1 /*
  2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------CmpNode---------------------------------------
134 // Compare 2 values, returning condition codes (-1, 0 or 1).
135 class CmpNode : public SubNode {
136 public:
137   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
138     init_class_id(Class_Cmp);
139   }
140   virtual Node* Identity(PhaseGVN* phase);
141   const Type *add_id() const { return TypeInt::ZERO; }
142   const Type *bottom_type() const { return TypeInt::CC; }
143   virtual uint ideal_reg() const { return Op_RegFlags; }
144 
145   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
146 };
147 
148 //------------------------------CmpINode---------------------------------------
149 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
150 class CmpINode : public CmpNode {
151 public:
152   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
153   virtual int Opcode() const;
154   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
155   virtual const Type *sub( const Type *, const Type * ) const;
156   virtual const Type* Value(PhaseGVN* phase) const;
157 };
158 
159 //------------------------------CmpUNode---------------------------------------
160 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
161 class CmpUNode : public CmpNode {
162 public:
163   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
164   virtual int Opcode() const;
165   virtual const Type *sub( const Type *, const Type * ) const;
166   const Type* Value(PhaseGVN* phase) const;
167   bool is_index_range_check() const;
168 };
169 
170 //------------------------------CmpU3Node--------------------------------------
171 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
172 class CmpU3Node : public CmpUNode {
173 public:
174   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
175     // Since it is not consumed by Bools, it is not really a Cmp.
176     init_class_id(Class_Sub);
177   }
178   virtual int Opcode() const;
179   virtual uint ideal_reg() const { return Op_RegI; }
180 };
181 
182 //------------------------------CmpPNode---------------------------------------
183 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
184 class CmpPNode : public CmpNode {
185 public:
186   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
187   virtual int Opcode() const;
188   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
189   virtual const Type *sub( const Type *, const Type * ) const;
190 };
191 
192 //------------------------------CmpNNode--------------------------------------
193 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
194 class CmpNNode : public CmpNode {
195 public:
196   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
197   virtual int Opcode() const;
198   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
199   virtual const Type *sub( const Type *, const Type * ) const;
200 };
201 
202 //------------------------------CmpLNode---------------------------------------
203 // Compare 2 long values, returning condition codes (-1, 0 or 1).
204 class CmpLNode : public CmpNode {
205 public:
206   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
207   virtual int    Opcode() const;
208   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
209   virtual const Type* Value(PhaseGVN* phase) const;
210   virtual const Type *sub( const Type *, const Type * ) const;
211   bool is_double_null_check(PhaseGVN* phase, Node*& a, Node*& b) const;
212 };
213 
214 //------------------------------CmpULNode---------------------------------------
215 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
216 class CmpULNode : public CmpNode {
217 public:
218   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
219   virtual int Opcode() const;
220   virtual const Type* sub(const Type*, const Type*) const;
221 };
222 
223 //------------------------------CmpL3Node--------------------------------------
224 // Compare 2 long values, returning integer value (-1, 0 or 1).
225 class CmpL3Node : public CmpLNode {
226 public:
227   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
228     // Since it is not consumed by Bools, it is not really a Cmp.
229     init_class_id(Class_Sub);
230   }
231   virtual int Opcode() const;
232   virtual uint ideal_reg() const { return Op_RegI; }
233 };
234 
235 //------------------------------CmpUL3Node-------------------------------------
236 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
237 class CmpUL3Node : public CmpULNode {
238 public:
239   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
240     // Since it is not consumed by Bools, it is not really a Cmp.
241     init_class_id(Class_Sub);
242   }
243   virtual int Opcode() const;
244   virtual uint ideal_reg() const { return Op_RegI; }
245 };
246 
247 //------------------------------CmpFNode---------------------------------------
248 // Compare 2 float values, returning condition codes (-1, 0 or 1).
249 // This implements the Java bytecode fcmpl, so unordered returns -1.
250 // Operands may not commute.
251 class CmpFNode : public CmpNode {
252 public:
253   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
254   virtual int Opcode() const;
255   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
256   const Type* Value(PhaseGVN* phase) const;
257 };
258 
259 //------------------------------CmpF3Node--------------------------------------
260 // Compare 2 float values, returning integer value (-1, 0 or 1).
261 // This implements the Java bytecode fcmpl, so unordered returns -1.
262 // Operands may not commute.
263 class CmpF3Node : public CmpFNode {
264 public:
265   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
266     // Since it is not consumed by Bools, it is not really a Cmp.
