1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/flatArrayKlass.hpp"
  48 #include "oops/flatArrayOop.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadWXSetters.inline.hpp"
  76 #include "runtime/vframe.hpp"
  77 #include "runtime/vframeArray.hpp"
  78 #include "runtime/vframe_hp.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/preserveException.hpp"
  81 
  82 
  83 // For debugging purposes:
  84 //  To force FullGCALot inside a runtime function, add the following two lines
  85 //
  86 //  Universe::release_fullgc_alot_dummy();
  87 //  Universe::heap()->collect();
  88 //
  89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  90 
  91 
  92 #define C2_BLOB_FIELD_DEFINE(name, type) \
  93   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  94 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  95 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  96   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  97 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  98   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
  99 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 100 #undef C2_BLOB_FIELD_DEFINE
 101 #undef C2_STUB_FIELD_DEFINE
 102 #undef C2_JVMTI_STUB_FIELD_DEFINE
 103 
 104 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 105 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 106 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 107 const char* OptoRuntime::_stub_names[] = {
 108   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 109 };
 110 #undef C2_BLOB_NAME_DEFINE
 111 #undef C2_STUB_NAME_DEFINE
 112 #undef C2_JVMTI_STUB_NAME_DEFINE
 113 
 114 // This should be called in an assertion at the start of OptoRuntime routines
 115 // which are entered from compiled code (all of them)
 116 #ifdef ASSERT
 117 static bool check_compiled_frame(JavaThread* thread) {
 118   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 119   RegisterMap map(thread,
 120                   RegisterMap::UpdateMap::skip,
 121                   RegisterMap::ProcessFrames::include,
 122                   RegisterMap::WalkContinuation::skip);
 123   frame caller = thread->last_frame().sender(&map);
 124   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 125   return true;
 126 }
 127 #endif // ASSERT
 128 
 129 /*
 130 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 131   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 132   if (var == nullptr) { return false; }
 133 */
 134 
 135 #define GEN_C2_BLOB(name, type)                    \
 136   BLOB_FIELD_NAME(name) =                       \
 137     generate_ ## name ## _blob();                  \
 138   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 139 
 140 // a few helper macros to conjure up generate_stub call arguments
 141 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 142 #define C2_STUB_TYPEFUNC(name) name ## _Type
 143 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 144 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 145 #define C2_STUB_ID(name) OptoStubId::name ## _id
 146 
 147 // Almost all the C functions targeted from the generated stubs are
 148 // implemented locally to OptoRuntime with names that can be generated
 149 // from the stub name by appending suffix '_C'. However, in two cases
 150 // a common target method also needs to be called from shared runtime
 151 // stubs. In these two cases the opto stubs rely on method
 152 // imlementations defined in class SharedRuntime. The following
 153 // defines temporarily rebind the generated names to reference the
 154 // relevant implementations.
 155 
 156 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 157   C2_STUB_FIELD_NAME(name) =                                          \
 158     generate_stub(env,                                                \
 159                   C2_STUB_TYPEFUNC(name),                             \
 160                   C2_STUB_C_FUNC(name),                               \
 161                   C2_STUB_NAME(name),                                 \
 162                   (int)C2_STUB_ID(name),                              \
 163                   fancy_jump,                                         \
 164                   pass_tls,                                           \
 165                   pass_retpc);                                        \
 166   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 167 
 168 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 169 
 170 #define GEN_C2_JVMTI_STUB(name)                                       \
 171   STUB_FIELD_NAME(name) =                                             \
 172     generate_stub(env,                                                \
 173                   notify_jvmti_vthread_Type,                          \
 174                   C2_JVMTI_STUB_C_FUNC(name),                         \
 175                   C2_STUB_NAME(name),                                 \
 176                   (int)C2_STUB_ID(name),                              \
 177                   0,                                                  \
 178                   true,                                               \
 179                   false);                                             \
 180   if (STUB_FIELD_NAME(name) == nullptr) { return false; }             \
 181 
 182 bool OptoRuntime::generate(ciEnv* env) {
 183 
 184   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 185 
 186   return true;
 187 }
 188 
 189 #undef GEN_C2_BLOB
 190 
 191 #undef C2_STUB_FIELD_NAME
 192 #undef C2_STUB_TYPEFUNC
 193 #undef C2_STUB_C_FUNC
 194 #undef C2_STUB_NAME
 195 #undef GEN_C2_STUB
 196 
 197 #undef C2_JVMTI_STUB_C_FUNC
 198 #undef GEN_C2_JVMTI_STUB
 199 // #undef gen
 200 
 201 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 202 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 203 const TypeFunc* OptoRuntime::_new_array_nozero_Type               = nullptr;
 204 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 205 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 206 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 207 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 208 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 209 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 210 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 211 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 212 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 213 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 214 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 215 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 216 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 217 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 218 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 219 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 220 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 221 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 222 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 223 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 224 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 225 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 226 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 227 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 228 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 229 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 230 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 231 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 232 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 233 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 234 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 235 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 236 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 237 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 238 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 239 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 240 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 241 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 242 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 244 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 245 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 246 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 247 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 248 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 249 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 250 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 251 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 252 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 253 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 254 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 255 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 256 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 257 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 258 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 259 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 260 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 261 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 262 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 263 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 264 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 265 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 266 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 267 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 268 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 269 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 270 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 271 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 272 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 273 #if INCLUDE_JFR
 274 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 275 #endif // INCLUDE_JFR
 276 #if INCLUDE_JVMTI
 277 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 278 #endif // INCLUDE_JVMTI
 279 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 280 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 281 
 282 // Helper method to do generation of RunTimeStub's
 283 address OptoRuntime::generate_stub(ciEnv* env,
 284                                    TypeFunc_generator gen, address C_function,
 285                                    const char *name, int stub_id,
 286                                    int is_fancy_jump, bool pass_tls,
 287                                    bool return_pc) {
 288 
 289   // Matching the default directive, we currently have no method to match.
 290   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 291   CompilationMemoryStatisticMark cmsm(directive);
 292   ResourceMark rm;
 293   Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive);
 294   DirectivesStack::release(directive);
 295   return  C.stub_entry_point();
 296 }
 297 
 298 const char* OptoRuntime::stub_name(address entry) {
 299 #ifndef PRODUCT
 300   CodeBlob* cb = CodeCache::find_blob(entry);
 301   RuntimeStub* rs =(RuntimeStub *)cb;
 302   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 303   return rs->name();
 304 #else
 305   // Fast implementation for product mode (maybe it should be inlined too)
 306   return "runtime stub";
 307 #endif
 308 }
 309 
 310 // local methods passed as arguments to stub generator that forward
 311 // control to corresponding JRT methods of SharedRuntime
 312 
 313 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 314                                    oopDesc* dest, jint dest_pos,
 315                                    jint length, JavaThread* thread) {
 316   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 317 }
 318 
 319 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 320   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 321 }
 322 
 323 
 324 //=============================================================================
 325 // Opto compiler runtime routines
 326 //=============================================================================
 327 
 328 
 329 //=============================allocation======================================
 330 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 331 // and try allocation again.
 332 
 333 // object allocation
 334 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 335   JRT_BLOCK;
 336 #ifndef PRODUCT
 337   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 338 #endif
 339   assert(check_compiled_frame(current), "incorrect caller");
 340 
 341   // These checks are cheap to make and support reflective allocation.
 342   int lh = klass->layout_helper();
 343   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 344     Handle holder(current, klass->klass_holder()); // keep the klass alive
 345     klass->check_valid_for_instantiation(false, THREAD);
 346     if (!HAS_PENDING_EXCEPTION) {
 347       InstanceKlass::cast(klass)->initialize(THREAD);
 348     }
 349   }
 350 
 351   if (!HAS_PENDING_EXCEPTION) {
 352     // Scavenge and allocate an instance.
 353     Handle holder(current, klass->klass_holder()); // keep the klass alive
 354     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 355     if (is_larval) {
 356       // Check if this is a larval buffer allocation
 357       result->set_mark(result->mark().enter_larval_state());
 358     }
 359     current->set_vm_result_oop(result);
 360 
 361     // Pass oops back through thread local storage.  Our apparent type to Java
 362     // is that we return an oop, but we can block on exit from this routine and
 363     // a GC can trash the oop in C's return register.  The generated stub will
 364     // fetch the oop from TLS after any possible GC.
 365   }
 366 
 367   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 368   JRT_BLOCK_END;
 369 
 370   // inform GC that we won't do card marks for initializing writes.
 371   SharedRuntime::on_slowpath_allocation_exit(current);
 372 JRT_END
 373 
 374 
 375 // array allocation
 376 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current))
 377   JRT_BLOCK;
 378 #ifndef PRODUCT
 379   SharedRuntime::_new_array_ctr++;            // new array requires GC
 380 #endif
 381   assert(check_compiled_frame(current), "incorrect caller");
 382 
 383   // Scavenge and allocate an instance.
 384   oop result;
 385   Handle h_init_val(current, init_val); // keep the init_val object alive
 386 
 387   if (array_type->is_flatArray_klass()) {
 388     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 389     FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
 390     InlineKlass* vk = fak->element_klass();
 391     result = oopFactory::new_flatArray(vk, len, fak->layout_kind(), THREAD);
 392     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 393       // Null-free arrays need to be initialized
 394       for (int i = 0; i < len; i++) {
 395         vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK);
 396       }
 397     }
 398   } else if (array_type->is_typeArray_klass()) {
 399     // The oopFactory likes to work with the element type.
