 1266 fields = TypeTuple::fields(1); 1267 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1268 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1269 return TypeFunc::make(domain, range); 1270 } 1271 1272 static const TypeFunc* make_multiplyToLen_Type() { 1273 // create input type (domain) 1274 int num_args = 5; 1275 int argcnt = num_args; 1276 const Type** fields = TypeTuple::fields(argcnt); 1277 int argp = TypeFunc::Parms; 1278 fields[argp++] = TypePtr::NOTNULL; // x 1279 fields[argp++] = TypeInt::INT; // xlen 1280 fields[argp++] = TypePtr::NOTNULL; // y 1281 fields[argp++] = TypeInt::INT; // ylen 1282 fields[argp++] = TypePtr::NOTNULL; // z 1283 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1284 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1285 1286 // no result type needed 1287 fields = TypeTuple::fields(1); 1288 fields[TypeFunc::Parms+0] = nullptr; 1289 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1290 return TypeFunc::make(domain, range); 1291 } 1292 1293 static const TypeFunc* make_squareToLen_Type() { 1294 // create input type (domain) 1295 int num_args = 4; 1296 int argcnt = num_args; 1297 const Type** fields = TypeTuple::fields(argcnt); 1298 int argp = TypeFunc::Parms; 1299 fields[argp++] = TypePtr::NOTNULL; // x 1300 fields[argp++] = TypeInt::INT; // len 1301 fields[argp++] = TypePtr::NOTNULL; // z 1302 fields[argp++] = TypeInt::INT; // zlen 1303 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1304 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1305 1306 // no result type needed 1307 fields = TypeTuple::fields(1); 1308 fields[TypeFunc::Parms+0] = nullptr; 1309 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1310 return TypeFunc::make(domain, range); 1311 } 1312 1313 static const TypeFunc* make_mulAdd_Type() { 1314 // create input type (domain) 1315 int num_args = 5; 1316 int argcnt = num_args; 1317 const Type** fields = TypeTuple::fields(argcnt); 1318 int argp = TypeFunc::Parms; 1319 fields[argp++] = TypePtr::NOTNULL; // out 1320 fields[argp++] = TypePtr::NOTNULL; // in 1321 fields[argp++] = TypeInt::INT; // offset 1322 fields[argp++] = TypeInt::INT; // len 1323 fields[argp++] = TypeInt::INT; // k 1324 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1325 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1326 1327 // returning carry (int) 1328 fields = TypeTuple::fields(1); 1329 fields[TypeFunc::Parms+0] = TypeInt::INT; 1330 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1331 return TypeFunc::make(domain, range); 1332 } 1333 1334 static const TypeFunc* make_montgomeryMultiply_Type() { 1335 // create input type (domain) 1336 int num_args = 7; 1337 int argcnt = num_args; 1338 const Type** fields = TypeTuple::fields(argcnt); 1339 int argp = TypeFunc::Parms; 1340 fields[argp++] = TypePtr::NOTNULL; // a 1341 fields[argp++] = TypePtr::NOTNULL; // b 1342 fields[argp++] = TypePtr::NOTNULL; // n 1343 fields[argp++] = TypeInt::INT; // len 1344 fields[argp++] = TypeLong::LONG; // inv 1345 fields[argp++] = Type::HALF; 1346 fields[argp++] = TypePtr::NOTNULL; // result 1347 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1348 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1349 1350 // result type needed 1351 fields = TypeTuple::fields(1); 1352 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1353 1354 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1355 return TypeFunc::make(domain, range); 1356 } 1357 1358 static const TypeFunc* make_montgomerySquare_Type() { 1359 // create input type (domain) 1360 int num_args = 6; 1361 int argcnt = num_args; 1362 const Type** fields = TypeTuple::fields(argcnt); 1363 int argp = TypeFunc::Parms; 1364 fields[argp++] = TypePtr::NOTNULL; // a 1365 fields[argp++] = TypePtr::NOTNULL; // n 1366 fields[argp++] = TypeInt::INT; // len 1367 fields[argp++] = TypeLong::LONG; // inv 1368 fields[argp++] = Type::HALF; 1369 fields[argp++] = TypePtr::NOTNULL; // result 1370 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1371 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1372 1373 // result type needed 1374 fields = TypeTuple::fields(1); 1375 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1376 1377 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1378 return TypeFunc::make(domain, range); 1379 } 1380 1381 static const TypeFunc* make_bigIntegerShift_Type() { 1382 int argcnt = 5; 1383 const Type** fields = TypeTuple::fields(argcnt); 1384 int argp = TypeFunc::Parms; 1385 fields[argp++] = TypePtr::NOTNULL; // newArr 1386 fields[argp++] = TypePtr::NOTNULL; // oldArr 1387 fields[argp++] = TypeInt::INT; // newIdx 1388 fields[argp++] = TypeInt::INT; // shiftCount 1389 fields[argp++] = TypeInt::INT; // numIter 1390 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1391 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1392 1393 // no result type needed 1394 fields = TypeTuple::fields(1); 1395 fields[TypeFunc::Parms + 0] = nullptr; 1396 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1397 return TypeFunc::make(domain, range); 1398 } 1399 1400 static const TypeFunc* make_vectorizedMismatch_Type() { 1401 // create input type (domain) 1402 int num_args = 4; 1403 int argcnt = num_args; 1404 const Type** fields = TypeTuple::fields(argcnt); 1405 int argp = TypeFunc::Parms; 1406 fields[argp++] = TypePtr::NOTNULL; // obja 1407 fields[argp++] = TypePtr::NOTNULL; // objb 1408 fields[argp++] = TypeInt::INT; // length, number of elements 1409 fields[argp++] = TypeInt::INT; // log2scale, element size 1410 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1411 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1412 1413 //return mismatch index (int) 1414 fields = TypeTuple::fields(1); 