1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciMethodData.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/rangeinference.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/type.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "utilities/checkedCast.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/ostream.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/stringUtils.hpp"
  52 
  53 // Portions of code courtesy of Clifford Click
  54 
  55 // Optimization - Graph Style
  56 
  57 // Dictionary of types shared among compilations.
  58 Dict* Type::_shared_type_dict = nullptr;
  59 
  60 // Array which maps compiler types to Basic Types
  61 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  62   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  63   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  64   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  65   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  66   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  67   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  68   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  69   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  70   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  71   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  72   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
  73 
  74 #if defined(PPC64)
  75   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  76   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  82 #elif defined(S390)
  83   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  84   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  85   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  86   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  87   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  88   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  89   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  90 #else // all other
  91   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  92   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  93   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  94   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  95   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  96   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  97   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  98 #endif
  99   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 100   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 101   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 102   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 103   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 104   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 105   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 106   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 107   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 108   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 109   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 110   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 111   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 112   { HalfFloatBot,    T_SHORT,      "halffloat_top", false, Op_RegF,              relocInfo::none          },  // HalfFloatTop
 113   { HalfFloatCon,    T_SHORT,      "hfcon:",        false, Op_RegF,              relocInfo::none          },  // HalfFloatCon
 114   { HalfFloatTop,    T_SHORT,      "short",         false, Op_RegF,              relocInfo::none          },  // HalfFloatBot
 115   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 116   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 117   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 118   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 119   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 120   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 121   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 122 };
 123 
 124 // Map ideal registers (machine types) to ideal types
 125 const Type *Type::mreg2type[_last_machine_leaf];
 126 
 127 // Map basic types to canonical Type* pointers.
 128 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 129 
 130 // Map basic types to constant-zero Types.
 131 const Type* Type::            _zero_type[T_CONFLICT+1];
 132 
 133 // Map basic types to array-body alias types.
 134 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 135 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 136 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 137 
 138 //=============================================================================
 139 // Convenience common pre-built types.
 140 const Type *Type::ABIO;         // State-of-machine only
 141 const Type *Type::BOTTOM;       // All values
 142 const Type *Type::CONTROL;      // Control only
 143 const Type *Type::DOUBLE;       // All doubles
 144 const Type *Type::HALF_FLOAT;   // All half floats
 145 const Type *Type::FLOAT;        // All floats
 146 const Type *Type::HALF;         // Placeholder half of doublewide type
 147 const Type *Type::MEMORY;       // Abstract store only
 148 const Type *Type::RETURN_ADDRESS;
 149 const Type *Type::TOP;          // No values in set
 150 
 151 //------------------------------get_const_type---------------------------
 152 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 153   if (type == nullptr) {
 154     return nullptr;
 155   } else if (type->is_primitive_type()) {
 156     return get_const_basic_type(type->basic_type());
 157   } else {
 158     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 159   }
 160 }
 161 
 162 //---------------------------array_element_basic_type---------------------------------
 163 // Mapping to the array element's basic type.
 164 BasicType Type::array_element_basic_type() const {
 165   BasicType bt = basic_type();
 166   if (bt == T_INT) {
 167     if (this == TypeInt::INT)   return T_INT;
 168     if (this == TypeInt::CHAR)  return T_CHAR;
 169     if (this == TypeInt::BYTE)  return T_BYTE;
 170     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 171     if (this == TypeInt::SHORT) return T_SHORT;
 172     return T_VOID;
 173   }
 174   return bt;
 175 }
 176 
 177 // For two instance arrays of same dimension, return the base element types.
 178 // Otherwise or if the arrays have different dimensions, return null.
 179 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 180                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 181 
 182   if (e1) *e1 = nullptr;
 183   if (e2) *e2 = nullptr;
 184   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 185   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 186 
 187   if (a1tap != nullptr && a2tap != nullptr) {
 188     // Handle multidimensional arrays
 189     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 190     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 191     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 192       a1tap = a1tp->is_aryptr();
 193       a2tap = a2tp->is_aryptr();
 194       a1tp = a1tap->elem()->make_ptr();
 195       a2tp = a2tap->elem()->make_ptr();
 196     }
 197     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 198       if (e1) *e1 = a1tp->is_instptr();
 199       if (e2) *e2 = a2tp->is_instptr();
 200     }
 201   }
 202 }
 203 
 204 //---------------------------get_typeflow_type---------------------------------
 205 // Import a type produced by ciTypeFlow.
 206 const Type* Type::get_typeflow_type(ciType* type) {
 207   switch (type->basic_type()) {
 208 
 209   case ciTypeFlow::StateVector::T_BOTTOM:
 210     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 211     return Type::BOTTOM;
 212 
 213   case ciTypeFlow::StateVector::T_TOP:
 214     assert(type == ciTypeFlow::StateVector::top_type(), "");
 215     return Type::TOP;
 216 
 217   case ciTypeFlow::StateVector::T_NULL:
 218     assert(type == ciTypeFlow::StateVector::null_type(), "");
 219     return TypePtr::NULL_PTR;
 220 
 221   case ciTypeFlow::StateVector::T_LONG2:
 222     // The ciTypeFlow pass pushes a long, then the half.
 223     // We do the same.
 224     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 225     return TypeInt::TOP;
 226 
 227   case ciTypeFlow::StateVector::T_DOUBLE2:
 228     // The ciTypeFlow pass pushes double, then the half.
 229     // Our convention is the same.
 230     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 231     return Type::TOP;
 232 
 233   case T_ADDRESS:
 234     assert(type->is_return_address(), "");
 235     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 236 
 237   default:
 238     // make sure we did not mix up the cases:
 239     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 240     assert(type != ciTypeFlow::StateVector::top_type(), "");
 241     assert(type != ciTypeFlow::StateVector::null_type(), "");
 242     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 243     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 244     assert(!type->is_return_address(), "");
 245 
 246     return Type::get_const_type(type);
 247   }
 248 }
 249 
 250 
 251 //-----------------------make_from_constant------------------------------------
 252 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 253                                      int stable_dimension, bool is_narrow_oop,
 254                                      bool is_autobox_cache) {
 255   switch (constant.basic_type()) {
 256     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 257     case T_CHAR:     return TypeInt::make(constant.as_char());
 258     case T_BYTE:     return TypeInt::make(constant.as_byte());
 259     case T_SHORT:    return TypeInt::make(constant.as_short());
 260     case T_INT:      return TypeInt::make(constant.as_int());
 261     case T_LONG:     return TypeLong::make(constant.as_long());
 262     case T_FLOAT:    return TypeF::make(constant.as_float());
 263     case T_DOUBLE:   return TypeD::make(constant.as_double());
 264     case T_ARRAY:
 265     case T_OBJECT: {
 266         const Type* con_type = nullptr;
 267         ciObject* oop_constant = constant.as_object();
 268         if (oop_constant->is_null_object()) {
 269           con_type = Type::get_zero_type(T_OBJECT);
 270         } else {
 271           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 272           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 273           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 274             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 275           }
 276           if (stable_dimension > 0) {
 277             assert(FoldStableValues, "sanity");
 278             assert(!con_type->is_zero_type(), "default value for stable field");
 279             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 280           }
 281         }
 282         if (is_narrow_oop) {
 283           con_type = con_type->make_narrowoop();
 284         }
 285         return con_type;
 286       }
 287     case T_ILLEGAL:
 288       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 289       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 290       return nullptr;
 291     default:
 292       // Fall through to failure
 293       return nullptr;
 294   }
 295 }
 296 
 297 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 298   BasicType conbt = con.basic_type();
 299   switch (conbt) {
 300     case T_BOOLEAN: conbt = T_BYTE;   break;
 301     case T_ARRAY:   conbt = T_OBJECT; break;
 302     default:                          break;
 303   }
 304   switch (loadbt) {
 305     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 306     case T_NARROWOOP: loadbt = T_OBJECT; break;
 307     case T_ARRAY:     loadbt = T_OBJECT; break;
 308     case T_ADDRESS:   loadbt = T_OBJECT; break;
 309     default:                             break;
 310   }
 311   if (conbt == loadbt) {
 312     if (is_unsigned && conbt == T_BYTE) {
 313       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 314       return ciConstant(T_INT, con.as_int() & 0xFF);
 315     } else {
 316       return con;
 317     }
 318   }
 319   if (conbt == T_SHORT && loadbt == T_CHAR) {
 320     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 321     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 322   }
 323   return ciConstant(); // T_ILLEGAL
 324 }
 325 
 326 // Try to constant-fold a stable array element.
 327 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 328                                                    BasicType loadbt, bool is_unsigned_load) {
 329   // Decode the results of GraphKit::array_element_address.
 330   ciConstant element_value = array->element_value_by_offset(off);
 331   if (element_value.basic_type() == T_ILLEGAL) {
 332     return nullptr; // wrong offset
 333   }
 334   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 335 
 336   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 337          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 338 
 339   if (con.is_valid() &&          // not a mismatched access
 340       !con.is_null_or_zero()) {  // not a default value
 341     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 342     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 343   }
 344   return nullptr;
 345 }
 346 
 347 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 348   ciField* field;
 349   ciType* type = holder->java_mirror_type();
 350   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 351     // Static field
 352     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 353   } else {
 354     // Instance field
 355     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 356   }
 357   if (field == nullptr) {
 358     return nullptr; // Wrong offset
 359   }
 360   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 361 }
 362 
 363 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 364                                            BasicType loadbt, bool is_unsigned_load) {
 365   if (!field->is_constant()) {
 366     return nullptr; // Non-constant field
 367   }
 368   ciConstant field_value;
 369   if (field->is_static()) {
 370     // final static field
 371     field_value = field->constant_value();
 372   } else if (holder != nullptr) {
 373     // final or stable non-static field
 374     // Treat final non-static fields of trusted classes (classes in
 375     // java.lang.invoke and sun.invoke packages and subpackages) as
 376     // compile time constants.
 377     field_value = field->constant_value_of(holder);
 378   }
 379   if (!field_value.is_valid()) {
 380     return nullptr; // Not a constant
 381   }
 382 
 383   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 384 
 385   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 386          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 387 
 388   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 389   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 390   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 391 
 392   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 393                                             stable_dimension, is_narrow_oop,
 394                                             field->is_autobox_cache());
 395   if (con_type != nullptr && field->is_call_site_target()) {
 396     ciCallSite* call_site = holder->as_call_site();
 397     if (!call_site->is_fully_initialized_constant_call_site()) {
 398       ciMethodHandle* target = con.as_object()->as_method_handle();
 399       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 400     }
 401   }
 402   return con_type;
 403 }
 404 
 405 //------------------------------make-------------------------------------------
 406 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 407 // and look for an existing copy in the type dictionary.
 408 const Type *Type::make( enum TYPES t ) {
 409   return (new Type(t))->hashcons();
 410 }
 411 
 412 //------------------------------cmp--------------------------------------------
 413 bool Type::equals(const Type* t1, const Type* t2) {
 414   if (t1->_base != t2->_base) {
 415     return false; // Missed badly
 416   }
 417 
 418   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 419   return t1->eq(t2);
 420 }
 421 
 422 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 423   if (!include_speculative) {
 424     return remove_speculative();
 425   }
 426   return this;
 427 }
 428 
 429 //------------------------------hash-------------------------------------------
 430 int Type::uhash( const Type *const t ) {
 431   return (int)t->hash();
 432 }
 433 
 434 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 435 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 436 
 437 //--------------------------Initialize_shared----------------------------------
 438 void Type::Initialize_shared(Compile* current) {
 439   // This method does not need to be locked because the first system
 440   // compilations (stub compilations) occur serially.  If they are
 441   // changed to proceed in parallel, then this section will need
 442   // locking.
 443 
 444   Arena* save = current->type_arena();
 445   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
 446 
 447   current->set_type_arena(shared_type_arena);
 448 
 449   // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
 450   CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
 451     return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
 452   };
 453 
 454   _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
 455   current->set_type_dict(_shared_type_dict);
 456 
 457   // Make shared pre-built types.
 458   CONTROL = make(Control);      // Control only
 459   TOP     = make(Top);          // No values in set
 460   MEMORY  = make(Memory);       // Abstract store only
 461   ABIO    = make(Abio);         // State-of-machine only
 462   RETURN_ADDRESS=make(Return_Address);
 463   FLOAT   = make(FloatBot);     // All floats
 464   HALF_FLOAT = make(HalfFloatBot); // All half floats
 465   DOUBLE  = make(DoubleBot);    // All doubles
 466   BOTTOM  = make(Bottom);       // Everything
 467   HALF    = make(Half);         // Placeholder half of doublewide type
 468 
 469   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 470   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 471   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 472   TypeF::ONE  = TypeF::make(1.0); // Float 1
 473   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 474   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 475 
 476   TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
 477   TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
 478   TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
 479   TypeH::ONE  = TypeH::make(one_jfloat16); // HalfFloat 1
 480   TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
 481   TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
 482 
 483   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 484   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 485   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 486   TypeD::ONE  = TypeD::make(1.0); // Double 1
 487   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 488   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 489 
 490   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 491   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 492   TypeInt::MINUS_1  = TypeInt::make(-1);  // -1
 493   TypeInt::ZERO     = TypeInt::make( 0);  //  0
 494   TypeInt::ONE      = TypeInt::make( 1);  //  1
 495   TypeInt::BOOL     = TypeInt::make( 0, 1, WidenMin);  // 0 or 1, FALSE or TRUE.
 496   TypeInt::CC       = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 497   TypeInt::CC_LT    = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 498   TypeInt::CC_GT    = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 499   TypeInt::CC_EQ    = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 500   TypeInt::CC_NE    = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{-1, 1}, {1, max_juint}, {0, 1}}, WidenMin)->is_int();
 501   TypeInt::CC_LE    = TypeInt::make(-1, 0, WidenMin);
 502   TypeInt::CC_GE    = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 503   TypeInt::BYTE     = TypeInt::make(-128, 127,     WidenMin); // Bytes
 504   TypeInt::UBYTE    = TypeInt::make(0, 255,        WidenMin); // Unsigned Bytes
 505   TypeInt::CHAR     = TypeInt::make(0, 65535,      WidenMin); // Java chars
 506   TypeInt::SHORT    = TypeInt::make(-32768, 32767, WidenMin); // Java shorts
 507   TypeInt::NON_ZERO = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{min_jint, max_jint}, {1, max_juint}, {0, 0}}, WidenMin)->is_int();
 508   TypeInt::POS      = TypeInt::make(0, max_jint,   WidenMin); // Non-neg values
 509   TypeInt::POS1     = TypeInt::make(1, max_jint,   WidenMin); // Positive values
 510   TypeInt::INT      = TypeInt::make(min_jint, max_jint, WidenMax); // 32-bit integers
 511   TypeInt::SYMINT   = TypeInt::make(-max_jint, max_jint, WidenMin); // symmetric range
 512   TypeInt::TYPE_DOMAIN = TypeInt::INT;
 513   // CmpL is overloaded both as the bytecode computation returning
 514   // a trinary (-1, 0, +1) integer result AND as an efficient long
 515   // compare returning optimizer ideal-type flags.
 516   assert(TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 517   assert(TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 518   assert(TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 519   assert(TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 520 
 521   TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
 522   TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
 523   TypeLong::MINUS_1  = TypeLong::make(-1);   // -1
 524   TypeLong::ZERO     = TypeLong::make( 0);   //  0
 525   TypeLong::ONE      = TypeLong::make( 1);   //  1
 526   TypeLong::NON_ZERO = TypeLong::make_or_top(TypeIntPrototype<jlong, julong>{{min_jlong, max_jlong}, {1, max_julong}, {0, 0}}, WidenMin)->is_long();
 527   TypeLong::POS      = TypeLong::make(0, max_jlong, WidenMin); // Non-neg values
 528   TypeLong::NEG      = TypeLong::make(min_jlong, -1, WidenMin);
 529   TypeLong::LONG     = TypeLong::make(min_jlong, max_jlong, WidenMax); // 64-bit integers
 530   TypeLong::INT      = TypeLong::make((jlong)min_jint, (jlong)max_jint,WidenMin);
 531   TypeLong::UINT     = TypeLong::make(0, (jlong)max_juint, WidenMin);
 532   TypeLong::TYPE_DOMAIN = TypeLong::LONG;
 533 
 534   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 535   fboth[0] = Type::CONTROL;
 536   fboth[1] = Type::CONTROL;
 537   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 538 
 539   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 540   ffalse[0] = Type::CONTROL;
 541   ffalse[1] = Type::TOP;
 542   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 543 
 544   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 545   fneither[0] = Type::TOP;
 546   fneither[1] = Type::TOP;
 547   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 548 
 549   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 550   ftrue[0] = Type::TOP;
 551   ftrue[1] = Type::CONTROL;
 552   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 553 
 554   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 555   floop[0] = Type::CONTROL;
 556   floop[1] = TypeInt::INT;
 557   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 558 
 559   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 560   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 561   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 562 
 563   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 564   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 565 
 566   const Type **fmembar = TypeTuple::fields(0);
 567   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 568 
 569   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 570   fsc[0] = TypeInt::CC;
 571   fsc[1] = Type::MEMORY;
 572   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 573 
 574   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 575   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 576   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 577   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 578                                            false, nullptr, oopDesc::mark_offset_in_bytes());
 579   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 580                                            false, nullptr, oopDesc::klass_offset_in_bytes());
 581   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 582 
 583   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
 584 
 585   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 586   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 587 
 588   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 589 
 590   mreg2type[Op_Node] = Type::BOTTOM;
 591   mreg2type[Op_Set ] = nullptr;
 592   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 593   mreg2type[Op_RegI] = TypeInt::INT;
 594   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 595   mreg2type[Op_RegF] = Type::FLOAT;
 596   mreg2type[Op_RegD] = Type::DOUBLE;
 597   mreg2type[Op_RegL] = TypeLong::LONG;
 598   mreg2type[Op_RegFlags] = TypeInt::CC;
 599 
 600   GrowableArray<ciInstanceKlass*> array_interfaces;
 601   array_interfaces.push(current->env()->Cloneable_klass());
 602   array_interfaces.push(current->env()->Serializable_klass());
 603   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 604   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 605 
 606   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
 607   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 608 
 609   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 610 
 611 #ifdef _LP64
 612   if (UseCompressedOops) {
 613     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 614     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 615   } else
 616 #endif
 617   {
 618     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 619     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 620   }
 621   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 622   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 623   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 624   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 625   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 626   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 627   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 628 
 629   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 630   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 631   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 632   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 633   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 634   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 635   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 636   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 637   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 638   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 639   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 640   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 641 
 642   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 643   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 644 
 645   const Type **fi2c = TypeTuple::fields(2);
 646   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 647   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 648   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 649 
 650   const Type **intpair = TypeTuple::fields(2);
 651   intpair[0] = TypeInt::INT;
 652   intpair[1] = TypeInt::INT;
 653   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 654 
 655   const Type **longpair = TypeTuple::fields(2);
 656   longpair[0] = TypeLong::LONG;
 657   longpair[1] = TypeLong::LONG;
 658   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 659 
 660   const Type **intccpair = TypeTuple::fields(2);
 661   intccpair[0] = TypeInt::INT;
 662   intccpair[1] = TypeInt::CC;
 663   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 664 
 665   const Type **longccpair = TypeTuple::fields(2);
 666   longccpair[0] = TypeLong::LONG;
 667   longccpair[1] = TypeInt::CC;
 668   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 669 
 670   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 671   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 672   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 673   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 674   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 675   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 676   _const_basic_type[T_INT]         = TypeInt::INT;
 677   _const_basic_type[T_LONG]        = TypeLong::LONG;
 678   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 679   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 680   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 681   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 682   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 683   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 684   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 685 
 686   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 687   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 688   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 689   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 690   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 691   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 692   _zero_type[T_INT]         = TypeInt::ZERO;
 693   _zero_type[T_LONG]        = TypeLong::ZERO;
 694   _zero_type[T_FLOAT]       = TypeF::ZERO;
 695   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 696   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 697   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 698   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 699   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 700 
 701   // get_zero_type() should not happen for T_CONFLICT
 702   _zero_type[T_CONFLICT]= nullptr;
 703 
 704   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 705   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 706 
 707   if (Matcher::supports_scalable_vector()) {
 708     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 709   }
 710 
 711   // Vector predefined types, it needs initialized _const_basic_type[].
 712   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 713     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 714   }
 715   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 716     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 717   }
 718   if (Matcher::vector_size_supported(T_FLOAT, 4)) {
 719     TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
 720   }
 721   if (Matcher::vector_size_supported(T_FLOAT, 8)) {
 722     TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
 723   }
 724   if (Matcher::vector_size_supported(T_FLOAT, 16)) {
 725     TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
 726   }
 727 
 728   mreg2type[Op_VecA] = TypeVect::VECTA;
 729   mreg2type[Op_VecS] = TypeVect::VECTS;
 730   mreg2type[Op_VecD] = TypeVect::VECTD;
 731   mreg2type[Op_VecX] = TypeVect::VECTX;
 732   mreg2type[Op_VecY] = TypeVect::VECTY;
 733   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 734 
 735   LockNode::initialize_lock_Type();
 736   ArrayCopyNode::initialize_arraycopy_Type();
 737   OptoRuntime::initialize_types();
 738 
 739   // Restore working type arena.
 740   current->set_type_arena(save);
 741   current->set_type_dict(nullptr);
 742 }
 743 
 744 //------------------------------Initialize-------------------------------------
 745 void Type::Initialize(Compile* current) {
 746   assert(current->type_arena() != nullptr, "must have created type arena");
 747 
 748   if (_shared_type_dict == nullptr) {
 749     Initialize_shared(current);
 750   }
 751 
 752   Arena* type_arena = current->type_arena();
 753 
 754   // Create the hash-cons'ing dictionary with top-level storage allocation
 755   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 756   current->set_type_dict(tdic);
 757 }
 758 
 759 //------------------------------hashcons---------------------------------------
 760 // Do the hash-cons trick.  If the Type already exists in the type table,
 761 // delete the current Type and return the existing Type.  Otherwise stick the
 762 // current Type in the Type table.
 763 const Type *Type::hashcons(void) {
 764   DEBUG_ONLY(base());           // Check the assertion in Type::base().
 765   // Look up the Type in the Type dictionary
 766   Dict *tdic = type_dict();
 767   Type* old = (Type*)(tdic->Insert(this, this, false));
 768   if( old ) {                   // Pre-existing Type?
 769     if( old != this )           // Yes, this guy is not the pre-existing?
 770       delete this;              // Yes, Nuke this guy
 771     assert( old->_dual, "" );
 772     return old;                 // Return pre-existing
 773   }
 774 
 775   // Every type has a dual (to make my lattice symmetric).
 776   // Since we just discovered a new Type, compute its dual right now.
 777   assert( !_dual, "" );         // No dual yet
 778   _dual = xdual();              // Compute the dual
 779   if (equals(this, _dual)) {    // Handle self-symmetric
 780     if (_dual != this) {
 781       delete _dual;
 782       _dual = this;
 783     }
 784     return this;
 785   }
 786   assert( !_dual->_dual, "" );  // No reverse dual yet
 787   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 788   // New Type, insert into Type table
 789   tdic->Insert((void*)_dual,(void*)_dual);
 790   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 791 #ifdef ASSERT
 792   Type *dual_dual = (Type*)_dual->xdual();
 793   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 794   delete dual_dual;
 795 #endif
 796   return this;                  // Return new Type
 797 }
 798 
 799 //------------------------------eq---------------------------------------------
 800 // Structural equality check for Type representations
 801 bool Type::eq( const Type * ) const {
 802   return true;                  // Nothing else can go wrong
 803 }
 804 
 805 //------------------------------hash-------------------------------------------
 806 // Type-specific hashing function.
 807 uint Type::hash(void) const {
 808   return _base;
 809 }
 810 
 811 //------------------------------is_finite--------------------------------------
 812 // Has a finite value
 813 bool Type::is_finite() const {
 814   return false;
 815 }
 816 
 817 //------------------------------is_nan-----------------------------------------
 818 // Is not a number (NaN)
 819 bool Type::is_nan()    const {
 820   return false;
 821 }
 822 
 823 #ifdef ASSERT
 824 class VerifyMeet;
 825 class VerifyMeetResult : public ArenaObj {
 826   friend class VerifyMeet;
 827   friend class Type;
 828 private:
 829   class VerifyMeetResultEntry {
 830   private:
 831     const Type* _in1;
 832     const Type* _in2;
 833     const Type* _res;
 834   public:
 835     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 836             _in1(in1), _in2(in2), _res(res) {
 837     }
 838     VerifyMeetResultEntry():
 839             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 840     }
 841 
 842     bool operator==(const VerifyMeetResultEntry& rhs) const {
 843       return _in1 == rhs._in1 &&
 844              _in2 == rhs._in2 &&
 845              _res == rhs._res;
 846     }
 847 
 848     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 849       return !(rhs == *this);
 850     }
 851 
 852     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 853       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 854         return -1;
 855       } else if (v1._in1 == v2._in1) {
 856         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 857           return -1;
 858         } else if (v1._in2 == v2._in2) {
 859           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 860           return 0;
 861         }
 862         return 1;
 863       }
 864       return 1;
 865     }
 866     const Type* res() const { return _res; }
 867   };
 868   uint _depth;
 869   GrowableArray<VerifyMeetResultEntry> _cache;
 870 
 871   // With verification code, the meet of A and B causes the computation of:
 872   // 1- meet(A, B)
 873   // 2- meet(B, A)
 874   // 3- meet(dual(meet(A, B)), dual(A))
 875   // 4- meet(dual(meet(A, B)), dual(B))
 876   // 5- meet(dual(A), dual(B))
 877   // 6- meet(dual(B), dual(A))
 878   // 7- meet(dual(meet(dual(A), dual(B))), A)
 879   // 8- meet(dual(meet(dual(A), dual(B))), B)
 880   //
 881   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 882   //
 883   // The meet of A[] and B[] triggers the computation of:
 884   // 1- meet(A[], B[][)
 885   //   1.1- meet(A, B)
 886   //   1.2- meet(B, A)
 887   //   1.3- meet(dual(meet(A, B)), dual(A))
 888   //   1.4- meet(dual(meet(A, B)), dual(B))
 889   //   1.5- meet(dual(A), dual(B))
 890   //   1.6- meet(dual(B), dual(A))
 891   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 892   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 893   // 2- meet(B[], A[])
 894   //   2.1- meet(B, A) = 1.2
 895   //   2.2- meet(A, B) = 1.1
 896   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 897   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 898   //   2.5- meet(dual(B), dual(A)) = 1.6
 899   //   2.6- meet(dual(A), dual(B)) = 1.5
 900   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 901   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 902   // etc.
