1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "compiler/compileLog.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "opto/addnode.hpp" 30 #include "opto/callnode.hpp" 31 #include "opto/cfgnode.hpp" 32 #include "opto/inlinetypenode.hpp" 33 #include "opto/loopnode.hpp" 34 #include "opto/matcher.hpp" 35 #include "opto/movenode.hpp" 36 #include "opto/mulnode.hpp" 37 #include "opto/opaquenode.hpp" 38 #include "opto/opcodes.hpp" 39 #include "opto/phaseX.hpp" 40 #include "opto/subnode.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "utilities/reverse_bits.hpp" 43 44 // Portions of code courtesy of Clifford Click 45 46 // Optimization - Graph Style 47 48 #include "math.h" 49 50 //============================================================================= 51 //------------------------------Identity--------------------------------------- 52 // If right input is a constant 0, return the left input. 53 Node* SubNode::Identity(PhaseGVN* phase) { 54 assert(in(1) != this, "Must already have called Value"); 55 assert(in(2) != this, "Must already have called Value"); 56 57 const Type* zero = add_id(); 58 59 // Remove double negation if it is not a floating point number since negation 60 // is not the same as subtraction for floating point numbers 61 // (cf. JLS § 15.15.4). `0-(0-(-0.0))` must be equal to positive 0.0 according to 62 // JLS § 15.8.2, but would result in -0.0 if this folding would be applied. 63 if (phase->type(in(1))->higher_equal(zero) && 64 in(2)->Opcode() == Opcode() && 65 phase->type(in(2)->in(1))->higher_equal(zero) && 66 !phase->type(in(2)->in(2))->is_floatingpoint()) { 67 return in(2)->in(2); 68 } 69 70 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y 71 if (in(1)->Opcode() == Op_AddI || in(1)->Opcode() == Op_AddL) { 72 if (in(1)->in(2) == in(2)) { 73 return in(1)->in(1); 74 } 75 if (in(1)->in(1) == in(2)) { 76 return in(1)->in(2); 77 } 78 } 79 80 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this; 81 } 82 83 //------------------------------Value------------------------------------------ 84 // A subtract node differences it's two inputs. 85 const Type* SubNode::Value_common(PhaseValues* phase) const { 86 const Node* in1 = in(1); 87 const Node* in2 = in(2); 88 // Either input is TOP ==> the result is TOP 89 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 90 if( t1 == Type::TOP ) return Type::TOP; 91 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 92 if( t2 == Type::TOP ) return Type::TOP; 93 94 // Not correct for SubFnode and AddFNode (must check for infinity) 95 // Equal? Subtract is zero 96 if (in1->eqv_uncast(in2)) return add_id(); 97 98 // Either input is BOTTOM ==> the result is the local BOTTOM 99 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) 100 return bottom_type(); 101 102 return nullptr; 103 } 104 105 const Type* SubNode::Value(PhaseGVN* phase) const { 106 const Type* t = Value_common(phase); 107 if (t != nullptr) { 108 return t; 109 } 110 const Type* t1 = phase->type(in(1)); 111 const Type* t2 = phase->type(in(2)); 112 return sub(t1,t2); // Local flavor of type subtraction 113 114 } 115 116 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) { 117 switch (bt) { 118 case T_INT: 119 return new SubINode(in1, in2); 120 case T_LONG: 121 return new SubLNode(in1, in2); 122 default: 123 fatal("Not implemented for %s", type2name(bt)); 124 } 125 return nullptr; 126 } 127 128 //============================================================================= 129 //------------------------------Helper function-------------------------------- 130 131 static bool is_cloop_increment(Node* inc) { 132 precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL); 133 134 if (!inc->in(1)->is_Phi()) { 135 return false; 136 } 137 const PhiNode* phi = inc->in(1)->as_Phi(); 138 139 if (!phi->region()->is_CountedLoop()) { 140 return false; 141 } 142 143 return inc == phi->region()->as_CountedLoop()->incr(); 144 } 145 146 // Given the expression '(x + C) - v', or 147 // 'v - (x + C)', we examine nodes '+' and 'v': 148 // 149 // 1. Do not convert if '+' is a counted-loop increment, because the '-' is 150 // loop invariant and converting extends the live-range of 'x' to overlap 151 // with the '+', forcing another register to be used in the loop. 152 // 153 // 2. Do not convert if 'v' is a counted-loop induction variable, because 154 // 'x' might be invariant. 155 // 156 static bool ok_to_convert(Node* inc, Node* var) { 157 return !(is_cloop_increment(inc) || var->is_cloop_ind_var()); 158 } 159 160 static bool is_cloop_condition(BoolNode* bol) { 161 for (DUIterator_Fast imax, i = bol->fast_outs(imax); i < imax; i++) { 162 Node* out = bol->fast_out(i); 163 if (out->is_BaseCountedLoopEnd()) { 164 return true; 165 } 166 } 167 return false; 168 } 169 170 //------------------------------Ideal------------------------------------------ 171 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){ 172 Node *in1 = in(1); 173 Node *in2 = in(2); 174 uint op1 = in1->Opcode(); 175 uint op2 = in2->Opcode(); 176 177 #ifdef ASSERT 178 // Check for dead loop 179 if ((in1 == this) || (in2 == this) || 180 ((op1 == Op_AddI || op1 == Op_SubI) && 181 ((in1->in(1) == this) || (in1->in(2) == this) || 182 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 183 assert(false, "dead loop in SubINode::Ideal"); 184 } 185 #endif 186 187 const Type *t2 = phase->type( in2 ); 188 if( t2 == Type::TOP ) return nullptr; 189 // Convert "x-c0" into "x+ -c0". 190 if( t2->base() == Type::Int ){ // Might be bottom or top... 191 const TypeInt *i = t2->is_int(); 192 if( i->is_con() ) 193 return new AddINode(in1, phase->intcon(java_negate(i->get_con()))); 194 } 195 196 // Convert "(x+c0) - y" into (x-y) + c0" 197 // Do not collapse (x+c0)-y if "+" is a loop increment or 198 // if "y" is a loop induction variable. 199 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) { 200 const Type *tadd = phase->type( in1->in(2) ); 201 if( tadd->singleton() && tadd != Type::TOP ) { 202 Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 )); 203 return new AddINode( sub2, in1->in(2) ); 204 } 205 } 206 207 // Convert "x - (y+c0)" into "(x-y) - c0" AND 208 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 209 // Need the same check as in above optimization but reversed. 210 if (op2 == Op_AddI 211 && ok_to_convert(in2, in1) 212 && in2->in(2)->Opcode() == Op_ConI) { 213 jint c0 = phase->type(in2->in(2))->isa_int()->get_con(); 214 Node* in21 = in2->in(1); 215 if (in1->Opcode() == Op_ConI) { 216 // Match c1 217 jint c1 = phase->type(in1)->isa_int()->get_con(); 218 Node* sub2 = phase->intcon(java_subtract(c1, c0)); 219 return new SubINode(sub2, in21); 220 } else { 221 // Match x 222 Node* sub2 = phase->transform(new SubINode(in1, in21)); 223 Node* neg_c0 = phase->intcon(java_negate(c0)); 224 return new AddINode(sub2, neg_c0); 225 } 226 } 227 228 const Type *t1 = phase->type( in1 ); 229 if( t1 == Type::TOP ) return nullptr; 230 231 #ifdef ASSERT 232 // Check for dead loop 233 if ((op2 == Op_AddI || op2 == Op_SubI) && 234 ((in2->in(1) == this) || (in2->in(2) == this) || 235 (in2->in(1) == in2) || (in2->in(2) == in2))) { 236 assert(false, "dead loop in SubINode::Ideal"); 237 } 238 #endif 239 240 // Convert "x - (x+y)" into "-y" 241 if (op2 == Op_AddI && in1 == in2->in(1)) { 242 return new SubINode(phase->intcon(0), in2->in(2)); 243 } 244 // Convert "(x-y) - x" into "-y" 245 if (op1 == Op_SubI && in1->in(1) == in2) { 246 return new SubINode(phase->intcon(0), in1->in(2)); 247 } 248 // Convert "x - (y+x)" into "-y" 249 if (op2 == Op_AddI && in1 == in2->in(2)) { 250 return new SubINode(phase->intcon(0), in2->in(1)); 251 } 252 253 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity(). 254 if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) { 255 return new SubINode(in2->in(2), in2->in(1)); 256 } 257 258 // Convert "0 - (x+con)" into "-con-x" 259 jint con; 260 if( t1 == TypeInt::ZERO && op2 == Op_AddI && 261 (con = in2->in(2)->find_int_con(0)) != 0 ) 262 return new SubINode( phase->intcon(-con), in2->in(1) ); 263 264 // Convert "(X+A) - (X+B)" into "A - B" 265 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) ) 266 return new SubINode( in1->in(2), in2->in(2) ); 267 268 // Convert "(A+X) - (B+X)" into "A - B" 269 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) ) 270 return new SubINode( in1->in(1), in2->in(1) ); 271 272 // Convert "(A+X) - (X+B)" into "A - B" 273 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) ) 274 return new SubINode( in1->in(1), in2->in(2) ); 275 276 // Convert "(X+A) - (B+X)" into "A - B" 277 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) ) 278 return new SubINode( in1->in(2), in2->in(1) ); 279 280 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally 281 // nicer to optimize than subtract. 282 if( op2 == Op_SubI && in2->outcnt() == 1) { 283 Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) ); 284 return new SubINode( add1, in2->in(1) ); 285 } 286 287 // Associative 288 if (op1 == Op_MulI && op2 == Op_MulI) { 289 Node* sub_in1 = nullptr; 290 Node* sub_in2 = nullptr; 291 Node* mul_in = nullptr; 292 293 if (in1->in(1) == in2->in(1)) { 294 // Convert "a*b-a*c into a*(b-c) 295 sub_in1 = in1->in(2); 296 sub_in2 = in2->in(2); 297 mul_in = in1->in(1); 298 } else if (in1->in(2) == in2->in(1)) { 299 // Convert a*b-b*c into b*(a-c) 300 sub_in1 = in1->in(1); 301 sub_in2 = in2->in(2); 302 mul_in = in1->in(2); 303 } else if (in1->in(2) == in2->in(2)) { 304 // Convert a*c-b*c into (a-b)*c 305 sub_in1 = in1->in(1); 306 sub_in2 = in2->in(1); 307 mul_in = in1->in(2); 308 } else if (in1->in(1) == in2->in(2)) { 309 // Convert a*b-c*a into a*(b-c) 310 sub_in1 = in1->in(2); 311 sub_in2 = in2->in(1); 312 mul_in = in1->in(1); 313 } 314 315 if (mul_in != nullptr) { 316 Node* sub = phase->transform(new SubINode(sub_in1, sub_in2)); 317 return new MulINode(mul_in, sub); 318 } 319 } 320 321 // Convert "0-(A>>31)" into "(A>>>31)" 322 if ( op2 == Op_RShiftI ) { 323 Node *in21 = in2->in(1); 324 Node *in22 = in2->in(2); 325 const TypeInt *zero = phase->type(in1)->isa_int(); 326 const TypeInt *t21 = phase->type(in21)->isa_int(); 327 const TypeInt *t22 = phase->type(in22)->isa_int(); 328 if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) { 329 return new URShiftINode(in21, in22); 330 } 331 } 332 333 return nullptr; 334 } 335 336 //------------------------------sub-------------------------------------------- 337 // A subtract node differences it's two inputs. 