1415 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1416 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1417 return TypeFunc::make(domain, range); 1418 } 1419 1420 static const TypeFunc* make_ghash_processBlocks_Type() { 1421 int argcnt = 4; 1422 1423 const Type** fields = TypeTuple::fields(argcnt); 1424 int argp = TypeFunc::Parms; 1425 fields[argp++] = TypePtr::NOTNULL; // state 1426 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1427 fields[argp++] = TypePtr::NOTNULL; // data 1428 fields[argp++] = TypeInt::INT; // blocks 1429 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1430 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1431 1432 // result type needed 1433 fields = TypeTuple::fields(1); 1434 fields[TypeFunc::Parms+0] = nullptr; // void 1435 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1436 return TypeFunc::make(domain, range); 1437 } 1438 1439 static const TypeFunc* make_chacha20Block_Type() { 1440 int argcnt = 2; 1441 1442 const Type** fields = TypeTuple::fields(argcnt); 1443 int argp = TypeFunc::Parms; 1444 fields[argp++] = TypePtr::NOTNULL; // state 1445 fields[argp++] = TypePtr::NOTNULL; // result 1446 1447 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1448 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1449 1450 // result type needed 1451 fields = TypeTuple::fields(1); 1452 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1453 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1454 return TypeFunc::make(domain, range); 1455 } 1456 1457 // Kyber NTT function 1458 static const TypeFunc* make_kyberNtt_Type() { 1459 int argcnt = 2; 1460 1461 const Type** fields = TypeTuple::fields(argcnt); 1462 int argp = TypeFunc::Parms; 1463 fields[argp++] = TypePtr::NOTNULL; // coeffs 1464 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1465 1466 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1467 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1468 1469 // result type needed 1470 fields = TypeTuple::fields(1); 1471 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1472 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1473 return TypeFunc::make(domain, range); 1474 } 1475 1476 // Kyber inverse NTT function 1477 static const TypeFunc* make_kyberInverseNtt_Type() { 1478 int argcnt = 2; 1479 1480 const Type** fields = TypeTuple::fields(argcnt); 1481 int argp = TypeFunc::Parms; 1482 fields[argp++] = TypePtr::NOTNULL; // coeffs 1483 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1484 1485 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1486 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1487 1488 // result type needed 1489 fields = TypeTuple::fields(1); 1490 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1491 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1492 return TypeFunc::make(domain, range); 1493 } 1494 1495 // Kyber NTT multiply function 1496 static const TypeFunc* make_kyberNttMult_Type() { 1497 int argcnt = 4; 1498 1499 const Type** fields = TypeTuple::fields(argcnt); 1500 int argp = TypeFunc::Parms; 1501 fields[argp++] = TypePtr::NOTNULL; // result 1502 fields[argp++] = TypePtr::NOTNULL; // ntta 1503 fields[argp++] = TypePtr::NOTNULL; // nttb 1504 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1505 1506 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1507 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1508 1509 // result type needed 1510 fields = TypeTuple::fields(1); 1511 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1512 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1513 return TypeFunc::make(domain, range); 1514 } 1515 // Kyber add 2 polynomials function 1516 static const TypeFunc* make_kyberAddPoly_2_Type() { 1517 int argcnt = 3; 1518 1519 const Type** fields = TypeTuple::fields(argcnt); 1520 int argp = TypeFunc::Parms; 1521 fields[argp++] = TypePtr::NOTNULL; // result 1522 fields[argp++] = TypePtr::NOTNULL; // a 1523 fields[argp++] = TypePtr::NOTNULL; // b 1524 1525 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1526 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1527 1528 // result type needed 1529 fields = TypeTuple::fields(1); 1530 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1531 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1532 return TypeFunc::make(domain, range); 1533 } 1534 1535 1536 // Kyber add 3 polynomials function 1537 static const TypeFunc* make_kyberAddPoly_3_Type() { 1538 int argcnt = 4; 1539 1540 const Type** fields = TypeTuple::fields(argcnt); 1541 int argp = TypeFunc::Parms; 1542 fields[argp++] = TypePtr::NOTNULL; // result 1543 fields[argp++] = TypePtr::NOTNULL; // a 1544 fields[argp++] = TypePtr::NOTNULL; // b 1545 fields[argp++] = TypePtr::NOTNULL; // c 1546 1547 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1548 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1549 1550 // result type needed 1551 fields = TypeTuple::fields(1); 1552 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1553 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1554 return TypeFunc::make(domain, range); 1555 } 1556 1557 1558 // Kyber XOF output parsing into polynomial coefficients candidates 1559 // or decompress(12,...) function 1560 static const TypeFunc* make_kyber12To16_Type() { 1561 int argcnt = 4; 1562 1563 const Type** fields = TypeTuple::fields(argcnt); 1564 int argp = TypeFunc::Parms; 1565 fields[argp++] = TypePtr::NOTNULL; // condensed 1566 fields[argp++] = TypeInt::INT; // condensedOffs 1567 fields[argp++] = TypePtr::NOTNULL; // parsed 1568 fields[argp++] = TypeInt::INT; // parsedLength 1569 1570 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1571 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1572 