 400     // (We could bypass the oopFactory, since it doesn't add much value.)
 401     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 402     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 403   } else {
 404     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 405     ObjArrayKlass* array_klass = ObjArrayKlass::cast(array_type);
 406     result = array_klass->allocate(len, THREAD);
 407     if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
 408       // Null-free arrays need to be initialized
 409       for (int i = 0; i < len; i++) {
 410         ((objArrayOop)result)->obj_at_put(i, h_init_val());
 411       }
 412     }
 413   }
 414 
 415   // Pass oops back through thread local storage.  Our apparent type to Java
 416   // is that we return an oop, but we can block on exit from this routine and
 417   // a GC can trash the oop in C's return register.  The generated stub will
 418   // fetch the oop from TLS after any possible GC.
 419   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 420   current->set_vm_result_oop(result);
 421   JRT_BLOCK_END;
 422 
 423   // inform GC that we won't do card marks for initializing writes.
 424   SharedRuntime::on_slowpath_allocation_exit(current);
 425 JRT_END
 426 
 427 // array allocation without zeroing
 428 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 429   JRT_BLOCK;
 430 #ifndef PRODUCT
 431   SharedRuntime::_new_array_ctr++;            // new array requires GC
 432 #endif
 433   assert(check_compiled_frame(current), "incorrect caller");
 434 
 435   // Scavenge and allocate an instance.
 436   oop result;
 437 
 438   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 439   // The oopFactory likes to work with the element type.
 440   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 441   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 442 
 443   // Pass oops back through thread local storage.  Our apparent type to Java
 444   // is that we return an oop, but we can block on exit from this routine and
 445   // a GC can trash the oop in C's return register.  The generated stub will
 446   // fetch the oop from TLS after any possible GC.
 447   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 448   current->set_vm_result_oop(result);
 449   JRT_BLOCK_END;
 450 
 451 
 452   // inform GC that we won't do card marks for initializing writes.
 453   SharedRuntime::on_slowpath_allocation_exit(current);
 454 
 455   oop result = current->vm_result_oop();
 456   if ((len > 0) && (result != nullptr) &&
 457       is_deoptimized_caller_frame(current)) {
 458     // Zero array here if the caller is deoptimized.
 459     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 460     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 461     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 462     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 463     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 464     if (!is_aligned(hs_bytes, BytesPerLong)) {
 465       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 466       hs_bytes += BytesPerInt;
 467     }
 468 
 469     // Optimized zeroing.
 470     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 471     const size_t aligned_hs = hs_bytes / BytesPerLong;
 472     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 473   }
 474 
 475 JRT_END
 476 
 477 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 478 
 479 // multianewarray for 2 dimensions
 480 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 481 #ifndef PRODUCT
 482   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 483 #endif
 484   assert(check_compiled_frame(current), "incorrect caller");
 485   assert(elem_type->is_klass(), "not a class");
 486   jint dims[2];
 487   dims[0] = len1;
 488   dims[1] = len2;
 489   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 490   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 491   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 492   current->set_vm_result_oop(obj);
 493 JRT_END
 494 
 495 // multianewarray for 3 dimensions
 496 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 497 #ifndef PRODUCT
 498   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 499 #endif
 500   assert(check_compiled_frame(current), "incorrect caller");
 501   assert(elem_type->is_klass(), "not a class");
 502   jint dims[3];
 503   dims[0] = len1;
 504   dims[1] = len2;
 505   dims[2] = len3;
 506   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 507   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 508   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 509   current->set_vm_result_oop(obj);
 510 JRT_END
 511 
 512 // multianewarray for 4 dimensions
 513 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 514 #ifndef PRODUCT
 515   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 516 #endif
 517   assert(check_compiled_frame(current), "incorrect caller");
 518   assert(elem_type->is_klass(), "not a class");
 519   jint dims[4];
 520   dims[0] = len1;
 521   dims[1] = len2;
 522   dims[2] = len3;
 523   dims[3] = len4;
 524   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 525   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 526   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 527   current->set_vm_result_oop(obj);
 528 JRT_END
 529 
 530 // multianewarray for 5 dimensions
 531 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 532 #ifndef PRODUCT
 533   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 534 #endif
 535   assert(check_compiled_frame(current), "incorrect caller");
 536   assert(elem_type->is_klass(), "not a class");
 537   jint dims[5];
 538   dims[0] = len1;
 539   dims[1] = len2;
 540   dims[2] = len3;
 541   dims[3] = len4;
 542   dims[4] = len5;
 543   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 544   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 545   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 546   current->set_vm_result_oop(obj);
 547 JRT_END
 548 
 549 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 550   assert(check_compiled_frame(current), "incorrect caller");
 551   assert(elem_type->is_klass(), "not a class");
 552   assert(oop(dims)->is_typeArray(), "not an array");
 553 
 554   ResourceMark rm;
 555   jint len = dims->length();
 556   assert(len > 0, "Dimensions array should contain data");
 557   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 558   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 559                                        c_dims, len);
 560 
 561   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 562   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 563   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 564   current->set_vm_result_oop(obj);
 565 JRT_END
 566 
 567 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 568 
 569   // Very few notify/notifyAll operations find any threads on the waitset, so
 570   // the dominant fast-path is to simply return.
 571   // Relatedly, it's critical that notify/notifyAll be fast in order to
 572   // reduce lock hold times.
 573   if (!SafepointSynchronize::is_synchronizing()) {
 574     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 575       return;
 576     }
 577   }
 578 
 579   // This is the case the fast-path above isn't provisioned to handle.
 580   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 581   // (The fast-path is just a degenerate variant of the slow-path).
 582   // Perform the dreaded state transition and pass control into the slow-path.
 583   JRT_BLOCK;
 584   Handle h_obj(current, obj);
 585   ObjectSynchronizer::notify(h_obj, CHECK);
 586   JRT_BLOCK_END;
 587 JRT_END
 588 
 589 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 590 
 591   if (!SafepointSynchronize::is_synchronizing() ) {
 592     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 593       return;
 594     }
 595   }
 596 
 597   // This is the case the fast-path above isn't provisioned to handle.
 598   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 599   // (The fast-path is just a degenerate variant of the slow-path).
 600   // Perform the dreaded state transition and pass control into the slow-path.
 601   JRT_BLOCK;
 602   Handle h_obj(current, obj);
 603   ObjectSynchronizer::notifyall(h_obj, CHECK);
 604   JRT_BLOCK_END;
 605 JRT_END
 606 
 607 static const TypeFunc* make_new_instance_Type() {
 608   // create input type (domain)
 609   const Type **fields = TypeTuple::fields(2);
 610   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 611   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 612   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 613 
 614   // create result type (range)
 615   fields = TypeTuple::fields(1);
 616   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 617 
 618   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 619 
 620   return TypeFunc::make(domain, range);
 621 }
 622 
 623 #if INCLUDE_JVMTI
 624 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 625   // create input type (domain)
 626   const Type **fields = TypeTuple::fields(2);
 627   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 628   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 629   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 630 
 631   // no result type needed
 632   fields = TypeTuple::fields(1);
 633   fields[TypeFunc::Parms+0] = nullptr; // void
 634   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 635 
 636   return TypeFunc::make(domain,range);
 637 }
 638 #endif
 639 
 640 static const TypeFunc* make_athrow_Type() {
 641   // create input type (domain)
 642   const Type **fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 645 
 646   // create result type (range)
 647   fields = TypeTuple::fields(0);
 648 
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 650 
 651   return TypeFunc::make(domain, range);
 652 }
 653 
 654 static const TypeFunc* make_new_array_Type() {
 655   // create input type (domain)
 656   const Type **fields = TypeTuple::fields(3);
 657   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 658   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 659   fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL;       // init value
 660   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 661 
 662   // create result type (range)
 663   fields = TypeTuple::fields(1);
 664   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 665 
 666   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 667 
 668   return TypeFunc::make(domain, range);
 669 }
 670 
 671 static const TypeFunc* make_new_array_nozero_Type() {
 672   // create input type (domain)
 673   const Type **fields = TypeTuple::fields(2);
 674   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 675   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 676   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 677 
 678   // create result type (range)
 679   fields = TypeTuple::fields(1);
 680   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 681 
 682   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 683 
 684   return TypeFunc::make(domain, range);
 685 }
 686 
 687 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 688   // create input type (domain)
 689   const int nargs = ndim + 1;
 690   const Type **fields = TypeTuple::fields(nargs);
 691   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 692   for( int i = 1; i < nargs; i++ )
 693     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 694   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 695 