 903   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 904   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 905   // duration of the meet at the root of the recursive calls.
 906   //
 907   const Type* meet(const Type* t1, const Type* t2) {
 908     bool found = false;
 909     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 910     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 911     const Type* res = nullptr;
 912     if (found) {
 913       res = _cache.at(pos).res();
 914     } else {
 915       res = t1->xmeet(t2);
 916       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 917       found = false;
 918       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 919       assert(found, "should be in table after it's added");
 920     }
 921     return res;
 922   }
 923 
 924   void add(const Type* t1, const Type* t2, const Type* res) {
 925     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 926   }
 927 
 928   bool empty_cache() const {
 929     return _cache.length() == 0;
 930   }
 931 public:
 932   VerifyMeetResult(Compile* C) :
 933           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
 934   }
 935 };
 936 
 937 void Type::assert_type_verify_empty() const {
 938   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
 939 }
 940 
 941 class VerifyMeet {
 942 private:
 943   Compile* _C;
 944 public:
 945   VerifyMeet(Compile* C) : _C(C) {
 946     if (C->_type_verify == nullptr) {
 947       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
 948     }
 949     _C->_type_verify->_depth++;
 950   }
 951 
 952   ~VerifyMeet() {
 953     assert(_C->_type_verify->_depth != 0, "");
 954     _C->_type_verify->_depth--;
 955     if (_C->_type_verify->_depth == 0) {
 956       _C->_type_verify->_cache.trunc_to(0);
 957     }
 958   }
 959 
 960   const Type* meet(const Type* t1, const Type* t2) const {
 961     return _C->_type_verify->meet(t1, t2);
 962   }
 963 
 964   void add(const Type* t1, const Type* t2, const Type* res) const {
 965     _C->_type_verify->add(t1, t2, res);
 966   }
 967 };
 968 
 969 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 970   Compile* C = Compile::current();
 971   const Type* mt2 = verify.meet(t, this);
 972   if (mt != mt2) {
 973     tty->print_cr("=== Meet Not Commutative ===");
 974     tty->print("t           = ");   t->dump(); tty->cr();
 975     tty->print("this        = ");      dump(); tty->cr();
 976     tty->print("t meet this = "); mt2->dump(); tty->cr();
 977     tty->print("this meet t = ");  mt->dump(); tty->cr();
 978     fatal("meet not commutative");
 979   }
 980   const Type* dual_join = mt->_dual;
 981   const Type* t2t    = verify.meet(dual_join,t->_dual);
 982   const Type* t2this = verify.meet(dual_join,this->_dual);
 983 
 984   // Interface meet Oop is Not Symmetric:
 985   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 986   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 987 
 988   if (t2t != t->_dual || t2this != this->_dual) {
 989     tty->print_cr("=== Meet Not Symmetric ===");
 990     tty->print("t   =                   ");              t->dump(); tty->cr();
 991     tty->print("this=                   ");                 dump(); tty->cr();
 992     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 993 
 994     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 995     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 996     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 997 
 998     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 999     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1000 
1001     fatal("meet not symmetric");
1002   }
1003 }
1004 #endif
1005 
1006 //------------------------------meet-------------------------------------------
1007 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1008 // commutative and the lattice is symmetric.
1009 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1010   if (isa_narrowoop() && t->isa_narrowoop()) {
1011     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1012     return result->make_narrowoop();
1013   }
1014   if (isa_narrowklass() && t->isa_narrowklass()) {
1015     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1016     return result->make_narrowklass();
1017   }
1018 
1019 #ifdef ASSERT
1020   Compile* C = Compile::current();
1021   VerifyMeet verify(C);
1022 #endif
1023 
1024   const Type *this_t = maybe_remove_speculative(include_speculative);
1025   t = t->maybe_remove_speculative(include_speculative);
1026 
1027   const Type *mt = this_t->xmeet(t);
1028 #ifdef ASSERT
1029   verify.add(this_t, t, mt);
1030   if (isa_narrowoop() || t->isa_narrowoop()) {
1031     return mt;
1032   }
1033   if (isa_narrowklass() || t->isa_narrowklass()) {
1034     return mt;
1035   }
1036   this_t->check_symmetrical(t, mt, verify);
1037   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1038   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1039 #endif
1040   return mt;
1041 }
1042 
1043 //------------------------------xmeet------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *Type::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Meeting TOP with anything?
1050   if( _base == Top ) return t;
1051 
1052   // Meeting BOTTOM with anything?
1053   if( _base == Bottom ) return BOTTOM;
1054 
1055   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1056   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1057   switch (t->base()) {  // Switch on original type
1058 
1059   // Cut in half the number of cases I must handle.  Only need cases for when
1060   // the given enum "t->type" is less than or equal to the local enum "type".
1061   case HalfFloatCon:
1062   case FloatCon:
1063   case DoubleCon:
1064   case Int:
1065   case Long:
1066     return t->xmeet(this);
1067 
1068   case OopPtr:
1069     return t->xmeet(this);
1070 
1071   case InstPtr:
1072     return t->xmeet(this);
1073 
1074   case MetadataPtr:
1075   case KlassPtr:
1076   case InstKlassPtr:
1077   case AryKlassPtr:
1078     return t->xmeet(this);
1079 
1080   case AryPtr:
1081     return t->xmeet(this);
1082 
1083   case NarrowOop:
1084     return t->xmeet(this);
1085 
1086   case NarrowKlass:
1087     return t->xmeet(this);
1088 
1089   case Bad:                     // Type check
1090   default:                      // Bogus type not in lattice
1091     typerr(t);
1092     return Type::BOTTOM;
1093 
1094   case Bottom:                  // Ye Olde Default
1095     return t;
1096 
1097   case HalfFloatTop:
1098     if (_base == HalfFloatTop) { return this; }
1099   case HalfFloatBot:            // Half Float
1100     if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1101     if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1102     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1103     typerr(t);
1104     return Type::BOTTOM;
1105 
1106   case FloatTop:
1107     if (_base == FloatTop ) { return this; }
1108   case FloatBot:                // Float
1109     if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1110     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1111     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1112     typerr(t);
1113     return Type::BOTTOM;
1114 
1115   case DoubleTop:
1116     if (_base == DoubleTop) { return this; }
1117   case DoubleBot:               // Double
1118     if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1119     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1120     if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1121     typerr(t);
1122     return Type::BOTTOM;
1123 
1124   // These next few cases must match exactly or it is a compile-time error.
1125   case Control:                 // Control of code
1126   case Abio:                    // State of world outside of program
1127   case Memory:
1128     if (_base == t->_base)  { return this; }
1129     typerr(t);
1130     return Type::BOTTOM;
1131 
1132   case Top:                     // Top of the lattice
1133     return this;
1134   }
1135 
1136   // The type is unchanged
1137   return this;
1138 }
1139 
1140 //-----------------------------filter------------------------------------------
1141 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1142   const Type* ft = join_helper(kills, include_speculative);
1143   if (ft->empty())
1144     return Type::TOP;           // Canonical empty value
1145   return ft;
1146 }
1147 
1148 //------------------------------xdual------------------------------------------
1149 const Type *Type::xdual() const {
1150   // Note: the base() accessor asserts the sanity of _base.
1151   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1152   return new Type(_type_info[_base].dual_type);
1153 }
1154 
1155 //------------------------------has_memory-------------------------------------
1156 bool Type::has_memory() const {
1157   Type::TYPES tx = base();
1158   if (tx == Memory) return true;
1159   if (tx == Tuple) {
1160     const TypeTuple *t = is_tuple();
1161     for (uint i=0; i < t->cnt(); i++) {
1162       tx = t->field_at(i)->base();
1163       if (tx == Memory)  return true;
1164     }
1165   }
1166   return false;
1167 }
1168 
1169 #ifndef PRODUCT
1170 //------------------------------dump2------------------------------------------
1171 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1172   st->print("%s", _type_info[_base].msg);
1173 }
1174 
1175 //------------------------------dump-------------------------------------------
1176 void Type::dump_on(outputStream *st) const {
1177   ResourceMark rm;
1178   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1179   dump2(d,1, st);
1180   if (is_ptr_to_narrowoop()) {
1181     st->print(" [narrow]");
1182   } else if (is_ptr_to_narrowklass()) {
1183     st->print(" [narrowklass]");
1184   }
1185 }
1186 
1187 //-----------------------------------------------------------------------------
1188 const char* Type::str(const Type* t) {
1189   stringStream ss;
1190   t->dump_on(&ss);
1191   return ss.as_string();
1192 }
1193 #endif
1194 
1195 //------------------------------singleton--------------------------------------
1196 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1197 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1198 bool Type::singleton(void) const {
1199   return _base == Top || _base == Half;
1200 }
1201 
1202 //------------------------------empty------------------------------------------
1203 // TRUE if Type is a type with no values, FALSE otherwise.
1204 bool Type::empty(void) const {
1205   switch (_base) {
1206   case DoubleTop:
1207   case FloatTop:
1208   case HalfFloatTop:
1209   case Top:
1210     return true;
1211 
1212   case Half:
1213   case Abio:
1214   case Return_Address:
1215   case Memory:
1216   case Bottom:
1217   case HalfFloatBot:
1218   case FloatBot:
1219   case DoubleBot:
1220     return false;  // never a singleton, therefore never empty
1221 
1222   default:
1223     ShouldNotReachHere();
1224     return false;
1225   }
1226 }
1227 
1228 //------------------------------dump_stats-------------------------------------
1229 // Dump collected statistics to stderr
1230 #ifndef PRODUCT
1231 void Type::dump_stats() {
1232   tty->print("Types made: %d\n", type_dict()->Size());
1233 }
1234 #endif
1235 
1236 //------------------------------category---------------------------------------
1237 #ifndef PRODUCT
1238 Type::Category Type::category() const {
1239   const TypeTuple* tuple;
1240   switch (base()) {
1241     case Type::Int:
1242     case Type::Long:
1243     case Type::Half:
1244     case Type::NarrowOop:
1245     case Type::NarrowKlass:
1246     case Type::Array:
1247     case Type::VectorA:
1248     case Type::VectorS:
1249     case Type::VectorD:
1250     case Type::VectorX:
1251     case Type::VectorY:
1252     case Type::VectorZ:
1253     case Type::VectorMask:
1254     case Type::AnyPtr:
1255     case Type::RawPtr:
1256     case Type::OopPtr:
1257     case Type::InstPtr:
1258     case Type::AryPtr:
1259     case Type::MetadataPtr:
1260     case Type::KlassPtr:
1261     case Type::InstKlassPtr:
1262     case Type::AryKlassPtr:
1263     case Type::Function:
1264     case Type::Return_Address:
1265     case Type::HalfFloatTop:
1266     case Type::HalfFloatCon:
1267     case Type::HalfFloatBot:
1268     case Type::FloatTop:
1269     case Type::FloatCon:
1270     case Type::FloatBot:
1271     case Type::DoubleTop:
1272     case Type::DoubleCon:
1273     case Type::DoubleBot:
1274       return Category::Data;
1275     case Type::Memory:
1276       return Category::Memory;
1277     case Type::Control:
1278       return Category::Control;
1279     case Type::Top:
1280     case Type::Abio:
1281     case Type::Bottom:
1282       return Category::Other;
1283     case Type::Bad:
1284     case Type::lastype:
1285       return Category::Undef;
1286     case Type::Tuple:
1287       // Recursive case. Return CatMixed if the tuple contains types of
1288       // different categories (e.g. CallStaticJavaNode's type), or the specific
1289       // category if all types are of the same category (e.g. IfNode's type).
1290       tuple = is_tuple();
1291       if (tuple->cnt() == 0) {
1292         return Category::Undef;
1293       } else {
1294         Category first = tuple->field_at(0)->category();
1295         for (uint i = 1; i < tuple->cnt(); i++) {
1296           if (tuple->field_at(i)->category() != first) {
1297             return Category::Mixed;
1298           }
1299         }
1300         return first;
1301       }
1302     default:
1303       assert(false, "unmatched base type: all base types must be categorized");
1304   }
1305   return Category::Undef;
1306 }
1307 
1308 bool Type::has_category(Type::Category cat) const {
1309   if (category() == cat) {
1310     return true;
1311   }
1312   if (category() == Category::Mixed) {
1313     const TypeTuple* tuple = is_tuple();
1314     for (uint i = 0; i < tuple->cnt(); i++) {
1315       if (tuple->field_at(i)->has_category(cat)) {
1316         return true;
1317       }
1318     }
1319   }
1320   return false;
1321 }
1322 #endif
1323 
1324 //------------------------------typerr-----------------------------------------
1325 void Type::typerr( const Type *t ) const {
1326 #ifndef PRODUCT
1327   tty->print("\nError mixing types: ");
1328   dump();
1329   tty->print(" and ");
1330   t->dump();
1331   tty->print("\n");
1332 #endif
1333   ShouldNotReachHere();
1334 }
1335 
1336 
1337 //=============================================================================
1338 // Convenience common pre-built types.
1339 const TypeF *TypeF::MAX;        // Floating point max
1340 const TypeF *TypeF::MIN;        // Floating point min
1341 const TypeF *TypeF::ZERO;       // Floating point zero
1342 const TypeF *TypeF::ONE;        // Floating point one
1343 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1344 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1345 
1346 //------------------------------make-------------------------------------------
1347 // Create a float constant
1348 const TypeF *TypeF::make(float f) {
1349   return (TypeF*)(new TypeF(f))->hashcons();
1350 }
1351 
1352 //------------------------------meet-------------------------------------------
1353 // Compute the MEET of two types.  It returns a new Type object.
1354 const Type *TypeF::xmeet( const Type *t ) const {
1355   // Perform a fast test for common case; meeting the same types together.
1356   if( this == t ) return this;  // Meeting same type-rep?
1357 
1358   // Current "this->_base" is FloatCon
1359   switch (t->base()) {          // Switch on original type
1360   case AnyPtr:                  // Mixing with oops happens when javac
1361   case RawPtr:                  // reuses local variables
1362   case OopPtr:
1363   case InstPtr:
1364   case AryPtr:
1365   case MetadataPtr:
1366   case KlassPtr:
1367   case InstKlassPtr:
1368   case AryKlassPtr:
1369   case NarrowOop:
1370   case NarrowKlass:
1371   case Int:
1372   case Long:
1373   case HalfFloatTop:
1374   case HalfFloatCon:
1375   case HalfFloatBot:
1376   case DoubleTop:
1377   case DoubleCon:
1378   case DoubleBot:
1379   case Bottom:                  // Ye Olde Default
1380     return Type::BOTTOM;
1381 
1382   case FloatBot:
1383     return t;
1384 
1385   default:                      // All else is a mistake
1386     typerr(t);
1387 
1388   case FloatCon:                // Float-constant vs Float-constant?
1389     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1390                                 // must compare bitwise as positive zero, negative zero and NaN have
1391                                 // all the same representation in C++
1392       return FLOAT;             // Return generic float
1393                                 // Equal constants
1394   case Top:
1395   case FloatTop:
1396     break;                      // Return the float constant
1397   }
1398   return this;                  // Return the float constant
1399 }
1400 
1401 //------------------------------xdual------------------------------------------
1402 // Dual: symmetric
1403 const Type *TypeF::xdual() const {
1404   return this;
1405 }
1406 
1407 //------------------------------eq---------------------------------------------
1408 // Structural equality check for Type representations
1409 bool TypeF::eq(const Type *t) const {
1410   // Bitwise comparison to distinguish between +/-0. These values must be treated
1411   // as different to be consistent with C1 and the interpreter.
1412   return (jint_cast(_f) == jint_cast(t->getf()));
1413 }
1414 
1415 //------------------------------hash-------------------------------------------
1416 // Type-specific hashing function.
1417 uint TypeF::hash(void) const {
1418   return *(uint*)(&_f);
1419 }
1420 
1421 //------------------------------is_finite--------------------------------------
1422 // Has a finite value
1423 bool TypeF::is_finite() const {
1424   return g_isfinite(getf()) != 0;
1425 }
1426 
1427 //------------------------------is_nan-----------------------------------------
1428 // Is not a number (NaN)
1429 bool TypeF::is_nan()    const {
1430   return g_isnan(getf()) != 0;
1431 }
1432 
1433 //------------------------------dump2------------------------------------------
1434 // Dump float constant Type
1435 #ifndef PRODUCT
1436 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1437   Type::dump2(d,depth, st);
1438   st->print("%f", _f);
1439 }
1440 #endif
1441 
1442 //------------------------------singleton--------------------------------------
1443 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1444 // constants (Ldi nodes).  Singletons are integer, float or double constants
1445 // or a single symbol.
1446 bool TypeF::singleton(void) const {
1447   return true;                  // Always a singleton
1448 }
1449 
1450 bool TypeF::empty(void) const {
1451   return false;                 // always exactly a singleton
1452 }
1453 
1454 //=============================================================================
1455 // Convenience common pre-built types.
1456 const TypeH* TypeH::MAX;        // Half float max
1457 const TypeH* TypeH::MIN;        // Half float min
1458 const TypeH* TypeH::ZERO;       // Half float zero
1459 const TypeH* TypeH::ONE;        // Half float one
1460 const TypeH* TypeH::POS_INF;    // Half float positive infinity
1461 const TypeH* TypeH::NEG_INF;    // Half float negative infinity
1462 
1463 //------------------------------make-------------------------------------------
1464 // Create a halffloat constant
1465 const TypeH* TypeH::make(short f) {
1466   return (TypeH*)(new TypeH(f))->hashcons();
1467 }
1468 
1469 const TypeH* TypeH::make(float f) {
1470   assert(StubRoutines::f2hf_adr() != nullptr, "");
1471   short hf = StubRoutines::f2hf(f);
1472   return (TypeH*)(new TypeH(hf))->hashcons();
1473 }
1474 
1475 //------------------------------xmeet-------------------------------------------
1476 // Compute the MEET of two types.  It returns a new Type object.
1477 const Type* TypeH::xmeet(const Type* t) const {
1478   // Perform a fast test for common case; meeting the same types together.
1479   if (this == t) return this;  // Meeting same type-rep?
1480 
1481   // Current "this->_base" is FloatCon
1482   switch (t->base()) {          // Switch on original type
1483   case AnyPtr:                  // Mixing with oops happens when javac
1484   case RawPtr:                  // reuses local variables
1485   case OopPtr:
1486   case InstPtr:
1487   case AryPtr:
1488   case MetadataPtr:
1489   case KlassPtr:
1490   case InstKlassPtr:
1491   case AryKlassPtr:
1492   case NarrowOop:
1493   case NarrowKlass:
1494   case Int:
1495   case Long:
1496   case FloatTop:
1497   case FloatCon:
1498   case FloatBot:
1499   case DoubleTop:
1500   case DoubleCon:
1501   case DoubleBot:
1502   case Bottom:                  // Ye Olde Default
1503     return Type::BOTTOM;
1504 
1505   case HalfFloatBot:
1506     return t;
1507 
1508   default:                      // All else is a mistake
1509     typerr(t);
1510 
1511   case HalfFloatCon:            // Half float-constant vs Half float-constant?
1512     if (_f != t->geth()) {      // unequal constants?
1513                                 // must compare bitwise as positive zero, negative zero and NaN have
1514                                 // all the same representation in C++
1515       return HALF_FLOAT;        // Return generic float
1516     }                           // Equal constants
1517   case Top:
1518   case HalfFloatTop:
1519     break;                      // Return the Half float constant
1520   }
1521   return this;                  // Return the Half float constant
1522 }
1523 
1524 //------------------------------xdual------------------------------------------
1525 // Dual: symmetric
1526 const Type* TypeH::xdual() const {
1527   return this;
1528 }
1529 
1530 //------------------------------eq---------------------------------------------
1531 // Structural equality check for Type representations
1532 bool TypeH::eq(const Type* t) const {
1533   // Bitwise comparison to distinguish between +/-0. These values must be treated
1534   // as different to be consistent with C1 and the interpreter.
1535   return (_f == t->geth());
1536 }
1537 
1538 //------------------------------hash-------------------------------------------
1539 // Type-specific hashing function.
1540 uint TypeH::hash(void) const {
1541   return *(jshort*)(&_f);
1542 }
1543 
1544 //------------------------------is_finite--------------------------------------
1545 // Has a finite value
1546 bool TypeH::is_finite() const {
1547   assert(StubRoutines::hf2f_adr() != nullptr, "");
1548   float f = StubRoutines::hf2f(geth());
1549   return g_isfinite(f) != 0;
1550 }
1551 
1552 float TypeH::getf() const {
1553   assert(StubRoutines::hf2f_adr() != nullptr, "");
1554   return StubRoutines::hf2f(geth());
1555 }
1556 
1557 //------------------------------is_nan-----------------------------------------
1558 // Is not a number (NaN)
1559 bool TypeH::is_nan() const {
1560   assert(StubRoutines::hf2f_adr() != nullptr, "");
1561   float f = StubRoutines::hf2f(geth());
1562   return g_isnan(f) != 0;
1563 }
1564 
1565 //------------------------------dump2------------------------------------------
1566 // Dump float constant Type
1567 #ifndef PRODUCT
1568 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1569   Type::dump2(d,depth, st);
1570   st->print("%f", getf());
1571 }
1572 #endif
1573 
1574 //------------------------------singleton--------------------------------------
1575 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1576 // constants (Ldi nodes).  Singletons are integer, half float, float or double constants
1577 // or a single symbol.
1578 bool TypeH::singleton(void) const {
1579   return true;                  // Always a singleton
1580 }
1581 
1582 bool TypeH::empty(void) const {
1583   return false;                 // always exactly a singleton
1584 }
1585 
1586 //=============================================================================
1587 // Convenience common pre-built types.
1588 const TypeD *TypeD::MAX;        // Floating point max
1589 const TypeD *TypeD::MIN;        // Floating point min
1590 const TypeD *TypeD::ZERO;       // Floating point zero
1591 const TypeD *TypeD::ONE;        // Floating point one
1592 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1593 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1594 
1595 //------------------------------make-------------------------------------------
1596 const TypeD *TypeD::make(double d) {
1597   return (TypeD*)(new TypeD(d))->hashcons();
1598 }
1599 
1600 //------------------------------meet-------------------------------------------
1601 // Compute the MEET of two types.  It returns a new Type object.
1602 const Type *TypeD::xmeet( const Type *t ) const {
1603   // Perform a fast test for common case; meeting the same types together.
1604   if( this == t ) return this;  // Meeting same type-rep?
1605 
1606   // Current "this->_base" is DoubleCon
1607   switch (t->base()) {          // Switch on original type
1608   case AnyPtr:                  // Mixing with oops happens when javac
1609   case RawPtr:                  // reuses local variables
1610   case OopPtr:
1611   case InstPtr:
1612   case AryPtr:
1613   case MetadataPtr:
1614   case KlassPtr:
1615   case InstKlassPtr:
1616   case AryKlassPtr:
1617   case NarrowOop:
1618   case NarrowKlass:
1619   case Int:
1620   case Long:
1621   case HalfFloatTop:
1622   case HalfFloatCon:
1623   case HalfFloatBot:
1624   case FloatTop:
1625   case FloatCon:
1626   case FloatBot:
1627   case Bottom:                  // Ye Olde Default
1628     return Type::BOTTOM;
1629 
1630   case DoubleBot:
1631     return t;
1632 
1633   default:                      // All else is a mistake
1634     typerr(t);
1635 
1636   case DoubleCon:               // Double-constant vs Double-constant?
1637     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1638       return DOUBLE;            // Return generic double
1639   case Top:
1640   case DoubleTop:
1641     break;
1642   }
1643   return this;                  // Return the double constant
1644 }
1645 
1646 //------------------------------xdual------------------------------------------
1647 // Dual: symmetric
1648 const Type *TypeD::xdual() const {
1649   return this;
1650 }
1651 
1652 //------------------------------eq---------------------------------------------
1653 // Structural equality check for Type representations
1654 bool TypeD::eq(const Type *t) const {
1655   // Bitwise comparison to distinguish between +/-0. These values must be treated
1656   // as different to be consistent with C1 and the interpreter.
1657   return (jlong_cast(_d) == jlong_cast(t->getd()));
1658 }
1659 
1660 //------------------------------hash-------------------------------------------
1661 // Type-specific hashing function.
1662 uint TypeD::hash(void) const {
1663   return *(uint*)(&_d);
1664 }
1665 
1666 //------------------------------is_finite--------------------------------------
1667 // Has a finite value
1668 bool TypeD::is_finite() const {
1669   return g_isfinite(getd()) != 0;
1670 }
1671 
1672 //------------------------------is_nan-----------------------------------------
1673 // Is not a number (NaN)
1674 bool TypeD::is_nan()    const {
1675   return g_isnan(getd()) != 0;
1676 }
1677 
1678 //------------------------------dump2------------------------------------------
1679 // Dump double constant Type
1680 #ifndef PRODUCT
1681 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1682   Type::dump2(d,depth,st);
1683   st->print("%f", _d);
1684 }
1685 #endif
1686 
1687 //------------------------------singleton--------------------------------------
1688 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1689 // constants (Ldi nodes).  Singletons are integer, float or double constants
1690 // or a single symbol.
