1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/flatArrayKlass.hpp" 48 #include "oops/flatArrayOop.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "oops/objArrayKlass.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadWXSetters.inline.hpp" 76 #include "runtime/vframe.hpp" 77 #include "runtime/vframe_hp.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/preserveException.hpp" 81 82 83 // For debugging purposes: 84 // To force FullGCALot inside a runtime function, add the following two lines 85 // 86 // Universe::release_fullgc_alot_dummy(); 87 // Universe::heap()->collect(); 88 // 89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 90 91 92 #define C2_BLOB_FIELD_DEFINE(name, type) \ 93 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 94 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 95 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 96 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 97 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 98 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 99 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 100 #undef C2_BLOB_FIELD_DEFINE 101 #undef C2_STUB_FIELD_DEFINE 102 #undef C2_JVMTI_STUB_FIELD_DEFINE 103 104 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 105 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 106 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 107 const char* OptoRuntime::_stub_names[] = { 108 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 109 }; 110 #undef C2_BLOB_NAME_DEFINE 111 #undef C2_STUB_NAME_DEFINE 112 #undef C2_JVMTI_STUB_NAME_DEFINE 113 114 // This should be called in an assertion at the start of OptoRuntime routines 115 // which are entered from compiled code (all of them) 116 #ifdef ASSERT 117 static bool check_compiled_frame(JavaThread* thread) { 118 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 119 RegisterMap map(thread, 120 RegisterMap::UpdateMap::skip, 121 RegisterMap::ProcessFrames::include, 122 RegisterMap::WalkContinuation::skip); 123 frame caller = thread->last_frame().sender(&map); 124 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 125 return true; 126 } 127 #endif // ASSERT 128 129 /* 130 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 131 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 132 if (var == nullptr) { return false; } 133 */ 134 135 #define GEN_C2_BLOB(name, type) \ 136 BLOB_FIELD_NAME(name) = \ 137 generate_ ## name ## _blob(); \ 138 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 139 140 // a few helper macros to conjure up generate_stub call arguments 141 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 142 #define C2_STUB_TYPEFUNC(name) name ## _Type 143 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 144 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 145 #define C2_STUB_ID(name) OptoStubId::name ## _id 146 147 // Almost all the C functions targeted from the generated stubs are 148 // implemented locally to OptoRuntime with names that can be generated 149 // from the stub name by appending suffix '_C'. However, in two cases 150 // a common target method also needs to be called from shared runtime 151 // stubs. In these two cases the opto stubs rely on method 152 // imlementations defined in class SharedRuntime. The following 153 // defines temporarily rebind the generated names to reference the 154 // relevant implementations. 155 156 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 157 C2_STUB_FIELD_NAME(name) = \ 158 generate_stub(env, \ 159 C2_STUB_TYPEFUNC(name), \ 160 C2_STUB_C_FUNC(name), \ 161 C2_STUB_NAME(name), \ 162 (int)C2_STUB_ID(name), \ 163 fancy_jump, \ 164 pass_tls, \ 165 pass_retpc); \ 166 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 167 168 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 169 170 #define GEN_C2_JVMTI_STUB(name) \ 171 STUB_FIELD_NAME(name) = \ 172 generate_stub(env, \ 173 notify_jvmti_vthread_Type, \ 174 C2_JVMTI_STUB_C_FUNC(name), \ 175 C2_STUB_NAME(name), \ 176 (int)C2_STUB_ID(name), \ 177 0, \ 178 true, \ 179 false); \ 180 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 181 182 bool OptoRuntime::generate(ciEnv* env) { 183 184 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 185 186 return true; 187 } 188 189 #undef GEN_C2_BLOB 190 191 #undef C2_STUB_FIELD_NAME 192 #undef C2_STUB_TYPEFUNC 193 #undef C2_STUB_C_FUNC 194 #undef C2_STUB_NAME 195 #undef GEN_C2_STUB 196 197 #undef C2_JVMTI_STUB_C_FUNC 198 #undef GEN_C2_JVMTI_STUB 199 // #undef gen 200 201 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 202 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 203 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr; 204 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 205 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 206 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 207 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 208 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 209 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 210 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 211 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 212 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 213 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 214 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 215 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 216 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 217 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 218 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 219 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 220 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 221 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 222 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 223 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 224 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 225 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 226 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 227 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 228 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 229 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 230 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 231 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 232 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 233 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 234 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 235 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 236 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 237 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 238 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 239 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 240 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 241 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 242 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 243 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 244 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 245 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 246 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 247 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 248 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 249 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 250 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 251 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 252 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 253 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 254 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 255 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 256 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 257 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 258 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 259 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 260 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 261 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 262 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 263 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 264 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 265 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 266 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 267 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 268 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 269 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 270 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 271 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 272 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 273 #if INCLUDE_JFR 274 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 275 #endif // INCLUDE_JFR 276 #if INCLUDE_JVMTI 277 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 278 #endif // INCLUDE_JVMTI 279 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 280 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 281 282 // Helper method to do generation of RunTimeStub's 283 address OptoRuntime::generate_stub(ciEnv* env, 284 TypeFunc_generator gen, address C_function, 285 const char *name, int stub_id, 286 int is_fancy_jump, bool pass_tls, 287 bool return_pc) { 288 289 // Matching the default directive, we currently have no method to match. 290 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 291 CompilationMemoryStatisticMark cmsm(directive); 292 ResourceMark rm; 293 Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive); 294 DirectivesStack::release(directive); 295 return C.stub_entry_point(); 296 } 297 298 const char* OptoRuntime::stub_name(address entry) { 299 #ifndef PRODUCT 300 CodeBlob* cb = CodeCache::find_blob(entry); 301 RuntimeStub* rs =(RuntimeStub *)cb; 302 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 303 return rs->name(); 304 #else 305 // Fast implementation for product mode (maybe it should be inlined too) 306 return "runtime stub"; 307 #endif 308 } 309 310 // local methods passed as arguments to stub generator that forward 311 // control to corresponding JRT methods of SharedRuntime 312 313 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 314 oopDesc* dest, jint dest_pos, 315 jint length, JavaThread* thread) { 316 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 317 } 318 319 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 320 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 321 } 322 323 324 //============================================================================= 325 // Opto compiler runtime routines 326 //============================================================================= 327 328 329 //=============================allocation====================================== 330 // We failed the fast-path allocation. Now we need to do a scavenge or GC 331 // and try allocation again. 332 333 // object allocation 334 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current)) 335 JRT_BLOCK; 336 #ifndef PRODUCT 337 SharedRuntime::_new_instance_ctr++; // new instance requires GC 338 #endif 339 assert(check_compiled_frame(current), "incorrect caller"); 340 341 // These checks are cheap to make and support reflective allocation. 342 int lh = klass->layout_helper(); 343 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 344 Handle holder(current, klass->klass_holder()); // keep the klass alive 345 klass->check_valid_for_instantiation(false, THREAD); 346 if (!HAS_PENDING_EXCEPTION) { 347 InstanceKlass::cast(klass)->initialize(THREAD); 348 } 349 } 350 351 if (!HAS_PENDING_EXCEPTION) { 352 // Scavenge and allocate an instance. 