1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciField.hpp" 28 #include "ci/ciInlineKlass.hpp" 29 #include "ci/ciMethodData.hpp" 30 #include "ci/ciTypeFlow.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "classfile/symbolTable.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "libadt/dict.hpp" 35 #include "memory/oopFactory.hpp" 36 #include "memory/resourceArea.hpp" 37 #include "oops/instanceKlass.hpp" 38 #include "oops/instanceMirrorKlass.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/typeArrayKlass.hpp" 41 #include "opto/matcher.hpp" 42 #include "opto/node.hpp" 43 #include "opto/opcodes.hpp" 44 #include "opto/type.hpp" 45 #include "utilities/checkedCast.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "utilities/stringUtils.hpp" 48 49 // Portions of code courtesy of Clifford Click 50 51 // Optimization - Graph Style 52 53 // Dictionary of types shared among compilations. 54 Dict* Type::_shared_type_dict = nullptr; 55 const Type::Offset Type::Offset::top(Type::OffsetTop); 56 const Type::Offset Type::Offset::bottom(Type::OffsetBot); 57 58 const Type::Offset Type::Offset::meet(const Type::Offset other) const { 59 // Either is 'TOP' offset? Return the other offset! 60 if (_offset == OffsetTop) return other; 61 if (other._offset == OffsetTop) return *this; 62 // If either is different, return 'BOTTOM' offset 63 if (_offset != other._offset) return bottom; 64 return Offset(_offset); 65 } 66 67 const Type::Offset Type::Offset::dual() const { 68 if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM' 69 if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP' 70 return Offset(_offset); // Map everything else into self 71 } 72 73 const Type::Offset Type::Offset::add(intptr_t offset) const { 74 // Adding to 'TOP' offset? Return 'TOP'! 75 if (_offset == OffsetTop || offset == OffsetTop) return top; 76 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 77 if (_offset == OffsetBot || offset == OffsetBot) return bottom; 78 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 79 offset += (intptr_t)_offset; 80 if (offset != (int)offset || offset == OffsetTop) return bottom; 81 82 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 83 // It is possible to construct a negative offset during PhaseCCP 84 85 return Offset((int)offset); // Sum valid offsets 86 } 87 88 void Type::Offset::dump2(outputStream *st) const { 89 if (_offset == 0) { 90 return; 91 } else if (_offset == OffsetTop) { 92 st->print("+top"); 93 } 94 else if (_offset == OffsetBot) { 95 st->print("+bot"); 96 } else if (_offset) { 97 st->print("+%d", _offset); 98 } 99 } 100 101 // Array which maps compiler types to Basic Types 102 const Type::TypeInfo Type::_type_info[Type::lastype] = { 103 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 104 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 105 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 106 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 107 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 108 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 109 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 110 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 111 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 112 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 113 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces 114 115 #if defined(PPC64) 116 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 117 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 118 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 119 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 120 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 121 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 122 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 123 #elif defined(S390) 124 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 125 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 126 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 127 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 128 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 129 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 130 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 131 #else // all other 132 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 133 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 134 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 135 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 136 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 137 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 138 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 139 #endif 140 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 141 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 142 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 143 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 144 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 145 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 146 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 147 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 148 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 149 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 150 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 151 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 152 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 153 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 154 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 155 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 156 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 157 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 158 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 159 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 160 }; 161 162 // Map ideal registers (machine types) to ideal types 163 const Type *Type::mreg2type[_last_machine_leaf]; 164 165 // Map basic types to canonical Type* pointers. 166 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 167 168 // Map basic types to constant-zero Types. 169 const Type* Type:: _zero_type[T_CONFLICT+1]; 170 171 // Map basic types to array-body alias types. 172 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 173 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr; 174 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr; 175 176 //============================================================================= 177 // Convenience common pre-built types. 178 const Type *Type::ABIO; // State-of-machine only 179 const Type *Type::BOTTOM; // All values 180 const Type *Type::CONTROL; // Control only 181 const Type *Type::DOUBLE; // All doubles 182 const Type *Type::FLOAT; // All floats 183 const Type *Type::HALF; // Placeholder half of doublewide type 184 const Type *Type::MEMORY; // Abstract store only 185 const Type *Type::RETURN_ADDRESS; 186 const Type *Type::TOP; // No values in set 187 188 //------------------------------get_const_type--------------------------- 189 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 190 if (type == nullptr) { 191 return nullptr; 192 } else if (type->is_primitive_type()) { 193 return get_const_basic_type(type->basic_type()); 194 } else { 195 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 196 } 197 } 198 199 //---------------------------array_element_basic_type--------------------------------- 200 // Mapping to the array element's basic type. 201 BasicType Type::array_element_basic_type() const { 202 BasicType bt = basic_type(); 203 if (bt == T_INT) { 204 if (this == TypeInt::INT) return T_INT; 205 if (this == TypeInt::CHAR) return T_CHAR; 206 if (this == TypeInt::BYTE) return T_BYTE; 207 if (this == TypeInt::BOOL) return T_BOOLEAN; 208 if (this == TypeInt::SHORT) return T_SHORT; 209 return T_VOID; 210 } 211 return bt; 212 } 213 214 // For two instance arrays of same dimension, return the base element types. 215 // Otherwise or if the arrays have different dimensions, return null. 216 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 217 const TypeInstPtr **e1, const TypeInstPtr **e2) { 218 219 if (e1) *e1 = nullptr; 220 if (e2) *e2 = nullptr; 221 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr(); 222 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr(); 223 224 if (a1tap != nullptr && a2tap != nullptr) { 225 // Handle multidimensional arrays 226 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 227 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 228 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 229 a1tap = a1tp->is_aryptr(); 230 a2tap = a2tp->is_aryptr(); 231 a1tp = a1tap->elem()->make_ptr(); 232 a2tp = a2tap->elem()->make_ptr(); 233 } 234 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 235 if (e1) *e1 = a1tp->is_instptr(); 236 if (e2) *e2 = a2tp->is_instptr(); 237 } 238 } 239 } 240 241 //---------------------------get_typeflow_type--------------------------------- 242 // Import a type produced by ciTypeFlow. 243 const Type* Type::get_typeflow_type(ciType* type) { 244 switch (type->basic_type()) { 245 246 case ciTypeFlow::StateVector::T_BOTTOM: 247 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 248 return Type::BOTTOM; 249 250 case ciTypeFlow::StateVector::T_TOP: 251 assert(type == ciTypeFlow::StateVector::top_type(), ""); 252 return Type::TOP; 253 254 case ciTypeFlow::StateVector::T_NULL: 255 assert(type == ciTypeFlow::StateVector::null_type(), ""); 256 return TypePtr::NULL_PTR; 257 258 case ciTypeFlow::StateVector::T_LONG2: 259 // The ciTypeFlow pass pushes a long, then the half. 260 // We do the same. 261 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 262 return TypeInt::TOP; 263 264 case ciTypeFlow::StateVector::T_DOUBLE2: 265 // The ciTypeFlow pass pushes double, then the half. 266 // Our convention is the same. 267 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 268 return Type::TOP; 269 270 case T_ADDRESS: 271 assert(type->is_return_address(), ""); 272 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 273 274 case T_OBJECT: 275 return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM); 276 277 default: 278 // make sure we did not mix up the cases: 279 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 280 assert(type != ciTypeFlow::StateVector::top_type(), ""); 281 assert(type != ciTypeFlow::StateVector::null_type(), ""); 282 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 283 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 284 assert(!type->is_return_address(), ""); 285 286 return Type::get_const_type(type); 287 } 288 } 289 290 291 //-----------------------make_from_constant------------------------------------ 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 293 int stable_dimension, bool is_narrow_oop, 294 bool is_autobox_cache) { 295 switch (constant.basic_type()) { 296 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 297 case T_CHAR: return TypeInt::make(constant.as_char()); 298 case T_BYTE: return TypeInt::make(constant.as_byte()); 299 case T_SHORT: return TypeInt::make(constant.as_short()); 300 case T_INT: return TypeInt::make(constant.as_int()); 301 case T_LONG: return TypeLong::make(constant.as_long()); 302 case T_FLOAT: return TypeF::make(constant.as_float()); 303 case T_DOUBLE: return TypeD::make(constant.as_double()); 304 case T_ARRAY: 305 case T_OBJECT: { 306 const Type* con_type = nullptr; 307 ciObject* oop_constant = constant.as_object(); 308 if (oop_constant->is_null_object()) { 309 con_type = Type::get_zero_type(T_OBJECT); 310 } else { 311 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 312 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 313 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 314 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 315 } 316 if (stable_dimension > 0) { 317 assert(FoldStableValues, "sanity"); 318 assert(!con_type->is_zero_type(), "default value for stable field"); 319 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 320 } 321 } 322 if (is_narrow_oop) { 323 con_type = con_type->make_narrowoop(); 324 } 325 return con_type; 326 } 327 case T_ILLEGAL: 328 // Invalid ciConstant returned due to OutOfMemoryError in the CI 329 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 330 return nullptr; 331 default: 332 // Fall through to failure 333 return nullptr; 334 } 335 } 336 337 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 338 BasicType conbt = con.basic_type(); 339 switch (conbt) { 340 case T_BOOLEAN: conbt = T_BYTE; break; 341 case T_ARRAY: conbt = T_OBJECT; break; 342 default: break; 343 } 344 switch (loadbt) { 345 case T_BOOLEAN: loadbt = T_BYTE; break; 346 case T_NARROWOOP: loadbt = T_OBJECT; break; 347 case T_ARRAY: loadbt = T_OBJECT; break; 348 case T_ADDRESS: loadbt = T_OBJECT; break; 349 default: break; 350 } 351 if (conbt == loadbt) { 352 if (is_unsigned && conbt == T_BYTE) { 353 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 354 return ciConstant(T_INT, con.as_int() & 0xFF); 355 } else { 356 return con; 357 } 358 } 359 if (conbt == T_SHORT && loadbt == T_CHAR) { 360 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 361 return ciConstant(T_INT, con.as_int() & 0xFFFF); 362 } 363 return ciConstant(); // T_ILLEGAL 364 } 365 366 // Try to constant-fold a stable array element. 367 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 368 BasicType loadbt, bool is_unsigned_load) { 369 // Decode the results of GraphKit::array_element_address. 370 ciConstant element_value = array->element_value_by_offset(off); 371 if (element_value.basic_type() == T_ILLEGAL) { 372 return nullptr; // wrong offset 373 } 374 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 375 376 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 377 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 378 379 if (con.is_valid() && // not a mismatched access 380 !con.is_null_or_zero()) { // not a default value 381 bool is_narrow_oop = (loadbt == T_NARROWOOP); 382 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 383 } 384 return nullptr; 385 } 386 387 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 388 ciField* field; 389 ciType* type = holder->java_mirror_type(); 390 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 391 // Static field 392 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 393 } else { 394 // Instance field 395 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 396 } 397 if (field == nullptr) { 398 return nullptr; // Wrong offset 399 } 400 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 401 } 402 403 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 404 BasicType loadbt, bool is_unsigned_load) { 405 if (!field->is_constant()) { 406 return nullptr; // Non-constant field 407 } 408 ciConstant field_value; 409 if (field->is_static()) { 410 // final static field 411 field_value = field->constant_value(); 412 } else if (holder != nullptr) { 413 // final or stable non-static field 414 // Treat final non-static fields of trusted classes (classes in 415 // java.lang.invoke and sun.invoke packages and subpackages) as 416 // compile time constants. 417 field_value = field->constant_value_of(holder); 418 } 419 if (!field_value.is_valid()) { 420 return nullptr; // Not a constant 421 } 422 423 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 424 425 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 426 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 427 428 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 429 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 430 bool is_narrow_oop = (loadbt == T_NARROWOOP); 431 432 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 433 stable_dimension, is_narrow_oop, 434 field->is_autobox_cache()); 435 if (con_type != nullptr && field->is_call_site_target()) { 436 ciCallSite* call_site = holder->as_call_site(); 437 if (!call_site->is_fully_initialized_constant_call_site()) { 438 ciMethodHandle* target = con.as_object()->as_method_handle(); 439 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 440 } 441 } 442 return con_type; 443 } 444 445 //------------------------------make------------------------------------------- 446 // Create a simple Type, with default empty symbol sets. Then hashcons it 447 // and look for an existing copy in the type dictionary. 448 const Type *Type::make( enum TYPES t ) { 449 return (new Type(t))->hashcons(); 450 } 451 452 //------------------------------cmp-------------------------------------------- 453 bool Type::equals(const Type* t1, const Type* t2) { 454 if (t1->_base != t2->_base) { 455 return false; // Missed badly 456 } 457 458 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 459 return t1->eq(t2); 460 } 461 462 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 463 if (!include_speculative) { 464 return remove_speculative(); 465 } 466 return this; 467 } 468 469 //------------------------------hash------------------------------------------- 470 int Type::uhash( const Type *const t ) { 471 return (int)t->hash(); 472 } 473 474 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 475 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 476 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 477 478 //--------------------------Initialize_shared---------------------------------- 479 void Type::Initialize_shared(Compile* current) { 480 // This method does not need to be locked because the first system 481 // compilations (stub compilations) occur serially. If they are 482 // changed to proceed in parallel, then this section will need 483 // locking. 484 485 Arena* save = current->type_arena(); 486 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 487 488 current->set_type_arena(shared_type_arena); 489 490 // Map the boolean result of Type::equals into a comparator result that CmpKey expects. 491 CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t { 492 return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1; 493 }; 494 495 _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128); 496 current->set_type_dict(_shared_type_dict); 497 498 // Make shared pre-built types. 499 CONTROL = make(Control); // Control only 500 TOP = make(Top); // No values in set 501 MEMORY = make(Memory); // Abstract store only 502 ABIO = make(Abio); // State-of-machine only 503 RETURN_ADDRESS=make(Return_Address); 504 FLOAT = make(FloatBot); // All floats 505 DOUBLE = make(DoubleBot); // All doubles 506 BOTTOM = make(Bottom); // Everything 507 HALF = make(Half); // Placeholder half of doublewide type 508 509 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 510 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 511 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 512 TypeF::ONE = TypeF::make(1.0); // Float 1 513 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 514 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 515 516 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 517 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 518 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 519 TypeD::ONE = TypeD::make(1.0); // Double 1 520 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 521 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 522 523 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 524 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 525 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 526 TypeInt::ZERO = TypeInt::make( 0); // 0 527 TypeInt::ONE = TypeInt::make( 1); // 1 528 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 529 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 530 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 531 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 532 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 533 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 534 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 535 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 536 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 537 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 538 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 539 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 540 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 541 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 542 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 543 TypeInt::TYPE_DOMAIN = TypeInt::INT; 544 // CmpL is overloaded both as the bytecode computation returning 545 // a trinary (-1,0,+1) integer result AND as an efficient long 546 // compare returning optimizer ideal-type flags. 547 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 548 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 549 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 550 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 551 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 552 553 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 554 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 555 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 556 TypeLong::ZERO = TypeLong::make( 0); // 0 557 TypeLong::ONE = TypeLong::make( 1); // 1 558 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 559 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 560 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 561 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 562 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 563 564 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 565 fboth[0] = Type::CONTROL; 566 fboth[1] = Type::CONTROL; 567 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 568 569 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 570 ffalse[0] = Type::CONTROL; 571 ffalse[1] = Type::TOP; 572 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 573 574 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 575 fneither[0] = Type::TOP; 576 fneither[1] = Type::TOP; 577 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 578 579 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 580 ftrue[0] = Type::TOP; 581 ftrue[1] = Type::CONTROL; 582 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 583 584 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 585 floop[0] = Type::CONTROL; 586 floop[1] = TypeInt::INT; 587 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 588 589 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0)); 590 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom); 591 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom); 592 593 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 594 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 595 596 const Type **fmembar = TypeTuple::fields(0); 597 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 598 599 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 600 fsc[0] = TypeInt::CC; 601 fsc[1] = Type::MEMORY; 602 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 603 604 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 605 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 606 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 607 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 608 false, nullptr, Offset(oopDesc::mark_offset_in_bytes())); 609 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 610 false, nullptr, Offset(oopDesc::klass_offset_in_bytes())); 611 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot); 612 613 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom); 614 615 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 616 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 617 618 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 619 620 mreg2type[Op_Node] = Type::BOTTOM; 621 mreg2type[Op_Set ] = nullptr; 622 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 623 mreg2type[Op_RegI] = TypeInt::INT; 624 mreg2type[Op_RegP] = TypePtr::BOTTOM; 625 mreg2type[Op_RegF] = Type::FLOAT; 626 mreg2type[Op_RegD] = Type::DOUBLE; 627 mreg2type[Op_RegL] = TypeLong::LONG; 628 mreg2type[Op_RegFlags] = TypeInt::CC; 629 630 GrowableArray<ciInstanceKlass*> array_interfaces; 631 array_interfaces.push(current->env()->Cloneable_klass()); 632 array_interfaces.push(current->env()->Serializable_klass()); 633 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces); 634 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 635 636 TypeAryPtr::RANGE = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes())); 637 638 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom); 639 640 #ifdef _LP64 641 if (UseCompressedOops) { 642 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 643 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 644 } else 645 #endif 646 { 647 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 648 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom); 649 } 650 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Offset::bottom); 651 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Offset::bottom); 652 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Offset::bottom); 653 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Offset::bottom); 654 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Offset::bottom); 655 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Offset::bottom); 656 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Offset::bottom); 657 TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom); 658 659 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert. 660 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr; 661 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 662 TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS; 663 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 664 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 665 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 666 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 667 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 668 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 669 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 670 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 671 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 672 673 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0)); 674 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0)); 675 676 const Type **fi2c = TypeTuple::fields(2); 677 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 678 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 679 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 680 681 const Type **intpair = TypeTuple::fields(2); 682 intpair[0] = TypeInt::INT; 683 intpair[1] = TypeInt::INT; 684 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 685 686 const Type **longpair = TypeTuple::fields(2); 687 longpair[0] = TypeLong::LONG; 688 longpair[1] = TypeLong::LONG; 689 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 690 691 const Type **intccpair = TypeTuple::fields(2); 692 intccpair[0] = TypeInt::INT; 693 intccpair[1] = TypeInt::CC; 694 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 695 696 const Type **longccpair = TypeTuple::fields(2); 697 longccpair[0] = TypeLong::LONG; 698 longccpair[1] = TypeInt::CC; 699 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 700 701 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 702 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 703 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 704 _const_basic_type[T_CHAR] = TypeInt::CHAR; 705 _const_basic_type[T_BYTE] = TypeInt::BYTE; 706 _const_basic_type[T_SHORT] = TypeInt::SHORT; 707 _const_basic_type[T_INT] = TypeInt::INT; 708 _const_basic_type[T_LONG] = TypeLong::LONG; 709 _const_basic_type[T_FLOAT] = Type::FLOAT; 710 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 711 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 712 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 713 _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM; 714 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 715 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 716 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 717 718 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 719 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 720 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 721 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 722 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 723 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 724 _zero_type[T_INT] = TypeInt::ZERO; 725 _zero_type[T_LONG] = TypeLong::ZERO; 726 _zero_type[T_FLOAT] = TypeF::ZERO; 727 _zero_type[T_DOUBLE] = TypeD::ZERO; 728 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 729 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 730 _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR; 731 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 732 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 733 734 // get_zero_type() should not happen for T_CONFLICT 735 _zero_type[T_CONFLICT]= nullptr; 736 737 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons(); 738 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 739 740 if (Matcher::supports_scalable_vector()) { 741 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 742 } 743 744 // Vector predefined types, it needs initialized _const_basic_type[]. 745 if (Matcher::vector_size_supported(T_BYTE, 4)) { 746 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 747 } 748 if (Matcher::vector_size_supported(T_FLOAT, 2)) { 749 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2); 750 } 751 if (Matcher::vector_size_supported(T_FLOAT, 4)) { 752 TypeVect::VECTX = TypeVect::make(T_FLOAT, 4); 753 } 754 if (Matcher::vector_size_supported(T_FLOAT, 8)) { 755 TypeVect::VECTY = TypeVect::make(T_FLOAT, 8); 756 } 757 if (Matcher::vector_size_supported(T_FLOAT, 16)) { 758 TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16); 759 } 760 761 mreg2type[Op_VecA] = TypeVect::VECTA; 762 mreg2type[Op_VecS] = TypeVect::VECTS; 763 mreg2type[Op_VecD] = TypeVect::VECTD; 764 mreg2type[Op_VecX] = TypeVect::VECTX; 765 mreg2type[Op_VecY] = TypeVect::VECTY; 766 mreg2type[Op_VecZ] = TypeVect::VECTZ; 767 768 // Restore working type arena. 769 current->set_type_arena(save); 770 current->set_type_dict(nullptr); 771 } 772 773 //------------------------------Initialize------------------------------------- 774 void Type::Initialize(Compile* current) { 775 assert(current->type_arena() != nullptr, "must have created type arena"); 776 777 if (_shared_type_dict == nullptr) { 778 Initialize_shared(current); 779 } 780 781 Arena* type_arena = current->type_arena(); 782 783 // Create the hash-cons'ing dictionary with top-level storage allocation 784 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 785 current->set_type_dict(tdic); 786 } 787 788 //------------------------------hashcons--------------------------------------- 789 // Do the hash-cons trick. If the Type already exists in the type table, 790 // delete the current Type and return the existing Type. Otherwise stick the 791 // current Type in the Type table. 792 const Type *Type::hashcons(void) { 793 debug_only(base()); // Check the assertion in Type::base(). 794 // Look up the Type in the Type dictionary 795 Dict *tdic = type_dict(); 796 Type* old = (Type*)(tdic->Insert(this, this, false)); 797 if( old ) { // Pre-existing Type? 798 if( old != this ) // Yes, this guy is not the pre-existing? 799 delete this; // Yes, Nuke this guy 800 assert( old->_dual, "" ); 801 return old; // Return pre-existing 802 } 803 804 // Every type has a dual (to make my lattice symmetric). 805 // Since we just discovered a new Type, compute its dual right now. 806 assert( !_dual, "" ); // No dual yet 807 _dual = xdual(); // Compute the dual 808 if (equals(this, _dual)) { // Handle self-symmetric 809 if (_dual != this) { 810 delete _dual; 811 _dual = this; 812 } 813 return this; 814 } 815 assert( !