1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137   SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138   virtual int Opcode() const;
139   virtual const Type* sub(const Type*, const Type*) const;
140   const Type* add_id() const { return TypeH::ZERO; }
141   const Type* bottom_type() const { return Type::HALF_FLOAT; }
142   virtual uint  ideal_reg() const { return Op_RegF; }
143 };
144 
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150     init_class_id(Class_Cmp);
151   }
152   virtual Node* Identity(PhaseGVN* phase);
153   const Type *add_id() const { return TypeInt::ZERO; }
154   const Type *bottom_type() const { return TypeInt::CC; }
155   virtual uint ideal_reg() const { return Op_RegFlags; }
156 
157   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159 
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165   virtual int Opcode() const;
166   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167   virtual const Type *sub( const Type *, const Type * ) const;
168   virtual const Type* Value(PhaseGVN* phase) const;
169 };
170 
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176   virtual int Opcode() const;
177   virtual const Type *sub( const Type *, const Type * ) const;
178   const Type* Value(PhaseGVN* phase) const;
179   bool is_index_range_check() const;
180 };
181 
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187     // Since it is not consumed by Bools, it is not really a Cmp.
188     init_class_id(Class_Sub);
189   }
190   virtual int Opcode() const;
191   virtual uint ideal_reg() const { return Op_RegI; }
192 };
193 
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199   virtual int Opcode() const;
200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201   virtual const Type *sub( const Type *, const Type * ) const;
202 };
203 
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209   virtual int Opcode() const;
210   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211   virtual const Type *sub( const Type *, const Type * ) const;
212 };
213 
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219   virtual int    Opcode() const;
220   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
221   virtual const Type* Value(PhaseGVN* phase) const;
222   virtual const Type *sub( const Type *, const Type * ) const;
223   bool is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const;
224 };
225 
226 //------------------------------CmpULNode---------------------------------------
227 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
228 class CmpULNode : public CmpNode {
229 public:
230   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
231   virtual int Opcode() const;
232   virtual const Type* sub(const Type*, const Type*) const;
233 };
234 
235 //------------------------------CmpL3Node--------------------------------------
236 // Compare 2 long values, returning integer value (-1, 0 or 1).
237 class CmpL3Node : public CmpLNode {
238 public:
239   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
240     // Since it is not consumed by Bools, it is not really a Cmp.
241     init_class_id(Class_Sub);
242   }
243   virtual int Opcode() const;
244   virtual uint ideal_reg() const { return Op_RegI; }
245 };
246 
247 //------------------------------CmpUL3Node-------------------------------------
248 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
249 class CmpUL3Node : public CmpULNode {
250 public:
251   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
252     // Since it is not consumed by Bools, it is not really a Cmp.
253     init_class_id(Class_Sub);
254   }
255   virtual int Opcode() const;
256   virtual uint ideal_reg() const { return Op_RegI; }
257 };
258 
259 //------------------------------CmpFNode---------------------------------------
260 // Compare 2 float values, returning condition codes (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpFNode : public CmpNode {
264 public:
265   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
266   virtual int Opcode() const;
267   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
268   const Type* Value(PhaseGVN* phase) const;
269 };
270 
271 //------------------------------CmpF3Node--------------------------------------
272 // Compare 2 float values, returning integer value (-1, 0 or 1).
273 // This implements the Java bytecode fcmpl, so unordered returns -1.
274 // Operands may not commute.
275 class CmpF3Node : public CmpFNode {
276 public:
277   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
278     // Since it is not consumed by Bools, it is not really a Cmp.
279     init_class_id(Class_Sub);
280   }
281   virtual int Opcode() const;
282   // Since it is not consumed by Bools, it is not really a Cmp.
283   virtual uint ideal_reg() const { return Op_RegI; }
284 };
285 
286 
287 //------------------------------CmpDNode---------------------------------------
288 // Compare 2 double values, returning condition codes (-1, 0 or 1).
289 // This implements the Java bytecode dcmpl, so unordered returns -1.
290 // Operands may not commute.
291 class CmpDNode : public CmpNode {
292 public:
293   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
294   virtual int Opcode() const;
295   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
296   const Type* Value(PhaseGVN* phase) const;
297   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
298 };
299 
300 //------------------------------CmpD3Node--------------------------------------
301 // Compare 2 double values, returning integer value (-1, 0 or 1).
302 // This implements the Java bytecode dcmpl, so unordered returns -1.
303 // Operands may not commute.
