1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/cfgnode.hpp" 32 #include "opto/inlinetypenode.hpp" 33 #include "opto/loopnode.hpp" 34 #include "opto/matcher.hpp" 35 #include "opto/movenode.hpp" 36 #include "opto/mulnode.hpp" 37 #include "opto/opaquenode.hpp" 38 #include "opto/opcodes.hpp" 39 #include "opto/phaseX.hpp" 40 #include "opto/subnode.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "utilities/reverse_bits.hpp" 43 44 // Portions of code courtesy of Clifford Click 45 46 // Optimization - Graph Style 47 48 #include "math.h" 49 50 //============================================================================= 51 //------------------------------Identity--------------------------------------- 52 // If right input is a constant 0, return the left input. 53 Node* SubNode::Identity(PhaseGVN* phase) { 54 assert(in(1) != this, "Must already have called Value"); 55 assert(in(2) != this, "Must already have called Value"); 56 57 const Type* zero = add_id(); 58 59 // Remove double negation if it is not a floating point number since negation 60 // is not the same as subtraction for floating point numbers 61 // (cf. JLS § 15.15.4). `0-(0-(-0.0))` must be equal to positive 0.0 according to 62 // JLS § 15.8.2, but would result in -0.0 if this folding would be applied. 63 if (phase->type(in(1))->higher_equal(zero) && 64 in(2)->Opcode() == Opcode() && 65 phase->type(in(2)->in(1))->higher_equal(zero) && 66 !phase->type(in(2)->in(2))->is_floatingpoint()) { 67 return in(2)->in(2); 68 } 69 70 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y 71 if (in(1)->Opcode() == Op_AddI || in(1)->Opcode() == Op_AddL) { 72 if (in(1)->in(2) == in(2)) { 73 return in(1)->in(1); 74 } 75 if (in(1)->in(1) == in(2)) { 76 return in(1)->in(2); 77 } 78 } 79 80 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this; 81 } 82 83 //------------------------------Value------------------------------------------ 84 // A subtract node differences it's two inputs. 85 const Type* SubNode::Value_common(PhaseValues* phase) const { 86 const Node* in1 = in(1); 87 const Node* in2 = in(2); 88 // Either input is TOP ==> the result is TOP 89 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 90 if( t1 == Type::TOP ) return Type::TOP; 91 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 92 if( t2 == Type::TOP ) return Type::TOP; 93 94 // Not correct for SubFnode and AddFNode (must check for infinity) 95 // Equal? Subtract is zero 96 if (in1->eqv_uncast(in2)) return add_id(); 97 98 // Either input is BOTTOM ==> the result is the local BOTTOM 99 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) 100 return bottom_type(); 101 102 return nullptr; 103 } 104 105 const Type* SubNode::Value(PhaseGVN* phase) const { 106 const Type* t = Value_common(phase); 107 if (t != nullptr) { 108 return t; 109 } 110 const Type* t1 = phase->type(in(1)); 111 const Type* t2 = phase->type(in(2)); 112 return sub(t1,t2); // Local flavor of type subtraction 113 114 } 115 116 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) { 117 switch (bt) { 118 case T_INT: 119 return new SubINode(in1, in2); 120 case T_LONG: 121 return new SubLNode(in1, in2); 122 default: 123 fatal("Not implemented for %s", type2name(bt)); 124 } 125 return nullptr; 126 } 127 128 //============================================================================= 129 //------------------------------Helper function-------------------------------- 130 131 static bool is_cloop_increment(Node* inc) { 132 precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL); 133 134 if (!inc->in(1)->is_Phi()) { 135 return false; 136 } 137 const PhiNode* phi = inc->in(1)->as_Phi(); 138 139 if (!phi->region()->is_CountedLoop()) { 140 return false; 141 } 142 143 return inc == phi->region()->as_CountedLoop()->incr(); 144 } 145 146 // Given the expression '(x + C) - v', or 147 // 'v - (x + C)', we examine nodes '+' and 'v': 148 // 149 // 1. Do not convert if '+' is a counted-loop increment, because the '-' is 150 // loop invariant and converting extends the live-range of 'x' to overlap 151 // with the '+', forcing another register to be used in the loop. 152 // 153 // 2. Do not convert if 'v' is a counted-loop induction variable, because 154 // 'x' might be invariant. 155 // 156 static bool ok_to_convert(Node* inc, Node* var) { 157 return !(is_cloop_increment(inc) || var->is_cloop_ind_var()); 158 } 159 160 static bool is_cloop_condition(BoolNode* bol) { 161 for (DUIterator_Fast imax, i = bol->fast_outs(imax); i < imax; i++) { 162 Node* out = bol->fast_out(i); 163 if (out->is_BaseCountedLoopEnd()) { 164 return true; 165 } 166 } 167 return false; 168 } 169 170 //------------------------------Ideal------------------------------------------ 171 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){ 172 Node *in1 = in(1); 173 Node *in2 = in(2); 174 uint op1 = in1->Opcode(); 175 uint op2 = in2->Opcode(); 176 177 #ifdef ASSERT 178 // Check for dead loop 179 if ((in1 == this) || (in2 == this) || 180 ((op1 == Op_AddI || op1 == Op_SubI) && 181 ((in1->in(1) == this) || (in1->in(2) == this) || 182 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 183 assert(false, "dead loop in SubINode::Ideal"); 184 } 185 #endif 186 187 const Type *t2 = phase->type( in2 ); 188 if( t2 == Type::TOP ) return nullptr; 189 // Convert "x-c0" into "x+ -c0". 190 if( t2->base() == Type::Int ){ // Might be bottom or top... 191 const TypeInt *i = t2->is_int(); 192 if( i->is_con() ) 193 return new AddINode(in1, phase->intcon(java_negate(i->get_con()))); 194 } 195 196 // Convert "(x+c0) - y" into (x-y) + c0" 197 // Do not collapse (x+c0)-y if "+" is a loop increment or 198 // if "y" is a loop induction variable. 199 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) { 200 const Type *tadd = phase->type( in1->in(2) ); 201 if( tadd->singleton() && tadd != Type::TOP ) { 202 Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 )); 203 return new AddINode( sub2, in1->in(2) ); 204 } 205 } 206 207 // Convert "x - (y+c0)" into "(x-y) - c0" AND 208 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 209 // Need the same check as in above optimization but reversed. 210 if (op2 == Op_AddI 211 && ok_to_convert(in2, in1) 212 && in2->in(2)->Opcode() == Op_ConI) { 213 jint c0 = phase->type(in2->in(2))->isa_int()->get_con(); 214 Node* in21 = in2->in(1); 215 if (in1->Opcode() == Op_ConI) { 216 // Match c1 217 jint c1 = phase->type(in1)->isa_int()->get_con(); 218 Node* sub2 = phase->intcon(java_subtract(c1, c0)); 219 return new SubINode(sub2, in21); 220 } else { 221 // Match x 222 Node* sub2 = phase->transform(new SubINode(in1, in21)); 223 Node* neg_c0 = phase->intcon(java_negate(c0)); 224 return new AddINode(sub2, neg_c0); 225 } 226 } 227 228 const Type *t1 = phase->type( in1 ); 229 if( t1 == Type::TOP ) return nullptr; 230 231 #ifdef ASSERT 232 // Check for dead loop 233 if ((op2 == Op_AddI || op2 == Op_SubI) && 234 ((in2->in(1) == this) || (in2->in(2) == this) || 235 (in2->in(1) == in2) || (in2->in(2) == in2))) { 236 assert(false, "dead loop in SubINode::Ideal"); 237 } 238 #endif 239 240 // Convert "x - (x+y)" into "-y" 241 if (op2 == Op_AddI && in1 == in2->in(1)) { 242 return new SubINode(phase->intcon(0), in2->in(2)); 243 } 244 // Convert "(x-y) - x" into "-y" 245 if (op1 == Op_SubI && in1->in(1) == in2) { 246 return new SubINode(phase->intcon(0), in1->in(2)); 247 } 248 // Convert "x - (y+x)" into "-y" 249 if (op2 == Op_AddI && in1 == in2->in(2)) { 250 return new SubINode(phase->intcon(0), in2->in(1)); 251 } 252 253 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity(). 254 if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) { 255 return new SubINode(in2->in(2), in2->in(1)); 256 } 257 258 // Convert "0 - (x+con)" into "-con-x" 259 jint con; 260 if( t1 == TypeInt::ZERO && op2 == Op_AddI && 261 (con = in2->in(2)->find_int_con(0)) != 0 ) 262 return new SubINode( phase->intcon(-con), in2->in(1) ); 263 264 // Convert "(X+A) - (X+B)" into "A - B" 265 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) ) 266 return new SubINode( in1->in(2), in2->in(2) ); 267 268 // Convert "(A+X) - (B+X)" into "A - B" 269 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) ) 270 return new SubINode( in1->in(1), in2->in(1) ); 271 272 // Convert "(A+X) - (X+B)" into "A - B" 273 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) ) 274 return new SubINode( in1->in(1), in2->in(2) ); 275 276 // Convert "(X+A) - (B+X)" into "A - B" 277 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) ) 278 return new SubINode( in1->in(2), in2->in(1) ); 279 280 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally 281 // nicer to optimize than subtract. 282 if( op2 == Op_SubI && in2->outcnt() == 1) { 283 Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) ); 284 return new SubINode( add1, in2->in(1) ); 285 } 286 287 // Associative 288 if (op1 == Op_MulI && op2 == Op_MulI) { 289 Node* sub_in1 = nullptr; 290 Node* sub_in2 = nullptr; 291 Node* mul_in = nullptr; 292 293 if (in1->in(1) == in2->in(1)) { 294 // Convert "a*b-a*c into a*(b-c) 295 sub_in1 = in1->in(2); 296 sub_in2 = in2->in(2); 297 mul_in = in1->in(1); 298 } else if (in1->in(2) == in2->in(1)) { 299 // Convert a*b-b*c into b*(a-c) 300 sub_in1 = in1->in(1); 301 sub_in2 = in2->in(2); 302 mul_in = in1->in(2); 303 } else if (in1->in(2) == in2->in(2)) { 304 // Convert a*c-b*c into (a-b)*c 305 sub_in1 = in1->in(1); 306 sub_in2 = in2->in(1); 307 mul_in = in1->in(2); 308 } else if (in1->in(1) == in2->in(2)) { 309 // Convert a*b-c*a into a*(b-c) 310 sub_in1 = in1->in(2); 311 sub_in2 = in2->in(1); 312 mul_in = in1->in(1); 313 } 314 315 if (mul_in != nullptr) { 316 Node* sub = phase->transform(new SubINode(sub_in1, sub_in2)); 317 return new MulINode(mul_in, sub); 318 } 319 } 320 321 // Convert "0-(A>>31)" into "(A>>>31)" 322 if ( op2 == Op_RShiftI ) { 323 Node *in21 = in2->in(1); 324 Node *in22 = in2->in(2); 325 const TypeInt *zero = phase->type(in1)->isa_int(); 326 const TypeInt *t21 = phase->type(in21)->isa_int(); 327 const TypeInt *t22 = phase->type(in22)->isa_int(); 328 if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) { 329 return new URShiftINode(in21, in22); 330 } 331 } 332 333 return nullptr; 334 } 335 336 //------------------------------sub-------------------------------------------- 337 // A subtract node differences it's two inputs. 338 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const { 339 const TypeInt *r0 = t1->is_int(); // Handy access 340 const TypeInt *r1 = t2->is_int(); 341 int32_t lo = java_subtract(r0->_lo, r1->_hi); 342 int32_t hi = java_subtract(r0->_hi, r1->_lo); 343 344 // We next check for 32-bit overflow. 