1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciMethodData.hpp"
  29 #include "ci/ciTypeFlow.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "classfile/symbolTable.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/arraycopynode.hpp"
  42 #include "opto/callnode.hpp"
  43 #include "opto/matcher.hpp"
  44 #include "opto/node.hpp"
  45 #include "opto/opcodes.hpp"
  46 #include "opto/rangeinference.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "opto/type.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "utilities/checkedCast.hpp"
  51 #include "utilities/globalDefinitions.hpp"
  52 #include "utilities/powerOfTwo.hpp"
  53 #include "utilities/stringUtils.hpp"
  54 
  55 // Portions of code courtesy of Clifford Click
  56 
  57 // Optimization - Graph Style
  58 
  59 // Dictionary of types shared among compilations.
  60 Dict* Type::_shared_type_dict = nullptr;
  61 const Type::Offset Type::Offset::top(Type::OffsetTop);
  62 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  63 
  64 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  65   // Either is 'TOP' offset?  Return the other offset!
  66   if (_offset == OffsetTop) return other;
  67   if (other._offset == OffsetTop) return *this;
  68   // If either is different, return 'BOTTOM' offset
  69   if (_offset != other._offset) return bottom;
  70   return Offset(_offset);
  71 }
  72 
  73 const Type::Offset Type::Offset::dual() const {
  74   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  75   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  76   return Offset(_offset);               // Map everything else into self
  77 }
  78 
  79 const Type::Offset Type::Offset::add(intptr_t offset) const {
  80   // Adding to 'TOP' offset?  Return 'TOP'!
  81   if (_offset == OffsetTop || offset == OffsetTop) return top;
  82   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  83   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  84   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  85   offset += (intptr_t)_offset;
  86   if (offset != (int)offset || offset == OffsetTop) return bottom;
  87 
  88   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  89   // It is possible to construct a negative offset during PhaseCCP
  90 
  91   return Offset((int)offset);        // Sum valid offsets
  92 }
  93 
  94 void Type::Offset::dump2(outputStream *st) const {
  95   if (_offset == 0) {
  96     return;
  97   } else if (_offset == OffsetTop) {
  98     st->print("+top");
  99   }
 100   else if (_offset == OffsetBot) {
 101     st->print("+bot");
 102   } else if (_offset) {
 103     st->print("+%d", _offset);
 104   }
 105 }
 106 
 107 // Array which maps compiler types to Basic Types
 108 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 109   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 110   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 111   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 112   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 113   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 114   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 115   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 116   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 117   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 118   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 119   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 120 
 121 #if defined(PPC64)
 122   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 123   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #elif defined(S390)
 130   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 131   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 132   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 133   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 134   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 135   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 136   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 137 #else // all other
 138   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 139   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 140   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 141   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 142   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 143   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 144   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 145 #endif
 146   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 147   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 148   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 149   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 150   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 151   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 152   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 153   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 154   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 155   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 156   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 157   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 158   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 159   { HalfFloatBot,    T_SHORT,      "halffloat_top", false, Op_RegF,              relocInfo::none          },  // HalfFloatTop
 160   { HalfFloatCon,    T_SHORT,      "hfcon:",        false, Op_RegF,              relocInfo::none          },  // HalfFloatCon
 161   { HalfFloatTop,    T_SHORT,      "short",         false, Op_RegF,              relocInfo::none          },  // HalfFloatBot
 162   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 163   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 164   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 165   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 166   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 167   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 168   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 169 };
 170 
 171 // Map ideal registers (machine types) to ideal types
 172 const Type *Type::mreg2type[_last_machine_leaf];
 173 
 174 // Map basic types to canonical Type* pointers.
 175 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 176 
 177 // Map basic types to constant-zero Types.
 178 const Type* Type::            _zero_type[T_CONFLICT+1];
 179 
 180 // Map basic types to array-body alias types.
 181 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 182 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 183 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 184 
 185 //=============================================================================
 186 // Convenience common pre-built types.
 187 const Type *Type::ABIO;         // State-of-machine only
 188 const Type *Type::BOTTOM;       // All values
 189 const Type *Type::CONTROL;      // Control only
 190 const Type *Type::DOUBLE;       // All doubles
 191 const Type *Type::HALF_FLOAT;   // All half floats
 192 const Type *Type::FLOAT;        // All floats
 193 const Type *Type::HALF;         // Placeholder half of doublewide type
 194 const Type *Type::MEMORY;       // Abstract store only
 195 const Type *Type::RETURN_ADDRESS;
 196 const Type *Type::TOP;          // No values in set
 197 
 198 //------------------------------get_const_type---------------------------
 199 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 200   if (type == nullptr) {
 201     return nullptr;
 202   } else if (type->is_primitive_type()) {
 203     return get_const_basic_type(type->basic_type());
 204   } else {
 205     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 206   }
 207 }
 208 
 209 //---------------------------array_element_basic_type---------------------------------
 210 // Mapping to the array element's basic type.
 211 BasicType Type::array_element_basic_type() const {
 212   BasicType bt = basic_type();
 213   if (bt == T_INT) {
 214     if (this == TypeInt::INT)   return T_INT;
 215     if (this == TypeInt::CHAR)  return T_CHAR;
 216     if (this == TypeInt::BYTE)  return T_BYTE;
 217     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 218     if (this == TypeInt::SHORT) return T_SHORT;
 219     return T_VOID;
 220   }
 221   return bt;
 222 }
 223 
 224 // For two instance arrays of same dimension, return the base element types.
 225 // Otherwise or if the arrays have different dimensions, return null.
 226 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 227                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 228 
 229   if (e1) *e1 = nullptr;
 230   if (e2) *e2 = nullptr;
 231   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 232   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 233 
 234   if (a1tap != nullptr && a2tap != nullptr) {
 235     // Handle multidimensional arrays
 236     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 237     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 238     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 239       a1tap = a1tp->is_aryptr();
 240       a2tap = a2tp->is_aryptr();
 241       a1tp = a1tap->elem()->make_ptr();
 242       a2tp = a2tap->elem()->make_ptr();
 243     }
 244     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 245       if (e1) *e1 = a1tp->is_instptr();
 246       if (e2) *e2 = a2tp->is_instptr();
 247     }
 248   }
 249 }
 250 
 251 //---------------------------get_typeflow_type---------------------------------
 252 // Import a type produced by ciTypeFlow.
 253 const Type* Type::get_typeflow_type(ciType* type) {
 254   switch (type->basic_type()) {
 255 
 256   case ciTypeFlow::StateVector::T_BOTTOM:
 257     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 258     return Type::BOTTOM;
 259 
 260   case ciTypeFlow::StateVector::T_TOP:
 261     assert(type == ciTypeFlow::StateVector::top_type(), "");
 262     return Type::TOP;
 263 
 264   case ciTypeFlow::StateVector::T_NULL:
 265     assert(type == ciTypeFlow::StateVector::null_type(), "");
 266     return TypePtr::NULL_PTR;
 267 
 268   case ciTypeFlow::StateVector::T_LONG2:
 269     // The ciTypeFlow pass pushes a long, then the half.
 270     // We do the same.
 271     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 272     return TypeInt::TOP;
 273 
 274   case ciTypeFlow::StateVector::T_DOUBLE2:
 275     // The ciTypeFlow pass pushes double, then the half.
 276     // Our convention is the same.
 277     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 278     return Type::TOP;
 279 
 280   case T_ADDRESS:
 281     assert(type->is_return_address(), "");
 282     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 283 
 284   case T_OBJECT:
 285     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 286 
 287   default:
 288     // make sure we did not mix up the cases:
 289     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 290     assert(type != ciTypeFlow::StateVector::top_type(), "");
 291     assert(type != ciTypeFlow::StateVector::null_type(), "");
 292     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 293     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 294     assert(!type->is_return_address(), "");
 295 
 296     return Type::get_const_type(type);
 297   }
 298 }
 299 
 300 
 301 //-----------------------make_from_constant------------------------------------
 302 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 303                                      int stable_dimension, bool is_narrow_oop,
 304                                      bool is_autobox_cache) {
 305   switch (constant.basic_type()) {
 306     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 307     case T_CHAR:     return TypeInt::make(constant.as_char());
 308     case T_BYTE:     return TypeInt::make(constant.as_byte());
 309     case T_SHORT:    return TypeInt::make(constant.as_short());
 310     case T_INT:      return TypeInt::make(constant.as_int());
 311     case T_LONG:     return TypeLong::make(constant.as_long());
 312     case T_FLOAT:    return TypeF::make(constant.as_float());
 313     case T_DOUBLE:   return TypeD::make(constant.as_double());
 314     case T_ARRAY:
 315     case T_OBJECT: {
 316         const Type* con_type = nullptr;
 317         ciObject* oop_constant = constant.as_object();
 318         if (oop_constant->is_null_object()) {
 319           con_type = Type::get_zero_type(T_OBJECT);
 320         } else {
 321           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 322           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 323           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 324             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 325           }
 326           if (stable_dimension > 0) {
 327             assert(FoldStableValues, "sanity");
 328             assert(!con_type->is_zero_type(), "default value for stable field");
 329             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 330           }
 331         }
 332         if (is_narrow_oop) {
 333           con_type = con_type->make_narrowoop();
 334         }
 335         return con_type;
 336       }
 337     case T_ILLEGAL:
 338       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 339       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 340       return nullptr;
 341     default:
 342       // Fall through to failure
 343       return nullptr;
 344   }
 345 }
 346 
 347 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 348   BasicType conbt = con.basic_type();
 349   switch (conbt) {
 350     case T_BOOLEAN: conbt = T_BYTE;   break;
 351     case T_ARRAY:   conbt = T_OBJECT; break;
 352     default:                          break;
 353   }
 354   switch (loadbt) {
 355     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 356     case T_NARROWOOP: loadbt = T_OBJECT; break;
 357     case T_ARRAY:     loadbt = T_OBJECT; break;
 358     case T_ADDRESS:   loadbt = T_OBJECT; break;
 359     default:                             break;
 360   }
 361   if (conbt == loadbt) {
 362     if (is_unsigned && conbt == T_BYTE) {
 363       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 364       return ciConstant(T_INT, con.as_int() & 0xFF);
 365     } else {
 366       return con;
 367     }
 368   }
 369   if (conbt == T_SHORT && loadbt == T_CHAR) {
 370     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 371     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 372   }
 373   return ciConstant(); // T_ILLEGAL
 374 }
 375 
 376 // Try to constant-fold a stable array element.
 377 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 378                                                    BasicType loadbt, bool is_unsigned_load) {
 379   // Decode the results of GraphKit::array_element_address.
