1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/flatArrayKlass.hpp"
  48 #include "oops/flatArrayOop.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  Universe::heap()->collect();
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 #define C2_BLOB_FIELD_DEFINE(name, type) \
  94   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  97   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  98 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  99   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 101 #undef C2_BLOB_FIELD_DEFINE
 102 #undef C2_STUB_FIELD_DEFINE
 103 #undef C2_JVMTI_STUB_FIELD_DEFINE
 104 
 105 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 106 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 107 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 108 const char* OptoRuntime::_stub_names[] = {
 109   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 110 };
 111 #undef C2_BLOB_NAME_DEFINE
 112 #undef C2_STUB_NAME_DEFINE
 113 #undef C2_JVMTI_STUB_NAME_DEFINE
 114 
 115 // This should be called in an assertion at the start of OptoRuntime routines
 116 // which are entered from compiled code (all of them)
 117 #ifdef ASSERT
 118 static bool check_compiled_frame(JavaThread* thread) {
 119   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 120   RegisterMap map(thread,
 121                   RegisterMap::UpdateMap::skip,
 122                   RegisterMap::ProcessFrames::include,
 123                   RegisterMap::WalkContinuation::skip);
 124   frame caller = thread->last_frame().sender(&map);
 125   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 126   return true;
 127 }
 128 #endif // ASSERT
 129 
 130 /*
 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 132   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 133   if (var == nullptr) { return false; }
 134 */
 135 
 136 #define GEN_C2_BLOB(name, type)                    \
 137   generate_ ## name ## _blob();
 138 
 139 // a few helper macros to conjure up generate_stub call arguments
 140 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 141 #define C2_STUB_TYPEFUNC(name) name ## _Type
 142 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 143 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 144 
 145 // Almost all the C functions targeted from the generated stubs are
 146 // implemented locally to OptoRuntime with names that can be generated
 147 // from the stub name by appending suffix '_C'. However, in two cases
 148 // a common target method also needs to be called from shared runtime
 149 // stubs. In these two cases the opto stubs rely on method
 150 // imlementations defined in class SharedRuntime. The following
 151 // defines temporarily rebind the generated names to reference the
 152 // relevant implementations.
 153 
 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 155   C2_STUB_FIELD_NAME(name) =                                          \
 156     generate_stub(env,                                                  \
 157                   C2_STUB_TYPEFUNC(name),                             \
 158                   C2_STUB_C_FUNC(name),                               \
 159                   C2_STUB_NAME(name),                                 \
 160                   fancy_jump,                                           \
 161                   pass_tls,                                             \
 162                   pass_retpc);                                          \
 163   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 164 
 165 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 166 
 167 #define GEN_C2_JVMTI_STUB(name)                                       \
 168   STUB_FIELD_NAME(name) =                                               \
 169     generate_stub(env,                                                  \
 170                   notify_jvmti_vthread_Type,                            \
 171                   C2_JVMTI_STUB_C_FUNC(name),                         \
 172                   C2_STUB_NAME(name),                                 \
 173                   0,                                                    \
 174                   true,                                                 \
 175                   false);                                               \
 176   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 177 
 178 bool OptoRuntime::generate(ciEnv* env) {
 179 
 180   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 181 
 182   return true;
 183 }
 184 
 185 #undef GEN_C2_BLOB
 186 
 187 #undef C2_STUB_FIELD_NAME
 188 #undef C2_STUB_TYPEFUNC
 189 #undef C2_STUB_C_FUNC
 190 #undef C2_STUB_NAME
 191 #undef GEN_C2_STUB
 192 
 193 #undef C2_JVMTI_STUB_C_FUNC
 194 #undef GEN_C2_JVMTI_STUB
 195 // #undef gen
 196 
 197 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 198 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 199 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 200 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 201 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 202 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 203 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 204 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 205 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 206 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 207 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 208 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 209 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 210 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 211 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 212 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 213 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 214 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 215 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 216 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 217 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 218 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 219 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 220 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 221 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 222 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 223 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 224 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 225 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 226 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 227 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 228 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 229 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 230 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 231 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 232 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 233 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 234 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 235 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 236 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 237 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 238 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 239 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 240 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 241 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 242 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 244 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 245 
 246 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 247 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 248 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 249 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 250 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 251 
 252 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 254 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 255 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 256 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 257 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 258 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 259 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 260 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 261 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 262 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 263 #if INCLUDE_JFR
 264 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 265 #endif // INCLUDE_JFR
 266 #if INCLUDE_JVMTI
 267 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 268 #endif // INCLUDE_JVMTI
 269 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 270 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 271 
 272 // Helper method to do generation of RunTimeStub's
 273 address OptoRuntime::generate_stub(ciEnv* env,
 274                                    TypeFunc_generator gen, address C_function,
 275                                    const char *name, int is_fancy_jump,
 276                                    bool pass_tls,
 277                                    bool return_pc) {
 278 
 279   // Matching the default directive, we currently have no method to match.
 280   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 281   CompilationMemoryStatisticMark cmsm(directive);
 282   ResourceMark rm;
 283   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 284   DirectivesStack::release(directive);
 285   return  C.stub_entry_point();
 286 }
 287 
 288 const char* OptoRuntime::stub_name(address entry) {
 289 #ifndef PRODUCT
 290   CodeBlob* cb = CodeCache::find_blob(entry);
 291   RuntimeStub* rs =(RuntimeStub *)cb;
 292   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 293   return rs->name();
 294 #else
 295   // Fast implementation for product mode (maybe it should be inlined too)
 296   return "runtime stub";
 297 #endif
 298 }
 299 
 300 // local methods passed as arguments to stub generator that forward
 301 // control to corresponding JRT methods of SharedRuntime
 302 
 303 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 304                                    oopDesc* dest, jint dest_pos,
 305                                    jint length, JavaThread* thread) {
 306   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 307 }
 308 
 309 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 310   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 311 }
 312 
 313 
 314 //=============================================================================
 315 // Opto compiler runtime routines
 316 //=============================================================================
 317 
 318 
 319 //=============================allocation======================================
 320 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 321 // and try allocation again.
 322 
 323 // object allocation
 324 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 325   JRT_BLOCK;
 326 #ifndef PRODUCT
 327   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 328 #endif
 329   assert(check_compiled_frame(current), "incorrect caller");
 330 
 331   // These checks are cheap to make and support reflective allocation.
 332   int lh = klass->layout_helper();
 333   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 334     Handle holder(current, klass->klass_holder()); // keep the klass alive
 335     klass->check_valid_for_instantiation(false, THREAD);
 336     if (!HAS_PENDING_EXCEPTION) {
 337       InstanceKlass::cast(klass)->initialize(THREAD);
 338     }
 339   }
 340 
 341   if (!HAS_PENDING_EXCEPTION) {
 342     // Scavenge and allocate an instance.
 343     Handle holder(current, klass->klass_holder()); // keep the klass alive
 344     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 345     if (is_larval) {
 346       // Check if this is a larval buffer allocation
 347       result->set_mark(result->mark().enter_larval_state());
 348     }
 349     current->set_vm_result(result);
 350 
 351     // Pass oops back through thread local storage.  Our apparent type to Java
 352     // is that we return an oop, but we can block on exit from this routine and
 353     // a GC can trash the oop in C's return register.  The generated stub will
 354     // fetch the oop from TLS after any possible GC.
 355   }
 356 
 357   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 358   JRT_BLOCK_END;
 359 
 360   // inform GC that we won't do card marks for initializing writes.
 361   SharedRuntime::on_slowpath_allocation_exit(current);
 362 JRT_END
 363 
 364 
 365 // array allocation
 366 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 367   JRT_BLOCK;
 368 #ifndef PRODUCT
 369   SharedRuntime::_new_array_ctr++;            // new array requires GC
 370 #endif
 371   assert(check_compiled_frame(current), "incorrect caller");
 372 
 373   // Scavenge and allocate an instance.
 374   oop result;
 375 
 376   if (array_type->is_flatArray_klass()) {
 377     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 378     FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
 379     Klass* elem_type = fak->element_klass();
 380     result = oopFactory::new_flatArray(elem_type, len, fak->layout_kind(), THREAD);
 381   } else if (array_type->is_typeArray_klass()) {
 382     // The oopFactory likes to work with the element type.
 383     // (We could bypass the oopFactory, since it doesn't add much value.)