1573 // result type needed 1574 fields = TypeTuple::fields(1); 1575 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1576 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1577 return TypeFunc::make(domain, range); 1578 } 1579 1580 // Kyber Barrett reduce function 1581 static const TypeFunc* make_kyberBarrettReduce_Type() { 1582 int argcnt = 1; 1583 1584 const Type** fields = TypeTuple::fields(argcnt); 1585 int argp = TypeFunc::Parms; 1586 fields[argp++] = TypePtr::NOTNULL; // coeffs 1587 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1588 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1589 1590 // result type needed 1591 fields = TypeTuple::fields(1); 1592 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1593 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1594 return TypeFunc::make(domain, range); 1595 } 1596 1597 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1598 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1599 int argcnt = 2; 1600 1601 const Type** fields = TypeTuple::fields(argcnt); 1602 int argp = TypeFunc::Parms; 1603 fields[argp++] = TypePtr::NOTNULL; // coeffs 1604 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1605 1606 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1607 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1608 1609 // result type needed 1610 fields = TypeTuple::fields(1); 1611 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1612 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1613 return TypeFunc::make(domain, range); 1614 } 1615 1616 // Dilithium inverse NTT function except the final mod Q division by 2^256 1617 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1618 int argcnt = 2; 1619 1620 const Type** fields = TypeTuple::fields(argcnt); 1621 int argp = TypeFunc::Parms; 1622 fields[argp++] = TypePtr::NOTNULL; // coeffs 1623 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1624 1625 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1626 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1627 1628 // result type needed 1629 fields = TypeTuple::fields(1); 1630 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1631 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1632 return TypeFunc::make(domain, range); 1633 } 1634 1635 // Dilithium NTT multiply function 1636 static const TypeFunc* make_dilithiumNttMult_Type() { 1637 int argcnt = 3; 1638 1639 const Type** fields = TypeTuple::fields(argcnt); 1640 int argp = TypeFunc::Parms; 1641 fields[argp++] = TypePtr::NOTNULL; // result 1642 fields[argp++] = TypePtr::NOTNULL; // ntta 1643 fields[argp++] = TypePtr::NOTNULL; // nttb 1644 1645 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1646 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1647 1648 // result type needed 1649 fields = TypeTuple::fields(1); 1650 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1651 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1652 return TypeFunc::make(domain, range); 1653 } 1654 1655 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1656 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1657 int argcnt = 2; 1658 1659 const Type** fields = TypeTuple::fields(argcnt); 1660 int argp = TypeFunc::Parms; 1661 fields[argp++] = TypePtr::NOTNULL; // coeffs 1662 fields[argp++] = TypeInt::INT; // constant multiplier 1663 1664 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1665 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1666 1667 // result type needed 1668 fields = TypeTuple::fields(1); 1669 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1670 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1671 return TypeFunc::make(domain, range); 1672 } 1673 1674 // Dilithium decompose polynomial 1675 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1676 int argcnt = 5; 1677 1678 const Type** fields = TypeTuple::fields(argcnt); 1679 int argp = TypeFunc::Parms; 1680 fields[argp++] = TypePtr::NOTNULL; // input 1681 fields[argp++] = TypePtr::NOTNULL; // lowPart 1682 fields[argp++] = TypePtr::NOTNULL; // highPart 1683 fields[argp++] = TypeInt::INT; // 2 * gamma2 1684 fields[argp++] = TypeInt::INT; // multiplier 1685 1686 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1687 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1688 1689 // result type needed 1690 fields = TypeTuple::fields(1); 1691 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1692 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1693 return TypeFunc::make(domain, range); 1694 } 1695 1696 static const TypeFunc* make_base64_encodeBlock_Type() { 1697 int argcnt = 6; 1698 1699 const Type** fields = TypeTuple::fields(argcnt); 1700 int argp = TypeFunc::Parms; 1701 fields[argp++] = TypePtr::NOTNULL; // src array 1702 fields[argp++] = TypeInt::INT; // offset 1703 fields[argp++] = TypeInt::INT; // length 1704 fields[argp++] = TypePtr::NOTNULL; // dest array 1705 fields[argp++] = TypeInt::INT; // dp 1706 fields[argp++] = TypeInt::BOOL; // isURL 1707 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1708 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1709 1710 // result type needed 1711 fields = TypeTuple::fields(1); 1712 fields[TypeFunc::Parms + 0] = nullptr; // void 1713 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1714 return TypeFunc::make(domain, range); 1715 } 1716 1717 static const TypeFunc* make_string_IndexOf_Type() { 1718 int argcnt = 4; 1719 1720 const Type** fields = TypeTuple::fields(argcnt); 1721 int argp = TypeFunc::Parms; 1722 fields[argp++] = TypePtr::NOTNULL; // haystack array 1723 fields[argp++] = TypeInt::INT; // haystack length 1724 fields[argp++] = TypePtr::NOTNULL; // needle array 1725 fields[argp++] = TypeInt::INT; // needle