1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_SUBNODE_HPP
26 #define SHARE_OPTO_SUBNODE_HPP
27
28 #include "opto/node.hpp"
29 #include "opto/opcodes.hpp"
30 #include "opto/type.hpp"
31
32 // Portions of code courtesy of Clifford Click
33
34 //------------------------------SUBNode----------------------------------------
35 // Class SUBTRACTION functionality. This covers all the usual 'subtract'
36 // behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
37 // -float, and -double are all inherited from this class. The compare
38 // functions behave like subtract functions, except that all negative answers
39 // are compressed into -1, and all positive answers compressed to 1.
40 class SubNode : public Node {
41 public:
42 SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
43 init_class_id(Class_Sub);
44 }
45
46 // Handle algebraic identities here. If we have an identity, return the Node
47 // we are equivalent to. We look for "add of zero" as an identity.
48 virtual Node* Identity(PhaseGVN* phase);
49
50 // Compute a new Type for this node. Basically we just do the pre-check,
51 // then call the virtual add() to set the type.
52 virtual const Type* Value(PhaseGVN* phase) const;
53 const Type* Value_common(PhaseValues* phase) const;
54
55 // Supplied function returns the subtractend of the inputs.
56 // This also type-checks the inputs for sanity. Guaranteed never to
57 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
58 virtual const Type *sub( const Type *, const Type * ) const = 0;
59
60 // Supplied function to return the additive identity type.
61 // This is returned whenever the subtracts inputs are the same.
62 virtual const Type *add_id() const = 0;
63
64 static SubNode* make(Node* in1, Node* in2, BasicType bt);
65 };
66
67
68 // NOTE: SubINode should be taken away and replaced by add and negate
69 //------------------------------SubINode---------------------------------------
70 // Subtract 2 integers
71 class SubINode : public SubNode {
72 public:
73 SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
74 virtual int Opcode() const;
75 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
76 virtual const Type *sub( const Type *, const Type * ) const;
77 const Type *add_id() const { return TypeInt::ZERO; }
78 const Type *bottom_type() const { return TypeInt::INT; }
79 virtual uint ideal_reg() const { return Op_RegI; }
80 };
81
82 //------------------------------SubLNode---------------------------------------
83 // Subtract 2 integers
84 class SubLNode : public SubNode {
85 public:
86 SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
87 virtual int Opcode() const;
88 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
89 virtual const Type *sub( const Type *, const Type * ) const;
90 const Type *add_id() const { return TypeLong::ZERO; }
91 const Type *bottom_type() const { return TypeLong::LONG; }
92 virtual uint ideal_reg() const { return Op_RegL; }
93 };
94
95 // NOTE: SubFPNode should be taken away and replaced by add and negate
96 //------------------------------SubFPNode--------------------------------------
97 // Subtract 2 floats or doubles
98 class SubFPNode : public SubNode {
99 protected:
100 SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102 const Type* Value(PhaseGVN* phase) const;
103 };
104
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110 SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111 virtual int Opcode() const;
112 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113 virtual const Type *sub( const Type *, const Type * ) const;
114 const Type *add_id() const { return TypeF::ZERO; }
115 const Type *bottom_type() const { return Type::FLOAT; }
116 virtual uint ideal_reg() const { return Op_RegF; }
117 };
118
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124 SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125 virtual int Opcode() const;
126 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127 virtual const Type *sub( const Type *, const Type * ) const;
128 const Type *add_id() const { return TypeD::ZERO; }
129 const Type *bottom_type() const { return Type::DOUBLE; }
130 virtual uint ideal_reg() const { return Op_RegD; }
131 };
132
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137 SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138 virtual int Opcode() const;
139 virtual const Type* sub(const Type*, const Type*) const;
140 const Type* add_id() const { return TypeH::ZERO; }
141 const Type* bottom_type() const { return Type::HALF_FLOAT; }
142 virtual uint ideal_reg() const { return Op_RegF; }
143 };
144
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149 CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150 init_class_id(Class_Cmp);
151 }
152 virtual Node* Identity(PhaseGVN* phase);
153 const Type *add_id() const { return TypeInt::ZERO; }
154 const Type *bottom_type() const { return TypeInt::CC; }
155 virtual uint ideal_reg() const { return Op_RegFlags; }
156
157 static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164 CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165 virtual int Opcode() const;
166 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167 virtual const Type *sub( const Type *, const Type * ) const;
168 virtual const Type* Value(PhaseGVN* phase) const;
169 };
170
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175 CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176 virtual int Opcode() const;
177 virtual const Type *sub( const Type *, const Type * ) const;
178 const Type* Value(PhaseGVN* phase) const;
179 bool is_index_range_check() const;
180 };
181
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186 CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187 // Since it is not consumed by Bools, it is not really a Cmp.
