27 #include "code/codeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/nmethod.hpp"
30 #include "code/pcDesc.hpp"
31 #include "code/scopeDesc.hpp"
32 #include "code/vtableStubs.hpp"
33 #include "compiler/compilationMemoryStatistic.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/g1/g1HeapRegion.hpp"
37 #include "gc/shared/barrierSet.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gcLocker.hpp"
40 #include "interpreter/bytecode.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/linkResolver.hpp"
43 #include "logging/log.hpp"
44 #include "logging/logStream.hpp"
45 #include "memory/oopFactory.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "oops/objArrayKlass.hpp"
48 #include "oops/klass.inline.hpp"
49 #include "oops/oop.inline.hpp"
50 #include "oops/typeArrayOop.inline.hpp"
51 #include "opto/ad.hpp"
52 #include "opto/addnode.hpp"
53 #include "opto/callnode.hpp"
54 #include "opto/cfgnode.hpp"
55 #include "opto/graphKit.hpp"
56 #include "opto/machnode.hpp"
57 #include "opto/matcher.hpp"
58 #include "opto/memnode.hpp"
59 #include "opto/mulnode.hpp"
60 #include "opto/output.hpp"
61 #include "opto/runtime.hpp"
62 #include "opto/subnode.hpp"
63 #include "prims/jvmtiExport.hpp"
64 #include "runtime/atomic.hpp"
65 #include "runtime/frame.inline.hpp"
66 #include "runtime/handles.inline.hpp"
181
182 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
183
184 return true;
185 }
186
187 #undef GEN_C2_BLOB
188
189 #undef C2_STUB_FIELD_NAME
190 #undef C2_STUB_TYPEFUNC
191 #undef C2_STUB_C_FUNC
192 #undef C2_STUB_NAME
193 #undef GEN_C2_STUB
194
195 #undef C2_JVMTI_STUB_C_FUNC
196 #undef GEN_C2_JVMTI_STUB
197 // #undef gen
198
199 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr;
200 const TypeFunc* OptoRuntime::_new_array_Type = nullptr;
201 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr;
202 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr;
203 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr;
204 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr;
205 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr;
206 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr;
207 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr;
208 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr;
209 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr;
210 const TypeFunc* OptoRuntime::_athrow_Type = nullptr;
211 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr;
212 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr;
213 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr;
214 const TypeFunc* OptoRuntime::_modf_Type = nullptr;
215 const TypeFunc* OptoRuntime::_l2f_Type = nullptr;
216 const TypeFunc* OptoRuntime::_void_long_Type = nullptr;
217 const TypeFunc* OptoRuntime::_void_void_Type = nullptr;
218 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr;
219 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr;
220 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr;
311 oopDesc* dest, jint dest_pos,
312 jint length, JavaThread* thread) {
313 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread);
314 }
315
316 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
317 SharedRuntime::complete_monitor_locking_C(obj, lock, current);
318 }
319
320
321 //=============================================================================
322 // Opto compiler runtime routines
323 //=============================================================================
324
325
326 //=============================allocation======================================
327 // We failed the fast-path allocation. Now we need to do a scavenge or GC
328 // and try allocation again.
329
330 // object allocation
331 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
332 JRT_BLOCK;
333 #ifndef PRODUCT
334 SharedRuntime::_new_instance_ctr++; // new instance requires GC
335 #endif
336 assert(check_compiled_frame(current), "incorrect caller");
337
338 // These checks are cheap to make and support reflective allocation.
339 int lh = klass->layout_helper();
340 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
341 Handle holder(current, klass->klass_holder()); // keep the klass alive
342 klass->check_valid_for_instantiation(false, THREAD);
343 if (!HAS_PENDING_EXCEPTION) {
344 InstanceKlass::cast(klass)->initialize(THREAD);
345 }
346 }
347
348 if (!HAS_PENDING_EXCEPTION) {
349 // Scavenge and allocate an instance.
350 Handle holder(current, klass->klass_holder()); // keep the klass alive
351 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
352 current->set_vm_result_oop(result);
353
354 // Pass oops back through thread local storage. Our apparent type to Java
355 // is that we return an oop, but we can block on exit from this routine and
356 // a GC can trash the oop in C's return register. The generated stub will
357 // fetch the oop from TLS after any possible GC.
