1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/flatArrayKlass.hpp"
  48 #include "oops/flatArrayOop.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  Universe::heap()->collect();
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 #define C2_BLOB_FIELD_DEFINE(name, type) \
  94   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  95 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  96 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  97   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  98 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  99   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
 100 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
 101 #undef C2_BLOB_FIELD_DEFINE
 102 #undef C2_STUB_FIELD_DEFINE
 103 #undef C2_JVMTI_STUB_FIELD_DEFINE
 104 
 105 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 106 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 107 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 108 const char* OptoRuntime::_stub_names[] = {
 109   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 110 };
 111 #undef C2_BLOB_NAME_DEFINE
 112 #undef C2_STUB_NAME_DEFINE
 113 #undef C2_JVMTI_STUB_NAME_DEFINE
 114 
 115 // This should be called in an assertion at the start of OptoRuntime routines
 116 // which are entered from compiled code (all of them)
 117 #ifdef ASSERT
 118 static bool check_compiled_frame(JavaThread* thread) {
 119   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 120   RegisterMap map(thread,
 121                   RegisterMap::UpdateMap::skip,
 122                   RegisterMap::ProcessFrames::include,
 123                   RegisterMap::WalkContinuation::skip);
 124   frame caller = thread->last_frame().sender(&map);
 125   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 126   return true;
 127 }
 128 #endif // ASSERT
 129 
 130 /*
 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 132   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 133   if (var == nullptr) { return false; }
 134 */
 135 
 136 #define GEN_C2_BLOB(name, type)                    \
 137   generate_ ## name ## _blob();
 138 
 139 // a few helper macros to conjure up generate_stub call arguments
 140 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 141 #define C2_STUB_TYPEFUNC(name) name ## _Type
 142 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 143 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 144 
 145 // Almost all the C functions targeted from the generated stubs are
 146 // implemented locally to OptoRuntime with names that can be generated
 147 // from the stub name by appending suffix '_C'. However, in two cases
 148 // a common target method also needs to be called from shared runtime
 149 // stubs. In these two cases the opto stubs rely on method
 150 // imlementations defined in class SharedRuntime. The following
 151 // defines temporarily rebind the generated names to reference the
 152 // relevant implementations.
 153 
 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 155   C2_STUB_FIELD_NAME(name) =                                          \
 156     generate_stub(env,                                                  \
 157                   C2_STUB_TYPEFUNC(name),                             \
 158                   C2_STUB_C_FUNC(name),                               \
 159                   C2_STUB_NAME(name),                                 \
 160                   fancy_jump,                                           \
 161                   pass_tls,                                             \
 162                   pass_retpc);                                          \
 163   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 164 
 165 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 166 
 167 #define GEN_C2_JVMTI_STUB(name)                                       \
 168   STUB_FIELD_NAME(name) =                                               \
 169     generate_stub(env,                                                  \
 170                   notify_jvmti_vthread_Type,                            \
 171                   C2_JVMTI_STUB_C_FUNC(name),                         \
 172                   C2_STUB_NAME(name),                                 \
 173                   0,                                                    \
 174                   true,                                                 \
 175                   false);                                               \
 176   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 177 
 178 bool OptoRuntime::generate(ciEnv* env) {
 179 
 180   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 181 
 182   return true;
 183 }
 184 
 185 #undef GEN_C2_BLOB
 186 
 187 #undef C2_STUB_FIELD_NAME
 188 #undef C2_STUB_TYPEFUNC
 189 #undef C2_STUB_C_FUNC
 190 #undef C2_STUB_NAME
 191 #undef GEN_C2_STUB
 192 
 193 #undef C2_JVMTI_STUB_C_FUNC
 194 #undef GEN_C2_JVMTI_STUB
 195 // #undef gen
 196 
 197 
 198 // Helper method to do generation of RunTimeStub's
 199 address OptoRuntime::generate_stub(ciEnv* env,
 200                                    TypeFunc_generator gen, address C_function,
 201                                    const char *name, int is_fancy_jump,
 202                                    bool pass_tls,
 203                                    bool return_pc) {
 204 
 205   // Matching the default directive, we currently have no method to match.
 206   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 207   ResourceMark rm;
 208   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 209   DirectivesStack::release(directive);
 210   return  C.stub_entry_point();
 211 }
 212 
 213 const char* OptoRuntime::stub_name(address entry) {
 214 #ifndef PRODUCT
 215   CodeBlob* cb = CodeCache::find_blob(entry);
 216   RuntimeStub* rs =(RuntimeStub *)cb;
 217   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 218   return rs->name();
 219 #else
 220   // Fast implementation for product mode (maybe it should be inlined too)
 221   return "runtime stub";
 222 #endif
 223 }
 224 
 225 // local methods passed as arguments to stub generator that forward
 226 // control to corresponding JRT methods of SharedRuntime
 227 
 228 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 229                                    oopDesc* dest, jint dest_pos,
 230                                    jint length, JavaThread* thread) {
 231   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 232 }
 233 
 234 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 235   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 236 }
 237 
 238 
 239 //=============================================================================
 240 // Opto compiler runtime routines
 241 //=============================================================================
 242 
 243 
 244 //=============================allocation======================================
 245 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 246 // and try allocation again.
 247 
 248 // object allocation
 249 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
 250   JRT_BLOCK;
 251 #ifndef PRODUCT
 252   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 253 #endif
 254   assert(check_compiled_frame(current), "incorrect caller");
 255 
 256   // These checks are cheap to make and support reflective allocation.
 257   int lh = klass->layout_helper();
 258   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 259     Handle holder(current, klass->klass_holder()); // keep the klass alive
 260     klass->check_valid_for_instantiation(false, THREAD);
 261     if (!HAS_PENDING_EXCEPTION) {
 262       InstanceKlass::cast(klass)->initialize(THREAD);
 263     }
 264   }
 265 
 266   if (!HAS_PENDING_EXCEPTION) {
 267     // Scavenge and allocate an instance.
 268     Handle holder(current, klass->klass_holder()); // keep the klass alive
 269     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 270     if (is_larval) {
 271       // Check if this is a larval buffer allocation
 272       result->set_mark(result->mark().enter_larval_state());
 273     }
 274     current->set_vm_result(result);
 275 
 276     // Pass oops back through thread local storage.  Our apparent type to Java
 277     // is that we return an oop, but we can block on exit from this routine and
 278     // a GC can trash the oop in C's return register.  The generated stub will
 279     // fetch the oop from TLS after any possible GC.
 280   }
 281 
 282   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 283   JRT_BLOCK_END;
 284 
 285   // inform GC that we won't do card marks for initializing writes.
 286   SharedRuntime::on_slowpath_allocation_exit(current);
 287 JRT_END
 288 
 289 
 290 // array allocation
 291 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 292   JRT_BLOCK;
 293 #ifndef PRODUCT
 294   SharedRuntime::_new_array_ctr++;            // new array requires GC
 295 #endif
 296   assert(check_compiled_frame(current), "incorrect caller");
 297 
 298   // Scavenge and allocate an instance.
 299   oop result;
 300 
 301   if (array_type->is_flatArray_klass()) {
 302     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 303     FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
 304     Klass* elem_type = fak->element_klass();
 305     result = oopFactory::new_flatArray(elem_type, len, fak->layout_kind(), THREAD);
 306   } else if (array_type->is_typeArray_klass()) {
 307     // The oopFactory likes to work with the element type.
 308     // (We could bypass the oopFactory, since it doesn't add much value.)
 309     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 310     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 311   } else {
 312     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 313     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
 314   }
 315 
 316   // Pass oops back through thread local storage.  Our apparent type to Java
 317   // is that we return an oop, but we can block on exit from this routine and
 318   // a GC can trash the oop in C's return register.  The generated stub will
 319   // fetch the oop from TLS after any possible GC.
