1 /*
2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_SUBNODE_HPP
26 #define SHARE_OPTO_SUBNODE_HPP
27
28 #include "opto/node.hpp"
29 #include "opto/opcodes.hpp"
30 #include "opto/type.hpp"
31
32 // Portions of code courtesy of Clifford Click
33
34 //------------------------------SUBNode----------------------------------------
35 // Class SUBTRACTION functionality. This covers all the usual 'subtract'
36 // behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
37 // -float, and -double are all inherited from this class. The compare
38 // functions behave like subtract functions, except that all negative answers
39 // are compressed into -1, and all positive answers compressed to 1.
40 class SubNode : public Node {
41 public:
42 SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
43 init_class_id(Class_Sub);
44 }
45
46 // Handle algebraic identities here. If we have an identity, return the Node
47 // we are equivalent to. We look for "add of zero" as an identity.
48 virtual Node* Identity(PhaseGVN* phase);
49
50 // Compute a new Type for this node. Basically we just do the pre-check,
51 // then call the virtual add() to set the type.
52 virtual const Type* Value(PhaseGVN* phase) const;
53 const Type* Value_common( PhaseTransform *phase ) const;
54
55 // Supplied function returns the subtractend of the inputs.
56 // This also type-checks the inputs for sanity. Guaranteed never to
57 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
58 virtual const Type *sub( const Type *, const Type * ) const = 0;
59
60 // Supplied function to return the additive identity type.
61 // This is returned whenever the subtracts inputs are the same.
62 virtual const Type *add_id() const = 0;
63
64 static SubNode* make(Node* in1, Node* in2, BasicType bt);
65 };
66
67
68 // NOTE: SubINode should be taken away and replaced by add and negate
69 //------------------------------SubINode---------------------------------------
70 // Subtract 2 integers
71 class SubINode : public SubNode {
72 public:
73 SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
74 virtual int Opcode() const;
75 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
76 virtual const Type *sub( const Type *, const Type * ) const;
77 const Type *add_id() const { return TypeInt::ZERO; }
78 const Type *bottom_type() const { return TypeInt::INT; }
79 virtual uint ideal_reg() const { return Op_RegI; }
80 };
81
82 //------------------------------SubLNode---------------------------------------
83 // Subtract 2 integers
84 class SubLNode : public SubNode {
85 public:
86 SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
87 virtual int Opcode() const;
88 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
89 virtual const Type *sub( const Type *, const Type * ) const;
90 const Type *add_id() const { return TypeLong::ZERO; }
91 const Type *bottom_type() const { return TypeLong::LONG; }
92 virtual uint ideal_reg() const { return Op_RegL; }
93 };
94
95 // NOTE: SubFPNode should be taken away and replaced by add and negate
96 //------------------------------SubFPNode--------------------------------------
97 // Subtract 2 floats or doubles
98 class SubFPNode : public SubNode {
99 protected:
100 SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102 const Type* Value(PhaseGVN* phase) const;
103 };
104
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110 SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111 virtual int Opcode() const;
112 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113 virtual const Type *sub( const Type *, const Type * ) const;
114 const Type *add_id() const { return TypeF::ZERO; }
115 const Type *bottom_type() const { return Type::FLOAT; }
116 virtual uint ideal_reg() const { return Op_RegF; }
117 };
118
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124 SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125 virtual int Opcode() const;
126 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127 virtual const Type *sub( const Type *, const Type * ) const;
128 const Type *add_id() const { return TypeD::ZERO; }
129 const Type *bottom_type() const { return Type::DOUBLE; }
130 virtual uint ideal_reg() const { return Op_RegD; }
131 };
132
133 //------------------------------CmpNode---------------------------------------
134 // Compare 2 values, returning condition codes (-1, 0 or 1).
135 class CmpNode : public SubNode {
136 public:
137 CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
138 init_class_id(Class_Cmp);
139 }
140 virtual Node* Identity(PhaseGVN* phase);
141 const Type *add_id() const { return TypeInt::ZERO; }
142 const Type *bottom_type() const { return TypeInt::CC; }
143 virtual uint ideal_reg() const { return Op_RegFlags; }
144
145 static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
146
147 #ifndef PRODUCT
148 // CmpNode and subclasses include all data inputs (until hitting a control
149 // boundary) in their related node set, as well as all outputs until and
150 // including eventual control nodes and their projections.