358 }
359
360 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
361 JRT_BLOCK_END;
362
363 // inform GC that we won't do card marks for initializing writes.
364 SharedRuntime::on_slowpath_allocation_exit(current);
365 JRT_END
366
367
368 // array allocation
369 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
370 JRT_BLOCK;
371 #ifndef PRODUCT
372 SharedRuntime::_new_array_ctr++; // new array requires GC
373 #endif
374 assert(check_compiled_frame(current), "incorrect caller");
375
376 // Scavenge and allocate an instance.
377 oop result;
378
379 if (array_type->is_typeArray_klass()) {
380 // The oopFactory likes to work with the element type.
381 // (We could bypass the oopFactory, since it doesn't add much value.)
382 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
383 result = oopFactory::new_typeArray(elem_type, len, THREAD);
384 } else {
385 // Although the oopFactory likes to work with the elem_type,
386 // the compiler prefers the array_type, since it must already have
387 // that latter value in hand for the fast path.
388 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
389 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
390 result = oopFactory::new_objArray(elem_type, len, THREAD);
391 }
392
393 // Pass oops back through thread local storage. Our apparent type to Java
394 // is that we return an oop, but we can block on exit from this routine and
395 // a GC can trash the oop in C's return register. The generated stub will
396 // fetch the oop from TLS after any possible GC.
397 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
398 current->set_vm_result_oop(result);
399 JRT_BLOCK_END;
400
401 // inform GC that we won't do card marks for initializing writes.
402 SharedRuntime::on_slowpath_allocation_exit(current);
403 JRT_END
404
405 // array allocation without zeroing
406 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
407 JRT_BLOCK;
408 #ifndef PRODUCT
409 SharedRuntime::_new_array_ctr++; // new array requires GC
410 #endif
567 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
568
569 if (!SafepointSynchronize::is_synchronizing() ) {
570 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
571 return;
572 }
573 }
574
575 // This is the case the fast-path above isn't provisioned to handle.
576 // The fast-path is designed to handle frequently arising cases in an efficient manner.
577 // (The fast-path is just a degenerate variant of the slow-path).
578 // Perform the dreaded state transition and pass control into the slow-path.
579 JRT_BLOCK;
580 Handle h_obj(current, obj);
581 ObjectSynchronizer::notifyall(h_obj, CHECK);
582 JRT_BLOCK_END;
583 JRT_END
584
585 static const TypeFunc* make_new_instance_Type() {
586 // create input type (domain)
587 const Type **fields = TypeTuple::fields(1);
588 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
589 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
590
591 // create result type (range)
592 fields = TypeTuple::fields(1);
593 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
594
595 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
596
597 return TypeFunc::make(domain, range);
598 }
599
600 #if INCLUDE_JVMTI
601 static const TypeFunc* make_notify_jvmti_vthread_Type() {
602 // create input type (domain)
603 const Type **fields = TypeTuple::fields(2);
604 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
605 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean
606 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
607
608 // no result type needed
609 fields = TypeTuple::fields(1);
612
613 return TypeFunc::make(domain,range);
614 }
615 #endif
616
617 static const TypeFunc* make_athrow_Type() {
618 // create input type (domain)
619 const Type **fields = TypeTuple::fields(1);
620 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
621 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
622
623 // create result type (range)
624 fields = TypeTuple::fields(0);
625
626 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
627
628 return TypeFunc::make(domain, range);
629 }
630
631 static const TypeFunc* make_new_array_Type() {
632 // create input type (domain)
633 const Type **fields = TypeTuple::fields(2);
634 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
635 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
636 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
637
638 // create result type (range)
639 fields = TypeTuple::fields(1);
640 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
641
642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
643
644 return TypeFunc::make(domain, range);
645 }
646
647 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
648 // create input type (domain)
649 const int nargs = ndim + 1;
650 const Type **fields = TypeTuple::fields(nargs);