188 init_class_id(Class_Sub);
189 }
190 virtual int Opcode() const;
191 virtual uint ideal_reg() const { return Op_RegI; }
192 };
193
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198 CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199 virtual int Opcode() const;
200 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201 virtual const Type *sub( const Type *, const Type * ) const;
202 };
203
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208 CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209 virtual int Opcode() const;
210 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211 virtual const Type *sub( const Type *, const Type * ) const;
212 };
213
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218 CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219 virtual int Opcode() const;
220 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
221 virtual const Type *sub( const Type *, const Type * ) const;
222 };
223
224 //------------------------------CmpULNode---------------------------------------
225 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
226 class CmpULNode : public CmpNode {
227 public:
228 CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
229 virtual int Opcode() const;
230 virtual const Type* sub(const Type*, const Type*) const;
231 };
232
233 //------------------------------CmpL3Node--------------------------------------
234 // Compare 2 long values, returning integer value (-1, 0 or 1).
235 class CmpL3Node : public CmpLNode {
236 public:
237 CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
238 // Since it is not consumed by Bools, it is not really a Cmp.
239 init_class_id(Class_Sub);
240 }
241 virtual int Opcode() const;
242 virtual uint ideal_reg() const { return Op_RegI; }
243 };
244
245 //------------------------------CmpUL3Node-------------------------------------
246 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
247 class CmpUL3Node : public CmpULNode {
248 public:
249 CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
250 // Since it is not consumed by Bools, it is not really a Cmp.
251 init_class_id(Class_Sub);
252 }
253 virtual int Opcode() const;
254 virtual uint ideal_reg() const { return Op_RegI; }
255 };
256
257 //------------------------------CmpFNode---------------------------------------
258 // Compare 2 float values, returning condition codes (-1, 0 or 1).
259 // This implements the Java bytecode fcmpl, so unordered returns -1.
260 // Operands may not commute.
261 class CmpFNode : public CmpNode {
262 public:
263 CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
264 virtual int Opcode() const;
265 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
266 const Type* Value(PhaseGVN* phase) const;
267 };
268
269 //------------------------------CmpF3Node--------------------------------------
270 // Compare 2 float values, returning integer value (-1, 0 or 1).
271 // This implements the Java bytecode fcmpl, so unordered returns -1.
272 // Operands may not commute.
273 class CmpF3Node : public CmpFNode {
274 public:
275 CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
276 // Since it is not consumed by Bools, it is not really a Cmp.
277 init_class_id(Class_Sub);
278 }
279 virtual int Opcode() const;
280 // Since it is not consumed by Bools, it is not really a Cmp.
281 virtual uint ideal_reg() const { return Op_RegI; }
282 };
283
284
285 //------------------------------CmpDNode---------------------------------------
286 // Compare 2 double values, returning condition codes (-1, 0 or 1).
287 // This implements the Java bytecode dcmpl, so unordered returns -1.
288 // Operands may not commute.
289 class CmpDNode : public CmpNode {
290 public:
291 CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
292 virtual int Opcode() const;
293 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
294 const Type* Value(PhaseGVN* phase) const;
295 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
296 };
297
298 //------------------------------CmpD3Node--------------------------------------
299 // Compare 2 double values, returning integer value (-1, 0 or 1).
300 // This implements the Java bytecode dcmpl, so unordered returns -1.
301 // Operands may not commute.
302 class CmpD3Node : public CmpDNode {
303 public:
304 CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
305 // Since it is not consumed by Bools, it is not really a Cmp.
306 init_class_id(Class_Sub);
307 }
308 virtual int Opcode() const;
309 virtual uint ideal_reg() const { return Op_RegI; }
310 };
311
312
313 //------------------------------BoolTest---------------------------------------
314 // Convert condition codes to a boolean test value (0 or -1).