length 1726 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1727 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1728 1729 // result type needed 1730 fields = TypeTuple::fields(1); 1731 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1732 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1733 return TypeFunc::make(domain, range); 1734 } 1735 1736 static const TypeFunc* make_base64_decodeBlock_Type() { 1737 int argcnt = 7; 1738 1739 const Type** fields = TypeTuple::fields(argcnt); 1740 int argp = TypeFunc::Parms; 1741 fields[argp++] = TypePtr::NOTNULL; // src array 1742 fields[argp++] = TypeInt::INT; // src offset 1743 fields[argp++] = TypeInt::INT; // src length 1744 fields[argp++] = TypePtr::NOTNULL; // dest array 1745 fields[argp++] = TypeInt::INT; // dest offset 1746 fields[argp++] = TypeInt::BOOL; // isURL 1747 fields[argp++] = TypeInt::BOOL; // isMIME 1748 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1749 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1750 1751 // result type needed 1752 fields = TypeTuple::fields(1); 1753 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1754 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1755 return TypeFunc::make(domain, range); 1756 } 1757 1758 static const TypeFunc* make_poly1305_processBlocks_Type() { 1759 int argcnt = 4; 1760 1761 const Type** fields = TypeTuple::fields(argcnt); 1762 int argp = TypeFunc::Parms; 1763 fields[argp++] = TypePtr::NOTNULL; // input array 1764 fields[argp++] = TypeInt::INT; // input length 1765 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1766 fields[argp++] = TypePtr::NOTNULL; // r array 1767 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1768 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1769 1770 // result type needed 1771 fields = TypeTuple::fields(1); 1772 fields[TypeFunc::Parms + 0] = nullptr; // void 1773 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1774 return TypeFunc::make(domain, range); 1775 } 1776 1777 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1778 int argcnt = 3; 1779 1780 const Type** fields = TypeTuple::fields(argcnt); 1781 int argp = TypeFunc::Parms; 1782 fields[argp++] = TypePtr::NOTNULL; // a array 1783 fields[argp++] = TypePtr::NOTNULL; // b array 1784 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1785 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1786 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1787 1788 // result type needed 1789 fields = TypeTuple::fields(1); 1790 fields[TypeFunc::Parms + 0] = nullptr; // void 1791 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1792 return TypeFunc::make(domain, range); 1793 } 1794 1795 static const TypeFunc* make_intpoly_assign_Type() { 1796 int argcnt = 4; 1797 1798 const Type** fields = TypeTuple::fields(argcnt); 1799 int argp = TypeFunc::Parms; 1800 fields[argp++] = TypeInt::INT; // set flag 1801 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1802 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1803 fields[argp++] = TypeInt::INT; // array length 1804 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1805 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1806 1807 // result type needed 1808 fields = TypeTuple::fields(1); 1809 fields[TypeFunc::Parms + 0] = nullptr; // void 1810 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1811 return TypeFunc::make(domain, range); 1812 } 1813 1814 //------------- Interpreter state for on stack replacement 1815 static const TypeFunc* make_osr_end_Type() { 1816 // create input type (domain) 1817 const Type **fields = TypeTuple::fields(1); 1818 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1819 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1820 1821 // create result type 1822 fields = TypeTuple::fields(1); 1823 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1824 fields[TypeFunc::Parms+0] = nullptr; // void 1825 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1826 return TypeFunc::make(domain, range); 1827 } 1828 1829 //------------------------------------------------------------------------------------- 1830 // register policy 1831 1832 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1833 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1834 switch (register_save_policy[reg]) { 1835 case 'C': return false; //SOC 1836 case 'E': return true ; //SOE 1837 case 'N': return false; //NS 1838 case 'A': return false; //AS 1839 } 1840 ShouldNotReachHere(); 1841 return false; 1842 } 1843 1844 //----------------------------------------------------------------------- 1845 // Exceptions 1846 // 1847 1848 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1849 1850 // The method is an entry that is always called by a C++ method not 1851 // directly from compiled code. Compiled code will call the C++ method following. 1852 // We can't allow async exception to be installed during exception processing. 1853 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1854 // The frame we rethrow the exception to might not have been processed by the GC yet. 1855 // The stack watermark barrier takes care of detecting that and ensuring the frame 1856 // has updated oops. 1857 StackWatermarkSet::after_unwind(current); 1858 1859 // Do not confuse exception_oop with pending_exception. The exception_oop 1860 // is only used to pass arguments into the method. Not for general 1861 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1862 // the runtime stubs checks this on exit. 1863 assert(current->exception_oop() != nullptr, "exception oop is found"); 1864 address handler_address = nullptr; 1865 1866 Handle exception(current, current->exception_oop()); 1867 address pc = current->exception_pc(); 1868 1869 // Clear out the exception oop and pc since looking up an 1870 // exception handler can cause class loading, which might throw an 1871 // exception and those fields are expected to be clear during 1872 // normal bytecode execution. 