338 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const { 339 const TypeInt *r0 = t1->is_int(); // Handy access 340 const TypeInt *r1 = t2->is_int(); 341 int32_t lo = java_subtract(r0->_lo, r1->_hi); 342 int32_t hi = java_subtract(r0->_hi, r1->_lo); 343 344 // We next check for 32-bit overflow. 345 // If that happens, we just assume all integers are possible. 346 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 347 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 348 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 349 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 350 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 351 else // Overflow; assume all integers 352 return TypeInt::INT; 353 } 354 355 //============================================================================= 356 //------------------------------Ideal------------------------------------------ 357 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 358 Node *in1 = in(1); 359 Node *in2 = in(2); 360 uint op1 = in1->Opcode(); 361 uint op2 = in2->Opcode(); 362 363 #ifdef ASSERT 364 // Check for dead loop 365 if ((in1 == this) || (in2 == this) || 366 ((op1 == Op_AddL || op1 == Op_SubL) && 367 ((in1->in(1) == this) || (in1->in(2) == this) || 368 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 369 assert(false, "dead loop in SubLNode::Ideal"); 370 } 371 #endif 372 373 if( phase->type( in2 ) == Type::TOP ) return nullptr; 374 const TypeLong *i = phase->type( in2 )->isa_long(); 375 // Convert "x-c0" into "x+ -c0". 376 if( i && // Might be bottom or top... 377 i->is_con() ) 378 return new AddLNode(in1, phase->longcon(java_negate(i->get_con()))); 379 380 // Convert "(x+c0) - y" into (x-y) + c0" 381 // Do not collapse (x+c0)-y if "+" is a loop increment or 382 // if "y" is a loop induction variable. 383 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) { 384 Node *in11 = in1->in(1); 385 const Type *tadd = phase->type( in1->in(2) ); 386 if( tadd->singleton() && tadd != Type::TOP ) { 387 Node *sub2 = phase->transform( new SubLNode( in11, in2 )); 388 return new AddLNode( sub2, in1->in(2) ); 389 } 390 } 391 392 // Convert "x - (y+c0)" into "(x-y) - c0" AND 393 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 394 // Need the same check as in above optimization but reversed. 395 if (op2 == Op_AddL 396 && ok_to_convert(in2, in1) 397 && in2->in(2)->Opcode() == Op_ConL) { 398 jlong c0 = phase->type(in2->in(2))->isa_long()->get_con(); 399 Node* in21 = in2->in(1); 400 if (in1->Opcode() == Op_ConL) { 401 // Match c1 402 jlong c1 = phase->type(in1)->isa_long()->get_con(); 403 Node* sub2 = phase->longcon(java_subtract(c1, c0)); 404 return new SubLNode(sub2, in21); 405 } else { 406 Node* sub2 = phase->transform(new SubLNode(in1, in21)); 407 Node* neg_c0 = phase->longcon(-c0); 408 return new AddLNode(sub2, neg_c0); 409 } 410 } 411 412 const Type *t1 = phase->type( in1 ); 413 if( t1 == Type::TOP ) return nullptr; 414 415 #ifdef ASSERT 416 // Check for dead loop 417 if ((op2 == Op_AddL || op2 == Op_SubL) && 418 ((in2->in(1) == this) || (in2->in(2) == this) || 419 (in2->in(1) == in2) || (in2->in(2) == in2))) { 420 assert(false, "dead loop in SubLNode::Ideal"); 421 } 422 #endif 423 424 // Convert "x - (x+y)" into "-y" 425 if (op2 == Op_AddL && in1 == in2->in(1)) { 426 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2)); 427 } 428 // Convert "(x-y) - x" into "-y" 429 if (op1 == Op_SubL && in1->in(1) == in2) { 430 return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(2)); 431 } 432 // Convert "x - (y+x)" into "-y" 433 if (op2 == Op_AddL && in1 == in2->in(2)) { 434 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1)); 435 } 436 437 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity. 438 if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) { 439 return new SubLNode(in2->in(2), in2->in(1)); 440 } 441 442 // Convert "(X+A) - (X+B)" into "A - B" 443 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) ) 444 return new SubLNode( in1->in(2), in2->in(2) ); 445 446 // Convert "(A+X) - (B+X)" into "A - B" 447 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) ) 448 return new SubLNode( in1->in(1), in2->in(1) ); 449 450 // Convert "(A+X) - (X+B)" into "A - B" 451 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) ) 452 return new SubLNode( in1->in(1), in2->in(2) ); 453 454 // Convert "(X+A) - (B+X)" into "A - B" 455 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) ) 456 return new SubLNode( in1->in(2), in2->in(1) ); 457 458 // Convert "A-(B-C)" into (A+C)-B" 459 if( op2 == Op_SubL && in2->outcnt() == 1) { 460 Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) ); 461 return new SubLNode( add1, in2->in(1) ); 462 } 463 464 // Associative 465 if (op1 == Op_MulL && op2 == Op_MulL) { 466 Node* sub_in1 = nullptr; 467 Node* sub_in2 = nullptr; 468 Node* mul_in = nullptr; 469 470 if (in1->in(1) == in2->in(1)) { 471 // Convert "a*b-a*c into a*(b+c) 472 sub_in1 = in1->in(2); 473 sub_in2 = in2->in(2); 474 mul_in = in1->in(1); 475 } else if (in1->in(2) == in2->in(1)) { 476 // Convert a*b-b*c into b*(a-c) 477 sub_in1 = in1->in(1); 478 sub_in2 = in2->in(2); 479 mul_in = in1->in(2); 480 } else if (in1->in(2) == in2->in(2)) { 481 // Convert a*c-b*c into (a-b)*c 482 sub_in1 = in1->in(1); 483 sub_in2 = in2->in(1); 484 mul_in = in1->in(2); 485 } else if (in1->in(1) == in2->in(2)) { 486 // Convert a*b-c*a into a*(b-c) 487 sub_in1 = in1->in(2); 488 sub_in2 = in2->in(1); 489 mul_in = in1->in(1); 490 } 491 492 if (mul_in != nullptr) { 493 Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2)); 494 return new MulLNode(mul_in, sub); 495 } 496 } 497 498 // Convert "0L-(A>>63)" into "(A>>>63)" 499 if ( op2 == Op_RShiftL ) { 500 Node *in21 = in2->in(1); 501 Node *in22 = in2->in(2); 502 const TypeLong *zero = phase->type(in1)->isa_long(); 503 const TypeLong *t21 = phase->type(in21)->isa_long(); 504 const TypeInt *t22 = phase->type(in22)->isa_int(); 505 if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) { 506 return new URShiftLNode(in21, in22); 507 } 508 } 509 510 return nullptr; 511 } 512 513 //------------------------------sub-------------------------------------------- 514 // A subtract node differences it's two inputs. 515 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const { 516 const TypeLong *r0 = t1->is_long(); // Handy access 517 const TypeLong *r1 = t2->is_long(); 518 jlong lo = java_subtract(r0->_lo, r1->_hi); 519 jlong hi = java_subtract(r0->_hi, r1->_lo); 520 521 // We next check for 32-bit overflow. 522 // If that happens, we just assume all integers are possible. 523 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 524 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 525 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 526 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 527 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 528 else // Overflow; assume all integers 529 return TypeLong::LONG; 530 } 531 532 //============================================================================= 533 //------------------------------Value------------------------------------------ 534 // A subtract node differences its two inputs. 535 const Type* SubFPNode::Value(PhaseGVN* phase) const { 536 const Node* in1 = in(1); 537 const Node* in2 = in(2); 538 // Either input is TOP ==> the result is TOP 539 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 540 if( t1 == Type::TOP ) return Type::TOP; 541 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 542 if( t2 == Type::TOP ) return Type::TOP; 543 544 // if both operands are infinity of same sign, the result is NaN; do 545 // not replace with zero 546 if (t1->is_finite() && t2->is_finite() && in1 == in2) { 547 return add_id(); 548 } 549 550 // Either input is BOTTOM ==> the result is the local BOTTOM 551 const Type *bot = bottom_type(); 552 if( (t1 == bot) || (t2 == bot) || 553 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 554 return bot; 555 556 return sub(t1,t2); // Local flavor of type subtraction 557 } 558 559 560 //============================================================================= 561 //------------------------------sub-------------------------------------------- 562 // A subtract node differences its two inputs. 563 const Type* SubHFNode::sub(const Type* t1, const Type* t2) const { 564 // no folding if one of operands is infinity or NaN, do not do constant folding 565 if(g_isfinite(t1->getf()) && g_isfinite(t2->getf())) { 566 return TypeH::make(t1->getf() - t2->getf()); 567 } 568 else if(g_isnan(t1->getf())) { 569 return t1; 570 } 571 else if(g_isnan(t2->getf())) { 572 return t2; 573 } 574 else { 575 return Type::HALF_FLOAT; 576 } 577 } 578 579 //------------------------------Ideal------------------------------------------ 580 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 581 const Type *t2 = phase->type( in(2) ); 582 // Convert "x-c0" into "x+ -c0". 583 if( t2->base() == Type::FloatCon ) { // Might be bottom or top... 584 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) ); 585 } 586 587 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes 588 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0. 589 //if( phase->type(in(1)) == TypeF::ZERO ) 590 //return new (phase->C, 2) NegFNode(in(2)); 591 592 return nullptr; 593 } 594 595 //------------------------------sub-------------------------------------------- 596 // A subtract node differences its two inputs. 597 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const { 598 // no folding if one of operands is infinity or NaN, do not do constant folding 599 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) { 600 return TypeF::make( t1->getf() - t2->getf() ); 601 } 602 else if( g_isnan(t1->getf()) ) { 603 return t1; 604 } 605 else if( g_isnan(t2->getf()) ) { 606 return t2; 607 } 608 else { 609 return Type::FLOAT; 610 } 611 } 612 613 //============================================================================= 614 //------------------------------Ideal------------------------------------------ 615 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 616 const Type *t2 = phase->type( in(2) ); 617 // Convert "x-c0" into "x+ -c0". 