1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciObjArrayKlass.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/barrierSet.hpp" 28 #include "gc/shared/c2/barrierSetC2.hpp" 29 #include "memory/allocation.inline.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/callnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/cfgnode.hpp" 34 #include "opto/convertnode.hpp" 35 #include "opto/inlinetypenode.hpp" 36 #include "opto/loopnode.hpp" 37 #include "opto/matcher.hpp" 38 #include "opto/movenode.hpp" 39 #include "opto/mulnode.hpp" 40 #include "opto/opaquenode.hpp" 41 #include "opto/opcodes.hpp" 42 #include "opto/phaseX.hpp" 43 #include "opto/subnode.hpp" 44 #include "runtime/arguments.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/reverse_bits.hpp" 47 48 // Portions of code courtesy of Clifford Click 49 50 // Optimization - Graph Style 51 52 #include "math.h" 53 54 //============================================================================= 55 //------------------------------Identity--------------------------------------- 56 // If right input is a constant 0, return the left input. 57 Node* SubNode::Identity(PhaseGVN* phase) { 58 assert(in(1) != this, "Must already have called Value"); 59 assert(in(2) != this, "Must already have called Value"); 60 61 const Type* zero = add_id(); 62 63 // Remove double negation if it is not a floating point number since negation 64 // is not the same as subtraction for floating point numbers 65 // (cf. JLS § 15.15.4). `0-(0-(-0.0))` must be equal to positive 0.0 according to 66 // JLS § 15.8.2, but would result in -0.0 if this folding would be applied. 67 if (phase->type(in(1))->higher_equal(zero) && 68 in(2)->Opcode() == Opcode() && 69 phase->type(in(2)->in(1))->higher_equal(zero) && 70 !phase->type(in(2)->in(2))->is_floatingpoint()) { 71 return in(2)->in(2); 72 } 73 74 // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y 75 if (in(1)->Opcode() == Op_AddI || in(1)->Opcode() == Op_AddL) { 76 if (in(1)->in(2) == in(2)) { 77 return in(1)->in(1); 78 } 79 if (in(1)->in(1) == in(2)) { 80 return in(1)->in(2); 81 } 82 } 83 84 return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this; 85 } 86 87 //------------------------------Value------------------------------------------ 88 // A subtract node differences it's two inputs. 89 const Type* SubNode::Value_common(PhaseValues* phase) const { 90 const Node* in1 = in(1); 91 const Node* in2 = in(2); 92 // Either input is TOP ==> the result is TOP 93 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 94 if( t1 == Type::TOP ) return Type::TOP; 95 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 96 if( t2 == Type::TOP ) return Type::TOP; 97 98 // Not correct for SubFnode and AddFNode (must check for infinity) 99 // Equal? Subtract is zero 100 if (in1->eqv_uncast(in2)) return add_id(); 101 102 // Either input is BOTTOM ==> the result is the local BOTTOM 103 if( t1 == Type::BOTTOM || t2 == Type::BOTTOM ) 104 return bottom_type(); 105 106 return nullptr; 107 } 108 109 const Type* SubNode::Value(PhaseGVN* phase) const { 110 const Type* t = Value_common(phase); 111 if (t != nullptr) { 112 return t; 113 } 114 const Type* t1 = phase->type(in(1)); 115 const Type* t2 = phase->type(in(2)); 116 return sub(t1,t2); // Local flavor of type subtraction 117 118 } 119 120 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) { 121 switch (bt) { 122 case T_INT: 123 return new SubINode(in1, in2); 124 case T_LONG: 125 return new SubLNode(in1, in2); 126 default: 127 fatal("Not implemented for %s", type2name(bt)); 128 } 129 return nullptr; 130 } 131 132 //============================================================================= 133 //------------------------------Helper function-------------------------------- 134 135 static bool is_cloop_increment(Node* inc) { 136 precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL); 137 138 if (!inc->in(1)->is_Phi()) { 139 return false; 140 } 141 const PhiNode* phi = inc->in(1)->as_Phi(); 142 143 if (!phi->region()->is_CountedLoop()) { 144 return false; 145 } 146 147 return inc == phi->region()->as_CountedLoop()->incr(); 148 } 149 150 // Given the expression '(x + C) - v', or 151 // 'v - (x + C)', we examine nodes '+' and 'v': 152 // 153 // 1. Do not convert if '+' is a counted-loop increment, because the '-' is 154 // loop invariant and converting extends the live-range of 'x' to overlap 155 // with the '+', forcing another register to be used in the loop. 156 // 157 // 2. Do not convert if 'v' is a counted-loop induction variable, because 158 // 'x' might be invariant. 159 // 160 static bool ok_to_convert(Node* inc, Node* var) { 161 return !(is_cloop_increment(inc) || var->is_cloop_ind_var()); 162 } 163 164 static bool is_cloop_condition(BoolNode* bol) { 165 for (DUIterator_Fast imax, i = bol->fast_outs(imax); i < imax; i++) { 166 Node* out = bol->fast_out(i); 167 if (out->is_BaseCountedLoopEnd()) { 168 return true; 169 } 170 } 171 return false; 172 } 173 174 //------------------------------Ideal------------------------------------------ 175 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){ 176 Node *in1 = in(1); 177 Node *in2 = in(2); 178 uint op1 = in1->Opcode(); 179 uint op2 = in2->Opcode(); 180 181 #ifdef ASSERT 182 // Check for dead loop 183 if ((in1 == this) || (in2 == this) || 184 ((op1 == Op_AddI || op1 == Op_SubI) && 185 ((in1->in(1) == this) || (in1->in(2) == this) || 186 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 187 assert(false, "dead loop in SubINode::Ideal"); 188 } 189 #endif 190 191 const Type *t2 = phase->type( in2 ); 192 if( t2 == Type::TOP ) return nullptr; 193 // Convert "x-c0" into "x+ -c0". 194 if( t2->base() == Type::Int ){ // Might be bottom or top... 195 const TypeInt *i = t2->is_int(); 196 if( i->is_con() ) 197 return new AddINode(in1, phase->intcon(java_negate(i->get_con()))); 198 } 199 200 // Convert "(x+c0) - y" into (x-y) + c0" 201 // Do not collapse (x+c0)-y if "+" is a loop increment or 202 // if "y" is a loop induction variable. 203 if( op1 == Op_AddI && ok_to_convert(in1, in2) ) { 204 const Type *tadd = phase->type( in1->in(2) ); 205 if( tadd->singleton() && tadd != Type::TOP ) { 206 Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 )); 207 return new AddINode( sub2, in1->in(2) ); 208 } 209 } 210 211 // Convert "x - (y+c0)" into "(x-y) - c0" AND 212 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 213 // Need the same check as in above optimization but reversed. 214 if (op2 == Op_AddI 215 && ok_to_convert(in2, in1) 216 && in2->in(2)->Opcode() == Op_ConI) { 217 jint c0 = phase->type(in2->in(2))->isa_int()->get_con(); 218 Node* in21 = in2->in(1); 219 if (in1->Opcode() == Op_ConI) { 220 // Match c1 221 jint c1 = phase->type(in1)->isa_int()->get_con(); 222 Node* sub2 = phase->intcon(java_subtract(c1, c0)); 223 return new SubINode(sub2, in21); 224 } else { 225 // Match x 226 Node* sub2 = phase->transform(new SubINode(in1, in21)); 227 Node* neg_c0 = phase->intcon(java_negate(c0)); 228 return new AddINode(sub2, neg_c0); 229 } 230 } 231 232 const Type *t1 = phase->type( in1 ); 233 if( t1 == Type::TOP ) return nullptr; 234 235 #ifdef ASSERT 236 // Check for dead loop 237 if ((op2 == Op_AddI || op2 == Op_SubI) && 238 ((in2->in(1) == this) || (in2->in(2) == this) || 239 (in2->in(1) == in2) || (in2->in(2) == in2))) { 240 assert(false, "dead loop in SubINode::Ideal"); 241 } 242 #endif 243 244 // Convert "x - (x+y)" into "-y" 245 if (op2 == Op_AddI && in1 == in2->in(1)) { 246 return new SubINode(phase->intcon(0), in2->in(2)); 247 } 248 // Convert "(x-y) - x" into "-y" 249 if (op1 == Op_SubI && in1->in(1) == in2) { 250 return new SubINode(phase->intcon(0), in1->in(2)); 251 } 252 // Convert "x - (y+x)" into "-y" 253 if (op2 == Op_AddI && in1 == in2->in(2)) { 254 return new SubINode(phase->intcon(0), in2->in(1)); 255 } 256 257 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity(). 258 if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) { 259 return new SubINode(in2->in(2), in2->in(1)); 260 } 261 262 // Convert "0 - (x+con)" into "-con-x" 263 jint con; 264 if( t1 == TypeInt::ZERO && op2 == Op_AddI && 265 (con = in2->in(2)->find_int_con(0)) != 0 ) 266 return new SubINode( phase->intcon(-con), in2->in(1) ); 267 268 // Convert "(X+A) - (X+B)" into "A - B" 269 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) ) 270 return new SubINode( in1->in(2), in2->in(2) ); 271 272 // Convert "(A+X) - (B+X)" into "A - B" 273 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) ) 274 return new SubINode( in1->in(1), in2->in(1) ); 275 276 // Convert "(A+X) - (X+B)" into "A - B" 277 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) ) 278 return new SubINode( in1->in(1), in2->in(2) ); 279 280 // Convert "(X+A) - (B+X)" into "A - B" 281 if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) ) 282 return new SubINode( in1->in(2), in2->in(1) ); 283 284 // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally 285 // nicer to optimize than subtract. 286 if( op2 == Op_SubI && in2->outcnt() == 1) { 287 Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) ); 288 return new SubINode( add1, in2->in(1) ); 289 } 290 291 // Associative 292 if (op1 == Op_MulI && op2 == Op_MulI) { 293 Node* sub_in1 = nullptr; 294 Node* sub_in2 = nullptr; 295 Node* mul_in = nullptr; 296 297 if (in1->in(1) == in2->in(1)) { 298 // Convert "a*b-a*c into a*(b-c) 299 sub_in1 = in1->in(2); 300 sub_in2 = in2->in(2); 301 mul_in = in1->in(1); 302 } else if (in1->in(2) == in2->in(1)) { 303 // Convert a*b-b*c into b*(a-c) 304 sub_in1 = in1->in(1); 305 sub_in2 = in2->in(2); 306 mul_in = in1->in(2); 307 } else if (in1->in(2) == in2->in(2)) { 308 // Convert a*c-b*c into (a-b)*c 309 sub_in1 = in1->in(1); 310 sub_in2 = in2->in(1); 311 mul_in = in1->in(2); 312 } else if (in1->in(1) == in2->in(2)) { 313 // Convert a*b-c*a into a*(b-c) 314 sub_in1 = in1->in(2); 315 sub_in2 = in2->in(1); 316 mul_in = in1->in(1); 317 } 318 319 if (mul_in != nullptr) { 320 Node* sub = phase->transform(new SubINode(sub_in1, sub_in2)); 321 return new MulINode(mul_in, sub); 322 } 323 } 324 325 // Convert "0-(A>>31)" into "(A>>>31)" 326 if ( op2 == Op_RShiftI ) { 327 Node *in21 = in2->in(1); 328 Node *in22 = in2->in(2); 329 const TypeInt *zero = phase->type(in1)->isa_int(); 330 const TypeInt *t21 = phase->type(in21)->isa_int(); 331 const TypeInt *t22 = phase->type(in22)->isa_int(); 332 if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) { 333 return new URShiftINode(in21, in22); 334 } 335 } 336 337 return nullptr; 338 } 339 340 //------------------------------sub-------------------------------------------- 341 // A subtract node differences it's two inputs. 342 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const { 343 const TypeInt *r0 = t1->is_int(); // Handy access 344 const TypeInt *r1 = t2->is_int(); 345 int32_t lo = java_subtract(r0->_lo, r1->_hi); 346 int32_t hi = java_subtract(r0->_hi, r1->_lo); 347 348 // We next check for 32-bit overflow. 