315 // We pick the values as 3 bits; the low order 2 bits we compare against the
316 // condition codes, the high bit flips the sense of the result.
317 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
318 struct BoolTest {
319 enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
320 // The following values are used with vector compares
321 // A BoolTest value should not be constructed for such values
322 unsigned_compare = 16,
323 ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
324 mask _test;
325 BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
326 const Type *cc2logical( const Type *CC ) const;
327 // Commute the test. I use a small table lookup. The table is created as
328 // a simple char array where each element is the ASCII version of a 'mask'
329 // enum from above.
330 mask commute( ) const { return mask("032147658"[_test]-'0'); }
331 mask negate( ) const { return negate_mask(_test); }
332 // Return the negative mask for the given mask, for both signed and unsigned comparison.
333 static mask negate_mask(mask btm) { return mask(btm ^ 4); }
334 bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
335 bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; }
336 bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
337 void dump_on(outputStream *st) const;
338 mask merge(BoolTest other) const;
339 };
340
341 //------------------------------BoolNode---------------------------------------
342 // A Node to convert a Condition Codes to a Logical result.
343 class BoolNode : public Node {
344 virtual uint hash() const;
345 virtual bool cmp( const Node &n ) const;
346 virtual uint size_of() const;
347
348 // Try to optimize signed integer comparison
349 Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
350 int cmp1_op, const TypeInt* cmp2_type);
351 public:
352 const BoolTest _test;
353 BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
354 init_class_id(Class_Bool);
355 }
356 // Convert an arbitrary int value to a Bool or other suitable predicate.
357 static Node* make_predicate(Node* test_value, PhaseGVN* phase);
358 // Convert self back to an integer value.
359 Node* as_int_value(PhaseGVN* phase);
360 // Invert sense of self, returning new Bool.
361 BoolNode* negate(PhaseGVN* phase);
362 virtual int Opcode() const;
363 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
364 const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
365 virtual const Type* Value(PhaseGVN* phase) const;
366 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
367 uint match_edge(uint idx) const { return 0; }
368 virtual uint ideal_reg() const { return Op_RegI; }
369
370 bool is_counted_loop_exit_test();
371 #ifndef PRODUCT
372 virtual void dump_spec(outputStream *st) const;
373 #endif
374 };
375
376 //------------------------------AbsNode----------------------------------------
377 // Abstract class for absolute value. Mostly used to get a handy wrapper
378 // for finding this pattern in the graph.
379 class AbsNode : public Node {
380 public:
381 AbsNode( Node *value ) : Node(nullptr,value) {}
382 virtual Node* Identity(PhaseGVN* phase);
383 virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
384 virtual const Type* Value(PhaseGVN* phase) const;
385 };
386
387 //------------------------------AbsINode---------------------------------------
388 // Absolute value an integer. Since a naive graph involves control flow, we
389 // "match" it in the ideal world (so the control flow can be removed).
390 class AbsINode : public AbsNode {
391 public:
392 AbsINode( Node *in1 ) : AbsNode(in1) {}
393 virtual int Opcode() const;
394 const Type *bottom_type() const { return TypeInt::INT; }
395 virtual uint ideal_reg() const { return Op_RegI; }
396 };
397
398 //------------------------------AbsLNode---------------------------------------
399 // Absolute value a long. Since a naive graph involves control flow, we
400 // "match" it in the ideal world (so the control flow can be removed).
401 class AbsLNode : public AbsNode {
402 public:
403 AbsLNode( Node *in1 ) : AbsNode(in1) {}
404 virtual int Opcode() const;
405 const Type *bottom_type() const { return TypeLong::LONG; }
406 virtual uint ideal_reg() const { return Op_RegL; }
407 };
408
409 //------------------------------AbsFNode---------------------------------------
410 // Absolute value a float, a common float-point idiom with a cheap hardware
411 // implementation on most chips. Since a naive graph involves control flow, we
412 // "match" it in the ideal world (so the control flow can be removed).