651 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
687 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
688
689 return TypeFunc::make(domain, range);
690 }
691
692 //-----------------------------------------------------------------------------
693 // Monitor Handling
694
695 static const TypeFunc* make_complete_monitor_enter_Type() {
696 // create input type (domain)
697 const Type **fields = TypeTuple::fields(2);
698 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
699 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
700 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
701
702 // create result type (range)
703 fields = TypeTuple::fields(0);
704
705 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
706
707 return TypeFunc::make(domain,range);
708 }
709
710 //-----------------------------------------------------------------------------
711
712 static const TypeFunc* make_complete_monitor_exit_Type() {
713 // create input type (domain)
714 const Type **fields = TypeTuple::fields(3);
715 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
716 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
717 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
718 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
719
720 // create result type (range)
721 fields = TypeTuple::fields(0);
722
723 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
724
725 return TypeFunc::make(domain, range);
726 }
727
2067 RegisterMap::WalkContinuation::skip);
2068 frame stub_frame = thread->last_frame();
2069 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2070 frame caller_frame = stub_frame.sender(®_map);
2071 return caller_frame.is_deoptimized_frame();
2072 }
2073
2074 static const TypeFunc* make_register_finalizer_Type() {
2075 // create input type (domain)
2076 const Type **fields = TypeTuple::fields(1);
2077 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
2078 // // The JavaThread* is passed to each routine as the last argument
2079 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
2080 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2081
2082 // create result type (range)
2083 fields = TypeTuple::fields(0);
2084
2085 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2086
2087 return TypeFunc::make(domain,range);
2088 }
2089
2090 #if INCLUDE_JFR
2091 static const TypeFunc* make_class_id_load_barrier_Type() {
2092 // create input type (domain)
2093 const Type **fields = TypeTuple::fields(1);
2094 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2095 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2096
2097 // create result type (range)
2098 fields = TypeTuple::fields(0);
2099
2100 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2101
2102 return TypeFunc::make(domain,range);
2103 }
2104 #endif // INCLUDE_JFR
2105
2106 //-----------------------------------------------------------------------------
2107 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2108 // create input type (domain)
2109 const Type **fields = TypeTuple::fields(2);
2110 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2111 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
2112 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2113
2114 // create result type (range)
2115 fields = TypeTuple::fields(0);
2116
2117 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2118
2119 return TypeFunc::make(domain,range);
2120 }
2121
2122 static const TypeFunc* make_dtrace_object_alloc_Type() {
2123 // create input type (domain)
2124 const Type **fields = TypeTuple::fields(2);
2125 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2126 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
2127
2128 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2129
2130 // create result type (range)
2131 fields = TypeTuple::fields(0);
2132
2133 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2134
2135 return TypeFunc::make(domain,range);
2136 }
2137
2138 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2139 assert(oopDesc::is_oop(obj), "must be a valid oop");
2140 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2141 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2142 JRT_END
2143
2144 //-----------------------------------------------------------------------------
2145
2146 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2147
2148 //
2149 // dump the collected NamedCounters.
2150 //
2151 void OptoRuntime::print_named_counters() {
2152 int total_lock_count = 0;
2153 int eliminated_lock_count = 0;
2154
2155 NamedCounter* c = _named_counters;
2206 }
2207 st.print("@%d", bci);
2208 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2209 }
2210 NamedCounter* c = new NamedCounter(st.freeze(), tag);
2211
2212 // atomically add the new counter to the head of the list. We only
2213 // add counters so this is safe.