618 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top... 619 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) ); 620 } 621 622 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes 623 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0. 624 //if( phase->type(in(1)) == TypeD::ZERO ) 625 //return new (phase->C, 2) NegDNode(in(2)); 626 627 return nullptr; 628 } 629 630 //------------------------------sub-------------------------------------------- 631 // A subtract node differences its two inputs. 632 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const { 633 // no folding if one of operands is infinity or NaN, do not do constant folding 634 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) { 635 return TypeD::make( t1->getd() - t2->getd() ); 636 } 637 else if( g_isnan(t1->getd()) ) { 638 return t1; 639 } 640 else if( g_isnan(t2->getd()) ) { 641 return t2; 642 } 643 else { 644 return Type::DOUBLE; 645 } 646 } 647 648 //============================================================================= 649 //------------------------------Idealize--------------------------------------- 650 // Unlike SubNodes, compare must still flatten return value to the 651 // range -1, 0, 1. 652 // And optimizations like those for (X + Y) - X fail if overflow happens. 653 Node* CmpNode::Identity(PhaseGVN* phase) { 654 return this; 655 } 656 657 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) { 658 switch (bt) { 659 case T_INT: 660 if (unsigned_comp) { 661 return new CmpUNode(in1, in2); 662 } 663 return new CmpINode(in1, in2); 664 case T_LONG: 665 if (unsigned_comp) { 666 return new CmpULNode(in1, in2); 667 } 668 return new CmpLNode(in1, in2); 669 case T_OBJECT: 670 case T_ARRAY: 671 case T_ADDRESS: 672 case T_METADATA: 673 return new CmpPNode(in1, in2); 674 case T_NARROWOOP: 675 case T_NARROWKLASS: 676 return new CmpNNode(in1, in2); 677 default: 678 fatal("Not implemented for %s", type2name(bt)); 679 } 680 return nullptr; 681 } 682 683 //============================================================================= 684 //------------------------------cmp-------------------------------------------- 685 // Simplify a CmpI (compare 2 integers) node, based on local information. 686 // If both inputs are constants, compare them. 687 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const { 688 const TypeInt *r0 = t1->is_int(); // Handy access 689 const TypeInt *r1 = t2->is_int(); 690 691 if( r0->_hi < r1->_lo ) // Range is always low? 692 return TypeInt::CC_LT; 693 else if( r0->_lo > r1->_hi ) // Range is always high? 694 return TypeInt::CC_GT; 695 696 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 697 assert(r0->get_con() == r1->get_con(), "must be equal"); 698 return TypeInt::CC_EQ; // Equal results. 699 } else if( r0->_hi == r1->_lo ) // Range is never high? 700 return TypeInt::CC_LE; 701 else if( r0->_lo == r1->_hi ) // Range is never low? 702 return TypeInt::CC_GE; 703 return TypeInt::CC; // else use worst case results 704 } 705 706 const Type* CmpINode::Value(PhaseGVN* phase) const { 707 Node* in1 = in(1); 708 Node* in2 = in(2); 709 // If this test is the zero trip guard for a main or post loop, check whether, with the opaque node removed, the test 710 // would constant fold so the loop is never entered. If so return the type of the test without the opaque node removed: 711 // make the loop unreachable. 712 // The reason for this is that the iv phi captures the bounds of the loop and if the loop becomes unreachable, it can 713 // become top. In that case, the loop must be removed. 714 // This is safe because: 715 // - as optimizations proceed, the range of iterations executed by the main loop narrows. If no iterations remain, then 716 // we're done with optimizations for that loop. 717 // - the post loop is initially not reachable but as long as there's a main loop, the zero trip guard for the post 718 // loop takes a phi that merges the pre and main loop's iv and can't constant fold the zero trip guard. Once, the main 719 // loop is removed, there's no need to preserve the zero trip guard for the post loop anymore. 720 if (in1 != nullptr && in2 != nullptr) { 721 uint input = 0; 722 Node* cmp = nullptr; 723 BoolTest::mask test; 724 if (in1->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in1) != Type::TOP) { 725 cmp = new CmpINode(in1->in(1), in2); 726 test = ((OpaqueZeroTripGuardNode*)in1)->_loop_entered_mask; 727 } 728 if (in2->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in2) != Type::TOP) { 729 assert(cmp == nullptr, "A cmp with 2 OpaqueZeroTripGuard inputs"); 730 cmp = new CmpINode(in1, in2->in(1)); 731 test = ((OpaqueZeroTripGuardNode*)in2)->_loop_entered_mask; 732 } 733 if (cmp != nullptr) { 734 const Type* cmp_t = cmp->Value(phase); 735 const Type* t = BoolTest(test).cc2logical(cmp_t); 736 cmp->destruct(phase); 737 if (t == TypeInt::ZERO) { 738 return cmp_t; 739 } 740 } 741 } 742 743 return SubNode::Value(phase); 744 } 745 746 747 // Simplify a CmpU (compare 2 integers) node, based on local information. 748 // If both inputs are constants, compare them. 749 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const { 750 assert(!t1->isa_ptr(), "obsolete usage of CmpU"); 751 752 // comparing two unsigned ints 753 const TypeInt *r0 = t1->is_int(); // Handy access 754 const TypeInt *r1 = t2->is_int(); 755 756 // Current installed version 757 // Compare ranges for non-overlap 758 juint lo0 = r0->_lo; 759 juint hi0 = r0->_hi; 760 juint lo1 = r1->_lo; 761 juint hi1 = r1->_hi; 762 763 // If either one has both negative and positive values, 764 // it therefore contains both 0 and -1, and since [0..-1] is the 765 // full unsigned range, the type must act as an unsigned bottom. 766 bool bot0 = ((jint)(lo0 ^ hi0) < 0); 767 bool bot1 = ((jint)(lo1 ^ hi1) < 0); 768 769 if (bot0 || bot1) { 770 // All unsigned values are LE -1 and GE 0. 771 if (lo0 == 0 && hi0 == 0) { 772 return TypeInt::CC_LE; // 0 <= bot 773 } else if ((jint)lo0 == -1 && (jint)hi0 == -1) { 774 return TypeInt::CC_GE; // -1 >= bot 775 } else if (lo1 == 0 && hi1 == 0) { 776 return TypeInt::CC_GE; // bot >= 0 777 } else if ((jint)lo1 == -1 && (jint)hi1 == -1) { 778 return TypeInt::CC_LE; // bot <= -1 779 } 780 } else { 781 // We can use ranges of the form [lo..hi] if signs are the same. 782 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 783 // results are reversed, '-' > '+' for unsigned compare 784 if (hi0 < lo1) { 785 return TypeInt::CC_LT; // smaller 786 } else if (lo0 > hi1) { 787 return TypeInt::CC_GT; // greater 788 } else if (hi0 == lo1 && lo0 == hi1) { 789 return TypeInt::CC_EQ; // Equal results 790 } else if (lo0 >= hi1) { 791 return TypeInt::CC_GE; 792 } else if (hi0 <= lo1) { 793 // Check for special case in Hashtable::get. (See below.) 794 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 795 return TypeInt::CC_LT; 796 return TypeInt::CC_LE; 797 } 798 } 799 // Check for special case in Hashtable::get - the hash index is 800 // mod'ed to the table size so the following range check is useless. 801 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have 802 // to be positive. 803 // (This is a gross hack, since the sub method never 804 // looks at the structure of the node in any other case.) 805 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 806 return TypeInt::CC_LT; 807 return TypeInt::CC; // else use worst case results 808 } 809 810 const Type* CmpUNode::Value(PhaseGVN* phase) const { 811 const Type* t = SubNode::Value_common(phase); 812 if (t != nullptr) { 813 return t; 814 } 815 const Node* in1 = in(1); 816 const Node* in2 = in(2); 817 const Type* t1 = phase->type(in1); 818 const Type* t2 = phase->type(in2); 819 assert(t1->isa_int(), "CmpU has only Int type inputs"); 820 if (t2 == TypeInt::INT) { // Compare to bottom? 821 return bottom_type(); 822 } 823 824 const Type* t_sub = sub(t1, t2); // compare based on immediate inputs 825 826 uint in1_op = in1->Opcode(); 827 if (in1_op == Op_AddI || in1_op == Op_SubI) { 828 // The problem rise when result of AddI(SubI) may overflow 829 // signed integer value. Let say the input type is 830 // [256, maxint] then +128 will create 2 ranges due to 831 // overflow: [minint, minint+127] and [384, maxint]. 832 // But C2 type system keep only 1 type range and as result 833 // it use general [minint, maxint] for this case which we 834 // can't optimize. 835 // 836 // Make 2 separate type ranges based on types of AddI(SubI) inputs 837 // and compare results of their compare. If results are the same 838 // CmpU node can be optimized. 839 const Node* in11 = in1->in(1); 840 const Node* in12 = in1->in(2); 841 const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11); 842 const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12); 843 // Skip cases when input types are top or bottom. 844 if ((t11 != Type::TOP) && (t11 != TypeInt::INT) && 845 (t12 != Type::TOP) && (t12 != TypeInt::INT)) { 846 const TypeInt *r0 = t11->is_int(); 847 const TypeInt *r1 = t12->is_int(); 848 jlong lo_r0 = r0->_lo; 849 jlong hi_r0 = r0->_hi; 850 jlong lo_r1 = r1->_lo; 851 jlong hi_r1 = r1->_hi; 852 if (in1_op == Op_SubI) { 853 jlong tmp = hi_r1; 854 hi_r1 = -lo_r1; 855 lo_r1 = -tmp; 856 // Note, for substructing [minint,x] type range 857 // long arithmetic provides correct overflow answer. 858 // The confusion come from the fact that in 32-bit 859 // -minint == minint but in 64-bit -minint == maxint+1. 860 } 861 jlong lo_long = lo_r0 + lo_r1; 862 jlong hi_long = hi_r0 + hi_r1; 863 int lo_tr1 = min_jint; 864 int hi_tr1 = (int)hi_long; 865 int lo_tr2 = (int)lo_long; 866 int hi_tr2 = max_jint; 867 bool underflow = lo_long != (jlong)lo_tr2; 868 bool overflow = hi_long != (jlong)hi_tr1; 869 // Use sub(t1, t2) when there is no overflow (one type range) 870 // or when both overflow and underflow (too complex). 871 if ((underflow != overflow) && (hi_tr1 < lo_tr2)) { 872 // Overflow only on one boundary, compare 2 separate type ranges. 