1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/flatArrayKlass.hpp" 48 #include "oops/flatArrayOop.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadCritical.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vframe_hp.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/preserveException.hpp" 82 83 84 // For debugging purposes: 85 // To force FullGCALot inside a runtime function, add the following two lines 86 // 87 // Universe::release_fullgc_alot_dummy(); 88 // Universe::heap()->collect(); 89 // 90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 91 92 93 #define C2_BLOB_FIELD_DEFINE(name, type) \ 94 type OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 97 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 98 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 99 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 101 #undef C2_BLOB_FIELD_DEFINE 102 #undef C2_STUB_FIELD_DEFINE 103 #undef C2_JVMTI_STUB_FIELD_DEFINE 104 105 #define C2_BLOB_NAME_DEFINE(name, type) "C2 Runtime " # name "_blob", 106 #define C2_STUB_NAME_DEFINE(name, f, t, r) "C2 Runtime " # name, 107 #define C2_JVMTI_STUB_NAME_DEFINE(name) "C2 Runtime " # name, 108 const char* OptoRuntime::_stub_names[] = { 109 C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE) 110 }; 111 #undef C2_BLOB_NAME_DEFINE 112 #undef C2_STUB_NAME_DEFINE 113 #undef C2_JVMTI_STUB_NAME_DEFINE 114 115 // This should be called in an assertion at the start of OptoRuntime routines 116 // which are entered from compiled code (all of them) 117 #ifdef ASSERT 118 static bool check_compiled_frame(JavaThread* thread) { 119 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 120 RegisterMap map(thread, 121 RegisterMap::UpdateMap::skip, 122 RegisterMap::ProcessFrames::include, 123 RegisterMap::WalkContinuation::skip); 124 frame caller = thread->last_frame().sender(&map); 125 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 126 return true; 127 } 128 #endif // ASSERT 129 130 /* 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 132 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 133 if (var == nullptr) { return false; } 134 */ 135 136 #define GEN_C2_BLOB(name, type) \ 137 generate_ ## name ## _blob(); 138 139 // a few helper macros to conjure up generate_stub call arguments 140 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 141 #define C2_STUB_TYPEFUNC(name) name ## _Type 142 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 143 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id) 144 145 // Almost all the C functions targeted from the generated stubs are 146 // implemented locally to OptoRuntime with names that can be generated 147 // from the stub name by appending suffix '_C'. However, in two cases 148 // a common target method also needs to be called from shared runtime 149 // stubs. In these two cases the opto stubs rely on method 150 // imlementations defined in class SharedRuntime. The following 151 // defines temporarily rebind the generated names to reference the 152 // relevant implementations. 153 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 155 C2_STUB_FIELD_NAME(name) = \ 156 generate_stub(env, \ 157 C2_STUB_TYPEFUNC(name), \ 158 C2_STUB_C_FUNC(name), \ 159 C2_STUB_NAME(name), \ 160 fancy_jump, \ 161 pass_tls, \ 162 pass_retpc); \ 163 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 164 165 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 166 167 #define GEN_C2_JVMTI_STUB(name) \ 168 STUB_FIELD_NAME(name) = \ 169 generate_stub(env, \ 170 notify_jvmti_vthread_Type, \ 171 C2_JVMTI_STUB_C_FUNC(name), \ 172 C2_STUB_NAME(name), \ 173 0, \ 174 true, \ 175 false); \ 176 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 177 178 bool OptoRuntime::generate(ciEnv* env) { 179 180 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 181 182 return true; 183 } 184 185 #undef GEN_C2_BLOB 186 187 #undef C2_STUB_FIELD_NAME 188 #undef C2_STUB_TYPEFUNC 189 #undef C2_STUB_C_FUNC 190 #undef C2_STUB_NAME 191 #undef GEN_C2_STUB 192 193 #undef C2_JVMTI_STUB_C_FUNC 194 #undef GEN_C2_JVMTI_STUB 195 // #undef gen 196 197 198 // Helper method to do generation of RunTimeStub's 199 address OptoRuntime::generate_stub(ciEnv* env, 200 TypeFunc_generator gen, address C_function, 201 const char *name, int is_fancy_jump, 202 bool pass_tls, 203 bool return_pc) { 204 205 // Matching the default directive, we currently have no method to match. 206 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 207 ResourceMark rm; 208 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 209 DirectivesStack::release(directive); 210 return C.stub_entry_point(); 211 } 212 213 const char* OptoRuntime::stub_name(address entry) { 214 #ifndef PRODUCT 215 CodeBlob* cb = CodeCache::find_blob(entry); 216 RuntimeStub* rs =(RuntimeStub *)cb; 217 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 218 return rs->name(); 219 #else 220 // Fast implementation for product mode (maybe it should be inlined too) 221 return "runtime stub"; 222 #endif 223 } 224 225 // local methods passed as arguments to stub generator that forward 226 // control to corresponding JRT methods of SharedRuntime 227 228 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 229 oopDesc* dest, jint dest_pos, 230 jint length, JavaThread* thread) { 231 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 232 } 233 234 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 235 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 236 } 237 238 239 //============================================================================= 240 // Opto compiler runtime routines 241 //============================================================================= 242 243 244 //=============================allocation====================================== 245 // We failed the fast-path allocation. Now we need to do a scavenge or GC 246 // and try allocation again. 247 248 // object allocation 249 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current)) 250 JRT_BLOCK; 251 #ifndef PRODUCT 252 SharedRuntime::_new_instance_ctr++; // new instance requires GC 253 #endif 254 assert(check_compiled_frame(current), "incorrect caller"); 255 256 // These checks are cheap to make and support reflective allocation. 257 int lh = klass->layout_helper(); 258 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 259 Handle holder(current, klass->klass_holder()); // keep the klass alive 260 klass->check_valid_for_instantiation(false, THREAD); 261 if (!HAS_PENDING_EXCEPTION) { 262 InstanceKlass::cast(klass)->initialize(THREAD); 263 } 264 } 265 266 if (!HAS_PENDING_EXCEPTION) { 267 // Scavenge and allocate an instance. 268 Handle holder(current, klass->klass_holder()); // keep the klass alive 269 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 270 if (is_larval) { 271 // Check if this is a larval buffer allocation 272 result->set_mark(result->mark().enter_larval_state()); 273 } 274 current->set_vm_result(result); 275 276 // Pass oops back through thread local storage. Our apparent type to Java 277 // is that we return an oop, but we can block on exit from this routine and 278 // a GC can trash the oop in C's return register. The generated stub will 279 // fetch the oop from TLS after any possible GC. 280 } 281 282 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 283 JRT_BLOCK_END; 284 285 // inform GC that we won't do card marks for initializing writes. 286 SharedRuntime::on_slowpath_allocation_exit(current); 287 JRT_END 288 289 290 // array allocation 291 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 292 JRT_BLOCK; 293 #ifndef PRODUCT 294 SharedRuntime::_new_array_ctr++; // new array requires GC 295 #endif 296 assert(check_compiled_frame(current), "incorrect caller"); 297 298 // Scavenge and allocate an instance. 299 oop result; 300 301 if (array_type->is_flatArray_klass()) { 302 Klass* elem_type = FlatArrayKlass::cast(array_type)->element_klass(); 303 result = oopFactory::new_valueArray(elem_type, len, THREAD); 304 } else if (array_type->is_typeArray_klass()) { 305 // The oopFactory likes to work with the element type. 306 // (We could bypass the oopFactory, since it doesn't add much value.) 307 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 308 result = oopFactory::new_typeArray(elem_type, len, THREAD); 309 } else { 310 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 311 result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD); 312 } 313 314 // Pass oops back through thread local storage. Our apparent type to Java 315 // is that we return an oop, but we can block on exit from this routine and 316 // a GC can trash the oop in C's return register. The generated stub will 317 // fetch the oop from TLS after any possible GC. 318 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 319 current->set_vm_result(result); 320 JRT_BLOCK_END; 321 322 // inform GC that we won't do card marks for initializing writes. 323 SharedRuntime::on_slowpath_allocation_exit(current); 324 JRT_END 325 326 // array allocation without zeroing 327 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 328 JRT_BLOCK; 329 #ifndef PRODUCT 330 SharedRuntime::_new_array_ctr++; // new array requires GC 331 #endif 332 assert(check_compiled_frame(current), "incorrect caller"); 333 334 // Scavenge and allocate an instance. 