 380   ciConstant element_value = array->element_value_by_offset(off);
 381   if (element_value.basic_type() == T_ILLEGAL) {
 382     return nullptr; // wrong offset
 383   }
 384   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 385 
 386   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 387          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 388 
 389   if (con.is_valid() &&          // not a mismatched access
 390       !con.is_null_or_zero()) {  // not a default value
 391     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 392     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 393   }
 394   return nullptr;
 395 }
 396 
 397 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 398   ciField* field;
 399   ciType* type = holder->java_mirror_type();
 400   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 401     // Static field
 402     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 403   } else {
 404     // Instance field
 405     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 406   }
 407   if (field == nullptr) {
 408     return nullptr; // Wrong offset
 409   }
 410   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 411 }
 412 
 413 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 414                                            BasicType loadbt, bool is_unsigned_load) {
 415   if (!field->is_constant()) {
 416     return nullptr; // Non-constant field
 417   }
 418   ciConstant field_value;
 419   if (field->is_static()) {
 420     // final static field
 421     field_value = field->constant_value();
 422   } else if (holder != nullptr) {
 423     // final or stable non-static field
 424     // Treat final non-static fields of trusted classes (classes in
 425     // java.lang.invoke and sun.invoke packages and subpackages) as
 426     // compile time constants.
 427     field_value = field->constant_value_of(holder);
 428   }
 429   if (!field_value.is_valid()) {
 430     return nullptr; // Not a constant
 431   }
 432 
 433   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 434 
 435   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 436          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 437 
 438   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 439   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 440   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 441 
 442   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 443                                             stable_dimension, is_narrow_oop,
 444                                             field->is_autobox_cache());
 445   if (con_type != nullptr && field->is_call_site_target()) {
 446     ciCallSite* call_site = holder->as_call_site();
 447     if (!call_site->is_fully_initialized_constant_call_site()) {
 448       ciMethodHandle* target = con.as_object()->as_method_handle();
 449       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 450     }
 451   }
 452   return con_type;
 453 }
 454 
 455 //------------------------------make-------------------------------------------
 456 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 457 // and look for an existing copy in the type dictionary.
 458 const Type *Type::make( enum TYPES t ) {
 459   return (new Type(t))->hashcons();
 460 }
 461 
 462 //------------------------------cmp--------------------------------------------
 463 bool Type::equals(const Type* t1, const Type* t2) {
 464   if (t1->_base != t2->_base) {
 465     return false; // Missed badly
 466   }
 467 
 468   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 469   return t1->eq(t2);
 470 }
 471 
 472 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 473   if (!include_speculative) {
 474     return remove_speculative();
 475   }
 476   return this;
 477 }
 478 
 479 //------------------------------hash-------------------------------------------
 480 int Type::uhash( const Type *const t ) {
 481   return (int)t->hash();
 482 }
 483 
 484 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 485 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 486 
 487 //--------------------------Initialize_shared----------------------------------
 488 void Type::Initialize_shared(Compile* current) {
 489   // This method does not need to be locked because the first system
 490   // compilations (stub compilations) occur serially.  If they are
 491   // changed to proceed in parallel, then this section will need
 492   // locking.
 493 
 494   Arena* save = current->type_arena();
 495   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
 496 
 497   current->set_type_arena(shared_type_arena);
 498 
 499   // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
 500   CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
 501     return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
 502   };
 503 
 504   _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
 505   current->set_type_dict(_shared_type_dict);
 506 
 507   // Make shared pre-built types.
 508   CONTROL = make(Control);      // Control only
 509   TOP     = make(Top);          // No values in set
 510   MEMORY  = make(Memory);       // Abstract store only
 511   ABIO    = make(Abio);         // State-of-machine only
 512   RETURN_ADDRESS=make(Return_Address);
 513   FLOAT   = make(FloatBot);     // All floats
 514   HALF_FLOAT = make(HalfFloatBot); // All half floats
 515   DOUBLE  = make(DoubleBot);    // All doubles
 516   BOTTOM  = make(Bottom);       // Everything
 517   HALF    = make(Half);         // Placeholder half of doublewide type
 518 
 519   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 520   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 521   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 522   TypeF::ONE  = TypeF::make(1.0); // Float 1
 523   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 524   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 525 
 526   TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
 527   TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
 528   TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
 529   TypeH::ONE  = TypeH::make(one_jfloat16); // HalfFloat 1
 530   TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
 531   TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
 532 
 533   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 534   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 535   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 536   TypeD::ONE  = TypeD::make(1.0); // Double 1
 537   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 538   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 539 
 540   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 541   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 542   TypeInt::MINUS_1  = TypeInt::make(-1);  // -1
 543   TypeInt::ZERO     = TypeInt::make( 0);  //  0
 544   TypeInt::ONE      = TypeInt::make( 1);  //  1
 545   TypeInt::BOOL     = TypeInt::make( 0, 1, WidenMin);  // 0 or 1, FALSE or TRUE.
 546   TypeInt::CC       = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 547   TypeInt::CC_LT    = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 548   TypeInt::CC_GT    = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 549   TypeInt::CC_EQ    = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 550   TypeInt::CC_NE    = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{-1, 1}, {1, max_juint}, {0, 1}}, WidenMin)->is_int();
 551   TypeInt::CC_LE    = TypeInt::make(-1, 0, WidenMin);
 552   TypeInt::CC_GE    = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 553   TypeInt::BYTE     = TypeInt::make(-128, 127,     WidenMin); // Bytes
 554   TypeInt::UBYTE    = TypeInt::make(0, 255,        WidenMin); // Unsigned Bytes
 555   TypeInt::CHAR     = TypeInt::make(0, 65535,      WidenMin); // Java chars
 556   TypeInt::SHORT    = TypeInt::make(-32768, 32767, WidenMin); // Java shorts
 557   TypeInt::NON_ZERO = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{min_jint, max_jint}, {1, max_juint}, {0, 0}}, WidenMin)->is_int();
 558   TypeInt::POS      = TypeInt::make(0, max_jint,   WidenMin); // Non-neg values
 559   TypeInt::POS1     = TypeInt::make(1, max_jint,   WidenMin); // Positive values
 560   TypeInt::INT      = TypeInt::make(min_jint, max_jint, WidenMax); // 32-bit integers
 561   TypeInt::SYMINT   = TypeInt::make(-max_jint, max_jint, WidenMin); // symmetric range
 562   TypeInt::TYPE_DOMAIN = TypeInt::INT;
 563   // CmpL is overloaded both as the bytecode computation returning
 564   // a trinary (-1, 0, +1) integer result AND as an efficient long
 565   // compare returning optimizer ideal-type flags.
 566   assert(TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 567   assert(TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 568   assert(TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 569   assert(TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 570 
 571   TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
 572   TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
 573   TypeLong::MINUS_1  = TypeLong::make(-1);   // -1
 574   TypeLong::ZERO     = TypeLong::make( 0);   //  0
 575   TypeLong::ONE      = TypeLong::make( 1);   //  1
 576   TypeLong::NON_ZERO = TypeLong::make_or_top(TypeIntPrototype<jlong, julong>{{min_jlong, max_jlong}, {1, max_julong}, {0, 0}}, WidenMin)->is_long();
 577   TypeLong::POS      = TypeLong::make(0, max_jlong, WidenMin); // Non-neg values
 578   TypeLong::NEG      = TypeLong::make(min_jlong, -1, WidenMin);
 579   TypeLong::LONG     = TypeLong::make(min_jlong, max_jlong, WidenMax); // 64-bit integers
 580   TypeLong::INT      = TypeLong::make((jlong)min_jint, (jlong)max_jint,WidenMin);
 581   TypeLong::UINT     = TypeLong::make(0, (jlong)max_juint, WidenMin);
 582   TypeLong::TYPE_DOMAIN = TypeLong::LONG;
 583 
 584   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 585   fboth[0] = Type::CONTROL;
 586   fboth[1] = Type::CONTROL;
 587   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 588 
 589   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 590   ffalse[0] = Type::CONTROL;
 591   ffalse[1] = Type::TOP;
 592   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 593 
 594   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 595   fneither[0] = Type::TOP;
 596   fneither[1] = Type::TOP;
 597   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 598 
 599   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 600   ftrue[0] = Type::TOP;
 601   ftrue[1] = Type::CONTROL;
 602   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 603 
 604   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 605   floop[0] = Type::CONTROL;
 606   floop[1] = TypeInt::INT;
 607   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 608 
 609   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 610   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 611   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 612 
 613   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 614   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 615 
 616   const Type **fmembar = TypeTuple::fields(0);
 617   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 618 
 619   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 620   fsc[0] = TypeInt::CC;
 621   fsc[1] = Type::MEMORY;
 622   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 623 
 624   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 625   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 626   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 627   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 628                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 629   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 630                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 631   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 632 
 633   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 634 
 635   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 636   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 637 
 638   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 639 
 640   mreg2type[Op_Node] = Type::BOTTOM;
 641   mreg2type[Op_Set ] = nullptr;
 642   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 643   mreg2type[Op_RegI] = TypeInt::INT;
 644   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 645   mreg2type[Op_RegF] = Type::FLOAT;
 646   mreg2type[Op_RegD] = Type::DOUBLE;
 647   mreg2type[Op_RegL] = TypeLong::LONG;
 648   mreg2type[Op_RegFlags] = TypeInt::CC;
 649 
 650   GrowableArray<ciInstanceKlass*> array_interfaces;
 651   array_interfaces.push(current->env()->Cloneable_klass());
 652   array_interfaces.push(current->env()->Serializable_klass());
 653   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 654   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 655 
 656   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Offset::bottom);
 657   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 658 
 659   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 660 
 661 #ifdef _LP64
 662   if (UseCompressedOops) {
 663     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 664     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 665   } else
 666 #endif
 667   {
 668     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 669     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 670   }
 671   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 672   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 673   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 674   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 675   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 676   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 677   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 678   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 679 
 680   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 681   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 682   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 683   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 684   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 685   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 686   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 687   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 688   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 689   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 690   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 691   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 692   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 693 
 694   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 695   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 696 
 697   const Type **fi2c = TypeTuple::fields(2);
 698   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 699   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 700   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 701 
 702   const Type **intpair = TypeTuple::fields(2);
 703   intpair[0] = TypeInt::INT;
 704   intpair[1] = TypeInt::INT;
 705   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 706 
 707   const Type **longpair = TypeTuple::fields(2);
 708   longpair[0] = TypeLong::LONG;
 709   longpair[1] = TypeLong::LONG;
 710   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 711 
 712   const Type **intccpair = TypeTuple::fields(2);
 713   intccpair[0] = TypeInt::INT;
 714   intccpair[1] = TypeInt::CC;
 715   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 716 
 717   const Type **longccpair = TypeTuple::fields(2);
 718   longccpair[0] = TypeLong::LONG;
 719   longccpair[1] = TypeInt::CC;
 720   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 721 
 722   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 723   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 724   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 725   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 726   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 727   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 728   _const_basic_type[T_INT]         = TypeInt::INT;
 729   _const_basic_type[T_LONG]        = TypeLong::LONG;
 730   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 731   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 732   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 733   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 734   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 735   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 736   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 737   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 738 
 739   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 740   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 741   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 742   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 743   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 744   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 745   _zero_type[T_INT]         = TypeInt::ZERO;
 746   _zero_type[T_LONG]        = TypeLong::ZERO;
 747   _zero_type[T_FLOAT]       = TypeF::ZERO;
 748   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 749   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 750   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 751   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 752   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 753   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 754 
 755   // get_zero_type() should not happen for T_CONFLICT
 756   _zero_type[T_CONFLICT]= nullptr;
 757 
 758   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 759   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 760 
 761   if (Matcher::supports_scalable_vector()) {
 762     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 763   }
 764 
 765   // Vector predefined types, it needs initialized _const_basic_type[].