151 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
152 #endif
153 };
154
155 //------------------------------CmpINode---------------------------------------
156 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
157 class CmpINode : public CmpNode {
158 public:
159 CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
160 virtual int Opcode() const;
161 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
162 virtual const Type *sub( const Type *, const Type * ) const;
163 };
164
165 //------------------------------CmpUNode---------------------------------------
166 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
167 class CmpUNode : public CmpNode {
168 public:
169 CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
170 virtual int Opcode() const;
171 virtual const Type *sub( const Type *, const Type * ) const;
172 const Type* Value(PhaseGVN* phase) const;
173 bool is_index_range_check() const;
174 };
175
176 //------------------------------CmpPNode---------------------------------------
177 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
178 class CmpPNode : public CmpNode {
179 public:
180 CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
181 virtual int Opcode() const;
182 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
183 virtual const Type *sub( const Type *, const Type * ) const;
184 };
185
186 //------------------------------CmpNNode--------------------------------------
187 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
188 class CmpNNode : public CmpNode {
189 public:
190 CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
191 virtual int Opcode() const;
192 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
193 virtual const Type *sub( const Type *, const Type * ) const;
194 };
195
196 //------------------------------CmpLNode---------------------------------------
197 // Compare 2 long values, returning condition codes (-1, 0 or 1).
198 class CmpLNode : public CmpNode {
199 public:
200 CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
201 virtual int Opcode() const;
202 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
203 virtual const Type *sub( const Type *, const Type * ) const;
204 };
205
206 //------------------------------CmpULNode---------------------------------------
207 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
208 class CmpULNode : public CmpNode {
209 public:
210 CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
211 virtual int Opcode() const;
212 virtual const Type* sub(const Type*, const Type*) const;
213 };
214
215 //------------------------------CmpL3Node--------------------------------------
216 // Compare 2 long values, returning integer value (-1, 0 or 1).
217 class CmpL3Node : public CmpLNode {
218 public:
219 CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
220 // Since it is not consumed by Bools, it is not really a Cmp.
221 init_class_id(Class_Sub);
222 }
223 virtual int Opcode() const;
224 virtual uint ideal_reg() const { return Op_RegI; }
225 };
226
227 //------------------------------CmpFNode---------------------------------------
228 // Compare 2 float values, returning condition codes (-1, 0 or 1).
229 // This implements the Java bytecode fcmpl, so unordered returns -1.
230 // Operands may not commute.
231 class CmpFNode : public CmpNode {
232 public:
233 CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
234 virtual int Opcode() const;
235 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
236 const Type* Value(PhaseGVN* phase) const;
237 };
238
239 //------------------------------CmpF3Node--------------------------------------
240 // Compare 2 float values, returning integer value (-1, 0 or 1).
241 // This implements the Java bytecode fcmpl, so unordered returns -1.
242 // Operands may not commute.
243 class CmpF3Node : public CmpFNode {
244 public:
245 CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
246 // Since it is not consumed by Bools, it is not really a Cmp.
247 init_class_id(Class_Sub);
248 }
249 virtual int Opcode() const;
250 // Since it is not consumed by Bools, it is not really a Cmp.
251 virtual uint ideal_reg() const { return Op_RegI; }
252 };
253
254
255 //------------------------------CmpDNode---------------------------------------
256 // Compare 2 double values, returning condition codes (-1, 0 or 1).
257 // This implements the Java bytecode dcmpl, so unordered returns -1.
258 // Operands may not commute.
259 class CmpDNode : public CmpNode {
260 public:
261 CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
262 virtual int Opcode() const;
263 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
264 const Type* Value(PhaseGVN* phase) const;
265 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
266 };
267
268 //------------------------------CmpD3Node--------------------------------------
269 // Compare 2 double values, returning integer value (-1, 0 or 1).
270 // This implements the Java bytecode dcmpl, so unordered returns -1.
271 // Operands may not commute.
272 class CmpD3Node : public CmpDNode {
273 public:
274 CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
275 // Since it is not consumed by Bools, it is not really a Cmp.
276 init_class_id(Class_Sub);
277 }
278 virtual int Opcode() const;
279 virtual uint ideal_reg() const { return Op_RegI; }
280 };
281
282
283 //------------------------------BoolTest---------------------------------------
284 // Convert condition codes to a boolean test value (0 or -1).
285 // We pick the values as 3 bits; the low order 2 bits we compare against the
286 // condition codes, the high bit flips the sense of the result.
287 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
288 struct BoolTest {
289 enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
290 // The following values are used with vector compares
291 // A BoolTest value should not be constructed for such values
292 unsigned_compare = 16,
293 ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
294 mask _test;
295 BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
296 const Type *cc2logical( const Type *CC ) const;
297 // Commute the test. I use a small table lookup. The table is created as
298 // a simple char array where each element is the ASCII version of a 'mask'
299 // enum from above.
300 mask commute( ) const { return mask("032147658"[_test]-'0'); }
301 mask negate( ) const { return mask(_test^4); }
302 bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
303 bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; }
304 bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
305 void dump_on(outputStream *st) const;
306 mask merge(BoolTest other) const;
307 };
308
309 //------------------------------BoolNode---------------------------------------
310 // A Node to convert a Condition Codes to a Logical result.
