1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/flatArrayKlass.hpp" 48 #include "oops/flatArrayOop.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "oops/objArrayKlass.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadWXSetters.inline.hpp" 76 #include "runtime/vframe.hpp" 77 #include "runtime/vframe_hp.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/preserveException.hpp" 81 82 83 // For debugging purposes: 84 // To force FullGCALot inside a runtime function, add the following two lines 85 // 86 // Universe::release_fullgc_alot_dummy(); 87 // Universe::heap()->collect(); 88 // 89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 90 91 92 #define C2_BLOB_FIELD_DEFINE(name, type) \ 93 type* OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 94 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 95 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 96 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 97 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 98 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 99 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 100 #undef C2_BLOB_FIELD_DEFINE 101 #undef C2_STUB_FIELD_DEFINE 102 #undef C2_JVMTI_STUB_FIELD_DEFINE 103 104 // This should be called in an assertion at the start of OptoRuntime routines 105 // which are entered from compiled code (all of them) 106 #ifdef ASSERT 107 static bool check_compiled_frame(JavaThread* thread) { 108 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 109 RegisterMap map(thread, 110 RegisterMap::UpdateMap::skip, 111 RegisterMap::ProcessFrames::include, 112 RegisterMap::WalkContinuation::skip); 113 frame caller = thread->last_frame().sender(&map); 114 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 115 return true; 116 } 117 #endif // ASSERT 118 119 /* 120 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 121 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 122 if (var == nullptr) { return false; } 123 */ 124 125 #define GEN_C2_BLOB(name, type) \ 126 BLOB_FIELD_NAME(name) = \ 127 generate_ ## name ## _blob(); \ 128 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 129 130 // a few helper macros to conjure up generate_stub call arguments 131 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 132 #define C2_STUB_TYPEFUNC(name) name ## _Type 133 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 134 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id) 135 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name)) 136 137 // Almost all the C functions targeted from the generated stubs are 138 // implemented locally to OptoRuntime with names that can be generated 139 // from the stub name by appending suffix '_C'. However, in two cases 140 // a common target method also needs to be called from shared runtime 141 // stubs. In these two cases the opto stubs rely on method 142 // imlementations defined in class SharedRuntime. The following 143 // defines temporarily rebind the generated names to reference the 144 // relevant implementations. 145 146 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 147 C2_STUB_FIELD_NAME(name) = \ 148 generate_stub(env, \ 149 C2_STUB_TYPEFUNC(name), \ 150 C2_STUB_C_FUNC(name), \ 151 C2_STUB_NAME(name), \ 152 C2_STUB_ID(name), \ 153 fancy_jump, \ 154 pass_tls, \ 155 pass_retpc); \ 156 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 157 158 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 159 160 #define GEN_C2_JVMTI_STUB(name) \ 161 STUB_FIELD_NAME(name) = \ 162 generate_stub(env, \ 163 notify_jvmti_vthread_Type, \ 164 C2_JVMTI_STUB_C_FUNC(name), \ 165 C2_STUB_NAME(name), \ 166 C2_STUB_ID(name), \ 167 0, \ 168 true, \ 169 false); \ 170 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 171 172 bool OptoRuntime::generate(ciEnv* env) { 173 174 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 175 176 return true; 177 } 178 179 #undef GEN_C2_BLOB 180 181 #undef C2_STUB_FIELD_NAME 182 #undef C2_STUB_TYPEFUNC 183 #undef C2_STUB_C_FUNC 184 #undef C2_STUB_NAME 185 #undef GEN_C2_STUB 186 187 #undef C2_JVMTI_STUB_C_FUNC 188 #undef GEN_C2_JVMTI_STUB 189 // #undef gen 190 191 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 192 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 193 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr; 194 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 195 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 196 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 197 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 198 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 199 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 200 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 201 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 202 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 203 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 204 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 205 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 206 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 207 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 208 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 209 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 210 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 211 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 212 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 213 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 214 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 215 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 216 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 217 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 218 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 219 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 220 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 221 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 222 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 223 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 224 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 225 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 226 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 227 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 228 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 229 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 230 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 231 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 232 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 233 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 234 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 235 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 236 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 237 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 238 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 239 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 240 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 241 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 242 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 243 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 244 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 245 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 246 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 247 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 248 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 249 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 250 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 251 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 252 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 253 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 254 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 255 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 256 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 257 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 258 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 259 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 260 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 261 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 262 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 263 #if INCLUDE_JFR 264 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 265 #endif // INCLUDE_JFR 266 #if INCLUDE_JVMTI 267 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 268 #endif // INCLUDE_JVMTI 269 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 270 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 271 272 // Helper method to do generation of RunTimeStub's 273 address OptoRuntime::generate_stub(ciEnv* env, 274 TypeFunc_generator gen, address C_function, 275 const char *name, StubId stub_id, 276 int is_fancy_jump, bool pass_tls, 277 bool return_pc) { 278 279 // Matching the default directive, we currently have no method to match. 280 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 281 CompilationMemoryStatisticMark cmsm(directive); 282 ResourceMark rm; 283 Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive); 284 DirectivesStack::release(directive); 285 return C.stub_entry_point(); 286 } 287 288 const char* OptoRuntime::stub_name(address entry) { 289 #ifndef PRODUCT 290 CodeBlob* cb = CodeCache::find_blob(entry); 291 RuntimeStub* rs =(RuntimeStub *)cb; 292 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 293 return rs->name(); 294 #else 295 // Fast implementation for product mode (maybe it should be inlined too) 296 return "runtime stub"; 297 #endif 298 } 299 300 // local methods passed as arguments to stub generator that forward 301 // control to corresponding JRT methods of SharedRuntime 302 303 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 304 oopDesc* dest, jint dest_pos, 305 jint length, JavaThread* thread) { 306 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 307 } 308 309 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 310 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 311 } 312 313 314 //============================================================================= 315 // Opto compiler runtime routines 316 //============================================================================= 317 318 319 //=============================allocation====================================== 320 // We failed the fast-path allocation. Now we need to do a scavenge or GC 321 // and try allocation again. 322 323 // object allocation 324 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current)) 325 JRT_BLOCK; 326 #ifndef PRODUCT 327 SharedRuntime::_new_instance_ctr++; // new instance requires GC 328 #endif 329 assert(check_compiled_frame(current), "incorrect caller"); 330 331 // These checks are cheap to make and support reflective allocation. 332 int lh = klass->layout_helper(); 333 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 334 Handle holder(current, klass->klass_holder()); // keep the klass alive 335 klass->check_valid_for_instantiation(false, THREAD); 336 if (!HAS_PENDING_EXCEPTION) { 337 InstanceKlass::cast(klass)->initialize(THREAD); 338 } 339 } 340 341 if (!HAS_PENDING_EXCEPTION) { 342 // Scavenge and allocate an instance. 