1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137   SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138   virtual int Opcode() const;
139   virtual const Type* sub(const Type*, const Type*) const;
140   const Type* add_id() const { return TypeH::ZERO; }
141   const Type* bottom_type() const { return Type::HALF_FLOAT; }
142   virtual uint  ideal_reg() const { return Op_RegF; }
143 };
144 
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150     init_class_id(Class_Cmp);
151   }
152   virtual Node* Identity(PhaseGVN* phase);
153   const Type *add_id() const { return TypeInt::ZERO; }
154   const Type *bottom_type() const { return TypeInt::CC; }
155   virtual uint ideal_reg() const { return Op_RegFlags; }
156 
157   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159 
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165   virtual int Opcode() const;
166   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167   virtual const Type *sub( const Type *, const Type * ) const;
168   virtual const Type* Value(PhaseGVN* phase) const;
169 };
170 
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176   virtual int Opcode() const;
177   virtual const Type *sub( const Type *, const Type * ) const;
178   const Type* Value(PhaseGVN* phase) const;
179   bool is_index_range_check() const;
180 };
181 
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187     // Since it is not consumed by Bools, it is not really a Cmp.
188     init_class_id(Class_Sub);
189   }
190   virtual int Opcode() const;
191   virtual uint ideal_reg() const { return Op_RegI; }
192 };
193 
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199   virtual int Opcode() const;
200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201   virtual const Type *sub( const Type *, const Type * ) const;
202 };
203 
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209   virtual int Opcode() const;
210   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211   virtual const Type *sub( const Type *, const Type * ) const;
212 };
213 
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219   virtual int    Opcode() const;
220   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
221   virtual const Type *sub( const Type *, const Type * ) const;
222 };
223 
224 //------------------------------CmpULNode---------------------------------------
225 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
226 class CmpULNode : public CmpNode {
227 public:
228   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
229   virtual int Opcode() const;
230   virtual const Type* sub(const Type*, const Type*) const;
231 };
232 
233 //------------------------------CmpL3Node--------------------------------------
234 // Compare 2 long values, returning integer value (-1, 0 or 1).
235 class CmpL3Node : public CmpLNode {
236 public:
237   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
238     // Since it is not consumed by Bools, it is not really a Cmp.
239     init_class_id(Class_Sub);
240   }
241   virtual int Opcode() const;
242   virtual uint ideal_reg() const { return Op_RegI; }
243 };
244 
245 //------------------------------CmpUL3Node-------------------------------------
246 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
247 class CmpUL3Node : public CmpULNode {
248 public:
249   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
250     // Since it is not consumed by Bools, it is not really a Cmp.
251     init_class_id(Class_Sub);
252   }
253   virtual int Opcode() const;
254   virtual uint ideal_reg() const { return Op_RegI; }
255 };
256 
257 //------------------------------CmpFNode---------------------------------------
258 // Compare 2 float values, returning condition codes (-1, 0 or 1).
259 // This implements the Java bytecode fcmpl, so unordered returns -1.
260 // Operands may not commute.
261 class CmpFNode : public CmpNode {
262 public:
263   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
264   virtual int Opcode() const;
265   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
266   const Type* Value(PhaseGVN* phase) const;
267 };
268 
269 //------------------------------CmpF3Node--------------------------------------
270 // Compare 2 float values, returning integer value (-1, 0 or 1).
271 // This implements the Java bytecode fcmpl, so unordered returns -1.
272 // Operands may not commute.
273 class CmpF3Node : public CmpFNode {
274 public:
275   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
276     // Since it is not consumed by Bools, it is not really a Cmp.
277     init_class_id(Class_Sub);
278   }
279   virtual int Opcode() const;
280   // Since it is not consumed by Bools, it is not really a Cmp.
281   virtual uint ideal_reg() const { return Op_RegI; }
282 };
283 
284 
285 //------------------------------CmpDNode---------------------------------------
286 // Compare 2 double values, returning condition codes (-1, 0 or 1).
287 // This implements the Java bytecode dcmpl, so unordered returns -1.
288 // Operands may not commute.
289 class CmpDNode : public CmpNode {
290 public:
291   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
292   virtual int Opcode() const;
293   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
294   const Type* Value(PhaseGVN* phase) const;
295   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
296 };
297 
298 //------------------------------CmpD3Node--------------------------------------
299 // Compare 2 double values, returning integer value (-1, 0 or 1).