349 // If that happens, we just assume all integers are possible. 350 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 351 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 352 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 353 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 354 return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 355 else // Overflow; assume all integers 356 return TypeInt::INT; 357 } 358 359 //============================================================================= 360 //------------------------------Ideal------------------------------------------ 361 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) { 362 Node *in1 = in(1); 363 Node *in2 = in(2); 364 uint op1 = in1->Opcode(); 365 uint op2 = in2->Opcode(); 366 367 #ifdef ASSERT 368 // Check for dead loop 369 if ((in1 == this) || (in2 == this) || 370 ((op1 == Op_AddL || op1 == Op_SubL) && 371 ((in1->in(1) == this) || (in1->in(2) == this) || 372 (in1->in(1) == in1) || (in1->in(2) == in1)))) { 373 assert(false, "dead loop in SubLNode::Ideal"); 374 } 375 #endif 376 377 if( phase->type( in2 ) == Type::TOP ) return nullptr; 378 const TypeLong *i = phase->type( in2 )->isa_long(); 379 // Convert "x-c0" into "x+ -c0". 380 if( i && // Might be bottom or top... 381 i->is_con() ) 382 return new AddLNode(in1, phase->longcon(java_negate(i->get_con()))); 383 384 // Convert "(x+c0) - y" into (x-y) + c0" 385 // Do not collapse (x+c0)-y if "+" is a loop increment or 386 // if "y" is a loop induction variable. 387 if( op1 == Op_AddL && ok_to_convert(in1, in2) ) { 388 Node *in11 = in1->in(1); 389 const Type *tadd = phase->type( in1->in(2) ); 390 if( tadd->singleton() && tadd != Type::TOP ) { 391 Node *sub2 = phase->transform( new SubLNode( in11, in2 )); 392 return new AddLNode( sub2, in1->in(2) ); 393 } 394 } 395 396 // Convert "x - (y+c0)" into "(x-y) - c0" AND 397 // Convert "c1 - (y+c0)" into "(c1-c0) - y" 398 // Need the same check as in above optimization but reversed. 399 if (op2 == Op_AddL 400 && ok_to_convert(in2, in1) 401 && in2->in(2)->Opcode() == Op_ConL) { 402 jlong c0 = phase->type(in2->in(2))->isa_long()->get_con(); 403 Node* in21 = in2->in(1); 404 if (in1->Opcode() == Op_ConL) { 405 // Match c1 406 jlong c1 = phase->type(in1)->isa_long()->get_con(); 407 Node* sub2 = phase->longcon(java_subtract(c1, c0)); 408 return new SubLNode(sub2, in21); 409 } else { 410 Node* sub2 = phase->transform(new SubLNode(in1, in21)); 411 Node* neg_c0 = phase->longcon(java_negate(c0)); 412 return new AddLNode(sub2, neg_c0); 413 } 414 } 415 416 const Type *t1 = phase->type( in1 ); 417 if( t1 == Type::TOP ) return nullptr; 418 419 #ifdef ASSERT 420 // Check for dead loop 421 if ((op2 == Op_AddL || op2 == Op_SubL) && 422 ((in2->in(1) == this) || (in2->in(2) == this) || 423 (in2->in(1) == in2) || (in2->in(2) == in2))) { 424 assert(false, "dead loop in SubLNode::Ideal"); 425 } 426 #endif 427 428 // Convert "x - (x+y)" into "-y" 429 if (op2 == Op_AddL && in1 == in2->in(1)) { 430 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2)); 431 } 432 // Convert "(x-y) - x" into "-y" 433 if (op1 == Op_SubL && in1->in(1) == in2) { 434 return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(2)); 435 } 436 // Convert "x - (y+x)" into "-y" 437 if (op2 == Op_AddL && in1 == in2->in(2)) { 438 return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1)); 439 } 440 441 // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity. 442 if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) { 443 return new SubLNode(in2->in(2), in2->in(1)); 444 } 445 446 // Convert "(X+A) - (X+B)" into "A - B" 447 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) ) 448 return new SubLNode( in1->in(2), in2->in(2) ); 449 450 // Convert "(A+X) - (B+X)" into "A - B" 451 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) ) 452 return new SubLNode( in1->in(1), in2->in(1) ); 453 454 // Convert "(A+X) - (X+B)" into "A - B" 455 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) ) 456 return new SubLNode( in1->in(1), in2->in(2) ); 457 458 // Convert "(X+A) - (B+X)" into "A - B" 459 if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) ) 460 return new SubLNode( in1->in(2), in2->in(1) ); 461 462 // Convert "A-(B-C)" into (A+C)-B" 463 if( op2 == Op_SubL && in2->outcnt() == 1) { 464 Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) ); 465 return new SubLNode( add1, in2->in(1) ); 466 } 467 468 // Associative 469 if (op1 == Op_MulL && op2 == Op_MulL) { 470 Node* sub_in1 = nullptr; 471 Node* sub_in2 = nullptr; 472 Node* mul_in = nullptr; 473 474 if (in1->in(1) == in2->in(1)) { 475 // Convert "a*b-a*c into a*(b+c) 476 sub_in1 = in1->in(2); 477 sub_in2 = in2->in(2); 478 mul_in = in1->in(1); 479 } else if (in1->in(2) == in2->in(1)) { 480 // Convert a*b-b*c into b*(a-c) 481 sub_in1 = in1->in(1); 482 sub_in2 = in2->in(2); 483 mul_in = in1->in(2); 484 } else if (in1->in(2) == in2->in(2)) { 485 // Convert a*c-b*c into (a-b)*c 486 sub_in1 = in1->in(1); 487 sub_in2 = in2->in(1); 488 mul_in = in1->in(2); 489 } else if (in1->in(1) == in2->in(2)) { 490 // Convert a*b-c*a into a*(b-c) 491 sub_in1 = in1->in(2); 492 sub_in2 = in2->in(1); 493 mul_in = in1->in(1); 494 } 495 496 if (mul_in != nullptr) { 497 Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2)); 498 return new MulLNode(mul_in, sub); 499 } 500 } 501 502 // Convert "0L-(A>>63)" into "(A>>>63)" 503 if ( op2 == Op_RShiftL ) { 504 Node *in21 = in2->in(1); 505 Node *in22 = in2->in(2); 506 const TypeLong *zero = phase->type(in1)->isa_long(); 507 const TypeLong *t21 = phase->type(in21)->isa_long(); 508 const TypeInt *t22 = phase->type(in22)->isa_int(); 509 if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) { 510 return new URShiftLNode(in21, in22); 511 } 512 } 513 514 return nullptr; 515 } 516 517 //------------------------------sub-------------------------------------------- 518 // A subtract node differences it's two inputs. 519 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const { 520 const TypeLong *r0 = t1->is_long(); // Handy access 521 const TypeLong *r1 = t2->is_long(); 522 jlong lo = java_subtract(r0->_lo, r1->_hi); 523 jlong hi = java_subtract(r0->_hi, r1->_lo); 524 525 // We next check for 32-bit overflow. 526 // If that happens, we just assume all integers are possible. 527 if( (((r0->_lo ^ r1->_hi) >= 0) || // lo ends have same signs OR 528 ((r0->_lo ^ lo) >= 0)) && // lo results have same signs AND 529 (((r0->_hi ^ r1->_lo) >= 0) || // hi ends have same signs OR 530 ((r0->_hi ^ hi) >= 0)) ) // hi results have same signs 531 return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen)); 532 else // Overflow; assume all integers 533 return TypeLong::LONG; 534 } 535 536 //============================================================================= 537 //------------------------------Value------------------------------------------ 538 // A subtract node differences its two inputs. 539 const Type* SubFPNode::Value(PhaseGVN* phase) const { 540 const Node* in1 = in(1); 541 const Node* in2 = in(2); 542 // Either input is TOP ==> the result is TOP 543 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 544 if( t1 == Type::TOP ) return Type::TOP; 545 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 546 if( t2 == Type::TOP ) return Type::TOP; 547 548 // if both operands are infinity of same sign, the result is NaN; do 549 // not replace with zero 550 if (t1->is_finite() && t2->is_finite() && in1 == in2) { 551 return add_id(); 552 } 553 554 // Either input is BOTTOM ==> the result is the local BOTTOM 555 const Type *bot = bottom_type(); 556 if( (t1 == bot) || (t2 == bot) || 557 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 558 return bot; 559 560 return sub(t1,t2); // Local flavor of type subtraction 561 } 562 563 564 //============================================================================= 565 //------------------------------sub-------------------------------------------- 566 // A subtract node differences its two inputs. 567 const Type* SubHFNode::sub(const Type* t1, const Type* t2) const { 568 // Half precision floating point subtraction follows the rules of IEEE 754 569 // applicable to other floating point types. 570 if (t1->isa_half_float_constant() != nullptr && 571 t2->isa_half_float_constant() != nullptr) { 572 return TypeH::make(t1->getf() - t2->getf()); 573 } else { 574 return Type::HALF_FLOAT; 575 } 576 } 577 578 //------------------------------Ideal------------------------------------------ 579 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) { 580 const Type *t2 = phase->type( in(2) ); 581 // Convert "x-c0" into "x+ -c0". 582 if( t2->base() == Type::FloatCon ) { // Might be bottom or top... 583 // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) ); 584 } 585 586 // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes 587 // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0. 588 //if( phase->type(in(1)) == TypeF::ZERO ) 589 //return new (phase->C, 2) NegFNode(in(2)); 590 591 return nullptr; 592 } 593 594 //------------------------------sub-------------------------------------------- 595 // A subtract node differences its two inputs. 596 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const { 597 // no folding if one of operands is infinity or NaN, do not do constant folding 598 if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) { 599 return TypeF::make( t1->getf() - t2->getf() ); 600 } 601 else if( g_isnan(t1->getf()) ) { 602 return t1; 603 } 604 else if( g_isnan(t2->getf()) ) { 605 return t2; 606 } 607 else { 608 return Type::FLOAT; 609 } 610 } 611 612 //============================================================================= 613 //------------------------------Ideal------------------------------------------ 614 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 615 const Type *t2 = phase->type( in(2) ); 616 // Convert "x-c0" into "x+ -c0". 617 if( t2->base() == Type::DoubleCon ) { // Might be bottom or top... 618 // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) ); 619 } 620 621 // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes 622 // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0. 623 //if( phase->type(in(1)) == TypeD::ZERO ) 624 //return new (phase->C, 2) NegDNode(in(2)); 625 626 return nullptr; 627 } 628 629 //------------------------------sub-------------------------------------------- 630 // A subtract node differences its two inputs. 631 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const { 632 // no folding if one of operands is infinity or NaN, do not do constant folding 633 if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) { 634 return TypeD::make( t1->getd() - t2->getd() ); 635 } 636 else if( g_isnan(t1->getd()) ) { 637 return t1; 638 } 639 else if( g_isnan(t2->getd()) ) { 640 return t2; 641 } 642 else { 643 return Type::DOUBLE; 644 } 645 } 646 647 //============================================================================= 648 //------------------------------Idealize--------------------------------------- 649 // Unlike SubNodes, compare must still flatten return value to the 650 // range -1, 0, 1. 