27 #include "code/codeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/nmethod.hpp"
30 #include "code/pcDesc.hpp"
31 #include "code/scopeDesc.hpp"
32 #include "code/vtableStubs.hpp"
33 #include "compiler/compilationMemoryStatistic.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/g1/g1HeapRegion.hpp"
37 #include "gc/shared/barrierSet.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gcLocker.hpp"
40 #include "interpreter/bytecode.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/linkResolver.hpp"
43 #include "logging/log.hpp"
44 #include "logging/logStream.hpp"
45 #include "memory/oopFactory.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "oops/klass.inline.hpp"
48 #include "oops/objArrayKlass.hpp"
49 #include "oops/oop.inline.hpp"
50 #include "oops/typeArrayOop.inline.hpp"
51 #include "opto/ad.hpp"
52 #include "opto/addnode.hpp"
53 #include "opto/callnode.hpp"
54 #include "opto/cfgnode.hpp"
55 #include "opto/graphKit.hpp"
56 #include "opto/machnode.hpp"
57 #include "opto/matcher.hpp"
58 #include "opto/memnode.hpp"
59 #include "opto/mulnode.hpp"
60 #include "opto/output.hpp"
61 #include "opto/runtime.hpp"
62 #include "opto/subnode.hpp"
63 #include "prims/jvmtiExport.hpp"
64 #include "runtime/atomicAccess.hpp"
65 #include "runtime/frame.inline.hpp"
66 #include "runtime/handles.inline.hpp"
171
172 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
173
174 return true;
175 }
176
177 #undef GEN_C2_BLOB
178
179 #undef C2_STUB_FIELD_NAME
180 #undef C2_STUB_TYPEFUNC
181 #undef C2_STUB_C_FUNC
182 #undef C2_STUB_NAME
183 #undef GEN_C2_STUB
184
185 #undef C2_JVMTI_STUB_C_FUNC
186 #undef GEN_C2_JVMTI_STUB
187 // #undef gen
188
189 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr;
190 const TypeFunc* OptoRuntime::_new_array_Type = nullptr;
191 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr;
192 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr;
193 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr;
194 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr;
195 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr;
196 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr;
197 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr;
198 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr;
199 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr;
200 const TypeFunc* OptoRuntime::_athrow_Type = nullptr;
201 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr;
202 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr;
203 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr;
204 const TypeFunc* OptoRuntime::_modf_Type = nullptr;
205 const TypeFunc* OptoRuntime::_l2f_Type = nullptr;
206 const TypeFunc* OptoRuntime::_void_long_Type = nullptr;
207 const TypeFunc* OptoRuntime::_void_void_Type = nullptr;
208 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr;
209 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr;
210 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr;
301 oopDesc* dest, jint dest_pos,
302 jint length, JavaThread* thread) {
303 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread);
304 }
305
306 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
307 SharedRuntime::complete_monitor_locking_C(obj, lock, current);
308 }
309
310
311 //=============================================================================
312 // Opto compiler runtime routines
313 //=============================================================================
314
315
316 //=============================allocation======================================
317 // We failed the fast-path allocation. Now we need to do a scavenge or GC
318 // and try allocation again.
319
320 // object allocation
321 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
322 JRT_BLOCK;
323 #ifndef PRODUCT
324 SharedRuntime::_new_instance_ctr++; // new instance requires GC
325 #endif
326 assert(check_compiled_frame(current), "incorrect caller");
327
328 // These checks are cheap to make and support reflective allocation.
329 int lh = klass->layout_helper();
330 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
331 Handle holder(current, klass->klass_holder()); // keep the klass alive
332 klass->check_valid_for_instantiation(false, THREAD);
333 if (!HAS_PENDING_EXCEPTION) {
334 InstanceKlass::cast(klass)->initialize(THREAD);
335 }
336 }
337
338 if (!HAS_PENDING_EXCEPTION) {
339 // Scavenge and allocate an instance.