345 // If that happens, we just assume all integers are possible. 346 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 347 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 348 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 349 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 350 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 351 else // Overflow; assume all integers 352 return TypeInt::INT; 353 } 354 355 //============================================================================= 356 //------------------------------Ideal------------------------------------------ 357 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 358 Node *in1 = in(1); 359 Node *in2 = in(2); 360 uint op1 = in1->Opcode(); 361 uint op2 = in2->Opcode(); 362 363 #ifdef ASSERT 364 // Check for dead loop 365 if ((in1 == this) || (in2 == this) || 366 ((op1 == Op_AddL || op1 == Op_SubL) && 367 ((in1->in(1) == this) || (in1->in(2) == this) || 368 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 369 assert(false, "dead loop in SubLNode::Ideal"); 370 } 371 #endif 372 373 if( phase->type( in2 ) == Type::TOP ) return nullptr; 374 const TypeLong *i = phase->type( in2 )->isa_long(); 375 // Convert "x-c0" into "x+ -c0". 376 if( i && // Might be bottom or top... 377 i->is_con() ) 378 return new AddLNode(in1, phase->longcon(java_negate(i->get_con()))); 379 380 // Convert "(x+c0) - y" into (x-y) + c0" 381 // Do not collapse (x+c0)-y if "+" is a loop increment or 382 // if "y" is a loop induction variable. 383 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) { 384 Node *in11 = in1->in(1); 385 const Type *tadd = phase->type( in1->in(2) ); 386 if( tadd->singleton() && tadd != Type::TOP ) { 387 Node *sub2 = phase->transform( new SubLNode( in11, in2 )); 388 return new AddLNode( sub2, in1->in(2) ); 389 } 390 } 391 392 // Convert "x - (y+c0)" into "(x-y) - c0" AND 393 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 394 // Need the same check as in above optimization but reversed. 395 if (op2 == Op_AddL 396 && ok_to_convert(in2, in1) 397 && in2->in(2)->Opcode() == Op_ConL) { 398 jlong c0 = phase->type(in2->in(2))->isa_long()->get_con(); 399 Node* in21 = in2->in(1); 400 if (in1->Opcode() == Op_ConL) { 401 // Match c1 402 jlong c1 = phase->type(in1)->isa_long()->get_con(); 403 Node* sub2 = phase->longcon(java_subtract(c1, c0)); 404 return new SubLNode(sub2, in21); 405 } else { 406 Node* sub2 = phase->transform(new SubLNode(in1, in21)); 407 Node* neg_c0 = phase->longcon(java_negate(c0)); 408 return new AddLNode(sub2, neg_c0); 409 } 410 } 411 412 const Type *t1 = phase->type( in1 ); 413 if( t1 == Type::TOP ) return nullptr; 414 415 #ifdef ASSERT 416 // Check for dead loop 417 if ((op2 == Op_AddL || op2 == Op_SubL) && 418 ((in2->in(1) == this) || (in2->in(2) == this) || 419 (in2->in(1) == in2) || (in2->in(2) == in2))) { 420 assert(false, "dead loop in SubLNode::Ideal"); 421 } 422 #endif 423 424 // Convert "x - (x+y)" into "-y" 425 if (op2 == Op_AddL && in1 == in2->in(1)) { 426 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2)); 427 } 428 // Convert "(x-y) - x" into "-y" 429 if (op1 == Op_SubL && in1->in(1) == in2) { 430 return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(2)); 431 } 432 // Convert "x - (y+x)" into "-y" 433 if (op2 == Op_AddL && in1 == in2->in(2)) { 434 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1)); 435 } 436 437 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity. 438 if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) { 439 return new SubLNode(in2->in(2), in2->in(1)); 440 } 441 442 // Convert "(X+A) - (X+B)" into "A - B" 443 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) ) 444 return new SubLNode( in1->in(2), in2->in(2) ); 445 446 // Convert "(A+X) - (B+X)" into "A - B" 447 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) ) 448 return new SubLNode( in1->in(1), in2->in(1) ); 449 450 // Convert "(A+X) - (X+B)" into "A - B" 451 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) ) 452 return new SubLNode( in1->in(1), in2->in(2) ); 453 454 // Convert "(X+A) - (B+X)" into "A - B" 455 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) ) 456 return new SubLNode( in1->in(2), in2->in(1) ); 457 458 // Convert "A-(B-C)" into (A+C)-B" 459 if( op2 == Op_SubL && in2->outcnt() == 1) { 460 Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) ); 461 return new SubLNode( add1, in2->in(1) ); 462 } 463 464 // Associative 465 if (op1 == Op_MulL && op2 == Op_MulL) { 466 Node* sub_in1 = nullptr; 467 Node* sub_in2 = nullptr; 468 Node* mul_in = nullptr; 469 470 if (in1->in(1) == in2->in(1)) { 471 // Convert "a*b-a*c into a*(b+c) 472 sub_in1 = in1->in(2); 473 sub_in2 = in2->in(2); 474 mul_in = in1->in(1); 475 } else if (in1->in(2) == in2->in(1)) { 476 // Convert a*b-b*c into b*(a-c) 477 sub_in1 = in1->in(1); 478 sub_in2 = in2->in(2); 479 mul_in = in1->in(2); 480 } else if (in1->in(2) == in2->in(2)) { 481 // Convert a*c-b*c into (a-b)*c 482 sub_in1 = in1->in(1); 483 sub_in2 = in2->in(1); 484 mul_in = in1->in(2); 485 } else if (in1->in(1) == in2->in(2)) { 486 // Convert a*b-c*a into a*(b-c) 487 sub_in1 = in1->in(2); 488 sub_in2 = in2->in(1); 489 mul_in = in1->in(1); 490 } 491 492 if (mul_in != nullptr) { 493 Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2)); 494 return new MulLNode(mul_in, sub); 495 } 496 } 497 498 // Convert "0L-(A>>63)" into "(A>>>63)" 499 if ( op2 == Op_RShiftL ) { 500 Node *in21 = in2->in(1); 501 Node *in22 = in2->in(2); 502 const TypeLong *zero = phase->type(in1)->isa_long(); 503 const TypeLong *t21 = phase->type(in21)->isa_long(); 504 const TypeInt *t22 = phase->type(in22)->isa_int(); 505 if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) { 506 return new URShiftLNode(in21, in22); 507 } 508 } 509 510 return nullptr; 511 } 512 513 //------------------------------sub-------------------------------------------- 514 // A subtract node differences it's two inputs. 515 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const { 516 const TypeLong *r0 = t1->is_long(); // Handy access 517 const TypeLong *r1 = t2->is_long(); 518 jlong lo = java_subtract(r0->_lo, r1->_hi); 519 jlong hi = java_subtract(r0->_hi, r1->_lo); 520 521 // We next check for 32-bit overflow. 522 // If that happens, we just assume all integers are possible. 523 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 524 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 525 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 526 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 527 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 528 else // Overflow; assume all integers 529 return TypeLong::LONG; 530 } 531 532 //============================================================================= 533 //------------------------------Value------------------------------------------ 534 // A subtract node differences its two inputs. 535 const Type* SubFPNode::Value(PhaseGVN* phase) const { 536 const Node* in1 = in(1); 537 const Node* in2 = in(2); 538 // Either input is TOP ==> the result is TOP 539 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 540 if( t1 == Type::TOP ) return Type::TOP; 541 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 542 if( t2 == Type::TOP ) return Type::TOP; 543 544 // if both operands are infinity of same sign, the result is NaN; do 545 // not replace with zero 546 if (t1->is_finite() && t2->is_finite() && in1 == in2) { 547 return add_id(); 548 } 549 550 // Either input is BOTTOM ==> the result is the local BOTTOM 551 const Type *bot = bottom_type(); 552 if( (t1 == bot) || (t2 == bot) || 553 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 554 return bot; 555 556 return sub(t1,t2); // Local flavor of type subtraction 557 } 558 559 560 //============================================================================= 561 //------------------------------sub-------------------------------------------- 562 // A subtract node differences its two inputs. 563 const Type* SubHFNode::sub(const Type* t1, const Type* t2) const { 564 // Half precision floating point subtraction follows the rules of IEEE 754 565 // applicable to other floating point types. 566 if (t1->isa_half_float_constant() != nullptr && 567 t2->isa_half_float_constant() != nullptr) { 568 return TypeH::make(t1->getf() - t2->getf()); 569 } else { 570 return Type::HALF_FLOAT; 571 } 572 } 573 574 //------------------------------Ideal------------------------------------------ 575 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 576 const Type *t2 = phase->type( in(2) ); 577 // Convert "x-c0" into "x+ -c0". 578 if( t2->base() == Type::FloatCon ) { // Might be bottom or top... 579 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) ); 580 } 581 582 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes 583 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0. 584 //if( phase->type(in(1)) == TypeF::ZERO ) 585 //return new (phase->C, 2) NegFNode(in(2)); 586 587 return nullptr; 588 } 589 590 //------------------------------sub-------------------------------------------- 591 // A subtract node differences its two inputs. 592 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const { 593 // no folding if one of operands is infinity or NaN, do not do constant folding 594 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) { 595 return TypeF::make( t1->getf() - t2->getf() ); 596 } 597 else if( g_isnan(t1->getf()) ) { 598 return t1; 599 } 600 else if( g_isnan(t2->getf()) ) { 601 return t2; 602 } 603 else { 604 return Type::FLOAT; 605 } 606 } 607 608 //============================================================================= 609 //------------------------------Ideal------------------------------------------ 610 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 611 const Type *t2 = phase->type( in(2) ); 612 // Convert "x-c0" into "x+ -c0". 613 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top... 614 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) ); 615 } 616 617 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes 618 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0. 619 //if( phase->type(in(1)) == TypeD::ZERO ) 620 //return new (phase->C, 2) NegDNode(in(2)); 621 622 return nullptr; 623 } 624 625 //------------------------------sub-------------------------------------------- 626 // A subtract node differences its two inputs. 