651 // And optimizations like those for (X + Y) - X fail if overflow happens. 652 Node* CmpNode::Identity(PhaseGVN* phase) { 653 return this; 654 } 655 656 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) { 657 switch (bt) { 658 case T_INT: 659 if (unsigned_comp) { 660 return new CmpUNode(in1, in2); 661 } 662 return new CmpINode(in1, in2); 663 case T_LONG: 664 if (unsigned_comp) { 665 return new CmpULNode(in1, in2); 666 } 667 return new CmpLNode(in1, in2); 668 case T_OBJECT: 669 case T_ARRAY: 670 case T_ADDRESS: 671 case T_METADATA: 672 return new CmpPNode(in1, in2); 673 case T_NARROWOOP: 674 case T_NARROWKLASS: 675 return new CmpNNode(in1, in2); 676 default: 677 fatal("Not implemented for %s", type2name(bt)); 678 } 679 return nullptr; 680 } 681 682 //============================================================================= 683 //------------------------------cmp-------------------------------------------- 684 // Simplify a CmpI (compare 2 integers) node, based on local information. 685 // If both inputs are constants, compare them. 686 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const { 687 const TypeInt *r0 = t1->is_int(); // Handy access 688 const TypeInt *r1 = t2->is_int(); 689 690 if( r0->_hi < r1->_lo ) // Range is always low? 691 return TypeInt::CC_LT; 692 else if( r0->_lo > r1->_hi ) // Range is always high? 693 return TypeInt::CC_GT; 694 695 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 696 assert(r0->get_con() == r1->get_con(), "must be equal"); 697 return TypeInt::CC_EQ; // Equal results. 698 } else if( r0->_hi == r1->_lo ) // Range is never high? 699 return TypeInt::CC_LE; 700 else if( r0->_lo == r1->_hi ) // Range is never low? 701 return TypeInt::CC_GE; 702 703 const Type* joined = r0->join(r1); 704 if (joined == Type::TOP) { 705 return TypeInt::CC_NE; 706 } 707 return TypeInt::CC; // else use worst case results 708 } 709 710 const Type* CmpINode::Value(PhaseGVN* phase) const { 711 Node* in1 = in(1); 712 Node* in2 = in(2); 713 // If this test is the zero trip guard for a main or post loop, check whether, with the opaque node removed, the test 714 // would constant fold so the loop is never entered. If so return the type of the test without the opaque node removed: 715 // make the loop unreachable. 716 // The reason for this is that the iv phi captures the bounds of the loop and if the loop becomes unreachable, it can 717 // become top. In that case, the loop must be removed. 718 // This is safe because: 719 // - as optimizations proceed, the range of iterations executed by the main loop narrows. If no iterations remain, then 720 // we're done with optimizations for that loop. 721 // - the post loop is initially not reachable but as long as there's a main loop, the zero trip guard for the post 722 // loop takes a phi that merges the pre and main loop's iv and can't constant fold the zero trip guard. Once, the main 723 // loop is removed, there's no need to preserve the zero trip guard for the post loop anymore. 724 if (in1 != nullptr && in2 != nullptr) { 725 uint input = 0; 726 Node* cmp = nullptr; 727 BoolTest::mask test; 728 if (in1->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in1) != Type::TOP) { 729 cmp = new CmpINode(in1->in(1), in2); 730 test = ((OpaqueZeroTripGuardNode*)in1)->_loop_entered_mask; 731 } 732 if (in2->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in2) != Type::TOP) { 733 assert(cmp == nullptr, "A cmp with 2 OpaqueZeroTripGuard inputs"); 734 cmp = new CmpINode(in1, in2->in(1)); 735 test = ((OpaqueZeroTripGuardNode*)in2)->_loop_entered_mask; 736 } 737 if (cmp != nullptr) { 738 const Type* cmp_t = cmp->Value(phase); 739 const Type* t = BoolTest(test).cc2logical(cmp_t); 740 cmp->destruct(phase); 741 if (t == TypeInt::ZERO) { 742 return cmp_t; 743 } 744 } 745 } 746 747 return SubNode::Value(phase); 748 } 749 750 751 // Simplify a CmpU (compare 2 integers) node, based on local information. 752 // If both inputs are constants, compare them. 753 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const { 754 assert(!t1->isa_ptr(), "obsolete usage of CmpU"); 755 756 // comparing two unsigned ints 757 const TypeInt *r0 = t1->is_int(); // Handy access 758 const TypeInt *r1 = t2->is_int(); 759 760 // Current installed version 761 // Compare ranges for non-overlap 762 juint lo0 = r0->_lo; 763 juint hi0 = r0->_hi; 764 juint lo1 = r1->_lo; 765 juint hi1 = r1->_hi; 766 767 // If either one has both negative and positive values, 768 // it therefore contains both 0 and -1, and since [0..-1] is the 769 // full unsigned range, the type must act as an unsigned bottom. 770 bool bot0 = ((jint)(lo0 ^ hi0) < 0); 771 bool bot1 = ((jint)(lo1 ^ hi1) < 0); 772 773 if (bot0 || bot1) { 774 // All unsigned values are LE -1 and GE 0. 775 if (lo0 == 0 && hi0 == 0) { 776 return TypeInt::CC_LE; // 0 <= bot 777 } else if ((jint)lo0 == -1 && (jint)hi0 == -1) { 778 return TypeInt::CC_GE; // -1 >= bot 779 } else if (lo1 == 0 && hi1 == 0) { 780 return TypeInt::CC_GE; // bot >= 0 781 } else if ((jint)lo1 == -1 && (jint)hi1 == -1) { 782 return TypeInt::CC_LE; // bot <= -1 783 } 784 } else { 785 // We can use ranges of the form [lo..hi] if signs are the same. 786 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 787 // results are reversed, '-' > '+' for unsigned compare 788 if (hi0 < lo1) { 789 return TypeInt::CC_LT; // smaller 790 } else if (lo0 > hi1) { 791 return TypeInt::CC_GT; // greater 792 } else if (hi0 == lo1 && lo0 == hi1) { 793 return TypeInt::CC_EQ; // Equal results 794 } else if (lo0 >= hi1) { 795 return TypeInt::CC_GE; 796 } else if (hi0 <= lo1) { 797 // Check for special case in Hashtable::get. (See below.) 798 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 799 return TypeInt::CC_LT; 800 return TypeInt::CC_LE; 801 } 802 } 803 // Check for special case in Hashtable::get - the hash index is 804 // mod'ed to the table size so the following range check is useless. 805 // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have 806 // to be positive. 807 // (This is a gross hack, since the sub method never 808 // looks at the structure of the node in any other case.) 809 if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check()) 810 return TypeInt::CC_LT; 811 812 const Type* joined = r0->join(r1); 813 if (joined == Type::TOP) { 814 return TypeInt::CC_NE; 815 } 816 817 return TypeInt::CC; // else use worst case results 818 } 819 820 const Type* CmpUNode::Value(PhaseGVN* phase) const { 821 const Type* t = SubNode::Value_common(phase); 822 if (t != nullptr) { 823 return t; 824 } 825 const Node* in1 = in(1); 826 const Node* in2 = in(2); 827 const Type* t1 = phase->type(in1); 828 const Type* t2 = phase->type(in2); 829 assert(t1->isa_int(), "CmpU has only Int type inputs"); 830 if (t2 == TypeInt::INT) { // Compare to bottom? 831 return bottom_type(); 832 } 833 834 const Type* t_sub = sub(t1, t2); // compare based on immediate inputs 835 836 uint in1_op = in1->Opcode(); 837 if (in1_op == Op_AddI || in1_op == Op_SubI) { 838 // The problem rise when result of AddI(SubI) may overflow 839 // signed integer value. Let say the input type is 840 // [256, maxint] then +128 will create 2 ranges due to 841 // overflow: [minint, minint+127] and [384, maxint]. 842 // But C2 type system keep only 1 type range and as result 843 // it use general [minint, maxint] for this case which we 844 // can't optimize. 845 // 846 // Make 2 separate type ranges based on types of AddI(SubI) inputs 847 // and compare results of their compare. If results are the same 848 // CmpU node can be optimized. 849 const Node* in11 = in1->in(1); 850 const Node* in12 = in1->in(2); 851 const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11); 852 const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12); 853 // Skip cases when input types are top or bottom. 854 if ((t11 != Type::TOP) && (t11 != TypeInt::INT) && 855 (t12 != Type::TOP) && (t12 != TypeInt::INT)) { 856 const TypeInt *r0 = t11->is_int(); 857 const TypeInt *r1 = t12->is_int(); 858 jlong lo_r0 = r0->_lo; 859 jlong hi_r0 = r0->_hi; 860 jlong lo_r1 = r1->_lo; 861 jlong hi_r1 = r1->_hi; 862 if (in1_op == Op_SubI) { 863 jlong tmp = hi_r1; 864 hi_r1 = -lo_r1; 865 lo_r1 = -tmp; 866 // Note, for substructing [minint,x] type range 867 // long arithmetic provides correct overflow answer. 868 // The confusion come from the fact that in 32-bit 869 // -minint == minint but in 64-bit -minint == maxint+1. 870 } 871 jlong lo_long = lo_r0 + lo_r1; 872 jlong hi_long = hi_r0 + hi_r1; 873 int lo_tr1 = min_jint; 874 int hi_tr1 = (int)hi_long; 875 int lo_tr2 = (int)lo_long; 876 int hi_tr2 = max_jint; 877 bool underflow = lo_long != (jlong)lo_tr2; 878 bool overflow = hi_long != (jlong)hi_tr1; 879 // Use sub(t1, t2) when there is no overflow (one type range) 880 // or when both overflow and underflow (too complex). 881 if ((underflow != overflow) && (hi_tr1 < lo_tr2)) { 882 // Overflow only on one boundary, compare 2 separate type ranges. 883 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 884 const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w); 885 const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w); 886 const TypeInt* cmp1 = sub(tr1, t2)->is_int(); 887 const TypeInt* cmp2 = sub(tr2, t2)->is_int(); 888 // Compute union, so that cmp handles all possible results from the two cases 889 const Type* t_cmp = cmp1->meet(cmp2); 890 // Pick narrowest type, based on overflow computation and on immediate inputs 891 return t_sub->filter(t_cmp); 892 } 893 } 894 } 895 896 return t_sub; 897 } 898 899 bool CmpUNode::is_index_range_check() const { 900 // Check for the "(X ModI Y) CmpU Y" shape 901 return (in(1)->Opcode() == Op_ModI && 902 in(1)->in(2)->eqv_uncast(in(2))); 903 } 904 905 //------------------------------Idealize--------------------------------------- 906 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) { 907 if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) { 908 switch (in(1)->Opcode()) { 909 case Op_CmpU3: // Collapse a CmpU3/CmpI into a CmpU 910 return new CmpUNode(in(1)->in(1),in(1)->in(2)); 911 case Op_CmpL3: // Collapse a CmpL3/CmpI into a CmpL 912 return new CmpLNode(in(1)->in(1),in(1)->in(2)); 913 case Op_CmpUL3: // Collapse a CmpUL3/CmpI into a CmpUL 914 return new CmpULNode(in(1)->in(1),in(1)->in(2)); 915 case Op_CmpF3: // Collapse a CmpF3/CmpI into a CmpF 916 return new CmpFNode(in(1)->in(1),in(1)->in(2)); 917 case Op_CmpD3: // Collapse a CmpD3/CmpI into a CmpD 918 return new CmpDNode(in(1)->in(1),in(1)->in(2)); 919 //case Op_SubI: 920 // If (x - y) cannot overflow, then ((x - y) <?> 0) 921 // can be turned into (x <?> y). 922 // This is handled (with more general cases) by Ideal_sub_algebra. 