353 Handle holder(current, klass->klass_holder()); // keep the klass alive 354 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 355 if (is_larval) { 356 // Check if this is a larval buffer allocation 357 result->set_mark(result->mark().enter_larval_state()); 358 } 359 current->set_vm_result_oop(result); 360 361 // Pass oops back through thread local storage. Our apparent type to Java 362 // is that we return an oop, but we can block on exit from this routine and 363 // a GC can trash the oop in C's return register. The generated stub will 364 // fetch the oop from TLS after any possible GC. 365 } 366 367 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 368 JRT_BLOCK_END; 369 370 // inform GC that we won't do card marks for initializing writes. 371 SharedRuntime::on_slowpath_allocation_exit(current); 372 JRT_END 373 374 375 // array allocation 376 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current)) 377 JRT_BLOCK; 378 #ifndef PRODUCT 379 SharedRuntime::_new_array_ctr++; // new array requires GC 380 #endif 381 assert(check_compiled_frame(current), "incorrect caller"); 382 383 // Scavenge and allocate an instance. 384 oop result; 385 Handle h_init_val(current, init_val); // keep the init_val object alive 386 387 if (array_type->is_flatArray_klass()) { 388 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 389 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type); 390 InlineKlass* vk = fak->element_klass(); 391 ArrayKlass::ArrayProperties props = ArrayKlass::ArrayProperties::DEFAULT; 392 switch(fak->layout_kind()) { 393 case LayoutKind::ATOMIC_FLAT: 394 props = ArrayKlass::ArrayProperties::NULL_RESTRICTED; 395 break; 396 case LayoutKind::NON_ATOMIC_FLAT: 397 props = (ArrayKlass::ArrayProperties)(ArrayKlass::ArrayProperties::NULL_RESTRICTED | ArrayKlass::ArrayProperties::NON_ATOMIC); 398 break; 399 case LayoutKind::NULLABLE_ATOMIC_FLAT: 400 props = ArrayKlass::ArrayProperties::NON_ATOMIC; 401 break; 402 default: 403 ShouldNotReachHere(); 404 } 405 result = oopFactory::new_flatArray(vk, len, props, fak->layout_kind(), THREAD); 406 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 407 // Null-free arrays need to be initialized 408 for (int i = 0; i < len; i++) { 409 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK); 410 } 411 } 412 } else if (array_type->is_typeArray_klass()) { 413 // The oopFactory likes to work with the element type. 414 // (We could bypass the oopFactory, since it doesn't add much value.) 415 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 416 result = oopFactory::new_typeArray(elem_type, len, THREAD); 417 } else { 418 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 419 RefArrayKlass* array_klass = RefArrayKlass::cast(array_type); 420 result = array_klass->allocate_instance(len, RefArrayKlass::cast(array_type)->properties(), THREAD); 421 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) { 422 // Null-free arrays need to be initialized 423 for (int i = 0; i < len; i++) { 424 ((objArrayOop)result)->obj_at_put(i, h_init_val()); 425 } 426 } 427 } 428 429 // Pass oops back through thread local storage. Our apparent type to Java 430 // is that we return an oop, but we can block on exit from this routine and 431 // a GC can trash the oop in C's return register. The generated stub will 432 // fetch the oop from TLS after any possible GC. 433 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 434 current->set_vm_result_oop(result); 435 JRT_BLOCK_END; 436 437 // inform GC that we won't do card marks for initializing writes. 438 SharedRuntime::on_slowpath_allocation_exit(current); 439 JRT_END 440 441 // array allocation without zeroing 442 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 443 JRT_BLOCK; 444 #ifndef PRODUCT 445 SharedRuntime::_new_array_ctr++; // new array requires GC 446 #endif 447 assert(check_compiled_frame(current), "incorrect caller"); 448 449 // Scavenge and allocate an instance. 450 oop result; 451 452 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 453 // The oopFactory likes to work with the element type. 454 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 455 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 456 457 // Pass oops back through thread local storage. Our apparent type to Java 458 // is that we return an oop, but we can block on exit from this routine and 459 // a GC can trash the oop in C's return register. The generated stub will 460 // fetch the oop from TLS after any possible GC. 461 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 462 current->set_vm_result_oop(result); 463 JRT_BLOCK_END; 464 465 466 // inform GC that we won't do card marks for initializing writes. 467 SharedRuntime::on_slowpath_allocation_exit(current); 468 469 oop result = current->vm_result_oop(); 470 if ((len > 0) && (result != nullptr) && 471 is_deoptimized_caller_frame(current)) { 472 // Zero array here if the caller is deoptimized. 473 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 474 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 475 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 476 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 477 HeapWord* obj = cast_from_oop<HeapWord*>(result); 478 if (!is_aligned(hs_bytes, BytesPerLong)) { 479 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 480 hs_bytes += BytesPerInt; 481 } 482 483 // Optimized zeroing. 484 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 485 const size_t aligned_hs = hs_bytes / BytesPerLong; 486 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 487 } 488 489 JRT_END 490 491 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 492 493 // multianewarray for 2 dimensions 494 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 495 #ifndef PRODUCT 496 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 497 #endif 498 assert(check_compiled_frame(current), "incorrect caller"); 499 assert(elem_type->is_klass(), "not a class"); 500 jint dims[2]; 501 dims[0] = len1; 502 dims[1] = len2; 503 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 504 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 505 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 506 current->set_vm_result_oop(obj); 507 JRT_END 508 509 // multianewarray for 3 dimensions 510 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 511 #ifndef PRODUCT 512 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 513 #endif 514 assert(check_compiled_frame(current), "incorrect caller"); 515 assert(elem_type->is_klass(), "not a class"); 516 jint dims[3]; 517 dims[0] = len1; 518 dims[1] = len2; 519 dims[2] = len3; 520 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 521 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 522 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 523 current->set_vm_result_oop(obj); 524 JRT_END 525 526 // multianewarray for 4 dimensions 527 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 528 #ifndef PRODUCT 529 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 530 #endif 531 assert(check_compiled_frame(current), "incorrect caller"); 532 assert(elem_type->is_klass(), "not a class"); 533 jint dims[4]; 534 dims[0] = len1; 535 dims[1] = len2; 536 dims[2] = len3; 537 dims[3] = len4; 538 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 539 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 540 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 541 current->set_vm_result_oop(obj); 542 JRT_END 543 544 // multianewarray for 5 dimensions 545 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 546 #ifndef PRODUCT 547 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 548 #endif 549 assert(check_compiled_frame(current), "incorrect caller"); 550 assert(elem_type->is_klass(), "not a class"); 551 jint dims[5]; 552 dims[0] = len1; 553 dims[1] = len2; 554 dims[2] = len3; 555 dims[3] = len4; 556 dims[4] = len5; 557 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 558 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 559 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 560 current->set_vm_result_oop(obj); 561 JRT_END 562 563 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 564 assert(check_compiled_frame(current), "incorrect caller"); 565 assert(elem_type->is_klass(), "not a class"); 566 assert(oop(dims)->is_typeArray(), "not an array"); 567 568 ResourceMark rm; 569 jint len = dims->length(); 570 assert(len > 0, "Dimensions array should contain data"); 571 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 572 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 573 c_dims, len); 574 575 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 576 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 577 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 578 current->set_vm_result_oop(obj); 579 JRT_END 580 581 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 582 583 // Very few notify/notifyAll operations find any threads on the waitset, so 584 // the dominant fast-path is to simply return. 585 // Relatedly, it's critical that notify/notifyAll be fast in order to 586 // reduce lock hold times. 587 if (!SafepointSynchronize::is_synchronizing()) { 588 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 589 return; 590 } 591 } 592 593 // This is the case the fast-path above isn't provisioned to handle. 594 // The fast-path is designed to handle frequently arising cases in an efficient manner. 595 // (The fast-path is just a degenerate variant of the slow-path). 596 // Perform the dreaded state transition and pass control into the slow-path. 597 JRT_BLOCK; 598 Handle h_obj(current, obj); 599 ObjectSynchronizer::notify(h_obj, CHECK); 600 JRT_BLOCK_END; 601 JRT_END 602 603 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 604 605 if (!SafepointSynchronize::is_synchronizing() ) { 606 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 607 return; 608 } 609 } 610 611 // This is the case the fast-path above isn't provisioned to handle. 612 // The fast-path is designed to handle frequently arising cases in an efficient manner. 613 // (The fast-path is just a degenerate variant of the slow-path). 