267     init_class_id(Class_Sub);
268   }
269   virtual int Opcode() const;
270   // Since it is not consumed by Bools, it is not really a Cmp.
271   virtual uint ideal_reg() const { return Op_RegI; }
272 };
273 
274 
275 //------------------------------CmpDNode---------------------------------------
276 // Compare 2 double values, returning condition codes (-1, 0 or 1).
277 // This implements the Java bytecode dcmpl, so unordered returns -1.
278 // Operands may not commute.
279 class CmpDNode : public CmpNode {
280 public:
281   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
282   virtual int Opcode() const;
283   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
284   const Type* Value(PhaseGVN* phase) const;
285   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
286 };
287 
288 //------------------------------CmpD3Node--------------------------------------
289 // Compare 2 double values, returning integer value (-1, 0 or 1).
290 // This implements the Java bytecode dcmpl, so unordered returns -1.
291 // Operands may not commute.
292 class CmpD3Node : public CmpDNode {
293 public:
294   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
295     // Since it is not consumed by Bools, it is not really a Cmp.
296     init_class_id(Class_Sub);
297   }
298   virtual int Opcode() const;
299   virtual uint ideal_reg() const { return Op_RegI; }
300 };
301 
302 //--------------------------FlatArrayCheckNode---------------------------------
303 // Returns true if one of the input array objects or array klass ptrs (there
304 // can be multiple) is flat.
305 class FlatArrayCheckNode : public CmpNode {
306 public:
307   enum {
308     Control,
309     Memory,
310     ArrayOrKlass
311   };
312   FlatArrayCheckNode(Compile* C, Node* mem, Node* array_or_klass) : CmpNode(mem, array_or_klass) {
313     init_class_id(Class_FlatArrayCheck);
314     init_flags(Flag_is_macro);
315     C->add_macro_node(this);
316   }
317   virtual int Opcode() const;
318   virtual const Type* sub(const Type*, const Type*) const { ShouldNotReachHere(); return nullptr; }
319   const Type* Value(PhaseGVN* phase) const;
320   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
321 };
322 
323 //------------------------------BoolTest---------------------------------------
324 // Convert condition codes to a boolean test value (0 or -1).
325 // We pick the values as 3 bits; the low order 2 bits we compare against the
326 // condition codes, the high bit flips the sense of the result.
327 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
328 struct BoolTest {
329   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
330               // The following values are used with vector compares
331               // A BoolTest value should not be constructed for such values
332               unsigned_compare = 16,
333               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
334   mask _test;
335   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
336   const Type *cc2logical( const Type *CC ) const;
337   // Commute the test.  I use a small table lookup.  The table is created as
338   // a simple char array where each element is the ASCII version of a 'mask'
339   // enum from above.
340   mask commute( ) const { return mask("032147658"[_test]-'0'); }
341   mask negate( ) const { return mask(_test^4); }
342   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
343   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
344   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
345   void dump_on(outputStream *st) const;
346   mask merge(BoolTest other) const;
347 };
348 
349 //------------------------------BoolNode---------------------------------------
350 // A Node to convert a Condition Codes to a Logical result.
351 class BoolNode : public Node {
352   virtual uint hash() const;
353   virtual bool cmp( const Node &n ) const;
354   virtual uint size_of() const;
355 
356   // Try to optimize signed integer comparison
357   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
358                   int cmp1_op, const TypeInt* cmp2_type);
359 public:
360   const BoolTest _test;
361   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
362     init_class_id(Class_Bool);
363   }
364   // Convert an arbitrary int value to a Bool or other suitable predicate.
365   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
366   // Convert self back to an integer value.
367   Node* as_int_value(PhaseGVN* phase);
368   // Invert sense of self, returning new Bool.
369   BoolNode* negate(PhaseGVN* phase);
370   virtual int Opcode() const;
371   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
372   virtual const Type* Value(PhaseGVN* phase) const;
373   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
374   uint match_edge(uint idx) const { return 0; }
375   virtual uint ideal_reg() const { return Op_RegI; }
376 
377   bool is_counted_loop_exit_test();
378 #ifndef PRODUCT
379   virtual void dump_spec(outputStream *st) const;
380 #endif
381 };
382 
383 //------------------------------AbsNode----------------------------------------
384 // Abstract class for absolute value.  Mostly used to get a handy wrapper
385 // for finding this pattern in the graph.
