1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_SUBNODE_HPP
26 #define SHARE_OPTO_SUBNODE_HPP
27
28 #include "opto/node.hpp"
29 #include "opto/opcodes.hpp"
30 #include "opto/type.hpp"
31
32 // Portions of code courtesy of Clifford Click
33
34 //------------------------------SUBNode----------------------------------------
35 // Class SUBTRACTION functionality. This covers all the usual 'subtract'
36 // behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
37 // -float, and -double are all inherited from this class. The compare
38 // functions behave like subtract functions, except that all negative answers
39 // are compressed into -1, and all positive answers compressed to 1.
40 class SubNode : public Node {
41 public:
42 SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
43 init_class_id(Class_Sub);
44 }
45
46 // Handle algebraic identities here. If we have an identity, return the Node
47 // we are equivalent to. We look for "add of zero" as an identity.
48 virtual Node* Identity(PhaseGVN* phase);
49
50 // Compute a new Type for this node. Basically we just do the pre-check,
51 // then call the virtual add() to set the type.
52 virtual const Type* Value(PhaseGVN* phase) const;
53 const Type* Value_common(PhaseValues* phase) const;
54
55 // Supplied function returns the subtractend of the inputs.
56 // This also type-checks the inputs for sanity. Guaranteed never to
57 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
58 virtual const Type *sub( const Type *, const Type * ) const = 0;
59
60 // Supplied function to return the additive identity type.
61 // This is returned whenever the subtracts inputs are the same.
62 virtual const Type *add_id() const = 0;
63
64 static SubNode* make(Node* in1, Node* in2, BasicType bt);
65 };
66
67
68 // NOTE: SubINode should be taken away and replaced by add and negate
69 //------------------------------SubINode---------------------------------------
70 // Subtract 2 integers
71 class SubINode : public SubNode {
72 public:
73 SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
74 virtual int Opcode() const;
75 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
76 virtual const Type *sub( const Type *, const Type * ) const;
77 const Type *add_id() const { return TypeInt::ZERO; }
78 const Type *bottom_type() const { return TypeInt::INT; }
79 virtual uint ideal_reg() const { return Op_RegI; }
80 };
81
82 //------------------------------SubLNode---------------------------------------
83 // Subtract 2 integers
84 class SubLNode : public SubNode {
85 public:
86 SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
87 virtual int Opcode() const;
88 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
89 virtual const Type *sub( const Type *, const Type * ) const;
90 const Type *add_id() const { return TypeLong::ZERO; }
91 const Type *bottom_type() const { return TypeLong::LONG; }
92 virtual uint ideal_reg() const { return Op_RegL; }
93 };
94
95 // NOTE: SubFPNode should be taken away and replaced by add and negate
96 //------------------------------SubFPNode--------------------------------------
97 // Subtract 2 floats or doubles
98 class SubFPNode : public SubNode {
99 protected:
100 SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102 const Type* Value(PhaseGVN* phase) const;
103 };
104
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110 SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111 virtual int Opcode() const;
112 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113 virtual const Type *sub( const Type *, const Type * ) const;
114 const Type *add_id() const { return TypeF::ZERO; }
115 const Type *bottom_type() const { return Type::FLOAT; }
116 virtual uint ideal_reg() const { return Op_RegF; }
117 };
118
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124 SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125 virtual int Opcode() const;
126 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127 virtual const Type *sub( const Type *, const Type * ) const;
128 const Type *add_id() const { return TypeD::ZERO; }
129 const Type *bottom_type() const { return Type::DOUBLE; }
130 virtual uint ideal_reg() const { return Op_RegD; }
131 };
132
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137 SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138 virtual int Opcode() const;
139 virtual const Type* sub(const Type*, const Type*) const;
140 const Type* add_id() const { return TypeH::ZERO; }
141 const Type* bottom_type() const { return Type::HALF_FLOAT; }
142 virtual uint ideal_reg() const { return Op_RegF; }
143 };
144
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149 CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150 init_class_id(Class_Cmp);
151 }
152 virtual Node* Identity(PhaseGVN* phase);
153 const Type *add_id() const { return TypeInt::ZERO; }
154 const Type *bottom_type() const { return TypeInt::CC; }
155 virtual uint ideal_reg() const { return Op_RegFlags; }
156
157 static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164 CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165 virtual int Opcode() const;
166 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167 virtual const Type *sub( const Type *, const Type * ) const;
168 virtual const Type* Value(PhaseGVN* phase) const;
169 };
170
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175 CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176 virtual int Opcode() const;
177 virtual const Type *sub( const Type *, const Type * ) const;
178 const Type* Value(PhaseGVN* phase) const;
179 bool is_index_range_check() const;
180 };
181
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186 CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187 // Since it is not consumed by Bools, it is not really a Cmp.