614 // Perform the dreaded state transition and pass control into the slow-path. 615 JRT_BLOCK; 616 Handle h_obj(current, obj); 617 ObjectSynchronizer::notifyall(h_obj, CHECK); 618 JRT_BLOCK_END; 619 JRT_END 620 621 static const TypeFunc* make_new_instance_Type() { 622 // create input type (domain) 623 const Type **fields = TypeTuple::fields(2); 624 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 625 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval 626 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 627 628 // create result type (range) 629 fields = TypeTuple::fields(1); 630 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 631 632 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 633 634 return TypeFunc::make(domain, range); 635 } 636 637 #if INCLUDE_JVMTI 638 static const TypeFunc* make_notify_jvmti_vthread_Type() { 639 // create input type (domain) 640 const Type **fields = TypeTuple::fields(2); 641 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 642 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 643 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 644 645 // no result type needed 646 fields = TypeTuple::fields(1); 647 fields[TypeFunc::Parms+0] = nullptr; // void 648 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 649 650 return TypeFunc::make(domain,range); 651 } 652 #endif 653 654 static const TypeFunc* make_athrow_Type() { 655 // create input type (domain) 656 const Type **fields = TypeTuple::fields(1); 657 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 658 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 659 660 // create result type (range) 661 fields = TypeTuple::fields(0); 662 663 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 664 665 return TypeFunc::make(domain, range); 666 } 667 668 static const TypeFunc* make_new_array_Type() { 669 // create input type (domain) 670 const Type **fields = TypeTuple::fields(3); 671 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 672 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 673 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value 674 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 675 676 // create result type (range) 677 fields = TypeTuple::fields(1); 678 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 679 680 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 681 682 return TypeFunc::make(domain, range); 683 } 684 685 static const TypeFunc* make_new_array_nozero_Type() { 686 // create input type (domain) 687 const Type **fields = TypeTuple::fields(2); 688 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 689 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 690 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 691 692 // create result type (range) 693 fields = TypeTuple::fields(1); 694 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 695 696 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 697 698 return TypeFunc::make(domain, range); 699 } 700 701 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 702 // create input type (domain) 703 const int nargs = ndim + 1; 704 const Type **fields = TypeTuple::fields(nargs); 705 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 706 for( int i = 1; i < nargs; i++ ) 707 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 709 710 // create result type (range) 711 fields = TypeTuple::fields(1); 712 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 714 715 return TypeFunc::make(domain, range); 716 } 717 718 static const TypeFunc* make_multianewarrayN_Type() { 719 // create input type (domain) 720 const Type **fields = TypeTuple::fields(2); 721 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 722 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 723 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 724 725 // create result type (range) 726 fields = TypeTuple::fields(1); 727 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 728 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 729 730 return TypeFunc::make(domain, range); 731 } 732 733 static const TypeFunc* make_uncommon_trap_Type() { 734 // create input type (domain) 735 const Type **fields = TypeTuple::fields(1); 736 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 737 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 738 739 // create result type (range) 740 fields = TypeTuple::fields(0); 741 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 742 743 return TypeFunc::make(domain, range); 744 } 745 746 //----------------------------------------------------------------------------- 747 // Monitor Handling 748 749 static const TypeFunc* make_complete_monitor_enter_Type() { 750 // create input type (domain) 751 const Type **fields = TypeTuple::fields(2); 752 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 753 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 754 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 755 756 // create result type (range) 757 fields = TypeTuple::fields(0); 758 759 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 760 761 return TypeFunc::make(domain, range); 762 } 763 764 //----------------------------------------------------------------------------- 765 766 static const TypeFunc* make_complete_monitor_exit_Type() { 767 // create input type (domain) 768 const Type **fields = TypeTuple::fields(3); 769 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 770 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 771 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 772 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 773 774 // create result type (range) 775 fields = TypeTuple::fields(0); 776 777 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 778 779 return TypeFunc::make(domain, range); 780 } 781 782 static const TypeFunc* make_monitor_notify_Type() { 783 // create input type (domain) 784 const Type **fields = TypeTuple::fields(1); 785 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 786 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 787 788 // create result type (range) 789 fields = TypeTuple::fields(0); 790 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 791 return TypeFunc::make(domain, range); 792 } 793 794 static const TypeFunc* make_flush_windows_Type() { 795 // create input type (domain) 796 const Type** fields = TypeTuple::fields(1); 797 fields[TypeFunc::Parms+0] = nullptr; // void 798 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 799 800 // create result type 801 fields = TypeTuple::fields(1); 802 fields[TypeFunc::Parms+0] = nullptr; // void 803 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 804 805 return TypeFunc::make(domain, range); 806 } 807 808 static const TypeFunc* make_l2f_Type() { 809 // create input type (domain) 810 const Type **fields = TypeTuple::fields(2); 811 fields[TypeFunc::Parms+0] = TypeLong::LONG; 812 fields[TypeFunc::Parms+1] = Type::HALF; 813 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 814 815 // create result type (range) 816 fields = TypeTuple::fields(1); 817 fields[TypeFunc::Parms+0] = Type::FLOAT; 818 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 819 820 return TypeFunc::make(domain, range); 821 } 822 823 static const TypeFunc* make_modf_Type() { 824 const Type **fields = TypeTuple::fields(2); 825 fields[TypeFunc::Parms+0] = Type::FLOAT; 826 fields[TypeFunc::Parms+1] = Type::FLOAT; 827 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 828 829 // create result type (range) 830 fields = TypeTuple::fields(1); 831 fields[TypeFunc::Parms+0] = Type::FLOAT; 832 833 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 834 835 return TypeFunc::make(domain, range); 836 } 837 838 static const TypeFunc* make_Math_D_D_Type() { 839 // create input type (domain) 840 const Type **fields = TypeTuple::fields(2); 841 // Symbol* name of class to be loaded 842 fields[TypeFunc::Parms+0] = Type::DOUBLE; 843 fields[TypeFunc::Parms+1] = Type::HALF; 844 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 845 846 // create result type (range) 847 fields = TypeTuple::fields(2); 848 fields[TypeFunc::Parms+0] = Type::DOUBLE; 849 fields[TypeFunc::Parms+1] = Type::HALF; 850 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 851 852 return TypeFunc::make(domain, range); 853 } 854 855 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 856 // create input type (domain) 857 const Type **fields = TypeTuple::fields(num_arg); 858 // Symbol* name of class to be loaded 859 assert(num_arg > 0, "must have at least 1 input"); 860 for (uint i = 0; i < num_arg; i++) { 861 fields[TypeFunc::Parms+i] = in_type; 862 } 863 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 864 865 // create result type (range) 866 const uint num_ret = 1; 867 fields = TypeTuple::fields(num_ret); 868 fields[TypeFunc::Parms+0] = out_type; 869 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 870 871 return TypeFunc::make(domain, range); 872 } 873 874 static const TypeFunc* make_Math_DD_D_Type() { 875 const Type **fields = TypeTuple::fields(4); 876 fields[TypeFunc::Parms+0] = Type::DOUBLE; 877 fields[TypeFunc::Parms+1] = Type::HALF; 878 fields[TypeFunc::Parms+2] = Type::DOUBLE; 879 fields[TypeFunc::Parms+3] = Type::HALF; 880 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 881 882 // create result type (range) 883 fields = TypeTuple::fields(2); 884 fields[TypeFunc::Parms+0] = Type::DOUBLE; 885 fields[TypeFunc::Parms+1] = Type::HALF; 886 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 887 888 return TypeFunc::make(domain, range); 889 } 890 891 //-------------- currentTimeMillis, currentTimeNanos, etc 892 893 static const TypeFunc* make_void_long_Type() { 894 // create input type (domain) 895 const Type **fields = TypeTuple::fields(0); 896 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 897 898 // create result type (range) 899 fields = TypeTuple::fields(2); 900 fields[TypeFunc::Parms+0] = TypeLong::LONG; 901 fields[TypeFunc::Parms+1] = Type::HALF; 902 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 903 904 return TypeFunc::make(domain, range); 905 } 906 907 static const TypeFunc* make_void_void_Type() { 908 // create input type (domain) 909 const Type **fields = TypeTuple::fields(0); 910 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 911 912 // create result type (range) 913 fields = TypeTuple::fields(0); 914 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 915 return TypeFunc::make(domain, range); 916 } 917 918 static const TypeFunc* make_jfr_write_checkpoint_Type() { 919 // create input type (domain) 920 const Type **fields = TypeTuple::fields(0); 921 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 922 923 // create result type (range) 924 fields = TypeTuple::fields(0); 925 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 926 return TypeFunc::make(domain, range); 927 } 928 929 930 // Takes as parameters: 931 // void *dest 932 // long size 933 // uchar byte 934 935 static const TypeFunc* make_setmemory_Type() { 936 // create input type (domain) 937 int argcnt = NOT_LP64(3) LP64_ONLY(4); 938 const Type** fields = TypeTuple::fields(argcnt); 939 int argp = TypeFunc::Parms; 940 fields[argp++] = TypePtr::NOTNULL; // dest 941 fields[argp++] = TypeX_X; // size 942 LP64_ONLY(fields[argp++] = Type::HALF); // size 943 fields[argp++] = TypeInt::UBYTE; // bytevalue 944 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 945 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 946 947 // no result type needed 948 fields = TypeTuple::fields(1); 949 fields[TypeFunc::Parms+0] = nullptr; // void 950 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 951 return TypeFunc::make(domain, range); 952 } 953 954 // arraycopy stub variations: 955 enum ArrayCopyType { 956 ac_fast, // void(ptr, ptr, size_t) 957 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 958 ac_slow, // void(ptr, int, ptr, int, int) 959 ac_generic // int(ptr, int, ptr, int, int) 960 }; 961 962 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 963 // create input type (domain) 964 int num_args = (act == ac_fast ? 