873 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 874 const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w); 875 const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w); 876 const TypeInt* cmp1 = sub(tr1, t2)->is_int(); 877 const TypeInt* cmp2 = sub(tr2, t2)->is_int(); 878 // Compute union, so that cmp handles all possible results from the two cases 879 const Type* t_cmp = cmp1->meet(cmp2); 880 // Pick narrowest type, based on overflow computation and on immediate inputs 881 return t_sub->filter(t_cmp); 882 } 883 } 884 } 885 886 return t_sub; 887 } 888 889 bool CmpUNode::is_index_range_check() const { 890 // Check for the "(X ModI Y) CmpU Y" shape 891 return (in(1)->Opcode() == Op_ModI && 892 in(1)->in(2)->eqv_uncast(in(2))); 893 } 894 895 //------------------------------Idealize--------------------------------------- 896 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) { 897 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) { 898 switch (in(1)->Opcode()) { 899 case Op_CmpU3: // Collapse a CmpU3/CmpI into a CmpU 900 return new CmpUNode(in(1)->in(1),in(1)->in(2)); 901 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL 902 return new CmpLNode(in(1)->in(1),in(1)->in(2)); 903 case Op_CmpUL3: // Collapse a CmpUL3/CmpI into a CmpUL 904 return new CmpULNode(in(1)->in(1),in(1)->in(2)); 905 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF 906 return new CmpFNode(in(1)->in(1),in(1)->in(2)); 907 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD 908 return new CmpDNode(in(1)->in(1),in(1)->in(2)); 909 //case Op_SubI: 910 // If (x - y) cannot overflow, then ((x - y) <?> 0) 911 // can be turned into (x <?> y). 912 // This is handled (with more general cases) by Ideal_sub_algebra. 913 } 914 } 915 return nullptr; // No change 916 } 917 918 //------------------------------Ideal------------------------------------------ 919 Node* CmpLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 920 Node* a = nullptr; 921 Node* b = nullptr; 922 if (is_double_null_check(phase, a, b) && (phase->type(a)->is_zero_type() || phase->type(b)->is_zero_type())) { 923 // Degraded to a simple null check, use old acmp 924 return new CmpPNode(a, b); 925 } 926 const TypeLong *t2 = phase->type(in(2))->isa_long(); 927 if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) { 928 const jlong con = t2->get_con(); 929 if (con >= min_jint && con <= max_jint) { 930 return new CmpINode(in(1)->in(1), phase->intcon((jint)con)); 931 } 932 } 933 return nullptr; 934 } 935 936 // Match double null check emitted by Compile::optimize_acmp() 937 bool CmpLNode::is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const { 938 if (in(1)->Opcode() == Op_OrL && 939 in(1)->in(1)->Opcode() == Op_CastP2X && 940 in(1)->in(2)->Opcode() == Op_CastP2X && 941 in(2)->bottom_type()->is_zero_type()) { 942 assert(EnableValhalla, "unexpected double null check"); 943 a = in(1)->in(1)->in(1); 944 b = in(1)->in(2)->in(1); 945 return true; 946 } 947 return false; 948 } 949 950 //------------------------------Value------------------------------------------ 951 const Type* CmpLNode::Value(PhaseGVN* phase) const { 952 Node* a = nullptr; 953 Node* b = nullptr; 954 if (is_double_null_check(phase, a, b) && (!phase->type(a)->maybe_null() || !phase->type(b)->maybe_null())) { 955 // One operand is never nullptr, emit constant false 956 return TypeInt::CC_GT; 957 } 958 return SubNode::Value(phase); 959 } 960 961 //============================================================================= 962 // Simplify a CmpL (compare 2 longs ) node, based on local information. 963 // If both inputs are constants, compare them. 964 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const { 965 const TypeLong *r0 = t1->is_long(); // Handy access 966 const TypeLong *r1 = t2->is_long(); 967 968 if( r0->_hi < r1->_lo ) // Range is always low? 969 return TypeInt::CC_LT; 970 else if( r0->_lo > r1->_hi ) // Range is always high? 971 return TypeInt::CC_GT; 972 973 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 974 assert(r0->get_con() == r1->get_con(), "must be equal"); 975 return TypeInt::CC_EQ; // Equal results. 976 } else if( r0->_hi == r1->_lo ) // Range is never high? 977 return TypeInt::CC_LE; 978 else if( r0->_lo == r1->_hi ) // Range is never low? 979 return TypeInt::CC_GE; 980 return TypeInt::CC; // else use worst case results 981 } 982 983 984 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information. 985 // If both inputs are constants, compare them. 986 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const { 987 assert(!t1->isa_ptr(), "obsolete usage of CmpUL"); 988 989 // comparing two unsigned longs 990 const TypeLong* r0 = t1->is_long(); // Handy access 991 const TypeLong* r1 = t2->is_long(); 992 993 // Current installed version 994 // Compare ranges for non-overlap 995 julong lo0 = r0->_lo; 996 julong hi0 = r0->_hi; 997 julong lo1 = r1->_lo; 998 julong hi1 = r1->_hi; 999 1000 // If either one has both negative and positive values, 1001 // it therefore contains both 0 and -1, and since [0..-1] is the 1002 // full unsigned range, the type must act as an unsigned bottom. 1003 bool bot0 = ((jlong)(lo0 ^ hi0) < 0); 1004 bool bot1 = ((jlong)(lo1 ^ hi1) < 0); 1005 1006 if (bot0 || bot1) { 1007 // All unsigned values are LE -1 and GE 0. 1008 if (lo0 == 0 && hi0 == 0) { 1009 return TypeInt::CC_LE; // 0 <= bot 1010 } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) { 1011 return TypeInt::CC_GE; // -1 >= bot 1012 } else if (lo1 == 0 && hi1 == 0) { 1013 return TypeInt::CC_GE; // bot >= 0 1014 } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) { 1015 return TypeInt::CC_LE; // bot <= -1 1016 } 1017 } else { 1018 // We can use ranges of the form [lo..hi] if signs are the same. 1019 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 1020 // results are reversed, '-' > '+' for unsigned compare 1021 if (hi0 < lo1) { 1022 return TypeInt::CC_LT; // smaller 1023 } else if (lo0 > hi1) { 1024 return TypeInt::CC_GT; // greater 1025 } else if (hi0 == lo1 && lo0 == hi1) { 1026 return TypeInt::CC_EQ; // Equal results 1027 } else if (lo0 >= hi1) { 1028 return TypeInt::CC_GE; 1029 } else if (hi0 <= lo1) { 1030 return TypeInt::CC_LE; 1031 } 1032 } 1033 1034 return TypeInt::CC; // else use worst case results 1035 } 1036 1037 //============================================================================= 1038 //------------------------------sub-------------------------------------------- 1039 // Simplify an CmpP (compare 2 pointers) node, based on local information. 1040 // If both inputs are constants, compare them. 1041 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const { 1042 const TypePtr *r0 = t1->is_ptr(); // Handy access 1043 const TypePtr *r1 = t2->is_ptr(); 1044 1045 // Undefined inputs makes for an undefined result 1046 if( TypePtr::above_centerline(r0->_ptr) || 1047 TypePtr::above_centerline(r1->_ptr) ) 1048 return Type::TOP; 1049 1050 if (r0 == r1 && r0->singleton()) { 1051 // Equal pointer constants (klasses, nulls, etc.) 1052 return TypeInt::CC_EQ; 1053 } 1054 1055 // See if it is 2 unrelated classes. 1056 const TypeOopPtr* p0 = r0->isa_oopptr(); 1057 const TypeOopPtr* p1 = r1->isa_oopptr(); 1058 const TypeKlassPtr* k0 = r0->isa_klassptr(); 1059 const TypeKlassPtr* k1 = r1->isa_klassptr(); 1060 if ((p0 && p1) || (k0 && k1)) { 1061 if (p0 && p1) { 1062 Node* in1 = in(1)->uncast(); 1063 Node* in2 = in(2)->uncast(); 1064 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1); 1065 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2); 1066 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, nullptr)) { 1067 return TypeInt::CC_GT; // different pointers 1068 } 1069 } 1070 bool xklass0 = p0 ? p0->klass_is_exact() : k0->klass_is_exact(); 1071 bool xklass1 = p1 ? p1->klass_is_exact() : k1->klass_is_exact(); 1072 bool unrelated_classes = false; 1073 1074 if ((p0 && p0->is_same_java_type_as(p1)) || 1075 (k0 && k0->is_same_java_type_as(k1))) { 1076 } else if ((p0 && !p1->maybe_java_subtype_of(p0) && !p0->maybe_java_subtype_of(p1)) || 1077 (k0 && !k1->maybe_java_subtype_of(k0) && !k0->maybe_java_subtype_of(k1))) { 1078 unrelated_classes = true; 1079 } else if ((p0 && !p1->maybe_java_subtype_of(p0)) || 1080 (k0 && !k1->maybe_java_subtype_of(k0))) { 1081 unrelated_classes = xklass1; 1082 } else if ((p0 && !p0->maybe_java_subtype_of(p1)) || 1083 (k0 && !k0->maybe_java_subtype_of(k1))) { 1084 unrelated_classes = xklass0; 1085 } 1086 if (!unrelated_classes) { 1087 // Handle inline type arrays 1088 if ((r0->flat_in_array() && r1->not_flat_in_array()) || 1089 (r1->flat_in_array() && r0->not_flat_in_array())) { 1090 // One type is in flat arrays but the other type is not. Must be unrelated. 1091 unrelated_classes = true; 1092 } else if ((r0->is_not_flat() && r1->is_flat()) || 1093 (r1->is_not_flat() && r0->is_flat())) { 1094 // One type is a non-flat array and the other type is a flat array. Must be unrelated. 1095 unrelated_classes = true; 1096 } else if ((r0->is_not_null_free() && r1->is_null_free()) || 1097 (r1->is_not_null_free() && r0->is_null_free())) { 1098 // One type is a nullable array and the other type is a null-free array. Must be unrelated. 1099 unrelated_classes = true; 1100 } 1101 } 1102 if (unrelated_classes) { 1103 // The oops classes are known to be unrelated. If the joined PTRs of 1104 // two oops is not Null and not Bottom, then we are sure that one 1105 // of the two oops is non-null, and the comparison will always fail. 1106 TypePtr::PTR jp = r0->join_ptr(r1->_ptr); 1107 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { 1108 return TypeInt::CC_GT; 1109 } 1110 } 1111 } 1112 1113 // Known constants can be compared exactly 1114 // Null can be distinguished from any NotNull pointers 1115 // Unknown inputs makes an unknown result 1116 if( r0->singleton() ) { 1117 intptr_t bits0 = r0->get_con(); 1118 if( r1->singleton() ) 1119 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; 1120 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1121 } else if( r1->singleton() ) { 1122 intptr_t bits1 = r1->get_con(); 1123 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1124 } else 1125 return TypeInt::CC; 1126 } 1127 1128 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) { 1129 // Return the klass node for (indirect load from OopHandle) 1130 // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) 1131 // or null if not matching. 