 696   // create result type (range)
 697   fields = TypeTuple::fields(1);
 698   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 699   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 700 
 701   return TypeFunc::make(domain, range);
 702 }
 703 
 704 static const TypeFunc* make_multianewarrayN_Type() {
 705   // create input type (domain)
 706   const Type **fields = TypeTuple::fields(2);
 707   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 708   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 709   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 710 
 711   // create result type (range)
 712   fields = TypeTuple::fields(1);
 713   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 714   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 715 
 716   return TypeFunc::make(domain, range);
 717 }
 718 
 719 static const TypeFunc* make_uncommon_trap_Type() {
 720   // create input type (domain)
 721   const Type **fields = TypeTuple::fields(1);
 722   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 723   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 724 
 725   // create result type (range)
 726   fields = TypeTuple::fields(0);
 727   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 728 
 729   return TypeFunc::make(domain, range);
 730 }
 731 
 732 //-----------------------------------------------------------------------------
 733 // Monitor Handling
 734 
 735 static const TypeFunc* make_complete_monitor_enter_Type() {
 736   // create input type (domain)
 737   const Type **fields = TypeTuple::fields(2);
 738   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 739   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 740   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 741 
 742   // create result type (range)
 743   fields = TypeTuple::fields(0);
 744 
 745   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 746 
 747   return TypeFunc::make(domain, range);
 748 }
 749 
 750 //-----------------------------------------------------------------------------
 751 
 752 static const TypeFunc* make_complete_monitor_exit_Type() {
 753   // create input type (domain)
 754   const Type **fields = TypeTuple::fields(3);
 755   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 756   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 757   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 758   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 759 
 760   // create result type (range)
 761   fields = TypeTuple::fields(0);
 762 
 763   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 764 
 765   return TypeFunc::make(domain, range);
 766 }
 767 
 768 static const TypeFunc* make_monitor_notify_Type() {
 769   // create input type (domain)
 770   const Type **fields = TypeTuple::fields(1);
 771   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 772   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 773 
 774   // create result type (range)
 775   fields = TypeTuple::fields(0);
 776   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 777   return TypeFunc::make(domain, range);
 778 }
 779 
 780 static const TypeFunc* make_flush_windows_Type() {
 781   // create input type (domain)
 782   const Type** fields = TypeTuple::fields(1);
 783   fields[TypeFunc::Parms+0] = nullptr; // void
 784   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 785 
 786   // create result type
 787   fields = TypeTuple::fields(1);
 788   fields[TypeFunc::Parms+0] = nullptr; // void
 789   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 790 
 791   return TypeFunc::make(domain, range);
 792 }
 793 
 794 static const TypeFunc* make_l2f_Type() {
 795   // create input type (domain)
 796   const Type **fields = TypeTuple::fields(2);
 797   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 798   fields[TypeFunc::Parms+1] = Type::HALF;
 799   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 800 
 801   // create result type (range)
 802   fields = TypeTuple::fields(1);
 803   fields[TypeFunc::Parms+0] = Type::FLOAT;
 804   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 805 
 806   return TypeFunc::make(domain, range);
 807 }
 808 
 809 static const TypeFunc* make_modf_Type() {
 810   const Type **fields = TypeTuple::fields(2);
 811   fields[TypeFunc::Parms+0] = Type::FLOAT;
 812   fields[TypeFunc::Parms+1] = Type::FLOAT;
 813   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 814 
 815   // create result type (range)
 816   fields = TypeTuple::fields(1);
 817   fields[TypeFunc::Parms+0] = Type::FLOAT;
 818 
 819   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 820 
 821   return TypeFunc::make(domain, range);
 822 }
 823 
 824 static const TypeFunc* make_Math_D_D_Type() {
 825   // create input type (domain)
 826   const Type **fields = TypeTuple::fields(2);
 827   // Symbol* name of class to be loaded
 828   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 829   fields[TypeFunc::Parms+1] = Type::HALF;
 830   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 831 
 832   // create result type (range)
 833   fields = TypeTuple::fields(2);
 834   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 835   fields[TypeFunc::Parms+1] = Type::HALF;
 836   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 837 
 838   return TypeFunc::make(domain, range);
 839 }
 840 
 841 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 842   // create input type (domain)
 843   const Type **fields = TypeTuple::fields(num_arg);
 844   // Symbol* name of class to be loaded
 845   assert(num_arg > 0, "must have at least 1 input");
 846   for (uint i = 0; i < num_arg; i++) {
 847     fields[TypeFunc::Parms+i] = in_type;
 848   }
 849   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 850 
 851   // create result type (range)
 852   const uint num_ret = 1;
 853   fields = TypeTuple::fields(num_ret);
 854   fields[TypeFunc::Parms+0] = out_type;
 855   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 856 
 857   return TypeFunc::make(domain, range);
 858 }
 859 
 860 static const TypeFunc* make_Math_DD_D_Type() {
 861   const Type **fields = TypeTuple::fields(4);
 862   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 863   fields[TypeFunc::Parms+1] = Type::HALF;
 864   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 865   fields[TypeFunc::Parms+3] = Type::HALF;
 866   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 867 
 868   // create result type (range)
 869   fields = TypeTuple::fields(2);
 870   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 871   fields[TypeFunc::Parms+1] = Type::HALF;
 872   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 873 
 874   return TypeFunc::make(domain, range);
 875 }
 876 
 877 //-------------- currentTimeMillis, currentTimeNanos, etc
 878 
 879 static const TypeFunc* make_void_long_Type() {
 880   // create input type (domain)
 881   const Type **fields = TypeTuple::fields(0);
 882   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 883 
 884   // create result type (range)
 885   fields = TypeTuple::fields(2);
 886   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 887   fields[TypeFunc::Parms+1] = Type::HALF;
 888   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 889 
 890   return TypeFunc::make(domain, range);
 891 }
 892 
 893 static const TypeFunc* make_void_void_Type() {
 894   // create input type (domain)
 895   const Type **fields = TypeTuple::fields(0);
 896   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 897 
 898   // create result type (range)
 899   fields = TypeTuple::fields(0);
 900   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 901   return TypeFunc::make(domain, range);
 902 }
 903 
 904 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 905   // create input type (domain)
 906   const Type **fields = TypeTuple::fields(0);
 907   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 908 
 909   // create result type (range)
 910   fields = TypeTuple::fields(0);
 911   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 912   return TypeFunc::make(domain, range);
 913 }
 914 
 915 
 916 // Takes as parameters:
 917 // void *dest
 918 // long size
 919 // uchar byte
 920 
 921 static const TypeFunc* make_setmemory_Type() {
 922   // create input type (domain)
 923   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 924   const Type** fields = TypeTuple::fields(argcnt);
 925   int argp = TypeFunc::Parms;
 926   fields[argp++] = TypePtr::NOTNULL;        // dest
 927   fields[argp++] = TypeX_X;                 // size
 928   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 929   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 930   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 931   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 932 
 933   // no result type needed
 934   fields = TypeTuple::fields(1);
 935   fields[TypeFunc::Parms+0] = nullptr; // void
 936   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 937   return TypeFunc::make(domain, range);
 938 }
 939 
 940 // arraycopy stub variations:
 941 enum ArrayCopyType {
 942   ac_fast,                      // void(ptr, ptr, size_t)
 943   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 944   ac_slow,                      // void(ptr, int, ptr, int, int)
 945   ac_generic                    //  int(ptr, int, ptr, int, int)
 946 };
 947 
 948 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 949   // create input type (domain)
 950   int num_args      = (act == ac_fast ? 3 : 5);
 951   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 952   int argcnt = num_args;
 953   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 954   const Type** fields = TypeTuple::fields(argcnt);
 955   int argp = TypeFunc::Parms;
 956   fields[argp++] = TypePtr::NOTNULL;    // src
 957   if (num_size_args == 0) {
 958     fields[argp++] = TypeInt::INT;      // src_pos
 959   }
 960   fields[argp++] = TypePtr::NOTNULL;    // dest
 961   if (num_size_args == 0) {
 962     fields[argp++] = TypeInt::INT;      // dest_pos
 963     fields[argp++] = TypeInt::INT;      // length
 964   }
 965   while (num_size_args-- > 0) {
 966     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 967     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 968   }
 969   if (act == ac_checkcast) {
 970     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 971   }
 972   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 973   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 974 
 975   // create result type if needed
 976   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 977   fields = TypeTuple::fields(1);
 978   if (retcnt == 0)
 979     fields[TypeFunc::Parms+0] = nullptr; // void
 980   else
 981     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 982   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 983   return TypeFunc::make(domain, range);
 984 }
 985 
 986 static const TypeFunc* make_array_fill_Type() {
 987   const Type** fields;
 988   int argp = TypeFunc::Parms;
 989   // create input type (domain): pointer, int, size_t
 990   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 991   fields[argp++] = TypePtr::NOTNULL;
 992   fields[argp++] = TypeInt::INT;
 993   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 994   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 995   const TypeTuple *domain = TypeTuple::make(argp, fields);
 996 
 997   // create result type
 998   fields = TypeTuple::fields(1);
 999   fields[TypeFunc::Parms+0] = nullptr; // void
1000   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1001 