3 : 5); 965 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 966 int argcnt = num_args; 967 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 968 const Type** fields = TypeTuple::fields(argcnt); 969 int argp = TypeFunc::Parms; 970 fields[argp++] = TypePtr::NOTNULL; // src 971 if (num_size_args == 0) { 972 fields[argp++] = TypeInt::INT; // src_pos 973 } 974 fields[argp++] = TypePtr::NOTNULL; // dest 975 if (num_size_args == 0) { 976 fields[argp++] = TypeInt::INT; // dest_pos 977 fields[argp++] = TypeInt::INT; // length 978 } 979 while (num_size_args-- > 0) { 980 fields[argp++] = TypeX_X; // size in whatevers (size_t) 981 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 982 } 983 if (act == ac_checkcast) { 984 fields[argp++] = TypePtr::NOTNULL; // super_klass 985 } 986 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 987 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 988 989 // create result type if needed 990 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 991 fields = TypeTuple::fields(1); 992 if (retcnt == 0) 993 fields[TypeFunc::Parms+0] = nullptr; // void 994 else 995 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 996 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 997 return TypeFunc::make(domain, range); 998 } 999 1000 static const TypeFunc* make_array_fill_Type() { 1001 const Type** fields; 1002 int argp = TypeFunc::Parms; 1003 // create input type (domain): pointer, int, size_t 1004 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 1005 fields[argp++] = TypePtr::NOTNULL; 1006 fields[argp++] = TypeInt::INT; 1007 fields[argp++] = TypeX_X; // size in whatevers (size_t) 1008 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 1009 const TypeTuple *domain = TypeTuple::make(argp, fields); 1010 1011 // create result type 1012 fields = TypeTuple::fields(1); 1013 fields[TypeFunc::Parms+0] = nullptr; // void 1014 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1015 1016 return TypeFunc::make(domain, range); 1017 } 1018 1019 static const TypeFunc* make_array_partition_Type() { 1020 // create input type (domain) 1021 int num_args = 7; 1022 int argcnt = num_args; 1023 const Type** fields = TypeTuple::fields(argcnt); 1024 int argp = TypeFunc::Parms; 1025 fields[argp++] = TypePtr::NOTNULL; // array 1026 fields[argp++] = TypeInt::INT; // element type 1027 fields[argp++] = TypeInt::INT; // low 1028 fields[argp++] = TypeInt::INT; // end 1029 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 1030 fields[argp++] = TypeInt::INT; // indexPivot1 1031 fields[argp++] = TypeInt::INT; // indexPivot2 1032 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1033 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1034 1035 // no result type needed 1036 fields = TypeTuple::fields(1); 1037 fields[TypeFunc::Parms+0] = nullptr; // void 1038 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1039 return TypeFunc::make(domain, range); 1040 } 1041 1042 static const TypeFunc* make_array_sort_Type() { 1043 // create input type (domain) 1044 int num_args = 4; 1045 int argcnt = num_args; 1046 const Type** fields = TypeTuple::fields(argcnt); 1047 int argp = TypeFunc::Parms; 1048 fields[argp++] = TypePtr::NOTNULL; // array 1049 fields[argp++] = TypeInt::INT; // element type 1050 fields[argp++] = TypeInt::INT; // fromIndex 1051 fields[argp++] = TypeInt::INT; // toIndex 1052 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1053 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1054 1055 // no result type needed 1056 fields = TypeTuple::fields(1); 1057 fields[TypeFunc::Parms+0] = nullptr; // void 1058 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1059 return TypeFunc::make(domain, range); 1060 } 1061 1062 static const TypeFunc* make_aescrypt_block_Type() { 1063 // create input type (domain) 1064 int num_args = 3; 1065 int argcnt = num_args; 1066 const Type** fields = TypeTuple::fields(argcnt); 1067 int argp = TypeFunc::Parms; 1068 fields[argp++] = TypePtr::NOTNULL; // src 1069 fields[argp++] = TypePtr::NOTNULL; // dest 1070 fields[argp++] = TypePtr::NOTNULL; // k array 1071 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1072 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1073 1074 // no result type needed 1075 fields = TypeTuple::fields(1); 1076 fields[TypeFunc::Parms+0] = nullptr; // void 1077 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1078 return TypeFunc::make(domain, range); 1079 } 1080 1081 static const TypeFunc* make_updateBytesCRC32_Type() { 1082 // create input type (domain) 1083 int num_args = 3; 1084 int argcnt = num_args; 1085 const Type** fields = TypeTuple::fields(argcnt); 1086 int argp = TypeFunc::Parms; 1087 fields[argp++] = TypeInt::INT; // crc 1088 fields[argp++] = TypePtr::NOTNULL; // src 1089 fields[argp++] = TypeInt::INT; // len 1090 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1091 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1092 1093 // result type needed 1094 fields = TypeTuple::fields(1); 1095 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1096 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1097 return TypeFunc::make(domain, range); 1098 } 1099 1100 static const TypeFunc* make_updateBytesCRC32C_Type() { 1101 // create input type (domain) 1102 int num_args = 4; 1103 int argcnt = num_args; 1104 const Type** fields = TypeTuple::fields(argcnt); 1105 int argp = TypeFunc::Parms; 1106 fields[argp++] = TypeInt::INT; // crc 1107 fields[argp++] = TypePtr::NOTNULL; // buf 1108 fields[argp++] = TypeInt::INT; // len 1109 fields[argp++] = TypePtr::NOTNULL; // table 1110 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1111 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1112 1113 // result type needed 1114 fields = TypeTuple::fields(1); 1115 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1116 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1117 return TypeFunc::make(domain, range); 1118 } 1119 1120 static const TypeFunc* make_updateBytesAdler32_Type() { 1121 // create input type (domain) 1122 int num_args = 3; 1123 int argcnt = num_args; 1124 const Type** fields = TypeTuple::fields(argcnt); 1125 int argp = TypeFunc::Parms; 1126 fields[argp++] = TypeInt::INT; // crc 1127 fields[argp++] = TypePtr::NOTNULL; // src + offset 1128 fields[argp++] = TypeInt::INT; // len 1129 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1130 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1131 1132 // result type needed 1133 fields = TypeTuple::fields(1); 1134 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1135 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1136 return TypeFunc::make(domain, range); 1137 } 1138 1139 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1140 // create input type (domain) 1141 int num_args = 5; 1142 int argcnt = num_args; 1143 const Type** fields = TypeTuple::fields(argcnt); 1144 int argp = TypeFunc::Parms; 1145 fields[argp++] = TypePtr::NOTNULL; // src 1146 fields[argp++] = TypePtr::NOTNULL; // dest 1147 fields[argp++] = TypePtr::NOTNULL; // k array 1148 fields[argp++] = TypePtr::NOTNULL; // r array 1149 fields[argp++] = TypeInt::INT; // src len 1150 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1151 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1152 1153 // returning cipher len (int) 1154 fields = TypeTuple::fields(1); 1155 fields[TypeFunc::Parms+0] = TypeInt::INT; 1156 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1157 return TypeFunc::make(domain, range); 1158 } 1159 1160 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1161 // create input type (domain) 1162 int num_args = 4; 1163 int argcnt = num_args; 1164 const Type** fields = TypeTuple::fields(argcnt); 1165 int argp = TypeFunc::Parms; 1166 fields[argp++] = TypePtr::NOTNULL; // src 1167 fields[argp++] = TypePtr::NOTNULL; // dest 1168 fields[argp++] = TypePtr::NOTNULL; // k array 1169 fields[argp++] = TypeInt::INT; // src len 1170 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1171 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1172 1173 // returning cipher len (int) 1174 fields = TypeTuple::fields(1); 1175 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1176 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1177 return TypeFunc::make(domain, range); 1178 } 1179 1180 static const TypeFunc* make_counterMode_aescrypt_Type() { 1181 // create input type (domain) 1182 int num_args = 7; 1183 int argcnt = num_args; 1184 const Type** fields = TypeTuple::fields(argcnt); 1185 int argp = TypeFunc::Parms; 1186 fields[argp++] = TypePtr::NOTNULL; // src 1187 fields[argp++] = TypePtr::NOTNULL; // dest 1188 fields[argp++] = TypePtr::NOTNULL; // k array 1189 fields[argp++] = TypePtr::NOTNULL; // counter array 1190 fields[argp++] = TypeInt::INT; // src len 1191 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1192 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1193 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1194 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1195 // returning cipher len (int) 1196 fields = TypeTuple::fields(1); 1197 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1198 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1199 return TypeFunc::make(domain, range); 1200 } 1201 1202 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1203 // create input type (domain) 1204 int num_args = 8; 1205 int argcnt = num_args; 1206 const Type** fields = TypeTuple::fields(argcnt); 1207 int argp = TypeFunc::Parms; 1208 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1209 fields[argp++] = TypeInt::INT; // int len 1210 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1211 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1212 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1213 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1214 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1215 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1216 1217 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1218 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1219 // returning cipher len (int) 1220 fields = TypeTuple::fields(1); 1221 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1222 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1223 return TypeFunc::make(domain, range); 1224 } 1225 1226 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1227 // create input type (domain) 1228 int num_args = is_sha3 ? 3 : 2; 1229 int argcnt = num_args; 1230 const Type** fields = TypeTuple::fields(argcnt); 1231 int argp = TypeFunc::Parms; 1232 fields[argp++] = TypePtr::NOTNULL; // buf 1233 fields[argp++] = TypePtr::NOTNULL; // state 1234 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1235 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1236 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1237 1238 // no result type needed 1239 fields = TypeTuple::fields(1); 1240 fields[TypeFunc::Parms+0] = nullptr; // void 1241 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1242 return TypeFunc::make(domain, range); 1243 } 1244 1245 /* 1246 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1247 */ 1248 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1249 // create input type (domain) 1250 int num_args = is_sha3 ? 