188 init_class_id(Class_Sub);
189 }
190 virtual int Opcode() const;
191 virtual uint ideal_reg() const { return Op_RegI; }
192 };
193
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198 CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199 virtual int Opcode() const;
200 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201 virtual const Type *sub( const Type *, const Type * ) const;
202 };
203
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208 CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209 virtual int Opcode() const;
210 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211 virtual const Type *sub( const Type *, const Type * ) const;
212 };
213
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218 CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219 virtual int Opcode() const;
220 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
221 virtual const Type* Value(PhaseGVN* phase) const;
222 virtual const Type *sub( const Type *, const Type * ) const;
223 bool is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const;
224 };
225
226 //------------------------------CmpULNode---------------------------------------
227 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
228 class CmpULNode : public CmpNode {
229 public:
230 CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
231 virtual int Opcode() const;
232 virtual const Type* sub(const Type*, const Type*) const;
233 };
234
235 //------------------------------CmpL3Node--------------------------------------
236 // Compare 2 long values, returning integer value (-1, 0 or 1).
237 class CmpL3Node : public CmpLNode {
238 public:
239 CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
240 // Since it is not consumed by Bools, it is not really a Cmp.
241 init_class_id(Class_Sub);
242 }
243 virtual int Opcode() const;
244 virtual uint ideal_reg() const { return Op_RegI; }
245 };
246
247 //------------------------------CmpUL3Node-------------------------------------
248 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
249 class CmpUL3Node : public CmpULNode {
250 public:
251 CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
252 // Since it is not consumed by Bools, it is not really a Cmp.
253 init_class_id(Class_Sub);
254 }
255 virtual int Opcode() const;
256 virtual uint ideal_reg() const { return Op_RegI; }
257 };
258
259 //------------------------------CmpFNode---------------------------------------
260 // Compare 2 float values, returning condition codes (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpFNode : public CmpNode {
264 public:
265 CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
266 virtual int Opcode() const;
267 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
268 const Type* Value(PhaseGVN* phase) const;
269 };
270
271 //------------------------------CmpF3Node--------------------------------------
272 // Compare 2 float values, returning integer value (-1, 0 or 1).
273 // This implements the Java bytecode fcmpl, so unordered returns -1.
274 // Operands may not commute.
275 class CmpF3Node : public CmpFNode {
276 public:
277 CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
278 // Since it is not consumed by Bools, it is not really a Cmp.
279 init_class_id(Class_Sub);
280 }
281 virtual int Opcode() const;
282 // Since it is not consumed by Bools, it is not really a Cmp.
283 virtual uint ideal_reg() const { return Op_RegI; }
284 };
285
286
287 //------------------------------CmpDNode---------------------------------------
288 // Compare 2 double values, returning condition codes (-1, 0 or 1).
289 // This implements the Java bytecode dcmpl, so unordered returns -1.
290 // Operands may not commute.
291 class CmpDNode : public CmpNode {
292 public:
293 CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
294 virtual int Opcode() const;
295 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
296 const Type* Value(PhaseGVN* phase) const;
297 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
298 };
299
300 //------------------------------CmpD3Node--------------------------------------
301 // Compare 2 double values, returning integer value (-1, 0 or 1).
302 // This implements the Java bytecode dcmpl, so unordered returns -1.
303 // Operands may not commute.
304 class CmpD3Node : public CmpDNode {
305 public:
306 CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
307 // Since it is not consumed by Bools, it is not really a Cmp.
308 init_class_id(Class_Sub);
309 }
310 virtual int Opcode() const;
311 virtual uint ideal_reg() const { return Op_RegI; }
312 };
313
314 //--------------------------FlatArrayCheckNode---------------------------------
315 // Returns true if one of the input array objects or array klass ptrs (there
316 // can be multiple) is flat.