627 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const { 628 // no folding if one of operands is infinity or NaN, do not do constant folding 629 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) { 630 return TypeD::make( t1->getd() - t2->getd() ); 631 } 632 else if( g_isnan(t1->getd()) ) { 633 return t1; 634 } 635 else if( g_isnan(t2->getd()) ) { 636 return t2; 637 } 638 else { 639 return Type::DOUBLE; 640 } 641 } 642 643 //============================================================================= 644 //------------------------------Idealize--------------------------------------- 645 // Unlike SubNodes, compare must still flatten return value to the 646 // range -1, 0, 1. 647 // And optimizations like those for (X + Y) - X fail if overflow happens. 648 Node* CmpNode::Identity(PhaseGVN* phase) { 649 return this; 650 } 651 652 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) { 653 switch (bt) { 654 case T_INT: 655 if (unsigned_comp) { 656 return new CmpUNode(in1, in2); 657 } 658 return new CmpINode(in1, in2); 659 case T_LONG: 660 if (unsigned_comp) { 661 return new CmpULNode(in1, in2); 662 } 663 return new CmpLNode(in1, in2); 664 case T_OBJECT: 665 case T_ARRAY: 666 case T_ADDRESS: 667 case T_METADATA: 668 return new CmpPNode(in1, in2); 669 case T_NARROWOOP: 670 case T_NARROWKLASS: 671 return new CmpNNode(in1, in2); 672 default: 673 fatal("Not implemented for %s", type2name(bt)); 674 } 675 return nullptr; 676 } 677 678 //============================================================================= 679 //------------------------------cmp-------------------------------------------- 680 // Simplify a CmpI (compare 2 integers) node, based on local information. 681 // If both inputs are constants, compare them. 682 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const { 683 const TypeInt *r0 = t1->is_int(); // Handy access 684 const TypeInt *r1 = t2->is_int(); 685 686 if( r0->_hi < r1->_lo ) // Range is always low? 687 return TypeInt::CC_LT; 688 else if( r0->_lo > r1->_hi ) // Range is always high? 689 return TypeInt::CC_GT; 690 691 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 692 assert(r0->get_con() == r1->get_con(), "must be equal"); 693 return TypeInt::CC_EQ; // Equal results. 694 } else if( r0->_hi == r1->_lo ) // Range is never high? 695 return TypeInt::CC_LE; 696 else if( r0->_lo == r1->_hi ) // Range is never low? 697 return TypeInt::CC_GE; 698 return TypeInt::CC; // else use worst case results 699 } 700 701 const Type* CmpINode::Value(PhaseGVN* phase) const { 702 Node* in1 = in(1); 703 Node* in2 = in(2); 704 // If this test is the zero trip guard for a main or post loop, check whether, with the opaque node removed, the test 705 // would constant fold so the loop is never entered. If so return the type of the test without the opaque node removed: 706 // make the loop unreachable. 707 // The reason for this is that the iv phi captures the bounds of the loop and if the loop becomes unreachable, it can 708 // become top. In that case, the loop must be removed. 709 // This is safe because: 710 // - as optimizations proceed, the range of iterations executed by the main loop narrows. If no iterations remain, then 711 // we're done with optimizations for that loop. 712 // - the post loop is initially not reachable but as long as there's a main loop, the zero trip guard for the post 713 // loop takes a phi that merges the pre and main loop's iv and can't constant fold the zero trip guard. Once, the main 714 // loop is removed, there's no need to preserve the zero trip guard for the post loop anymore. 715 if (in1 != nullptr && in2 != nullptr) { 716 uint input = 0; 717 Node* cmp = nullptr; 718 BoolTest::mask test; 719 if (in1->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in1) != Type::TOP) { 720 cmp = new CmpINode(in1->in(1), in2); 721 test = ((OpaqueZeroTripGuardNode*)in1)->_loop_entered_mask; 722 } 723 if (in2->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in2) != Type::TOP) { 724 assert(cmp == nullptr, "A cmp with 2 OpaqueZeroTripGuard inputs"); 725 cmp = new CmpINode(in1, in2->in(1)); 726 test = ((OpaqueZeroTripGuardNode*)in2)->_loop_entered_mask; 727 } 728 if (cmp != nullptr) { 729 const Type* cmp_t = cmp->Value(phase); 730 const Type* t = BoolTest(test).cc2logical(cmp_t); 731 cmp->destruct(phase); 732 if (t == TypeInt::ZERO) { 733 return cmp_t; 734 } 735 } 736 } 737 738 return SubNode::Value(phase); 739 } 740 741 742 // Simplify a CmpU (compare 2 integers) node, based on local information. 743 // If both inputs are constants, compare them. 744 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const { 745 assert(!t1->isa_ptr(), "obsolete usage of CmpU"); 746 747 // comparing two unsigned ints 748 const TypeInt *r0 = t1->is_int(); // Handy access 749 const TypeInt *r1 = t2->is_int(); 750 751 // Current installed version 752 // Compare ranges for non-overlap 753 juint lo0 = r0->_lo; 754 juint hi0 = r0->_hi; 755 juint lo1 = r1->_lo; 756 juint hi1 = r1->_hi; 757 758 // If either one has both negative and positive values, 759 // it therefore contains both 0 and -1, and since [0..-1] is the 760 // full unsigned range, the type must act as an unsigned bottom. 761 bool bot0 = ((jint)(lo0 ^ hi0) < 0); 762 bool bot1 = ((jint)(lo1 ^ hi1) < 0); 763 764 if (bot0 || bot1) { 765 // All unsigned values are LE -1 and GE 0. 766 if (lo0 == 0 && hi0 == 0) { 767 return TypeInt::CC_LE; // 0 <= bot 768 } else if ((jint)lo0 == -1 && (jint)hi0 == -1) { 769 return TypeInt::CC_GE; // -1 >= bot 770 } else if (lo1 == 0 && hi1 == 0) { 771 return TypeInt::CC_GE; // bot >= 0 772 } else if ((jint)lo1 == -1 && (jint)hi1 == -1) { 773 return TypeInt::CC_LE; // bot <= -1 774 } 775 } else { 776 // We can use ranges of the form [lo..hi] if signs are the same. 777 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 778 // results are reversed, '-' > '+' for unsigned compare 779 if (hi0 < lo1) { 780 return TypeInt::CC_LT; // smaller 781 } else if (lo0 > hi1) { 782 return TypeInt::CC_GT; // greater 783 } else if (hi0 == lo1 && lo0 == hi1) { 784 return TypeInt::CC_EQ; // Equal results 785 } else if (lo0 >= hi1) { 786 return TypeInt::CC_GE; 787 } else if (hi0 <= lo1) { 788 // Check for special case in Hashtable::get. (See below.) 789 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 790 return TypeInt::CC_LT; 791 return TypeInt::CC_LE; 792 } 793 } 794 // Check for special case in Hashtable::get - the hash index is 795 // mod'ed to the table size so the following range check is useless. 796 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have 797 // to be positive. 798 // (This is a gross hack, since the sub method never 799 // looks at the structure of the node in any other case.) 800 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 801 return TypeInt::CC_LT; 802 return TypeInt::CC; // else use worst case results 803 } 804 805 const Type* CmpUNode::Value(PhaseGVN* phase) const { 806 const Type* t = SubNode::Value_common(phase); 807 if (t != nullptr) { 808 return t; 809 } 810 const Node* in1 = in(1); 811 const Node* in2 = in(2); 812 const Type* t1 = phase->type(in1); 813 const Type* t2 = phase->type(in2); 814 assert(t1->isa_int(), "CmpU has only Int type inputs"); 815 if (t2 == TypeInt::INT) { // Compare to bottom? 816 return bottom_type(); 817 } 818 819 const Type* t_sub = sub(t1, t2); // compare based on immediate inputs 820 821 uint in1_op = in1->Opcode(); 822 if (in1_op == Op_AddI || in1_op == Op_SubI) { 823 // The problem rise when result of AddI(SubI) may overflow 824 // signed integer value. Let say the input type is 825 // [256, maxint] then +128 will create 2 ranges due to 826 // overflow: [minint, minint+127] and [384, maxint]. 827 // But C2 type system keep only 1 type range and as result 828 // it use general [minint, maxint] for this case which we 829 // can't optimize. 830 // 831 // Make 2 separate type ranges based on types of AddI(SubI) inputs 832 // and compare results of their compare. If results are the same 833 // CmpU node can be optimized. 834 const Node* in11 = in1->in(1); 835 const Node* in12 = in1->in(2); 836 const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11); 837 const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12); 838 // Skip cases when input types are top or bottom. 839 if ((t11 != Type::TOP) && (t11 != TypeInt::INT) && 840 (t12 != Type::TOP) && (t12 != TypeInt::INT)) { 841 const TypeInt *r0 = t11->is_int(); 842 const TypeInt *r1 = t12->is_int(); 843 jlong lo_r0 = r0->_lo; 844 jlong hi_r0 = r0->_hi; 845 jlong lo_r1 = r1->_lo; 846 jlong hi_r1 = r1->_hi; 847 if (in1_op == Op_SubI) { 848 jlong tmp = hi_r1; 849 hi_r1 = -lo_r1; 850 lo_r1 = -tmp; 851 // Note, for substructing [minint,x] type range 852 // long arithmetic provides correct overflow answer. 853 // The confusion come from the fact that in 32-bit 854 // -minint == minint but in 64-bit -minint == maxint+1. 855 } 856 jlong lo_long = lo_r0 + lo_r1; 857 jlong hi_long = hi_r0 + hi_r1; 858 int lo_tr1 = min_jint; 859 int hi_tr1 = (int)hi_long; 860 int lo_tr2 = (int)lo_long; 861 int hi_tr2 = max_jint; 862 bool underflow = lo_long != (jlong)lo_tr2; 863 bool overflow = hi_long != (jlong)hi_tr1; 864 // Use sub(t1, t2) when there is no overflow (one type range) 865 // or when both overflow and underflow (too complex). 866 if ((underflow != overflow) && (hi_tr1 < lo_tr2)) { 867 // Overflow only on one boundary, compare 2 separate type ranges. 868 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 869 const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w); 870 const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w); 871 const TypeInt* cmp1 = sub(tr1, t2)->is_int(); 872 const TypeInt* cmp2 = sub(tr2, t2)->is_int(); 873 // Compute union, so that cmp handles all possible results from the two cases 874 const Type* t_cmp = cmp1->meet(cmp2); 875 // Pick narrowest type, based on overflow computation and on immediate inputs 876 return t_sub->filter(t_cmp); 877 } 878 } 879 } 880 881 return t_sub; 882 } 883 884 bool CmpUNode::is_index_range_check() const { 885 // Check for the "(X ModI Y) CmpU Y" shape 886 return (in(1)->Opcode() == Op_ModI && 887 in(1)->in(2)->eqv_uncast(in(2))); 888 } 889 890 //------------------------------Idealize--------------------------------------- 891 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) { 892 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) { 893 switch (in(1)->Opcode()) { 894 case Op_CmpU3: // Collapse a CmpU3/CmpI into a CmpU 895 return new CmpUNode(in(1)->in(1),in(1)->in(2)); 896 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL 897 return new CmpLNode(in(1)->in(1),in(1)->in(2)); 898 case Op_CmpUL3: // Collapse a CmpUL3/CmpI into a CmpUL 899 return new CmpULNode(in(1)->in(1),in(1)->in(2)); 900 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF 901 return new CmpFNode(in(1)->in(1),in(1)->in(2)); 902 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD 903 return new CmpDNode(in(1)->in(1),in(1)->in(2)); 904 //case Op_SubI: 905 // If (x - y) cannot overflow, then ((x - y) <?