 766   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 767     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 768   }
 769   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 770     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 771   }
 772   if (Matcher::vector_size_supported(T_FLOAT, 4)) {
 773     TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
 774   }
 775   if (Matcher::vector_size_supported(T_FLOAT, 8)) {
 776     TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
 777   }
 778   if (Matcher::vector_size_supported(T_FLOAT, 16)) {
 779     TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
 780   }
 781 
 782   mreg2type[Op_VecA] = TypeVect::VECTA;
 783   mreg2type[Op_VecS] = TypeVect::VECTS;
 784   mreg2type[Op_VecD] = TypeVect::VECTD;
 785   mreg2type[Op_VecX] = TypeVect::VECTX;
 786   mreg2type[Op_VecY] = TypeVect::VECTY;
 787   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 788 
 789   LockNode::initialize_lock_Type();
 790   ArrayCopyNode::initialize_arraycopy_Type();
 791   OptoRuntime::initialize_types();
 792 
 793   // Restore working type arena.
 794   current->set_type_arena(save);
 795   current->set_type_dict(nullptr);
 796 }
 797 
 798 //------------------------------Initialize-------------------------------------
 799 void Type::Initialize(Compile* current) {
 800   assert(current->type_arena() != nullptr, "must have created type arena");
 801 
 802   if (_shared_type_dict == nullptr) {
 803     Initialize_shared(current);
 804   }
 805 
 806   Arena* type_arena = current->type_arena();
 807 
 808   // Create the hash-cons'ing dictionary with top-level storage allocation
 809   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 810   current->set_type_dict(tdic);
 811 }
 812 
 813 //------------------------------hashcons---------------------------------------
 814 // Do the hash-cons trick.  If the Type already exists in the type table,
 815 // delete the current Type and return the existing Type.  Otherwise stick the
 816 // current Type in the Type table.
 817 const Type *Type::hashcons(void) {
 818   DEBUG_ONLY(base());           // Check the assertion in Type::base().
 819   // Look up the Type in the Type dictionary
 820   Dict *tdic = type_dict();
 821   Type* old = (Type*)(tdic->Insert(this, this, false));
 822   if( old ) {                   // Pre-existing Type?
 823     if( old != this )           // Yes, this guy is not the pre-existing?
 824       delete this;              // Yes, Nuke this guy
 825     assert( old->_dual, "" );
 826     return old;                 // Return pre-existing
 827   }
 828 
 829   // Every type has a dual (to make my lattice symmetric).
 830   // Since we just discovered a new Type, compute its dual right now.
 831   assert( !_dual, "" );         // No dual yet
 832   _dual = xdual();              // Compute the dual
 833   if (equals(this, _dual)) {    // Handle self-symmetric
 834     if (_dual != this) {
 835       delete _dual;
 836       _dual = this;
 837     }
 838     return this;
 839   }
 840   assert( !_dual->_dual, "" );  // No reverse dual yet
 841   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 842   // New Type, insert into Type table
 843   tdic->Insert((void*)_dual,(void*)_dual);
 844   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 845 #ifdef ASSERT
 846   Type *dual_dual = (Type*)_dual->xdual();
 847   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 848   delete dual_dual;
 849 #endif
 850   return this;                  // Return new Type
 851 }
 852 
 853 //------------------------------eq---------------------------------------------
 854 // Structural equality check for Type representations
 855 bool Type::eq( const Type * ) const {
 856   return true;                  // Nothing else can go wrong
 857 }
 858 
 859 //------------------------------hash-------------------------------------------
 860 // Type-specific hashing function.
 861 uint Type::hash(void) const {
 862   return _base;
 863 }
 864 
 865 //------------------------------is_finite--------------------------------------
 866 // Has a finite value
 867 bool Type::is_finite() const {
 868   return false;
 869 }
 870 
 871 //------------------------------is_nan-----------------------------------------
 872 // Is not a number (NaN)
 873 bool Type::is_nan()    const {
 874   return false;
 875 }
 876 
 877 #ifdef ASSERT
 878 class VerifyMeet;
 879 class VerifyMeetResult : public ArenaObj {
 880   friend class VerifyMeet;
 881   friend class Type;
 882 private:
 883   class VerifyMeetResultEntry {
 884   private:
 885     const Type* _in1;
 886     const Type* _in2;
 887     const Type* _res;
 888   public:
 889     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 890             _in1(in1), _in2(in2), _res(res) {
 891     }
 892     VerifyMeetResultEntry():
 893             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 894     }
 895 
 896     bool operator==(const VerifyMeetResultEntry& rhs) const {
 897       return _in1 == rhs._in1 &&
 898              _in2 == rhs._in2 &&
 899              _res == rhs._res;
 900     }
 901 
 902     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 903       return !(rhs == *this);
 904     }
 905 
 906     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 907       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 908         return -1;
 909       } else if (v1._in1 == v2._in1) {
 910         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 911           return -1;
 912         } else if (v1._in2 == v2._in2) {
 913           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 914           return 0;
 915         }
 916         return 1;
 917       }
 918       return 1;
 919     }
 920     const Type* res() const { return _res; }
 921   };
 922   uint _depth;
 923   GrowableArray<VerifyMeetResultEntry> _cache;
 924 
 925   // With verification code, the meet of A and B causes the computation of:
 926   // 1- meet(A, B)
 927   // 2- meet(B, A)
 928   // 3- meet(dual(meet(A, B)), dual(A))
 929   // 4- meet(dual(meet(A, B)), dual(B))
 930   // 5- meet(dual(A), dual(B))
 931   // 6- meet(dual(B), dual(A))
 932   // 7- meet(dual(meet(dual(A), dual(B))), A)
 933   // 8- meet(dual(meet(dual(A), dual(B))), B)
 934   //
 935   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 936   //
 937   // The meet of A[] and B[] triggers the computation of:
 938   // 1- meet(A[], B[][)
 939   //   1.1- meet(A, B)
 940   //   1.2- meet(B, A)
 941   //   1.3- meet(dual(meet(A, B)), dual(A))
 942   //   1.4- meet(dual(meet(A, B)), dual(B))
 943   //   1.5- meet(dual(A), dual(B))
 944   //   1.6- meet(dual(B), dual(A))
 945   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 946   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 947   // 2- meet(B[], A[])
 948   //   2.1- meet(B, A) = 1.2
 949   //   2.2- meet(A, B) = 1.1
 950   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 951   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 952   //   2.5- meet(dual(B), dual(A)) = 1.6
 953   //   2.6- meet(dual(A), dual(B)) = 1.5
 954   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 955   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 956   // etc.
 957   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 958   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 959   // duration of the meet at the root of the recursive calls.
 960   //
 961   const Type* meet(const Type* t1, const Type* t2) {
 962     bool found = false;
 963     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 964     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 965     const Type* res = nullptr;
 966     if (found) {
 967       res = _cache.at(pos).res();
 968     } else {
 969       res = t1->xmeet(t2);
 970       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 971       found = false;
 972       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 973       assert(found, "should be in table after it's added");
 974     }
 975     return res;
 976   }
 977 
 978   void add(const Type* t1, const Type* t2, const Type* res) {
 979     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 980   }
 981 
 982   bool empty_cache() const {
 983     return _cache.length() == 0;
 984   }
 985 public:
 986   VerifyMeetResult(Compile* C) :
 987           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
 988   }
 989 };
 990 
 991 void Type::assert_type_verify_empty() const {
 992   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
 993 }
 994 
 995 class VerifyMeet {
 996 private:
 997   Compile* _C;
 998 public:
 999   VerifyMeet(Compile* C) : _C(C) {
1000     if (C->_type_verify == nullptr) {
1001       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
1002     }
1003     _C->_type_verify->_depth++;
1004   }
1005 
1006   ~VerifyMeet() {
1007     assert(_C->_type_verify->_depth != 0, "");
1008     _C->_type_verify->_depth--;
1009     if (_C->_type_verify->_depth == 0) {
1010       _C->_type_verify->_cache.trunc_to(0);
1011     }
1012   }
1013 
1014   const Type* meet(const Type* t1, const Type* t2) const {
1015     return _C->_type_verify->meet(t1, t2);
1016   }
1017 
1018   void add(const Type* t1, const Type* t2, const Type* res) const {
1019     _C->_type_verify->add(t1, t2, res);
1020   }
1021 };
1022 
1023 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1024   Compile* C = Compile::current();
1025   const Type* mt2 = verify.meet(t, this);
1026 
1027   // Verify that:
1028   //      this meet t == t meet this
1029   if (mt != mt2) {
1030     tty->print_cr("=== Meet Not Commutative ===");
1031     tty->print("t           = ");   t->dump(); tty->cr();
1032     tty->print("this        = ");      dump(); tty->cr();
1033     tty->print("t meet this = "); mt2->dump(); tty->cr();
1034     tty->print("this meet t = ");  mt->dump(); tty->cr();
1035     fatal("meet not commutative");
1036   }
1037   const Type* dual_join = mt->_dual;
1038   const Type* t2t    = verify.meet(dual_join,t->_dual);
1039   const Type* t2this = verify.meet(dual_join,this->_dual);
1040 
1041   // Interface meet Oop is Not Symmetric:
1042   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1043   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1044 
1045   // Verify that:
1046   // 1)     mt_dual meet t_dual    == t_dual
1047   //    which corresponds to
1048   //       !(t meet this)  meet !t ==
1049   //       (!t join !this) meet !t == !t
1050   // 2)    mt_dual meet this_dual     == this_dual
1051   //    which corresponds to
1052   //       !(t meet this)  meet !this ==
1053   //       (!t join !this) meet !this == !this
1054   // TODO 8332406 Fix this
1055   if ((   isa_instptr() != nullptr &&    is_instptr()->flat_in_array()) ||
1056       (t->isa_instptr() != nullptr && t->is_instptr()->flat_in_array())) {
1057     return;
1058   }
1059   if (t2t != t->_dual || t2this != this->_dual) {
1060     tty->print_cr("=== Meet Not Symmetric ===");
1061     tty->print("t   =                   ");              t->dump(); tty->cr();
1062     tty->print("this=                   ");                 dump(); tty->cr();
1063     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1064 
1065     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1066     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1067     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1068 
1069     // 1)
1070     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1071     // 2)
1072     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1073 
1074     fatal("meet not symmetric");
1075   }
1076 }
1077 #endif
1078 
1079 //------------------------------meet-------------------------------------------
1080 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1081 // commutative and the lattice is symmetric.
