1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137   SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138   virtual int Opcode() const;
139   virtual const Type* sub(const Type*, const Type*) const;
140   const Type* add_id() const { return TypeH::ZERO; }
141   const Type* bottom_type() const { return Type::HALF_FLOAT; }
142   virtual uint  ideal_reg() const { return Op_RegF; }
143 };
144 
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150     init_class_id(Class_Cmp);
151   }
152   virtual Node* Identity(PhaseGVN* phase);
153   const Type *add_id() const { return TypeInt::ZERO; }
154   const Type *bottom_type() const { return TypeInt::CC; }
155   virtual uint ideal_reg() const { return Op_RegFlags; }
156 
157   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159 
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165   virtual int Opcode() const;
166   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167   virtual const Type *sub( const Type *, const Type * ) const;
168   virtual const Type* Value(PhaseGVN* phase) const;
169 };
170 
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176   virtual int Opcode() const;
177   virtual const Type *sub( const Type *, const Type * ) const;
178   const Type* Value(PhaseGVN* phase) const;
179   bool is_index_range_check() const;
180 };
181 
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187     // Since it is not consumed by Bools, it is not really a Cmp.
188     init_class_id(Class_Sub);
189   }
190   virtual int Opcode() const;
191   virtual uint ideal_reg() const { return Op_RegI; }
192 };
193 
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199   virtual int Opcode() const;
200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201   virtual const Type *sub( const Type *, const Type * ) const;
202 };
203 
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209   virtual int Opcode() const;
210   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211   virtual const Type *sub( const Type *, const Type * ) const;
212 };
213 
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219   virtual int    Opcode() const;
220   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
221   virtual const Type* Value(PhaseGVN* phase) const;
222   virtual const Type *sub( const Type *, const Type * ) const;
223   bool is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const;
224 };
225 
226 //------------------------------CmpULNode---------------------------------------
227 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
228 class CmpULNode : public CmpNode {
229 public:
230   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
231   virtual int Opcode() const;
232   virtual const Type* sub(const Type*, const Type*) const;
233 };
234 
235 //------------------------------CmpL3Node--------------------------------------
236 // Compare 2 long values, returning integer value (-1, 0 or 1).
237 class CmpL3Node : public CmpLNode {
238 public:
239   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
240     // Since it is not consumed by Bools, it is not really a Cmp.
241     init_class_id(Class_Sub);
242   }
243   virtual int Opcode() const;
244   virtual uint ideal_reg() const { return Op_RegI; }
245 };
246 
247 //------------------------------CmpUL3Node-------------------------------------
248 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
249 class CmpUL3Node : public CmpULNode {
250 public:
251   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
252     // Since it is not consumed by Bools, it is not really a Cmp.
253     init_class_id(Class_Sub);
254   }
255   virtual int Opcode() const;
256   virtual uint ideal_reg() const { return Op_RegI; }
257 };
258 
259 //------------------------------CmpFNode---------------------------------------
260 // Compare 2 float values, returning condition codes (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpFNode : public CmpNode {
264 public:
265   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
266   virtual int Opcode() const;
267   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
268   const Type* Value(PhaseGVN* phase) const;
269 };
270 
271 //------------------------------CmpF3Node--------------------------------------
272 // Compare 2 float values, returning integer value (-1, 0 or 1).
273 // This implements the Java bytecode fcmpl, so unordered returns -1.
274 // Operands may not commute.
275 class CmpF3Node : public CmpFNode {
276 public:
277   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
278     // Since it is not consumed by Bools, it is not really a Cmp.
279     init_class_id(Class_Sub);
280   }
281   virtual int Opcode() const;
282   // Since it is not consumed by Bools, it is not really a Cmp.
283   virtual uint ideal_reg() const { return Op_RegI; }
284 };
285 
286 
287 //------------------------------CmpDNode---------------------------------------
288 // Compare 2 double values, returning condition codes (-1, 0 or 1).
289 // This implements the Java bytecode dcmpl, so unordered returns -1.
290 // Operands may not commute.
291 class CmpDNode : public CmpNode {
292 public:
293   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
294   virtual int Opcode() const;
295   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
296   const Type* Value(PhaseGVN* phase) const;
297   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
298 };
299 
300 //------------------------------CmpD3Node--------------------------------------
301 // Compare 2 double values, returning integer value (-1, 0 or 1).
302 // This implements the Java bytecode dcmpl, so unordered returns -1.
303 // Operands may not commute.
304 class CmpD3Node : public CmpDNode {
305 public:
306   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
307     // Since it is not consumed by Bools, it is not really a Cmp.