5 : 4; 1251 int argcnt = num_args; 1252 const Type** fields = TypeTuple::fields(argcnt); 1253 int argp = TypeFunc::Parms; 1254 fields[argp++] = TypePtr::NOTNULL; // buf 1255 fields[argp++] = TypePtr::NOTNULL; // state 1256 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1257 fields[argp++] = TypeInt::INT; // ofs 1258 fields[argp++] = TypeInt::INT; // limit 1259 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1260 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1261 1262 // returning ofs (int) 1263 fields = TypeTuple::fields(1); 1264 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1265 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1266 return TypeFunc::make(domain, range); 1267 } 1268 1269 // SHAKE128Parallel doubleKeccak function 1270 static const TypeFunc* make_double_keccak_Type() { 1271 int argcnt = 2; 1272 1273 const Type** fields = TypeTuple::fields(argcnt); 1274 int argp = TypeFunc::Parms; 1275 fields[argp++] = TypePtr::NOTNULL; // status0 1276 fields[argp++] = TypePtr::NOTNULL; // status1 1277 1278 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1279 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1280 1281 // result type needed 1282 fields = TypeTuple::fields(1); 1283 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1284 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1285 return TypeFunc::make(domain, range); 1286 } 1287 1288 static const TypeFunc* make_multiplyToLen_Type() { 1289 // create input type (domain) 1290 int num_args = 5; 1291 int argcnt = num_args; 1292 const Type** fields = TypeTuple::fields(argcnt); 1293 int argp = TypeFunc::Parms; 1294 fields[argp++] = TypePtr::NOTNULL; // x 1295 fields[argp++] = TypeInt::INT; // xlen 1296 fields[argp++] = TypePtr::NOTNULL; // y 1297 fields[argp++] = TypeInt::INT; // ylen 1298 fields[argp++] = TypePtr::NOTNULL; // z 1299 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1300 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1301 1302 // no result type needed 1303 fields = TypeTuple::fields(1); 1304 fields[TypeFunc::Parms+0] = nullptr; 1305 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1306 return TypeFunc::make(domain, range); 1307 } 1308 1309 static const TypeFunc* make_squareToLen_Type() { 1310 // create input type (domain) 1311 int num_args = 4; 1312 int argcnt = num_args; 1313 const Type** fields = TypeTuple::fields(argcnt); 1314 int argp = TypeFunc::Parms; 1315 fields[argp++] = TypePtr::NOTNULL; // x 1316 fields[argp++] = TypeInt::INT; // len 1317 fields[argp++] = TypePtr::NOTNULL; // z 1318 fields[argp++] = TypeInt::INT; // zlen 1319 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1320 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1321 1322 // no result type needed 1323 fields = TypeTuple::fields(1); 1324 fields[TypeFunc::Parms+0] = nullptr; 1325 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1326 return TypeFunc::make(domain, range); 1327 } 1328 1329 static const TypeFunc* make_mulAdd_Type() { 1330 // create input type (domain) 1331 int num_args = 5; 1332 int argcnt = num_args; 1333 const Type** fields = TypeTuple::fields(argcnt); 1334 int argp = TypeFunc::Parms; 1335 fields[argp++] = TypePtr::NOTNULL; // out 1336 fields[argp++] = TypePtr::NOTNULL; // in 1337 fields[argp++] = TypeInt::INT; // offset 1338 fields[argp++] = TypeInt::INT; // len 1339 fields[argp++] = TypeInt::INT; // k 1340 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1341 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1342 1343 // returning carry (int) 1344 fields = TypeTuple::fields(1); 1345 fields[TypeFunc::Parms+0] = TypeInt::INT; 1346 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1347 return TypeFunc::make(domain, range); 1348 } 1349 1350 static const TypeFunc* make_montgomeryMultiply_Type() { 1351 // create input type (domain) 1352 int num_args = 7; 1353 int argcnt = num_args; 1354 const Type** fields = TypeTuple::fields(argcnt); 1355 int argp = TypeFunc::Parms; 1356 fields[argp++] = TypePtr::NOTNULL; // a 1357 fields[argp++] = TypePtr::NOTNULL; // b 1358 fields[argp++] = TypePtr::NOTNULL; // n 1359 fields[argp++] = TypeInt::INT; // len 1360 fields[argp++] = TypeLong::LONG; // inv 1361 fields[argp++] = Type::HALF; 1362 fields[argp++] = TypePtr::NOTNULL; // result 1363 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1364 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1365 1366 // result type needed 1367 fields = TypeTuple::fields(1); 1368 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1369 1370 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1371 return TypeFunc::make(domain, range); 1372 } 1373 1374 static const TypeFunc* make_montgomerySquare_Type() { 1375 // create input type (domain) 1376 int num_args = 6; 1377 int argcnt = num_args; 1378 const Type** fields = TypeTuple::fields(argcnt); 1379 int argp = TypeFunc::Parms; 1380 fields[argp++] = TypePtr::NOTNULL; // a 1381 fields[argp++] = TypePtr::NOTNULL; // n 1382 fields[argp++] = TypeInt::INT; // len 1383 fields[argp++] = TypeLong::LONG; // inv 1384 fields[argp++] = Type::HALF; 1385 fields[argp++] = TypePtr::NOTNULL; // result 1386 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1387 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1388 1389 // result type needed 1390 fields = TypeTuple::fields(1); 1391 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1392 1393 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1394 return TypeFunc::make(domain, range); 1395 } 1396 1397 static const TypeFunc* make_bigIntegerShift_Type() { 1398 int argcnt = 5; 1399 const Type** fields = TypeTuple::fields(argcnt); 1400 int argp = TypeFunc::Parms; 1401 fields[argp++] = TypePtr::NOTNULL; // newArr 1402 fields[argp++] = TypePtr::NOTNULL; // oldArr 1403 fields[argp++] = TypeInt::INT; // newIdx 1404 fields[argp++] = TypeInt::INT; // shiftCount 1405 fields[argp++] = TypeInt::INT; // numIter 1406 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1407 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1408 1409 // no result type needed 1410 fields = TypeTuple::fields(1); 1411 fields[TypeFunc::Parms + 0] = nullptr; 1412 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1413 return TypeFunc::make(domain, range); 1414 } 1415 1416 static const TypeFunc* make_vectorizedMismatch_Type() { 1417 // create input type (domain) 1418 int num_args = 4; 1419 int argcnt = num_args; 1420 const Type** fields = TypeTuple::fields(argcnt); 1421 int argp = TypeFunc::Parms; 1422 fields[argp++] = TypePtr::NOTNULL; // obja 1423 fields[argp++] = TypePtr::NOTNULL; // objb 1424 fields[argp++] = TypeInt::INT; // length, number of elements 1425 fields[argp++] = TypeInt::INT; // log2scale, element size 1426 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1427 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1428 1429 //return mismatch index (int) 1430 fields = TypeTuple::fields(1); 1431 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1432 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1433 return TypeFunc::make(domain, range); 1434 } 1435 1436 static const TypeFunc* make_ghash_processBlocks_Type() { 1437 int argcnt = 4; 1438 1439 const Type** fields = TypeTuple::fields(argcnt); 1440 int argp = TypeFunc::Parms; 1441 fields[argp++] = TypePtr::NOTNULL; // state 1442 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1443 fields[argp++] = TypePtr::NOTNULL; // data 1444 fields[argp++] = TypeInt::INT; // blocks 1445 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1446 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1447 1448 // result type needed 1449 fields = TypeTuple::fields(1); 1450 fields[TypeFunc::Parms+0] = nullptr; // void 1451 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1452 return TypeFunc::make(domain, range); 1453 } 1454 1455 static const TypeFunc* make_chacha20Block_Type() { 1456 int argcnt = 2; 1457 1458 const Type** fields = TypeTuple::fields(argcnt); 1459 int argp = TypeFunc::Parms; 1460 fields[argp++] = TypePtr::NOTNULL; // state 1461 fields[argp++] = TypePtr::NOTNULL; // result 1462 1463 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1464 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1465 1466 // result type needed 1467 fields = TypeTuple::fields(1); 1468 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1469 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1470 return TypeFunc::make(domain, range); 1471 } 1472 1473 // Kyber NTT function 1474 static const TypeFunc* make_kyberNtt_Type() { 1475 int argcnt = 2; 1476 1477 const Type** fields = TypeTuple::fields(argcnt); 1478 int argp = TypeFunc::Parms; 1479 fields[argp++] = TypePtr::NOTNULL; // coeffs 1480 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1481 1482 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1483 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1484 1485 // result type needed 1486 fields = TypeTuple::fields(1); 1487 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1488 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1489 return TypeFunc::make(domain, range); 1490 } 1491 1492 // Kyber inverse NTT function 1493 static const TypeFunc* make_kyberInverseNtt_Type() { 1494 int argcnt = 2; 1495 1496 const Type** fields = TypeTuple::fields(argcnt); 1497 int argp = TypeFunc::Parms; 1498 fields[argp++] = TypePtr::NOTNULL; // coeffs 1499 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1500 1501 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1502 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1503 1504 // result type needed 1505 fields = TypeTuple::fields(1); 1506 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1507 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1508 return TypeFunc::make(domain, range); 1509 } 1510 1511 // Kyber NTT multiply function 1512 static const TypeFunc* make_kyberNttMult_Type() { 1513 int argcnt = 4; 1514 1515 const Type** fields = TypeTuple::fields(argcnt); 1516 int argp = TypeFunc::Parms; 1517 fields[argp++] = TypePtr::NOTNULL; // result 1518 fields[argp++] = TypePtr::NOTNULL; // ntta 1519 fields[argp++] = TypePtr::NOTNULL; // nttb 1520 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1521 1522 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1523 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1524 1525 // result type needed 1526 fields = TypeTuple::fields(1); 1527 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1528 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1529 return TypeFunc::make(domain, range); 1530 } 1531 1532 // Kyber add 2 polynomials function 1533 static const TypeFunc* make_kyberAddPoly_2_Type() { 1534 int argcnt = 3; 1535 1536 const Type** fields = TypeTuple::fields(argcnt); 1537 int argp = TypeFunc::Parms; 1538 fields[argp++] = TypePtr::NOTNULL; // result 1539 fields[argp++] = TypePtr::NOTNULL; // a 1540 fields[argp++] = TypePtr::NOTNULL; // b 1541 1542 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1543 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1544 1545 // result type needed 1546 fields = TypeTuple::fields(1); 1547 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1548 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1549 return TypeFunc::make(domain, range); 1550 } 1551 1552 1553 // Kyber add 3 polynomials function 1554 static const TypeFunc* make_kyberAddPoly_3_Type() { 1555 int argcnt = 4; 1556 1557 const Type** fields = TypeTuple::fields(argcnt); 1558 int argp = TypeFunc::Parms; 1559 fields[argp++] = TypePtr::NOTNULL; // result 1560 fields[argp++] = TypePtr::NOTNULL; // a 1561 fields[argp++] = TypePtr::NOTNULL; // b 1562 fields[argp++] = TypePtr::NOTNULL; // c 1563 1564 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1565 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1566 1567 // result type needed 1568 fields = TypeTuple::fields(1); 1569 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1570 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1571 return TypeFunc::make(domain, range); 1572 } 1573 1574 1575 // Kyber XOF output parsing into polynomial coefficients candidates 1576 // or decompress(12,...) function 1577 static const TypeFunc* make_kyber12To16_Type() { 1578 int argcnt = 4; 1579 1580 const Type** fields = TypeTuple::fields(argcnt); 1581 int argp = TypeFunc::Parms; 1582 fields[argp++] = TypePtr::NOTNULL; // condensed 1583 