_dual->_dual, "" ); // No reverse dual yet 816 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 817 // New Type, insert into Type table 818 tdic->Insert((void*)_dual,(void*)_dual); 819 ((Type*)_dual)->_dual = this; // Finish up being symmetric 820 #ifdef ASSERT 821 Type *dual_dual = (Type*)_dual->xdual(); 822 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 823 delete dual_dual; 824 #endif 825 return this; // Return new Type 826 } 827 828 //------------------------------eq--------------------------------------------- 829 // Structural equality check for Type representations 830 bool Type::eq( const Type * ) const { 831 return true; // Nothing else can go wrong 832 } 833 834 //------------------------------hash------------------------------------------- 835 // Type-specific hashing function. 836 uint Type::hash(void) const { 837 return _base; 838 } 839 840 //------------------------------is_finite-------------------------------------- 841 // Has a finite value 842 bool Type::is_finite() const { 843 return false; 844 } 845 846 //------------------------------is_nan----------------------------------------- 847 // Is not a number (NaN) 848 bool Type::is_nan() const { 849 return false; 850 } 851 852 #ifdef ASSERT 853 class VerifyMeet; 854 class VerifyMeetResult : public ArenaObj { 855 friend class VerifyMeet; 856 friend class Type; 857 private: 858 class VerifyMeetResultEntry { 859 private: 860 const Type* _in1; 861 const Type* _in2; 862 const Type* _res; 863 public: 864 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res): 865 _in1(in1), _in2(in2), _res(res) { 866 } 867 VerifyMeetResultEntry(): 868 _in1(nullptr), _in2(nullptr), _res(nullptr) { 869 } 870 871 bool operator==(const VerifyMeetResultEntry& rhs) const { 872 return _in1 == rhs._in1 && 873 _in2 == rhs._in2 && 874 _res == rhs._res; 875 } 876 877 bool operator!=(const VerifyMeetResultEntry& rhs) const { 878 return !(rhs == *this); 879 } 880 881 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) { 882 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) { 883 return -1; 884 } else if (v1._in1 == v2._in1) { 885 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) { 886 return -1; 887 } else if (v1._in2 == v2._in2) { 888 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result"); 889 return 0; 890 } 891 return 1; 892 } 893 return 1; 894 } 895 const Type* res() const { return _res; } 896 }; 897 uint _depth; 898 GrowableArray<VerifyMeetResultEntry> _cache; 899 900 // With verification code, the meet of A and B causes the computation of: 901 // 1- meet(A, B) 902 // 2- meet(B, A) 903 // 3- meet(dual(meet(A, B)), dual(A)) 904 // 4- meet(dual(meet(A, B)), dual(B)) 905 // 5- meet(dual(A), dual(B)) 906 // 6- meet(dual(B), dual(A)) 907 // 7- meet(dual(meet(dual(A), dual(B))), A) 908 // 8- meet(dual(meet(dual(A), dual(B))), B) 909 // 910 // In addition the meet of A[] and B[] requires the computation of the meet of A and B. 911 // 912 // The meet of A[] and B[] triggers the computation of: 913 // 1- meet(A[], B[][) 914 // 1.1- meet(A, B) 915 // 1.2- meet(B, A) 916 // 1.3- meet(dual(meet(A, B)), dual(A)) 917 // 1.4- meet(dual(meet(A, B)), dual(B)) 918 // 1.5- meet(dual(A), dual(B)) 919 // 1.6- meet(dual(B), dual(A)) 920 // 1.7- meet(dual(meet(dual(A), dual(B))), A) 921 // 1.8- meet(dual(meet(dual(A), dual(B))), B) 922 // 2- meet(B[], A[]) 923 // 2.1- meet(B, A) = 1.2 924 // 2.2- meet(A, B) = 1.1 925 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4 926 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3 927 // 2.5- meet(dual(B), dual(A)) = 1.6 928 // 2.6- meet(dual(A), dual(B)) = 1.5 929 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8 930 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7 931 // etc. 932 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number 933 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the 934 // duration of the meet at the root of the recursive calls. 935 // 936 const Type* meet(const Type* t1, const Type* t2) { 937 bool found = false; 938 const VerifyMeetResultEntry meet(t1, t2, nullptr); 939 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 940 const Type* res = nullptr; 941 if (found) { 942 res = _cache.at(pos).res(); 943 } else { 944 res = t1->xmeet(t2); 945 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 946 found = false; 947 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 948 assert(found, "should be in table after it's added"); 949 } 950 return res; 951 } 952 953 void add(const Type* t1, const Type* t2, const Type* res) { 954 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 955 } 956 957 bool empty_cache() const { 958 return _cache.length() == 0; 959 } 960 public: 961 VerifyMeetResult(Compile* C) : 962 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) { 963 } 964 }; 965 966 void Type::assert_type_verify_empty() const { 967 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded"); 968 } 969 970 class VerifyMeet { 971 private: 972 Compile* _C; 973 public: 974 VerifyMeet(Compile* C) : _C(C) { 975 if (C->_type_verify == nullptr) { 976 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C); 977 } 978 _C->_type_verify->_depth++; 979 } 980 981 ~VerifyMeet() { 982 assert(_C->_type_verify->_depth != 0, ""); 983 _C->_type_verify->_depth--; 984 if (_C->_type_verify->_depth == 0) { 985 _C->_type_verify->_cache.trunc_to(0); 986 } 987 } 988 989 const Type* meet(const Type* t1, const Type* t2) const { 990 return _C->_type_verify->meet(t1, t2); 991 } 992 993 void add(const Type* t1, const Type* t2, const Type* res) const { 994 _C->_type_verify->add(t1, t2, res); 995 } 996 }; 997 998 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const { 999 Compile* C = Compile::current(); 1000 const Type* mt2 = verify.meet(t, this); 1001 1002 // Verify that: 1003 // this meet t == t meet this 1004 if (mt != mt2) { 1005 tty->print_cr("=== Meet Not Commutative ==="); 1006 tty->print("t = "); t->dump(); tty->cr(); 1007 tty->print("this = "); dump(); tty->cr(); 1008 tty->print("t meet this = "); mt2->dump(); tty->cr(); 1009 tty->print("this meet t = "); mt->dump(); tty->cr(); 1010 fatal("meet not commutative"); 1011 } 1012 const Type* dual_join = mt->_dual; 1013 const Type* t2t = verify.meet(dual_join,t->_dual); 1014 const Type* t2this = verify.meet(dual_join,this->_dual); 1015 1016 // Interface meet Oop is Not Symmetric: 1017 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 1018 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 1019 1020 // Verify that: 1021 // !(t meet this) meet !t == 1022 // (!t join !this) meet !t == !t 1023 // and 1024 // !(t meet this) meet !this == 1025 // (!t join !this) meet !this == !this 1026 if (t2t != t->_dual || t2this != this->_dual) { 1027 tty->print_cr("=== Meet Not Symmetric ==="); 1028 tty->print("t = "); t->dump(); tty->cr(); 1029 tty->print("this= "); dump(); tty->cr(); 1030 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 1031 1032 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 1033 tty->print("this_dual= "); _dual->dump(); tty->cr(); 1034 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 1035 1036 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 1037 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 1038 1039 fatal("meet not symmetric"); 1040 } 1041 } 1042 #endif 1043 1044 //------------------------------meet------------------------------------------- 1045 // Compute the MEET of two types. NOT virtual. It enforces that meet is 1046 // commutative and the lattice is symmetric. 1047 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 1048 if (isa_narrowoop() && t->isa_narrowoop()) { 1049 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 1050 return result->make_narrowoop(); 1051 } 1052 if (isa_narrowklass() && t->isa_narrowklass()) { 1053 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 1054 return result->make_narrowklass(); 1055 } 1056 1057 #ifdef ASSERT 1058 Compile* C = Compile::current(); 1059 VerifyMeet verify(C); 1060 #endif 1061 1062 const Type *this_t = maybe_remove_speculative(include_speculative); 1063 t = t->maybe_remove_speculative(include_speculative); 1064 1065 const Type *mt = this_t->xmeet(t); 1066 #ifdef ASSERT 1067 verify.add(this_t, t, mt); 1068 if (isa_narrowoop() || t->isa_narrowoop()) { 1069 return mt; 1070 } 1071 if (isa_narrowklass() || t->isa_narrowklass()) { 1072 return mt; 1073 } 1074 this_t->check_symmetrical(t, mt, verify); 1075 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual); 1076 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify); 1077 #endif 1078 return mt; 1079 } 1080 1081 //------------------------------xmeet------------------------------------------ 1082 // Compute the MEET of two types. It returns a new Type object. 1083 const Type *Type::xmeet( const Type *t ) const { 1084 // Perform a fast test for common case; meeting the same types together. 1085 if( this == t ) return this; // Meeting same type-rep? 1086 1087 // Meeting TOP with anything? 1088 if( _base == Top ) return t; 1089 1090 // Meeting BOTTOM with anything? 1091 if( _base == Bottom ) return BOTTOM; 1092 1093 // Current "this->_base" is one of: Bad, Multi, Control, Top, 1094 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 1095 switch (t->base()) { // Switch on original type 1096 1097 // Cut in half the number of cases I must handle. Only need cases for when 1098 // the given enum "t->type" is less than or equal to the local enum "type". 1099 case FloatCon: 1100 case DoubleCon: 1101 case Int: 1102 case Long: 1103 return t->xmeet(this); 1104 1105 case OopPtr: 1106 return t->xmeet(this); 1107 1108 case InstPtr: 1109 return t->xmeet(this); 1110 1111 case MetadataPtr: 1112 case KlassPtr: 1113 case InstKlassPtr: 1114 case AryKlassPtr: 1115 return t->xmeet(this); 1116 1117 case AryPtr: 1118 return t->xmeet(this); 1119 1120 case NarrowOop: 1121 return t->xmeet(this); 1122 1123 case NarrowKlass: 1124 return t->xmeet(this); 1125 1126 case Bad: // Type check 1127 default: // Bogus type not in lattice 1128 typerr(t); 1129 return Type::BOTTOM; 1130 1131 case Bottom: // Ye Olde Default 1132 return t; 1133 1134 case FloatTop: 1135 if( _base == FloatTop ) return this; 1136 case FloatBot: // Float 1137 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 1138 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 1139 typerr(t); 1140 return Type::BOTTOM; 1141 1142 case DoubleTop: 1143 if( _base == DoubleTop ) return this; 1144 case DoubleBot: // Double 1145 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 1146 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 1147 typerr(t); 1148 return Type::BOTTOM; 1149 1150 // These next few cases must match exactly or it is a compile-time error. 1151 case Control: // Control of code 1152 case Abio: // State of world outside of program 1153 case Memory: 1154 if( _base == t->_base ) return this; 1155 typerr(t); 1156 return Type::BOTTOM; 1157 1158 case Top: // Top of the lattice 1159 return this; 1160 } 1161 1162 // The type is unchanged 1163 return this; 1164 } 1165 1166 //-----------------------------filter------------------------------------------ 1167 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 1168 const Type* ft = join_helper(kills, include_speculative); 1169 if (ft->empty()) 1170 return Type::TOP; // Canonical empty value 1171 return ft; 1172 } 1173 1174 //------------------------------xdual------------------------------------------ 1175 const Type *Type::xdual() const { 1176 // Note: the base() accessor asserts the sanity of _base. 1177 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1178 return new Type(_type_info[_base].dual_type); 1179 } 1180 1181 //------------------------------has_memory------------------------------------- 1182 bool Type::has_memory() const { 1183 Type::TYPES tx = base(); 1184 if (tx == Memory) return true; 1185 if (tx == Tuple) { 1186 const TypeTuple *t = is_tuple(); 1187 for (uint i=0; i < t->cnt(); i++) { 1188 tx = t->field_at(i)->base(); 1189 if (tx == Memory) return true; 1190 } 1191 } 1192 return false; 1193 } 1194 1195 #ifndef PRODUCT 1196 //------------------------------dump2------------------------------------------ 1197 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1198 st->print("%s", _type_info[_base].msg); 1199 } 1200 1201 //------------------------------dump------------------------------------------- 1202 void Type::dump_on(outputStream *st) const { 1203 ResourceMark rm; 1204 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1205 dump2(d,1, st); 1206 if (is_ptr_to_narrowoop()) { 1207 st->print(" [narrow]"); 1208 } else if (is_ptr_to_narrowklass()) { 1209 st->print(" [narrowklass]"); 1210 } 1211 } 1212 1213 //----------------------------------------------------------------------------- 1214 const char* Type::str(const Type* t) { 1215 stringStream ss; 1216 t->dump_on(&ss); 1217 return ss.as_string(); 1218 } 1219 #endif 1220 1221 //------------------------------singleton-------------------------------------- 1222 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1223 // constants (Ldi nodes). Singletons are integer, float or double constants. 1224 bool Type::singleton(void) const { 1225 return _base == Top || _base == Half; 1226 } 1227 1228 //------------------------------empty------------------------------------------ 1229 // TRUE if Type is a type with no values, FALSE otherwise. 1230 bool Type::empty(void) const { 1231 switch (_base) { 1232 case DoubleTop: 1233 case FloatTop: 1234 case Top: 1235 return true; 1236 1237 case Half: 1238 case Abio: 1239 case Return_Address: 1240 case Memory: 1241 case Bottom: 1242 case FloatBot: 1243 case DoubleBot: 1244 return false; // never a singleton, therefore never empty 1245 1246 default: 1247 ShouldNotReachHere(); 1248 return false; 1249 } 1250 } 1251 1252 //------------------------------dump_stats------------------------------------- 1253 // Dump collected statistics to stderr 1254 #ifndef PRODUCT 1255 void Type::dump_stats() { 1256 tty->print("Types made: %d\n", type_dict()->Size()); 1257 } 1258 #endif 1259 1260 //------------------------------category--------------------------------------- 1261 #ifndef PRODUCT 1262 Type::Category Type::category() const { 1263 const TypeTuple* tuple; 1264 switch (base()) { 1265 case Type::Int: 1266 case Type::Long: 1267 case Type::Half: 1268 case Type::NarrowOop: 1269 case Type::NarrowKlass: 1270 case Type::Array: 1271 case Type::VectorA: 1272 case Type::VectorS: 1273 case Type::VectorD: 1274 case Type::VectorX: 1275 case Type::VectorY: 1276 case Type::VectorZ: 1277 case Type::VectorMask: 1278 case Type::AnyPtr: 1279 case Type::RawPtr: 1280 case Type::OopPtr: 1281 case Type::InstPtr: 1282 case Type::AryPtr: 1283 case Type::MetadataPtr: 1284 case Type::KlassPtr: 1285 case Type::InstKlassPtr: 1286 case Type::AryKlassPtr: 1287 case Type::Function: 1288 case Type::Return_Address: 1289 case Type::FloatTop: 1290 case Type::FloatCon: 1291 case Type::FloatBot: 1292 case Type::DoubleTop: 1293 case Type::DoubleCon: 1294 case Type::DoubleBot: 1295 return Category::Data; 1296 case Type::Memory: 1297 return Category::Memory; 1298 case Type::Control: 1299 return Category::Control; 1300 case Type::Top: 1301 case Type::Abio: 1302 case Type::Bottom: 1303 return Category::Other; 1304 case Type::Bad: 1305 case Type::lastype: 1306 return Category::Undef; 1307 case Type::Tuple: 1308 // Recursive case. Return CatMixed if the tuple contains types of 1309 // different categories (e.g. CallStaticJavaNode's type), or the specific 1310 // category if all types are of the same category (e.g. IfNode's type). 1311 tuple = is_tuple(); 1312 if (tuple->cnt() == 0) { 1313 return Category::Undef; 1314 } else { 1315 Category first = tuple->field_at(0)->category(); 1316 for (uint i = 1; i < tuple->cnt(); i++) { 1317 if (tuple->field_at(i)->category() != first) { 1318 return Category::Mixed; 1319 } 1320 } 1321 return first; 1322 } 1323 default: 1324 assert(false, "unmatched base type: all base types must be categorized"); 1325 } 1326 return Category::Undef; 1327 } 1328 1329 bool Type::has_category(Type::Category cat) const { 1330 if (category() == cat) { 1331 return true; 1332 } 1333 if (category() == Category::Mixed) { 1334 const TypeTuple* tuple = is_tuple(); 1335 for (uint i = 0; i < tuple->cnt(); i++) { 1336 if (tuple->field_at(i)->has_category(cat)) { 1337 return true; 1338 } 1339 } 1340 } 1341 return false; 1342 } 1343 #endif 1344 1345 //------------------------------typerr----------------------------------------- 1346 void Type::typerr( const Type *t ) const { 1347 #ifndef PRODUCT 1348 tty->print("\nError mixing types: "); 1349 dump(); 1350 tty->print(" and "); 1351 t->dump(); 1352 tty->print("\n"); 1353 #endif 1354 ShouldNotReachHere(); 1355 } 1356 1357 1358 //============================================================================= 1359 // Convenience common pre-built types. 1360 const TypeF *TypeF::MAX; // Floating point max 1361 const TypeF *TypeF::MIN; // Floating point min 1362 const TypeF *TypeF::ZERO; // Floating point zero 1363 const TypeF *TypeF::ONE; // Floating point one 1364 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1365 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1366 1367 //------------------------------make------------------------------------------- 1368 // Create a float constant 1369 const TypeF *TypeF::make(float f) { 1370 return (TypeF*)(new TypeF(f))->hashcons(); 1371 } 1372 1373 //------------------------------meet------------------------------------------- 1374 // Compute the MEET of two types. It returns a new Type object. 1375 const Type *TypeF::xmeet( const Type *t ) const { 1376 // Perform a fast test for common case; meeting the same types together. 1377 if( this == t ) return this; // Meeting same type-rep? 1378 1379 // Current "this->_base" is FloatCon 1380 switch (t->base()) { // Switch on original type 1381 case AnyPtr: // Mixing with oops happens when javac 1382 case RawPtr: // reuses local variables 1383 case OopPtr: 1384 case InstPtr: 1385 case AryPtr: 1386 case MetadataPtr: 1387 case KlassPtr: 1388 case InstKlassPtr: 1389 case AryKlassPtr: 1390 case NarrowOop: 1391 case NarrowKlass: 1392 case Int: 1393 case Long: 1394 case DoubleTop: 1395 case DoubleCon: 1396 case DoubleBot: 1397 case Bottom: // Ye Olde Default 1398 return Type::BOTTOM; 1399 1400 case FloatBot: 1401 return t; 1402 1403 default: // All else is a mistake 1404 typerr(t); 1405 1406 case FloatCon: // Float-constant vs Float-constant? 1407 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1408 // must compare bitwise as positive zero, negative zero and NaN have 1409 // all the same representation in C++ 1410 return FLOAT; // Return generic float 1411 // Equal constants 1412 case Top: 1413 case FloatTop: 1414 break; // Return the float constant 1415 } 1416 return this; // Return the float constant 1417 } 1418 1419 //------------------------------xdual------------------------------------------ 1420 // Dual: symmetric 1421 const Type *TypeF::xdual() const { 1422 return this; 1423 } 1424 1425 //------------------------------eq--------------------------------------------- 1426 // Structural equality check for Type representations 1427 bool TypeF::eq(const Type *t) const { 1428 // Bitwise comparison to distinguish between +/-0. These values must be treated 1429 // as different to be consistent with C1 and the interpreter. 1430 return (jint_cast(_f) == jint_cast(t->getf())); 1431 } 1432 1433 //------------------------------hash------------------------------------------- 1434 // Type-specific hashing function. 1435 uint TypeF::hash(void) const { 1436 return *(uint*)(&_f); 1437 } 1438 1439 //------------------------------is_finite-------------------------------------- 1440 // Has a finite value 1441 bool TypeF::is_finite() const { 1442 return g_isfinite(getf()) != 0; 1443 } 1444 1445 //------------------------------is_nan----------------------------------------- 1446 // Is not a number (NaN) 1447 bool TypeF::is_nan() const { 1448 return g_isnan(getf()) != 0; 1449 } 1450 1451 //------------------------------dump2------------------------------------------ 1452 // Dump float constant Type 1453 #ifndef PRODUCT 1454 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1455 Type::dump2(d,depth, st); 1456 st->print("%f", _f); 1457 } 1458 #endif 1459 1460 //------------------------------singleton-------------------------------------- 1461 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1462 // constants (Ldi nodes). Singletons are integer, float or double constants 1463 // or a single symbol. 1464 bool TypeF::singleton(void) const { 1465 return true; // Always a singleton 1466 } 1467 1468 bool TypeF::empty(void) const { 1469 return false; // always exactly a singleton 1470 } 1471 1472 //============================================================================= 1473 // Convenience common pre-built types. 1474 const TypeD *TypeD::MAX; // Floating point max 1475 const TypeD *TypeD::MIN; // Floating point min 1476 const TypeD *TypeD::ZERO; // Floating point zero 1477 const TypeD *TypeD::ONE; // Floating point one 1478 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1479 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1480 1481 //------------------------------make------------------------------------------- 1482 const TypeD *TypeD::make(double d) { 1483 return (TypeD*)(new TypeD(d))->hashcons(); 1484 } 1485 1486 //------------------------------meet------------------------------------------- 1487 // Compute the MEET of two types. It returns a new Type object. 1488 const Type *TypeD::xmeet( const Type *t ) const { 1489 // Perform a fast test for common case; meeting the same types together. 1490 if( this == t ) return this; // Meeting same type-rep? 1491 1492 // Current "this->_base" is DoubleCon 1493 switch (t->base()) { // Switch on original type 1494 case AnyPtr: // Mixing with oops happens when javac 1495 case RawPtr: // reuses local variables 1496 case OopPtr: 1497 case InstPtr: 1498 case AryPtr: 1499 case MetadataPtr: 1500 case KlassPtr: 1501 case InstKlassPtr: 1502 case AryKlassPtr: 1503 case NarrowOop: 1504 case NarrowKlass: 1505 case Int: 1506 case Long: 1507 case FloatTop: 1508 case FloatCon: 1509 case FloatBot: 1510 case Bottom: // Ye Olde Default 1511 return Type::BOTTOM; 1512 1513 case DoubleBot: 1514 return t; 1515 1516 default: // All else is a mistake 1517 typerr(t); 1518 1519 case DoubleCon: // Double-constant vs Double-constant? 1520 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1521 return DOUBLE; // Return generic double 1522 case Top: 1523 case DoubleTop: 1524 break; 1525 } 1526 return this; // Return the double constant 1527 } 1528 1529 //------------------------------xdual------------------------------------------ 1530 // Dual: symmetric 1531 const Type *TypeD::xdual() const { 1532 return this; 1533 } 1534 1535 //------------------------------eq--------------------------------------------- 1536 // Structural equality check for Type representations 1537 bool TypeD::eq(const Type *t) const { 1538 // Bitwise comparison to distinguish between +/-0. These values must be treated 1539 // as different to be consistent with C1 and the interpreter. 1540 return (jlong_cast(_d) == jlong_cast(t->getd())); 1541 } 1542 1543 //------------------------------hash------------------------------------------- 1544 // Type-specific hashing function. 1545 uint TypeD::hash(void) const { 1546 return *(uint*)(&_d); 1547 } 1548 1549 //------------------------------is_finite-------------------------------------- 1550 // Has a finite value 1551 bool TypeD::is_finite() const { 1552 return g_isfinite(getd()) != 0; 1553 } 1554 1555 //------------------------------is_nan----------------------------------------- 1556 // Is not a number (NaN) 1557 bool TypeD::is_nan() const { 1558 return g_isnan(getd()) != 0; 1559 } 1560 1561 //------------------------------dump2------------------------------------------ 1562 // Dump double constant Type 1563 #ifndef PRODUCT 1564 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1565 Type::dump2(d,depth,st); 1566 st->print("%f", _d); 1567 } 1568 #endif 1569 1570 //------------------------------singleton-------------------------------------- 1571 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1572 // constants (Ldi nodes). Singletons are integer, float or double constants 1573 // or a single symbol. 1574 bool TypeD::singleton(void) const { 1575 return true; // Always a singleton 1576 } 1577 1578 bool TypeD::empty(void) const { 1579 return false; // always exactly a singleton 1580 } 1581 1582 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1583 if (bt == T_INT) { 1584 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1585 } 1586 assert(bt == T_LONG, "basic type not an int or long"); 1587 return TypeLong::make(lo, hi, w); 1588 } 1589 1590 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1591 if (bt == T_INT) { 1592 return is_int()->get_con(); 1593 } 1594 assert(bt == T_LONG, "basic type not an int or long"); 1595 return is_long()->get_con(); 1596 } 1597 1598 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1599 if (bt == T_INT) { 1600 return TypeInt::INT; 1601 } 1602 assert(bt == T_LONG, "basic type not an int or long"); 1603 return TypeLong::LONG; 1604 } 1605 1606 const TypeInteger* TypeInteger::zero(BasicType bt) { 1607 if (bt == T_INT) { 1608 return TypeInt::ZERO; 1609 } 1610 assert(bt == T_LONG, "basic type not an int or long"); 1611 return TypeLong::ZERO; 1612 } 1613 1614 const TypeInteger* TypeInteger::one(BasicType bt) { 1615 if (bt == T_INT) { 1616 return TypeInt::ONE; 1617 } 1618 assert(bt == T_LONG, "basic type not an int or long"); 1619 return TypeLong::ONE; 1620 } 1621 1622 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1623 if (bt == T_INT) { 1624 return TypeInt::MINUS_1; 1625 } 1626 assert(bt == T_LONG, "basic type not an int or long"); 1627 return TypeLong::MINUS_1; 1628 } 1629 1630 //============================================================================= 1631 // Convenience common pre-built types. 1632 const TypeInt *TypeInt::MAX; // INT_MAX 1633 const TypeInt *TypeInt::MIN; // INT_MIN 1634 const TypeInt *TypeInt::MINUS_1;// -1 1635 const TypeInt *TypeInt::ZERO; // 0 1636 const TypeInt *TypeInt::ONE; // 1 1637 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1638 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1639 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1640 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1641 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1642 const TypeInt *TypeInt::CC_LE; // [-1,0] 1643 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1644 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1645 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1646 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1647 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1648 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1649 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1650 const TypeInt *TypeInt::INT; // 32-bit integers 1651 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1652 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1653 1654 //------------------------------TypeInt---------------------------------------- 1655 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) { 1656 } 1657 1658 //------------------------------make------------------------------------------- 1659 const TypeInt *TypeInt::make( jint lo ) { 1660 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1661 } 1662 1663 static int normalize_int_widen( jint lo, jint hi, int w ) { 1664 // Certain normalizations keep us sane when comparing types. 1665 // The 'SMALLINT' covers constants and also CC and its relatives. 1666 if (lo <= hi) { 1667 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1668 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1669 } else { 1670 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1671 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1672 } 1673 return w; 1674 } 1675 1676 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1677 w = normalize_int_widen(lo, hi, w); 1678 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1679 } 1680 1681 //------------------------------meet------------------------------------------- 1682 // Compute the MEET of two types. It returns a new Type representation object 1683 // with reference count equal to the number of Types pointing at it. 1684 // Caller should wrap a Types around it. 1685 const Type *TypeInt::xmeet( const Type *t ) const { 1686 // Perform a fast test for common case; meeting the same types together. 1687 if( this == t ) return this; // Meeting same type? 1688 1689 // Currently "this->_base" is a TypeInt 1690 switch (t->base()) { // Switch on original type 1691 case AnyPtr: // Mixing with oops happens when javac 1692 case RawPtr: // reuses local variables 1693 case OopPtr: 1694 case InstPtr: 1695 case AryPtr: 1696 case MetadataPtr: 1697 case KlassPtr: 1698 case InstKlassPtr: 1699 case AryKlassPtr: 1700 case NarrowOop: 1701 case NarrowKlass: 1702 case Long: 1703 case FloatTop: 1704 case FloatCon: 1705 case FloatBot: 1706 case DoubleTop: 1707 case DoubleCon: 1708 case DoubleBot: 1709 case Bottom: // Ye Olde Default 1710 return Type::BOTTOM; 1711 default: // All else is a mistake 1712 typerr(t); 1713 case Top: // No change 1714 return this; 1715 case Int: // Int vs Int? 1716 break; 1717 } 1718 1719 // Expand covered set 1720 const TypeInt *r = t->is_int(); 1721 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1722 } 1723 1724 //------------------------------xdual------------------------------------------ 1725 // Dual: reverse hi & lo; flip widen 1726 const Type *TypeInt::xdual() const { 1727 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1728 return new TypeInt(_hi,_lo,w); 1729 } 1730 1731 //------------------------------widen------------------------------------------ 1732 // Only happens for optimistic top-down optimizations. 1733 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1734 // Coming from TOP or such; no widening 1735 if( old->base() != Int ) return this; 1736 const TypeInt *ot = old->is_int(); 1737 1738 // If new guy is equal to old guy, no widening 1739 if( _lo == ot->_lo && _hi == ot->_hi ) 1740 return old; 1741 1742 // If new guy contains old, then we widened 1743 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1744 // New contains old 1745 // If new guy is already wider than old, no widening 1746 if( _widen > ot->_widen ) return this; 1747 // If old guy was a constant, do not bother 1748 if (ot->_lo == ot->_hi) return this; 1749 // Now widen new guy. 1750 // Check for widening too far 1751 if (_widen == WidenMax) { 1752 int max = max_jint; 1753 int min = min_jint; 1754 if (limit->isa_int()) { 1755 max = limit->is_int()->_hi; 1756 min = limit->is_int()->_lo; 1757 } 1758 if (min < _lo && _hi < max) { 1759 // If neither endpoint is extremal yet, push out the endpoint 1760 // which is closer to its respective limit. 1761 if (_lo >= 0 || // easy common case 1762 ((juint)_lo - min) >= ((juint)max - _hi)) { 1763 // Try to widen to an unsigned range type of 31 bits: 1764 return make(_lo, max, WidenMax); 1765 } else { 1766 return make(min, _hi, WidenMax); 1767 } 1768 } 1769 return TypeInt::INT; 1770 } 1771 // Returned widened new guy 1772 return make(_lo,_hi,_widen+1); 1773 } 1774 1775 // If old guy contains new, then we probably widened too far & dropped to 1776 // bottom. Return the wider fellow. 1777 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1778 return old; 1779 1780 //fatal("Integer value range is not subset"); 1781 //return this; 1782 return TypeInt::INT; 1783 } 1784 1785 //------------------------------narrow--------------------------------------- 1786 // Only happens for pessimistic optimizations. 