304 class CmpD3Node : public CmpDNode {
305 public:
306   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
307     // Since it is not consumed by Bools, it is not really a Cmp.
308     init_class_id(Class_Sub);
309   }
310   virtual int Opcode() const;
311   virtual uint ideal_reg() const { return Op_RegI; }
312 };
313 
314 //--------------------------FlatArrayCheckNode---------------------------------
315 // Returns true if one of the input array objects or array klass ptrs (there
316 // can be multiple) is flat.
317 class FlatArrayCheckNode : public CmpNode {
318 public:
319   enum {
320     Control,
321     Memory,
322     ArrayOrKlass
323   };
324   FlatArrayCheckNode(Compile* C, Node* mem, Node* array_or_klass) : CmpNode(mem, array_or_klass) {
325     init_class_id(Class_FlatArrayCheck);
326     init_flags(Flag_is_macro);
327     C->add_macro_node(this);
328   }
329   virtual int Opcode() const;
330   virtual const Type* sub(const Type*, const Type*) const { ShouldNotReachHere(); return nullptr; }
331   const Type* Value(PhaseGVN* phase) const;
332   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
333 };
334 
335 //------------------------------BoolTest---------------------------------------
336 // Convert condition codes to a boolean test value (0 or -1).
337 // We pick the values as 3 bits; the low order 2 bits we compare against the
338 // condition codes, the high bit flips the sense of the result.
339 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
340 struct BoolTest {
341   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
342               // The following values are used with vector compares
343               // A BoolTest value should not be constructed for such values
344               unsigned_compare = 16,
345               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
346   mask _test;
347   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
348   const Type *cc2logical( const Type *CC ) const;
349   // Commute the test.  I use a small table lookup.  The table is created as
350   // a simple char array where each element is the ASCII version of a 'mask'
351   // enum from above.
352   mask commute( ) const { return mask("032147658"[_test]-'0'); }
353   mask negate( ) const { return mask(_test^4); }
354   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
355   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
356   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
357   void dump_on(outputStream *st) const;
358   mask merge(BoolTest other) const;
359 };
360 
361 //------------------------------BoolNode---------------------------------------
362 // A Node to convert a Condition Codes to a Logical result.
363 class BoolNode : public Node {
364   virtual uint hash() const;
365   virtual bool cmp( const Node &n ) const;
366   virtual uint size_of() const;
367 
368   // Try to optimize signed integer comparison
369   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
370                   int cmp1_op, const TypeInt* cmp2_type);
371 public:
372   const BoolTest _test;
373   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
374     init_class_id(Class_Bool);
375   }
376   // Convert an arbitrary int value to a Bool or other suitable predicate.
377   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
378   // Convert self back to an integer value.
379   Node* as_int_value(PhaseGVN* phase);
380   // Invert sense of self, returning new Bool.
381   BoolNode* negate(PhaseGVN* phase);
382   virtual int Opcode() const;
383   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
384   const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
385   virtual const Type* Value(PhaseGVN* phase) const;
386   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
387   uint match_edge(uint idx) const { return 0; }
388   virtual uint ideal_reg() const { return Op_RegI; }
389 
390   bool is_counted_loop_exit_test();
391 #ifndef PRODUCT
392   virtual void dump_spec(outputStream *st) const;
393 #endif
394 };
395 
396 //------------------------------AbsNode----------------------------------------
397 // Abstract class for absolute value.  Mostly used to get a handy wrapper
398 // for finding this pattern in the graph.
399 class AbsNode : public Node {
400 public:
401   AbsNode( Node *value ) : Node(nullptr,value) {}
402   virtual Node* Identity(PhaseGVN* phase);
403   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
404   virtual const Type* Value(PhaseGVN* phase) const;
405 };
406 
407 //------------------------------AbsINode---------------------------------------
408 // Absolute value an integer.  Since a naive graph involves control flow, we
409 // "match" it in the ideal world (so the control flow can be removed).
410 class AbsINode : public AbsNode {
411 public:
412   AbsINode( Node *in1 ) : AbsNode(in1) {}
413   virtual int Opcode() const;
414   const Type *bottom_type() const { return TypeInt::INT; }
415   virtual uint ideal_reg() const { return Op_RegI; }
416 };
417 
418 //------------------------------AbsLNode---------------------------------------
419 // Absolute value a long.  Since a naive graph involves control flow, we
420 // "match" it in the ideal world (so the control flow can be removed).