1002   return TypeFunc::make(domain, range);
1003 }
1004 
1005 static const TypeFunc* make_array_partition_Type() {
1006   // create input type (domain)
1007   int num_args = 7;
1008   int argcnt = num_args;
1009   const Type** fields = TypeTuple::fields(argcnt);
1010   int argp = TypeFunc::Parms;
1011   fields[argp++] = TypePtr::NOTNULL;  // array
1012   fields[argp++] = TypeInt::INT;      // element type
1013   fields[argp++] = TypeInt::INT;      // low
1014   fields[argp++] = TypeInt::INT;      // end
1015   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
1016   fields[argp++] = TypeInt::INT;      // indexPivot1
1017   fields[argp++] = TypeInt::INT;      // indexPivot2
1018   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1019   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1020 
1021   // no result type needed
1022   fields = TypeTuple::fields(1);
1023   fields[TypeFunc::Parms+0] = nullptr; // void
1024   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1025   return TypeFunc::make(domain, range);
1026 }
1027 
1028 static const TypeFunc* make_array_sort_Type() {
1029   // create input type (domain)
1030   int num_args      = 4;
1031   int argcnt = num_args;
1032   const Type** fields = TypeTuple::fields(argcnt);
1033   int argp = TypeFunc::Parms;
1034   fields[argp++] = TypePtr::NOTNULL;    // array
1035   fields[argp++] = TypeInt::INT;    // element type
1036   fields[argp++] = TypeInt::INT;    // fromIndex
1037   fields[argp++] = TypeInt::INT;    // toIndex
1038   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1039   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1040 
1041   // no result type needed
1042   fields = TypeTuple::fields(1);
1043   fields[TypeFunc::Parms+0] = nullptr; // void
1044   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1045   return TypeFunc::make(domain, range);
1046 }
1047 
1048 static const TypeFunc* make_aescrypt_block_Type() {
1049   // create input type (domain)
1050   int num_args      = 3;
1051   int argcnt = num_args;
1052   const Type** fields = TypeTuple::fields(argcnt);
1053   int argp = TypeFunc::Parms;
1054   fields[argp++] = TypePtr::NOTNULL;    // src
1055   fields[argp++] = TypePtr::NOTNULL;    // dest
1056   fields[argp++] = TypePtr::NOTNULL;    // k array
1057   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1058   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1059 
1060   // no result type needed
1061   fields = TypeTuple::fields(1);
1062   fields[TypeFunc::Parms+0] = nullptr; // void
1063   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1064   return TypeFunc::make(domain, range);
1065 }
1066 
1067 static const TypeFunc* make_updateBytesCRC32_Type() {
1068   // create input type (domain)
1069   int num_args      = 3;
1070   int argcnt = num_args;
1071   const Type** fields = TypeTuple::fields(argcnt);
1072   int argp = TypeFunc::Parms;
1073   fields[argp++] = TypeInt::INT;        // crc
1074   fields[argp++] = TypePtr::NOTNULL;    // src
1075   fields[argp++] = TypeInt::INT;        // len
1076   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1077   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1078 
1079   // result type needed
1080   fields = TypeTuple::fields(1);
1081   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1082   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1083   return TypeFunc::make(domain, range);
1084 }
1085 
1086 static const TypeFunc* make_updateBytesCRC32C_Type() {
1087   // create input type (domain)
1088   int num_args      = 4;
1089   int argcnt = num_args;
1090   const Type** fields = TypeTuple::fields(argcnt);
1091   int argp = TypeFunc::Parms;
1092   fields[argp++] = TypeInt::INT;        // crc
1093   fields[argp++] = TypePtr::NOTNULL;    // buf
1094   fields[argp++] = TypeInt::INT;        // len
1095   fields[argp++] = TypePtr::NOTNULL;    // table
1096   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1097   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1098 
1099   // result type needed
1100   fields = TypeTuple::fields(1);
1101   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1102   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1103   return TypeFunc::make(domain, range);
1104 }
1105 
1106 static const TypeFunc* make_updateBytesAdler32_Type() {
1107   // create input type (domain)
1108   int num_args      = 3;
1109   int argcnt = num_args;
1110   const Type** fields = TypeTuple::fields(argcnt);
1111   int argp = TypeFunc::Parms;
1112   fields[argp++] = TypeInt::INT;        // crc
1113   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1114   fields[argp++] = TypeInt::INT;        // len
1115   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1116   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1117 
1118   // result type needed
1119   fields = TypeTuple::fields(1);
1120   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1121   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1122   return TypeFunc::make(domain, range);
1123 }
1124 
1125 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1126   // create input type (domain)
1127   int num_args      = 5;
1128   int argcnt = num_args;
1129   const Type** fields = TypeTuple::fields(argcnt);
1130   int argp = TypeFunc::Parms;
1131   fields[argp++] = TypePtr::NOTNULL;    // src
1132   fields[argp++] = TypePtr::NOTNULL;    // dest
1133   fields[argp++] = TypePtr::NOTNULL;    // k array
1134   fields[argp++] = TypePtr::NOTNULL;    // r array
1135   fields[argp++] = TypeInt::INT;        // src len
1136   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1137   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1138 
1139   // returning cipher len (int)
1140   fields = TypeTuple::fields(1);
1141   fields[TypeFunc::Parms+0] = TypeInt::INT;
1142   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1143   return TypeFunc::make(domain, range);
1144 }
1145 
1146 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1147   // create input type (domain)
1148   int num_args = 4;
1149   int argcnt = num_args;
1150   const Type** fields = TypeTuple::fields(argcnt);
1151   int argp = TypeFunc::Parms;
1152   fields[argp++] = TypePtr::NOTNULL;    // src
1153   fields[argp++] = TypePtr::NOTNULL;    // dest
1154   fields[argp++] = TypePtr::NOTNULL;    // k array
1155   fields[argp++] = TypeInt::INT;        // src len
1156   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1157   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1158 
1159   // returning cipher len (int)
1160   fields = TypeTuple::fields(1);
1161   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1162   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1163   return TypeFunc::make(domain, range);
1164 }
1165 
1166 static const TypeFunc* make_counterMode_aescrypt_Type() {
1167   // create input type (domain)
1168   int num_args = 7;
1169   int argcnt = num_args;
1170   const Type** fields = TypeTuple::fields(argcnt);
1171   int argp = TypeFunc::Parms;
1172   fields[argp++] = TypePtr::NOTNULL; // src
1173   fields[argp++] = TypePtr::NOTNULL; // dest
1174   fields[argp++] = TypePtr::NOTNULL; // k array
1175   fields[argp++] = TypePtr::NOTNULL; // counter array
1176   fields[argp++] = TypeInt::INT; // src len
1177   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1178   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1179   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1180   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1181   // returning cipher len (int)
1182   fields = TypeTuple::fields(1);
1183   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1184   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1185   return TypeFunc::make(domain, range);
1186 }
1187 
1188 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1189   // create input type (domain)
1190   int num_args = 8;
1191   int argcnt = num_args;
1192   const Type** fields = TypeTuple::fields(argcnt);
1193   int argp = TypeFunc::Parms;
1194   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1195   fields[argp++] = TypeInt::INT;     // int len
1196   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1197   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1198   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1199   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1200   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1201   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1202 
1203   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1204   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1205   // returning cipher len (int)
1206   fields = TypeTuple::fields(1);
1207   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1208   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1209   return TypeFunc::make(domain, range);
1210 }
1211 
1212 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1213   // create input type (domain)
1214   int num_args = is_sha3 ? 3 : 2;
1215   int argcnt = num_args;
1216   const Type** fields = TypeTuple::fields(argcnt);
1217   int argp = TypeFunc::Parms;
1218   fields[argp++] = TypePtr::NOTNULL; // buf
1219   fields[argp++] = TypePtr::NOTNULL; // state
1220   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1221   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1222   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1223 
1224   // no result type needed
1225   fields = TypeTuple::fields(1);
1226   fields[TypeFunc::Parms+0] = nullptr; // void
1227   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1228   return TypeFunc::make(domain, range);
1229 }
1230 
1231 /*
1232  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1233  */
1234 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1235   // create input type (domain)
1236   int num_args = is_sha3 ? 5 : 4;
1237   int argcnt = num_args;
1238   const Type** fields = TypeTuple::fields(argcnt);
1239   int argp = TypeFunc::Parms;
1240   fields[argp++] = TypePtr::NOTNULL; // buf
1241   fields[argp++] = TypePtr::NOTNULL; // state
1242   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1243   fields[argp++] = TypeInt::INT;     // ofs
1244   fields[argp++] = TypeInt::INT;     // limit
1245   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1246   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1247 
1248   // returning ofs (int)
1249   fields = TypeTuple::fields(1);
1250   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1251   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1252   return TypeFunc::make(domain, range);
1253 }
1254 
1255 // SHAKE128Parallel doubleKeccak function
1256 static const TypeFunc* make_double_keccak_Type() {
1257     int argcnt = 2;
1258 
1259     const Type** fields = TypeTuple::fields(argcnt);
1260     int argp = TypeFunc::Parms;
1261     fields[argp++] = TypePtr::NOTNULL;      // status0
1262     fields[argp++] = TypePtr::NOTNULL;      // status1
1263 
1264     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1265     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1266 
1267     // result type needed
1268     fields = TypeTuple::fields(1);
1269     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1270     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1271     return TypeFunc::make(domain, range);
1272 }
1273 
1274 static const TypeFunc* make_multiplyToLen_Type() {
1275   // create input type (domain)
1276   int num_args      = 5;
1277   int argcnt = num_args;
1278   const Type** fields = TypeTuple::fields(argcnt);
1279   int argp = TypeFunc::Parms;
1280   fields[argp++] = TypePtr::NOTNULL;    // x
1281   fields[argp++] = TypeInt::INT;        // xlen