311 class BoolNode : public Node {
312 virtual uint hash() const;
313 virtual bool cmp( const Node &n ) const;
314 virtual uint size_of() const;
315
316 // Try to optimize signed integer comparison
317 Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
318 int cmp1_op, const TypeInt* cmp2_type);
319 public:
320 const BoolTest _test;
321 BoolNode(Node *cc, BoolTest::mask t): Node(NULL,cc), _test(t) {
322 init_class_id(Class_Bool);
323 }
324 // Convert an arbitrary int value to a Bool or other suitable predicate.
325 static Node* make_predicate(Node* test_value, PhaseGVN* phase);
326 // Convert self back to an integer value.
327 Node* as_int_value(PhaseGVN* phase);
328 // Invert sense of self, returning new Bool.
329 BoolNode* negate(PhaseGVN* phase);
330 virtual int Opcode() const;
331 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
332 virtual const Type* Value(PhaseGVN* phase) const;
333 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
334 uint match_edge(uint idx) const { return 0; }
335 virtual uint ideal_reg() const { return Op_RegI; }
336
337 bool is_counted_loop_exit_test();
338 #ifndef PRODUCT
339 virtual void dump_spec(outputStream *st) const;
340 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
341 #endif
342 };
343
344 //------------------------------AbsNode----------------------------------------
345 // Abstract class for absolute value. Mostly used to get a handy wrapper
346 // for finding this pattern in the graph.
347 class AbsNode : public Node {
348 public:
349 AbsNode( Node *value ) : Node(0,value) {}
350 virtual Node* Identity(PhaseGVN* phase);
351 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
352 virtual const Type* Value(PhaseGVN* phase) const;
353 };
354
355 //------------------------------AbsINode---------------------------------------
356 // Absolute value an integer. Since a naive graph involves control flow, we
357 // "match" it in the ideal world (so the control flow can be removed).
358 class AbsINode : public AbsNode {
359 public:
360 AbsINode( Node *in1 ) : AbsNode(in1) {}
361 virtual int Opcode() const;
362 const Type *bottom_type() const { return TypeInt::INT; }
363 virtual uint ideal_reg() const { return Op_RegI; }
364 };
365
366 //------------------------------AbsLNode---------------------------------------
367 // Absolute value a long. Since a naive graph involves control flow, we
368 // "match" it in the ideal world (so the control flow can be removed).
369 class AbsLNode : public AbsNode {
370 public:
371 AbsLNode( Node *in1 ) : AbsNode(in1) {}
372 virtual int Opcode() const;
373 const Type *bottom_type() const { return TypeLong::LONG; }
374 virtual uint ideal_reg() const { return Op_RegL; }
375 };
376
377 //------------------------------AbsFNode---------------------------------------
378 // Absolute value a float, a common float-point idiom with a cheap hardware
379 // implemention on most chips. Since a naive graph involves control flow, we
380 // "match" it in the ideal world (so the control flow can be removed).
381 class AbsFNode : public AbsNode {
382 public:
383 AbsFNode( Node *in1 ) : AbsNode(in1) {}
384 virtual int Opcode() const;
385 const Type *bottom_type() const { return Type::FLOAT; }
386 virtual uint ideal_reg() const { return Op_RegF; }
387 };
388
389 //------------------------------AbsDNode---------------------------------------
390 // Absolute value a double, a common float-point idiom with a cheap hardware
391 // implemention on most chips. Since a naive graph involves control flow, we
392 // "match" it in the ideal world (so the control flow can be removed).
393 class AbsDNode : public AbsNode {
394 public:
395 AbsDNode( Node *in1 ) : AbsNode(in1) {}
396 virtual int Opcode() const;
397 const Type *bottom_type() const { return Type::DOUBLE; }
398 virtual uint ideal_reg() const { return Op_RegD; }
399 };
400
401
402 //------------------------------CmpLTMaskNode----------------------------------
403 // If p < q, return -1 else return 0. Nice for flow-free idioms.