317 class FlatArrayCheckNode : public CmpNode {
318 public:
319 enum {
320 Control,
321 Memory,
322 ArrayOrKlass
323 };
324 FlatArrayCheckNode(Compile* C, Node* mem, Node* array_or_klass) : CmpNode(mem, array_or_klass) {
325 init_class_id(Class_FlatArrayCheck);
326 init_flags(Flag_is_macro);
327 C->add_macro_node(this);
328 }
329 virtual int Opcode() const;
330 virtual const Type* sub(const Type*, const Type*) const { ShouldNotReachHere(); return nullptr; }
331 const Type* Value(PhaseGVN* phase) const;
332 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
333 };
334
335 //------------------------------BoolTest---------------------------------------
336 // Convert condition codes to a boolean test value (0 or -1).
337 // We pick the values as 3 bits; the low order 2 bits we compare against the
338 // condition codes, the high bit flips the sense of the result.
339 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
340 struct BoolTest {
341 enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
342 // The following values are used with vector compares
343 // A BoolTest value should not be constructed for such values
344 unsigned_compare = 16,
345 ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
346 mask _test;
347 BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
348 const Type *cc2logical( const Type *CC ) const;
349 // Commute the test. I use a small table lookup. The table is created as
350 // a simple char array where each element is the ASCII version of a 'mask'
351 // enum from above.
352 mask commute( ) const { return mask("032147658"[_test]-'0'); }
353 mask negate( ) const { return negate_mask(_test); }
354 // Return the negative mask for the given mask, for both signed and unsigned comparison.
355 static mask negate_mask(mask btm) { return mask(btm ^ 4); }
356 bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
357 bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; }
358 bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
359 void dump_on(outputStream *st) const;
360 mask merge(BoolTest other) const;
361 };
362
363 //------------------------------BoolNode---------------------------------------
364 // A Node to convert a Condition Codes to a Logical result.
365 class BoolNode : public Node {
366 virtual uint hash() const;
367 virtual bool cmp( const Node &n ) const;
368 virtual uint size_of() const;
369
370 // Try to optimize signed integer comparison
371 Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
372 int cmp1_op, const TypeInt* cmp2_type);
373 public:
374 const BoolTest _test;
375 BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
376 init_class_id(Class_Bool);
377 }
378 // Convert an arbitrary int value to a Bool or other suitable predicate.
379 static Node* make_predicate(Node* test_value, PhaseGVN* phase);
380 // Convert self back to an integer value.
381 Node* as_int_value(PhaseGVN* phase);
382 // Invert sense of self, returning new Bool.
383 BoolNode* negate(PhaseGVN* phase);
384 virtual int Opcode() const;
385 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
386 const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
387 virtual const Type* Value(PhaseGVN* phase) const;
388 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
389 uint match_edge(uint idx) const { return 0; }
390 virtual uint ideal_reg() const { return Op_RegI; }
391
392 bool is_counted_loop_exit_test();
393 #ifndef PRODUCT
394 virtual void dump_spec(outputStream *st) const;
395 #endif
396 };
397
398 //------------------------------AbsNode----------------------------------------
399 // Abstract class for absolute value. Mostly used to get a handy wrapper
400 // for finding this pattern in the graph.
401 class AbsNode : public Node {
402 public:
403 AbsNode( Node *value ) : Node(nullptr,value) {}
404 virtual Node* Identity(PhaseGVN* phase);
405 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
406 virtual const Type* Value(PhaseGVN* phase) const;
407 };
408
409 //------------------------------AbsINode---------------------------------------
410 // Absolute value an integer. Since a naive graph involves control flow, we
411 // "match" it in the ideal world (so the control flow can be removed).
412 class AbsINode : public AbsNode {
413 public:
414 AbsINode( Node *in1 ) : AbsNode(in1) {}
415 virtual int Opcode() const;
416 const Type *bottom_type() const { return TypeInt::INT; }
417 virtual uint ideal_reg() const { return Op_RegI; }
418 };
419
420 //------------------------------AbsLNode---------------------------------------
421 // Absolute value a long. Since a naive graph involves control flow, we
422 // "match" it in the ideal world (so the control flow can be removed).
423 class AbsLNode : public AbsNode {
424 public:
425 AbsLNode( Node *in1 ) : AbsNode(in1) {}
426 virtual int Opcode() const;
427 const Type *bottom_type() const { return TypeLong::LONG; }
428 virtual uint ideal_reg() const { return Op_RegL; }
429 };
430
431 //------------------------------AbsFNode---------------------------------------
432 // Absolute value a float, a common float-point idiom with a cheap hardware
433 // implementation on most chips. Since a naive graph involves control flow, we
434 // "match" it in the ideal world (so the control flow can be removed).