335 oop result; 336 337 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 338 // The oopFactory likes to work with the element type. 339 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 340 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 341 342 // Pass oops back through thread local storage. Our apparent type to Java 343 // is that we return an oop, but we can block on exit from this routine and 344 // a GC can trash the oop in C's return register. The generated stub will 345 // fetch the oop from TLS after any possible GC. 346 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 347 current->set_vm_result(result); 348 JRT_BLOCK_END; 349 350 351 // inform GC that we won't do card marks for initializing writes. 352 SharedRuntime::on_slowpath_allocation_exit(current); 353 354 oop result = current->vm_result(); 355 if ((len > 0) && (result != nullptr) && 356 is_deoptimized_caller_frame(current)) { 357 // Zero array here if the caller is deoptimized. 358 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 359 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 360 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 361 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 362 HeapWord* obj = cast_from_oop<HeapWord*>(result); 363 if (!is_aligned(hs_bytes, BytesPerLong)) { 364 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 365 hs_bytes += BytesPerInt; 366 } 367 368 // Optimized zeroing. 369 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 370 const size_t aligned_hs = hs_bytes / BytesPerLong; 371 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 372 } 373 374 JRT_END 375 376 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 377 378 // multianewarray for 2 dimensions 379 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 380 #ifndef PRODUCT 381 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 382 #endif 383 assert(check_compiled_frame(current), "incorrect caller"); 384 assert(elem_type->is_klass(), "not a class"); 385 jint dims[2]; 386 dims[0] = len1; 387 dims[1] = len2; 388 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 389 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 390 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 391 current->set_vm_result(obj); 392 JRT_END 393 394 // multianewarray for 3 dimensions 395 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 396 #ifndef PRODUCT 397 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 398 #endif 399 assert(check_compiled_frame(current), "incorrect caller"); 400 assert(elem_type->is_klass(), "not a class"); 401 jint dims[3]; 402 dims[0] = len1; 403 dims[1] = len2; 404 dims[2] = len3; 405 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 406 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 407 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 408 current->set_vm_result(obj); 409 JRT_END 410 411 // multianewarray for 4 dimensions 412 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 413 #ifndef PRODUCT 414 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 415 #endif 416 assert(check_compiled_frame(current), "incorrect caller"); 417 assert(elem_type->is_klass(), "not a class"); 418 jint dims[4]; 419 dims[0] = len1; 420 dims[1] = len2; 421 dims[2] = len3; 422 dims[3] = len4; 423 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 424 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 425 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 426 current->set_vm_result(obj); 427 JRT_END 428 429 // multianewarray for 5 dimensions 430 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 431 #ifndef PRODUCT 432 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 433 #endif 434 assert(check_compiled_frame(current), "incorrect caller"); 435 assert(elem_type->is_klass(), "not a class"); 436 jint dims[5]; 437 dims[0] = len1; 438 dims[1] = len2; 439 dims[2] = len3; 440 dims[3] = len4; 441 dims[4] = len5; 442 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 443 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 444 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 445 current->set_vm_result(obj); 446 JRT_END 447 448 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 449 assert(check_compiled_frame(current), "incorrect caller"); 450 assert(elem_type->is_klass(), "not a class"); 451 assert(oop(dims)->is_typeArray(), "not an array"); 452 453 ResourceMark rm; 454 jint len = dims->length(); 455 assert(len > 0, "Dimensions array should contain data"); 456 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 457 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 458 c_dims, len); 459 460 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 461 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 462 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 463 current->set_vm_result(obj); 464 JRT_END 465 466 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 467 468 // Very few notify/notifyAll operations find any threads on the waitset, so 469 // the dominant fast-path is to simply return. 470 // Relatedly, it's critical that notify/notifyAll be fast in order to 471 // reduce lock hold times. 472 if (!SafepointSynchronize::is_synchronizing()) { 473 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 474 return; 475 } 476 } 477 478 // This is the case the fast-path above isn't provisioned to handle. 479 // The fast-path is designed to handle frequently arising cases in an efficient manner. 480 // (The fast-path is just a degenerate variant of the slow-path). 481 // Perform the dreaded state transition and pass control into the slow-path. 482 JRT_BLOCK; 483 Handle h_obj(current, obj); 484 ObjectSynchronizer::notify(h_obj, CHECK); 485 JRT_BLOCK_END; 486 JRT_END 487 488 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 489 490 if (!SafepointSynchronize::is_synchronizing() ) { 491 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 492 return; 493 } 494 } 495 496 // This is the case the fast-path above isn't provisioned to handle. 497 // The fast-path is designed to handle frequently arising cases in an efficient manner. 498 // (The fast-path is just a degenerate variant of the slow-path). 499 // Perform the dreaded state transition and pass control into the slow-path. 500 JRT_BLOCK; 501 Handle h_obj(current, obj); 502 ObjectSynchronizer::notifyall(h_obj, CHECK); 503 JRT_BLOCK_END; 504 JRT_END 505 506 const TypeFunc *OptoRuntime::new_instance_Type() { 507 // create input type (domain) 508 const Type **fields = TypeTuple::fields(2); 509 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 510 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval 511 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 512 513 // create result type (range) 514 fields = TypeTuple::fields(1); 515 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 516 517 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 518 519 return TypeFunc::make(domain, range); 520 } 521 522 #if INCLUDE_JVMTI 523 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() { 524 // create input type (domain) 525 const Type **fields = TypeTuple::fields(2); 526 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 527 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 528 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 529 530 // no result type needed 531 fields = TypeTuple::fields(1); 532 fields[TypeFunc::Parms+0] = nullptr; // void 533 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 534 535 return TypeFunc::make(domain,range); 536 } 537 #endif 538 539 const TypeFunc *OptoRuntime::athrow_Type() { 540 // create input type (domain) 541 const Type **fields = TypeTuple::fields(1); 542 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 543 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 544 545 // create result type (range) 546 fields = TypeTuple::fields(0); 547 548 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 549 550 return TypeFunc::make(domain, range); 551 } 552 553 554 const TypeFunc *OptoRuntime::new_array_Type() { 555 // create input type (domain) 556 const Type **fields = TypeTuple::fields(2); 557 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 558 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 559 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 560 561 // create result type (range) 562 fields = TypeTuple::fields(1); 563 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 564 565 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 566 567 return TypeFunc::make(domain, range); 568 } 569 570 const TypeFunc *OptoRuntime::new_array_nozero_Type() { 571 return new_array_Type(); 572 } 573 574 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 575 // create input type (domain) 576 const int nargs = ndim + 1; 577 const Type **fields = TypeTuple::fields(nargs); 578 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 579 for( int i = 1; i < nargs; i++ ) 580 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 581 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 582 583 // create result type (range) 584 fields = TypeTuple::fields(1); 585 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 586 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 