1 /*
  2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common( PhaseTransform *phase ) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------CmpNode---------------------------------------
134 // Compare 2 values, returning condition codes (-1, 0 or 1).
135 class CmpNode : public SubNode {
136 public:
137   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
138     init_class_id(Class_Cmp);
139   }
140   virtual Node* Identity(PhaseGVN* phase);
141   const Type *add_id() const { return TypeInt::ZERO; }
142   const Type *bottom_type() const { return TypeInt::CC; }
143   virtual uint ideal_reg() const { return Op_RegFlags; }
144 
145   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
146 
147 #ifndef PRODUCT
148   // CmpNode and subclasses include all data inputs (until hitting a control
149   // boundary) in their related node set, as well as all outputs until and
150   // including eventual control nodes and their projections.
151   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
152 #endif
153   virtual bool operates_on(BasicType bt, bool signed_int) const {
154     assert(bt == T_INT || bt == T_LONG, "unsupported");
155     return false;
156   }
157 };
158 
159 //------------------------------CmpINode---------------------------------------
160 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
161 class CmpINode : public CmpNode {
162 public:
163   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
164   virtual int Opcode() const;
165   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
166   virtual const Type *sub( const Type *, const Type * ) const;
167   virtual bool operates_on(BasicType bt, bool signed_int) const {
168     assert(bt == T_INT || bt == T_LONG, "unsupported");
169     return bt == T_INT && signed_int;
170   }
171 };
172 
173 //------------------------------CmpUNode---------------------------------------
174 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
175 class CmpUNode : public CmpNode {
176 public:
177   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
178   virtual int Opcode() const;
179   virtual const Type *sub( const Type *, const Type * ) const;
180   const Type* Value(PhaseGVN* phase) const;
181   bool is_index_range_check() const;
182   virtual bool operates_on(BasicType bt, bool signed_int) const {
183     assert(bt == T_INT || bt == T_LONG, "unsupported");
184     return bt == T_INT && !signed_int;
185   }
186 };
187 
188 //------------------------------CmpPNode---------------------------------------
189 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
190 class CmpPNode : public CmpNode {
191 public:
192   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
193   virtual int Opcode() const;
194   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
195   virtual const Type *sub( const Type *, const Type * ) const;
196 };
197 
198 //------------------------------CmpNNode--------------------------------------
199 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
200 class CmpNNode : public CmpNode {
201 public:
202   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
203   virtual int Opcode() const;
204   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
205   virtual const Type *sub( const Type *, const Type * ) const;
206 };
207 
208 //------------------------------CmpLNode---------------------------------------
209 // Compare 2 long values, returning condition codes (-1, 0 or 1).
210 class CmpLNode : public CmpNode {
211 public:
212   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
213   virtual int    Opcode() const;
214   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
215   virtual const Type *sub( const Type *, const Type * ) const;
216   virtual bool operates_on(BasicType bt, bool signed_int) const {
217     assert(bt == T_INT || bt == T_LONG, "unsupported");
218     return bt == T_LONG && signed_int;
219   }
220 };
221 
222 //------------------------------CmpULNode---------------------------------------
223 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
224 class CmpULNode : public CmpNode {
225 public:
226   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
227   virtual int Opcode() const;
228   virtual const Type* sub(const Type*, const Type*) const;
229   virtual bool operates_on(BasicType bt, bool signed_int) const {
230     assert(bt == T_INT || bt == T_LONG, "unsupported");
231     return bt == T_LONG && !signed_int;
232   }
233 };
234 
235 //------------------------------CmpL3Node--------------------------------------
236 // Compare 2 long values, returning integer value (-1, 0 or 1).
237 class CmpL3Node : public CmpLNode {
238 public:
239   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
240     // Since it is not consumed by Bools, it is not really a Cmp.
241     init_class_id(Class_Sub);
242   }
243   virtual int    Opcode() const;
244   virtual uint ideal_reg() const { return Op_RegI; }
245 };
246 
247 //------------------------------CmpFNode---------------------------------------
248 // Compare 2 float values, returning condition codes (-1, 0 or 1).