340 Handle holder(current, klass->klass_holder()); // keep the klass alive
341 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
342 current->set_vm_result_oop(result);
343
344 // Pass oops back through thread local storage. Our apparent type to Java
345 // is that we return an oop, but we can block on exit from this routine and
346 // a GC can trash the oop in C's return register. The generated stub will
347 // fetch the oop from TLS after any possible GC.
348 }
349
350 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
351 JRT_BLOCK_END;
352
353 // inform GC that we won't do card marks for initializing writes.
354 SharedRuntime::on_slowpath_allocation_exit(current);
355 JRT_END
356
357
358 // array allocation
359 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
360 JRT_BLOCK;
361 #ifndef PRODUCT
362 SharedRuntime::_new_array_ctr++; // new array requires GC
363 #endif
364 assert(check_compiled_frame(current), "incorrect caller");
365
366 // Scavenge and allocate an instance.
367 oop result;
368
369 if (array_type->is_typeArray_klass()) {
370 // The oopFactory likes to work with the element type.
371 // (We could bypass the oopFactory, since it doesn't add much value.)
372 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
373 result = oopFactory::new_typeArray(elem_type, len, THREAD);
374 } else {
375 // Although the oopFactory likes to work with the elem_type,
376 // the compiler prefers the array_type, since it must already have
377 // that latter value in hand for the fast path.
378 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
379 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
380 result = oopFactory::new_objArray(elem_type, len, THREAD);
381 }
382
383 // Pass oops back through thread local storage. Our apparent type to Java
384 // is that we return an oop, but we can block on exit from this routine and
385 // a GC can trash the oop in C's return register. The generated stub will
386 // fetch the oop from TLS after any possible GC.
387 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
388 current->set_vm_result_oop(result);
389 JRT_BLOCK_END;
390
391 // inform GC that we won't do card marks for initializing writes.
392 SharedRuntime::on_slowpath_allocation_exit(current);
393 JRT_END
394
395 // array allocation without zeroing
396 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
397 JRT_BLOCK;
398 #ifndef PRODUCT
399 SharedRuntime::_new_array_ctr++; // new array requires GC
400 #endif
557 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
558
559 if (!SafepointSynchronize::is_synchronizing() ) {
560 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
561 return;
562 }
563 }
564
565 // This is the case the fast-path above isn't provisioned to handle.
566 // The fast-path is designed to handle frequently arising cases in an efficient manner.
567 // (The fast-path is just a degenerate variant of the slow-path).
568 // Perform the dreaded state transition and pass control into the slow-path.
569 JRT_BLOCK;
570 Handle h_obj(current, obj);
571 ObjectSynchronizer::notifyall(h_obj, CHECK);
572 JRT_BLOCK_END;
573 JRT_END
574
575 static const TypeFunc* make_new_instance_Type() {
576 // create input type (domain)
577 const Type **fields = TypeTuple::fields(1);
578 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
579 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
580
581 // create result type (range)
582 fields = TypeTuple::fields(1);
583 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
584
585 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
586
587 return TypeFunc::make(domain, range);
588 }
589
590 #if INCLUDE_JVMTI
591 static const TypeFunc* make_notify_jvmti_vthread_Type() {
592 // create input type (domain)
593 const Type **fields = TypeTuple::fields(2);
594 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
595 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean
596 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
597
598 // no result type needed
599 fields = TypeTuple::fields(1);
602
603 return TypeFunc::make(domain,range);
604 }
605 #endif
606
607 static const TypeFunc* make_athrow_Type() {
608 // create input type (domain)
609 const Type **fields = TypeTuple::fields(1);
610 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
611 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
612
613 // create result type (range)
614 fields = TypeTuple::fields(0);
615
616 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
617
618 return TypeFunc::make(domain, range);
619 }
620
621 static const TypeFunc* make_new_array_Type() {
622 // create input type (domain)
623 const Type **fields = TypeTuple::fields(2);
624 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
625 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
626 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
627
628 // create result type (range)
629 fields = TypeTuple::fields(1);
630 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
631
632 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