587 588 return TypeFunc::make(domain, range); 589 } 590 591 const TypeFunc *OptoRuntime::multianewarray2_Type() { 592 return multianewarray_Type(2); 593 } 594 595 const TypeFunc *OptoRuntime::multianewarray3_Type() { 596 return multianewarray_Type(3); 597 } 598 599 const TypeFunc *OptoRuntime::multianewarray4_Type() { 600 return multianewarray_Type(4); 601 } 602 603 const TypeFunc *OptoRuntime::multianewarray5_Type() { 604 return multianewarray_Type(5); 605 } 606 607 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 608 // create input type (domain) 609 const Type **fields = TypeTuple::fields(2); 610 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 611 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 612 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 613 614 // create result type (range) 615 fields = TypeTuple::fields(1); 616 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 617 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 618 619 return TypeFunc::make(domain, range); 620 } 621 622 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 623 // create input type (domain) 624 const Type **fields = TypeTuple::fields(1); 625 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 626 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 627 628 // create result type (range) 629 fields = TypeTuple::fields(0); 630 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 631 632 return TypeFunc::make(domain, range); 633 } 634 635 //----------------------------------------------------------------------------- 636 // Monitor Handling 637 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 638 // create input type (domain) 639 const Type **fields = TypeTuple::fields(2); 640 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 641 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 642 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 643 644 // create result type (range) 645 fields = TypeTuple::fields(0); 646 647 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 648 649 return TypeFunc::make(domain, range); 650 } 651 652 const TypeFunc *OptoRuntime::complete_monitor_locking_Type() { 653 return complete_monitor_enter_Type(); 654 } 655 656 //----------------------------------------------------------------------------- 657 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 658 // create input type (domain) 659 const Type **fields = TypeTuple::fields(3); 660 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 661 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 662 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 663 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 664 665 // create result type (range) 666 fields = TypeTuple::fields(0); 667 668 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 669 670 return TypeFunc::make(domain, range); 671 } 672 673 const TypeFunc *OptoRuntime::monitor_notify_Type() { 674 // create input type (domain) 675 const Type **fields = TypeTuple::fields(1); 676 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 677 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 678 679 // create result type (range) 680 fields = TypeTuple::fields(0); 681 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 682 return TypeFunc::make(domain, range); 683 } 684 685 const TypeFunc *OptoRuntime::monitor_notifyAll_Type() { 686 return monitor_notify_Type(); 687 } 688 689 const TypeFunc* OptoRuntime::flush_windows_Type() { 690 // create input type (domain) 691 const Type** fields = TypeTuple::fields(1); 692 fields[TypeFunc::Parms+0] = nullptr; // void 693 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 694 695 // create result type 696 fields = TypeTuple::fields(1); 697 fields[TypeFunc::Parms+0] = nullptr; // void 698 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 699 700 return TypeFunc::make(domain, range); 701 } 702 703 const TypeFunc* OptoRuntime::l2f_Type() { 704 // create input type (domain) 705 const Type **fields = TypeTuple::fields(2); 706 fields[TypeFunc::Parms+0] = TypeLong::LONG; 707 fields[TypeFunc::Parms+1] = Type::HALF; 708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 709 710 // create result type (range) 711 fields = TypeTuple::fields(1); 712 fields[TypeFunc::Parms+0] = Type::FLOAT; 713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 714 715 return TypeFunc::make(domain, range); 716 } 717 718 const TypeFunc* OptoRuntime::modf_Type() { 719 const Type **fields = TypeTuple::fields(2); 720 fields[TypeFunc::Parms+0] = Type::FLOAT; 721 fields[TypeFunc::Parms+1] = Type::FLOAT; 722 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 723 724 // create result type (range) 725 fields = TypeTuple::fields(1); 726 fields[TypeFunc::Parms+0] = Type::FLOAT; 727 728 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 729 730 return TypeFunc::make(domain, range); 731 } 732 733 const TypeFunc *OptoRuntime::Math_D_D_Type() { 734 // create input type (domain) 735 const Type **fields = TypeTuple::fields(2); 736 // Symbol* name of class to be loaded 737 fields[TypeFunc::Parms+0] = Type::DOUBLE; 738 fields[TypeFunc::Parms+1] = Type::HALF; 739 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 740 741 // create result type (range) 742 fields = TypeTuple::fields(2); 743 fields[TypeFunc::Parms+0] = Type::DOUBLE; 744 fields[TypeFunc::Parms+1] = Type::HALF; 745 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 746 747 return TypeFunc::make(domain, range); 748 } 749 750 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 751 // create input type (domain) 752 const Type **fields = TypeTuple::fields(num_arg); 753 // Symbol* name of class to be loaded 754 assert(num_arg > 0, "must have at least 1 input"); 755 for (uint i = 0; i < num_arg; i++) { 756 fields[TypeFunc::Parms+i] = in_type; 757 } 758 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 759 760 // create result type (range) 761 const uint num_ret = 1; 762 fields = TypeTuple::fields(num_ret); 763 fields[TypeFunc::Parms+0] = out_type; 764 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 765 766 return TypeFunc::make(domain, range); 767 } 768 769 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 770 const Type **fields = TypeTuple::fields(4); 771 fields[TypeFunc::Parms+0] = Type::DOUBLE; 772 fields[TypeFunc::Parms+1] = Type::HALF; 773 fields[TypeFunc::Parms+2] = Type::DOUBLE; 774 fields[TypeFunc::Parms+3] = Type::HALF; 775 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 776 777 // create result type (range) 778 fields = TypeTuple::fields(2); 779 fields[TypeFunc::Parms+0] = Type::DOUBLE; 780 fields[TypeFunc::Parms+1] = Type::HALF; 781 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 782 783 return TypeFunc::make(domain, range); 784 } 785 786 //-------------- currentTimeMillis, currentTimeNanos, etc 787 788 const TypeFunc* OptoRuntime::void_long_Type() { 789 // create input type (domain) 790 const Type **fields = TypeTuple::fields(0); 791 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 792 793 // create result type (range) 794 fields = TypeTuple::fields(2); 795 fields[TypeFunc::Parms+0] = TypeLong::LONG; 796 fields[TypeFunc::Parms+1] = Type::HALF; 797 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 798 799 return TypeFunc::make(domain, range); 800 } 801 802 const TypeFunc* OptoRuntime::void_void_Type() { 803 // create input type (domain) 804 const Type **fields = TypeTuple::fields(0); 805 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 806 807 // create result type (range) 808 fields = TypeTuple::fields(0); 809 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 810 return TypeFunc::make(domain, range); 811 } 812 813 const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() { 814 // create input type (domain) 815 const Type **fields = TypeTuple::fields(0); 816 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 817 818 // create result type (range) 819 fields = TypeTuple::fields(0); 820 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 821 return TypeFunc::make(domain, range); 822 } 823 824 825 // Takes as parameters: 826 // void *dest 827 // long size 828 // uchar byte 829 const TypeFunc* OptoRuntime::make_setmemory_Type() { 830 // create input type (domain) 831 int argcnt = NOT_LP64(3) LP64_ONLY(4); 832 const Type** fields = TypeTuple::fields(argcnt); 833 int argp = TypeFunc::Parms; 834 fields[argp++] = TypePtr::NOTNULL; // dest 835 fields[argp++] = TypeX_X; // size 836 LP64_ONLY(fields[argp++] = Type::HALF); // size 837 fields[argp++] = TypeInt::UBYTE; // bytevalue 838 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 839 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 840 841 // no result type needed 842 fields = TypeTuple::fields(1); 843 fields[TypeFunc::Parms+0] = nullptr; // void 844 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 845 return TypeFunc::make(domain, range); 846 } 847 848 // arraycopy stub variations: 849 enum ArrayCopyType { 850 ac_fast, // void(ptr, ptr, size_t) 851 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 852 ac_slow, // void(ptr, int, ptr, int, int) 853 ac_generic // int(ptr, int, ptr, int, int) 854 }; 855 856 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 857 // create input type (domain) 858 int num_args = (act == ac_fast ? 