343 Handle holder(current, klass->klass_holder()); // keep the klass alive 344 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 345 if (is_larval) { 346 // Check if this is a larval buffer allocation 347 result->set_mark(result->mark().enter_larval_state()); 348 } 349 current->set_vm_result_oop(result); 350 351 // Pass oops back through thread local storage. Our apparent type to Java 352 // is that we return an oop, but we can block on exit from this routine and 353 // a GC can trash the oop in C's return register. The generated stub will 354 // fetch the oop from TLS after any possible GC. 355 } 356 357 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 358 JRT_BLOCK_END; 359 360 // inform GC that we won't do card marks for initializing writes. 361 SharedRuntime::on_slowpath_allocation_exit(current); 362 JRT_END 363 364 365 // array allocation 366 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current)) 367 JRT_BLOCK; 368 #ifndef PRODUCT 369 SharedRuntime::_new_array_ctr++; // new array requires GC 370 #endif 371 assert(check_compiled_frame(current), "incorrect caller"); 372 373 // Scavenge and allocate an instance. 374 oop result; 375 Handle h_init_val(current, init_val); // keep the init_val object alive 376 377 if (array_type->is_flatArray_klass()) { 378 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 379 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type); 380 InlineKlass* vk = fak->element_klass(); 381 ArrayKlass::ArrayProperties props = ArrayKlass::ArrayProperties::DEFAULT; 382 switch(fak->layout_kind()) { 383 case LayoutKind::ATOMIC_FLAT: 384 props = ArrayKlass::ArrayProperties::NULL_RESTRICTED; 385 break; 386 case LayoutKind::NON_ATOMIC_FLAT: 387 props = (ArrayKlass::ArrayProperties)(ArrayKlass::ArrayProperties::NULL_RESTRICTED | ArrayKlass::ArrayProperties::NON_ATOMIC); 388 break; 389 case LayoutKind::NULLABLE_ATOMIC_FLAT: 390 props = ArrayKlass::ArrayProperties::NON_ATOMIC; 391 break; 392 default: 393 ShouldNotReachHere(); 394 } 395 result = oopFactory::new_flatArray(vk, len, props, fak->layout_kind(), THREAD); 396 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 397 // Null-free arrays need to be initialized 398 for (int i = 0; i < len; i++) { 399 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK); 400 } 401 } 402 } else if (array_type->is_typeArray_klass()) { 403 // The oopFactory likes to work with the element type. 404 // (We could bypass the oopFactory, since it doesn't add much value.) 405 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 406 result = oopFactory::new_typeArray(elem_type, len, THREAD); 407 } else { 408 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 409 result = oopFactory::new_refArray(array_type, len, THREAD); 410 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 411 // Null-free arrays need to be initialized 412 for (int i = 0; i < len; i++) { 413 ((objArrayOop)result)->obj_at_put(i, h_init_val()); 414 } 415 } 416 } 417 418 // Pass oops back through thread local storage. Our apparent type to Java 419 // is that we return an oop, but we can block on exit from this routine and 420 // a GC can trash the oop in C's return register. The generated stub will 421 // fetch the oop from TLS after any possible GC. 422 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 423 current->set_vm_result_oop(result); 424 JRT_BLOCK_END; 425 426 // inform GC that we won't do card marks for initializing writes. 427 SharedRuntime::on_slowpath_allocation_exit(current); 428 JRT_END 429 430 // array allocation without zeroing 431 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 432 JRT_BLOCK; 433 #ifndef PRODUCT 434 SharedRuntime::_new_array_ctr++; // new array requires GC 435 #endif 436 assert(check_compiled_frame(current), "incorrect caller"); 437 438 // Scavenge and allocate an instance. 439 oop result; 440 441 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 442 // The oopFactory likes to work with the element type. 443 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 444 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 445 446 // Pass oops back through thread local storage. Our apparent type to Java 447 // is that we return an oop, but we can block on exit from this routine and 448 // a GC can trash the oop in C's return register. The generated stub will 449 // fetch the oop from TLS after any possible GC. 450 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 451 current->set_vm_result_oop(result); 452 JRT_BLOCK_END; 453 454 455 // inform GC that we won't do card marks for initializing writes. 456 SharedRuntime::on_slowpath_allocation_exit(current); 457 458 oop result = current->vm_result_oop(); 459 if ((len > 0) && (result != nullptr) && 460 is_deoptimized_caller_frame(current)) { 461 // Zero array here if the caller is deoptimized. 462 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 463 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 464 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 465 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 466 HeapWord* obj = cast_from_oop<HeapWord*>(result); 467 if (!is_aligned(hs_bytes, BytesPerLong)) { 468 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 469 hs_bytes += BytesPerInt; 470 } 471 472 // Optimized zeroing. 473 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 474 const size_t aligned_hs = hs_bytes / BytesPerLong; 475 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 476 } 477 478 JRT_END 479 480 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 481 482 // multianewarray for 2 dimensions 483 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 484 #ifndef PRODUCT 485 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 486 #endif 487 assert(check_compiled_frame(current), "incorrect caller"); 488 assert(elem_type->is_klass(), "not a class"); 489 jint dims[2]; 490 dims[0] = len1; 491 dims[1] = len2; 492 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 493 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 494 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 495 current->set_vm_result_oop(obj); 496 JRT_END 497 498 // multianewarray for 3 dimensions 499 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 500 #ifndef PRODUCT 501 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 502 #endif 503 assert(check_compiled_frame(current), "incorrect caller"); 504 assert(elem_type->is_klass(), "not a class"); 505 jint dims[3]; 506 dims[0] = len1; 507 dims[1] = len2; 508 dims[2] = len3; 509 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 510 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 511 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 512 current->set_vm_result_oop(obj); 513 JRT_END 514 515 // multianewarray for 4 dimensions 516 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 517 #ifndef PRODUCT 518 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 519 #endif 520 assert(check_compiled_frame(current), "incorrect caller"); 521 assert(elem_type->is_klass(), "not a class"); 522 jint dims[4]; 523 dims[0] = len1; 524 dims[1] = len2; 525 dims[2] = len3; 526 dims[3] = len4; 527 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 528 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 529 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 530 current->set_vm_result_oop(obj); 531 JRT_END 532 533 // multianewarray for 5 dimensions 534 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 535 #ifndef PRODUCT 536 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 537 #endif 538 assert(check_compiled_frame(current), "incorrect caller"); 539 assert(elem_type->is_klass(), "not a class"); 540 jint dims[5]; 541 dims[0] = len1; 542 dims[1] = len2; 543 dims[2] = len3; 544 dims[3] = len4; 545 dims[4] = len5; 546 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 547 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 548 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 549 current->set_vm_result_oop(obj); 550 JRT_END 551 552 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 553 assert(check_compiled_frame(current), "incorrect caller"); 554 assert(elem_type->is_klass(), "not a class"); 555 assert(oop(dims)->is_typeArray(), "not an array"); 556 557 ResourceMark rm; 558 jint len = dims->length(); 559 assert(len > 0, "Dimensions array should contain data"); 560 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 561 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 562 c_dims, len); 563 564 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 565 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 566 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 567 current->set_vm_result_oop(obj); 568 JRT_END 569 570 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 571 572 // Very few notify/notifyAll operations find any threads on the waitset, so 573 // the dominant fast-path is to simply return. 574 // Relatedly, it's critical that notify/notifyAll be fast in order to 575 // reduce lock hold times. 576 if (!SafepointSynchronize::is_synchronizing()) { 577 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 578 return; 579 } 580 } 581 582 // This is the case the fast-path above isn't provisioned to handle. 583 // The fast-path is designed to handle frequently arising cases in an efficient manner. 584 // (The fast-path is just a degenerate variant of the slow-path). 585 // Perform the dreaded state transition and pass control into the slow-path. 586 JRT_BLOCK; 587 Handle h_obj(current, obj); 588 ObjectSynchronizer::notify(h_obj, CHECK); 589 JRT_BLOCK_END; 590 JRT_END 591 592 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 593 594 if (!SafepointSynchronize::is_synchronizing() ) { 595 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 596 return; 597 } 598 } 599 600 // This is the case the fast-path above isn't provisioned to handle. 601 // The fast-path is designed to handle frequently arising cases in an efficient manner. 602 // (The fast-path is just a degenerate variant of the slow-path). 