923 } 924 } 925 return nullptr; // No change 926 } 927 928 //------------------------------Ideal------------------------------------------ 929 Node* CmpLNode::Ideal(PhaseGVN* phase, bool can_reshape) { 930 // Optimize expressions like 931 // CmpL(OrL(CastP2X(..), CastP2X(..)), 0L) 932 // that are used by acmp to implement a "both operands are null" check. 933 // See also the corresponding code in CmpPNode::Ideal. 934 if (can_reshape && in(1)->Opcode() == Op_OrL && 935 in(2)->bottom_type()->is_zero_type()) { 936 for (int i = 1; i <= 2; ++i) { 937 Node* orIn = in(1)->in(i); 938 if (orIn->Opcode() == Op_CastP2X) { 939 Node* castIn = orIn->in(1); 940 if (castIn->is_InlineType()) { 941 // Replace the CastP2X by the null marker 942 InlineTypeNode* vt = castIn->as_InlineType(); 943 Node* nm = phase->transform(new ConvI2LNode(vt->get_null_marker())); 944 phase->is_IterGVN()->replace_input_of(in(1), i, nm); 945 return this; 946 } else if (!phase->type(castIn)->maybe_null()) { 947 // Never null. Replace the CastP2X by constant 1L. 948 phase->is_IterGVN()->replace_input_of(in(1), i, phase->longcon(1)); 949 return this; 950 } 951 } 952 } 953 } 954 const TypeLong *t2 = phase->type(in(2))->isa_long(); 955 if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) { 956 const jlong con = t2->get_con(); 957 if (con >= min_jint && con <= max_jint) { 958 return new CmpINode(in(1)->in(1), phase->intcon((jint)con)); 959 } 960 } 961 return nullptr; 962 } 963 964 //============================================================================= 965 // Simplify a CmpL (compare 2 longs ) node, based on local information. 966 // If both inputs are constants, compare them. 967 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const { 968 const TypeLong *r0 = t1->is_long(); // Handy access 969 const TypeLong *r1 = t2->is_long(); 970 971 if( r0->_hi < r1->_lo ) // Range is always low? 972 return TypeInt::CC_LT; 973 else if( r0->_lo > r1->_hi ) // Range is always high? 974 return TypeInt::CC_GT; 975 976 else if( r0->is_con() && r1->is_con() ) { // comparing constants? 977 assert(r0->get_con() == r1->get_con(), "must be equal"); 978 return TypeInt::CC_EQ; // Equal results. 979 } else if( r0->_hi == r1->_lo ) // Range is never high? 980 return TypeInt::CC_LE; 981 else if( r0->_lo == r1->_hi ) // Range is never low? 982 return TypeInt::CC_GE; 983 984 const Type* joined = r0->join(r1); 985 if (joined == Type::TOP) { 986 return TypeInt::CC_NE; 987 } 988 989 return TypeInt::CC; // else use worst case results 990 } 991 992 993 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information. 994 // If both inputs are constants, compare them. 995 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const { 996 assert(!t1->isa_ptr(), "obsolete usage of CmpUL"); 997 998 // comparing two unsigned longs 999 const TypeLong* r0 = t1->is_long(); // Handy access 1000 const TypeLong* r1 = t2->is_long(); 1001 1002 // Current installed version 1003 // Compare ranges for non-overlap 1004 julong lo0 = r0->_lo; 1005 julong hi0 = r0->_hi; 1006 julong lo1 = r1->_lo; 1007 julong hi1 = r1->_hi; 1008 1009 // If either one has both negative and positive values, 1010 // it therefore contains both 0 and -1, and since [0..-1] is the 1011 // full unsigned range, the type must act as an unsigned bottom. 1012 bool bot0 = ((jlong)(lo0 ^ hi0) < 0); 1013 bool bot1 = ((jlong)(lo1 ^ hi1) < 0); 1014 1015 if (bot0 || bot1) { 1016 // All unsigned values are LE -1 and GE 0. 1017 if (lo0 == 0 && hi0 == 0) { 1018 return TypeInt::CC_LE; // 0 <= bot 1019 } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) { 1020 return TypeInt::CC_GE; // -1 >= bot 1021 } else if (lo1 == 0 && hi1 == 0) { 1022 return TypeInt::CC_GE; // bot >= 0 1023 } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) { 1024 return TypeInt::CC_LE; // bot <= -1 1025 } 1026 } else { 1027 // We can use ranges of the form [lo..hi] if signs are the same. 1028 assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid"); 1029 // results are reversed, '-' > '+' for unsigned compare 1030 if (hi0 < lo1) { 1031 return TypeInt::CC_LT; // smaller 1032 } else if (lo0 > hi1) { 1033 return TypeInt::CC_GT; // greater 1034 } else if (hi0 == lo1 && lo0 == hi1) { 1035 return TypeInt::CC_EQ; // Equal results 1036 } else if (lo0 >= hi1) { 1037 return TypeInt::CC_GE; 1038 } else if (hi0 <= lo1) { 1039 return TypeInt::CC_LE; 1040 } 1041 } 1042 1043 const Type* joined = r0->join(r1); 1044 if (joined == Type::TOP) { 1045 return TypeInt::CC_NE; 1046 } 1047 1048 return TypeInt::CC; // else use worst case results 1049 } 1050 1051 //============================================================================= 1052 //------------------------------sub-------------------------------------------- 1053 // Simplify an CmpP (compare 2 pointers) node, based on local information. 1054 // If both inputs are constants, compare them. 1055 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const { 1056 const TypePtr *r0 = t1->is_ptr(); // Handy access 1057 const TypePtr *r1 = t2->is_ptr(); 1058 1059 // Undefined inputs makes for an undefined result 1060 if( TypePtr::above_centerline(r0->_ptr) || 1061 TypePtr::above_centerline(r1->_ptr) ) 1062 return Type::TOP; 1063 1064 if (r0 == r1 && r0->singleton()) { 1065 // Equal pointer constants (klasses, nulls, etc.) 1066 return TypeInt::CC_EQ; 1067 } 1068 1069 // See if it is 2 unrelated classes. 1070 const TypeOopPtr* p0 = r0->isa_oopptr(); 1071 const TypeOopPtr* p1 = r1->isa_oopptr(); 1072 const TypeKlassPtr* k0 = r0->isa_klassptr(); 1073 const TypeKlassPtr* k1 = r1->isa_klassptr(); 1074 if ((p0 && p1) || (k0 && k1)) { 1075 if (p0 && p1) { 1076 Node* in1 = in(1)->uncast(); 1077 Node* in2 = in(2)->uncast(); 1078 AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1); 1079 AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2); 1080 if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, nullptr)) { 1081 return TypeInt::CC_GT; // different pointers 1082 } 1083 } 1084 bool xklass0 = p0 ? p0->klass_is_exact() : k0->klass_is_exact(); 1085 bool xklass1 = p1 ? p1->klass_is_exact() : k1->klass_is_exact(); 1086 bool unrelated_classes = false; 1087 1088 if ((p0 && p0->is_same_java_type_as(p1)) || 1089 (k0 && k0->is_same_java_type_as(k1))) { 1090 } else if ((p0 && !p1->maybe_java_subtype_of(p0) && !p0->maybe_java_subtype_of(p1)) || 1091 (k0 && !k1->maybe_java_subtype_of(k0) && !k0->maybe_java_subtype_of(k1))) { 1092 unrelated_classes = true; 1093 } else if ((p0 && !p1->maybe_java_subtype_of(p0)) || 1094 (k0 && !k1->maybe_java_subtype_of(k0))) { 1095 unrelated_classes = xklass1; 1096 } else if ((p0 && !p0->maybe_java_subtype_of(p1)) || 1097 (k0 && !k0->maybe_java_subtype_of(k1))) { 1098 unrelated_classes = xklass0; 1099 } 1100 if (!unrelated_classes) { 1101 // Handle inline type arrays 1102 if ((r0->is_flat_in_array() && r1->is_not_flat_in_array()) || 1103 (r1->is_flat_in_array() && r0->is_not_flat_in_array())) { 1104 // One type is in flat arrays but the other type is not. Must be unrelated. 1105 unrelated_classes = true; 1106 } else if ((r0->is_not_flat() && r1->is_flat()) || 1107 (r1->is_not_flat() && r0->is_flat())) { 1108 // One type is a non-flat array and the other type is a flat array. Must be unrelated. 1109 unrelated_classes = true; 1110 } else if ((r0->is_not_null_free() && r1->is_null_free()) || 1111 (r1->is_not_null_free() && r0->is_null_free())) { 1112 // One type is a nullable array and the other type is a null-free array. Must be unrelated. 1113 unrelated_classes = true; 1114 } 1115 } 1116 if (unrelated_classes) { 1117 // The oops classes are known to be unrelated. If the joined PTRs of 1118 // two oops is not Null and not Bottom, then we are sure that one 1119 // of the two oops is non-null, and the comparison will always fail. 1120 TypePtr::PTR jp = r0->join_ptr(r1->_ptr); 1121 if (jp != TypePtr::Null && jp != TypePtr::BotPTR) { 1122 return TypeInt::CC_GT; 1123 } 1124 } 1125 } 1126 1127 // Known constants can be compared exactly 1128 // Null can be distinguished from any NotNull pointers 1129 // Unknown inputs makes an unknown result 1130 if( r0->singleton() ) { 1131 intptr_t bits0 = r0->get_con(); 1132 if( r1->singleton() ) 1133 return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT; 1134 return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1135 } else if( r1->singleton() ) { 1136 intptr_t bits1 = r1->get_con(); 1137 return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC; 1138 } else 1139 return TypeInt::CC; 1140 } 1141 1142 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n, bool& might_be_an_array) { 1143 // Return the klass node for (indirect load from OopHandle) 1144 // LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror)))) 1145 // or null if not matching. 1146 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1147 n = bs->step_over_gc_barrier(n); 1148 1149 if (n->Opcode() != Op_LoadP) return nullptr; 1150 1151 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1152 if (!tp || tp->instance_klass() != phase->C->env()->Class_klass()) return nullptr; 1153 1154 Node* adr = n->in(MemNode::Address); 1155 // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier. 1156 if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return nullptr; 1157 adr = adr->in(MemNode::Address); 1158 1159 intptr_t off = 0; 1160 Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off); 1161 if (k == nullptr) return nullptr; 1162 const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr(); 1163 if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return nullptr; 1164 might_be_an_array |= tkp->isa_aryklassptr() || tkp->is_instklassptr()->might_be_an_array(); 1165 1166 // We've found the klass node of a Java mirror load. 1167 return k; 1168 } 1169 1170 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n, bool& might_be_an_array) { 1171 // for ConP(Foo.class) return ConP(Foo.klass) 1172 // otherwise return null 1173 if (!n->is_Con()) return nullptr; 1174 1175 const TypeInstPtr* tp = phase->type(n)->isa_instptr(); 1176 if (!tp) return nullptr; 1177 1178 ciType* mirror_type = tp->java_mirror_type(); 1179 // TypeInstPtr::java_mirror_type() returns non-null for compile- 1180 // time Class constants only. 1181 if (!mirror_type) return nullptr; 1182 1183 // x.getClass() == int.class can never be true (for all primitive types) 1184 // Return a ConP(null) node for this case. 1185 if (mirror_type->is_classless()) { 1186 return phase->makecon(TypePtr::NULL_PTR); 1187 } 1188 1189 // return the ConP(Foo.klass) 1190 ciKlass* mirror_klass = mirror_type->as_klass(); 1191 1192 if (mirror_klass->is_array_klass() && !mirror_klass->is_type_array_klass()) { 1193 if (!mirror_klass->can_be_inline_array_klass()) { 1194 // Special case for non-value arrays: They only have one (default) refined class, use it 1195 ciArrayKlass* refined_mirror_klass = ciObjArrayKlass::make(mirror_klass->as_array_klass()->element_klass(), true); 1196 return phase->makecon(TypeAryKlassPtr::make(refined_mirror_klass, Type::trust_interfaces)); 1197 } 1198 might_be_an_array |= true; 1199 } 1200 1201 return phase->makecon(TypeKlassPtr::make(mirror_klass, Type::trust_interfaces)); 1202 } 1203 1204 //------------------------------Ideal------------------------------------------ 1205 // Normalize comparisons between Java mirror loads to compare the klass instead. 