1082 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1083   if (isa_narrowoop() && t->isa_narrowoop()) {
1084     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1085     return result->make_narrowoop();
1086   }
1087   if (isa_narrowklass() && t->isa_narrowklass()) {
1088     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1089     return result->make_narrowklass();
1090   }
1091 
1092 #ifdef ASSERT
1093   Compile* C = Compile::current();
1094   VerifyMeet verify(C);
1095 #endif
1096 
1097   const Type *this_t = maybe_remove_speculative(include_speculative);
1098   t = t->maybe_remove_speculative(include_speculative);
1099 
1100   const Type *mt = this_t->xmeet(t);
1101 #ifdef ASSERT
1102   verify.add(this_t, t, mt);
1103   if (isa_narrowoop() || t->isa_narrowoop()) {
1104     return mt;
1105   }
1106   if (isa_narrowklass() || t->isa_narrowklass()) {
1107     return mt;
1108   }
1109   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1110   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1111       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1112   this_t->check_symmetrical(t, mt, verify);
1113   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1114   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1115 #endif
1116   return mt;
1117 }
1118 
1119 //------------------------------xmeet------------------------------------------
1120 // Compute the MEET of two types.  It returns a new Type object.
1121 const Type *Type::xmeet( const Type *t ) const {
1122   // Perform a fast test for common case; meeting the same types together.
1123   if( this == t ) return this;  // Meeting same type-rep?
1124 
1125   // Meeting TOP with anything?
1126   if( _base == Top ) return t;
1127 
1128   // Meeting BOTTOM with anything?
1129   if( _base == Bottom ) return BOTTOM;
1130 
1131   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1132   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1133   switch (t->base()) {  // Switch on original type
1134 
1135   // Cut in half the number of cases I must handle.  Only need cases for when
1136   // the given enum "t->type" is less than or equal to the local enum "type".
1137   case HalfFloatCon:
1138   case FloatCon:
1139   case DoubleCon:
1140   case Int:
1141   case Long:
1142     return t->xmeet(this);
1143 
1144   case OopPtr:
1145     return t->xmeet(this);
1146 
1147   case InstPtr:
1148     return t->xmeet(this);
1149 
1150   case MetadataPtr:
1151   case KlassPtr:
1152   case InstKlassPtr:
1153   case AryKlassPtr:
1154     return t->xmeet(this);
1155 
1156   case AryPtr:
1157     return t->xmeet(this);
1158 
1159   case NarrowOop:
1160     return t->xmeet(this);
1161 
1162   case NarrowKlass:
1163     return t->xmeet(this);
1164 
1165   case Bad:                     // Type check
1166   default:                      // Bogus type not in lattice
1167     typerr(t);
1168     return Type::BOTTOM;
1169 
1170   case Bottom:                  // Ye Olde Default
1171     return t;
1172 
1173   case HalfFloatTop:
1174     if (_base == HalfFloatTop) { return this; }
1175   case HalfFloatBot:            // Half Float
1176     if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1177     if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1178     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1179     typerr(t);
1180     return Type::BOTTOM;
1181 
1182   case FloatTop:
1183     if (_base == FloatTop ) { return this; }
1184   case FloatBot:                // Float
1185     if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1186     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1187     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1188     typerr(t);
1189     return Type::BOTTOM;
1190 
1191   case DoubleTop:
1192     if (_base == DoubleTop) { return this; }
1193   case DoubleBot:               // Double
1194     if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1195     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1196     if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1197     typerr(t);
1198     return Type::BOTTOM;
1199 
1200   // These next few cases must match exactly or it is a compile-time error.
1201   case Control:                 // Control of code
1202   case Abio:                    // State of world outside of program
1203   case Memory:
1204     if (_base == t->_base)  { return this; }
1205     typerr(t);
1206     return Type::BOTTOM;
1207 
1208   case Top:                     // Top of the lattice
1209     return this;
1210   }
1211 
1212   // The type is unchanged
1213   return this;
1214 }
1215 
1216 //-----------------------------filter------------------------------------------
1217 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1218   const Type* ft = join_helper(kills, include_speculative);
1219   if (ft->empty())
1220     return Type::TOP;           // Canonical empty value
1221   return ft;
1222 }
1223 
1224 //------------------------------xdual------------------------------------------
1225 const Type *Type::xdual() const {
1226   // Note: the base() accessor asserts the sanity of _base.
1227   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1228   return new Type(_type_info[_base].dual_type);
1229 }
1230 
1231 //------------------------------has_memory-------------------------------------
1232 bool Type::has_memory() const {
1233   Type::TYPES tx = base();
1234   if (tx == Memory) return true;
1235   if (tx == Tuple) {
1236     const TypeTuple *t = is_tuple();
1237     for (uint i=0; i < t->cnt(); i++) {
1238       tx = t->field_at(i)->base();
1239       if (tx == Memory)  return true;
1240     }
1241   }
1242   return false;
1243 }
1244 
1245 #ifndef PRODUCT
1246 //------------------------------dump2------------------------------------------
1247 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1248   st->print("%s", _type_info[_base].msg);
1249 }
1250 
1251 //------------------------------dump-------------------------------------------
1252 void Type::dump_on(outputStream *st) const {
1253   ResourceMark rm;
1254   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1255   dump2(d,1, st);
1256   if (is_ptr_to_narrowoop()) {
1257     st->print(" [narrow]");
1258   } else if (is_ptr_to_narrowklass()) {
1259     st->print(" [narrowklass]");
1260   }
1261 }
1262 
1263 //-----------------------------------------------------------------------------
1264 const char* Type::str(const Type* t) {
1265   stringStream ss;
1266   t->dump_on(&ss);
1267   return ss.as_string();
1268 }
1269 #endif
1270 
1271 //------------------------------singleton--------------------------------------
1272 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1273 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1274 bool Type::singleton(void) const {
1275   return _base == Top || _base == Half;
1276 }
1277 
1278 //------------------------------empty------------------------------------------
1279 // TRUE if Type is a type with no values, FALSE otherwise.
1280 bool Type::empty(void) const {
1281   switch (_base) {
1282   case DoubleTop:
1283   case FloatTop:
1284   case HalfFloatTop:
1285   case Top:
1286     return true;
1287 
1288   case Half:
1289   case Abio:
1290   case Return_Address:
1291   case Memory:
1292   case Bottom:
1293   case HalfFloatBot:
1294   case FloatBot:
1295   case DoubleBot:
1296     return false;  // never a singleton, therefore never empty
1297 
1298   default:
1299     ShouldNotReachHere();
1300     return false;
1301   }
1302 }
1303 
1304 //------------------------------dump_stats-------------------------------------
1305 // Dump collected statistics to stderr
1306 #ifndef PRODUCT
1307 void Type::dump_stats() {
1308   tty->print("Types made: %d\n", type_dict()->Size());
1309 }
1310 #endif
1311 
1312 //------------------------------category---------------------------------------
1313 #ifndef PRODUCT
1314 Type::Category Type::category() const {
1315   const TypeTuple* tuple;
1316   switch (base()) {
1317     case Type::Int:
1318     case Type::Long:
1319     case Type::Half:
1320     case Type::NarrowOop:
1321     case Type::NarrowKlass:
1322     case Type::Array:
1323     case Type::VectorA:
1324     case Type::VectorS:
1325     case Type::VectorD:
1326     case Type::VectorX:
1327     case Type::VectorY:
1328     case Type::VectorZ:
1329     case Type::VectorMask:
1330     case Type::AnyPtr:
1331     case Type::RawPtr:
1332     case Type::OopPtr:
1333     case Type::InstPtr:
1334     case Type::AryPtr:
1335     case Type::MetadataPtr:
1336     case Type::KlassPtr:
1337     case Type::InstKlassPtr:
1338     case Type::AryKlassPtr:
1339     case Type::Function:
1340     case Type::Return_Address:
1341     case Type::HalfFloatTop:
1342     case Type::HalfFloatCon:
1343     case Type::HalfFloatBot:
1344     case Type::FloatTop:
1345     case Type::FloatCon:
1346     case Type::FloatBot:
1347     case Type::DoubleTop:
1348     case Type::DoubleCon:
1349     case Type::DoubleBot:
1350       return Category::Data;
1351     case Type::Memory:
1352       return Category::Memory;
1353     case Type::Control:
1354       return Category::Control;
1355     case Type::Top:
1356     case Type::Abio:
1357     case Type::Bottom:
1358       return Category::Other;
1359     case Type::Bad:
1360     case Type::lastype:
1361       return Category::Undef;
1362     case Type::Tuple:
1363       // Recursive case. Return CatMixed if the tuple contains types of
1364       // different categories (e.g. CallStaticJavaNode's type), or the specific
1365       // category if all types are of the same category (e.g. IfNode's type).
1366       tuple = is_tuple();
1367       if (tuple->cnt() == 0) {
1368         return Category::Undef;
1369       } else {
1370         Category first = tuple->field_at(0)->category();
1371         for (uint i = 1; i < tuple->cnt(); i++) {
1372           if (tuple->field_at(i)->category() != first) {
1373             return Category::Mixed;
1374           }
1375         }
1376         return first;
1377       }
1378     default:
1379       assert(false, "unmatched base type: all base types must be categorized");
1380   }
1381   return Category::Undef;
1382 }
1383 
1384 bool Type::has_category(Type::Category cat) const {
1385   if (category() == cat) {
1386     return true;
1387   }
1388   if (category() == Category::Mixed) {
1389     const TypeTuple* tuple = is_tuple();
1390     for (uint i = 0; i < tuple->cnt(); i++) {
1391       if (tuple->field_at(i)->has_category(cat)) {
1392         return true;
1393       }
1394     }
1395   }
1396   return false;
1397 }
1398 #endif
1399 
1400 //------------------------------typerr-----------------------------------------
1401 void Type::typerr( const Type *t ) const {
1402 #ifndef PRODUCT
1403   tty->print("\nError mixing types: ");
1404   dump();
1405   tty->print(" and ");
1406   t->dump();
1407   tty->print("\n");
1408 #endif
1409   ShouldNotReachHere();
1410 }
1411 
1412 
1413 //=============================================================================
1414 // Convenience common pre-built types.