1787 const Type *TypeInt::narrow( const Type *old ) const { 1788 if (_lo >= _hi) return this; // already narrow enough 1789 if (old == nullptr) return this; 1790 const TypeInt* ot = old->isa_int(); 1791 if (ot == nullptr) return this; 1792 jint olo = ot->_lo; 1793 jint ohi = ot->_hi; 1794 1795 // If new guy is equal to old guy, no narrowing 1796 if (_lo == olo && _hi == ohi) return old; 1797 1798 // If old guy was maximum range, allow the narrowing 1799 if (olo == min_jint && ohi == max_jint) return this; 1800 1801 if (_lo < olo || _hi > ohi) 1802 return this; // doesn't narrow; pretty weird 1803 1804 // The new type narrows the old type, so look for a "death march". 1805 // See comments on PhaseTransform::saturate. 1806 juint nrange = (juint)_hi - _lo; 1807 juint orange = (juint)ohi - olo; 1808 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1809 // Use the new type only if the range shrinks a lot. 1810 // We do not want the optimizer computing 2^31 point by point. 1811 return old; 1812 } 1813 1814 return this; 1815 } 1816 1817 //-----------------------------filter------------------------------------------ 1818 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1819 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1820 if (ft == nullptr || ft->empty()) 1821 return Type::TOP; // Canonical empty value 1822 if (ft->_widen < this->_widen) { 1823 // Do not allow the value of kill->_widen to affect the outcome. 1824 // The widen bits must be allowed to run freely through the graph. 1825 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1826 } 1827 return ft; 1828 } 1829 1830 //------------------------------eq--------------------------------------------- 1831 // Structural equality check for Type representations 1832 bool TypeInt::eq( const Type *t ) const { 1833 const TypeInt *r = t->is_int(); // Handy access 1834 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1835 } 1836 1837 //------------------------------hash------------------------------------------- 1838 // Type-specific hashing function. 1839 uint TypeInt::hash(void) const { 1840 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int; 1841 } 1842 1843 //------------------------------is_finite-------------------------------------- 1844 // Has a finite value 1845 bool TypeInt::is_finite() const { 1846 return true; 1847 } 1848 1849 //------------------------------dump2------------------------------------------ 1850 // Dump TypeInt 1851 #ifndef PRODUCT 1852 static const char* intname(char* buf, size_t buf_size, jint n) { 1853 if (n == min_jint) 1854 return "min"; 1855 else if (n < min_jint + 10000) 1856 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint); 1857 else if (n == max_jint) 1858 return "max"; 1859 else if (n > max_jint - 10000) 1860 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n); 1861 else 1862 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n); 1863 return buf; 1864 } 1865 1866 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1867 char buf[40], buf2[40]; 1868 if (_lo == min_jint && _hi == max_jint) 1869 st->print("int"); 1870 else if (is_con()) 1871 st->print("int:%s", intname(buf, sizeof(buf), get_con())); 1872 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1873 st->print("bool"); 1874 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1875 st->print("byte"); 1876 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1877 st->print("char"); 1878 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1879 st->print("short"); 1880 else if (_hi == max_jint) 1881 st->print("int:>=%s", intname(buf, sizeof(buf), _lo)); 1882 else if (_lo == min_jint) 1883 st->print("int:<=%s", intname(buf, sizeof(buf), _hi)); 1884 else 1885 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi)); 1886 1887 if (_widen != 0 && this != TypeInt::INT) 1888 st->print(":%.*s", _widen, "wwww"); 1889 } 1890 #endif 1891 1892 //------------------------------singleton-------------------------------------- 1893 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1894 // constants. 1895 bool TypeInt::singleton(void) const { 1896 return _lo >= _hi; 1897 } 1898 1899 bool TypeInt::empty(void) const { 1900 return _lo > _hi; 1901 } 1902 1903 //============================================================================= 1904 // Convenience common pre-built types. 1905 const TypeLong *TypeLong::MAX; 1906 const TypeLong *TypeLong::MIN; 1907 const TypeLong *TypeLong::MINUS_1;// -1 1908 const TypeLong *TypeLong::ZERO; // 0 1909 const TypeLong *TypeLong::ONE; // 1 1910 const TypeLong *TypeLong::POS; // >=0 1911 const TypeLong *TypeLong::LONG; // 64-bit integers 1912 const TypeLong *TypeLong::INT; // 32-bit subrange 1913 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1914 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1915 1916 //------------------------------TypeLong--------------------------------------- 1917 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) { 1918 } 1919 1920 //------------------------------make------------------------------------------- 1921 const TypeLong *TypeLong::make( jlong lo ) { 1922 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1923 } 1924 1925 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1926 // Certain normalizations keep us sane when comparing types. 1927 // The 'SMALLINT' covers constants. 1928 if (lo <= hi) { 1929 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1930 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1931 } else { 1932 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1933 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1934 } 1935 return w; 1936 } 1937 1938 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1939 w = normalize_long_widen(lo, hi, w); 1940 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1941 } 1942 1943 1944 //------------------------------meet------------------------------------------- 1945 // Compute the MEET of two types. It returns a new Type representation object 1946 // with reference count equal to the number of Types pointing at it. 1947 // Caller should wrap a Types around it. 1948 const Type *TypeLong::xmeet( const Type *t ) const { 1949 // Perform a fast test for common case; meeting the same types together. 1950 if( this == t ) return this; // Meeting same type? 1951 1952 // Currently "this->_base" is a TypeLong 1953 switch (t->base()) { // Switch on original type 1954 case AnyPtr: // Mixing with oops happens when javac 1955 case RawPtr: // reuses local variables 1956 case OopPtr: 1957 case InstPtr: 1958 case AryPtr: 1959 case MetadataPtr: 1960 case KlassPtr: 1961 case InstKlassPtr: 1962 case AryKlassPtr: 1963 case NarrowOop: 1964 case NarrowKlass: 1965 case Int: 1966 case FloatTop: 1967 case FloatCon: 1968 case FloatBot: 1969 case DoubleTop: 1970 case DoubleCon: 1971 case DoubleBot: 1972 case Bottom: // Ye Olde Default 1973 return Type::BOTTOM; 1974 default: // All else is a mistake 1975 typerr(t); 1976 case Top: // No change 1977 return this; 1978 case Long: // Long vs Long? 1979 break; 1980 } 1981 1982 // Expand covered set 1983 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1984 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1985 } 1986 1987 //------------------------------xdual------------------------------------------ 1988 // Dual: reverse hi & lo; flip widen 1989 const Type *TypeLong::xdual() const { 1990 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1991 return new TypeLong(_hi,_lo,w); 1992 } 1993 1994 //------------------------------widen------------------------------------------ 1995 // Only happens for optimistic top-down optimizations. 1996 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1997 // Coming from TOP or such; no widening 1998 if( old->base() != Long ) return this; 1999 const TypeLong *ot = old->is_long(); 2000 2001 // If new guy is equal to old guy, no widening 2002 if( _lo == ot->_lo && _hi == ot->_hi ) 2003 return old; 2004 2005 // If new guy contains old, then we widened 2006 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 2007 // New contains old 2008 // If new guy is already wider than old, no widening 2009 if( _widen > ot->_widen ) return this; 2010 // If old guy was a constant, do not bother 2011 if (ot->_lo == ot->_hi) return this; 2012 // Now widen new guy. 2013 // Check for widening too far 2014 if (_widen == WidenMax) { 2015 jlong max = max_jlong; 2016 jlong min = min_jlong; 2017 if (limit->isa_long()) { 2018 max = limit->is_long()->_hi; 2019 min = limit->is_long()->_lo; 2020 } 2021 if (min < _lo && _hi < max) { 2022 // If neither endpoint is extremal yet, push out the endpoint 2023 // which is closer to its respective limit. 2024 if (_lo >= 0 || // easy common case 2025 ((julong)_lo - min) >= ((julong)max - _hi)) { 2026 // Try to widen to an unsigned range type of 32/63 bits: 2027 if (max >= max_juint && _hi < max_juint) 2028 return make(_lo, max_juint, WidenMax); 2029 else 2030 return make(_lo, max, WidenMax); 2031 } else { 2032 return make(min, _hi, WidenMax); 2033 } 2034 } 2035 return TypeLong::LONG; 2036 } 2037 // Returned widened new guy 2038 return make(_lo,_hi,_widen+1); 2039 } 2040 2041 // If old guy contains new, then we probably widened too far & dropped to 2042 // bottom. Return the wider fellow. 2043 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 2044 return old; 2045 2046 // fatal("Long value range is not subset"); 2047 // return this; 2048 return TypeLong::LONG; 2049 } 2050 2051 //------------------------------narrow---------------------------------------- 2052 // Only happens for pessimistic optimizations. 2053 const Type *TypeLong::narrow( const Type *old ) const { 2054 if (_lo >= _hi) return this; // already narrow enough 2055 if (old == nullptr) return this; 2056 const TypeLong* ot = old->isa_long(); 2057 if (ot == nullptr) return this; 2058 jlong olo = ot->_lo; 2059 jlong ohi = ot->_hi; 2060 2061 // If new guy is equal to old guy, no narrowing 2062 if (_lo == olo && _hi == ohi) return old; 2063 2064 // If old guy was maximum range, allow the narrowing 2065 if (olo == min_jlong && ohi == max_jlong) return this; 2066 2067 if (_lo < olo || _hi > ohi) 2068 return this; // doesn't narrow; pretty weird 2069 2070 // The new type narrows the old type, so look for a "death march". 2071 // See comments on PhaseTransform::saturate. 2072 julong nrange = (julong)_hi - _lo; 2073 julong orange = (julong)ohi - olo; 2074 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 2075 // Use the new type only if the range shrinks a lot. 2076 // We do not want the optimizer computing 2^31 point by point. 2077 return old; 2078 } 2079 2080 return this; 2081 } 2082 2083 //-----------------------------filter------------------------------------------ 2084 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 2085 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 2086 if (ft == nullptr || ft->empty()) 2087 return Type::TOP; // Canonical empty value 2088 if (ft->_widen < this->_widen) { 2089 // Do not allow the value of kill->_widen to affect the outcome. 2090 // The widen bits must be allowed to run freely through the graph. 2091 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 2092 } 2093 return ft; 2094 } 2095 2096 //------------------------------eq--------------------------------------------- 2097 // Structural equality check for Type representations 2098 bool TypeLong::eq( const Type *t ) const { 2099 const TypeLong *r = t->is_long(); // Handy access 2100 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 2101 } 2102 2103 //------------------------------hash------------------------------------------- 2104 // Type-specific hashing function. 2105 uint TypeLong::hash(void) const { 2106 return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long; 2107 } 2108 2109 //------------------------------is_finite-------------------------------------- 2110 // Has a finite value 2111 bool TypeLong::is_finite() const { 2112 return true; 2113 } 2114 2115 //------------------------------dump2------------------------------------------ 2116 // Dump TypeLong 2117 #ifndef PRODUCT 2118 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) { 2119 if (n > x) { 2120 if (n >= x + 10000) return nullptr; 2121 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x); 2122 } else if (n < x) { 2123 if (n <= x - 10000) return nullptr; 2124 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n); 2125 } else { 2126 return xname; 2127 } 2128 return buf; 2129 } 2130 2131 static const char* longname(char* buf, size_t buf_size, jlong n) { 2132 const char* str; 2133 if (n == min_jlong) 2134 return "min"; 2135 else if (n < min_jlong + 10000) 2136 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong); 2137 else if (n == max_jlong) 2138 return "max"; 2139 else if (n > max_jlong - 10000) 2140 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n); 2141 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr) 2142 return str; 2143 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr) 2144 return str; 2145 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr) 2146 return str; 2147 else 2148 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n); 2149 return buf; 2150 } 2151 2152 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 2153 char buf[80], buf2[80]; 2154 if (_lo == min_jlong && _hi == max_jlong) 2155 st->print("long"); 2156 else if (is_con()) 2157 st->print("long:%s", longname(buf, sizeof(buf), get_con())); 2158 else if (_hi == max_jlong) 2159 st->print("long:>=%s", longname(buf, sizeof(buf), _lo)); 2160 else if (_lo == min_jlong) 2161 st->print("long:<=%s", longname(buf, sizeof(buf), _hi)); 2162 else 2163 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi)); 2164 2165 if (_widen != 0 && this != TypeLong::LONG) 2166 st->print(":%.*s", _widen, "wwww"); 2167 } 2168 #endif 2169 2170 //------------------------------singleton-------------------------------------- 2171 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2172 // constants 2173 bool TypeLong::singleton(void) const { 2174 return _lo >= _hi; 2175 } 2176 2177 bool TypeLong::empty(void) const { 2178 return _lo > _hi; 2179 } 2180 2181 //============================================================================= 2182 // Convenience common pre-built types. 2183 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 2184 const TypeTuple *TypeTuple::IFFALSE; 2185 const TypeTuple *TypeTuple::IFTRUE; 2186 const TypeTuple *TypeTuple::IFNEITHER; 2187 const TypeTuple *TypeTuple::LOOPBODY; 2188 const TypeTuple *TypeTuple::MEMBAR; 2189 const TypeTuple *TypeTuple::STORECONDITIONAL; 2190 const TypeTuple *TypeTuple::START_I2C; 2191 const TypeTuple *TypeTuple::INT_PAIR; 2192 const TypeTuple *TypeTuple::LONG_PAIR; 2193 const TypeTuple *TypeTuple::INT_CC_PAIR; 2194 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2195 2196 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) { 2197 for (int j = 0; j < vk->nof_nonstatic_fields(); j++) { 2198 ciField* field = vk->nonstatic_field_at(j); 2199 BasicType bt = field->type()->basic_type(); 2200 const Type* ft = Type::get_const_type(field->type()); 2201 field_array[pos++] = ft; 2202 if (type2size[bt] == 2) { 2203 field_array[pos++] = Type::HALF; 2204 } 2205 } 2206 } 2207 2208 //------------------------------make------------------------------------------- 2209 // Make a TypeTuple from the range of a method signature 2210 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) { 2211 ciType* return_type = sig->return_type(); 2212 uint arg_cnt = return_type->size(); 2213 if (ret_vt_fields) { 2214 arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1; 2215 // InlineTypeNode::IsInit field used for null checking 2216 arg_cnt++; 2217 } 2218 const Type **field_array = fields(arg_cnt); 2219 switch (return_type->basic_type()) { 2220 case T_LONG: 2221 field_array[TypeFunc::Parms] = TypeLong::LONG; 2222 field_array[TypeFunc::Parms+1] = Type::HALF; 2223 break; 2224 case T_DOUBLE: 2225 field_array[TypeFunc::Parms] = Type::DOUBLE; 2226 field_array[TypeFunc::Parms+1] = Type::HALF; 2227 break; 2228 case T_OBJECT: 2229 if (return_type->is_inlinetype() && ret_vt_fields) { 2230 uint pos = TypeFunc::Parms; 2231 field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields 2232 collect_inline_fields(return_type->as_inline_klass(), field_array, pos); 2233 // InlineTypeNode::IsInit field used for null checking 2234 field_array[pos++] = get_const_basic_type(T_BOOLEAN); 2235 break; 2236 } else { 2237 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM); 2238 } 2239 break; 2240 case T_ARRAY: 2241 case T_BOOLEAN: 2242 case T_CHAR: 2243 case T_FLOAT: 2244 case T_BYTE: 2245 case T_SHORT: 2246 case T_INT: 2247 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2248 break; 2249 case T_VOID: 2250 break; 2251 default: 2252 ShouldNotReachHere(); 2253 } 2254 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2255 } 2256 2257 // Make a TypeTuple from the domain of a method signature 2258 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) { 2259 ciSignature* sig = method->signature(); 2260 uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1); 2261 if (vt_fields_as_args) { 2262 arg_cnt = 0; 2263 assert(method->get_sig_cc() != nullptr, "Should have scalarized signature"); 2264 for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) { 2265 arg_cnt += type2size[(*sig_cc)._bt]; 2266 } 2267 } 2268 2269 uint pos = TypeFunc::Parms; 2270 const Type** field_array = fields(arg_cnt); 2271 if (!method->is_static()) { 2272 ciInstanceKlass* recv = method->holder(); 2273 if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) { 2274 collect_inline_fields(recv->as_inline_klass(), field_array, pos); 2275 } else { 2276 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2277 } 2278 } 2279 2280 int i = 0; 2281 while (pos < TypeFunc::Parms + arg_cnt) { 2282 ciType* type = sig->type_at(i); 2283 BasicType bt = type->basic_type(); 2284 2285 switch (bt) { 2286 case T_LONG: 2287 field_array[pos++] = TypeLong::LONG; 2288 field_array[pos++] = Type::HALF; 2289 break; 2290 case T_DOUBLE: 2291 field_array[pos++] = Type::DOUBLE; 2292 field_array[pos++] = Type::HALF; 2293 break; 2294 case T_OBJECT: 2295 if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) { 2296 // InlineTypeNode::IsInit field used for null checking 2297 field_array[pos++] = get_const_basic_type(T_BOOLEAN); 2298 collect_inline_fields(type->as_inline_klass(), field_array, pos); 2299 } else { 2300 field_array[pos++] = get_const_type(type, interface_handling); 2301 } 2302 break; 2303 case T_ARRAY: 2304 case T_FLOAT: 2305 case T_INT: 2306 field_array[pos++] = get_const_type(type, interface_handling); 2307 break; 2308 case T_BOOLEAN: 2309 case T_CHAR: 2310 case T_BYTE: 2311 case T_SHORT: 2312 field_array[pos++] = TypeInt::INT; 2313 break; 2314 default: 2315 ShouldNotReachHere(); 2316 } 2317 i++; 2318 } 2319 assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments"); 2320 2321 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2322 } 2323 2324 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2325 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2326 } 2327 2328 //------------------------------fields----------------------------------------- 2329 // Subroutine call type with space allocated for argument types 2330 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2331 const Type **TypeTuple::fields( uint arg_cnt ) { 2332 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2333 flds[TypeFunc::Control ] = Type::CONTROL; 2334 flds[TypeFunc::I_O ] = Type::ABIO; 2335 flds[TypeFunc::Memory ] = Type::MEMORY; 2336 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2337 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2338 2339 return flds; 2340 } 2341 2342 //------------------------------meet------------------------------------------- 2343 // Compute the MEET of two types. It returns a new Type object. 2344 const Type *TypeTuple::xmeet( const Type *t ) const { 2345 // Perform a fast test for common case; meeting the same types together. 2346 if( this == t ) return this; // Meeting same type-rep? 2347 2348 // Current "this->_base" is Tuple 2349 switch (t->base()) { // switch on original type 2350 2351 case Bottom: // Ye Olde Default 2352 return t; 2353 2354 default: // All else is a mistake 2355 typerr(t); 2356 2357 case Tuple: { // Meeting 2 signatures? 2358 const TypeTuple *x = t->is_tuple(); 2359 assert( _cnt == x->_cnt, "" ); 2360 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2361 for( uint i=0; i<_cnt; i++ ) 2362 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2363 return TypeTuple::make(_cnt,fields); 2364 } 2365 case Top: 2366 break; 2367 } 2368 return this; // Return the double constant 2369 } 2370 2371 //------------------------------xdual------------------------------------------ 2372 // Dual: compute field-by-field dual 2373 const Type *TypeTuple::xdual() const { 2374 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2375 for( uint i=0; i<_cnt; i++ ) 2376 fields[i] = _fields[i]->dual(); 2377 return new TypeTuple(_cnt,fields); 2378 } 2379 2380 //------------------------------eq--------------------------------------------- 2381 // Structural equality check for Type representations 2382 bool TypeTuple::eq( const Type *t ) const { 2383 const TypeTuple *s = (const TypeTuple *)t; 2384 if (_cnt != s->_cnt) return false; // Unequal field counts 2385 for (uint i = 0; i < _cnt; i++) 2386 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2387 return false; // Missed 2388 return true; 2389 } 2390 2391 //------------------------------hash------------------------------------------- 2392 // Type-specific hashing function. 2393 uint TypeTuple::hash(void) const { 2394 uintptr_t sum = _cnt; 2395 for( uint i=0; i<_cnt; i++ ) 2396 sum += (uintptr_t)_fields[i]; // Hash on pointers directly 2397 return (uint)sum; 2398 } 2399 2400 //------------------------------dump2------------------------------------------ 2401 // Dump signature Type 2402 #ifndef PRODUCT 2403 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2404 st->print("{"); 2405 if( !depth || d[this] ) { // Check for recursive print 2406 st->print("...}"); 2407 return; 2408 } 2409 d.Insert((void*)this, (void*)this); // Stop recursion 2410 if( _cnt ) { 2411 uint i; 2412 for( i=0; i<_cnt-1; i++ ) { 2413 st->print("%d:", i); 2414 _fields[i]->dump2(d, depth-1, st); 2415 st->print(", "); 2416 } 2417 st->print("%d:", i); 2418 _fields[i]->dump2(d, depth-1, st); 2419 } 2420 st->print("}"); 2421 } 2422 #endif 2423 2424 //------------------------------singleton-------------------------------------- 2425 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2426 // constants (Ldi nodes). Singletons are integer, float or double constants 2427 // or a single symbol. 2428 bool TypeTuple::singleton(void) const { 2429 return false; // Never a singleton 2430 } 2431 2432 bool TypeTuple::empty(void) const { 2433 for( uint i=0; i<_cnt; i++ ) { 2434 if (_fields[i]->empty()) return true; 2435 } 2436 return false; 2437 } 2438 2439 //============================================================================= 2440 // Convenience common pre-built types. 2441 2442 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2443 // Certain normalizations keep us sane when comparing types. 2444 // We do not want arrayOop variables to differ only by the wideness 2445 // of their index types. Pick minimum wideness, since that is the 2446 // forced wideness of small ranges anyway. 2447 if (size->_widen != Type::WidenMin) 2448 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2449 else 2450 return size; 2451 } 2452 2453 //------------------------------make------------------------------------------- 2454 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable, 2455 bool flat, bool not_flat, bool not_null_free) { 2456 if (UseCompressedOops && elem->isa_oopptr()) { 2457 elem = elem->make_narrowoop(); 2458 } 2459 size = normalize_array_size(size); 2460 return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons(); 2461 } 2462 2463 //------------------------------meet------------------------------------------- 2464 // Compute the MEET of two types. It returns a new Type object. 2465 const Type *TypeAry::xmeet( const Type *t ) const { 2466 // Perform a fast test for common case; meeting the same types together. 2467 if( this == t ) return this; // Meeting same type-rep? 2468 2469 // Current "this->_base" is Ary 2470 switch (t->base()) { // switch on original type 2471 2472 case Bottom: // Ye Olde Default 2473 return t; 2474 2475 default: // All else is a mistake 2476 typerr(t); 2477 2478 case Array: { // Meeting 2 arrays? 2479 const TypeAry *a = t->is_ary(); 2480 return TypeAry::make(_elem->meet_speculative(a->_elem), 2481 _size->xmeet(a->_size)->is_int(), 2482 _stable && a->_stable, 2483 _flat && a->_flat, 2484 _not_flat && a->_not_flat, 2485 _not_null_free && a->_not_null_free); 2486 } 2487 case Top: 2488 break; 2489 } 2490 return this; // Return the double constant 2491 } 2492 2493 //------------------------------xdual------------------------------------------ 2494 // Dual: compute field-by-field dual 2495 const Type *TypeAry::xdual() const { 2496 const TypeInt* size_dual = _size->dual()->is_int(); 2497 size_dual = normalize_array_size(size_dual); 2498 return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free); 2499 } 2500 2501 //------------------------------eq--------------------------------------------- 2502 // Structural equality check for Type representations 2503 bool TypeAry::eq( const Type *t ) const { 2504 const TypeAry *a = (const TypeAry*)t; 2505 return _elem == a->_elem && 2506 _stable == a->_stable && 2507 _size == a->_size && 2508 _flat == a->_flat && 2509 _not_flat == a->_not_flat && 2510 _not_null_free == a->_not_null_free; 2511 2512 } 2513 2514 //------------------------------hash------------------------------------------- 2515 // Type-specific hashing function. 2516 uint TypeAry::hash(void) const { 2517 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) + 2518 (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0); 2519 } 2520 2521 /** 2522 * Return same type without a speculative part in the element 2523 */ 2524 const TypeAry* TypeAry::remove_speculative() const { 2525 return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free); 2526 } 2527 2528 /** 2529 * Return same type with cleaned up speculative part of element 2530 */ 2531 const Type* TypeAry::cleanup_speculative() const { 2532 return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free); 2533 } 2534 2535 /** 2536 * Return same type but with a different inline depth (used for speculation) 2537 * 2538 * @param depth depth to meet with 2539 */ 2540 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2541 if (!UseInlineDepthForSpeculativeTypes) { 2542 return this; 2543 } 2544 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2545 } 2546 2547 //------------------------------dump2------------------------------------------ 2548 #ifndef PRODUCT 2549 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2550 if (_stable) st->print("stable:"); 2551 if (_flat) st->print("flat:"); 2552 if (Verbose) { 2553 if (_not_flat) st->print("not flat:"); 2554 if (_not_null_free) st->print("not null free:"); 2555 } 2556 _elem->dump2(d, depth, st); 2557 st->print("["); 2558 _size->dump2(d, depth, st); 2559 st->print("]"); 2560 } 2561 #endif 2562 2563 //------------------------------singleton-------------------------------------- 2564 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2565 // constants (Ldi nodes). Singletons are integer, float or double constants 2566 // or a single symbol. 2567 bool TypeAry::singleton(void) const { 2568 return false; // Never a singleton 2569 } 2570 2571 bool TypeAry::empty(void) const { 2572 return _elem->empty() || _size->empty(); 2573 } 2574 2575 //--------------------------ary_must_be_exact---------------------------------- 2576 bool TypeAry::ary_must_be_exact() const { 2577 // This logic looks at the element type of an array, and returns true 2578 // if the element type is either a primitive or a final instance class. 2579 // In such cases, an array built on this ary must have no subclasses. 2580 if (_elem == BOTTOM) return false; // general array not exact 2581 if (_elem == TOP ) return false; // inverted general array not exact 2582 const TypeOopPtr* toop = nullptr; 2583 if (UseCompressedOops && _elem->isa_narrowoop()) { 2584 toop = _elem->make_ptr()->isa_oopptr(); 2585 } else { 2586 toop = _elem->isa_oopptr(); 2587 } 2588 if (!toop) return true; // a primitive type, like int 2589 if (!toop->is_loaded()) return false; // unloaded class 2590 const TypeInstPtr* tinst; 2591 if (_elem->isa_narrowoop()) 2592 tinst = _elem->make_ptr()->isa_instptr(); 2593 else 2594 tinst = _elem->isa_instptr(); 2595 if (tinst) { 2596 if (tinst->instance_klass()->is_final()) { 2597 // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype. 2598 if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) { 2599 return false; 2600 } 2601 return true; 2602 } 2603 return false; 2604 } 2605 const TypeAryPtr* tap; 2606 if (_elem->isa_narrowoop()) 2607 tap = _elem->make_ptr()->isa_aryptr(); 2608 else 2609 tap = _elem->isa_aryptr(); 2610 if (tap) 2611 return tap->ary()->ary_must_be_exact(); 2612 return false; 2613 } 2614 2615 //==============================TypeVect======================================= 2616 // Convenience common pre-built types. 2617 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic 2618 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors 2619 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors 2620 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors 2621 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors 2622 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors 2623 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector 2624 2625 //------------------------------make------------------------------------------- 2626 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) { 2627 if (is_mask) { 2628 return makemask(elem_bt, length); 2629 } 2630 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2631 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2632 int size = length * type2aelembytes(elem_bt); 2633 switch (Matcher::vector_ideal_reg(size)) { 2634 case Op_VecA: 2635 return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons(); 2636 case Op_VecS: 2637 return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons(); 2638 case Op_RegL: 2639 case Op_VecD: 2640 case Op_RegD: 2641 return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons(); 2642 case Op_VecX: 2643 return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons(); 2644 case Op_VecY: 2645 return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons(); 2646 case Op_VecZ: 2647 return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons(); 2648 } 2649 ShouldNotReachHere(); 2650 return nullptr; 2651 } 2652 2653 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) { 2654 if (Matcher::has_predicated_vectors() && 2655 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2656 return TypeVectMask::make(elem_bt, length); 2657 } else { 2658 return make(elem_bt, length); 2659 } 2660 } 2661 2662 //------------------------------meet------------------------------------------- 2663 // Compute the MEET of two types. Since each TypeVect is the only instance of 2664 // its species, meeting often returns itself 2665 const Type* TypeVect::xmeet(const Type* t) const { 2666 // Perform a fast test for common case; meeting the same types together. 2667 if (this == t) { 2668 return this; 2669 } 2670 2671 // Current "this->_base" is Vector 2672 switch (t->base()) { // switch on original type 2673 2674 case Bottom: // Ye Olde Default 2675 return t; 2676 2677 default: // All else is a mistake 2678 typerr(t); 2679 case VectorMask: 2680 case VectorA: 2681 case VectorS: 2682 case VectorD: 2683 case VectorX: 2684 case VectorY: 2685 case VectorZ: { // Meeting 2 vectors? 