1206 // 1207 // Also check for the case of comparing an unknown klass loaded from the primary 1208 // super-type array vs a known klass with no subtypes. This amounts to 1209 // checking to see an unknown klass subtypes a known klass with no subtypes; 1210 // this only happens on an exact match. We can shorten this test by 1 load. 1211 Node* CmpPNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1212 // TODO 8284443 in(1) could be cast? 1213 if (in(1)->is_InlineType() && phase->type(in(2))->is_zero_type()) { 1214 // Null checking a scalarized but nullable inline type. Check the null marker 1215 // input instead of the oop input to avoid keeping buffer allocations alive. 1216 return new CmpINode(in(1)->as_InlineType()->get_null_marker(), phase->intcon(0)); 1217 } 1218 if (in(1)->is_InlineType() || in(2)->is_InlineType()) { 1219 // In C2 IR, CmpP on value objects is a pointer comparison, not a value comparison. 1220 // For non-null operands it cannot reliably be true, since their buffer oops are not 1221 // guaranteed to be identical. Therefore, the comparison can only be true when both 1222 // operands are null. Convert expressions like this to a "both operands are null" check: 1223 // CmpL(OrL(CastP2X(..), CastP2X(..)), 0L) 1224 // CmpLNode::Ideal might optimize this further to avoid keeping buffer allocations alive. 1225 Node* input[2]; 1226 for (int i = 1; i <= 2; ++i) { 1227 if (in(i)->is_InlineType()) { 1228 input[i-1] = phase->transform(new ConvI2LNode(in(i)->as_InlineType()->get_null_marker())); 1229 } else { 1230 input[i-1] = phase->transform(new CastP2XNode(nullptr, in(i))); 1231 } 1232 } 1233 Node* orL = phase->transform(new OrXNode(input[0], input[1])); 1234 return new CmpXNode(orL, phase->MakeConX(0)); 1235 } 1236 1237 // Normalize comparisons between Java mirrors into comparisons of the low- 1238 // level klass, where a dependent load could be shortened. 1239 // 1240 // The new pattern has a nice effect of matching the same pattern used in the 1241 // fast path of instanceof/checkcast/Class.isInstance(), which allows 1242 // redundant exact type check be optimized away by GVN. 1243 // For example, in 1244 // if (x.getClass() == Foo.class) { 1245 // Foo foo = (Foo) x; 1246 // // ... use a ... 1247 // } 1248 // a CmpPNode could be shared between if_acmpne and checkcast 1249 { 1250 bool might_be_an_array1 = false; 1251 bool might_be_an_array2 = false; 1252 Node* k1 = isa_java_mirror_load(phase, in(1), might_be_an_array1); 1253 Node* k2 = isa_java_mirror_load(phase, in(2), might_be_an_array2); 1254 Node* conk2 = isa_const_java_mirror(phase, in(2), might_be_an_array2); 1255 if (might_be_an_array1 && might_be_an_array2) { 1256 // Don't optimize if both sides might be an array because arrays with 1257 // the same Java mirror can have different refined array klasses. 1258 k1 = k2 = nullptr; 1259 } 1260 1261 if (k1 && (k2 || conk2)) { 1262 Node* lhs = k1; 1263 Node* rhs = (k2 != nullptr) ? k2 : conk2; 1264 set_req_X(1, lhs, phase); 1265 set_req_X(2, rhs, phase); 1266 return this; 1267 } 1268 } 1269 1270 // Constant pointer on right? 1271 const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr(); 1272 if (t2 == nullptr || !t2->klass_is_exact()) 1273 return nullptr; 1274 // Get the constant klass we are comparing to. 1275 ciKlass* superklass = t2->exact_klass(); 1276 1277 // Now check for LoadKlass on left. 1278 Node* ldk1 = in(1); 1279 if (ldk1->is_DecodeNKlass()) { 1280 ldk1 = ldk1->in(1); 1281 if (ldk1->Opcode() != Op_LoadNKlass ) 1282 return nullptr; 1283 } else if (ldk1->Opcode() != Op_LoadKlass ) 1284 return nullptr; 1285 // Take apart the address of the LoadKlass: 1286 Node* adr1 = ldk1->in(MemNode::Address); 1287 intptr_t con2 = 0; 1288 Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2); 1289 if (ldk2 == nullptr) 1290 return nullptr; 1291 if (con2 == oopDesc::klass_offset_in_bytes()) { 1292 // We are inspecting an object's concrete class. 1293 // Short-circuit the check if the query is abstract. 1294 if (superklass->is_interface() || 1295 superklass->is_abstract()) { 1296 // Make it come out always false: 1297 this->set_req(2, phase->makecon(TypePtr::NULL_PTR)); 1298 return this; 1299 } 1300 } 1301 1302 // Check for a LoadKlass from primary supertype array. 1303 // Any nested loadklass from loadklass+con must be from the p.s. array. 1304 if (ldk2->is_DecodeNKlass()) { 1305 // Keep ldk2 as DecodeN since it could be used in CmpP below. 1306 if (ldk2->in(1)->Opcode() != Op_LoadNKlass ) 1307 return nullptr; 1308 } else if (ldk2->Opcode() != Op_LoadKlass) 1309 return nullptr; 1310 1311 // Verify that we understand the situation 1312 if (con2 != (intptr_t) superklass->super_check_offset()) 1313 return nullptr; // Might be element-klass loading from array klass 1314 1315 // If 'superklass' has no subklasses and is not an interface, then we are 1316 // assured that the only input which will pass the type check is 1317 // 'superklass' itself. 1318 // 1319 // We could be more liberal here, and allow the optimization on interfaces 1320 // which have a single implementor. This would require us to increase the 1321 // expressiveness of the add_dependency() mechanism. 1322 // %%% Do this after we fix TypeOopPtr: Deps are expressive enough now. 1323 1324 // Object arrays must have their base element have no subtypes 1325 while (superklass->is_obj_array_klass()) { 1326 ciType* elem = superklass->as_obj_array_klass()->element_type(); 1327 superklass = elem->as_klass(); 1328 } 1329 if (superklass->is_instance_klass()) { 1330 ciInstanceKlass* ik = superklass->as_instance_klass(); 1331 if (ik->has_subklass() || ik->is_interface()) return nullptr; 1332 // Add a dependency if there is a chance that a subclass will be added later. 1333 if (!ik->is_final()) { 1334 phase->C->dependencies()->assert_leaf_type(ik); 1335 } 1336 } 1337 1338 // Do not fold the subtype check to an array klass pointer comparison for 1339 // value class arrays because they can have multiple refined array klasses. 1340 superklass = t2->exact_klass(); 1341 assert(!superklass->is_flat_array_klass(), "Unexpected flat array klass"); 1342 if (superklass->is_obj_array_klass()) { 1343 if (superklass->as_array_klass()->element_klass()->is_inlinetype() && !superklass->as_array_klass()->is_refined()) { 1344 return nullptr; 1345 } else { 1346 // Special case for non-value arrays: They only have one (default) refined class, use it 1347 set_req_X(2, phase->makecon(t2->is_aryklassptr()->cast_to_refined_array_klass_ptr()), phase); 1348 } 1349 } 1350 1351 // Bypass the dependent load, and compare directly 1352 this->set_req_X(1, ldk2, phase); 1353 1354 return this; 1355 } 1356 1357 //============================================================================= 1358 //------------------------------sub-------------------------------------------- 1359 // Simplify an CmpN (compare 2 pointers) node, based on local information. 1360 // If both inputs are constants, compare them. 1361 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const { 1362 ShouldNotReachHere(); 1363 return bottom_type(); 1364 } 1365 1366 //------------------------------Ideal------------------------------------------ 1367 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) { 1368 return nullptr; 1369 } 1370 1371 //============================================================================= 1372 //------------------------------Value------------------------------------------ 1373 // Simplify an CmpF (compare 2 floats ) node, based on local information. 1374 // If both inputs are constants, compare them. 1375 const Type* CmpFNode::Value(PhaseGVN* phase) const { 1376 const Node* in1 = in(1); 1377 const Node* in2 = in(2); 1378 // Either input is TOP ==> the result is TOP 1379 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1380 if( t1 == Type::TOP ) return Type::TOP; 1381 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1382 if( t2 == Type::TOP ) return Type::TOP; 1383 1384 // Not constants? Don't know squat - even if they are the same 1385 // value! If they are NaN's they compare to LT instead of EQ. 1386 const TypeF *tf1 = t1->isa_float_constant(); 1387 const TypeF *tf2 = t2->isa_float_constant(); 1388 if( !tf1 || !tf2 ) return TypeInt::CC; 1389 1390 // This implements the Java bytecode fcmpl, so unordered returns -1. 1391 if( tf1->is_nan() || tf2->is_nan() ) 1392 return TypeInt::CC_LT; 1393 1394 if( tf1->_f < tf2->_f ) return TypeInt::CC_LT; 1395 if( tf1->_f > tf2->_f ) return TypeInt::CC_GT; 1396 assert( tf1->_f == tf2->_f, "do not understand FP behavior" ); 1397 return TypeInt::CC_EQ; 1398 } 1399 1400 1401 //============================================================================= 1402 //------------------------------Value------------------------------------------ 1403 // Simplify an CmpD (compare 2 doubles ) node, based on local information. 1404 // If both inputs are constants, compare them. 1405 const Type* CmpDNode::Value(PhaseGVN* phase) const { 1406 const Node* in1 = in(1); 1407 const Node* in2 = in(2); 1408 // Either input is TOP ==> the result is TOP 1409 const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1); 1410 if( t1 == Type::TOP ) return Type::TOP; 1411 const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2); 1412 if( t2 == Type::TOP ) return Type::TOP; 1413 1414 // Not constants? Don't know squat - even if they are the same 1415 // value! If they are NaN's they compare to LT instead of EQ. 1416 const TypeD *td1 = t1->isa_double_constant(); 1417 const TypeD *td2 = t2->isa_double_constant(); 1418 if( !td1 || !td2 ) return TypeInt::CC; 1419 1420 // This implements the Java bytecode dcmpl, so unordered returns -1. 1421 if( td1->is_nan() || td2->is_nan() ) 1422 return TypeInt::CC_LT; 1423 1424 if( td1->_d < td2->_d ) return TypeInt::CC_LT; 1425 if( td1->_d > td2->_d ) return TypeInt::CC_GT; 1426 assert( td1->_d == td2->_d, "do not understand FP behavior" ); 1427 return TypeInt::CC_EQ; 1428 } 1429 1430 //------------------------------Ideal------------------------------------------ 1431 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){ 1432 // Check if we can change this to a CmpF and remove a ConvD2F operation. 1433 // Change (CMPD (F2D (float)) (ConD value)) 1434 // To (CMPF (float) (ConF value)) 1435 // Valid when 'value' does not lose precision as a float. 1436 // Benefits: eliminates conversion, does not require 24-bit mode 1437 1438 // NaNs prevent commuting operands. This transform works regardless of the 1439 // order of ConD and ConvF2D inputs by preserving the original order. 