435 class AbsFNode : public AbsNode {
436 public:
437 AbsFNode( Node *in1 ) : AbsNode(in1) {}
438 virtual int Opcode() const;
439 const Type *bottom_type() const { return Type::FLOAT; }
440 virtual uint ideal_reg() const { return Op_RegF; }
441 };
442
443 //------------------------------AbsDNode---------------------------------------
444 // Absolute value a double, a common float-point idiom with a cheap hardware
445 // implementation on most chips. Since a naive graph involves control flow, we
446 // "match" it in the ideal world (so the control flow can be removed).
447 class AbsDNode : public AbsNode {
448 public:
449 AbsDNode( Node *in1 ) : AbsNode(in1) {}
450 virtual int Opcode() const;
451 const Type *bottom_type() const { return Type::DOUBLE; }
452 virtual uint ideal_reg() const { return Op_RegD; }
453 };
454
455
456 //------------------------------CmpLTMaskNode----------------------------------
457 // If p < q, return -1 else return 0. Nice for flow-free idioms.
458 class CmpLTMaskNode : public Node {
459 public:
460 CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
461 virtual int Opcode() const;
462 const Type *bottom_type() const { return TypeInt::INT; }
463 virtual uint ideal_reg() const { return Op_RegI; }
464 };
465
466
467 //------------------------------NegNode----------------------------------------
468 class NegNode : public Node {
469 public:
470 NegNode(Node* in1) : Node(nullptr, in1) {
471 init_class_id(Class_Neg);
472 }
473 };
474
475 //------------------------------NegINode---------------------------------------
476 // Negate value an int. For int values, negation is the same as subtraction
477 // from zero
478 class NegINode : public NegNode {
479 public:
480 NegINode(Node *in1) : NegNode(in1) {}
481 virtual int Opcode() const;
482 const Type *bottom_type() const { return TypeInt::INT; }
483 virtual uint ideal_reg() const { return Op_RegI; }
484 };
485
486 //------------------------------NegLNode---------------------------------------
487 // Negate value an int. For int values, negation is the same as subtraction
488 // from zero
489 class NegLNode : public NegNode {
490 public:
491 NegLNode(Node *in1) : NegNode(in1) {}
492 virtual int Opcode() const;
493 const Type *bottom_type() const { return TypeLong::LONG; }
494 virtual uint ideal_reg() const { return Op_RegL; }
495 };
496
497 //------------------------------NegFNode---------------------------------------
498 // Negate value a float. Negating 0.0 returns -0.0, but subtracting from
499 // zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
500 // cannot be used to replace negation we have to implement negation as ideal
501 // node; note that negation and addition can replace subtraction.
502 class NegFNode : public NegNode {
503 public:
504 NegFNode( Node *in1 ) : NegNode(in1) {}
505 virtual int Opcode() const;
506 const Type *bottom_type() const { return Type::FLOAT; }
507 virtual uint ideal_reg() const { return Op_RegF; }
508 };
509
510 //------------------------------NegDNode---------------------------------------
511 // Negate value a double. Negating 0.0 returns -0.0, but subtracting from
512 // zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
513 // cannot be used to replace negation we have to implement negation as ideal
514 // node; note that negation and addition can replace subtraction.
515 class NegDNode : public NegNode {
516 public:
517 NegDNode( Node *in1 ) : NegNode(in1) {}
518 virtual int Opcode() const;
519 const Type *bottom_type() const { return Type::DOUBLE; }
520 virtual uint ideal_reg() const { return Op_RegD; }
521 };
522
523 //------------------------------AtanDNode--------------------------------------
524 // arcus tangens of a double
525 class AtanDNode : public Node {
526 public:
527 AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
528 virtual int Opcode() const;
529 const Type *bottom_type() const { return Type::DOUBLE; }
530 virtual uint ideal_reg() const { return Op_RegD; }
531 };
532
533
534 //------------------------------SqrtDNode--------------------------------------
535 // square root a double
536 class SqrtDNode : public Node {
537 public:
538 SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
539 init_flags(Flag_is_expensive);
540 C->add_expensive_node(this);
541 }
542 virtual int Opcode() const;
543 const Type *bottom_type() const { return Type::DOUBLE; }
544 virtual uint ideal_reg() const { return Op_RegD; }
545 virtual const Type* Value(PhaseGVN* phase) const;
546 };
547
548 //------------------------------SqrtFNode--------------------------------------
549 // square root a float
550 class SqrtFNode : public Node {
551 public:
552 SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
553 init_flags(Flag_is_expensive);
554 if (c != nullptr) {
555 // Treat node only as expensive if a control input is set because it might
556 // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
557 // be unique and therefore has no control input.