1415 const TypeF *TypeF::MAX;        // Floating point max
1416 const TypeF *TypeF::MIN;        // Floating point min
1417 const TypeF *TypeF::ZERO;       // Floating point zero
1418 const TypeF *TypeF::ONE;        // Floating point one
1419 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1420 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1421 
1422 //------------------------------make-------------------------------------------
1423 // Create a float constant
1424 const TypeF *TypeF::make(float f) {
1425   return (TypeF*)(new TypeF(f))->hashcons();
1426 }
1427 
1428 //------------------------------meet-------------------------------------------
1429 // Compute the MEET of two types.  It returns a new Type object.
1430 const Type *TypeF::xmeet( const Type *t ) const {
1431   // Perform a fast test for common case; meeting the same types together.
1432   if( this == t ) return this;  // Meeting same type-rep?
1433 
1434   // Current "this->_base" is FloatCon
1435   switch (t->base()) {          // Switch on original type
1436   case AnyPtr:                  // Mixing with oops happens when javac
1437   case RawPtr:                  // reuses local variables
1438   case OopPtr:
1439   case InstPtr:
1440   case AryPtr:
1441   case MetadataPtr:
1442   case KlassPtr:
1443   case InstKlassPtr:
1444   case AryKlassPtr:
1445   case NarrowOop:
1446   case NarrowKlass:
1447   case Int:
1448   case Long:
1449   case HalfFloatTop:
1450   case HalfFloatCon:
1451   case HalfFloatBot:
1452   case DoubleTop:
1453   case DoubleCon:
1454   case DoubleBot:
1455   case Bottom:                  // Ye Olde Default
1456     return Type::BOTTOM;
1457 
1458   case FloatBot:
1459     return t;
1460 
1461   default:                      // All else is a mistake
1462     typerr(t);
1463 
1464   case FloatCon:                // Float-constant vs Float-constant?
1465     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1466                                 // must compare bitwise as positive zero, negative zero and NaN have
1467                                 // all the same representation in C++
1468       return FLOAT;             // Return generic float
1469                                 // Equal constants
1470   case Top:
1471   case FloatTop:
1472     break;                      // Return the float constant
1473   }
1474   return this;                  // Return the float constant
1475 }
1476 
1477 //------------------------------xdual------------------------------------------
1478 // Dual: symmetric
1479 const Type *TypeF::xdual() const {
1480   return this;
1481 }
1482 
1483 //------------------------------eq---------------------------------------------
1484 // Structural equality check for Type representations
1485 bool TypeF::eq(const Type *t) const {
1486   // Bitwise comparison to distinguish between +/-0. These values must be treated
1487   // as different to be consistent with C1 and the interpreter.
1488   return (jint_cast(_f) == jint_cast(t->getf()));
1489 }
1490 
1491 //------------------------------hash-------------------------------------------
1492 // Type-specific hashing function.
1493 uint TypeF::hash(void) const {
1494   return *(uint*)(&_f);
1495 }
1496 
1497 //------------------------------is_finite--------------------------------------
1498 // Has a finite value
1499 bool TypeF::is_finite() const {
1500   return g_isfinite(getf()) != 0;
1501 }
1502 
1503 //------------------------------is_nan-----------------------------------------
1504 // Is not a number (NaN)
1505 bool TypeF::is_nan()    const {
1506   return g_isnan(getf()) != 0;
1507 }
1508 
1509 //------------------------------dump2------------------------------------------
1510 // Dump float constant Type
1511 #ifndef PRODUCT
1512 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1513   Type::dump2(d,depth, st);
1514   st->print("%f", _f);
1515 }
1516 #endif
1517 
1518 //------------------------------singleton--------------------------------------
1519 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1520 // constants (Ldi nodes).  Singletons are integer, float or double constants
1521 // or a single symbol.
1522 bool TypeF::singleton(void) const {
1523   return true;                  // Always a singleton
1524 }
1525 
1526 bool TypeF::empty(void) const {
1527   return false;                 // always exactly a singleton
1528 }
1529 
1530 //=============================================================================
1531 // Convenience common pre-built types.
1532 const TypeH* TypeH::MAX;        // Half float max
1533 const TypeH* TypeH::MIN;        // Half float min
1534 const TypeH* TypeH::ZERO;       // Half float zero
1535 const TypeH* TypeH::ONE;        // Half float one
1536 const TypeH* TypeH::POS_INF;    // Half float positive infinity
1537 const TypeH* TypeH::NEG_INF;    // Half float negative infinity
1538 
1539 //------------------------------make-------------------------------------------
1540 // Create a halffloat constant
1541 const TypeH* TypeH::make(short f) {
1542   return (TypeH*)(new TypeH(f))->hashcons();
1543 }
1544 
1545 const TypeH* TypeH::make(float f) {
1546   assert(StubRoutines::f2hf_adr() != nullptr, "");
1547   short hf = StubRoutines::f2hf(f);
1548   return (TypeH*)(new TypeH(hf))->hashcons();
1549 }
1550 
1551 //------------------------------xmeet-------------------------------------------
1552 // Compute the MEET of two types.  It returns a new Type object.
1553 const Type* TypeH::xmeet(const Type* t) const {
1554   // Perform a fast test for common case; meeting the same types together.
1555   if (this == t) return this;  // Meeting same type-rep?
1556 
1557   // Current "this->_base" is FloatCon
1558   switch (t->base()) {          // Switch on original type
1559   case AnyPtr:                  // Mixing with oops happens when javac
1560   case RawPtr:                  // reuses local variables
1561   case OopPtr:
1562   case InstPtr:
1563   case AryPtr:
1564   case MetadataPtr:
1565   case KlassPtr:
1566   case InstKlassPtr:
1567   case AryKlassPtr:
1568   case NarrowOop:
1569   case NarrowKlass:
1570   case Int:
1571   case Long:
1572   case FloatTop:
1573   case FloatCon:
1574   case FloatBot:
1575   case DoubleTop:
1576   case DoubleCon:
1577   case DoubleBot:
1578   case Bottom:                  // Ye Olde Default
1579     return Type::BOTTOM;
1580 
1581   case HalfFloatBot:
1582     return t;
1583 
1584   default:                      // All else is a mistake
1585     typerr(t);
1586 
1587   case HalfFloatCon:            // Half float-constant vs Half float-constant?
1588     if (_f != t->geth()) {      // unequal constants?
1589                                 // must compare bitwise as positive zero, negative zero and NaN have
1590                                 // all the same representation in C++
1591       return HALF_FLOAT;        // Return generic float
1592     }                           // Equal constants
1593   case Top:
1594   case HalfFloatTop:
1595     break;                      // Return the Half float constant
1596   }
1597   return this;                  // Return the Half float constant
1598 }
1599 
1600 //------------------------------xdual------------------------------------------
1601 // Dual: symmetric
1602 const Type* TypeH::xdual() const {
1603   return this;
1604 }
1605 
1606 //------------------------------eq---------------------------------------------
1607 // Structural equality check for Type representations
1608 bool TypeH::eq(const Type* t) const {
1609   // Bitwise comparison to distinguish between +/-0. These values must be treated
1610   // as different to be consistent with C1 and the interpreter.
1611   return (_f == t->geth());
1612 }
1613 
1614 //------------------------------hash-------------------------------------------
1615 // Type-specific hashing function.
1616 uint TypeH::hash(void) const {
1617   return *(jshort*)(&_f);
1618 }
1619 
1620 //------------------------------is_finite--------------------------------------
1621 // Has a finite value
1622 bool TypeH::is_finite() const {
1623   assert(StubRoutines::hf2f_adr() != nullptr, "");
1624   float f = StubRoutines::hf2f(geth());
1625   return g_isfinite(f) != 0;
1626 }
1627 
1628 float TypeH::getf() const {
1629   assert(StubRoutines::hf2f_adr() != nullptr, "");
1630   return StubRoutines::hf2f(geth());
1631 }
1632 
1633 //------------------------------is_nan-----------------------------------------
1634 // Is not a number (NaN)
1635 bool TypeH::is_nan() const {
1636   assert(StubRoutines::hf2f_adr() != nullptr, "");
1637   float f = StubRoutines::hf2f(geth());
1638   return g_isnan(f) != 0;
1639 }
1640 
1641 //------------------------------dump2------------------------------------------
1642 // Dump float constant Type
1643 #ifndef PRODUCT
1644 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1645   Type::dump2(d,depth, st);
1646   st->print("%f", getf());
1647 }
1648 #endif
1649 
1650 //------------------------------singleton--------------------------------------
1651 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1652 // constants (Ldi nodes).  Singletons are integer, half float, float or double constants
1653 // or a single symbol.
1654 bool TypeH::singleton(void) const {
1655   return true;                  // Always a singleton
1656 }
1657 
1658 bool TypeH::empty(void) const {
1659   return false;                 // always exactly a singleton
1660 }
1661 
1662 //=============================================================================
1663 // Convenience common pre-built types.
1664 const TypeD *TypeD::MAX;        // Floating point max
1665 const TypeD *TypeD::MIN;        // Floating point min
1666 const TypeD *TypeD::ZERO;       // Floating point zero
1667 const TypeD *TypeD::ONE;        // Floating point one
1668 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1669 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1670 
1671 //------------------------------make-------------------------------------------
1672 const TypeD *TypeD::make(double d) {
1673   return (TypeD*)(new TypeD(d))->hashcons();
1674 }
1675 
1676 //------------------------------meet-------------------------------------------
1677 // Compute the MEET of two types.  It returns a new Type object.
1678 const Type *TypeD::xmeet( const Type *t ) const {
1679   // Perform a fast test for common case; meeting the same types together.
1680   if( this == t ) return this;  // Meeting same type-rep?
1681 
1682   // Current "this->_base" is DoubleCon
1683   switch (t->base()) {          // Switch on original type
1684   case AnyPtr:                  // Mixing with oops happens when javac
1685   case RawPtr:                  // reuses local variables
1686   case OopPtr:
1687   case InstPtr:
1688   case AryPtr:
1689   case MetadataPtr:
1690   case KlassPtr:
1691   case InstKlassPtr:
1692   case AryKlassPtr:
1693   case NarrowOop:
1694   case NarrowKlass:
1695   case Int:
1696   case Long:
1697   case HalfFloatTop:
1698   case HalfFloatCon:
1699   case HalfFloatBot:
1700   case FloatTop:
1701   case FloatCon:
1702   case FloatBot:
1703   case Bottom:                  // Ye Olde Default
1704     return Type::BOTTOM;
1705 
1706   case DoubleBot:
1707     return t;
1708 
1709   default:                      // All else is a mistake
1710     typerr(t);
1711 
1712   case DoubleCon:               // Double-constant vs Double-constant?