603 // Perform the dreaded state transition and pass control into the slow-path. 604 JRT_BLOCK; 605 Handle h_obj(current, obj); 606 ObjectSynchronizer::notifyall(h_obj, CHECK); 607 JRT_BLOCK_END; 608 JRT_END 609 610 static const TypeFunc* make_new_instance_Type() { 611 // create input type (domain) 612 const Type **fields = TypeTuple::fields(2); 613 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 614 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval 615 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 616 617 // create result type (range) 618 fields = TypeTuple::fields(1); 619 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 620 621 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 622 623 return TypeFunc::make(domain, range); 624 } 625 626 #if INCLUDE_JVMTI 627 static const TypeFunc* make_notify_jvmti_vthread_Type() { 628 // create input type (domain) 629 const Type **fields = TypeTuple::fields(2); 630 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 631 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 632 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 633 634 // no result type needed 635 fields = TypeTuple::fields(1); 636 fields[TypeFunc::Parms+0] = nullptr; // void 637 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 638 639 return TypeFunc::make(domain,range); 640 } 641 #endif 642 643 static const TypeFunc* make_athrow_Type() { 644 // create input type (domain) 645 const Type **fields = TypeTuple::fields(1); 646 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 647 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 648 649 // create result type (range) 650 fields = TypeTuple::fields(0); 651 652 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 653 654 return TypeFunc::make(domain, range); 655 } 656 657 static const TypeFunc* make_new_array_Type() { 658 // create input type (domain) 659 const Type **fields = TypeTuple::fields(3); 660 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 661 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 662 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value 663 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 664 665 // create result type (range) 666 fields = TypeTuple::fields(1); 667 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 668 669 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 670 671 return TypeFunc::make(domain, range); 672 } 673 674 static const TypeFunc* make_new_array_nozero_Type() { 675 // create input type (domain) 676 const Type **fields = TypeTuple::fields(2); 677 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 678 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 679 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 680 681 // create result type (range) 682 fields = TypeTuple::fields(1); 683 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 684 685 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 686 687 return TypeFunc::make(domain, range); 688 } 689 690 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 691 // create input type (domain) 692 const int nargs = ndim + 1; 693 const Type **fields = TypeTuple::fields(nargs); 694 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 695 for( int i = 1; i < nargs; i++ ) 696 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 697 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 698 699 // create result type (range) 700 fields = TypeTuple::fields(1); 701 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 702 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 703 704 return TypeFunc::make(domain, range); 705 } 706 707 static const TypeFunc* make_multianewarrayN_Type() { 708 // create input type (domain) 709 const Type **fields = TypeTuple::fields(2); 710 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 711 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 712 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 713 714 // create result type (range) 715 fields = TypeTuple::fields(1); 716 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 717 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 718 719 return TypeFunc::make(domain, range); 720 } 721 722 static const TypeFunc* make_uncommon_trap_Type() { 723 // create input type (domain) 724 const Type **fields = TypeTuple::fields(1); 725 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 726 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 727 728 // create result type (range) 729 fields = TypeTuple::fields(0); 730 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 731 732 return TypeFunc::make(domain, range); 733 } 734 735 //----------------------------------------------------------------------------- 736 // Monitor Handling 737 738 static const TypeFunc* make_complete_monitor_enter_Type() { 739 // create input type (domain) 740 const Type **fields = TypeTuple::fields(2); 741 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 742 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 743 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 744 745 // create result type (range) 746 fields = TypeTuple::fields(0); 747 748 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 749 750 return TypeFunc::make(domain, range); 751 } 752 753 //----------------------------------------------------------------------------- 754 755 static const TypeFunc* make_complete_monitor_exit_Type() { 756 // create input type (domain) 757 const Type **fields = TypeTuple::fields(3); 758 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 759 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 760 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 761 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 762 763 // create result type (range) 764 fields = TypeTuple::fields(0); 765 766 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 767 768 return TypeFunc::make(domain, range); 769 } 770 771 static const TypeFunc* make_monitor_notify_Type() { 772 // create input type (domain) 773 const Type **fields = TypeTuple::fields(1); 774 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 775 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 776 777 // create result type (range) 778 fields = TypeTuple::fields(0); 779 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 780 return TypeFunc::make(domain, range); 781 } 782 783 static const TypeFunc* make_flush_windows_Type() { 784 // create input type (domain) 785 const Type** fields = TypeTuple::fields(1); 786 fields[TypeFunc::Parms+0] = nullptr; // void 787 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 788 789 // create result type 790 fields = TypeTuple::fields(1); 791 fields[TypeFunc::Parms+0] = nullptr; // void 792 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 793 794 return TypeFunc::make(domain, range); 795 } 796 797 static const TypeFunc* make_l2f_Type() { 798 // create input type (domain) 799 const Type **fields = TypeTuple::fields(2); 800 fields[TypeFunc::Parms+0] = TypeLong::LONG; 801 fields[TypeFunc::Parms+1] = Type::HALF; 802 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 803 804 // create result type (range) 805 fields = TypeTuple::fields(1); 806 fields[TypeFunc::Parms+0] = Type::FLOAT; 807 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 808 809 return TypeFunc::make(domain, range); 810 } 811 812 static const TypeFunc* make_modf_Type() { 813 const Type **fields = TypeTuple::fields(2); 814 fields[TypeFunc::Parms+0] = Type::FLOAT; 815 fields[TypeFunc::Parms+1] = Type::FLOAT; 816 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 817 818 // create result type (range) 819 fields = TypeTuple::fields(1); 820 fields[TypeFunc::Parms+0] = Type::FLOAT; 821 822 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 823 824 return TypeFunc::make(domain, range); 825 } 826 827 static const TypeFunc* make_Math_D_D_Type() { 828 // create input type (domain) 829 const Type **fields = TypeTuple::fields(2); 830 // Symbol* name of class to be loaded 831 fields[TypeFunc::Parms+0] = Type::DOUBLE; 832 fields[TypeFunc::Parms+1] = Type::HALF; 833 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 834 835 // create result type (range) 836 fields = TypeTuple::fields(2); 837 fields[TypeFunc::Parms+0] = Type::DOUBLE; 838 fields[TypeFunc::Parms+1] = Type::HALF; 839 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 840 841 return TypeFunc::make(domain, range); 842 } 843 844 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 845 // create input type (domain) 846 const Type **fields = TypeTuple::fields(num_arg); 847 // Symbol* name of class to be loaded 848 assert(num_arg > 0, "must have at least 1 input"); 849 for (uint i = 0; i < num_arg; i++) { 850 fields[TypeFunc::Parms+i] = in_type; 851 } 852 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 853 854 // create result type (range) 855 const uint num_ret = 1; 856 fields = TypeTuple::fields(num_ret); 857 fields[TypeFunc::Parms+0] = out_type; 858 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 859 860 return TypeFunc::make(domain, range); 861 } 862 863 static const TypeFunc* make_Math_DD_D_Type() { 864 const Type **fields = TypeTuple::fields(4); 865 fields[TypeFunc::Parms+0] = Type::DOUBLE; 866 fields[TypeFunc::Parms+1] = Type::HALF; 867 fields[TypeFunc::Parms+2] = Type::DOUBLE; 868 fields[TypeFunc::Parms+3] = Type::HALF; 869 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 870 871 // create result type (range) 872 fields = TypeTuple::fields(2); 873 fields[TypeFunc::Parms+0] = Type::DOUBLE; 874 fields[TypeFunc::Parms+1] = Type::HALF; 875 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 876 877 return TypeFunc::make(domain, range); 878 } 879 880 //-------------- currentTimeMillis, currentTimeNanos, etc 881 882 static const TypeFunc* make_void_long_Type() { 883 // create input type (domain) 884 const Type **fields = TypeTuple::fields(0); 885 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 886 887 // create result type (range) 888 fields = TypeTuple::fields(2); 889 fields[TypeFunc::Parms+0] = TypeLong::LONG; 890 fields[TypeFunc::Parms+1] = Type::HALF; 891 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 892 893 return TypeFunc::make(domain, range); 894 } 895 896 static const TypeFunc* make_void_void_Type() { 897 // create input type (domain) 898 const Type **fields = TypeTuple::fields(0); 899 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 900 901 // create result type (range) 902 fields = TypeTuple::fields(0); 903 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 904 return TypeFunc::make(domain, range); 905 } 906 907 static const TypeFunc* make_jfr_write_checkpoint_Type() { 908 // create input type (domain) 909 const Type **fields = TypeTuple::fields(0); 910 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 911 912 // create result type (range) 913 fields = TypeTuple::fields(0); 914 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 915 return TypeFunc::make(domain, range); 916 } 917 918 919 // Takes as parameters: 920 // void *dest 921 // long size 922 // uchar byte 923 924 static const TypeFunc* make_setmemory_Type() { 925 // create input type (domain) 926 int argcnt = NOT_LP64(3) LP64_ONLY(4); 927 const Type** fields = TypeTuple::fields(argcnt); 928 int argp = TypeFunc::Parms; 929 fields[argp++] = TypePtr::NOTNULL; // dest 930 fields[argp++] = TypeX_X; // size 931 LP64_ONLY(fields[argp++] = Type::HALF); // size 932 fields[argp++] = TypeInt::UBYTE; // bytevalue 933 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 934 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 935 936 // no result type needed 937 fields = TypeTuple::fields(1); 938 fields[TypeFunc::Parms+0] = nullptr; // void 939 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 940 return TypeFunc::make(domain, range); 941 } 942 943 // arraycopy stub variations: 944 enum ArrayCopyType { 945 ac_fast, // void(ptr, ptr, size_t) 946 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 947 ac_slow, // void(ptr, int, ptr, int, int) 948 ac_generic // int(ptr, int, ptr, int, int) 949 }; 950 951 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 952 // create input type (domain) 953 int num_args = (act == ac_fast ? 