1691 bool TypeD::singleton(void) const {
1692   return true;                  // Always a singleton
1693 }
1694 
1695 bool TypeD::empty(void) const {
1696   return false;                 // always exactly a singleton
1697 }
1698 
1699 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1700   if (bt == T_INT) {
1701     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1702   }
1703   assert(bt == T_LONG, "basic type not an int or long");
1704   return TypeLong::make(lo, hi, w);
1705 }
1706 
1707 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1708   return make(con, con, WidenMin, bt);
1709 }
1710 
1711 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1712   if (bt == T_INT) {
1713     return is_int()->get_con();
1714   }
1715   assert(bt == T_LONG, "basic type not an int or long");
1716   return is_long()->get_con();
1717 }
1718 
1719 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1720   if (bt == T_INT) {
1721     return TypeInt::INT;
1722   }
1723   assert(bt == T_LONG, "basic type not an int or long");
1724   return TypeLong::LONG;
1725 }
1726 
1727 const TypeInteger* TypeInteger::zero(BasicType bt) {
1728   if (bt == T_INT) {
1729     return TypeInt::ZERO;
1730   }
1731   assert(bt == T_LONG, "basic type not an int or long");
1732   return TypeLong::ZERO;
1733 }
1734 
1735 const TypeInteger* TypeInteger::one(BasicType bt) {
1736   if (bt == T_INT) {
1737     return TypeInt::ONE;
1738   }
1739   assert(bt == T_LONG, "basic type not an int or long");
1740   return TypeLong::ONE;
1741 }
1742 
1743 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1744   if (bt == T_INT) {
1745     return TypeInt::MINUS_1;
1746   }
1747   assert(bt == T_LONG, "basic type not an int or long");
1748   return TypeLong::MINUS_1;
1749 }
1750 
1751 //=============================================================================
1752 // Convenience common pre-built types.
1753 const TypeInt* TypeInt::MAX;    // INT_MAX
1754 const TypeInt* TypeInt::MIN;    // INT_MIN
1755 const TypeInt* TypeInt::MINUS_1;// -1
1756 const TypeInt* TypeInt::ZERO;   // 0
1757 const TypeInt* TypeInt::ONE;    // 1
1758 const TypeInt* TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1759 const TypeInt* TypeInt::CC;     // -1,0 or 1, condition codes
1760 const TypeInt* TypeInt::CC_LT;  // [-1]  == MINUS_1
1761 const TypeInt* TypeInt::CC_GT;  // [1]   == ONE
1762 const TypeInt* TypeInt::CC_EQ;  // [0]   == ZERO
1763 const TypeInt* TypeInt::CC_NE;
1764 const TypeInt* TypeInt::CC_LE;  // [-1,0]
1765 const TypeInt* TypeInt::CC_GE;  // [0,1] == BOOL (!)
1766 const TypeInt* TypeInt::BYTE;   // Bytes, -128 to 127
1767 const TypeInt* TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1768 const TypeInt* TypeInt::CHAR;   // Java chars, 0-65535
1769 const TypeInt* TypeInt::SHORT;  // Java shorts, -32768-32767
1770 const TypeInt* TypeInt::NON_ZERO;
1771 const TypeInt* TypeInt::POS;    // Positive 32-bit integers or zero
1772 const TypeInt* TypeInt::POS1;   // Positive 32-bit integers
1773 const TypeInt* TypeInt::INT;    // 32-bit integers
1774 const TypeInt* TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1775 const TypeInt* TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1776 
1777 TypeInt::TypeInt(const TypeIntPrototype<jint, juint>& t, int widen, bool dual)
1778   : TypeInteger(Int, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1779     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1780   DEBUG_ONLY(t.verify_constraints());
1781 }
1782 
1783 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) {
1784   auto canonicalized_t = t.canonicalize_constraints();
1785   if (canonicalized_t.empty()) {
1786     return dual ? Type::BOTTOM : Type::TOP;
1787   }
1788   return (new TypeInt(canonicalized_t._data, widen, dual))->hashcons()->is_int();
1789 }
1790 
1791 const TypeInt* TypeInt::make(jint con) {
1792   juint ucon = con;
1793   return (new TypeInt(TypeIntPrototype<jint, juint>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1794                       WidenMin, false))->hashcons()->is_int();
1795 }
1796 
1797 const TypeInt* TypeInt::make(jint lo, jint hi, int widen) {
1798   assert(lo <= hi, "must be legal bounds");
1799   return make_or_top(TypeIntPrototype<jint, juint>{{lo, hi}, {0, max_juint}, {0, 0}}, widen)->is_int();
1800 }
1801 
1802 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen) {
1803   return make_or_top(t, widen, false);
1804 }
1805 
1806 bool TypeInt::contains(jint i) const {
1807   assert(!_is_dual, "dual types should only be used for join calculation");
1808   juint u = i;
1809   return i >= _lo && i <= _hi &&
1810          u >= _ulo && u <= _uhi &&
1811          _bits.is_satisfied_by(u);
1812 }
1813 
1814 bool TypeInt::contains(const TypeInt* t) const {
1815   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1816   return TypeIntHelper::int_type_is_subset(this, t);
1817 }
1818 
1819 #ifdef ASSERT
1820 bool TypeInt::strictly_contains(const TypeInt* t) const {
1821   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1822   return TypeIntHelper::int_type_is_subset(this, t) && !TypeIntHelper::int_type_is_equal(this, t);
1823 }
1824 #endif // ASSERT
1825 
1826 const Type* TypeInt::xmeet(const Type* t) const {
1827   return TypeIntHelper::int_type_xmeet(this, t);
1828 }
1829 
1830 const Type* TypeInt::xdual() const {
1831   return new TypeInt(TypeIntPrototype<jint, juint>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1832                      _widen, !_is_dual);
1833 }
1834 
1835 const Type* TypeInt::widen(const Type* old, const Type* limit) const {
1836   assert(!_is_dual, "dual types should only be used for join calculation");
1837   return TypeIntHelper::int_type_widen(this, old->isa_int(), limit->isa_int());
1838 }
1839 
1840 const Type* TypeInt::narrow(const Type* old) const {
1841   assert(!_is_dual, "dual types should only be used for join calculation");
1842   if (old == nullptr) {
1843     return this;
1844   }
1845 
1846   return TypeIntHelper::int_type_narrow(this, old->isa_int());
1847 }
1848 
1849 //-----------------------------filter------------------------------------------
1850 const Type* TypeInt::filter_helper(const Type* kills, bool include_speculative) const {
1851   assert(!_is_dual, "dual types should only be used for join calculation");
1852   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1853   if (ft == nullptr) {
1854     return Type::TOP;           // Canonical empty value
1855   }
1856   assert(!ft->_is_dual, "dual types should only be used for join calculation");
1857   if (ft->_widen < this->_widen) {
1858     // Do not allow the value of kill->_widen to affect the outcome.
1859     // The widen bits must be allowed to run freely through the graph.
1860     return (new TypeInt(TypeIntPrototype<jint, juint>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1861                         this->_widen, false))->hashcons();
1862   }
1863   return ft;
1864 }
1865 
1866 //------------------------------eq---------------------------------------------
1867 // Structural equality check for Type representations
1868 bool TypeInt::eq(const Type* t) const {
1869   const TypeInt* r = t->is_int();
1870   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
1871 }
1872 
1873 //------------------------------hash-------------------------------------------
1874 // Type-specific hashing function.
1875 uint TypeInt::hash(void) const {
1876   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
1877          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Int;
1878 }
1879 
1880 //------------------------------is_finite--------------------------------------
1881 // Has a finite value
1882 bool TypeInt::is_finite() const {
1883   return true;
1884 }
1885 
1886 //------------------------------singleton--------------------------------------
1887 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1888 // constants.
1889 bool TypeInt::singleton(void) const {
1890   return _lo == _hi;
1891 }
1892 
1893 bool TypeInt::empty(void) const {
1894   return false;
1895 }
1896 
1897 //=============================================================================
1898 // Convenience common pre-built types.
1899 const TypeLong* TypeLong::MAX;
1900 const TypeLong* TypeLong::MIN;
1901 const TypeLong* TypeLong::MINUS_1;// -1
1902 const TypeLong* TypeLong::ZERO; // 0
1903 const TypeLong* TypeLong::ONE;  // 1
1904 const TypeLong* TypeLong::NON_ZERO;
1905 const TypeLong* TypeLong::POS;  // >=0
1906 const TypeLong* TypeLong::NEG;
1907 const TypeLong* TypeLong::LONG; // 64-bit integers
1908 const TypeLong* TypeLong::INT;  // 32-bit subrange
1909 const TypeLong* TypeLong::UINT; // 32-bit unsigned subrange
1910 const TypeLong* TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1911 
1912 TypeLong::TypeLong(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual)
1913   : TypeInteger(Long, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1914     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1915   DEBUG_ONLY(t.verify_constraints());
1916 }
1917 
1918 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) {
1919   auto canonicalized_t = t.canonicalize_constraints();
1920   if (canonicalized_t.empty()) {
1921     return dual ? Type::BOTTOM : Type::TOP;
1922   }
1923   return (new TypeLong(canonicalized_t._data, widen, dual))->hashcons()->is_long();
1924 }
1925 
1926 const TypeLong* TypeLong::make(jlong con) {
1927   julong ucon = con;
1928   return (new TypeLong(TypeIntPrototype<jlong, julong>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1929                        WidenMin, false))->hashcons()->is_long();
1930 }
1931 
1932 const TypeLong* TypeLong::make(jlong lo, jlong hi, int widen) {
1933   assert(lo <= hi, "must be legal bounds");
1934   return make_or_top(TypeIntPrototype<jlong, julong>{{lo, hi}, {0, max_julong}, {0, 0}}, widen)->is_long();
1935 }
1936 
1937 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen) {
1938   return make_or_top(t, widen, false);
1939 }
1940 
1941 bool TypeLong::contains(jlong i) const {
1942   assert(!_is_dual, "dual types should only be used for join calculation");
1943   julong u = i;
1944   return i >= _lo && i <= _hi &&
1945          u >= _ulo && u <= _uhi &&
1946          _bits.is_satisfied_by(u);
1947 }
1948 
1949 bool TypeLong::contains(const TypeLong* t) const {
1950   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1951   return TypeIntHelper::int_type_is_subset(this, t);
1952 }
1953 
1954 #ifdef ASSERT
1955 bool TypeLong::strictly_contains(const TypeLong* t) const {
1956   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1957   return TypeIntHelper::int_type_is_subset(this, t) && !TypeIntHelper::int_type_is_equal(this, t);
1958 }
1959 #endif // ASSERT
1960 
1961 const Type* TypeLong::xmeet(const Type* t) const {
1962   return TypeIntHelper::int_type_xmeet(this, t);
1963 }
1964 
1965 const Type* TypeLong::xdual() const {
1966   return new TypeLong(TypeIntPrototype<jlong, julong>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1967                       _widen, !_is_dual);
1968 }
1969 
1970 const Type* TypeLong::widen(const Type* old, const Type* limit) const {
1971   assert(!_is_dual, "dual types should only be used for join calculation");
1972   return TypeIntHelper::int_type_widen(this, old->isa_long(), limit->isa_long());
1973 }
1974 
1975 const Type* TypeLong::narrow(const Type* old) const {
1976   assert(!_is_dual, "dual types should only be used for join calculation");
1977   if (old == nullptr) {
1978     return this;
1979   }
1980 
1981   return TypeIntHelper::int_type_narrow(this, old->isa_long());
1982 }
1983 
1984 //-----------------------------filter------------------------------------------
1985 const Type* TypeLong::filter_helper(const Type* kills, bool include_speculative) const {
1986   assert(!_is_dual, "dual types should only be used for join calculation");
1987   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1988   if (ft == nullptr) {
1989     return Type::TOP;           // Canonical empty value
1990   }
1991   assert(!ft->_is_dual, "dual types should only be used for join calculation");
1992   if (ft->_widen < this->_widen) {
1993     // Do not allow the value of kill->_widen to affect the outcome.
1994     // The widen bits must be allowed to run freely through the graph.
1995     return (new TypeLong(TypeIntPrototype<jlong, julong>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1996                          this->_widen, false))->hashcons();
1997   }
1998   return ft;
1999 }
2000 
2001 //------------------------------eq---------------------------------------------
2002 // Structural equality check for Type representations
2003 bool TypeLong::eq(const Type* t) const {
2004   const TypeLong* r = t->is_long();
2005   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
2006 }
2007 
2008 //------------------------------hash-------------------------------------------
2009 // Type-specific hashing function.
2010 uint TypeLong::hash(void) const {
2011   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
2012          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Long;
2013 }
2014 
2015 //------------------------------is_finite--------------------------------------
2016 // Has a finite value
2017 bool TypeLong::is_finite() const {
2018   return true;
2019 }
2020 
2021 //------------------------------singleton--------------------------------------
2022 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2023 // constants
2024 bool TypeLong::singleton(void) const {
2025   return _lo == _hi;
2026 }
2027 
2028 bool TypeLong::empty(void) const {
2029   return false;
2030 }
2031 
2032 //------------------------------dump2------------------------------------------
2033 #ifndef PRODUCT
2034 void TypeInt::dump2(Dict& d, uint depth, outputStream* st) const {
2035   TypeIntHelper::int_type_dump(this, st, false);
2036 }
2037 
2038 void TypeInt::dump_verbose() const {
2039   TypeIntHelper::int_type_dump(this, tty, true);
2040 }
2041 
2042 void TypeLong::dump2(Dict& d, uint depth, outputStream* st) const {
2043   TypeIntHelper::int_type_dump(this, st, false);
2044 }
2045 
2046 void TypeLong::dump_verbose() const {
2047   TypeIntHelper::int_type_dump(this, tty, true);
2048 }
2049 #endif
2050 
2051 //=============================================================================
2052 // Convenience common pre-built types.
2053 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2054 const TypeTuple *TypeTuple::IFFALSE;
2055 const TypeTuple *TypeTuple::IFTRUE;
2056 const TypeTuple *TypeTuple::IFNEITHER;
2057 const TypeTuple *TypeTuple::LOOPBODY;
2058 const TypeTuple *TypeTuple::MEMBAR;
2059 const TypeTuple *TypeTuple::STORECONDITIONAL;
2060 const TypeTuple *TypeTuple::START_I2C;
2061 const TypeTuple *TypeTuple::INT_PAIR;
2062 const TypeTuple *TypeTuple::LONG_PAIR;
2063 const TypeTuple *TypeTuple::INT_CC_PAIR;
2064 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2065 
2066 //------------------------------make-------------------------------------------
2067 // Make a TypeTuple from the range of a method signature
2068 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2069   ciType* return_type = sig->return_type();
2070   uint arg_cnt = return_type->size();
2071   const Type **field_array = fields(arg_cnt);
2072   switch (return_type->basic_type()) {
2073   case T_LONG:
2074     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2075     field_array[TypeFunc::Parms+1] = Type::HALF;
2076     break;
2077   case T_DOUBLE:
2078     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2079     field_array[TypeFunc::Parms+1] = Type::HALF;
2080     break;
2081   case T_OBJECT:
2082   case T_ARRAY:
2083   case T_BOOLEAN:
2084   case T_CHAR:
2085   case T_FLOAT:
2086   case T_BYTE:
2087   case T_SHORT:
2088   case T_INT:
2089     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2090     break;
2091   case T_VOID:
2092     break;
2093   default:
2094     ShouldNotReachHere();
2095   }
2096   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2097 }
2098 
2099 // Make a TypeTuple from the domain of a method signature
2100 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2101   uint arg_cnt = sig->size();
2102 
2103   uint pos = TypeFunc::Parms;
2104   const Type **field_array;
2105   if (recv != nullptr) {
2106     arg_cnt++;
2107     field_array = fields(arg_cnt);
2108     // Use get_const_type here because it respects UseUniqueSubclasses:
2109     field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2110   } else {
2111     field_array = fields(arg_cnt);
2112   }
2113 
2114   int i = 0;
2115   while (pos < TypeFunc::Parms + arg_cnt) {
2116     ciType* type = sig->type_at(i);
2117 
2118     switch (type->basic_type()) {
2119     case T_LONG:
2120       field_array[pos++] = TypeLong::LONG;
2121       field_array[pos++] = Type::HALF;
2122       break;
2123     case T_DOUBLE:
2124       field_array[pos++] = Type::DOUBLE;
2125       field_array[pos++] = Type::HALF;
2126       break;
2127     case T_OBJECT:
2128     case T_ARRAY:
2129     case T_FLOAT:
2130     case T_INT:
2131       field_array[pos++] = get_const_type(type, interface_handling);
2132       break;
2133     case T_BOOLEAN:
2134     case T_CHAR:
2135     case T_BYTE:
2136     case T_SHORT:
2137       field_array[pos++] = TypeInt::INT;
2138       break;
2139     default:
2140       ShouldNotReachHere();
2141     }
2142     i++;
2143   }
2144 
2145   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2146 }
2147 
2148 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2149   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2150 }
2151 
2152 //------------------------------fields-----------------------------------------
2153 // Subroutine call type with space allocated for argument types
2154 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2155 const Type **TypeTuple::fields( uint arg_cnt ) {
2156   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2157   flds[TypeFunc::Control  ] = Type::CONTROL;
2158   flds[TypeFunc::I_O      ] = Type::ABIO;
2159   flds[TypeFunc::Memory   ] = Type::MEMORY;
2160   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2161   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2162 
2163   return flds;
2164 }
2165 
2166 //------------------------------meet-------------------------------------------
2167 // Compute the MEET of two types.  It returns a new Type object.
2168 const Type *TypeTuple::xmeet( const Type *t ) const {
2169   // Perform a fast test for common case; meeting the same types together.
2170   if( this == t ) return this;  // Meeting same type-rep?
2171 
2172   // Current "this->_base" is Tuple
2173   switch (t->base()) {          // switch on original type
2174 
2175   case Bottom:                  // Ye Olde Default
2176     return t;
2177 
2178   default:                      // All else is a mistake
2179     typerr(t);
2180 
2181   case Tuple: {                 // Meeting 2 signatures?
2182     const TypeTuple *x = t->is_tuple();
2183     assert( _cnt == x->_cnt, "" );
2184     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2185     for( uint i=0; i<_cnt; i++ )
2186       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2187     return TypeTuple::make(_cnt,fields);
2188   }
2189   case Top:
2190     break;
2191   }
2192   return this;                  // Return the double constant
2193 }
2194 
2195 //------------------------------xdual------------------------------------------
2196 // Dual: compute field-by-field dual
2197 const Type *TypeTuple::xdual() const {
2198   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2199   for( uint i=0; i<_cnt; i++ )
2200     fields[i] = _fields[i]->dual();
2201   return new TypeTuple(_cnt,fields);
2202 }
2203 
2204 //------------------------------eq---------------------------------------------
2205 // Structural equality check for Type representations
2206 bool TypeTuple::eq( const Type *t ) const {
2207   const TypeTuple *s = (const TypeTuple *)t;
2208   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2209   for (uint i = 0; i < _cnt; i++)
2210     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2211       return false;             // Missed
2212   return true;
2213 }
2214 
2215 //------------------------------hash-------------------------------------------
2216 // Type-specific hashing function.
2217 uint TypeTuple::hash(void) const {
2218   uintptr_t sum = _cnt;
2219   for( uint i=0; i<_cnt; i++ )
2220     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2221   return (uint)sum;
2222 }
2223 
2224 //------------------------------dump2------------------------------------------
2225 // Dump signature Type
2226 #ifndef PRODUCT
2227 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2228   st->print("{");
2229   if( !depth || d[this] ) {     // Check for recursive print
2230     st->print("...}");
2231     return;
2232   }
2233   d.Insert((void*)this, (void*)this);   // Stop recursion
2234   if( _cnt ) {
2235     uint i;
2236     for( i=0; i<_cnt-1; i++ ) {
2237       st->print("%d:", i);
2238       _fields[i]->dump2(d, depth-1, st);
2239       st->print(", ");
2240     }
2241     st->print("%d:", i);
2242     _fields[i]->dump2(d, depth-1, st);
2243   }
2244   st->print("}");
2245 }
2246 #endif
2247 
2248 //------------------------------singleton--------------------------------------
2249 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2250 // constants (Ldi nodes).  Singletons are integer, float or double constants
2251 // or a single symbol.
2252 bool TypeTuple::singleton(void) const {
2253   return false;                 // Never a singleton
2254 }
2255 
2256 bool TypeTuple::empty(void) const {
2257   for( uint i=0; i<_cnt; i++ ) {
2258     if (_fields[i]->empty())  return true;
2259   }
2260   return false;
2261 }
2262 
2263 //=============================================================================
2264 // Convenience common pre-built types.
2265 
2266 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2267   // Certain normalizations keep us sane when comparing types.
2268   // We do not want arrayOop variables to differ only by the wideness
2269   // of their index types.  Pick minimum wideness, since that is the
2270   // forced wideness of small ranges anyway.
2271   if (size->_widen != Type::WidenMin)
2272     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2273   else
2274     return size;
2275 }
2276 
2277 //------------------------------make-------------------------------------------
2278 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2279   if (UseCompressedOops && elem->isa_oopptr()) {
2280     elem = elem->make_narrowoop();
2281   }
2282   size = normalize_array_size(size);
2283   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2284 }
2285 
2286 //------------------------------meet-------------------------------------------
2287 // Compute the MEET of two types.  It returns a new Type object.
2288 const Type *TypeAry::xmeet( const Type *t ) const {
2289   // Perform a fast test for common case; meeting the same types together.
2290   if( this == t ) return this;  // Meeting same type-rep?
2291 
2292   // Current "this->_base" is Ary
2293   switch (t->base()) {          // switch on original type
2294 
2295   case Bottom:                  // Ye Olde Default
2296     return t;
2297 
2298   default:                      // All else is a mistake
2299     typerr(t);
2300 
2301   case Array: {                 // Meeting 2 arrays?
2302     const TypeAry* a = t->is_ary();
2303     const Type* size = _size->xmeet(a->_size);
2304     const TypeInt* isize = size->isa_int();
2305     if (isize == nullptr) {
2306       assert(size == Type::TOP || size == Type::BOTTOM, "");
2307       return size;
2308     }
2309     return TypeAry::make(_elem->meet_speculative(a->_elem),
2310                          isize, _stable && a->_stable);
2311   }
2312   case Top:
2313     break;
2314   }
2315   return this;                  // Return the double constant
2316 }
2317 
2318 //------------------------------xdual------------------------------------------
2319 // Dual: compute field-by-field dual
2320 const Type *TypeAry::xdual() const {
2321   const TypeInt* size_dual = _size->dual()->is_int();
2322   size_dual = normalize_array_size(size_dual);
2323   return new TypeAry(_elem->dual(), size_dual, !_stable);
2324 }
2325 
2326 //------------------------------eq---------------------------------------------
2327 // Structural equality check for Type representations
2328 bool TypeAry::eq( const Type *t ) const {
2329   const TypeAry *a = (const TypeAry*)t;
2330   return _elem == a->_elem &&
2331     _stable == a->_stable &&
2332     _size == a->_size;
2333 }
2334 
2335 //------------------------------hash-------------------------------------------
2336 // Type-specific hashing function.
2337 uint TypeAry::hash(void) const {
2338   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2339 }
2340 
2341 /**
2342  * Return same type without a speculative part in the element
2343  */
2344 const TypeAry* TypeAry::remove_speculative() const {
2345   return make(_elem->remove_speculative(), _size, _stable);
2346 }
2347 
2348 /**
2349  * Return same type with cleaned up speculative part of element
2350  */
2351 const Type* TypeAry::cleanup_speculative() const {
2352   return make(_elem->cleanup_speculative(), _size, _stable);
2353 }
2354 
2355 /**
2356  * Return same type but with a different inline depth (used for speculation)
2357  *
2358  * @param depth  depth to meet with
2359  */
2360 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2361   if (!UseInlineDepthForSpeculativeTypes) {
2362     return this;
2363   }
2364   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2365 }
2366 
2367 //------------------------------dump2------------------------------------------
2368 #ifndef PRODUCT
2369 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2370   if (_stable)  st->print("stable:");
2371   _elem->dump2(d, depth, st);
2372   st->print("[");
2373   _size->dump2(d, depth, st);
2374   st->print("]");
2375 }
2376 #endif
2377 
2378 //------------------------------singleton--------------------------------------
2379 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2380 // constants (Ldi nodes).  Singletons are integer, float or double constants
2381 // or a single symbol.
2382 bool TypeAry::singleton(void) const {
2383   return false;                 // Never a singleton
2384 }
2385 
2386 bool TypeAry::empty(void) const {
2387   return _elem->empty() || _size->empty();
2388 }
2389 
2390 //--------------------------ary_must_be_exact----------------------------------
2391 bool TypeAry::ary_must_be_exact() const {
2392   // This logic looks at the element type of an array, and returns true
2393   // if the element type is either a primitive or a final instance class.
2394   // In such cases, an array built on this ary must have no subclasses.
2395   if (_elem == BOTTOM)      return false;  // general array not exact
2396   if (_elem == TOP   )      return false;  // inverted general array not exact
2397   const TypeOopPtr*  toop = nullptr;
2398   if (UseCompressedOops && _elem->isa_narrowoop()) {
2399     toop = _elem->make_ptr()->isa_oopptr();
2400   } else {
2401     toop = _elem->isa_oopptr();
2402   }
2403   if (!toop)                return true;   // a primitive type, like int
2404   if (!toop->is_loaded())   return false;  // unloaded class
2405   const TypeInstPtr* tinst;
2406   if (_elem->isa_narrowoop())
2407     tinst = _elem->make_ptr()->isa_instptr();
2408   else
2409     tinst = _elem->isa_instptr();
2410   if (tinst)
2411     return tinst->instance_klass()->is_final();
2412   const TypeAryPtr*  tap;
2413   if (_elem->isa_narrowoop())
2414     tap = _elem->make_ptr()->isa_aryptr();
2415   else
2416     tap = _elem->isa_aryptr();
2417   if (tap)
2418     return tap->ary()->ary_must_be_exact();
2419   return false;
2420 }
2421 
2422 //==============================TypeVect=======================================
2423 // Convenience common pre-built types.