404 class CmpLTMaskNode : public Node {
405 public:
406 CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
407 virtual int Opcode() const;
408 const Type *bottom_type() const { return TypeInt::INT; }
409 virtual uint ideal_reg() const { return Op_RegI; }
410 };
411
412
413 //------------------------------NegNode----------------------------------------
414 class NegNode : public Node {
415 public:
416 NegNode( Node *in1 ) : Node(0,in1) {}
417 };
418
419 //------------------------------NegINode---------------------------------------
420 // Negate value an int. For int values, negation is the same as subtraction
421 // from zero
422 class NegINode : public NegNode {
423 public:
424 NegINode(Node *in1) : NegNode(in1) {}
425 virtual int Opcode() const;
426 const Type *bottom_type() const { return TypeInt::INT; }
427 virtual uint ideal_reg() const { return Op_RegI; }
428 };
429
430 //------------------------------NegLNode---------------------------------------
431 // Negate value an int. For int values, negation is the same as subtraction
432 // from zero
433 class NegLNode : public NegNode {
434 public:
435 NegLNode(Node *in1) : NegNode(in1) {}
436 virtual int Opcode() const;
437 const Type *bottom_type() const { return TypeLong::LONG; }
438 virtual uint ideal_reg() const { return Op_RegL; }
439 };
440
441 //------------------------------NegFNode---------------------------------------
442 // Negate value a float. Negating 0.0 returns -0.0, but subtracting from
443 // zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
444 // cannot be used to replace negation we have to implement negation as ideal
445 // node; note that negation and addition can replace subtraction.
446 class NegFNode : public NegNode {
447 public:
448 NegFNode( Node *in1 ) : NegNode(in1) {}
449 virtual int Opcode() const;
450 const Type *bottom_type() const { return Type::FLOAT; }
451 virtual uint ideal_reg() const { return Op_RegF; }
452 };
453
454 //------------------------------NegDNode---------------------------------------
455 // Negate value a double. Negating 0.0 returns -0.0, but subtracting from
456 // zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
457 // cannot be used to replace negation we have to implement negation as ideal
458 // node; note that negation and addition can replace subtraction.
459 class NegDNode : public NegNode {
460 public:
461 NegDNode( Node *in1 ) : NegNode(in1) {}
462 virtual int Opcode() const;
463 const Type *bottom_type() const { return Type::DOUBLE; }
464 virtual uint ideal_reg() const { return Op_RegD; }
465 };
466
467 //------------------------------AtanDNode--------------------------------------
468 // arcus tangens of a double
469 class AtanDNode : public Node {
470 public:
471 AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
472 virtual int Opcode() const;
473 const Type *bottom_type() const { return Type::DOUBLE; }
474 virtual uint ideal_reg() const { return Op_RegD; }
475 };
476
477
478 //------------------------------SqrtDNode--------------------------------------
479 // square root a double
480 class SqrtDNode : public Node {
481 public:
482 SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
483 init_flags(Flag_is_expensive);
484 C->add_expensive_node(this);
485 }
486 virtual int Opcode() const;
487 const Type *bottom_type() const { return Type::DOUBLE; }
488 virtual uint ideal_reg() const { return Op_RegD; }
489 virtual const Type* Value(PhaseGVN* phase) const;
490 };
491
492 //------------------------------SqrtFNode--------------------------------------
493 // square root a float
494 class SqrtFNode : public Node {
495 public:
496 SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
497 init_flags(Flag_is_expensive);
498 if (c != NULL) {
499 // Treat node only as expensive if a control input is set because it might
500 // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
501 // be unique and therefore has no control input.
502 C->add_expensive_node(this);
503 }
504 }
505 virtual int Opcode() const;
506 const Type *bottom_type() const { return Type::FLOAT; }
507 virtual uint ideal_reg() const { return Op_RegF; }
508 virtual const Type* Value(PhaseGVN* phase) const;
509 };
510
511 //-------------------------------ReverseBytesINode--------------------------------
512 // reverse bytes of an integer
513 class ReverseBytesINode : public Node {
514 public:
515 ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
516 virtual int Opcode() const;
517 const Type *bottom_type() const { return TypeInt::INT; }
518 virtual uint ideal_reg() const { return Op_RegI; }
519 };
520
521 //-------------------------------ReverseBytesLNode--------------------------------
522 // reverse bytes of a long
523 class ReverseBytesLNode : public Node {
524 public:
525 ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
526 virtual int Opcode() const;
527 const Type *bottom_type() const { return TypeLong::LONG; }
528 virtual uint ideal_reg() const { return Op_RegL; }
529 };
530
531 //-------------------------------ReverseBytesUSNode--------------------------------
532 // reverse bytes of an unsigned short / char
533 class ReverseBytesUSNode : public Node {
534 public:
535 ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
536 virtual int Opcode() const;
537 const Type *bottom_type() const { return TypeInt::CHAR; }
538 virtual uint ideal_reg() const { return Op_RegI; }
539 };
540
541 //-------------------------------ReverseBytesSNode--------------------------------
542 // reverse bytes of a short
543 class ReverseBytesSNode : public Node {
544 public:
545 ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
546 virtual int Opcode() const;
547 const Type *bottom_type() const { return TypeInt::SHORT; }
548 virtual uint ideal_reg() const { return Op_RegI; }
549 };
550
551 #endif // SHARE_OPTO_SUBNODE_HPP
--- EOF ---