386 class AbsNode : public Node {
387 public:
388   AbsNode( Node *value ) : Node(0,value) {}
389   virtual Node* Identity(PhaseGVN* phase);
390   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
391   virtual const Type* Value(PhaseGVN* phase) const;
392 };
393 
394 //------------------------------AbsINode---------------------------------------
395 // Absolute value an integer.  Since a naive graph involves control flow, we
396 // "match" it in the ideal world (so the control flow can be removed).
397 class AbsINode : public AbsNode {
398 public:
399   AbsINode( Node *in1 ) : AbsNode(in1) {}
400   virtual int Opcode() const;
401   const Type *bottom_type() const { return TypeInt::INT; }
402   virtual uint ideal_reg() const { return Op_RegI; }
403 };
404 
405 //------------------------------AbsLNode---------------------------------------
406 // Absolute value a long.  Since a naive graph involves control flow, we
407 // "match" it in the ideal world (so the control flow can be removed).
408 class AbsLNode : public AbsNode {
409 public:
410   AbsLNode( Node *in1 ) : AbsNode(in1) {}
411   virtual int Opcode() const;
412   const Type *bottom_type() const { return TypeLong::LONG; }
413   virtual uint ideal_reg() const { return Op_RegL; }
414 };
415 
416 //------------------------------AbsFNode---------------------------------------
417 // Absolute value a float, a common float-point idiom with a cheap hardware
418 // implementation on most chips.  Since a naive graph involves control flow, we
419 // "match" it in the ideal world (so the control flow can be removed).
420 class AbsFNode : public AbsNode {
421 public:
422   AbsFNode( Node *in1 ) : AbsNode(in1) {}
423   virtual int Opcode() const;
424   const Type *bottom_type() const { return Type::FLOAT; }
425   virtual uint ideal_reg() const { return Op_RegF; }
426 };
427 
428 //------------------------------AbsDNode---------------------------------------
429 // Absolute value a double, a common float-point idiom with a cheap hardware
430 // implementation on most chips.  Since a naive graph involves control flow, we
431 // "match" it in the ideal world (so the control flow can be removed).
432 class AbsDNode : public AbsNode {
433 public:
434   AbsDNode( Node *in1 ) : AbsNode(in1) {}
435   virtual int Opcode() const;
436   const Type *bottom_type() const { return Type::DOUBLE; }
437   virtual uint ideal_reg() const { return Op_RegD; }
438 };
439 
440 
441 //------------------------------CmpLTMaskNode----------------------------------
442 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
443 class CmpLTMaskNode : public Node {
444 public:
445   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
446   virtual int Opcode() const;
447   const Type *bottom_type() const { return TypeInt::INT; }
448   virtual uint ideal_reg() const { return Op_RegI; }
449 };
450 
451 
452 //------------------------------NegNode----------------------------------------
453 class NegNode : public Node {
454 public:
455   NegNode(Node* in1) : Node(0, in1) {
456     init_class_id(Class_Neg);
457   }
458 };
459 
460 //------------------------------NegINode---------------------------------------
461 // Negate value an int.  For int values, negation is the same as subtraction
462 // from zero
463 class NegINode : public NegNode {
464 public:
465   NegINode(Node *in1) : NegNode(in1) {}
466   virtual int Opcode() const;
467   const Type *bottom_type() const { return TypeInt::INT; }
468   virtual uint ideal_reg() const { return Op_RegI; }
469 };
470 
471 //------------------------------NegLNode---------------------------------------
472 // Negate value an int.  For int values, negation is the same as subtraction
473 // from zero
474 class NegLNode : public NegNode {
475 public:
476   NegLNode(Node *in1) : NegNode(in1) {}
477   virtual int Opcode() const;
478   const Type *bottom_type() const { return TypeLong::LONG; }
479   virtual uint ideal_reg() const { return Op_RegL; }
480 };
481 
482 //------------------------------NegFNode---------------------------------------
483 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
484 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
485 // cannot be used to replace negation we have to implement negation as ideal
486 // node; note that negation and addition can replace subtraction.
487 class NegFNode : public NegNode {
488 public:
489   NegFNode( Node *in1 ) : NegNode(in1) {}
490   virtual int Opcode() const;
491   const Type *bottom_type() const { return Type::FLOAT; }
492   virtual uint ideal_reg() const { return Op_RegF; }
493 };
494 
495 //------------------------------NegDNode---------------------------------------
496 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
497 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
498 // cannot be used to replace negation we have to implement negation as ideal
499 // node; note that negation and addition can replace subtraction.