 384     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 385     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 386   } else {
 387     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 388     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
 389   }
 390 
 391   // Pass oops back through thread local storage.  Our apparent type to Java
 392   // is that we return an oop, but we can block on exit from this routine and
 393   // a GC can trash the oop in C's return register.  The generated stub will
 394   // fetch the oop from TLS after any possible GC.
 395   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 396   current->set_vm_result(result);
 397   JRT_BLOCK_END;
 398 
 399   // inform GC that we won't do card marks for initializing writes.
 400   SharedRuntime::on_slowpath_allocation_exit(current);
 401 JRT_END
 402 
 403 // array allocation without zeroing
 404 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 405   JRT_BLOCK;
 406 #ifndef PRODUCT
 407   SharedRuntime::_new_array_ctr++;            // new array requires GC
 408 #endif
 409   assert(check_compiled_frame(current), "incorrect caller");
 410 
 411   // Scavenge and allocate an instance.
 412   oop result;
 413 
 414   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 415   // The oopFactory likes to work with the element type.
 416   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 417   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 418 
 419   // Pass oops back through thread local storage.  Our apparent type to Java
 420   // is that we return an oop, but we can block on exit from this routine and
 421   // a GC can trash the oop in C's return register.  The generated stub will
 422   // fetch the oop from TLS after any possible GC.
 423   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 424   current->set_vm_result(result);
 425   JRT_BLOCK_END;
 426 
 427 
 428   // inform GC that we won't do card marks for initializing writes.
 429   SharedRuntime::on_slowpath_allocation_exit(current);
 430 
 431   oop result = current->vm_result();
 432   if ((len > 0) && (result != nullptr) &&
 433       is_deoptimized_caller_frame(current)) {
 434     // Zero array here if the caller is deoptimized.
 435     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 436     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 437     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 438     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 439     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 440     if (!is_aligned(hs_bytes, BytesPerLong)) {
 441       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 442       hs_bytes += BytesPerInt;
 443     }
 444 
 445     // Optimized zeroing.
 446     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 447     const size_t aligned_hs = hs_bytes / BytesPerLong;
 448     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 449   }
 450 
 451 JRT_END
 452 
 453 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 454 
 455 // multianewarray for 2 dimensions
 456 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 457 #ifndef PRODUCT
 458   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 459 #endif
 460   assert(check_compiled_frame(current), "incorrect caller");
 461   assert(elem_type->is_klass(), "not a class");
 462   jint dims[2];
 463   dims[0] = len1;
 464   dims[1] = len2;
 465   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 466   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 467   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 468   current->set_vm_result(obj);
 469 JRT_END
 470 
 471 // multianewarray for 3 dimensions
 472 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 473 #ifndef PRODUCT
 474   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 475 #endif
 476   assert(check_compiled_frame(current), "incorrect caller");
 477   assert(elem_type->is_klass(), "not a class");
 478   jint dims[3];
 479   dims[0] = len1;
 480   dims[1] = len2;
 481   dims[2] = len3;
 482   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 483   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 484   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 485   current->set_vm_result(obj);
 486 JRT_END
 487 
 488 // multianewarray for 4 dimensions
 489 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 490 #ifndef PRODUCT
 491   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 492 #endif
 493   assert(check_compiled_frame(current), "incorrect caller");
 494   assert(elem_type->is_klass(), "not a class");
 495   jint dims[4];
 496   dims[0] = len1;
 497   dims[1] = len2;
 498   dims[2] = len3;
 499   dims[3] = len4;
 500   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 501   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 502   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 503   current->set_vm_result(obj);
 504 JRT_END
 505 
 506 // multianewarray for 5 dimensions
 507 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 508 #ifndef PRODUCT
 509   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 510 #endif
 511   assert(check_compiled_frame(current), "incorrect caller");
 512   assert(elem_type->is_klass(), "not a class");
 513   jint dims[5];
 514   dims[0] = len1;
 515   dims[1] = len2;
 516   dims[2] = len3;
 517   dims[3] = len4;
 518   dims[4] = len5;
 519   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 520   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 521   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 522   current->set_vm_result(obj);
 523 JRT_END
 524 
 525 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 526   assert(check_compiled_frame(current), "incorrect caller");
 527   assert(elem_type->is_klass(), "not a class");
 528   assert(oop(dims)->is_typeArray(), "not an array");
 529 
 530   ResourceMark rm;
 531   jint len = dims->length();
 532   assert(len > 0, "Dimensions array should contain data");
 533   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 534   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 535                                        c_dims, len);
 536 
 537   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 538   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 539   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 540   current->set_vm_result(obj);
 541 JRT_END
 542 
 543 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 544 
 545   // Very few notify/notifyAll operations find any threads on the waitset, so
 546   // the dominant fast-path is to simply return.
 547   // Relatedly, it's critical that notify/notifyAll be fast in order to
 548   // reduce lock hold times.
 549   if (!SafepointSynchronize::is_synchronizing()) {
 550     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 551       return;
 552     }
 553   }
 554 
 555   // This is the case the fast-path above isn't provisioned to handle.
 556   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 557   // (The fast-path is just a degenerate variant of the slow-path).
 558   // Perform the dreaded state transition and pass control into the slow-path.
 559   JRT_BLOCK;
 560   Handle h_obj(current, obj);
 561   ObjectSynchronizer::notify(h_obj, CHECK);
 562   JRT_BLOCK_END;
 563 JRT_END
 564 
 565 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 566 
 567   if (!SafepointSynchronize::is_synchronizing() ) {
 568     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 569       return;
 570     }
 571   }
 572 
 573   // This is the case the fast-path above isn't provisioned to handle.
 574   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 575   // (The fast-path is just a degenerate variant of the slow-path).
 576   // Perform the dreaded state transition and pass control into the slow-path.
 577   JRT_BLOCK;
 578   Handle h_obj(current, obj);
 579   ObjectSynchronizer::notifyall(h_obj, CHECK);
 580   JRT_BLOCK_END;
 581 JRT_END
 582 
 583 static const TypeFunc* make_new_instance_Type() {
 584   // create input type (domain)
 585   const Type **fields = TypeTuple::fields(2);
 586   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 587   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(1);
 592   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 593 
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 595 
 596   return TypeFunc::make(domain, range);
 597 }
 598 
 599 #if INCLUDE_JVMTI
 600 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 601   // create input type (domain)
 602   const Type **fields = TypeTuple::fields(2);
 603   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 604   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 606 
 607   // no result type needed
 608   fields = TypeTuple::fields(1);
 609   fields[TypeFunc::Parms+0] = nullptr; // void
 610   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 611 
 612   return TypeFunc::make(domain,range);
 613 }
 614 #endif
 615 
 616 static const TypeFunc* make_athrow_Type() {
 617   // create input type (domain)
 618   const Type **fields = TypeTuple::fields(1);
 619   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 621 
 622   // create result type (range)
 623   fields = TypeTuple::fields(0);
 624 
 625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 626 
 627   return TypeFunc::make(domain, range);
 628 }
 629 
 630 static const TypeFunc* make_new_array_Type() {
 631   // create input type (domain)
 632   const Type **fields = TypeTuple::fields(2);
 633   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 634   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 636 
 637   // create result type (range)
 638   fields = TypeTuple::fields(1);
 639   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 640 
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 642 
 643   return TypeFunc::make(domain, range);
 644 }
 645 
 646 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 647   // create input type (domain)
 648   const int nargs = ndim + 1;
 649   const Type **fields = TypeTuple::fields(nargs);
 650   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 651   for( int i = 1; i < nargs; i++ )
 652     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 654 
 655   // create result type (range)
 656   fields = TypeTuple::fields(1);
 657   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 658   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 659 
 660   return TypeFunc::make(domain, range);
 661 }
 662 
 663 static const TypeFunc* make_multianewarrayN_Type() {
 664   // create input type (domain)