2686 const TypeVect* v = t->is_vect(); 2687 assert(base() == v->base(), ""); 2688 assert(length() == v->length(), ""); 2689 assert(element_basic_type() == v->element_basic_type(), ""); 2690 return this; 2691 } 2692 case Top: 2693 break; 2694 } 2695 return this; 2696 } 2697 2698 //------------------------------xdual------------------------------------------ 2699 // Since each TypeVect is the only instance of its species, it is self-dual 2700 const Type* TypeVect::xdual() const { 2701 return this; 2702 } 2703 2704 //------------------------------eq--------------------------------------------- 2705 // Structural equality check for Type representations 2706 bool TypeVect::eq(const Type* t) const { 2707 const TypeVect* v = t->is_vect(); 2708 return (element_basic_type() == v->element_basic_type()) && (length() == v->length()); 2709 } 2710 2711 //------------------------------hash------------------------------------------- 2712 // Type-specific hashing function. 2713 uint TypeVect::hash(void) const { 2714 return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length; 2715 } 2716 2717 //------------------------------singleton-------------------------------------- 2718 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2719 // constants (Ldi nodes). Vector is singleton if all elements are the same 2720 // constant value (when vector is created with Replicate code). 2721 bool TypeVect::singleton(void) const { 2722 // There is no Con node for vectors yet. 2723 // return _elem->singleton(); 2724 return false; 2725 } 2726 2727 bool TypeVect::empty(void) const { 2728 return false; 2729 } 2730 2731 //------------------------------dump2------------------------------------------ 2732 #ifndef PRODUCT 2733 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const { 2734 switch (base()) { 2735 case VectorA: 2736 st->print("vectora"); break; 2737 case VectorS: 2738 st->print("vectors"); break; 2739 case VectorD: 2740 st->print("vectord"); break; 2741 case VectorX: 2742 st->print("vectorx"); break; 2743 case VectorY: 2744 st->print("vectory"); break; 2745 case VectorZ: 2746 st->print("vectorz"); break; 2747 case VectorMask: 2748 st->print("vectormask"); break; 2749 default: 2750 ShouldNotReachHere(); 2751 } 2752 st->print("<%c,%u>", type2char(element_basic_type()), length()); 2753 } 2754 #endif 2755 2756 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) { 2757 return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons(); 2758 } 2759 2760 //============================================================================= 2761 // Convenience common pre-built types. 2762 const TypePtr *TypePtr::NULL_PTR; 2763 const TypePtr *TypePtr::NOTNULL; 2764 const TypePtr *TypePtr::BOTTOM; 2765 2766 //------------------------------meet------------------------------------------- 2767 // Meet over the PTR enum 2768 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2769 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2770 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2771 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2772 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2773 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2774 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2775 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2776 }; 2777 2778 //------------------------------make------------------------------------------- 2779 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) { 2780 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2781 } 2782 2783 //------------------------------cast_to_ptr_type------------------------------- 2784 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2785 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2786 if( ptr == _ptr ) return this; 2787 return make(_base, ptr, _offset, _speculative, _inline_depth); 2788 } 2789 2790 //------------------------------get_con---------------------------------------- 2791 intptr_t TypePtr::get_con() const { 2792 assert( _ptr == Null, "" ); 2793 return offset(); 2794 } 2795 2796 //------------------------------meet------------------------------------------- 2797 // Compute the MEET of two types. It returns a new Type object. 2798 const Type *TypePtr::xmeet(const Type *t) const { 2799 const Type* res = xmeet_helper(t); 2800 if (res->isa_ptr() == nullptr) { 2801 return res; 2802 } 2803 2804 const TypePtr* res_ptr = res->is_ptr(); 2805 if (res_ptr->speculative() != nullptr) { 2806 // type->speculative() is null means that speculation is no better 2807 // than type, i.e. type->speculative() == type. So there are 2 2808 // ways to represent the fact that we have no useful speculative 2809 // data and we should use a single one to be able to test for 2810 // equality between types. Check whether type->speculative() == 2811 // type and set speculative to null if it is the case. 2812 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2813 return res_ptr->remove_speculative(); 2814 } 2815 } 2816 2817 return res; 2818 } 2819 2820 const Type *TypePtr::xmeet_helper(const Type *t) const { 2821 // Perform a fast test for common case; meeting the same types together. 2822 if( this == t ) return this; // Meeting same type-rep? 2823 2824 // Current "this->_base" is AnyPtr 2825 switch (t->base()) { // switch on original type 2826 case Int: // Mixing ints & oops happens when javac 2827 case Long: // reuses local variables 2828 case FloatTop: 2829 case FloatCon: 2830 case FloatBot: 2831 case DoubleTop: 2832 case DoubleCon: 2833 case DoubleBot: 2834 case NarrowOop: 2835 case NarrowKlass: 2836 case Bottom: // Ye Olde Default 2837 return Type::BOTTOM; 2838 case Top: 2839 return this; 2840 2841 case AnyPtr: { // Meeting to AnyPtrs 2842 const TypePtr *tp = t->is_ptr(); 2843 const TypePtr* speculative = xmeet_speculative(tp); 2844 int depth = meet_inline_depth(tp->inline_depth()); 2845 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2846 } 2847 case RawPtr: // For these, flip the call around to cut down 2848 case OopPtr: 2849 case InstPtr: // on the cases I have to handle. 2850 case AryPtr: 2851 case MetadataPtr: 2852 case KlassPtr: 2853 case InstKlassPtr: 2854 case AryKlassPtr: 2855 return t->xmeet(this); // Call in reverse direction 2856 default: // All else is a mistake 2857 typerr(t); 2858 2859 } 2860 return this; 2861 } 2862 2863 //------------------------------meet_offset------------------------------------ 2864 Type::Offset TypePtr::meet_offset(int offset) const { 2865 return _offset.meet(Offset(offset)); 2866 } 2867 2868 //------------------------------dual_offset------------------------------------ 2869 Type::Offset TypePtr::dual_offset() const { 2870 return _offset.dual(); 2871 } 2872 2873 //------------------------------xdual------------------------------------------ 2874 // Dual: compute field-by-field dual 2875 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2876 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2877 }; 2878 const Type *TypePtr::xdual() const { 2879 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2880 } 2881 2882 //------------------------------xadd_offset------------------------------------ 2883 Type::Offset TypePtr::xadd_offset(intptr_t offset) const { 2884 return _offset.add(offset); 2885 } 2886 2887 //------------------------------add_offset------------------------------------- 2888 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2889 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2890 } 2891 2892 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2893 return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth); 2894 } 2895 2896 //------------------------------eq--------------------------------------------- 2897 // Structural equality check for Type representations 2898 bool TypePtr::eq( const Type *t ) const { 2899 const TypePtr *a = (const TypePtr*)t; 2900 return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth; 2901 } 2902 2903 //------------------------------hash------------------------------------------- 2904 // Type-specific hashing function. 2905 uint TypePtr::hash(void) const { 2906 return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth; 2907 } 2908 2909 /** 2910 * Return same type without a speculative part 2911 */ 2912 const TypePtr* TypePtr::remove_speculative() const { 2913 if (_speculative == nullptr) { 2914 return this; 2915 } 2916 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2917 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth); 2918 } 2919 2920 /** 2921 * Return same type but drop speculative part if we know we won't use 2922 * it 2923 */ 2924 const Type* TypePtr::cleanup_speculative() const { 2925 if (speculative() == nullptr) { 2926 return this; 2927 } 2928 const Type* no_spec = remove_speculative(); 2929 // If this is NULL_PTR then we don't need the speculative type 2930 // (with_inline_depth in case the current type inline depth is 2931 // InlineDepthTop) 2932 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2933 return no_spec; 2934 } 2935 if (above_centerline(speculative()->ptr())) { 2936 return no_spec; 2937 } 2938 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2939 // If the speculative may be null and is an inexact klass then it 2940 // doesn't help 2941 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2942 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) { 2943 return no_spec; 2944 } 2945 return this; 2946 } 2947 2948 /** 2949 * dual of the speculative part of the type 2950 */ 2951 const TypePtr* TypePtr::dual_speculative() const { 2952 if (_speculative == nullptr) { 2953 return nullptr; 2954 } 2955 return _speculative->dual()->is_ptr(); 2956 } 2957 2958 /** 2959 * meet of the speculative parts of 2 types 2960 * 2961 * @param other type to meet with 2962 */ 2963 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2964 bool this_has_spec = (_speculative != nullptr); 2965 bool other_has_spec = (other->speculative() != nullptr); 2966 2967 if (!this_has_spec && !other_has_spec) { 2968 return nullptr; 2969 } 2970 2971 // If we are at a point where control flow meets and one branch has 2972 // a speculative type and the other has not, we meet the speculative 2973 // type of one branch with the actual type of the other. If the 2974 // actual type is exact and the speculative is as well, then the 2975 // result is a speculative type which is exact and we can continue 2976 // speculation further. 2977 const TypePtr* this_spec = _speculative; 2978 const TypePtr* other_spec = other->speculative(); 2979 2980 if (!this_has_spec) { 2981 this_spec = this; 2982 } 2983 2984 if (!other_has_spec) { 2985 other_spec = other; 2986 } 2987 2988 return this_spec->meet(other_spec)->is_ptr(); 2989 } 2990 2991 /** 2992 * dual of the inline depth for this type (used for speculation) 2993 */ 2994 int TypePtr::dual_inline_depth() const { 2995 return -inline_depth(); 2996 } 2997 2998 /** 2999 * meet of 2 inline depths (used for speculation) 3000 * 3001 * @param depth depth to meet with 3002 */ 3003 int TypePtr::meet_inline_depth(int depth) const { 3004 return MAX2(inline_depth(), depth); 3005 } 3006 3007 /** 3008 * Are the speculative parts of 2 types equal? 3009 * 3010 * @param other type to compare this one to 3011 */ 3012 bool TypePtr::eq_speculative(const TypePtr* other) const { 3013 if (_speculative == nullptr || other->speculative() == nullptr) { 3014 return _speculative == other->speculative(); 3015 } 3016 3017 if (_speculative->base() != other->speculative()->base()) { 3018 return false; 3019 } 3020 3021 return _speculative->eq(other->speculative()); 3022 } 3023 3024 /** 3025 * Hash of the speculative part of the type 3026 */ 3027 int TypePtr::hash_speculative() const { 3028 if (_speculative == nullptr) { 3029 return 0; 3030 } 3031 3032 return _speculative->hash(); 3033 } 3034 3035 /** 3036 * add offset to the speculative part of the type 3037 * 3038 * @param offset offset to add 3039 */ 3040 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 3041 if (_speculative == nullptr) { 3042 return nullptr; 3043 } 3044 return _speculative->add_offset(offset)->is_ptr(); 3045 } 3046 3047 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 3048 if (_speculative == nullptr) { 3049 return nullptr; 3050 } 3051 return _speculative->with_offset(offset)->is_ptr(); 3052 } 3053 3054 /** 3055 * return exact klass from the speculative type if there's one 3056 */ 3057 ciKlass* TypePtr::speculative_type() const { 3058 if (_speculative != nullptr && _speculative->isa_oopptr()) { 3059 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 3060 if (speculative->klass_is_exact()) { 3061 return speculative->exact_klass(); 3062 } 3063 } 3064 return nullptr; 3065 } 3066 3067 /** 3068 * return true if speculative type may be null 3069 */ 3070 bool TypePtr::speculative_maybe_null() const { 3071 if (_speculative != nullptr) { 3072 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 3073 return speculative->maybe_null(); 3074 } 3075 return true; 3076 } 3077 3078 bool TypePtr::speculative_always_null() const { 3079 if (_speculative != nullptr) { 3080 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 3081 return speculative == TypePtr::NULL_PTR; 3082 } 3083 return false; 3084 } 3085 3086 /** 3087 * Same as TypePtr::speculative_type() but return the klass only if 3088 * the speculative tells us is not null 3089 */ 3090 ciKlass* TypePtr::speculative_type_not_null() const { 3091 if (speculative_maybe_null()) { 3092 return nullptr; 3093 } 3094 return speculative_type(); 3095 } 3096 3097 /** 3098 * Check whether new profiling would improve speculative type 3099 * 3100 * @param exact_kls class from profiling 3101 * @param inline_depth inlining depth of profile point 3102 * 3103 * @return true if type profile is valuable 3104 */ 3105 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3106 // no profiling? 3107 if (exact_kls == nullptr) { 3108 return false; 3109 } 3110 if (speculative() == TypePtr::NULL_PTR) { 3111 return false; 3112 } 3113 // no speculative type or non exact speculative type? 3114 if (speculative_type() == nullptr) { 3115 return true; 3116 } 3117 // If the node already has an exact speculative type keep it, 3118 // unless it was provided by profiling that is at a deeper 3119 // inlining level. Profiling at a higher inlining depth is 3120 // expected to be less accurate. 3121 if (_speculative->inline_depth() == InlineDepthBottom) { 3122 return false; 3123 } 3124 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 3125 return inline_depth < _speculative->inline_depth(); 3126 } 3127 3128 /** 3129 * Check whether new profiling would improve ptr (= tells us it is non 3130 * null) 3131 * 3132 * @param ptr_kind always null or not null? 3133 * 3134 * @return true if ptr profile is valuable 3135 */ 3136 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 3137 // profiling doesn't tell us anything useful 3138 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 3139 return false; 3140 } 3141 // We already know this is not null 3142 if (!this->maybe_null()) { 3143 return false; 3144 } 3145 // We already know the speculative type cannot be null 3146 if (!speculative_maybe_null()) { 3147 return false; 3148 } 3149 // We already know this is always null 3150 if (this == TypePtr::NULL_PTR) { 3151 return false; 3152 } 3153 // We already know the speculative type is always null 3154 if (speculative_always_null()) { 3155 return false; 3156 } 3157 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) { 3158 return false; 3159 } 3160 return true; 3161 } 3162 3163 //------------------------------dump2------------------------------------------ 3164 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 3165 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR" 3166 }; 3167 3168 #ifndef PRODUCT 3169 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3170 if( _ptr == Null ) st->print("null"); 3171 else st->print("%s *", ptr_msg[_ptr]); 3172 _offset.dump2(st); 3173 dump_inline_depth(st); 3174 dump_speculative(st); 3175 } 3176 3177 /** 3178 *dump the speculative part of the type 3179 */ 3180 void TypePtr::dump_speculative(outputStream *st) const { 3181 if (_speculative != nullptr) { 3182 st->print(" (speculative="); 3183 _speculative->dump_on(st); 3184 st->print(")"); 3185 } 3186 } 3187 3188 /** 3189 *dump the inline depth of the type 3190 */ 3191 void TypePtr::dump_inline_depth(outputStream *st) const { 3192 if (_inline_depth != InlineDepthBottom) { 3193 if (_inline_depth == InlineDepthTop) { 3194 st->print(" (inline_depth=InlineDepthTop)"); 3195 } else { 3196 st->print(" (inline_depth=%d)", _inline_depth); 3197 } 3198 } 3199 } 3200 #endif 3201 3202 //------------------------------singleton-------------------------------------- 3203 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3204 // constants 3205 bool TypePtr::singleton(void) const { 3206 // TopPTR, Null, AnyNull, Constant are all singletons 3207 return (_offset != Offset::bottom) && !below_centerline(_ptr); 3208 } 3209 3210 bool TypePtr::empty(void) const { 3211 return (_offset == Offset::top) || above_centerline(_ptr); 3212 } 3213 3214 //============================================================================= 3215 // Convenience common pre-built types. 3216 const TypeRawPtr *TypeRawPtr::BOTTOM; 3217 const TypeRawPtr *TypeRawPtr::NOTNULL; 3218 3219 //------------------------------make------------------------------------------- 3220 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3221 assert( ptr != Constant, "what is the constant?" ); 3222 assert( ptr != Null, "Use TypePtr for null" ); 3223 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons(); 3224 } 3225 3226 const TypeRawPtr *TypeRawPtr::make(address bits) { 3227 assert(bits != nullptr, "Use TypePtr for null"); 3228 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3229 } 3230 3231 //------------------------------cast_to_ptr_type------------------------------- 3232 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3233 assert( ptr != Constant, "what is the constant?" ); 3234 assert( ptr != Null, "Use TypePtr for null" ); 3235 assert( _bits == nullptr, "Why cast a constant address?"); 3236 if( ptr == _ptr ) return this; 3237 return make(ptr); 3238 } 3239 3240 //------------------------------get_con---------------------------------------- 3241 intptr_t TypeRawPtr::get_con() const { 3242 assert( _ptr == Null || _ptr == Constant, "" ); 3243 return (intptr_t)_bits; 3244 } 3245 3246 //------------------------------meet------------------------------------------- 3247 // Compute the MEET of two types. It returns a new Type object. 3248 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3249 // Perform a fast test for common case; meeting the same types together. 3250 if( this == t ) return this; // Meeting same type-rep? 3251 3252 // Current "this->_base" is RawPtr 3253 switch( t->base() ) { // switch on original type 3254 case Bottom: // Ye Olde Default 3255 return t; 3256 case Top: 3257 return this; 3258 case AnyPtr: // Meeting to AnyPtrs 3259 break; 3260 case RawPtr: { // might be top, bot, any/not or constant 3261 enum PTR tptr = t->is_ptr()->ptr(); 3262 enum PTR ptr = meet_ptr( tptr ); 3263 if( ptr == Constant ) { // Cannot be equal constants, so... 3264 if( tptr == Constant && _ptr != Constant) return t; 3265 if( _ptr == Constant && tptr != Constant) return this; 3266 ptr = NotNull; // Fall down in lattice 3267 } 3268 return make( ptr ); 3269 } 3270 3271 case OopPtr: 3272 case InstPtr: 3273 case AryPtr: 3274 case MetadataPtr: 3275 case KlassPtr: 3276 case InstKlassPtr: 3277 case AryKlassPtr: 3278 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3279 default: // All else is a mistake 3280 typerr(t); 3281 } 3282 3283 // Found an AnyPtr type vs self-RawPtr type 3284 const TypePtr *tp = t->is_ptr(); 3285 switch (tp->ptr()) { 3286 case TypePtr::TopPTR: return this; 3287 case TypePtr::BotPTR: return t; 3288 case TypePtr::Null: 3289 if( _ptr == TypePtr::TopPTR ) return t; 3290 return TypeRawPtr::BOTTOM; 3291 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3292 case TypePtr::AnyNull: 3293 if( _ptr == TypePtr::Constant) return this; 3294 return make( meet_ptr(TypePtr::AnyNull) ); 3295 default: ShouldNotReachHere(); 3296 } 3297 return this; 3298 } 3299 3300 //------------------------------xdual------------------------------------------ 3301 // Dual: compute field-by-field dual 3302 const Type *TypeRawPtr::xdual() const { 3303 return new TypeRawPtr( dual_ptr(), _bits ); 3304 } 3305 3306 //------------------------------add_offset------------------------------------- 3307 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3308 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3309 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3310 if( offset == 0 ) return this; // No change 3311 switch (_ptr) { 3312 case TypePtr::TopPTR: 3313 case TypePtr::BotPTR: 3314 case TypePtr::NotNull: 3315 return this; 3316 case TypePtr::Constant: { 3317 uintptr_t bits = (uintptr_t)_bits; 3318 uintptr_t sum = bits + offset; 3319 if (( offset < 0 ) 3320 ? ( sum > bits ) // Underflow? 3321 : ( sum < bits )) { // Overflow? 3322 return BOTTOM; 3323 } else if ( sum == 0 ) { 3324 return TypePtr::NULL_PTR; 3325 } else { 3326 return make( (address)sum ); 3327 } 3328 } 3329 default: ShouldNotReachHere(); 3330 } 3331 } 3332 3333 //------------------------------eq--------------------------------------------- 3334 // Structural equality check for Type representations 3335 bool TypeRawPtr::eq( const Type *t ) const { 3336 const TypeRawPtr *a = (const TypeRawPtr*)t; 3337 return _bits == a->_bits && TypePtr::eq(t); 3338 } 3339 3340 //------------------------------hash------------------------------------------- 3341 // Type-specific hashing function. 3342 uint TypeRawPtr::hash(void) const { 3343 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash(); 3344 } 3345 3346 //------------------------------dump2------------------------------------------ 3347 #ifndef PRODUCT 3348 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3349 if( _ptr == Constant ) 3350 st->print(INTPTR_FORMAT, p2i(_bits)); 3351 else 3352 st->print("rawptr:%s", ptr_msg[_ptr]); 3353 } 3354 #endif 3355 3356 //============================================================================= 3357 // Convenience common pre-built type. 3358 const TypeOopPtr *TypeOopPtr::BOTTOM; 3359 3360 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces) 3361 : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces), 3362 _hash(0), _exact_klass(nullptr) { 3363 _interfaces.sort(compare); 3364 initialize(); 3365 } 3366 3367 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) { 3368 // hashcons() can only delete the last thing that was allocated: to 3369 // make sure all memory for the newly created TypeInterfaces can be 3370 // freed if an identical one exists, allocate space for the array of 3371 // interfaces right after the TypeInterfaces object so that they 3372 // form a contiguous piece of memory. 3373 int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length(); 3374 size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*); 3375 3376 void* allocated_mem = operator new(total_size); 3377 ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces)); 3378 for (int i = 0; i < nb_interfaces; ++i) { 3379 interfaces_base[i] = interfaces->at(i); 3380 } 3381 TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces); 3382 return (const TypeInterfaces*)result->hashcons(); 3383 } 3384 3385 void TypeInterfaces::initialize() { 3386 compute_hash(); 3387 compute_exact_klass(); 3388 DEBUG_ONLY(_initialized = true;) 3389 } 3390 3391 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) { 3392 if ((intptr_t)k1 < (intptr_t)k2) { 3393 return -1; 3394 } else if ((intptr_t)k1 > (intptr_t)k2) { 3395 return 1; 3396 } 3397 return 0; 3398 } 3399 3400 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3401 return compare(*k1, *k2); 3402 } 3403 3404 bool TypeInterfaces::eq(const Type* t) const { 3405 const TypeInterfaces* other = (const TypeInterfaces*)t; 3406 if (_interfaces.length() != other->_interfaces.length()) { 3407 return false; 3408 } 3409 for (int i = 0; i < _interfaces.length(); i++) { 3410 ciKlass* k1 = _interfaces.at(i); 3411 ciKlass* k2 = other->_interfaces.at(i); 3412 if (!k1->equals(k2)) { 3413 return false; 3414 } 3415 } 3416 return true; 3417 } 3418 3419 bool TypeInterfaces::eq(ciInstanceKlass* k) const { 3420 assert(k->is_loaded(), "should be loaded"); 3421 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces(); 3422 if (_interfaces.length() != interfaces->length()) { 3423 return false; 3424 } 3425 for (int i = 0; i < interfaces->length(); i++) { 3426 bool found = false; 3427 _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found); 3428 if (!found) { 3429 return false; 3430 } 3431 } 3432 return true; 3433 } 3434 3435 3436 uint TypeInterfaces::hash() const { 3437 assert(_initialized, "must be"); 3438 return _hash; 3439 } 3440 3441 const Type* TypeInterfaces::xdual() const { 3442 return this; 3443 } 3444 3445 void TypeInterfaces::compute_hash() { 3446 uint hash = 0; 3447 for (int i = 0; i < _interfaces.length(); i++) { 3448 ciKlass* k = _interfaces.at(i); 3449 hash += k->hash(); 3450 } 3451 _hash = hash; 3452 } 3453 3454 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3455 return (int)((*k1)->ident() - (*k2)->ident()); 3456 } 3457 3458 void TypeInterfaces::dump(outputStream* st) const { 3459 if (_interfaces.length() == 0) { 3460 return; 3461 } 3462 ResourceMark rm; 3463 st->print(" ("); 3464 GrowableArray<ciInstanceKlass*> interfaces; 3465 interfaces.appendAll(&_interfaces); 3466 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3467 interfaces.sort(compare_interfaces); 3468 for (int i = 0; i < interfaces.length(); i++) { 3469 if (i > 0) { 3470 st->print(","); 3471 } 3472 ciKlass* k = interfaces.at(i); 3473 k->print_name_on(st); 3474 } 3475 st->print(")"); 3476 } 3477 3478 #ifdef ASSERT 3479 void TypeInterfaces::verify() const { 3480 for (int i = 1; i < _interfaces.length(); i++) { 3481 ciInstanceKlass* k1 = _interfaces.at(i-1); 3482 ciInstanceKlass* k2 = _interfaces.at(i); 3483 assert(compare(k2, k1) > 0, "should be ordered"); 3484 assert(k1 != k2, "no duplicate"); 3485 } 3486 } 3487 #endif 3488 3489 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const { 3490 GrowableArray<ciInstanceKlass*> result_list; 3491 int i = 0; 3492 int j = 0; 3493 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3494 while (i < _interfaces.length() && 3495 (j >= other->_interfaces.length() || 3496 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3497 result_list.push(_interfaces.at(i)); 3498 i++; 3499 } 3500 while (j < other->_interfaces.length() && 3501 (i >= _interfaces.length() || 3502 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3503 result_list.push(other->_interfaces.at(j)); 3504 j++; 3505 } 3506 if (i < _interfaces.length() && 3507 j < other->_interfaces.length() && 3508 _interfaces.at(i) == other->_interfaces.at(j)) { 3509 result_list.push(_interfaces.at(i)); 3510 i++; 3511 j++; 3512 } 3513 } 3514 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3515 #ifdef ASSERT 3516 result->verify(); 3517 for (int i = 0; i < _interfaces.length(); i++) { 3518 assert(result->_interfaces.contains(_interfaces.at(i)), "missing"); 3519 } 3520 for (int i = 0; i < other->_interfaces.length(); i++) { 3521 assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3522 } 3523 for (int i = 0; i < result->_interfaces.length(); i++) { 3524 assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3525 } 3526 #endif 3527 return result; 3528 } 3529 3530 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const { 3531 GrowableArray<ciInstanceKlass*> result_list; 3532 int i = 0; 3533 int j = 0; 3534 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3535 while (i < _interfaces.length() && 3536 (j >= other->_interfaces.length() || 3537 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3538 i++; 3539 } 3540 while (j < other->_interfaces.length() && 3541 (i >= _interfaces.length() || 3542 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3543 j++; 3544 } 3545 if (i < _interfaces.length() && 3546 j < other->_interfaces.length() && 3547 _interfaces.at(i) == other->_interfaces.at(j)) { 3548 result_list.push(_interfaces.at(i)); 3549 i++; 3550 j++; 3551 } 3552 } 3553 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3554 #ifdef ASSERT 3555 result->verify(); 3556 for (int i = 0; i < _interfaces.length(); i++) { 3557 assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing"); 3558 } 3559 for (int i = 0; i < other->_interfaces.length(); i++) { 3560 assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3561 } 3562 for (int i = 0; i < result->_interfaces.length(); i++) { 3563 assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3564 } 3565 #endif 3566 return result; 3567 } 3568 3569 // Is there a single ciKlass* that can represent the interface set? 3570 ciInstanceKlass* TypeInterfaces::exact_klass() const { 3571 assert(_initialized, "must be"); 3572 return _exact_klass; 3573 } 3574 3575 void TypeInterfaces::compute_exact_klass() { 3576 if (_interfaces.length() == 0) { 3577 _exact_klass = nullptr; 3578 return; 3579 } 3580 ciInstanceKlass* res = nullptr; 3581 for (int i = 0; i < _interfaces.length(); i++) { 3582 ciInstanceKlass* interface = _interfaces.at(i); 3583 if (eq(interface)) { 3584 assert(res == nullptr, ""); 3585 res = interface; 3586 } 3587 } 3588 _exact_klass = res; 3589 } 3590 3591 #ifdef ASSERT 3592 void TypeInterfaces::verify_is_loaded() const { 3593 for (int i = 0; i < _interfaces.length(); i++) { 3594 ciKlass* interface = _interfaces.at(i); 3595 assert(interface->is_loaded(), "Interface not loaded"); 3596 } 3597 } 3598 #endif 3599 3600 // Can't be implemented because there's no way to know if the type is above or below the center line. 3601 const Type* TypeInterfaces::xmeet(const Type* t) const { 3602 ShouldNotReachHere(); 3603 return Type::xmeet(t); 3604 } 3605 3606 bool TypeInterfaces::singleton(void) const { 3607 ShouldNotReachHere(); 3608 return Type::singleton(); 3609 } 3610 3611 //------------------------------TypeOopPtr------------------------------------- 3612 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, 3613 int instance_id, const TypePtr* speculative, int inline_depth) 3614 : TypePtr(t, ptr, offset, speculative, inline_depth), 3615 _const_oop(o), _klass(k), 3616 _interfaces(interfaces), 3617 _klass_is_exact(xk), 3618 _is_ptr_to_narrowoop(false), 3619 _is_ptr_to_narrowklass(false), 3620 _is_ptr_to_boxed_value(false), 3621 _instance_id(instance_id) { 3622 #ifdef ASSERT 3623 if (klass() != nullptr && klass()->is_loaded()) { 3624 interfaces->verify_is_loaded(); 3625 } 3626 #endif 3627 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3628 (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) { 3629 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get()); 3630 } 3631 #ifdef _LP64 3632 if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) { 3633 if (this->offset() == oopDesc::klass_offset_in_bytes()) { 3634 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3635 } else if (klass() == nullptr) { 3636 // Array with unknown body type 3637 assert(this->isa_aryptr(), "only arrays without klass"); 3638 _is_ptr_to_narrowoop = UseCompressedOops; 3639 } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) { 3640 if (klass()->is_obj_array_klass()) { 3641 _is_ptr_to_narrowoop = true; 3642 } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) { 3643 // Check if the field of the inline type array element contains oops 3644 ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass(); 3645 int foffset = field_offset.get() + vk->first_field_offset(); 3646 ciField* field = vk->get_field_by_offset(foffset, false); 3647 assert(field != nullptr, "missing field"); 3648 BasicType bt = field->layout_type(); 3649 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt); 3650 } 3651 } else if (klass()->is_instance_klass()) { 3652 if (this->isa_klassptr()) { 3653 // Perm objects don't use compressed references 3654 } else if (_offset == Offset::bottom || _offset == Offset::top) { 3655 // unsafe access 3656 _is_ptr_to_narrowoop = UseCompressedOops; 3657 } else { 3658 assert(this->isa_instptr(), "must be an instance ptr."); 3659 if (klass() == ciEnv::current()->Class_klass() && 3660 (this->offset() == java_lang_Class::klass_offset() || 3661 this->offset() == java_lang_Class::array_klass_offset())) { 3662 // Special hidden fields from the Class. 