2424 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2425 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2426 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2427 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2428 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2429 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2430 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2431 
2432 //------------------------------make-------------------------------------------
2433 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2434   if (is_mask) {
2435     return makemask(elem_bt, length);
2436   }
2437   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2438   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2439   int size = length * type2aelembytes(elem_bt);
2440   switch (Matcher::vector_ideal_reg(size)) {
2441   case Op_VecA:
2442     return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2443   case Op_VecS:
2444     return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2445   case Op_RegL:
2446   case Op_VecD:
2447   case Op_RegD:
2448     return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2449   case Op_VecX:
2450     return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2451   case Op_VecY:
2452     return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2453   case Op_VecZ:
2454     return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2455   }
2456  ShouldNotReachHere();
2457   return nullptr;
2458 }
2459 
2460 // Create a vector mask type with the given element basic type and length.
2461 // - Returns "TypeVectMask" (PVectMask) for platforms that support the predicate
2462 //   feature and it is implemented properly in the backend, allowing the mask to
2463 //   be stored in a predicate/mask register.
2464 // - Returns a normal vector type "TypeVectA ~ TypeVectZ" (NVectMask) otherwise,
2465 //   where the vector mask is stored in a vector register.
2466 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2467   if (Matcher::has_predicated_vectors() &&
2468       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2469     return TypeVectMask::make(elem_bt, length);
2470   } else {
2471     return make(elem_bt, length);
2472   }
2473 }
2474 
2475 //------------------------------meet-------------------------------------------
2476 // Compute the MEET of two types. Since each TypeVect is the only instance of
2477 // its species, meeting often returns itself
2478 const Type* TypeVect::xmeet(const Type* t) const {
2479   // Perform a fast test for common case; meeting the same types together.
2480   if (this == t) {
2481     return this;
2482   }
2483 
2484   // Current "this->_base" is Vector
2485   switch (t->base()) {          // switch on original type
2486 
2487   case Bottom:                  // Ye Olde Default
2488     return t;
2489 
2490   default:                      // All else is a mistake
2491     typerr(t);
2492   case VectorMask:
2493   case VectorA:
2494   case VectorS:
2495   case VectorD:
2496   case VectorX:
2497   case VectorY:
2498   case VectorZ: {                // Meeting 2 vectors?
2499     const TypeVect* v = t->is_vect();
2500     assert(base() == v->base(), "");
2501     assert(length() == v->length(), "");
2502     assert(element_basic_type() == v->element_basic_type(), "");
2503     return this;
2504   }
2505   case Top:
2506     break;
2507   }
2508   return this;
2509 }
2510 
2511 //------------------------------xdual------------------------------------------
2512 // Since each TypeVect is the only instance of its species, it is self-dual
2513 const Type* TypeVect::xdual() const {
2514   return this;
2515 }
2516 
2517 //------------------------------eq---------------------------------------------
2518 // Structural equality check for Type representations
2519 bool TypeVect::eq(const Type* t) const {
2520   const TypeVect* v = t->is_vect();
2521   return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2522 }
2523 
2524 //------------------------------hash-------------------------------------------
2525 // Type-specific hashing function.
2526 uint TypeVect::hash(void) const {
2527   return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2528 }
2529 
2530 //------------------------------singleton--------------------------------------
2531 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2532 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2533 // constant value (when vector is created with Replicate code).
2534 bool TypeVect::singleton(void) const {
2535 // There is no Con node for vectors yet.
2536 //  return _elem->singleton();
2537   return false;
2538 }
2539 
2540 bool TypeVect::empty(void) const {
2541   return false;
2542 }
2543 
2544 //------------------------------dump2------------------------------------------
2545 #ifndef PRODUCT
2546 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2547   switch (base()) {
2548   case VectorA:
2549     st->print("vectora"); break;
2550   case VectorS:
2551     st->print("vectors"); break;
2552   case VectorD:
2553     st->print("vectord"); break;
2554   case VectorX:
2555     st->print("vectorx"); break;
2556   case VectorY:
2557     st->print("vectory"); break;
2558   case VectorZ:
2559     st->print("vectorz"); break;
2560   case VectorMask:
2561     st->print("vectormask"); break;
2562   default:
2563     ShouldNotReachHere();
2564   }
2565   st->print("<%c,%u>", type2char(element_basic_type()), length());
2566 }
2567 #endif
2568 
2569 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2570   return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2571 }
2572 
2573 //=============================================================================
2574 // Convenience common pre-built types.
2575 const TypePtr *TypePtr::NULL_PTR;
2576 const TypePtr *TypePtr::NOTNULL;
2577 const TypePtr *TypePtr::BOTTOM;
2578 
2579 //------------------------------meet-------------------------------------------
2580 // Meet over the PTR enum
2581 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2582   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2583   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2584   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2585   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2586   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2587   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2588   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2589 };
2590 
2591 //------------------------------make-------------------------------------------
2592 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2593   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2594 }
2595 
2596 //------------------------------cast_to_ptr_type-------------------------------
2597 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2598   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2599   if( ptr == _ptr ) return this;
2600   return make(_base, ptr, _offset, _speculative, _inline_depth);
2601 }
2602 
2603 //------------------------------get_con----------------------------------------
2604 intptr_t TypePtr::get_con() const {
2605   assert( _ptr == Null, "" );
2606   return _offset;
2607 }
2608 
2609 //------------------------------meet-------------------------------------------
2610 // Compute the MEET of two types.  It returns a new Type object.
2611 const Type *TypePtr::xmeet(const Type *t) const {
2612   const Type* res = xmeet_helper(t);
2613   if (res->isa_ptr() == nullptr) {
2614     return res;
2615   }
2616 
2617   const TypePtr* res_ptr = res->is_ptr();
2618   if (res_ptr->speculative() != nullptr) {
2619     // type->speculative() is null means that speculation is no better
2620     // than type, i.e. type->speculative() == type. So there are 2
2621     // ways to represent the fact that we have no useful speculative
2622     // data and we should use a single one to be able to test for
2623     // equality between types. Check whether type->speculative() ==
2624     // type and set speculative to null if it is the case.
2625     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2626       return res_ptr->remove_speculative();
2627     }
2628   }
2629 
2630   return res;
2631 }
2632 
2633 const Type *TypePtr::xmeet_helper(const Type *t) const {
2634   // Perform a fast test for common case; meeting the same types together.
2635   if( this == t ) return this;  // Meeting same type-rep?
2636 
2637   // Current "this->_base" is AnyPtr
2638   switch (t->base()) {          // switch on original type
2639   case Int:                     // Mixing ints & oops happens when javac
2640   case Long:                    // reuses local variables
2641   case HalfFloatTop:
2642   case HalfFloatCon:
2643   case HalfFloatBot:
2644   case FloatTop:
2645   case FloatCon:
2646   case FloatBot:
2647   case DoubleTop:
2648   case DoubleCon:
2649   case DoubleBot:
2650   case NarrowOop:
2651   case NarrowKlass:
2652   case Bottom:                  // Ye Olde Default
2653     return Type::BOTTOM;
2654   case Top:
2655     return this;
2656 
2657   case AnyPtr: {                // Meeting to AnyPtrs
2658     const TypePtr *tp = t->is_ptr();
2659     const TypePtr* speculative = xmeet_speculative(tp);
2660     int depth = meet_inline_depth(tp->inline_depth());
2661     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2662   }
2663   case RawPtr:                  // For these, flip the call around to cut down
2664   case OopPtr:
2665   case InstPtr:                 // on the cases I have to handle.
2666   case AryPtr:
2667   case MetadataPtr:
2668   case KlassPtr:
2669   case InstKlassPtr:
2670   case AryKlassPtr:
2671     return t->xmeet(this);      // Call in reverse direction
2672   default:                      // All else is a mistake
2673     typerr(t);
2674 
2675   }
2676   return this;
2677 }
2678 
2679 //------------------------------meet_offset------------------------------------
2680 int TypePtr::meet_offset( int offset ) const {
2681   // Either is 'TOP' offset?  Return the other offset!
2682   if( _offset == OffsetTop ) return offset;
2683   if( offset == OffsetTop ) return _offset;
2684   // If either is different, return 'BOTTOM' offset
2685   if( _offset != offset ) return OffsetBot;
2686   return _offset;
2687 }
2688 
2689 //------------------------------dual_offset------------------------------------
2690 int TypePtr::dual_offset( ) const {
2691   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2692   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2693   return _offset;               // Map everything else into self
2694 }
2695 
2696 //------------------------------xdual------------------------------------------
2697 // Dual: compute field-by-field dual
2698 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2699   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2700 };
2701 const Type *TypePtr::xdual() const {
2702   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2703 }
2704 
2705 //------------------------------xadd_offset------------------------------------
2706 int TypePtr::xadd_offset( intptr_t offset ) const {
2707   // Adding to 'TOP' offset?  Return 'TOP'!
2708   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2709   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2710   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2711   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2712   offset += (intptr_t)_offset;
2713   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2714 
2715   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2716   // It is possible to construct a negative offset during PhaseCCP
2717 
2718   return (int)offset;        // Sum valid offsets
2719 }
2720 
2721 //------------------------------add_offset-------------------------------------
2722 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2723   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2724 }
2725 
2726 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2727   return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2728 }
2729 
2730 //------------------------------eq---------------------------------------------
2731 // Structural equality check for Type representations
2732 bool TypePtr::eq( const Type *t ) const {
2733   const TypePtr *a = (const TypePtr*)t;
2734   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2735 }
2736 
2737 //------------------------------hash-------------------------------------------
2738 // Type-specific hashing function.
2739 uint TypePtr::hash(void) const {
2740   return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2741 }
2742 
2743 /**
2744  * Return same type without a speculative part
2745  */
2746 const TypePtr* TypePtr::remove_speculative() const {
2747   if (_speculative == nullptr) {
2748     return this;
2749   }
2750   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2751   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2752 }
2753 
2754 /**
2755  * Return same type but drop speculative part if we know we won't use
2756  * it
2757  */
2758 const Type* TypePtr::cleanup_speculative() const {
2759   if (speculative() == nullptr) {
2760     return this;
2761   }
2762   const Type* no_spec = remove_speculative();
2763   // If this is NULL_PTR then we don't need the speculative type
2764   // (with_inline_depth in case the current type inline depth is
2765   // InlineDepthTop)
2766   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2767     return no_spec;
2768   }
2769   if (above_centerline(speculative()->ptr())) {
2770     return no_spec;
2771   }
2772   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2773   // If the speculative may be null and is an inexact klass then it
2774   // doesn't help
2775   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2776       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2777     return no_spec;
2778   }
2779   return this;
2780 }
2781 
2782 /**
2783  * dual of the speculative part of the type
2784  */
2785 const TypePtr* TypePtr::dual_speculative() const {
2786   if (_speculative == nullptr) {
2787     return nullptr;
2788   }
2789   return _speculative->dual()->is_ptr();
2790 }
2791 
2792 /**
2793  * meet of the speculative parts of 2 types
2794  *
2795  * @param other  type to meet with
2796  */
2797 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2798   bool this_has_spec = (_speculative != nullptr);
2799   bool other_has_spec = (other->speculative() != nullptr);
2800 
2801   if (!this_has_spec && !other_has_spec) {
2802     return nullptr;
2803   }
2804 
2805   // If we are at a point where control flow meets and one branch has
2806   // a speculative type and the other has not, we meet the speculative
2807   // type of one branch with the actual type of the other. If the
2808   // actual type is exact and the speculative is as well, then the
2809   // result is a speculative type which is exact and we can continue
2810   // speculation further.
2811   const TypePtr* this_spec = _speculative;
2812   const TypePtr* other_spec = other->speculative();
2813 
2814   if (!this_has_spec) {
2815     this_spec = this;
2816   }
2817 
2818   if (!other_has_spec) {
2819     other_spec = other;
2820   }
2821 
2822   return this_spec->meet(other_spec)->is_ptr();
2823 }
2824 
2825 /**
2826  * dual of the inline depth for this type (used for speculation)
2827  */
2828 int TypePtr::dual_inline_depth() const {
2829   return -inline_depth();
2830 }
2831 
2832 /**
2833  * meet of 2 inline depths (used for speculation)
2834  *
2835  * @param depth  depth to meet with
2836  */
2837 int TypePtr::meet_inline_depth(int depth) const {
2838   return MAX2(inline_depth(), depth);
2839 }
2840 
2841 /**
2842  * Are the speculative parts of 2 types equal?
2843  *
2844  * @param other  type to compare this one to
2845  */
2846 bool TypePtr::eq_speculative(const TypePtr* other) const {
2847   if (_speculative == nullptr || other->speculative() == nullptr) {
2848     return _speculative == other->speculative();
2849   }
2850 
2851   if (_speculative->base() != other->speculative()->base()) {
2852     return false;
2853   }
2854 
2855   return _speculative->eq(other->speculative());
2856 }
2857 
2858 /**
2859  * Hash of the speculative part of the type
2860  */
2861 int TypePtr::hash_speculative() const {
2862   if (_speculative == nullptr) {
2863     return 0;
2864   }
2865 
2866   return _speculative->hash();
2867 }
2868 
2869 /**
2870  * add offset to the speculative part of the type
2871  *
2872  * @param offset  offset to add
2873  */
2874 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2875   if (_speculative == nullptr) {
2876     return nullptr;
2877   }
2878   return _speculative->add_offset(offset)->is_ptr();
2879 }
2880 
2881 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
2882   if (_speculative == nullptr) {
2883     return nullptr;
2884   }
2885   return _speculative->with_offset(offset)->is_ptr();
2886 }
2887 
2888 /**
2889  * return exact klass from the speculative type if there's one
2890  */
2891 ciKlass* TypePtr::speculative_type() const {
2892   if (_speculative != nullptr && _speculative->isa_oopptr()) {
2893     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2894     if (speculative->klass_is_exact()) {
2895       return speculative->exact_klass();
2896     }
2897   }
2898   return nullptr;
2899 }
2900 
2901 /**
2902  * return true if speculative type may be null
2903  */
2904 bool TypePtr::speculative_maybe_null() const {
2905   if (_speculative != nullptr) {
2906     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2907     return speculative->maybe_null();
2908   }
2909   return true;
2910 }
2911 
2912 bool TypePtr::speculative_always_null() const {
2913   if (_speculative != nullptr) {
2914     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2915     return speculative == TypePtr::NULL_PTR;
2916   }
2917   return false;
2918 }
2919 
2920 /**
2921  * Same as TypePtr::speculative_type() but return the klass only if
2922  * the speculative tells us is not null
2923  */
2924 ciKlass* TypePtr::speculative_type_not_null() const {
2925   if (speculative_maybe_null()) {
2926     return nullptr;
2927   }
2928   return speculative_type();
2929 }
2930 
2931 /**
2932  * Check whether new profiling would improve speculative type
2933  *
2934  * @param   exact_kls    class from profiling
2935  * @param   inline_depth inlining depth of profile point
2936  *
2937  * @return  true if type profile is valuable
2938  */
2939 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2940   // no profiling?
2941   if (exact_kls == nullptr) {
2942     return false;
2943   }
2944   if (speculative() == TypePtr::NULL_PTR) {
2945     return false;
2946   }
2947   // no speculative type or non exact speculative type?
2948   if (speculative_type() == nullptr) {
2949     return true;
2950   }
2951   // If the node already has an exact speculative type keep it,
2952   // unless it was provided by profiling that is at a deeper
2953   // inlining level. Profiling at a higher inlining depth is
2954   // expected to be less accurate.
2955   if (_speculative->inline_depth() == InlineDepthBottom) {
2956     return false;
2957   }
2958   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2959   return inline_depth < _speculative->inline_depth();
2960 }
2961 
2962 /**
2963  * Check whether new profiling would improve ptr (= tells us it is non
2964  * null)
2965  *
2966  * @param   ptr_kind always null or not null?
2967  *
2968  * @return  true if ptr profile is valuable
2969  */
2970 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2971   // profiling doesn't tell us anything useful
2972   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2973     return false;
2974   }
2975   // We already know this is not null
2976   if (!this->maybe_null()) {
2977     return false;
2978   }
2979   // We already know the speculative type cannot be null
2980   if (!speculative_maybe_null()) {
2981     return false;
2982   }
2983   // We already know this is always null
2984   if (this == TypePtr::NULL_PTR) {
2985     return false;
2986   }
2987   // We already know the speculative type is always null
2988   if (speculative_always_null()) {
2989     return false;
2990   }
2991   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2992     return false;
2993   }
2994   return true;
2995 }
2996 
2997 //------------------------------dump2------------------------------------------
2998 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2999   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3000 };
3001 
3002 #ifndef PRODUCT
3003 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3004   st->print("ptr:%s", ptr_msg[_ptr]);
3005   dump_offset(st);
3006   dump_inline_depth(st);
3007   dump_speculative(st);
3008 }
3009 
3010 void TypePtr::dump_offset(outputStream* st) const {
3011   if (_offset == OffsetBot) {
3012     st->print("+bot");
3013   } else if (_offset == OffsetTop) {
3014     st->print("+top");
3015   } else {
3016     st->print("+%d", _offset);
3017   }
3018 }
3019 
3020 /**
3021  *dump the speculative part of the type
3022  */
3023 void TypePtr::dump_speculative(outputStream *st) const {
3024   if (_speculative != nullptr) {
3025     st->print(" (speculative=");
3026     _speculative->dump_on(st);
3027     st->print(")");
3028   }
3029 }
3030 
3031 /**
3032  *dump the inline depth of the type
3033  */
3034 void TypePtr::dump_inline_depth(outputStream *st) const {
3035   if (_inline_depth != InlineDepthBottom) {
3036     if (_inline_depth == InlineDepthTop) {
3037       st->print(" (inline_depth=InlineDepthTop)");
3038     } else {
3039       st->print(" (inline_depth=%d)", _inline_depth);
3040     }
3041   }
3042 }
3043 #endif
3044 
3045 //------------------------------singleton--------------------------------------
3046 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3047 // constants
3048 bool TypePtr::singleton(void) const {
3049   // TopPTR, Null, AnyNull, Constant are all singletons
3050   return (_offset != OffsetBot) && !below_centerline(_ptr);
3051 }
3052 
3053 bool TypePtr::empty(void) const {
3054   return (_offset == OffsetTop) || above_centerline(_ptr);
3055 }
3056 
3057 //=============================================================================
3058 // Convenience common pre-built types.
3059 const TypeRawPtr *TypeRawPtr::BOTTOM;
3060 const TypeRawPtr *TypeRawPtr::NOTNULL;
3061 
3062 //------------------------------make-------------------------------------------
3063 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3064   assert( ptr != Constant, "what is the constant?" );
3065   assert( ptr != Null, "Use TypePtr for null" );
3066   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3067 }
3068 
3069 const TypeRawPtr *TypeRawPtr::make(address bits) {
3070   assert(bits != nullptr, "Use TypePtr for null");
3071   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3072 }
3073 
3074 //------------------------------cast_to_ptr_type-------------------------------
3075 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3076   assert( ptr != Constant, "what is the constant?" );
3077   assert( ptr != Null, "Use TypePtr for null" );
3078   assert( _bits == nullptr, "Why cast a constant address?");
3079   if( ptr == _ptr ) return this;
3080   return make(ptr);
3081 }
3082 
3083 //------------------------------get_con----------------------------------------
3084 intptr_t TypeRawPtr::get_con() const {
3085   assert( _ptr == Null || _ptr == Constant, "" );
3086   return (intptr_t)_bits;
3087 }
3088 
3089 //------------------------------meet-------------------------------------------
3090 // Compute the MEET of two types.  It returns a new Type object.
3091 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3092   // Perform a fast test for common case; meeting the same types together.
3093   if( this == t ) return this;  // Meeting same type-rep?
3094 
3095   // Current "this->_base" is RawPtr
3096   switch( t->base() ) {         // switch on original type
3097   case Bottom:                  // Ye Olde Default
3098     return t;
3099   case Top:
3100     return this;
3101   case AnyPtr:                  // Meeting to AnyPtrs
3102     break;
3103   case RawPtr: {                // might be top, bot, any/not or constant
3104     enum PTR tptr = t->is_ptr()->ptr();
3105     enum PTR ptr = meet_ptr( tptr );
3106     if( ptr == Constant ) {     // Cannot be equal constants, so...
3107       if( tptr == Constant && _ptr != Constant)  return t;
3108       if( _ptr == Constant && tptr != Constant)  return this;
3109       ptr = NotNull;            // Fall down in lattice
3110     }
3111     return make( ptr );
3112   }
3113 
3114   case OopPtr:
3115   case InstPtr:
3116   case AryPtr:
3117   case MetadataPtr:
3118   case KlassPtr:
3119   case InstKlassPtr:
3120   case AryKlassPtr:
3121     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3122   default:                      // All else is a mistake
3123     typerr(t);
3124   }
3125 
3126   // Found an AnyPtr type vs self-RawPtr type
3127   const TypePtr *tp = t->is_ptr();
3128   switch (tp->ptr()) {
3129   case TypePtr::TopPTR:  return this;
3130   case TypePtr::BotPTR:  return t;
3131   case TypePtr::Null:
3132     if( _ptr == TypePtr::TopPTR ) return t;
3133     return TypeRawPtr::BOTTOM;
3134   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3135   case TypePtr::AnyNull:
3136     if( _ptr == TypePtr::Constant) return this;
3137     return make( meet_ptr(TypePtr::AnyNull) );
3138   default: ShouldNotReachHere();
3139   }
3140   return this;
3141 }
3142 
3143 //------------------------------xdual------------------------------------------
3144 // Dual: compute field-by-field dual
3145 const Type *TypeRawPtr::xdual() const {
3146   return new TypeRawPtr( dual_ptr(), _bits );
3147 }
3148 
3149 //------------------------------add_offset-------------------------------------
3150 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3151   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3152   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3153   if( offset == 0 ) return this; // No change
3154   switch (_ptr) {
3155   case TypePtr::TopPTR:
3156   case TypePtr::BotPTR:
3157   case TypePtr::NotNull:
3158     return this;
3159   case TypePtr::Constant: {
3160     uintptr_t bits = (uintptr_t)_bits;
3161     uintptr_t sum = bits + offset;
3162     if (( offset < 0 )
3163         ? ( sum > bits )        // Underflow?
3164         : ( sum < bits )) {     // Overflow?
3165       return BOTTOM;
3166     } else if ( sum == 0 ) {
3167       return TypePtr::NULL_PTR;
3168     } else {
3169       return make( (address)sum );
3170     }
3171   }
3172   default:  ShouldNotReachHere();
3173   }
3174 }
3175 
3176 //------------------------------eq---------------------------------------------
3177 // Structural equality check for Type representations
3178 bool TypeRawPtr::eq( const Type *t ) const {
3179   const TypeRawPtr *a = (const TypeRawPtr*)t;
3180   return _bits == a->_bits && TypePtr::eq(t);
3181 }
3182 
3183 //------------------------------hash-------------------------------------------
3184 // Type-specific hashing function.
3185 uint TypeRawPtr::hash(void) const {
3186   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3187 }
3188 
3189 //------------------------------dump2------------------------------------------
3190 #ifndef PRODUCT
3191 void TypeRawPtr::dump2(Dict& d, uint depth, outputStream* st) const {
3192   if (_ptr == Constant) {
3193     st->print("rawptr:Constant:" INTPTR_FORMAT, p2i(_bits));
3194   } else {
3195     st->print("rawptr:%s", ptr_msg[_ptr]);
3196   }
3197 }
3198 #endif
3199 
3200 //=============================================================================
3201 // Convenience common pre-built type.
3202 const TypeOopPtr *TypeOopPtr::BOTTOM;
3203 
3204 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3205         : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3206           _hash(0), _exact_klass(nullptr) {
3207   _interfaces.sort(compare);
3208   initialize();
3209 }
3210 
3211 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3212   // hashcons() can only delete the last thing that was allocated: to
3213   // make sure all memory for the newly created TypeInterfaces can be
3214   // freed if an identical one exists, allocate space for the array of
3215   // interfaces right after the TypeInterfaces object so that they
3216   // form a contiguous piece of memory.