633
634 return TypeFunc::make(domain, range);
635 }
636
637 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
638 // create input type (domain)
639 const int nargs = ndim + 1;
640 const Type **fields = TypeTuple::fields(nargs);
641 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
677 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
678
679 return TypeFunc::make(domain, range);
680 }
681
682 //-----------------------------------------------------------------------------
683 // Monitor Handling
684
685 static const TypeFunc* make_complete_monitor_enter_Type() {
686 // create input type (domain)
687 const Type **fields = TypeTuple::fields(2);
688 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
689 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
690 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
691
692 // create result type (range)
693 fields = TypeTuple::fields(0);
694
695 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
696
697 return TypeFunc::make(domain,range);
698 }
699
700 //-----------------------------------------------------------------------------
701
702 static const TypeFunc* make_complete_monitor_exit_Type() {
703 // create input type (domain)
704 const Type **fields = TypeTuple::fields(3);
705 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
706 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
707 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
709
710 // create result type (range)
711 fields = TypeTuple::fields(0);
712
713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
714
715 return TypeFunc::make(domain, range);
716 }
717
2111 RegisterMap::WalkContinuation::skip);
2112 frame stub_frame = thread->last_frame();
2113 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2114 frame caller_frame = stub_frame.sender(®_map);
2115 return caller_frame.is_deoptimized_frame();
2116 }
2117
2118 static const TypeFunc* make_register_finalizer_Type() {
2119 // create input type (domain)
2120 const Type **fields = TypeTuple::fields(1);
2121 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
2122 // // The JavaThread* is passed to each routine as the last argument
2123 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
2124 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2125
2126 // create result type (range)
2127 fields = TypeTuple::fields(0);
2128
2129 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2130
2131 return TypeFunc::make(domain,range);
2132 }
2133
2134 #if INCLUDE_JFR
2135 static const TypeFunc* make_class_id_load_barrier_Type() {
2136 // create input type (domain)
2137 const Type **fields = TypeTuple::fields(1);
2138 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2139 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2140
2141 // create result type (range)
2142 fields = TypeTuple::fields(0);
2143
2144 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2145
2146 return TypeFunc::make(domain,range);
2147 }
2148 #endif // INCLUDE_JFR
2149
2150 //-----------------------------------------------------------------------------
2151 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2152 // create input type (domain)
2153 const Type **fields = TypeTuple::fields(2);
2154 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2155 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
2156 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2157
2158 // create result type (range)
2159 fields = TypeTuple::fields(0);
2160
2161 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2162
2163 return TypeFunc::make(domain,range);
2164 }
2165
2166 static const TypeFunc* make_dtrace_object_alloc_Type() {
2167 // create input type (domain)
2168 const Type **fields = TypeTuple::fields(2);
2169 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2170 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
2171
2172 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2173
2174 // create result type (range)
2175 fields = TypeTuple::fields(0);
2176
2177 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2178
2179 return TypeFunc::make(domain,range);
2180 }
2181
2182 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2183 assert(oopDesc::is_oop(obj), "must be a valid oop");
2184 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2185 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2186 JRT_END
2187
2188 //-----------------------------------------------------------------------------
2189
2190 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2191
2192 //
2193 // dump the collected NamedCounters.
2194 //
2195 void OptoRuntime::print_named_counters() {
2196 int total_lock_count = 0;
2197 int eliminated_lock_count = 0;
2198
2199 NamedCounter* c = _named_counters;
2250 }
2251 st.print("@%d", bci);
2252 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2253 }
2254 NamedCounter* c = new NamedCounter(st.freeze(), tag);
2255
2256 // atomically add the new counter to the head of the list. We only
2257 // add counters so this is safe.