> 0) 906 // can be turned into (x <?> y). 907 // This is handled (with more general cases) by Ideal_sub_algebra. 908 } 909 } 910 return nullptr; // No change 911 } 912 913 //------------------------------Ideal------------------------------------------ 914 Node* CmpLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 915 Node* a = nullptr; 916 Node* b = nullptr; 917 if (is_double_null_check(phase, a, b) && (phase->type(a)->is_zero_type() || phase->type(b)->is_zero_type())) { 918 // Degraded to a simple null check, use old acmp 919 return new CmpPNode(a, b); 920 } 921 const TypeLong *t2 = phase->type(in(2))->isa_long(); 922 if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) { 923 const jlong con = t2->get_con(); 924 if (con >= min_jint && con <= max_jint) { 925 return new CmpINode(in(1)->in(1), phase->intcon((jint)con)); 926 } 927 } 928 return nullptr; 929 } 930 931 // Match double null check emitted by Compile::optimize_acmp() 932 bool CmpLNode::is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const { 933 if (in(1)->Opcode() == Op_OrL && 934 in(1)->in(1)->Opcode() == Op_CastP2X && 935 in(1)->in(2)->Opcode() == Op_CastP2X && 936 in(2)->bottom_type()->is_zero_type()) { 937 assert(EnableValhalla, "unexpected double null check"); 938 a = in(1)->in(1)->in(1); 939 b = in(1)->in(2)->in(1); 940 return true; 941 } 942 return false; 943 } 944 945 //------------------------------Value------------------------------------------ 946 const Type* CmpLNode::Value(PhaseGVN* phase) const { 947 Node* a = nullptr; 948 Node* b = nullptr; 949 if (is_double_null_check(phase, a, b) && (!phase->type(a)->maybe_null() || !phase->type(b)->maybe_null())) { 950 // One operand is never nullptr, emit constant false 951 return TypeInt::CC_GT; 952 } 953 return SubNode::Value(phase); 954 } 955 956 //============================================================================= 957 // Simplify a CmpL (compare 2 longs ) node, based on local information. 958 // If both inputs are constants, compare them. 959 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const { 960 const TypeLong *r0 = t1->is_long(); // Handy access 961 const TypeLong *r1 = t2->is_long(); 962 963 if( r0->_hi < r1->_lo ) // Range is always low? 964 return TypeInt::CC_LT; 965 else if( r0->_lo > r1->_hi ) // Range is always high? 966 return TypeInt::CC_GT; 967 968 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 969 assert(r0->get_con() == r1->get_con(), "must be equal"); 970 return TypeInt::CC_EQ; // Equal results. 971 } else if( r0->_hi == r1->_lo ) // Range is never high? 972 return TypeInt::CC_LE; 973 else if( r0->_lo == r1->_hi ) // Range is never low? 974 return TypeInt::CC_GE; 975 return TypeInt::CC; // else use worst case results 976 } 977 978 979 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information. 980 // If both inputs are constants, compare them. 981 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const { 982 assert(!t1->isa_ptr(), "obsolete usage of CmpUL"); 983 984 // comparing two unsigned longs 985 const TypeLong* r0 = t1->is_long(); // Handy access 986 const TypeLong* r1 = t2->is_long(); 987 988 // Current installed version 989 // Compare ranges for non-overlap 990 julong lo0 = r0->_lo; 991 julong hi0 = r0->_hi; 992 julong lo1 = r1->_lo; 993 julong hi1 = r1->_hi; 994 995 // If either one has both negative and positive values, 996 // it therefore contains both 0 and -1, and since [0..-1] is the 997 // full unsigned range, the type must act as an unsigned bottom. 998 bool bot0 = ((jlong)(lo0 ^ hi0) < 0); 999 bool bot1 = ((jlong)(lo1 ^ hi1) < 0); 1000 1001 if (bot0 || bot1) { 1002 // All unsigned values are LE -1 and GE 0. 1003 if (lo0 == 0 && hi0 == 0) { 1004 return TypeInt::CC_LE; // 0 <= bot 1005 } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) { 1006 return TypeInt::CC_GE; // -1 >= bot 1007 } else if (lo1 == 0 && hi1 == 0) { 1008 return TypeInt::CC_GE; // bot >= 0 1009 } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) { 1010 return TypeInt::CC_LE; // bot <= -1 1011 } 1012 } else { 1013 // We can use ranges of the form [lo..hi] if signs are the same. 1014 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 1015 // results are reversed, '-' > '+' for unsigned compare 1016 if (hi0 < lo1) { 1017 return TypeInt::CC_LT; // smaller 1018 } else if (lo0 > hi1) { 1019 return TypeInt::CC_GT; // greater 1020 } else if (hi0 == lo1 && lo0 == hi1) { 1021 return TypeInt::CC_EQ; // Equal results 1022 } else if (lo0 >= hi1) { 1023 return TypeInt::CC_GE; 1024 } else if (hi0 <= lo1) { 1025 return TypeInt::CC_LE; 1026 } 1027 } 1028 1029 return TypeInt::CC; // else use worst case results 1030 } 1031 1032 //============================================================================= 1033 //------------------------------sub-------------------------------------------- 1034 // Simplify an CmpP (compare 2 pointers) node, based on local information. 1035 // If both inputs are constants, compare them. 1036 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const { 1037 const TypePtr *r0 = t1->is_ptr(); // Handy access 1038 const TypePtr *r1 = t2->is_ptr(); 1039 1040 // Undefined inputs makes for an undefined result 1041 if( TypePtr::above_centerline(r0->_ptr) || 1042 TypePtr::above_centerline(r1->_ptr) ) 1043 return Type::TOP; 1044 1045 if (r0 == r1 && r0->singleton()) { 1046 // Equal pointer constants (klasses, nulls, etc.) 1047 return TypeInt::CC_EQ; 1048 } 1049 1050 // See if it is 2 unrelated classes. 1051 const TypeOopPtr* p0 = r0->isa_oopptr(); 1052 const TypeOopPtr* p1 = r1->isa_oopptr(); 1053 const TypeKlassPtr* k0 = r0->isa_klassptr(); 1054 const TypeKlassPtr* k1 = r1->isa_klassptr(); 1055 if ((p0 && p1) || (k0 && k1)) { 1056 if (p0 && p1) { 1057 Node* in1 = in(1)->uncast(); 1058 Node* in2 = in(2)->uncast(); 1059 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1); 1060 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2); 1061 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, nullptr)) { 1062 return TypeInt::CC_GT; // different pointers 1063 } 1064 } 1065 bool xklass0 = p0 ? p0->klass_is_exact() : k0->klass_is_exact(); 1066 bool xklass1 = p1 ? p1->klass_is_exact() : k1->klass_is_exact(); 1067 bool unrelated_classes = false; 1068 1069 if ((p0 && p0->is_same_java_type_as(p1)) || 1070 (k0 && k0->is_same_java_type_as(k1))) { 1071 } else if ((p0 && !p1->maybe_java_subtype_of(p0) && !p0->maybe_java_subtype_of(p1)) || 1072 (k0 && !k1->maybe_java_subtype_of(k0) && !k0->maybe_java_subtype_of(k1))) { 1073 unrelated_classes = true; 1074 } else if ((p0 && !p1->maybe_java_subtype_of(p0)) || 1075 (k0 && !k1->maybe_java_subtype_of(k0))) { 1076 unrelated_classes = xklass1; 1077 } else if ((p0 && !p0->maybe_java_subtype_of(p1)) || 1078 (k0 && !k0->maybe_java_subtype_of(k1))) { 1079 unrelated_classes = xklass0; 1080 } 1081 if (!unrelated_classes) { 1082 // Handle inline type arrays 1083 if ((r0->flat_in_array() && r1->not_flat_in_array()) || 1084 (r1->flat_in_array() && r0->not_flat_in_array())) { 1085 // One type is in flat arrays but the other type is not. Must be unrelated. 1086 unrelated_classes = true; 1087 } else if ((r0->is_not_flat() && r1->is_flat()) || 1088 (r1->is_not_flat() && r0->is_flat())) { 1089 // One type is a non-flat array and the other type is a flat array. Must be unrelated. 1090 unrelated_classes = true; 1091 } else if ((r0->is_not_null_free() && r1->is_null_free()) || 1092 (r1->is_not_null_free() && r0->is_null_free())) { 1093 // One type is a nullable array and the other type is a null-free array. Must be unrelated. 1094 unrelated_classes = true; 1095 } 1096 } 1097 if (unrelated_classes) { 1098 // The oops classes are known to be unrelated. If the joined PTRs of 1099 // two oops is not Null and not Bottom, then we are sure that one 1100 // of the two oops is non-null, and the comparison will always fail. 1101 TypePtr::PTR jp = r0->join_ptr(r1->_ptr); 1102 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { 1103 return TypeInt::CC_GT; 1104 } 1105 } 1106 } 1107 1108 // Known constants can be compared exactly 1109 // Null can be distinguished from any NotNull pointers 1110 // Unknown inputs makes an unknown result 1111 if( r0->singleton() ) { 1112 intptr_t bits0 = r0->get_con(); 1113 if( r1->singleton() ) 1114 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; 1115 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1116 } else if( r1->singleton() ) { 1117 intptr_t bits1 = r1->get_con(); 1118 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1119 } else 1120 return TypeInt::CC; 1121 } 1122 1123 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) { 1124 // Return the klass node for (indirect load from OopHandle) 1125 // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) 1126 // or null if not matching. 1127 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1128 n = bs->step_over_gc_barrier(n); 1129 1130 if (n->Opcode() != Op_LoadP) return nullptr; 1131 1132 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1133 if (!tp || tp->instance_klass() != phase->C->env()->Class_klass()) return nullptr; 1134 1135 Node* adr = n->in(MemNode::Address); 1136 // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier. 1137 if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return nullptr; 1138 adr = adr->in(MemNode::Address); 1139 1140 intptr_t off = 0; 1141 Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off); 1142 if (k == nullptr) return nullptr; 1143 const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr(); 1144 if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return nullptr; 1145 1146 // We've found the klass node of a Java mirror load. 1147 return k; 1148 } 1149 1150 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) { 1151 // for ConP(Foo.class) return ConP(Foo.klass) 1152 // otherwise return null 1153 if (!n->is_Con()) return nullptr; 1154 1155 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1156 if (!tp) return nullptr; 1157 1158 ciType* mirror_type = tp->java_mirror_type(); 1159 // TypeInstPtr::java_mirror_type() returns non-null for compile- 1160 // time Class constants only. 1161 if (!mirror_type) return nullptr; 1162 1163 // x.getClass() == int.class can never be true (for all primitive types) 1164 // Return a ConP(null) node for this case. 1165 if (mirror_type->is_classless()) { 1166 return phase->makecon(TypePtr::NULL_PTR); 1167 } 1168 1169 // return the ConP(Foo.klass) 1170 assert(mirror_type->is_klass(), "mirror_type should represent a Klass*"); 1171 return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass(), Type::trust_interfaces)); 1172 } 1173 1174 //------------------------------Ideal------------------------------------------ 1175 // Normalize comparisons between Java mirror loads to compare the klass instead. 