2214 NamedCounter* head;
2215 do {
2216 c->set_next(nullptr);
2217 head = _named_counters;
2218 c->set_next(head);
2219 } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2220 return c;
2221 }
2222
2223 void OptoRuntime::initialize_types() {
2224 _new_instance_Type = make_new_instance_Type();
2225 _new_array_Type = make_new_array_Type();
2226 _multianewarray2_Type = multianewarray_Type(2);
2227 _multianewarray3_Type = multianewarray_Type(3);
2228 _multianewarray4_Type = multianewarray_Type(4);
2229 _multianewarray5_Type = multianewarray_Type(5);
2230 _multianewarrayN_Type = make_multianewarrayN_Type();
2231 _complete_monitor_enter_Type = make_complete_monitor_enter_Type();
2232 _complete_monitor_exit_Type = make_complete_monitor_exit_Type();
2233 _monitor_notify_Type = make_monitor_notify_Type();
2234 _uncommon_trap_Type = make_uncommon_trap_Type();
2235 _athrow_Type = make_athrow_Type();
2236 _rethrow_Type = make_rethrow_Type();
2237 _Math_D_D_Type = make_Math_D_D_Type();
2238 _Math_DD_D_Type = make_Math_DD_D_Type();
2239 _modf_Type = make_modf_Type();
2240 _l2f_Type = make_l2f_Type();
2241 _void_long_Type = make_void_long_Type();
2242 _void_void_Type = make_void_void_Type();
2243 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type();
2244 _flush_windows_Type = make_flush_windows_Type();
2245 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast);
2306 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2307 trace_exception_counter++;
2308 stringStream tempst;
2309
2310 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2311 exception_oop->print_value_on(&tempst);
2312 tempst.print(" in ");
2313 CodeBlob* blob = CodeCache::find_blob(exception_pc);
2314 if (blob->is_nmethod()) {
2315 blob->as_nmethod()->method()->print_value_on(&tempst);
2316 } else if (blob->is_runtime_stub()) {
2317 tempst.print("<runtime-stub>");
2318 } else {
2319 tempst.print("<unknown>");
2320 }
2321 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
2322 tempst.print("]");
2323
2324 st->print_raw_cr(tempst.freeze());
2325 }
|
27 #include "code/codeCache.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/nmethod.hpp"
30 #include "code/pcDesc.hpp"
31 #include "code/scopeDesc.hpp"
32 #include "code/vtableStubs.hpp"
33 #include "compiler/compilationMemoryStatistic.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/oopMap.hpp"
36 #include "gc/g1/g1HeapRegion.hpp"
37 #include "gc/shared/barrierSet.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gcLocker.hpp"
40 #include "interpreter/bytecode.hpp"
41 #include "interpreter/interpreter.hpp"
42 #include "interpreter/linkResolver.hpp"
43 #include "logging/log.hpp"
44 #include "logging/logStream.hpp"
45 #include "memory/oopFactory.hpp"
46 #include "memory/resourceArea.hpp"
47 #include "oops/flatArrayKlass.hpp"
48 #include "oops/flatArrayOop.inline.hpp"
49 #include "oops/objArrayKlass.hpp"
50 #include "oops/klass.inline.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "oops/typeArrayOop.inline.hpp"
53 #include "opto/ad.hpp"
54 #include "opto/addnode.hpp"
55 #include "opto/callnode.hpp"
56 #include "opto/cfgnode.hpp"
57 #include "opto/graphKit.hpp"
58 #include "opto/machnode.hpp"
59 #include "opto/matcher.hpp"
60 #include "opto/memnode.hpp"
61 #include "opto/mulnode.hpp"
62 #include "opto/output.hpp"
63 #include "opto/runtime.hpp"
64 #include "opto/subnode.hpp"
65 #include "prims/jvmtiExport.hpp"
66 #include "runtime/atomic.hpp"
67 #include "runtime/frame.inline.hpp"
68 #include "runtime/handles.inline.hpp"
183
184 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
185
186 return true;
187 }
188
189 #undef GEN_C2_BLOB
190
191 #undef C2_STUB_FIELD_NAME
192 #undef C2_STUB_TYPEFUNC
193 #undef C2_STUB_C_FUNC
194 #undef C2_STUB_NAME
195 #undef GEN_C2_STUB
196
197 #undef C2_JVMTI_STUB_C_FUNC
198 #undef GEN_C2_JVMTI_STUB
199 // #undef gen
200
201 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr;
202 const TypeFunc* OptoRuntime::_new_array_Type = nullptr;
203 const TypeFunc* OptoRuntime::_new_array_nozero_Type = nullptr;
204 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr;
205 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr;
206 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr;
207 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr;
208 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr;
209 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr;
210 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr;
211 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr;
212 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr;
213 const TypeFunc* OptoRuntime::_athrow_Type = nullptr;
214 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr;
215 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr;
216 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr;
217 const TypeFunc* OptoRuntime::_modf_Type = nullptr;
218 const TypeFunc* OptoRuntime::_l2f_Type = nullptr;
219 const TypeFunc* OptoRuntime::_void_long_Type = nullptr;
220 const TypeFunc* OptoRuntime::_void_void_Type = nullptr;
221 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr;
222 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr;
223 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr;
314 oopDesc* dest, jint dest_pos,
315 jint length, JavaThread* thread) {
316 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread);
317 }
318
319 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
320 SharedRuntime::complete_monitor_locking_C(obj, lock, current);
321 }
322
323
324 //=============================================================================
325 // Opto compiler runtime routines
326 //=============================================================================
327
328
329 //=============================allocation======================================
330 // We failed the fast-path allocation. Now we need to do a scavenge or GC
331 // and try allocation again.
