1 /*
  2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------CmpNode---------------------------------------
134 // Compare 2 values, returning condition codes (-1, 0 or 1).
135 class CmpNode : public SubNode {
136 public:
137   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
138     init_class_id(Class_Cmp);
139   }
140   virtual Node* Identity(PhaseGVN* phase);
141   const Type *add_id() const { return TypeInt::ZERO; }
142   const Type *bottom_type() const { return TypeInt::CC; }
143   virtual uint ideal_reg() const { return Op_RegFlags; }
144 
145   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
146 };
147 
148 //------------------------------CmpINode---------------------------------------
149 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
150 class CmpINode : public CmpNode {
151 public:
152   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
153   virtual int Opcode() const;
154   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
155   virtual const Type *sub( const Type *, const Type * ) const;
156   virtual const Type* Value(PhaseGVN* phase) const;
157 };
158 
159 //------------------------------CmpUNode---------------------------------------
160 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
161 class CmpUNode : public CmpNode {
162 public:
163   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
164   virtual int Opcode() const;
165   virtual const Type *sub( const Type *, const Type * ) const;
166   const Type* Value(PhaseGVN* phase) const;
167   bool is_index_range_check() const;
168 };
169 
170 //------------------------------CmpU3Node--------------------------------------
171 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
172 class CmpU3Node : public CmpUNode {
173 public:
174   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
175     // Since it is not consumed by Bools, it is not really a Cmp.
176     init_class_id(Class_Sub);
177   }
178   virtual int Opcode() const;
179   virtual uint ideal_reg() const { return Op_RegI; }
180 };
181 
182 //------------------------------CmpPNode---------------------------------------
183 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
184 class CmpPNode : public CmpNode {
185 public:
186   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
187   virtual int Opcode() const;
188   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
189   virtual const Type *sub( const Type *, const Type * ) const;
190 };
191 
192 //------------------------------CmpNNode--------------------------------------
193 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
194 class CmpNNode : public CmpNode {
195 public:
196   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
197   virtual int Opcode() const;
198   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
199   virtual const Type *sub( const Type *, const Type * ) const;
200 };
201 
202 //------------------------------CmpLNode---------------------------------------
203 // Compare 2 long values, returning condition codes (-1, 0 or 1).
204 class CmpLNode : public CmpNode {
205 public:
206   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
207   virtual int    Opcode() const;
208   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
209   virtual const Type* Value(PhaseGVN* phase) const;
210   virtual const Type *sub( const Type *, const Type * ) const;
211   bool is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const;
212 };
213 
214 //------------------------------CmpULNode---------------------------------------
215 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
216 class CmpULNode : public CmpNode {
217 public:
218   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
219   virtual int Opcode() const;
220   virtual const Type* sub(const Type*, const Type*) const;
221 };
222 
223 //------------------------------CmpL3Node--------------------------------------
224 // Compare 2 long values, returning integer value (-1, 0 or 1).
225 class CmpL3Node : public CmpLNode {
226 public:
227   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
228     // Since it is not consumed by Bools, it is not really a Cmp.
229     init_class_id(Class_Sub);
230   }
231   virtual int Opcode() const;
232   virtual uint ideal_reg() const { return Op_RegI; }
233 };
234 
235 //------------------------------CmpUL3Node-------------------------------------
236 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
237 class CmpUL3Node : public CmpULNode {
238 public:
239   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
240     // Since it is not consumed by Bools, it is not really a Cmp.
241     init_class_id(Class_Sub);
242   }
243   virtual int Opcode() const;
244   virtual uint ideal_reg() const { return Op_RegI; }
245 };
246 
247 //------------------------------CmpFNode---------------------------------------
248 // Compare 2 float values, returning condition codes (-1, 0 or 1).
249 // This implements the Java bytecode fcmpl, so unordered returns -1.
250 // Operands may not commute.
251 class CmpFNode : public CmpNode {
252 public:
253   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
254   virtual int Opcode() const;
255   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
256   const Type* Value(PhaseGVN* phase) const;
257 };
258 
259 //------------------------------CmpF3Node--------------------------------------
260 // Compare 2 float values, returning integer value (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpF3Node : public CmpFNode {
264 public:
265   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
266     // Since it is not consumed by Bools, it is not really a Cmp.
267     init_class_id(Class_Sub);
268   }
269   virtual int Opcode() const;
270   // Since it is not consumed by Bools, it is not really a Cmp.