3217   int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3218   size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3219 
3220   void* allocated_mem = operator new(total_size);
3221   ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3222   for (int i = 0; i < nb_interfaces; ++i) {
3223     interfaces_base[i] = interfaces->at(i);
3224   }
3225   TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3226   return (const TypeInterfaces*)result->hashcons();
3227 }
3228 
3229 void TypeInterfaces::initialize() {
3230   compute_hash();
3231   compute_exact_klass();
3232   DEBUG_ONLY(_initialized = true;)
3233 }
3234 
3235 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3236   if ((intptr_t)k1 < (intptr_t)k2) {
3237     return -1;
3238   } else if ((intptr_t)k1 > (intptr_t)k2) {
3239     return 1;
3240   }
3241   return 0;
3242 }
3243 
3244 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3245   return compare(*k1, *k2);
3246 }
3247 
3248 bool TypeInterfaces::eq(const Type* t) const {
3249   const TypeInterfaces* other = (const TypeInterfaces*)t;
3250   if (_interfaces.length() != other->_interfaces.length()) {
3251     return false;
3252   }
3253   for (int i = 0; i < _interfaces.length(); i++) {
3254     ciKlass* k1 = _interfaces.at(i);
3255     ciKlass* k2 = other->_interfaces.at(i);
3256     if (!k1->equals(k2)) {
3257       return false;
3258     }
3259   }
3260   return true;
3261 }
3262 
3263 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3264   assert(k->is_loaded(), "should be loaded");
3265   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3266   if (_interfaces.length() != interfaces->length()) {
3267     return false;
3268   }
3269   for (int i = 0; i < interfaces->length(); i++) {
3270     bool found = false;
3271     _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3272     if (!found) {
3273       return false;
3274     }
3275   }
3276   return true;
3277 }
3278 
3279 
3280 uint TypeInterfaces::hash() const {
3281   assert(_initialized, "must be");
3282   return _hash;
3283 }
3284 
3285 const Type* TypeInterfaces::xdual() const {
3286   return this;
3287 }
3288 
3289 void TypeInterfaces::compute_hash() {
3290   uint hash = 0;
3291   for (int i = 0; i < _interfaces.length(); i++) {
3292     ciKlass* k = _interfaces.at(i);
3293     hash += k->hash();
3294   }
3295   _hash = hash;
3296 }
3297 
3298 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3299   return (int)((*k1)->ident() - (*k2)->ident());
3300 }
3301 
3302 void TypeInterfaces::dump(outputStream* st) const {
3303   if (_interfaces.length() == 0) {
3304     return;
3305   }
3306   ResourceMark rm;
3307   st->print(" (");
3308   GrowableArray<ciInstanceKlass*> interfaces;
3309   interfaces.appendAll(&_interfaces);
3310   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3311   interfaces.sort(compare_interfaces);
3312   for (int i = 0; i < interfaces.length(); i++) {
3313     if (i > 0) {
3314       st->print(",");
3315     }
3316     ciKlass* k = interfaces.at(i);
3317     k->print_name_on(st);
3318   }
3319   st->print(")");
3320 }
3321 
3322 #ifdef ASSERT
3323 void TypeInterfaces::verify() const {
3324   for (int i = 1; i < _interfaces.length(); i++) {
3325     ciInstanceKlass* k1 = _interfaces.at(i-1);
3326     ciInstanceKlass* k2 = _interfaces.at(i);
3327     assert(compare(k2, k1) > 0, "should be ordered");
3328     assert(k1 != k2, "no duplicate");
3329   }
3330 }
3331 #endif
3332 
3333 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3334   GrowableArray<ciInstanceKlass*> result_list;
3335   int i = 0;
3336   int j = 0;
3337   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3338     while (i < _interfaces.length() &&
3339            (j >= other->_interfaces.length() ||
3340             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3341       result_list.push(_interfaces.at(i));
3342       i++;
3343     }
3344     while (j < other->_interfaces.length() &&
3345            (i >= _interfaces.length() ||
3346             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3347       result_list.push(other->_interfaces.at(j));
3348       j++;
3349     }
3350     if (i < _interfaces.length() &&
3351         j < other->_interfaces.length() &&
3352         _interfaces.at(i) == other->_interfaces.at(j)) {
3353       result_list.push(_interfaces.at(i));
3354       i++;
3355       j++;
3356     }
3357   }
3358   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3359 #ifdef ASSERT
3360   result->verify();
3361   for (int i = 0; i < _interfaces.length(); i++) {
3362     assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3363   }
3364   for (int i = 0; i < other->_interfaces.length(); i++) {
3365     assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3366   }
3367   for (int i = 0; i < result->_interfaces.length(); i++) {
3368     assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3369   }
3370 #endif
3371   return result;
3372 }
3373 
3374 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3375   GrowableArray<ciInstanceKlass*> result_list;
3376   int i = 0;
3377   int j = 0;
3378   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3379     while (i < _interfaces.length() &&
3380            (j >= other->_interfaces.length() ||
3381             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3382       i++;
3383     }
3384     while (j < other->_interfaces.length() &&
3385            (i >= _interfaces.length() ||
3386             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3387       j++;
3388     }
3389     if (i < _interfaces.length() &&
3390         j < other->_interfaces.length() &&
3391         _interfaces.at(i) == other->_interfaces.at(j)) {
3392       result_list.push(_interfaces.at(i));
3393       i++;
3394       j++;
3395     }
3396   }
3397   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3398 #ifdef ASSERT
3399   result->verify();
3400   for (int i = 0; i < _interfaces.length(); i++) {
3401     assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3402   }
3403   for (int i = 0; i < other->_interfaces.length(); i++) {
3404     assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3405   }
3406   for (int i = 0; i < result->_interfaces.length(); i++) {
3407     assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3408   }
3409 #endif
3410   return result;
3411 }
3412 
3413 // Is there a single ciKlass* that can represent the interface set?
3414 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3415   assert(_initialized, "must be");
3416   return _exact_klass;
3417 }
3418 
3419 void TypeInterfaces::compute_exact_klass() {
3420   if (_interfaces.length() == 0) {
3421     _exact_klass = nullptr;
3422     return;
3423   }
3424   ciInstanceKlass* res = nullptr;
3425   for (int i = 0; i < _interfaces.length(); i++) {
3426     ciInstanceKlass* interface = _interfaces.at(i);
3427     if (eq(interface)) {
3428       assert(res == nullptr, "");
3429       res = interface;
3430     }
3431   }
3432   _exact_klass = res;
3433 }
3434 
3435 #ifdef ASSERT
3436 void TypeInterfaces::verify_is_loaded() const {
3437   for (int i = 0; i < _interfaces.length(); i++) {
3438     ciKlass* interface = _interfaces.at(i);
3439     assert(interface->is_loaded(), "Interface not loaded");
3440   }
3441 }
3442 #endif
3443 
3444 // Can't be implemented because there's no way to know if the type is above or below the center line.
3445 const Type* TypeInterfaces::xmeet(const Type* t) const {
3446   ShouldNotReachHere();
3447   return Type::xmeet(t);
3448 }
3449 
3450 bool TypeInterfaces::singleton(void) const {
3451   ShouldNotReachHere();
3452   return Type::singleton();
3453 }
3454 
3455 bool TypeInterfaces::has_non_array_interface() const {
3456   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3457 
3458   return !TypeAryPtr::_array_interfaces->contains(this);
3459 }
3460 
3461 //------------------------------TypeOopPtr-------------------------------------
3462 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3463                        int instance_id, const TypePtr* speculative, int inline_depth)
3464   : TypePtr(t, ptr, offset, speculative, inline_depth),
3465     _const_oop(o), _klass(k),
3466     _interfaces(interfaces),
3467     _klass_is_exact(xk),
3468     _is_ptr_to_narrowoop(false),
3469     _is_ptr_to_narrowklass(false),
3470     _is_ptr_to_boxed_value(false),
3471     _instance_id(instance_id) {
3472 #ifdef ASSERT
3473   if (klass() != nullptr && klass()->is_loaded()) {
3474     interfaces->verify_is_loaded();
3475   }
3476 #endif
3477   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3478       (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3479     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3480   }
3481 #ifdef _LP64
3482   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3483     if (_offset == oopDesc::klass_offset_in_bytes()) {
3484       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3485     } else if (klass() == nullptr) {
3486       // Array with unknown body type
3487       assert(this->isa_aryptr(), "only arrays without klass");
3488       _is_ptr_to_narrowoop = UseCompressedOops;
3489     } else if (this->isa_aryptr()) {
3490       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3491                              _offset != arrayOopDesc::length_offset_in_bytes());
3492     } else if (klass()->is_instance_klass()) {
3493       ciInstanceKlass* ik = klass()->as_instance_klass();
3494       if (this->isa_klassptr()) {
3495         // Perm objects don't use compressed references
3496       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3497         // unsafe access
3498         _is_ptr_to_narrowoop = UseCompressedOops;
3499       } else {
3500         assert(this->isa_instptr(), "must be an instance ptr.");
3501 
3502         if (klass() == ciEnv::current()->Class_klass() &&
3503             (_offset == java_lang_Class::klass_offset() ||
3504              _offset == java_lang_Class::array_klass_offset())) {
3505           // Special hidden fields from the Class.
3506           assert(this->isa_instptr(), "must be an instance ptr.");
3507           _is_ptr_to_narrowoop = false;
3508         } else if (klass() == ciEnv::current()->Class_klass() &&
3509                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3510           // Static fields
3511           BasicType basic_elem_type = T_ILLEGAL;
3512           if (const_oop() != nullptr) {
3513             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3514             basic_elem_type = k->get_field_type_by_offset(_offset, true);
3515           }
3516           if (basic_elem_type != T_ILLEGAL) {
3517             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3518           } else {
3519             // unsafe access
3520             _is_ptr_to_narrowoop = UseCompressedOops;
3521           }
3522         } else {
3523           // Instance fields which contains a compressed oop references.
3524           BasicType basic_elem_type = ik->get_field_type_by_offset(_offset, false);
3525           if (basic_elem_type != T_ILLEGAL) {
3526             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3527           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3528             // Compile::find_alias_type() cast exactness on all types to verify
3529             // that it does not affect alias type.
3530             _is_ptr_to_narrowoop = UseCompressedOops;
3531           } else {
3532             // Type for the copy start in LibraryCallKit::inline_native_clone().
3533             _is_ptr_to_narrowoop = UseCompressedOops;
3534           }
3535         }
3536       }
3537     }
3538   }
3539 #endif
3540 }
3541 
3542 //------------------------------make-------------------------------------------
3543 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3544                                      const TypePtr* speculative, int inline_depth) {
3545   assert(ptr != Constant, "no constant generic pointers");
3546   ciKlass*  k = Compile::current()->env()->Object_klass();
3547   bool      xk = false;
3548   ciObject* o = nullptr;
3549   const TypeInterfaces* interfaces = TypeInterfaces::make();
3550   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3551 }
3552 
3553 
3554 //------------------------------cast_to_ptr_type-------------------------------
3555 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3556   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3557   if( ptr == _ptr ) return this;
3558   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3559 }
3560 
3561 //-----------------------------cast_to_instance_id----------------------------
3562 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3563   // There are no instances of a general oop.
3564   // Return self unchanged.
3565   return this;
3566 }
3567 
3568 //-----------------------------cast_to_exactness-------------------------------
3569 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3570   // There is no such thing as an exact general oop.
3571   // Return self unchanged.
3572   return this;
3573 }
3574 
3575 
3576 //------------------------------as_klass_type----------------------------------
3577 // Return the klass type corresponding to this instance or array type.
3578 // It is the type that is loaded from an object of this type.
3579 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3580   ShouldNotReachHere();
3581   return nullptr;
3582 }
3583 
3584 //------------------------------meet-------------------------------------------
3585 // Compute the MEET of two types.  It returns a new Type object.
3586 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3587   // Perform a fast test for common case; meeting the same types together.
3588   if( this == t ) return this;  // Meeting same type-rep?
3589 
3590   // Current "this->_base" is OopPtr
3591   switch (t->base()) {          // switch on original type
3592 
3593   case Int:                     // Mixing ints & oops happens when javac
3594   case Long:                    // reuses local variables
3595   case HalfFloatTop:
3596   case HalfFloatCon:
3597   case HalfFloatBot:
3598   case FloatTop:
3599   case FloatCon:
3600   case FloatBot:
3601   case DoubleTop:
3602   case DoubleCon:
3603   case DoubleBot:
3604   case NarrowOop:
3605   case NarrowKlass:
3606   case Bottom:                  // Ye Olde Default
3607     return Type::BOTTOM;
3608   case Top:
3609     return this;
3610 
3611   default:                      // All else is a mistake
3612     typerr(t);
3613 
3614   case RawPtr:
3615   case MetadataPtr:
3616   case KlassPtr:
3617   case InstKlassPtr:
3618   case AryKlassPtr:
3619     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3620 
3621   case AnyPtr: {
3622     // Found an AnyPtr type vs self-OopPtr type
3623     const TypePtr *tp = t->is_ptr();
3624     int offset = meet_offset(tp->offset());
3625     PTR ptr = meet_ptr(tp->ptr());
3626     const TypePtr* speculative = xmeet_speculative(tp);
3627     int depth = meet_inline_depth(tp->inline_depth());
3628     switch (tp->ptr()) {
3629     case Null:
3630       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3631       // else fall through:
3632     case TopPTR:
3633     case AnyNull: {
3634       int instance_id = meet_instance_id(InstanceTop);
3635       return make(ptr, offset, instance_id, speculative, depth);
3636     }
3637     case BotPTR:
3638     case NotNull:
3639       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3640     default: typerr(t);
3641     }
3642   }
3643 
3644   case OopPtr: {                 // Meeting to other OopPtrs
3645     const TypeOopPtr *tp = t->is_oopptr();
3646     int instance_id = meet_instance_id(tp->instance_id());
3647     const TypePtr* speculative = xmeet_speculative(tp);
3648     int depth = meet_inline_depth(tp->inline_depth());
3649     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3650   }
3651 
3652   case InstPtr:                  // For these, flip the call around to cut down
3653   case AryPtr:
3654     return t->xmeet(this);      // Call in reverse direction
3655 
3656   } // End of switch
3657   return this;                  // Return the double constant
3658 }
3659 
3660 
3661 //------------------------------xdual------------------------------------------
3662 // Dual of a pure heap pointer.  No relevant klass or oop information.
3663 const Type *TypeOopPtr::xdual() const {
3664   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3665   assert(const_oop() == nullptr,             "no constants here");
3666   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3667 }
3668 
3669 //--------------------------make_from_klass_common-----------------------------
3670 // Computes the element-type given a klass.
3671 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3672   if (klass->is_instance_klass()) {
3673     Compile* C = Compile::current();
3674     Dependencies* deps = C->dependencies();
3675     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3676     // Element is an instance
3677     bool klass_is_exact = false;
3678     if (klass->is_loaded()) {
3679       // Try to set klass_is_exact.
3680       ciInstanceKlass* ik = klass->as_instance_klass();
3681       klass_is_exact = ik->is_final();
3682       if (!klass_is_exact && klass_change
3683           && deps != nullptr && UseUniqueSubclasses) {
3684         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3685         if (sub != nullptr) {
3686           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3687           klass = ik = sub;
3688           klass_is_exact = sub->is_final();
3689         }
3690       }
3691       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3692           !ik->is_interface() && !ik->has_subklass()) {
3693         // Add a dependence; if concrete subclass added we need to recompile
3694         deps->assert_leaf_type(ik);
3695         klass_is_exact = true;
3696       }
3697     }
3698     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3699     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3700   } else if (klass->is_obj_array_klass()) {
3701     // Element is an object array. Recursively call ourself.
3702     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3703     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3704     bool xk = etype->klass_is_exact();
3705     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3706     // We used to pass NotNull in here, asserting that the sub-arrays
3707     // are all not-null.  This is not true in generally, as code can
3708     // slam nulls down in the subarrays.
3709     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3710     return arr;
3711   } else if (klass->is_type_array_klass()) {
3712     // Element is an typeArray
3713     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3714     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3715     // We used to pass NotNull in here, asserting that the array pointer
3716     // is not-null. That was not true in general.
3717     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3718     return arr;
3719   } else {
3720     ShouldNotReachHere();
3721     return nullptr;
3722   }
3723 }
3724 
3725 //------------------------------make_from_constant-----------------------------
3726 // Make a java pointer from an oop constant
3727 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3728   assert(!o->is_null_object(), "null object not yet handled here.");
3729 
3730   const bool make_constant = require_constant || o->should_be_constant();
3731 
3732   ciKlass* klass = o->klass();
3733   if (klass->is_instance_klass()) {
3734     // Element is an instance
3735     if (make_constant) {
3736       return TypeInstPtr::make(o);
3737     } else {
3738       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3739     }
3740   } else if (klass->is_obj_array_klass()) {
3741     // Element is an object array. Recursively call ourself.
3742     const TypeOopPtr *etype =
3743       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3744     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3745     // We used to pass NotNull in here, asserting that the sub-arrays
3746     // are all not-null.  This is not true in generally, as code can
3747     // slam nulls down in the subarrays.
3748     if (make_constant) {
3749       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3750     } else {
3751       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3752     }
3753   } else if (klass->is_type_array_klass()) {
3754     // Element is an typeArray
3755     const Type* etype =
3756       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3757     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3758     // We used to pass NotNull in here, asserting that the array pointer
3759     // is not-null. That was not true in general.
3760     if (make_constant) {
3761       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3762     } else {
3763       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3764     }
3765   }
3766 
3767   fatal("unhandled object type");
3768   return nullptr;
3769 }
3770 
3771 //------------------------------get_con----------------------------------------
3772 intptr_t TypeOopPtr::get_con() const {
3773   assert( _ptr == Null || _ptr == Constant, "" );
3774   assert( _offset >= 0, "" );
3775 
3776   if (_offset != 0) {
3777     // After being ported to the compiler interface, the compiler no longer
3778     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3779     // to a handle at compile time.  This handle is embedded in the generated
3780     // code and dereferenced at the time the nmethod is made.  Until that time,
3781     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3782     // have access to the addresses!).  This does not seem to currently happen,
3783     // but this assertion here is to help prevent its occurrence.
3784     tty->print_cr("Found oop constant with non-zero offset");
3785     ShouldNotReachHere();
3786   }
3787 
3788   return (intptr_t)const_oop()->constant_encoding();
3789 }
3790 
3791 
3792 //-----------------------------filter------------------------------------------
3793 // Do not allow interface-vs.-noninterface joins to collapse to top.
3794 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3795 
3796   const Type* ft = join_helper(kills, include_speculative);
3797 
3798   if (ft->empty()) {
3799     return Type::TOP;           // Canonical empty value
3800   }
3801 
3802   return ft;
3803 }
3804 
3805 //------------------------------eq---------------------------------------------
3806 // Structural equality check for Type representations
3807 bool TypeOopPtr::eq( const Type *t ) const {
3808   const TypeOopPtr *a = (const TypeOopPtr*)t;
3809   if (_klass_is_exact != a->_klass_is_exact ||
3810       _instance_id != a->_instance_id)  return false;
3811   ciObject* one = const_oop();
3812   ciObject* two = a->const_oop();
3813   if (one == nullptr || two == nullptr) {
3814     return (one == two) && TypePtr::eq(t);
3815   } else {
3816     return one->equals(two) && TypePtr::eq(t);
3817   }
3818 }
3819 
3820 //------------------------------hash-------------------------------------------
3821 // Type-specific hashing function.
3822 uint TypeOopPtr::hash(void) const {
3823   return
3824     (uint)(const_oop() ? const_oop()->hash() : 0) +
3825     (uint)_klass_is_exact +
3826     (uint)_instance_id + TypePtr::hash();
3827 }
3828 
3829 //------------------------------dump2------------------------------------------
3830 #ifndef PRODUCT
3831 void TypeOopPtr::dump2(Dict& d, uint depth, outputStream* st) const {
3832   st->print("oopptr:%s", ptr_msg[_ptr]);
3833   if (_klass_is_exact) {
3834     st->print(":exact");
3835   }
3836   if (const_oop() != nullptr) {
3837     st->print(":" INTPTR_FORMAT, p2i(const_oop()));
3838   }
3839   dump_offset(st);
3840   dump_instance_id(st);
3841   dump_inline_depth(st);
3842   dump_speculative(st);
3843 }
3844 
3845 void TypeOopPtr::dump_instance_id(outputStream* st) const {
3846   if (_instance_id == InstanceTop) {
3847     st->print(",iid=top");
3848   } else if (_instance_id == InstanceBot) {
3849     st->print(",iid=bot");
3850   } else {
3851     st->print(",iid=%d", _instance_id);
3852   }
3853 }
3854 #endif
3855 
3856 //------------------------------singleton--------------------------------------
3857 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3858 // constants
3859 bool TypeOopPtr::singleton(void) const {
3860   // detune optimizer to not generate constant oop + constant offset as a constant!
3861   // TopPTR, Null, AnyNull, Constant are all singletons
3862   return (_offset == 0) && !below_centerline(_ptr);
3863 }
3864 
3865 //------------------------------add_offset-------------------------------------
3866 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3867   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3868 }
3869 
3870 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3871   return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3872 }
3873 
3874 /**
3875  * Return same type without a speculative part
3876  */
3877 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3878   if (_speculative == nullptr) {
3879     return this;
3880   }
3881   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3882   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3883 }
3884 
3885 /**
3886  * Return same type but drop speculative part if we know we won't use
3887  * it
3888  */
3889 const Type* TypeOopPtr::cleanup_speculative() const {
3890   // If the klass is exact and the ptr is not null then there's
3891   // nothing that the speculative type can help us with
3892   if (klass_is_exact() && !maybe_null()) {
3893     return remove_speculative();
3894   }
3895   return TypePtr::cleanup_speculative();
3896 }
3897 
3898 /**
3899  * Return same type but with a different inline depth (used for speculation)
3900  *
3901  * @param depth  depth to meet with
3902  */
3903 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3904   if (!UseInlineDepthForSpeculativeTypes) {
3905     return this;
3906   }
3907   return make(_ptr, _offset, _instance_id, _speculative, depth);
3908 }
3909 
3910 //------------------------------with_instance_id--------------------------------
3911 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3912   assert(_instance_id != -1, "should be known");
3913   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3914 }
3915 
3916 //------------------------------meet_instance_id--------------------------------
3917 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3918   // Either is 'TOP' instance?  Return the other instance!
3919   if( _instance_id == InstanceTop ) return  instance_id;
3920   if(  instance_id == InstanceTop ) return _instance_id;
3921   // If either is different, return 'BOTTOM' instance
3922   if( _instance_id != instance_id ) return InstanceBot;
3923   return _instance_id;
3924 }
3925 
3926 //------------------------------dual_instance_id--------------------------------
3927 int TypeOopPtr::dual_instance_id( ) const {
3928   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3929   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3930   return _instance_id;              // Map everything else into self
3931 }
3932 
3933 
3934 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
3935   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
3936     return _interfaces->union_with(other->_interfaces);
3937   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
3938     return other->_interfaces;
3939   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
3940     return _interfaces;
3941   }
3942   return _interfaces->intersection_with(other->_interfaces);
3943 }
3944 
3945 /**
3946  * Check whether new profiling would improve speculative type
3947  *
3948  * @param   exact_kls    class from profiling
3949  * @param   inline_depth inlining depth of profile point
3950  *
3951  * @return  true if type profile is valuable
3952  */
3953 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3954   // no way to improve an already exact type
3955   if (klass_is_exact()) {
3956     return false;
3957   }
3958   return TypePtr::would_improve_type(exact_kls, inline_depth);
3959 }
3960 
3961 //=============================================================================
3962 // Convenience common pre-built types.
3963 const TypeInstPtr *TypeInstPtr::NOTNULL;
3964 const TypeInstPtr *TypeInstPtr::BOTTOM;
3965 const TypeInstPtr *TypeInstPtr::MIRROR;
3966 const TypeInstPtr *TypeInstPtr::MARK;
3967 const TypeInstPtr *TypeInstPtr::KLASS;
3968 
3969 // Is there a single ciKlass* that can represent that type?
3970 ciKlass* TypeInstPtr::exact_klass_helper() const {
3971   if (_interfaces->empty()) {
3972     return _klass;
3973   }
3974   if (_klass != ciEnv::current()->Object_klass()) {
3975     if (_interfaces->eq(_klass->as_instance_klass())) {
3976       return _klass;
3977     }
3978     return nullptr;
3979   }
3980   return _interfaces->exact_klass();
3981 }
3982 
3983 //------------------------------TypeInstPtr-------------------------------------
3984 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3985                          int instance_id, const TypePtr* speculative, int inline_depth)
3986   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
3987   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3988   assert(k != nullptr &&
3989          (k->is_loaded() || o == nullptr),
3990          "cannot have constants with non-loaded klass");
3991 };
3992 
3993 //------------------------------make-------------------------------------------
3994 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3995                                      ciKlass* k,
3996                                      const TypeInterfaces* interfaces,
3997                                      bool xk,
3998                                      ciObject* o,
3999                                      int offset,
4000                                      int instance_id,
4001                                      const TypePtr* speculative,
4002                                      int inline_depth) {
4003   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4004   // Either const_oop() is null or else ptr is Constant
4005   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4006           "constant pointers must have a value supplied" );
4007   // Ptr is never Null
4008   assert( ptr != Null, "null pointers are not typed" );
4009 
4010   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4011   if (ptr == Constant) {
4012     // Note:  This case includes meta-object constants, such as methods.
4013     xk = true;
4014   } else if (k->is_loaded()) {
4015     ciInstanceKlass* ik = k->as_instance_klass();
4016     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4017     assert(!ik->is_interface(), "no interface here");
4018     if (xk && ik->is_interface())  xk = false;  // no exact interface
4019   }
4020 
4021   // Now hash this baby
4022   TypeInstPtr *result =
4023     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4024 
4025   return result;
4026 }
4027 
4028 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4029   if (k->is_instance_klass()) {
4030     if (k->is_loaded()) {
4031       if (k->is_interface() && interface_handling == ignore_interfaces) {
4032         assert(interface, "no interface expected");
4033         k = ciEnv::current()->Object_klass();
4034         const TypeInterfaces* interfaces = TypeInterfaces::make();
4035         return interfaces;
4036       }
4037       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4038       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4039       if (k->is_interface()) {
4040         assert(interface, "no interface expected");
4041         k = ciEnv::current()->Object_klass();
4042       } else {
4043         assert(klass, "no instance klass expected");
4044       }
4045       return interfaces;
4046     }
4047     const TypeInterfaces* interfaces = TypeInterfaces::make();
4048     return interfaces;
4049   }
4050   assert(array, "no array expected");
4051   assert(k->is_array_klass(), "Not an array?");
4052   ciType* e = k->as_array_klass()->base_element_type();
4053   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4054     if (interface_handling == ignore_interfaces) {
4055       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4056     }
4057   }
4058   return TypeAryPtr::_array_interfaces;
4059 }
4060 
4061 /**
4062  *  Create constant type for a constant boxed value
4063  */
4064 const Type* TypeInstPtr::get_const_boxed_value() const {
4065   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4066   assert((const_oop() != nullptr), "should be called only for constant object");
4067   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4068   BasicType bt = constant.basic_type();
4069   switch (bt) {
4070     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4071     case T_INT:      return TypeInt::make(constant.as_int());
4072     case T_CHAR:     return TypeInt::make(constant.as_char());
4073     case T_BYTE:     return TypeInt::make(constant.as_byte());
4074     case T_SHORT:    return TypeInt::make(constant.as_short());
4075     case T_FLOAT:    return TypeF::make(constant.as_float());
4076     case T_DOUBLE:   return TypeD::make(constant.as_double());
4077     case T_LONG:     return TypeLong::make(constant.as_long());
4078     default:         break;
4079   }
4080   fatal("Invalid boxed value type '%s'", type2name(bt));
4081   return nullptr;
4082 }
4083 
4084 //------------------------------cast_to_ptr_type-------------------------------
4085 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4086   if( ptr == _ptr ) return this;
4087   // Reconstruct _sig info here since not a problem with later lazy
4088   // construction, _sig will show up on demand.