558 C->add_expensive_node(this);
559 }
560 }
561 virtual int Opcode() const;
562 const Type *bottom_type() const { return Type::FLOAT; }
563 virtual uint ideal_reg() const { return Op_RegF; }
564 virtual const Type* Value(PhaseGVN* phase) const;
565 };
566
567 //------------------------------SqrtHFNode-------------------------------------
568 // square root of a half-precision float
569 class SqrtHFNode : public Node {
570 public:
571 SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
572 init_flags(Flag_is_expensive);
573 C->add_expensive_node(this);
574 }
575 virtual int Opcode() const;
576 const Type* bottom_type() const { return Type::HALF_FLOAT; }
577 virtual uint ideal_reg() const { return Op_RegF; }
578 virtual const Type* Value(PhaseGVN* phase) const;
579 };
580
581
582 class ReverseBytesNode : public Node {
583 public:
584 ReverseBytesNode(Node* in) : Node(nullptr, in) {}
585 virtual const Type* Value(PhaseGVN* phase) const;
586 };
587 //-------------------------------ReverseBytesINode--------------------------------
588 // reverse bytes of an integer
589 class ReverseBytesINode : public ReverseBytesNode {
590 public:
591 ReverseBytesINode(Node* in) : ReverseBytesNode(in) {}
592 virtual int Opcode() const;
593 const Type* bottom_type() const { return TypeInt::INT; }
594 virtual uint ideal_reg() const { return Op_RegI; }
595 };
596
597 //-------------------------------ReverseBytesLNode--------------------------------
598 // reverse bytes of a long
599 class ReverseBytesLNode : public ReverseBytesNode {
600 public:
601 ReverseBytesLNode(Node* in) : ReverseBytesNode(in) {}
602 virtual int Opcode() const;
603 const Type* bottom_type() const { return TypeLong::LONG; }
604 virtual uint ideal_reg() const { return Op_RegL; }
605 };
606
607 //-------------------------------ReverseBytesUSNode--------------------------------
608 // reverse bytes of an unsigned short / char
609 class ReverseBytesUSNode : public ReverseBytesNode {
610 public:
611 ReverseBytesUSNode(Node* in1) : ReverseBytesNode(in1) {}
612 virtual int Opcode() const;
613 const Type* bottom_type() const { return TypeInt::CHAR; }
614 virtual uint ideal_reg() const { return Op_RegI; }
615 };
616
617 //-------------------------------ReverseBytesSNode--------------------------------
618 // reverse bytes of a short
619 class ReverseBytesSNode : public ReverseBytesNode {
620 public:
621 ReverseBytesSNode(Node* in) : ReverseBytesNode(in) {}
622 virtual int Opcode() const;
623 const Type* bottom_type() const { return TypeInt::SHORT; }
624 virtual uint ideal_reg() const { return Op_RegI; }
625 };
626
627 //-------------------------------ReverseINode--------------------------------
628 // reverse bits of an int
629 class ReverseINode : public Node {
630 public:
631 ReverseINode(Node* in) : Node(nullptr,in) {}
632 virtual int Opcode() const;
633 const Type* bottom_type() const { return TypeInt::INT; }
634 virtual uint ideal_reg() const { return Op_RegI; }
635 virtual Node* Identity(PhaseGVN* phase);
636 virtual const Type* Value(PhaseGVN* phase) const;
637 };
638
639 //-------------------------------ReverseLNode--------------------------------
640 // reverse bits of a long
641 class ReverseLNode : public Node {
642 public:
643 ReverseLNode(Node* in) : Node(nullptr, in) {}
644 virtual int Opcode() const;
645 const Type* bottom_type() const { return TypeLong::LONG; }
646 virtual uint ideal_reg() const { return Op_RegL; }
647 virtual Node* Identity(PhaseGVN* phase);
648 virtual const Type* Value(PhaseGVN* phase) const;
649 };
650
651 #endif // SHARE_OPTO_SUBNODE_HPP