271   virtual uint ideal_reg() const { return Op_RegI; }
272 };
273 
274 
275 //------------------------------CmpDNode---------------------------------------
276 // Compare 2 double values, returning condition codes (-1, 0 or 1).
277 // This implements the Java bytecode dcmpl, so unordered returns -1.
278 // Operands may not commute.
279 class CmpDNode : public CmpNode {
280 public:
281   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
282   virtual int Opcode() const;
283   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
284   const Type* Value(PhaseGVN* phase) const;
285   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
286 };
287 
288 //------------------------------CmpD3Node--------------------------------------
289 // Compare 2 double values, returning integer value (-1, 0 or 1).
290 // This implements the Java bytecode dcmpl, so unordered returns -1.
291 // Operands may not commute.
292 class CmpD3Node : public CmpDNode {
293 public:
294   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
295     // Since it is not consumed by Bools, it is not really a Cmp.
296     init_class_id(Class_Sub);
297   }
298   virtual int Opcode() const;
299   virtual uint ideal_reg() const { return Op_RegI; }
300 };
301 
302 //--------------------------FlatArrayCheckNode---------------------------------
303 // Returns true if one of the input array objects or array klass ptrs (there
304 // can be multiple) is flat.
305 class FlatArrayCheckNode : public CmpNode {
306 public:
307   enum {
308     Control,
309     Memory,
310     ArrayOrKlass
311   };
312   FlatArrayCheckNode(Compile* C, Node* mem, Node* array_or_klass) : CmpNode(mem, array_or_klass) {
313     init_class_id(Class_FlatArrayCheck);
314     init_flags(Flag_is_macro);
315     C->add_macro_node(this);
316   }
317   virtual int Opcode() const;
318   virtual const Type* sub(const Type*, const Type*) const { ShouldNotReachHere(); return nullptr; }
319   const Type* Value(PhaseGVN* phase) const;
320   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
321 };
322 
323 //------------------------------BoolTest---------------------------------------
324 // Convert condition codes to a boolean test value (0 or -1).
325 // We pick the values as 3 bits; the low order 2 bits we compare against the
326 // condition codes, the high bit flips the sense of the result.
327 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
328 struct BoolTest {
329   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
330               // The following values are used with vector compares
331               // A BoolTest value should not be constructed for such values
332               unsigned_compare = 16,
333               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
334   mask _test;
335   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
336   const Type *cc2logical( const Type *CC ) const;
337   // Commute the test.  I use a small table lookup.  The table is created as
338   // a simple char array where each element is the ASCII version of a 'mask'
339   // enum from above.
340   mask commute( ) const { return mask("032147658"[_test]-'0'); }
341   mask negate( ) const { return mask(_test^4); }
342   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
343   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
344   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
345   void dump_on(outputStream *st) const;
346   mask merge(BoolTest other) const;
347 };
348 
349 //------------------------------BoolNode---------------------------------------
350 // A Node to convert a Condition Codes to a Logical result.
351 class BoolNode : public Node {
352   virtual uint hash() const;
353   virtual bool cmp( const Node &n ) const;
354   virtual uint size_of() const;
355 
356   // Try to optimize signed integer comparison
357   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
358                   int cmp1_op, const TypeInt* cmp2_type);
359 public:
360   const BoolTest _test;
361   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
362     init_class_id(Class_Bool);
363   }
364   // Convert an arbitrary int value to a Bool or other suitable predicate.
365   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
366   // Convert self back to an integer value.
367   Node* as_int_value(PhaseGVN* phase);
368   // Invert sense of self, returning new Bool.
369   BoolNode* negate(PhaseGVN* phase);
370   virtual int Opcode() const;
371   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
372   const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
373   virtual const Type* Value(PhaseGVN* phase) const;
374   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
375   uint match_edge(uint idx) const { return 0; }
376   virtual uint ideal_reg() const { return Op_RegI; }
377 
378   bool is_counted_loop_exit_test();
379 #ifndef PRODUCT
380   virtual void dump_spec(outputStream *st) const;
381 #endif
382 };
383 
384 //------------------------------AbsNode----------------------------------------
385 // Abstract class for absolute value.  Mostly used to get a handy wrapper
386 // for finding this pattern in the graph.