249 // This implements the Java bytecode fcmpl, so unordered returns -1.
250 // Operands may not commute.
251 class CmpFNode : public CmpNode {
252 public:
253   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
254   virtual int Opcode() const;
255   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
256   const Type* Value(PhaseGVN* phase) const;
257 };
258 
259 //------------------------------CmpF3Node--------------------------------------
260 // Compare 2 float values, returning integer value (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpF3Node : public CmpFNode {
264 public:
265   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
266     // Since it is not consumed by Bools, it is not really a Cmp.
267     init_class_id(Class_Sub);
268   }
269   virtual int Opcode() const;
270   // Since it is not consumed by Bools, it is not really a Cmp.
271   virtual uint ideal_reg() const { return Op_RegI; }
272 };
273 
274 
275 //------------------------------CmpDNode---------------------------------------
276 // Compare 2 double values, returning condition codes (-1, 0 or 1).
277 // This implements the Java bytecode dcmpl, so unordered returns -1.
278 // Operands may not commute.
279 class CmpDNode : public CmpNode {
280 public:
281   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
282   virtual int Opcode() const;
283   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
284   const Type* Value(PhaseGVN* phase) const;
285   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
286 };
287 
288 //------------------------------CmpD3Node--------------------------------------
289 // Compare 2 double values, returning integer value (-1, 0 or 1).
290 // This implements the Java bytecode dcmpl, so unordered returns -1.
291 // Operands may not commute.
292 class CmpD3Node : public CmpDNode {
293 public:
294   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
295     // Since it is not consumed by Bools, it is not really a Cmp.
296     init_class_id(Class_Sub);
297   }
298   virtual int Opcode() const;
299   virtual uint ideal_reg() const { return Op_RegI; }
300 };
301 
302 
303 //------------------------------BoolTest---------------------------------------
304 // Convert condition codes to a boolean test value (0 or -1).
305 // We pick the values as 3 bits; the low order 2 bits we compare against the
306 // condition codes, the high bit flips the sense of the result.
307 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
308 struct BoolTest {
309   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
310               // The following values are used with vector compares
311               // A BoolTest value should not be constructed for such values
312               unsigned_compare = 16,
313               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
314   mask _test;
315   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
316   const Type *cc2logical( const Type *CC ) const;
317   // Commute the test.  I use a small table lookup.  The table is created as
318   // a simple char array where each element is the ASCII version of a 'mask'
319   // enum from above.
320   mask commute( ) const { return mask("032147658"[_test]-'0'); }
321   mask negate( ) const { return mask(_test^4); }
322   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
323   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
324   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
325   void dump_on(outputStream *st) const;
326   mask merge(BoolTest other) const;
327 };
328 
329 //------------------------------BoolNode---------------------------------------
330 // A Node to convert a Condition Codes to a Logical result.
331 class BoolNode : public Node {
332   virtual uint hash() const;
333   virtual bool cmp( const Node &n ) const;
334   virtual uint size_of() const;
335 
336   // Try to optimize signed integer comparison
337   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
338                   int cmp1_op, const TypeInt* cmp2_type);
339 public:
340   const BoolTest _test;
341   BoolNode(Node *cc, BoolTest::mask t): Node(NULL,cc), _test(t) {
342     init_class_id(Class_Bool);
343   }
344   // Convert an arbitrary int value to a Bool or other suitable predicate.
345   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
346   // Convert self back to an integer value.
347   Node* as_int_value(PhaseGVN* phase);
348   // Invert sense of self, returning new Bool.
349   BoolNode* negate(PhaseGVN* phase);
350   virtual int Opcode() const;
351   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
352   virtual const Type* Value(PhaseGVN* phase) const;
353   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
354   uint match_edge(uint idx) const { return 0; }
355   virtual uint ideal_reg() const { return Op_RegI; }
356 
357   bool is_counted_loop_exit_test();
358 #ifndef PRODUCT
359   virtual void dump_spec(outputStream *st) const;
360   virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
361 #endif
362 };
363 
364 //------------------------------AbsNode----------------------------------------
365 // Abstract class for absolute value.  Mostly used to get a handy wrapper
366 // for finding this pattern in the graph.