1176 // 1177 // Also check for the case of comparing an unknown klass loaded from the primary 1178 // super-type array vs a known klass with no subtypes. This amounts to 1179 // checking to see an unknown klass subtypes a known klass with no subtypes; 1180 // this only happens on an exact match. We can shorten this test by 1 load. 1181 Node* CmpPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1182 // TODO 8284443 in(1) could be cast? 1183 if (in(1)->is_InlineType() && phase->type(in(2))->is_zero_type()) { 1184 // Null checking a scalarized but nullable inline type. Check the null marker 1185 // input instead of the oop input to avoid keeping buffer allocations alive. 1186 return new CmpINode(in(1)->as_InlineType()->get_null_marker(), phase->intcon(0)); 1187 } 1188 1189 // Normalize comparisons between Java mirrors into comparisons of the low- 1190 // level klass, where a dependent load could be shortened. 1191 // 1192 // The new pattern has a nice effect of matching the same pattern used in the 1193 // fast path of instanceof/checkcast/Class.isInstance(), which allows 1194 // redundant exact type check be optimized away by GVN. 1195 // For example, in 1196 // if (x.getClass() == Foo.class) { 1197 // Foo foo = (Foo) x; 1198 // // ... use a ... 1199 // } 1200 // a CmpPNode could be shared between if_acmpne and checkcast 1201 { 1202 Node* k1 = isa_java_mirror_load(phase, in(1)); 1203 Node* k2 = isa_java_mirror_load(phase, in(2)); 1204 Node* conk2 = isa_const_java_mirror(phase, in(2)); 1205 1206 // TODO 8366668 add a test for this. Improve this condition 1207 bool doIt = (conk2 && !phase->type(conk2)->isa_aryklassptr()); 1208 if (k1 && (k2 || conk2) && doIt) { 1209 Node* lhs = k1; 1210 Node* rhs = (k2 != nullptr) ? k2 : conk2; 1211 set_req_X(1, lhs, phase); 1212 set_req_X(2, rhs, phase); 1213 return this; 1214 } 1215 } 1216 1217 // Constant pointer on right? 1218 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr(); 1219 if (t2 == nullptr || !t2->klass_is_exact()) 1220 return nullptr; 1221 // Get the constant klass we are comparing to. 1222 ciKlass* superklass = t2->exact_klass(); 1223 1224 // Now check for LoadKlass on left. 1225 Node* ldk1 = in(1); 1226 if (ldk1->is_DecodeNKlass()) { 1227 ldk1 = ldk1->in(1); 1228 if (ldk1->Opcode() != Op_LoadNKlass ) 1229 return nullptr; 1230 } else if (ldk1->Opcode() != Op_LoadKlass ) 1231 return nullptr; 1232 // Take apart the address of the LoadKlass: 1233 Node* adr1 = ldk1->in(MemNode::Address); 1234 intptr_t con2 = 0; 1235 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2); 1236 if (ldk2 == nullptr) 1237 return nullptr; 1238 if (con2 == oopDesc::klass_offset_in_bytes()) { 1239 // We are inspecting an object's concrete class. 1240 // Short-circuit the check if the query is abstract. 1241 if (superklass->is_interface() || 1242 superklass->is_abstract()) { 1243 // Make it come out always false: 1244 this->set_req(2, phase->makecon(TypePtr::NULL_PTR)); 1245 return this; 1246 } 1247 } 1248 1249 // Check for a LoadKlass from primary supertype array. 1250 // Any nested loadklass from loadklass+con must be from the p.s. array. 1251 if (ldk2->is_DecodeNKlass()) { 1252 // Keep ldk2 as DecodeN since it could be used in CmpP below. 1253 if (ldk2->in(1)->Opcode() != Op_LoadNKlass ) 1254 return nullptr; 1255 } else if (ldk2->Opcode() != Op_LoadKlass) 1256 return nullptr; 1257 1258 // Verify that we understand the situation 1259 if (con2 != (intptr_t) superklass->super_check_offset()) 1260 return nullptr; // Might be element-klass loading from array klass 1261 1262 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 1263 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 1264 if (superklass->is_obj_array_klass() && !superklass->as_array_klass()->is_elem_null_free() && 1265 superklass->as_array_klass()->element_klass()->is_inlinetype()) { 1266 return nullptr; 1267 } 1268 1269 // If 'superklass' has no subklasses and is not an interface, then we are 1270 // assured that the only input which will pass the type check is 1271 // 'superklass' itself. 1272 // 1273 // We could be more liberal here, and allow the optimization on interfaces 1274 // which have a single implementor. This would require us to increase the 1275 // expressiveness of the add_dependency() mechanism. 1276 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now. 1277 1278 // Object arrays must have their base element have no subtypes 1279 while (superklass->is_obj_array_klass()) { 1280 ciType* elem = superklass->as_obj_array_klass()->element_type(); 1281 superklass = elem->as_klass(); 1282 } 1283 if (superklass->is_instance_klass()) { 1284 ciInstanceKlass* ik = superklass->as_instance_klass(); 1285 if (ik->has_subklass() || ik->is_interface()) return nullptr; 1286 // Add a dependency if there is a chance that a subclass will be added later. 1287 if (!ik->is_final()) { 1288 phase->C->dependencies()->assert_leaf_type(ik); 1289 } 1290 } 1291 1292 // Bypass the dependent load, and compare directly 1293 this->set_req_X(1, ldk2, phase); 1294 1295 return this; 1296 } 1297 1298 //============================================================================= 1299 //------------------------------sub-------------------------------------------- 1300 // Simplify an CmpN (compare 2 pointers) node, based on local information. 1301 // If both inputs are constants, compare them. 1302 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const { 1303 ShouldNotReachHere(); 1304 return bottom_type(); 1305 } 1306 1307 //------------------------------Ideal------------------------------------------ 1308 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) { 1309 return nullptr; 1310 } 1311 1312 //============================================================================= 1313 //------------------------------Value------------------------------------------ 1314 // Simplify an CmpF (compare 2 floats ) node, based on local information. 1315 // If both inputs are constants, compare them. 1316 const Type* CmpFNode::Value(PhaseGVN* phase) const { 1317 const Node* in1 = in(1); 1318 const Node* in2 = in(2); 1319 // Either input is TOP ==> the result is TOP 1320 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1321 if( t1 == Type::TOP ) return Type::TOP; 1322 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1323 if( t2 == Type::TOP ) return Type::TOP; 1324 1325 // Not constants? Don't know squat - even if they are the same 1326 // value! If they are NaN's they compare to LT instead of EQ. 1327 const TypeF *tf1 = t1->isa_float_constant(); 1328 const TypeF *tf2 = t2->isa_float_constant(); 1329 if( !tf1 || !tf2 ) return TypeInt::CC; 1330 1331 // This implements the Java bytecode fcmpl, so unordered returns -1. 1332 if( tf1->is_nan() || tf2->is_nan() ) 1333 return TypeInt::CC_LT; 1334 1335 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT; 1336 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT; 1337 assert( tf1->_f == tf2->_f, "do not understand FP behavior" ); 1338 return TypeInt::CC_EQ; 1339 } 1340 1341 1342 //============================================================================= 1343 //------------------------------Value------------------------------------------ 1344 // Simplify an CmpD (compare 2 doubles ) node, based on local information. 1345 // If both inputs are constants, compare them. 1346 const Type* CmpDNode::Value(PhaseGVN* phase) const { 1347 const Node* in1 = in(1); 1348 const Node* in2 = in(2); 1349 // Either input is TOP ==> the result is TOP 1350 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1351 if( t1 == Type::TOP ) return Type::TOP; 1352 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1353 if( t2 == Type::TOP ) return Type::TOP; 1354 1355 // Not constants? Don't know squat - even if they are the same 1356 // value! If they are NaN's they compare to LT instead of EQ. 1357 const TypeD *td1 = t1->isa_double_constant(); 1358 const TypeD *td2 = t2->isa_double_constant(); 1359 if( !td1 || !td2 ) return TypeInt::CC; 1360 1361 // This implements the Java bytecode dcmpl, so unordered returns -1. 1362 if( td1->is_nan() || td2->is_nan() ) 1363 return TypeInt::CC_LT; 1364 1365 if( td1->_d < td2->_d ) return TypeInt::CC_LT; 1366 if( td1->_d > td2->_d ) return TypeInt::CC_GT; 1367 assert( td1->_d == td2->_d, "do not understand FP behavior" ); 1368 return TypeInt::CC_EQ; 1369 } 1370 1371 //------------------------------Ideal------------------------------------------ 1372 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 1373 // Check if we can change this to a CmpF and remove a ConvD2F operation. 1374 // Change (CMPD (F2D (float)) (ConD value)) 1375 // To (CMPF (float) (ConF value)) 1376 // Valid when 'value' does not lose precision as a float. 1377 // Benefits: eliminates conversion, does not require 24-bit mode 1378 1379 // NaNs prevent commuting operands. This transform works regardless of the 1380 // order of ConD and ConvF2D inputs by preserving the original order. 