 320   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 321   current->set_vm_result(result);
 322   JRT_BLOCK_END;
 323 
 324   // inform GC that we won't do card marks for initializing writes.
 325   SharedRuntime::on_slowpath_allocation_exit(current);
 326 JRT_END
 327 
 328 // array allocation without zeroing
 329 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 330   JRT_BLOCK;
 331 #ifndef PRODUCT
 332   SharedRuntime::_new_array_ctr++;            // new array requires GC
 333 #endif
 334   assert(check_compiled_frame(current), "incorrect caller");
 335 
 336   // Scavenge and allocate an instance.
 337   oop result;
 338 
 339   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 340   // The oopFactory likes to work with the element type.
 341   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 342   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 343 
 344   // Pass oops back through thread local storage.  Our apparent type to Java
 345   // is that we return an oop, but we can block on exit from this routine and
 346   // a GC can trash the oop in C's return register.  The generated stub will
 347   // fetch the oop from TLS after any possible GC.
 348   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 349   current->set_vm_result(result);
 350   JRT_BLOCK_END;
 351 
 352 
 353   // inform GC that we won't do card marks for initializing writes.
 354   SharedRuntime::on_slowpath_allocation_exit(current);
 355 
 356   oop result = current->vm_result();
 357   if ((len > 0) && (result != nullptr) &&
 358       is_deoptimized_caller_frame(current)) {
 359     // Zero array here if the caller is deoptimized.
 360     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 361     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 362     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 363     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 364     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 365     if (!is_aligned(hs_bytes, BytesPerLong)) {
 366       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 367       hs_bytes += BytesPerInt;
 368     }
 369 
 370     // Optimized zeroing.
 371     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 372     const size_t aligned_hs = hs_bytes / BytesPerLong;
 373     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 374   }
 375 
 376 JRT_END
 377 
 378 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 379 
 380 // multianewarray for 2 dimensions
 381 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 382 #ifndef PRODUCT
 383   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 384 #endif
 385   assert(check_compiled_frame(current), "incorrect caller");
 386   assert(elem_type->is_klass(), "not a class");
 387   jint dims[2];
 388   dims[0] = len1;
 389   dims[1] = len2;
 390   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 391   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 392   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 393   current->set_vm_result(obj);
 394 JRT_END
 395 
 396 // multianewarray for 3 dimensions
 397 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 398 #ifndef PRODUCT
 399   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 400 #endif
 401   assert(check_compiled_frame(current), "incorrect caller");
 402   assert(elem_type->is_klass(), "not a class");
 403   jint dims[3];
 404   dims[0] = len1;
 405   dims[1] = len2;
 406   dims[2] = len3;
 407   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 409   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 410   current->set_vm_result(obj);
 411 JRT_END
 412 
 413 // multianewarray for 4 dimensions
 414 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 415 #ifndef PRODUCT
 416   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 417 #endif
 418   assert(check_compiled_frame(current), "incorrect caller");
 419   assert(elem_type->is_klass(), "not a class");
 420   jint dims[4];
 421   dims[0] = len1;
 422   dims[1] = len2;
 423   dims[2] = len3;
 424   dims[3] = len4;
 425   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 426   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 427   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 428   current->set_vm_result(obj);
 429 JRT_END
 430 
 431 // multianewarray for 5 dimensions
 432 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 433 #ifndef PRODUCT
 434   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 435 #endif
 436   assert(check_compiled_frame(current), "incorrect caller");
 437   assert(elem_type->is_klass(), "not a class");
 438   jint dims[5];
 439   dims[0] = len1;
 440   dims[1] = len2;
 441   dims[2] = len3;
 442   dims[3] = len4;
 443   dims[4] = len5;
 444   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 445   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 446   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 447   current->set_vm_result(obj);
 448 JRT_END
 449 
 450 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 451   assert(check_compiled_frame(current), "incorrect caller");
 452   assert(elem_type->is_klass(), "not a class");
 453   assert(oop(dims)->is_typeArray(), "not an array");
 454 
 455   ResourceMark rm;
 456   jint len = dims->length();
 457   assert(len > 0, "Dimensions array should contain data");
 458   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 459   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 460                                        c_dims, len);
 461 
 462   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 463   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 464   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 465   current->set_vm_result(obj);
 466 JRT_END
 467 
 468 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 469 
 470   // Very few notify/notifyAll operations find any threads on the waitset, so
 471   // the dominant fast-path is to simply return.
 472   // Relatedly, it's critical that notify/notifyAll be fast in order to
 473   // reduce lock hold times.
 474   if (!SafepointSynchronize::is_synchronizing()) {
 475     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 476       return;
 477     }
 478   }
 479 
 480   // This is the case the fast-path above isn't provisioned to handle.
 481   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 482   // (The fast-path is just a degenerate variant of the slow-path).
 483   // Perform the dreaded state transition and pass control into the slow-path.
 484   JRT_BLOCK;
 485   Handle h_obj(current, obj);
 486   ObjectSynchronizer::notify(h_obj, CHECK);
 487   JRT_BLOCK_END;
 488 JRT_END
 489 
 490 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 491 
 492   if (!SafepointSynchronize::is_synchronizing() ) {
 493     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 494       return;
 495     }
 496   }
 497 
 498   // This is the case the fast-path above isn't provisioned to handle.
 499   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 500   // (The fast-path is just a degenerate variant of the slow-path).
 501   // Perform the dreaded state transition and pass control into the slow-path.
 502   JRT_BLOCK;
 503   Handle h_obj(current, obj);
 504   ObjectSynchronizer::notifyall(h_obj, CHECK);
 505   JRT_BLOCK_END;
 506 JRT_END
 507 
 508 const TypeFunc *OptoRuntime::new_instance_Type() {
 509   // create input type (domain)
 510   const Type **fields = TypeTuple::fields(2);
 511   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 512   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
 513   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 514 
 515   // create result type (range)
 516   fields = TypeTuple::fields(1);
 517   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 518 
 519   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 520 
 521   return TypeFunc::make(domain, range);
 522 }
 523 
 524 #if INCLUDE_JVMTI
 525 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 526   // create input type (domain)
 527   const Type **fields = TypeTuple::fields(2);
 528   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 529   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 530   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 531 
 532   // no result type needed
 533   fields = TypeTuple::fields(1);
 534   fields[TypeFunc::Parms+0] = nullptr; // void
 535   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 536 
 537   return TypeFunc::make(domain,range);
 538 }
 539 #endif
 540 
 541 const TypeFunc *OptoRuntime::athrow_Type() {
 542   // create input type (domain)
 543   const Type **fields = TypeTuple::fields(1);
 544   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 546 
 547   // create result type (range)
 548   fields = TypeTuple::fields(0);
 549 
 550   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 551 
 552   return TypeFunc::make(domain, range);
 553 }
 554 
 555 
 556 const TypeFunc *OptoRuntime::new_array_Type() {
 557   // create input type (domain)
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 560   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(1);
 565   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 566 
 567   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 568 
 569   return TypeFunc::make(domain, range);
 570 }
 571 
 572 const TypeFunc *OptoRuntime::new_array_nozero_Type() {
 573   return new_array_Type();
 574 }
 575 
 576 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 577   // create input type (domain)
 578   const int nargs = ndim + 1;
 579   const Type **fields = TypeTuple::fields(nargs);
 580   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 581   for( int i = 1; i < nargs; i++ )
 582     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 583   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 584 
 585   // create result type (range)
 586   fields = TypeTuple::fields(1);
 587   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 594   return multianewarray_Type(2);
 595 }
 596 
 597 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 598   return multianewarray_Type(3);
 599 }
 600 
 601 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 602   return multianewarray_Type(4);
 603 }
 604 
 605 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 606   return multianewarray_Type(5);
 607 }
 608 
 609 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 610   // create input type (domain)
 611   const Type **fields = TypeTuple::fields(2);
 612   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 613   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 614   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 615 