1713     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1714       return DOUBLE;            // Return generic double
1715   case Top:
1716   case DoubleTop:
1717     break;
1718   }
1719   return this;                  // Return the double constant
1720 }
1721 
1722 //------------------------------xdual------------------------------------------
1723 // Dual: symmetric
1724 const Type *TypeD::xdual() const {
1725   return this;
1726 }
1727 
1728 //------------------------------eq---------------------------------------------
1729 // Structural equality check for Type representations
1730 bool TypeD::eq(const Type *t) const {
1731   // Bitwise comparison to distinguish between +/-0. These values must be treated
1732   // as different to be consistent with C1 and the interpreter.
1733   return (jlong_cast(_d) == jlong_cast(t->getd()));
1734 }
1735 
1736 //------------------------------hash-------------------------------------------
1737 // Type-specific hashing function.
1738 uint TypeD::hash(void) const {
1739   return *(uint*)(&_d);
1740 }
1741 
1742 //------------------------------is_finite--------------------------------------
1743 // Has a finite value
1744 bool TypeD::is_finite() const {
1745   return g_isfinite(getd()) != 0;
1746 }
1747 
1748 //------------------------------is_nan-----------------------------------------
1749 // Is not a number (NaN)
1750 bool TypeD::is_nan()    const {
1751   return g_isnan(getd()) != 0;
1752 }
1753 
1754 //------------------------------dump2------------------------------------------
1755 // Dump double constant Type
1756 #ifndef PRODUCT
1757 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1758   Type::dump2(d,depth,st);
1759   st->print("%f", _d);
1760 }
1761 #endif
1762 
1763 //------------------------------singleton--------------------------------------
1764 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1765 // constants (Ldi nodes).  Singletons are integer, float or double constants
1766 // or a single symbol.
1767 bool TypeD::singleton(void) const {
1768   return true;                  // Always a singleton
1769 }
1770 
1771 bool TypeD::empty(void) const {
1772   return false;                 // always exactly a singleton
1773 }
1774 
1775 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1776   if (bt == T_INT) {
1777     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1778   }
1779   assert(bt == T_LONG, "basic type not an int or long");
1780   return TypeLong::make(lo, hi, w);
1781 }
1782 
1783 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1784   return make(con, con, WidenMin, bt);
1785 }
1786 
1787 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1788   if (bt == T_INT) {
1789     return is_int()->get_con();
1790   }
1791   assert(bt == T_LONG, "basic type not an int or long");
1792   return is_long()->get_con();
1793 }
1794 
1795 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1796   if (bt == T_INT) {
1797     return TypeInt::INT;
1798   }
1799   assert(bt == T_LONG, "basic type not an int or long");
1800   return TypeLong::LONG;
1801 }
1802 
1803 const TypeInteger* TypeInteger::zero(BasicType bt) {
1804   if (bt == T_INT) {
1805     return TypeInt::ZERO;
1806   }
1807   assert(bt == T_LONG, "basic type not an int or long");
1808   return TypeLong::ZERO;
1809 }
1810 
1811 const TypeInteger* TypeInteger::one(BasicType bt) {
1812   if (bt == T_INT) {
1813     return TypeInt::ONE;
1814   }
1815   assert(bt == T_LONG, "basic type not an int or long");
1816   return TypeLong::ONE;
1817 }
1818 
1819 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1820   if (bt == T_INT) {
1821     return TypeInt::MINUS_1;
1822   }
1823   assert(bt == T_LONG, "basic type not an int or long");
1824   return TypeLong::MINUS_1;
1825 }
1826 
1827 //=============================================================================
1828 // Convenience common pre-built types.
1829 const TypeInt* TypeInt::MAX;    // INT_MAX
1830 const TypeInt* TypeInt::MIN;    // INT_MIN
1831 const TypeInt* TypeInt::MINUS_1;// -1
1832 const TypeInt* TypeInt::ZERO;   // 0
1833 const TypeInt* TypeInt::ONE;    // 1
1834 const TypeInt* TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1835 const TypeInt* TypeInt::CC;     // -1,0 or 1, condition codes
1836 const TypeInt* TypeInt::CC_LT;  // [-1]  == MINUS_1
1837 const TypeInt* TypeInt::CC_GT;  // [1]   == ONE
1838 const TypeInt* TypeInt::CC_EQ;  // [0]   == ZERO
1839 const TypeInt* TypeInt::CC_NE;
1840 const TypeInt* TypeInt::CC_LE;  // [-1,0]
1841 const TypeInt* TypeInt::CC_GE;  // [0,1] == BOOL (!)
1842 const TypeInt* TypeInt::BYTE;   // Bytes, -128 to 127
1843 const TypeInt* TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1844 const TypeInt* TypeInt::CHAR;   // Java chars, 0-65535
1845 const TypeInt* TypeInt::SHORT;  // Java shorts, -32768-32767
1846 const TypeInt* TypeInt::NON_ZERO;
1847 const TypeInt* TypeInt::POS;    // Positive 32-bit integers or zero
1848 const TypeInt* TypeInt::POS1;   // Positive 32-bit integers
1849 const TypeInt* TypeInt::INT;    // 32-bit integers
1850 const TypeInt* TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1851 const TypeInt* TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1852 
1853 TypeInt::TypeInt(const TypeIntPrototype<jint, juint>& t, int widen, bool dual)
1854   : TypeInteger(Int, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1855     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1856   DEBUG_ONLY(t.verify_constraints());
1857 }
1858 
1859 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) {
1860   auto canonicalized_t = t.canonicalize_constraints();
1861   if (canonicalized_t.empty()) {
1862     return dual ? Type::BOTTOM : Type::TOP;
1863   }
1864   return (new TypeInt(canonicalized_t._data, widen, dual))->hashcons()->is_int();
1865 }
1866 
1867 const TypeInt* TypeInt::make(jint con) {
1868   juint ucon = con;
1869   return (new TypeInt(TypeIntPrototype<jint, juint>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1870                       WidenMin, false))->hashcons()->is_int();
1871 }
1872 
1873 const TypeInt* TypeInt::make(jint lo, jint hi, int widen) {
1874   assert(lo <= hi, "must be legal bounds");
1875   return make_or_top(TypeIntPrototype<jint, juint>{{lo, hi}, {0, max_juint}, {0, 0}}, widen)->is_int();
1876 }
1877 
1878 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen) {
1879   return make_or_top(t, widen, false);
1880 }
1881 
1882 bool TypeInt::contains(jint i) const {
1883   assert(!_is_dual, "dual types should only be used for join calculation");
1884   juint u = i;
1885   return i >= _lo && i <= _hi &&
1886          u >= _ulo && u <= _uhi &&
1887          _bits.is_satisfied_by(u);
1888 }
1889 
1890 bool TypeInt::contains(const TypeInt* t) const {
1891   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1892   return TypeIntHelper::int_type_is_subset(this, t);
1893 }
1894 
1895 const Type* TypeInt::xmeet(const Type* t) const {
1896   return TypeIntHelper::int_type_xmeet(this, t);
1897 }
1898 
1899 const Type* TypeInt::xdual() const {
1900   return new TypeInt(TypeIntPrototype<jint, juint>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1901                      _widen, !_is_dual);
1902 }
1903 
1904 const Type* TypeInt::widen(const Type* old, const Type* limit) const {
1905   assert(!_is_dual, "dual types should only be used for join calculation");
1906   return TypeIntHelper::int_type_widen(this, old->isa_int(), limit->isa_int());
1907 }
1908 
1909 const Type* TypeInt::narrow(const Type* old) const {
1910   assert(!_is_dual, "dual types should only be used for join calculation");
1911   if (old == nullptr) {
1912     return this;
1913   }
1914 
1915   return TypeIntHelper::int_type_narrow(this, old->isa_int());
1916 }
1917 
1918 //-----------------------------filter------------------------------------------
1919 const Type* TypeInt::filter_helper(const Type* kills, bool include_speculative) const {
1920   assert(!_is_dual, "dual types should only be used for join calculation");
1921   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1922   if (ft == nullptr) {
1923     return Type::TOP;           // Canonical empty value
1924   }
1925   assert(!ft->_is_dual, "dual types should only be used for join calculation");
1926   if (ft->_widen < this->_widen) {
1927     // Do not allow the value of kill->_widen to affect the outcome.
1928     // The widen bits must be allowed to run freely through the graph.
1929     return (new TypeInt(TypeIntPrototype<jint, juint>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1930                         this->_widen, false))->hashcons();
1931   }
1932   return ft;
1933 }
1934 
1935 //------------------------------eq---------------------------------------------
1936 // Structural equality check for Type representations
1937 bool TypeInt::eq(const Type* t) const {
1938   const TypeInt* r = t->is_int();
1939   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
1940 }
1941 
1942 //------------------------------hash-------------------------------------------
1943 // Type-specific hashing function.
1944 uint TypeInt::hash(void) const {
1945   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
1946          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Int;
1947 }
1948 
1949 //------------------------------is_finite--------------------------------------
1950 // Has a finite value
1951 bool TypeInt::is_finite() const {
1952   return true;
1953 }
1954 
1955 //------------------------------singleton--------------------------------------
1956 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1957 // constants.
1958 bool TypeInt::singleton(void) const {
1959   return _lo == _hi;
1960 }
1961 
1962 bool TypeInt::empty(void) const {
1963   return false;
1964 }
1965 
1966 //=============================================================================
1967 // Convenience common pre-built types.