3 : 5); 954 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 955 int argcnt = num_args; 956 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 957 const Type** fields = TypeTuple::fields(argcnt); 958 int argp = TypeFunc::Parms; 959 fields[argp++] = TypePtr::NOTNULL; // src 960 if (num_size_args == 0) { 961 fields[argp++] = TypeInt::INT; // src_pos 962 } 963 fields[argp++] = TypePtr::NOTNULL; // dest 964 if (num_size_args == 0) { 965 fields[argp++] = TypeInt::INT; // dest_pos 966 fields[argp++] = TypeInt::INT; // length 967 } 968 while (num_size_args-- > 0) { 969 fields[argp++] = TypeX_X; // size in whatevers (size_t) 970 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 971 } 972 if (act == ac_checkcast) { 973 fields[argp++] = TypePtr::NOTNULL; // super_klass 974 } 975 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 976 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 977 978 // create result type if needed 979 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 980 fields = TypeTuple::fields(1); 981 if (retcnt == 0) 982 fields[TypeFunc::Parms+0] = nullptr; // void 983 else 984 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 985 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 986 return TypeFunc::make(domain, range); 987 } 988 989 static const TypeFunc* make_array_fill_Type() { 990 const Type** fields; 991 int argp = TypeFunc::Parms; 992 // create input type (domain): pointer, int, size_t 993 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 994 fields[argp++] = TypePtr::NOTNULL; 995 fields[argp++] = TypeInt::INT; 996 fields[argp++] = TypeX_X; // size in whatevers (size_t) 997 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 998 const TypeTuple *domain = TypeTuple::make(argp, fields); 999 1000 // create result type 1001 fields = TypeTuple::fields(1); 1002 fields[TypeFunc::Parms+0] = nullptr; // void 1003 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1004 1005 return TypeFunc::make(domain, range); 1006 } 1007 1008 static const TypeFunc* make_array_partition_Type() { 1009 // create input type (domain) 1010 int num_args = 7; 1011 int argcnt = num_args; 1012 const Type** fields = TypeTuple::fields(argcnt); 1013 int argp = TypeFunc::Parms; 1014 fields[argp++] = TypePtr::NOTNULL; // array 1015 fields[argp++] = TypeInt::INT; // element type 1016 fields[argp++] = TypeInt::INT; // low 1017 fields[argp++] = TypeInt::INT; // end 1018 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 1019 fields[argp++] = TypeInt::INT; // indexPivot1 1020 fields[argp++] = TypeInt::INT; // indexPivot2 1021 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1022 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1023 1024 // no result type needed 1025 fields = TypeTuple::fields(1); 1026 fields[TypeFunc::Parms+0] = nullptr; // void 1027 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1028 return TypeFunc::make(domain, range); 1029 } 1030 1031 static const TypeFunc* make_array_sort_Type() { 1032 // create input type (domain) 1033 int num_args = 4; 1034 int argcnt = num_args; 1035 const Type** fields = TypeTuple::fields(argcnt); 1036 int argp = TypeFunc::Parms; 1037 fields[argp++] = TypePtr::NOTNULL; // array 1038 fields[argp++] = TypeInt::INT; // element type 1039 fields[argp++] = TypeInt::INT; // fromIndex 1040 fields[argp++] = TypeInt::INT; // toIndex 1041 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1042 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1043 1044 // no result type needed 1045 fields = TypeTuple::fields(1); 1046 fields[TypeFunc::Parms+0] = nullptr; // void 1047 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1048 return TypeFunc::make(domain, range); 1049 } 1050 1051 static const TypeFunc* make_aescrypt_block_Type() { 1052 // create input type (domain) 1053 int num_args = 3; 1054 int argcnt = num_args; 1055 const Type** fields = TypeTuple::fields(argcnt); 1056 int argp = TypeFunc::Parms; 1057 fields[argp++] = TypePtr::NOTNULL; // src 1058 fields[argp++] = TypePtr::NOTNULL; // dest 1059 fields[argp++] = TypePtr::NOTNULL; // k array 1060 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1061 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1062 1063 // no result type needed 1064 fields = TypeTuple::fields(1); 1065 fields[TypeFunc::Parms+0] = nullptr; // void 1066 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1067 return TypeFunc::make(domain, range); 1068 } 1069 1070 static const TypeFunc* make_updateBytesCRC32_Type() { 1071 // create input type (domain) 1072 int num_args = 3; 1073 int argcnt = num_args; 1074 const Type** fields = TypeTuple::fields(argcnt); 1075 int argp = TypeFunc::Parms; 1076 fields[argp++] = TypeInt::INT; // crc 1077 fields[argp++] = TypePtr::NOTNULL; // src 1078 fields[argp++] = TypeInt::INT; // len 1079 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1080 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1081 1082 // result type needed 1083 fields = TypeTuple::fields(1); 1084 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1085 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1086 return TypeFunc::make(domain, range); 1087 } 1088 1089 static const TypeFunc* make_updateBytesCRC32C_Type() { 1090 // create input type (domain) 1091 int num_args = 4; 1092 int argcnt = num_args; 1093 const Type** fields = TypeTuple::fields(argcnt); 1094 int argp = TypeFunc::Parms; 1095 fields[argp++] = TypeInt::INT; // crc 1096 fields[argp++] = TypePtr::NOTNULL; // buf 1097 fields[argp++] = TypeInt::INT; // len 1098 fields[argp++] = TypePtr::NOTNULL; // table 1099 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1100 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1101 1102 // result type needed 1103 fields = TypeTuple::fields(1); 1104 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1105 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1106 return TypeFunc::make(domain, range); 1107 } 1108 1109 static const TypeFunc* make_updateBytesAdler32_Type() { 1110 // create input type (domain) 1111 int num_args = 3; 1112 int argcnt = num_args; 1113 const Type** fields = TypeTuple::fields(argcnt); 1114 int argp = TypeFunc::Parms; 1115 fields[argp++] = TypeInt::INT; // crc 1116 fields[argp++] = TypePtr::NOTNULL; // src + offset 1117 fields[argp++] = TypeInt::INT; // len 1118 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1119 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1120 1121 // result type needed 1122 fields = TypeTuple::fields(1); 1123 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1124 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1125 return TypeFunc::make(domain, range); 1126 } 1127 1128 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1129 // create input type (domain) 1130 int num_args = 5; 1131 int argcnt = num_args; 1132 const Type** fields = TypeTuple::fields(argcnt); 1133 int argp = TypeFunc::Parms; 1134 fields[argp++] = TypePtr::NOTNULL; // src 1135 fields[argp++] = TypePtr::NOTNULL; // dest 1136 fields[argp++] = TypePtr::NOTNULL; // k array 1137 fields[argp++] = TypePtr::NOTNULL; // r array 1138 fields[argp++] = TypeInt::INT; // src len 1139 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1140 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1141 1142 // returning cipher len (int) 1143 fields = TypeTuple::fields(1); 1144 fields[TypeFunc::Parms+0] = TypeInt::INT; 1145 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1146 return TypeFunc::make(domain, range); 1147 } 1148 1149 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1150 // create input type (domain) 1151 int num_args = 4; 1152 int argcnt = num_args; 1153 const Type** fields = TypeTuple::fields(argcnt); 1154 int argp = TypeFunc::Parms; 1155 fields[argp++] = TypePtr::NOTNULL; // src 1156 fields[argp++] = TypePtr::NOTNULL; // dest 1157 fields[argp++] = TypePtr::NOTNULL; // k array 1158 fields[argp++] = TypeInt::INT; // src len 1159 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1160 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1161 1162 // returning cipher len (int) 1163 fields = TypeTuple::fields(1); 1164 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1165 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1166 return TypeFunc::make(domain, range); 1167 } 1168 1169 static const TypeFunc* make_counterMode_aescrypt_Type() { 1170 // create input type (domain) 1171 int num_args = 7; 1172 int argcnt = num_args; 1173 const Type** fields = TypeTuple::fields(argcnt); 1174 int argp = TypeFunc::Parms; 1175 fields[argp++] = TypePtr::NOTNULL; // src 1176 fields[argp++] = TypePtr::NOTNULL; // dest 1177 fields[argp++] = TypePtr::NOTNULL; // k array 1178 fields[argp++] = TypePtr::NOTNULL; // counter array 1179 fields[argp++] = TypeInt::INT; // src len 1180 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1181 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1182 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1183 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1184 // returning cipher len (int) 1185 fields = TypeTuple::fields(1); 1186 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1187 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1188 return TypeFunc::make(domain, range); 1189 } 1190 1191 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1192 // create input type (domain) 1193 int num_args = 8; 1194 int argcnt = num_args; 1195 const Type** fields = TypeTuple::fields(argcnt); 1196 int argp = TypeFunc::Parms; 1197 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1198 fields[argp++] = TypeInt::INT; // int len 1199 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1200 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1201 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1202 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1203 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1204 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1205 1206 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1207 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1208 // returning cipher len (int) 1209 fields = TypeTuple::fields(1); 1210 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1211 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1212 return TypeFunc::make(domain, range); 1213 } 1214 1215 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1216 // create input type (domain) 1217 int num_args = is_sha3 ? 3 : 2; 1218 int argcnt = num_args; 1219 const Type** fields = TypeTuple::fields(argcnt); 1220 int argp = TypeFunc::Parms; 1221 fields[argp++] = TypePtr::NOTNULL; // buf 1222 fields[argp++] = TypePtr::NOTNULL; // state 1223 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1224 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1225 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1226 1227 // no result type needed 1228 fields = TypeTuple::fields(1); 1229 fields[TypeFunc::Parms+0] = nullptr; // void 1230 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1231 return TypeFunc::make(domain, range); 1232 } 1233 1234 /* 1235 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1236 */ 1237 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1238 // create input type (domain) 1239 int num_args = is_sha3 ? 