 616   // create result type (range)
 617   fields = TypeTuple::fields(1);
 618   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 619   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 620 
 621   return TypeFunc::make(domain, range);
 622 }
 623 
 624 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 625   // create input type (domain)
 626   const Type **fields = TypeTuple::fields(1);
 627   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 628   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 629 
 630   // create result type (range)
 631   fields = TypeTuple::fields(0);
 632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 633 
 634   return TypeFunc::make(domain, range);
 635 }
 636 
 637 //-----------------------------------------------------------------------------
 638 // Monitor Handling
 639 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 640   // create input type (domain)
 641   const Type **fields = TypeTuple::fields(2);
 642   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 643   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 645 
 646   // create result type (range)
 647   fields = TypeTuple::fields(0);
 648 
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 650 
 651   return TypeFunc::make(domain, range);
 652 }
 653 
 654 const TypeFunc *OptoRuntime::complete_monitor_locking_Type() {
 655   return complete_monitor_enter_Type();
 656 }
 657 
 658 //-----------------------------------------------------------------------------
 659 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 660   // create input type (domain)
 661   const Type **fields = TypeTuple::fields(3);
 662   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 663   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 664   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 665   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 666 
 667   // create result type (range)
 668   fields = TypeTuple::fields(0);
 669 
 670   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 671 
 672   return TypeFunc::make(domain, range);
 673 }
 674 
 675 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 676   // create input type (domain)
 677   const Type **fields = TypeTuple::fields(1);
 678   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 680 
 681   // create result type (range)
 682   fields = TypeTuple::fields(0);
 683   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 684   return TypeFunc::make(domain, range);
 685 }
 686 
 687 const TypeFunc *OptoRuntime::monitor_notifyAll_Type() {
 688   return monitor_notify_Type();
 689 }
 690 
 691 const TypeFunc* OptoRuntime::flush_windows_Type() {
 692   // create input type (domain)
 693   const Type** fields = TypeTuple::fields(1);
 694   fields[TypeFunc::Parms+0] = nullptr; // void
 695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 696 
 697   // create result type
 698   fields = TypeTuple::fields(1);
 699   fields[TypeFunc::Parms+0] = nullptr; // void
 700   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 701 
 702   return TypeFunc::make(domain, range);
 703 }
 704 
 705 const TypeFunc* OptoRuntime::l2f_Type() {
 706   // create input type (domain)
 707   const Type **fields = TypeTuple::fields(2);
 708   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 709   fields[TypeFunc::Parms+1] = Type::HALF;
 710   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 711 
 712   // create result type (range)
 713   fields = TypeTuple::fields(1);
 714   fields[TypeFunc::Parms+0] = Type::FLOAT;
 715   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 716 
 717   return TypeFunc::make(domain, range);
 718 }
 719 
 720 const TypeFunc* OptoRuntime::modf_Type() {
 721   const Type **fields = TypeTuple::fields(2);
 722   fields[TypeFunc::Parms+0] = Type::FLOAT;
 723   fields[TypeFunc::Parms+1] = Type::FLOAT;
 724   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 725 
 726   // create result type (range)
 727   fields = TypeTuple::fields(1);
 728   fields[TypeFunc::Parms+0] = Type::FLOAT;
 729 
 730   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 731 
 732   return TypeFunc::make(domain, range);
 733 }
 734 
 735 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 736   // create input type (domain)
 737   const Type **fields = TypeTuple::fields(2);
 738   // Symbol* name of class to be loaded
 739   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 740   fields[TypeFunc::Parms+1] = Type::HALF;
 741   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 742 
 743   // create result type (range)
 744   fields = TypeTuple::fields(2);
 745   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 746   fields[TypeFunc::Parms+1] = Type::HALF;
 747   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 748 
 749   return TypeFunc::make(domain, range);
 750 }
 751 
 752 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 753   // create input type (domain)
 754   const Type **fields = TypeTuple::fields(num_arg);
 755   // Symbol* name of class to be loaded
 756   assert(num_arg > 0, "must have at least 1 input");
 757   for (uint i = 0; i < num_arg; i++) {
 758     fields[TypeFunc::Parms+i] = in_type;
 759   }
 760   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 761 
 762   // create result type (range)
 763   const uint num_ret = 1;
 764   fields = TypeTuple::fields(num_ret);
 765   fields[TypeFunc::Parms+0] = out_type;
 766   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 767 
 768   return TypeFunc::make(domain, range);
 769 }
 770 
 771 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 772   const Type **fields = TypeTuple::fields(4);
 773   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 774   fields[TypeFunc::Parms+1] = Type::HALF;
 775   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 776   fields[TypeFunc::Parms+3] = Type::HALF;
 777   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 778 
 779   // create result type (range)
 780   fields = TypeTuple::fields(2);
 781   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 782   fields[TypeFunc::Parms+1] = Type::HALF;
 783   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 784 
 785   return TypeFunc::make(domain, range);
 786 }
 787 
 788 //-------------- currentTimeMillis, currentTimeNanos, etc
 789 
 790 const TypeFunc* OptoRuntime::void_long_Type() {
 791   // create input type (domain)
 792   const Type **fields = TypeTuple::fields(0);
 793   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 794 
 795   // create result type (range)
 796   fields = TypeTuple::fields(2);
 797   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 798   fields[TypeFunc::Parms+1] = Type::HALF;
 799   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 800 
 801   return TypeFunc::make(domain, range);
 802 }
 803 
 804 const TypeFunc* OptoRuntime::void_void_Type() {
 805    // create input type (domain)
 806    const Type **fields = TypeTuple::fields(0);
 807    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 808 
 809    // create result type (range)
 810    fields = TypeTuple::fields(0);
 811    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 812    return TypeFunc::make(domain, range);
 813  }
 814 
 815  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 816    // create input type (domain)
 817    const Type **fields = TypeTuple::fields(0);
 818    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 819 
 820    // create result type (range)
 821    fields = TypeTuple::fields(0);
 822    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 823    return TypeFunc::make(domain, range);
 824  }
 825 
 826 
 827 // Takes as parameters:
 828 // void *dest
 829 // long size
 830 // uchar byte
 831 const TypeFunc* OptoRuntime::make_setmemory_Type() {
 832   // create input type (domain)
 833   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 834   const Type** fields = TypeTuple::fields(argcnt);
 835   int argp = TypeFunc::Parms;
 836   fields[argp++] = TypePtr::NOTNULL;        // dest
 837   fields[argp++] = TypeX_X;                 // size
 838   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 839   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 840   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 841   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 842 
 843   // no result type needed
 844   fields = TypeTuple::fields(1);
 845   fields[TypeFunc::Parms+0] = nullptr; // void
 846   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 847   return TypeFunc::make(domain, range);
 848 }
 849 
 850 // arraycopy stub variations:
 851 enum ArrayCopyType {
 852   ac_fast,                      // void(ptr, ptr, size_t)
 853   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 854   ac_slow,                      // void(ptr, int, ptr, int, int)
 855   ac_generic                    //  int(ptr, int, ptr, int, int)
 856 };
 857 
 858 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 859   // create input type (domain)
 860   int num_args      = (act == ac_fast ? 3 : 5);
 861   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 862   int argcnt = num_args;
 863   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 864   const Type** fields = TypeTuple::fields(argcnt);
 865   int argp = TypeFunc::Parms;
 866   fields[argp++] = TypePtr::NOTNULL;    // src
 867   if (num_size_args == 0) {
 868     fields[argp++] = TypeInt::INT;      // src_pos
 869   }
 870   fields[argp++] = TypePtr::NOTNULL;    // dest
 871   if (num_size_args == 0) {
 872     fields[argp++] = TypeInt::INT;      // dest_pos
 873     fields[argp++] = TypeInt::INT;      // length
 874   }
 875   while (num_size_args-- > 0) {
 876     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 877     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 878   }
 879   if (act == ac_checkcast) {
 880     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 881   }
 882   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 883   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 884 
 885   // create result type if needed
 886   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 887   fields = TypeTuple::fields(1);
 888   if (retcnt == 0)
 889     fields[TypeFunc::Parms+0] = nullptr; // void
 890   else
 891     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 892   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 893   return TypeFunc::make(domain, range);
 894 }
 895 
 896 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 897   // This signature is simple:  Two base pointers and a size_t.