1132 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1133 n = bs->step_over_gc_barrier(n); 1134 1135 if (n->Opcode() != Op_LoadP) return nullptr; 1136 1137 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1138 if (!tp || tp->instance_klass() != phase->C->env()->Class_klass()) return nullptr; 1139 1140 Node* adr = n->in(MemNode::Address); 1141 // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier. 1142 if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return nullptr; 1143 adr = adr->in(MemNode::Address); 1144 1145 intptr_t off = 0; 1146 Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off); 1147 if (k == nullptr) return nullptr; 1148 const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr(); 1149 if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return nullptr; 1150 1151 // We've found the klass node of a Java mirror load. 1152 return k; 1153 } 1154 1155 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) { 1156 // for ConP(Foo.class) return ConP(Foo.klass) 1157 // otherwise return null 1158 if (!n->is_Con()) return nullptr; 1159 1160 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1161 if (!tp) return nullptr; 1162 1163 ciType* mirror_type = tp->java_mirror_type(); 1164 // TypeInstPtr::java_mirror_type() returns non-null for compile- 1165 // time Class constants only. 1166 if (!mirror_type) return nullptr; 1167 1168 // x.getClass() == int.class can never be true (for all primitive types) 1169 // Return a ConP(null) node for this case. 1170 if (mirror_type->is_classless()) { 1171 return phase->makecon(TypePtr::NULL_PTR); 1172 } 1173 1174 // return the ConP(Foo.klass) 1175 assert(mirror_type->is_klass(), "mirror_type should represent a Klass*"); 1176 return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass(), Type::trust_interfaces)); 1177 } 1178 1179 //------------------------------Ideal------------------------------------------ 1180 // Normalize comparisons between Java mirror loads to compare the klass instead. 1181 // 1182 // Also check for the case of comparing an unknown klass loaded from the primary 1183 // super-type array vs a known klass with no subtypes. This amounts to 1184 // checking to see an unknown klass subtypes a known klass with no subtypes; 1185 // this only happens on an exact match. We can shorten this test by 1 load. 1186 Node* CmpPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1187 // TODO 8284443 in(1) could be cast? 1188 if (in(1)->is_InlineType() && phase->type(in(2))->is_zero_type()) { 1189 // Null checking a scalarized but nullable inline type. Check the IsInit 1190 // input instead of the oop input to avoid keeping buffer allocations alive. 1191 return new CmpINode(in(1)->as_InlineType()->get_is_init(), phase->intcon(0)); 1192 } 1193 1194 // Normalize comparisons between Java mirrors into comparisons of the low- 1195 // level klass, where a dependent load could be shortened. 1196 // 1197 // The new pattern has a nice effect of matching the same pattern used in the 1198 // fast path of instanceof/checkcast/Class.isInstance(), which allows 1199 // redundant exact type check be optimized away by GVN. 1200 // For example, in 1201 // if (x.getClass() == Foo.class) { 1202 // Foo foo = (Foo) x; 1203 // // ... use a ... 1204 // } 1205 // a CmpPNode could be shared between if_acmpne and checkcast 1206 { 1207 Node* k1 = isa_java_mirror_load(phase, in(1)); 1208 Node* k2 = isa_java_mirror_load(phase, in(2)); 1209 Node* conk2 = isa_const_java_mirror(phase, in(2)); 1210 1211 if (k1 && (k2 || conk2)) { 1212 Node* lhs = k1; 1213 Node* rhs = (k2 != nullptr) ? k2 : conk2; 1214 set_req_X(1, lhs, phase); 1215 set_req_X(2, rhs, phase); 1216 return this; 1217 } 1218 } 1219 1220 // Constant pointer on right? 1221 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr(); 1222 if (t2 == nullptr || !t2->klass_is_exact()) 1223 return nullptr; 1224 // Get the constant klass we are comparing to. 1225 ciKlass* superklass = t2->exact_klass(); 1226 1227 // Now check for LoadKlass on left. 1228 Node* ldk1 = in(1); 1229 if (ldk1->is_DecodeNKlass()) { 1230 ldk1 = ldk1->in(1); 1231 if (ldk1->Opcode() != Op_LoadNKlass ) 1232 return nullptr; 1233 } else if (ldk1->Opcode() != Op_LoadKlass ) 1234 return nullptr; 1235 // Take apart the address of the LoadKlass: 1236 Node* adr1 = ldk1->in(MemNode::Address); 1237 intptr_t con2 = 0; 1238 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2); 1239 if (ldk2 == nullptr) 1240 return nullptr; 1241 if (con2 == oopDesc::klass_offset_in_bytes()) { 1242 // We are inspecting an object's concrete class. 1243 // Short-circuit the check if the query is abstract. 1244 if (superklass->is_interface() || 1245 superklass->is_abstract()) { 1246 // Make it come out always false: 1247 this->set_req(2, phase->makecon(TypePtr::NULL_PTR)); 1248 return this; 1249 } 1250 } 1251 1252 // Check for a LoadKlass from primary supertype array. 1253 // Any nested loadklass from loadklass+con must be from the p.s. array. 1254 if (ldk2->is_DecodeNKlass()) { 1255 // Keep ldk2 as DecodeN since it could be used in CmpP below. 1256 if (ldk2->in(1)->Opcode() != Op_LoadNKlass ) 1257 return nullptr; 1258 } else if (ldk2->Opcode() != Op_LoadKlass) 1259 return nullptr; 1260 1261 // Verify that we understand the situation 1262 if (con2 != (intptr_t) superklass->super_check_offset()) 1263 return nullptr; // Might be element-klass loading from array klass 1264 1265 // Do not fold the subtype check to an array klass pointer comparison for null-able inline type arrays 1266 // because null-free [LMyValue <: null-able [LMyValue but the klasses are different. Perform a full test. 1267 if (superklass->is_obj_array_klass() && !superklass->as_array_klass()->is_elem_null_free() && 1268 superklass->as_array_klass()->element_klass()->is_inlinetype()) { 1269 return nullptr; 1270 } 1271 1272 // If 'superklass' has no subklasses and is not an interface, then we are 1273 // assured that the only input which will pass the type check is 1274 // 'superklass' itself. 1275 // 1276 // We could be more liberal here, and allow the optimization on interfaces 1277 // which have a single implementor. This would require us to increase the 1278 // expressiveness of the add_dependency() mechanism. 1279 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now. 1280 1281 // Object arrays must have their base element have no subtypes 1282 while (superklass->is_obj_array_klass()) { 1283 ciType* elem = superklass->as_obj_array_klass()->element_type(); 1284 superklass = elem->as_klass(); 1285 } 1286 if (superklass->is_instance_klass()) { 1287 ciInstanceKlass* ik = superklass->as_instance_klass(); 1288 if (ik->has_subklass() || ik->is_interface()) return nullptr; 1289 // Add a dependency if there is a chance that a subclass will be added later. 1290 if (!ik->is_final()) { 1291 phase->C->dependencies()->assert_leaf_type(ik); 1292 } 1293 } 1294 1295 // Bypass the dependent load, and compare directly 1296 this->set_req_X(1, ldk2, phase); 1297 1298 return this; 1299 } 1300 1301 //============================================================================= 1302 //------------------------------sub-------------------------------------------- 1303 // Simplify an CmpN (compare 2 pointers) node, based on local information. 1304 // If both inputs are constants, compare them. 1305 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const { 1306 ShouldNotReachHere(); 1307 return bottom_type(); 1308 } 1309 1310 //------------------------------Ideal------------------------------------------ 1311 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) { 1312 return nullptr; 1313 } 1314 1315 //============================================================================= 1316 //------------------------------Value------------------------------------------ 1317 // Simplify an CmpF (compare 2 floats ) node, based on local information. 1318 // If both inputs are constants, compare them. 1319 const Type* CmpFNode::Value(PhaseGVN* phase) const { 1320 const Node* in1 = in(1); 1321 const Node* in2 = in(2); 1322 // Either input is TOP ==> the result is TOP 1323 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1324 if( t1 == Type::TOP ) return Type::TOP; 1325 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1326 if( t2 == Type::TOP ) return Type::TOP; 1327 1328 // Not constants? Don't know squat - even if they are the same 1329 // value! If they are NaN's they compare to LT instead of EQ. 1330 const TypeF *tf1 = t1->isa_float_constant(); 1331 const TypeF *tf2 = t2->isa_float_constant(); 1332 if( !tf1 || !tf2 ) return TypeInt::CC; 1333 1334 // This implements the Java bytecode fcmpl, so unordered returns -1. 1335 if( tf1->is_nan() || tf2->is_nan() ) 1336 return TypeInt::CC_LT; 1337 1338 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT; 1339 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT; 1340 assert( tf1->_f == tf2->_f, "do not understand FP behavior" ); 1341 return TypeInt::CC_EQ; 1342 } 1343 1344 1345 //============================================================================= 1346 //------------------------------Value------------------------------------------ 1347 // Simplify an CmpD (compare 2 doubles ) node, based on local information. 1348 // If both inputs are constants, compare them. 1349 const Type* CmpDNode::Value(PhaseGVN* phase) const { 1350 const Node* in1 = in(1); 1351 const Node* in2 = in(2); 1352 // Either input is TOP ==> the result is TOP 1353 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1354 if( t1 == Type::TOP ) return Type::TOP; 1355 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1356 if( t2 == Type::TOP ) return Type::TOP; 1357 1358 // Not constants? Don't know squat - even if they are the same 1359 // value! If they are NaN's they compare to LT instead of EQ. 1360 const TypeD *td1 = t1->isa_double_constant(); 1361 const TypeD *td2 = t2->isa_double_constant(); 1362 if( !td1 || !td2 ) return TypeInt::CC; 1363 1364 // This implements the Java bytecode dcmpl, so unordered returns -1. 1365 if( td1->is_nan() || td2->is_nan() ) 1366 return TypeInt::CC_LT; 1367 1368 if( td1->_d < td2->_d ) return TypeInt::CC_LT; 1369 if( td1->_d > td2->_d ) return TypeInt::CC_GT; 1370 assert( td1->_d == td2->_d, "do not understand FP behavior" ); 1371 return TypeInt::CC_EQ; 1372 } 1373 1374 //------------------------------Ideal------------------------------------------ 1375 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 1376 // Check if we can change this to a CmpF and remove a ConvD2F operation. 1377 // Change (CMPD (F2D (float)) (ConD value)) 1378 // To (CMPF (float) (ConF value)) 1379 // Valid when 'value' does not lose precision as a float. 1380 // Benefits: eliminates conversion, does not require 24-bit mode 1381 1382 // NaNs prevent commuting operands. This transform works regardless of the 1383 // order of ConD and ConvF2D inputs by preserving the original order. 