2258 NamedCounter* head;
2259 do {
2260 c->set_next(nullptr);
2261 head = _named_counters;
2262 c->set_next(head);
2263 } while (AtomicAccess::cmpxchg(&_named_counters, head, c) != head);
2264 return c;
2265 }
2266
2267 void OptoRuntime::initialize_types() {
2268 _new_instance_Type = make_new_instance_Type();
2269 _new_array_Type = make_new_array_Type();
2270 _multianewarray2_Type = multianewarray_Type(2);
2271 _multianewarray3_Type = multianewarray_Type(3);
2272 _multianewarray4_Type = multianewarray_Type(4);
2273 _multianewarray5_Type = multianewarray_Type(5);
2274 _multianewarrayN_Type = make_multianewarrayN_Type();
2275 _complete_monitor_enter_Type = make_complete_monitor_enter_Type();
2276 _complete_monitor_exit_Type = make_complete_monitor_exit_Type();
2277 _monitor_notify_Type = make_monitor_notify_Type();
2278 _uncommon_trap_Type = make_uncommon_trap_Type();
2279 _athrow_Type = make_athrow_Type();
2280 _rethrow_Type = make_rethrow_Type();
2281 _Math_D_D_Type = make_Math_D_D_Type();
2282 _Math_DD_D_Type = make_Math_DD_D_Type();
2283 _modf_Type = make_modf_Type();
2284 _l2f_Type = make_l2f_Type();
2285 _void_long_Type = make_void_long_Type();
2286 _void_void_Type = make_void_void_Type();
2287 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type();
2288 _flush_windows_Type = make_flush_windows_Type();
2289 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast);
2350 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2351 trace_exception_counter++;
2352 stringStream tempst;
2353
2354 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2355 exception_oop->print_value_on(&tempst);
2356 tempst.print(" in ");
2357 CodeBlob* blob = CodeCache::find_blob(exception_pc);
2358 if (blob->is_nmethod()) {
2359 blob->as_nmethod()->method()->print_value_on(&tempst);
2360 } else if (blob->is_runtime_stub()) {
2361 tempst.print("<runtime-stub>");
2362 } else {
2363 tempst.print("<unknown>");
2364 }
2365 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
2366 tempst.print("]");
2367
2368 st->print_raw_cr(tempst.freeze());
2369 }
|
27 #include "code/codeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/nmethod.hpp"
30 #include "code/pcDesc.hpp"
31 #include "code/scopeDesc.hpp"
32 #include "code/vtableStubs.hpp"
33 #include "compiler/compilationMemoryStatistic.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/g1/g1HeapRegion.hpp"
37 #include "gc/shared/barrierSet.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gcLocker.hpp"
40 #include "interpreter/bytecode.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/linkResolver.hpp"
43 #include "logging/log.hpp"
44 #include "logging/logStream.hpp"
45 #include "memory/oopFactory.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "oops/flatArrayKlass.hpp"
48 #include "oops/flatArrayOop.inline.hpp"
49 #include "oops/klass.inline.hpp"
50 #include "oops/objArrayKlass.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "oops/typeArrayOop.inline.hpp"
53 #include "opto/ad.hpp"
54 #include "opto/addnode.hpp"
55 #include "opto/callnode.hpp"
56 #include "opto/cfgnode.hpp"
57 #include "opto/graphKit.hpp"
58 #include "opto/machnode.hpp"
59 #include "opto/matcher.hpp"
60 #include "opto/memnode.hpp"
61 #include "opto/mulnode.hpp"
62 #include "opto/output.hpp"
63 #include "opto/runtime.hpp"
64 #include "opto/subnode.hpp"
65 #include "prims/jvmtiExport.hpp"
66 #include "runtime/atomicAccess.hpp"
67 #include "runtime/frame.inline.hpp"
68 #include "runtime/handles.inline.hpp"
173
174 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
175
176 return true;
177 }
178
179 #undef GEN_C2_BLOB
180
181 #undef C2_STUB_FIELD_NAME
182 #undef C2_STUB_TYPEFUNC
183 #undef C2_STUB_C_FUNC
184 #undef C2_STUB_NAME
185 #undef GEN_C2_STUB
186
187 #undef C2_JVMTI_STUB_C_FUNC
188 #undef GEN_C2_JVMTI_STUB
189 // #undef gen
190
191 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr;
192 const TypeFunc* OptoRuntime::_new_array_Type = nullptr;
193 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr;
194 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr;
195 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr;
196 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr;
197 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr;
198 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr;
199 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr;
200 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr;
201 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr;
202 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr;
203 const TypeFunc* OptoRuntime::_athrow_Type = nullptr;
204 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr;
205 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr;
206 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr;
207 const TypeFunc* OptoRuntime::_modf_Type = nullptr;
208 const TypeFunc* OptoRuntime::_l2f_Type = nullptr;
209 const TypeFunc* OptoRuntime::_void_long_Type = nullptr;
210 const TypeFunc* OptoRuntime::_void_void_Type = nullptr;
211 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr;
212 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr;
213 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr;
304 oopDesc* dest, jint dest_pos,
305 jint length, JavaThread* thread) {
306 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread);
307 }
308
309 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
310 SharedRuntime::complete_monitor_locking_C(obj, lock, current);
311 }
312
313
314 //=============================================================================
315 // Opto compiler runtime routines
316 //=============================================================================
317
318
319 //=============================allocation======================================
320 // We failed the fast-path allocation. Now we need to do a scavenge or GC
321 // and try allocation again.