 898   return make_arraycopy_Type(ac_fast);
 899 }
 900 
 901 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 902   // An extension of fast_arraycopy_Type which adds type checking.
 903   return make_arraycopy_Type(ac_checkcast);
 904 }
 905 
 906 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 907   // This signature is exactly the same as System.arraycopy.
 908   // There are no intptr_t (int/long) arguments.
 909   return make_arraycopy_Type(ac_slow);
 910 }
 911 
 912 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 913   // This signature is like System.arraycopy, except that it returns status.
 914   return make_arraycopy_Type(ac_generic);
 915 }
 916 
 917 
 918 const TypeFunc* OptoRuntime::array_fill_Type() {
 919   const Type** fields;
 920   int argp = TypeFunc::Parms;
 921   // create input type (domain): pointer, int, size_t
 922   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 923   fields[argp++] = TypePtr::NOTNULL;
 924   fields[argp++] = TypeInt::INT;
 925   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 926   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 927   const TypeTuple *domain = TypeTuple::make(argp, fields);
 928 
 929   // create result type
 930   fields = TypeTuple::fields(1);
 931   fields[TypeFunc::Parms+0] = nullptr; // void
 932   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 933 
 934   return TypeFunc::make(domain, range);
 935 }
 936 
 937 const TypeFunc* OptoRuntime::array_partition_Type() {
 938   // create input type (domain)
 939   int num_args = 7;
 940   int argcnt = num_args;
 941   const Type** fields = TypeTuple::fields(argcnt);
 942   int argp = TypeFunc::Parms;
 943   fields[argp++] = TypePtr::NOTNULL;  // array
 944   fields[argp++] = TypeInt::INT;      // element type
 945   fields[argp++] = TypeInt::INT;      // low
 946   fields[argp++] = TypeInt::INT;      // end
 947   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 948   fields[argp++] = TypeInt::INT;      // indexPivot1
 949   fields[argp++] = TypeInt::INT;      // indexPivot2
 950   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 951   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 952 
 953   // no result type needed
 954   fields = TypeTuple::fields(1);
 955   fields[TypeFunc::Parms+0] = nullptr; // void
 956   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 957   return TypeFunc::make(domain, range);
 958 }
 959 
 960 const TypeFunc* OptoRuntime::array_sort_Type() {
 961   // create input type (domain)
 962   int num_args      = 4;
 963   int argcnt = num_args;
 964   const Type** fields = TypeTuple::fields(argcnt);
 965   int argp = TypeFunc::Parms;
 966   fields[argp++] = TypePtr::NOTNULL;    // array
 967   fields[argp++] = TypeInt::INT;    // element type
 968   fields[argp++] = TypeInt::INT;    // fromIndex
 969   fields[argp++] = TypeInt::INT;    // toIndex
 970   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 971   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 972 
 973   // no result type needed
 974   fields = TypeTuple::fields(1);
 975   fields[TypeFunc::Parms+0] = nullptr; // void
 976   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 977   return TypeFunc::make(domain, range);
 978 }
 979 
 980 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 981 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 982   // create input type (domain)
 983   int num_args      = 3;
 984   int argcnt = num_args;
 985   const Type** fields = TypeTuple::fields(argcnt);
 986   int argp = TypeFunc::Parms;
 987   fields[argp++] = TypePtr::NOTNULL;    // src
 988   fields[argp++] = TypePtr::NOTNULL;    // dest
 989   fields[argp++] = TypePtr::NOTNULL;    // k array
 990   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 991   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 992 
 993   // no result type needed
 994   fields = TypeTuple::fields(1);
 995   fields[TypeFunc::Parms+0] = nullptr; // void
 996   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 997   return TypeFunc::make(domain, range);
 998 }
 999 
1000 /**
1001  * int updateBytesCRC32(int crc, byte* b, int len)
1002  */
1003 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
1004   // create input type (domain)
1005   int num_args      = 3;
1006   int argcnt = num_args;
1007   const Type** fields = TypeTuple::fields(argcnt);
1008   int argp = TypeFunc::Parms;
1009   fields[argp++] = TypeInt::INT;        // crc
1010   fields[argp++] = TypePtr::NOTNULL;    // src
1011   fields[argp++] = TypeInt::INT;        // len
1012   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1013   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1014 
1015   // result type needed
1016   fields = TypeTuple::fields(1);
1017   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1018   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1019   return TypeFunc::make(domain, range);
1020 }
1021 
1022 /**
1023  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
1024  */
1025 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
1026   // create input type (domain)
1027   int num_args      = 4;
1028   int argcnt = num_args;
1029   const Type** fields = TypeTuple::fields(argcnt);
1030   int argp = TypeFunc::Parms;
1031   fields[argp++] = TypeInt::INT;        // crc
1032   fields[argp++] = TypePtr::NOTNULL;    // buf
1033   fields[argp++] = TypeInt::INT;        // len
1034   fields[argp++] = TypePtr::NOTNULL;    // table
1035   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1036   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1037 
1038   // result type needed
1039   fields = TypeTuple::fields(1);
1040   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1041   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1042   return TypeFunc::make(domain, range);
1043 }
1044 
1045 /**
1046 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
1047 */
1048 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
1049   // create input type (domain)
1050   int num_args      = 3;
1051   int argcnt = num_args;
1052   const Type** fields = TypeTuple::fields(argcnt);
1053   int argp = TypeFunc::Parms;
1054   fields[argp++] = TypeInt::INT;        // crc
1055   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1056   fields[argp++] = TypeInt::INT;        // len
1057   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1058   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1059 
1060   // result type needed
1061   fields = TypeTuple::fields(1);
1062   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1063   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1064   return TypeFunc::make(domain, range);
1065 }
1066 
1067 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1068 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
1069   // create input type (domain)
1070   int num_args      = 5;
1071   int argcnt = num_args;
1072   const Type** fields = TypeTuple::fields(argcnt);
1073   int argp = TypeFunc::Parms;
1074   fields[argp++] = TypePtr::NOTNULL;    // src
1075   fields[argp++] = TypePtr::NOTNULL;    // dest
1076   fields[argp++] = TypePtr::NOTNULL;    // k array
1077   fields[argp++] = TypePtr::NOTNULL;    // r array
1078   fields[argp++] = TypeInt::INT;        // src len
1079   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1080   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1081 
1082   // returning cipher len (int)
1083   fields = TypeTuple::fields(1);
1084   fields[TypeFunc::Parms+0] = TypeInt::INT;
1085   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1086   return TypeFunc::make(domain, range);
1087 }
1088 
1089 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
1090 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
1091   // create input type (domain)
1092   int num_args = 4;
1093   int argcnt = num_args;
1094   const Type** fields = TypeTuple::fields(argcnt);
1095   int argp = TypeFunc::Parms;
1096   fields[argp++] = TypePtr::NOTNULL;    // src
1097   fields[argp++] = TypePtr::NOTNULL;    // dest
1098   fields[argp++] = TypePtr::NOTNULL;    // k array
1099   fields[argp++] = TypeInt::INT;        // src len
1100   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1101   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1102 
1103   // returning cipher len (int)
1104   fields = TypeTuple::fields(1);
1105   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1106   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1107   return TypeFunc::make(domain, range);
1108 }
1109 
1110 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1111 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
1112   // create input type (domain)
1113   int num_args = 7;
1114   int argcnt = num_args;
1115   const Type** fields = TypeTuple::fields(argcnt);
1116   int argp = TypeFunc::Parms;
1117   fields[argp++] = TypePtr::NOTNULL; // src
1118   fields[argp++] = TypePtr::NOTNULL; // dest
1119   fields[argp++] = TypePtr::NOTNULL; // k array
1120   fields[argp++] = TypePtr::NOTNULL; // counter array
1121   fields[argp++] = TypeInt::INT; // src len