 665   const Type **fields = TypeTuple::fields(2);
 666   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 667   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(1);
 672   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 static const TypeFunc* make_uncommon_trap_Type() {
 679   // create input type (domain)
 680   const Type **fields = TypeTuple::fields(1);
 681   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(0);
 686   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 687 
 688   return TypeFunc::make(domain, range);
 689 }
 690 
 691 //-----------------------------------------------------------------------------
 692 // Monitor Handling
 693 
 694 static const TypeFunc* make_complete_monitor_enter_Type() {
 695   // create input type (domain)
 696   const Type **fields = TypeTuple::fields(2);
 697   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 698   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 700 
 701   // create result type (range)
 702   fields = TypeTuple::fields(0);
 703 
 704   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 705 
 706   return TypeFunc::make(domain, range);
 707 }
 708 
 709 //-----------------------------------------------------------------------------
 710 
 711 static const TypeFunc* make_complete_monitor_exit_Type() {
 712   // create input type (domain)
 713   const Type **fields = TypeTuple::fields(3);
 714   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 715   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 716   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 717   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 718 
 719   // create result type (range)
 720   fields = TypeTuple::fields(0);
 721 
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 static const TypeFunc* make_monitor_notify_Type() {
 728   // create input type (domain)
 729   const Type **fields = TypeTuple::fields(1);
 730   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 731   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 732 
 733   // create result type (range)
 734   fields = TypeTuple::fields(0);
 735   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 736   return TypeFunc::make(domain, range);
 737 }
 738 
 739 static const TypeFunc* make_flush_windows_Type() {
 740   // create input type (domain)
 741   const Type** fields = TypeTuple::fields(1);
 742   fields[TypeFunc::Parms+0] = nullptr; // void
 743   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 744 
 745   // create result type
 746   fields = TypeTuple::fields(1);
 747   fields[TypeFunc::Parms+0] = nullptr; // void
 748   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 749 
 750   return TypeFunc::make(domain, range);
 751 }
 752 
 753 static const TypeFunc* make_l2f_Type() {
 754   // create input type (domain)
 755   const Type **fields = TypeTuple::fields(2);
 756   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 757   fields[TypeFunc::Parms+1] = Type::HALF;
 758   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 759 
 760   // create result type (range)
 761   fields = TypeTuple::fields(1);
 762   fields[TypeFunc::Parms+0] = Type::FLOAT;
 763   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 764 
 765   return TypeFunc::make(domain, range);
 766 }
 767 
 768 static const TypeFunc* make_modf_Type() {
 769   const Type **fields = TypeTuple::fields(2);
 770   fields[TypeFunc::Parms+0] = Type::FLOAT;
 771   fields[TypeFunc::Parms+1] = Type::FLOAT;
 772   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 773 
 774   // create result type (range)
 775   fields = TypeTuple::fields(1);
 776   fields[TypeFunc::Parms+0] = Type::FLOAT;
 777 
 778   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 779 
 780   return TypeFunc::make(domain, range);
 781 }
 782 
 783 static const TypeFunc* make_Math_D_D_Type() {
 784   // create input type (domain)
 785   const Type **fields = TypeTuple::fields(2);
 786   // Symbol* name of class to be loaded
 787   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 788   fields[TypeFunc::Parms+1] = Type::HALF;
 789   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 790 
 791   // create result type (range)
 792   fields = TypeTuple::fields(2);
 793   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 794   fields[TypeFunc::Parms+1] = Type::HALF;
 795   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 796 
 797   return TypeFunc::make(domain, range);
 798 }
 799 
 800 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 801   // create input type (domain)
 802   const Type **fields = TypeTuple::fields(num_arg);
 803   // Symbol* name of class to be loaded
 804   assert(num_arg > 0, "must have at least 1 input");
 805   for (uint i = 0; i < num_arg; i++) {
 806     fields[TypeFunc::Parms+i] = in_type;
 807   }
 808   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 809 
 810   // create result type (range)
 811   const uint num_ret = 1;
 812   fields = TypeTuple::fields(num_ret);
 813   fields[TypeFunc::Parms+0] = out_type;
 814   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 815 
 816   return TypeFunc::make(domain, range);
 817 }
 818 
 819 static const TypeFunc* make_Math_DD_D_Type() {
 820   const Type **fields = TypeTuple::fields(4);
 821   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 822   fields[TypeFunc::Parms+1] = Type::HALF;
 823   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 824   fields[TypeFunc::Parms+3] = Type::HALF;
 825   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 826 
 827   // create result type (range)
 828   fields = TypeTuple::fields(2);
 829   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 830   fields[TypeFunc::Parms+1] = Type::HALF;
 831   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 832 
 833   return TypeFunc::make(domain, range);
 834 }
 835 
 836 //-------------- currentTimeMillis, currentTimeNanos, etc
 837 
 838 static const TypeFunc* make_void_long_Type() {
 839   // create input type (domain)
 840   const Type **fields = TypeTuple::fields(0);
 841   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 842 
 843   // create result type (range)
 844   fields = TypeTuple::fields(2);
 845   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 846   fields[TypeFunc::Parms+1] = Type::HALF;
 847   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 848 
 849   return TypeFunc::make(domain, range);
 850 }
 851 
 852 static const TypeFunc* make_void_void_Type() {
 853   // create input type (domain)
 854   const Type **fields = TypeTuple::fields(0);
 855   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 856 
 857   // create result type (range)
 858   fields = TypeTuple::fields(0);
 859   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 860   return TypeFunc::make(domain, range);
 861 }
 862 
 863 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 864   // create input type (domain)
 865   const Type **fields = TypeTuple::fields(0);
 866   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 867 
 868   // create result type (range)
 869   fields = TypeTuple::fields(0);
 870   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 871   return TypeFunc::make(domain, range);
 872 }
 873 
 874 
 875 // Takes as parameters:
 876 // void *dest
 877 // long size
 878 // uchar byte
 879 
 880 static const TypeFunc* make_setmemory_Type() {
 881   // create input type (domain)
 882   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 883   const Type** fields = TypeTuple::fields(argcnt);
 884   int argp = TypeFunc::Parms;
 885   fields[argp++] = TypePtr::NOTNULL;        // dest
 886   fields[argp++] = TypeX_X;                 // size
 887   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 888   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 889   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 890   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 891 
 892   // no result type needed
 893   fields = TypeTuple::fields(1);
 894   fields[TypeFunc::Parms+0] = nullptr; // void
 895   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 896   return TypeFunc::make(domain, range);
 897 }
 898 
 899 // arraycopy stub variations:
 900 enum ArrayCopyType {
 901   ac_fast,                      // void(ptr, ptr, size_t)
 902   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 903   ac_slow,                      // void(ptr, int, ptr, int, int)
 904   ac_generic                    //  int(ptr, int, ptr, int, int)
 905 };
 906 
 907 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 908   // create input type (domain)
 909   int num_args      = (act == ac_fast ? 3 : 5);
 910   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 911   int argcnt = num_args;
 912   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 913   const Type** fields = TypeTuple::fields(argcnt);
 914   int argp = TypeFunc::Parms;
 915   fields[argp++] = TypePtr::NOTNULL;    // src
 916   if (num_size_args == 0) {
 917     fields[argp++] = TypeInt::INT;      // src_pos
 918   }
 919   fields[argp++] = TypePtr::NOTNULL;    // dest
 920   if (num_size_args == 0) {
 921     fields[argp++] = TypeInt::INT;      // dest_pos
 922     fields[argp++] = TypeInt::INT;      // length
 923   }
 924   while (num_size_args-- > 0) {
 925     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 926     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 927   }
 928   if (act == ac_checkcast) {
 929     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 930   }
 931   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 932   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 933 
 934   // create result type if needed
 935   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 936   fields = TypeTuple::fields(1);
 937   if (retcnt == 0)
 938     fields[TypeFunc::Parms+0] = nullptr; // void
 939   else
 940     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 941   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 942   return TypeFunc::make(domain, range);
 943 }
 944 
 945 static const TypeFunc* make_array_fill_Type() {
 946   const Type** fields;
 947   int argp = TypeFunc::Parms;
 948   // create input type (domain): pointer, int, size_t
 949   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 950   fields[argp++] = TypePtr::NOTNULL;
 951   fields[argp++] = TypeInt::INT;
 952   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 953   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 954   const TypeTuple *domain = TypeTuple::make(argp, fields);
 955 