300 // This implements the Java bytecode dcmpl, so unordered returns -1.
301 // Operands may not commute.
302 class CmpD3Node : public CmpDNode {
303 public:
304   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
305     // Since it is not consumed by Bools, it is not really a Cmp.
306     init_class_id(Class_Sub);
307   }
308   virtual int Opcode() const;
309   virtual uint ideal_reg() const { return Op_RegI; }
310 };
311 
312 
313 //------------------------------BoolTest---------------------------------------
314 // Convert condition codes to a boolean test value (0 or -1).
315 // We pick the values as 3 bits; the low order 2 bits we compare against the
316 // condition codes, the high bit flips the sense of the result.
317 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
318 struct BoolTest {
319   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
320               // The following values are used with vector compares
321               // A BoolTest value should not be constructed for such values
322               unsigned_compare = 16,
323               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
324   mask _test;
325   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
326   const Type *cc2logical( const Type *CC ) const;
327   // Commute the test.  I use a small table lookup.  The table is created as
328   // a simple char array where each element is the ASCII version of a 'mask'
329   // enum from above.
330   mask commute( ) const { return mask("032147658"[_test]-'0'); }
331   mask negate( ) const { return negate_mask(_test); }
332   // Return the negative mask for the given mask, for both signed and unsigned comparison.
333   static mask negate_mask(mask btm) { return mask(btm ^ 4); }
334   static mask unsigned_mask(mask btm) { return mask(btm | unsigned_compare); }
335   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
336   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
337   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
338   void dump_on(outputStream *st) const;
339   mask merge(BoolTest other) const;
340 };
341 
342 //------------------------------BoolNode---------------------------------------
343 // A Node to convert a Condition Codes to a Logical result.
344 class BoolNode : public Node {
345   virtual uint hash() const;
346   virtual bool cmp( const Node &n ) const;
347   virtual uint size_of() const;
348 
349   // Try to optimize signed integer comparison
350   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
351                   int cmp1_op, const TypeInt* cmp2_type);
352 public:
353   const BoolTest _test;
354   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
355     init_class_id(Class_Bool);
356   }
357   // Convert an arbitrary int value to a Bool or other suitable predicate.
358   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
359   // Convert self back to an integer value.
360   Node* as_int_value(PhaseGVN* phase);
361   // Invert sense of self, returning new Bool.
362   BoolNode* negate(PhaseGVN* phase);
363   virtual int Opcode() const;
364   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
365   const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
366   virtual const Type* Value(PhaseGVN* phase) const;
367   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
368   uint match_edge(uint idx) const { return 0; }
369   virtual uint ideal_reg() const { return Op_RegI; }
370 
371   bool is_counted_loop_exit_test();
372 #ifndef PRODUCT
373   virtual void dump_spec(outputStream *st) const;
374 #endif
375 };
376 
377 //------------------------------AbsNode----------------------------------------
378 // Abstract class for absolute value.  Mostly used to get a handy wrapper
379 // for finding this pattern in the graph.
380 class AbsNode : public Node {
381 public:
382   AbsNode( Node *value ) : Node(nullptr,value) {}
383   virtual Node* Identity(PhaseGVN* phase);
384   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
385   virtual const Type* Value(PhaseGVN* phase) const;
386 };
387 
388 //------------------------------AbsINode---------------------------------------
389 // Absolute value an integer.  Since a naive graph involves control flow, we
390 // "match" it in the ideal world (so the control flow can be removed).
391 class AbsINode : public AbsNode {
392 public:
393   AbsINode( Node *in1 ) : AbsNode(in1) {}
394   virtual int Opcode() const;
395   const Type *bottom_type() const { return TypeInt::INT; }
396   virtual uint ideal_reg() const { return Op_RegI; }
397 };
398 
399 //------------------------------AbsLNode---------------------------------------
400 // Absolute value a long.  Since a naive graph involves control flow, we
401 // "match" it in the ideal world (so the control flow can be removed).
402 class AbsLNode : public AbsNode {
403 public:
404   AbsLNode( Node *in1 ) : AbsNode(in1) {}
405   virtual int Opcode() const;
406   const Type *bottom_type() const { return TypeLong::LONG; }
407   virtual uint ideal_reg() const { return Op_RegL; }
408 };
409 
410 //------------------------------AbsFNode---------------------------------------
411 // Absolute value a float, a common float-point idiom with a cheap hardware
412 // implementation on most chips.  Since a naive graph involves control flow, we
413 // "match" it in the ideal world (so the control flow can be removed).