1282   fields[argp++] = TypePtr::NOTNULL;    // y
1283   fields[argp++] = TypeInt::INT;        // ylen
1284   fields[argp++] = TypePtr::NOTNULL;    // z
1285   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1286   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1287 
1288   // no result type needed
1289   fields = TypeTuple::fields(1);
1290   fields[TypeFunc::Parms+0] = nullptr;
1291   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1292   return TypeFunc::make(domain, range);
1293 }
1294 
1295 static const TypeFunc* make_squareToLen_Type() {
1296   // create input type (domain)
1297   int num_args      = 4;
1298   int argcnt = num_args;
1299   const Type** fields = TypeTuple::fields(argcnt);
1300   int argp = TypeFunc::Parms;
1301   fields[argp++] = TypePtr::NOTNULL;    // x
1302   fields[argp++] = TypeInt::INT;        // len
1303   fields[argp++] = TypePtr::NOTNULL;    // z
1304   fields[argp++] = TypeInt::INT;        // zlen
1305   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1306   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1307 
1308   // no result type needed
1309   fields = TypeTuple::fields(1);
1310   fields[TypeFunc::Parms+0] = nullptr;
1311   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1312   return TypeFunc::make(domain, range);
1313 }
1314 
1315 static const TypeFunc* make_mulAdd_Type() {
1316   // create input type (domain)
1317   int num_args      = 5;
1318   int argcnt = num_args;
1319   const Type** fields = TypeTuple::fields(argcnt);
1320   int argp = TypeFunc::Parms;
1321   fields[argp++] = TypePtr::NOTNULL;    // out
1322   fields[argp++] = TypePtr::NOTNULL;    // in
1323   fields[argp++] = TypeInt::INT;        // offset
1324   fields[argp++] = TypeInt::INT;        // len
1325   fields[argp++] = TypeInt::INT;        // k
1326   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1327   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1328 
1329   // returning carry (int)
1330   fields = TypeTuple::fields(1);
1331   fields[TypeFunc::Parms+0] = TypeInt::INT;
1332   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1333   return TypeFunc::make(domain, range);
1334 }
1335 
1336 static const TypeFunc* make_montgomeryMultiply_Type() {
1337   // create input type (domain)
1338   int num_args      = 7;
1339   int argcnt = num_args;
1340   const Type** fields = TypeTuple::fields(argcnt);
1341   int argp = TypeFunc::Parms;
1342   fields[argp++] = TypePtr::NOTNULL;    // a
1343   fields[argp++] = TypePtr::NOTNULL;    // b
1344   fields[argp++] = TypePtr::NOTNULL;    // n
1345   fields[argp++] = TypeInt::INT;        // len
1346   fields[argp++] = TypeLong::LONG;      // inv
1347   fields[argp++] = Type::HALF;
1348   fields[argp++] = TypePtr::NOTNULL;    // result
1349   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1350   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1351 
1352   // result type needed
1353   fields = TypeTuple::fields(1);
1354   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1355 
1356   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1357   return TypeFunc::make(domain, range);
1358 }
1359 
1360 static const TypeFunc* make_montgomerySquare_Type() {
1361   // create input type (domain)
1362   int num_args      = 6;
1363   int argcnt = num_args;
1364   const Type** fields = TypeTuple::fields(argcnt);
1365   int argp = TypeFunc::Parms;
1366   fields[argp++] = TypePtr::NOTNULL;    // a
1367   fields[argp++] = TypePtr::NOTNULL;    // n
1368   fields[argp++] = TypeInt::INT;        // len
1369   fields[argp++] = TypeLong::LONG;      // inv
1370   fields[argp++] = Type::HALF;
1371   fields[argp++] = TypePtr::NOTNULL;    // result
1372   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1373   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1374 
1375   // result type needed
1376   fields = TypeTuple::fields(1);
1377   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1378 
1379   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1380   return TypeFunc::make(domain, range);
1381 }
1382 
1383 static const TypeFunc* make_bigIntegerShift_Type() {
1384   int argcnt = 5;
1385   const Type** fields = TypeTuple::fields(argcnt);
1386   int argp = TypeFunc::Parms;
1387   fields[argp++] = TypePtr::NOTNULL;    // newArr
1388   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1389   fields[argp++] = TypeInt::INT;        // newIdx
1390   fields[argp++] = TypeInt::INT;        // shiftCount
1391   fields[argp++] = TypeInt::INT;        // numIter
1392   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1393   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1394 
1395   // no result type needed
1396   fields = TypeTuple::fields(1);
1397   fields[TypeFunc::Parms + 0] = nullptr;
1398   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1399   return TypeFunc::make(domain, range);
1400 }
1401 
1402 static const TypeFunc* make_vectorizedMismatch_Type() {
1403   // create input type (domain)
1404   int num_args = 4;
1405   int argcnt = num_args;
1406   const Type** fields = TypeTuple::fields(argcnt);
1407   int argp = TypeFunc::Parms;
1408   fields[argp++] = TypePtr::NOTNULL;    // obja
1409   fields[argp++] = TypePtr::NOTNULL;    // objb
1410   fields[argp++] = TypeInt::INT;        // length, number of elements
1411   fields[argp++] = TypeInt::INT;        // log2scale, element size
1412   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1413   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1414 
1415   //return mismatch index (int)
1416   fields = TypeTuple::fields(1);
1417   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1418   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1419   return TypeFunc::make(domain, range);
1420 }
1421 
1422 static const TypeFunc* make_ghash_processBlocks_Type() {
1423   int argcnt = 4;
1424 
1425   const Type** fields = TypeTuple::fields(argcnt);
1426   int argp = TypeFunc::Parms;
1427   fields[argp++] = TypePtr::NOTNULL;    // state
1428   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1429   fields[argp++] = TypePtr::NOTNULL;    // data
1430   fields[argp++] = TypeInt::INT;        // blocks
1431   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1432   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1433 
1434   // result type needed
1435   fields = TypeTuple::fields(1);
1436   fields[TypeFunc::Parms+0] = nullptr; // void
1437   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1438   return TypeFunc::make(domain, range);
1439 }
1440 
1441 static const TypeFunc* make_chacha20Block_Type() {
1442   int argcnt = 2;
1443 
1444   const Type** fields = TypeTuple::fields(argcnt);
1445   int argp = TypeFunc::Parms;
1446   fields[argp++] = TypePtr::NOTNULL;      // state
1447   fields[argp++] = TypePtr::NOTNULL;      // result
1448 
1449   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1450   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1451 
1452   // result type needed
1453   fields = TypeTuple::fields(1);
1454   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1455   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1456   return TypeFunc::make(domain, range);
1457 }
1458 
1459 // Kyber NTT function
1460 static const TypeFunc* make_kyberNtt_Type() {
1461     int argcnt = 2;
1462 
1463     const Type** fields = TypeTuple::fields(argcnt);
1464     int argp = TypeFunc::Parms;
1465     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1466     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1467 
1468     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1469     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1470 
1471     // result type needed
1472     fields = TypeTuple::fields(1);
1473     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1474     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1475     return TypeFunc::make(domain, range);
1476 }
1477 
1478 // Kyber inverse NTT function
1479 static const TypeFunc* make_kyberInverseNtt_Type() {
1480     int argcnt = 2;
1481 
1482     const Type** fields = TypeTuple::fields(argcnt);
1483     int argp = TypeFunc::Parms;
1484     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1485     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1486 
1487     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1488     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1489 
1490     // result type needed
1491     fields = TypeTuple::fields(1);
1492     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1493     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1494     return TypeFunc::make(domain, range);
1495 }
1496 
1497 // Kyber NTT multiply function
1498 static const TypeFunc* make_kyberNttMult_Type() {
1499     int argcnt = 4;
1500 
1501     const Type** fields = TypeTuple::fields(argcnt);
1502     int argp = TypeFunc::Parms;
1503     fields[argp++] = TypePtr::NOTNULL;      // result
1504     fields[argp++] = TypePtr::NOTNULL;      // ntta
1505     fields[argp++] = TypePtr::NOTNULL;      // nttb
1506     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1507 
1508     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1509     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1510 
1511     // result type needed
1512     fields = TypeTuple::fields(1);
1513     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1514     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1515     return TypeFunc::make(domain, range);
1516 }
1517 
1518 // Kyber add 2 polynomials function
1519 static const TypeFunc* make_kyberAddPoly_2_Type() {
1520     int argcnt = 3;
1521 
1522     const Type** fields = TypeTuple::fields(argcnt);
1523     int argp = TypeFunc::Parms;
1524     fields[argp++] = TypePtr::NOTNULL;      // result
1525     fields[argp++] = TypePtr::NOTNULL;      // a
1526     fields[argp++] = TypePtr::NOTNULL;      // b
1527 
1528     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1529     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1530 
1531     // result type needed
1532     fields = TypeTuple::fields(1);
1533     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1534     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1535     return TypeFunc::make(domain, range);
1536 }
1537 
1538 
1539 // Kyber add 3 polynomials function
1540 static const TypeFunc* make_kyberAddPoly_3_Type() {
1541     int argcnt = 4;
1542 
1543     const Type** fields = TypeTuple::fields(argcnt);
1544     int argp = TypeFunc::Parms;
1545     fields[argp++] = TypePtr::NOTNULL;      // result
1546     fields[argp++] = TypePtr::NOTNULL;      // a
1547     fields[argp++] = TypePtr::NOTNULL;      // b
1548     fields[argp++] = TypePtr::NOTNULL;      // c
1549 
1550     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1551     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1552 
1553     // result type needed
1554     fields = TypeTuple::fields(1);
1555     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1556     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1557     return TypeFunc::make(domain, range);
1558 }
1559 
1560 
1561 // Kyber XOF output parsing into polynomial coefficients candidates
1562 // or decompress(12,...) function
1563 static const TypeFunc* make_kyber12To16_Type() {
1564     int argcnt = 4;
1565 
1566     const Type** fields = TypeTuple::fields(argcnt);
1567     int argp = TypeFunc::Parms;
1568     fields[argp++] = TypePtr::NOTNULL;      // condensed
1569     fields[argp++] = TypeInt::INT;          // condensedOffs
1570     fields[argp++] = TypePtr::NOTNULL;      // parsed
1571     fields[argp++] = TypeInt::INT;          // parsedLength
1572 