387 class AbsNode : public Node {
388 public:
389   AbsNode( Node *value ) : Node(nullptr,value) {}
390   virtual Node* Identity(PhaseGVN* phase);
391   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
392   virtual const Type* Value(PhaseGVN* phase) const;
393 };
394 
395 //------------------------------AbsINode---------------------------------------
396 // Absolute value an integer.  Since a naive graph involves control flow, we
397 // "match" it in the ideal world (so the control flow can be removed).
398 class AbsINode : public AbsNode {
399 public:
400   AbsINode( Node *in1 ) : AbsNode(in1) {}
401   virtual int Opcode() const;
402   const Type *bottom_type() const { return TypeInt::INT; }
403   virtual uint ideal_reg() const { return Op_RegI; }
404 };
405 
406 //------------------------------AbsLNode---------------------------------------
407 // Absolute value a long.  Since a naive graph involves control flow, we
408 // "match" it in the ideal world (so the control flow can be removed).
409 class AbsLNode : public AbsNode {
410 public:
411   AbsLNode( Node *in1 ) : AbsNode(in1) {}
412   virtual int Opcode() const;
413   const Type *bottom_type() const { return TypeLong::LONG; }
414   virtual uint ideal_reg() const { return Op_RegL; }
415 };
416 
417 //------------------------------AbsFNode---------------------------------------
418 // Absolute value a float, a common float-point idiom with a cheap hardware
419 // implementation on most chips.  Since a naive graph involves control flow, we
420 // "match" it in the ideal world (so the control flow can be removed).
421 class AbsFNode : public AbsNode {
422 public:
423   AbsFNode( Node *in1 ) : AbsNode(in1) {}
424   virtual int Opcode() const;
425   const Type *bottom_type() const { return Type::FLOAT; }
426   virtual uint ideal_reg() const { return Op_RegF; }
427 };
428 
429 //------------------------------AbsDNode---------------------------------------
430 // Absolute value a double, a common float-point idiom with a cheap hardware
431 // implementation on most chips.  Since a naive graph involves control flow, we
432 // "match" it in the ideal world (so the control flow can be removed).
433 class AbsDNode : public AbsNode {
434 public:
435   AbsDNode( Node *in1 ) : AbsNode(in1) {}
436   virtual int Opcode() const;
437   const Type *bottom_type() const { return Type::DOUBLE; }
438   virtual uint ideal_reg() const { return Op_RegD; }
439 };
440 
441 
442 //------------------------------CmpLTMaskNode----------------------------------
443 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
444 class CmpLTMaskNode : public Node {
445 public:
446   CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
447   virtual int Opcode() const;
448   const Type *bottom_type() const { return TypeInt::INT; }
449   virtual uint ideal_reg() const { return Op_RegI; }
450 };
451 
452 
453 //------------------------------NegNode----------------------------------------
454 class NegNode : public Node {
455 public:
456   NegNode(Node* in1) : Node(nullptr, in1) {
457     init_class_id(Class_Neg);
458   }
459 };
460 
461 //------------------------------NegINode---------------------------------------
462 // Negate value an int.  For int values, negation is the same as subtraction
463 // from zero
464 class NegINode : public NegNode {
465 public:
466   NegINode(Node *in1) : NegNode(in1) {}
467   virtual int Opcode() const;
468   const Type *bottom_type() const { return TypeInt::INT; }
469   virtual uint ideal_reg() const { return Op_RegI; }
470 };
471 
472 //------------------------------NegLNode---------------------------------------
473 // Negate value an int.  For int values, negation is the same as subtraction
474 // from zero
475 class NegLNode : public NegNode {
476 public:
477   NegLNode(Node *in1) : NegNode(in1) {}
478   virtual int Opcode() const;
479   const Type *bottom_type() const { return TypeLong::LONG; }
480   virtual uint ideal_reg() const { return Op_RegL; }
481 };
482 
483 //------------------------------NegFNode---------------------------------------
484 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
485 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
486 // cannot be used to replace negation we have to implement negation as ideal
487 // node; note that negation and addition can replace subtraction.
488 class NegFNode : public NegNode {
489 public:
490   NegFNode( Node *in1 ) : NegNode(in1) {}
491   virtual int Opcode() const;
492   const Type *bottom_type() const { return Type::FLOAT; }
493   virtual uint ideal_reg() const { return Op_RegF; }
494 };
495 
496 //------------------------------NegDNode---------------------------------------
497 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
498 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
499 // cannot be used to replace negation we have to implement negation as ideal
500 // node; note that negation and addition can replace subtraction.