1122   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1123   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1124   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1125   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1126   // returning cipher len (int)
1127   fields = TypeTuple::fields(1);
1128   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1129   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1130   return TypeFunc::make(domain, range);
1131 }
1132 
1133 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1134 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1135   // create input type (domain)
1136   int num_args = 8;
1137   int argcnt = num_args;
1138   const Type** fields = TypeTuple::fields(argcnt);
1139   int argp = TypeFunc::Parms;
1140   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1141   fields[argp++] = TypeInt::INT;     // int len
1142   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1143   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1144   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1145   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1146   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1147   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1148 
1149   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1150   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1151   // returning cipher len (int)
1152   fields = TypeTuple::fields(1);
1153   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1154   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1155   return TypeFunc::make(domain, range);
1156 }
1157 
1158 /*
1159  * void implCompress(byte[] buf, int ofs)
1160  */
1161 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1162   // create input type (domain)
1163   int num_args = is_sha3 ? 3 : 2;
1164   int argcnt = num_args;
1165   const Type** fields = TypeTuple::fields(argcnt);
1166   int argp = TypeFunc::Parms;
1167   fields[argp++] = TypePtr::NOTNULL; // buf
1168   fields[argp++] = TypePtr::NOTNULL; // state
1169   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1170   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1171   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1172 
1173   // no result type needed
1174   fields = TypeTuple::fields(1);
1175   fields[TypeFunc::Parms+0] = nullptr; // void
1176   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1177   return TypeFunc::make(domain, range);
1178 }
1179 
1180 /*
1181  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1182  */
1183 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1184   // create input type (domain)
1185   int num_args = is_sha3 ? 5 : 4;
1186   int argcnt = num_args;
1187   const Type** fields = TypeTuple::fields(argcnt);
1188   int argp = TypeFunc::Parms;
1189   fields[argp++] = TypePtr::NOTNULL; // buf
1190   fields[argp++] = TypePtr::NOTNULL; // state
1191   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1192   fields[argp++] = TypeInt::INT;     // ofs
1193   fields[argp++] = TypeInt::INT;     // limit
1194   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1195   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1196 
1197   // returning ofs (int)
1198   fields = TypeTuple::fields(1);
1199   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1200   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1201   return TypeFunc::make(domain, range);
1202 }
1203 
1204 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1205   // create input type (domain)
1206   int num_args      = 5;
1207   int argcnt = num_args;
1208   const Type** fields = TypeTuple::fields(argcnt);
1209   int argp = TypeFunc::Parms;
1210   fields[argp++] = TypePtr::NOTNULL;    // x
1211   fields[argp++] = TypeInt::INT;        // xlen
1212   fields[argp++] = TypePtr::NOTNULL;    // y
1213   fields[argp++] = TypeInt::INT;        // ylen
1214   fields[argp++] = TypePtr::NOTNULL;    // z
1215   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1216   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1217 
1218   // no result type needed
1219   fields = TypeTuple::fields(1);
1220   fields[TypeFunc::Parms+0] = nullptr;
1221   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1222   return TypeFunc::make(domain, range);
1223 }
1224 
1225 const TypeFunc* OptoRuntime::squareToLen_Type() {
1226   // create input type (domain)
1227   int num_args      = 4;
1228   int argcnt = num_args;
1229   const Type** fields = TypeTuple::fields(argcnt);
1230   int argp = TypeFunc::Parms;
1231   fields[argp++] = TypePtr::NOTNULL;    // x
1232   fields[argp++] = TypeInt::INT;        // len
1233   fields[argp++] = TypePtr::NOTNULL;    // z
1234   fields[argp++] = TypeInt::INT;        // zlen
1235   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1236   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1237 
1238   // no result type needed
1239   fields = TypeTuple::fields(1);
1240   fields[TypeFunc::Parms+0] = nullptr;
1241   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1242   return TypeFunc::make(domain, range);
1243 }
1244 
1245 // for mulAdd calls, 2 pointers and 3 ints, returning int
1246 const TypeFunc* OptoRuntime::mulAdd_Type() {
1247   // create input type (domain)
1248   int num_args      = 5;
1249   int argcnt = num_args;
1250   const Type** fields = TypeTuple::fields(argcnt);
1251   int argp = TypeFunc::Parms;
1252   fields[argp++] = TypePtr::NOTNULL;    // out
1253   fields[argp++] = TypePtr::NOTNULL;    // in
1254   fields[argp++] = TypeInt::INT;        // offset
1255   fields[argp++] = TypeInt::INT;        // len
1256   fields[argp++] = TypeInt::INT;        // k
1257   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1258   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1259 
1260   // returning carry (int)
1261   fields = TypeTuple::fields(1);
1262   fields[TypeFunc::Parms+0] = TypeInt::INT;
1263   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1264   return TypeFunc::make(domain, range);
1265 }
1266 
1267 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1268   // create input type (domain)
1269   int num_args      = 7;
1270   int argcnt = num_args;
1271   const Type** fields = TypeTuple::fields(argcnt);
1272   int argp = TypeFunc::Parms;
1273   fields[argp++] = TypePtr::NOTNULL;    // a
1274   fields[argp++] = TypePtr::NOTNULL;    // b
1275   fields[argp++] = TypePtr::NOTNULL;    // n
1276   fields[argp++] = TypeInt::INT;        // len
1277   fields[argp++] = TypeLong::LONG;      // inv
1278   fields[argp++] = Type::HALF;
1279   fields[argp++] = TypePtr::NOTNULL;    // result
1280   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1281   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1282 
1283   // result type needed
1284   fields = TypeTuple::fields(1);
1285   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1286 
1287   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1288   return TypeFunc::make(domain, range);
1289 }
1290 
1291 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1292   // create input type (domain)
1293   int num_args      = 6;
1294   int argcnt = num_args;
1295   const Type** fields = TypeTuple::fields(argcnt);
1296   int argp = TypeFunc::Parms;
1297   fields[argp++] = TypePtr::NOTNULL;    // a
1298   fields[argp++] = TypePtr::NOTNULL;    // n
1299   fields[argp++] = TypeInt::INT;        // len
1300   fields[argp++] = TypeLong::LONG;      // inv
1301   fields[argp++] = Type::HALF;
1302   fields[argp++] = TypePtr::NOTNULL;    // result
1303   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1304   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1305 
1306   // result type needed
1307   fields = TypeTuple::fields(1);
1308   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1309 
1310   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1311   return TypeFunc::make(domain, range);
1312 }
1313 
1314 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1315   int argcnt = 5;
1316   const Type** fields = TypeTuple::fields(argcnt);
1317   int argp = TypeFunc::Parms;
1318   fields[argp++] = TypePtr::NOTNULL;    // newArr
1319   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1320   fields[argp++] = TypeInt::INT;        // newIdx
1321   fields[argp++] = TypeInt::INT;        // shiftCount
1322   fields[argp++] = TypeInt::INT;        // numIter
1323   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1324   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1325 
1326   // no result type needed
1327   fields = TypeTuple::fields(1);
1328   fields[TypeFunc::Parms + 0] = nullptr;
1329   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1330   return TypeFunc::make(domain, range);
1331 }
1332 
1333 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1334   // create input type (domain)
1335   int num_args = 4;
1336   int argcnt = num_args;
1337   const Type** fields = TypeTuple::fields(argcnt);
1338   int argp = TypeFunc::Parms;
1339   fields[argp++] = TypePtr::NOTNULL;    // obja
1340   fields[argp++] = TypePtr::NOTNULL;    // objb
1341   fields[argp++] = TypeInt::INT;        // length, number of elements
1342   fields[argp++] = TypeInt::INT;        // log2scale, element size