1573     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1574     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1575 
1576     // result type needed
1577     fields = TypeTuple::fields(1);
1578     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1579     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1580     return TypeFunc::make(domain, range);
1581 }
1582 
1583 // Kyber Barrett reduce function
1584 static const TypeFunc* make_kyberBarrettReduce_Type() {
1585     int argcnt = 1;
1586 
1587     const Type** fields = TypeTuple::fields(argcnt);
1588     int argp = TypeFunc::Parms;
1589     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1590 
1591     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1592     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1593 
1594     // result type needed
1595     fields = TypeTuple::fields(1);
1596     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1597     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1598     return TypeFunc::make(domain, range);
1599 }
1600 
1601 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1602 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1603     int argcnt = 2;
1604 
1605     const Type** fields = TypeTuple::fields(argcnt);
1606     int argp = TypeFunc::Parms;
1607     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1608     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1609 
1610     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1611     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1612 
1613     // result type needed
1614     fields = TypeTuple::fields(1);
1615     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1616     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1617     return TypeFunc::make(domain, range);
1618 }
1619 
1620 // Dilithium inverse NTT function except the final mod Q division by 2^256
1621 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1622     int argcnt = 2;
1623 
1624     const Type** fields = TypeTuple::fields(argcnt);
1625     int argp = TypeFunc::Parms;
1626     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1627     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1628 
1629     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1630     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1631 
1632     // result type needed
1633     fields = TypeTuple::fields(1);
1634     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1635     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1636     return TypeFunc::make(domain, range);
1637 }
1638 
1639 // Dilithium NTT multiply function
1640 static const TypeFunc* make_dilithiumNttMult_Type() {
1641     int argcnt = 3;
1642 
1643     const Type** fields = TypeTuple::fields(argcnt);
1644     int argp = TypeFunc::Parms;
1645     fields[argp++] = TypePtr::NOTNULL;      // result
1646     fields[argp++] = TypePtr::NOTNULL;      // ntta
1647     fields[argp++] = TypePtr::NOTNULL;      // nttb
1648 
1649     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1650     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1651 
1652     // result type needed
1653     fields = TypeTuple::fields(1);
1654     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1655     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1656     return TypeFunc::make(domain, range);
1657 }
1658 
1659 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1660 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1661     int argcnt = 2;
1662 
1663     const Type** fields = TypeTuple::fields(argcnt);
1664     int argp = TypeFunc::Parms;
1665     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1666     fields[argp++] = TypeInt::INT;          // constant multiplier
1667 
1668     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1669     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1670 
1671     // result type needed
1672     fields = TypeTuple::fields(1);
1673     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1674     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1675     return TypeFunc::make(domain, range);
1676 }
1677 
1678 // Dilithium decompose polynomial
1679 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1680     int argcnt = 5;
1681 
1682     const Type** fields = TypeTuple::fields(argcnt);
1683     int argp = TypeFunc::Parms;
1684     fields[argp++] = TypePtr::NOTNULL;      // input
1685     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1686     fields[argp++] = TypePtr::NOTNULL;      // highPart
1687     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1688     fields[argp++] = TypeInt::INT;          // multiplier
1689 
1690     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1691     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1692 
1693     // result type needed
1694     fields = TypeTuple::fields(1);
1695     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1696     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1697     return TypeFunc::make(domain, range);
1698 }
1699 
1700 static const TypeFunc* make_base64_encodeBlock_Type() {
1701   int argcnt = 6;
1702 
1703   const Type** fields = TypeTuple::fields(argcnt);
1704   int argp = TypeFunc::Parms;
1705   fields[argp++] = TypePtr::NOTNULL;    // src array
1706   fields[argp++] = TypeInt::INT;        // offset
1707   fields[argp++] = TypeInt::INT;        // length
1708   fields[argp++] = TypePtr::NOTNULL;    // dest array
1709   fields[argp++] = TypeInt::INT;       // dp
1710   fields[argp++] = TypeInt::BOOL;       // isURL
1711   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1712   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1713 
1714   // result type needed
1715   fields = TypeTuple::fields(1);
1716   fields[TypeFunc::Parms + 0] = nullptr; // void
1717   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1718   return TypeFunc::make(domain, range);
1719 }
1720 
1721 static const TypeFunc* make_string_IndexOf_Type() {
1722   int argcnt = 4;
1723 
1724   const Type** fields = TypeTuple::fields(argcnt);
1725   int argp = TypeFunc::Parms;
1726   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1727   fields[argp++] = TypeInt::INT;        // haystack length
1728   fields[argp++] = TypePtr::NOTNULL;    // needle array
1729   fields[argp++] = TypeInt::INT;        // needle length
1730   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1731   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1732 
1733   // result type needed
1734   fields = TypeTuple::fields(1);
1735   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1736   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1737   return TypeFunc::make(domain, range);
1738 }
1739 
1740 static const TypeFunc* make_base64_decodeBlock_Type() {
1741   int argcnt = 7;
1742 
1743   const Type** fields = TypeTuple::fields(argcnt);
1744   int argp = TypeFunc::Parms;
1745   fields[argp++] = TypePtr::NOTNULL;    // src array
1746   fields[argp++] = TypeInt::INT;        // src offset
1747   fields[argp++] = TypeInt::INT;        // src length
1748   fields[argp++] = TypePtr::NOTNULL;    // dest array
1749   fields[argp++] = TypeInt::INT;        // dest offset
1750   fields[argp++] = TypeInt::BOOL;       // isURL
1751   fields[argp++] = TypeInt::BOOL;       // isMIME
1752   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1753   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1754 
1755   // result type needed
1756   fields = TypeTuple::fields(1);
1757   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1758   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1759   return TypeFunc::make(domain, range);
1760 }
1761 
1762 static const TypeFunc* make_poly1305_processBlocks_Type() {
1763   int argcnt = 4;
1764 
1765   const Type** fields = TypeTuple::fields(argcnt);
1766   int argp = TypeFunc::Parms;
1767   fields[argp++] = TypePtr::NOTNULL;    // input array
1768   fields[argp++] = TypeInt::INT;        // input length
1769   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1770   fields[argp++] = TypePtr::NOTNULL;    // r array
1771   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1772   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1773 
1774   // result type needed
1775   fields = TypeTuple::fields(1);
1776   fields[TypeFunc::Parms + 0] = nullptr; // void
1777   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1778   return TypeFunc::make(domain, range);
1779 }
1780 
1781 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1782   int argcnt = 3;
1783 
1784   const Type** fields = TypeTuple::fields(argcnt);
1785   int argp = TypeFunc::Parms;
1786   fields[argp++] = TypePtr::NOTNULL;    // a array
1787   fields[argp++] = TypePtr::NOTNULL;    // b array
1788   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1789   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1790   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1791 
1792   // result type needed
1793   fields = TypeTuple::fields(1);
1794   fields[TypeFunc::Parms + 0] = nullptr; // void
1795   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1796   return TypeFunc::make(domain, range);
1797 }
1798 
1799 static const TypeFunc* make_intpoly_assign_Type() {
1800   int argcnt = 4;
1801 
1802   const Type** fields = TypeTuple::fields(argcnt);
1803   int argp = TypeFunc::Parms;
1804   fields[argp++] = TypeInt::INT;        // set flag
1805   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1806   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1807   fields[argp++] = TypeInt::INT;        // array length
1808   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1809   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1810 
1811   // result type needed
1812   fields = TypeTuple::fields(1);
1813   fields[TypeFunc::Parms + 0] = nullptr; // void
1814   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1815   return TypeFunc::make(domain, range);
1816 }
1817 
1818 //------------- Interpreter state for on stack replacement
1819 static const TypeFunc* make_osr_end_Type() {
1820   // create input type (domain)
1821   const Type **fields = TypeTuple::fields(1);
1822   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1823   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1824 
1825   // create result type
1826   fields = TypeTuple::fields(1);
1827   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1828   fields[TypeFunc::Parms+0] = nullptr; // void
1829   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1830   return TypeFunc::make(domain, range);
1831 }
1832 
1833 //-------------------------------------------------------------------------------------
1834 // register policy
1835 
1836 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1837   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1838   switch (register_save_policy[reg]) {
1839     case 'C': return false; //SOC
1840     case 'E': return true ; //SOE
1841     case 'N': return false; //NS
1842     case 'A': return false; //AS
1843   }
1844   ShouldNotReachHere();
1845   return false;
1846 }
1847 
1848 //-----------------------------------------------------------------------
1849 // Exceptions
1850 //
1851 
1852 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1853 
1854 // The method is an entry that is always called by a C++ method not
1855 // directly from compiled code. Compiled code will call the C++ method following.
1856 // We can't allow async exception to be installed during  exception processing.
1857 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1858   // The frame we rethrow the exception to might not have been processed by the GC yet.