332
333 // object allocation
334 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
335 JRT_BLOCK;
336 #ifndef PRODUCT
337 SharedRuntime::_new_instance_ctr++; // new instance requires GC
338 #endif
339 assert(check_compiled_frame(current), "incorrect caller");
340
341 // These checks are cheap to make and support reflective allocation.
342 int lh = klass->layout_helper();
343 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
344 Handle holder(current, klass->klass_holder()); // keep the klass alive
345 klass->check_valid_for_instantiation(false, THREAD);
346 if (!HAS_PENDING_EXCEPTION) {
347 InstanceKlass::cast(klass)->initialize(THREAD);
348 }
349 }
350
351 if (!HAS_PENDING_EXCEPTION) {
352 // Scavenge and allocate an instance.
353 Handle holder(current, klass->klass_holder()); // keep the klass alive
354 instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
355 if (is_larval) {
356 // Check if this is a larval buffer allocation
357 result->set_mark(result->mark().enter_larval_state());
358 }
359 current->set_vm_result_oop(result);
360
361 // Pass oops back through thread local storage. Our apparent type to Java
362 // is that we return an oop, but we can block on exit from this routine and
363 // a GC can trash the oop in C's return register. The generated stub will
364 // fetch the oop from TLS after any possible GC.
365 }
366
367 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
368 JRT_BLOCK_END;
369
370 // inform GC that we won't do card marks for initializing writes.
371 SharedRuntime::on_slowpath_allocation_exit(current);
372 JRT_END
373
374
375 // array allocation
376 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, oopDesc* init_val, JavaThread* current))
377 JRT_BLOCK;
378 #ifndef PRODUCT
379 SharedRuntime::_new_array_ctr++; // new array requires GC
380 #endif
381 assert(check_compiled_frame(current), "incorrect caller");
382
383 // Scavenge and allocate an instance.
384 oop result;
385 Handle h_init_val(current, init_val); // keep the init_val object alive
386
387 if (array_type->is_flatArray_klass()) {
388 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
389 FlatArrayKlass* fak = FlatArrayKlass::cast(array_type);
390 InlineKlass* vk = fak->element_klass();
391 result = oopFactory::new_flatArray(vk, len, fak->layout_kind(), THREAD);
392 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
393 // Null-free arrays need to be initialized
394 for (int i = 0; i < len; i++) {
395 vk->write_value_to_addr(h_init_val(), ((flatArrayOop)result)->value_at_addr(i, fak->layout_helper()), fak->layout_kind(), true, CHECK);
396 }
397 }
398 } else if (array_type->is_typeArray_klass()) {
399 // The oopFactory likes to work with the element type.
400 // (We could bypass the oopFactory, since it doesn't add much value.)
401 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
402 result = oopFactory::new_typeArray(elem_type, len, THREAD);
403 } else {
404 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
405 ObjArrayKlass* array_klass = ObjArrayKlass::cast(array_type);
406 result = array_klass->allocate(len, THREAD);
407 if (array_type->is_null_free_array_klass() && !h_init_val.is_null()) {
408 // Null-free arrays need to be initialized
409 for (int i = 0; i < len; i++) {
410 ((objArrayOop)result)->obj_at_put(i, h_init_val());
411 }
412 }
413 }
414
415 // Pass oops back through thread local storage. Our apparent type to Java
416 // is that we return an oop, but we can block on exit from this routine and
417 // a GC can trash the oop in C's return register. The generated stub will
418 // fetch the oop from TLS after any possible GC.