413 class AbsFNode : public AbsNode {
414 public:
415 AbsFNode( Node *in1 ) : AbsNode(in1) {}
416 virtual int Opcode() const;
417 const Type *bottom_type() const { return Type::FLOAT; }
418 virtual uint ideal_reg() const { return Op_RegF; }
419 };
420
421 //------------------------------AbsDNode---------------------------------------
422 // Absolute value a double, a common float-point idiom with a cheap hardware
423 // implementation on most chips. Since a naive graph involves control flow, we
424 // "match" it in the ideal world (so the control flow can be removed).
425 class AbsDNode : public AbsNode {
426 public:
427 AbsDNode( Node *in1 ) : AbsNode(in1) {}
428 virtual int Opcode() const;
429 const Type *bottom_type() const { return Type::DOUBLE; }
430 virtual uint ideal_reg() const { return Op_RegD; }
431 };
432
433
434 //------------------------------CmpLTMaskNode----------------------------------
435 // If p < q, return -1 else return 0. Nice for flow-free idioms.
436 class CmpLTMaskNode : public Node {
437 public:
438 CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
439 virtual int Opcode() const;
440 const Type *bottom_type() const { return TypeInt::INT; }
441 virtual uint ideal_reg() const { return Op_RegI; }
442 };
443
444
445 //------------------------------NegNode----------------------------------------
446 class NegNode : public Node {
447 public:
448 NegNode(Node* in1) : Node(nullptr, in1) {
449 init_class_id(Class_Neg);
450 }
451 };
452
453 //------------------------------NegINode---------------------------------------
454 // Negate value an int. For int values, negation is the same as subtraction
455 // from zero
456 class NegINode : public NegNode {
457 public:
458 NegINode(Node *in1) : NegNode(in1) {}
459 virtual int Opcode() const;
460 const Type *bottom_type() const { return TypeInt::INT; }
461 virtual uint ideal_reg() const { return Op_RegI; }
462 };
463
464 //------------------------------NegLNode---------------------------------------
465 // Negate value an int. For int values, negation is the same as subtraction
466 // from zero
467 class NegLNode : public NegNode {
468 public:
469 NegLNode(Node *in1) : NegNode(in1) {}
470 virtual int Opcode() const;
471 const Type *bottom_type() const { return TypeLong::LONG; }
472 virtual uint ideal_reg() const { return Op_RegL; }
473 };
474
475 //------------------------------NegFNode---------------------------------------
476 // Negate value a float. Negating 0.0 returns -0.0, but subtracting from
477 // zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
478 // cannot be used to replace negation we have to implement negation as ideal
479 // node; note that negation and addition can replace subtraction.
480 class NegFNode : public NegNode {
481 public:
482 NegFNode( Node *in1 ) : NegNode(in1) {}
483 virtual int Opcode() const;
484 const Type *bottom_type() const { return Type::FLOAT; }
485 virtual uint ideal_reg() const { return Op_RegF; }
486 };
487
488 //------------------------------NegDNode---------------------------------------
489 // Negate value a double. Negating 0.0 returns -0.0, but subtracting from
490 // zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
491 // cannot be used to replace negation we have to implement negation as ideal
492 // node; note that negation and addition can replace subtraction.
493 class NegDNode : public NegNode {
494 public:
495 NegDNode( Node *in1 ) : NegNode(in1) {}
496 virtual int Opcode() const;
497 const Type *bottom_type() const { return Type::DOUBLE; }
498 virtual uint ideal_reg() const { return Op_RegD; }
499 };
500
501 //------------------------------AtanDNode--------------------------------------
502 // arcus tangens of a double
503 class AtanDNode : public Node {
504 public:
505 AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
506 virtual int Opcode() const;
507 const Type *bottom_type() const { return Type::DOUBLE; }
508 virtual uint ideal_reg() const { return Op_RegD; }
509 };
510
511
512 //------------------------------SqrtDNode--------------------------------------
513 // square root a double
514 class SqrtDNode : public Node {
515 public:
516 SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
517 init_flags(Flag_is_expensive);
518 C->add_expensive_node(this);
519 }
520 virtual int Opcode() const;
521 const Type *bottom_type() const { return Type::DOUBLE; }
522 virtual uint ideal_reg() const { return Op_RegD; }
523 virtual const Type* Value(PhaseGVN* phase) const;
524 };
525
526 //------------------------------SqrtFNode--------------------------------------
527 // square root a float
528 class SqrtFNode : public Node {
529 public:
530 SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
531 init_flags(Flag_is_expensive);
532 if (c != nullptr) {
533 // Treat node only as expensive if a control input is set because it might
534 // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
535 // be unique and therefore has no control input.