1381 int idx_f2d = 1; // ConvF2D on left side? 1382 if( in(idx_f2d)->Opcode() != Op_ConvF2D ) 1383 idx_f2d = 2; // No, swap to check for reversed args 1384 int idx_con = 3-idx_f2d; // Check for the constant on other input 1385 1386 if( ConvertCmpD2CmpF && 1387 in(idx_f2d)->Opcode() == Op_ConvF2D && 1388 in(idx_con)->Opcode() == Op_ConD ) { 1389 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant(); 1390 double t2_value_as_double = t2->_d; 1391 float t2_value_as_float = (float)t2_value_as_double; 1392 if( t2_value_as_double == (double)t2_value_as_float ) { 1393 // Test value can be represented as a float 1394 // Eliminate the conversion to double and create new comparison 1395 Node *new_in1 = in(idx_f2d)->in(1); 1396 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) ); 1397 if( idx_f2d != 1 ) { // Must flip args to match original order 1398 Node *tmp = new_in1; 1399 new_in1 = new_in2; 1400 new_in2 = tmp; 1401 } 1402 CmpFNode *new_cmp = (Opcode() == Op_CmpD3) 1403 ? new CmpF3Node( new_in1, new_in2 ) 1404 : new CmpFNode ( new_in1, new_in2 ) ; 1405 return new_cmp; // Changed to CmpFNode 1406 } 1407 // Testing value required the precision of a double 1408 } 1409 return nullptr; // No change 1410 } 1411 1412 //============================================================================= 1413 //------------------------------Value------------------------------------------ 1414 const Type* FlatArrayCheckNode::Value(PhaseGVN* phase) const { 1415 bool all_not_flat = true; 1416 for (uint i = ArrayOrKlass; i < req(); ++i) { 1417 const Type* t = phase->type(in(i)); 1418 if (t == Type::TOP) { 1419 return Type::TOP; 1420 } 1421 if (t->is_ptr()->is_flat()) { 1422 // One of the input arrays is flat, check always passes 1423 return TypeInt::CC_EQ; 1424 } else if (!t->is_ptr()->is_not_flat()) { 1425 // One of the input arrays might be flat 1426 all_not_flat = false; 1427 } 1428 } 1429 if (all_not_flat) { 1430 // None of the input arrays can be flat, check always fails 1431 return TypeInt::CC_GT; 1432 } 1433 return TypeInt::CC; 1434 } 1435 1436 //------------------------------Ideal------------------------------------------ 1437 Node* FlatArrayCheckNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1438 bool changed = false; 1439 // Remove inputs that are known to be non-flat 1440 for (uint i = ArrayOrKlass; i < req(); ++i) { 1441 const Type* t = phase->type(in(i)); 1442 if (t->isa_ptr() && t->is_ptr()->is_not_flat()) { 1443 del_req(i--); 1444 changed = true; 1445 } 1446 } 1447 return changed ? this : nullptr; 1448 } 1449 1450 //============================================================================= 1451 //------------------------------cc2logical------------------------------------- 1452 // Convert a condition code type to a logical type 1453 const Type *BoolTest::cc2logical( const Type *CC ) const { 1454 if( CC == Type::TOP ) return Type::TOP; 1455 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse 1456 const TypeInt *ti = CC->is_int(); 1457 if( ti->is_con() ) { // Only 1 kind of condition codes set? 1458 // Match low order 2 bits 1459 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0; 1460 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result 1461 return TypeInt::make(tmp); // Boolean result 1462 } 1463 1464 if( CC == TypeInt::CC_GE ) { 1465 if( _test == ge ) return TypeInt::ONE; 1466 if( _test == lt ) return TypeInt::ZERO; 1467 } 1468 if( CC == TypeInt::CC_LE ) { 1469 if( _test == le ) return TypeInt::ONE; 1470 if( _test == gt ) return TypeInt::ZERO; 1471 } 1472 1473 return TypeInt::BOOL; 1474 } 1475 1476 //------------------------------dump_spec------------------------------------- 1477 // Print special per-node info 1478 void BoolTest::dump_on(outputStream *st) const { 1479 const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"}; 1480 st->print("%s", msg[_test]); 1481 } 1482 1483 // Returns the logical AND of two tests (or 'never' if both tests can never be true). 1484 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'. 1485 BoolTest::mask BoolTest::merge(BoolTest other) const { 1486 const mask res[illegal+1][illegal+1] = { 1487 // eq, gt, of, lt, ne, le, nof, ge, never, illegal 1488 {eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq 1489 {never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt 1490 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of 1491 {never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt 1492 {never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne 1493 {eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le 1494 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof 1495 {eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge 1496 {never, never, never, never, never, never, never, never, never, illegal}, // never 1497 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal 1498 return res[_test][other._test]; 1499 } 1500 1501 //============================================================================= 1502 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); } 1503 uint BoolNode::size_of() const { return sizeof(BoolNode); } 1504 1505 //------------------------------operator==------------------------------------- 1506 bool BoolNode::cmp( const Node &n ) const { 1507 const BoolNode *b = (const BoolNode *)&n; // Cast up 1508 return (_test._test == b->_test._test); 1509 } 1510 1511 //-------------------------------make_predicate-------------------------------- 1512 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) { 1513 if (test_value->is_Con()) return test_value; 1514 if (test_value->is_Bool()) return test_value; 1515 if (test_value->is_CMove() && 1516 test_value->in(CMoveNode::Condition)->is_Bool()) { 1517 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool(); 1518 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse)); 1519 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue)); 1520 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) { 1521 return bol; 1522 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) { 1523 return phase->transform( bol->negate(phase) ); 1524 } 1525 // Else fall through. The CMove gets in the way of the test. 1526 // It should be the case that make_predicate(bol->as_int_value()) == bol. 1527 } 1528 Node* cmp = new CmpINode(test_value, phase->intcon(0)); 1529 cmp = phase->transform(cmp); 1530 Node* bol = new BoolNode(cmp, BoolTest::ne); 1531 return phase->transform(bol); 1532 } 1533 1534 //--------------------------------as_int_value--------------------------------- 1535 Node* BoolNode::as_int_value(PhaseGVN* phase) { 1536 // Inverse to make_predicate. The CMove probably boils down to a Conv2B. 1537 Node* cmov = CMoveNode::make(this, phase->intcon(0), phase->intcon(1), TypeInt::BOOL); 1538 return phase->transform(cmov); 1539 } 1540 1541 //----------------------------------negate------------------------------------- 1542 BoolNode* BoolNode::negate(PhaseGVN* phase) { 1543 return new BoolNode(in(1), _test.negate()); 1544 } 1545 1546 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub 1547 // overflows and we can prove that C is not in the two resulting ranges. 1548 // This optimization is similar to the one performed by CmpUNode::Value(). 1549 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, 1550 int cmp1_op, const TypeInt* cmp2_type) { 1551 // Only optimize eq/ne integer comparison of add/sub 1552 if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1553 (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) { 1554 // Skip cases were inputs of add/sub are not integers or of bottom type 1555 const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int(); 1556 const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int(); 1557 if ((r0 != nullptr) && (r0 != TypeInt::INT) && 1558 (r1 != nullptr) && (r1 != TypeInt::INT) && 1559 (cmp2_type != TypeInt::INT)) { 1560 // Compute exact (long) type range of add/sub result 1561 jlong lo_long = r0->_lo; 1562 jlong hi_long = r0->_hi; 1563 if (cmp1_op == Op_AddI) { 1564 lo_long += r1->_lo; 1565 hi_long += r1->_hi; 1566 } else { 1567 lo_long -= r1->_hi; 1568 hi_long -= r1->_lo; 1569 } 1570 // Check for over-/underflow by casting to integer 1571 int lo_int = (int)lo_long; 1572 int hi_int = (int)hi_long; 1573 bool underflow = lo_long != (jlong)lo_int; 1574 bool overflow = hi_long != (jlong)hi_int; 1575 if ((underflow != overflow) && (hi_int < lo_int)) { 1576 // Overflow on one boundary, compute resulting type ranges: 1577 // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT] 1578 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 1579 const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w); 1580 const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w); 1581 // Compare second input of cmp to both type ranges 1582 const Type* sub_tr1 = cmp->sub(tr1, cmp2_type); 1583 const Type* sub_tr2 = cmp->sub(tr2, cmp2_type); 1584 if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) { 1585 // The result of the add/sub will never equal cmp2. Replace BoolNode 1586 // by false (0) if it tests for equality and by true (1) otherwise. 1587 return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1); 1588 } 1589 } 1590 } 1591 } 1592 return nullptr; 1593 } 1594 1595 static bool is_counted_loop_cmp(Node *cmp) { 1596 Node *n = cmp->in(1)->in(1); 1597 return n != nullptr && 1598 n->is_Phi() && 1599 n->in(0) != nullptr && 1600 n->in(0)->is_CountedLoop() && 1601 n->in(0)->as_CountedLoop()->phi() == n; 1602 } 1603 1604 //------------------------------Ideal------------------------------------------ 1605 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1606 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)". 1607 // This moves the constant to the right. Helps value-numbering. 1608 Node *cmp = in(1); 1609 if( !cmp->is_Sub() ) return nullptr; 1610 int cop = cmp->Opcode(); 1611 if( cop == Op_FastLock || cop == Op_FastUnlock || 1612 cmp->is_SubTypeCheck() || cop == Op_VectorTest ) { 1613 return nullptr; 1614 } 1615 Node *cmp1 = cmp->in(1); 1616 Node *cmp2 = cmp->in(2); 1617 if( !cmp1 ) return nullptr; 1618 1619 if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) { 1620 return nullptr; 1621 } 1622 1623 const int cmp1_op = cmp1->Opcode(); 1624 const int cmp2_op = cmp2->Opcode(); 1625 1626 // Constant on left? 1627 Node *con = cmp1; 1628 // Move constants to the right of compare's to canonicalize. 1629 // Do not muck with Opaque1 nodes, as this indicates a loop 1630 // guard that cannot change shape. 