3 : 5); 859 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 860 int argcnt = num_args; 861 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 862 const Type** fields = TypeTuple::fields(argcnt); 863 int argp = TypeFunc::Parms; 864 fields[argp++] = TypePtr::NOTNULL; // src 865 if (num_size_args == 0) { 866 fields[argp++] = TypeInt::INT; // src_pos 867 } 868 fields[argp++] = TypePtr::NOTNULL; // dest 869 if (num_size_args == 0) { 870 fields[argp++] = TypeInt::INT; // dest_pos 871 fields[argp++] = TypeInt::INT; // length 872 } 873 while (num_size_args-- > 0) { 874 fields[argp++] = TypeX_X; // size in whatevers (size_t) 875 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 876 } 877 if (act == ac_checkcast) { 878 fields[argp++] = TypePtr::NOTNULL; // super_klass 879 } 880 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 881 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 882 883 // create result type if needed 884 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 885 fields = TypeTuple::fields(1); 886 if (retcnt == 0) 887 fields[TypeFunc::Parms+0] = nullptr; // void 888 else 889 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 890 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 891 return TypeFunc::make(domain, range); 892 } 893 894 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 895 // This signature is simple: Two base pointers and a size_t. 896 return make_arraycopy_Type(ac_fast); 897 } 898 899 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 900 // An extension of fast_arraycopy_Type which adds type checking. 901 return make_arraycopy_Type(ac_checkcast); 902 } 903 904 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 905 // This signature is exactly the same as System.arraycopy. 906 // There are no intptr_t (int/long) arguments. 907 return make_arraycopy_Type(ac_slow); 908 } 909 910 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 911 // This signature is like System.arraycopy, except that it returns status. 912 return make_arraycopy_Type(ac_generic); 913 } 914 915 916 const TypeFunc* OptoRuntime::array_fill_Type() { 917 const Type** fields; 918 int argp = TypeFunc::Parms; 919 // create input type (domain): pointer, int, size_t 920 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 921 fields[argp++] = TypePtr::NOTNULL; 922 fields[argp++] = TypeInt::INT; 923 fields[argp++] = TypeX_X; // size in whatevers (size_t) 924 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 925 const TypeTuple *domain = TypeTuple::make(argp, fields); 926 927 // create result type 928 fields = TypeTuple::fields(1); 929 fields[TypeFunc::Parms+0] = nullptr; // void 930 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 931 932 return TypeFunc::make(domain, range); 933 } 934 935 const TypeFunc* OptoRuntime::array_partition_Type() { 936 // create input type (domain) 937 int num_args = 7; 938 int argcnt = num_args; 939 const Type** fields = TypeTuple::fields(argcnt); 940 int argp = TypeFunc::Parms; 941 fields[argp++] = TypePtr::NOTNULL; // array 942 fields[argp++] = TypeInt::INT; // element type 943 fields[argp++] = TypeInt::INT; // low 944 fields[argp++] = TypeInt::INT; // end 945 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 946 fields[argp++] = TypeInt::INT; // indexPivot1 947 fields[argp++] = TypeInt::INT; // indexPivot2 948 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 949 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 950 951 // no result type needed 952 fields = TypeTuple::fields(1); 953 fields[TypeFunc::Parms+0] = nullptr; // void 954 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 955 return TypeFunc::make(domain, range); 956 } 957 958 const TypeFunc* OptoRuntime::array_sort_Type() { 959 // create input type (domain) 960 int num_args = 4; 961 int argcnt = num_args; 962 const Type** fields = TypeTuple::fields(argcnt); 963 int argp = TypeFunc::Parms; 964 fields[argp++] = TypePtr::NOTNULL; // array 965 fields[argp++] = TypeInt::INT; // element type 966 fields[argp++] = TypeInt::INT; // fromIndex 967 fields[argp++] = TypeInt::INT; // toIndex 968 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 969 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 970 971 // no result type needed 972 fields = TypeTuple::fields(1); 973 fields[TypeFunc::Parms+0] = nullptr; // void 974 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 975 return TypeFunc::make(domain, range); 976 } 977 978 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 979 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 980 // create input type (domain) 981 int num_args = 3; 982 int argcnt = num_args; 983 const Type** fields = TypeTuple::fields(argcnt); 984 int argp = TypeFunc::Parms; 985 fields[argp++] = TypePtr::NOTNULL; // src 986 fields[argp++] = TypePtr::NOTNULL; // dest 987 fields[argp++] = TypePtr::NOTNULL; // k array 988 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 989 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 990 991 // no result type needed 992 fields = TypeTuple::fields(1); 993 fields[TypeFunc::Parms+0] = nullptr; // void 994 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 995 return TypeFunc::make(domain, range); 996 } 997 998 /** 999 * int updateBytesCRC32(int crc, byte* b, int len) 1000 */ 1001 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 1002 // create input type (domain) 1003 int num_args = 3; 1004 int argcnt = num_args; 1005 const Type** fields = TypeTuple::fields(argcnt); 1006 int argp = TypeFunc::Parms; 1007 fields[argp++] = TypeInt::INT; // crc 1008 fields[argp++] = TypePtr::NOTNULL; // src 1009 fields[argp++] = TypeInt::INT; // len 1010 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1011 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1012 1013 // result type needed 1014 fields = TypeTuple::fields(1); 1015 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1016 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1017 return TypeFunc::make(domain, range); 1018 } 1019 1020 /** 1021 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 1022 */ 1023 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 1024 // create input type (domain) 1025 int num_args = 4; 1026 int argcnt = num_args; 1027 const Type** fields = TypeTuple::fields(argcnt); 1028 int argp = TypeFunc::Parms; 1029 fields[argp++] = TypeInt::INT; // crc 1030 fields[argp++] = TypePtr::NOTNULL; // buf 1031 fields[argp++] = TypeInt::INT; // len 1032 fields[argp++] = TypePtr::NOTNULL; // table 1033 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1034 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1035 1036 // result type needed 1037 fields = TypeTuple::fields(1); 1038 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1039 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1040 return TypeFunc::make(domain, range); 1041 } 1042 1043 /** 1044 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 1045 */ 1046 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 1047 // create input type (domain) 1048 int num_args = 3; 1049 int argcnt = num_args; 1050 const Type** fields = TypeTuple::fields(argcnt); 1051 int argp = TypeFunc::Parms; 1052 fields[argp++] = TypeInt::INT; // crc 1053 fields[argp++] = TypePtr::NOTNULL; // src + offset 1054 fields[argp++] = TypeInt::INT; // len 1055 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1056 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1057 1058 // result type needed 1059 fields = TypeTuple::fields(1); 1060 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1061 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1062 return TypeFunc::make(domain, range); 1063 } 1064 1065 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1066 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 1067 // create input type (domain) 1068 int num_args = 5; 1069 int argcnt = num_args; 1070 const Type** fields = TypeTuple::fields(argcnt); 1071 int argp = TypeFunc::Parms; 1072 fields[argp++] = TypePtr::NOTNULL; // src 1073 fields[argp++] = TypePtr::NOTNULL; // dest 1074 fields[argp++] = TypePtr::NOTNULL; // k array 1075 fields[argp++] = TypePtr::NOTNULL; // r array 1076 fields[argp++] = TypeInt::INT; // src len 1077 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1078 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1079 1080 // returning cipher len (int) 1081 fields = TypeTuple::fields(1); 1082 fields[TypeFunc::Parms+0] = TypeInt::INT; 1083 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1084 return TypeFunc::make(domain, range); 1085 } 1086 1087 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 1088 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 1089 // create input type (domain) 1090 int num_args = 4; 1091 int argcnt = num_args; 1092 const Type** fields = TypeTuple::fields(argcnt); 1093 int argp = TypeFunc::Parms; 1094 fields[argp++] = TypePtr::NOTNULL; // src 1095 fields[argp++] = TypePtr::NOTNULL; // dest 1096 fields[argp++] = TypePtr::NOTNULL; // k array 1097 fields[argp++] = TypeInt::INT; // src len 1098 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1099 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1100 1101 // returning cipher len (int) 1102 fields = TypeTuple::fields(1); 1103 