3663 assert(this->isa_instptr(), "must be an instance ptr."); 3664 _is_ptr_to_narrowoop = false; 3665 } else if (klass() == ciEnv::current()->Class_klass() && 3666 this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) { 3667 // Static fields 3668 ciField* field = nullptr; 3669 if (const_oop() != nullptr) { 3670 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3671 field = k->get_field_by_offset(this->offset(), true); 3672 } 3673 if (field != nullptr) { 3674 BasicType basic_elem_type = field->layout_type(); 3675 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3676 } else { 3677 // unsafe access 3678 _is_ptr_to_narrowoop = UseCompressedOops; 3679 } 3680 } else { 3681 // Instance fields which contains a compressed oop references. 3682 ciInstanceKlass* ik = klass()->as_instance_klass(); 3683 ciField* field = ik->get_field_by_offset(this->offset(), false); 3684 if (field != nullptr) { 3685 BasicType basic_elem_type = field->layout_type(); 3686 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3687 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3688 // Compile::find_alias_type() cast exactness on all types to verify 3689 // that it does not affect alias type. 3690 _is_ptr_to_narrowoop = UseCompressedOops; 3691 } else { 3692 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3693 _is_ptr_to_narrowoop = UseCompressedOops; 3694 } 3695 } 3696 } 3697 } 3698 } 3699 #endif 3700 } 3701 3702 //------------------------------make------------------------------------------- 3703 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id, 3704 const TypePtr* speculative, int inline_depth) { 3705 assert(ptr != Constant, "no constant generic pointers"); 3706 ciKlass* k = Compile::current()->env()->Object_klass(); 3707 bool xk = false; 3708 ciObject* o = nullptr; 3709 const TypeInterfaces* interfaces = TypeInterfaces::make(); 3710 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons(); 3711 } 3712 3713 3714 //------------------------------cast_to_ptr_type------------------------------- 3715 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3716 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3717 if( ptr == _ptr ) return this; 3718 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3719 } 3720 3721 //-----------------------------cast_to_instance_id---------------------------- 3722 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3723 // There are no instances of a general oop. 3724 // Return self unchanged. 3725 return this; 3726 } 3727 3728 //-----------------------------cast_to_exactness------------------------------- 3729 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3730 // There is no such thing as an exact general oop. 3731 // Return self unchanged. 3732 return this; 3733 } 3734 3735 //------------------------------as_klass_type---------------------------------- 3736 // Return the klass type corresponding to this instance or array type. 3737 // It is the type that is loaded from an object of this type. 3738 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3739 ShouldNotReachHere(); 3740 return nullptr; 3741 } 3742 3743 //------------------------------meet------------------------------------------- 3744 // Compute the MEET of two types. It returns a new Type object. 3745 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3746 // Perform a fast test for common case; meeting the same types together. 3747 if( this == t ) return this; // Meeting same type-rep? 3748 3749 // Current "this->_base" is OopPtr 3750 switch (t->base()) { // switch on original type 3751 3752 case Int: // Mixing ints & oops happens when javac 3753 case Long: // reuses local variables 3754 case FloatTop: 3755 case FloatCon: 3756 case FloatBot: 3757 case DoubleTop: 3758 case DoubleCon: 3759 case DoubleBot: 3760 case NarrowOop: 3761 case NarrowKlass: 3762 case Bottom: // Ye Olde Default 3763 return Type::BOTTOM; 3764 case Top: 3765 return this; 3766 3767 default: // All else is a mistake 3768 typerr(t); 3769 3770 case RawPtr: 3771 case MetadataPtr: 3772 case KlassPtr: 3773 case InstKlassPtr: 3774 case AryKlassPtr: 3775 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3776 3777 case AnyPtr: { 3778 // Found an AnyPtr type vs self-OopPtr type 3779 const TypePtr *tp = t->is_ptr(); 3780 Offset offset = meet_offset(tp->offset()); 3781 PTR ptr = meet_ptr(tp->ptr()); 3782 const TypePtr* speculative = xmeet_speculative(tp); 3783 int depth = meet_inline_depth(tp->inline_depth()); 3784 switch (tp->ptr()) { 3785 case Null: 3786 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3787 // else fall through: 3788 case TopPTR: 3789 case AnyNull: { 3790 int instance_id = meet_instance_id(InstanceTop); 3791 return make(ptr, offset, instance_id, speculative, depth); 3792 } 3793 case BotPTR: 3794 case NotNull: 3795 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3796 default: typerr(t); 3797 } 3798 } 3799 3800 case OopPtr: { // Meeting to other OopPtrs 3801 const TypeOopPtr *tp = t->is_oopptr(); 3802 int instance_id = meet_instance_id(tp->instance_id()); 3803 const TypePtr* speculative = xmeet_speculative(tp); 3804 int depth = meet_inline_depth(tp->inline_depth()); 3805 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3806 } 3807 3808 case InstPtr: // For these, flip the call around to cut down 3809 case AryPtr: 3810 return t->xmeet(this); // Call in reverse direction 3811 3812 } // End of switch 3813 return this; // Return the double constant 3814 } 3815 3816 3817 //------------------------------xdual------------------------------------------ 3818 // Dual of a pure heap pointer. No relevant klass or oop information. 3819 const Type *TypeOopPtr::xdual() const { 3820 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3821 assert(const_oop() == nullptr, "no constants here"); 3822 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth()); 3823 } 3824 3825 //--------------------------make_from_klass_common----------------------------- 3826 // Computes the element-type given a klass. 3827 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3828 if (klass->is_instance_klass() || klass->is_inlinetype()) { 3829 Compile* C = Compile::current(); 3830 Dependencies* deps = C->dependencies(); 3831 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 3832 // Element is an instance 3833 bool klass_is_exact = false; 3834 if (klass->is_loaded()) { 3835 // Try to set klass_is_exact. 3836 ciInstanceKlass* ik = klass->as_instance_klass(); 3837 klass_is_exact = ik->is_final(); 3838 if (!klass_is_exact && klass_change 3839 && deps != nullptr && UseUniqueSubclasses) { 3840 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3841 if (sub != nullptr) { 3842 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3843 klass = ik = sub; 3844 klass_is_exact = sub->is_final(); 3845 } 3846 } 3847 if (!klass_is_exact && try_for_exact && deps != nullptr && 3848 !ik->is_interface() && !ik->has_subklass()) { 3849 // Add a dependence; if concrete subclass added we need to recompile 3850 deps->assert_leaf_type(ik); 3851 klass_is_exact = true; 3852 } 3853 } 3854 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3855 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0)); 3856 } else if (klass->is_obj_array_klass()) { 3857 // Element is an object or inline type array. Recursively call ourself. 3858 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling); 3859 // Determine null-free/flat properties 3860 const TypeOopPtr* exact_etype = etype; 3861 if (etype->can_be_inline_type()) { 3862 // Use exact type if element can be an inline type 3863 exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling); 3864 } 3865 bool not_null_free = !exact_etype->can_be_inline_type(); 3866 bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array()); 3867 // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype. 3868 bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr(); 3869 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free); 3870 // We used to pass NotNull in here, asserting that the sub-arrays 3871 // are all not-null. This is not true in generally, as code can 3872 // slam nullptrs down in the subarrays. 3873 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0)); 3874 return arr; 3875 } else if (klass->is_type_array_klass()) { 3876 // Element is an typeArray 3877 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3878 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, 3879 /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3880 // We used to pass NotNull in here, asserting that the array pointer 3881 // is not-null. That was not true in general. 3882 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0)); 3883 return arr; 3884 } else if (klass->is_flat_array_klass()) { 3885 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces); 3886 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 3887 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true); 3888 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0)); 3889 return arr; 3890 } else { 3891 ShouldNotReachHere(); 3892 return nullptr; 3893 } 3894 } 3895 3896 //------------------------------make_from_constant----------------------------- 3897 // Make a java pointer from an oop constant 3898 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3899 assert(!o->is_null_object(), "null object not yet handled here."); 3900 3901 const bool make_constant = require_constant || o->should_be_constant(); 3902 3903 ciKlass* klass = o->klass(); 3904 if (klass->is_instance_klass() || klass->is_inlinetype()) { 3905 // Element is an instance or inline type 3906 if (make_constant) { 3907 return TypeInstPtr::make(o); 3908 } else { 3909 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0)); 3910 } 3911 } else if (klass->is_obj_array_klass()) { 3912 // Element is an object array. Recursively call ourself. 3913 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces); 3914 bool is_flat = o->as_obj_array()->is_flat(); 3915 bool is_null_free = o->as_obj_array()->is_null_free(); 3916 if (is_null_free) { 3917 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 3918 } 3919 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), 3920 /* stable= */ false, /* flat= */ false, /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free); 3921 // We used to pass NotNull in here, asserting that the sub-arrays 3922 // are all not-null. This is not true in generally, as code can 3923 // slam nulls down in the subarrays. 3924 if (make_constant) { 3925 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0)); 3926 } else { 3927 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0)); 3928 } 3929 } else if (klass->is_type_array_klass()) { 3930 // Element is an typeArray 3931 const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3932 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), 3933 /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3934 // We used to pass NotNull in here, asserting that the array pointer 3935 // is not-null. That was not true in general. 3936 if (make_constant) { 3937 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0)); 3938 } else { 3939 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0)); 3940 } 3941 } else if (klass->is_flat_array_klass()) { 3942 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces); 3943 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 3944 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true); 3945 // We used to pass NotNull in here, asserting that the sub-arrays 3946 // are all not-null. This is not true in generally, as code can 3947 // slam nullptrs down in the subarrays. 3948 if (make_constant) { 3949 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0)); 3950 } else { 3951 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0)); 3952 } 3953 } 3954 3955 fatal("unhandled object type"); 3956 return nullptr; 3957 } 3958 3959 //------------------------------get_con---------------------------------------- 3960 intptr_t TypeOopPtr::get_con() const { 3961 assert( _ptr == Null || _ptr == Constant, "" ); 3962 assert(offset() >= 0, ""); 3963 3964 if (offset() != 0) { 3965 // After being ported to the compiler interface, the compiler no longer 3966 // directly manipulates the addresses of oops. Rather, it only has a pointer 3967 // to a handle at compile time. This handle is embedded in the generated 3968 // code and dereferenced at the time the nmethod is made. Until that time, 3969 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3970 // have access to the addresses!). This does not seem to currently happen, 3971 // but this assertion here is to help prevent its occurrence. 3972 tty->print_cr("Found oop constant with non-zero offset"); 3973 ShouldNotReachHere(); 3974 } 3975 3976 return (intptr_t)const_oop()->constant_encoding(); 3977 } 3978 3979 3980 //-----------------------------filter------------------------------------------ 3981 // Do not allow interface-vs.-noninterface joins to collapse to top. 3982 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3983 3984 const Type* ft = join_helper(kills, include_speculative); 3985 const TypeInstPtr* ftip = ft->isa_instptr(); 3986 const TypeInstPtr* ktip = kills->isa_instptr(); 3987 3988 if (ft->empty()) { 3989 return Type::TOP; // Canonical empty value 3990 } 3991 3992 return ft; 3993 } 3994 3995 //------------------------------eq--------------------------------------------- 3996 // Structural equality check for Type representations 3997 bool TypeOopPtr::eq( const Type *t ) const { 3998 const TypeOopPtr *a = (const TypeOopPtr*)t; 3999 if (_klass_is_exact != a->_klass_is_exact || 4000 _instance_id != a->_instance_id) return false; 4001 ciObject* one = const_oop(); 4002 ciObject* two = a->const_oop(); 4003 if (one == nullptr || two == nullptr) { 4004 return (one == two) && TypePtr::eq(t); 4005 } else { 4006 return one->equals(two) && TypePtr::eq(t); 4007 } 4008 } 4009 4010 //------------------------------hash------------------------------------------- 4011 // Type-specific hashing function. 4012 uint TypeOopPtr::hash(void) const { 4013 return 4014 (uint)(const_oop() ? const_oop()->hash() : 0) + 4015 (uint)_klass_is_exact + 4016 (uint)_instance_id + TypePtr::hash(); 4017 } 4018 4019 //------------------------------dump2------------------------------------------ 4020 #ifndef PRODUCT 4021 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 4022 st->print("oopptr:%s", ptr_msg[_ptr]); 4023 if( _klass_is_exact ) st->print(":exact"); 4024 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 4025 _offset.dump2(st); 4026 if (_instance_id == InstanceTop) 4027 st->print(",iid=top"); 4028 else if (_instance_id != InstanceBot) 4029 st->print(",iid=%d",_instance_id); 4030 4031 dump_inline_depth(st); 4032 dump_speculative(st); 4033 } 4034 #endif 4035 4036 //------------------------------singleton-------------------------------------- 4037 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 4038 // constants 4039 bool TypeOopPtr::singleton(void) const { 4040 // detune optimizer to not generate constant oop + constant offset as a constant! 4041 // TopPTR, Null, AnyNull, Constant are all singletons 4042 return (offset() == 0) && !below_centerline(_ptr); 4043 } 4044 4045 //------------------------------add_offset------------------------------------- 4046 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 4047 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 4048 } 4049 4050 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 4051 return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth); 4052 } 4053 4054 /** 4055 * Return same type without a speculative part 4056 */ 4057 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 4058 if (_speculative == nullptr) { 4059 return this; 4060 } 4061 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4062 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth); 4063 } 4064 4065 /** 4066 * Return same type but drop speculative part if we know we won't use 4067 * it 4068 */ 4069 const Type* TypeOopPtr::cleanup_speculative() const { 4070 // If the klass is exact and the ptr is not null then there's 4071 // nothing that the speculative type can help us with 4072 if (klass_is_exact() && !maybe_null()) { 4073 return remove_speculative(); 4074 } 4075 return TypePtr::cleanup_speculative(); 4076 } 4077 4078 /** 4079 * Return same type but with a different inline depth (used for speculation) 4080 * 4081 * @param depth depth to meet with 4082 */ 4083 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 4084 if (!UseInlineDepthForSpeculativeTypes) { 4085 return this; 4086 } 4087 return make(_ptr, _offset, _instance_id, _speculative, depth); 4088 } 4089 4090 //------------------------------with_instance_id-------------------------------- 4091 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 4092 assert(_instance_id != -1, "should be known"); 4093 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 4094 } 4095 4096 //------------------------------meet_instance_id-------------------------------- 4097 int TypeOopPtr::meet_instance_id( int instance_id ) const { 4098 // Either is 'TOP' instance? Return the other instance! 4099 if( _instance_id == InstanceTop ) return instance_id; 4100 if( instance_id == InstanceTop ) return _instance_id; 4101 // If either is different, return 'BOTTOM' instance 4102 if( _instance_id != instance_id ) return InstanceBot; 4103 return _instance_id; 4104 } 4105 4106 //------------------------------dual_instance_id-------------------------------- 4107 int TypeOopPtr::dual_instance_id( ) const { 4108 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 4109 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 4110 return _instance_id; // Map everything else into self 4111 } 4112 4113 4114 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 4115 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 4116 return _interfaces->union_with(other->_interfaces); 4117 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 4118 return other->_interfaces; 4119 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 4120 return _interfaces; 4121 } 4122 return _interfaces->intersection_with(other->_interfaces); 4123 } 4124 4125 /** 4126 * Check whether new profiling would improve speculative type 4127 * 4128 * @param exact_kls class from profiling 4129 * @param inline_depth inlining depth of profile point 4130 * 4131 * @return true if type profile is valuable 4132 */ 4133 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 4134 // no way to improve an already exact type 4135 if (klass_is_exact()) { 4136 return false; 4137 } 4138 return TypePtr::would_improve_type(exact_kls, inline_depth); 4139 } 4140 4141 //============================================================================= 4142 // Convenience common pre-built types. 4143 const TypeInstPtr *TypeInstPtr::NOTNULL; 4144 const TypeInstPtr *TypeInstPtr::BOTTOM; 4145 const TypeInstPtr *TypeInstPtr::MIRROR; 4146 const TypeInstPtr *TypeInstPtr::MARK; 4147 const TypeInstPtr *TypeInstPtr::KLASS; 4148 4149 // Is there a single ciKlass* that can represent that type? 4150 ciKlass* TypeInstPtr::exact_klass_helper() const { 4151 if (_interfaces->empty()) { 4152 return _klass; 4153 } 4154 if (_klass != ciEnv::current()->Object_klass()) { 4155 if (_interfaces->eq(_klass->as_instance_klass())) { 4156 return _klass; 4157 } 4158 return nullptr; 4159 } 4160 return _interfaces->exact_klass(); 4161 } 4162 4163 //------------------------------TypeInstPtr------------------------------------- 4164 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off, 4165 bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth) 4166 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth), 4167 _flat_in_array(flat_in_array) { 4168 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here"); 4169 assert(k != nullptr && 4170 (k->is_loaded() || o == nullptr), 4171 "cannot have constants with non-loaded klass"); 4172 assert(!klass()->flat_in_array() || flat_in_array, "Should be flat in array"); 4173 assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array"); 4174 }; 4175 4176 //------------------------------make------------------------------------------- 4177 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 4178 ciKlass* k, 4179 const TypeInterfaces* interfaces, 4180 bool xk, 4181 ciObject* o, 4182 Offset offset, 4183 bool flat_in_array, 4184 int instance_id, 4185 const TypePtr* speculative, 4186 int inline_depth) { 4187 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 4188 // Either const_oop() is null or else ptr is Constant 4189 assert( (!o && ptr != Constant) || (o && ptr == Constant), 4190 "constant pointers must have a value supplied" ); 4191 // Ptr is never Null 4192 assert( ptr != Null, "null pointers are not typed" ); 4193 4194 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4195 if (ptr == Constant) { 4196 // Note: This case includes meta-object constants, such as methods. 4197 xk = true; 4198 } else if (k->is_loaded()) { 4199 ciInstanceKlass* ik = k->as_instance_klass(); 4200 if (!xk && ik->is_final()) xk = true; // no inexact final klass 4201 assert(!ik->is_interface(), "no interface here"); 4202 if (xk && ik->is_interface()) xk = false; // no exact interface 4203 } 4204 4205 // Check if this type is known to be flat in arrays 4206 flat_in_array = flat_in_array || k->flat_in_array(); 4207 4208 // Now hash this baby 4209 TypeInstPtr *result = 4210 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons(); 4211 4212 return result; 4213 } 4214 4215 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 4216 if (k->is_instance_klass()) { 4217 if (k->is_loaded()) { 4218 if (k->is_interface() && interface_handling == ignore_interfaces) { 4219 assert(interface, "no interface expected"); 4220 k = ciEnv::current()->Object_klass(); 4221 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4222 return interfaces; 4223 } 4224 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces(); 4225 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces); 4226 if (k->is_interface()) { 4227 assert(interface, "no interface expected"); 4228 k = ciEnv::current()->Object_klass(); 4229 } else { 4230 assert(klass, "no instance klass expected"); 4231 } 4232 return interfaces; 4233 } 4234 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4235 return interfaces; 4236 } 4237 assert(array, "no array expected"); 4238 assert(k->is_array_klass(), "Not an array?"); 4239 ciType* e = k->as_array_klass()->base_element_type(); 4240 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 4241 if (interface_handling == ignore_interfaces) { 4242 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 4243 } 4244 } 4245 return TypeAryPtr::_array_interfaces; 4246 } 4247 4248 /** 4249 * Create constant type for a constant boxed value 4250 */ 4251 const Type* TypeInstPtr::get_const_boxed_value() const { 4252 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 4253 assert((const_oop() != nullptr), "should be called only for constant object"); 4254 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 4255 BasicType bt = constant.basic_type(); 4256 switch (bt) { 4257 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 4258 case T_INT: return TypeInt::make(constant.as_int()); 4259 case T_CHAR: return TypeInt::make(constant.as_char()); 4260 case T_BYTE: return TypeInt::make(constant.as_byte()); 4261 case T_SHORT: return TypeInt::make(constant.as_short()); 4262 case T_FLOAT: return TypeF::make(constant.as_float()); 4263 case T_DOUBLE: return TypeD::make(constant.as_double()); 4264 case T_LONG: return TypeLong::make(constant.as_long()); 4265 default: break; 4266 } 4267 fatal("Invalid boxed value type '%s'", type2name(bt)); 4268 return nullptr; 4269 } 4270 4271 //------------------------------cast_to_ptr_type------------------------------- 4272 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 4273 if( ptr == _ptr ) return this; 4274 // Reconstruct _sig info here since not a problem with later lazy 4275 // construction, _sig will show up on demand. 4276 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth); 4277 } 4278 4279 4280 //-----------------------------cast_to_exactness------------------------------- 4281 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 4282 if( klass_is_exact == _klass_is_exact ) return this; 4283 if (!_klass->is_loaded()) return this; 4284 ciInstanceKlass* ik = _klass->as_instance_klass(); 4285 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 4286 assert(!ik->is_interface(), "no interface here"); 4287 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth); 4288 } 4289 4290 //-----------------------------cast_to_instance_id---------------------------- 4291 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 4292 if( instance_id == _instance_id ) return this; 4293 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth); 4294 } 4295 4296 //------------------------------xmeet_unloaded--------------------------------- 4297 // Compute the MEET of two InstPtrs when at least one is unloaded. 4298 // Assume classes are different since called after check for same name/class-loader 4299 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const { 4300 Offset off = meet_offset(tinst->offset()); 4301 PTR ptr = meet_ptr(tinst->ptr()); 4302 int instance_id = meet_instance_id(tinst->instance_id()); 4303 const TypePtr* speculative = xmeet_speculative(tinst); 4304 int depth = meet_inline_depth(tinst->inline_depth()); 4305 4306 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 4307 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 4308 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 4309 // 4310 // Meet unloaded class with java/lang/Object 4311 // 4312 // Meet 4313 // | Unloaded Class 4314 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4315 // =================================================================== 4316 // TOP | ..........................Unloaded......................| 4317 // AnyNull | U-AN |................Unloaded......................| 4318 // Constant | ... O-NN .................................. | O-BOT | 4319 // NotNull | ... O-NN .................................. | O-BOT | 4320 // BOTTOM | ........................Object-BOTTOM ..................| 4321 // 4322 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4323 // 4324 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4325 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); } 4326 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4327 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4328 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4329 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); } 4330 } 4331 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4332 4333 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative); 4334 } 4335 4336 // Both are unloaded, not the same class, not Object 4337 // Or meet unloaded with a different loaded class, not java/lang/Object 4338 if (ptr != TypePtr::BotPTR) { 4339 return TypeInstPtr::NOTNULL->with_speculative(speculative); 4340 } 4341 return TypeInstPtr::BOTTOM->with_speculative(speculative); 4342 } 4343 4344 4345 //------------------------------meet------------------------------------------- 4346 // Compute the MEET of two types. It returns a new Type object. 4347 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4348 // Perform a fast test for common case; meeting the same types together. 4349 if( this == t ) return this; // Meeting same type-rep? 4350 4351 // Current "this->_base" is Pointer 4352 switch (t->base()) { // switch on original type 4353 4354 case Int: // Mixing ints & oops happens when javac 4355 case Long: // reuses local variables 4356 case FloatTop: 4357 case FloatCon: 4358 case FloatBot: 4359 case DoubleTop: 4360 case DoubleCon: 4361 case DoubleBot: 4362 case NarrowOop: 4363 case NarrowKlass: 4364 case Bottom: // Ye Olde Default 4365 return Type::BOTTOM; 4366 case Top: 4367 return this; 4368 4369 default: // All else is a mistake 4370 typerr(t); 4371 4372 case MetadataPtr: 4373 case KlassPtr: 4374 case InstKlassPtr: 4375 case AryKlassPtr: 4376 case RawPtr: return TypePtr::BOTTOM; 4377 4378 case AryPtr: { // All arrays inherit from Object class 4379 // Call in reverse direction to avoid duplication 4380 return t->is_aryptr()->xmeet_helper(this); 4381 } 4382 4383 case OopPtr: { // Meeting to OopPtrs 4384 // Found a OopPtr type vs self-InstPtr type 4385 const TypeOopPtr *tp = t->is_oopptr(); 4386 Offset offset = meet_offset(tp->offset()); 4387 PTR ptr = meet_ptr(tp->ptr()); 4388 switch (tp->ptr()) { 4389 case TopPTR: 4390 case AnyNull: { 4391 int instance_id = meet_instance_id(InstanceTop); 4392 const TypePtr* speculative = xmeet_speculative(tp); 4393 int depth = meet_inline_depth(tp->inline_depth()); 4394 return make(ptr, klass(), _interfaces, klass_is_exact(), 4395 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth); 4396 } 4397 case NotNull: 4398 case BotPTR: { 4399 int instance_id = meet_instance_id(tp->instance_id()); 4400 const TypePtr* speculative = xmeet_speculative(tp); 4401 int depth = meet_inline_depth(tp->inline_depth()); 4402 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4403 } 4404 default: typerr(t); 4405 } 4406 } 4407 4408 case AnyPtr: { // Meeting to AnyPtrs 4409 // Found an AnyPtr type vs self-InstPtr type 4410 const TypePtr *tp = t->is_ptr(); 4411 Offset offset = meet_offset(tp->offset()); 4412 PTR ptr = meet_ptr(tp->ptr()); 4413 int instance_id = meet_instance_id(InstanceTop); 4414 const TypePtr* speculative = xmeet_speculative(tp); 4415 int depth = meet_inline_depth(tp->inline_depth()); 4416 switch (tp->ptr()) { 4417 case Null: 4418 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4419 // else fall through to AnyNull 4420 case TopPTR: 4421 case AnyNull: { 4422 return make(ptr, klass(), _interfaces, klass_is_exact(), 4423 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth); 4424 } 4425 case NotNull: 4426 case BotPTR: 4427 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4428 default: typerr(t); 4429 } 4430 } 4431 4432 /* 4433 A-top } 4434 / | \ } Tops 4435 B-top A-any C-top } 4436 | / | \ | } Any-nulls 4437 B-any | C-any } 4438 | | | 4439 B-con A-con C-con } constants; not comparable across classes 4440 | | | 4441 B-not | C-not } 4442 | \ | / | } not-nulls 4443 B-bot A-not C-bot } 4444 \ | / } Bottoms 4445 A-bot } 4446 */ 4447 4448 case InstPtr: { // Meeting 2 Oops? 4449 // Found an InstPtr sub-type vs self-InstPtr type 4450 const TypeInstPtr *tinst = t->is_instptr(); 4451 Offset off = meet_offset(tinst->offset()); 4452 PTR ptr = meet_ptr(tinst->ptr()); 4453 int instance_id = meet_instance_id(tinst->instance_id()); 4454 const TypePtr* speculative = xmeet_speculative(tinst); 4455 int depth = meet_inline_depth(tinst->inline_depth()); 4456 const TypeInterfaces* interfaces = meet_interfaces(tinst); 4457 4458 ciKlass* tinst_klass = tinst->klass(); 4459 ciKlass* this_klass = klass(); 4460 4461 ciKlass* res_klass = nullptr; 4462 bool res_xk = false; 4463 bool res_flat_in_array = false; 4464 const Type* res; 4465 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array); 4466 4467 if (kind == UNLOADED) { 4468 // One of these classes has not been loaded 4469 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4470 #ifndef PRODUCT 4471 if (PrintOpto && Verbose) { 4472 tty->print("meet of unloaded classes resulted in: "); 4473 unloaded_meet->dump(); 4474 tty->cr(); 4475 tty->print(" this == "); 4476 dump(); 4477 tty->cr(); 4478 tty->print(" tinst == "); 4479 tinst->dump(); 4480 tty->cr(); 4481 } 4482 #endif 4483 res = unloaded_meet; 4484 } else { 4485 if (kind == NOT_SUBTYPE && instance_id > 0) { 4486 instance_id = InstanceBot; 4487 } else if (kind == LCA) { 4488 instance_id = InstanceBot; 4489 } 4490 ciObject* o = nullptr; // Assume not constant when done 4491 ciObject* this_oop = const_oop(); 4492 ciObject* tinst_oop = tinst->const_oop(); 4493 if (ptr == Constant) { 4494 if (this_oop != nullptr && tinst_oop != nullptr && 4495 this_oop->equals(tinst_oop)) 4496 o = this_oop; 4497 else if (above_centerline(_ptr)) { 4498 assert(!tinst_klass->is_interface(), ""); 4499 o = tinst_oop; 4500 } else if (above_centerline(tinst->_ptr)) { 4501 assert(!this_klass->is_interface(), ""); 4502 o = this_oop; 4503 } else 4504 ptr = NotNull; 4505 } 4506 res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth); 4507 } 4508 4509 return res; 4510 4511 } // End of case InstPtr 4512 4513 } // End of switch 4514 return this; // Return the double constant 4515 } 4516 4517 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type, 4518 ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) { 4519 ciKlass* this_klass = this_type->klass(); 4520 ciKlass* other_klass = other_type->klass(); 4521 const bool this_flat_in_array = this_type->flat_in_array(); 4522 const bool other_flat_in_array = other_type->flat_in_array(); 4523 const bool this_not_flat_in_array = this_type->not_flat_in_array(); 4524 const bool other_not_flat_in_array = other_type->not_flat_in_array(); 4525 4526 bool this_xk = this_type->klass_is_exact(); 4527 bool other_xk = other_type->klass_is_exact(); 4528 PTR this_ptr = this_type->ptr(); 4529 PTR other_ptr = other_type->ptr(); 4530 const TypeInterfaces* this_interfaces = this_type->interfaces(); 4531 const TypeInterfaces* other_interfaces = other_type->interfaces(); 4532 // Check for easy case; klasses are equal (and perhaps not loaded!) 