1859   // The stack watermark barrier takes care of detecting that and ensuring the frame
1860   // has updated oops.
1861   StackWatermarkSet::after_unwind(current);
1862 
1863   // Do not confuse exception_oop with pending_exception. The exception_oop
1864   // is only used to pass arguments into the method. Not for general
1865   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1866   // the runtime stubs checks this on exit.
1867   assert(current->exception_oop() != nullptr, "exception oop is found");
1868   address handler_address = nullptr;
1869 
1870   Handle exception(current, current->exception_oop());
1871   address pc = current->exception_pc();
1872 
1873   // Clear out the exception oop and pc since looking up an
1874   // exception handler can cause class loading, which might throw an
1875   // exception and those fields are expected to be clear during
1876   // normal bytecode execution.
1877   current->clear_exception_oop_and_pc();
1878 
1879   LogTarget(Info, exceptions) lt;
1880   if (lt.is_enabled()) {
1881     LogStream ls(lt);
1882     trace_exception(&ls, exception(), pc, "");
1883   }
1884 
1885   // for AbortVMOnException flag
1886   Exceptions::debug_check_abort(exception);
1887 
1888 #ifdef ASSERT
1889   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1890     // should throw an exception here
1891     ShouldNotReachHere();
1892   }
1893 #endif
1894 
1895   // new exception handling: this method is entered only from adapters
1896   // exceptions from compiled java methods are handled in compiled code
1897   // using rethrow node
1898 
1899   nm = CodeCache::find_nmethod(pc);
1900   assert(nm != nullptr, "No NMethod found");
1901   if (nm->is_native_method()) {
1902     fatal("Native method should not have path to exception handling");
1903   } else {
1904     // we are switching to old paradigm: search for exception handler in caller_frame
1905     // instead in exception handler of caller_frame.sender()
1906 
1907     if (JvmtiExport::can_post_on_exceptions()) {
1908       // "Full-speed catching" is not necessary here,
1909       // since we're notifying the VM on every catch.
1910       // Force deoptimization and the rest of the lookup
1911       // will be fine.
1912       deoptimize_caller_frame(current);
1913     }
1914 
1915     // Check the stack guard pages.  If enabled, look for handler in this frame;
1916     // otherwise, forcibly unwind the frame.
1917     //
1918     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1919     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1920     bool deopting = false;
1921     if (nm->is_deopt_pc(pc)) {
1922       deopting = true;
1923       RegisterMap map(current,
1924                       RegisterMap::UpdateMap::skip,
1925                       RegisterMap::ProcessFrames::include,
1926                       RegisterMap::WalkContinuation::skip);
1927       frame deoptee = current->last_frame().sender(&map);
1928       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1929       // Adjust the pc back to the original throwing pc
1930       pc = deoptee.pc();
1931     }
1932 
1933     // If we are forcing an unwind because of stack overflow then deopt is
1934     // irrelevant since we are throwing the frame away anyway.
1935 
1936     if (deopting && !force_unwind) {
1937       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1938     } else {
1939 
1940       handler_address =
1941         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1942 
1943       if (handler_address == nullptr) {
1944         bool recursive_exception = false;
1945         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1946         assert (handler_address != nullptr, "must have compiled handler");
1947         // Update the exception cache only when the unwind was not forced
1948         // and there didn't happen another exception during the computation of the
1949         // compiled exception handler. Checking for exception oop equality is not
1950         // sufficient because some exceptions are pre-allocated and reused.
1951         if (!force_unwind && !recursive_exception) {
1952           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1953         }
1954       } else {
1955 #ifdef ASSERT
1956         bool recursive_exception = false;
1957         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1958         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1959                  p2i(handler_address), p2i(computed_address));
1960 #endif
1961       }
1962     }
1963 
1964     current->set_exception_pc(pc);
1965     current->set_exception_handler_pc(handler_address);
1966 
1967     // Check if the exception PC is a MethodHandle call site.
1968     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1969   }
1970 
1971   // Restore correct return pc.  Was saved above.
1972   current->set_exception_oop(exception());
1973   return handler_address;
1974 
1975 JRT_END
1976 
1977 // We are entering here from exception_blob
1978 // If there is a compiled exception handler in this method, we will continue there;
1979 // otherwise we will unwind the stack and continue at the caller of top frame method
1980 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1981 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1982 // we looked up the handler for has been deoptimized in the meantime. If it has been
1983 // we must not use the handler and instead return the deopt blob.
1984 address OptoRuntime::handle_exception_C(JavaThread* current) {
1985 //
1986 // We are in Java not VM and in debug mode we have a NoHandleMark
1987 //
1988 #ifndef PRODUCT
1989   SharedRuntime::_find_handler_ctr++;          // find exception handler
1990 #endif
1991   DEBUG_ONLY(NoHandleMark __hm;)
1992   nmethod* nm = nullptr;
1993   address handler_address = nullptr;
1994   {
1995     // Enter the VM
1996 
1997     ResetNoHandleMark rnhm;
1998     handler_address = handle_exception_C_helper(current, nm);
1999   }
2000 
2001   // Back in java: Use no oops, DON'T safepoint
2002 
2003   // Now check to see if the handler we are returning is in a now
2004   // deoptimized frame
2005 
2006   if (nm != nullptr) {
2007     RegisterMap map(current,
2008                     RegisterMap::UpdateMap::skip,
2009                     RegisterMap::ProcessFrames::skip,
2010                     RegisterMap::WalkContinuation::skip);
2011     frame caller = current->last_frame().sender(&map);
2012 #ifdef ASSERT
2013     assert(caller.is_compiled_frame(), "must be");
2014 #endif // ASSERT
2015     if (caller.is_deoptimized_frame()) {
2016       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
2017     }
2018   }
2019   return handler_address;
2020 }
2021 
2022 //------------------------------rethrow----------------------------------------
2023 // We get here after compiled code has executed a 'RethrowNode'.  The callee
2024 // is either throwing or rethrowing an exception.  The callee-save registers
2025 // have been restored, synchronized objects have been unlocked and the callee
2026 // stack frame has been removed.  The return address was passed in.
2027 // Exception oop is passed as the 1st argument.  This routine is then called
2028 // from the stub.  On exit, we know where to jump in the caller's code.
2029 // After this C code exits, the stub will pop his frame and end in a jump
2030 // (instead of a return).  We enter the caller's default handler.
2031 //
2032 // This must be JRT_LEAF:
2033 //     - caller will not change its state as we cannot block on exit,
2034 //       therefore raw_exception_handler_for_return_address is all it takes
2035 //       to handle deoptimized blobs
2036 //
2037 // However, there needs to be a safepoint check in the middle!  So compiled
2038 // safepoints are completely watertight.
2039 //
2040 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
2041 //
2042 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
2043 //
2044 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2045   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2046   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2047 
2048 #ifndef PRODUCT
2049   SharedRuntime::_rethrow_ctr++;               // count rethrows
2050 #endif
2051   assert (exception != nullptr, "should have thrown a NullPointerException");
2052 #ifdef ASSERT
2053   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2054     // should throw an exception here
2055     ShouldNotReachHere();
2056   }
2057 #endif
2058 
2059   thread->set_vm_result_oop(exception);
2060   // Frame not compiled (handles deoptimization blob)
2061   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2062 }
2063 
2064 static const TypeFunc* make_rethrow_Type() {
2065   // create input type (domain)
2066   const Type **fields = TypeTuple::fields(1);
2067   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2068   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2069 
2070   // create result type (range)
2071   fields = TypeTuple::fields(1);
2072   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2073   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2074 
2075   return TypeFunc::make(domain, range);
2076 }
2077 
2078 
2079 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2080   // Deoptimize the caller before continuing, as the compiled
2081   // exception handler table may not be valid.
2082   if (DeoptimizeOnAllocationException && doit) {
2083     deoptimize_caller_frame(thread);
2084   }
2085 }
2086 
2087 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2088   // Called from within the owner thread, so no need for safepoint
2089   RegisterMap reg_map(thread,
2090                       RegisterMap::UpdateMap::include,
2091                       RegisterMap::ProcessFrames::include,
2092                       RegisterMap::WalkContinuation::skip);
2093   frame stub_frame = thread->last_frame();
2094   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2095   frame caller_frame = stub_frame.sender(&reg_map);
2096 
2097   // Deoptimize the caller frame.