1873 current->clear_exception_oop_and_pc(); 1874 1875 LogTarget(Info, exceptions) lt; 1876 if (lt.is_enabled()) { 1877 LogStream ls(lt); 1878 trace_exception(&ls, exception(), pc, ""); 1879 } 1880 1881 // for AbortVMOnException flag 1882 Exceptions::debug_check_abort(exception); 1883 1884 #ifdef ASSERT 1885 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1886 // should throw an exception here 1887 ShouldNotReachHere(); 1888 } 1889 #endif 1890 1891 // new exception handling: this method is entered only from adapters 1892 // exceptions from compiled java methods are handled in compiled code 1893 // using rethrow node 1894 1895 nm = CodeCache::find_nmethod(pc); 1896 assert(nm != nullptr, "No NMethod found"); 1897 if (nm->is_native_method()) { 1898 fatal("Native method should not have path to exception handling"); 1899 } else { 1900 // we are switching to old paradigm: search for exception handler in caller_frame 1901 // instead in exception handler of caller_frame.sender() 1902 1903 if (JvmtiExport::can_post_on_exceptions()) { 1904 // "Full-speed catching" is not necessary here, 1905 // since we're notifying the VM on every catch. 1906 // Force deoptimization and the rest of the lookup 1907 // will be fine. 1908 deoptimize_caller_frame(current); 1909 } 1910 1911 // Check the stack guard pages. If enabled, look for handler in this frame; 1912 // otherwise, forcibly unwind the frame. 1913 // 1914 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1915 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1916 bool deopting = false; 1917 if (nm->is_deopt_pc(pc)) { 1918 deopting = true; 1919 RegisterMap map(current, 1920 RegisterMap::UpdateMap::skip, 1921 RegisterMap::ProcessFrames::include, 1922 RegisterMap::WalkContinuation::skip); 1923 frame deoptee = current->last_frame().sender(&map); 1924 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1925 // Adjust the pc back to the original throwing pc 1926 pc = deoptee.pc(); 1927 } 1928 1929 // If we are forcing an unwind because of stack overflow then deopt is 1930 // irrelevant since we are throwing the frame away anyway. 1931 1932 if (deopting && !force_unwind) { 1933 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1934 } else { 1935 1936 handler_address = 1937 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1938 1939 if (handler_address == nullptr) { 1940 bool recursive_exception = false; 1941 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1942 assert (handler_address != nullptr, "must have compiled handler"); 1943 // Update the exception cache only when the unwind was not forced 1944 // and there didn't happen another exception during the computation of the 1945 // compiled exception handler. Checking for exception oop equality is not 1946 // sufficient because some exceptions are pre-allocated and reused. 1947 if (!force_unwind && !recursive_exception) { 1948 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1949 } 1950 } else { 1951 #ifdef ASSERT 1952 bool recursive_exception = false; 1953 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1954 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1955 p2i(handler_address), p2i(computed_address)); 1956 #endif 1957 } 1958 } 1959 1960 current->set_exception_pc(pc); 1961 current->set_exception_handler_pc(handler_address); 1962 1963 // Check if the exception PC is a MethodHandle call site. 1964 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1965 } 1966 1967 // Restore correct return pc. Was saved above. 1968 current->set_exception_oop(exception()); 1969 return handler_address; 1970 1971 JRT_END 1972 1973 // We are entering here from exception_blob 1974 // If there is a compiled exception handler in this method, we will continue there; 1975 // otherwise we will unwind the stack and continue at the caller of top frame method 1976 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1977 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1978 // we looked up the handler for has been deoptimized in the meantime. If it has been 1979 // we must not use the handler and instead return the deopt blob. 1980 address OptoRuntime::handle_exception_C(JavaThread* current) { 1981 // 1982 // We are in Java not VM and in debug mode we have a NoHandleMark 1983 // 1984 #ifndef PRODUCT 1985 SharedRuntime::_find_handler_ctr++; // find exception handler 1986 #endif 1987 debug_only(NoHandleMark __hm;) 1988 nmethod* nm = nullptr; 1989 address handler_address = nullptr; 1990 { 1991 // Enter the VM 1992 1993 ResetNoHandleMark rnhm; 1994 handler_address = handle_exception_C_helper(current, nm); 1995 } 1996 1997 // Back in java: Use no oops, DON'T safepoint 1998 1999 // Now check to see if the handler we are returning is in a now 2000 // deoptimized frame 2001 2002 if (nm != nullptr) { 2003 RegisterMap map(current, 2004 RegisterMap::UpdateMap::skip, 2005 RegisterMap::ProcessFrames::skip, 2006 RegisterMap::WalkContinuation::skip); 2007 frame caller = current->last_frame().sender(&map); 2008 #ifdef ASSERT 2009 assert(caller.is_compiled_frame(), "must be"); 2010 #endif // ASSERT 2011 if (caller.is_deoptimized_frame()) { 2012 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 2013 } 2014 } 2015 return handler_address; 2016 } 2017 2018 //------------------------------rethrow---------------------------------------- 2019 // We get here after compiled code has executed a 'RethrowNode'. The callee 2020 // is either throwing or rethrowing an exception. The callee-save registers 2021 // have been restored, synchronized objects have been unlocked and the callee 2022 // stack frame has been removed. The return address was passed in. 2023 // Exception oop is passed as the 1st argument. This routine is then called 2024 // from the stub. On exit, we know where to jump in the caller's code. 2025 // After this C code exits, the stub will pop his frame and end in a jump 2026 // (instead of a return). We enter the caller's default handler. 