4533 // If we have constants, then we created oops so classes are loaded 4534 // and we can handle the constants further down. This case handles 4535 // both-not-loaded or both-loaded classes 4536 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) { 4537 res_klass = this_klass; 4538 res_xk = this_xk; 4539 res_flat_in_array = this_flat_in_array; 4540 return QUICK; 4541 } 4542 4543 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4544 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4545 return UNLOADED; 4546 } 4547 4548 // !!! Here's how the symmetry requirement breaks down into invariants: 4549 // If we split one up & one down AND they subtype, take the down man. 4550 // If we split one up & one down AND they do NOT subtype, "fall hard". 4551 // If both are up and they subtype, take the subtype class. 4552 // If both are up and they do NOT subtype, "fall hard". 4553 // If both are down and they subtype, take the supertype class. 4554 // If both are down and they do NOT subtype, "fall hard". 4555 // Constants treated as down. 4556 4557 // Now, reorder the above list; observe that both-down+subtype is also 4558 // "fall hard"; "fall hard" becomes the default case: 4559 // If we split one up & one down AND they subtype, take the down man. 4560 // If both are up and they subtype, take the subtype class. 4561 4562 // If both are down and they subtype, "fall hard". 4563 // If both are down and they do NOT subtype, "fall hard". 4564 // If both are up and they do NOT subtype, "fall hard". 4565 // If we split one up & one down AND they do NOT subtype, "fall hard". 4566 4567 // If a proper subtype is exact, and we return it, we return it exactly. 4568 // If a proper supertype is exact, there can be no subtyping relationship! 4569 // If both types are equal to the subtype, exactness is and-ed below the 4570 // centerline and or-ed above it. (N.B. Constants are always exact.) 4571 4572 // Check for subtyping: 4573 // Flat in array matrix, yes = y, no = n, maybe = m, top/empty = T: 4574 // yes maybe no -> Super Klass 4575 // yes y y y 4576 // maybe y m m 4577 // no T n n 4578 // | 4579 // v 4580 // Sub Klass 4581 4582 const T* subtype = nullptr; 4583 bool subtype_exact = false; 4584 bool flat_in_array = false; 4585 if (this_type->is_same_java_type_as(other_type)) { 4586 subtype = this_type; 4587 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4588 flat_in_array = below_centerline(ptr) ? (this_flat_in_array && other_flat_in_array) : (this_flat_in_array || other_flat_in_array); 4589 } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) { 4590 subtype = this_type; // Pick subtyping class 4591 subtype_exact = this_xk; 4592 bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array); 4593 flat_in_array = this_flat_in_array || other_flat_this_maybe_flat; 4594 } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) { 4595 subtype = other_type; // Pick subtyping class 4596 subtype_exact = other_xk; 4597 bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array); 4598 flat_in_array = other_flat_in_array || this_flat_other_maybe_flat; 4599 } 4600 4601 if (subtype) { 4602 if (above_centerline(ptr)) { 4603 // Both types are empty. 4604 this_type = other_type = subtype; 4605 this_xk = other_xk = subtype_exact; 4606 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4607 // this_type is empty while other_type is not. Take other_type. 4608 this_type = other_type; 4609 this_xk = other_xk; 4610 flat_in_array = other_flat_in_array; 4611 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4612 // other_type is empty while this_type is not. Take this_type. 4613 other_type = this_type; // this is down; keep down man 4614 flat_in_array = this_flat_in_array; 4615 } else { 4616 // this_type and other_type are both non-empty. 4617 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4618 } 4619 } 4620 4621 // Check for classes now being equal 4622 if (this_type->is_same_java_type_as(other_type)) { 4623 // If the klasses are equal, the constants may still differ. Fall to 4624 // NotNull if they do (neither constant is null; that is a special case 4625 // handled elsewhere). 4626 res_klass = this_type->klass(); 4627 res_xk = this_xk; 4628 res_flat_in_array = subtype ? flat_in_array : this_flat_in_array; 4629 return SUBTYPE; 4630 } // Else classes are not equal 4631 4632 // Since klasses are different, we require a LCA in the Java 4633 // class hierarchy - which means we have to fall to at least NotNull. 4634 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4635 ptr = NotNull; 4636 } 4637 4638 interfaces = this_interfaces->intersection_with(other_interfaces); 4639 4640 // Now we find the LCA of Java classes 4641 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4642 4643 res_klass = k; 4644 res_xk = false; 4645 res_flat_in_array = this_flat_in_array && other_flat_in_array; 4646 4647 return LCA; 4648 } 4649 4650 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) { 4651 return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array()); 4652 } 4653 4654 //------------------------java_mirror_type-------------------------------------- 4655 ciType* TypeInstPtr::java_mirror_type(bool* is_null_free_array) const { 4656 // must be a singleton type 4657 if( const_oop() == nullptr ) return nullptr; 4658 4659 // must be of type java.lang.Class 4660 if( klass() != ciEnv::current()->Class_klass() ) return nullptr; 4661 return const_oop()->as_instance()->java_mirror_type(is_null_free_array); 4662 } 4663 4664 4665 //------------------------------xdual------------------------------------------ 4666 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4667 // inheritance mechanism. 4668 const Type *TypeInstPtr::xdual() const { 4669 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4670 } 4671 4672 //------------------------------eq--------------------------------------------- 4673 // Structural equality check for Type representations 4674 bool TypeInstPtr::eq( const Type *t ) const { 4675 const TypeInstPtr *p = t->is_instptr(); 4676 return 4677 klass()->equals(p->klass()) && 4678 flat_in_array() == p->flat_in_array() && 4679 _interfaces->eq(p->_interfaces) && 4680 TypeOopPtr::eq(p); // Check sub-type stuff 4681 } 4682 4683 //------------------------------hash------------------------------------------- 4684 // Type-specific hashing function. 4685 uint TypeInstPtr::hash(void) const { 4686 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array(); 4687 } 4688 4689 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4690 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4691 } 4692 4693 4694 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4695 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4696 } 4697 4698 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4699 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4700 } 4701 4702 4703 //------------------------------dump2------------------------------------------ 4704 // Dump oop Type 4705 #ifndef PRODUCT 4706 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4707 // Print the name of the klass. 4708 klass()->print_name_on(st); 4709 _interfaces->dump(st); 4710 4711 switch( _ptr ) { 4712 case Constant: 4713 if (WizardMode || Verbose) { 4714 ResourceMark rm; 4715 stringStream ss; 4716 4717 st->print(" "); 4718 const_oop()->print_oop(&ss); 4719 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4720 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4721 char* buf = ss.as_string(/* c_heap= */false); 4722 StringUtils::replace_no_expand(buf, "\n", ""); 4723 st->print_raw(buf); 4724 } 4725 case BotPTR: 4726 if (!WizardMode && !Verbose) { 4727 if( _klass_is_exact ) st->print(":exact"); 4728 break; 4729 } 4730 case TopPTR: 4731 case AnyNull: 4732 case NotNull: 4733 st->print(":%s", ptr_msg[_ptr]); 4734 if( _klass_is_exact ) st->print(":exact"); 4735 break; 4736 default: 4737 break; 4738 } 4739 4740 _offset.dump2(st); 4741 4742 st->print(" *"); 4743 4744 if (flat_in_array() && !klass()->is_inlinetype()) { 4745 st->print(" (flat in array)"); 4746 } 4747 4748 if (_instance_id == InstanceTop) 4749 st->print(",iid=top"); 4750 else if (_instance_id != InstanceBot) 4751 st->print(",iid=%d",_instance_id); 4752 4753 dump_inline_depth(st); 4754 dump_speculative(st); 4755 } 4756 #endif 4757 4758 //------------------------------add_offset------------------------------------- 4759 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4760 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(), 4761 _instance_id, add_offset_speculative(offset), _inline_depth); 4762 } 4763 4764 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4765 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(), 4766 _instance_id, with_offset_speculative(offset), _inline_depth); 4767 } 4768 4769 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4770 if (_speculative == nullptr) { 4771 return this; 4772 } 4773 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4774 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), 4775 _instance_id, nullptr, _inline_depth); 4776 } 4777 4778 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const { 4779 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth); 4780 } 4781 4782 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4783 if (!UseInlineDepthForSpeculativeTypes) { 4784 return this; 4785 } 4786 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth); 4787 } 4788 4789 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4790 assert(is_known_instance(), "should be known"); 4791 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth); 4792 } 4793 4794 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const { 4795 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth); 4796 } 4797 4798 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4799 bool xk = klass_is_exact(); 4800 ciInstanceKlass* ik = klass()->as_instance_klass(); 4801 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4802 if (_interfaces->eq(ik)) { 4803 Compile* C = Compile::current(); 4804 Dependencies* deps = C->dependencies(); 4805 deps->assert_leaf_type(ik); 4806 xk = true; 4807 } 4808 } 4809 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array()); 4810 } 4811 4812 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4813 static_assert(std::is_base_of<T2, T1>::value, ""); 4814 4815 if (!this_one->is_instance_type(other)) { 4816 return false; 4817 } 4818 4819 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4820 return true; 4821 } 4822 4823 return this_one->klass()->is_subtype_of(other->klass()) && 4824 (!this_xk || this_one->_interfaces->contains(other->_interfaces)); 4825 } 4826 4827 4828 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4829 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4830 } 4831 4832 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4833 static_assert(std::is_base_of<T2, T1>::value, ""); 4834 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4835 return true; 4836 } 4837 4838 if (this_one->is_instance_type(other)) { 4839 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces); 4840 } 4841 4842 int dummy; 4843 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4844 if (this_top_or_bottom) { 4845 return false; 4846 } 4847 4848 const T1* other_ary = this_one->is_array_type(other); 4849 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4850 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4851 if (other_elem != nullptr && this_elem != nullptr) { 4852 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4853 } 4854 if (other_elem == nullptr && this_elem == nullptr) { 4855 return this_one->klass()->is_subtype_of(other->klass()); 4856 } 4857 4858 return false; 4859 } 4860 4861 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4862 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4863 } 4864 4865 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4866 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4867 } 4868 4869 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4870 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4871 } 4872 4873 //============================================================================= 4874 // Convenience common pre-built types. 4875 const TypeAryPtr *TypeAryPtr::RANGE; 4876 const TypeAryPtr *TypeAryPtr::OOPS; 4877 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4878 const TypeAryPtr *TypeAryPtr::BYTES; 4879 const TypeAryPtr *TypeAryPtr::SHORTS; 4880 const TypeAryPtr *TypeAryPtr::CHARS; 4881 const TypeAryPtr *TypeAryPtr::INTS; 4882 const TypeAryPtr *TypeAryPtr::LONGS; 4883 const TypeAryPtr *TypeAryPtr::FLOATS; 4884 const TypeAryPtr *TypeAryPtr::DOUBLES; 4885 const TypeAryPtr *TypeAryPtr::INLINES; 4886 4887 //------------------------------make------------------------------------------- 4888 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset, 4889 int instance_id, const TypePtr* speculative, int inline_depth) { 4890 assert(!(k == nullptr && ary->_elem->isa_int()), 4891 "integral arrays must be pre-equipped with a class"); 4892 if (!xk) xk = ary->ary_must_be_exact(); 4893 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4894 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4895 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4896 k = nullptr; 4897 } 4898 if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) { 4899 k = nullptr; 4900 } 4901 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons(); 4902 } 4903 4904 //------------------------------make------------------------------------------- 4905 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset, 4906 int instance_id, const TypePtr* speculative, int inline_depth, 4907 bool is_autobox_cache) { 4908 assert(!(k == nullptr && ary->_elem->isa_int()), 4909 "integral arrays must be pre-equipped with a class"); 4910 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4911 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact(); 4912 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4913 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4914 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4915 k = nullptr; 4916 } 4917 if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) { 4918 k = nullptr; 4919 } 4920 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4921 } 4922 4923 //------------------------------cast_to_ptr_type------------------------------- 4924 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4925 if( ptr == _ptr ) return this; 4926 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 4927 } 4928 4929 4930 //-----------------------------cast_to_exactness------------------------------- 4931 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4932 if( klass_is_exact == _klass_is_exact ) return this; 4933 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4934 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 4935 } 4936 4937 //-----------------------------cast_to_instance_id---------------------------- 4938 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 4939 if( instance_id == _instance_id ) return this; 4940 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache); 4941 } 4942 4943 4944 //-----------------------------max_array_length------------------------------- 4945 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4946 jint TypeAryPtr::max_array_length(BasicType etype) { 4947 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 4948 if (etype == T_NARROWOOP) { 4949 etype = T_OBJECT; 4950 } else if (etype == T_ILLEGAL) { // bottom[] 4951 etype = T_BYTE; // will produce conservatively high value 4952 } else { 4953 fatal("not an element type: %s", type2name(etype)); 4954 } 4955 } 4956 return arrayOopDesc::max_array_length(etype); 4957 } 4958 4959 //-----------------------------narrow_size_type------------------------------- 4960 // Narrow the given size type to the index range for the given array base type. 4961 // Return null if the resulting int type becomes empty. 4962 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4963 jint hi = size->_hi; 4964 jint lo = size->_lo; 4965 jint min_lo = 0; 4966 jint max_hi = max_array_length(elem()->array_element_basic_type()); 4967 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4968 bool chg = false; 4969 if (lo < min_lo) { 4970 lo = min_lo; 4971 if (size->is_con()) { 4972 hi = lo; 4973 } 4974 chg = true; 4975 } 4976 if (hi > max_hi) { 4977 hi = max_hi; 4978 if (size->is_con()) { 4979 lo = hi; 4980 } 4981 chg = true; 4982 } 4983 // Negative length arrays will produce weird intermediate dead fast-path code 4984 if (lo > hi) 4985 return TypeInt::ZERO; 4986 if (!chg) 4987 return size; 4988 return TypeInt::make(lo, hi, Type::WidenMin); 4989 } 4990 4991 //-------------------------------cast_to_size---------------------------------- 4992 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4993 assert(new_size != nullptr, ""); 4994 new_size = narrow_size_type(new_size); 4995 if (new_size == size()) return this; 4996 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free()); 4997 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 4998 } 4999 5000 //-------------------------------cast_to_not_flat------------------------------ 5001 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const { 5002 if (not_flat == is_not_flat()) { 5003 return this; 5004 } 5005 assert(!not_flat || !is_flat(), "inconsistency"); 5006 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free()); 5007 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5008 // We keep the speculative part if it contains information about flat-/nullability. 5009 // Make sure it's removed if it's not better than the non-speculative type anymore. 5010 if (res->speculative() == res->remove_speculative()) { 5011 return res->remove_speculative(); 5012 } 5013 return res; 5014 } 5015 5016 //-------------------------------cast_to_not_null_free------------------------- 5017 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const { 5018 if (not_null_free == is_not_null_free()) { 5019 return this; 5020 } 5021 assert(!not_null_free || !is_flat(), "inconsistency"); 5022 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free); 5023 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, 5024 _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5025 // We keep the speculative part if it contains information about flat-/nullability. 5026 // Make sure it's removed if it's not better than the non-speculative type anymore. 5027 if (res->speculative() == res->remove_speculative()) { 5028 return res->remove_speculative(); 5029 } 5030 return res; 5031 } 5032 5033 //---------------------------------update_properties--------------------------- 5034 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const { 5035 if ((from->is_flat() && is_not_flat()) || 5036 (from->is_not_flat() && is_flat()) || 5037 (from->is_null_free() && is_not_null_free()) || 5038 (from->is_not_null_free() && is_null_free())) { 5039 return nullptr; // Inconsistent properties 5040 } else if (from->is_not_null_free()) { 5041 return cast_to_not_null_free(); // Implies not flat 5042 } else if (from->is_not_flat()) { 5043 return cast_to_not_flat(); 5044 } 5045 return this; 5046 } 5047 5048 jint TypeAryPtr::flat_layout_helper() const { 5049 return klass()->as_flat_array_klass()->layout_helper(); 5050 } 5051 5052 int TypeAryPtr::flat_elem_size() const { 5053 return klass()->as_flat_array_klass()->element_byte_size(); 5054 } 5055 5056 int TypeAryPtr::flat_log_elem_size() const { 5057 return klass()->as_flat_array_klass()->log2_element_size(); 5058 } 5059 5060 //------------------------------cast_to_stable--------------------------------- 5061 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 5062 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 5063 return this; 5064 5065 const Type* elem = this->elem(); 5066 const TypePtr* elem_ptr = elem->make_ptr(); 5067 5068 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) { 5069 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 5070 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 5071 } 5072 5073 const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free()); 5074 5075 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5076 } 5077 5078 //-----------------------------stable_dimension-------------------------------- 5079 int TypeAryPtr::stable_dimension() const { 5080 if (!is_stable()) return 0; 5081 int dim = 1; 5082 const TypePtr* elem_ptr = elem()->make_ptr(); 5083 if (elem_ptr != nullptr && elem_ptr->isa_aryptr()) 5084 dim += elem_ptr->is_aryptr()->stable_dimension(); 5085 return dim; 5086 } 5087 5088 //----------------------cast_to_autobox_cache----------------------------------- 5089 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 5090 if (is_autobox_cache()) return this; 5091 const TypeOopPtr* etype = elem()->make_oopptr(); 5092 if (etype == nullptr) return this; 5093 // The pointers in the autobox arrays are always non-null. 5094 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 5095 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free()); 5096 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 5097 } 5098 5099 //------------------------------eq--------------------------------------------- 5100 // Structural equality check for Type representations 5101 bool TypeAryPtr::eq( const Type *t ) const { 5102 const TypeAryPtr *p = t->is_aryptr(); 5103 return 5104 _ary == p->_ary && // Check array 5105 TypeOopPtr::eq(p) &&// Check sub-parts 5106 _field_offset == p->_field_offset; 5107 } 5108 5109 //------------------------------hash------------------------------------------- 5110 // Type-specific hashing function. 5111 uint TypeAryPtr::hash(void) const { 5112 return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get(); 5113 } 5114 5115 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 5116 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 5117 } 5118 5119 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 5120 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 5121 } 5122 5123 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 5124 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 5125 } 5126 //------------------------------meet------------------------------------------- 5127 // Compute the MEET of two types. It returns a new Type object. 5128 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 5129 // Perform a fast test for common case; meeting the same types together. 5130 if( this == t ) return this; // Meeting same type-rep? 5131 // Current "this->_base" is Pointer 5132 switch (t->base()) { // switch on original type 5133 5134 // Mixing ints & oops happens when javac reuses local variables 5135 case Int: 5136 case Long: 5137 case FloatTop: 5138 case FloatCon: 5139 case FloatBot: 5140 case DoubleTop: 5141 case DoubleCon: 5142 case DoubleBot: 5143 case NarrowOop: 5144 case NarrowKlass: 5145 case Bottom: // Ye Olde Default 5146 return Type::BOTTOM; 5147 case Top: 5148 return this; 5149 5150 default: // All else is a mistake 5151 typerr(t); 5152 5153 case OopPtr: { // Meeting to OopPtrs 5154 // Found a OopPtr type vs self-AryPtr type 5155 const TypeOopPtr *tp = t->is_oopptr(); 5156 Offset offset = meet_offset(tp->offset()); 5157 PTR ptr = meet_ptr(tp->ptr()); 5158 int depth = meet_inline_depth(tp->inline_depth()); 5159 const TypePtr* speculative = xmeet_speculative(tp); 5160 switch (tp->ptr()) { 5161 case TopPTR: 5162 case AnyNull: { 5163 int instance_id = meet_instance_id(InstanceTop); 5164 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5165 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5166 } 5167 case BotPTR: 5168 case NotNull: { 5169 int instance_id = meet_instance_id(tp->instance_id()); 5170 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 5171 } 5172 default: ShouldNotReachHere(); 5173 } 5174 } 5175 5176 case AnyPtr: { // Meeting two AnyPtrs 5177 // Found an AnyPtr type vs self-AryPtr type 5178 const TypePtr *tp = t->is_ptr(); 5179 Offset offset = meet_offset(tp->offset()); 5180 PTR ptr = meet_ptr(tp->ptr()); 5181 const TypePtr* speculative = xmeet_speculative(tp); 5182 int depth = meet_inline_depth(tp->inline_depth()); 5183 switch (tp->ptr()) { 5184 case TopPTR: 5185 return this; 5186 case BotPTR: 5187 case NotNull: 5188 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 5189 case Null: 5190 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 5191 // else fall through to AnyNull 5192 case AnyNull: { 5193 int instance_id = meet_instance_id(InstanceTop); 5194 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5195 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5196 } 5197 default: ShouldNotReachHere(); 5198 } 5199 } 5200 5201 case MetadataPtr: 5202 case KlassPtr: 5203 case InstKlassPtr: 5204 case AryKlassPtr: 5205 case RawPtr: return TypePtr::BOTTOM; 5206 5207 case AryPtr: { // Meeting 2 references? 5208 const TypeAryPtr *tap = t->is_aryptr(); 5209 Offset off = meet_offset(tap->offset()); 5210 Offset field_off = meet_field_offset(tap->field_offset()); 5211 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 5212 PTR ptr = meet_ptr(tap->ptr()); 5213 int instance_id = meet_instance_id(tap->instance_id()); 5214 const TypePtr* speculative = xmeet_speculative(tap); 5215 int depth = meet_inline_depth(tap->inline_depth()); 5216 5217 ciKlass* res_klass = nullptr; 5218 bool res_xk = false; 5219 bool res_flat = false; 5220 bool res_not_flat = false; 5221 bool res_not_null_free = false; 5222 const Type* elem = tary->_elem; 5223 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) { 5224 instance_id = InstanceBot; 5225 } else if (this->is_flat() != tap->is_flat()) { 5226 // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly. 5227 if (tary->_flat) { 5228 // Result is in a flat representation 5229 off = Offset(is_flat() ? offset() : tap->offset()); 5230 field_off = is_flat() ? field_offset() : tap->field_offset(); 5231 } else if (below_centerline(ptr)) { 5232 // Result is in a non-flat representation 5233 off = Offset(flat_offset()).meet(Offset(tap->flat_offset())); 5234 field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom; 5235 } else if (flat_offset() == tap->flat_offset()) { 5236 off = Offset(!is_flat() ? offset() : tap->offset()); 5237 field_off = !is_flat() ? field_offset() : tap->field_offset(); 5238 } 5239 } 5240 5241 ciObject* o = nullptr; // Assume not constant when done 5242 ciObject* this_oop = const_oop(); 5243 ciObject* tap_oop = tap->const_oop(); 5244 if (ptr == Constant) { 5245 if (this_oop != nullptr && tap_oop != nullptr && 5246 this_oop->equals(tap_oop)) { 5247 o = tap_oop; 5248 } else if (above_centerline(_ptr)) { 5249 o = tap_oop; 5250 } else if (above_centerline(tap->_ptr)) { 5251 o = this_oop; 5252 } else { 5253 ptr = NotNull; 5254 } 5255 } 5256 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth); 5257 } 5258 5259 // All arrays inherit from Object class 5260 case InstPtr: { 5261 const TypeInstPtr *tp = t->is_instptr(); 5262 Offset offset = meet_offset(tp->offset()); 5263 PTR ptr = meet_ptr(tp->ptr()); 5264 int instance_id = meet_instance_id(tp->instance_id()); 5265 const TypePtr* speculative = xmeet_speculative(tp); 5266 int depth = meet_inline_depth(tp->inline_depth()); 5267 const TypeInterfaces* interfaces = meet_interfaces(tp); 5268 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5269 const TypeInterfaces* this_interfaces = _interfaces; 5270 5271 switch (ptr) { 5272 case TopPTR: 5273 case AnyNull: // Fall 'down' to dual of object klass 5274 // For instances when a subclass meets a superclass we fall 5275 // below the centerline when the superclass is exact. We need to 5276 // do the same here. 5277 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) { 5278 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5279 } else { 5280 // cannot subclass, so the meet has to fall badly below the centerline 5281 ptr = NotNull; 5282 instance_id = InstanceBot; 5283 interfaces = this_interfaces->intersection_with(tp_interfaces); 5284 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth); 5285 } 5286 case Constant: 5287 case NotNull: 5288 case BotPTR: // Fall down to object klass 5289 // LCA is object_klass, but if we subclass from the top we can do better 5290 if (above_centerline(tp->ptr())) { 5291 // If 'tp' is above the centerline and it is Object class 5292 // then we can subclass in the Java class hierarchy. 5293 // For instances when a subclass meets a superclass we fall 5294 // below the centerline when the superclass is exact. We need 5295 // to do the same here. 5296 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) { 5297 // that is, my array type is a subtype of 'tp' klass 5298 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5299 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5300 } 5301 } 5302 // The other case cannot happen, since t cannot be a subtype of an array. 5303 // The meet falls down to Object class below centerline. 5304 if (ptr == Constant) { 5305 ptr = NotNull; 5306 } 5307 if (instance_id > 0) { 5308 instance_id = InstanceBot; 5309 } 5310 interfaces = this_interfaces->intersection_with(tp_interfaces); 5311 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth); 5312 default: typerr(t); 5313 } 5314 } 5315 } 5316 return this; // Lint noise 5317 } 5318 5319 5320 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 5321 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) { 5322 int dummy; 5323 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 5324 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 5325 ciKlass* this_klass = this_ary->klass(); 5326 ciKlass* other_klass = other_ary->klass(); 5327 bool this_xk = this_ary->klass_is_exact(); 5328 bool other_xk = other_ary->klass_is_exact(); 5329 PTR this_ptr = this_ary->ptr(); 5330 PTR other_ptr = other_ary->ptr(); 5331 bool this_flat = this_ary->is_flat(); 5332 bool this_not_flat = this_ary->is_not_flat(); 5333 bool other_flat = other_ary->is_flat(); 5334 bool other_not_flat = other_ary->is_not_flat(); 5335 bool this_not_null_free = this_ary->is_not_null_free(); 5336 bool other_not_null_free = other_ary->is_not_null_free(); 5337 res_klass = nullptr; 5338 MeetResult result = SUBTYPE; 5339 res_flat = this_flat && other_flat; 5340 res_not_flat = this_not_flat && other_not_flat; 5341 res_not_null_free = this_not_null_free && other_not_null_free; 5342 5343 if (elem->isa_int()) { 5344 // Integral array element types have irrelevant lattice relations. 