4089   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4090 }
4091 
4092 
4093 //-----------------------------cast_to_exactness-------------------------------
4094 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4095   if( klass_is_exact == _klass_is_exact ) return this;
4096   if (!_klass->is_loaded())  return this;
4097   ciInstanceKlass* ik = _klass->as_instance_klass();
4098   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4099   assert(!ik->is_interface(), "no interface here");
4100   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4101 }
4102 
4103 //-----------------------------cast_to_instance_id----------------------------
4104 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4105   if( instance_id == _instance_id ) return this;
4106   return make(_ptr, klass(),  _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4107 }
4108 
4109 //------------------------------xmeet_unloaded---------------------------------
4110 // Compute the MEET of two InstPtrs when at least one is unloaded.
4111 // Assume classes are different since called after check for same name/class-loader
4112 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4113   int off = meet_offset(tinst->offset());
4114   PTR ptr = meet_ptr(tinst->ptr());
4115   int instance_id = meet_instance_id(tinst->instance_id());
4116   const TypePtr* speculative = xmeet_speculative(tinst);
4117   int depth = meet_inline_depth(tinst->inline_depth());
4118 
4119   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4120   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4121   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4122     //
4123     // Meet unloaded class with java/lang/Object
4124     //
4125     // Meet
4126     //          |                     Unloaded Class
4127     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4128     //  ===================================================================
4129     //   TOP    | ..........................Unloaded......................|
4130     //  AnyNull |  U-AN    |................Unloaded......................|
4131     // Constant | ... O-NN .................................. |   O-BOT   |
4132     //  NotNull | ... O-NN .................................. |   O-BOT   |
4133     //  BOTTOM  | ........................Object-BOTTOM ..................|
4134     //
4135     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4136     //
4137     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4138     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4139     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4140     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4141       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4142       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4143     }
4144     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4145 
4146     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4147   }
4148 
4149   // Both are unloaded, not the same class, not Object
4150   // Or meet unloaded with a different loaded class, not java/lang/Object
4151   if (ptr != TypePtr::BotPTR) {
4152     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4153   }
4154   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4155 }
4156 
4157 
4158 //------------------------------meet-------------------------------------------
4159 // Compute the MEET of two types.  It returns a new Type object.
4160 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4161   // Perform a fast test for common case; meeting the same types together.
4162   if( this == t ) return this;  // Meeting same type-rep?
4163 
4164   // Current "this->_base" is Pointer
4165   switch (t->base()) {          // switch on original type
4166 
4167   case Int:                     // Mixing ints & oops happens when javac
4168   case Long:                    // reuses local variables
4169   case HalfFloatTop:
4170   case HalfFloatCon:
4171   case HalfFloatBot:
4172   case FloatTop:
4173   case FloatCon:
4174   case FloatBot:
4175   case DoubleTop:
4176   case DoubleCon:
4177   case DoubleBot:
4178   case NarrowOop:
4179   case NarrowKlass:
4180   case Bottom:                  // Ye Olde Default
4181     return Type::BOTTOM;
4182   case Top:
4183     return this;
4184 
4185   default:                      // All else is a mistake
4186     typerr(t);
4187 
4188   case MetadataPtr:
4189   case KlassPtr:
4190   case InstKlassPtr:
4191   case AryKlassPtr:
4192   case RawPtr: return TypePtr::BOTTOM;
4193 
4194   case AryPtr: {                // All arrays inherit from Object class
4195     // Call in reverse direction to avoid duplication
4196     return t->is_aryptr()->xmeet_helper(this);
4197   }
4198 
4199   case OopPtr: {                // Meeting to OopPtrs
4200     // Found a OopPtr type vs self-InstPtr type
4201     const TypeOopPtr *tp = t->is_oopptr();
4202     int offset = meet_offset(tp->offset());
4203     PTR ptr = meet_ptr(tp->ptr());
4204     switch (tp->ptr()) {
4205     case TopPTR:
4206     case AnyNull: {
4207       int instance_id = meet_instance_id(InstanceTop);
4208       const TypePtr* speculative = xmeet_speculative(tp);
4209       int depth = meet_inline_depth(tp->inline_depth());
4210       return make(ptr, klass(), _interfaces, klass_is_exact(),
4211                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4212     }
4213     case NotNull:
4214     case BotPTR: {
4215       int instance_id = meet_instance_id(tp->instance_id());
4216       const TypePtr* speculative = xmeet_speculative(tp);
4217       int depth = meet_inline_depth(tp->inline_depth());
4218       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4219     }
4220     default: typerr(t);
4221     }
4222   }
4223 
4224   case AnyPtr: {                // Meeting to AnyPtrs
4225     // Found an AnyPtr type vs self-InstPtr type
4226     const TypePtr *tp = t->is_ptr();
4227     int offset = meet_offset(tp->offset());
4228     PTR ptr = meet_ptr(tp->ptr());
4229     int instance_id = meet_instance_id(InstanceTop);
4230     const TypePtr* speculative = xmeet_speculative(tp);
4231     int depth = meet_inline_depth(tp->inline_depth());
4232     switch (tp->ptr()) {
4233     case Null:
4234       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4235       // else fall through to AnyNull
4236     case TopPTR:
4237     case AnyNull: {
4238       return make(ptr, klass(), _interfaces, klass_is_exact(),
4239                   (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4240     }
4241     case NotNull:
4242     case BotPTR:
4243       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4244     default: typerr(t);
4245     }
4246   }
4247 
4248   /*
4249                  A-top         }
4250                /   |   \       }  Tops
4251            B-top A-any C-top   }
4252               | /  |  \ |      }  Any-nulls
4253            B-any   |   C-any   }
4254               |    |    |
4255            B-con A-con C-con   } constants; not comparable across classes
4256               |    |    |
4257            B-not   |   C-not   }
4258               | \  |  / |      }  not-nulls
4259            B-bot A-not C-bot   }
4260                \   |   /       }  Bottoms
4261                  A-bot         }
4262   */
4263 
4264   case InstPtr: {                // Meeting 2 Oops?
4265     // Found an InstPtr sub-type vs self-InstPtr type
4266     const TypeInstPtr *tinst = t->is_instptr();
4267     int off = meet_offset(tinst->offset());
4268     PTR ptr = meet_ptr(tinst->ptr());
4269     int instance_id = meet_instance_id(tinst->instance_id());
4270     const TypePtr* speculative = xmeet_speculative(tinst);
4271     int depth = meet_inline_depth(tinst->inline_depth());
4272     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4273 
4274     ciKlass* tinst_klass = tinst->klass();
4275     ciKlass* this_klass  = klass();
4276 
4277     ciKlass* res_klass = nullptr;
4278     bool res_xk = false;
4279     const Type* res;
4280     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4281 
4282     if (kind == UNLOADED) {
4283       // One of these classes has not been loaded
4284       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4285 #ifndef PRODUCT
4286       if (PrintOpto && Verbose) {
4287         tty->print("meet of unloaded classes resulted in: ");
4288         unloaded_meet->dump();
4289         tty->cr();
4290         tty->print("  this == ");
4291         dump();
4292         tty->cr();
4293         tty->print(" tinst == ");
4294         tinst->dump();
4295         tty->cr();
4296       }
4297 #endif
4298       res = unloaded_meet;
4299     } else {
4300       if (kind == NOT_SUBTYPE && instance_id > 0) {
4301         instance_id = InstanceBot;
4302       } else if (kind == LCA) {
4303         instance_id = InstanceBot;
4304       }
4305       ciObject* o = nullptr;             // Assume not constant when done
4306       ciObject* this_oop = const_oop();
4307       ciObject* tinst_oop = tinst->const_oop();
4308       if (ptr == Constant) {
4309         if (this_oop != nullptr && tinst_oop != nullptr &&
4310             this_oop->equals(tinst_oop))
4311           o = this_oop;
4312         else if (above_centerline(_ptr)) {
4313           assert(!tinst_klass->is_interface(), "");
4314           o = tinst_oop;
4315         } else if (above_centerline(tinst->_ptr)) {
4316           assert(!this_klass->is_interface(), "");
4317           o = this_oop;
4318         } else
4319           ptr = NotNull;
4320       }
4321       res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4322     }
4323 
4324     return res;
4325 
4326   } // End of case InstPtr
4327 
4328   } // End of switch
4329   return this;                  // Return the double constant
4330 }
4331 
4332 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4333                                                             ciKlass*& res_klass, bool& res_xk) {
4334   ciKlass* this_klass = this_type->klass();
4335   ciKlass* other_klass = other_type->klass();
4336   bool this_xk = this_type->klass_is_exact();
4337   bool other_xk = other_type->klass_is_exact();
4338   PTR this_ptr = this_type->ptr();
4339   PTR other_ptr = other_type->ptr();
4340   const TypeInterfaces* this_interfaces = this_type->interfaces();
4341   const TypeInterfaces* other_interfaces = other_type->interfaces();
4342   // Check for easy case; klasses are equal (and perhaps not loaded!)
4343   // If we have constants, then we created oops so classes are loaded
4344   // and we can handle the constants further down.  This case handles
4345   // both-not-loaded or both-loaded classes
4346   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4347     res_klass = this_klass;
4348     res_xk = this_xk;
4349     return QUICK;
4350   }
4351 
4352   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4353   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4354     return UNLOADED;
4355   }
4356 
4357   // !!! Here's how the symmetry requirement breaks down into invariants:
4358   // If we split one up & one down AND they subtype, take the down man.
4359   // If we split one up & one down AND they do NOT subtype, "fall hard".
4360   // If both are up and they subtype, take the subtype class.
4361   // If both are up and they do NOT subtype, "fall hard".
4362   // If both are down and they subtype, take the supertype class.
4363   // If both are down and they do NOT subtype, "fall hard".
4364   // Constants treated as down.
4365 
4366   // Now, reorder the above list; observe that both-down+subtype is also
4367   // "fall hard"; "fall hard" becomes the default case:
4368   // If we split one up & one down AND they subtype, take the down man.
4369   // If both are up and they subtype, take the subtype class.
4370 
4371   // If both are down and they subtype, "fall hard".
4372   // If both are down and they do NOT subtype, "fall hard".
4373   // If both are up and they do NOT subtype, "fall hard".
4374   // If we split one up & one down AND they do NOT subtype, "fall hard".
4375 
4376   // If a proper subtype is exact, and we return it, we return it exactly.
4377   // If a proper supertype is exact, there can be no subtyping relationship!
4378   // If both types are equal to the subtype, exactness is and-ed below the
4379   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4380 
4381   // Check for subtyping:
4382   const T* subtype = nullptr;
4383   bool subtype_exact = false;
4384   if (this_type->is_same_java_type_as(other_type)) {
4385     subtype = this_type;
4386     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4387   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4388     subtype = this_type;     // Pick subtyping class
4389     subtype_exact = this_xk;
4390   } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4391     subtype = other_type;    // Pick subtyping class
4392     subtype_exact = other_xk;
4393   }
4394 
4395   if (subtype) {
4396     if (above_centerline(ptr)) { // both are up?
4397       this_type = other_type = subtype;
4398       this_xk = other_xk = subtype_exact;
4399     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4400       this_type = other_type; // tinst is down; keep down man
4401       this_xk = other_xk;
4402     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4403       other_type = this_type; // this is down; keep down man
4404       other_xk = this_xk;
4405     } else {
4406       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4407     }
4408   }
4409 
4410   // Check for classes now being equal
4411   if (this_type->is_same_java_type_as(other_type)) {
4412     // If the klasses are equal, the constants may still differ.  Fall to
4413     // NotNull if they do (neither constant is null; that is a special case
4414     // handled elsewhere).
4415     res_klass = this_type->klass();
4416     res_xk = this_xk;
4417     return SUBTYPE;
4418   } // Else classes are not equal
4419 
4420   // Since klasses are different, we require a LCA in the Java
4421   // class hierarchy - which means we have to fall to at least NotNull.
4422   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4423     ptr = NotNull;
4424   }
4425 
4426   interfaces = this_interfaces->intersection_with(other_interfaces);
4427 
4428   // Now we find the LCA of Java classes
4429   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4430 
4431   res_klass = k;
4432   res_xk = false;
4433 
4434   return LCA;
4435 }
4436 
4437 //------------------------java_mirror_type--------------------------------------
4438 ciType* TypeInstPtr::java_mirror_type() const {
4439   // must be a singleton type
4440   if( const_oop() == nullptr )  return nullptr;
4441 
4442   // must be of type java.lang.Class
4443   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4444 
4445   return const_oop()->as_instance()->java_mirror_type();
4446 }
4447 
4448 
4449 //------------------------------xdual------------------------------------------
4450 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4451 // inheritance mechanism.
4452 const Type *TypeInstPtr::xdual() const {
4453   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4454 }
4455 
4456 //------------------------------eq---------------------------------------------
4457 // Structural equality check for Type representations
4458 bool TypeInstPtr::eq( const Type *t ) const {
4459   const TypeInstPtr *p = t->is_instptr();
4460   return
4461     klass()->equals(p->klass()) &&
4462     _interfaces->eq(p->_interfaces) &&
4463     TypeOopPtr::eq(p);          // Check sub-type stuff
4464 }
4465 
4466 //------------------------------hash-------------------------------------------
4467 // Type-specific hashing function.
4468 uint TypeInstPtr::hash(void) const {
4469   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4470 }
4471 
4472 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4473   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4474 }
4475 
4476 
4477 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4478   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4479 }
4480 
4481 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4482   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4483 }
4484 
4485 
4486 //------------------------------dump2------------------------------------------
4487 // Dump oop Type
4488 #ifndef PRODUCT
4489 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4490   // Print the name of the klass.
4491   st->print("instptr:");
4492   klass()->print_name_on(st);
4493   _interfaces->dump(st);
4494 
4495   if (_ptr == Constant && (WizardMode || Verbose)) {
4496     ResourceMark rm;
4497     stringStream ss;
4498 
4499     st->print(" ");
4500     const_oop()->print_oop(&ss);
4501     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4502     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4503     char* buf = ss.as_string(/* c_heap= */false);
4504     StringUtils::replace_no_expand(buf, "\n", "");
4505     st->print_raw(buf);
4506   }
4507 
4508   st->print(":%s", ptr_msg[_ptr]);
4509   if (_klass_is_exact) {
4510     st->print(":exact");
4511   }
4512 
4513   dump_offset(st);
4514   dump_instance_id(st);
4515   dump_inline_depth(st);
4516   dump_speculative(st);
4517 }
4518 #endif
4519 
4520 //------------------------------add_offset-------------------------------------
4521 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4522   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4523               _instance_id, add_offset_speculative(offset), _inline_depth);
4524 }
4525 
4526 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4527   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4528               _instance_id, with_offset_speculative(offset), _inline_depth);
4529 }
4530 
4531 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4532   if (_speculative == nullptr) {
4533     return this;
4534   }
4535   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4536   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4537               _instance_id, nullptr, _inline_depth);
4538 }
4539 
4540 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4541   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4542 }
4543 
4544 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4545   if (!UseInlineDepthForSpeculativeTypes) {
4546     return this;
4547   }
4548   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4549 }
4550 
4551 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4552   assert(is_known_instance(), "should be known");
4553   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4554 }
4555 
4556 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4557   bool xk = klass_is_exact();
4558   ciInstanceKlass* ik = klass()->as_instance_klass();
4559   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4560     if (_interfaces->eq(ik)) {
4561       Compile* C = Compile::current();
4562       Dependencies* deps = C->dependencies();
4563       deps->assert_leaf_type(ik);
4564       xk = true;
4565     }
4566   }
4567   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4568 }
4569 
4570 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4571   static_assert(std::is_base_of<T2, T1>::value, "");
4572 
4573   if (!this_one->is_instance_type(other)) {
4574     return false;
4575   }
4576 
4577   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4578     return true;
4579   }
4580 
4581   return this_one->klass()->is_subtype_of(other->klass()) &&
4582          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4583 }
4584 
4585 
4586 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4587   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4588 }
4589 
4590 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4591   static_assert(std::is_base_of<T2, T1>::value, "");
4592   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4593     return true;
4594   }
4595 
4596   if (this_one->is_instance_type(other)) {
4597     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4598   }
4599 
4600   int dummy;
4601   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4602   if (this_top_or_bottom) {
4603     return false;
4604   }
4605 
4606   const T1* other_ary = this_one->is_array_type(other);
4607   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4608   const TypePtr* this_elem = this_one->elem()->make_ptr();
4609   if (other_elem != nullptr && this_elem != nullptr) {
4610     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4611   }
4612 
4613   if (other_elem == nullptr && this_elem == nullptr) {
4614     return this_one->klass()->is_subtype_of(other->klass());
4615   }
4616 
4617   return false;
4618 }
4619 
4620 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4621   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4622 }
4623 
4624 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4625   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4626 }
4627 
4628 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4629   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4630 }
4631 
4632 //=============================================================================
4633 // Convenience common pre-built types.
4634 const TypeAryPtr* TypeAryPtr::BOTTOM;
4635 const TypeAryPtr* TypeAryPtr::RANGE;
4636 const TypeAryPtr* TypeAryPtr::OOPS;
4637 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4638 const TypeAryPtr* TypeAryPtr::BYTES;
4639 const TypeAryPtr* TypeAryPtr::SHORTS;
4640 const TypeAryPtr* TypeAryPtr::CHARS;
4641 const TypeAryPtr* TypeAryPtr::INTS;
4642 const TypeAryPtr* TypeAryPtr::LONGS;
4643 const TypeAryPtr* TypeAryPtr::FLOATS;
4644 const TypeAryPtr* TypeAryPtr::DOUBLES;
4645 
4646 //------------------------------make-------------------------------------------
4647 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4648                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4649   assert(!(k == nullptr && ary->_elem->isa_int()),
4650          "integral arrays must be pre-equipped with a class");
4651   if (!xk)  xk = ary->ary_must_be_exact();
4652   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4653   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4654       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4655     k = nullptr;
4656   }
4657   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4658 }
4659 
4660 //------------------------------make-------------------------------------------
4661 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4662                                    int instance_id, const TypePtr* speculative, int inline_depth,
4663                                    bool is_autobox_cache) {
4664   assert(!(k == nullptr && ary->_elem->isa_int()),
4665          "integral arrays must be pre-equipped with a class");
4666   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4667   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4668   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4669   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4670       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4671     k = nullptr;
4672   }
4673   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4674 }
4675 
4676 //------------------------------cast_to_ptr_type-------------------------------
4677 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4678   if( ptr == _ptr ) return this;
4679   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4680 }
4681 
4682 
4683 //-----------------------------cast_to_exactness-------------------------------
4684 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4685   if( klass_is_exact == _klass_is_exact ) return this;
4686   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4687   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4688 }
4689 
4690 //-----------------------------cast_to_instance_id----------------------------
4691 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4692   if( instance_id == _instance_id ) return this;
4693   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4694 }
4695 
4696 
4697 //-----------------------------max_array_length-------------------------------
4698 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4699 jint TypeAryPtr::max_array_length(BasicType etype) {
4700   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4701     if (etype == T_NARROWOOP) {
4702       etype = T_OBJECT;
4703     } else if (etype == T_ILLEGAL) { // bottom[]
4704       etype = T_BYTE; // will produce conservatively high value
4705     } else {
4706       fatal("not an element type: %s", type2name(etype));
4707     }
4708   }
4709   return arrayOopDesc::max_array_length(etype);
4710 }
4711 
4712 //-----------------------------narrow_size_type-------------------------------
4713 // Narrow the given size type to the index range for the given array base type.
4714 // Return null if the resulting int type becomes empty.
4715 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4716   jint hi = size->_hi;
4717   jint lo = size->_lo;
4718   jint min_lo = 0;
4719   jint max_hi = max_array_length(elem()->array_element_basic_type());
4720   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4721   bool chg = false;
4722   if (lo < min_lo) {
4723     lo = min_lo;
4724     if (size->is_con()) {
4725       hi = lo;
4726     }
4727     chg = true;
4728   }
4729   if (hi > max_hi) {
4730     hi = max_hi;
4731     if (size->is_con()) {
4732       lo = hi;
4733     }
4734     chg = true;
4735   }
4736   // Negative length arrays will produce weird intermediate dead fast-path code
4737   if (lo > hi) {
4738     return TypeInt::ZERO;
4739   }
4740   if (!chg) {
4741     return size;
4742   }
4743   return TypeInt::make(lo, hi, Type::WidenMin);
4744 }
4745 
4746 //-------------------------------cast_to_size----------------------------------
4747 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4748   assert(new_size != nullptr, "");
4749   new_size = narrow_size_type(new_size);
4750   if (new_size == size())  return this;
4751   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4752   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4753 }
4754 
4755 //------------------------------cast_to_stable---------------------------------
4756 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4757   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4758     return this;
4759 
4760   const Type* elem = this->elem();
4761   const TypePtr* elem_ptr = elem->make_ptr();
4762 
4763   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4764     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4765     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4766   }
4767 
4768   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4769 
4770   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4771 }
4772 
4773 //-----------------------------stable_dimension--------------------------------
4774 int TypeAryPtr::stable_dimension() const {
4775   if (!is_stable())  return 0;
4776   int dim = 1;
4777   const TypePtr* elem_ptr = elem()->make_ptr();
4778   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4779     dim += elem_ptr->is_aryptr()->stable_dimension();
4780   return dim;
4781 }
4782 
4783 //----------------------cast_to_autobox_cache-----------------------------------
4784 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4785   if (is_autobox_cache())  return this;
4786   const TypeOopPtr* etype = elem()->make_oopptr();
4787   if (etype == nullptr)  return this;
4788   // The pointers in the autobox arrays are always non-null.
4789   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4790   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4791   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4792 }
4793 
4794 //------------------------------eq---------------------------------------------
4795 // Structural equality check for Type representations
4796 bool TypeAryPtr::eq( const Type *t ) const {
4797   const TypeAryPtr *p = t->is_aryptr();
4798   return
4799     _ary == p->_ary &&  // Check array
4800     TypeOopPtr::eq(p);  // Check sub-parts
4801 }
4802 
4803 //------------------------------hash-------------------------------------------
4804 // Type-specific hashing function.
4805 uint TypeAryPtr::hash(void) const {
4806   return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4807 }
4808 
4809 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4810   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4811 }
4812 
4813 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4814   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4815 }
4816 
4817 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4818   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4819 }
4820 //------------------------------meet-------------------------------------------
4821 // Compute the MEET of two types.  It returns a new Type object.
4822 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4823   // Perform a fast test for common case; meeting the same types together.
4824   if( this == t ) return this;  // Meeting same type-rep?
4825   // Current "this->_base" is Pointer
4826   switch (t->base()) {          // switch on original type
4827 
4828   // Mixing ints & oops happens when javac reuses local variables
4829   case Int:
4830   case Long:
4831   case HalfFloatTop:
4832   case HalfFloatCon:
4833   case HalfFloatBot:
4834   case FloatTop:
4835   case FloatCon:
4836   case FloatBot:
4837   case DoubleTop:
4838   case DoubleCon:
4839   case DoubleBot:
4840   case NarrowOop:
4841   case NarrowKlass:
4842   case Bottom:                  // Ye Olde Default
4843     return Type::BOTTOM;
4844   case Top:
4845     return this;
4846 
4847   default:                      // All else is a mistake
4848     typerr(t);
4849 
4850   case OopPtr: {                // Meeting to OopPtrs
4851     // Found a OopPtr type vs self-AryPtr type
4852     const TypeOopPtr *tp = t->is_oopptr();
4853     int offset = meet_offset(tp->offset());
4854     PTR ptr = meet_ptr(tp->ptr());
4855     int depth = meet_inline_depth(tp->inline_depth());
4856     const TypePtr* speculative = xmeet_speculative(tp);
4857     switch (tp->ptr()) {
4858     case TopPTR:
4859     case AnyNull: {
4860       int instance_id = meet_instance_id(InstanceTop);
4861       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4862                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4863     }
4864     case BotPTR:
4865     case NotNull: {
4866       int instance_id = meet_instance_id(tp->instance_id());
4867       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4868     }
4869     default: ShouldNotReachHere();
4870     }
4871   }
4872 
4873   case AnyPtr: {                // Meeting two AnyPtrs
4874     // Found an AnyPtr type vs self-AryPtr type
4875     const TypePtr *tp = t->is_ptr();
4876     int offset = meet_offset(tp->offset());
4877     PTR ptr = meet_ptr(tp->ptr());
4878     const TypePtr* speculative = xmeet_speculative(tp);
4879     int depth = meet_inline_depth(tp->inline_depth());
4880     switch (tp->ptr()) {
4881     case TopPTR:
4882       return this;
4883     case BotPTR:
4884     case NotNull:
4885       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4886     case Null:
4887       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4888       // else fall through to AnyNull
4889     case AnyNull: {
4890       int instance_id = meet_instance_id(InstanceTop);
4891       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4892                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4893     }
4894     default: ShouldNotReachHere();
4895     }
4896   }
4897 
4898   case MetadataPtr:
4899   case KlassPtr:
4900   case InstKlassPtr:
4901   case AryKlassPtr:
4902   case RawPtr: return TypePtr::BOTTOM;
4903 
4904   case AryPtr: {                // Meeting 2 references?