414 class AbsFNode : public AbsNode {
415 public:
416   AbsFNode( Node *in1 ) : AbsNode(in1) {}
417   virtual int Opcode() const;
418   const Type *bottom_type() const { return Type::FLOAT; }
419   virtual uint ideal_reg() const { return Op_RegF; }
420 };
421 
422 //------------------------------AbsDNode---------------------------------------
423 // Absolute value a double, a common float-point idiom with a cheap hardware
424 // implementation on most chips.  Since a naive graph involves control flow, we
425 // "match" it in the ideal world (so the control flow can be removed).
426 class AbsDNode : public AbsNode {
427 public:
428   AbsDNode( Node *in1 ) : AbsNode(in1) {}
429   virtual int Opcode() const;
430   const Type *bottom_type() const { return Type::DOUBLE; }
431   virtual uint ideal_reg() const { return Op_RegD; }
432 };
433 
434 
435 //------------------------------CmpLTMaskNode----------------------------------
436 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
437 class CmpLTMaskNode : public Node {
438 public:
439   CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
440   virtual int Opcode() const;
441   const Type *bottom_type() const { return TypeInt::INT; }
442   virtual uint ideal_reg() const { return Op_RegI; }
443 };
444 
445 
446 //------------------------------NegNode----------------------------------------
447 class NegNode : public Node {
448 public:
449   NegNode(Node* in1) : Node(nullptr, in1) {
450     init_class_id(Class_Neg);
451   }
452 };
453 
454 //------------------------------NegINode---------------------------------------
455 // Negate value an int.  For int values, negation is the same as subtraction
456 // from zero
457 class NegINode : public NegNode {
458 public:
459   NegINode(Node *in1) : NegNode(in1) {}
460   virtual int Opcode() const;
461   const Type *bottom_type() const { return TypeInt::INT; }
462   virtual uint ideal_reg() const { return Op_RegI; }
463 };
464 
465 //------------------------------NegLNode---------------------------------------
466 // Negate value an int.  For int values, negation is the same as subtraction
467 // from zero
468 class NegLNode : public NegNode {
469 public:
470   NegLNode(Node *in1) : NegNode(in1) {}
471   virtual int Opcode() const;
472   const Type *bottom_type() const { return TypeLong::LONG; }
473   virtual uint ideal_reg() const { return Op_RegL; }
474 };
475 
476 //------------------------------NegFNode---------------------------------------
477 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
478 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
479 // cannot be used to replace negation we have to implement negation as ideal
480 // node; note that negation and addition can replace subtraction.
481 class NegFNode : public NegNode {
482 public:
483   NegFNode( Node *in1 ) : NegNode(in1) {}
484   virtual int Opcode() const;
485   const Type *bottom_type() const { return Type::FLOAT; }
486   virtual uint ideal_reg() const { return Op_RegF; }
487 };
488 
489 //------------------------------NegDNode---------------------------------------
490 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
491 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
492 // cannot be used to replace negation we have to implement negation as ideal
493 // node; note that negation and addition can replace subtraction.
494 class NegDNode : public NegNode {
495 public:
496   NegDNode( Node *in1 ) : NegNode(in1) {}
497   virtual int Opcode() const;
498   const Type *bottom_type() const { return Type::DOUBLE; }
499   virtual uint ideal_reg() const { return Op_RegD; }
500 };
501 
502 //------------------------------AtanDNode--------------------------------------
503 // arcus tangens of a double
504 class AtanDNode : public Node {
505 public:
506   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
507   virtual int Opcode() const;
508   const Type *bottom_type() const { return Type::DOUBLE; }
509   virtual uint ideal_reg() const { return Op_RegD; }
510 };
511 
512 
513 //------------------------------SqrtDNode--------------------------------------
514 // square root a double
515 class SqrtDNode : public Node {
516 public:
517   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
518     init_flags(Flag_is_expensive);
519     C->add_expensive_node(this);
520   }
521   virtual int Opcode() const;
522   const Type *bottom_type() const { return Type::DOUBLE; }
523   virtual uint ideal_reg() const { return Op_RegD; }
524   virtual const Type* Value(PhaseGVN* phase) const;
525 };
526 
527 //------------------------------SqrtFNode--------------------------------------
528 // square root a float
529 class SqrtFNode : public Node {
530 public:
531   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
532     init_flags(Flag_is_expensive);
533     if (c != nullptr) {
534       // Treat node only as expensive if a control input is set because it might
535       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
536       // be unique and therefore has no control input.