367 class AbsNode : public Node {
368 public:
369   AbsNode( Node *value ) : Node(0,value) {}
370 };
371 
372 //------------------------------AbsINode---------------------------------------
373 // Absolute value an integer.  Since a naive graph involves control flow, we
374 // "match" it in the ideal world (so the control flow can be removed).
375 class AbsINode : public AbsNode {
376 public:
377   AbsINode( Node *in1 ) : AbsNode(in1) {}
378   virtual int Opcode() const;
379   const Type *bottom_type() const { return TypeInt::INT; }
380   virtual uint ideal_reg() const { return Op_RegI; }
381 };
382 
383 //------------------------------AbsLNode---------------------------------------
384 // Absolute value a long.  Since a naive graph involves control flow, we
385 // "match" it in the ideal world (so the control flow can be removed).
386 class AbsLNode : public AbsNode {
387 public:
388   AbsLNode( Node *in1 ) : AbsNode(in1) {}
389   virtual int Opcode() const;
390   const Type *bottom_type() const { return TypeLong::LONG; }
391   virtual uint ideal_reg() const { return Op_RegL; }
392 };
393 
394 //------------------------------AbsFNode---------------------------------------
395 // Absolute value a float, a common float-point idiom with a cheap hardware
396 // implemention on most chips.  Since a naive graph involves control flow, we
397 // "match" it in the ideal world (so the control flow can be removed).
398 class AbsFNode : public AbsNode {
399 public:
400   AbsFNode( Node *in1 ) : AbsNode(in1) {}
401   virtual int Opcode() const;
402   const Type *bottom_type() const { return Type::FLOAT; }
403   virtual uint ideal_reg() const { return Op_RegF; }
404 };
405 
406 //------------------------------AbsDNode---------------------------------------
407 // Absolute value a double, a common float-point idiom with a cheap hardware
408 // implemention on most chips.  Since a naive graph involves control flow, we
409 // "match" it in the ideal world (so the control flow can be removed).
410 class AbsDNode : public AbsNode {
411 public:
412   AbsDNode( Node *in1 ) : AbsNode(in1) {}
413   virtual int Opcode() const;
414   const Type *bottom_type() const { return Type::DOUBLE; }
415   virtual uint ideal_reg() const { return Op_RegD; }
416 };
417 
418 
419 //------------------------------CmpLTMaskNode----------------------------------
420 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
421 class CmpLTMaskNode : public Node {
422 public:
423   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
424   virtual int Opcode() const;
425   const Type *bottom_type() const { return TypeInt::INT; }
426   virtual uint ideal_reg() const { return Op_RegI; }
427 };
428 
429 
430 //------------------------------NegNode----------------------------------------
431 class NegNode : public Node {
432 public:
433   NegNode( Node *in1 ) : Node(0,in1) {}
434 };
435 
436 //------------------------------NegINode---------------------------------------
437 // Negate value an int.  For int values, negation is the same as subtraction
438 // from zero
439 class NegINode : public NegNode {
440 public:
441   NegINode(Node *in1) : NegNode(in1) {}
442   virtual int Opcode() const;
443   const Type *bottom_type() const { return TypeInt::INT; }
444   virtual uint ideal_reg() const { return Op_RegI; }
445 };
446 
447 //------------------------------NegLNode---------------------------------------
448 // Negate value an int.  For int values, negation is the same as subtraction
449 // from zero
450 class NegLNode : public NegNode {
451 public:
452   NegLNode(Node *in1) : NegNode(in1) {}
453   virtual int Opcode() const;
454   const Type *bottom_type() const { return TypeLong::LONG; }
455   virtual uint ideal_reg() const { return Op_RegL; }
456 };
457 
458 //------------------------------NegFNode---------------------------------------
459 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
460 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
461 // cannot be used to replace negation we have to implement negation as ideal
462 // node; note that negation and addition can replace subtraction.