500 class NegDNode : public NegNode {
501 public:
502   NegDNode( Node *in1 ) : NegNode(in1) {}
503   virtual int Opcode() const;
504   const Type *bottom_type() const { return Type::DOUBLE; }
505   virtual uint ideal_reg() const { return Op_RegD; }
506 };
507 
508 //------------------------------AtanDNode--------------------------------------
509 // arcus tangens of a double
510 class AtanDNode : public Node {
511 public:
512   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
513   virtual int Opcode() const;
514   const Type *bottom_type() const { return Type::DOUBLE; }
515   virtual uint ideal_reg() const { return Op_RegD; }
516 };
517 
518 
519 //------------------------------SqrtDNode--------------------------------------
520 // square root a double
521 class SqrtDNode : public Node {
522 public:
523   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
524     init_flags(Flag_is_expensive);
525     C->add_expensive_node(this);
526   }
527   virtual int Opcode() const;
528   const Type *bottom_type() const { return Type::DOUBLE; }
529   virtual uint ideal_reg() const { return Op_RegD; }
530   virtual const Type* Value(PhaseGVN* phase) const;
531 };
532 
533 //------------------------------SqrtFNode--------------------------------------
534 // square root a float
535 class SqrtFNode : public Node {
536 public:
537   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
538     init_flags(Flag_is_expensive);
539     if (c != nullptr) {
540       // Treat node only as expensive if a control input is set because it might
541       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
542       // be unique and therefore has no control input.
543       C->add_expensive_node(this);
544     }
545   }
546   virtual int Opcode() const;
547   const Type *bottom_type() const { return Type::FLOAT; }
548   virtual uint ideal_reg() const { return Op_RegF; }
549   virtual const Type* Value(PhaseGVN* phase) const;
550 };
551 
552 //-------------------------------ReverseBytesINode--------------------------------
553 // reverse bytes of an integer
554 class ReverseBytesINode : public Node {
555 public:
556   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
557   virtual int Opcode() const;
558   const Type *bottom_type() const { return TypeInt::INT; }
559   virtual uint ideal_reg() const { return Op_RegI; }
560 };
561 
562 //-------------------------------ReverseBytesLNode--------------------------------
563 // reverse bytes of a long
564 class ReverseBytesLNode : public Node {
565 public:
566   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
567   virtual int Opcode() const;
568   const Type *bottom_type() const { return TypeLong::LONG; }
569   virtual uint ideal_reg() const { return Op_RegL; }
570 };
571 
572 //-------------------------------ReverseBytesUSNode--------------------------------
573 // reverse bytes of an unsigned short / char
574 class ReverseBytesUSNode : public Node {
575 public:
576   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
577   virtual int Opcode() const;
578   const Type *bottom_type() const { return TypeInt::CHAR; }
579   virtual uint ideal_reg() const { return Op_RegI; }
580 };
581 
582 //-------------------------------ReverseBytesSNode--------------------------------
583 // reverse bytes of a short
584 class ReverseBytesSNode : public Node {
585 public:
586   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
587   virtual int Opcode() const;
588   const Type *bottom_type() const { return TypeInt::SHORT; }
589   virtual uint ideal_reg() const { return Op_RegI; }
590 };
591 
592 //-------------------------------ReverseINode--------------------------------
593 // reverse bits of an int
594 class ReverseINode : public Node {
595 public:
596   ReverseINode(Node *c, Node *in1) : Node(c, in1) {}
597   virtual int Opcode() const;
598   const Type *bottom_type() const { return TypeInt::INT; }
599   virtual uint ideal_reg() const { return Op_RegI; }
600   virtual Node* Identity(PhaseGVN* phase);
601   virtual const Type* Value(PhaseGVN* phase) const;
602 };
603 
604 //-------------------------------ReverseLNode--------------------------------
605 // reverse bits of a long
606 class ReverseLNode : public Node {
607 public:
608   ReverseLNode(Node *c, Node *in1) : Node(c, in1) {}
609   virtual int Opcode() const;
610   const Type *bottom_type() const { return TypeLong::LONG; }
611   virtual uint ideal_reg() const { return Op_RegL; }
612   virtual Node* Identity(PhaseGVN* phase);
613   virtual const Type* Value(PhaseGVN* phase) const;
614 };
615 
616 #endif // SHARE_OPTO_SUBNODE_HPP