419 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
420 current->set_vm_result_oop(result);
421 JRT_BLOCK_END;
422
423 // inform GC that we won't do card marks for initializing writes.
424 SharedRuntime::on_slowpath_allocation_exit(current);
425 JRT_END
426
427 // array allocation without zeroing
428 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
429 JRT_BLOCK;
430 #ifndef PRODUCT
431 SharedRuntime::_new_array_ctr++; // new array requires GC
432 #endif
589 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
590
591 if (!SafepointSynchronize::is_synchronizing() ) {
592 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
593 return;
594 }
595 }
596
597 // This is the case the fast-path above isn't provisioned to handle.
598 // The fast-path is designed to handle frequently arising cases in an efficient manner.
599 // (The fast-path is just a degenerate variant of the slow-path).
600 // Perform the dreaded state transition and pass control into the slow-path.
601 JRT_BLOCK;
602 Handle h_obj(current, obj);
603 ObjectSynchronizer::notifyall(h_obj, CHECK);
604 JRT_BLOCK_END;
605 JRT_END
606
607 static const TypeFunc* make_new_instance_Type() {
608 // create input type (domain)
609 const Type **fields = TypeTuple::fields(2);
610 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
611 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // is_larval
612 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
613
614 // create result type (range)
615 fields = TypeTuple::fields(1);
616 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
617
618 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
619
620 return TypeFunc::make(domain, range);
621 }
622
623 #if INCLUDE_JVMTI
624 static const TypeFunc* make_notify_jvmti_vthread_Type() {
625 // create input type (domain)
626 const Type **fields = TypeTuple::fields(2);
627 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
628 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean
629 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
630
631 // no result type needed
632 fields = TypeTuple::fields(1);
635
636 return TypeFunc::make(domain,range);
637 }
638 #endif
639
640 static const TypeFunc* make_athrow_Type() {
641 // create input type (domain)
642 const Type **fields = TypeTuple::fields(1);
643 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
644 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
645
646 // create result type (range)
647 fields = TypeTuple::fields(0);
648
649 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
650
651 return TypeFunc::make(domain, range);
652 }
653
654 static const TypeFunc* make_new_array_Type() {
655 // create input type (domain)
656 const Type **fields = TypeTuple::fields(3);
657 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
658 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
659 fields[TypeFunc::Parms+2] = TypeInstPtr::NOTNULL; // init value
660 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
661
662 // create result type (range)
663 fields = TypeTuple::fields(1);
664 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
665
666 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
667
668 return TypeFunc::make(domain, range);
669 }
670
671 static const TypeFunc* make_new_array_nozero_Type() {
672 // create input type (domain)
673 const Type **fields = TypeTuple::fields(2);
674 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
675 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
676 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
677
678 // create result type (range)
679 fields = TypeTuple::fields(1);
680 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
681
682 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
683
684 return TypeFunc::make(domain, range);
685 }
686
687 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
688 // create input type (domain)
689 const int nargs = ndim + 1;
690 const Type **fields = TypeTuple::fields(nargs);
691 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
727 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
728
729 return TypeFunc::make(domain, range);
730 }
731
732 //-----------------------------------------------------------------------------
733 // Monitor Handling
734
735 static const TypeFunc* make_complete_monitor_enter_Type() {
736 // create input type (domain)
737 const Type **fields = TypeTuple::fields(2);
738 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
739 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
740 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
741
742 // create result type (range)
743 fields = TypeTuple::fields(0);
744
745 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
746
747 return TypeFunc::make(domain, range);
748 }
749
750 //-----------------------------------------------------------------------------
751
752 static const TypeFunc* make_complete_monitor_exit_Type() {
753 // create input type (domain)
754 const Type **fields = TypeTuple::fields(3);
755 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
756 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
757 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
758 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
759
760 // create result type (range)
761 fields = TypeTuple::fields(0);
762
763 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
764
765 return TypeFunc::make(domain, range);
766 }
767
2107 RegisterMap::WalkContinuation::skip);
2108 frame stub_frame = thread->last_frame();
2109 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2110 frame caller_frame = stub_frame.sender(®_map);