308     init_class_id(Class_Sub);
309   }
310   virtual int Opcode() const;
311   virtual uint ideal_reg() const { return Op_RegI; }
312 };
313 
314 //--------------------------FlatArrayCheckNode---------------------------------
315 // Returns true if one of the input array objects or array klass ptrs (there
316 // can be multiple) is flat.
317 class FlatArrayCheckNode : public CmpNode {
318 public:
319   enum {
320     Control,
321     Memory,
322     ArrayOrKlass
323   };
324   FlatArrayCheckNode(Compile* C, Node* mem, Node* array_or_klass) : CmpNode(mem, array_or_klass) {
325     init_class_id(Class_FlatArrayCheck);
326     init_flags(Flag_is_macro);
327     C->add_macro_node(this);
328   }
329   virtual int Opcode() const;
330   virtual const Type* sub(const Type*, const Type*) const { ShouldNotReachHere(); return nullptr; }
331   const Type* Value(PhaseGVN* phase) const;
332   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
333 };
334 
335 //------------------------------BoolTest---------------------------------------
336 // Convert condition codes to a boolean test value (0 or -1).
337 // We pick the values as 3 bits; the low order 2 bits we compare against the
338 // condition codes, the high bit flips the sense of the result.
339 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
340 struct BoolTest {
341   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
342               // The following values are used with vector compares
343               // A BoolTest value should not be constructed for such values
344               unsigned_compare = 16,
345               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
346   mask _test;
347   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
348   const Type *cc2logical( const Type *CC ) const;
349   // Commute the test.  I use a small table lookup.  The table is created as
350   // a simple char array where each element is the ASCII version of a 'mask'
351   // enum from above.
352   mask commute( ) const { return mask("032147658"[_test]-'0'); }
353   mask negate( ) const { return negate_mask(_test); }
354   // Return the negative mask for the given mask, for both signed and unsigned comparison.
355   static mask negate_mask(mask btm) { return mask(btm ^ 4); }
356   static mask unsigned_mask(mask btm) { return mask(btm | unsigned_compare); }
357   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
358   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
359   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
360   void dump_on(outputStream *st) const;
361   mask merge(BoolTest other) const;
362 };
363 
364 //------------------------------BoolNode---------------------------------------
365 // A Node to convert a Condition Codes to a Logical result.
366 class BoolNode : public Node {
367   virtual uint hash() const;
368   virtual bool cmp( const Node &n ) const;
369   virtual uint size_of() const;
370 
371   // Try to optimize signed integer comparison
372   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
373                   int cmp1_op, const TypeInt* cmp2_type);
374 public:
375   const BoolTest _test;
376   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
377     init_class_id(Class_Bool);
378   }
379   // Convert an arbitrary int value to a Bool or other suitable predicate.
380   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
381   // Convert self back to an integer value.
382   Node* as_int_value(PhaseGVN* phase);
383   // Invert sense of self, returning new Bool.
384   BoolNode* negate(PhaseGVN* phase);
385   virtual int Opcode() const;
386   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
387   const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
388   virtual const Type* Value(PhaseGVN* phase) const;
389   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
390   uint match_edge(uint idx) const { return 0; }
391   virtual uint ideal_reg() const { return Op_RegI; }
392 
393   bool is_counted_loop_exit_test();
394 #ifndef PRODUCT
395   virtual void dump_spec(outputStream *st) const;
396 #endif
397 };
398 
399 //------------------------------AbsNode----------------------------------------
400 // Abstract class for absolute value.  Mostly used to get a handy wrapper
401 // for finding this pattern in the graph.
402 class AbsNode : public Node {
403 public:
404   AbsNode( Node *value ) : Node(nullptr,value) {}
405   virtual Node* Identity(PhaseGVN* phase);
406   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
407   virtual const Type* Value(PhaseGVN* phase) const;
408 };
409 
410 //------------------------------AbsINode---------------------------------------
411 // Absolute value an integer.  Since a naive graph involves control flow, we
412 // "match" it in the ideal world (so the control flow can be removed).
413 class AbsINode : public AbsNode {
414 public:
415   AbsINode( Node *in1 ) : AbsNode(in1) {}
416   virtual int Opcode() const;
417   const Type *bottom_type() const { return TypeInt::INT; }
418   virtual uint ideal_reg() const { return Op_RegI; }
419 };
420 
421 //------------------------------AbsLNode---------------------------------------
422 // Absolute value a long.  Since a naive graph involves control flow, we
423 // "match" it in the ideal world (so the control flow can be removed).