5 : 4; 1240 int argcnt = num_args; 1241 const Type** fields = TypeTuple::fields(argcnt); 1242 int argp = TypeFunc::Parms; 1243 fields[argp++] = TypePtr::NOTNULL; // buf 1244 fields[argp++] = TypePtr::NOTNULL; // state 1245 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1246 fields[argp++] = TypeInt::INT; // ofs 1247 fields[argp++] = TypeInt::INT; // limit 1248 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1249 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1250 1251 // returning ofs (int) 1252 fields = TypeTuple::fields(1); 1253 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1254 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1255 return TypeFunc::make(domain, range); 1256 } 1257 1258 // SHAKE128Parallel doubleKeccak function 1259 static const TypeFunc* make_double_keccak_Type() { 1260 int argcnt = 2; 1261 1262 const Type** fields = TypeTuple::fields(argcnt); 1263 int argp = TypeFunc::Parms; 1264 fields[argp++] = TypePtr::NOTNULL; // status0 1265 fields[argp++] = TypePtr::NOTNULL; // status1 1266 1267 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1268 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1269 1270 // result type needed 1271 fields = TypeTuple::fields(1); 1272 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1273 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1274 return TypeFunc::make(domain, range); 1275 } 1276 1277 static const TypeFunc* make_multiplyToLen_Type() { 1278 // create input type (domain) 1279 int num_args = 5; 1280 int argcnt = num_args; 1281 const Type** fields = TypeTuple::fields(argcnt); 1282 int argp = TypeFunc::Parms; 1283 fields[argp++] = TypePtr::NOTNULL; // x 1284 fields[argp++] = TypeInt::INT; // xlen 1285 fields[argp++] = TypePtr::NOTNULL; // y 1286 fields[argp++] = TypeInt::INT; // ylen 1287 fields[argp++] = TypePtr::NOTNULL; // z 1288 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1289 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1290 1291 // no result type needed 1292 fields = TypeTuple::fields(1); 1293 fields[TypeFunc::Parms+0] = nullptr; 1294 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1295 return TypeFunc::make(domain, range); 1296 } 1297 1298 static const TypeFunc* make_squareToLen_Type() { 1299 // create input type (domain) 1300 int num_args = 4; 1301 int argcnt = num_args; 1302 const Type** fields = TypeTuple::fields(argcnt); 1303 int argp = TypeFunc::Parms; 1304 fields[argp++] = TypePtr::NOTNULL; // x 1305 fields[argp++] = TypeInt::INT; // len 1306 fields[argp++] = TypePtr::NOTNULL; // z 1307 fields[argp++] = TypeInt::INT; // zlen 1308 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1309 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1310 1311 // no result type needed 1312 fields = TypeTuple::fields(1); 1313 fields[TypeFunc::Parms+0] = nullptr; 1314 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1315 return TypeFunc::make(domain, range); 1316 } 1317 1318 static const TypeFunc* make_mulAdd_Type() { 1319 // create input type (domain) 1320 int num_args = 5; 1321 int argcnt = num_args; 1322 const Type** fields = TypeTuple::fields(argcnt); 1323 int argp = TypeFunc::Parms; 1324 fields[argp++] = TypePtr::NOTNULL; // out 1325 fields[argp++] = TypePtr::NOTNULL; // in 1326 fields[argp++] = TypeInt::INT; // offset 1327 fields[argp++] = TypeInt::INT; // len 1328 fields[argp++] = TypeInt::INT; // k 1329 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1330 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1331 1332 // returning carry (int) 1333 fields = TypeTuple::fields(1); 1334 fields[TypeFunc::Parms+0] = TypeInt::INT; 1335 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1336 return TypeFunc::make(domain, range); 1337 } 1338 1339 static const TypeFunc* make_montgomeryMultiply_Type() { 1340 // create input type (domain) 1341 int num_args = 7; 1342 int argcnt = num_args; 1343 const Type** fields = TypeTuple::fields(argcnt); 1344 int argp = TypeFunc::Parms; 1345 fields[argp++] = TypePtr::NOTNULL; // a 1346 fields[argp++] = TypePtr::NOTNULL; // b 1347 fields[argp++] = TypePtr::NOTNULL; // n 1348 fields[argp++] = TypeInt::INT; // len 1349 fields[argp++] = TypeLong::LONG; // inv 1350 fields[argp++] = Type::HALF; 1351 fields[argp++] = TypePtr::NOTNULL; // result 1352 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1353 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1354 1355 // result type needed 1356 fields = TypeTuple::fields(1); 1357 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1358 1359 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1360 return TypeFunc::make(domain, range); 1361 } 1362 1363 static const TypeFunc* make_montgomerySquare_Type() { 1364 // create input type (domain) 1365 int num_args = 6; 1366 int argcnt = num_args; 1367 const Type** fields = TypeTuple::fields(argcnt); 1368 int argp = TypeFunc::Parms; 1369 fields[argp++] = TypePtr::NOTNULL; // a 1370 fields[argp++] = TypePtr::NOTNULL; // n 1371 fields[argp++] = TypeInt::INT; // len 1372 fields[argp++] = TypeLong::LONG; // inv 1373 fields[argp++] = Type::HALF; 1374 fields[argp++] = TypePtr::NOTNULL; // result 1375 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1376 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1377 1378 // result type needed 1379 fields = TypeTuple::fields(1); 1380 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1381 1382 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1383 return TypeFunc::make(domain, range); 1384 } 1385 1386 static const TypeFunc* make_bigIntegerShift_Type() { 1387 int argcnt = 5; 1388 const Type** fields = TypeTuple::fields(argcnt); 1389 int argp = TypeFunc::Parms; 1390 fields[argp++] = TypePtr::NOTNULL; // newArr 1391 fields[argp++] = TypePtr::NOTNULL; // oldArr 1392 fields[argp++] = TypeInt::INT; // newIdx 1393 fields[argp++] = TypeInt::INT; // shiftCount 1394 fields[argp++] = TypeInt::INT; // numIter 1395 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1396 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1397 1398 // no result type needed 1399 fields = TypeTuple::fields(1); 1400 fields[TypeFunc::Parms + 0] = nullptr; 1401 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1402 return TypeFunc::make(domain, range); 1403 } 1404 1405 static const TypeFunc* make_vectorizedMismatch_Type() { 1406 // create input type (domain) 1407 int num_args = 4; 1408 int argcnt = num_args; 1409 const Type** fields = TypeTuple::fields(argcnt); 1410 int argp = TypeFunc::Parms; 1411 fields[argp++] = TypePtr::NOTNULL; // obja 1412 fields[argp++] = TypePtr::NOTNULL; // objb 1413 fields[argp++] = TypeInt::INT; // length, number of elements 1414 fields[argp++] = TypeInt::INT; // log2scale, element size 1415 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1416 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1417 1418 //return mismatch index (int) 1419 fields = TypeTuple::fields(1); 1420 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1421 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1422 return TypeFunc::make(domain, range); 1423 } 1424 1425 static const TypeFunc* make_ghash_processBlocks_Type() { 1426 int argcnt = 4; 1427 1428 const Type** fields = TypeTuple::fields(argcnt); 1429 int argp = TypeFunc::Parms; 1430 fields[argp++] = TypePtr::NOTNULL; // state 1431 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1432 fields[argp++] = TypePtr::NOTNULL; // data 1433 fields[argp++] = TypeInt::INT; // blocks 1434 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1435 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1436 1437 // result type needed 1438 fields = TypeTuple::fields(1); 1439 fields[TypeFunc::Parms+0] = nullptr; // void 1440 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1441 return TypeFunc::make(domain, range); 1442 } 1443 1444 static const TypeFunc* make_chacha20Block_Type() { 1445 int argcnt = 2; 1446 1447 const Type** fields = TypeTuple::fields(argcnt); 1448 int argp = TypeFunc::Parms; 1449 fields[argp++] = TypePtr::NOTNULL; // state 1450 fields[argp++] = TypePtr::NOTNULL; // result 1451 1452 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1453 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1454 1455 // result type needed 1456 fields = TypeTuple::fields(1); 1457 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1458 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1459 return TypeFunc::make(domain, range); 1460 } 1461 1462 // Kyber NTT function 1463 static const TypeFunc* make_kyberNtt_Type() { 1464 int argcnt = 2; 1465 1466 const Type** fields = TypeTuple::fields(argcnt); 1467 int argp = TypeFunc::Parms; 1468 fields[argp++] = TypePtr::NOTNULL; // coeffs 1469 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1470 1471 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1472 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1473 1474 // result type needed 1475 fields = TypeTuple::fields(1); 1476 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1477 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1478 return TypeFunc::make(domain, range); 1479 } 1480 1481 // Kyber inverse NTT function 1482 static const TypeFunc* make_kyberInverseNtt_Type() { 1483 int argcnt = 2; 1484 1485 const Type** fields = TypeTuple::fields(argcnt); 1486 int argp = TypeFunc::Parms; 1487 fields[argp++] = TypePtr::NOTNULL; // coeffs 1488 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1489 1490 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1491 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1492 1493 // result type needed 1494 fields = TypeTuple::fields(1); 1495 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1496 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1497 return TypeFunc::make(domain, range); 1498 } 1499 1500 // Kyber NTT multiply function 1501 static const TypeFunc* make_kyberNttMult_Type() { 1502 int argcnt = 4; 1503 1504 const Type** fields = TypeTuple::fields(argcnt); 1505 int argp = TypeFunc::Parms; 1506 fields[argp++] = TypePtr::NOTNULL; // result 1507 fields[argp++] = TypePtr::NOTNULL; // ntta 1508 fields[argp++] = TypePtr::NOTNULL; // nttb 1509 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1510 1511 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1512 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1513 1514 // result type needed 1515 fields = TypeTuple::fields(1); 1516 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1517 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1518 return TypeFunc::make(domain, range); 1519 } 1520 1521 // Kyber add 2 polynomials function 1522 static const TypeFunc* make_kyberAddPoly_2_Type() { 1523 int argcnt = 3; 1524 1525 const Type** fields = TypeTuple::fields(argcnt); 1526 int argp = TypeFunc::Parms; 1527 fields[argp++] = TypePtr::NOTNULL; // result 1528 fields[argp++] = TypePtr::NOTNULL; // a 1529 fields[argp++] = TypePtr::NOTNULL; // b 1530 1531 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1532 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1533 1534 // result type needed 1535 fields = TypeTuple::fields(1); 1536 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1537 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1538 return TypeFunc::make(domain, range); 1539 } 1540 1541 1542 // Kyber add 3 polynomials function 1543 static const TypeFunc* make_kyberAddPoly_3_Type() { 1544 int argcnt = 4; 1545 1546 const Type** fields = TypeTuple::fields(argcnt); 1547 int argp = TypeFunc::Parms; 1548 fields[argp++] = TypePtr::NOTNULL; // result 1549 fields[argp++] = TypePtr::NOTNULL; // a 1550 fields[argp++] = TypePtr::NOTNULL; // b 1551 fields[argp++] = TypePtr::NOTNULL; // c 1552 1553 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1554 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1555 1556 // result type needed 1557 fields = TypeTuple::fields(1); 1558 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1559 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1560 return TypeFunc::make(domain, range); 1561 } 1562 1563 1564 // Kyber XOF output parsing into polynomial coefficients candidates 1565 // or decompress(12,...) function 1566 static const TypeFunc* make_kyber12To16_Type() { 1567 int argcnt = 4; 1568 1569 const Type** fields = TypeTuple::fields(argcnt); 1570 int argp = TypeFunc::Parms; 1571 fields[argp++] = TypePtr::NOTNULL; // condensed 1572 fields[argp++] = TypeInt::INT; // condensedOffs 1573 fields[argp++] = TypePtr::NOTNULL; // parsed 1574 fields[argp++] = TypeInt::INT; // parsedLength 