322
323 // object allocation
324 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
325 JRT_BLOCK;
326 #ifndef PRODUCT
327 SharedRuntime::_new_instance_ctr++; // new instance requires GC
328 #endif
329 assert(check_compiled_frame(current), "incorrect caller");
330
331 // These checks are cheap to make and support reflective allocation.
332 int lh = klass->layout_helper();
333 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
334 Handle holder(current, klass->klass_holder()); // keep the klass alive
335 klass->check_valid_for_instantiation(false, THREAD);
336 if (!HAS_PENDING_EXCEPTION) {
337 InstanceKlass::cast(klass)->initialize(THREAD);
338 }
339 }
340
341 if (!HAS_PENDING_EXCEPTION) {
342 // Scavenge and allocate an instance.
343 Handle holder(current, klass->klass_holder()); // keep the klass alive
344 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
345 if (is_larval) {
346 // Check if this is a larval buffer allocation
347 result->set_mark(result->mark().enter_larval_state());
348 }
349 current->set_vm_result_oop(result);
350
351 // Pass oops back through thread local storage. Our apparent type to Java
352 // is that we return an oop, but we can block on exit from this routine and
353 // a GC can trash the oop in C's return register. The generated stub will
354 // fetch the oop from TLS after any possible GC.
355 }
356
357 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
358 JRT_BLOCK_END;
359
360 // inform GC that we won't do card marks for initializing writes.
361 SharedRuntime::on_slowpath_allocation_exit(current);
362 JRT_END
363
364
365 // array allocation
366 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current))
367 JRT_BLOCK;
368 #ifndef PRODUCT
369 SharedRuntime::_new_array_ctr++; // new array requires GC
370 #endif
371 assert(check_compiled_frame(current), "incorrect caller");
372
373 // Scavenge and allocate an instance.
374 oop result;
375 Handle h_init_val(current, init_val); // keep the init_val object alive
376
377 if (array_type->is_flatArray_klass()) {
378 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
379 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
380 InlineKlass* vk = fak->element_klass();
381 ArrayKlass::ArrayProperties props = ArrayKlass::array_properties_from_layout(fak->layout_kind());
382 result = oopFactory::new_flatArray(vk, len, props, fak->layout_kind(), THREAD);
383 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
384 // Null-free arrays need to be initialized
385 for (int i = 0; i < len; i++) {
386 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK);
387 }
388 }
389 } else if (array_type->is_typeArray_klass()) {
390 // The oopFactory likes to work with the element type.
391 // (We could bypass the oopFactory, since it doesn't add much value.)