1968 const TypeLong* TypeLong::MAX;
1969 const TypeLong* TypeLong::MIN;
1970 const TypeLong* TypeLong::MINUS_1;// -1
1971 const TypeLong* TypeLong::ZERO; // 0
1972 const TypeLong* TypeLong::ONE;  // 1
1973 const TypeLong* TypeLong::NON_ZERO;
1974 const TypeLong* TypeLong::POS;  // >=0
1975 const TypeLong* TypeLong::NEG;
1976 const TypeLong* TypeLong::LONG; // 64-bit integers
1977 const TypeLong* TypeLong::INT;  // 32-bit subrange
1978 const TypeLong* TypeLong::UINT; // 32-bit unsigned subrange
1979 const TypeLong* TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1980 
1981 TypeLong::TypeLong(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual)
1982   : TypeInteger(Long, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1983     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1984   DEBUG_ONLY(t.verify_constraints());
1985 }
1986 
1987 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) {
1988   auto canonicalized_t = t.canonicalize_constraints();
1989   if (canonicalized_t.empty()) {
1990     return dual ? Type::BOTTOM : Type::TOP;
1991   }
1992   return (new TypeLong(canonicalized_t._data, widen, dual))->hashcons()->is_long();
1993 }
1994 
1995 const TypeLong* TypeLong::make(jlong con) {
1996   julong ucon = con;
1997   return (new TypeLong(TypeIntPrototype<jlong, julong>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1998                        WidenMin, false))->hashcons()->is_long();
1999 }
2000 
2001 const TypeLong* TypeLong::make(jlong lo, jlong hi, int widen) {
2002   assert(lo <= hi, "must be legal bounds");
2003   return make_or_top(TypeIntPrototype<jlong, julong>{{lo, hi}, {0, max_julong}, {0, 0}}, widen)->is_long();
2004 }
2005 
2006 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen) {
2007   return make_or_top(t, widen, false);
2008 }
2009 
2010 bool TypeLong::contains(jlong i) const {
2011   assert(!_is_dual, "dual types should only be used for join calculation");
2012   julong u = i;
2013   return i >= _lo && i <= _hi &&
2014          u >= _ulo && u <= _uhi &&
2015          _bits.is_satisfied_by(u);
2016 }
2017 
2018 bool TypeLong::contains(const TypeLong* t) const {
2019   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
2020   return TypeIntHelper::int_type_is_subset(this, t);
2021 }
2022 
2023 const Type* TypeLong::xmeet(const Type* t) const {
2024   return TypeIntHelper::int_type_xmeet(this, t);
2025 }
2026 
2027 const Type* TypeLong::xdual() const {
2028   return new TypeLong(TypeIntPrototype<jlong, julong>{{_lo, _hi}, {_ulo, _uhi}, _bits},
2029                       _widen, !_is_dual);
2030 }
2031 
2032 const Type* TypeLong::widen(const Type* old, const Type* limit) const {
2033   assert(!_is_dual, "dual types should only be used for join calculation");
2034   return TypeIntHelper::int_type_widen(this, old->isa_long(), limit->isa_long());
2035 }
2036 
2037 const Type* TypeLong::narrow(const Type* old) const {
2038   assert(!_is_dual, "dual types should only be used for join calculation");
2039   if (old == nullptr) {
2040     return this;
2041   }
2042 
2043   return TypeIntHelper::int_type_narrow(this, old->isa_long());
2044 }
2045 
2046 //-----------------------------filter------------------------------------------
2047 const Type* TypeLong::filter_helper(const Type* kills, bool include_speculative) const {
2048   assert(!_is_dual, "dual types should only be used for join calculation");
2049   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2050   if (ft == nullptr) {
2051     return Type::TOP;           // Canonical empty value
2052   }
2053   assert(!ft->_is_dual, "dual types should only be used for join calculation");
2054   if (ft->_widen < this->_widen) {
2055     // Do not allow the value of kill->_widen to affect the outcome.
2056     // The widen bits must be allowed to run freely through the graph.
2057     return (new TypeLong(TypeIntPrototype<jlong, julong>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
2058                          this->_widen, false))->hashcons();
2059   }
2060   return ft;
2061 }
2062 
2063 //------------------------------eq---------------------------------------------
2064 // Structural equality check for Type representations
2065 bool TypeLong::eq(const Type* t) const {
2066   const TypeLong* r = t->is_long();
2067   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
2068 }
2069 
2070 //------------------------------hash-------------------------------------------
2071 // Type-specific hashing function.
2072 uint TypeLong::hash(void) const {
2073   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
2074          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Long;
2075 }
2076 
2077 //------------------------------is_finite--------------------------------------
2078 // Has a finite value
2079 bool TypeLong::is_finite() const {
2080   return true;
2081 }
2082 
2083 //------------------------------singleton--------------------------------------
2084 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2085 // constants
2086 bool TypeLong::singleton(void) const {
2087   return _lo == _hi;
2088 }
2089 
2090 bool TypeLong::empty(void) const {
2091   return false;
2092 }
2093 
2094 //------------------------------dump2------------------------------------------
2095 #ifndef PRODUCT
2096 void TypeInt::dump2(Dict& d, uint depth, outputStream* st) const {
2097   TypeIntHelper::int_type_dump(this, st, false);
2098 }
2099 
2100 void TypeInt::dump_verbose() const {
2101   TypeIntHelper::int_type_dump(this, tty, true);
2102 }
2103 
2104 void TypeLong::dump2(Dict& d, uint depth, outputStream* st) const {
2105   TypeIntHelper::int_type_dump(this, st, false);
2106 }
2107 
2108 void TypeLong::dump_verbose() const {
2109   TypeIntHelper::int_type_dump(this, tty, true);
2110 }
2111 #endif
2112 
2113 //=============================================================================
2114 // Convenience common pre-built types.
2115 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2116 const TypeTuple *TypeTuple::IFFALSE;
2117 const TypeTuple *TypeTuple::IFTRUE;
2118 const TypeTuple *TypeTuple::IFNEITHER;
2119 const TypeTuple *TypeTuple::LOOPBODY;
2120 const TypeTuple *TypeTuple::MEMBAR;
2121 const TypeTuple *TypeTuple::STORECONDITIONAL;
2122 const TypeTuple *TypeTuple::START_I2C;
2123 const TypeTuple *TypeTuple::INT_PAIR;
2124 const TypeTuple *TypeTuple::LONG_PAIR;
2125 const TypeTuple *TypeTuple::INT_CC_PAIR;
2126 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2127 
2128 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2129   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2130     ciField* field = vk->declared_nonstatic_field_at(i);
2131     if (field->is_flat()) {
2132       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2133       if (!field->is_null_free()) {
2134         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2135         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2136         field_array[pos++] = Type::get_const_basic_type(T_INT);
2137       }
2138     } else {
2139       BasicType bt = field->type()->basic_type();
2140       const Type* ft = Type::get_const_type(field->type());
2141       field_array[pos++] = ft;
2142       if (type2size[bt] == 2) {
2143         field_array[pos++] = Type::HALF;
2144       }
2145     }
2146   }
2147 }
2148 
2149 //------------------------------make-------------------------------------------
2150 // Make a TypeTuple from the range of a method signature
2151 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2152   ciType* return_type = sig->return_type();
2153   uint arg_cnt = return_type->size();
2154   if (ret_vt_fields) {
2155     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2156     // InlineTypeNode::NullMarker field used for null checking
2157     arg_cnt++;
2158   }
2159   const Type **field_array = fields(arg_cnt);
2160   switch (return_type->basic_type()) {
2161   case T_LONG:
2162     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2163     field_array[TypeFunc::Parms+1] = Type::HALF;
2164     break;
2165   case T_DOUBLE:
2166     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2167     field_array[TypeFunc::Parms+1] = Type::HALF;
2168     break;
2169   case T_OBJECT:
2170     if (return_type->is_inlinetype() && ret_vt_fields) {
2171       uint pos = TypeFunc::Parms;
2172       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2173       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2174       // InlineTypeNode::NullMarker field used for null checking
2175       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2176       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2177       break;
2178     } else {
2179       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2180     }
2181     break;
2182   case T_ARRAY:
2183   case T_BOOLEAN:
2184   case T_CHAR:
2185   case T_FLOAT:
2186   case T_BYTE:
2187   case T_SHORT:
2188   case T_INT:
2189     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2190     break;
2191   case T_VOID:
2192     break;
2193   default:
2194     ShouldNotReachHere();
2195   }
2196   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2197 }
2198 
2199 // Make a TypeTuple from the domain of a method signature
2200 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2201   ciSignature* sig = method->signature();
2202   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2203   if (vt_fields_as_args) {
2204     arg_cnt = 0;
2205     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2206     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2207       arg_cnt += type2size[(*sig_cc)._bt];
2208     }
2209   }
2210 
2211   uint pos = TypeFunc::Parms;
2212   const Type** field_array = fields(arg_cnt);
2213   if (!method->is_static()) {
2214     ciInstanceKlass* recv = method->holder();
2215     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2216       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2217     } else {
2218       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2219     }
2220   }
2221 
2222   int i = 0;
2223   while (pos < TypeFunc::Parms + arg_cnt) {
2224     ciType* type = sig->type_at(i);
2225     BasicType bt = type->basic_type();
2226 
2227     switch (bt) {
2228     case T_LONG:
2229       field_array[pos++] = TypeLong::LONG;
2230       field_array[pos++] = Type::HALF;
2231       break;
2232     case T_DOUBLE:
2233       field_array[pos++] = Type::DOUBLE;
2234       field_array[pos++] = Type::HALF;
2235       break;
2236     case T_OBJECT:
2237       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2238         // InlineTypeNode::NullMarker field used for null checking
2239         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2240         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2241       } else {
2242         field_array[pos++] = get_const_type(type, interface_handling);
2243       }
2244       break;
2245     case T_ARRAY:
2246     case T_FLOAT:
2247     case T_INT:
2248       field_array[pos++] = get_const_type(type, interface_handling);
2249       break;
2250     case T_BOOLEAN:
2251     case T_CHAR:
2252     case T_BYTE:
2253     case T_SHORT:
2254       field_array[pos++] = TypeInt::INT;
2255       break;
2256     default:
2257       ShouldNotReachHere();
2258     }
2259     i++;
2260   }
2261   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2262 
2263   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2264 }
2265 
2266 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2267   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2268 }
2269 
2270 //------------------------------fields-----------------------------------------
2271 // Subroutine call type with space allocated for argument types
2272 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2273 const Type **TypeTuple::fields( uint arg_cnt ) {
2274   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2275   flds[TypeFunc::Control  ] = Type::CONTROL;
2276   flds[TypeFunc::I_O      ] = Type::ABIO;
2277   flds[TypeFunc::Memory   ] = Type::MEMORY;
2278   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2279   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2280 
2281   return flds;
2282 }
2283 
2284 //------------------------------meet-------------------------------------------
2285 // Compute the MEET of two types.  It returns a new Type object.
2286 const Type *TypeTuple::xmeet( const Type *t ) const {
2287   // Perform a fast test for common case; meeting the same types together.
2288   if( this == t ) return this;  // Meeting same type-rep?
2289 
2290   // Current "this->_base" is Tuple
2291   switch (t->base()) {          // switch on original type
2292 
2293   case Bottom:                  // Ye Olde Default
2294     return t;
2295 
2296   default:                      // All else is a mistake
2297     typerr(t);
2298 
2299   case Tuple: {                 // Meeting 2 signatures?