1440 int idx_f2d = 1; // ConvF2D on left side? 1441 if( in(idx_f2d)->Opcode() != Op_ConvF2D ) 1442 idx_f2d = 2; // No, swap to check for reversed args 1443 int idx_con = 3-idx_f2d; // Check for the constant on other input 1444 1445 if( ConvertCmpD2CmpF && 1446 in(idx_f2d)->Opcode() == Op_ConvF2D && 1447 in(idx_con)->Opcode() == Op_ConD ) { 1448 const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant(); 1449 double t2_value_as_double = t2->_d; 1450 float t2_value_as_float = (float)t2_value_as_double; 1451 if( t2_value_as_double == (double)t2_value_as_float ) { 1452 // Test value can be represented as a float 1453 // Eliminate the conversion to double and create new comparison 1454 Node *new_in1 = in(idx_f2d)->in(1); 1455 Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) ); 1456 if( idx_f2d != 1 ) { // Must flip args to match original order 1457 Node *tmp = new_in1; 1458 new_in1 = new_in2; 1459 new_in2 = tmp; 1460 } 1461 CmpFNode *new_cmp = (Opcode() == Op_CmpD3) 1462 ? new CmpF3Node( new_in1, new_in2 ) 1463 : new CmpFNode ( new_in1, new_in2 ) ; 1464 return new_cmp; // Changed to CmpFNode 1465 } 1466 // Testing value required the precision of a double 1467 } 1468 return nullptr; // No change 1469 } 1470 1471 //============================================================================= 1472 //------------------------------Value------------------------------------------ 1473 const Type* FlatArrayCheckNode::Value(PhaseGVN* phase) const { 1474 bool all_not_flat = true; 1475 for (uint i = ArrayOrKlass; i < req(); ++i) { 1476 const Type* t = phase->type(in(i)); 1477 if (t == Type::TOP) { 1478 return Type::TOP; 1479 } 1480 if (t->is_ptr()->is_flat()) { 1481 // One of the input arrays is flat, check always passes 1482 return TypeInt::CC_EQ; 1483 } else if (!t->is_ptr()->is_not_flat()) { 1484 // One of the input arrays might be flat 1485 all_not_flat = false; 1486 } 1487 } 1488 if (all_not_flat) { 1489 // None of the input arrays can be flat, check always fails 1490 return TypeInt::CC_GT; 1491 } 1492 return TypeInt::CC; 1493 } 1494 1495 //------------------------------Ideal------------------------------------------ 1496 Node* FlatArrayCheckNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1497 bool changed = false; 1498 // Remove inputs that are known to be non-flat 1499 for (uint i = ArrayOrKlass; i < req(); ++i) { 1500 const Type* t = phase->type(in(i)); 1501 if (t->isa_ptr() && t->is_ptr()->is_not_flat()) { 1502 del_req(i--); 1503 changed = true; 1504 } 1505 } 1506 return changed ? this : nullptr; 1507 } 1508 1509 //============================================================================= 1510 //------------------------------cc2logical------------------------------------- 1511 // Convert a condition code type to a logical type 1512 const Type *BoolTest::cc2logical( const Type *CC ) const { 1513 if( CC == Type::TOP ) return Type::TOP; 1514 if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse 1515 const TypeInt *ti = CC->is_int(); 1516 if( ti->is_con() ) { // Only 1 kind of condition codes set? 1517 // Match low order 2 bits 1518 int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0; 1519 if( _test & 4 ) tmp = 1-tmp; // Optionally complement result 1520 return TypeInt::make(tmp); // Boolean result 1521 } 1522 1523 if( CC == TypeInt::CC_GE ) { 1524 if( _test == ge ) return TypeInt::ONE; 1525 if( _test == lt ) return TypeInt::ZERO; 1526 } 1527 if( CC == TypeInt::CC_LE ) { 1528 if( _test == le ) return TypeInt::ONE; 1529 if( _test == gt ) return TypeInt::ZERO; 1530 } 1531 if( CC == TypeInt::CC_NE ) { 1532 if( _test == ne ) return TypeInt::ONE; 1533 if( _test == eq ) return TypeInt::ZERO; 1534 } 1535 1536 return TypeInt::BOOL; 1537 } 1538 1539 BoolTest::mask BoolTest::unsigned_mask(BoolTest::mask btm) { 1540 switch(btm) { 1541 case eq: 1542 case ne: 1543 return btm; 1544 case lt: 1545 case le: 1546 case gt: 1547 case ge: 1548 return mask(btm | unsigned_compare); 1549 default: 1550 ShouldNotReachHere(); 1551 } 1552 } 1553 1554 //------------------------------dump_spec------------------------------------- 1555 // Print special per-node info 1556 void BoolTest::dump_on(outputStream *st) const { 1557 const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"}; 1558 st->print("%s", msg[_test]); 1559 } 1560 1561 // Returns the logical AND of two tests (or 'never' if both tests can never be true). 1562 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'. 1563 BoolTest::mask BoolTest::merge(BoolTest other) const { 1564 const mask res[illegal+1][illegal+1] = { 1565 // eq, gt, of, lt, ne, le, nof, ge, never, illegal 1566 {eq, never, illegal, never, never, eq, illegal, eq, never, illegal}, // eq 1567 {never, gt, illegal, never, gt, never, illegal, gt, never, illegal}, // gt 1568 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // of 1569 {never, never, illegal, lt, lt, lt, illegal, never, never, illegal}, // lt 1570 {never, gt, illegal, lt, ne, lt, illegal, gt, never, illegal}, // ne 1571 {eq, never, illegal, lt, lt, le, illegal, eq, never, illegal}, // le 1572 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never, illegal}, // nof 1573 {eq, gt, illegal, never, gt, eq, illegal, ge, never, illegal}, // ge 1574 {never, never, never, never, never, never, never, never, never, illegal}, // never 1575 {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal 1576 return res[_test][other._test]; 1577 } 1578 1579 //============================================================================= 1580 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); } 1581 uint BoolNode::size_of() const { return sizeof(BoolNode); } 1582 1583 //------------------------------operator==------------------------------------- 1584 bool BoolNode::cmp( const Node &n ) const { 1585 const BoolNode *b = (const BoolNode *)&n; // Cast up 1586 return (_test._test == b->_test._test); 1587 } 1588 1589 //-------------------------------make_predicate-------------------------------- 1590 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) { 1591 if (test_value->is_Con()) return test_value; 1592 if (test_value->is_Bool()) return test_value; 1593 if (test_value->is_CMove() && 1594 test_value->in(CMoveNode::Condition)->is_Bool()) { 1595 BoolNode* bol = test_value->in(CMoveNode::Condition)->as_Bool(); 1596 const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse)); 1597 const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue)); 1598 if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) { 1599 return bol; 1600 } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) { 1601 return phase->transform( bol->negate(phase) ); 1602 } 1603 // Else fall through. The CMove gets in the way of the test. 1604 // It should be the case that make_predicate(bol->as_int_value()) == bol. 1605 } 1606 Node* cmp = new CmpINode(test_value, phase->intcon(0)); 1607 cmp = phase->transform(cmp); 1608 Node* bol = new BoolNode(cmp, BoolTest::ne); 1609 return phase->transform(bol); 1610 } 1611 1612 //--------------------------------as_int_value--------------------------------- 1613 Node* BoolNode::as_int_value(PhaseGVN* phase) { 1614 // Inverse to make_predicate. The CMove probably boils down to a Conv2B. 1615 Node* cmov = CMoveNode::make(this, phase->intcon(0), phase->intcon(1), TypeInt::BOOL); 1616 return phase->transform(cmov); 1617 } 1618 1619 //----------------------------------negate------------------------------------- 1620 BoolNode* BoolNode::negate(PhaseGVN* phase) { 1621 return new BoolNode(in(1), _test.negate()); 1622 } 1623 1624 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub 1625 // overflows and we can prove that C is not in the two resulting ranges. 1626 // This optimization is similar to the one performed by CmpUNode::Value(). 1627 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, 1628 int cmp1_op, const TypeInt* cmp2_type) { 1629 // Only optimize eq/ne integer comparison of add/sub 1630 if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1631 (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) { 1632 // Skip cases were inputs of add/sub are not integers or of bottom type 1633 const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int(); 1634 const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int(); 1635 if ((r0 != nullptr) && (r0 != TypeInt::INT) && 1636 (r1 != nullptr) && (r1 != TypeInt::INT) && 1637 (cmp2_type != TypeInt::INT)) { 1638 // Compute exact (long) type range of add/sub result 1639 jlong lo_long = r0->_lo; 1640 jlong hi_long = r0->_hi; 1641 if (cmp1_op == Op_AddI) { 1642 lo_long += r1->_lo; 1643 hi_long += r1->_hi; 1644 } else { 1645 lo_long -= r1->_hi; 1646 hi_long -= r1->_lo; 1647 } 1648 // Check for over-/underflow by casting to integer 1649 int lo_int = (int)lo_long; 1650 int hi_int = (int)hi_long; 1651 bool underflow = lo_long != (jlong)lo_int; 1652 bool overflow = hi_long != (jlong)hi_int; 1653 if ((underflow != overflow) && (hi_int < lo_int)) { 1654 // Overflow on one boundary, compute resulting type ranges: 1655 // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT] 1656 int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here 1657 const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w); 1658 const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w); 1659 // Compare second input of cmp to both type ranges 1660 const Type* sub_tr1 = cmp->sub(tr1, cmp2_type); 1661 const Type* sub_tr2 = cmp->sub(tr2, cmp2_type); 1662 if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) { 1663 // The result of the add/sub will never equal cmp2. Replace BoolNode 1664 // by false (0) if it tests for equality and by true (1) otherwise. 1665 return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1); 1666 } 1667 } 1668 } 1669 } 1670 return nullptr; 1671 } 1672 1673 static bool is_counted_loop_cmp(Node *cmp) { 1674 Node *n = cmp->in(1)->in(1); 1675 return n != nullptr && 1676 n->is_Phi() && 1677 n->in(0) != nullptr && 1678 n->in(0)->is_CountedLoop() && 1679 n->in(0)->as_CountedLoop()->phi() == n; 1680 } 1681 1682 //------------------------------Ideal------------------------------------------ 1683 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1684 // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)". 1685 // This moves the constant to the right. Helps value-numbering. 1686 Node *cmp = in(1); 1687 if( !cmp->is_Sub() ) return nullptr; 1688 int cop = cmp->Opcode(); 1689 if( cop == Op_FastLock || cop == Op_FastUnlock || 1690 cmp->is_SubTypeCheck() || cop == Op_VectorTest ) { 1691 return nullptr; 1692 } 1693 Node *cmp1 = cmp->in(1); 1694 Node *cmp2 = cmp->in(2); 1695 if( !cmp1 ) return nullptr; 1696 1697 if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) { 1698 return nullptr; 1699 } 1700 1701 const int cmp1_op = cmp1->Opcode(); 1702 const int cmp2_op = cmp2->Opcode(); 1703 1704 // Constant on left? 1705 Node *con = cmp1; 1706 // Move constants to the right of compare's to canonicalize. 1707 // Do not muck with Opaque1 nodes, as this indicates a loop 1708 // guard that cannot change shape. 