5345 // It is the klass that determines array layout, not the element type. 5346 if (this_top_or_bottom) { 5347 res_klass = other_klass; 5348 } else if (other_top_or_bottom || other_klass == this_klass) { 5349 res_klass = this_klass; 5350 } else { 5351 // Something like byte[int+] meets char[int+]. 5352 // This must fall to bottom, not (int[-128..65535])[int+]. 5353 // instance_id = InstanceBot; 5354 elem = Type::BOTTOM; 5355 result = NOT_SUBTYPE; 5356 if (above_centerline(ptr) || ptr == Constant) { 5357 ptr = NotNull; 5358 res_xk = false; 5359 return NOT_SUBTYPE; 5360 } 5361 } 5362 } else {// Non integral arrays. 5363 // Must fall to bottom if exact klasses in upper lattice 5364 // are not equal or super klass is exact. 5365 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 5366 // meet with top[] and bottom[] are processed further down: 5367 !this_top_or_bottom && !other_top_or_bottom && 5368 // both are exact and not equal: 5369 ((other_xk && this_xk) || 5370 // 'tap' is exact and super or unrelated: 5371 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 5372 // 'this' is exact and super or unrelated: 5373 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 5374 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 5375 elem = Type::BOTTOM; 5376 } 5377 ptr = NotNull; 5378 res_xk = false; 5379 return NOT_SUBTYPE; 5380 } 5381 } 5382 5383 res_xk = false; 5384 switch (other_ptr) { 5385 case AnyNull: 5386 case TopPTR: 5387 // Compute new klass on demand, do not use tap->_klass 5388 if (below_centerline(this_ptr)) { 5389 res_xk = this_xk; 5390 if (this_ary->is_flat()) { 5391 elem = this_ary->elem(); 5392 } 5393 } else { 5394 res_xk = (other_xk || this_xk); 5395 } 5396 break; 5397 case Constant: { 5398 if (this_ptr == Constant) { 5399 res_xk = true; 5400 } else if (above_centerline(this_ptr)) { 5401 res_xk = true; 5402 } else { 5403 // Only precise for identical arrays 5404 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 5405 // Even though MyValue is final, [LMyValue is only exact if the array 5406 // is null-free due to null-free [LMyValue <: null-able [LMyValue. 5407 if (res_xk && !res_not_null_free) { 5408 res_xk = false; 5409 } 5410 } 5411 break; 5412 } 5413 case NotNull: 5414 case BotPTR: 5415 // Compute new klass on demand, do not use tap->_klass 5416 if (above_centerline(this_ptr)) { 5417 res_xk = other_xk; 5418 if (other_ary->is_flat()) { 5419 elem = other_ary->elem(); 5420 } 5421 } else { 5422 res_xk = (other_xk && this_xk) && 5423 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 5424 // Even though MyValue is final, [LMyValue is only exact if the array 5425 // is null-free due to null-free [LMyValue <: null-able [LMyValue. 5426 if (res_xk && !res_not_null_free) { 5427 res_xk = false; 5428 } 5429 } 5430 break; 5431 default: { 5432 ShouldNotReachHere(); 5433 return result; 5434 } 5435 } 5436 return result; 5437 } 5438 5439 5440 //------------------------------xdual------------------------------------------ 5441 // Dual: compute field-by-field dual 5442 const Type *TypeAryPtr::xdual() const { 5443 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 5444 } 5445 5446 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const { 5447 return _field_offset.meet(offset); 5448 } 5449 5450 //------------------------------dual_offset------------------------------------ 5451 Type::Offset TypeAryPtr::dual_field_offset() const { 5452 return _field_offset.dual(); 5453 } 5454 5455 //------------------------------dump2------------------------------------------ 5456 #ifndef PRODUCT 5457 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5458 _ary->dump2(d,depth,st); 5459 _interfaces->dump(st); 5460 5461 switch( _ptr ) { 5462 case Constant: 5463 const_oop()->print(st); 5464 break; 5465 case BotPTR: 5466 if (!WizardMode && !Verbose) { 5467 if( _klass_is_exact ) st->print(":exact"); 5468 break; 5469 } 5470 case TopPTR: 5471 case AnyNull: 5472 case NotNull: 5473 st->print(":%s", ptr_msg[_ptr]); 5474 if( _klass_is_exact ) st->print(":exact"); 5475 break; 5476 default: 5477 break; 5478 } 5479 5480 if (is_flat()) { 5481 st->print(":flat"); 5482 st->print("("); 5483 _field_offset.dump2(st); 5484 st->print(")"); 5485 } 5486 if (is_null_free()) { 5487 st->print(":null_free"); 5488 } 5489 if (offset() != 0) { 5490 BasicType basic_elem_type = elem()->basic_type(); 5491 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5492 if( _offset == Offset::top ) st->print("+undefined"); 5493 else if( _offset == Offset::bottom ) st->print("+any"); 5494 else if( offset() < header_size ) st->print("+%d", offset()); 5495 else { 5496 if (basic_elem_type == T_ILLEGAL) { 5497 st->print("+any"); 5498 } else { 5499 int elem_size = type2aelembytes(basic_elem_type); 5500 st->print("[%d]", (offset() - header_size)/elem_size); 5501 } 5502 } 5503 } 5504 st->print(" *"); 5505 if (_instance_id == InstanceTop) 5506 st->print(",iid=top"); 5507 else if (_instance_id != InstanceBot) 5508 st->print(",iid=%d",_instance_id); 5509 5510 dump_inline_depth(st); 5511 dump_speculative(st); 5512 } 5513 #endif 5514 5515 bool TypeAryPtr::empty(void) const { 5516 if (_ary->empty()) return true; 5517 // FIXME: Does this belong here? Or in the meet code itself? 5518 if (is_flat() && is_not_flat()) { 5519 return true; 5520 } 5521 return TypeOopPtr::empty(); 5522 } 5523 5524 //------------------------------add_offset------------------------------------- 5525 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5526 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache); 5527 } 5528 5529 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5530 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache); 5531 } 5532 5533 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5534 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5535 } 5536 5537 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5538 if (_speculative == nullptr) { 5539 return this; 5540 } 5541 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5542 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache); 5543 } 5544 5545 const Type* TypeAryPtr::cleanup_speculative() const { 5546 if (speculative() == nullptr) { 5547 return this; 5548 } 5549 // Keep speculative part if it contains information about flat-/nullability 5550 const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr(); 5551 if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) && 5552 (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) { 5553 return this; 5554 } 5555 return TypeOopPtr::cleanup_speculative(); 5556 } 5557 5558 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5559 if (!UseInlineDepthForSpeculativeTypes) { 5560 return this; 5561 } 5562 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache); 5563 } 5564 5565 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const { 5566 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5567 } 5568 5569 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const { 5570 int adj = 0; 5571 if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) { 5572 if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) { 5573 adj = _offset.get(); 5574 offset += _offset.get(); 5575 } 5576 uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT); 5577 if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) { 5578 offset += _field_offset.get(); 5579 if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) { 5580 offset += header; 5581 } 5582 } 5583 if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) { 5584 // Try to get the field of the inline type array element we are pointing to 5585 ciInlineKlass* vk = elem()->inline_klass(); 5586 int shift = flat_log_elem_size(); 5587 int mask = (1 << shift) - 1; 5588 intptr_t field_offset = ((offset - header) & mask); 5589 ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false); 5590 if (field != nullptr) { 5591 return with_field_offset(field_offset)->add_offset(offset - field_offset - adj); 5592 } 5593 } 5594 } 5595 return add_offset(offset - adj); 5596 } 5597 5598 // Return offset incremented by field_offset for flat inline type arrays 5599 int TypeAryPtr::flat_offset() const { 5600 int offset = _offset.get(); 5601 if (offset != Type::OffsetBot && offset != Type::OffsetTop && 5602 _field_offset != Offset::bottom && _field_offset != Offset::top) { 5603 offset += _field_offset.get(); 5604 } 5605 return offset; 5606 } 5607 5608 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5609 assert(is_known_instance(), "should be known"); 5610 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth); 5611 } 5612 5613 //============================================================================= 5614 5615 5616 //------------------------------hash------------------------------------------- 5617 // Type-specific hashing function. 5618 uint TypeNarrowPtr::hash(void) const { 5619 return _ptrtype->hash() + 7; 5620 } 5621 5622 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5623 return _ptrtype->singleton(); 5624 } 5625 5626 bool TypeNarrowPtr::empty(void) const { 5627 return _ptrtype->empty(); 5628 } 5629 5630 intptr_t TypeNarrowPtr::get_con() const { 5631 return _ptrtype->get_con(); 5632 } 5633 5634 bool TypeNarrowPtr::eq( const Type *t ) const { 5635 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5636 if (tc != nullptr) { 5637 if (_ptrtype->base() != tc->_ptrtype->base()) { 5638 return false; 5639 } 5640 return tc->_ptrtype->eq(_ptrtype); 5641 } 5642 return false; 5643 } 5644 5645 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5646 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5647 return make_same_narrowptr(odual); 5648 } 5649 5650 5651 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5652 if (isa_same_narrowptr(kills)) { 5653 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5654 if (ft->empty()) 5655 return Type::TOP; // Canonical empty value 5656 if (ft->isa_ptr()) { 5657 return make_hash_same_narrowptr(ft->isa_ptr()); 5658 } 5659 return ft; 5660 } else if (kills->isa_ptr()) { 5661 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5662 if (ft->empty()) 5663 return Type::TOP; // Canonical empty value 5664 return ft; 5665 } else { 5666 return Type::TOP; 5667 } 5668 } 5669 5670 //------------------------------xmeet------------------------------------------ 5671 // Compute the MEET of two types. It returns a new Type object. 5672 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5673 // Perform a fast test for common case; meeting the same types together. 5674 if( this == t ) return this; // Meeting same type-rep? 5675 5676 if (t->base() == base()) { 5677 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5678 if (result->isa_ptr()) { 5679 return make_hash_same_narrowptr(result->is_ptr()); 5680 } 5681 return result; 5682 } 5683 5684 // Current "this->_base" is NarrowKlass or NarrowOop 5685 switch (t->base()) { // switch on original type 5686 5687 case Int: // Mixing ints & oops happens when javac 5688 case Long: // reuses local variables 5689 case FloatTop: 5690 case FloatCon: 5691 case FloatBot: 5692 case DoubleTop: 5693 case DoubleCon: 5694 case DoubleBot: 5695 case AnyPtr: 5696 case RawPtr: 5697 case OopPtr: 5698 case InstPtr: 5699 case AryPtr: 5700 case MetadataPtr: 5701 case KlassPtr: 5702 case InstKlassPtr: 5703 case AryKlassPtr: 5704 case NarrowOop: 5705 case NarrowKlass: 5706 case Bottom: // Ye Olde Default 5707 return Type::BOTTOM; 5708 case Top: 5709 return this; 5710 5711 default: // All else is a mistake 5712 typerr(t); 5713 5714 } // End of switch 5715 5716 return this; 5717 } 5718 5719 #ifndef PRODUCT 5720 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5721 _ptrtype->dump2(d, depth, st); 5722 } 5723 #endif 5724 5725 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5726 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5727 5728 5729 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5730 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5731 } 5732 5733 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5734 return make(_ptrtype->remove_speculative()->is_ptr()); 5735 } 5736 5737 const Type* TypeNarrowOop::cleanup_speculative() const { 5738 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5739 } 5740 5741 #ifndef PRODUCT 5742 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5743 st->print("narrowoop: "); 5744 TypeNarrowPtr::dump2(d, depth, st); 5745 } 5746 #endif 5747 5748 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5749 5750 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5751 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5752 } 5753 5754 #ifndef PRODUCT 5755 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5756 st->print("narrowklass: "); 5757 TypeNarrowPtr::dump2(d, depth, st); 5758 } 5759 #endif 5760 5761 5762 //------------------------------eq--------------------------------------------- 5763 // Structural equality check for Type representations 5764 bool TypeMetadataPtr::eq( const Type *t ) const { 5765 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5766 ciMetadata* one = metadata(); 5767 ciMetadata* two = a->metadata(); 5768 if (one == nullptr || two == nullptr) { 5769 return (one == two) && TypePtr::eq(t); 5770 } else { 5771 return one->equals(two) && TypePtr::eq(t); 5772 } 5773 } 5774 5775 //------------------------------hash------------------------------------------- 5776 // Type-specific hashing function. 5777 uint TypeMetadataPtr::hash(void) const { 5778 return 5779 (metadata() ? metadata()->hash() : 0) + 5780 TypePtr::hash(); 5781 } 5782 5783 //------------------------------singleton-------------------------------------- 5784 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5785 // constants 5786 bool TypeMetadataPtr::singleton(void) const { 5787 // detune optimizer to not generate constant metadata + constant offset as a constant! 5788 // TopPTR, Null, AnyNull, Constant are all singletons 5789 return (offset() == 0) && !below_centerline(_ptr); 5790 } 5791 5792 //------------------------------add_offset------------------------------------- 5793 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5794 return make( _ptr, _metadata, xadd_offset(offset)); 5795 } 5796 5797 //-----------------------------filter------------------------------------------ 5798 // Do not allow interface-vs.-noninterface joins to collapse to top. 5799 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5800 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5801 if (ft == nullptr || ft->empty()) 5802 return Type::TOP; // Canonical empty value 5803 return ft; 5804 } 5805 5806 //------------------------------get_con---------------------------------------- 5807 intptr_t TypeMetadataPtr::get_con() const { 5808 assert( _ptr == Null || _ptr == Constant, "" ); 5809 assert(offset() >= 0, ""); 5810 5811 if (offset() != 0) { 5812 // After being ported to the compiler interface, the compiler no longer 5813 // directly manipulates the addresses of oops. Rather, it only has a pointer 5814 // to a handle at compile time. This handle is embedded in the generated 5815 // code and dereferenced at the time the nmethod is made. Until that time, 5816 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5817 // have access to the addresses!). This does not seem to currently happen, 5818 // but this assertion here is to help prevent its occurrence. 5819 tty->print_cr("Found oop constant with non-zero offset"); 5820 ShouldNotReachHere(); 5821 } 5822 5823 return (intptr_t)metadata()->constant_encoding(); 5824 } 5825 5826 //------------------------------cast_to_ptr_type------------------------------- 5827 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5828 if( ptr == _ptr ) return this; 5829 return make(ptr, metadata(), _offset); 5830 } 5831 5832 //------------------------------meet------------------------------------------- 5833 // Compute the MEET of two types. It returns a new Type object. 5834 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5835 // Perform a fast test for common case; meeting the same types together. 5836 if( this == t ) return this; // Meeting same type-rep? 5837 5838 // Current "this->_base" is OopPtr 5839 switch (t->base()) { // switch on original type 5840 5841 case Int: // Mixing ints & oops happens when javac 5842 case Long: // reuses local variables 5843 case FloatTop: 5844 case FloatCon: 5845 case FloatBot: 5846 case DoubleTop: 5847 case DoubleCon: 5848 case DoubleBot: 5849 case NarrowOop: 5850 case NarrowKlass: 5851 case Bottom: // Ye Olde Default 5852 return Type::BOTTOM; 5853 case Top: 5854 return this; 5855 5856 default: // All else is a mistake 5857 typerr(t); 5858 5859 case AnyPtr: { 5860 // Found an AnyPtr type vs self-OopPtr type 5861 const TypePtr *tp = t->is_ptr(); 5862 Offset offset = meet_offset(tp->offset()); 5863 PTR ptr = meet_ptr(tp->ptr()); 5864 switch (tp->ptr()) { 5865 case Null: 5866 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5867 // else fall through: 5868 case TopPTR: 5869 case AnyNull: { 5870 return make(ptr, _metadata, offset); 5871 } 5872 case BotPTR: 5873 case NotNull: 5874 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5875 default: typerr(t); 5876 } 5877 } 5878 5879 case RawPtr: 5880 case KlassPtr: 5881 case InstKlassPtr: 5882 case AryKlassPtr: 5883 case OopPtr: 5884 case InstPtr: 5885 case AryPtr: 5886 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5887 5888 case MetadataPtr: { 5889 const TypeMetadataPtr *tp = t->is_metadataptr(); 5890 Offset offset = meet_offset(tp->offset()); 5891 PTR tptr = tp->ptr(); 5892 PTR ptr = meet_ptr(tptr); 5893 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5894 if (tptr == TopPTR || _ptr == TopPTR || 5895 metadata()->equals(tp->metadata())) { 5896 return make(ptr, md, offset); 5897 } 5898 // metadata is different 5899 if( ptr == Constant ) { // Cannot be equal constants, so... 5900 if( tptr == Constant && _ptr != Constant) return t; 5901 if( _ptr == Constant && tptr != Constant) return this; 5902 ptr = NotNull; // Fall down in lattice 5903 } 5904 return make(ptr, nullptr, offset); 5905 break; 5906 } 5907 } // End of switch 5908 return this; // Return the double constant 5909 } 5910 5911 5912 //------------------------------xdual------------------------------------------ 5913 // Dual of a pure metadata pointer. 5914 const Type *TypeMetadataPtr::xdual() const { 5915 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5916 } 5917 5918 //------------------------------dump2------------------------------------------ 5919 #ifndef PRODUCT 5920 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5921 st->print("metadataptr:%s", ptr_msg[_ptr]); 5922 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5923 switch (offset()) { 5924 case OffsetTop: st->print("+top"); break; 5925 case OffsetBot: st->print("+any"); break; 5926 case 0: break; 5927 default: st->print("+%d",offset()); break; 5928 } 5929 } 5930 #endif 5931 5932 5933 //============================================================================= 5934 // Convenience common pre-built type. 5935 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5936 5937 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset): 5938 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5939 } 5940 5941 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5942 return make(Constant, m, Offset(0)); 5943 } 5944 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5945 return make(Constant, m, Offset(0)); 5946 } 5947 5948 //------------------------------make------------------------------------------- 5949 // Create a meta data constant 5950 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) { 5951 assert(m == nullptr || !m->is_klass(), "wrong type"); 5952 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5953 } 5954 5955 5956 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5957 const Type* elem = _ary->_elem; 5958 bool xk = klass_is_exact(); 5959 if (elem->make_oopptr() != nullptr) { 5960 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5961 if (elem->is_klassptr()->klass_is_exact() && 5962 // Even though MyValue is final, [LMyValue is only exact if the array 5963 // is null-free due to null-free [LMyValue <: null-able [LMyValue. 5964 (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) { 5965 xk = true; 5966 } 5967 } 5968 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free()); 5969 } 5970 5971 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 5972 if (klass->is_instance_klass()) { 5973 return TypeInstKlassPtr::make(klass, interface_handling); 5974 } 5975 return TypeAryKlassPtr::make(klass, interface_handling); 5976 } 5977 5978 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) { 5979 if (klass->is_instance_klass()) { 5980 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 5981 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset); 5982 } 5983 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling); 5984 } 5985 5986 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset) 5987 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 5988 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 5989 klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 5990 } 5991 5992 // Is there a single ciKlass* that can represent that type? 5993 ciKlass* TypeKlassPtr::exact_klass_helper() const { 5994 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 5995 if (_interfaces->empty()) { 5996 return _klass; 5997 } 5998 if (_klass != ciEnv::current()->Object_klass()) { 5999 if (_interfaces->eq(_klass->as_instance_klass())) { 6000 return _klass; 6001 } 6002 return nullptr; 6003 } 6004 return _interfaces->exact_klass(); 6005 } 6006 6007 //------------------------------eq--------------------------------------------- 6008 // Structural equality check for Type representations 6009 bool TypeKlassPtr::eq(const Type *t) const { 6010 const TypeKlassPtr *p = t->is_klassptr(); 6011 return 6012 _interfaces->eq(p->_interfaces) && 6013 TypePtr::eq(p); 6014 } 6015 6016 //------------------------------hash------------------------------------------- 6017 // Type-specific hashing function. 6018 uint TypeKlassPtr::hash(void) const { 6019 return TypePtr::hash() + _interfaces->hash(); 6020 } 6021 6022 //------------------------------singleton-------------------------------------- 6023 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6024 // constants 6025 bool TypeKlassPtr::singleton(void) const { 6026 // detune optimizer to not generate constant klass + constant offset as a constant! 6027 // TopPTR, Null, AnyNull, Constant are all singletons 6028 return (offset() == 0) && !below_centerline(_ptr); 6029 } 6030 6031 // Do not allow interface-vs.-noninterface joins to collapse to top. 6032 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 6033 // logic here mirrors the one from TypeOopPtr::filter. See comments 6034 // there. 6035 const Type* ft = join_helper(kills, include_speculative); 6036 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 6037 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 6038 6039 if (ft->empty()) { 6040 return Type::TOP; // Canonical empty value 6041 } 6042 6043 return ft; 6044 } 6045 6046 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 6047 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 6048 return _interfaces->union_with(other->_interfaces); 6049 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 6050 return other->_interfaces; 6051 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 6052 return _interfaces; 6053 } 6054 return _interfaces->intersection_with(other->_interfaces); 6055 } 6056 6057 //------------------------------get_con---------------------------------------- 6058 intptr_t TypeKlassPtr::get_con() const { 6059 assert( _ptr == Null || _ptr == Constant, "" ); 6060 assert( offset() >= 0, "" ); 6061 6062 if (offset() != 0) { 6063 // After being ported to the compiler interface, the compiler no longer 6064 // directly manipulates the addresses of oops. Rather, it only has a pointer 6065 // to a handle at compile time. This handle is embedded in the generated 6066 // code and dereferenced at the time the nmethod is made. Until that time, 6067 // it is not reasonable to do arithmetic with the addresses of oops (we don't 6068 // have access to the addresses!). This does not seem to currently happen, 6069 // but this assertion here is to help prevent its occurrence. 6070 tty->print_cr("Found oop constant with non-zero offset"); 6071 ShouldNotReachHere(); 6072 } 6073 6074 ciKlass* k = exact_klass(); 6075 6076 return (intptr_t)k->constant_encoding(); 6077 } 6078 6079 //------------------------------dump2------------------------------------------ 6080 // Dump Klass Type 6081 #ifndef PRODUCT 6082 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 6083 switch(_ptr) { 6084 case Constant: 6085 st->print("precise "); 6086 case NotNull: 6087 { 6088 const char *name = klass()->name()->as_utf8(); 6089 if (name) { 6090 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 6091 } else { 6092 ShouldNotReachHere(); 6093 } 6094 _interfaces->dump(st); 6095 } 6096 case BotPTR: 6097 if (!WizardMode && !Verbose && _ptr != Constant) break; 6098 case TopPTR: 6099 case AnyNull: 6100 st->print(":%s", ptr_msg[_ptr]); 6101 if (_ptr == Constant) st->print(":exact"); 6102 break; 6103 default: 6104 break; 6105 } 6106 if (Verbose) { 6107 if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array"); 6108 } 6109 _offset.dump2(st); 6110 st->print(" *"); 6111 } 6112 #endif 6113 6114 //============================================================================= 6115 // Convenience common pre-built types. 6116 6117 // Not-null object klass or below 6118 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 6119 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 6120 6121 bool TypeInstKlassPtr::eq(const Type *t) const { 6122 const TypeKlassPtr *p = t->is_klassptr(); 6123 return 6124 klass()->equals(p->klass()) && 6125 flat_in_array() == p->flat_in_array() && 6126 TypeKlassPtr::eq(p); 6127 } 6128 6129 uint TypeInstKlassPtr::hash(void) const { 6130 return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array(); 6131 } 6132 6133 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) { 6134 flat_in_array = flat_in_array || k->flat_in_array(); 6135 6136 TypeInstKlassPtr *r = 6137 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons(); 6138 6139 return r; 6140 } 6141 6142 //------------------------------add_offset------------------------------------- 6143 // Access internals of klass object 6144 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const { 6145 return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array()); 6146 } 6147 6148 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 6149 return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array()); 6150 } 6151 6152 //------------------------------cast_to_ptr_type------------------------------- 6153 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 6154 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 6155 if( ptr == _ptr ) return this; 6156 return make(ptr, _klass, _interfaces, _offset, flat_in_array()); 6157 } 6158 6159 6160 bool TypeInstKlassPtr::must_be_exact() const { 6161 if (!_klass->is_loaded()) return false; 6162 ciInstanceKlass* ik = _klass->as_instance_klass(); 6163 if (ik->is_final()) return true; // cannot clear xk 6164 return false; 6165 } 6166 6167 //-----------------------------cast_to_exactness------------------------------- 6168 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6169 if (klass_is_exact == (_ptr == Constant)) return this; 6170 if (must_be_exact()) return this; 6171 ciKlass* k = klass(); 6172 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array()); 6173 } 6174 6175 6176 //-----------------------------as_instance_type-------------------------------- 6177 // Corresponding type for an instance of the given class. 6178 // It will be NotNull, and exact if and only if the klass type is exact. 6179 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 6180 ciKlass* k = klass(); 6181 bool xk = klass_is_exact(); 6182 Compile* C = Compile::current(); 6183 Dependencies* deps = C->dependencies(); 6184 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6185 // Element is an instance 6186 bool klass_is_exact = false; 6187 const TypeInterfaces* interfaces = _interfaces; 6188 if (k->is_loaded()) { 6189 // Try to set klass_is_exact. 6190 ciInstanceKlass* ik = k->as_instance_klass(); 6191 klass_is_exact = ik->is_final(); 6192 if (!klass_is_exact && klass_change 6193 && deps != nullptr && UseUniqueSubclasses) { 6194 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6195 if (sub != nullptr) { 6196 if (_interfaces->eq(sub)) { 6197 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6198 k = ik = sub; 6199 xk = sub->is_final(); 6200 } 6201 } 6202 } 6203 } 6204 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype()); 6205 } 6206 6207 //------------------------------xmeet------------------------------------------ 6208 // Compute the MEET of two types, return a new Type object. 6209 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 6210 // Perform a fast test for common case; meeting the same types together. 6211 if( this == t ) return this; // Meeting same type-rep? 6212 6213 // Current "this->_base" is Pointer 6214 switch (t->base()) { // switch on original type 6215 6216 case Int: // Mixing ints & oops happens when javac 6217 case Long: // reuses local variables 6218 case FloatTop: 6219 case FloatCon: 6220 case FloatBot: 6221 case DoubleTop: 6222 case DoubleCon: 6223 case DoubleBot: 6224 case NarrowOop: 6225 case NarrowKlass: 6226 case Bottom: // Ye Olde Default 6227 return Type::BOTTOM; 6228 case Top: 6229 return this; 6230 6231 default: // All else is a mistake 6232 typerr(t); 6233 6234 case AnyPtr: { // Meeting to AnyPtrs 6235 // Found an AnyPtr type vs self-KlassPtr type 6236 const TypePtr *tp = t->is_ptr(); 6237 Offset offset = meet_offset(tp->offset()); 6238 PTR ptr = meet_ptr(tp->ptr()); 6239 switch (tp->ptr()) { 6240 case TopPTR: 6241 return this; 6242 case Null: 6243 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6244 case AnyNull: 6245 return make(ptr, klass(), _interfaces, offset, flat_in_array()); 6246 case BotPTR: 6247 case NotNull: 6248 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6249 default: typerr(t); 6250 } 6251 } 6252 6253 case RawPtr: 6254 case MetadataPtr: 6255 case OopPtr: 6256 case AryPtr: // Meet with AryPtr 6257 case InstPtr: // Meet with InstPtr 6258 return TypePtr::BOTTOM; 6259 6260 // 6261 // A-top } 6262 // / | \ } Tops 6263 // B-top A-any C-top } 6264 // | / | \ | } Any-nulls 6265 // B-any | C-any } 6266 // | | | 6267 // B-con A-con C-con } constants; not comparable across classes 6268 // | | | 6269 // B-not | C-not } 6270 // | \ | / | } not-nulls 6271 // B-bot A-not C-bot } 6272 // \ | / } Bottoms 6273 // A-bot } 6274 // 6275 6276 case InstKlassPtr: { // Meet two KlassPtr types 6277 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 6278 Offset off = meet_offset(tkls->offset()); 6279 PTR ptr = meet_ptr(tkls->ptr()); 6280 const TypeInterfaces* interfaces = meet_interfaces(tkls); 6281 6282 ciKlass* res_klass = nullptr; 6283 bool res_xk = false; 6284 bool res_flat_in_array = false; 6285 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) { 6286 case UNLOADED: 6287 ShouldNotReachHere(); 6288 case SUBTYPE: 6289 case NOT_SUBTYPE: 6290 case LCA: 6291 case QUICK: { 6292 assert(res_xk == (ptr == Constant), ""); 6293 const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array); 6294 return res; 6295 } 6296 default: 6297 ShouldNotReachHere(); 6298 } 6299 } // End of case KlassPtr 6300 case AryKlassPtr: { // All arrays inherit from Object class 6301 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 6302 Offset offset = meet_offset(tp->offset()); 6303 PTR ptr = meet_ptr(tp->ptr()); 6304 const TypeInterfaces* interfaces = meet_interfaces(tp); 6305 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6306 const TypeInterfaces* this_interfaces = _interfaces; 6307 6308 switch (ptr) { 6309 case TopPTR: 6310 case AnyNull: // Fall 'down' to dual of object klass 6311 // For instances when a subclass meets a superclass we fall 6312 // below the centerline when the superclass is exact. We need to 6313 // do the same here. 6314 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 6315 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free()); 6316 } else { 6317 // cannot subclass, so the meet has to fall badly below the centerline 6318 ptr = NotNull; 6319 interfaces = _interfaces->intersection_with(tp->_interfaces); 6320 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false); 6321 } 6322 case Constant: 6323 case NotNull: 6324 case BotPTR: // Fall down to object klass 6325 // LCA is object_klass, but if we subclass from the top we can do better 6326 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 6327 // If 'this' (InstPtr) is above the centerline and it is Object class 6328 // then we can subclass in the Java class hierarchy. 