463 class NegFNode : public NegNode {
464 public:
465   NegFNode( Node *in1 ) : NegNode(in1) {}
466   virtual int Opcode() const;
467   const Type *bottom_type() const { return Type::FLOAT; }
468   virtual uint ideal_reg() const { return Op_RegF; }
469 };
470 
471 //------------------------------NegDNode---------------------------------------
472 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
473 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
474 // cannot be used to replace negation we have to implement negation as ideal
475 // node; note that negation and addition can replace subtraction.
476 class NegDNode : public NegNode {
477 public:
478   NegDNode( Node *in1 ) : NegNode(in1) {}
479   virtual int Opcode() const;
480   const Type *bottom_type() const { return Type::DOUBLE; }
481   virtual uint ideal_reg() const { return Op_RegD; }
482 };
483 
484 //------------------------------AtanDNode--------------------------------------
485 // arcus tangens of a double
486 class AtanDNode : public Node {
487 public:
488   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
489   virtual int Opcode() const;
490   const Type *bottom_type() const { return Type::DOUBLE; }
491   virtual uint ideal_reg() const { return Op_RegD; }
492 };
493 
494 
495 //------------------------------SqrtDNode--------------------------------------
496 // square root a double
497 class SqrtDNode : public Node {
498 public:
499   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
500     init_flags(Flag_is_expensive);
501     C->add_expensive_node(this);
502   }
503   virtual int Opcode() const;
504   const Type *bottom_type() const { return Type::DOUBLE; }
505   virtual uint ideal_reg() const { return Op_RegD; }
506   virtual const Type* Value(PhaseGVN* phase) const;
507 };
508 
509 //------------------------------SqrtFNode--------------------------------------
510 // square root a float
511 class SqrtFNode : public Node {
512 public:
513   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
514     init_flags(Flag_is_expensive);
515     if (c != NULL) {
516       // Treat node only as expensive if a control input is set because it might
517       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
518       // be unique and therefore has no control input.
519       C->add_expensive_node(this);
520     }
521   }
522   virtual int Opcode() const;
523   const Type *bottom_type() const { return Type::FLOAT; }
524   virtual uint ideal_reg() const { return Op_RegF; }
525   virtual const Type* Value(PhaseGVN* phase) const;
526 };
527 
528 //-------------------------------ReverseBytesINode--------------------------------
529 // reverse bytes of an integer
530 class ReverseBytesINode : public Node {
531 public:
532   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
533   virtual int Opcode() const;
534   const Type *bottom_type() const { return TypeInt::INT; }
535   virtual uint ideal_reg() const { return Op_RegI; }
536 };
537 
538 //-------------------------------ReverseBytesLNode--------------------------------
539 // reverse bytes of a long
540 class ReverseBytesLNode : public Node {
541 public:
542   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
543   virtual int Opcode() const;
544   const Type *bottom_type() const { return TypeLong::LONG; }
545   virtual uint ideal_reg() const { return Op_RegL; }
546 };
547 
548 //-------------------------------ReverseBytesUSNode--------------------------------
549 // reverse bytes of an unsigned short / char
550 class ReverseBytesUSNode : public Node {
551 public:
552   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
553   virtual int Opcode() const;
554   const Type *bottom_type() const { return TypeInt::CHAR; }
555   virtual uint ideal_reg() const { return Op_RegI; }
556 };
557 
558 //-------------------------------ReverseBytesSNode--------------------------------
559 // reverse bytes of a short
560 class ReverseBytesSNode : public Node {
561 public:
562   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
563   virtual int Opcode() const;
564   const Type *bottom_type() const { return TypeInt::SHORT; }
565   virtual uint ideal_reg() const { return Op_RegI; }
566 };
567 
568 #endif // SHARE_OPTO_SUBNODE_HPP