1343   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1344   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1345 
1346   //return mismatch index (int)
1347   fields = TypeTuple::fields(1);
1348   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1349   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1350   return TypeFunc::make(domain, range);
1351 }
1352 
1353 // GHASH block processing
1354 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1355     int argcnt = 4;
1356 
1357     const Type** fields = TypeTuple::fields(argcnt);
1358     int argp = TypeFunc::Parms;
1359     fields[argp++] = TypePtr::NOTNULL;    // state
1360     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1361     fields[argp++] = TypePtr::NOTNULL;    // data
1362     fields[argp++] = TypeInt::INT;        // blocks
1363     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1364     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1365 
1366     // result type needed
1367     fields = TypeTuple::fields(1);
1368     fields[TypeFunc::Parms+0] = nullptr; // void
1369     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1370     return TypeFunc::make(domain, range);
1371 }
1372 
1373 // ChaCha20 Block function
1374 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1375     int argcnt = 2;
1376 
1377     const Type** fields = TypeTuple::fields(argcnt);
1378     int argp = TypeFunc::Parms;
1379     fields[argp++] = TypePtr::NOTNULL;      // state
1380     fields[argp++] = TypePtr::NOTNULL;      // result
1381 
1382     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1383     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1384 
1385     // result type needed
1386     fields = TypeTuple::fields(1);
1387     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1388     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1389     return TypeFunc::make(domain, range);
1390 }
1391 
1392 // Base64 encode function
1393 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1394   int argcnt = 6;
1395 
1396   const Type** fields = TypeTuple::fields(argcnt);
1397   int argp = TypeFunc::Parms;
1398   fields[argp++] = TypePtr::NOTNULL;    // src array
1399   fields[argp++] = TypeInt::INT;        // offset
1400   fields[argp++] = TypeInt::INT;        // length
1401   fields[argp++] = TypePtr::NOTNULL;    // dest array
1402   fields[argp++] = TypeInt::INT;       // dp
1403   fields[argp++] = TypeInt::BOOL;       // isURL
1404   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1405   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1406 
1407   // result type needed
1408   fields = TypeTuple::fields(1);
1409   fields[TypeFunc::Parms + 0] = nullptr; // void
1410   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1411   return TypeFunc::make(domain, range);
1412 }
1413 
1414 // String IndexOf function
1415 const TypeFunc* OptoRuntime::string_IndexOf_Type() {
1416   int argcnt = 4;
1417 
1418   const Type** fields = TypeTuple::fields(argcnt);
1419   int argp = TypeFunc::Parms;
1420   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1421   fields[argp++] = TypeInt::INT;        // haystack length
1422   fields[argp++] = TypePtr::NOTNULL;    // needle array
1423   fields[argp++] = TypeInt::INT;        // needle length
1424   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1425   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1426 
1427   // result type needed
1428   fields = TypeTuple::fields(1);
1429   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1430   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1431   return TypeFunc::make(domain, range);
1432 }
1433 
1434 // Base64 decode function
1435 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1436   int argcnt = 7;
1437 
1438   const Type** fields = TypeTuple::fields(argcnt);
1439   int argp = TypeFunc::Parms;
1440   fields[argp++] = TypePtr::NOTNULL;    // src array
1441   fields[argp++] = TypeInt::INT;        // src offset
1442   fields[argp++] = TypeInt::INT;        // src length
1443   fields[argp++] = TypePtr::NOTNULL;    // dest array
1444   fields[argp++] = TypeInt::INT;        // dest offset
1445   fields[argp++] = TypeInt::BOOL;       // isURL
1446   fields[argp++] = TypeInt::BOOL;       // isMIME
1447   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1448   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1449 
1450   // result type needed
1451   fields = TypeTuple::fields(1);
1452   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1453   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1454   return TypeFunc::make(domain, range);
1455 }
1456 
1457 // Poly1305 processMultipleBlocks function
1458 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1459   int argcnt = 4;
1460 
1461   const Type** fields = TypeTuple::fields(argcnt);
1462   int argp = TypeFunc::Parms;
1463   fields[argp++] = TypePtr::NOTNULL;    // input array
1464   fields[argp++] = TypeInt::INT;        // input length
1465   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1466   fields[argp++] = TypePtr::NOTNULL;    // r array
1467   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1468   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1469 
1470   // result type needed
1471   fields = TypeTuple::fields(1);
1472   fields[TypeFunc::Parms + 0] = nullptr; // void
1473   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1474   return TypeFunc::make(domain, range);
1475 }
1476 
1477 // MontgomeryIntegerPolynomialP256 multiply function
1478 const TypeFunc* OptoRuntime::intpoly_montgomeryMult_P256_Type() {
1479   int argcnt = 3;
1480 
1481   const Type** fields = TypeTuple::fields(argcnt);
1482   int argp = TypeFunc::Parms;
1483   fields[argp++] = TypePtr::NOTNULL;    // a array
1484   fields[argp++] = TypePtr::NOTNULL;    // b array
1485   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1486   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1487   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1488 
1489   // result type needed
1490   fields = TypeTuple::fields(1);
1491   fields[TypeFunc::Parms + 0] = nullptr; // void
1492   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1493   return TypeFunc::make(domain, range);
1494 }
1495 
1496 // IntegerPolynomial constant time assignment function
1497 const TypeFunc* OptoRuntime::intpoly_assign_Type() {
1498   int argcnt = 4;
1499 
1500   const Type** fields = TypeTuple::fields(argcnt);
1501   int argp = TypeFunc::Parms;
1502   fields[argp++] = TypeInt::INT;        // set flag
1503   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1504   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1505   fields[argp++] = TypeInt::INT;        // array length
1506   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1507   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1508 
1509   // result type needed
1510   fields = TypeTuple::fields(1);
1511   fields[TypeFunc::Parms + 0] = nullptr; // void
1512   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1513   return TypeFunc::make(domain, range);
1514 }
1515 
1516 //------------- Interpreter state access for on stack replacement
1517 const TypeFunc* OptoRuntime::osr_end_Type() {
1518   // create input type (domain)
1519   const Type **fields = TypeTuple::fields(1);
1520   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1522 
1523   // create result type
1524   fields = TypeTuple::fields(1);
1525   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1526   fields[TypeFunc::Parms+0] = nullptr; // void
1527   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1528   return TypeFunc::make(domain, range);
1529 }
1530 
1531 //-------------------------------------------------------------------------------------
1532 // register policy
1533 
1534 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1535   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1536   switch (register_save_policy[reg]) {
1537     case 'C': return false; //SOC
1538     case 'E': return true ; //SOE
1539     case 'N': return false; //NS
1540     case 'A': return false; //AS
1541   }
1542   ShouldNotReachHere();
1543   return false;
1544 }
1545 
1546 //-----------------------------------------------------------------------
1547 // Exceptions
1548 //
1549 
1550 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1551 
1552 // The method is an entry that is always called by a C++ method not
1553 // directly from compiled code. Compiled code will call the C++ method following.
1554 // We can't allow async exception to be installed during  exception processing.
1555 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1556   // The frame we rethrow the exception to might not have been processed by the GC yet.
1557   // The stack watermark barrier takes care of detecting that and ensuring the frame
1558   // has updated oops.
1559   StackWatermarkSet::after_unwind(current);
1560 
1561   // Do not confuse exception_oop with pending_exception. The exception_oop
1562   // is only used to pass arguments into the method. Not for general
1563   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1564   // the runtime stubs checks this on exit.