1384 int idx_f2d = 1; // ConvF2D on left side? 1385 if( in(idx_f2d)->Opcode() != Op_ConvF2D ) 1386 idx_f2d = 2; // No, swap to check for reversed args 1387 int idx_con = 3-idx_f2d; // Check for the constant on other input 1388 1389 if( ConvertCmpD2CmpF && 1390 in(idx_f2d)->Opcode() == Op_ConvF2D && 1391 in(idx_con)->Opcode() == Op_ConD ) { 1392 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant(); 1393 double t2_value_as_double = t2->_d; 1394 float t2_value_as_float = (float)t2_value_as_double; 1395 if( t2_value_as_double == (double)t2_value_as_float ) { 1396 // Test value can be represented as a float 1397 // Eliminate the conversion to double and create new comparison 1398 Node *new_in1 = in(idx_f2d)->in(1); 1399 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) ); 1400 if( idx_f2d != 1 ) { // Must flip args to match original order 1401 Node *tmp = new_in1; 1402 new_in1 = new_in2; 1403 new_in2 = tmp; 1404 } 1405 CmpFNode *new_cmp = (Opcode() == Op_CmpD3) 1406 ? new CmpF3Node( new_in1, new_in2 ) 1407 : new CmpFNode ( new_in1, new_in2 ) ; 1408 return new_cmp; // Changed to CmpFNode 1409 } 1410 // Testing value required the precision of a double 1411 } 1412 return nullptr; // No change 1413 } 1414 1415 //============================================================================= 1416 //------------------------------Value------------------------------------------ 1417 const Type* FlatArrayCheckNode::Value(PhaseGVN* phase) const { 1418 bool all_not_flat = true; 1419 for (uint i = ArrayOrKlass; i < req(); ++i) { 1420 const Type* t = phase->type(in(i)); 1421 if (t == Type::TOP) { 1422 return Type::TOP; 1423 } 1424 if (t->is_ptr()->is_flat()) { 1425 // One of the input arrays is flat, check always passes 1426 return TypeInt::CC_EQ; 1427 } else if (!t->is_ptr()->is_not_flat()) { 1428 // One of the input arrays might be flat 1429 all_not_flat = false; 1430 } 1431 } 1432 if (all_not_flat) { 1433 // None of the input arrays can be flat, check always fails 1434 return TypeInt::CC_GT; 1435 } 1436 return TypeInt::CC; 1437 } 1438 1439 //------------------------------Ideal------------------------------------------ 1440 Node* FlatArrayCheckNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1441 bool changed = false; 1442 // Remove inputs that are known to be non-flat 1443 for (uint i = ArrayOrKlass; i < req(); ++i) { 1444 const Type* t = phase->type(in(i)); 1445 if (t->isa_ptr() && t->is_ptr()->is_not_flat()) { 1446 del_req(i--); 1447 changed = true; 1448 } 1449 } 1450 return changed ? this : nullptr; 1451 } 1452 1453 //============================================================================= 1454 //------------------------------cc2logical------------------------------------- 1455 // Convert a condition code type to a logical type 1456 const Type *BoolTest::cc2logical( const Type *CC ) const { 1457 if( CC == Type::TOP ) return Type::TOP; 1458 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse 1459 const TypeInt *ti = CC->is_int(); 1460 if( ti->is_con() ) { // Only 1 kind of condition codes set? 1461 // Match low order 2 bits 1462 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0; 1463 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result 1464 return TypeInt::make(tmp); // Boolean result 1465 } 1466 1467 if( CC == TypeInt::CC_GE ) { 1468 if( _test == ge ) return TypeInt::ONE; 1469 if( _test == lt ) return TypeInt::ZERO; 1470 } 1471 if( CC == TypeInt::CC_LE ) { 1472 if( _test == le ) return TypeInt::ONE; 1473 if( _test == gt ) return TypeInt::ZERO; 1474 } 1475 1476 return TypeInt::BOOL; 1477 } 1478 1479 //------------------------------dump_spec------------------------------------- 1480 // Print special per-node info 1481 void BoolTest::dump_on(outputStream *st) const { 1482 const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"}; 1483 st->print("%s", msg[_test]); 1484 } 1485 1486 // Returns the logical AND of two tests (or 'never' if both tests can never be true). 1487 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'. 1488 BoolTest::mask BoolTest::merge(BoolTest other) const { 1489 const mask res[illegal+1][illegal+1] = { 1490 // eq, gt, of, lt, ne, le, nof, ge, never, illegal 1491 {eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq 1492 {never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt 1493 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of 1494 {never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt 1495 {never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne 1496 {eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le 1497 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof 1498 {eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge 1499 {never, never, never, never, never, never, never, never, never, illegal}, // never 1500 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal 1501 return res[_test][other._test]; 1502 } 1503 1504 //============================================================================= 1505 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); } 1506 uint BoolNode::size_of() const { return sizeof(BoolNode); } 1507 1508 //------------------------------operator==------------------------------------- 1509 bool BoolNode::cmp( const Node &n ) const { 1510 const BoolNode *b = (const BoolNode *)&n; // Cast up 1511 return (_test._test == b->_test._test); 1512 } 1513 1514 //-------------------------------make_predicate-------------------------------- 1515 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) { 1516 if (test_value->is_Con()) return test_value; 1517 if (test_value->is_Bool()) return test_value; 1518 if (test_value->is_CMove() && 1519 test_value->in(CMoveNode::Condition)->is_Bool()) { 1520 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool(); 1521 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse)); 1522 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue)); 1523 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) { 1524 return bol; 1525 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) { 1526 return phase->transform( bol->negate(phase) ); 1527 } 1528 // Else fall through. The CMove gets in the way of the test. 1529 // It should be the case that make_predicate(bol->as_int_value()) == bol. 1530 } 1531 Node* cmp = new CmpINode(test_value, phase->intcon(0)); 1532 cmp = phase->transform(cmp); 1533 Node* bol = new BoolNode(cmp, BoolTest::ne); 1534 return phase->transform(bol); 1535 } 1536 1537 //--------------------------------as_int_value--------------------------------- 1538 Node* BoolNode::as_int_value(PhaseGVN* phase) { 1539 // Inverse to make_predicate. The CMove probably boils down to a Conv2B. 1540 Node* cmov = CMoveNode::make(this, phase->intcon(0), phase->intcon(1), TypeInt::BOOL); 1541 return phase->transform(cmov); 1542 } 1543 1544 //----------------------------------negate------------------------------------- 1545 BoolNode* BoolNode::negate(PhaseGVN* phase) { 1546 return new BoolNode(in(1), _test.negate()); 1547 } 1548 1549 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub 1550 // overflows and we can prove that C is not in the two resulting ranges. 1551 // This optimization is similar to the one performed by CmpUNode::Value(). 1552 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, 1553 int cmp1_op, const TypeInt* cmp2_type) { 1554 // Only optimize eq/ne integer comparison of add/sub 1555 if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1556 (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) { 1557 // Skip cases were inputs of add/sub are not integers or of bottom type 1558 const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int(); 1559 const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int(); 1560 if ((r0 != nullptr) && (r0 != TypeInt::INT) && 1561 (r1 != nullptr) && (r1 != TypeInt::INT) && 1562 (cmp2_type != TypeInt::INT)) { 1563 // Compute exact (long) type range of add/sub result 1564 jlong lo_long = r0->_lo; 1565 jlong hi_long = r0->_hi; 1566 if (cmp1_op == Op_AddI) { 1567 lo_long += r1->_lo; 1568 hi_long += r1->_hi; 1569 } else { 1570 lo_long -= r1->_hi; 1571 hi_long -= r1->_lo; 1572 } 1573 // Check for over-/underflow by casting to integer 1574 int lo_int = (int)lo_long; 1575 int hi_int = (int)hi_long; 1576 bool underflow = lo_long != (jlong)lo_int; 1577 bool overflow = hi_long != (jlong)hi_int; 1578 if ((underflow != overflow) && (hi_int < lo_int)) { 1579 // Overflow on one boundary, compute resulting type ranges: 1580 // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT] 1581 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 1582 const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w); 1583 const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w); 1584 // Compare second input of cmp to both type ranges 1585 const Type* sub_tr1 = cmp->sub(tr1, cmp2_type); 1586 const Type* sub_tr2 = cmp->sub(tr2, cmp2_type); 1587 if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) { 1588 // The result of the add/sub will never equal cmp2. Replace BoolNode 1589 // by false (0) if it tests for equality and by true (1) otherwise. 1590 return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1); 1591 } 1592 } 1593 } 1594 } 1595 return nullptr; 1596 } 1597 1598 static bool is_counted_loop_cmp(Node *cmp) { 1599 Node *n = cmp->in(1)->in(1); 1600 return n != nullptr && 1601 n->is_Phi() && 1602 n->in(0) != nullptr && 1603 n->in(0)->is_CountedLoop() && 1604 n->in(0)->as_CountedLoop()->phi() == n; 1605 } 1606 1607 //------------------------------Ideal------------------------------------------ 1608 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1609 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)". 1610 // This moves the constant to the right. Helps value-numbering. 1611 Node *cmp = in(1); 1612 if( !cmp->is_Sub() ) return nullptr; 1613 int cop = cmp->Opcode(); 1614 if( cop == Op_FastLock || cop == Op_FastUnlock || 1615 cmp->is_SubTypeCheck() || cop == Op_VectorTest ) { 1616 return nullptr; 1617 } 1618 Node *cmp1 = cmp->in(1); 1619 Node *cmp2 = cmp->in(2); 1620 if( !cmp1 ) return nullptr; 1621 1622 if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) { 1623 return nullptr; 1624 } 1625 1626 const int cmp1_op = cmp1->Opcode(); 1627 const int cmp2_op = cmp2->Opcode(); 1628 1629 // Constant on left? 1630 Node *con = cmp1; 1631 // Move constants to the right of compare's to canonicalize. 