6329 // For instances when a subclass meets a superclass we fall 6330 // below the centerline when the superclass is exact. We need 6331 // to do the same here. 6332 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) { 6333 // that is, tp's array type is a subtype of my klass 6334 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free()); 6335 } 6336 } 6337 // The other case cannot happen, since I cannot be a subtype of an array. 6338 // The meet falls down to Object class below centerline. 6339 if( ptr == Constant ) 6340 ptr = NotNull; 6341 interfaces = this_interfaces->intersection_with(tp_interfaces); 6342 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false); 6343 default: typerr(t); 6344 } 6345 } 6346 6347 } // End of switch 6348 return this; // Return the double constant 6349 } 6350 6351 //------------------------------xdual------------------------------------------ 6352 // Dual: compute field-by-field dual 6353 const Type *TypeInstKlassPtr::xdual() const { 6354 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array()); 6355 } 6356 6357 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6358 static_assert(std::is_base_of<T2, T1>::value, ""); 6359 if (!this_one->is_loaded() || !other->is_loaded()) { 6360 return false; 6361 } 6362 if (!this_one->is_instance_type(other)) { 6363 return false; 6364 } 6365 6366 if (!other_exact) { 6367 return false; 6368 } 6369 6370 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) { 6371 return true; 6372 } 6373 6374 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6375 } 6376 6377 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6378 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6379 } 6380 6381 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 6382 static_assert(std::is_base_of<T2, T1>::value, ""); 6383 if (!this_one->is_loaded() || !other->is_loaded()) { 6384 return false; 6385 } 6386 if (!this_one->is_instance_type(other)) { 6387 return false; 6388 } 6389 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces); 6390 } 6391 6392 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6393 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 6394 } 6395 6396 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6397 static_assert(std::is_base_of<T2, T1>::value, ""); 6398 if (!this_one->is_loaded() || !other->is_loaded()) { 6399 return true; 6400 } 6401 6402 if (this_one->is_array_type(other)) { 6403 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces); 6404 } 6405 6406 assert(this_one->is_instance_type(other), "unsupported"); 6407 6408 if (this_exact && other_exact) { 6409 return this_one->is_java_subtype_of(other); 6410 } 6411 6412 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) { 6413 return false; 6414 } 6415 6416 if (this_exact) { 6417 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6418 } 6419 6420 return true; 6421 } 6422 6423 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6424 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6425 } 6426 6427 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 6428 if (!UseUniqueSubclasses) { 6429 return this; 6430 } 6431 ciKlass* k = klass(); 6432 Compile* C = Compile::current(); 6433 Dependencies* deps = C->dependencies(); 6434 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6435 const TypeInterfaces* interfaces = _interfaces; 6436 if (k->is_loaded()) { 6437 ciInstanceKlass* ik = k->as_instance_klass(); 6438 bool klass_is_exact = ik->is_final(); 6439 if (!klass_is_exact && 6440 deps != nullptr) { 6441 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6442 if (sub != nullptr) { 6443 if (_interfaces->eq(sub)) { 6444 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6445 k = ik = sub; 6446 klass_is_exact = sub->is_final(); 6447 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset); 6448 } 6449 } 6450 } 6451 } 6452 return this; 6453 } 6454 6455 bool TypeInstKlassPtr::can_be_inline_array() const { 6456 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces); 6457 } 6458 6459 bool TypeAryKlassPtr::can_be_inline_array() const { 6460 return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass(); 6461 } 6462 6463 bool TypeInstPtr::can_be_inline_array() const { 6464 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces); 6465 } 6466 6467 bool TypeAryPtr::can_be_inline_array() const { 6468 return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass(); 6469 } 6470 6471 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) { 6472 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons(); 6473 } 6474 6475 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) { 6476 if (k->is_obj_array_klass()) { 6477 // Element is an object array. Recursively call ourself. 6478 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 6479 const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 6480 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free); 6481 } else if (k->is_type_array_klass()) { 6482 // Element is an typeArray 6483 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 6484 return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free); 6485 } else if (k->is_flat_array_klass()) { 6486 ciKlass* eklass = k->as_flat_array_klass()->element_klass(); 6487 const TypeKlassPtr* etype = TypeKlassPtr::make(eklass); 6488 return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free); 6489 } else { 6490 ShouldNotReachHere(); 6491 return nullptr; 6492 } 6493 } 6494 6495 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) { 6496 bool null_free = k->as_array_klass()->is_elem_null_free(); 6497 bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false)); 6498 6499 bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr && 6500 k->as_array_klass()->element_klass()->is_inlinetype() && 6501 !k->as_array_klass()->element_klass()->flat_in_array()); 6502 6503 return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free); 6504 } 6505 6506 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6507 return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling); 6508 } 6509 6510 //------------------------------eq--------------------------------------------- 6511 // Structural equality check for Type representations 6512 bool TypeAryKlassPtr::eq(const Type *t) const { 6513 const TypeAryKlassPtr *p = t->is_aryklassptr(); 6514 return 6515 _elem == p->_elem && // Check array 6516 _not_flat == p->_not_flat && 6517 _not_null_free == p->_not_null_free && 6518 _null_free == p->_null_free && 6519 TypeKlassPtr::eq(p); // Check sub-parts 6520 } 6521 6522 //------------------------------hash------------------------------------------- 6523 // Type-specific hashing function. 6524 uint TypeAryKlassPtr::hash(void) const { 6525 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) + 6526 (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0); 6527 } 6528 6529 //----------------------compute_klass------------------------------------------ 6530 // Compute the defining klass for this class 6531 ciKlass* TypeAryPtr::compute_klass() const { 6532 // Compute _klass based on element type. 6533 ciKlass* k_ary = nullptr; 6534 const TypeInstPtr *tinst; 6535 const TypeAryPtr *tary; 6536 const Type* el = elem(); 6537 if (el->isa_narrowoop()) { 6538 el = el->make_ptr(); 6539 } 6540 6541 // Get element klass 6542 if (is_flat() && el->is_inlinetypeptr()) { 6543 // Klass is required by TypeAryPtr::flat_layout_helper() and others 6544 if (el->inline_klass() != nullptr) { 6545 k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true); 6546 } 6547 } else if ((tinst = el->isa_instptr()) != nullptr) { 6548 // Leave k_ary at nullptr. 6549 } else if ((tary = el->isa_aryptr()) != nullptr) { 6550 // Leave k_ary at nullptr. 6551 } else if ((el->base() == Type::Top) || 6552 (el->base() == Type::Bottom)) { 6553 // element type of Bottom occurs from meet of basic type 6554 // and object; Top occurs when doing join on Bottom. 6555 // Leave k_ary at null. 6556 } else { 6557 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); 6558 // Compute array klass directly from basic type 6559 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6560 } 6561 return k_ary; 6562 } 6563 6564 //------------------------------klass------------------------------------------ 6565 // Return the defining klass for this class 6566 ciKlass* TypeAryPtr::klass() const { 6567 if( _klass ) return _klass; // Return cached value, if possible 6568 6569 // Oops, need to compute _klass and cache it 6570 ciKlass* k_ary = compute_klass(); 6571 6572 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6573 // The _klass field acts as a cache of the underlying 6574 // ciKlass for this array type. In order to set the field, 6575 // we need to cast away const-ness. 6576 // 6577 // IMPORTANT NOTE: we *never* set the _klass field for the 6578 // type TypeAryPtr::OOPS. This Type is shared between all 6579 // active compilations. However, the ciKlass which represents 6580 // this Type is *not* shared between compilations, so caching 6581 // this value would result in fetching a dangling pointer. 6582 // 6583 // Recomputing the underlying ciKlass for each request is 6584 // a bit less efficient than caching, but calls to 6585 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6586 ((TypeAryPtr*)this)->_klass = k_ary; 6587 } 6588 return k_ary; 6589 } 6590 6591 // Is there a single ciKlass* that can represent that type? 6592 ciKlass* TypeAryPtr::exact_klass_helper() const { 6593 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6594 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6595 if (k == nullptr) { 6596 return nullptr; 6597 } 6598 k = ciArrayKlass::make(k, is_null_free()); 6599 return k; 6600 } 6601 6602 return klass(); 6603 } 6604 6605 const Type* TypeAryPtr::base_element_type(int& dims) const { 6606 const Type* elem = this->elem(); 6607 dims = 1; 6608 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6609 elem = elem->make_ptr()->is_aryptr()->elem(); 6610 dims++; 6611 } 6612 return elem; 6613 } 6614 6615 //------------------------------add_offset------------------------------------- 6616 // Access internals of klass object 6617 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6618 return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free); 6619 } 6620 6621 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6622 return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free); 6623 } 6624 6625 //------------------------------cast_to_ptr_type------------------------------- 6626 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6627 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6628 if (ptr == _ptr) return this; 6629 return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free); 6630 } 6631 6632 bool TypeAryKlassPtr::must_be_exact() const { 6633 if (_elem == Type::BOTTOM) return false; 6634 if (_elem == Type::TOP ) return false; 6635 const TypeKlassPtr* tk = _elem->isa_klassptr(); 6636 if (!tk) return true; // a primitive type, like int 6637 // Even though MyValue is final, [LMyValue is only exact if the array 6638 // is null-free due to null-free [LMyValue <: null-able [LMyValue. 6639 if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) { 6640 return false; 6641 } 6642 return tk->must_be_exact(); 6643 } 6644 6645 6646 //-----------------------------cast_to_exactness------------------------------- 6647 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6648 if (must_be_exact() && !klass_is_exact) return this; // cannot clear xk 6649 if (klass_is_exact == this->klass_is_exact()) { 6650 return this; 6651 } 6652 ciKlass* k = _klass; 6653 const Type* elem = this->elem(); 6654 if (elem->isa_klassptr() && !klass_is_exact) { 6655 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6656 } 6657 bool not_flat = is_not_flat(); 6658 bool not_null_free = is_not_null_free(); 6659 if (_elem->isa_klassptr()) { 6660 if (klass_is_exact || _elem->isa_aryklassptr()) { 6661 assert((!is_null_free() && !is_flat()) || 6662 _elem->is_klassptr()->klass()->is_abstract() || _elem->is_klassptr()->klass()->is_java_lang_Object(), 6663 "null-free (or flat) concrete inline type arrays should always be exact"); 6664 // An array can't be null-free (or flat) if the klass is exact 6665 not_null_free = true; 6666 not_flat = true; 6667 } else { 6668 // Klass is not exact (anymore), re-compute null-free/flat properties 6669 const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass()); 6670 not_null_free = !exact_etype->can_be_inline_type(); 6671 not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array()); 6672 } 6673 } 6674 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free); 6675 } 6676 6677 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_null_free() const { 6678 return make(_ptr, elem(), klass(), _offset, is_not_flat(), false, true); 6679 } 6680 6681 //-----------------------------as_instance_type-------------------------------- 6682 // Corresponding type for an instance of the given class. 6683 // It will be NotNull, and exact if and only if the klass type is exact. 6684 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6685 ciKlass* k = klass(); 6686 bool xk = klass_is_exact(); 6687 const Type* el = nullptr; 6688 if (elem()->isa_klassptr()) { 6689 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6690 k = nullptr; 6691 } else { 6692 el = elem(); 6693 } 6694 bool null_free = _null_free; 6695 if (null_free && el->isa_ptr()) { 6696 el = el->is_ptr()->join_speculative(TypePtr::NOTNULL); 6697 } 6698 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0)); 6699 } 6700 6701 6702 //------------------------------xmeet------------------------------------------ 6703 // Compute the MEET of two types, return a new Type object. 6704 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6705 // Perform a fast test for common case; meeting the same types together. 6706 if( this == t ) return this; // Meeting same type-rep? 6707 6708 // Current "this->_base" is Pointer 6709 switch (t->base()) { // switch on original type 6710 6711 case Int: // Mixing ints & oops happens when javac 6712 case Long: // reuses local variables 6713 case FloatTop: 6714 case FloatCon: 6715 case FloatBot: 6716 case DoubleTop: 6717 case DoubleCon: 6718 case DoubleBot: 6719 case NarrowOop: 6720 case NarrowKlass: 6721 case Bottom: // Ye Olde Default 6722 return Type::BOTTOM; 6723 case Top: 6724 return this; 6725 6726 default: // All else is a mistake 6727 typerr(t); 6728 6729 case AnyPtr: { // Meeting to AnyPtrs 6730 // Found an AnyPtr type vs self-KlassPtr type 6731 const TypePtr *tp = t->is_ptr(); 6732 Offset offset = meet_offset(tp->offset()); 6733 PTR ptr = meet_ptr(tp->ptr()); 6734 switch (tp->ptr()) { 6735 case TopPTR: 6736 return this; 6737 case Null: 6738 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6739 case AnyNull: 6740 return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free()); 6741 case BotPTR: 6742 case NotNull: 6743 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6744 default: typerr(t); 6745 } 6746 } 6747 6748 case RawPtr: 6749 case MetadataPtr: 6750 case OopPtr: 6751 case AryPtr: // Meet with AryPtr 6752 case InstPtr: // Meet with InstPtr 6753 return TypePtr::BOTTOM; 6754 6755 // 6756 // A-top } 6757 // / | \ } Tops 6758 // B-top A-any C-top } 6759 // | / | \ | } Any-nulls 6760 // B-any | C-any } 6761 // | | | 6762 // B-con A-con C-con } constants; not comparable across classes 6763 // | | | 6764 // B-not | C-not } 6765 // | \ | / | } not-nulls 6766 // B-bot A-not C-bot } 6767 // \ | / } Bottoms 6768 // A-bot } 6769 // 6770 6771 case AryKlassPtr: { // Meet two KlassPtr types 6772 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6773 Offset off = meet_offset(tap->offset()); 6774 const Type* elem = _elem->meet(tap->_elem); 6775 PTR ptr = meet_ptr(tap->ptr()); 6776 ciKlass* res_klass = nullptr; 6777 bool res_xk = false; 6778 bool res_flat = false; 6779 bool res_not_flat = false; 6780 bool res_not_null_free = false; 6781 MeetResult res = meet_aryptr(ptr, elem, this, tap, 6782 res_klass, res_xk, res_flat, res_not_flat, res_not_null_free); 6783 assert(res_xk == (ptr == Constant), ""); 6784 bool null_free = meet_null_free(tap->_null_free); 6785 if (res == NOT_SUBTYPE) { 6786 null_free = false; 6787 } else if (res == SUBTYPE) { 6788 if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) { 6789 null_free = _null_free; 6790 } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) { 6791 null_free = tap->_null_free; 6792 } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) { 6793 null_free = _null_free || tap->_null_free; 6794 } 6795 } 6796 return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free); 6797 } // End of case KlassPtr 6798 case InstKlassPtr: { 6799 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6800 Offset offset = meet_offset(tp->offset()); 6801 PTR ptr = meet_ptr(tp->ptr()); 6802 const TypeInterfaces* interfaces = meet_interfaces(tp); 6803 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6804 const TypeInterfaces* this_interfaces = _interfaces; 6805 6806 switch (ptr) { 6807 case TopPTR: 6808 case AnyNull: // Fall 'down' to dual of object klass 6809 // For instances when a subclass meets a superclass we fall 6810 // below the centerline when the superclass is exact. We need to 6811 // do the same here. 6812 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6813 !tp->klass_is_exact()) { 6814 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free()); 6815 } else { 6816 // cannot subclass, so the meet has to fall badly below the centerline 6817 ptr = NotNull; 6818 interfaces = this_interfaces->intersection_with(tp->_interfaces); 6819 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false); 6820 } 6821 case Constant: 6822 case NotNull: 6823 case BotPTR: // Fall down to object klass 6824 // LCA is object_klass, but if we subclass from the top we can do better 6825 if (above_centerline(tp->ptr())) { 6826 // If 'tp' is above the centerline and it is Object class 6827 // then we can subclass in the Java class hierarchy. 6828 // For instances when a subclass meets a superclass we fall 6829 // below the centerline when the superclass is exact. We need 6830 // to do the same here. 6831 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 6832 !tp->klass_is_exact()) { 6833 // that is, my array type is a subtype of 'tp' klass 6834 return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free()); 6835 } 6836 } 6837 // The other case cannot happen, since t cannot be a subtype of an array. 6838 // The meet falls down to Object class below centerline. 6839 if (ptr == Constant) 6840 ptr = NotNull; 6841 interfaces = this_interfaces->intersection_with(tp_interfaces); 6842 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false); 6843 default: typerr(t); 6844 } 6845 } 6846 6847 } // End of switch 6848 return this; // Return the double constant 6849 } 6850 6851 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6852 static_assert(std::is_base_of<T2, T1>::value, ""); 6853 6854 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6855 return true; 6856 } 6857 6858 int dummy; 6859 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6860 6861 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6862 return false; 6863 } 6864 6865 if (this_one->is_instance_type(other)) { 6866 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) && 6867 other_exact; 6868 } 6869 6870 assert(this_one->is_array_type(other), ""); 6871 const T1* other_ary = this_one->is_array_type(other); 6872 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6873 if (other_top_or_bottom) { 6874 return false; 6875 } 6876 6877 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6878 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6879 if (this_elem != nullptr && other_elem != nullptr) { 6880 if (other->is_null_free() && !this_one->is_null_free()) { 6881 return false; // A nullable array can't be a subtype of a null-free array 6882 } 6883 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6884 } 6885 if (this_elem == nullptr && other_elem == nullptr) { 6886 return this_one->klass()->is_subtype_of(other->klass()); 6887 } 6888 return false; 6889 } 6890 6891 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6892 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6893 } 6894 6895 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 6896 static_assert(std::is_base_of<T2, T1>::value, ""); 6897 6898 int dummy; 6899 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6900 6901 if (!this_one->is_array_type(other) || 6902 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6903 return false; 6904 } 6905 const T1* other_ary = this_one->is_array_type(other); 6906 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6907 6908 if (other_top_or_bottom) { 6909 return false; 6910 } 6911 6912 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6913 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6914 if (other_elem != nullptr && this_elem != nullptr) { 6915 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 6916 } 6917 if (other_elem == nullptr && this_elem == nullptr) { 6918 return this_one->klass()->equals(other->klass()); 6919 } 6920 return false; 6921 } 6922 6923 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6924 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 6925 } 6926 6927 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6928 static_assert(std::is_base_of<T2, T1>::value, ""); 6929 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 6930 return true; 6931 } 6932 if (!this_one->is_loaded() || !other->is_loaded()) { 6933 return true; 6934 } 6935 if (this_one->is_instance_type(other)) { 6936 return other->klass()->equals(ciEnv::current()->Object_klass()) && 6937 this_one->_interfaces->contains(other->_interfaces); 6938 } 6939 6940 int dummy; 6941 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6942 if (this_top_or_bottom) { 6943 return true; 6944 } 6945 6946 assert(this_one->is_array_type(other), ""); 6947 6948 const T1* other_ary = this_one->is_array_type(other); 6949 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6950 if (other_top_or_bottom) { 6951 return true; 6952 } 6953 if (this_exact && other_exact) { 6954 return this_one->is_java_subtype_of(other); 6955 } 6956 6957 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6958 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6959 if (other_elem != nullptr && this_elem != nullptr) { 6960 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6961 } 6962 if (other_elem == nullptr && this_elem == nullptr) { 6963 return this_one->klass()->is_subtype_of(other->klass()); 6964 } 6965 return false; 6966 } 6967 6968 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6969 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6970 } 6971 6972 //------------------------------xdual------------------------------------------ 6973 // Dual: compute field-by-field dual 6974 const Type *TypeAryKlassPtr::xdual() const { 6975 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free()); 6976 } 6977 6978 // Is there a single ciKlass* that can represent that type? 6979 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 6980 if (elem()->isa_klassptr()) { 6981 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 6982 if (k == nullptr) { 6983 return nullptr; 6984 } 6985 k = ciArrayKlass::make(k, _null_free); 6986 return k; 6987 } 6988 6989 return klass(); 6990 } 6991 6992 ciKlass* TypeAryKlassPtr::klass() const { 6993 if (_klass != nullptr) { 6994 return _klass; 6995 } 6996 ciKlass* k = nullptr; 6997 if (elem()->isa_klassptr()) { 6998 // leave null 6999 } else if ((elem()->base() == Type::Top) || 7000 (elem()->base() == Type::Bottom)) { 7001 } else { 7002 k = ciTypeArrayKlass::make(elem()->basic_type()); 7003 ((TypeAryKlassPtr*)this)->_klass = k; 7004 } 7005 return k; 7006 } 7007 7008 //------------------------------dump2------------------------------------------ 7009 // Dump Klass Type 7010 #ifndef PRODUCT 7011 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 7012 switch( _ptr ) { 7013 case Constant: 7014 st->print("precise "); 7015 case NotNull: 7016 { 7017 st->print("["); 7018 _elem->dump2(d, depth, st); 7019 _interfaces->dump(st); 7020 st->print(": "); 7021 } 7022 case BotPTR: 7023 if( !WizardMode && !Verbose && _ptr != Constant ) break; 7024 case TopPTR: 7025 case AnyNull: 7026 st->print(":%s", ptr_msg[_ptr]); 7027 if( _ptr == Constant ) st->print(":exact"); 7028 break; 7029 default: 7030 break; 7031 } 7032 if (is_flat()) st->print(":flat"); 7033 if (_null_free) st->print(":null free"); 7034 if (Verbose) { 7035 if (_not_flat) st->print(":not flat"); 7036 if (_not_null_free) st->print(":not null free"); 7037 } 7038 7039 _offset.dump2(st); 7040 7041 st->print(" *"); 7042 } 7043 #endif 7044 7045 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 7046 const Type* elem = this->elem(); 7047 dims = 1; 7048 while (elem->isa_aryklassptr()) { 7049 elem = elem->is_aryklassptr()->elem(); 7050 dims++; 7051 } 7052 return elem; 7053 } 7054 7055 //============================================================================= 7056 // Convenience common pre-built types. 7057 7058 //------------------------------make------------------------------------------- 7059 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc, 7060 const TypeTuple *range_sig, const TypeTuple *range_cc) { 7061 return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons(); 7062 } 7063 7064 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) { 7065 return make(domain, domain, range, range); 7066 } 7067 7068 //------------------------------osr_domain----------------------------- 7069 const TypeTuple* osr_domain() { 7070 const Type **fields = TypeTuple::fields(2); 7071 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 7072 return TypeTuple::make(TypeFunc::Parms+1, fields); 7073 } 7074 7075 //------------------------------make------------------------------------------- 7076 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) { 7077 Compile* C = Compile::current(); 7078 const TypeFunc* tf = nullptr; 7079 if (!is_osr_compilation) { 7080 tf = C->last_tf(method); // check cache 7081 if (tf != nullptr) return tf; // The hit rate here is almost 50%. 7082 } 7083 // Inline types are not passed/returned by reference, instead each field of 7084 // the inline type is passed/returned as an argument. We maintain two views of 7085 // the argument/return list here: one based on the signature (with an inline 7086 // type argument/return as a single slot), one based on the actual calling 7087 // convention (with an inline type argument/return as a list of its fields). 7088 bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation; 7089 // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method 7090 if (method != C->method() && method->get_Method()->mismatch()) { 7091 has_scalar_args = false; 7092 } 7093 const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false); 7094 const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig; 7095 ciSignature* sig = method->signature(); 7096 bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields(); 7097 const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false); 7098 const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig; 7099 tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc); 7100 if (!is_osr_compilation) { 7101 C->set_last_tf(method, tf); // fill cache 7102 } 7103 return tf; 7104 } 7105 7106 //------------------------------meet------------------------------------------- 7107 // Compute the MEET of two types. It returns a new Type object. 7108 const Type *TypeFunc::xmeet( const Type *t ) const { 7109 // Perform a fast test for common case; meeting the same types together. 7110 if( this == t ) return this; // Meeting same type-rep? 7111 7112 // Current "this->_base" is Func 7113 switch (t->base()) { // switch on original type 7114 7115 case Bottom: // Ye Olde Default 7116 return t; 7117 7118 default: // All else is a mistake 7119 typerr(t); 7120 7121 case Top: 7122 break; 7123 } 7124 return this; // Return the double constant 7125 } 7126 7127 //------------------------------xdual------------------------------------------ 7128 // Dual: compute field-by-field dual 7129 const Type *TypeFunc::xdual() const { 7130 return this; 7131 } 7132 7133 //------------------------------eq--------------------------------------------- 7134 // Structural equality check for Type representations 7135 bool TypeFunc::eq( const Type *t ) const { 7136 const TypeFunc *a = (const TypeFunc*)t; 7137 return _domain_sig == a->_domain_sig && 7138 _domain_cc == a->_domain_cc && 7139 _range_sig == a->_range_sig && 7140 _range_cc == a->_range_cc; 7141 } 7142 7143 //------------------------------hash------------------------------------------- 7144 // Type-specific hashing function. 7145 uint TypeFunc::hash(void) const { 7146 return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc; 7147 } 7148 7149 //------------------------------dump2------------------------------------------ 7150 // Dump Function Type 7151 #ifndef PRODUCT 7152 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 7153 if( _range_sig->cnt() <= Parms ) 7154 st->print("void"); 7155 else { 7156 uint i; 7157 for (i = Parms; i < _range_sig->cnt()-1; i++) { 7158 _range_sig->field_at(i)->dump2(d,depth,st); 7159 st->print("/"); 7160 } 7161 _range_sig->field_at(i)->dump2(d,depth,st); 7162 } 7163 st->print(" "); 7164 st->print("( "); 7165 if( !depth || d[this] ) { // Check for recursive dump 7166 st->print("...)"); 7167 return; 7168 } 7169 d.Insert((void*)this,(void*)this); // Stop recursion 7170 if (Parms < _domain_sig->cnt()) 7171 _domain_sig->field_at(Parms)->dump2(d,depth-1,st); 7172 for (uint i = Parms+1; i < _domain_sig->cnt(); i++) { 7173 st->print(", "); 7174 _domain_sig->field_at(i)->dump2(d,depth-1,st); 7175 } 7176 st->print(" )"); 7177 } 7178 #endif 7179 7180 //------------------------------singleton-------------------------------------- 7181 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 7182 // constants (Ldi nodes). Singletons are integer, float or double constants 7183 // or a single symbol. 7184 bool TypeFunc::singleton(void) const { 7185 return false; // Never a singleton 7186 } 7187 7188 bool TypeFunc::empty(void) const { 7189 return false; // Never empty 7190 } 7191 7192 7193 BasicType TypeFunc::return_type() const{ 7194 if (range_sig()->cnt() == TypeFunc::Parms) { 7195 return T_VOID; 7196 } 7197 return range_sig()->field_at(TypeFunc::Parms)->basic_type(); 7198 }