392 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
393 result = oopFactory::new_typeArray(elem_type, len, THREAD);
394 } else {
395 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
396 result = oopFactory::new_refArray(array_type, len, THREAD);
397 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
398 // Null-free arrays need to be initialized
399 for (int i = 0; i < len; i++) {
400 ((objArrayOop)result)->obj_at_put(i, h_init_val());
401 }
402 }
403 }
404
405 // Pass oops back through thread local storage. Our apparent type to Java
406 // is that we return an oop, but we can block on exit from this routine and
407 // a GC can trash the oop in C's return register. The generated stub will
408 // fetch the oop from TLS after any possible GC.
409 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
410 current->set_vm_result_oop(result);
411 JRT_BLOCK_END;
412
413 // inform GC that we won't do card marks for initializing writes.
414 SharedRuntime::on_slowpath_allocation_exit(current);
415 JRT_END
416
417 // array allocation without zeroing
418 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
419 JRT_BLOCK;
420 #ifndef PRODUCT
421 SharedRuntime::_new_array_ctr++; // new array requires GC
422 #endif
579 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
580
581 if (!SafepointSynchronize::is_synchronizing() ) {
582 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
583 return;
584 }
585 }
586
587 // This is the case the fast-path above isn't provisioned to handle.
588 // The fast-path is designed to handle frequently arising cases in an efficient manner.
589 // (The fast-path is just a degenerate variant of the slow-path).
590 // Perform the dreaded state transition and pass control into the slow-path.
591 JRT_BLOCK;
592 Handle h_obj(current, obj);
593 ObjectSynchronizer::notifyall(h_obj, CHECK);
594 JRT_BLOCK_END;
595 JRT_END
596
597 static const TypeFunc* make_new_instance_Type() {
598 // create input type (domain)
599 const Type **fields = TypeTuple::fields(2);
600 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
601 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval
602 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
603
604 // create result type (range)
605 fields = TypeTuple::fields(1);
606 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
607
608 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
609
610 return TypeFunc::make(domain, range);
611 }
612
613 #if INCLUDE_JVMTI
614 static const TypeFunc* make_notify_jvmti_vthread_Type() {
615 // create input type (domain)
616 const Type **fields = TypeTuple::fields(2);
617 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
618 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean
619 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
620
621 // no result type needed
622 fields = TypeTuple::fields(1);
625
626 return TypeFunc::make(domain,range);
627 }
628 #endif
629
630 static const TypeFunc* make_athrow_Type() {
631 // create input type (domain)
632 const Type **fields = TypeTuple::fields(1);
633 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
634 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
635
636 // create result type (range)
637 fields = TypeTuple::fields(0);
638
639 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
640
641 return TypeFunc::make(domain, range);
642 }
643
644 static const TypeFunc* make_new_array_Type() {
645 // create input type (domain)
646 const Type **fields = TypeTuple::fields(3);
647 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
648 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
649 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value
650 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
651
652 // create result type (range)
653 fields = TypeTuple::fields(1);
654 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
655
656 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
657
658 return TypeFunc::make(domain, range);
659 }
660
661 static const TypeFunc* make_new_array_nozero_Type() {
662 // create input type (domain)
663 const Type **fields = TypeTuple::fields(2);
664 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
665 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
666 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
667
668 // create result type (range)
669 fields = TypeTuple::fields(1);
670 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
671
672 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
673
674 return TypeFunc::make(domain, range);
675 }
676
677 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
678 // create input type (domain)
679 const int nargs = ndim + 1;
680 const Type **fields = TypeTuple::fields(nargs);
681 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
717 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
718
719 return TypeFunc::make(domain, range);
720 }
721
722 //-----------------------------------------------------------------------------
723 // Monitor Handling
724
725 static const TypeFunc* make_complete_monitor_enter_Type() {
726 // create input type (domain)
727 const Type **fields = TypeTuple::fields(2);