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1104 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1105 return TypeFunc::make(domain, range); 1106 } 1107 1108 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1109 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 1110 // create input type (domain) 1111 int num_args = 7; 1112 int argcnt = num_args; 1113 const Type** fields = TypeTuple::fields(argcnt); 1114 int argp = TypeFunc::Parms; 1115 fields[argp++] = TypePtr::NOTNULL; // src 1116 fields[argp++] = TypePtr::NOTNULL; // dest 1117 fields[argp++] = TypePtr::NOTNULL; // k array 1118 fields[argp++] = TypePtr::NOTNULL; // counter array 1119 fields[argp++] = TypeInt::INT; // src len 1120 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1121 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1122 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1123 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1124 // returning cipher len (int) 1125 fields = TypeTuple::fields(1); 1126 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1127 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1128 return TypeFunc::make(domain, range); 1129 } 1130 1131 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 1132 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() { 1133 // create input type (domain) 1134 int num_args = 8; 1135 int argcnt = num_args; 1136 const Type** fields = TypeTuple::fields(argcnt); 1137 int argp = TypeFunc::Parms; 1138 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1139 fields[argp++] = TypeInt::INT; // int len 1140 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1141 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1142 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1143 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1144 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1145 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1146 1147 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1148 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1149 // returning cipher len (int) 1150 fields = TypeTuple::fields(1); 1151 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1152 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1153 return TypeFunc::make(domain, range); 1154 } 1155 1156 /* 1157 * void implCompress(byte[] buf, int ofs) 1158 */ 1159 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 1160 // create input type (domain) 1161 int num_args = is_sha3 ? 3 : 2; 1162 int argcnt = num_args; 1163 const Type** fields = TypeTuple::fields(argcnt); 1164 int argp = TypeFunc::Parms; 1165 fields[argp++] = TypePtr::NOTNULL; // buf 1166 fields[argp++] = TypePtr::NOTNULL; // state 1167 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1168 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1169 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1170 1171 // no result type needed 1172 fields = TypeTuple::fields(1); 1173 fields[TypeFunc::Parms+0] = nullptr; // void 1174 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1175 return TypeFunc::make(domain, range); 1176 } 1177 1178 /* 1179 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1180 */ 1181 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 1182 // create input type (domain) 1183 int num_args = is_sha3 ? 5 : 4; 1184 int argcnt = num_args; 1185 const Type** fields = TypeTuple::fields(argcnt); 1186 int argp = TypeFunc::Parms; 1187 fields[argp++] = TypePtr::NOTNULL; // buf 1188 fields[argp++] = TypePtr::NOTNULL; // state 1189 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1190 fields[argp++] = TypeInt::INT; // ofs 1191 fields[argp++] = TypeInt::INT; // limit 1192 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1193 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1194 1195 // returning ofs (int) 1196 fields = TypeTuple::fields(1); 1197 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1198 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1199 return TypeFunc::make(domain, range); 1200 } 1201 1202 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1203 // create input type (domain) 1204 int num_args = 5; 1205 int argcnt = num_args; 1206 const Type** fields = TypeTuple::fields(argcnt); 1207 int argp = TypeFunc::Parms; 1208 fields[argp++] = TypePtr::NOTNULL; // x 1209 fields[argp++] = TypeInt::INT; // xlen 1210 fields[argp++] = TypePtr::NOTNULL; // y 1211 fields[argp++] = TypeInt::INT; // ylen 1212 fields[argp++] = TypePtr::NOTNULL; // z 1213 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1214 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1215 1216 // no result type needed 1217 fields = TypeTuple::fields(1); 1218 fields[TypeFunc::Parms+0] = nullptr; 1219 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1220 return TypeFunc::make(domain, range); 1221 } 1222 1223 const TypeFunc* OptoRuntime::squareToLen_Type() { 1224 // create input type (domain) 1225 int num_args = 4; 1226 int argcnt = num_args; 1227 const Type** fields = TypeTuple::fields(argcnt); 1228 int argp = TypeFunc::Parms; 1229 fields[argp++] = TypePtr::NOTNULL; // x 1230 fields[argp++] = TypeInt::INT; // len 1231 fields[argp++] = TypePtr::NOTNULL; // z 1232 fields[argp++] = TypeInt::INT; // zlen 1233 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1234 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1235 1236 // no result type needed 1237 fields = TypeTuple::fields(1); 1238 fields[TypeFunc::Parms+0] = nullptr; 1239 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1240 return TypeFunc::make(domain, range); 1241 } 1242 1243 // for mulAdd calls, 2 pointers and 3 ints, returning int 1244 const TypeFunc* OptoRuntime::mulAdd_Type() { 1245 // create input type (domain) 1246 int num_args = 5; 1247 int argcnt = num_args; 1248 const Type** fields = TypeTuple::fields(argcnt); 1249 int argp = TypeFunc::Parms; 1250 fields[argp++] = TypePtr::NOTNULL; // out 1251 fields[argp++] = TypePtr::NOTNULL; // in 1252 fields[argp++] = TypeInt::INT; // offset 1253 fields[argp++] = TypeInt::INT; // len 1254 fields[argp++] = TypeInt::INT; // k 1255 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1256 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1257 1258 // returning carry (int) 1259 fields = TypeTuple::fields(1); 1260 fields[TypeFunc::Parms+0] = TypeInt::INT; 1261 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1262 return TypeFunc::make(domain, range); 1263 } 1264 1265 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1266 // create input type (domain) 1267 int num_args = 7; 1268 int argcnt = num_args; 1269 const Type** fields = TypeTuple::fields(argcnt); 1270 int argp = TypeFunc::Parms; 1271 fields[argp++] = TypePtr::NOTNULL; // a 1272 fields[argp++] = TypePtr::NOTNULL; // b 1273 fields[argp++] = TypePtr::NOTNULL; // n 1274 fields[argp++] = TypeInt::INT; // len 1275 fields[argp++] = TypeLong::LONG; // inv 1276 fields[argp++] = Type::HALF; 1277 fields[argp++] = TypePtr::NOTNULL; // result 1278 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1279 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1280 1281 // result type needed 1282 fields = TypeTuple::fields(1); 1283 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1284 1285 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1286 return TypeFunc::make(domain, range); 1287 } 1288 1289 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1290 // create input type (domain) 1291 int num_args = 6; 1292 int argcnt = num_args; 1293 const Type** fields = TypeTuple::fields(argcnt); 1294 int argp = TypeFunc::Parms; 1295 fields[argp++] = TypePtr::NOTNULL; // a 1296 fields[argp++] = TypePtr::NOTNULL; // n 1297 fields[argp++] = TypeInt::INT; // len 1298 fields[argp++] = TypeLong::LONG; // inv 1299 fields[argp++] = Type::HALF; 1300 fields[argp++] = TypePtr::NOTNULL; // result 1301 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1302 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1303 1304 // result type needed 1305 fields = TypeTuple::fields(1); 1306 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1307 1308 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1309 return TypeFunc::make(domain, range); 1310 } 1311 1312 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1313 int argcnt = 5; 1314 const Type** fields = TypeTuple::fields(argcnt); 1315 int argp = TypeFunc::Parms; 1316 fields[argp++] = TypePtr::NOTNULL; // newArr 1317 fields[argp++] = TypePtr::NOTNULL; // oldArr 1318 fields[argp++] = TypeInt::INT; // newIdx 1319 fields[argp++] = TypeInt::INT; // shiftCount 1320 fields[argp++] = TypeInt::INT; // numIter 1321 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1322 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1323 1324 // no result type needed 1325 fields = TypeTuple::fields(1); 1326 fields[TypeFunc::Parms + 0] = nullptr; 1327 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1328 return TypeFunc::make(domain, range); 1329 } 1330 1331 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1332 // create input type (domain) 1333 int num_args = 4; 1334 int argcnt = num_args; 1335 const Type** fields = TypeTuple::fields(argcnt); 1336 int argp = TypeFunc::Parms; 1337 fields[argp++] = TypePtr::NOTNULL; // obja 1338 fields[argp++] = TypePtr::NOTNULL; // objb 