424 class AbsLNode : public AbsNode {
425 public:
426   AbsLNode( Node *in1 ) : AbsNode(in1) {}
427   virtual int Opcode() const;
428   const Type *bottom_type() const { return TypeLong::LONG; }
429   virtual uint ideal_reg() const { return Op_RegL; }
430 };
431 
432 //------------------------------AbsFNode---------------------------------------
433 // Absolute value a float, a common float-point idiom with a cheap hardware
434 // implementation on most chips.  Since a naive graph involves control flow, we
435 // "match" it in the ideal world (so the control flow can be removed).
436 class AbsFNode : public AbsNode {
437 public:
438   AbsFNode( Node *in1 ) : AbsNode(in1) {}
439   virtual int Opcode() const;
440   const Type *bottom_type() const { return Type::FLOAT; }
441   virtual uint ideal_reg() const { return Op_RegF; }
442 };
443 
444 //------------------------------AbsDNode---------------------------------------
445 // Absolute value a double, a common float-point idiom with a cheap hardware
446 // implementation on most chips.  Since a naive graph involves control flow, we
447 // "match" it in the ideal world (so the control flow can be removed).
448 class AbsDNode : public AbsNode {
449 public:
450   AbsDNode( Node *in1 ) : AbsNode(in1) {}
451   virtual int Opcode() const;
452   const Type *bottom_type() const { return Type::DOUBLE; }
453   virtual uint ideal_reg() const { return Op_RegD; }
454 };
455 
456 
457 //------------------------------CmpLTMaskNode----------------------------------
458 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
459 class CmpLTMaskNode : public Node {
460 public:
461   CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
462   virtual int Opcode() const;
463   const Type *bottom_type() const { return TypeInt::INT; }
464   virtual uint ideal_reg() const { return Op_RegI; }
465 };
466 
467 
468 //------------------------------NegNode----------------------------------------
469 class NegNode : public Node {
470 public:
471   NegNode(Node* in1) : Node(nullptr, in1) {
472     init_class_id(Class_Neg);
473   }
474 };
475 
476 //------------------------------NegINode---------------------------------------
477 // Negate value an int.  For int values, negation is the same as subtraction
478 // from zero
479 class NegINode : public NegNode {
480 public:
481   NegINode(Node *in1) : NegNode(in1) {}
482   virtual int Opcode() const;
483   const Type *bottom_type() const { return TypeInt::INT; }
484   virtual uint ideal_reg() const { return Op_RegI; }
485 };
486 
487 //------------------------------NegLNode---------------------------------------
488 // Negate value an int.  For int values, negation is the same as subtraction
489 // from zero
490 class NegLNode : public NegNode {
491 public:
492   NegLNode(Node *in1) : NegNode(in1) {}
493   virtual int Opcode() const;
494   const Type *bottom_type() const { return TypeLong::LONG; }
495   virtual uint ideal_reg() const { return Op_RegL; }
496 };
497 
498 //------------------------------NegFNode---------------------------------------
499 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
500 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
501 // cannot be used to replace negation we have to implement negation as ideal
502 // node; note that negation and addition can replace subtraction.
503 class NegFNode : public NegNode {
504 public:
505   NegFNode( Node *in1 ) : NegNode(in1) {}
506   virtual int Opcode() const;
507   const Type *bottom_type() const { return Type::FLOAT; }
508   virtual uint ideal_reg() const { return Op_RegF; }
509 };
510 
511 //------------------------------NegDNode---------------------------------------
512 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
513 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
514 // cannot be used to replace negation we have to implement negation as ideal
515 // node; note that negation and addition can replace subtraction.
516 class NegDNode : public NegNode {
517 public:
518   NegDNode( Node *in1 ) : NegNode(in1) {}
519   virtual int Opcode() const;
520   const Type *bottom_type() const { return Type::DOUBLE; }
521   virtual uint ideal_reg() const { return Op_RegD; }
522 };
523 
524 //------------------------------AtanDNode--------------------------------------
525 // arcus tangens of a double
526 class AtanDNode : public Node {
527 public:
528   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
529   virtual int Opcode() const;
530   const Type *bottom_type() const { return Type::DOUBLE; }
531   virtual uint ideal_reg() const { return Op_RegD; }
532 };
533 
534 
535 //------------------------------SqrtDNode--------------------------------------
536 // square root a double
537 class SqrtDNode : public Node {
538 public:
539   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
540     init_flags(Flag_is_expensive);
541     C->add_expensive_node(this);
542   }
543   virtual int Opcode() const;
544   const Type *bottom_type() const { return Type::DOUBLE; }
545   virtual uint ideal_reg() const { return Op_RegD; }
546   virtual const Type* Value(PhaseGVN* phase) const;
547 };
548 
549 //------------------------------SqrtFNode--------------------------------------
550 // square root a float
551 class SqrtFNode : public Node {
552 public:
553   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
554     init_flags(Flag_is_expensive);
555     if (c != nullptr) {
556       // Treat node only as expensive if a control input is set because it might
557       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
558       // be unique and therefore has no control input.