 956   // create result type
 957   fields = TypeTuple::fields(1);
 958   fields[TypeFunc::Parms+0] = nullptr; // void
 959   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 960 
 961   return TypeFunc::make(domain, range);
 962 }
 963 
 964 static const TypeFunc* make_array_partition_Type() {
 965   // create input type (domain)
 966   int num_args = 7;
 967   int argcnt = num_args;
 968   const Type** fields = TypeTuple::fields(argcnt);
 969   int argp = TypeFunc::Parms;
 970   fields[argp++] = TypePtr::NOTNULL;  // array
 971   fields[argp++] = TypeInt::INT;      // element type
 972   fields[argp++] = TypeInt::INT;      // low
 973   fields[argp++] = TypeInt::INT;      // end
 974   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 975   fields[argp++] = TypeInt::INT;      // indexPivot1
 976   fields[argp++] = TypeInt::INT;      // indexPivot2
 977   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 978   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 979 
 980   // no result type needed
 981   fields = TypeTuple::fields(1);
 982   fields[TypeFunc::Parms+0] = nullptr; // void
 983   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 984   return TypeFunc::make(domain, range);
 985 }
 986 
 987 static const TypeFunc* make_array_sort_Type() {
 988   // create input type (domain)
 989   int num_args      = 4;
 990   int argcnt = num_args;
 991   const Type** fields = TypeTuple::fields(argcnt);
 992   int argp = TypeFunc::Parms;
 993   fields[argp++] = TypePtr::NOTNULL;    // array
 994   fields[argp++] = TypeInt::INT;    // element type
 995   fields[argp++] = TypeInt::INT;    // fromIndex
 996   fields[argp++] = TypeInt::INT;    // toIndex
 997   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 998   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 999 
1000   // no result type needed
1001   fields = TypeTuple::fields(1);
1002   fields[TypeFunc::Parms+0] = nullptr; // void
1003   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1004   return TypeFunc::make(domain, range);
1005 }
1006 
1007 static const TypeFunc* make_aescrypt_block_Type() {
1008   // create input type (domain)
1009   int num_args      = 3;
1010   int argcnt = num_args;
1011   const Type** fields = TypeTuple::fields(argcnt);
1012   int argp = TypeFunc::Parms;
1013   fields[argp++] = TypePtr::NOTNULL;    // src
1014   fields[argp++] = TypePtr::NOTNULL;    // dest
1015   fields[argp++] = TypePtr::NOTNULL;    // k array
1016   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1017   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1018 
1019   // no result type needed
1020   fields = TypeTuple::fields(1);
1021   fields[TypeFunc::Parms+0] = nullptr; // void
1022   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1023   return TypeFunc::make(domain, range);
1024 }
1025 
1026 static const TypeFunc* make_updateBytesCRC32_Type() {
1027   // create input type (domain)
1028   int num_args      = 3;
1029   int argcnt = num_args;
1030   const Type** fields = TypeTuple::fields(argcnt);
1031   int argp = TypeFunc::Parms;
1032   fields[argp++] = TypeInt::INT;        // crc
1033   fields[argp++] = TypePtr::NOTNULL;    // src
1034   fields[argp++] = TypeInt::INT;        // len
1035   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1036   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1037 
1038   // result type needed
1039   fields = TypeTuple::fields(1);
1040   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1041   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1042   return TypeFunc::make(domain, range);
1043 }
1044 
1045 static const TypeFunc* make_updateBytesCRC32C_Type() {
1046   // create input type (domain)
1047   int num_args      = 4;
1048   int argcnt = num_args;
1049   const Type** fields = TypeTuple::fields(argcnt);
1050   int argp = TypeFunc::Parms;
1051   fields[argp++] = TypeInt::INT;        // crc
1052   fields[argp++] = TypePtr::NOTNULL;    // buf
1053   fields[argp++] = TypeInt::INT;        // len
1054   fields[argp++] = TypePtr::NOTNULL;    // table
1055   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1056   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1057 
1058   // result type needed
1059   fields = TypeTuple::fields(1);
1060   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1061   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1062   return TypeFunc::make(domain, range);
1063 }
1064 
1065 static const TypeFunc* make_updateBytesAdler32_Type() {
1066   // create input type (domain)
1067   int num_args      = 3;
1068   int argcnt = num_args;
1069   const Type** fields = TypeTuple::fields(argcnt);
1070   int argp = TypeFunc::Parms;
1071   fields[argp++] = TypeInt::INT;        // crc
1072   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1073   fields[argp++] = TypeInt::INT;        // len
1074   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1075   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1076 
1077   // result type needed
1078   fields = TypeTuple::fields(1);
1079   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1080   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1081   return TypeFunc::make(domain, range);
1082 }
1083 
1084 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1085   // create input type (domain)
1086   int num_args      = 5;
1087   int argcnt = num_args;
1088   const Type** fields = TypeTuple::fields(argcnt);
1089   int argp = TypeFunc::Parms;
1090   fields[argp++] = TypePtr::NOTNULL;    // src
1091   fields[argp++] = TypePtr::NOTNULL;    // dest
1092   fields[argp++] = TypePtr::NOTNULL;    // k array
1093   fields[argp++] = TypePtr::NOTNULL;    // r array
1094   fields[argp++] = TypeInt::INT;        // src len
1095   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1096   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1097 
1098   // returning cipher len (int)
1099   fields = TypeTuple::fields(1);
1100   fields[TypeFunc::Parms+0] = TypeInt::INT;
1101   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1102   return TypeFunc::make(domain, range);
1103 }
1104 
1105 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1106   // create input type (domain)
1107   int num_args = 4;
1108   int argcnt = num_args;
1109   const Type** fields = TypeTuple::fields(argcnt);
1110   int argp = TypeFunc::Parms;
1111   fields[argp++] = TypePtr::NOTNULL;    // src
1112   fields[argp++] = TypePtr::NOTNULL;    // dest
1113   fields[argp++] = TypePtr::NOTNULL;    // k array
1114   fields[argp++] = TypeInt::INT;        // src len
1115   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1116   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1117 
1118   // returning cipher len (int)
1119   fields = TypeTuple::fields(1);
1120   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1121   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1122   return TypeFunc::make(domain, range);
1123 }
1124 
1125 static const TypeFunc* make_counterMode_aescrypt_Type() {
1126   // create input type (domain)
1127   int num_args = 7;
1128   int argcnt = num_args;
1129   const Type** fields = TypeTuple::fields(argcnt);
1130   int argp = TypeFunc::Parms;
1131   fields[argp++] = TypePtr::NOTNULL; // src
1132   fields[argp++] = TypePtr::NOTNULL; // dest
1133   fields[argp++] = TypePtr::NOTNULL; // k array
1134   fields[argp++] = TypePtr::NOTNULL; // counter array
1135   fields[argp++] = TypeInt::INT; // src len
1136   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1137   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1138   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1139   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1140   // returning cipher len (int)
1141   fields = TypeTuple::fields(1);
1142   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1143   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1144   return TypeFunc::make(domain, range);
1145 }
1146 
1147 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1148   // create input type (domain)
1149   int num_args = 8;
1150   int argcnt = num_args;
1151   const Type** fields = TypeTuple::fields(argcnt);
1152   int argp = TypeFunc::Parms;
1153   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1154   fields[argp++] = TypeInt::INT;     // int len
1155   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1156   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1157   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1158   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1159   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1160   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1161 
1162   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1163   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1164   // returning cipher len (int)
1165   fields = TypeTuple::fields(1);
1166   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1167   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1168   return TypeFunc::make(domain, range);
1169 }
1170 
1171 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1172   // create input type (domain)
1173   int num_args = is_sha3 ? 3 : 2;
1174   int argcnt = num_args;
1175   const Type** fields = TypeTuple::fields(argcnt);
1176   int argp = TypeFunc::Parms;
1177   fields[argp++] = TypePtr::NOTNULL; // buf
1178   fields[argp++] = TypePtr::NOTNULL; // state
1179   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1180   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1181   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1182 
1183   // no result type needed
1184   fields = TypeTuple::fields(1);
1185   fields[TypeFunc::Parms+0] = nullptr; // void
1186   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1187   return TypeFunc::make(domain, range);
1188 }
1189 
1190 /*
1191  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1192  */
1193 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1194   // create input type (domain)
1195   int num_args = is_sha3 ? 5 : 4;
1196   int argcnt = num_args;
1197   const Type** fields = TypeTuple::fields(argcnt);
1198   int argp = TypeFunc::Parms;
1199   fields[argp++] = TypePtr::NOTNULL; // buf
1200   fields[argp++] = TypePtr::NOTNULL; // state
1201   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1202   fields[argp++] = TypeInt::INT;     // ofs
1203   fields[argp++] = TypeInt::INT;     // limit
1204   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1205   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1206 
1207   // returning ofs (int)
1208   fields = TypeTuple::fields(1);