fields[argp++] = TypeInt::INT; // condensedOffs 1584 fields[argp++] = TypePtr::NOTNULL; // parsed 1585 fields[argp++] = TypeInt::INT; // parsedLength 1586 1587 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1588 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1589 1590 // result type needed 1591 fields = TypeTuple::fields(1); 1592 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1593 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1594 return TypeFunc::make(domain, range); 1595 } 1596 1597 // Kyber Barrett reduce function 1598 static const TypeFunc* make_kyberBarrettReduce_Type() { 1599 int argcnt = 1; 1600 1601 const Type** fields = TypeTuple::fields(argcnt); 1602 int argp = TypeFunc::Parms; 1603 fields[argp++] = TypePtr::NOTNULL; // coeffs 1604 1605 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1606 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1607 1608 // result type needed 1609 fields = TypeTuple::fields(1); 1610 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1611 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1612 return TypeFunc::make(domain, range); 1613 } 1614 1615 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1616 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1617 int argcnt = 2; 1618 1619 const Type** fields = TypeTuple::fields(argcnt); 1620 int argp = TypeFunc::Parms; 1621 fields[argp++] = TypePtr::NOTNULL; // coeffs 1622 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1623 1624 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1625 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1626 1627 // result type needed 1628 fields = TypeTuple::fields(1); 1629 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1630 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1631 return TypeFunc::make(domain, range); 1632 } 1633 1634 // Dilithium inverse NTT function except the final mod Q division by 2^256 1635 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1636 int argcnt = 2; 1637 1638 const Type** fields = TypeTuple::fields(argcnt); 1639 int argp = TypeFunc::Parms; 1640 fields[argp++] = TypePtr::NOTNULL; // coeffs 1641 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1642 1643 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1644 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1645 1646 // result type needed 1647 fields = TypeTuple::fields(1); 1648 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1649 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1650 return TypeFunc::make(domain, range); 1651 } 1652 1653 // Dilithium NTT multiply function 1654 static const TypeFunc* make_dilithiumNttMult_Type() { 1655 int argcnt = 3; 1656 1657 const Type** fields = TypeTuple::fields(argcnt); 1658 int argp = TypeFunc::Parms; 1659 fields[argp++] = TypePtr::NOTNULL; // result 1660 fields[argp++] = TypePtr::NOTNULL; // ntta 1661 fields[argp++] = TypePtr::NOTNULL; // nttb 1662 1663 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1664 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1665 1666 // result type needed 1667 fields = TypeTuple::fields(1); 1668 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1669 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1670 return TypeFunc::make(domain, range); 1671 } 1672 1673 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1674 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1675 int argcnt = 2; 1676 1677 const Type** fields = TypeTuple::fields(argcnt); 1678 int argp = TypeFunc::Parms; 1679 fields[argp++] = TypePtr::NOTNULL; // coeffs 1680 fields[argp++] = TypeInt::INT; // constant multiplier 1681 1682 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1683 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1684 1685 // result type needed 1686 fields = TypeTuple::fields(1); 1687 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1688 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1689 return TypeFunc::make(domain, range); 1690 } 1691 1692 // Dilithium decompose polynomial 1693 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1694 int argcnt = 5; 1695 1696 const Type** fields = TypeTuple::fields(argcnt); 1697 int argp = TypeFunc::Parms; 1698 fields[argp++] = TypePtr::NOTNULL; // input 1699 fields[argp++] = TypePtr::NOTNULL; // lowPart 1700 fields[argp++] = TypePtr::NOTNULL; // highPart 1701 fields[argp++] = TypeInt::INT; // 2 * gamma2 1702 fields[argp++] = TypeInt::INT; // multiplier 1703 1704 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1705 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1706 1707 // result type needed 1708 fields = TypeTuple::fields(1); 1709 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1710 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1711 return TypeFunc::make(domain, range); 1712 } 1713 1714 static const TypeFunc* make_base64_encodeBlock_Type() { 1715 int argcnt = 6; 1716 1717 const Type** fields = TypeTuple::fields(argcnt); 1718 int argp = TypeFunc::Parms; 1719 fields[argp++] = TypePtr::NOTNULL; // src array 1720 fields[argp++] = TypeInt::INT; // offset 1721 fields[argp++] = TypeInt::INT; // length 1722 fields[argp++] = TypePtr::NOTNULL; // dest array 1723 fields[argp++] = TypeInt::INT; // dp 1724 fields[argp++] = TypeInt::BOOL; // isURL 1725 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1726 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1727 1728 // result type needed 1729 fields = TypeTuple::fields(1); 1730 fields[TypeFunc::Parms + 0] = nullptr; // void 1731 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1732 return TypeFunc::make(domain, range); 1733 } 1734 1735 static const TypeFunc* make_string_IndexOf_Type() { 1736 int argcnt = 4; 1737 1738 const Type** fields = TypeTuple::fields(argcnt); 1739 int argp = TypeFunc::Parms; 1740 fields[argp++] = TypePtr::NOTNULL; // haystack array 1741 fields[argp++] = TypeInt::INT; // haystack length 1742 fields[argp++] = TypePtr::NOTNULL; // needle array 1743 fields[argp++] = TypeInt::INT; // needle length 1744 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1745 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1746 1747 // result type needed 1748 fields = TypeTuple::fields(1); 1749 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1750 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1751 return TypeFunc::make(domain, range); 1752 } 1753 1754 static const TypeFunc* make_base64_decodeBlock_Type() { 1755 int argcnt = 7; 1756 1757 const Type** fields = TypeTuple::fields(argcnt); 1758 int argp = TypeFunc::Parms; 1759 fields[argp++] = TypePtr::NOTNULL; // src array 1760 fields[argp++] = TypeInt::INT; // src offset 1761 fields[argp++] = TypeInt::INT; // src length 1762 fields[argp++] = TypePtr::NOTNULL; // dest array 1763 fields[argp++] = TypeInt::INT; // dest offset 1764 fields[argp++] = TypeInt::BOOL; // isURL 1765 fields[argp++] = TypeInt::BOOL; // isMIME 1766 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1767 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1768 1769 // result type needed 1770 fields = TypeTuple::fields(1); 1771 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1772 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1773 return TypeFunc::make(domain, range); 1774 } 1775 1776 static const TypeFunc* make_poly1305_processBlocks_Type() { 1777 int argcnt = 4; 1778 1779 const Type** fields = TypeTuple::fields(argcnt); 1780 int argp = TypeFunc::Parms; 1781 fields[argp++] = TypePtr::NOTNULL; // input array 1782 fields[argp++] = TypeInt::INT; // input length 1783 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1784 fields[argp++] = TypePtr::NOTNULL; // r array 1785 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1786 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1787 1788 // result type needed 1789 fields = TypeTuple::fields(1); 1790 fields[TypeFunc::Parms + 0] = nullptr; // void 1791 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1792 return TypeFunc::make(domain, range); 1793 } 1794 1795 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1796 int argcnt = 3; 1797 1798 const Type** fields = TypeTuple::fields(argcnt); 1799 int argp = TypeFunc::Parms; 1800 fields[argp++] = TypePtr::NOTNULL; // a array 1801 fields[argp++] = TypePtr::NOTNULL; // b array 1802 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1803 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1804 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1805 1806 // result type needed 1807 fields = TypeTuple::fields(1); 1808 fields[TypeFunc::Parms + 0] = nullptr; // void 1809 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1810 return TypeFunc::make(domain, range); 1811 } 1812 1813 static const TypeFunc* make_intpoly_assign_Type() { 1814 int argcnt = 4; 1815 1816 const Type** fields = TypeTuple::fields(argcnt); 1817 int argp = TypeFunc::Parms; 1818 fields[argp++] = TypeInt::INT; // set flag 1819 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1820 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1821 fields[argp++] = TypeInt::INT; // array length 1822 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1823 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1824 1825 // result type needed 1826 fields = TypeTuple::fields(1); 1827 fields[TypeFunc::Parms + 0] = nullptr; // void 1828 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1829 return TypeFunc::make(domain, range); 1830 } 1831 1832 //------------- Interpreter state for on stack replacement 1833 static const TypeFunc* make_osr_end_Type() { 1834 // create input type (domain) 1835 const Type **fields = TypeTuple::fields(1); 1836 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1837 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1838 1839 // create result type 1840 fields = TypeTuple::fields(1); 1841 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1842 fields[TypeFunc::Parms+0] = nullptr; // void 1843 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1844 return TypeFunc::make(domain, range); 1845 } 1846 1847 //------------------------------------------------------------------------------------- 1848 // register policy 1849 1850 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1851 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1852 switch (register_save_policy[reg]) { 1853 case 'C': return false; //SOC 1854 case 'E': return true ; //SOE 1855 case 'N': return false; //NS 1856 case 'A': return false; //AS 1857 } 1858 ShouldNotReachHere(); 1859 return false; 1860 } 1861 1862 //----------------------------------------------------------------------- 1863 // Exceptions 1864 // 1865 1866 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1867 1868 // The method is an entry that is always called by a C++ method not 1869 // directly from compiled code. Compiled code will call the C++ method following. 1870 // We can't allow async exception to be installed during exception processing. 1871 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1872 // The frame we rethrow the exception to might not have been processed by the GC yet. 1873 // The stack watermark barrier takes care of detecting that and ensuring the frame 1874 // has updated oops. 1875 StackWatermarkSet::after_unwind(current); 1876 1877 // Do not confuse exception_oop with pending_exception. The exception_oop 1878 // is only used to pass arguments into the method. Not for general 1879 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1880 // the runtime stubs checks this on exit. 1881 assert(current->exception_oop() != nullptr, "exception oop is found"); 1882 address handler_address = nullptr; 1883 1884 Handle exception(current, current->exception_oop()); 1885 address pc = current->exception_pc(); 1886 1887 // Clear out the exception oop and pc since looking up an 1888 // exception handler can cause class loading, which might throw an 1889 // exception and those fields are expected to be clear during 1890 // normal bytecode execution. 