1575 1576 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1577 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1578 1579 // result type needed 1580 fields = TypeTuple::fields(1); 1581 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1582 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1583 return TypeFunc::make(domain, range); 1584 } 1585 1586 // Kyber Barrett reduce function 1587 static const TypeFunc* make_kyberBarrettReduce_Type() { 1588 int argcnt = 1; 1589 1590 const Type** fields = TypeTuple::fields(argcnt); 1591 int argp = TypeFunc::Parms; 1592 fields[argp++] = TypePtr::NOTNULL; // coeffs 1593 1594 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1595 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1596 1597 // result type needed 1598 fields = TypeTuple::fields(1); 1599 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1600 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1601 return TypeFunc::make(domain, range); 1602 } 1603 1604 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1605 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1606 int argcnt = 2; 1607 1608 const Type** fields = TypeTuple::fields(argcnt); 1609 int argp = TypeFunc::Parms; 1610 fields[argp++] = TypePtr::NOTNULL; // coeffs 1611 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1612 1613 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1614 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1615 1616 // result type needed 1617 fields = TypeTuple::fields(1); 1618 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1619 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1620 return TypeFunc::make(domain, range); 1621 } 1622 1623 // Dilithium inverse NTT function except the final mod Q division by 2^256 1624 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1625 int argcnt = 2; 1626 1627 const Type** fields = TypeTuple::fields(argcnt); 1628 int argp = TypeFunc::Parms; 1629 fields[argp++] = TypePtr::NOTNULL; // coeffs 1630 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1631 1632 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1633 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1634 1635 // result type needed 1636 fields = TypeTuple::fields(1); 1637 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1638 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1639 return TypeFunc::make(domain, range); 1640 } 1641 1642 // Dilithium NTT multiply function 1643 static const TypeFunc* make_dilithiumNttMult_Type() { 1644 int argcnt = 3; 1645 1646 const Type** fields = TypeTuple::fields(argcnt); 1647 int argp = TypeFunc::Parms; 1648 fields[argp++] = TypePtr::NOTNULL; // result 1649 fields[argp++] = TypePtr::NOTNULL; // ntta 1650 fields[argp++] = TypePtr::NOTNULL; // nttb 1651 1652 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1653 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1654 1655 // result type needed 1656 fields = TypeTuple::fields(1); 1657 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1658 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1659 return TypeFunc::make(domain, range); 1660 } 1661 1662 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1663 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1664 int argcnt = 2; 1665 1666 const Type** fields = TypeTuple::fields(argcnt); 1667 int argp = TypeFunc::Parms; 1668 fields[argp++] = TypePtr::NOTNULL; // coeffs 1669 fields[argp++] = TypeInt::INT; // constant multiplier 1670 1671 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1672 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1673 1674 // result type needed 1675 fields = TypeTuple::fields(1); 1676 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1677 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1678 return TypeFunc::make(domain, range); 1679 } 1680 1681 // Dilithium decompose polynomial 1682 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1683 int argcnt = 5; 1684 1685 const Type** fields = TypeTuple::fields(argcnt); 1686 int argp = TypeFunc::Parms; 1687 fields[argp++] = TypePtr::NOTNULL; // input 1688 fields[argp++] = TypePtr::NOTNULL; // lowPart 1689 fields[argp++] = TypePtr::NOTNULL; // highPart 1690 fields[argp++] = TypeInt::INT; // 2 * gamma2 1691 fields[argp++] = TypeInt::INT; // multiplier 1692 1693 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1694 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1695 1696 // result type needed 1697 fields = TypeTuple::fields(1); 1698 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1699 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1700 return TypeFunc::make(domain, range); 1701 } 1702 1703 static const TypeFunc* make_base64_encodeBlock_Type() { 1704 int argcnt = 6; 1705 1706 const Type** fields = TypeTuple::fields(argcnt); 1707 int argp = TypeFunc::Parms; 1708 fields[argp++] = TypePtr::NOTNULL; // src array 1709 fields[argp++] = TypeInt::INT; // offset 1710 fields[argp++] = TypeInt::INT; // length 1711 fields[argp++] = TypePtr::NOTNULL; // dest array 1712 fields[argp++] = TypeInt::INT; // dp 1713 fields[argp++] = TypeInt::BOOL; // isURL 1714 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1715 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1716 1717 // result type needed 1718 fields = TypeTuple::fields(1); 1719 fields[TypeFunc::Parms + 0] = nullptr; // void 1720 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1721 return TypeFunc::make(domain, range); 1722 } 1723 1724 static const TypeFunc* make_string_IndexOf_Type() { 1725 int argcnt = 4; 1726 1727 const Type** fields = TypeTuple::fields(argcnt); 1728 int argp = TypeFunc::Parms; 1729 fields[argp++] = TypePtr::NOTNULL; // haystack array 1730 fields[argp++] = TypeInt::INT; // haystack length 1731 fields[argp++] = TypePtr::NOTNULL; // needle array 1732 fields[argp++] = TypeInt::INT; // needle length 1733 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1734 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1735 1736 // result type needed 1737 fields = TypeTuple::fields(1); 1738 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1739 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1740 return TypeFunc::make(domain, range); 1741 } 1742 1743 static const TypeFunc* make_base64_decodeBlock_Type() { 1744 int argcnt = 7; 1745 1746 const Type** fields = TypeTuple::fields(argcnt); 1747 int argp = TypeFunc::Parms; 1748 fields[argp++] = TypePtr::NOTNULL; // src array 1749 fields[argp++] = TypeInt::INT; // src offset 1750 fields[argp++] = TypeInt::INT; // src length 1751 fields[argp++] = TypePtr::NOTNULL; // dest array 1752 fields[argp++] = TypeInt::INT; // dest offset 1753 fields[argp++] = TypeInt::BOOL; // isURL 1754 fields[argp++] = TypeInt::BOOL; // isMIME 1755 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1756 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1757 1758 // result type needed 1759 fields = TypeTuple::fields(1); 1760 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1761 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1762 return TypeFunc::make(domain, range); 1763 } 1764 1765 static const TypeFunc* make_poly1305_processBlocks_Type() { 1766 int argcnt = 4; 1767 1768 const Type** fields = TypeTuple::fields(argcnt); 1769 int argp = TypeFunc::Parms; 1770 fields[argp++] = TypePtr::NOTNULL; // input array 1771 fields[argp++] = TypeInt::INT; // input length 1772 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1773 fields[argp++] = TypePtr::NOTNULL; // r array 1774 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1775 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1776 1777 // result type needed 1778 fields = TypeTuple::fields(1); 1779 fields[TypeFunc::Parms + 0] = nullptr; // void 1780 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1781 return TypeFunc::make(domain, range); 1782 } 1783 1784 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1785 int argcnt = 3; 1786 1787 const Type** fields = TypeTuple::fields(argcnt); 1788 int argp = TypeFunc::Parms; 1789 fields[argp++] = TypePtr::NOTNULL; // a array 1790 fields[argp++] = TypePtr::NOTNULL; // b array 1791 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1792 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1793 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1794 1795 // result type needed 1796 fields = TypeTuple::fields(1); 1797 fields[TypeFunc::Parms + 0] = nullptr; // void 1798 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1799 return TypeFunc::make(domain, range); 1800 } 1801 1802 static const TypeFunc* make_intpoly_assign_Type() { 1803 int argcnt = 4; 1804 1805 const Type** fields = TypeTuple::fields(argcnt); 1806 int argp = TypeFunc::Parms; 1807 fields[argp++] = TypeInt::INT; // set flag 1808 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1809 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1810 fields[argp++] = TypeInt::INT; // array length 1811 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1812 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1813 1814 // result type needed 1815 fields = TypeTuple::fields(1); 1816 fields[TypeFunc::Parms + 0] = nullptr; // void 1817 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1818 return TypeFunc::make(domain, range); 1819 } 1820 1821 //------------- Interpreter state for on stack replacement 1822 static const TypeFunc* make_osr_end_Type() { 1823 // create input type (domain) 1824 const Type **fields = TypeTuple::fields(1); 1825 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1826 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1827 1828 // create result type 1829 fields = TypeTuple::fields(1); 1830 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1831 fields[TypeFunc::Parms+0] = nullptr; // void 1832 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1833 return TypeFunc::make(domain, range); 1834 } 1835 1836 //------------------------------------------------------------------------------------- 1837 // register policy 1838 1839 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1840 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1841 switch (register_save_policy[reg]) { 1842 case 'C': return false; //SOC 1843 case 'E': return true ; //SOE 1844 case 'N': return false; //NS 1845 case 'A': return false; //AS 1846 } 1847 ShouldNotReachHere(); 1848 return false; 1849 } 1850 1851 //----------------------------------------------------------------------- 1852 // Exceptions 1853 // 1854 1855 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1856 1857 // The method is an entry that is always called by a C++ method not 1858 // directly from compiled code. Compiled code will call the C++ method following. 1859 // We can't allow async exception to be installed during exception processing. 1860 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1861 // The frame we rethrow the exception to might not have been processed by the GC yet. 1862 // The stack watermark barrier takes care of detecting that and ensuring the frame 1863 // has updated oops. 1864 StackWatermarkSet::after_unwind(current); 1865 1866 // Do not confuse exception_oop with pending_exception. The exception_oop 1867 // is only used to pass arguments into the method. Not for general 1868 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1869 // the runtime stubs checks this on exit. 1870 assert(current->exception_oop() != nullptr, "exception oop is found"); 1871 address handler_address = nullptr; 1872 1873 Handle exception(current, current->exception_oop()); 1874 address pc = current->exception_pc(); 1875 1876 // Clear out the exception oop and pc since looking up an 1877 // exception handler can cause class loading, which might throw an 1878 // exception and those fields are expected to be clear during 1879 // normal bytecode execution. 