1632 // Do not muck with Opaque1 nodes, as this indicates a loop 1633 // guard that cannot change shape. 1634 if (con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_OpaqueZeroTripGuard && 1635 // Because of NaN's, CmpD and CmpF are not commutative 1636 cop != Op_CmpD && cop != Op_CmpF && 1637 // Protect against swapping inputs to a compare when it is used by a 1638 // counted loop exit, which requires maintaining the loop-limit as in(2) 1639 !is_counted_loop_exit_test() ) { 1640 // Ok, commute the constant to the right of the cmp node. 1641 // Clone the Node, getting a new Node of the same class 1642 cmp = cmp->clone(); 1643 // Swap inputs to the clone 1644 cmp->swap_edges(1, 2); 1645 cmp = phase->transform( cmp ); 1646 return new BoolNode( cmp, _test.commute() ); 1647 } 1648 1649 // Change "bool eq/ne (cmp (cmove (bool tst (cmp2)) 1 0) 0)" into "bool tst/~tst (cmp2)" 1650 if (cop == Op_CmpI && 1651 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1652 cmp1_op == Op_CMoveI && cmp2->find_int_con(1) == 0) { 1653 // 0 should be on the true branch 1654 if (cmp1->in(CMoveNode::Condition)->is_Bool() && 1655 cmp1->in(CMoveNode::IfTrue)->find_int_con(1) == 0 && 1656 cmp1->in(CMoveNode::IfFalse)->find_int_con(0) != 0) { 1657 BoolNode* target = cmp1->in(CMoveNode::Condition)->as_Bool(); 1658 return new BoolNode(target->in(1), 1659 (_test._test == BoolTest::eq) ? target->_test._test : 1660 target->_test.negate()); 1661 } 1662 } 1663 1664 // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1665 if (cop == Op_CmpI && 1666 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1667 cmp1_op == Op_AndI && cmp2_op == Op_ConI && 1668 cmp1->in(2)->Opcode() == Op_ConI) { 1669 const TypeInt *t12 = phase->type(cmp2)->isa_int(); 1670 const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int(); 1671 if (t12 && t12->is_con() && t112 && t112->is_con() && 1672 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1673 Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1674 return new BoolNode(ncmp, _test.negate()); 1675 } 1676 } 1677 1678 // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1679 if (cop == Op_CmpL && 1680 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1681 cmp1_op == Op_AndL && cmp2_op == Op_ConL && 1682 cmp1->in(2)->Opcode() == Op_ConL) { 1683 const TypeLong *t12 = phase->type(cmp2)->isa_long(); 1684 const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long(); 1685 if (t12 && t12->is_con() && t112 && t112->is_con() && 1686 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1687 Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0))); 1688 return new BoolNode(ncmp, _test.negate()); 1689 } 1690 } 1691 1692 // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y" 1693 // and "cmp (add X min_jint) c" into "cmpu X (c + min_jint)" 1694 if (cop == Op_CmpI && 1695 cmp1_op == Op_AddI && 1696 phase->type(cmp1->in(2)) == TypeInt::MIN && 1697 !is_cloop_condition(this)) { 1698 if (cmp2_op == Op_ConI) { 1699 Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint)); 1700 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2)); 1701 return new BoolNode(ncmp, _test._test); 1702 } else if (cmp2_op == Op_AddI && 1703 phase->type(cmp2->in(2)) == TypeInt::MIN && 1704 !is_cloop_condition(this)) { 1705 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1))); 1706 return new BoolNode(ncmp, _test._test); 1707 } 1708 } 1709 1710 // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y" 1711 // and "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)" 1712 if (cop == Op_CmpL && 1713 cmp1_op == Op_AddL && 1714 phase->type(cmp1->in(2)) == TypeLong::MIN && 1715 !is_cloop_condition(this)) { 1716 if (cmp2_op == Op_ConL) { 1717 Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong)); 1718 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2)); 1719 return new BoolNode(ncmp, _test._test); 1720 } else if (cmp2_op == Op_AddL && 1721 phase->type(cmp2->in(2)) == TypeLong::MIN && 1722 !is_cloop_condition(this)) { 1723 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1))); 1724 return new BoolNode(ncmp, _test._test); 1725 } 1726 } 1727 1728 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)". 1729 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the 1730 // test instead. 1731 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int(); 1732 if (cmp2_type == nullptr) return nullptr; 1733 Node* j_xor = cmp1; 1734 if( cmp2_type == TypeInt::ZERO && 1735 cmp1_op == Op_XorI && 1736 j_xor->in(1) != j_xor && // An xor of itself is dead 1737 phase->type( j_xor->in(1) ) == TypeInt::BOOL && 1738 phase->type( j_xor->in(2) ) == TypeInt::ONE && 1739 (_test._test == BoolTest::eq || 1740 _test._test == BoolTest::ne) ) { 1741 Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2)); 1742 return new BoolNode( ncmp, _test.negate() ); 1743 } 1744 1745 // Transform: "((x & (m - 1)) <u m)" or "(((m - 1) & x) <u m)" into "(m >u 0)" 1746 // This is case [CMPU_MASK] which is further described at the method comment of BoolNode::Value_cmpu_and_mask(). 1747 if (cop == Op_CmpU && _test._test == BoolTest::lt && cmp1_op == Op_AndI) { 1748 Node* m = cmp2; // RHS: m 1749 for (int add_idx = 1; add_idx <= 2; add_idx++) { // LHS: "(m + (-1)) & x" or "x & (m + (-1))"? 1750 Node* maybe_m_minus_1 = cmp1->in(add_idx); 1751 if (maybe_m_minus_1->Opcode() == Op_AddI && 1752 maybe_m_minus_1->in(2)->find_int_con(0) == -1 && 1753 maybe_m_minus_1->in(1) == m) { 1754 Node* m_cmpu_0 = phase->transform(new CmpUNode(m, phase->intcon(0))); 1755 return new BoolNode(m_cmpu_0, BoolTest::gt); 1756 } 1757 } 1758 } 1759 1760 // Change x u< 1 or x u<= 0 to x == 0 1761 // and x u> 0 or u>= 1 to x != 0 1762 if (cop == Op_CmpU && 1763 cmp1_op != Op_LoadRange && 1764 (((_test._test == BoolTest::lt || _test._test == BoolTest::ge) && 1765 cmp2->find_int_con(-1) == 1) || 1766 ((_test._test == BoolTest::le || _test._test == BoolTest::gt) && 1767 cmp2->find_int_con(-1) == 0))) { 1768 Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1769 return new BoolNode(ncmp, _test.is_less() ? BoolTest::eq : BoolTest::ne); 1770 } 1771 1772 // Change (arraylength <= 0) or (arraylength == 0) 1773 // into (arraylength u<= 0) 1774 // Also change (arraylength != 0) into (arraylength u> 0) 1775 // The latter version matches the code pattern generated for 1776 // array range checks, which will more likely be optimized later. 1777 if (cop == Op_CmpI && 1778 cmp1_op == Op_LoadRange && 1779 cmp2->find_int_con(-1) == 0) { 1780 if (_test._test == BoolTest::le || _test._test == BoolTest::eq) { 1781 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1782 return new BoolNode(ncmp, BoolTest::le); 1783 } else if (_test._test == BoolTest::ne) { 1784 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1785 return new BoolNode(ncmp, BoolTest::gt); 1786 } 1787 } 1788 1789 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)". 1790 // This is a standard idiom for branching on a boolean value. 1791 Node *c2b = cmp1; 1792 if( cmp2_type == TypeInt::ZERO && 1793 cmp1_op == Op_Conv2B && 1794 (_test._test == BoolTest::eq || 1795 _test._test == BoolTest::ne) ) { 1796 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int() 1797 ? (Node*)new CmpINode(c2b->in(1),cmp2) 1798 : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR)) 1799 ); 1800 return new BoolNode( ncmp, _test._test ); 1801 } 1802 1803 // Comparing a SubI against a zero is equal to comparing the SubI 1804 // arguments directly. This only works for eq and ne comparisons 1805 // due to possible integer overflow. 1806 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1807 (cop == Op_CmpI) && 1808 (cmp1_op == Op_SubI) && 1809 ( cmp2_type == TypeInt::ZERO ) ) { 1810 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2))); 1811 return new BoolNode( ncmp, _test._test ); 1812 } 1813 1814 // Same as above but with and AddI of a constant 1815 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1816 cop == Op_CmpI && 1817 cmp1_op == Op_AddI && 1818 cmp1->in(2) != nullptr && 1819 phase->type(cmp1->in(2))->isa_int() && 1820 phase->type(cmp1->in(2))->is_int()->is_con() && 1821 cmp2_type == TypeInt::ZERO && 1822 !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape 1823 ) { 1824 const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int(); 1825 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi))); 1826 return new BoolNode( ncmp, _test._test ); 1827 } 1828 1829 // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)" 1830 // since zero check of conditional negation of an integer is equal to 1831 // zero check of the integer directly. 1832 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1833 (cop == Op_CmpI) && 1834 (cmp2_type == TypeInt::ZERO) && 1835 (cmp1_op == Op_Phi)) { 1836 // There should be a diamond phi with true path at index 1 or 2 1837 PhiNode *phi = cmp1->as_Phi(); 1838 int idx_true = phi->is_diamond_phi(); 1839 if (idx_true != 0) { 1840 // True input is in(idx_true) while false input is in(3 - idx_true) 1841 Node *tin = phi->in(idx_true); 1842 Node *fin = phi->in(3 - idx_true); 1843 if ((tin->Opcode() == Op_SubI) && 1844 (phase->type(tin->in(1)) == TypeInt::ZERO) && 1845 (tin->in(2) == fin)) { 1846 // Found conditional negation at true path, create a new CmpINode without that 1847 Node *ncmp = phase->transform(new CmpINode(fin, cmp2)); 1848 return new BoolNode(ncmp, _test._test); 1849 } 1850 if ((fin->Opcode() == Op_SubI) && 1851 (phase->type(fin->in(1)) == TypeInt::ZERO) && 1852 (fin->in(2) == tin)) { 1853 // Found conditional negation at false path, create a new CmpINode without that 1854 Node *ncmp = phase->transform(new CmpINode(tin, cmp2)); 1855 return new BoolNode(ncmp, _test._test); 1856 } 1857 } 1858 } 1859 1860 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the 1861 // most general case because negating 0x80000000 does nothing. Needed for 1862 // the CmpF3/SubI/CmpI idiom. 1863 if( cop == Op_CmpI && 1864 cmp1_op == Op_SubI && 1865 cmp2_type == TypeInt::ZERO && 1866 phase->type( cmp1->in(1) ) == TypeInt::ZERO && 1867 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) { 1868 Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2)); 1869 return new BoolNode( ncmp, _test.commute() ); 1870 } 1871 1872 // Try to optimize signed integer comparison 1873 return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type); 1874 1875 // The transformation below is not valid for either signed or unsigned 1876 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE. 1877 // This transformation can be resurrected when we are able to 1878 // make inferences about the range of values being subtracted from 1879 // (or added to) relative to the wraparound point. 