1891 current->clear_exception_oop_and_pc(); 1892 1893 LogTarget(Info, exceptions) lt; 1894 if (lt.is_enabled()) { 1895 LogStream ls(lt); 1896 trace_exception(&ls, exception(), pc, ""); 1897 } 1898 1899 // for AbortVMOnException flag 1900 Exceptions::debug_check_abort(exception); 1901 1902 #ifdef ASSERT 1903 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1904 // should throw an exception here 1905 ShouldNotReachHere(); 1906 } 1907 #endif 1908 1909 // new exception handling: this method is entered only from adapters 1910 // exceptions from compiled java methods are handled in compiled code 1911 // using rethrow node 1912 1913 nm = CodeCache::find_nmethod(pc); 1914 assert(nm != nullptr, "No NMethod found"); 1915 if (nm->is_native_method()) { 1916 fatal("Native method should not have path to exception handling"); 1917 } else { 1918 // we are switching to old paradigm: search for exception handler in caller_frame 1919 // instead in exception handler of caller_frame.sender() 1920 1921 if (JvmtiExport::can_post_on_exceptions()) { 1922 // "Full-speed catching" is not necessary here, 1923 // since we're notifying the VM on every catch. 1924 // Force deoptimization and the rest of the lookup 1925 // will be fine. 1926 deoptimize_caller_frame(current); 1927 } 1928 1929 // Check the stack guard pages. If enabled, look for handler in this frame; 1930 // otherwise, forcibly unwind the frame. 1931 // 1932 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1933 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1934 bool deopting = false; 1935 if (nm->is_deopt_pc(pc)) { 1936 deopting = true; 1937 RegisterMap map(current, 1938 RegisterMap::UpdateMap::skip, 1939 RegisterMap::ProcessFrames::include, 1940 RegisterMap::WalkContinuation::skip); 1941 frame deoptee = current->last_frame().sender(&map); 1942 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1943 // Adjust the pc back to the original throwing pc 1944 pc = deoptee.pc(); 1945 } 1946 1947 // If we are forcing an unwind because of stack overflow then deopt is 1948 // irrelevant since we are throwing the frame away anyway. 1949 1950 if (deopting && !force_unwind) { 1951 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1952 } else { 1953 1954 handler_address = 1955 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1956 1957 if (handler_address == nullptr) { 1958 bool recursive_exception = false; 1959 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1960 assert (handler_address != nullptr, "must have compiled handler"); 1961 // Update the exception cache only when the unwind was not forced 1962 // and there didn't happen another exception during the computation of the 1963 // compiled exception handler. Checking for exception oop equality is not 1964 // sufficient because some exceptions are pre-allocated and reused. 1965 if (!force_unwind && !recursive_exception) { 1966 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1967 } 1968 } else { 1969 #ifdef ASSERT 1970 bool recursive_exception = false; 1971 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1972 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1973 p2i(handler_address), p2i(computed_address)); 1974 #endif 1975 } 1976 } 1977 1978 current->set_exception_pc(pc); 1979 current->set_exception_handler_pc(handler_address); 1980 1981 // Check if the exception PC is a MethodHandle call site. 1982 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1983 } 1984 1985 // Restore correct return pc. Was saved above. 1986 current->set_exception_oop(exception()); 1987 return handler_address; 1988 1989 JRT_END 1990 1991 // We are entering here from exception_blob 1992 // If there is a compiled exception handler in this method, we will continue there; 1993 // otherwise we will unwind the stack and continue at the caller of top frame method 1994 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1995 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1996 // we looked up the handler for has been deoptimized in the meantime. If it has been 1997 // we must not use the handler and instead return the deopt blob. 1998 address OptoRuntime::handle_exception_C(JavaThread* current) { 1999 // 2000 // We are in Java not VM and in debug mode we have a NoHandleMark 2001 // 2002 #ifndef PRODUCT 2003 SharedRuntime::_find_handler_ctr++; // find exception handler 2004 #endif 2005 DEBUG_ONLY(NoHandleMark __hm;) 2006 nmethod* nm = nullptr; 2007 address handler_address = nullptr; 2008 { 2009 // Enter the VM 2010 2011 ResetNoHandleMark rnhm; 2012 handler_address = handle_exception_C_helper(current, nm); 2013 } 2014 2015 // Back in java: Use no oops, DON'T safepoint 2016 2017 // Now check to see if the handler we are returning is in a now 2018 // deoptimized frame 2019 2020 if (nm != nullptr) { 2021 RegisterMap map(current, 2022 RegisterMap::UpdateMap::skip, 2023 RegisterMap::ProcessFrames::skip, 2024 RegisterMap::WalkContinuation::skip); 2025 frame caller = current->last_frame().sender(&map); 2026 #ifdef ASSERT 2027 assert(caller.is_compiled_frame(), "must be"); 2028 #endif // ASSERT 2029 if (caller.is_deoptimized_frame()) { 2030 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 2031 } 2032 } 2033 return handler_address; 2034 } 2035 2036 //------------------------------rethrow---------------------------------------- 2037 // We get here after compiled code has executed a 'RethrowNode'. The callee 2038 // is either throwing or rethrowing an exception. The callee-save registers 2039 // have been restored, synchronized objects have been unlocked and the callee 2040 // stack frame has been removed. The return address was passed in. 2041 // Exception oop is passed as the 1st argument. This routine is then called 2042 // from the stub. On exit, we know where to jump in the caller's code. 2043 // After this C code exits, the stub will pop his frame and end in a jump 2044 // (instead of a return). We enter the caller's default handler. 2045 // 2046 // This must be JRT_LEAF: 2047 // - caller will not change its state as we cannot block on exit, 2048 // therefore raw_exception_handler_for_return_address is all it takes 2049 // to handle deoptimized blobs 2050 // 2051 // However, there needs to be a safepoint check in the middle! So compiled 2052 // safepoints are completely watertight. 2053 // 2054 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 2055 // 2056 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 2057 // 2058 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 2059 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 2060 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 2061 2062 #ifndef PRODUCT 2063 SharedRuntime::_rethrow_ctr++; // count rethrows 2064 #endif 2065 assert (exception != nullptr, "should have thrown a NullPointerException"); 2066 #ifdef ASSERT 2067 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2068 // should throw an exception here 2069 ShouldNotReachHere(); 2070 } 2071 #endif 2072 2073 thread->set_vm_result_oop(exception); 2074 // Frame not compiled (handles deoptimization blob) 2075 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2076 } 2077 2078 static const TypeFunc* make_rethrow_Type() { 2079 // create input type (domain) 2080 const Type **fields = TypeTuple::fields(1); 2081 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2082 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2083 2084 // create result type (range) 2085 fields = TypeTuple::fields(1); 2086 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2087 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2088 2089 return TypeFunc::make(domain, range); 2090 } 2091 2092 2093 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2094 // Deoptimize the caller before continuing, as the compiled 2095 // exception handler table may not be valid. 2096 if (DeoptimizeOnAllocationException && doit) { 2097 deoptimize_caller_frame(thread); 2098 } 2099 } 2100 2101 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2102 // Called from within the owner thread, so no need for safepoint 2103 RegisterMap reg_map(thread, 2104 RegisterMap::UpdateMap::include, 2105 RegisterMap::ProcessFrames::include, 2106 RegisterMap::WalkContinuation::skip); 2107 frame stub_frame = thread->last_frame(); 2108 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2109 frame caller_frame = stub_frame.sender(®_map); 2110 2111 // Deoptimize the caller frame. 2112 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2113 } 2114 2115 2116 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2117 // Called from within the owner thread, so no need for safepoint 2118 RegisterMap reg_map(thread, 2119 RegisterMap::UpdateMap::include, 2120 RegisterMap::ProcessFrames::include, 2121 RegisterMap::WalkContinuation::skip); 2122 frame stub_frame = thread->last_frame(); 2123 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2124 frame caller_frame = stub_frame.sender(®_map); 2125 return caller_frame.is_deoptimized_frame(); 2126 } 2127 2128 static const TypeFunc* make_register_finalizer_Type() { 2129 // create input type (domain) 2130 const Type **fields = TypeTuple::fields(1); 2131 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2132 // // The JavaThread* is passed to each routine as the last argument 2133 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2134 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2135 2136 // create result type (range) 2137 fields = TypeTuple::fields(0); 2138 2139 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2140 2141 return TypeFunc::make(domain, range); 2142 } 2143 2144 #if INCLUDE_JFR 2145 static const TypeFunc* make_class_id_load_barrier_Type() { 2146 // create input type (domain) 2147 const Type **fields = TypeTuple::fields(1); 2148 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2149 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2150 2151 // create result type (range) 2152 fields = TypeTuple::fields(0); 2153 2154 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2155 2156 return TypeFunc::make(domain,range); 2157 } 2158 #endif // INCLUDE_JFR 2159 2160 //----------------------------------------------------------------------------- 2161 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2162 // create input type (domain) 2163 const Type **fields = TypeTuple::fields(2); 2164 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2165 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2166 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2167 2168 // create result type (range) 2169 fields = TypeTuple::fields(0); 2170 2171 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2172 2173 return TypeFunc::make(domain, range); 2174 } 2175 2176 static const TypeFunc* make_dtrace_object_alloc_Type() { 2177 // create input type (domain) 2178 const Type **fields = TypeTuple::fields(2); 2179 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2180 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2181 2182 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2183 2184 // create result type (range) 2185 fields = TypeTuple::fields(0); 2186 2187 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2188 2189 return TypeFunc::make(domain, range); 2190 } 2191 2192 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2193 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2194 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2195 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2196 JRT_END 2197 2198 //----------------------------------------------------------------------------- 2199 2200 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2201 2202 // 2203 // dump the collected NamedCounters. 