2111 return caller_frame.is_deoptimized_frame();
2112 }
2113
2114 static const TypeFunc* make_register_finalizer_Type() {
2115 // create input type (domain)
2116 const Type **fields = TypeTuple::fields(1);
2117 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
2118 // // The JavaThread* is passed to each routine as the last argument
2119 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
2120 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2121
2122 // create result type (range)
2123 fields = TypeTuple::fields(0);
2124
2125 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2126
2127 return TypeFunc::make(domain, range);
2128 }
2129
2130 #if INCLUDE_JFR
2131 static const TypeFunc* make_class_id_load_barrier_Type() {
2132 // create input type (domain)
2133 const Type **fields = TypeTuple::fields(1);
2134 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2135 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2136
2137 // create result type (range)
2138 fields = TypeTuple::fields(0);
2139
2140 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2141
2142 return TypeFunc::make(domain,range);
2143 }
2144 #endif // INCLUDE_JFR
2145
2146 //-----------------------------------------------------------------------------
2147 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2148 // create input type (domain)
2149 const Type **fields = TypeTuple::fields(2);
2150 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2151 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
2152 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2153
2154 // create result type (range)
2155 fields = TypeTuple::fields(0);
2156
2157 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2158
2159 return TypeFunc::make(domain, range);
2160 }
2161
2162 static const TypeFunc* make_dtrace_object_alloc_Type() {
2163 // create input type (domain)
2164 const Type **fields = TypeTuple::fields(2);
2165 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2166 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
2167
2168 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2169
2170 // create result type (range)
2171 fields = TypeTuple::fields(0);
2172
2173 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2174
2175 return TypeFunc::make(domain, range);
2176 }
2177
2178 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2179 assert(oopDesc::is_oop(obj), "must be a valid oop");
2180 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2181 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2182 JRT_END
2183
2184 //-----------------------------------------------------------------------------
2185
2186 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2187
2188 //
2189 // dump the collected NamedCounters.
2190 //
2191 void OptoRuntime::print_named_counters() {
2192 int total_lock_count = 0;
2193 int eliminated_lock_count = 0;
2194
2195 NamedCounter* c = _named_counters;
2246 }
2247 st.print("@%d", bci);
2248 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2249 }
2250 NamedCounter* c = new NamedCounter(st.freeze(), tag);
2251
2252 // atomically add the new counter to the head of the list. We only
2253 // add counters so this is safe.
2254 NamedCounter* head;
2255 do {
2256 c->set_next(nullptr);
2257 head = _named_counters;
2258 c->set_next(head);
2259 } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2260 return c;
2261 }
2262
2263 void OptoRuntime::initialize_types() {
2264 _new_instance_Type = make_new_instance_Type();
2265 _new_array_Type = make_new_array_Type();
2266 _new_array_nozero_Type = make_new_array_nozero_Type();
2267 _multianewarray2_Type = multianewarray_Type(2);
2268 _multianewarray3_Type = multianewarray_Type(3);
2269 _multianewarray4_Type = multianewarray_Type(4);
2270 _multianewarray5_Type = multianewarray_Type(5);
2271 _multianewarrayN_Type = make_multianewarrayN_Type();
2272 _complete_monitor_enter_Type = make_complete_monitor_enter_Type();
2273 _complete_monitor_exit_Type = make_complete_monitor_exit_Type();
2274 _monitor_notify_Type = make_monitor_notify_Type();
2275 _uncommon_trap_Type = make_uncommon_trap_Type();
2276 _athrow_Type = make_athrow_Type();
2277 _rethrow_Type = make_rethrow_Type();
2278 _Math_D_D_Type = make_Math_D_D_Type();
2279 _Math_DD_D_Type = make_Math_DD_D_Type();
2280 _modf_Type = make_modf_Type();
2281 _l2f_Type = make_l2f_Type();
2282 _void_long_Type = make_void_long_Type();
2283 _void_void_Type = make_void_void_Type();
2284 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type();
2285 _flush_windows_Type = make_flush_windows_Type();
2286 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast);
2347 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2348 trace_exception_counter++;
2349 stringStream tempst;
2350
2351 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2352 exception_oop->print_value_on(&tempst);
2353 tempst.print(" in ");
2354 CodeBlob* blob = CodeCache::find_blob(exception_pc);
2355 if (blob->is_nmethod()) {
2356 blob->as_nmethod()->method()->print_value_on(&tempst);
2357 } else if (blob->is_runtime_stub()) {
2358 tempst.print("<runtime-stub>");
2359 } else {
2360 tempst.print("<unknown>");
2361 }
2362 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
2363 tempst.print("]");
2364
2365 st->print_raw_cr(tempst.freeze());
2366 }
2367
2368 const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
2369 // create input type (domain)
2370 uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2371 const Type **fields = TypeTuple::fields(total);
2372 // We don't know the number of returned values and their
2373 // types. Assume all registers available to the return convention
2374 // are used.