1880 // 1881 // // Remove +/-1's if possible. 1882 // // "X <= Y-1" becomes "X < Y" 1883 // // "X+1 <= Y" becomes "X < Y" 1884 // // "X < Y+1" becomes "X <= Y" 1885 // // "X-1 < Y" becomes "X <= Y" 1886 // // Do not this to compares off of the counted-loop-end. These guys are 1887 // // checking the trip counter and they want to use the post-incremented 1888 // // counter. If they use the PRE-incremented counter, then the counter has 1889 // // to be incremented in a private block on a loop backedge. 1890 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd ) 1891 // return nullptr; 1892 // #ifndef PRODUCT 1893 // // Do not do this in a wash GVN pass during verification. 1894 // // Gets triggered by too many simple optimizations to be bothered with 1895 // // re-trying it again and again. 1896 // if( !phase->allow_progress() ) return nullptr; 1897 // #endif 1898 // // Not valid for unsigned compare because of corner cases in involving zero. 1899 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an 1900 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but 1901 // // "0 <=u Y" is always true). 1902 // if( cmp->Opcode() == Op_CmpU ) return nullptr; 1903 // int cmp2_op = cmp2->Opcode(); 1904 // if( _test._test == BoolTest::le ) { 1905 // if( cmp1_op == Op_AddI && 1906 // phase->type( cmp1->in(2) ) == TypeInt::ONE ) 1907 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt ); 1908 // else if( cmp2_op == Op_AddI && 1909 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 ) 1910 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt ); 1911 // } else if( _test._test == BoolTest::lt ) { 1912 // if( cmp1_op == Op_AddI && 1913 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 ) 1914 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le ); 1915 // else if( cmp2_op == Op_AddI && 1916 // phase->type( cmp2->in(2) ) == TypeInt::ONE ) 1917 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le ); 1918 // } 1919 } 1920 1921 // We use the following Lemmas/insights for the following two transformations (1) and (2): 1922 // x & y <=u y, for any x and y (Lemma 1, masking always results in a smaller unsigned number) 1923 // y <u y + 1 is always true if y != -1 (Lemma 2, (uint)(-1 + 1) == (uint)(UINT_MAX + 1) which overflows) 1924 // y <u 0 is always false for any y (Lemma 3, 0 == UINT_MIN and nothing can be smaller than that) 1925 // 1926 // (1a) Always: Change ((x & m) <=u m ) or ((m & x) <=u m ) to always true (true by Lemma 1) 1927 // (1b) If m != -1: Change ((x & m) <u m + 1) or ((m & x) <u m + 1) to always true: 1928 // x & m <=u m is always true // (Lemma 1) 1929 // x & m <=u m <u m + 1 is always true // (Lemma 2: m <u m + 1, if m != -1) 1930 // 1931 // A counter example for (1b), if we allowed m == -1: 1932 // (x & m) <u m + 1 1933 // (x & -1) <u 0 1934 // x <u 0 1935 // which is false for any x (Lemma 3) 1936 // 1937 // (2) Change ((x & (m - 1)) <u m) or (((m - 1) & x) <u m) to (m >u 0) 1938 // This is the off-by-one variant of the above. 1939 // 1940 // We now prove that this replacement is correct. This is the same as proving 1941 // "m >u 0" if and only if "x & (m - 1) <u m", i.e. "m >u 0 <=> x & (m - 1) <u m" 1942 // 1943 // We use (Lemma 1) and (Lemma 3) from above. 1944 // 1945 // Case "x & (m - 1) <u m => m >u 0": 1946 // We prove this by contradiction: 1947 // Assume m <=u 0 which is equivalent to m == 0: 1948 // and thus 1949 // x & (m - 1) <u m = 0 // m == 0 1950 // y <u 0 // y = x & (m - 1) 1951 // by Lemma 3, this is always false, i.e. a contradiction to our assumption. 1952 // 1953 // Case "m >u 0 => x & (m - 1) <u m": 1954 // x & (m - 1) <=u (m - 1) // (Lemma 1) 1955 // x & (m - 1) <=u (m - 1) <u m // Using assumption m >u 0, no underflow of "m - 1" 1956 // 1957 // 1958 // Note that the signed version of "m > 0": 1959 // m > 0 <=> x & (m - 1) <u m 1960 // does not hold: 1961 // Assume m == -1 and x == -1: 1962 // x & (m - 1) <u m 1963 // -1 & -2 <u -1 1964 // -2 <u -1 1965 // UINT_MAX - 1 <u UINT_MAX // Signed to unsigned numbers 1966 // which is true while 1967 // m > 0 1968 // is false which is a contradiction. 1969 // 1970 // (1a) and (1b) is covered by this method since we can directly return a true value as type while (2) is covered 1971 // in BoolNode::Ideal since we create a new non-constant node (see [CMPU_MASK]). 1972 const Type* BoolNode::Value_cmpu_and_mask(PhaseValues* phase) const { 1973 Node* cmp = in(1); 1974 if (cmp != nullptr && cmp->Opcode() == Op_CmpU) { 1975 Node* cmp1 = cmp->in(1); 1976 Node* cmp2 = cmp->in(2); 1977 1978 if (cmp1->Opcode() == Op_AndI) { 1979 Node* m = nullptr; 1980 if (_test._test == BoolTest::le) { 1981 // (1a) "((x & m) <=u m)", cmp2 = m 1982 m = cmp2; 1983 } else if (_test._test == BoolTest::lt && cmp2->Opcode() == Op_AddI && cmp2->in(2)->find_int_con(0) == 1) { 1984 // (1b) "(x & m) <u m + 1" and "(m & x) <u m + 1", cmp2 = m + 1 1985 Node* rhs_m = cmp2->in(1); 1986 const TypeInt* rhs_m_type = phase->type(rhs_m)->isa_int(); 1987 if (rhs_m_type->_lo > -1 || rhs_m_type->_hi < -1) { 1988 // Exclude any case where m == -1 is possible. 1989 m = rhs_m; 1990 } 1991 } 1992 1993 if (cmp1->in(2) == m || cmp1->in(1) == m) { 1994 return TypeInt::ONE; 1995 } 1996 } 1997 } 1998 1999 return nullptr; 2000 } 2001 2002 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node, 2003 // based on local information. If the input is constant, do it. 2004 const Type* BoolNode::Value(PhaseGVN* phase) const { 2005 const Type* t = Value_cmpu_and_mask(phase); 2006 if (t != nullptr) { 2007 return t; 2008 } 2009 2010 return _test.cc2logical( phase->type( in(1) ) ); 2011 } 2012 2013 #ifndef PRODUCT 2014 //------------------------------dump_spec-------------------------------------- 2015 // Dump special per-node info 2016 void BoolNode::dump_spec(outputStream *st) const { 2017 st->print("["); 2018 _test.dump_on(st); 2019 st->print("]"); 2020 } 2021 #endif 2022 2023 //----------------------is_counted_loop_exit_test------------------------------ 2024 // Returns true if node is used by a counted loop node. 2025 bool BoolNode::is_counted_loop_exit_test() { 2026 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { 2027 Node* use = fast_out(i); 2028 if (use->is_CountedLoopEnd()) { 2029 return true; 2030 } 2031 } 2032 return false; 2033 } 2034 2035 //============================================================================= 2036 //------------------------------Value------------------------------------------ 2037 const Type* AbsNode::Value(PhaseGVN* phase) const { 2038 const Type* t1 = phase->type(in(1)); 2039 if (t1 == Type::TOP) return Type::TOP; 2040 2041 switch (t1->base()) { 2042 case Type::Int: { 2043 const TypeInt* ti = t1->is_int(); 2044 if (ti->is_con()) { 2045 return TypeInt::make(uabs(ti->get_con())); 2046 } 2047 break; 2048 } 2049 case Type::Long: { 2050 const TypeLong* tl = t1->is_long(); 2051 if (tl->is_con()) { 2052 return TypeLong::make(uabs(tl->get_con())); 2053 } 2054 break; 2055 } 2056 case Type::FloatCon: 2057 return TypeF::make(abs(t1->getf())); 2058 case Type::DoubleCon: 2059 return TypeD::make(abs(t1->getd())); 2060 default: 2061 break; 2062 } 2063 2064 return bottom_type(); 2065 } 2066 2067 //------------------------------Identity---------------------------------------- 2068 Node* AbsNode::Identity(PhaseGVN* phase) { 2069 Node* in1 = in(1); 2070 // No need to do abs for non-negative values 2071 if (phase->type(in1)->higher_equal(TypeInt::POS) || 2072 phase->type(in1)->higher_equal(TypeLong::POS)) { 2073 return in1; 2074 } 2075 // Convert "abs(abs(x))" into "abs(x)" 2076 if (in1->Opcode() == Opcode()) { 2077 return in1; 2078 } 2079 return this; 2080 } 2081 2082 //------------------------------Ideal------------------------------------------ 2083 Node* AbsNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2084 Node* in1 = in(1); 2085 // Convert "abs(0-x)" into "abs(x)" 2086 if (in1->is_Sub() && phase->type(in1->in(1))->is_zero_type()) { 2087 set_req_X(1, in1->in(2), phase); 2088 return this; 2089 } 2090 return nullptr; 2091 } 2092 2093 //============================================================================= 2094 //------------------------------Value------------------------------------------ 2095 // Compute sqrt 2096 const Type* SqrtDNode::Value(PhaseGVN* phase) const { 2097 const Type *t1 = phase->type( in(1) ); 2098 if( t1 == Type::TOP ) return Type::TOP; 2099 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; 2100 double d = t1->getd(); 2101 if( d < 0.0 ) return Type::DOUBLE; 2102 return TypeD::make( sqrt( d ) ); 2103 } 2104 2105 const Type* SqrtFNode::Value(PhaseGVN* phase) const { 2106 const Type *t1 = phase->type( in(1) ); 2107 if( t1 == Type::TOP ) return Type::TOP; 2108 if( t1->base() != Type::FloatCon ) return Type::FLOAT; 2109 float f = t1->getf(); 2110 if( f < 0.0f ) return Type::FLOAT; 2111 return TypeF::make( (float)sqrt( (double)f ) ); 2112 } 2113 2114 const Type* SqrtHFNode::Value(PhaseGVN* phase) const { 2115 const Type* t1 = phase->type(in(1)); 2116 if (t1 == Type::TOP) { return Type::TOP; } 2117 if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2118 float f = t1->getf(); 2119 if (f < 0.0f) return Type::HALF_FLOAT; 2120 return TypeH::make((float)sqrt((double)f)); 2121 } 2122 2123 const Type* ReverseINode::Value(PhaseGVN* phase) const { 2124 const Type *t1 = phase->type( in(1) ); 2125 if (t1 == Type::TOP) { 2126 return Type::TOP; 2127 } 2128 const TypeInt* t1int = t1->isa_int(); 2129 if (t1int && t1int->is_con()) { 2130 jint res = reverse_bits(t1int->get_con()); 2131 return TypeInt::make(res); 2132 } 2133 return bottom_type(); 2134 } 2135 2136 const Type* ReverseLNode::Value(PhaseGVN* phase) const { 2137 const Type *t1 = phase->type( in(1) ); 2138 if (t1 == Type::TOP) { 2139 return Type::TOP; 2140 } 2141 const TypeLong* t1long = t1->isa_long(); 2142 if (t1long && t1long->is_con()) { 2143 jlong res = reverse_bits(t1long->get_con()); 2144 return TypeLong::make(res); 2145 } 2146 return bottom_type(); 2147 } 2148 2149 Node* InvolutionNode::Identity(PhaseGVN* phase) { 2150 // Op ( Op x ) => x 2151 if (in(1)->Opcode() == Opcode()) { 2152 return in(1)->in(1); 2153 } 2154 return this; 2155 }