501 class NegDNode : public NegNode {
502 public:
503   NegDNode( Node *in1 ) : NegNode(in1) {}
504   virtual int Opcode() const;
505   const Type *bottom_type() const { return Type::DOUBLE; }
506   virtual uint ideal_reg() const { return Op_RegD; }
507 };
508 
509 //------------------------------AtanDNode--------------------------------------
510 // arcus tangens of a double
511 class AtanDNode : public Node {
512 public:
513   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
514   virtual int Opcode() const;
515   const Type *bottom_type() const { return Type::DOUBLE; }
516   virtual uint ideal_reg() const { return Op_RegD; }
517 };
518 
519 
520 //------------------------------SqrtDNode--------------------------------------
521 // square root a double
522 class SqrtDNode : public Node {
523 public:
524   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
525     init_flags(Flag_is_expensive);
526     C->add_expensive_node(this);
527   }
528   virtual int Opcode() const;
529   const Type *bottom_type() const { return Type::DOUBLE; }
530   virtual uint ideal_reg() const { return Op_RegD; }
531   virtual const Type* Value(PhaseGVN* phase) const;
532 };
533 
534 //------------------------------SqrtFNode--------------------------------------
535 // square root a float
536 class SqrtFNode : public Node {
537 public:
538   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
539     init_flags(Flag_is_expensive);
540     if (c != nullptr) {
541       // Treat node only as expensive if a control input is set because it might
542       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
543       // be unique and therefore has no control input.
544       C->add_expensive_node(this);
545     }
546   }
547   virtual int Opcode() const;
548   const Type *bottom_type() const { return Type::FLOAT; }
549   virtual uint ideal_reg() const { return Op_RegF; }
550   virtual const Type* Value(PhaseGVN* phase) const;
551 };
552 
553 //-------------------------------ReverseBytesINode--------------------------------
554 // reverse bytes of an integer
555 class ReverseBytesINode : public Node {
556 public:
557   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
558   virtual int Opcode() const;
559   const Type *bottom_type() const { return TypeInt::INT; }
560   virtual uint ideal_reg() const { return Op_RegI; }
561 };
562 
563 //-------------------------------ReverseBytesLNode--------------------------------
564 // reverse bytes of a long
565 class ReverseBytesLNode : public Node {
566 public:
567   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
568   virtual int Opcode() const;
569   const Type *bottom_type() const { return TypeLong::LONG; }
570   virtual uint ideal_reg() const { return Op_RegL; }
571 };
572 
573 //-------------------------------ReverseBytesUSNode--------------------------------
574 // reverse bytes of an unsigned short / char
575 class ReverseBytesUSNode : public Node {
576 public:
577   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
578   virtual int Opcode() const;
579   const Type *bottom_type() const { return TypeInt::CHAR; }
580   virtual uint ideal_reg() const { return Op_RegI; }
581 };
582 
583 //-------------------------------ReverseBytesSNode--------------------------------
584 // reverse bytes of a short
585 class ReverseBytesSNode : public Node {
586 public:
587   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
588   virtual int Opcode() const;
589   const Type *bottom_type() const { return TypeInt::SHORT; }
590   virtual uint ideal_reg() const { return Op_RegI; }
591 };
592 
593 //-------------------------------ReverseINode--------------------------------
594 // reverse bits of an int
595 class ReverseINode : public Node {
596 public:
597   ReverseINode(Node *c, Node *in1) : Node(c, in1) {}
598   virtual int Opcode() const;
599   const Type *bottom_type() const { return TypeInt::INT; }
600   virtual uint ideal_reg() const { return Op_RegI; }
601   virtual Node* Identity(PhaseGVN* phase);
602   virtual const Type* Value(PhaseGVN* phase) const;
603 };
604 
605 //-------------------------------ReverseLNode--------------------------------
606 // reverse bits of a long
607 class ReverseLNode : public Node {
608 public:
609   ReverseLNode(Node *c, Node *in1) : Node(c, in1) {}
610   virtual int Opcode() const;
611   const Type *bottom_type() const { return TypeLong::LONG; }
612   virtual uint ideal_reg() const { return Op_RegL; }
613   virtual Node* Identity(PhaseGVN* phase);
614   virtual const Type* Value(PhaseGVN* phase) const;
615 };
616 
617 #endif // SHARE_OPTO_SUBNODE_HPP