1880 current->clear_exception_oop_and_pc(); 1881 1882 LogTarget(Info, exceptions) lt; 1883 if (lt.is_enabled()) { 1884 LogStream ls(lt); 1885 trace_exception(&ls, exception(), pc, ""); 1886 } 1887 1888 // for AbortVMOnException flag 1889 Exceptions::debug_check_abort(exception); 1890 1891 #ifdef ASSERT 1892 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1893 // should throw an exception here 1894 ShouldNotReachHere(); 1895 } 1896 #endif 1897 1898 // new exception handling: this method is entered only from adapters 1899 // exceptions from compiled java methods are handled in compiled code 1900 // using rethrow node 1901 1902 nm = CodeCache::find_nmethod(pc); 1903 assert(nm != nullptr, "No NMethod found"); 1904 if (nm->is_native_method()) { 1905 fatal("Native method should not have path to exception handling"); 1906 } else { 1907 // we are switching to old paradigm: search for exception handler in caller_frame 1908 // instead in exception handler of caller_frame.sender() 1909 1910 if (JvmtiExport::can_post_on_exceptions()) { 1911 // "Full-speed catching" is not necessary here, 1912 // since we're notifying the VM on every catch. 1913 // Force deoptimization and the rest of the lookup 1914 // will be fine. 1915 deoptimize_caller_frame(current); 1916 } 1917 1918 // Check the stack guard pages. If enabled, look for handler in this frame; 1919 // otherwise, forcibly unwind the frame. 1920 // 1921 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1922 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1923 bool deopting = false; 1924 if (nm->is_deopt_pc(pc)) { 1925 deopting = true; 1926 RegisterMap map(current, 1927 RegisterMap::UpdateMap::skip, 1928 RegisterMap::ProcessFrames::include, 1929 RegisterMap::WalkContinuation::skip); 1930 frame deoptee = current->last_frame().sender(&map); 1931 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1932 // Adjust the pc back to the original throwing pc 1933 pc = deoptee.pc(); 1934 } 1935 1936 // If we are forcing an unwind because of stack overflow then deopt is 1937 // irrelevant since we are throwing the frame away anyway. 1938 1939 if (deopting && !force_unwind) { 1940 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1941 } else { 1942 1943 handler_address = 1944 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1945 1946 if (handler_address == nullptr) { 1947 bool recursive_exception = false; 1948 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1949 assert (handler_address != nullptr, "must have compiled handler"); 1950 // Update the exception cache only when the unwind was not forced 1951 // and there didn't happen another exception during the computation of the 1952 // compiled exception handler. Checking for exception oop equality is not 1953 // sufficient because some exceptions are pre-allocated and reused. 1954 if (!force_unwind && !recursive_exception) { 1955 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1956 } 1957 } else { 1958 #ifdef ASSERT 1959 bool recursive_exception = false; 1960 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1961 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1962 p2i(handler_address), p2i(computed_address)); 1963 #endif 1964 } 1965 } 1966 1967 current->set_exception_pc(pc); 1968 current->set_exception_handler_pc(handler_address); 1969 1970 // Check if the exception PC is a MethodHandle call site. 1971 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1972 } 1973 1974 // Restore correct return pc. Was saved above. 1975 current->set_exception_oop(exception()); 1976 return handler_address; 1977 1978 JRT_END 1979 1980 // We are entering here from exception_blob 1981 // If there is a compiled exception handler in this method, we will continue there; 1982 // otherwise we will unwind the stack and continue at the caller of top frame method 1983 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1984 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1985 // we looked up the handler for has been deoptimized in the meantime. If it has been 1986 // we must not use the handler and instead return the deopt blob. 1987 address OptoRuntime::handle_exception_C(JavaThread* current) { 1988 // 1989 // We are in Java not VM and in debug mode we have a NoHandleMark 1990 // 1991 #ifndef PRODUCT 1992 SharedRuntime::_find_handler_ctr++; // find exception handler 1993 #endif 1994 DEBUG_ONLY(NoHandleMark __hm;) 1995 nmethod* nm = nullptr; 1996 address handler_address = nullptr; 1997 { 1998 // Enter the VM 1999 2000 ResetNoHandleMark rnhm; 2001 handler_address = handle_exception_C_helper(current, nm); 2002 } 2003 2004 // Back in java: Use no oops, DON'T safepoint 2005 2006 // Now check to see if the handler we are returning is in a now 2007 // deoptimized frame 2008 2009 if (nm != nullptr) { 2010 RegisterMap map(current, 2011 RegisterMap::UpdateMap::skip, 2012 RegisterMap::ProcessFrames::skip, 2013 RegisterMap::WalkContinuation::skip); 2014 frame caller = current->last_frame().sender(&map); 2015 #ifdef ASSERT 2016 assert(caller.is_compiled_frame(), "must be"); 2017 #endif // ASSERT 2018 if (caller.is_deoptimized_frame()) { 2019 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 2020 } 2021 } 2022 return handler_address; 2023 } 2024 2025 //------------------------------rethrow---------------------------------------- 2026 // We get here after compiled code has executed a 'RethrowNode'. The callee 2027 // is either throwing or rethrowing an exception. The callee-save registers 2028 // have been restored, synchronized objects have been unlocked and the callee 2029 // stack frame has been removed. The return address was passed in. 2030 // Exception oop is passed as the 1st argument. This routine is then called 2031 // from the stub. On exit, we know where to jump in the caller's code. 2032 // After this C code exits, the stub will pop his frame and end in a jump 2033 // (instead of a return). We enter the caller's default handler. 2034 // 2035 // This must be JRT_LEAF: 2036 // - caller will not change its state as we cannot block on exit, 2037 // therefore raw_exception_handler_for_return_address is all it takes 2038 // to handle deoptimized blobs 2039 // 2040 // However, there needs to be a safepoint check in the middle! So compiled 2041 // safepoints are completely watertight. 2042 // 2043 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 2044 // 2045 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 2046 // 2047 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 2048 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 2049 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 2050 2051 #ifndef PRODUCT 2052 SharedRuntime::_rethrow_ctr++; // count rethrows 2053 #endif 2054 assert (exception != nullptr, "should have thrown a NullPointerException"); 2055 #ifdef ASSERT 2056 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2057 // should throw an exception here 2058 ShouldNotReachHere(); 2059 } 2060 #endif 2061 2062 thread->set_vm_result_oop(exception); 2063 // Frame not compiled (handles deoptimization blob) 2064 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2065 } 2066 2067 static const TypeFunc* make_rethrow_Type() { 2068 // create input type (domain) 2069 const Type **fields = TypeTuple::fields(1); 2070 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2071 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2072 2073 // create result type (range) 2074 fields = TypeTuple::fields(1); 2075 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2076 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2077 2078 return TypeFunc::make(domain, range); 2079 } 2080 2081 2082 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2083 // Deoptimize the caller before continuing, as the compiled 2084 // exception handler table may not be valid. 2085 if (DeoptimizeOnAllocationException && doit) { 2086 deoptimize_caller_frame(thread); 2087 } 2088 } 2089 2090 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2091 // Called from within the owner thread, so no need for safepoint 2092 RegisterMap reg_map(thread, 2093 RegisterMap::UpdateMap::include, 2094 RegisterMap::ProcessFrames::include, 2095 RegisterMap::WalkContinuation::skip); 2096 frame stub_frame = thread->last_frame(); 2097 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2098 frame caller_frame = stub_frame.sender(®_map); 2099 2100 // Deoptimize the caller frame. 2101 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2102 } 2103 2104 2105 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2106 // Called from within the owner thread, so no need for safepoint 2107 RegisterMap reg_map(thread, 2108 RegisterMap::UpdateMap::include, 2109 RegisterMap::ProcessFrames::include, 2110 RegisterMap::WalkContinuation::skip); 2111 frame stub_frame = thread->last_frame(); 2112 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2113 frame caller_frame = stub_frame.sender(®_map); 2114 return caller_frame.is_deoptimized_frame(); 2115 } 2116 2117 static const TypeFunc* make_register_finalizer_Type() { 2118 // create input type (domain) 2119 const Type **fields = TypeTuple::fields(1); 2120 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2121 // // The JavaThread* is passed to each routine as the last argument 2122 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2123 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2124 2125 // create result type (range) 2126 fields = TypeTuple::fields(0); 2127 2128 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2129 2130 return TypeFunc::make(domain, range); 2131 } 2132 2133 #if INCLUDE_JFR 2134 static const TypeFunc* make_class_id_load_barrier_Type() { 2135 // create input type (domain) 2136 const Type **fields = TypeTuple::fields(1); 2137 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2138 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2139 2140 // create result type (range) 2141 fields = TypeTuple::fields(0); 2142 2143 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2144 2145 return TypeFunc::make(domain,range); 2146 } 2147 #endif // INCLUDE_JFR 2148 2149 //----------------------------------------------------------------------------- 2150 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2151 // create input type (domain) 2152 const Type **fields = TypeTuple::fields(2); 2153 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2154 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2155 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2156 2157 // create result type (range) 2158 fields = TypeTuple::fields(0); 2159 2160 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2161 2162 return TypeFunc::make(domain, range); 2163 } 2164 2165 static const TypeFunc* make_dtrace_object_alloc_Type() { 2166 // create input type (domain) 2167 const Type **fields = TypeTuple::fields(2); 2168 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2169 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2170 2171 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2172 2173 // create result type (range) 2174 fields = TypeTuple::fields(0); 2175 2176 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2177 2178 return TypeFunc::make(domain, range); 2179 } 2180 2181 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2182 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2183 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2184 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2185 JRT_END 2186 2187 //----------------------------------------------------------------------------- 2188 2189 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2190 2191 // 2192 // dump the collected NamedCounters. 