1209   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1210   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1211   return TypeFunc::make(domain, range);
1212 }
1213 
1214 // SHAKE128Parallel doubleKeccak function
1215 static const TypeFunc* make_double_keccak_Type() {
1216     int argcnt = 2;
1217 
1218     const Type** fields = TypeTuple::fields(argcnt);
1219     int argp = TypeFunc::Parms;
1220     fields[argp++] = TypePtr::NOTNULL;      // status0
1221     fields[argp++] = TypePtr::NOTNULL;      // status1
1222 
1223     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1224     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1225 
1226     // result type needed
1227     fields = TypeTuple::fields(1);
1228     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1229     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1230     return TypeFunc::make(domain, range);
1231 }
1232 
1233 static const TypeFunc* make_multiplyToLen_Type() {
1234   // create input type (domain)
1235   int num_args      = 5;
1236   int argcnt = num_args;
1237   const Type** fields = TypeTuple::fields(argcnt);
1238   int argp = TypeFunc::Parms;
1239   fields[argp++] = TypePtr::NOTNULL;    // x
1240   fields[argp++] = TypeInt::INT;        // xlen
1241   fields[argp++] = TypePtr::NOTNULL;    // y
1242   fields[argp++] = TypeInt::INT;        // ylen
1243   fields[argp++] = TypePtr::NOTNULL;    // z
1244   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1245   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1246 
1247   // no result type needed
1248   fields = TypeTuple::fields(1);
1249   fields[TypeFunc::Parms+0] = nullptr;
1250   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1251   return TypeFunc::make(domain, range);
1252 }
1253 
1254 static const TypeFunc* make_squareToLen_Type() {
1255   // create input type (domain)
1256   int num_args      = 4;
1257   int argcnt = num_args;
1258   const Type** fields = TypeTuple::fields(argcnt);
1259   int argp = TypeFunc::Parms;
1260   fields[argp++] = TypePtr::NOTNULL;    // x
1261   fields[argp++] = TypeInt::INT;        // len
1262   fields[argp++] = TypePtr::NOTNULL;    // z
1263   fields[argp++] = TypeInt::INT;        // zlen
1264   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1265   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1266 
1267   // no result type needed
1268   fields = TypeTuple::fields(1);
1269   fields[TypeFunc::Parms+0] = nullptr;
1270   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1271   return TypeFunc::make(domain, range);
1272 }
1273 
1274 static const TypeFunc* make_mulAdd_Type() {
1275   // create input type (domain)
1276   int num_args      = 5;
1277   int argcnt = num_args;
1278   const Type** fields = TypeTuple::fields(argcnt);
1279   int argp = TypeFunc::Parms;
1280   fields[argp++] = TypePtr::NOTNULL;    // out
1281   fields[argp++] = TypePtr::NOTNULL;    // in
1282   fields[argp++] = TypeInt::INT;        // offset
1283   fields[argp++] = TypeInt::INT;        // len
1284   fields[argp++] = TypeInt::INT;        // k
1285   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1286   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1287 
1288   // returning carry (int)
1289   fields = TypeTuple::fields(1);
1290   fields[TypeFunc::Parms+0] = TypeInt::INT;
1291   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1292   return TypeFunc::make(domain, range);
1293 }
1294 
1295 static const TypeFunc* make_montgomeryMultiply_Type() {
1296   // create input type (domain)
1297   int num_args      = 7;
1298   int argcnt = num_args;
1299   const Type** fields = TypeTuple::fields(argcnt);
1300   int argp = TypeFunc::Parms;
1301   fields[argp++] = TypePtr::NOTNULL;    // a
1302   fields[argp++] = TypePtr::NOTNULL;    // b
1303   fields[argp++] = TypePtr::NOTNULL;    // n
1304   fields[argp++] = TypeInt::INT;        // len
1305   fields[argp++] = TypeLong::LONG;      // inv
1306   fields[argp++] = Type::HALF;
1307   fields[argp++] = TypePtr::NOTNULL;    // result
1308   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1309   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1310 
1311   // result type needed
1312   fields = TypeTuple::fields(1);
1313   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1314 
1315   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1316   return TypeFunc::make(domain, range);
1317 }
1318 
1319 static const TypeFunc* make_montgomerySquare_Type() {
1320   // create input type (domain)
1321   int num_args      = 6;
1322   int argcnt = num_args;
1323   const Type** fields = TypeTuple::fields(argcnt);
1324   int argp = TypeFunc::Parms;
1325   fields[argp++] = TypePtr::NOTNULL;    // a
1326   fields[argp++] = TypePtr::NOTNULL;    // n
1327   fields[argp++] = TypeInt::INT;        // len
1328   fields[argp++] = TypeLong::LONG;      // inv
1329   fields[argp++] = Type::HALF;
1330   fields[argp++] = TypePtr::NOTNULL;    // result
1331   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1332   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1333 
1334   // result type needed
1335   fields = TypeTuple::fields(1);
1336   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1337 
1338   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1339   return TypeFunc::make(domain, range);
1340 }
1341 
1342 static const TypeFunc* make_bigIntegerShift_Type() {
1343   int argcnt = 5;
1344   const Type** fields = TypeTuple::fields(argcnt);
1345   int argp = TypeFunc::Parms;
1346   fields[argp++] = TypePtr::NOTNULL;    // newArr
1347   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1348   fields[argp++] = TypeInt::INT;        // newIdx
1349   fields[argp++] = TypeInt::INT;        // shiftCount
1350   fields[argp++] = TypeInt::INT;        // numIter
1351   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1352   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1353 
1354   // no result type needed
1355   fields = TypeTuple::fields(1);
1356   fields[TypeFunc::Parms + 0] = nullptr;
1357   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1358   return TypeFunc::make(domain, range);
1359 }
1360 
1361 static const TypeFunc* make_vectorizedMismatch_Type() {
1362   // create input type (domain)
1363   int num_args = 4;
1364   int argcnt = num_args;
1365   const Type** fields = TypeTuple::fields(argcnt);
1366   int argp = TypeFunc::Parms;
1367   fields[argp++] = TypePtr::NOTNULL;    // obja
1368   fields[argp++] = TypePtr::NOTNULL;    // objb
1369   fields[argp++] = TypeInt::INT;        // length, number of elements
1370   fields[argp++] = TypeInt::INT;        // log2scale, element size
1371   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1372   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1373 
1374   //return mismatch index (int)
1375   fields = TypeTuple::fields(1);
1376   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1377   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1378   return TypeFunc::make(domain, range);
1379 }
1380 
1381 static const TypeFunc* make_ghash_processBlocks_Type() {
1382   int argcnt = 4;
1383 
1384   const Type** fields = TypeTuple::fields(argcnt);
1385   int argp = TypeFunc::Parms;
1386   fields[argp++] = TypePtr::NOTNULL;    // state
1387   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1388   fields[argp++] = TypePtr::NOTNULL;    // data
1389   fields[argp++] = TypeInt::INT;        // blocks
1390   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1391   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1392 
1393   // result type needed
1394   fields = TypeTuple::fields(1);
1395   fields[TypeFunc::Parms+0] = nullptr; // void
1396   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1397   return TypeFunc::make(domain, range);
1398 }
1399 
1400 static const TypeFunc* make_chacha20Block_Type() {
1401   int argcnt = 2;
1402 
1403   const Type** fields = TypeTuple::fields(argcnt);
1404   int argp = TypeFunc::Parms;
1405   fields[argp++] = TypePtr::NOTNULL;      // state
1406   fields[argp++] = TypePtr::NOTNULL;      // result
1407 
1408   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1409   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1410 
1411   // result type needed
1412   fields = TypeTuple::fields(1);
1413   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1414   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1415   return TypeFunc::make(domain, range);
1416 }
1417 
1418 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1419 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1420     int argcnt = 2;
1421 
1422     const Type** fields = TypeTuple::fields(argcnt);
1423     int argp = TypeFunc::Parms;
1424     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1425     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1426 
1427     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1428     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1429 
1430     // result type needed
1431     fields = TypeTuple::fields(1);
1432     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1433     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1434     return TypeFunc::make(domain, range);
1435 }
1436 
1437 // Dilithium inverse NTT function except the final mod Q division by 2^256
1438 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1439     int argcnt = 2;
1440 
1441     const Type** fields = TypeTuple::fields(argcnt);
1442     int argp = TypeFunc::Parms;
1443     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1444     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1445 
1446     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1447     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1448 
1449     // result type needed
1450     fields = TypeTuple::fields(1);
1451     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1452     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1453     return TypeFunc::make(domain, range);
1454 }
1455 
1456 // Dilithium NTT multiply function
1457 static const TypeFunc* make_dilithiumNttMult_Type() {
1458     int argcnt = 3;
1459 
1460     const Type** fields = TypeTuple::fields(argcnt);
1461     int argp = TypeFunc::Parms;
1462     fields[argp++] = TypePtr::NOTNULL;      // result
1463     fields[argp++] = TypePtr::NOTNULL;      // ntta
1464     fields[argp++] = TypePtr::NOTNULL;      // nttb
1465 
1466     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1467     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1468 
1469     // result type needed
1470     fields = TypeTuple::fields(1);