1339 fields[argp++] = TypeInt::INT; // length, number of elements 1340 fields[argp++] = TypeInt::INT; // log2scale, element size 1341 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1342 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1343 1344 //return mismatch index (int) 1345 fields = TypeTuple::fields(1); 1346 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1347 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1348 return TypeFunc::make(domain, range); 1349 } 1350 1351 // GHASH block processing 1352 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1353 int argcnt = 4; 1354 1355 const Type** fields = TypeTuple::fields(argcnt); 1356 int argp = TypeFunc::Parms; 1357 fields[argp++] = TypePtr::NOTNULL; // state 1358 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1359 fields[argp++] = TypePtr::NOTNULL; // data 1360 fields[argp++] = TypeInt::INT; // blocks 1361 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1362 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1363 1364 // result type needed 1365 fields = TypeTuple::fields(1); 1366 fields[TypeFunc::Parms+0] = nullptr; // void 1367 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1368 return TypeFunc::make(domain, range); 1369 } 1370 1371 // ChaCha20 Block function 1372 const TypeFunc* OptoRuntime::chacha20Block_Type() { 1373 int argcnt = 2; 1374 1375 const Type** fields = TypeTuple::fields(argcnt); 1376 int argp = TypeFunc::Parms; 1377 fields[argp++] = TypePtr::NOTNULL; // state 1378 fields[argp++] = TypePtr::NOTNULL; // result 1379 1380 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1381 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1382 1383 // result type needed 1384 fields = TypeTuple::fields(1); 1385 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1386 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1387 return TypeFunc::make(domain, range); 1388 } 1389 1390 // Base64 encode function 1391 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1392 int argcnt = 6; 1393 1394 const Type** fields = TypeTuple::fields(argcnt); 1395 int argp = TypeFunc::Parms; 1396 fields[argp++] = TypePtr::NOTNULL; // src array 1397 fields[argp++] = TypeInt::INT; // offset 1398 fields[argp++] = TypeInt::INT; // length 1399 fields[argp++] = TypePtr::NOTNULL; // dest array 1400 fields[argp++] = TypeInt::INT; // dp 1401 fields[argp++] = TypeInt::BOOL; // isURL 1402 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1403 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1404 1405 // result type needed 1406 fields = TypeTuple::fields(1); 1407 fields[TypeFunc::Parms + 0] = nullptr; // void 1408 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1409 return TypeFunc::make(domain, range); 1410 } 1411 1412 // String IndexOf function 1413 const TypeFunc* OptoRuntime::string_IndexOf_Type() { 1414 int argcnt = 4; 1415 1416 const Type** fields = TypeTuple::fields(argcnt); 1417 int argp = TypeFunc::Parms; 1418 fields[argp++] = TypePtr::NOTNULL; // haystack array 1419 fields[argp++] = TypeInt::INT; // haystack length 1420 fields[argp++] = TypePtr::NOTNULL; // needle array 1421 fields[argp++] = TypeInt::INT; // needle length 1422 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1423 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1424 1425 // result type needed 1426 fields = TypeTuple::fields(1); 1427 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1428 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1429 return TypeFunc::make(domain, range); 1430 } 1431 1432 // Base64 decode function 1433 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1434 int argcnt = 7; 1435 1436 const Type** fields = TypeTuple::fields(argcnt); 1437 int argp = TypeFunc::Parms; 1438 fields[argp++] = TypePtr::NOTNULL; // src array 1439 fields[argp++] = TypeInt::INT; // src offset 1440 fields[argp++] = TypeInt::INT; // src length 1441 fields[argp++] = TypePtr::NOTNULL; // dest array 1442 fields[argp++] = TypeInt::INT; // dest offset 1443 fields[argp++] = TypeInt::BOOL; // isURL 1444 fields[argp++] = TypeInt::BOOL; // isMIME 1445 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1446 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1447 1448 // result type needed 1449 fields = TypeTuple::fields(1); 1450 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1451 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1452 return TypeFunc::make(domain, range); 1453 } 1454 1455 // Poly1305 processMultipleBlocks function 1456 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() { 1457 int argcnt = 4; 1458 1459 const Type** fields = TypeTuple::fields(argcnt); 1460 int argp = TypeFunc::Parms; 1461 fields[argp++] = TypePtr::NOTNULL; // input array 1462 fields[argp++] = TypeInt::INT; // input length 1463 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1464 fields[argp++] = TypePtr::NOTNULL; // r array 1465 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1466 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1467 1468 // result type needed 1469 fields = TypeTuple::fields(1); 1470 fields[TypeFunc::Parms + 0] = nullptr; // void 1471 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1472 return TypeFunc::make(domain, range); 1473 } 1474 1475 // MontgomeryIntegerPolynomialP256 multiply function 1476 const TypeFunc* OptoRuntime::intpoly_montgomeryMult_P256_Type() { 1477 int argcnt = 3; 1478 1479 const Type** fields = TypeTuple::fields(argcnt); 1480 int argp = TypeFunc::Parms; 1481 fields[argp++] = TypePtr::NOTNULL; // a array 1482 fields[argp++] = TypePtr::NOTNULL; // b array 1483 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1484 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1485 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1486 1487 // result type needed 1488 fields = TypeTuple::fields(1); 1489 fields[TypeFunc::Parms + 0] = nullptr; // void 1490 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1491 return TypeFunc::make(domain, range); 1492 } 1493 1494 // IntegerPolynomial constant time assignment function 1495 const TypeFunc* OptoRuntime::intpoly_assign_Type() { 1496 int argcnt = 4; 1497 1498 const Type** fields = TypeTuple::fields(argcnt); 1499 int argp = TypeFunc::Parms; 1500 fields[argp++] = TypeInt::INT; // set flag 1501 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1502 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1503 fields[argp++] = TypeInt::INT; // array length 1504 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1505 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1506 1507 // result type needed 1508 fields = TypeTuple::fields(1); 1509 fields[TypeFunc::Parms + 0] = nullptr; // void 1510 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1511 return TypeFunc::make(domain, range); 1512 } 1513 1514 //------------- Interpreter state access for on stack replacement 1515 const TypeFunc* OptoRuntime::osr_end_Type() { 1516 // create input type (domain) 1517 const Type **fields = TypeTuple::fields(1); 1518 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1519 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1520 1521 // create result type 1522 fields = TypeTuple::fields(1); 1523 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1524 fields[TypeFunc::Parms+0] = nullptr; // void 1525 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1526 return TypeFunc::make(domain, range); 1527 } 1528 1529 //------------------------------------------------------------------------------------- 1530 // register policy 1531 1532 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1533 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1534 switch (register_save_policy[reg]) { 1535 case 'C': return false; //SOC 1536 case 'E': return true ; //SOE 1537 case 'N': return false; //NS 1538 case 'A': return false; //AS 1539 } 1540 ShouldNotReachHere(); 1541 return false; 1542 } 1543 1544 //----------------------------------------------------------------------- 1545 // Exceptions 1546 // 1547 1548 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1549 1550 // The method is an entry that is always called by a C++ method not 1551 // directly from compiled code. Compiled code will call the C++ method following. 1552 // We can't allow async exception to be installed during exception processing. 1553 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1554 // The frame we rethrow the exception to might not have been processed by the GC yet. 1555 // The stack watermark barrier takes care of detecting that and ensuring the frame 1556 // has updated oops. 1557 StackWatermarkSet::after_unwind(current); 1558 1559 // Do not confuse exception_oop with pending_exception. The exception_oop 1560 // is only used to pass arguments into the method. Not for general 1561 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1562 // the runtime stubs checks this on exit. 1563 assert(current->exception_oop() != nullptr, "exception oop is found"); 1564 address handler_address = nullptr; 1565 1566 Handle exception(current, current->exception_oop()); 1567 address pc = current->exception_pc(); 1568 1569 // Clear out the exception oop and pc since looking up an 1570 // exception handler can cause class loading, which might throw an 1571 // exception and those fields are expected to be clear during 1572 // normal bytecode execution. 