1631 if (con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_OpaqueZeroTripGuard && 1632 // Because of NaN's, CmpD and CmpF are not commutative 1633 cop != Op_CmpD && cop != Op_CmpF && 1634 // Protect against swapping inputs to a compare when it is used by a 1635 // counted loop exit, which requires maintaining the loop-limit as in(2) 1636 !is_counted_loop_exit_test() ) { 1637 // Ok, commute the constant to the right of the cmp node. 1638 // Clone the Node, getting a new Node of the same class 1639 cmp = cmp->clone(); 1640 // Swap inputs to the clone 1641 cmp->swap_edges(1, 2); 1642 cmp = phase->transform( cmp ); 1643 return new BoolNode( cmp, _test.commute() ); 1644 } 1645 1646 // Change "bool eq/ne (cmp (cmove (bool tst (cmp2)) 1 0) 0)" into "bool tst/~tst (cmp2)" 1647 if (cop == Op_CmpI && 1648 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1649 cmp1_op == Op_CMoveI && cmp2->find_int_con(1) == 0) { 1650 // 0 should be on the true branch 1651 if (cmp1->in(CMoveNode::Condition)->is_Bool() && 1652 cmp1->in(CMoveNode::IfTrue)->find_int_con(1) == 0 && 1653 cmp1->in(CMoveNode::IfFalse)->find_int_con(0) != 0) { 1654 BoolNode* target = cmp1->in(CMoveNode::Condition)->as_Bool(); 1655 return new BoolNode(target->in(1), 1656 (_test._test == BoolTest::eq) ? target->_test._test : 1657 target->_test.negate()); 1658 } 1659 } 1660 1661 // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1662 if (cop == Op_CmpI && 1663 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1664 cmp1_op == Op_AndI && cmp2_op == Op_ConI && 1665 cmp1->in(2)->Opcode() == Op_ConI) { 1666 const TypeInt *t12 = phase->type(cmp2)->isa_int(); 1667 const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int(); 1668 if (t12 && t12->is_con() && t112 && t112->is_con() && 1669 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1670 Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1671 return new BoolNode(ncmp, _test.negate()); 1672 } 1673 } 1674 1675 // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1676 if (cop == Op_CmpL && 1677 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1678 cmp1_op == Op_AndL && cmp2_op == Op_ConL && 1679 cmp1->in(2)->Opcode() == Op_ConL) { 1680 const TypeLong *t12 = phase->type(cmp2)->isa_long(); 1681 const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long(); 1682 if (t12 && t12->is_con() && t112 && t112->is_con() && 1683 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1684 Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0))); 1685 return new BoolNode(ncmp, _test.negate()); 1686 } 1687 } 1688 1689 // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y" 1690 // and "cmp (add X min_jint) c" into "cmpu X (c + min_jint)" 1691 if (cop == Op_CmpI && 1692 cmp1_op == Op_AddI && 1693 phase->type(cmp1->in(2)) == TypeInt::MIN && 1694 !is_cloop_condition(this)) { 1695 if (cmp2_op == Op_ConI) { 1696 Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint)); 1697 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2)); 1698 return new BoolNode(ncmp, _test._test); 1699 } else if (cmp2_op == Op_AddI && 1700 phase->type(cmp2->in(2)) == TypeInt::MIN && 1701 !is_cloop_condition(this)) { 1702 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1))); 1703 return new BoolNode(ncmp, _test._test); 1704 } 1705 } 1706 1707 // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y" 1708 // and "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)" 1709 if (cop == Op_CmpL && 1710 cmp1_op == Op_AddL && 1711 phase->type(cmp1->in(2)) == TypeLong::MIN && 1712 !is_cloop_condition(this)) { 1713 if (cmp2_op == Op_ConL) { 1714 Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong)); 1715 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2)); 1716 return new BoolNode(ncmp, _test._test); 1717 } else if (cmp2_op == Op_AddL && 1718 phase->type(cmp2->in(2)) == TypeLong::MIN && 1719 !is_cloop_condition(this)) { 1720 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1))); 1721 return new BoolNode(ncmp, _test._test); 1722 } 1723 } 1724 1725 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)". 1726 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the 1727 // test instead. 1728 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int(); 1729 if (cmp2_type == nullptr) return nullptr; 1730 Node* j_xor = cmp1; 1731 if( cmp2_type == TypeInt::ZERO && 1732 cmp1_op == Op_XorI && 1733 j_xor->in(1) != j_xor && // An xor of itself is dead 1734 phase->type( j_xor->in(1) ) == TypeInt::BOOL && 1735 phase->type( j_xor->in(2) ) == TypeInt::ONE && 1736 (_test._test == BoolTest::eq || 1737 _test._test == BoolTest::ne) ) { 1738 Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2)); 1739 return new BoolNode( ncmp, _test.negate() ); 1740 } 1741 1742 // Transform: "((x & (m - 1)) <u m)" or "(((m - 1) & x) <u m)" into "(m >u 0)" 1743 // This is case [CMPU_MASK] which is further described at the method comment of BoolNode::Value_cmpu_and_mask(). 1744 if (cop == Op_CmpU && _test._test == BoolTest::lt && cmp1_op == Op_AndI) { 1745 Node* m = cmp2; // RHS: m 1746 for (int add_idx = 1; add_idx <= 2; add_idx++) { // LHS: "(m + (-1)) & x" or "x & (m + (-1))"? 1747 Node* maybe_m_minus_1 = cmp1->in(add_idx); 1748 if (maybe_m_minus_1->Opcode() == Op_AddI && 1749 maybe_m_minus_1->in(2)->find_int_con(0) == -1 && 1750 maybe_m_minus_1->in(1) == m) { 1751 Node* m_cmpu_0 = phase->transform(new CmpUNode(m, phase->intcon(0))); 1752 return new BoolNode(m_cmpu_0, BoolTest::gt); 1753 } 1754 } 1755 } 1756 1757 // Change x u< 1 or x u<= 0 to x == 0 1758 // and x u> 0 or u>= 1 to x != 0 1759 if (cop == Op_CmpU && 1760 cmp1_op != Op_LoadRange && 1761 (((_test._test == BoolTest::lt || _test._test == BoolTest::ge) && 1762 cmp2->find_int_con(-1) == 1) || 1763 ((_test._test == BoolTest::le || _test._test == BoolTest::gt) && 1764 cmp2->find_int_con(-1) == 0))) { 1765 Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1766 return new BoolNode(ncmp, _test.is_less() ? BoolTest::eq : BoolTest::ne); 1767 } 1768 1769 // Change (arraylength <= 0) or (arraylength == 0) 1770 // into (arraylength u<= 0) 1771 // Also change (arraylength != 0) into (arraylength u> 0) 1772 // The latter version matches the code pattern generated for 1773 // array range checks, which will more likely be optimized later. 1774 if (cop == Op_CmpI && 1775 cmp1_op == Op_LoadRange && 1776 cmp2->find_int_con(-1) == 0) { 1777 if (_test._test == BoolTest::le || _test._test == BoolTest::eq) { 1778 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1779 return new BoolNode(ncmp, BoolTest::le); 1780 } else if (_test._test == BoolTest::ne) { 1781 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1782 return new BoolNode(ncmp, BoolTest::gt); 1783 } 1784 } 1785 1786 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)". 1787 // This is a standard idiom for branching on a boolean value. 1788 Node *c2b = cmp1; 1789 if( cmp2_type == TypeInt::ZERO && 1790 cmp1_op == Op_Conv2B && 1791 (_test._test == BoolTest::eq || 1792 _test._test == BoolTest::ne) ) { 1793 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int() 1794 ? (Node*)new CmpINode(c2b->in(1),cmp2) 1795 : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR)) 1796 ); 1797 return new BoolNode( ncmp, _test._test ); 1798 } 1799 1800 // Comparing a SubI against a zero is equal to comparing the SubI 1801 // arguments directly. This only works for eq and ne comparisons 1802 // due to possible integer overflow. 1803 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1804 (cop == Op_CmpI) && 1805 (cmp1_op == Op_SubI) && 1806 ( cmp2_type == TypeInt::ZERO ) ) { 1807 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2))); 1808 return new BoolNode( ncmp, _test._test ); 1809 } 1810 1811 // Same as above but with and AddI of a constant 1812 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1813 cop == Op_CmpI && 1814 cmp1_op == Op_AddI && 1815 cmp1->in(2) != nullptr && 1816 phase->type(cmp1->in(2))->isa_int() && 1817 phase->type(cmp1->in(2))->is_int()->is_con() && 1818 cmp2_type == TypeInt::ZERO && 1819 !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape 1820 ) { 1821 const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int(); 1822 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi))); 1823 return new BoolNode( ncmp, _test._test ); 1824 } 1825 1826 // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)" 1827 // since zero check of conditional negation of an integer is equal to 1828 // zero check of the integer directly. 1829 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1830 (cop == Op_CmpI) && 1831 (cmp2_type == TypeInt::ZERO) && 1832 (cmp1_op == Op_Phi)) { 1833 // There should be a diamond phi with true path at index 1 or 2 1834 PhiNode *phi = cmp1->as_Phi(); 1835 int idx_true = phi->is_diamond_phi(); 1836 if (idx_true != 0) { 1837 // True input is in(idx_true) while false input is in(3 - idx_true) 1838 Node *tin = phi->in(idx_true); 1839 Node *fin = phi->in(3 - idx_true); 1840 if ((tin->Opcode() == Op_SubI) && 1841 (phase->type(tin->in(1)) == TypeInt::ZERO) && 1842 (tin->in(2) == fin)) { 1843 // Found conditional negation at true path, create a new CmpINode without that 1844 Node *ncmp = phase->transform(new CmpINode(fin, cmp2)); 1845 return new BoolNode(ncmp, _test._test); 1846 } 1847 if ((fin->Opcode() == Op_SubI) && 1848 (phase->type(fin->in(1)) == TypeInt::ZERO) && 1849 (fin->in(2) == tin)) { 1850 // Found conditional negation at false path, create a new CmpINode without that 1851 Node *ncmp = phase->transform(new CmpINode(tin, cmp2)); 1852 return new BoolNode(ncmp, _test._test); 1853 } 1854 } 1855 } 1856 1857 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the 1858 // most general case because negating 0x80000000 does nothing. Needed for 1859 // the CmpF3/SubI/CmpI idiom. 1860 if( cop == Op_CmpI && 1861 cmp1_op == Op_SubI && 1862 cmp2_type == TypeInt::ZERO && 1863 phase->type( cmp1->in(1) ) == TypeInt::ZERO && 1864 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) { 1865 Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2)); 1866 return new BoolNode( ncmp, _test.commute() ); 1867 } 1868 1869 // Try to optimize signed integer comparison 1870 return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type); 1871 1872 // The transformation below is not valid for either signed or unsigned 1873 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE. 1874 // This transformation can be resurrected when we are able to 1875 // make inferences about the range of values being subtracted from 1876 // (or added to) relative to the wraparound point. 1877 // 1878 // // Remove +/-1's if possible. 1879 // // "X <= Y-1" becomes "X < Y" 1880 // // "X+1 <= Y" becomes "X < Y" 1881 // // "X < Y+1" becomes "X <= Y" 1882 // // "X-1 < Y" becomes "X <= Y" 1883 // // Do not this to compares off of the counted-loop-end. These guys are 1884 // // checking the trip counter and they want to use the post-incremented 1885 // // counter. If they use the PRE-incremented counter, then the counter has 1886 // // to be incremented in a private block on a loop backedge. 