1471     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1472     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1473     return TypeFunc::make(domain, range);
1474 }
1475 
1476 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1477 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1478     int argcnt = 2;
1479 
1480     const Type** fields = TypeTuple::fields(argcnt);
1481     int argp = TypeFunc::Parms;
1482     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1483     fields[argp++] = TypeInt::INT;          // constant multiplier
1484 
1485     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1486     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1487 
1488     // result type needed
1489     fields = TypeTuple::fields(1);
1490     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1491     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1492     return TypeFunc::make(domain, range);
1493 }
1494 
1495 // Dilithium decompose polynomial
1496 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1497     int argcnt = 5;
1498 
1499     const Type** fields = TypeTuple::fields(argcnt);
1500     int argp = TypeFunc::Parms;
1501     fields[argp++] = TypePtr::NOTNULL;      // input
1502     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1503     fields[argp++] = TypePtr::NOTNULL;      // highPart
1504     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1505     fields[argp++] = TypeInt::INT;          // multiplier
1506 
1507     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1508     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1509 
1510     // result type needed
1511     fields = TypeTuple::fields(1);
1512     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1513     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1514     return TypeFunc::make(domain, range);
1515 }
1516 
1517 static const TypeFunc* make_base64_encodeBlock_Type() {
1518   int argcnt = 6;
1519 
1520   const Type** fields = TypeTuple::fields(argcnt);
1521   int argp = TypeFunc::Parms;
1522   fields[argp++] = TypePtr::NOTNULL;    // src array
1523   fields[argp++] = TypeInt::INT;        // offset
1524   fields[argp++] = TypeInt::INT;        // length
1525   fields[argp++] = TypePtr::NOTNULL;    // dest array
1526   fields[argp++] = TypeInt::INT;       // dp
1527   fields[argp++] = TypeInt::BOOL;       // isURL
1528   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1529   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1530 
1531   // result type needed
1532   fields = TypeTuple::fields(1);
1533   fields[TypeFunc::Parms + 0] = nullptr; // void
1534   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1535   return TypeFunc::make(domain, range);
1536 }
1537 
1538 static const TypeFunc* make_string_IndexOf_Type() {
1539   int argcnt = 4;
1540 
1541   const Type** fields = TypeTuple::fields(argcnt);
1542   int argp = TypeFunc::Parms;
1543   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1544   fields[argp++] = TypeInt::INT;        // haystack length
1545   fields[argp++] = TypePtr::NOTNULL;    // needle array
1546   fields[argp++] = TypeInt::INT;        // needle length
1547   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1548   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1549 
1550   // result type needed
1551   fields = TypeTuple::fields(1);
1552   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1553   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1554   return TypeFunc::make(domain, range);
1555 }
1556 
1557 static const TypeFunc* make_base64_decodeBlock_Type() {
1558   int argcnt = 7;
1559 
1560   const Type** fields = TypeTuple::fields(argcnt);
1561   int argp = TypeFunc::Parms;
1562   fields[argp++] = TypePtr::NOTNULL;    // src array
1563   fields[argp++] = TypeInt::INT;        // src offset
1564   fields[argp++] = TypeInt::INT;        // src length
1565   fields[argp++] = TypePtr::NOTNULL;    // dest array
1566   fields[argp++] = TypeInt::INT;        // dest offset
1567   fields[argp++] = TypeInt::BOOL;       // isURL
1568   fields[argp++] = TypeInt::BOOL;       // isMIME
1569   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1570   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1571 
1572   // result type needed
1573   fields = TypeTuple::fields(1);
1574   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1575   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1576   return TypeFunc::make(domain, range);
1577 }
1578 
1579 static const TypeFunc* make_poly1305_processBlocks_Type() {
1580   int argcnt = 4;
1581 
1582   const Type** fields = TypeTuple::fields(argcnt);
1583   int argp = TypeFunc::Parms;
1584   fields[argp++] = TypePtr::NOTNULL;    // input array
1585   fields[argp++] = TypeInt::INT;        // input length
1586   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1587   fields[argp++] = TypePtr::NOTNULL;    // r array
1588   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1589   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1590 
1591   // result type needed
1592   fields = TypeTuple::fields(1);
1593   fields[TypeFunc::Parms + 0] = nullptr; // void
1594   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1595   return TypeFunc::make(domain, range);
1596 }
1597 
1598 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1599   int argcnt = 3;
1600 
1601   const Type** fields = TypeTuple::fields(argcnt);
1602   int argp = TypeFunc::Parms;
1603   fields[argp++] = TypePtr::NOTNULL;    // a array
1604   fields[argp++] = TypePtr::NOTNULL;    // b array
1605   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1606   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1607   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1608 
1609   // result type needed
1610   fields = TypeTuple::fields(1);
1611   fields[TypeFunc::Parms + 0] = nullptr; // void
1612   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1613   return TypeFunc::make(domain, range);
1614 }
1615 
1616 static const TypeFunc* make_intpoly_assign_Type() {
1617   int argcnt = 4;
1618 
1619   const Type** fields = TypeTuple::fields(argcnt);
1620   int argp = TypeFunc::Parms;
1621   fields[argp++] = TypeInt::INT;        // set flag
1622   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1623   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1624   fields[argp++] = TypeInt::INT;        // array length
1625   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1626   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1627 
1628   // result type needed
1629   fields = TypeTuple::fields(1);
1630   fields[TypeFunc::Parms + 0] = nullptr; // void
1631   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1632   return TypeFunc::make(domain, range);
1633 }
1634 
1635 //------------- Interpreter state for on stack replacement
1636 static const TypeFunc* make_osr_end_Type() {
1637   // create input type (domain)
1638   const Type **fields = TypeTuple::fields(1);
1639   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1640   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1641 
1642   // create result type
1643   fields = TypeTuple::fields(1);
1644   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1645   fields[TypeFunc::Parms+0] = nullptr; // void
1646   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1647   return TypeFunc::make(domain, range);
1648 }
1649 
1650 //-------------------------------------------------------------------------------------
1651 // register policy
1652 
1653 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1654   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1655   switch (register_save_policy[reg]) {
1656     case 'C': return false; //SOC
1657     case 'E': return true ; //SOE
1658     case 'N': return false; //NS
1659     case 'A': return false; //AS
1660   }
1661   ShouldNotReachHere();
1662   return false;
1663 }
1664 
1665 //-----------------------------------------------------------------------
1666 // Exceptions
1667 //
1668 
1669 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1670 
1671 // The method is an entry that is always called by a C++ method not
1672 // directly from compiled code. Compiled code will call the C++ method following.
1673 // We can't allow async exception to be installed during  exception processing.
1674 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1675   // The frame we rethrow the exception to might not have been processed by the GC yet.
1676   // The stack watermark barrier takes care of detecting that and ensuring the frame
1677   // has updated oops.
1678   StackWatermarkSet::after_unwind(current);
1679 
1680   // Do not confuse exception_oop with pending_exception. The exception_oop
1681   // is only used to pass arguments into the method. Not for general
1682   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1683   // the runtime stubs checks this on exit.
1684   assert(current->exception_oop() != nullptr, "exception oop is found");
1685   address handler_address = nullptr;
1686 
1687   Handle exception(current, current->exception_oop());
1688   address pc = current->exception_pc();
1689 
1690   // Clear out the exception oop and pc since looking up an
1691   // exception handler can cause class loading, which might throw an
1692   // exception and those fields are expected to be clear during
1693   // normal bytecode execution.
1694   current->clear_exception_oop_and_pc();
1695 
1696   LogTarget(Info, exceptions) lt;
1697   if (lt.is_enabled()) {
1698     ResourceMark rm;
1699     LogStream ls(lt);
1700     trace_exception(&ls, exception(), pc, "");
1701   }
1702 
1703   // for AbortVMOnException flag
1704   Exceptions::debug_check_abort(exception);
1705 
1706 #ifdef ASSERT
1707   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1708     // should throw an exception here
1709     ShouldNotReachHere();
1710   }
1711 #endif
1712 
1713   // new exception handling: this method is entered only from adapters
1714   // exceptions from compiled java methods are handled in compiled code
1715   // using rethrow node
1716 
1717   nm = CodeCache::find_nmethod(pc);
1718   assert(nm != nullptr, "No NMethod found");
1719   if (nm->is_native_method()) {
1720     fatal("Native method should not have path to exception handling");
1721   } else {
1722     // we are switching to old paradigm: search for exception handler in caller_frame
1723     // instead in exception handler of caller_frame.sender()
1724 
1725     if (JvmtiExport::can_post_on_exceptions()) {
1726       // "Full-speed catching" is not necessary here,
1727       // since we're notifying the VM on every catch.