421 class AbsLNode : public AbsNode {
422 public:
423   AbsLNode( Node *in1 ) : AbsNode(in1) {}
424   virtual int Opcode() const;
425   const Type *bottom_type() const { return TypeLong::LONG; }
426   virtual uint ideal_reg() const { return Op_RegL; }
427 };
428 
429 //------------------------------AbsFNode---------------------------------------
430 // Absolute value a float, a common float-point idiom with a cheap hardware
431 // implementation on most chips.  Since a naive graph involves control flow, we
432 // "match" it in the ideal world (so the control flow can be removed).
433 class AbsFNode : public AbsNode {
434 public:
435   AbsFNode( Node *in1 ) : AbsNode(in1) {}
436   virtual int Opcode() const;
437   const Type *bottom_type() const { return Type::FLOAT; }
438   virtual uint ideal_reg() const { return Op_RegF; }
439 };
440 
441 //------------------------------AbsDNode---------------------------------------
442 // Absolute value a double, a common float-point idiom with a cheap hardware
443 // implementation on most chips.  Since a naive graph involves control flow, we
444 // "match" it in the ideal world (so the control flow can be removed).
445 class AbsDNode : public AbsNode {
446 public:
447   AbsDNode( Node *in1 ) : AbsNode(in1) {}
448   virtual int Opcode() const;
449   const Type *bottom_type() const { return Type::DOUBLE; }
450   virtual uint ideal_reg() const { return Op_RegD; }
451 };
452 
453 
454 //------------------------------CmpLTMaskNode----------------------------------
455 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
456 class CmpLTMaskNode : public Node {
457 public:
458   CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
459   virtual int Opcode() const;
460   const Type *bottom_type() const { return TypeInt::INT; }
461   virtual uint ideal_reg() const { return Op_RegI; }
462 };
463 
464 //------------------------------InvolutionNode----------------------------------
465 // Represents a self-inverse operation, i.e., op(op(x)) = x for any x
466 class InvolutionNode : public Node {
467 public:
468   InvolutionNode(Node* in) : Node(nullptr, in) {}
469   virtual Node* Identity(PhaseGVN* phase);
470 };
471 
472 //------------------------------NegNode----------------------------------------
473 class NegNode : public InvolutionNode {
474 public:
475   NegNode(Node* in1) : InvolutionNode(in1) {
476     init_class_id(Class_Neg);
477   }
478 };
479 
480 //------------------------------NegINode---------------------------------------
481 // Negate value an int.  For int values, negation is the same as subtraction
482 // from zero
483 class NegINode : public NegNode {
484 public:
485   NegINode(Node *in1) : NegNode(in1) {}
486   virtual int Opcode() const;
487   const Type *bottom_type() const { return TypeInt::INT; }
488   virtual uint ideal_reg() const { return Op_RegI; }
489 };
490 
491 //------------------------------NegLNode---------------------------------------
492 // Negate value an int.  For int values, negation is the same as subtraction
493 // from zero
494 class NegLNode : public NegNode {
495 public:
496   NegLNode(Node *in1) : NegNode(in1) {}
497   virtual int Opcode() const;
498   const Type *bottom_type() const { return TypeLong::LONG; }
499   virtual uint ideal_reg() const { return Op_RegL; }
500 };
501 
502 //------------------------------NegFNode---------------------------------------
503 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
504 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
505 // cannot be used to replace negation we have to implement negation as ideal
506 // node; note that negation and addition can replace subtraction.
507 class NegFNode : public NegNode {
508 public:
509   NegFNode( Node *in1 ) : NegNode(in1) {}
510   virtual int Opcode() const;
511   const Type *bottom_type() const { return Type::FLOAT; }
512   virtual uint ideal_reg() const { return Op_RegF; }
513 };
514 
515 //------------------------------NegDNode---------------------------------------
516 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
517 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
518 // cannot be used to replace negation we have to implement negation as ideal
519 // node; note that negation and addition can replace subtraction.