1573 current->clear_exception_oop_and_pc(); 1574 1575 LogTarget(Info, exceptions) lt; 1576 if (lt.is_enabled()) { 1577 ResourceMark rm; 1578 LogStream ls(lt); 1579 trace_exception(&ls, exception(), pc, ""); 1580 } 1581 1582 // for AbortVMOnException flag 1583 Exceptions::debug_check_abort(exception); 1584 1585 #ifdef ASSERT 1586 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1587 // should throw an exception here 1588 ShouldNotReachHere(); 1589 } 1590 #endif 1591 1592 // new exception handling: this method is entered only from adapters 1593 // exceptions from compiled java methods are handled in compiled code 1594 // using rethrow node 1595 1596 nm = CodeCache::find_nmethod(pc); 1597 assert(nm != nullptr, "No NMethod found"); 1598 if (nm->is_native_method()) { 1599 fatal("Native method should not have path to exception handling"); 1600 } else { 1601 // we are switching to old paradigm: search for exception handler in caller_frame 1602 // instead in exception handler of caller_frame.sender() 1603 1604 if (JvmtiExport::can_post_on_exceptions()) { 1605 // "Full-speed catching" is not necessary here, 1606 // since we're notifying the VM on every catch. 1607 // Force deoptimization and the rest of the lookup 1608 // will be fine. 1609 deoptimize_caller_frame(current); 1610 } 1611 1612 // Check the stack guard pages. If enabled, look for handler in this frame; 1613 // otherwise, forcibly unwind the frame. 1614 // 1615 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1616 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1617 bool deopting = false; 1618 if (nm->is_deopt_pc(pc)) { 1619 deopting = true; 1620 RegisterMap map(current, 1621 RegisterMap::UpdateMap::skip, 1622 RegisterMap::ProcessFrames::include, 1623 RegisterMap::WalkContinuation::skip); 1624 frame deoptee = current->last_frame().sender(&map); 1625 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1626 // Adjust the pc back to the original throwing pc 1627 pc = deoptee.pc(); 1628 } 1629 1630 // If we are forcing an unwind because of stack overflow then deopt is 1631 // irrelevant since we are throwing the frame away anyway. 1632 1633 if (deopting && !force_unwind) { 1634 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1635 } else { 1636 1637 handler_address = 1638 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1639 1640 if (handler_address == nullptr) { 1641 bool recursive_exception = false; 1642 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1643 assert (handler_address != nullptr, "must have compiled handler"); 1644 // Update the exception cache only when the unwind was not forced 1645 // and there didn't happen another exception during the computation of the 1646 // compiled exception handler. Checking for exception oop equality is not 1647 // sufficient because some exceptions are pre-allocated and reused. 1648 if (!force_unwind && !recursive_exception) { 1649 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1650 } 1651 } else { 1652 #ifdef ASSERT 1653 bool recursive_exception = false; 1654 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1655 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1656 p2i(handler_address), p2i(computed_address)); 1657 #endif 1658 } 1659 } 1660 1661 current->set_exception_pc(pc); 1662 current->set_exception_handler_pc(handler_address); 1663 1664 // Check if the exception PC is a MethodHandle call site. 1665 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1666 } 1667 1668 // Restore correct return pc. Was saved above. 1669 current->set_exception_oop(exception()); 1670 return handler_address; 1671 1672 JRT_END 1673 1674 // We are entering here from exception_blob 1675 // If there is a compiled exception handler in this method, we will continue there; 1676 // otherwise we will unwind the stack and continue at the caller of top frame method 1677 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1678 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1679 // we looked up the handler for has been deoptimized in the meantime. If it has been 1680 // we must not use the handler and instead return the deopt blob. 1681 address OptoRuntime::handle_exception_C(JavaThread* current) { 1682 // 1683 // We are in Java not VM and in debug mode we have a NoHandleMark 1684 // 1685 #ifndef PRODUCT 1686 SharedRuntime::_find_handler_ctr++; // find exception handler 1687 #endif 1688 debug_only(NoHandleMark __hm;) 1689 nmethod* nm = nullptr; 1690 address handler_address = nullptr; 1691 { 1692 // Enter the VM 1693 1694 ResetNoHandleMark rnhm; 1695 handler_address = handle_exception_C_helper(current, nm); 1696 } 1697 1698 // Back in java: Use no oops, DON'T safepoint 1699 1700 // Now check to see if the handler we are returning is in a now 1701 // deoptimized frame 1702 1703 if (nm != nullptr) { 1704 RegisterMap map(current, 1705 RegisterMap::UpdateMap::skip, 1706 RegisterMap::ProcessFrames::skip, 1707 RegisterMap::WalkContinuation::skip); 1708 frame caller = current->last_frame().sender(&map); 1709 #ifdef ASSERT 1710 assert(caller.is_compiled_frame(), "must be"); 1711 #endif // ASSERT 1712 if (caller.is_deoptimized_frame()) { 1713 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1714 } 1715 } 1716 return handler_address; 1717 } 1718 1719 //------------------------------rethrow---------------------------------------- 1720 // We get here after compiled code has executed a 'RethrowNode'. The callee 1721 // is either throwing or rethrowing an exception. The callee-save registers 1722 // have been restored, synchronized objects have been unlocked and the callee 1723 // stack frame has been removed. The return address was passed in. 1724 // Exception oop is passed as the 1st argument. This routine is then called 1725 // from the stub. On exit, we know where to jump in the caller's code. 1726 // After this C code exits, the stub will pop his frame and end in a jump 1727 // (instead of a return). We enter the caller's default handler. 1728 // 1729 // This must be JRT_LEAF: 1730 // - caller will not change its state as we cannot block on exit, 1731 // therefore raw_exception_handler_for_return_address is all it takes 1732 // to handle deoptimized blobs 1733 // 1734 // However, there needs to be a safepoint check in the middle! So compiled 1735 // safepoints are completely watertight. 1736 // 1737 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1738 // 1739 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1740 // 1741 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1742 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1743 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 1744 1745 #ifndef PRODUCT 1746 SharedRuntime::_rethrow_ctr++; // count rethrows 1747 #endif 1748 assert (exception != nullptr, "should have thrown a NullPointerException"); 1749 #ifdef ASSERT 1750 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1751 // should throw an exception here 1752 ShouldNotReachHere(); 1753 } 1754 #endif 1755 1756 thread->set_vm_result(exception); 1757 // Frame not compiled (handles deoptimization blob) 1758 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1759 } 1760 1761 1762 const TypeFunc *OptoRuntime::rethrow_Type() { 1763 // create input type (domain) 1764 const Type **fields = TypeTuple::fields(1); 1765 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1766 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1767 1768 // create result type (range) 1769 fields = TypeTuple::fields(1); 1770 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1771 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1772 1773 return TypeFunc::make(domain, range); 1774 } 1775 1776 1777 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1778 // Deoptimize the caller before continuing, as the compiled 1779 // exception handler table may not be valid. 1780 if (!StressCompiledExceptionHandlers && doit) { 1781 deoptimize_caller_frame(thread); 1782 } 1783 } 1784 1785 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1786 // Called from within the owner thread, so no need for safepoint 1787 RegisterMap reg_map(thread, 1788 RegisterMap::UpdateMap::include, 1789 RegisterMap::ProcessFrames::include, 1790 RegisterMap::WalkContinuation::skip); 1791 frame stub_frame = thread->last_frame(); 1792 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1793 frame caller_frame = stub_frame.sender(®_map); 1794 1795 // Deoptimize the caller frame. 