4905     const TypeAryPtr *tap = t->is_aryptr();
4906     int off = meet_offset(tap->offset());
4907     const Type* tm = _ary->meet_speculative(tap->_ary);
4908     const TypeAry* tary = tm->isa_ary();
4909     if (tary == nullptr) {
4910       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4911       return tm;
4912     }
4913     PTR ptr = meet_ptr(tap->ptr());
4914     int instance_id = meet_instance_id(tap->instance_id());
4915     const TypePtr* speculative = xmeet_speculative(tap);
4916     int depth = meet_inline_depth(tap->inline_depth());
4917 
4918     ciKlass* res_klass = nullptr;
4919     bool res_xk = false;
4920     const Type* elem = tary->_elem;
4921     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4922       instance_id = InstanceBot;
4923     }
4924 
4925     ciObject* o = nullptr;             // Assume not constant when done
4926     ciObject* this_oop = const_oop();
4927     ciObject* tap_oop = tap->const_oop();
4928     if (ptr == Constant) {
4929       if (this_oop != nullptr && tap_oop != nullptr &&
4930           this_oop->equals(tap_oop)) {
4931         o = tap_oop;
4932       } else if (above_centerline(_ptr)) {
4933         o = tap_oop;
4934       } else if (above_centerline(tap->_ptr)) {
4935         o = this_oop;
4936       } else {
4937         ptr = NotNull;
4938       }
4939     }
4940     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4941   }
4942 
4943   // All arrays inherit from Object class
4944   case InstPtr: {
4945     const TypeInstPtr *tp = t->is_instptr();
4946     int offset = meet_offset(tp->offset());
4947     PTR ptr = meet_ptr(tp->ptr());
4948     int instance_id = meet_instance_id(tp->instance_id());
4949     const TypePtr* speculative = xmeet_speculative(tp);
4950     int depth = meet_inline_depth(tp->inline_depth());
4951     const TypeInterfaces* interfaces = meet_interfaces(tp);
4952     const TypeInterfaces* tp_interfaces = tp->_interfaces;
4953     const TypeInterfaces* this_interfaces = _interfaces;
4954 
4955     switch (ptr) {
4956     case TopPTR:
4957     case AnyNull:                // Fall 'down' to dual of object klass
4958       // For instances when a subclass meets a superclass we fall
4959       // below the centerline when the superclass is exact. We need to
4960       // do the same here.
4961       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4962         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4963       } else {
4964         // cannot subclass, so the meet has to fall badly below the centerline
4965         ptr = NotNull;
4966         instance_id = InstanceBot;
4967         interfaces = this_interfaces->intersection_with(tp_interfaces);
4968         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
4969       }
4970     case Constant:
4971     case NotNull:
4972     case BotPTR:                // Fall down to object klass
4973       // LCA is object_klass, but if we subclass from the top we can do better
4974       if (above_centerline(tp->ptr())) {
4975         // If 'tp'  is above the centerline and it is Object class
4976         // then we can subclass in the Java class hierarchy.
4977         // For instances when a subclass meets a superclass we fall
4978         // below the centerline when the superclass is exact. We need
4979         // to do the same here.
4980         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4981           // that is, my array type is a subtype of 'tp' klass
4982           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4983                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4984         }
4985       }
4986       // The other case cannot happen, since t cannot be a subtype of an array.
4987       // The meet falls down to Object class below centerline.
4988       if (ptr == Constant) {
4989          ptr = NotNull;
4990       }
4991       if (instance_id > 0) {
4992         instance_id = InstanceBot;
4993       }
4994       interfaces = this_interfaces->intersection_with(tp_interfaces);
4995       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
4996     default: typerr(t);
4997     }
4998   }
4999   }
5000   return this;                  // Lint noise
5001 }
5002 
5003 
5004 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
5005                                                            const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
5006   int dummy;
5007   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5008   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5009   ciKlass* this_klass = this_ary->klass();
5010   ciKlass* other_klass = other_ary->klass();
5011   bool this_xk = this_ary->klass_is_exact();
5012   bool other_xk = other_ary->klass_is_exact();
5013   PTR this_ptr = this_ary->ptr();
5014   PTR other_ptr = other_ary->ptr();
5015   res_klass = nullptr;
5016   MeetResult result = SUBTYPE;
5017   if (elem->isa_int()) {
5018     // Integral array element types have irrelevant lattice relations.
5019     // It is the klass that determines array layout, not the element type.
5020     if (this_top_or_bottom)
5021       res_klass = other_klass;
5022     else if (other_top_or_bottom || other_klass == this_klass) {
5023       res_klass = this_klass;
5024     } else {
5025       // Something like byte[int+] meets char[int+].
5026       // This must fall to bottom, not (int[-128..65535])[int+].
5027       // instance_id = InstanceBot;
5028       elem = Type::BOTTOM;
5029       result = NOT_SUBTYPE;
5030       if (above_centerline(ptr) || ptr == Constant) {
5031         ptr = NotNull;
5032         res_xk = false;
5033         return NOT_SUBTYPE;
5034       }
5035     }
5036   } else {// Non integral arrays.
5037     // Must fall to bottom if exact klasses in upper lattice
5038     // are not equal or super klass is exact.
5039     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5040         // meet with top[] and bottom[] are processed further down:
5041         !this_top_or_bottom && !other_top_or_bottom &&
5042         // both are exact and not equal:
5043         ((other_xk && this_xk) ||
5044          // 'tap'  is exact and super or unrelated:
5045          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5046          // 'this' is exact and super or unrelated:
5047          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5048       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5049         elem = Type::BOTTOM;
5050       }
5051       ptr = NotNull;
5052       res_xk = false;
5053       return NOT_SUBTYPE;
5054     }
5055   }
5056 
5057   res_xk = false;
5058   switch (other_ptr) {
5059     case AnyNull:
5060     case TopPTR:
5061       // Compute new klass on demand, do not use tap->_klass
5062       if (below_centerline(this_ptr)) {
5063         res_xk = this_xk;
5064       } else {
5065         res_xk = (other_xk || this_xk);
5066       }
5067       return result;
5068     case Constant: {
5069       if (this_ptr == Constant) {
5070         res_xk = true;
5071       } else if(above_centerline(this_ptr)) {
5072         res_xk = true;
5073       } else {
5074         // Only precise for identical arrays
5075         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5076       }
5077       return result;
5078     }
5079     case NotNull:
5080     case BotPTR:
5081       // Compute new klass on demand, do not use tap->_klass
5082       if (above_centerline(this_ptr)) {
5083         res_xk = other_xk;
5084       } else {
5085         res_xk = (other_xk && this_xk) &&
5086                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5087       }
5088       return result;
5089     default:  {
5090       ShouldNotReachHere();
5091       return result;
5092     }
5093   }
5094   return result;
5095 }
5096 
5097 
5098 //------------------------------xdual------------------------------------------
5099 // Dual: compute field-by-field dual
5100 const Type *TypeAryPtr::xdual() const {
5101   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5102 }
5103 
5104 //------------------------------dump2------------------------------------------
5105 #ifndef PRODUCT
5106 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5107   st->print("aryptr:");
5108   _ary->dump2(d, depth, st);
5109   _interfaces->dump(st);
5110 
5111   if (_ptr == Constant) {
5112     const_oop()->print(st);
5113   }
5114 
5115   st->print(":%s", ptr_msg[_ptr]);
5116   if (_klass_is_exact) {
5117     st->print(":exact");
5118   }
5119 
5120   if( _offset != 0 ) {
5121     BasicType basic_elem_type = elem()->basic_type();
5122     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5123     if( _offset == OffsetTop )       st->print("+undefined");
5124     else if( _offset == OffsetBot )  st->print("+any");
5125     else if( _offset < header_size ) st->print("+%d", _offset);
5126     else {
5127       if (basic_elem_type == T_ILLEGAL) {
5128         st->print("+any");
5129       } else {
5130         int elem_size = type2aelembytes(basic_elem_type);
5131         st->print("[%d]", (_offset - header_size)/elem_size);
5132       }
5133     }
5134   }
5135 
5136   dump_instance_id(st);
5137   dump_inline_depth(st);
5138   dump_speculative(st);
5139 }
5140 #endif
5141 
5142 bool TypeAryPtr::empty(void) const {
5143   if (_ary->empty())       return true;
5144   return TypeOopPtr::empty();
5145 }
5146 
5147 //------------------------------add_offset-------------------------------------
5148 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5149   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5150 }
5151 
5152 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5153   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5154 }
5155 
5156 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5157   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5158 }
5159 
5160 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5161   if (_speculative == nullptr) {
5162     return this;
5163   }
5164   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5165   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5166 }
5167 
5168 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5169   if (!UseInlineDepthForSpeculativeTypes) {
5170     return this;
5171   }
5172   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5173 }
5174 
5175 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5176   assert(is_known_instance(), "should be known");
5177   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5178 }
5179 
5180 //=============================================================================
5181 
5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeNarrowPtr::hash(void) const {
5185   return _ptrtype->hash() + 7;
5186 }
5187 
5188 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5189   return _ptrtype->singleton();
5190 }
5191 
5192 bool TypeNarrowPtr::empty(void) const {
5193   return _ptrtype->empty();
5194 }
5195 
5196 intptr_t TypeNarrowPtr::get_con() const {
5197   return _ptrtype->get_con();
5198 }
5199 
5200 bool TypeNarrowPtr::eq( const Type *t ) const {
5201   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5202   if (tc != nullptr) {
5203     if (_ptrtype->base() != tc->_ptrtype->base()) {
5204       return false;
5205     }
5206     return tc->_ptrtype->eq(_ptrtype);
5207   }
5208   return false;
5209 }
5210 
5211 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5212   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5213   return make_same_narrowptr(odual);
5214 }
5215 
5216 
5217 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5218   if (isa_same_narrowptr(kills)) {
5219     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5220     if (ft->empty())
5221       return Type::TOP;           // Canonical empty value
5222     if (ft->isa_ptr()) {
5223       return make_hash_same_narrowptr(ft->isa_ptr());
5224     }
5225     return ft;
5226   } else if (kills->isa_ptr()) {
5227     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5228     if (ft->empty())
5229       return Type::TOP;           // Canonical empty value
5230     return ft;
5231   } else {
5232     return Type::TOP;
5233   }
5234 }
5235 
5236 //------------------------------xmeet------------------------------------------
5237 // Compute the MEET of two types.  It returns a new Type object.
5238 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5239   // Perform a fast test for common case; meeting the same types together.
5240   if( this == t ) return this;  // Meeting same type-rep?
5241 
5242   if (t->base() == base()) {
5243     const Type* result = _ptrtype->xmeet(t->make_ptr());
5244     if (result->isa_ptr()) {
5245       return make_hash_same_narrowptr(result->is_ptr());
5246     }
5247     return result;
5248   }
5249 
5250   // Current "this->_base" is NarrowKlass or NarrowOop
5251   switch (t->base()) {          // switch on original type
5252 
5253   case Int:                     // Mixing ints & oops happens when javac
5254   case Long:                    // reuses local variables
5255   case HalfFloatTop:
5256   case HalfFloatCon:
5257   case HalfFloatBot:
5258   case FloatTop:
5259   case FloatCon:
5260   case FloatBot:
5261   case DoubleTop:
5262   case DoubleCon:
5263   case DoubleBot:
5264   case AnyPtr:
5265   case RawPtr:
5266   case OopPtr:
5267   case InstPtr:
5268   case AryPtr:
5269   case MetadataPtr:
5270   case KlassPtr:
5271   case InstKlassPtr:
5272   case AryKlassPtr:
5273   case NarrowOop:
5274   case NarrowKlass:
5275 
5276   case Bottom:                  // Ye Olde Default
5277     return Type::BOTTOM;
5278   case Top:
5279     return this;
5280 
5281   default:                      // All else is a mistake
5282     typerr(t);
5283 
5284   } // End of switch
5285 
5286   return this;
5287 }
5288 
5289 #ifndef PRODUCT
5290 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5291   _ptrtype->dump2(d, depth, st);
5292 }
5293 #endif
5294 
5295 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5296 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5297 
5298 
5299 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5300   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5301 }
5302 
5303 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5304   return make(_ptrtype->remove_speculative()->is_ptr());
5305 }
5306 
5307 const Type* TypeNarrowOop::cleanup_speculative() const {
5308   return make(_ptrtype->cleanup_speculative()->is_ptr());
5309 }
5310 
5311 #ifndef PRODUCT
5312 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5313   st->print("narrowoop: ");
5314   TypeNarrowPtr::dump2(d, depth, st);
5315 }
5316 #endif
5317 
5318 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5319 
5320 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5321   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5322 }
5323 
5324 #ifndef PRODUCT
5325 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5326   st->print("narrowklass: ");
5327   TypeNarrowPtr::dump2(d, depth, st);
5328 }
5329 #endif
5330 
5331 
5332 //------------------------------eq---------------------------------------------
5333 // Structural equality check for Type representations
5334 bool TypeMetadataPtr::eq( const Type *t ) const {
5335   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5336   ciMetadata* one = metadata();
5337   ciMetadata* two = a->metadata();
5338   if (one == nullptr || two == nullptr) {
5339     return (one == two) && TypePtr::eq(t);
5340   } else {
5341     return one->equals(two) && TypePtr::eq(t);
5342   }
5343 }
5344 
5345 //------------------------------hash-------------------------------------------
5346 // Type-specific hashing function.
5347 uint TypeMetadataPtr::hash(void) const {
5348   return
5349     (metadata() ? metadata()->hash() : 0) +
5350     TypePtr::hash();
5351 }
5352 
5353 //------------------------------singleton--------------------------------------
5354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5355 // constants
5356 bool TypeMetadataPtr::singleton(void) const {
5357   // detune optimizer to not generate constant metadata + constant offset as a constant!
5358   // TopPTR, Null, AnyNull, Constant are all singletons
5359   return (_offset == 0) && !below_centerline(_ptr);
5360 }
5361 
5362 //------------------------------add_offset-------------------------------------
5363 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5364   return make( _ptr, _metadata, xadd_offset(offset));
5365 }
5366 
5367 //-----------------------------filter------------------------------------------
5368 // Do not allow interface-vs.-noninterface joins to collapse to top.
5369 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5370   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5371   if (ft == nullptr || ft->empty())
5372     return Type::TOP;           // Canonical empty value
5373   return ft;
5374 }
5375 
5376  //------------------------------get_con----------------------------------------
5377 intptr_t TypeMetadataPtr::get_con() const {
5378   assert( _ptr == Null || _ptr == Constant, "" );
5379   assert( _offset >= 0, "" );
5380 
5381   if (_offset != 0) {
5382     // After being ported to the compiler interface, the compiler no longer
5383     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5384     // to a handle at compile time.  This handle is embedded in the generated
5385     // code and dereferenced at the time the nmethod is made.  Until that time,
5386     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5387     // have access to the addresses!).  This does not seem to currently happen,
5388     // but this assertion here is to help prevent its occurrence.
5389     tty->print_cr("Found oop constant with non-zero offset");
5390     ShouldNotReachHere();
5391   }
5392 
5393   return (intptr_t)metadata()->constant_encoding();
5394 }
5395 
5396 //------------------------------cast_to_ptr_type-------------------------------
5397 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5398   if( ptr == _ptr ) return this;
5399   return make(ptr, metadata(), _offset);
5400 }
5401 
5402 //------------------------------meet-------------------------------------------
5403 // Compute the MEET of two types.  It returns a new Type object.
5404 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5405   // Perform a fast test for common case; meeting the same types together.
5406   if( this == t ) return this;  // Meeting same type-rep?
5407 
5408   // Current "this->_base" is OopPtr
5409   switch (t->base()) {          // switch on original type
5410 
5411   case Int:                     // Mixing ints & oops happens when javac
5412   case Long:                    // reuses local variables
5413   case HalfFloatTop:
5414   case HalfFloatCon:
5415   case HalfFloatBot:
5416   case FloatTop:
5417   case FloatCon:
5418   case FloatBot:
5419   case DoubleTop:
5420   case DoubleCon:
5421   case DoubleBot:
5422   case NarrowOop:
5423   case NarrowKlass:
5424   case Bottom:                  // Ye Olde Default
5425     return Type::BOTTOM;
5426   case Top:
5427     return this;
5428 
5429   default:                      // All else is a mistake
5430     typerr(t);
5431 
5432   case AnyPtr: {
5433     // Found an AnyPtr type vs self-OopPtr type
5434     const TypePtr *tp = t->is_ptr();
5435     int offset = meet_offset(tp->offset());
5436     PTR ptr = meet_ptr(tp->ptr());
5437     switch (tp->ptr()) {
5438     case Null:
5439       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5440       // else fall through:
5441     case TopPTR:
5442     case AnyNull: {
5443       return make(ptr, _metadata, offset);
5444     }
5445     case BotPTR:
5446     case NotNull:
5447       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5448     default: typerr(t);
5449     }
5450   }
5451 
5452   case RawPtr:
5453   case KlassPtr:
5454   case InstKlassPtr:
5455   case AryKlassPtr:
5456   case OopPtr:
5457   case InstPtr:
5458   case AryPtr:
5459     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5460 
5461   case MetadataPtr: {
5462     const TypeMetadataPtr *tp = t->is_metadataptr();
5463     int offset = meet_offset(tp->offset());
5464     PTR tptr = tp->ptr();
5465     PTR ptr = meet_ptr(tptr);
5466     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5467     if (tptr == TopPTR || _ptr == TopPTR ||
5468         metadata()->equals(tp->metadata())) {
5469       return make(ptr, md, offset);
5470     }
5471     // metadata is different
5472     if( ptr == Constant ) {  // Cannot be equal constants, so...
5473       if( tptr == Constant && _ptr != Constant)  return t;
5474       if( _ptr == Constant && tptr != Constant)  return this;
5475       ptr = NotNull;            // Fall down in lattice
5476     }
5477     return make(ptr, nullptr, offset);
5478     break;
5479   }
5480   } // End of switch
5481   return this;                  // Return the double constant
5482 }
5483 
5484 
5485 //------------------------------xdual------------------------------------------
5486 // Dual of a pure metadata pointer.
5487 const Type *TypeMetadataPtr::xdual() const {
5488   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5489 }
5490 
5491 //------------------------------dump2------------------------------------------
5492 #ifndef PRODUCT
5493 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5494   st->print("metadataptr:%s", ptr_msg[_ptr]);
5495   if (metadata() != nullptr) {
5496     st->print(":" INTPTR_FORMAT, p2i(metadata()));
5497   }
5498   dump_offset(st);
5499 }
5500 #endif
5501 
5502 
5503 //=============================================================================
5504 // Convenience common pre-built type.
5505 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5506 
5507 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5508   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5509 }
5510 
5511 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5512   return make(Constant, m, 0);
5513 }
5514 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5515   return make(Constant, m, 0);
5516 }
5517 
5518 //------------------------------make-------------------------------------------
5519 // Create a meta data constant
5520 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5521   assert(m == nullptr || !m->is_klass(), "wrong type");
5522   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5523 }
5524 
5525 
5526 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5527   const Type* elem = _ary->_elem;
5528   bool xk = klass_is_exact();
5529   if (elem->make_oopptr() != nullptr) {
5530     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5531     if (elem->is_klassptr()->klass_is_exact()) {
5532       xk = true;
5533     }
5534   }
5535   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5536 }
5537 
5538 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5539   if (klass->is_instance_klass()) {
5540     return TypeInstKlassPtr::make(klass, interface_handling);
5541   }
5542   return TypeAryKlassPtr::make(klass, interface_handling);
5543 }
5544 
5545 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5546   if (klass->is_instance_klass()) {
5547     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5548     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5549   }
5550   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5551 }
5552 
5553 
5554 //------------------------------TypeKlassPtr-----------------------------------
5555 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5556   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5557   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5558          klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5559 }
5560 
5561 // Is there a single ciKlass* that can represent that type?
5562 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5563   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5564   if (_interfaces->empty()) {
5565     return _klass;
5566   }
5567   if (_klass != ciEnv::current()->Object_klass()) {
5568     if (_interfaces->eq(_klass->as_instance_klass())) {
5569       return _klass;
5570     }
5571     return nullptr;
5572   }
5573   return _interfaces->exact_klass();
5574 }
5575 
5576 //------------------------------eq---------------------------------------------
5577 // Structural equality check for Type representations
5578 bool TypeKlassPtr::eq(const Type *t) const {
5579   const TypeKlassPtr *p = t->is_klassptr();
5580   return
5581     _interfaces->eq(p->_interfaces) &&
5582     TypePtr::eq(p);
5583 }
5584 
5585 //------------------------------hash-------------------------------------------
5586 // Type-specific hashing function.
5587 uint TypeKlassPtr::hash(void) const {
5588   return TypePtr::hash() + _interfaces->hash();
5589 }
5590 
5591 //------------------------------singleton--------------------------------------
5592 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5593 // constants
5594 bool TypeKlassPtr::singleton(void) const {
5595   // detune optimizer to not generate constant klass + constant offset as a constant!
5596   // TopPTR, Null, AnyNull, Constant are all singletons
5597   return (_offset == 0) && !below_centerline(_ptr);
5598 }
5599 
5600 // Do not allow interface-vs.-noninterface joins to collapse to top.
5601 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5602   // logic here mirrors the one from TypeOopPtr::filter. See comments
5603   // there.
5604   const Type* ft = join_helper(kills, include_speculative);
5605 
5606   if (ft->empty()) {
5607     return Type::TOP;           // Canonical empty value
5608   }
5609 
5610   return ft;
5611 }
5612 
5613 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5614   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5615     return _interfaces->union_with(other->_interfaces);
5616   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5617     return other->_interfaces;
5618   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5619     return _interfaces;
5620   }
5621   return _interfaces->intersection_with(other->_interfaces);
5622 }
5623 
5624 //------------------------------get_con----------------------------------------
5625 intptr_t TypeKlassPtr::get_con() const {
5626   assert( _ptr == Null || _ptr == Constant, "" );
5627   assert( _offset >= 0, "" );
5628 
5629   if (_offset != 0) {
5630     // After being ported to the compiler interface, the compiler no longer
5631     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5632     // to a handle at compile time.  This handle is embedded in the generated
5633     // code and dereferenced at the time the nmethod is made.  Until that time,
5634     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5635     // have access to the addresses!).  This does not seem to currently happen,
5636     // but this assertion here is to help prevent its occurrence.
5637     tty->print_cr("Found oop constant with non-zero offset");
5638     ShouldNotReachHere();
5639   }
5640 
5641   ciKlass* k = exact_klass();
5642 
5643   return (intptr_t)k->constant_encoding();
5644 }
5645 
5646 //=============================================================================
5647 // Convenience common pre-built types.
5648 
5649 // Not-null object klass or below
5650 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5651 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5652 
5653 bool TypeInstKlassPtr::eq(const Type *t) const {
5654   const TypeKlassPtr *p = t->is_klassptr();
5655   return
5656     klass()->equals(p->klass()) &&
5657     TypeKlassPtr::eq(p);
5658 }
5659 
5660 uint TypeInstKlassPtr::hash(void) const {
5661   return klass()->hash() + TypeKlassPtr::hash();
5662 }
5663 
5664 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5665   TypeInstKlassPtr *r =
5666     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5667 
5668   return r;
5669 }
5670 
5671 //------------------------------add_offset-------------------------------------
5672 // Access internals of klass object
5673 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5674   return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5675 }
5676 
5677 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5678   return make(_ptr, klass(), _interfaces, offset);
5679 }
5680 
5681 //------------------------------cast_to_ptr_type-------------------------------
5682 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5683   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5684   if( ptr == _ptr ) return this;
5685   return make(ptr, _klass, _interfaces, _offset);
5686 }
5687 
5688 
5689 bool TypeInstKlassPtr::must_be_exact() const {
5690   if (!_klass->is_loaded())  return false;
5691   ciInstanceKlass* ik = _klass->as_instance_klass();
5692   if (ik->is_final())  return true;  // cannot clear xk
5693   return false;
5694 }
5695 
5696 //-----------------------------cast_to_exactness-------------------------------
5697 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5698   if (klass_is_exact == (_ptr == Constant)) return this;
5699   if (must_be_exact()) return this;
5700   ciKlass* k = klass();
5701   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5702 }
5703 
5704 
5705 //-----------------------------as_instance_type--------------------------------
5706 // Corresponding type for an instance of the given class.
5707 // It will be NotNull, and exact if and only if the klass type is exact.
5708 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5709   ciKlass* k = klass();
5710   bool xk = klass_is_exact();
5711   Compile* C = Compile::current();
5712   Dependencies* deps = C->dependencies();
5713   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5714   // Element is an instance
5715   bool klass_is_exact = false;
5716   const TypeInterfaces* interfaces = _interfaces;
5717   if (k->is_loaded()) {
5718     // Try to set klass_is_exact.
5719     ciInstanceKlass* ik = k->as_instance_klass();
5720     klass_is_exact = ik->is_final();
5721     if (!klass_is_exact && klass_change
5722         && deps != nullptr && UseUniqueSubclasses) {
5723       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5724       if (sub != nullptr) {
5725         if (_interfaces->eq(sub)) {
5726           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5727           k = ik = sub;
5728           xk = sub->is_final();
5729         }
5730       }
5731     }
5732   }
5733   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5734 }
5735 
5736 //------------------------------xmeet------------------------------------------
5737 // Compute the MEET of two types, return a new Type object.
5738 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5739   // Perform a fast test for common case; meeting the same types together.
5740   if( this == t ) return this;  // Meeting same type-rep?