728 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
729 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
730 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
731
732 // create result type (range)
733 fields = TypeTuple::fields(0);
734
735 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
736
737 return TypeFunc::make(domain, range);
738 }
739
740 //-----------------------------------------------------------------------------
741
742 static const TypeFunc* make_complete_monitor_exit_Type() {
743 // create input type (domain)
744 const Type **fields = TypeTuple::fields(3);
745 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
746 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
747 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
748 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
749
750 // create result type (range)
751 fields = TypeTuple::fields(0);
752
753 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
754
755 return TypeFunc::make(domain, range);
756 }
757
2151 RegisterMap::WalkContinuation::skip);
2152 frame stub_frame = thread->last_frame();
2153 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2154 frame caller_frame = stub_frame.sender(®_map);
2155 return caller_frame.is_deoptimized_frame();
2156 }
2157
2158 static const TypeFunc* make_register_finalizer_Type() {
2159 // create input type (domain)
2160 const Type **fields = TypeTuple::fields(1);
2161 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
2162 // // The JavaThread* is passed to each routine as the last argument
2163 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
2164 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2165
2166 // create result type (range)
2167 fields = TypeTuple::fields(0);
2168
2169 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2170
2171 return TypeFunc::make(domain, range);
2172 }
2173
2174 #if INCLUDE_JFR
2175 static const TypeFunc* make_class_id_load_barrier_Type() {
2176 // create input type (domain)
2177 const Type **fields = TypeTuple::fields(1);
2178 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2179 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2180
2181 // create result type (range)
2182 fields = TypeTuple::fields(0);
2183
2184 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2185
2186 return TypeFunc::make(domain,range);
2187 }
2188 #endif // INCLUDE_JFR
2189
2190 //-----------------------------------------------------------------------------
2191 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2192 // create input type (domain)
2193 const Type **fields = TypeTuple::fields(2);
2194 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2195 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
2196 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2197
2198 // create result type (range)
2199 fields = TypeTuple::fields(0);
2200
2201 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2202
2203 return TypeFunc::make(domain, range);
2204 }
2205
2206 static const TypeFunc* make_dtrace_object_alloc_Type() {
2207 // create input type (domain)
2208 const Type **fields = TypeTuple::fields(2);
2209 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2210 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
2211
2212 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2213
2214 // create result type (range)
2215 fields = TypeTuple::fields(0);
2216
2217 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2218
2219 return TypeFunc::make(domain, range);
2220 }
2221
2222 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2223 assert(oopDesc::is_oop(obj), "must be a valid oop");
2224 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2225 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2226 JRT_END
2227
2228 //-----------------------------------------------------------------------------
2229
2230 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2231
2232 //
2233 // dump the collected NamedCounters.
2234 //
2235 void OptoRuntime::print_named_counters() {
2236 int total_lock_count = 0;
2237 int eliminated_lock_count = 0;
2238
2239 NamedCounter* c = _named_counters;
2290 }
2291 st.print("@%d", bci);
2292 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2293 }
2294 NamedCounter* c = new NamedCounter(st.freeze(), tag);
2295
2296 // atomically add the new counter to the head of the list. We only
2297 // add counters so this is safe.
2298 NamedCounter* head;
2299 do {
2300 c->set_next(nullptr);
2301 head = _named_counters;
2302 c->set_next(head);
2303 } while (AtomicAccess::cmpxchg(&_named_counters, head, c) != head);
2304 return c;
2305 }
2306
2307 void OptoRuntime::initialize_types() {
2308 _new_instance_Type = make_new_instance_Type();
2309 _new_array_Type = make_new_array_Type();
2310 _new_array_nozero_Type = make_new_array_nozero_Type();
2311 _multianewarray2_Type = multianewarray_Type(2);
2312 _multianewarray3_Type = multianewarray_Type(3);
2313 _multianewarray4_Type = multianewarray_Type(4);
2314 _multianewarray5_Type = multianewarray_Type(5);
2315 _multianewarrayN_Type = make_multianewarrayN_Type();