1728       // Force deoptimization and the rest of the lookup
1729       // will be fine.
1730       deoptimize_caller_frame(current);
1731     }
1732 
1733     // Check the stack guard pages.  If enabled, look for handler in this frame;
1734     // otherwise, forcibly unwind the frame.
1735     //
1736     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1737     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1738     bool deopting = false;
1739     if (nm->is_deopt_pc(pc)) {
1740       deopting = true;
1741       RegisterMap map(current,
1742                       RegisterMap::UpdateMap::skip,
1743                       RegisterMap::ProcessFrames::include,
1744                       RegisterMap::WalkContinuation::skip);
1745       frame deoptee = current->last_frame().sender(&map);
1746       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1747       // Adjust the pc back to the original throwing pc
1748       pc = deoptee.pc();
1749     }
1750 
1751     // If we are forcing an unwind because of stack overflow then deopt is
1752     // irrelevant since we are throwing the frame away anyway.
1753 
1754     if (deopting && !force_unwind) {
1755       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1756     } else {
1757 
1758       handler_address =
1759         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1760 
1761       if (handler_address == nullptr) {
1762         bool recursive_exception = false;
1763         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1764         assert (handler_address != nullptr, "must have compiled handler");
1765         // Update the exception cache only when the unwind was not forced
1766         // and there didn't happen another exception during the computation of the
1767         // compiled exception handler. Checking for exception oop equality is not
1768         // sufficient because some exceptions are pre-allocated and reused.
1769         if (!force_unwind && !recursive_exception) {
1770           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1771         }
1772       } else {
1773 #ifdef ASSERT
1774         bool recursive_exception = false;
1775         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1776         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1777                  p2i(handler_address), p2i(computed_address));
1778 #endif
1779       }
1780     }
1781 
1782     current->set_exception_pc(pc);
1783     current->set_exception_handler_pc(handler_address);
1784 
1785     // Check if the exception PC is a MethodHandle call site.
1786     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1787   }
1788 
1789   // Restore correct return pc.  Was saved above.
1790   current->set_exception_oop(exception());
1791   return handler_address;
1792 
1793 JRT_END
1794 
1795 // We are entering here from exception_blob
1796 // If there is a compiled exception handler in this method, we will continue there;
1797 // otherwise we will unwind the stack and continue at the caller of top frame method
1798 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1799 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1800 // we looked up the handler for has been deoptimized in the meantime. If it has been
1801 // we must not use the handler and instead return the deopt blob.
1802 address OptoRuntime::handle_exception_C(JavaThread* current) {
1803 //
1804 // We are in Java not VM and in debug mode we have a NoHandleMark
1805 //
1806 #ifndef PRODUCT
1807   SharedRuntime::_find_handler_ctr++;          // find exception handler
1808 #endif
1809   debug_only(NoHandleMark __hm;)
1810   nmethod* nm = nullptr;
1811   address handler_address = nullptr;
1812   {
1813     // Enter the VM
1814 
1815     ResetNoHandleMark rnhm;
1816     handler_address = handle_exception_C_helper(current, nm);
1817   }
1818 
1819   // Back in java: Use no oops, DON'T safepoint
1820 
1821   // Now check to see if the handler we are returning is in a now
1822   // deoptimized frame
1823 
1824   if (nm != nullptr) {
1825     RegisterMap map(current,
1826                     RegisterMap::UpdateMap::skip,
1827                     RegisterMap::ProcessFrames::skip,
1828                     RegisterMap::WalkContinuation::skip);
1829     frame caller = current->last_frame().sender(&map);
1830 #ifdef ASSERT
1831     assert(caller.is_compiled_frame(), "must be");
1832 #endif // ASSERT
1833     if (caller.is_deoptimized_frame()) {
1834       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1835     }
1836   }
1837   return handler_address;
1838 }
1839 
1840 //------------------------------rethrow----------------------------------------
1841 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1842 // is either throwing or rethrowing an exception.  The callee-save registers
1843 // have been restored, synchronized objects have been unlocked and the callee
1844 // stack frame has been removed.  The return address was passed in.
1845 // Exception oop is passed as the 1st argument.  This routine is then called
1846 // from the stub.  On exit, we know where to jump in the caller's code.
1847 // After this C code exits, the stub will pop his frame and end in a jump
1848 // (instead of a return).  We enter the caller's default handler.
1849 //
1850 // This must be JRT_LEAF:
1851 //     - caller will not change its state as we cannot block on exit,
1852 //       therefore raw_exception_handler_for_return_address is all it takes
1853 //       to handle deoptimized blobs
1854 //
1855 // However, there needs to be a safepoint check in the middle!  So compiled
1856 // safepoints are completely watertight.
1857 //
1858 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1859 //
1860 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1861 //
1862 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1863   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1864   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1865 
1866 #ifndef PRODUCT
1867   SharedRuntime::_rethrow_ctr++;               // count rethrows
1868 #endif
1869   assert (exception != nullptr, "should have thrown a NullPointerException");
1870 #ifdef ASSERT
1871   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1872     // should throw an exception here
1873     ShouldNotReachHere();
1874   }
1875 #endif
1876 
1877   thread->set_vm_result(exception);
1878   // Frame not compiled (handles deoptimization blob)
1879   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1880 }
1881 
1882 static const TypeFunc* make_rethrow_Type() {
1883   // create input type (domain)
1884   const Type **fields = TypeTuple::fields(1);
1885   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1886   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1887 
1888   // create result type (range)
1889   fields = TypeTuple::fields(1);
1890   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1891   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1892 
1893   return TypeFunc::make(domain, range);
1894 }
1895 
1896 
1897 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1898   // Deoptimize the caller before continuing, as the compiled
1899   // exception handler table may not be valid.
1900   if (!StressCompiledExceptionHandlers && doit) {
1901     deoptimize_caller_frame(thread);
1902   }
1903 }
1904 
1905 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1906   // Called from within the owner thread, so no need for safepoint
1907   RegisterMap reg_map(thread,
1908                       RegisterMap::UpdateMap::include,
1909                       RegisterMap::ProcessFrames::include,
1910                       RegisterMap::WalkContinuation::skip);
1911   frame stub_frame = thread->last_frame();
1912   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1913   frame caller_frame = stub_frame.sender(&reg_map);
1914 
1915   // Deoptimize the caller frame.
1916   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1917 }
1918 
1919 
1920 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1921   // Called from within the owner thread, so no need for safepoint
1922   RegisterMap reg_map(thread,
1923                       RegisterMap::UpdateMap::include,
1924                       RegisterMap::ProcessFrames::include,
1925                       RegisterMap::WalkContinuation::skip);
1926   frame stub_frame = thread->last_frame();
1927   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1928   frame caller_frame = stub_frame.sender(&reg_map);
1929   return caller_frame.is_deoptimized_frame();
1930 }
1931 
1932 static const TypeFunc* make_register_finalizer_Type() {
1933   // create input type (domain)
1934   const Type **fields = TypeTuple::fields(1);
1935   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1936   // // The JavaThread* is passed to each routine as the last argument
1937   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1938   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1939 
1940   // create result type (range)
1941   fields = TypeTuple::fields(0);
1942 
1943   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1944 
1945   return TypeFunc::make(domain, range);
1946 }
1947 
1948 #if INCLUDE_JFR
1949 static const TypeFunc* make_class_id_load_barrier_Type() {
1950   // create input type (domain)
1951   const Type **fields = TypeTuple::fields(1);
1952   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1953   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1954 
1955   // create result type (range)
1956   fields = TypeTuple::fields(0);
1957 
1958   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1959 
1960   return TypeFunc::make(domain,range);
1961 }
1962 #endif // INCLUDE_JFR
1963 
1964 //-----------------------------------------------------------------------------
1965 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
1966   // create input type (domain)
1967   const Type **fields = TypeTuple::fields(2);
1968   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1969   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1970   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1971 
1972   // create result type (range)
1973   fields = TypeTuple::fields(0);
1974 
1975   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1976 
1977   return TypeFunc::make(domain, range);
1978 }
1979 
1980 static const TypeFunc* make_dtrace_object_alloc_Type() {
1981   // create input type (domain)
1982   const Type **fields = TypeTuple::fields(2);
1983   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1984   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1985 
1986   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1987 
1988   // create result type (range)
1989   fields = TypeTuple::fields(0);
1990 
1991   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1992 
1993   return TypeFunc::make(domain, range);
1994 }
1995 
1996 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
1997   assert(oopDesc::is_oop(obj), "must be a valid oop");
1998   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1999   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2000 JRT_END
2001 
2002 //-----------------------------------------------------------------------------
2003 
2004 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2005 
2006 //
2007 // dump the collected NamedCounters.