5741 
5742   // Current "this->_base" is Pointer
5743   switch (t->base()) {          // switch on original type
5744 
5745   case Int:                     // Mixing ints & oops happens when javac
5746   case Long:                    // reuses local variables
5747   case HalfFloatTop:
5748   case HalfFloatCon:
5749   case HalfFloatBot:
5750   case FloatTop:
5751   case FloatCon:
5752   case FloatBot:
5753   case DoubleTop:
5754   case DoubleCon:
5755   case DoubleBot:
5756   case NarrowOop:
5757   case NarrowKlass:
5758   case Bottom:                  // Ye Olde Default
5759     return Type::BOTTOM;
5760   case Top:
5761     return this;
5762 
5763   default:                      // All else is a mistake
5764     typerr(t);
5765 
5766   case AnyPtr: {                // Meeting to AnyPtrs
5767     // Found an AnyPtr type vs self-KlassPtr type
5768     const TypePtr *tp = t->is_ptr();
5769     int offset = meet_offset(tp->offset());
5770     PTR ptr = meet_ptr(tp->ptr());
5771     switch (tp->ptr()) {
5772     case TopPTR:
5773       return this;
5774     case Null:
5775       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5776     case AnyNull:
5777       return make( ptr, klass(), _interfaces, offset );
5778     case BotPTR:
5779     case NotNull:
5780       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5781     default: typerr(t);
5782     }
5783   }
5784 
5785   case RawPtr:
5786   case MetadataPtr:
5787   case OopPtr:
5788   case AryPtr:                  // Meet with AryPtr
5789   case InstPtr:                 // Meet with InstPtr
5790     return TypePtr::BOTTOM;
5791 
5792   //
5793   //             A-top         }
5794   //           /   |   \       }  Tops
5795   //       B-top A-any C-top   }
5796   //          | /  |  \ |      }  Any-nulls
5797   //       B-any   |   C-any   }
5798   //          |    |    |
5799   //       B-con A-con C-con   } constants; not comparable across classes
5800   //          |    |    |
5801   //       B-not   |   C-not   }
5802   //          | \  |  / |      }  not-nulls
5803   //       B-bot A-not C-bot   }
5804   //           \   |   /       }  Bottoms
5805   //             A-bot         }
5806   //
5807 
5808   case InstKlassPtr: {  // Meet two KlassPtr types
5809     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5810     int  off     = meet_offset(tkls->offset());
5811     PTR  ptr     = meet_ptr(tkls->ptr());
5812     const TypeInterfaces* interfaces = meet_interfaces(tkls);
5813 
5814     ciKlass* res_klass = nullptr;
5815     bool res_xk = false;
5816     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
5817       case UNLOADED:
5818         ShouldNotReachHere();
5819       case SUBTYPE:
5820       case NOT_SUBTYPE:
5821       case LCA:
5822       case QUICK: {
5823         assert(res_xk == (ptr == Constant), "");
5824         const Type* res = make(ptr, res_klass, interfaces, off);
5825         return res;
5826       }
5827       default:
5828         ShouldNotReachHere();
5829     }
5830   } // End of case KlassPtr
5831   case AryKlassPtr: {                // All arrays inherit from Object class
5832     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5833     int offset = meet_offset(tp->offset());
5834     PTR ptr = meet_ptr(tp->ptr());
5835     const TypeInterfaces* interfaces = meet_interfaces(tp);
5836     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5837     const TypeInterfaces* this_interfaces = _interfaces;
5838 
5839     switch (ptr) {
5840     case TopPTR:
5841     case AnyNull:                // Fall 'down' to dual of object klass
5842       // For instances when a subclass meets a superclass we fall
5843       // below the centerline when the superclass is exact. We need to
5844       // do the same here.
5845       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5846         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5847       } else {
5848         // cannot subclass, so the meet has to fall badly below the centerline
5849         ptr = NotNull;
5850         interfaces = _interfaces->intersection_with(tp->_interfaces);
5851         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5852       }
5853     case Constant:
5854     case NotNull:
5855     case BotPTR:                // Fall down to object klass
5856       // LCA is object_klass, but if we subclass from the top we can do better
5857       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5858         // If 'this' (InstPtr) is above the centerline and it is Object class
5859         // then we can subclass in the Java class hierarchy.
5860         // For instances when a subclass meets a superclass we fall
5861         // below the centerline when the superclass is exact. We need
5862         // to do the same here.
5863         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5864           // that is, tp's array type is a subtype of my klass
5865           return TypeAryKlassPtr::make(ptr,
5866                                        tp->elem(), tp->klass(), offset);
5867         }
5868       }
5869       // The other case cannot happen, since I cannot be a subtype of an array.
5870       // The meet falls down to Object class below centerline.
5871       if( ptr == Constant )
5872          ptr = NotNull;
5873       interfaces = this_interfaces->intersection_with(tp_interfaces);
5874       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5875     default: typerr(t);
5876     }
5877   }
5878 
5879   } // End of switch
5880   return this;                  // Return the double constant
5881 }
5882 
5883 //------------------------------xdual------------------------------------------
5884 // Dual: compute field-by-field dual
5885 const Type    *TypeInstKlassPtr::xdual() const {
5886   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5887 }
5888 
5889 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5890   static_assert(std::is_base_of<T2, T1>::value, "");
5891   if (!this_one->is_loaded() || !other->is_loaded()) {
5892     return false;
5893   }
5894   if (!this_one->is_instance_type(other)) {
5895     return false;
5896   }
5897 
5898   if (!other_exact) {
5899     return false;
5900   }
5901 
5902   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5903     return true;
5904   }
5905 
5906   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5907 }
5908 
5909 bool TypeInstKlassPtr::might_be_an_array() const {
5910   if (!instance_klass()->is_java_lang_Object()) {
5911     // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types.
5912     return false;
5913   }
5914   if (interfaces()->has_non_array_interface()) {
5915     // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array.
5916     return false;
5917   }
5918   // Cannot prove it's not an array.
5919   return true;
5920 }
5921 
5922 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5923   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5924 }
5925 
5926 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
5927   static_assert(std::is_base_of<T2, T1>::value, "");
5928   if (!this_one->is_loaded() || !other->is_loaded()) {
5929     return false;
5930   }
5931   if (!this_one->is_instance_type(other)) {
5932     return false;
5933   }
5934   return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
5935 }
5936 
5937 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
5938   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
5939 }
5940 
5941 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5942   static_assert(std::is_base_of<T2, T1>::value, "");
5943   if (!this_one->is_loaded() || !other->is_loaded()) {
5944     return true;
5945   }
5946 
5947   if (this_one->is_array_type(other)) {
5948     return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
5949   }
5950 
5951   assert(this_one->is_instance_type(other), "unsupported");
5952 
5953   if (this_exact && other_exact) {
5954     return this_one->is_java_subtype_of(other);
5955   }
5956 
5957   if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
5958     return false;
5959   }
5960 
5961   if (this_exact) {
5962     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5963   }
5964 
5965   return true;
5966 }
5967 
5968 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5969   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5970 }
5971 
5972 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5973   if (!UseUniqueSubclasses) {
5974     return this;
5975   }
5976   ciKlass* k = klass();
5977   Compile* C = Compile::current();
5978   Dependencies* deps = C->dependencies();
5979   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5980   const TypeInterfaces* interfaces = _interfaces;
5981   if (k->is_loaded()) {
5982     ciInstanceKlass* ik = k->as_instance_klass();
5983     bool klass_is_exact = ik->is_final();
5984     if (!klass_is_exact &&
5985         deps != nullptr) {
5986       ciInstanceKlass* sub = ik->unique_concrete_subklass();
5987       if (sub != nullptr) {
5988         if (_interfaces->eq(sub)) {
5989           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5990           k = ik = sub;
5991           klass_is_exact = sub->is_final();
5992           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5993         }
5994       }
5995     }
5996   }
5997   return this;
5998 }
5999 
6000 #ifndef PRODUCT
6001 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6002   st->print("instklassptr:");
6003   klass()->print_name_on(st);
6004   _interfaces->dump(st);
6005   st->print(":%s", ptr_msg[_ptr]);
6006   dump_offset(st);
6007 }
6008 #endif // PRODUCT
6009 
6010 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
6011   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
6012 }
6013 
6014 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
6015   if (k->is_obj_array_klass()) {
6016     // Element is an object array. Recursively call ourself.
6017     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6018     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6019     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6020   } else if (k->is_type_array_klass()) {
6021     // Element is an typeArray
6022     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6023     return TypeAryKlassPtr::make(ptr, etype, k, offset);
6024   } else {
6025     ShouldNotReachHere();
6026     return nullptr;
6027   }
6028 }
6029 
6030 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6031   return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6032 }
6033 
6034 //------------------------------eq---------------------------------------------
6035 // Structural equality check for Type representations
6036 bool TypeAryKlassPtr::eq(const Type *t) const {
6037   const TypeAryKlassPtr *p = t->is_aryklassptr();
6038   return
6039     _elem == p->_elem &&  // Check array
6040     TypeKlassPtr::eq(p);  // Check sub-parts
6041 }
6042 
6043 //------------------------------hash-------------------------------------------
6044 // Type-specific hashing function.
6045 uint TypeAryKlassPtr::hash(void) const {
6046   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6047 }
6048 
6049 //----------------------compute_klass------------------------------------------
6050 // Compute the defining klass for this class
6051 ciKlass* TypeAryPtr::compute_klass() const {
6052   // Compute _klass based on element type.
6053   ciKlass* k_ary = nullptr;
6054   const TypeInstPtr *tinst;
6055   const TypeAryPtr *tary;
6056   const Type* el = elem();
6057   if (el->isa_narrowoop()) {
6058     el = el->make_ptr();
6059   }
6060 
6061   // Get element klass
6062   if ((tinst = el->isa_instptr()) != nullptr) {
6063     // Leave k_ary at null.
6064   } else if ((tary = el->isa_aryptr()) != nullptr) {
6065     // Leave k_ary at null.
6066   } else if ((el->base() == Type::Top) ||
6067              (el->base() == Type::Bottom)) {
6068     // element type of Bottom occurs from meet of basic type
6069     // and object; Top occurs when doing join on Bottom.
6070     // Leave k_ary at null.
6071   } else {
6072     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6073     // Compute array klass directly from basic type
6074     k_ary = ciTypeArrayKlass::make(el->basic_type());
6075   }
6076   return k_ary;
6077 }
6078 
6079 //------------------------------klass------------------------------------------
6080 // Return the defining klass for this class
6081 ciKlass* TypeAryPtr::klass() const {
6082   if( _klass ) return _klass;   // Return cached value, if possible
6083 
6084   // Oops, need to compute _klass and cache it
6085   ciKlass* k_ary = compute_klass();
6086 
6087   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6088     // The _klass field acts as a cache of the underlying
6089     // ciKlass for this array type.  In order to set the field,
6090     // we need to cast away const-ness.
6091     //
6092     // IMPORTANT NOTE: we *never* set the _klass field for the
6093     // type TypeAryPtr::OOPS.  This Type is shared between all
6094     // active compilations.  However, the ciKlass which represents
6095     // this Type is *not* shared between compilations, so caching
6096     // this value would result in fetching a dangling pointer.
6097     //
6098     // Recomputing the underlying ciKlass for each request is
6099     // a bit less efficient than caching, but calls to
6100     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6101     ((TypeAryPtr*)this)->_klass = k_ary;
6102   }
6103   return k_ary;
6104 }
6105 
6106 // Is there a single ciKlass* that can represent that type?
6107 ciKlass* TypeAryPtr::exact_klass_helper() const {
6108   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6109     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6110     if (k == nullptr) {
6111       return nullptr;
6112     }
6113     k = ciObjArrayKlass::make(k);
6114     return k;
6115   }
6116 
6117   return klass();
6118 }
6119 
6120 const Type* TypeAryPtr::base_element_type(int& dims) const {
6121   const Type* elem = this->elem();
6122   dims = 1;
6123   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6124     elem = elem->make_ptr()->is_aryptr()->elem();
6125     dims++;
6126   }
6127   return elem;
6128 }
6129 
6130 //------------------------------add_offset-------------------------------------
6131 // Access internals of klass object
6132 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6133   return make(_ptr, elem(), klass(), xadd_offset(offset));
6134 }
6135 
6136 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6137   return make(_ptr, elem(), klass(), offset);
6138 }
6139 
6140 //------------------------------cast_to_ptr_type-------------------------------
6141 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6142   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6143   if (ptr == _ptr) return this;
6144   return make(ptr, elem(), _klass, _offset);
6145 }
6146 
6147 bool TypeAryKlassPtr::must_be_exact() const {
6148   if (_elem == Type::BOTTOM) return false;
6149   if (_elem == Type::TOP   ) return false;
6150   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6151   if (!tk)             return true;   // a primitive type, like int
6152   return tk->must_be_exact();
6153 }
6154 
6155 
6156 //-----------------------------cast_to_exactness-------------------------------
6157 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6158   if (must_be_exact()) return this;  // cannot clear xk
6159   ciKlass* k = _klass;
6160   const Type* elem = this->elem();
6161   if (elem->isa_klassptr() && !klass_is_exact) {
6162     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6163   }
6164   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6165 }
6166 
6167 
6168 //-----------------------------as_instance_type--------------------------------
6169 // Corresponding type for an instance of the given class.
6170 // It will be NotNull, and exact if and only if the klass type is exact.
6171 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6172   ciKlass* k = klass();
6173   bool    xk = klass_is_exact();
6174   const Type* el = nullptr;
6175   if (elem()->isa_klassptr()) {
6176     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6177     k = nullptr;
6178   } else {
6179     el = elem();
6180   }
6181   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6182 }
6183 
6184 
6185 //------------------------------xmeet------------------------------------------
6186 // Compute the MEET of two types, return a new Type object.
6187 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6188   // Perform a fast test for common case; meeting the same types together.
6189   if( this == t ) return this;  // Meeting same type-rep?
6190 
6191   // Current "this->_base" is Pointer
6192   switch (t->base()) {          // switch on original type
6193 
6194   case Int:                     // Mixing ints & oops happens when javac
6195   case Long:                    // reuses local variables
6196   case HalfFloatTop:
6197   case HalfFloatCon:
6198   case HalfFloatBot:
6199   case FloatTop:
6200   case FloatCon:
6201   case FloatBot:
6202   case DoubleTop:
6203   case DoubleCon:
6204   case DoubleBot:
6205   case NarrowOop:
6206   case NarrowKlass:
6207   case Bottom:                  // Ye Olde Default
6208     return Type::BOTTOM;
6209   case Top:
6210     return this;
6211 
6212   default:                      // All else is a mistake
6213     typerr(t);
6214 
6215   case AnyPtr: {                // Meeting to AnyPtrs
6216     // Found an AnyPtr type vs self-KlassPtr type
6217     const TypePtr *tp = t->is_ptr();
6218     int offset = meet_offset(tp->offset());
6219     PTR ptr = meet_ptr(tp->ptr());
6220     switch (tp->ptr()) {
6221     case TopPTR:
6222       return this;
6223     case Null:
6224       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6225     case AnyNull:
6226       return make( ptr, _elem, klass(), offset );
6227     case BotPTR:
6228     case NotNull:
6229       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6230     default: typerr(t);
6231     }
6232   }
6233 
6234   case RawPtr:
6235   case MetadataPtr:
6236   case OopPtr:
6237   case AryPtr:                  // Meet with AryPtr
6238   case InstPtr:                 // Meet with InstPtr
6239     return TypePtr::BOTTOM;
6240 
6241   //
6242   //             A-top         }
6243   //           /   |   \       }  Tops
6244   //       B-top A-any C-top   }
6245   //          | /  |  \ |      }  Any-nulls
6246   //       B-any   |   C-any   }
6247   //          |    |    |
6248   //       B-con A-con C-con   } constants; not comparable across classes
6249   //          |    |    |
6250   //       B-not   |   C-not   }
6251   //          | \  |  / |      }  not-nulls
6252   //       B-bot A-not C-bot   }
6253   //           \   |   /       }  Bottoms
6254   //             A-bot         }
6255   //
6256 
6257   case AryKlassPtr: {  // Meet two KlassPtr types
6258     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6259     int off = meet_offset(tap->offset());
6260     const Type* elem = _elem->meet(tap->_elem);
6261 
6262     PTR ptr = meet_ptr(tap->ptr());
6263     ciKlass* res_klass = nullptr;
6264     bool res_xk = false;
6265     meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6266     assert(res_xk == (ptr == Constant), "");
6267     return make(ptr, elem, res_klass, off);
6268   } // End of case KlassPtr
6269   case InstKlassPtr: {
6270     const TypeInstKlassPtr *tp = t->is_instklassptr();
6271     int offset = meet_offset(tp->offset());
6272     PTR ptr = meet_ptr(tp->ptr());
6273     const TypeInterfaces* interfaces = meet_interfaces(tp);
6274     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6275     const TypeInterfaces* this_interfaces = _interfaces;
6276 
6277     switch (ptr) {
6278     case TopPTR:
6279     case AnyNull:                // Fall 'down' to dual of object klass
6280       // For instances when a subclass meets a superclass we fall
6281       // below the centerline when the superclass is exact. We need to
6282       // do the same here.
6283       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6284           !tp->klass_is_exact()) {
6285         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6286       } else {
6287         // cannot subclass, so the meet has to fall badly below the centerline
6288         ptr = NotNull;
6289         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6290         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6291       }
6292     case Constant:
6293     case NotNull:
6294     case BotPTR:                // Fall down to object klass
6295       // LCA is object_klass, but if we subclass from the top we can do better
6296       if (above_centerline(tp->ptr())) {
6297         // If 'tp'  is above the centerline and it is Object class
6298         // then we can subclass in the Java class hierarchy.
6299         // For instances when a subclass meets a superclass we fall
6300         // below the centerline when the superclass is exact. We need
6301         // to do the same here.
6302         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6303             !tp->klass_is_exact()) {
6304           // that is, my array type is a subtype of 'tp' klass
6305           return make(ptr, _elem, _klass, offset);
6306         }
6307       }
6308       // The other case cannot happen, since t cannot be a subtype of an array.
6309       // The meet falls down to Object class below centerline.
6310       if (ptr == Constant)
6311          ptr = NotNull;
6312       interfaces = this_interfaces->intersection_with(tp_interfaces);
6313       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6314     default: typerr(t);
6315     }
6316   }
6317 
6318   } // End of switch
6319   return this;                  // Return the double constant
6320 }
6321 
6322 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6323   static_assert(std::is_base_of<T2, T1>::value, "");
6324 
6325   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6326     return true;
6327   }
6328 
6329   int dummy;
6330   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6331 
6332   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6333     return false;
6334   }
6335 
6336   if (this_one->is_instance_type(other)) {
6337     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6338            other_exact;
6339   }
6340 
6341   assert(this_one->is_array_type(other), "");
6342   const T1* other_ary = this_one->is_array_type(other);
6343   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6344   if (other_top_or_bottom) {
6345     return false;
6346   }
6347 
6348   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6349   const TypePtr* this_elem = this_one->elem()->make_ptr();
6350   if (this_elem != nullptr && other_elem != nullptr) {
6351     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6352   }
6353   if (this_elem == nullptr && other_elem == nullptr) {
6354     return this_one->klass()->is_subtype_of(other->klass());
6355   }
6356   return false;
6357 }
6358 
6359 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6360   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6361 }
6362 
6363 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6364   static_assert(std::is_base_of<T2, T1>::value, "");
6365 
6366   int dummy;
6367   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6368 
6369   if (!this_one->is_array_type(other) ||
6370       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6371     return false;
6372   }
6373   const T1* other_ary = this_one->is_array_type(other);
6374   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6375 
6376   if (other_top_or_bottom) {
6377     return false;
6378   }
6379 
6380   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6381   const TypePtr* this_elem = this_one->elem()->make_ptr();
6382   if (other_elem != nullptr && this_elem != nullptr) {
6383     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6384   }
6385   if (other_elem == nullptr && this_elem == nullptr) {
6386     return this_one->klass()->equals(other->klass());
6387   }
6388   return false;
6389 }
6390 
6391 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6392   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6393 }
6394 
6395 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6396   static_assert(std::is_base_of<T2, T1>::value, "");
6397   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6398     return true;
6399   }
6400   if (!this_one->is_loaded() || !other->is_loaded()) {
6401     return true;
6402   }
6403   if (this_one->is_instance_type(other)) {
6404     return other->klass()->equals(ciEnv::current()->Object_klass()) &&
6405            this_one->_interfaces->contains(other->_interfaces);
6406   }
6407 
6408   int dummy;
6409   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6410   if (this_top_or_bottom) {
6411     return true;
6412   }
6413 
6414   assert(this_one->is_array_type(other), "");
6415 
6416   const T1* other_ary = this_one->is_array_type(other);
6417   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6418   if (other_top_or_bottom) {
6419     return true;
6420   }
6421   if (this_exact && other_exact) {
6422     return this_one->is_java_subtype_of(other);
6423   }
6424 
6425   const TypePtr* this_elem = this_one->elem()->make_ptr();
6426   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6427   if (other_elem != nullptr && this_elem != nullptr) {
6428     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6429   }
6430   if (other_elem == nullptr && this_elem == nullptr) {
6431     return this_one->klass()->is_subtype_of(other->klass());
6432   }
6433   return false;
6434 }
6435 
6436 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6437   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6438 }
6439 
6440 //------------------------------xdual------------------------------------------
6441 // Dual: compute field-by-field dual
6442 const Type    *TypeAryKlassPtr::xdual() const {
6443   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6444 }
6445 
6446 // Is there a single ciKlass* that can represent that type?
6447 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6448   if (elem()->isa_klassptr()) {
6449     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6450     if (k == nullptr) {
6451       return nullptr;
6452     }
6453     k = ciObjArrayKlass::make(k);
6454     return k;
6455   }
6456 
6457   return klass();
6458 }
6459 
6460 ciKlass* TypeAryKlassPtr::klass() const {
6461   if (_klass != nullptr) {
6462     return _klass;
6463   }
6464   ciKlass* k = nullptr;
6465   if (elem()->isa_klassptr()) {
6466     // leave null
6467   } else if ((elem()->base() == Type::Top) ||
6468              (elem()->base() == Type::Bottom)) {
6469   } else {
6470     k = ciTypeArrayKlass::make(elem()->basic_type());
6471     ((TypeAryKlassPtr*)this)->_klass = k;
6472   }
6473   return k;
6474 }
6475 
6476 //------------------------------dump2------------------------------------------
6477 // Dump Klass Type
6478 #ifndef PRODUCT
6479 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6480   st->print("aryklassptr:[");
6481   _elem->dump2(d, depth, st);
6482   _interfaces->dump(st);
6483   st->print(":%s", ptr_msg[_ptr]);
6484   dump_offset(st);
6485 }
6486 #endif
6487 
6488 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6489   const Type* elem = this->elem();
6490   dims = 1;
6491   while (elem->isa_aryklassptr()) {
6492     elem = elem->is_aryklassptr()->elem();
6493     dims++;
6494   }
6495   return elem;
6496 }
6497 
6498 //=============================================================================
6499 // Convenience common pre-built types.
6500 
6501 //------------------------------make-------------------------------------------
6502 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6503   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6504 }
6505 
6506 //------------------------------make-------------------------------------------
6507 const TypeFunc *TypeFunc::make(ciMethod* method) {
6508   Compile* C = Compile::current();
6509   const TypeFunc* tf = C->last_tf(method); // check cache
6510   if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
6511   const TypeTuple *domain;
6512   if (method->is_static()) {
6513     domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6514   } else {
6515     domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6516   }
6517   const TypeTuple *range  = TypeTuple::make_range(method->signature(), ignore_interfaces);
6518   tf = TypeFunc::make(domain, range);
6519   C->set_last_tf(method, tf);  // fill cache
6520   return tf;
6521 }
6522 
6523 //------------------------------meet-------------------------------------------
6524 // Compute the MEET of two types.  It returns a new Type object.
6525 const Type *TypeFunc::xmeet( const Type *t ) const {
6526   // Perform a fast test for common case; meeting the same types together.
6527   if( this == t ) return this;  // Meeting same type-rep?
6528 
6529   // Current "this->_base" is Func
6530   switch (t->base()) {          // switch on original type
6531 
6532   case Bottom:                  // Ye Olde Default
6533     return t;
6534 
6535   default:                      // All else is a mistake
6536     typerr(t);
6537 
6538   case Top:
6539     break;
6540   }
6541   return this;                  // Return the double constant
6542 }
6543 
6544 //------------------------------xdual------------------------------------------
6545 // Dual: compute field-by-field dual
6546 const Type *TypeFunc::xdual() const {
6547   return this;
6548 }
6549 
6550 //------------------------------eq---------------------------------------------
6551 // Structural equality check for Type representations
6552 bool TypeFunc::eq( const Type *t ) const {
6553   const TypeFunc *a = (const TypeFunc*)t;
6554   return _domain == a->_domain &&
6555     _range == a->_range;
6556 }
6557 
6558 //------------------------------hash-------------------------------------------
6559 // Type-specific hashing function.
6560 uint TypeFunc::hash(void) const {
6561   return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6562 }
6563 
6564 //------------------------------dump2------------------------------------------
6565 // Dump Function Type
6566 #ifndef PRODUCT
6567 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6568   if( _range->cnt() <= Parms )
6569     st->print("void");
6570   else {
6571     uint i;
6572     for (i = Parms; i < _range->cnt()-1; i++) {
6573       _range->field_at(i)->dump2(d,depth,st);
6574       st->print("/");
6575     }
6576     _range->field_at(i)->dump2(d,depth,st);
6577   }
6578   st->print(" ");
6579   st->print("( ");
6580   if( !depth || d[this] ) {     // Check for recursive dump
6581     st->print("...)");
6582     return;
6583   }
6584   d.Insert((void*)this,(void*)this);    // Stop recursion
6585   if (Parms < _domain->cnt())
6586     _domain->field_at(Parms)->dump2(d,depth-1,st);
6587   for (uint i = Parms+1; i < _domain->cnt(); i++) {
6588     st->print(", ");
6589     _domain->field_at(i)->dump2(d,depth-1,st);
6590   }
6591   st->print(" )");
6592 }
6593 #endif
6594 
6595 //------------------------------singleton--------------------------------------
6596 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6597 // constants (Ldi nodes).  Singletons are integer, float or double constants
6598 // or a single symbol.
6599 bool TypeFunc::singleton(void) const {
6600   return false;                 // Never a singleton
6601 }
6602 
6603 bool TypeFunc::empty(void) const {
6604   return false;                 // Never empty
6605 }
6606 
6607 
6608 BasicType TypeFunc::return_type() const{
6609   if (range()->cnt() == TypeFunc::Parms) {
6610     return T_VOID;
6611   }
6612   return range()->field_at(TypeFunc::Parms)->basic_type();
6613 }