2027 // 2028 // This must be JRT_LEAF: 2029 // - caller will not change its state as we cannot block on exit, 2030 // therefore raw_exception_handler_for_return_address is all it takes 2031 // to handle deoptimized blobs 2032 // 2033 // However, there needs to be a safepoint check in the middle! So compiled 2034 // safepoints are completely watertight. 2035 // 2036 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 2037 // 2038 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 2039 // 2040 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 2041 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 2042 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 2043 2044 #ifndef PRODUCT 2045 SharedRuntime::_rethrow_ctr++; // count rethrows 2046 #endif 2047 assert (exception != nullptr, "should have thrown a NullPointerException"); 2048 #ifdef ASSERT 2049 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2050 // should throw an exception here 2051 ShouldNotReachHere(); 2052 } 2053 #endif 2054 2055 thread->set_vm_result_oop(exception); 2056 // Frame not compiled (handles deoptimization blob) 2057 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2058 } 2059 2060 static const TypeFunc* make_rethrow_Type() { 2061 // create input type (domain) 2062 const Type **fields = TypeTuple::fields(1); 2063 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2064 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2065 2066 // create result type (range) 2067 fields = TypeTuple::fields(1); 2068 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2069 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2070 2071 return TypeFunc::make(domain, range); 2072 } 2073 2074 2075 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2076 // Deoptimize the caller before continuing, as the compiled 2077 // exception handler table may not be valid. 2078 if (!StressCompiledExceptionHandlers && doit) { 2079 deoptimize_caller_frame(thread); 2080 } 2081 } 2082 2083 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2084 // Called from within the owner thread, so no need for safepoint 2085 RegisterMap reg_map(thread, 2086 RegisterMap::UpdateMap::include, 2087 RegisterMap::ProcessFrames::include, 2088 RegisterMap::WalkContinuation::skip); 2089 frame stub_frame = thread->last_frame(); 2090 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2091 frame caller_frame = stub_frame.sender(®_map); 2092 2093 // Deoptimize the caller frame. 2094 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2095 } 2096 2097 2098 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2099 // Called from within the owner thread, so no need for safepoint 2100 RegisterMap reg_map(thread, 2101 RegisterMap::UpdateMap::include, 2102 RegisterMap::ProcessFrames::include, 2103 RegisterMap::WalkContinuation::skip); 2104 frame stub_frame = thread->last_frame(); 2105 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2106 frame caller_frame = stub_frame.sender(®_map); 2107 return caller_frame.is_deoptimized_frame(); 2108 } 2109 2110 static const TypeFunc* make_register_finalizer_Type() { 2111 // create input type (domain) 2112 const Type **fields = TypeTuple::fields(1); 2113 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2114 // // The JavaThread* is passed to each routine as the last argument 2115 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2116 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2117 2118 // create result type (range) 2119 fields = TypeTuple::fields(0); 2120 2121 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2122 2123 return TypeFunc::make(domain, range); 2124 } 2125 2126 #if INCLUDE_JFR 2127 static const TypeFunc* make_class_id_load_barrier_Type() { 2128 // create input type (domain) 2129 const Type **fields = TypeTuple::fields(1); 2130 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2131 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2132 2133 // create result type (range) 2134 fields = TypeTuple::fields(0); 2135 2136 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2137 2138 return TypeFunc::make(domain,range); 2139 } 2140 #endif // INCLUDE_JFR 2141 2142 //----------------------------------------------------------------------------- 2143 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2144 // create input type (domain) 2145 const Type **fields = TypeTuple::fields(2); 2146 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2147 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2148 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2149 2150 // create result type (range) 2151 fields = TypeTuple::fields(0); 2152 2153 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2154 2155 return TypeFunc::make(domain, range); 2156 } 2157 2158 static const TypeFunc* make_dtrace_object_alloc_Type() { 2159 // create input type (domain) 2160 const Type **fields = TypeTuple::fields(2); 2161 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2162 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2163 2164 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2165 2166 // create result type (range) 2167 fields = TypeTuple::fields(0); 2168 2169 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2170 2171 return TypeFunc::make(domain, range); 2172 } 2173 2174 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2175 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2176 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2177 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2178 JRT_END 2179 2180 //----------------------------------------------------------------------------- 2181 2182 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2183 2184 // 2185 // dump the collected NamedCounters. 