536 C->add_expensive_node(this);
537 }
538 }
539 virtual int Opcode() const;
540 const Type *bottom_type() const { return Type::FLOAT; }
541 virtual uint ideal_reg() const { return Op_RegF; }
542 virtual const Type* Value(PhaseGVN* phase) const;
543 };
544
545 //------------------------------SqrtHFNode-------------------------------------
546 // square root of a half-precision float
547 class SqrtHFNode : public Node {
548 public:
549 SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
550 init_flags(Flag_is_expensive);
551 C->add_expensive_node(this);
552 }
553 virtual int Opcode() const;
554 const Type* bottom_type() const { return Type::HALF_FLOAT; }
555 virtual uint ideal_reg() const { return Op_RegF; }
556 virtual const Type* Value(PhaseGVN* phase) const;
557 };
558
559
560 class ReverseBytesNode : public Node {
561 public:
562 ReverseBytesNode(Node* in) : Node(nullptr, in) {}
563 virtual const Type* Value(PhaseGVN* phase) const;
564 };
565 //-------------------------------ReverseBytesINode--------------------------------
566 // reverse bytes of an integer
567 class ReverseBytesINode : public ReverseBytesNode {
568 public:
569 ReverseBytesINode(Node* in) : ReverseBytesNode(in) {}
570 virtual int Opcode() const;
571 const Type* bottom_type() const { return TypeInt::INT; }
572 virtual uint ideal_reg() const { return Op_RegI; }
573 };
574
575 //-------------------------------ReverseBytesLNode--------------------------------
576 // reverse bytes of a long
577 class ReverseBytesLNode : public ReverseBytesNode {
578 public:
579 ReverseBytesLNode(Node* in) : ReverseBytesNode(in) {}
580 virtual int Opcode() const;
581 const Type* bottom_type() const { return TypeLong::LONG; }
582 virtual uint ideal_reg() const { return Op_RegL; }
583 };
584
585 //-------------------------------ReverseBytesUSNode--------------------------------
586 // reverse bytes of an unsigned short / char
587 class ReverseBytesUSNode : public ReverseBytesNode {
588 public:
589 ReverseBytesUSNode(Node* in1) : ReverseBytesNode(in1) {}
590 virtual int Opcode() const;
591 const Type* bottom_type() const { return TypeInt::CHAR; }
592 virtual uint ideal_reg() const { return Op_RegI; }
593 };
594
595 //-------------------------------ReverseBytesSNode--------------------------------
596 // reverse bytes of a short
597 class ReverseBytesSNode : public ReverseBytesNode {
598 public:
599 ReverseBytesSNode(Node* in) : ReverseBytesNode(in) {}
600 virtual int Opcode() const;
601 const Type* bottom_type() const { return TypeInt::SHORT; }
602 virtual uint ideal_reg() const { return Op_RegI; }
603 };
604
605 //-------------------------------ReverseINode--------------------------------
606 // reverse bits of an int
607 class ReverseINode : public Node {
608 public:
609 ReverseINode(Node* in) : Node(nullptr,in) {}
610 virtual int Opcode() const;
611 const Type* bottom_type() const { return TypeInt::INT; }
612 virtual uint ideal_reg() const { return Op_RegI; }
613 virtual Node* Identity(PhaseGVN* phase);
614 virtual const Type* Value(PhaseGVN* phase) const;
615 };
616
617 //-------------------------------ReverseLNode--------------------------------
618 // reverse bits of a long
619 class ReverseLNode : public Node {
620 public:
621 ReverseLNode(Node* in) : Node(nullptr, in) {}
622 virtual int Opcode() const;
623 const Type* bottom_type() const { return TypeLong::LONG; }
624 virtual uint ideal_reg() const { return Op_RegL; }
625 virtual Node* Identity(PhaseGVN* phase);
626 virtual const Type* Value(PhaseGVN* phase) const;
627 };
628
629 #endif // SHARE_OPTO_SUBNODE_HPP
--- EOF ---