2316 _complete_monitor_enter_Type = make_complete_monitor_enter_Type();
2317 _complete_monitor_exit_Type = make_complete_monitor_exit_Type();
2318 _monitor_notify_Type = make_monitor_notify_Type();
2319 _uncommon_trap_Type = make_uncommon_trap_Type();
2320 _athrow_Type = make_athrow_Type();
2321 _rethrow_Type = make_rethrow_Type();
2322 _Math_D_D_Type = make_Math_D_D_Type();
2323 _Math_DD_D_Type = make_Math_DD_D_Type();
2324 _modf_Type = make_modf_Type();
2325 _l2f_Type = make_l2f_Type();
2326 _void_long_Type = make_void_long_Type();
2327 _void_void_Type = make_void_void_Type();
2328 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type();
2329 _flush_windows_Type = make_flush_windows_Type();
2330 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast);
2391 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2392 trace_exception_counter++;
2393 stringStream tempst;
2394
2395 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2396 exception_oop->print_value_on(&tempst);
2397 tempst.print(" in ");
2398 CodeBlob* blob = CodeCache::find_blob(exception_pc);
2399 if (blob->is_nmethod()) {
2400 blob->as_nmethod()->method()->print_value_on(&tempst);
2401 } else if (blob->is_runtime_stub()) {
2402 tempst.print("<runtime-stub>");
2403 } else {
2404 tempst.print("<unknown>");
2405 }
2406 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
2407 tempst.print("]");
2408
2409 st->print_raw_cr(tempst.freeze());
2410 }
2411
2412 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2413 // create input type (domain)
2414 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2415 const Type **fields = TypeTuple::fields(total);
2416 // We don't know the number of returned values and their
2417 // types. Assume all registers available to the return convention
2418 // are used.
2419 fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2420 uint i = 1;
2421 for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2422 fields[TypeFunc::Parms+i] = TypeInt::INT;
2423 }
2424 for (; i < total; i+=2) {
2425 fields[TypeFunc::Parms+i] = Type::DOUBLE;
2426 fields[TypeFunc::Parms+i+1] = Type::HALF;
2427 }
2428 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2429
2430 // create result type (range)
2431 fields = TypeTuple::fields(1);
2432 fields[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM;
2433
2434 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2435
2436 return TypeFunc::make(domain, range);
2437 }
2438
2439 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2440 // create input type (domain)
2441 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2442 const Type **fields = TypeTuple::fields(total);
2443 // We don't know the number of returned values and their
2444 // types. Assume all registers available to the return convention
2445 // are used.
2446 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2447 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2448 uint i = 2;
2449 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2450 fields[TypeFunc::Parms+i] = TypeInt::INT;
2451 }
2452 for (; i < total; i+=2) {
2453 fields[TypeFunc::Parms+i] = Type::DOUBLE;
2454 fields[TypeFunc::Parms+i+1] = Type::HALF;
2455 }
2456 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2457
2458 // create result type (range)
2459 fields = TypeTuple::fields(1);
2460 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2461
2462 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2463
2464 return TypeFunc::make(domain, range);
2465 }
2466
2467 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2468 JRT_BLOCK;
2469 oop buffer = array->obj_at(index, THREAD);
2470 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2471 current->set_vm_result_oop(buffer);
2472 JRT_BLOCK_END;
2473 JRT_END
2474
2475 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2476 // create input type (domain)
2477 const Type** fields = TypeTuple::fields(2);
2478 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2479 fields[TypeFunc::Parms+1] = TypeInt::POS;
2480
2481 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2482
2483 // create result type (range)
2484 fields = TypeTuple::fields(1);
2485 fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
2486
2487 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2488
2489 return TypeFunc::make(domain, range);
2490 }
2491
2492 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2493 JRT_BLOCK;
2494 array->obj_at_put(index, buffer, THREAD);
2495 if (HAS_PENDING_EXCEPTION) {
2496 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2497 }
2498 JRT_BLOCK_END;
2499 JRT_END
2500
2501 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2502 // create input type (domain)
2503 const Type** fields = TypeTuple::fields(3);
2504 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2505 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2506 fields[TypeFunc::Parms+2] = TypeInt::POS;
2507
2508 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2509
2510 // create result type (range)
2511 fields = TypeTuple::fields(0);
2512 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2513
2514 return TypeFunc::make(domain, range);
2515 }
|