2375 fields[TypeFunc::Parms] = TypePtr::BOTTOM;
2376 uint i = 1;
2377 for (; i < SharedRuntime::java_return_convention_max_int; i++) {
2378 fields[TypeFunc::Parms+i] = TypeInt::INT;
2379 }
2380 for (; i < total; i+=2) {
2381 fields[TypeFunc::Parms+i] = Type::DOUBLE;
2382 fields[TypeFunc::Parms+i+1] = Type::HALF;
2383 }
2384 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2385
2386 // create result type (range)
2387 fields = TypeTuple::fields(1);
2388 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2389
2390 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2391
2392 return TypeFunc::make(domain, range);
2393 }
2394
2395 const TypeFunc *OptoRuntime::pack_inline_type_Type() {
2396 // create input type (domain)
2397 uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
2398 const Type **fields = TypeTuple::fields(total);
2399 // We don't know the number of returned values and their
2400 // types. Assume all registers available to the return convention
2401 // are used.
2402 fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
2403 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
2404 uint i = 2;
2405 for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
2406 fields[TypeFunc::Parms+i] = TypeInt::INT;
2407 }
2408 for (; i < total; i+=2) {
2409 fields[TypeFunc::Parms+i] = Type::DOUBLE;
2410 fields[TypeFunc::Parms+i+1] = Type::HALF;
2411 }
2412 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
2413
2414 // create result type (range)
2415 fields = TypeTuple::fields(1);
2416 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
2417
2418 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
2419
2420 return TypeFunc::make(domain, range);
2421 }
2422
2423 JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
2424 JRT_BLOCK;
2425 oop buffer = array->read_value_from_flat_array(index, THREAD);
2426 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
2427 current->set_vm_result_oop(buffer);
2428 JRT_BLOCK_END;
2429 JRT_END
2430
2431 const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
2432 // create input type (domain)
2433 const Type** fields = TypeTuple::fields(2);
2434 fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
2435 fields[TypeFunc::Parms+1] = TypeInt::POS;
2436
2437 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
2438
2439 // create result type (range)
2440 fields = TypeTuple::fields(1);
2441 fields[TypeFunc::Parms] = TypeInstPtr::BOTTOM;
2442
2443 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
2444
2445 return TypeFunc::make(domain, range);
2446 }
2447
2448 JRT_BLOCK_ENTRY(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index, JavaThread* current))
2449 JRT_BLOCK;
2450 array->write_value_to_flat_array(buffer, index, THREAD);
2451 if (HAS_PENDING_EXCEPTION) {
2452 fatal("This entry must be changed to be a non-leaf entry because writing to a flat array can now throw an exception");
2453 }
2454 JRT_BLOCK_END;
2455 JRT_END
2456
2457 const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
2458 // create input type (domain)
2459 const Type** fields = TypeTuple::fields(3);
2460 fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
2461 fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
2462 fields[TypeFunc::Parms+2] = TypeInt::POS;
2463
2464 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
2465
2466 // create result type (range)
2467 fields = TypeTuple::fields(0);
2468 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
2469
2470 return TypeFunc::make(domain, range);
2471 }
|