2193 // 2194 void OptoRuntime::print_named_counters() { 2195 int total_lock_count = 0; 2196 int eliminated_lock_count = 0; 2197 2198 NamedCounter* c = _named_counters; 2199 while (c) { 2200 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2201 int count = c->count(); 2202 if (count > 0) { 2203 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2204 if (Verbose) { 2205 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2206 } 2207 total_lock_count += count; 2208 if (eliminated) { 2209 eliminated_lock_count += count; 2210 } 2211 } 2212 } 2213 c = c->next(); 2214 } 2215 if (total_lock_count > 0) { 2216 tty->print_cr("dynamic locks: %d", total_lock_count); 2217 if (eliminated_lock_count) { 2218 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2219 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2220 } 2221 } 2222 } 2223 2224 // 2225 // Allocate a new NamedCounter. The JVMState is used to generate the 2226 // name which consists of method@line for the inlining tree. 2227 // 2228 2229 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2230 int max_depth = youngest_jvms->depth(); 2231 2232 // Visit scopes from youngest to oldest. 2233 bool first = true; 2234 stringStream st; 2235 for (int depth = max_depth; depth >= 1; depth--) { 2236 JVMState* jvms = youngest_jvms->of_depth(depth); 2237 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2238 if (!first) { 2239 st.print(" "); 2240 } else { 2241 first = false; 2242 } 2243 int bci = jvms->bci(); 2244 if (bci < 0) bci = 0; 2245 if (m != nullptr) { 2246 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2247 } else { 2248 st.print("no method"); 2249 } 2250 st.print("@%d", bci); 2251 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2252 } 2253 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2254 2255 // atomically add the new counter to the head of the list. We only 2256 // add counters so this is safe. 2257 NamedCounter* head; 2258 do { 2259 c->set_next(nullptr); 2260 head = _named_counters; 2261 c->set_next(head); 2262 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2263 return c; 2264 } 2265 2266 void OptoRuntime::initialize_types() { 2267 _new_instance_Type = make_new_instance_Type(); 2268 _new_array_Type = make_new_array_Type(); 2269 _new_array_nozero_Type = make_new_array_nozero_Type(); 2270 _multianewarray2_Type = multianewarray_Type(2); 2271 _multianewarray3_Type = multianewarray_Type(3); 2272 _multianewarray4_Type = multianewarray_Type(4); 2273 _multianewarray5_Type = multianewarray_Type(5); 2274 _multianewarrayN_Type = make_multianewarrayN_Type(); 2275 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2276 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2277 _monitor_notify_Type = make_monitor_notify_Type(); 2278 _uncommon_trap_Type = make_uncommon_trap_Type(); 2279 _athrow_Type = make_athrow_Type(); 2280 _rethrow_Type = make_rethrow_Type(); 2281 _Math_D_D_Type = make_Math_D_D_Type(); 2282 _Math_DD_D_Type = make_Math_DD_D_Type(); 2283 _modf_Type = make_modf_Type(); 2284 _l2f_Type = make_l2f_Type(); 2285 _void_long_Type = make_void_long_Type(); 2286 _void_void_Type = make_void_void_Type(); 2287 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2288 _flush_windows_Type = make_flush_windows_Type(); 2289 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2290 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2291 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2292 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2293 _unsafe_setmemory_Type = make_setmemory_Type(); 2294 _array_fill_Type = make_array_fill_Type(); 2295 _array_sort_Type = make_array_sort_Type(); 2296 _array_partition_Type = make_array_partition_Type(); 2297 _aescrypt_block_Type = make_aescrypt_block_Type(); 2298 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2299 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2300 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2301 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2302 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2303 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2304 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2305 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2306 _double_keccak_Type = make_double_keccak_Type(); 2307 _multiplyToLen_Type = make_multiplyToLen_Type(); 2308 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2309 _montgomerySquare_Type = make_montgomerySquare_Type(); 2310 _squareToLen_Type = make_squareToLen_Type(); 2311 _mulAdd_Type = make_mulAdd_Type(); 2312 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2313 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2314 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2315 _chacha20Block_Type = make_chacha20Block_Type(); 2316 _kyberNtt_Type = make_kyberNtt_Type(); 2317 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2318 _kyberNttMult_Type = make_kyberNttMult_Type(); 2319 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2320 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2321 _kyber12To16_Type = make_kyber12To16_Type(); 2322 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2323 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2324 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2325 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2326 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2327 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2328 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2329 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2330 _string_IndexOf_Type = make_string_IndexOf_Type(); 2331 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2332 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2333 _intpoly_assign_Type = make_intpoly_assign_Type(); 2334 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2335 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2336 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2337 _osr_end_Type = make_osr_end_Type(); 2338 _register_finalizer_Type = make_register_finalizer_Type(); 2339 JFR_ONLY( 2340 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2341 ) 2342 #if INCLUDE_JVMTI 2343 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2344 #endif // INCLUDE_JVMTI 2345 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2346 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2347 } 2348 2349 int trace_exception_counter = 0; 2350 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2351 trace_exception_counter++; 2352 stringStream tempst; 2353 2354 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2355 exception_oop->print_value_on(&tempst); 2356 tempst.print(" in "); 2357 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2358 if (blob->is_nmethod()) { 2359 blob->as_nmethod()->method()->print_value_on(&tempst); 2360 } else if (blob->is_runtime_stub()) { 2361 tempst.print("<runtime-stub>"); 2362 } else { 2363 tempst.print("<unknown>"); 2364 } 2365 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2366 tempst.print("]"); 2367 2368 st->print_raw_cr(tempst.freeze()); 2369 } 2370 2371 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() { 2372 // create input type (domain) 2373 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2374 const Type **fields = TypeTuple::fields(total); 2375 // We don't know the number of returned values and their 2376 // types. Assume all registers available to the return convention 2377 // are used. 2378 fields[TypeFunc::Parms] = TypePtr::BOTTOM; 2379 uint i = 1; 2380 for (; i < SharedRuntime::java_return_convention_max_int; i++) { 2381 fields[TypeFunc::Parms+i] = TypeInt::INT; 2382 } 2383 for (; i < total; i+=2) { 2384 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2385 fields[TypeFunc::Parms+i+1] = Type::HALF; 2386 } 2387 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2388 2389 // create result type (range) 2390 fields = TypeTuple::fields(1); 2391 fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; 2392 2393 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2394 2395 return TypeFunc::make(domain, range); 2396 } 2397 2398 const TypeFunc *OptoRuntime::pack_inline_type_Type() { 2399 // create input type (domain) 2400 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2401 const Type **fields = TypeTuple::fields(total); 2402 // We don't know the number of returned values and their 2403 // types. Assume all registers available to the return convention 2404 // are used. 2405 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM; 2406 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; 2407 uint i = 2; 2408 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) { 2409 fields[TypeFunc::Parms+i] = TypeInt::INT; 2410 } 2411 for (; i < total; i+=2) { 2412 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2413 fields[TypeFunc::Parms+i+1] = Type::HALF; 2414 } 2415 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2416 2417 // create result type (range) 2418 fields = TypeTuple::fields(1); 2419 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2420 2421 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2422 2423 return TypeFunc::make(domain, range); 2424 } 2425 2426 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current)) 2427 JRT_BLOCK; 2428 oop buffer = array->obj_at(index, THREAD); 2429 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 2430 current->set_vm_result_oop(buffer); 2431 JRT_BLOCK_END; 2432 JRT_END 2433 2434 const TypeFunc* OptoRuntime::load_unknown_inline_Type() { 2435 // create input type (domain) 2436 const Type** fields = TypeTuple::fields(2); 2437 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL; 2438 fields[TypeFunc::Parms+1] = TypeInt::POS; 2439 2440 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields); 2441 2442 // create result type (range) 2443 fields = TypeTuple::fields(1); 2444 fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM; 2445 2446 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 2447 2448 return TypeFunc::make(domain, range); 2449 } 2450 2451 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current)) 2452 JRT_BLOCK; 2453 array->obj_at_put(index, buffer, THREAD); 2454 if (HAS_PENDING_EXCEPTION) { 2455 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception"); 2456 } 2457 JRT_BLOCK_END; 2458 JRT_END 2459 2460 const TypeFunc* OptoRuntime::store_unknown_inline_Type() { 2461 // create input type (domain) 2462 const Type** fields = TypeTuple::fields(3); 2463 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2464 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL; 2465 fields[TypeFunc::Parms+2] = TypeInt::POS; 2466 2467 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields); 2468 2469 // create result type (range) 2470 fields = TypeTuple::fields(0); 2471 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 2472 2473 return TypeFunc::make(domain, range); 2474 }