2008 //
2009 void OptoRuntime::print_named_counters() {
2010   int total_lock_count = 0;
2011   int eliminated_lock_count = 0;
2012 
2013   NamedCounter* c = _named_counters;
2014   while (c) {
2015     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2016       int count = c->count();
2017       if (count > 0) {
2018         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2019         if (Verbose) {
2020           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2021         }
2022         total_lock_count += count;
2023         if (eliminated) {
2024           eliminated_lock_count += count;
2025         }
2026       }
2027     }
2028     c = c->next();
2029   }
2030   if (total_lock_count > 0) {
2031     tty->print_cr("dynamic locks: %d", total_lock_count);
2032     if (eliminated_lock_count) {
2033       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2034                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2035     }
2036   }
2037 }
2038 
2039 //
2040 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2041 //  name which consists of method@line for the inlining tree.
2042 //
2043 
2044 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2045   int max_depth = youngest_jvms->depth();
2046 
2047   // Visit scopes from youngest to oldest.
2048   bool first = true;
2049   stringStream st;
2050   for (int depth = max_depth; depth >= 1; depth--) {
2051     JVMState* jvms = youngest_jvms->of_depth(depth);
2052     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2053     if (!first) {
2054       st.print(" ");
2055     } else {
2056       first = false;
2057     }
2058     int bci = jvms->bci();
2059     if (bci < 0) bci = 0;
2060     if (m != nullptr) {
2061       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2062     } else {
2063       st.print("no method");
2064     }
2065     st.print("@%d", bci);
2066     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2067   }
2068   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2069 
2070   // atomically add the new counter to the head of the list.  We only
2071   // add counters so this is safe.
2072   NamedCounter* head;
2073   do {
2074     c->set_next(nullptr);
2075     head = _named_counters;
2076     c->set_next(head);
2077   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2078   return c;
2079 }
2080 
2081 void OptoRuntime::initialize_types() {
2082   _new_instance_Type                  = make_new_instance_Type();
2083   _new_array_Type                     = make_new_array_Type();
2084   _multianewarray2_Type               = multianewarray_Type(2);
2085   _multianewarray3_Type               = multianewarray_Type(3);
2086   _multianewarray4_Type               = multianewarray_Type(4);
2087   _multianewarray5_Type               = multianewarray_Type(5);
2088   _multianewarrayN_Type               = make_multianewarrayN_Type();
2089   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2090   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2091   _monitor_notify_Type                = make_monitor_notify_Type();
2092   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2093   _athrow_Type                        = make_athrow_Type();
2094   _rethrow_Type                       = make_rethrow_Type();
2095   _Math_D_D_Type                      = make_Math_D_D_Type();
2096   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2097   _modf_Type                          = make_modf_Type();
2098   _l2f_Type                           = make_l2f_Type();
2099   _void_long_Type                     = make_void_long_Type();
2100   _void_void_Type                     = make_void_void_Type();
2101   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2102   _flush_windows_Type                 = make_flush_windows_Type();
2103   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2104   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2105   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2106   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2107   _unsafe_setmemory_Type              = make_setmemory_Type();
2108   _array_fill_Type                    = make_array_fill_Type();
2109   _array_sort_Type                    = make_array_sort_Type();
2110   _array_partition_Type               = make_array_partition_Type();
2111   _aescrypt_block_Type                = make_aescrypt_block_Type();
2112   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2113   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2114   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2115   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2116   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2117   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2118   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2119   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2120   _double_keccak_Type                 = make_double_keccak_Type();
2121   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2122   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2123   _montgomerySquare_Type              = make_montgomerySquare_Type();
2124   _squareToLen_Type                   = make_squareToLen_Type();
2125   _mulAdd_Type                        = make_mulAdd_Type();
2126   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2127   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2128   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2129   _chacha20Block_Type                 = make_chacha20Block_Type();
2130 
2131   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2132   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2133   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2134   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2135   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2136 
2137   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2138   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2139   _string_IndexOf_Type                = make_string_IndexOf_Type();
2140   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2141   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2142   _intpoly_assign_Type                = make_intpoly_assign_Type();
2143   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2144   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2145   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2146   _osr_end_Type                       = make_osr_end_Type();
2147   _register_finalizer_Type            = make_register_finalizer_Type();
2148   JFR_ONLY(
2149     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2150   )
2151 #if INCLUDE_JVMTI
2152   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2153 #endif // INCLUDE_JVMTI
2154   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2155   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2156 }
2157 
2158 int trace_exception_counter = 0;
2159 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2160   trace_exception_counter++;
2161   stringStream tempst;
2162 
2163   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2164   exception_oop->print_value_on(&tempst);
2165   tempst.print(" in ");
2166   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2167   if (blob->is_nmethod()) {
2168     blob->as_nmethod()->method()->print_value_on(&tempst);
2169   } else if (blob->is_runtime_stub()) {
2170     tempst.print("<runtime-stub>");
2171   } else {
2172     tempst.print("<unknown>");
2173   }
2174   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2175   tempst.print("]");
2176 
2177   st->print_raw_cr(tempst.freeze());
2178 }
2179 
2180 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2181   // create input type (domain)
2182   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2183   const Type **fields = TypeTuple::fields(total);
2184   // We don't know the number of returned values and their
2185   // types. Assume all registers available to the return convention
2186   // are used.
2187   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2188   uint i = 1;
2189   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2190     fields[TypeFunc::Parms+i] = TypeInt::INT;
2191   }
2192   for (; i < total; i+=2) {
2193     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2194     fields[TypeFunc::Parms+i+1] = Type::HALF;
2195   }
2196   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2197 
2198   // create result type (range)
2199   fields = TypeTuple::fields(1);
2200   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2201 
2202   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2203 
2204   return TypeFunc::make(domain, range);
2205 }
2206 
2207 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2208   // create input type (domain)
2209   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2210   const Type **fields = TypeTuple::fields(total);
2211   // We don't know the number of returned values and their
2212   // types. Assume all registers available to the return convention
2213   // are used.
2214   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2215   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2216   uint i = 2;
2217   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2218     fields[TypeFunc::Parms+i] = TypeInt::INT;
2219   }
2220   for (; i < total; i+=2) {
2221     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2222     fields[TypeFunc::Parms+i+1] = Type::HALF;
2223   }
2224   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2225 
2226   // create result type (range)
2227   fields = TypeTuple::fields(1);
2228   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2229 
2230   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2231 
2232   return TypeFunc::make(domain, range);
2233 }
2234 
2235 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2236   JRT_BLOCK;
2237   oop buffer = array->read_value_from_flat_array(index, THREAD);
2238   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2239   current->set_vm_result(buffer);
2240   JRT_BLOCK_END;
2241 JRT_END
2242 
2243 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2244   // create input type (domain)
2245   const Type** fields = TypeTuple::fields(2);
2246   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2247   fields[TypeFunc::Parms+1] = TypeInt::POS;
2248 
2249   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2250 
2251   // create result type (range)
2252   fields = TypeTuple::fields(1);
2253   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2254 
2255   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2256 
2257   return TypeFunc::make(domain, range);
2258 }
2259 
2260 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2261   JRT_BLOCK;
2262   array->write_value_to_flat_array(buffer, index, THREAD);
2263   if (HAS_PENDING_EXCEPTION) {
2264       fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2265   }
2266   JRT_BLOCK_END;
2267 JRT_END
2268 
2269 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2270   // create input type (domain)
2271   const Type** fields = TypeTuple::fields(3);
2272   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2273   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2274   fields[TypeFunc::Parms+2] = TypeInt::POS;
2275 
2276   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2277 
2278   // create result type (range)
2279   fields = TypeTuple::fields(0);
2280   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2281 
2282   return TypeFunc::make(domain, range);
2283 }