1565   assert(current->exception_oop() != nullptr, "exception oop is found");
1566   address handler_address = nullptr;
1567 
1568   Handle exception(current, current->exception_oop());
1569   address pc = current->exception_pc();
1570 
1571   // Clear out the exception oop and pc since looking up an
1572   // exception handler can cause class loading, which might throw an
1573   // exception and those fields are expected to be clear during
1574   // normal bytecode execution.
1575   current->clear_exception_oop_and_pc();
1576 
1577   LogTarget(Info, exceptions) lt;
1578   if (lt.is_enabled()) {
1579     ResourceMark rm;
1580     LogStream ls(lt);
1581     trace_exception(&ls, exception(), pc, "");
1582   }
1583 
1584   // for AbortVMOnException flag
1585   Exceptions::debug_check_abort(exception);
1586 
1587 #ifdef ASSERT
1588   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1589     // should throw an exception here
1590     ShouldNotReachHere();
1591   }
1592 #endif
1593 
1594   // new exception handling: this method is entered only from adapters
1595   // exceptions from compiled java methods are handled in compiled code
1596   // using rethrow node
1597 
1598   nm = CodeCache::find_nmethod(pc);
1599   assert(nm != nullptr, "No NMethod found");
1600   if (nm->is_native_method()) {
1601     fatal("Native method should not have path to exception handling");
1602   } else {
1603     // we are switching to old paradigm: search for exception handler in caller_frame
1604     // instead in exception handler of caller_frame.sender()
1605 
1606     if (JvmtiExport::can_post_on_exceptions()) {
1607       // "Full-speed catching" is not necessary here,
1608       // since we're notifying the VM on every catch.
1609       // Force deoptimization and the rest of the lookup
1610       // will be fine.
1611       deoptimize_caller_frame(current);
1612     }
1613 
1614     // Check the stack guard pages.  If enabled, look for handler in this frame;
1615     // otherwise, forcibly unwind the frame.
1616     //
1617     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1618     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1619     bool deopting = false;
1620     if (nm->is_deopt_pc(pc)) {
1621       deopting = true;
1622       RegisterMap map(current,
1623                       RegisterMap::UpdateMap::skip,
1624                       RegisterMap::ProcessFrames::include,
1625                       RegisterMap::WalkContinuation::skip);
1626       frame deoptee = current->last_frame().sender(&map);
1627       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1628       // Adjust the pc back to the original throwing pc
1629       pc = deoptee.pc();
1630     }
1631 
1632     // If we are forcing an unwind because of stack overflow then deopt is
1633     // irrelevant since we are throwing the frame away anyway.
1634 
1635     if (deopting && !force_unwind) {
1636       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1637     } else {
1638 
1639       handler_address =
1640         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1641 
1642       if (handler_address == nullptr) {
1643         bool recursive_exception = false;
1644         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1645         assert (handler_address != nullptr, "must have compiled handler");
1646         // Update the exception cache only when the unwind was not forced
1647         // and there didn't happen another exception during the computation of the
1648         // compiled exception handler. Checking for exception oop equality is not
1649         // sufficient because some exceptions are pre-allocated and reused.
1650         if (!force_unwind && !recursive_exception) {
1651           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1652         }
1653       } else {
1654 #ifdef ASSERT
1655         bool recursive_exception = false;
1656         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1657         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1658                  p2i(handler_address), p2i(computed_address));
1659 #endif
1660       }
1661     }
1662 
1663     current->set_exception_pc(pc);
1664     current->set_exception_handler_pc(handler_address);
1665 
1666     // Check if the exception PC is a MethodHandle call site.
1667     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1668   }
1669 
1670   // Restore correct return pc.  Was saved above.
1671   current->set_exception_oop(exception());
1672   return handler_address;
1673 
1674 JRT_END
1675 
1676 // We are entering here from exception_blob
1677 // If there is a compiled exception handler in this method, we will continue there;
1678 // otherwise we will unwind the stack and continue at the caller of top frame method
1679 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1680 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1681 // we looked up the handler for has been deoptimized in the meantime. If it has been
1682 // we must not use the handler and instead return the deopt blob.
1683 address OptoRuntime::handle_exception_C(JavaThread* current) {
1684 //
1685 // We are in Java not VM and in debug mode we have a NoHandleMark
1686 //
1687 #ifndef PRODUCT
1688   SharedRuntime::_find_handler_ctr++;          // find exception handler
1689 #endif
1690   debug_only(NoHandleMark __hm;)
1691   nmethod* nm = nullptr;
1692   address handler_address = nullptr;
1693   {
1694     // Enter the VM
1695 
1696     ResetNoHandleMark rnhm;
1697     handler_address = handle_exception_C_helper(current, nm);
1698   }
1699 
1700   // Back in java: Use no oops, DON'T safepoint
1701 
1702   // Now check to see if the handler we are returning is in a now
1703   // deoptimized frame
1704 
1705   if (nm != nullptr) {
1706     RegisterMap map(current,
1707                     RegisterMap::UpdateMap::skip,
1708                     RegisterMap::ProcessFrames::skip,
1709                     RegisterMap::WalkContinuation::skip);
1710     frame caller = current->last_frame().sender(&map);
1711 #ifdef ASSERT
1712     assert(caller.is_compiled_frame(), "must be");
1713 #endif // ASSERT
1714     if (caller.is_deoptimized_frame()) {
1715       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1716     }
1717   }
1718   return handler_address;
1719 }
1720 
1721 //------------------------------rethrow----------------------------------------
1722 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1723 // is either throwing or rethrowing an exception.  The callee-save registers
1724 // have been restored, synchronized objects have been unlocked and the callee
1725 // stack frame has been removed.  The return address was passed in.
1726 // Exception oop is passed as the 1st argument.  This routine is then called
1727 // from the stub.  On exit, we know where to jump in the caller's code.
1728 // After this C code exits, the stub will pop his frame and end in a jump
1729 // (instead of a return).  We enter the caller's default handler.
1730 //
1731 // This must be JRT_LEAF:
1732 //     - caller will not change its state as we cannot block on exit,
1733 //       therefore raw_exception_handler_for_return_address is all it takes
1734 //       to handle deoptimized blobs
1735 //
1736 // However, there needs to be a safepoint check in the middle!  So compiled
1737 // safepoints are completely watertight.
1738 //
1739 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1740 //
1741 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1742 //
1743 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1744   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1745   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
1746 
1747 #ifndef PRODUCT
1748   SharedRuntime::_rethrow_ctr++;               // count rethrows
1749 #endif
1750   assert (exception != nullptr, "should have thrown a NullPointerException");
1751 #ifdef ASSERT
1752   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1753     // should throw an exception here
1754     ShouldNotReachHere();
1755   }
1756 #endif
1757 
1758   thread->set_vm_result(exception);
1759   // Frame not compiled (handles deoptimization blob)
1760   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1761 }
1762 
1763 
1764 const TypeFunc *OptoRuntime::rethrow_Type() {
1765   // create input type (domain)
1766   const Type **fields = TypeTuple::fields(1);
1767   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1768   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1769 
1770   // create result type (range)
1771   fields = TypeTuple::fields(1);
1772   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1773   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1774 
1775   return TypeFunc::make(domain, range);
1776 }
1777 
1778 
1779 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1780   // Deoptimize the caller before continuing, as the compiled
1781   // exception handler table may not be valid.
1782   if (!StressCompiledExceptionHandlers && doit) {
1783     deoptimize_caller_frame(thread);
1784   }
1785 }
1786 
1787 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1788   // Called from within the owner thread, so no need for safepoint
1789   RegisterMap reg_map(thread,
1790                       RegisterMap::UpdateMap::include,
1791                       RegisterMap::ProcessFrames::include,
1792                       RegisterMap::WalkContinuation::skip);
1793   frame stub_frame = thread->last_frame();
1794   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1795   frame caller_frame = stub_frame.sender(&reg_map);
1796 
1797   // Deoptimize the caller frame.