2098   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2099 }
2100 
2101 
2102 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2103   // Called from within the owner thread, so no need for safepoint
2104   RegisterMap reg_map(thread,
2105                       RegisterMap::UpdateMap::include,
2106                       RegisterMap::ProcessFrames::include,
2107                       RegisterMap::WalkContinuation::skip);
2108   frame stub_frame = thread->last_frame();
2109   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2110   frame caller_frame = stub_frame.sender(&reg_map);
2111   return caller_frame.is_deoptimized_frame();
2112 }
2113 
2114 static const TypeFunc* make_register_finalizer_Type() {
2115   // create input type (domain)
2116   const Type **fields = TypeTuple::fields(1);
2117   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2118   // // The JavaThread* is passed to each routine as the last argument
2119   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2120   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2121 
2122   // create result type (range)
2123   fields = TypeTuple::fields(0);
2124 
2125   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2126 
2127   return TypeFunc::make(domain, range);
2128 }
2129 
2130 #if INCLUDE_JFR
2131 static const TypeFunc* make_class_id_load_barrier_Type() {
2132   // create input type (domain)
2133   const Type **fields = TypeTuple::fields(1);
2134   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2135   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2136 
2137   // create result type (range)
2138   fields = TypeTuple::fields(0);
2139 
2140   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2141 
2142   return TypeFunc::make(domain,range);
2143 }
2144 #endif // INCLUDE_JFR
2145 
2146 //-----------------------------------------------------------------------------
2147 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2148   // create input type (domain)
2149   const Type **fields = TypeTuple::fields(2);
2150   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2151   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2152   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2153 
2154   // create result type (range)
2155   fields = TypeTuple::fields(0);
2156 
2157   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2158 
2159   return TypeFunc::make(domain, range);
2160 }
2161 
2162 static const TypeFunc* make_dtrace_object_alloc_Type() {
2163   // create input type (domain)
2164   const Type **fields = TypeTuple::fields(2);
2165   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2166   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2167 
2168   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2169 
2170   // create result type (range)
2171   fields = TypeTuple::fields(0);
2172 
2173   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2174 
2175   return TypeFunc::make(domain, range);
2176 }
2177 
2178 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2179   assert(oopDesc::is_oop(obj), "must be a valid oop");
2180   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2181   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2182 JRT_END
2183 
2184 //-----------------------------------------------------------------------------
2185 
2186 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2187 
2188 //
2189 // dump the collected NamedCounters.
2190 //
2191 void OptoRuntime::print_named_counters() {
2192   int total_lock_count = 0;
2193   int eliminated_lock_count = 0;
2194 
2195   NamedCounter* c = _named_counters;
2196   while (c) {
2197     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2198       int count = c->count();
2199       if (count > 0) {
2200         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2201         if (Verbose) {
2202           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2203         }
2204         total_lock_count += count;
2205         if (eliminated) {
2206           eliminated_lock_count += count;
2207         }
2208       }
2209     }
2210     c = c->next();
2211   }
2212   if (total_lock_count > 0) {
2213     tty->print_cr("dynamic locks: %d", total_lock_count);
2214     if (eliminated_lock_count) {
2215       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2216                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2217     }
2218   }
2219 }
2220 
2221 //
2222 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2223 //  name which consists of method@line for the inlining tree.
2224 //
2225 
2226 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2227   int max_depth = youngest_jvms->depth();
2228 
2229   // Visit scopes from youngest to oldest.
2230   bool first = true;
2231   stringStream st;
2232   for (int depth = max_depth; depth >= 1; depth--) {
2233     JVMState* jvms = youngest_jvms->of_depth(depth);
2234     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2235     if (!first) {
2236       st.print(" ");
2237     } else {
2238       first = false;
2239     }
2240     int bci = jvms->bci();
2241     if (bci < 0) bci = 0;
2242     if (m != nullptr) {
2243       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2244     } else {
2245       st.print("no method");
2246     }
2247     st.print("@%d", bci);
2248     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2249   }
2250   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2251 
2252   // atomically add the new counter to the head of the list.  We only
2253   // add counters so this is safe.
2254   NamedCounter* head;
2255   do {
2256     c->set_next(nullptr);
2257     head = _named_counters;
2258     c->set_next(head);
2259   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2260   return c;
2261 }
2262 
2263 void OptoRuntime::initialize_types() {
2264   _new_instance_Type                  = make_new_instance_Type();
2265   _new_array_Type                     = make_new_array_Type();
2266   _new_array_nozero_Type              = make_new_array_nozero_Type();
2267   _multianewarray2_Type               = multianewarray_Type(2);
2268   _multianewarray3_Type               = multianewarray_Type(3);
2269   _multianewarray4_Type               = multianewarray_Type(4);
2270   _multianewarray5_Type               = multianewarray_Type(5);
2271   _multianewarrayN_Type               = make_multianewarrayN_Type();
2272   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2273   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2274   _monitor_notify_Type                = make_monitor_notify_Type();
2275   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2276   _athrow_Type                        = make_athrow_Type();
2277   _rethrow_Type                       = make_rethrow_Type();
2278   _Math_D_D_Type                      = make_Math_D_D_Type();
2279   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2280   _modf_Type                          = make_modf_Type();
2281   _l2f_Type                           = make_l2f_Type();
2282   _void_long_Type                     = make_void_long_Type();
2283   _void_void_Type                     = make_void_void_Type();
2284   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2285   _flush_windows_Type                 = make_flush_windows_Type();
2286   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2287   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2288   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2289   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2290   _unsafe_setmemory_Type              = make_setmemory_Type();
2291   _array_fill_Type                    = make_array_fill_Type();
2292   _array_sort_Type                    = make_array_sort_Type();
2293   _array_partition_Type               = make_array_partition_Type();
2294   _aescrypt_block_Type                = make_aescrypt_block_Type();
2295   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2296   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2297   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2298   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2299   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2300   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2301   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2302   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2303   _double_keccak_Type                 = make_double_keccak_Type();
2304   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2305   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2306   _montgomerySquare_Type              = make_montgomerySquare_Type();
2307   _squareToLen_Type                   = make_squareToLen_Type();
2308   _mulAdd_Type                        = make_mulAdd_Type();
2309   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2310   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2311   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2312   _chacha20Block_Type                 = make_chacha20Block_Type();
2313   _kyberNtt_Type                      = make_kyberNtt_Type();
2314   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2315   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2316   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2317   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2318   _kyber12To16_Type                   = make_kyber12To16_Type();
2319   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2320   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2321   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2322   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2323   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2324   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2325   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2326   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2327   _string_IndexOf_Type                = make_string_IndexOf_Type();
2328   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2329   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2330   _intpoly_assign_Type                = make_intpoly_assign_Type();
2331   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2332   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2333   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2334   _osr_end_Type                       = make_osr_end_Type();
2335   _register_finalizer_Type            = make_register_finalizer_Type();
2336   JFR_ONLY(
2337     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2338   )
2339 #if INCLUDE_JVMTI
2340   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2341 #endif // INCLUDE_JVMTI
2342   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2343   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2344 }
2345 
2346 int trace_exception_counter = 0;
2347 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2348   trace_exception_counter++;
2349   stringStream tempst;
2350 
2351   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2352   exception_oop->print_value_on(&tempst);
2353   tempst.print(" in ");
2354   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2355   if (blob->is_nmethod()) {
2356     blob->as_nmethod()->method()->print_value_on(&tempst);
2357   } else if (blob->is_runtime_stub()) {
2358     tempst.print("<runtime-stub>");
2359   } else {
2360     tempst.print("<unknown>");
2361   }
2362   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2363   tempst.print("]");
2364 
2365   st->print_raw_cr(tempst.freeze());
2366 }
2367 
2368 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2369   // create input type (domain)
2370   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2371   const Type **fields = TypeTuple::fields(total);
2372   // We don't know the number of returned values and their
2373   // types. Assume all registers available to the return convention
2374   // are used.
2375   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2376   uint i = 1;
2377   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2378     fields[TypeFunc::Parms+i] = TypeInt::INT;
2379   }
2380   for (; i < total; i+=2) {
2381     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2382     fields[TypeFunc::Parms+i+1] = Type::HALF;
2383   }
2384   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2385 
2386   // create result type (range)
2387   fields = TypeTuple::fields(1);
2388   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2389 
2390   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2391 
2392   return TypeFunc::make(domain, range);
2393 }
2394 
2395 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2396   // create input type (domain)
2397   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2398   const Type **fields = TypeTuple::fields(total);
2399   // We don't know the number of returned values and their
2400   // types. Assume all registers available to the return convention
2401   // are used.
2402   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2403   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2404   uint i = 2;
2405   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2406     fields[TypeFunc::Parms+i] = TypeInt::INT;
2407   }
2408   for (; i < total; i+=2) {
2409     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2410     fields[TypeFunc::Parms+i+1] = Type::HALF;
2411   }
2412   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2413 
2414   // create result type (range)
2415   fields = TypeTuple::fields(1);
2416   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2417 
2418   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2419 
2420   return TypeFunc::make(domain, range);
2421 }
2422 
2423 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2424   JRT_BLOCK;
2425   oop buffer = array->read_value_from_flat_array(index, THREAD);
2426   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2427   current->set_vm_result_oop(buffer);
2428   JRT_BLOCK_END;
2429 JRT_END
2430 
2431 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2432   // create input type (domain)
2433   const Type** fields = TypeTuple::fields(2);
2434   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2435   fields[TypeFunc::Parms+1] = TypeInt::POS;
2436 
2437   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2438 
2439   // create result type (range)
2440   fields = TypeTuple::fields(1);
2441   fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
2442 
2443   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2444 
2445   return TypeFunc::make(domain, range);
2446 }
2447 
2448 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2449   JRT_BLOCK;
2450   array->write_value_to_flat_array(buffer, index, THREAD);
2451   if (HAS_PENDING_EXCEPTION) {
2452       fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2453   }
2454   JRT_BLOCK_END;
2455 JRT_END
2456 
2457 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2458   // create input type (domain)
2459   const Type** fields = TypeTuple::fields(3);
2460   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2461   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2462   fields[TypeFunc::Parms+2] = TypeInt::POS;
2463 
2464   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2465 
2466   // create result type (range)
2467   fields = TypeTuple::fields(0);
2468   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2469 
2470   return TypeFunc::make(domain, range);
2471 }