2204 // 2205 void OptoRuntime::print_named_counters() { 2206 int total_lock_count = 0; 2207 int eliminated_lock_count = 0; 2208 2209 NamedCounter* c = _named_counters; 2210 while (c) { 2211 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2212 int count = c->count(); 2213 if (count > 0) { 2214 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2215 if (Verbose) { 2216 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2217 } 2218 total_lock_count += count; 2219 if (eliminated) { 2220 eliminated_lock_count += count; 2221 } 2222 } 2223 } 2224 c = c->next(); 2225 } 2226 if (total_lock_count > 0) { 2227 tty->print_cr("dynamic locks: %d", total_lock_count); 2228 if (eliminated_lock_count) { 2229 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2230 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2231 } 2232 } 2233 } 2234 2235 // 2236 // Allocate a new NamedCounter. The JVMState is used to generate the 2237 // name which consists of method@line for the inlining tree. 2238 // 2239 2240 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2241 int max_depth = youngest_jvms->depth(); 2242 2243 // Visit scopes from youngest to oldest. 2244 bool first = true; 2245 stringStream st; 2246 for (int depth = max_depth; depth >= 1; depth--) { 2247 JVMState* jvms = youngest_jvms->of_depth(depth); 2248 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2249 if (!first) { 2250 st.print(" "); 2251 } else { 2252 first = false; 2253 } 2254 int bci = jvms->bci(); 2255 if (bci < 0) bci = 0; 2256 if (m != nullptr) { 2257 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2258 } else { 2259 st.print("no method"); 2260 } 2261 st.print("@%d", bci); 2262 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2263 } 2264 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2265 2266 // atomically add the new counter to the head of the list. We only 2267 // add counters so this is safe. 2268 NamedCounter* head; 2269 do { 2270 c->set_next(nullptr); 2271 head = _named_counters; 2272 c->set_next(head); 2273 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2274 return c; 2275 } 2276 2277 void OptoRuntime::initialize_types() { 2278 _new_instance_Type = make_new_instance_Type(); 2279 _new_array_Type = make_new_array_Type(); 2280 _new_array_nozero_Type = make_new_array_nozero_Type(); 2281 _multianewarray2_Type = multianewarray_Type(2); 2282 _multianewarray3_Type = multianewarray_Type(3); 2283 _multianewarray4_Type = multianewarray_Type(4); 2284 _multianewarray5_Type = multianewarray_Type(5); 2285 _multianewarrayN_Type = make_multianewarrayN_Type(); 2286 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2287 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2288 _monitor_notify_Type = make_monitor_notify_Type(); 2289 _uncommon_trap_Type = make_uncommon_trap_Type(); 2290 _athrow_Type = make_athrow_Type(); 2291 _rethrow_Type = make_rethrow_Type(); 2292 _Math_D_D_Type = make_Math_D_D_Type(); 2293 _Math_DD_D_Type = make_Math_DD_D_Type(); 2294 _modf_Type = make_modf_Type(); 2295 _l2f_Type = make_l2f_Type(); 2296 _void_long_Type = make_void_long_Type(); 2297 _void_void_Type = make_void_void_Type(); 2298 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2299 _flush_windows_Type = make_flush_windows_Type(); 2300 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2301 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2302 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2303 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2304 _unsafe_setmemory_Type = make_setmemory_Type(); 2305 _array_fill_Type = make_array_fill_Type(); 2306 _array_sort_Type = make_array_sort_Type(); 2307 _array_partition_Type = make_array_partition_Type(); 2308 _aescrypt_block_Type = make_aescrypt_block_Type(); 2309 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2310 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2311 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2312 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2313 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2314 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2315 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2316 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2317 _double_keccak_Type = make_double_keccak_Type(); 2318 _multiplyToLen_Type = make_multiplyToLen_Type(); 2319 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2320 _montgomerySquare_Type = make_montgomerySquare_Type(); 2321 _squareToLen_Type = make_squareToLen_Type(); 2322 _mulAdd_Type = make_mulAdd_Type(); 2323 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2324 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2325 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2326 _chacha20Block_Type = make_chacha20Block_Type(); 2327 _kyberNtt_Type = make_kyberNtt_Type(); 2328 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2329 _kyberNttMult_Type = make_kyberNttMult_Type(); 2330 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2331 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2332 _kyber12To16_Type = make_kyber12To16_Type(); 2333 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2334 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2335 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2336 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2337 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2338 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2339 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2340 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2341 _string_IndexOf_Type = make_string_IndexOf_Type(); 2342 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2343 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2344 _intpoly_assign_Type = make_intpoly_assign_Type(); 2345 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2346 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2347 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2348 _osr_end_Type = make_osr_end_Type(); 2349 _register_finalizer_Type = make_register_finalizer_Type(); 2350 JFR_ONLY( 2351 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2352 ) 2353 #if INCLUDE_JVMTI 2354 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2355 #endif // INCLUDE_JVMTI 2356 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2357 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2358 } 2359 2360 int trace_exception_counter = 0; 2361 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2362 trace_exception_counter++; 2363 stringStream tempst; 2364 2365 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2366 exception_oop->print_value_on(&tempst); 2367 tempst.print(" in "); 2368 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2369 if (blob->is_nmethod()) { 2370 blob->as_nmethod()->method()->print_value_on(&tempst); 2371 } else if (blob->is_runtime_stub()) { 2372 tempst.print("<runtime-stub>"); 2373 } else { 2374 tempst.print("<unknown>"); 2375 } 2376 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2377 tempst.print("]"); 2378 2379 st->print_raw_cr(tempst.freeze()); 2380 } 2381 2382 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() { 2383 // create input type (domain) 2384 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2385 const Type **fields = TypeTuple::fields(total); 2386 // We don't know the number of returned values and their 2387 // types. Assume all registers available to the return convention 2388 // are used. 2389 fields[TypeFunc::Parms] = TypePtr::BOTTOM; 2390 uint i = 1; 2391 for (; i < SharedRuntime::java_return_convention_max_int; i++) { 2392 fields[TypeFunc::Parms+i] = TypeInt::INT; 2393 } 2394 for (; i < total; i+=2) { 2395 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2396 fields[TypeFunc::Parms+i+1] = Type::HALF; 2397 } 2398 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2399 2400 // create result type (range) 2401 fields = TypeTuple::fields(1); 2402 fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; 2403 2404 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2405 2406 return TypeFunc::make(domain, range); 2407 } 2408 2409 const TypeFunc *OptoRuntime::pack_inline_type_Type() { 2410 // create input type (domain) 2411 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2412 const Type **fields = TypeTuple::fields(total); 2413 // We don't know the number of returned values and their 2414 // types. Assume all registers available to the return convention 2415 // are used. 2416 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM; 2417 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; 2418 uint i = 2; 2419 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) { 2420 fields[TypeFunc::Parms+i] = TypeInt::INT; 2421 } 2422 for (; i < total; i+=2) { 2423 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2424 fields[TypeFunc::Parms+i+1] = Type::HALF; 2425 } 2426 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2427 2428 // create result type (range) 2429 fields = TypeTuple::fields(1); 2430 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2431 2432 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2433 2434 return TypeFunc::make(domain, range); 2435 } 2436 2437 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current)) 2438 JRT_BLOCK; 2439 oop buffer = array->obj_at(index, THREAD); 2440 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 2441 current->set_vm_result_oop(buffer); 2442 JRT_BLOCK_END; 2443 JRT_END 2444 2445 const TypeFunc* OptoRuntime::load_unknown_inline_Type() { 2446 // create input type (domain) 2447 const Type** fields = TypeTuple::fields(2); 2448 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL; 2449 fields[TypeFunc::Parms+1] = TypeInt::POS; 2450 2451 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields); 2452 2453 // create result type (range) 2454 fields = TypeTuple::fields(1); 2455 fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM; 2456 2457 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 2458 2459 return TypeFunc::make(domain, range); 2460 } 2461 2462 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current)) 2463 JRT_BLOCK; 2464 array->obj_at_put(index, buffer, THREAD); 2465 if (HAS_PENDING_EXCEPTION) { 2466 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception"); 2467 } 2468 JRT_BLOCK_END; 2469 JRT_END 2470 2471 const TypeFunc* OptoRuntime::store_unknown_inline_Type() { 2472 // create input type (domain) 2473 const Type** fields = TypeTuple::fields(3); 2474 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2475 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL; 2476 fields[TypeFunc::Parms+2] = TypeInt::POS; 2477 2478 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields); 2479 2480 // create result type (range) 2481 fields = TypeTuple::fields(0); 2482 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 2483 2484 return TypeFunc::make(domain, range); 2485 }