1709 if (con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_OpaqueZeroTripGuard && 1710 // Because of NaN's, CmpD and CmpF are not commutative 1711 cop != Op_CmpD && cop != Op_CmpF && 1712 // Protect against swapping inputs to a compare when it is used by a 1713 // counted loop exit, which requires maintaining the loop-limit as in(2) 1714 !is_counted_loop_exit_test() ) { 1715 // Ok, commute the constant to the right of the cmp node. 1716 // Clone the Node, getting a new Node of the same class 1717 cmp = cmp->clone(); 1718 // Swap inputs to the clone 1719 cmp->swap_edges(1, 2); 1720 cmp = phase->transform( cmp ); 1721 return new BoolNode( cmp, _test.commute() ); 1722 } 1723 1724 // Change "bool eq/ne (cmp (cmove (bool tst (cmp2)) 1 0) 0)" into "bool tst/~tst (cmp2)" 1725 if (cop == Op_CmpI && 1726 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1727 cmp1_op == Op_CMoveI && cmp2->find_int_con(1) == 0) { 1728 // 0 should be on the true branch 1729 if (cmp1->in(CMoveNode::Condition)->is_Bool() && 1730 cmp1->in(CMoveNode::IfTrue)->find_int_con(1) == 0 && 1731 cmp1->in(CMoveNode::IfFalse)->find_int_con(0) != 0) { 1732 BoolNode* target = cmp1->in(CMoveNode::Condition)->as_Bool(); 1733 return new BoolNode(target->in(1), 1734 (_test._test == BoolTest::eq) ? target->_test._test : 1735 target->_test.negate()); 1736 } 1737 } 1738 1739 // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1740 if (cop == Op_CmpI && 1741 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1742 cmp1_op == Op_AndI && cmp2_op == Op_ConI && 1743 cmp1->in(2)->Opcode() == Op_ConI) { 1744 const TypeInt *t12 = phase->type(cmp2)->isa_int(); 1745 const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int(); 1746 if (t12 && t12->is_con() && t112 && t112->is_con() && 1747 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1748 Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1749 return new BoolNode(ncmp, _test.negate()); 1750 } 1751 } 1752 1753 // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)". 1754 if (cop == Op_CmpL && 1755 (_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1756 cmp1_op == Op_AndL && cmp2_op == Op_ConL && 1757 cmp1->in(2)->Opcode() == Op_ConL) { 1758 const TypeLong *t12 = phase->type(cmp2)->isa_long(); 1759 const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long(); 1760 if (t12 && t12->is_con() && t112 && t112->is_con() && 1761 t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) { 1762 Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0))); 1763 return new BoolNode(ncmp, _test.negate()); 1764 } 1765 } 1766 1767 // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y" 1768 // and "cmp (add X min_jint) c" into "cmpu X (c + min_jint)" 1769 if (cop == Op_CmpI && 1770 cmp1_op == Op_AddI && 1771 phase->type(cmp1->in(2)) == TypeInt::MIN && 1772 !is_cloop_condition(this)) { 1773 if (cmp2_op == Op_ConI) { 1774 Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint)); 1775 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2)); 1776 return new BoolNode(ncmp, _test._test); 1777 } else if (cmp2_op == Op_AddI && 1778 phase->type(cmp2->in(2)) == TypeInt::MIN && 1779 !is_cloop_condition(this)) { 1780 Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1))); 1781 return new BoolNode(ncmp, _test._test); 1782 } 1783 } 1784 1785 // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y" 1786 // and "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)" 1787 if (cop == Op_CmpL && 1788 cmp1_op == Op_AddL && 1789 phase->type(cmp1->in(2)) == TypeLong::MIN && 1790 !is_cloop_condition(this)) { 1791 if (cmp2_op == Op_ConL) { 1792 Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong)); 1793 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2)); 1794 return new BoolNode(ncmp, _test._test); 1795 } else if (cmp2_op == Op_AddL && 1796 phase->type(cmp2->in(2)) == TypeLong::MIN && 1797 !is_cloop_condition(this)) { 1798 Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1))); 1799 return new BoolNode(ncmp, _test._test); 1800 } 1801 } 1802 1803 // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)". 1804 // The XOR-1 is an idiom used to flip the sense of a bool. We flip the 1805 // test instead. 1806 const TypeInt* cmp2_type = phase->type(cmp2)->isa_int(); 1807 if (cmp2_type == nullptr) return nullptr; 1808 Node* j_xor = cmp1; 1809 if( cmp2_type == TypeInt::ZERO && 1810 cmp1_op == Op_XorI && 1811 j_xor->in(1) != j_xor && // An xor of itself is dead 1812 phase->type( j_xor->in(1) ) == TypeInt::BOOL && 1813 phase->type( j_xor->in(2) ) == TypeInt::ONE && 1814 (_test._test == BoolTest::eq || 1815 _test._test == BoolTest::ne) ) { 1816 Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2)); 1817 return new BoolNode( ncmp, _test.negate() ); 1818 } 1819 1820 // Transform: "((x & (m - 1)) <u m)" or "(((m - 1) & x) <u m)" into "(m >u 0)" 1821 // This is case [CMPU_MASK] which is further described at the method comment of BoolNode::Value_cmpu_and_mask(). 1822 if (cop == Op_CmpU && _test._test == BoolTest::lt && cmp1_op == Op_AndI) { 1823 Node* m = cmp2; // RHS: m 1824 for (int add_idx = 1; add_idx <= 2; add_idx++) { // LHS: "(m + (-1)) & x" or "x & (m + (-1))"? 1825 Node* maybe_m_minus_1 = cmp1->in(add_idx); 1826 if (maybe_m_minus_1->Opcode() == Op_AddI && 1827 maybe_m_minus_1->in(2)->find_int_con(0) == -1 && 1828 maybe_m_minus_1->in(1) == m) { 1829 Node* m_cmpu_0 = phase->transform(new CmpUNode(m, phase->intcon(0))); 1830 return new BoolNode(m_cmpu_0, BoolTest::gt); 1831 } 1832 } 1833 } 1834 1835 // Change x u< 1 or x u<= 0 to x == 0 1836 // and x u> 0 or u>= 1 to x != 0 1837 if (cop == Op_CmpU && 1838 cmp1_op != Op_LoadRange && 1839 (((_test._test == BoolTest::lt || _test._test == BoolTest::ge) && 1840 cmp2->find_int_con(-1) == 1) || 1841 ((_test._test == BoolTest::le || _test._test == BoolTest::gt) && 1842 cmp2->find_int_con(-1) == 0))) { 1843 Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0))); 1844 return new BoolNode(ncmp, _test.is_less() ? BoolTest::eq : BoolTest::ne); 1845 } 1846 1847 // Change (arraylength <= 0) or (arraylength == 0) 1848 // into (arraylength u<= 0) 1849 // Also change (arraylength != 0) into (arraylength u> 0) 1850 // The latter version matches the code pattern generated for 1851 // array range checks, which will more likely be optimized later. 1852 if (cop == Op_CmpI && 1853 cmp1_op == Op_LoadRange && 1854 cmp2->find_int_con(-1) == 0) { 1855 if (_test._test == BoolTest::le || _test._test == BoolTest::eq) { 1856 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1857 return new BoolNode(ncmp, BoolTest::le); 1858 } else if (_test._test == BoolTest::ne) { 1859 Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2)); 1860 return new BoolNode(ncmp, BoolTest::gt); 1861 } 1862 } 1863 1864 // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)". 1865 // This is a standard idiom for branching on a boolean value. 1866 Node *c2b = cmp1; 1867 if( cmp2_type == TypeInt::ZERO && 1868 cmp1_op == Op_Conv2B && 1869 (_test._test == BoolTest::eq || 1870 _test._test == BoolTest::ne) ) { 1871 Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int() 1872 ? (Node*)new CmpINode(c2b->in(1),cmp2) 1873 : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR)) 1874 ); 1875 return new BoolNode( ncmp, _test._test ); 1876 } 1877 1878 // Comparing a SubI against a zero is equal to comparing the SubI 1879 // arguments directly. This only works for eq and ne comparisons 1880 // due to possible integer overflow. 1881 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1882 (cop == Op_CmpI) && 1883 (cmp1_op == Op_SubI) && 1884 ( cmp2_type == TypeInt::ZERO ) ) { 1885 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2))); 1886 return new BoolNode( ncmp, _test._test ); 1887 } 1888 1889 // Same as above but with and AddI of a constant 1890 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1891 cop == Op_CmpI && 1892 cmp1_op == Op_AddI && 1893 cmp1->in(2) != nullptr && 1894 phase->type(cmp1->in(2))->isa_int() && 1895 phase->type(cmp1->in(2))->is_int()->is_con() && 1896 cmp2_type == TypeInt::ZERO && 1897 !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape 1898 ) { 1899 const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int(); 1900 Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi))); 1901 return new BoolNode( ncmp, _test._test ); 1902 } 1903 1904 // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)" 1905 // since zero check of conditional negation of an integer is equal to 1906 // zero check of the integer directly. 1907 if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) && 1908 (cop == Op_CmpI) && 1909 (cmp2_type == TypeInt::ZERO) && 1910 (cmp1_op == Op_Phi)) { 1911 // There should be a diamond phi with true path at index 1 or 2 1912 PhiNode *phi = cmp1->as_Phi(); 1913 int idx_true = phi->is_diamond_phi(); 1914 if (idx_true != 0) { 1915 // True input is in(idx_true) while false input is in(3 - idx_true) 1916 Node *tin = phi->in(idx_true); 1917 Node *fin = phi->in(3 - idx_true); 1918 if ((tin->Opcode() == Op_SubI) && 1919 (phase->type(tin->in(1)) == TypeInt::ZERO) && 1920 (tin->in(2) == fin)) { 1921 // Found conditional negation at true path, create a new CmpINode without that 1922 Node *ncmp = phase->transform(new CmpINode(fin, cmp2)); 1923 return new BoolNode(ncmp, _test._test); 1924 } 1925 if ((fin->Opcode() == Op_SubI) && 1926 (phase->type(fin->in(1)) == TypeInt::ZERO) && 1927 (fin->in(2) == tin)) { 1928 // Found conditional negation at false path, create a new CmpINode without that 1929 Node *ncmp = phase->transform(new CmpINode(tin, cmp2)); 1930 return new BoolNode(ncmp, _test._test); 1931 } 1932 } 1933 } 1934 1935 // Change (-A vs 0) into (A vs 0) by commuting the test. Disallow in the 1936 // most general case because negating 0x80000000 does nothing. Needed for 1937 // the CmpF3/SubI/CmpI idiom. 1938 if( cop == Op_CmpI && 1939 cmp1_op == Op_SubI && 1940 cmp2_type == TypeInt::ZERO && 1941 phase->type( cmp1->in(1) ) == TypeInt::ZERO && 1942 phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) { 1943 Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2)); 1944 return new BoolNode( ncmp, _test.commute() ); 1945 } 1946 1947 // Try to optimize signed integer comparison 1948 return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type); 1949 1950 // The transformation below is not valid for either signed or unsigned 1951 // comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE. 1952 // This transformation can be resurrected when we are able to 1953 // make inferences about the range of values being subtracted from 1954 // (or added to) relative to the wraparound point. 1955 // 1956 // // Remove +/-1's if possible. 1957 // // "X <= Y-1" becomes "X < Y" 1958 // // "X+1 <= Y" becomes "X < Y" 1959 // // "X < Y+1" becomes "X <= Y" 1960 // // "X-1 < Y" becomes "X <= Y" 1961 // // Do not this to compares off of the counted-loop-end. These guys are 1962 // // checking the trip counter and they want to use the post-incremented 1963 // // counter. If they use the PRE-incremented counter, then the counter has 1964 // // to be incremented in a private block on a loop backedge. 