1887 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd ) 1888 // return nullptr; 1889 // #ifndef PRODUCT 1890 // // Do not do this in a wash GVN pass during verification. 1891 // // Gets triggered by too many simple optimizations to be bothered with 1892 // // re-trying it again and again. 1893 // if( !phase->allow_progress() ) return nullptr; 1894 // #endif 1895 // // Not valid for unsigned compare because of corner cases in involving zero. 1896 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an 1897 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but 1898 // // "0 <=u Y" is always true). 1899 // if( cmp->Opcode() == Op_CmpU ) return nullptr; 1900 // int cmp2_op = cmp2->Opcode(); 1901 // if( _test._test == BoolTest::le ) { 1902 // if( cmp1_op == Op_AddI && 1903 // phase->type( cmp1->in(2) ) == TypeInt::ONE ) 1904 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt ); 1905 // else if( cmp2_op == Op_AddI && 1906 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 ) 1907 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt ); 1908 // } else if( _test._test == BoolTest::lt ) { 1909 // if( cmp1_op == Op_AddI && 1910 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 ) 1911 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le ); 1912 // else if( cmp2_op == Op_AddI && 1913 // phase->type( cmp2->in(2) ) == TypeInt::ONE ) 1914 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le ); 1915 // } 1916 } 1917 1918 // We use the following Lemmas/insights for the following two transformations (1) and (2): 1919 // x & y <=u y, for any x and y (Lemma 1, masking always results in a smaller unsigned number) 1920 // y <u y + 1 is always true if y != -1 (Lemma 2, (uint)(-1 + 1) == (uint)(UINT_MAX + 1) which overflows) 1921 // y <u 0 is always false for any y (Lemma 3, 0 == UINT_MIN and nothing can be smaller than that) 1922 // 1923 // (1a) Always: Change ((x & m) <=u m ) or ((m & x) <=u m ) to always true (true by Lemma 1) 1924 // (1b) If m != -1: Change ((x & m) <u m + 1) or ((m & x) <u m + 1) to always true: 1925 // x & m <=u m is always true // (Lemma 1) 1926 // x & m <=u m <u m + 1 is always true // (Lemma 2: m <u m + 1, if m != -1) 1927 // 1928 // A counter example for (1b), if we allowed m == -1: 1929 // (x & m) <u m + 1 1930 // (x & -1) <u 0 1931 // x <u 0 1932 // which is false for any x (Lemma 3) 1933 // 1934 // (2) Change ((x & (m - 1)) <u m) or (((m - 1) & x) <u m) to (m >u 0) 1935 // This is the off-by-one variant of the above. 1936 // 1937 // We now prove that this replacement is correct. This is the same as proving 1938 // "m >u 0" if and only if "x & (m - 1) <u m", i.e. "m >u 0 <=> x & (m - 1) <u m" 1939 // 1940 // We use (Lemma 1) and (Lemma 3) from above. 1941 // 1942 // Case "x & (m - 1) <u m => m >u 0": 1943 // We prove this by contradiction: 1944 // Assume m <=u 0 which is equivalent to m == 0: 1945 // and thus 1946 // x & (m - 1) <u m = 0 // m == 0 1947 // y <u 0 // y = x & (m - 1) 1948 // by Lemma 3, this is always false, i.e. a contradiction to our assumption. 1949 // 1950 // Case "m >u 0 => x & (m - 1) <u m": 1951 // x & (m - 1) <=u (m - 1) // (Lemma 1) 1952 // x & (m - 1) <=u (m - 1) <u m // Using assumption m >u 0, no underflow of "m - 1" 1953 // 1954 // 1955 // Note that the signed version of "m > 0": 1956 // m > 0 <=> x & (m - 1) <u m 1957 // does not hold: 1958 // Assume m == -1 and x == -1: 1959 // x & (m - 1) <u m 1960 // -1 & -2 <u -1 1961 // -2 <u -1 1962 // UINT_MAX - 1 <u UINT_MAX // Signed to unsigned numbers 1963 // which is true while 1964 // m > 0 1965 // is false which is a contradiction. 1966 // 1967 // (1a) and (1b) is covered by this method since we can directly return a true value as type while (2) is covered 1968 // in BoolNode::Ideal since we create a new non-constant node (see [CMPU_MASK]). 1969 const Type* BoolNode::Value_cmpu_and_mask(PhaseValues* phase) const { 1970 Node* cmp = in(1); 1971 if (cmp != nullptr && cmp->Opcode() == Op_CmpU) { 1972 Node* cmp1 = cmp->in(1); 1973 Node* cmp2 = cmp->in(2); 1974 1975 if (cmp1->Opcode() == Op_AndI) { 1976 Node* m = nullptr; 1977 if (_test._test == BoolTest::le) { 1978 // (1a) "((x & m) <=u m)", cmp2 = m 1979 m = cmp2; 1980 } else if (_test._test == BoolTest::lt && cmp2->Opcode() == Op_AddI && cmp2->in(2)->find_int_con(0) == 1) { 1981 // (1b) "(x & m) <u m + 1" and "(m & x) <u m + 1", cmp2 = m + 1 1982 Node* rhs_m = cmp2->in(1); 1983 const TypeInt* rhs_m_type = phase->type(rhs_m)->isa_int(); 1984 if (rhs_m_type->_lo > -1 || rhs_m_type->_hi < -1) { 1985 // Exclude any case where m == -1 is possible. 1986 m = rhs_m; 1987 } 1988 } 1989 1990 if (cmp1->in(2) == m || cmp1->in(1) == m) { 1991 return TypeInt::ONE; 1992 } 1993 } 1994 } 1995 1996 return nullptr; 1997 } 1998 1999 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node, 2000 // based on local information. If the input is constant, do it. 2001 const Type* BoolNode::Value(PhaseGVN* phase) const { 2002 const Type* t = Value_cmpu_and_mask(phase); 2003 if (t != nullptr) { 2004 return t; 2005 } 2006 2007 return _test.cc2logical( phase->type( in(1) ) ); 2008 } 2009 2010 #ifndef PRODUCT 2011 //------------------------------dump_spec-------------------------------------- 2012 // Dump special per-node info 2013 void BoolNode::dump_spec(outputStream *st) const { 2014 st->print("["); 2015 _test.dump_on(st); 2016 st->print("]"); 2017 } 2018 #endif 2019 2020 //----------------------is_counted_loop_exit_test------------------------------ 2021 // Returns true if node is used by a counted loop node. 2022 bool BoolNode::is_counted_loop_exit_test() { 2023 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { 2024 Node* use = fast_out(i); 2025 if (use->is_CountedLoopEnd()) { 2026 return true; 2027 } 2028 } 2029 return false; 2030 } 2031 2032 //============================================================================= 2033 //------------------------------Value------------------------------------------ 2034 const Type* AbsNode::Value(PhaseGVN* phase) const { 2035 const Type* t1 = phase->type(in(1)); 2036 if (t1 == Type::TOP) return Type::TOP; 2037 2038 switch (t1->base()) { 2039 case Type::Int: { 2040 const TypeInt* ti = t1->is_int(); 2041 if (ti->is_con()) { 2042 return TypeInt::make(g_uabs(ti->get_con())); 2043 } 2044 break; 2045 } 2046 case Type::Long: { 2047 const TypeLong* tl = t1->is_long(); 2048 if (tl->is_con()) { 2049 return TypeLong::make(g_uabs(tl->get_con())); 2050 } 2051 break; 2052 } 2053 case Type::FloatCon: 2054 return TypeF::make(abs(t1->getf())); 2055 case Type::DoubleCon: 2056 return TypeD::make(abs(t1->getd())); 2057 default: 2058 break; 2059 } 2060 2061 return bottom_type(); 2062 } 2063 2064 //------------------------------Identity---------------------------------------- 2065 Node* AbsNode::Identity(PhaseGVN* phase) { 2066 Node* in1 = in(1); 2067 // No need to do abs for non-negative values 2068 if (phase->type(in1)->higher_equal(TypeInt::POS) || 2069 phase->type(in1)->higher_equal(TypeLong::POS)) { 2070 return in1; 2071 } 2072 // Convert "abs(abs(x))" into "abs(x)" 2073 if (in1->Opcode() == Opcode()) { 2074 return in1; 2075 } 2076 return this; 2077 } 2078 2079 //------------------------------Ideal------------------------------------------ 2080 Node* AbsNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2081 Node* in1 = in(1); 2082 // Convert "abs(0-x)" into "abs(x)" 2083 if (in1->is_Sub() && phase->type(in1->in(1))->is_zero_type()) { 2084 set_req_X(1, in1->in(2), phase); 2085 return this; 2086 } 2087 return nullptr; 2088 } 2089 2090 //============================================================================= 2091 //------------------------------Value------------------------------------------ 2092 // Compute sqrt 2093 const Type* SqrtDNode::Value(PhaseGVN* phase) const { 2094 const Type *t1 = phase->type( in(1) ); 2095 if( t1 == Type::TOP ) return Type::TOP; 2096 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; 2097 double d = t1->getd(); 2098 if( d < 0.0 ) return Type::DOUBLE; 2099 return TypeD::make( sqrt( d ) ); 2100 } 2101 2102 const Type* SqrtFNode::Value(PhaseGVN* phase) const { 2103 const Type *t1 = phase->type( in(1) ); 2104 if( t1 == Type::TOP ) return Type::TOP; 2105 if( t1->base() != Type::FloatCon ) return Type::FLOAT; 2106 float f = t1->getf(); 2107 if( f < 0.0f ) return Type::FLOAT; 2108 return TypeF::make( (float)sqrt( (double)f ) ); 2109 } 2110 2111 const Type* SqrtHFNode::Value(PhaseGVN* phase) const { 2112 const Type* t1 = phase->type(in(1)); 2113 if (t1 == Type::TOP) { return Type::TOP; } 2114 if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2115 float f = t1->getf(); 2116 if (f < 0.0f) return Type::HALF_FLOAT; 2117 return TypeH::make((float)sqrt((double)f)); 2118 } 2119 2120 static const Type* reverse_bytes(int opcode, const Type* con) { 2121 switch (opcode) { 2122 case Op_ReverseBytesS: return TypeInt::make(byteswap(checked_cast<jshort>(con->is_int()->get_con()))); 2123 case Op_ReverseBytesUS: return TypeInt::make(byteswap(checked_cast<jchar>(con->is_int()->get_con()))); 2124 case Op_ReverseBytesI: return TypeInt::make(byteswap(checked_cast<jint>(con->is_int()->get_con()))); 2125 case Op_ReverseBytesL: return TypeLong::make(byteswap(checked_cast<jlong>(con->is_long()->get_con()))); 2126 default: ShouldNotReachHere(); 2127 } 2128 } 2129 2130 const Type* ReverseBytesNode::Value(PhaseGVN* phase) const { 2131 const Type* type = phase->type(in(1)); 2132 if (type == Type::TOP) { 2133 return Type::TOP; 2134 } 2135 if (type->singleton()) { 2136 return reverse_bytes(Opcode(), type); 2137 } 2138 return bottom_type(); 2139 } 2140 2141 const Type* ReverseINode::Value(PhaseGVN* phase) const { 2142 const Type *t1 = phase->type( in(1) ); 2143 if (t1 == Type::TOP) { 2144 return Type::TOP; 2145 } 2146 const TypeInt* t1int = t1->isa_int(); 2147 if (t1int && t1int->is_con()) { 2148 jint res = reverse_bits(t1int->get_con()); 2149 return TypeInt::make(res); 2150 } 2151 return bottom_type(); 2152 } 2153 2154 const Type* ReverseLNode::Value(PhaseGVN* phase) const { 2155 const Type *t1 = phase->type( in(1) ); 2156 if (t1 == Type::TOP) { 2157 return Type::TOP; 2158 } 2159 const TypeLong* t1long = t1->isa_long(); 2160 if (t1long && t1long->is_con()) { 2161 jlong res = reverse_bits(t1long->get_con()); 2162 return TypeLong::make(res); 2163 } 2164 return bottom_type(); 2165 } 2166 2167 Node* InvolutionNode::Identity(PhaseGVN* phase) { 2168 // Op ( Op x ) => x 2169 if (in(1)->Opcode() == Opcode()) { 2170 return in(1)->in(1); 2171 } 2172 return this; 2173 }