2186 // 2187 void OptoRuntime::print_named_counters() { 2188 int total_lock_count = 0; 2189 int eliminated_lock_count = 0; 2190 2191 NamedCounter* c = _named_counters; 2192 while (c) { 2193 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2194 int count = c->count(); 2195 if (count > 0) { 2196 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2197 if (Verbose) { 2198 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2199 } 2200 total_lock_count += count; 2201 if (eliminated) { 2202 eliminated_lock_count += count; 2203 } 2204 } 2205 } 2206 c = c->next(); 2207 } 2208 if (total_lock_count > 0) { 2209 tty->print_cr("dynamic locks: %d", total_lock_count); 2210 if (eliminated_lock_count) { 2211 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2212 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2213 } 2214 } 2215 } 2216 2217 // 2218 // Allocate a new NamedCounter. The JVMState is used to generate the 2219 // name which consists of method@line for the inlining tree. 2220 // 2221 2222 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2223 int max_depth = youngest_jvms->depth(); 2224 2225 // Visit scopes from youngest to oldest. 2226 bool first = true; 2227 stringStream st; 2228 for (int depth = max_depth; depth >= 1; depth--) { 2229 JVMState* jvms = youngest_jvms->of_depth(depth); 2230 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2231 if (!first) { 2232 st.print(" "); 2233 } else { 2234 first = false; 2235 } 2236 int bci = jvms->bci(); 2237 if (bci < 0) bci = 0; 2238 if (m != nullptr) { 2239 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2240 } else { 2241 st.print("no method"); 2242 } 2243 st.print("@%d", bci); 2244 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2245 } 2246 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2247 2248 // atomically add the new counter to the head of the list. We only 2249 // add counters so this is safe. 2250 NamedCounter* head; 2251 do { 2252 c->set_next(nullptr); 2253 head = _named_counters; 2254 c->set_next(head); 2255 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2256 return c; 2257 } 2258 2259 void OptoRuntime::initialize_types() { 2260 _new_instance_Type = make_new_instance_Type(); 2261 _new_array_Type = make_new_array_Type(); 2262 _new_array_nozero_Type = make_new_array_nozero_Type(); 2263 _multianewarray2_Type = multianewarray_Type(2); 2264 _multianewarray3_Type = multianewarray_Type(3); 2265 _multianewarray4_Type = multianewarray_Type(4); 2266 _multianewarray5_Type = multianewarray_Type(5); 2267 _multianewarrayN_Type = make_multianewarrayN_Type(); 2268 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2269 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2270 _monitor_notify_Type = make_monitor_notify_Type(); 2271 _uncommon_trap_Type = make_uncommon_trap_Type(); 2272 _athrow_Type = make_athrow_Type(); 2273 _rethrow_Type = make_rethrow_Type(); 2274 _Math_D_D_Type = make_Math_D_D_Type(); 2275 _Math_DD_D_Type = make_Math_DD_D_Type(); 2276 _modf_Type = make_modf_Type(); 2277 _l2f_Type = make_l2f_Type(); 2278 _void_long_Type = make_void_long_Type(); 2279 _void_void_Type = make_void_void_Type(); 2280 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2281 _flush_windows_Type = make_flush_windows_Type(); 2282 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2283 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2284 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2285 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2286 _unsafe_setmemory_Type = make_setmemory_Type(); 2287 _array_fill_Type = make_array_fill_Type(); 2288 _array_sort_Type = make_array_sort_Type(); 2289 _array_partition_Type = make_array_partition_Type(); 2290 _aescrypt_block_Type = make_aescrypt_block_Type(); 2291 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2292 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2293 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2294 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2295 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2296 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2297 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2298 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2299 _double_keccak_Type = make_double_keccak_Type(); 2300 _multiplyToLen_Type = make_multiplyToLen_Type(); 2301 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2302 _montgomerySquare_Type = make_montgomerySquare_Type(); 2303 _squareToLen_Type = make_squareToLen_Type(); 2304 _mulAdd_Type = make_mulAdd_Type(); 2305 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2306 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2307 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2308 _chacha20Block_Type = make_chacha20Block_Type(); 2309 _kyberNtt_Type = make_kyberNtt_Type(); 2310 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2311 _kyberNttMult_Type = make_kyberNttMult_Type(); 2312 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2313 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2314 _kyber12To16_Type = make_kyber12To16_Type(); 2315 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2316 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2317 