559       C->add_expensive_node(this);
560     }
561   }
562   virtual int Opcode() const;
563   const Type *bottom_type() const { return Type::FLOAT; }
564   virtual uint ideal_reg() const { return Op_RegF; }
565   virtual const Type* Value(PhaseGVN* phase) const;
566 };
567 
568 //------------------------------SqrtHFNode-------------------------------------
569 // square root of a half-precision float
570 class SqrtHFNode : public Node {
571 public:
572   SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
573     init_flags(Flag_is_expensive);
574     C->add_expensive_node(this);
575   }
576   virtual int Opcode() const;
577   const Type* bottom_type() const { return Type::HALF_FLOAT; }
578   virtual uint ideal_reg() const { return Op_RegF; }
579   virtual const Type* Value(PhaseGVN* phase) const;
580 };
581 
582 
583 class ReverseBytesNode : public Node {
584 public:
585   ReverseBytesNode(Node* in) : Node(nullptr, in) {}
586   virtual const Type* Value(PhaseGVN* phase) const;
587 };
588 //-------------------------------ReverseBytesINode--------------------------------
589 // reverse bytes of an integer
590 class ReverseBytesINode : public ReverseBytesNode {
591 public:
592   ReverseBytesINode(Node* in) : ReverseBytesNode(in) {}
593   virtual int Opcode() const;
594   const Type* bottom_type() const { return TypeInt::INT; }
595   virtual uint ideal_reg() const { return Op_RegI; }
596 };
597 
598 //-------------------------------ReverseBytesLNode--------------------------------
599 // reverse bytes of a long
600 class ReverseBytesLNode : public ReverseBytesNode {
601 public:
602   ReverseBytesLNode(Node* in) : ReverseBytesNode(in) {}
603   virtual int Opcode() const;
604   const Type* bottom_type() const { return TypeLong::LONG; }
605   virtual uint ideal_reg() const { return Op_RegL; }
606 };
607 
608 //-------------------------------ReverseBytesUSNode--------------------------------
609 // reverse bytes of an unsigned short / char
610 class ReverseBytesUSNode : public ReverseBytesNode {
611 public:
612   ReverseBytesUSNode(Node* in1) : ReverseBytesNode(in1) {}
613   virtual int Opcode() const;
614   const Type* bottom_type() const { return TypeInt::CHAR; }
615   virtual uint ideal_reg() const { return Op_RegI; }
616 };
617 
618 //-------------------------------ReverseBytesSNode--------------------------------
619 // reverse bytes of a short
620 class ReverseBytesSNode : public ReverseBytesNode {
621 public:
622   ReverseBytesSNode(Node* in) : ReverseBytesNode(in) {}
623   virtual int Opcode() const;
624   const Type* bottom_type() const { return TypeInt::SHORT; }
625   virtual uint ideal_reg() const { return Op_RegI; }
626 };
627 
628 //-------------------------------ReverseINode--------------------------------
629 // reverse bits of an int
630 class ReverseINode : public Node {
631 public:
632   ReverseINode(Node* in) : Node(nullptr,in) {}
633   virtual int Opcode() const;
634   const Type* bottom_type() const { return TypeInt::INT; }
635   virtual uint ideal_reg() const { return Op_RegI; }
636   virtual Node* Identity(PhaseGVN* phase);
637   virtual const Type* Value(PhaseGVN* phase) const;
638 };
639 
640 //-------------------------------ReverseLNode--------------------------------
641 // reverse bits of a long
642 class ReverseLNode : public Node {
643 public:
644   ReverseLNode(Node* in) : Node(nullptr, in) {}
645   virtual int Opcode() const;
646   const Type* bottom_type() const { return TypeLong::LONG; }
647   virtual uint ideal_reg() const { return Op_RegL; }
648   virtual Node* Identity(PhaseGVN* phase);
649   virtual const Type* Value(PhaseGVN* phase) const;
650 };
651 
652 #endif // SHARE_OPTO_SUBNODE_HPP