< prev index next >

src/hotspot/share/opto/runtime.cpp

Print this page
@@ -42,10 +42,12 @@
  #include "interpreter/linkResolver.hpp"
  #include "logging/log.hpp"
  #include "logging/logStream.hpp"
  #include "memory/oopFactory.hpp"
  #include "memory/resourceArea.hpp"
+ #include "oops/flatArrayKlass.hpp"
+ #include "oops/flatArrayOop.inline.hpp"
  #include "oops/objArrayKlass.hpp"
  #include "oops/klass.inline.hpp"
  #include "oops/oop.inline.hpp"
  #include "oops/typeArrayOop.inline.hpp"
  #include "opto/ad.hpp"

@@ -242,11 +244,11 @@
  //=============================allocation======================================
  // We failed the fast-path allocation.  Now we need to do a scavenge or GC
  // and try allocation again.
  
  // object allocation
- JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
+ JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, bool is_larval, JavaThread* current))
    JRT_BLOCK;
  #ifndef PRODUCT
    SharedRuntime::_new_instance_ctr++;         // new instance requires GC
  #endif
    assert(check_compiled_frame(current), "incorrect caller");

@@ -262,11 +264,15 @@
    }
  
    if (!HAS_PENDING_EXCEPTION) {
      // Scavenge and allocate an instance.
      Handle holder(current, klass->klass_holder()); // keep the klass alive
-     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
+     instanceOop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
+     if (is_larval) {
+       // Check if this is a larval buffer allocation
+       result->set_mark(result->mark().enter_larval_state());
+     }
      current->set_vm_result(result);
  
      // Pass oops back through thread local storage.  Our apparent type to Java
      // is that we return an oop, but we can block on exit from this routine and
      // a GC can trash the oop in C's return register.  The generated stub will

@@ -290,22 +296,21 @@
    assert(check_compiled_frame(current), "incorrect caller");
  
    // Scavenge and allocate an instance.
    oop result;
  
-   if (array_type->is_typeArray_klass()) {
+   if (array_type->is_flatArray_klass()) {
+     Klass* elem_type = FlatArrayKlass::cast(array_type)->element_klass();
+     result = oopFactory::new_valueArray(elem_type, len, THREAD);
+   } else if (array_type->is_typeArray_klass()) {
      // The oopFactory likes to work with the element type.
      // (We could bypass the oopFactory, since it doesn't add much value.)
      BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
      result = oopFactory::new_typeArray(elem_type, len, THREAD);
    } else {
-     // Although the oopFactory likes to work with the elem_type,
-     // the compiler prefers the array_type, since it must already have
-     // that latter value in hand for the fast path.
      Handle holder(current, array_type->klass_holder()); // keep the array klass alive
-     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
-     result = oopFactory::new_objArray(elem_type, len, THREAD);
+     result = ObjArrayKlass::cast(array_type)->allocate(len, THREAD);
    }
  
    // Pass oops back through thread local storage.  Our apparent type to Java
    // is that we return an oop, but we can block on exit from this routine and
    // a GC can trash the oop in C's return register.  The generated stub will

@@ -498,13 +503,14 @@
    JRT_BLOCK_END;
  JRT_END
  
  const TypeFunc *OptoRuntime::new_instance_Type() {
    // create input type (domain)
-   const Type **fields = TypeTuple::fields(1);
+   const Type **fields = TypeTuple::fields(2);
    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
-   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // is_larval
+   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  
    // create result type (range)
    fields = TypeTuple::fields(1);
    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
  

@@ -638,11 +644,11 @@
    // create result type (range)
    fields = TypeTuple::fields(0);
  
    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  
-   return TypeFunc::make(domain,range);
+   return TypeFunc::make(domain, range);
  }
  
  const TypeFunc *OptoRuntime::complete_monitor_locking_Type() {
    return complete_monitor_enter_Type();
  }

@@ -1801,11 +1807,10 @@
    assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
    frame caller_frame = stub_frame.sender(&reg_map);
    return caller_frame.is_deoptimized_frame();
  }
  
- 
  const TypeFunc *OptoRuntime::register_finalizer_Type() {
    // create input type (domain)
    const Type **fields = TypeTuple::fields(1);
    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
    // // The JavaThread* is passed to each routine as the last argument

@@ -1815,11 +1820,11 @@
    // create result type (range)
    fields = TypeTuple::fields(0);
  
    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  
-   return TypeFunc::make(domain,range);
+   return TypeFunc::make(domain, range);
  }
  