1965 // if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd ) 1966 // return nullptr; 1967 // #ifndef PRODUCT 1968 // // Do not do this in a wash GVN pass during verification. 1969 // // Gets triggered by too many simple optimizations to be bothered with 1970 // // re-trying it again and again. 1971 // if( !phase->allow_progress() ) return nullptr; 1972 // #endif 1973 // // Not valid for unsigned compare because of corner cases in involving zero. 1974 // // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an 1975 // // exception in case X is 0 (because 0-1 turns into 4billion unsigned but 1976 // // "0 <=u Y" is always true). 1977 // if( cmp->Opcode() == Op_CmpU ) return nullptr; 1978 // int cmp2_op = cmp2->Opcode(); 1979 // if( _test._test == BoolTest::le ) { 1980 // if( cmp1_op == Op_AddI && 1981 // phase->type( cmp1->in(2) ) == TypeInt::ONE ) 1982 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt ); 1983 // else if( cmp2_op == Op_AddI && 1984 // phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 ) 1985 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt ); 1986 // } else if( _test._test == BoolTest::lt ) { 1987 // if( cmp1_op == Op_AddI && 1988 // phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 ) 1989 // return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le ); 1990 // else if( cmp2_op == Op_AddI && 1991 // phase->type( cmp2->in(2) ) == TypeInt::ONE ) 1992 // return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le ); 1993 // } 1994 } 1995 1996 // We use the following Lemmas/insights for the following two transformations (1) and (2): 1997 // x & y <=u y, for any x and y (Lemma 1, masking always results in a smaller unsigned number) 1998 // y <u y + 1 is always true if y != -1 (Lemma 2, (uint)(-1 + 1) == (uint)(UINT_MAX + 1) which overflows) 1999 // y <u 0 is always false for any y (Lemma 3, 0 == UINT_MIN and nothing can be smaller than that) 2000 // 2001 // (1a) Always: Change ((x & m) <=u m ) or ((m & x) <=u m ) to always true (true by Lemma 1) 2002 // (1b) If m != -1: Change ((x & m) <u m + 1) or ((m & x) <u m + 1) to always true: 2003 // x & m <=u m is always true // (Lemma 1) 2004 // x & m <=u m <u m + 1 is always true // (Lemma 2: m <u m + 1, if m != -1) 2005 // 2006 // A counter example for (1b), if we allowed m == -1: 2007 // (x & m) <u m + 1 2008 // (x & -1) <u 0 2009 // x <u 0 2010 // which is false for any x (Lemma 3) 2011 // 2012 // (2) Change ((x & (m - 1)) <u m) or (((m - 1) & x) <u m) to (m >u 0) 2013 // This is the off-by-one variant of the above. 2014 // 2015 // We now prove that this replacement is correct. This is the same as proving 2016 // "m >u 0" if and only if "x & (m - 1) <u m", i.e. "m >u 0 <=> x & (m - 1) <u m" 2017 // 2018 // We use (Lemma 1) and (Lemma 3) from above. 2019 // 2020 // Case "x & (m - 1) <u m => m >u 0": 2021 // We prove this by contradiction: 2022 // Assume m <=u 0 which is equivalent to m == 0: 2023 // and thus 2024 // x & (m - 1) <u m = 0 // m == 0 2025 // y <u 0 // y = x & (m - 1) 2026 // by Lemma 3, this is always false, i.e. a contradiction to our assumption. 2027 // 2028 // Case "m >u 0 => x & (m - 1) <u m": 2029 // x & (m - 1) <=u (m - 1) // (Lemma 1) 2030 // x & (m - 1) <=u (m - 1) <u m // Using assumption m >u 0, no underflow of "m - 1" 2031 // 2032 // 2033 // Note that the signed version of "m > 0": 2034 // m > 0 <=> x & (m - 1) <u m 2035 // does not hold: 2036 // Assume m == -1 and x == -1: 2037 // x & (m - 1) <u m 2038 // -1 & -2 <u -1 2039 // -2 <u -1 2040 // UINT_MAX - 1 <u UINT_MAX // Signed to unsigned numbers 2041 // which is true while 2042 // m > 0 2043 // is false which is a contradiction. 2044 // 2045 // (1a) and (1b) is covered by this method since we can directly return a true value as type while (2) is covered 2046 // in BoolNode::Ideal since we create a new non-constant node (see [CMPU_MASK]). 2047 const Type* BoolNode::Value_cmpu_and_mask(PhaseValues* phase) const { 2048 Node* cmp = in(1); 2049 if (cmp != nullptr && cmp->Opcode() == Op_CmpU) { 2050 Node* cmp1 = cmp->in(1); 2051 Node* cmp2 = cmp->in(2); 2052 2053 if (cmp1->Opcode() == Op_AndI) { 2054 Node* m = nullptr; 2055 if (_test._test == BoolTest::le) { 2056 // (1a) "((x & m) <=u m)", cmp2 = m 2057 m = cmp2; 2058 } else if (_test._test == BoolTest::lt && cmp2->Opcode() == Op_AddI && cmp2->in(2)->find_int_con(0) == 1) { 2059 // (1b) "(x & m) <u m + 1" and "(m & x) <u m + 1", cmp2 = m + 1 2060 Node* rhs_m = cmp2->in(1); 2061 const TypeInt* rhs_m_type = phase->type(rhs_m)->isa_int(); 2062 if (rhs_m_type != nullptr && (rhs_m_type->_lo > -1 || rhs_m_type->_hi < -1)) { 2063 // Exclude any case where m == -1 is possible. 2064 m = rhs_m; 2065 } 2066 } 2067 2068 if (cmp1->in(2) == m || cmp1->in(1) == m) { 2069 return TypeInt::ONE; 2070 } 2071 } 2072 } 2073 2074 return nullptr; 2075 } 2076 2077 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node, 2078 // based on local information. If the input is constant, do it. 2079 const Type* BoolNode::Value(PhaseGVN* phase) const { 2080 const Type* input_type = phase->type(in(1)); 2081 if (input_type == Type::TOP) { 2082 return Type::TOP; 2083 } 2084 const Type* t = Value_cmpu_and_mask(phase); 2085 if (t != nullptr) { 2086 return t; 2087 } 2088 2089 return _test.cc2logical(input_type); 2090 } 2091 2092 #ifndef PRODUCT 2093 //------------------------------dump_spec-------------------------------------- 2094 // Dump special per-node info 2095 void BoolNode::dump_spec(outputStream *st) const { 2096 st->print("["); 2097 _test.dump_on(st); 2098 st->print("]"); 2099 } 2100 #endif 2101 2102 //----------------------is_counted_loop_exit_test------------------------------ 2103 // Returns true if node is used by a counted loop node. 2104 bool BoolNode::is_counted_loop_exit_test() { 2105 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { 2106 Node* use = fast_out(i); 2107 if (use->is_CountedLoopEnd()) { 2108 return true; 2109 } 2110 } 2111 return false; 2112 } 2113 2114 //============================================================================= 2115 //------------------------------Value------------------------------------------ 2116 const Type* AbsNode::Value(PhaseGVN* phase) const { 2117 const Type* t1 = phase->type(in(1)); 2118 if (t1 == Type::TOP) return Type::TOP; 2119 2120 switch (t1->base()) { 2121 case Type::Int: { 2122 const TypeInt* ti = t1->is_int(); 2123 if (ti->is_con()) { 2124 return TypeInt::make(g_uabs(ti->get_con())); 2125 } 2126 break; 2127 } 2128 case Type::Long: { 2129 const TypeLong* tl = t1->is_long(); 2130 if (tl->is_con()) { 2131 return TypeLong::make(g_uabs(tl->get_con())); 2132 } 2133 break; 2134 } 2135 case Type::FloatCon: 2136 return TypeF::make(abs(t1->getf())); 2137 case Type::DoubleCon: 2138 return TypeD::make(abs(t1->getd())); 2139 default: 2140 break; 2141 } 2142 2143 return bottom_type(); 2144 } 2145 2146 //------------------------------Identity---------------------------------------- 2147 Node* AbsNode::Identity(PhaseGVN* phase) { 2148 Node* in1 = in(1); 2149 // No need to do abs for non-negative values 2150 if (phase->type(in1)->higher_equal(TypeInt::POS) || 2151 phase->type(in1)->higher_equal(TypeLong::POS)) { 2152 return in1; 2153 } 2154 // Convert "abs(abs(x))" into "abs(x)" 2155 if (in1->Opcode() == Opcode()) { 2156 return in1; 2157 } 2158 return this; 2159 } 2160 2161 //------------------------------Ideal------------------------------------------ 2162 Node* AbsNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2163 Node* in1 = in(1); 2164 // Convert "abs(0-x)" into "abs(x)" 2165 if (in1->is_Sub() && phase->type(in1->in(1))->is_zero_type()) { 2166 set_req_X(1, in1->in(2), phase); 2167 return this; 2168 } 2169 return nullptr; 2170 } 2171 2172 //============================================================================= 2173 //------------------------------Value------------------------------------------ 2174 // Compute sqrt 2175 const Type* SqrtDNode::Value(PhaseGVN* phase) const { 2176 const Type *t1 = phase->type( in(1) ); 2177 if( t1 == Type::TOP ) return Type::TOP; 2178 if( t1->base() != Type::DoubleCon ) return Type::DOUBLE; 2179 double d = t1->getd(); 2180 if( d < 0.0 ) return Type::DOUBLE; 2181 return TypeD::make( sqrt( d ) ); 2182 } 2183 2184 const Type* SqrtFNode::Value(PhaseGVN* phase) const { 2185 const Type *t1 = phase->type( in(1) ); 2186 if( t1 == Type::TOP ) return Type::TOP; 2187 if( t1->base() != Type::FloatCon ) return Type::FLOAT; 2188 float f = t1->getf(); 2189 if( f < 0.0f ) return Type::FLOAT; 2190 return TypeF::make( (float)sqrt( (double)f ) ); 2191 } 2192 2193 const Type* SqrtHFNode::Value(PhaseGVN* phase) const { 2194 const Type* t1 = phase->type(in(1)); 2195 if (t1 == Type::TOP) { return Type::TOP; } 2196 if (t1->base() != Type::HalfFloatCon) { return Type::HALF_FLOAT; } 2197 float f = t1->getf(); 2198 if (f < 0.0f) return Type::HALF_FLOAT; 2199 return TypeH::make((float)sqrt((double)f)); 2200 } 2201 2202 static const Type* reverse_bytes(int opcode, const Type* con) { 2203 switch (opcode) { 2204 // It is valid in bytecode to load any int and pass it to a method that expects a smaller type (i.e., short, char). 2205 // Let's cast the value to match the Java behavior. 2206 case Op_ReverseBytesS: return TypeInt::make(byteswap(static_cast<jshort>(con->is_int()->get_con()))); 2207 case Op_ReverseBytesUS: return TypeInt::make(byteswap(static_cast<jchar>(con->is_int()->get_con()))); 2208 case Op_ReverseBytesI: return TypeInt::make(byteswap(con->is_int()->get_con())); 2209 case Op_ReverseBytesL: return TypeLong::make(byteswap(con->is_long()->get_con())); 2210 default: ShouldNotReachHere(); 2211 } 2212 } 2213 2214 const Type* ReverseBytesNode::Value(PhaseGVN* phase) const { 2215 const Type* type = phase->type(in(1)); 2216 if (type == Type::TOP) { 2217 return Type::TOP; 2218 } 2219 if (type->singleton()) { 2220 return reverse_bytes(Opcode(), type); 2221 } 2222 return bottom_type(); 2223 } 2224 2225 const Type* ReverseINode::Value(PhaseGVN* phase) const { 2226 const Type *t1 = phase->type( in(1) ); 2227 if (t1 == Type::TOP) { 2228 return Type::TOP; 2229 } 2230 const TypeInt* t1int = t1->isa_int(); 2231 if (t1int && t1int->is_con()) { 2232 jint res = reverse_bits(t1int->get_con()); 2233 return TypeInt::make(res); 2234 } 2235 return bottom_type(); 2236 } 2237 2238 const Type* ReverseLNode::Value(PhaseGVN* phase) const { 2239 const Type *t1 = phase->type( in(1) ); 2240 if (t1 == Type::TOP) { 2241 return Type::TOP; 2242 } 2243 const TypeLong* t1long = t1->isa_long(); 2244 if (t1long && t1long->is_con()) { 2245 jlong res = reverse_bits(t1long->get_con()); 2246 return TypeLong::make(res); 2247 } 2248 return bottom_type(); 2249 } 2250 2251 Node* ReverseINode::Identity(PhaseGVN* phase) { 2252 if (in(1)->Opcode() == Op_ReverseI) { 2253 return in(1)->in(1); 2254 } 2255 return this; 2256 } 2257 2258 Node* ReverseLNode::Identity(PhaseGVN* phase) { 2259 if (in(1)->Opcode() == Op_ReverseL) { 2260 return in(1)->in(1); 2261 } 2262 return this; 2263 } --- EOF ---