1796 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1797 } 1798 1799 1800 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1801 // Called from within the owner thread, so no need for safepoint 1802 RegisterMap reg_map(thread, 1803 RegisterMap::UpdateMap::include, 1804 RegisterMap::ProcessFrames::include, 1805 RegisterMap::WalkContinuation::skip); 1806 frame stub_frame = thread->last_frame(); 1807 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1808 frame caller_frame = stub_frame.sender(®_map); 1809 return caller_frame.is_deoptimized_frame(); 1810 } 1811 1812 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1813 // create input type (domain) 1814 const Type **fields = TypeTuple::fields(1); 1815 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1816 // // The JavaThread* is passed to each routine as the last argument 1817 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1818 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1819 1820 // create result type (range) 1821 fields = TypeTuple::fields(0); 1822 1823 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1824 1825 return TypeFunc::make(domain, range); 1826 } 1827 1828 #if INCLUDE_JFR 1829 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() { 1830 // create input type (domain) 1831 const Type **fields = TypeTuple::fields(1); 1832 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1833 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1834 1835 // create result type (range) 1836 fields = TypeTuple::fields(0); 1837 1838 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1839 1840 return TypeFunc::make(domain,range); 1841 } 1842 #endif 1843 1844 //----------------------------------------------------------------------------- 1845 // Dtrace support. entry and exit probes have the same signature 1846 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1847 // create input type (domain) 1848 const Type **fields = TypeTuple::fields(2); 1849 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1850 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1851 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1852 1853 // create result type (range) 1854 fields = TypeTuple::fields(0); 1855 1856 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1857 1858 return TypeFunc::make(domain, range); 1859 } 1860 1861 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1862 // create input type (domain) 1863 const Type **fields = TypeTuple::fields(2); 1864 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1865 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1866 1867 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1868 1869 // create result type (range) 1870 fields = TypeTuple::fields(0); 1871 1872 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1873 1874 return TypeFunc::make(domain, range); 1875 } 1876 1877 1878 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 1879 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1880 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1881 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1882 JRT_END 1883 1884 //----------------------------------------------------------------------------- 1885 1886 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 1887 1888 // 1889 // dump the collected NamedCounters. 1890 // 1891 void OptoRuntime::print_named_counters() { 1892 int total_lock_count = 0; 1893 int eliminated_lock_count = 0; 1894 1895 NamedCounter* c = _named_counters; 1896 while (c) { 1897 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1898 int count = c->count(); 1899 if (count > 0) { 1900 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1901 if (Verbose) { 1902 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1903 } 1904 total_lock_count += count; 1905 if (eliminated) { 1906 eliminated_lock_count += count; 1907 } 1908 } 1909 } 1910 c = c->next(); 1911 } 1912 if (total_lock_count > 0) { 1913 tty->print_cr("dynamic locks: %d", total_lock_count); 1914 if (eliminated_lock_count) { 1915 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1916 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1917 } 1918 } 1919 } 1920 1921 // 1922 // Allocate a new NamedCounter. The JVMState is used to generate the 1923 // name which consists of method@line for the inlining tree. 1924 // 1925 1926 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1927 int max_depth = youngest_jvms->depth(); 1928 1929 // Visit scopes from youngest to oldest. 1930 bool first = true; 1931 stringStream st; 1932 for (int depth = max_depth; depth >= 1; depth--) { 1933 JVMState* jvms = youngest_jvms->of_depth(depth); 1934 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 1935 if (!first) { 1936 st.print(" "); 1937 } else { 1938 first = false; 1939 } 1940 int bci = jvms->bci(); 1941 if (bci < 0) bci = 0; 1942 if (m != nullptr) { 1943 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1944 } else { 1945 st.print("no method"); 1946 } 1947 st.print("@%d", bci); 1948 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1949 } 1950 NamedCounter* c = new NamedCounter(st.freeze(), tag); 1951 1952 // atomically add the new counter to the head of the list. We only 1953 // add counters so this is safe. 1954 NamedCounter* head; 1955 do { 1956 c->set_next(nullptr); 1957 head = _named_counters; 1958 c->set_next(head); 1959 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1960 return c; 1961 } 1962 1963 int trace_exception_counter = 0; 1964 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1965 trace_exception_counter++; 1966 stringStream tempst; 1967 1968 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1969 exception_oop->print_value_on(&tempst); 1970 tempst.print(" in "); 1971 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1972 if (blob->is_nmethod()) { 1973 blob->as_nmethod()->method()->print_value_on(&tempst); 1974 } else if (blob->is_runtime_stub()) { 1975 tempst.print("<runtime-stub>"); 1976 } else { 1977 tempst.print("<unknown>"); 1978 } 1979 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1980 tempst.print("]"); 1981 1982 st->print_raw_cr(tempst.freeze()); 1983 } 1984 1985 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() { 1986 // create input type (domain) 1987 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 1988 const Type **fields = TypeTuple::fields(total); 1989 // We don't know the number of returned values and their 1990 // types. Assume all registers available to the return convention 1991 // are used. 1992 fields[TypeFunc::Parms] = TypePtr::BOTTOM; 1993 uint i = 1; 1994 for (; i < SharedRuntime::java_return_convention_max_int; i++) { 1995 fields[TypeFunc::Parms+i] = TypeInt::INT; 1996 } 1997 for (; i < total; i+=2) { 1998 fields[TypeFunc::Parms+i] = Type::DOUBLE; 1999 fields[TypeFunc::Parms+i+1] = Type::HALF; 2000 } 2001 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2002 2003 // create result type (range) 2004 fields = TypeTuple::fields(1); 2005 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2006 2007 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2008 2009 return TypeFunc::make(domain, range); 2010 } 2011 2012 const TypeFunc *OptoRuntime::pack_inline_type_Type() { 2013 // create input type (domain) 2014 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2; 2015 const Type **fields = TypeTuple::fields(total); 2016 // We don't know the number of returned values and their 2017 // types. Assume all registers available to the return convention 2018 // are used. 2019 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM; 2020 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; 2021 uint i = 2; 2022 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) { 2023 fields[TypeFunc::Parms+i] = TypeInt::INT; 2024 } 2025 for (; i < total; i+=2) { 2026 fields[TypeFunc::Parms+i] = Type::DOUBLE; 2027 fields[TypeFunc::Parms+i+1] = Type::HALF; 2028 } 2029 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields); 2030 2031 // create result type (range) 2032 fields = TypeTuple::fields(1); 2033 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; 2034 2035 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields); 2036 2037 return TypeFunc::make(domain, range); 2038 } 2039 2040 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current)) 2041 JRT_BLOCK; 2042 flatArrayHandle vah(current, array); 2043 oop buffer = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, THREAD); 2044 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 2045 current->set_vm_result(buffer); 2046 JRT_BLOCK_END; 2047 JRT_END 2048 2049 const TypeFunc* OptoRuntime::load_unknown_inline_Type() { 2050 // create input type (domain) 2051 const Type** fields = TypeTuple::fields(2); 2052 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL; 2053 fields[TypeFunc::Parms+1] = TypeInt::POS; 2054 2055 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields); 2056 2057 // create result type (range) 2058 fields = TypeTuple::fields(1); 2059 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2060 2061 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 2062 2063 return TypeFunc::make(domain, range); 2064 } 2065 2066 JRT_LEAF(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index)) 2067 { 2068 assert(buffer != nullptr, "can't store null into flat array"); 2069 array->value_copy_to_index(buffer, index, LayoutKind::PAYLOAD); // Temporary hack for the transition 2070 } 2071 JRT_END 2072 2073 const TypeFunc* OptoRuntime::store_unknown_inline_Type() { 2074 // create input type (domain) 2075 const Type** fields = TypeTuple::fields(3); 2076 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL; 2077 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL; 2078 fields[TypeFunc::Parms+2] = TypeInt::POS; 2079 2080 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields); 2081 2082 // create result type (range) 2083 fields = TypeTuple::fields(0); 2084 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 2085 2086 return TypeFunc::make(domain, range); 2087 }