  #if INCLUDE_JFR
  const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
    // create input type (domain)

@@ -1848,11 +1853,11 @@
    // create result type (range)
    fields = TypeTuple::fields(0);
  
    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  
-   return TypeFunc::make(domain,range);
+   return TypeFunc::make(domain, range);
  }
  
  const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
    // create input type (domain)
    const Type **fields = TypeTuple::fields(2);

@@ -1864,11 +1869,11 @@
    // create result type (range)
    fields = TypeTuple::fields(0);
  
    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  
-   return TypeFunc::make(domain,range);
+   return TypeFunc::make(domain, range);
  }
  
  
  JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
    assert(oopDesc::is_oop(obj), "must be a valid oop");

@@ -1974,5 +1979,109 @@
    tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
    tempst.print("]");
  
    st->print_raw_cr(tempst.freeze());
  }
+ 
+ const TypeFunc *OptoRuntime::store_inline_type_fields_Type() {
+   // create input type (domain)
+   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
+   const Type **fields = TypeTuple::fields(total);
+   // We don't know the number of returned values and their
+   // types. Assume all registers available to the return convention
+   // are used.
+   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
+   uint i = 1;
+   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
+     fields[TypeFunc::Parms+i] = TypeInt::INT;
+   }
+   for (; i < total; i+=2) {
+     fields[TypeFunc::Parms+i] = Type::DOUBLE;
+     fields[TypeFunc::Parms+i+1] = Type::HALF;
+   }
+   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
+ 
+   // create result type (range)
+   fields = TypeTuple::fields(1);
+   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
+ 
+   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
+ 
+   return TypeFunc::make(domain, range);
+ }
+ 
+ const TypeFunc *OptoRuntime::pack_inline_type_Type() {
+   // create input type (domain)
+   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
+   const Type **fields = TypeTuple::fields(total);
+   // We don't know the number of returned values and their
+   // types. Assume all registers available to the return convention
+   // are used.
+   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
+   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
+   uint i = 2;
+   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
+     fields[TypeFunc::Parms+i] = TypeInt::INT;
+   }
+   for (; i < total; i+=2) {
+     fields[TypeFunc::Parms+i] = Type::DOUBLE;
+     fields[TypeFunc::Parms+i+1] = Type::HALF;
+   }
+   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
+ 
+   // create result type (range)
+   fields = TypeTuple::fields(1);
+   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
+ 
+   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
+ 
+   return TypeFunc::make(domain, range);
+ }
+ 
+ JRT_BLOCK_ENTRY(void, OptoRuntime::load_unknown_inline_C(flatArrayOopDesc* array, int index, JavaThread* current))
+   JRT_BLOCK;
+   flatArrayHandle vah(current, array);
+   oop buffer = flatArrayOopDesc::value_alloc_copy_from_index(vah, index, THREAD);
+   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
+   current->set_vm_result(buffer);
+   JRT_BLOCK_END;
+ JRT_END
+ 
+ const TypeFunc* OptoRuntime::load_unknown_inline_Type() {
+   // create input type (domain)
+   const Type** fields = TypeTuple::fields(2);
+   fields[TypeFunc::Parms] = TypeOopPtr::NOTNULL;
+   fields[TypeFunc::Parms+1] = TypeInt::POS;
+ 
+   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+ 
+   // create result type (range)
+   fields = TypeTuple::fields(1);
+   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
+ 
+   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ 
+   return TypeFunc::make(domain, range);
+ }
+ 
+ JRT_LEAF(void, OptoRuntime::store_unknown_inline_C(instanceOopDesc* buffer, flatArrayOopDesc* array, int index))
+ {
+   assert(buffer != nullptr, "can't store null into flat array");
+   array->value_copy_to_index(buffer, index, LayoutKind::PAYLOAD); // Temporary hack for the transition
+ }
+ JRT_END
+ 
+ const TypeFunc* OptoRuntime::store_unknown_inline_Type() {
+   // create input type (domain)
+   const Type** fields = TypeTuple::fields(3);
+   fields[TypeFunc::Parms] = TypeInstPtr::NOTNULL;
+   fields[TypeFunc::Parms+1] = TypeOopPtr::NOTNULL;
+   fields[TypeFunc::Parms+2] = TypeInt::POS;
+ 
+   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+3, fields);
+ 
+   // create result type (range)
+   fields = TypeTuple::fields(0);
+   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ 
+   return TypeFunc::make(domain, range);
+ }
< prev index next >