1798   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1799 }
1800 
1801 
1802 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1803   // Called from within the owner thread, so no need for safepoint
1804   RegisterMap reg_map(thread,
1805                       RegisterMap::UpdateMap::include,
1806                       RegisterMap::ProcessFrames::include,
1807                       RegisterMap::WalkContinuation::skip);
1808   frame stub_frame = thread->last_frame();
1809   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1810   frame caller_frame = stub_frame.sender(&reg_map);
1811   return caller_frame.is_deoptimized_frame();
1812 }
1813 
1814 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1815   // create input type (domain)
1816   const Type **fields = TypeTuple::fields(1);
1817   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1818   // // The JavaThread* is passed to each routine as the last argument
1819   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1820   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1821 
1822   // create result type (range)
1823   fields = TypeTuple::fields(0);
1824 
1825   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1826 
1827   return TypeFunc::make(domain, range);
1828 }
1829 
1830 #if INCLUDE_JFR
1831 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1832   // create input type (domain)
1833   const Type **fields = TypeTuple::fields(1);
1834   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1835   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1836 
1837   // create result type (range)
1838   fields = TypeTuple::fields(0);
1839 
1840   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1841 
1842   return TypeFunc::make(domain,range);
1843 }
1844 #endif
1845 
1846 //-----------------------------------------------------------------------------
1847 // Dtrace support.  entry and exit probes have the same signature
1848 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1849   // create input type (domain)
1850   const Type **fields = TypeTuple::fields(2);
1851   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1852   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1853   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1854 
1855   // create result type (range)
1856   fields = TypeTuple::fields(0);
1857 
1858   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1859 
1860   return TypeFunc::make(domain, range);
1861 }
1862 
1863 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1864   // create input type (domain)
1865   const Type **fields = TypeTuple::fields(2);
1866   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1867   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1868 
1869   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1870 
1871   // create result type (range)
1872   fields = TypeTuple::fields(0);
1873 
1874   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1875 
1876   return TypeFunc::make(domain, range);
1877 }
1878 
1879 
1880 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
1881   assert(oopDesc::is_oop(obj), "must be a valid oop");
1882   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1883   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1884 JRT_END
1885 
1886 //-----------------------------------------------------------------------------
1887 
1888 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1889 
1890 //
1891 // dump the collected NamedCounters.
1892 //
1893 void OptoRuntime::print_named_counters() {
1894   int total_lock_count = 0;
1895   int eliminated_lock_count = 0;
1896 
1897   NamedCounter* c = _named_counters;
1898   while (c) {
1899     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1900       int count = c->count();
1901       if (count > 0) {
1902         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1903         if (Verbose) {
1904           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1905         }
1906         total_lock_count += count;
1907         if (eliminated) {
1908           eliminated_lock_count += count;
1909         }
1910       }
1911     }
1912     c = c->next();
1913   }
1914   if (total_lock_count > 0) {
1915     tty->print_cr("dynamic locks: %d", total_lock_count);
1916     if (eliminated_lock_count) {
1917       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1918                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1919     }
1920   }
1921 }
1922 
1923 //
1924 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1925 //  name which consists of method@line for the inlining tree.
1926 //
1927 
1928 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1929   int max_depth = youngest_jvms->depth();
1930 
1931   // Visit scopes from youngest to oldest.
1932   bool first = true;
1933   stringStream st;
1934   for (int depth = max_depth; depth >= 1; depth--) {
1935     JVMState* jvms = youngest_jvms->of_depth(depth);
1936     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1937     if (!first) {
1938       st.print(" ");
1939     } else {
1940       first = false;
1941     }
1942     int bci = jvms->bci();
1943     if (bci < 0) bci = 0;
1944     if (m != nullptr) {
1945       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1946     } else {
1947       st.print("no method");
1948     }
1949     st.print("@%d", bci);
1950     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1951   }
1952   NamedCounter* c = new NamedCounter(st.freeze(), tag);
1953 
1954   // atomically add the new counter to the head of the list.  We only
1955   // add counters so this is safe.
1956   NamedCounter* head;
1957   do {
1958     c->set_next(nullptr);
1959     head = _named_counters;
1960     c->set_next(head);
1961   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1962   return c;
1963 }
1964 
1965 int trace_exception_counter = 0;
1966 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1967   trace_exception_counter++;
1968   stringStream tempst;
1969 
1970   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1971   exception_oop->print_value_on(&tempst);
1972   tempst.print(" in ");
1973   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1974   if (blob->is_nmethod()) {
1975     blob->as_nmethod()->method()->print_value_on(&tempst);
1976   } else if (blob->is_runtime_stub()) {
1977     tempst.print("<runtime-stub>");
1978   } else {
1979     tempst.print("<unknown>");
1980   }
1981   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1982   tempst.print("]");
1983 
1984   st->print_raw_cr(tempst.freeze());
1985 }
1986 
1987 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
1988   // create input type (domain)
1989   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1990   const Type **fields = TypeTuple::fields(total);
1991   // We don't know the number of returned values and their
1992   // types. Assume all registers available to the return convention
1993   // are used.
1994   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1995   uint i = 1;
1996   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1997     fields[TypeFunc::Parms+i] = TypeInt::INT;
1998   }
1999   for (; i < total; i+=2) {
2000     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2001     fields[TypeFunc::Parms+i+1] = Type::HALF;
2002   }
2003   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2004 
2005   // create result type (range)
2006   fields = TypeTuple::fields(1);
2007   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2008 
2009   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2010 
2011   return TypeFunc::make(domain, range);
2012 }
2013 
2014 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2015   // create input type (domain)
2016   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2017   const Type **fields = TypeTuple::fields(total);
2018   // We don't know the number of returned values and their
2019   // types. Assume all registers available to the return convention
2020   // are used.
2021   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2022   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2023   uint i = 2;
2024   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2025     fields[TypeFunc::Parms+i] = TypeInt::INT;
2026   }
2027   for (; i < total; i+=2) {
2028     fields[TypeFunc::Parms+i] = Type::DOUBLE;
2029     fields[TypeFunc::Parms+i+1] = Type::HALF;
2030   }
2031   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2032 
2033   // create result type (range)
2034   fields = TypeTuple::fields(1);
2035   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2036 
2037   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2038 
2039   return TypeFunc::make(domain, range);
2040 }
2041 
2042 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2043   JRT_BLOCK;
2044   oop buffer = array->read_value_from_flat_array(index, THREAD);
2045   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2046   current->set_vm_result(buffer);
2047   JRT_BLOCK_END;
2048 JRT_END
2049 
2050 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2051   // create input type (domain)
2052   const Type** fields = TypeTuple::fields(2);
2053   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2054   fields[TypeFunc::Parms+1] = TypeInt::POS;
2055 
2056   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2057 
2058   // create result type (range)
2059   fields = TypeTuple::fields(1);
2060   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2061 
2062   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2063 
2064   return TypeFunc::make(domain, range);
2065 }
2066 
2067 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2068   JRT_BLOCK;
2069   assert(buffer != nullptr, "can't store null into flat array");
2070   array->write_value_to_flat_array(buffer, index, THREAD);
2071   if (HAS_PENDING_EXCEPTION) {
2072       fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2073   }
2074   JRT_BLOCK_END;
2075 JRT_END
2076 
2077 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2078   // create input type (domain)
2079   const Type** fields = TypeTuple::fields(3);
2080   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2081   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2082   fields[TypeFunc::Parms+2] = TypeInt::POS;
2083 
2084   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2085 
2086   // create result type (range)
2087   fields = TypeTuple::fields(0);
2088   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2089 
2090   return TypeFunc::make(domain, range);
2091 }