537       C->add_expensive_node(this);
538     }
539   }
540   virtual int Opcode() const;
541   const Type *bottom_type() const { return Type::FLOAT; }
542   virtual uint ideal_reg() const { return Op_RegF; }
543   virtual const Type* Value(PhaseGVN* phase) const;
544 };
545 
546 //------------------------------SqrtHFNode-------------------------------------
547 // square root of a half-precision float
548 class SqrtHFNode : public Node {
549 public:
550   SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
551     init_flags(Flag_is_expensive);
552     C->add_expensive_node(this);
553   }
554   virtual int Opcode() const;
555   const Type* bottom_type() const { return Type::HALF_FLOAT; }
556   virtual uint ideal_reg() const { return Op_RegF; }
557   virtual const Type* Value(PhaseGVN* phase) const;
558 };
559 
560 
561 class ReverseBytesNode : public Node {
562 public:
563   ReverseBytesNode(Node* in) : Node(nullptr, in) {}
564   virtual const Type* Value(PhaseGVN* phase) const;
565 };
566 //-------------------------------ReverseBytesINode--------------------------------
567 // reverse bytes of an integer
568 class ReverseBytesINode : public ReverseBytesNode {
569 public:
570   ReverseBytesINode(Node* in) : ReverseBytesNode(in) {}
571   virtual int Opcode() const;
572   const Type* bottom_type() const { return TypeInt::INT; }
573   virtual uint ideal_reg() const { return Op_RegI; }
574 };
575 
576 //-------------------------------ReverseBytesLNode--------------------------------
577 // reverse bytes of a long
578 class ReverseBytesLNode : public ReverseBytesNode {
579 public:
580   ReverseBytesLNode(Node* in) : ReverseBytesNode(in) {}
581   virtual int Opcode() const;
582   const Type* bottom_type() const { return TypeLong::LONG; }
583   virtual uint ideal_reg() const { return Op_RegL; }
584 };
585 
586 //-------------------------------ReverseBytesUSNode--------------------------------
587 // reverse bytes of an unsigned short / char
588 class ReverseBytesUSNode : public ReverseBytesNode {
589 public:
590   ReverseBytesUSNode(Node* in1) : ReverseBytesNode(in1) {}
591   virtual int Opcode() const;
592   const Type* bottom_type() const { return TypeInt::CHAR; }
593   virtual uint ideal_reg() const { return Op_RegI; }
594 };
595 
596 //-------------------------------ReverseBytesSNode--------------------------------
597 // reverse bytes of a short
598 class ReverseBytesSNode : public ReverseBytesNode {
599 public:
600   ReverseBytesSNode(Node* in) : ReverseBytesNode(in) {}
601   virtual int Opcode() const;
602   const Type* bottom_type() const { return TypeInt::SHORT; }
603   virtual uint ideal_reg() const { return Op_RegI; }
604 };
605 
606 //-------------------------------ReverseINode--------------------------------
607 // reverse bits of an int
608 class ReverseINode : public Node {
609 public:
610   ReverseINode(Node* in) : Node(nullptr,in) {}
611   virtual int Opcode() const;
612   const Type* bottom_type() const { return TypeInt::INT; }
613   virtual uint ideal_reg() const { return Op_RegI; }
614   virtual Node* Identity(PhaseGVN* phase);
615   virtual const Type* Value(PhaseGVN* phase) const;
616 };
617 
618 //-------------------------------ReverseLNode--------------------------------
619 // reverse bits of a long
620 class ReverseLNode : public Node {
621 public:
622   ReverseLNode(Node* in) : Node(nullptr, in) {}
623   virtual int Opcode() const;
624   const Type* bottom_type() const { return TypeLong::LONG; }
625   virtual uint ideal_reg() const { return Op_RegL; }
626   virtual Node* Identity(PhaseGVN* phase);
627   virtual const Type* Value(PhaseGVN* phase) const;
628 };
629 
630 #endif // SHARE_OPTO_SUBNODE_HPP