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2318 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2319 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2320 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2321 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2322 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2323 _string_IndexOf_Type = make_string_IndexOf_Type(); 2324 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2325 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2326 _intpoly_assign_Type = make_intpoly_assign_Type(); 2327 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2328 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2329 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2330 _osr_end_Type = make_osr_end_Type(); 2331 _register_finalizer_Type = make_register_finalizer_Type(); 2332 JFR_ONLY( 2333 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2334 ) 2335 #if INCLUDE_JVMTI 2336 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2337 #endif // INCLUDE_JVMTI 2338 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2339 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2340 } 2341 2342 int trace_exception_counter = 0; 2343 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2344 trace_exception_counter++; 2345 stringStream tempst; 2346 2347 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2348 exception_oop->print_value_on(&tempst); 2349 tempst.print(" in "); 2350 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2351 if (blob->is_nmethod()) { 2352 blob->as_nmethod()->method()->print_value_on(&tempst); 2353 } else if (blob->is_runtime_stub()) { 2354 tempst.print("<runtime-stub>"); 2355 } else { 2356 tempst.print("<unknown>"); 2357 } 2358 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2359 tempst.print("]"); 2360 2361 st->print_raw_cr(tempst.freeze()); 2362 } 2363 2364 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() { 2365 // create input type (domain) 2366 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2367 const Type **fields = TypeTuple::fields(total); 2368 // We don't know the number of returned values and their 2369 // types. Assume all registers available to the return convention 2370 // are used. 2371 fields[TypeFunc::Parms] = TypePtr::BOTTOM; 2372 uint i = 1; 2373 for (; i < SharedRuntime::java_return_convention_max_int; i++) { 2374 fields[TypeFunc::Parms+i] = TypeInt::INT; 2375 } 2376 for (; i < total; i+=2) { 2377 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2378 fields[TypeFunc::Parms+i+1] = Type::HALF; 2379 } 2380 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2381 2382 // create result type (range) 2383 fields = TypeTuple::fields(1); 2384 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2385 2386 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2387 2388 return TypeFunc::make(domain, range); 2389 } 2390 2391 const TypeFunc *OptoRuntime::pack_inline_type_Type() { 2392 // create input type (domain) 2393 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2394 const Type **fields = TypeTuple::fields(total); 2395 // We don't know the number of returned values and their 2396 // types. Assume all registers available to the return convention 2397 // are used. 2398 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM; 2399 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; 2400 uint i = 2; 2401 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) { 2402 fields[TypeFunc::Parms+i] = TypeInt::INT; 2403 } 2404 for (; i < total; i+=2) { 2405 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2406 fields[TypeFunc::Parms+i+1] = Type::HALF; 2407 } 2408 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2409 2410 // create result type (range) 2411 fields = TypeTuple::fields(1); 2412 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2413 2414 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2415 2416 return TypeFunc::make(domain, range); 2417 } 2418 2419 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current)) 2420 JRT_BLOCK; 2421 oop buffer = array->read_value_from_flat_array(index, THREAD); 2422 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 2423 current->set_vm_result_oop(buffer); 2424 JRT_BLOCK_END; 2425 JRT_END 2426 2427 const TypeFunc* OptoRuntime::load_unknown_inline_Type() { 2428 // create input type (domain) 2429 const Type** fields = TypeTuple::fields(2); 2430 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL; 2431 fields[TypeFunc::Parms+1] = TypeInt::POS; 2432 2433 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields); 2434 2435 // create result type (range) 2436 fields = TypeTuple::fields(1); 2437 fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM; 2438 2439 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 2440 2441 return TypeFunc::make(domain, range); 2442 } 2443 2444 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current)) 2445 JRT_BLOCK; 2446 array->write_value_to_flat_array(buffer, index, THREAD); 2447 if (HAS_PENDING_EXCEPTION) { 2448 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception"); 2449 } 2450 JRT_BLOCK_END; 2451 JRT_END 2452 2453 const TypeFunc* OptoRuntime::store_unknown_inline_Type() { 2454 // create input type (domain) 2455 const Type** fields = TypeTuple::fields(3); 2456 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2457 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL; 2458 fields[TypeFunc::Parms+2] = TypeInt::POS; 2459 2460 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields); 2461 2462 // create result type (range) 2463 fields = TypeTuple::fields(0); 2464 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 2465 2466 return TypeFunc::make(domain, range); 2467 }