520 class NegDNode : public NegNode {
521 public:
522   NegDNode( Node *in1 ) : NegNode(in1) {}
523   virtual int Opcode() const;
524   const Type *bottom_type() const { return Type::DOUBLE; }
525   virtual uint ideal_reg() const { return Op_RegD; }
526 };
527 
528 //------------------------------AtanDNode--------------------------------------
529 // arcus tangens of a double
530 class AtanDNode : public Node {
531 public:
532   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
533   virtual int Opcode() const;
534   const Type *bottom_type() const { return Type::DOUBLE; }
535   virtual uint ideal_reg() const { return Op_RegD; }
536 };
537 
538 
539 //------------------------------SqrtDNode--------------------------------------
540 // square root a double
541 class SqrtDNode : public Node {
542 public:
543   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
544     init_flags(Flag_is_expensive);
545     C->add_expensive_node(this);
546   }
547   virtual int Opcode() const;
548   const Type *bottom_type() const { return Type::DOUBLE; }
549   virtual uint ideal_reg() const { return Op_RegD; }
550   virtual const Type* Value(PhaseGVN* phase) const;
551 };
552 
553 //------------------------------SqrtFNode--------------------------------------
554 // square root a float
555 class SqrtFNode : public Node {
556 public:
557   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
558     init_flags(Flag_is_expensive);
559     if (c != nullptr) {
560       // Treat node only as expensive if a control input is set because it might
561       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
562       // be unique and therefore has no control input.
563       C->add_expensive_node(this);
564     }
565   }
566   virtual int Opcode() const;
567   const Type *bottom_type() const { return Type::FLOAT; }
568   virtual uint ideal_reg() const { return Op_RegF; }
569   virtual const Type* Value(PhaseGVN* phase) const;
570 };
571 
572 //------------------------------SqrtHFNode-------------------------------------
573 // square root of a half-precision float
574 class SqrtHFNode : public Node {
575 public:
576   SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
577     init_flags(Flag_is_expensive);
578     C->add_expensive_node(this);
579   }
580   virtual int Opcode() const;
581   const Type* bottom_type() const { return Type::HALF_FLOAT; }
582   virtual uint ideal_reg() const { return Op_RegF; }
583   virtual const Type* Value(PhaseGVN* phase) const;
584 };
585 
586 //-------------------------------ReverseBytesINode--------------------------------
587 // reverse bytes of an integer
588 class ReverseBytesINode : public InvolutionNode {
589 public:
590   ReverseBytesINode(Node* in) : InvolutionNode(in) {}
591   virtual int Opcode() const;
592   const Type* bottom_type() const { return TypeInt::INT; }
593   virtual uint ideal_reg() const { return Op_RegI; }
594 };
595 
596 //-------------------------------ReverseBytesLNode--------------------------------
597 // reverse bytes of a long
598 class ReverseBytesLNode : public InvolutionNode {
599 public:
600   ReverseBytesLNode(Node* in) : InvolutionNode(in) {}
601   virtual int Opcode() const;
602   const Type* bottom_type() const { return TypeLong::LONG; }
603   virtual uint ideal_reg() const { return Op_RegL; }
604 };
605 
606 //-------------------------------ReverseBytesUSNode--------------------------------
607 // reverse bytes of an unsigned short / char
608 class ReverseBytesUSNode : public InvolutionNode {
609 public:
610   ReverseBytesUSNode(Node* in1) : InvolutionNode(in1) {}
611   virtual int Opcode() const;
612   const Type* bottom_type() const { return TypeInt::CHAR; }
613   virtual uint ideal_reg() const { return Op_RegI; }
614 };
615 
616 //-------------------------------ReverseBytesSNode--------------------------------
617 // reverse bytes of a short
618 class ReverseBytesSNode : public InvolutionNode {
619 public:
620   ReverseBytesSNode(Node* in) : InvolutionNode(in) {}
621   virtual int Opcode() const;
622   const Type* bottom_type() const { return TypeInt::SHORT; }
623   virtual uint ideal_reg() const { return Op_RegI; }
624 };
625 
626 //-------------------------------ReverseINode--------------------------------
627 // reverse bits of an int
628 class ReverseINode : public InvolutionNode {
629 public:
630   ReverseINode(Node* in) : InvolutionNode(in) {}
631   virtual int Opcode() const;
632   const Type* bottom_type() const { return TypeInt::INT; }
633   virtual uint ideal_reg() const { return Op_RegI; }
634   virtual const Type* Value(PhaseGVN* phase) const;
635 };
636 
637 //-------------------------------ReverseLNode--------------------------------
638 // reverse bits of a long
639 class ReverseLNode : public InvolutionNode {
640 public:
641   ReverseLNode(Node* in) : InvolutionNode(in) {}
642   virtual int Opcode() const;
643   const Type* bottom_type() const { return TypeLong::LONG; }
644   virtual uint ideal_reg() const { return Op_RegL; }
645   virtual const Type* Value(PhaseGVN* phase) const;
646 };
647 
648 #endif // SHARE_OPTO_SUBNODE_HPP