2300     const TypeTuple *x = t->is_tuple();
2301     assert( _cnt == x->_cnt, "" );
2302     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2303     for( uint i=0; i<_cnt; i++ )
2304       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2305     return TypeTuple::make(_cnt,fields);
2306   }
2307   case Top:
2308     break;
2309   }
2310   return this;                  // Return the double constant
2311 }
2312 
2313 //------------------------------xdual------------------------------------------
2314 // Dual: compute field-by-field dual
2315 const Type *TypeTuple::xdual() const {
2316   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2317   for( uint i=0; i<_cnt; i++ )
2318     fields[i] = _fields[i]->dual();
2319   return new TypeTuple(_cnt,fields);
2320 }
2321 
2322 //------------------------------eq---------------------------------------------
2323 // Structural equality check for Type representations
2324 bool TypeTuple::eq( const Type *t ) const {
2325   const TypeTuple *s = (const TypeTuple *)t;
2326   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2327   for (uint i = 0; i < _cnt; i++)
2328     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2329       return false;             // Missed
2330   return true;
2331 }
2332 
2333 //------------------------------hash-------------------------------------------
2334 // Type-specific hashing function.
2335 uint TypeTuple::hash(void) const {
2336   uintptr_t sum = _cnt;
2337   for( uint i=0; i<_cnt; i++ )
2338     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2339   return (uint)sum;
2340 }
2341 
2342 //------------------------------dump2------------------------------------------
2343 // Dump signature Type
2344 #ifndef PRODUCT
2345 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2346   st->print("{");
2347   if( !depth || d[this] ) {     // Check for recursive print
2348     st->print("...}");
2349     return;
2350   }
2351   d.Insert((void*)this, (void*)this);   // Stop recursion
2352   if( _cnt ) {
2353     uint i;
2354     for( i=0; i<_cnt-1; i++ ) {
2355       st->print("%d:", i);
2356       _fields[i]->dump2(d, depth-1, st);
2357       st->print(", ");
2358     }
2359     st->print("%d:", i);
2360     _fields[i]->dump2(d, depth-1, st);
2361   }
2362   st->print("}");
2363 }
2364 #endif
2365 
2366 //------------------------------singleton--------------------------------------
2367 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2368 // constants (Ldi nodes).  Singletons are integer, float or double constants
2369 // or a single symbol.
2370 bool TypeTuple::singleton(void) const {
2371   return false;                 // Never a singleton
2372 }
2373 
2374 bool TypeTuple::empty(void) const {
2375   for( uint i=0; i<_cnt; i++ ) {
2376     if (_fields[i]->empty())  return true;
2377   }
2378   return false;
2379 }
2380 
2381 //=============================================================================
2382 // Convenience common pre-built types.
2383 
2384 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2385   // Certain normalizations keep us sane when comparing types.
2386   // We do not want arrayOop variables to differ only by the wideness
2387   // of their index types.  Pick minimum wideness, since that is the
2388   // forced wideness of small ranges anyway.
2389   if (size->_widen != Type::WidenMin)
2390     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2391   else
2392     return size;
2393 }
2394 
2395 //------------------------------make-------------------------------------------
2396 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2397                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2398   if (UseCompressedOops && elem->isa_oopptr()) {
2399     elem = elem->make_narrowoop();
2400   }
2401   size = normalize_array_size(size);
2402   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2403 }
2404 
2405 //------------------------------meet-------------------------------------------
2406 // Compute the MEET of two types.  It returns a new Type object.
2407 const Type *TypeAry::xmeet( const Type *t ) const {
2408   // Perform a fast test for common case; meeting the same types together.
2409   if( this == t ) return this;  // Meeting same type-rep?
2410 
2411   // Current "this->_base" is Ary
2412   switch (t->base()) {          // switch on original type
2413 
2414   case Bottom:                  // Ye Olde Default
2415     return t;
2416 
2417   default:                      // All else is a mistake
2418     typerr(t);
2419 
2420   case Array: {                 // Meeting 2 arrays?
2421     const TypeAry* a = t->is_ary();
2422     const Type* size = _size->xmeet(a->_size);
2423     const TypeInt* isize = size->isa_int();
2424     if (isize == nullptr) {
2425       assert(size == Type::TOP || size == Type::BOTTOM, "");
2426       return size;
2427     }
2428     return TypeAry::make(_elem->meet_speculative(a->_elem),
2429                          isize, _stable && a->_stable,
2430                          _flat && a->_flat,
2431                          _not_flat && a->_not_flat,
2432                          _not_null_free && a->_not_null_free,
2433                          _atomic && a->_atomic);
2434   }
2435   case Top:
2436     break;
2437   }
2438   return this;                  // Return the double constant
2439 }
2440 
2441 //------------------------------xdual------------------------------------------
2442 // Dual: compute field-by-field dual
2443 const Type *TypeAry::xdual() const {
2444   const TypeInt* size_dual = _size->dual()->is_int();
2445   size_dual = normalize_array_size(size_dual);
2446   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2447 }
2448 
2449 //------------------------------eq---------------------------------------------
2450 // Structural equality check for Type representations
2451 bool TypeAry::eq( const Type *t ) const {
2452   const TypeAry *a = (const TypeAry*)t;
2453   return _elem == a->_elem &&
2454     _stable == a->_stable &&
2455     _size == a->_size &&
2456     _flat == a->_flat &&
2457     _not_flat == a->_not_flat &&
2458     _not_null_free == a->_not_null_free &&
2459     _atomic == a->_atomic;
2460 
2461 }
2462 
2463 //------------------------------hash-------------------------------------------
2464 // Type-specific hashing function.
2465 uint TypeAry::hash(void) const {
2466   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2467       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2468 }
2469 
2470 /**
2471  * Return same type without a speculative part in the element
2472  */
2473 const TypeAry* TypeAry::remove_speculative() const {
2474   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2475 }
2476 
2477 /**
2478  * Return same type with cleaned up speculative part of element
2479  */
2480 const Type* TypeAry::cleanup_speculative() const {
2481   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2482 }
2483 
2484 /**
2485  * Return same type but with a different inline depth (used for speculation)
2486  *
2487  * @param depth  depth to meet with
2488  */
2489 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2490   if (!UseInlineDepthForSpeculativeTypes) {
2491     return this;
2492   }
2493   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2494 }
2495 
2496 //------------------------------dump2------------------------------------------
2497 #ifndef PRODUCT
2498 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2499   if (_stable)  st->print("stable:");
2500   if (_flat) st->print("flat:");
2501   if (Verbose) {
2502     if (_not_flat) st->print("not flat:");
2503     if (_not_null_free) st->print("not null free:");
2504   }
2505   if (_atomic) st->print("atomic:");
2506   _elem->dump2(d, depth, st);
2507   st->print("[");
2508   _size->dump2(d, depth, st);
2509   st->print("]");
2510 }
2511 #endif
2512 
2513 //------------------------------singleton--------------------------------------
2514 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2515 // constants (Ldi nodes).  Singletons are integer, float or double constants
2516 // or a single symbol.
2517 bool TypeAry::singleton(void) const {
2518   return false;                 // Never a singleton
2519 }
2520 
2521 bool TypeAry::empty(void) const {
2522   return _elem->empty() || _size->empty();
2523 }
2524 
2525 //--------------------------ary_must_be_exact----------------------------------
2526 bool TypeAry::ary_must_be_exact() const {
2527   // This logic looks at the element type of an array, and returns true
2528   // if the element type is either a primitive or a final instance class.
2529   // In such cases, an array built on this ary must have no subclasses.
2530   if (_elem == BOTTOM)      return false;  // general array not exact
2531   if (_elem == TOP   )      return false;  // inverted general array not exact
2532   const TypeOopPtr*  toop = nullptr;
2533   if (UseCompressedOops && _elem->isa_narrowoop()) {
2534     toop = _elem->make_ptr()->isa_oopptr();
2535   } else {
2536     toop = _elem->isa_oopptr();
2537   }
2538   if (!toop)                return true;   // a primitive type, like int
2539   if (!toop->is_loaded())   return false;  // unloaded class
2540   const TypeInstPtr* tinst;
2541   if (_elem->isa_narrowoop())
2542     tinst = _elem->make_ptr()->isa_instptr();
2543   else
2544     tinst = _elem->isa_instptr();
2545   if (tinst) {
2546     if (tinst->instance_klass()->is_final()) {
2547       // Even though MyValue is final, [LMyValue is only exact if the array
2548       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2549       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2550       // If so, we should add '&& !_not_null_free'
2551       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2552         return false;
2553       }
2554       return true;
2555     }
2556     return false;
2557   }
2558   const TypeAryPtr*  tap;
2559   if (_elem->isa_narrowoop())
2560     tap = _elem->make_ptr()->isa_aryptr();
2561   else
2562     tap = _elem->isa_aryptr();
2563   if (tap)
2564     return tap->ary()->ary_must_be_exact();
2565   return false;
2566 }
2567 
2568 //==============================TypeVect=======================================
2569 // Convenience common pre-built types.
2570 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2571 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2572 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2573 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2574 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2575 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2576 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2577 
2578 //------------------------------make-------------------------------------------
2579 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2580   if (is_mask) {
2581     return makemask(elem_bt, length);
2582   }
2583   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2584   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2585   int size = length * type2aelembytes(elem_bt);
2586   switch (Matcher::vector_ideal_reg(size)) {
2587   case Op_VecA:
2588     return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2589   case Op_VecS:
2590     return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2591   case Op_RegL:
2592   case Op_VecD:
2593   case Op_RegD:
2594     return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2595   case Op_VecX:
2596     return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2597   case Op_VecY:
2598     return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2599   case Op_VecZ:
2600     return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2601   }
2602  ShouldNotReachHere();
2603   return nullptr;
2604 }
2605 
2606 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2607   if (Matcher::has_predicated_vectors() &&
2608       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2609     return TypeVectMask::make(elem_bt, length);
2610   } else {
2611     return make(elem_bt, length);
2612   }
2613 }
2614 
2615 //------------------------------meet-------------------------------------------
2616 // Compute the MEET of two types. Since each TypeVect is the only instance of
2617 // its species, meeting often returns itself
2618 const Type* TypeVect::xmeet(const Type* t) const {
2619   // Perform a fast test for common case; meeting the same types together.
2620   if (this == t) {
2621     return this;
2622   }
2623 
2624   // Current "this->_base" is Vector
2625   switch (t->base()) {          // switch on original type
2626 
2627   case Bottom:                  // Ye Olde Default
2628     return t;
2629 
2630   default:                      // All else is a mistake
2631     typerr(t);
2632   case VectorMask:
2633   case VectorA:
2634   case VectorS:
2635   case VectorD:
2636   case VectorX:
2637   case VectorY:
2638   case VectorZ: {                // Meeting 2 vectors?
2639     const TypeVect* v = t->is_vect();
2640     assert(base() == v->base(), "");
2641     assert(length() == v->length(), "");
2642     assert(element_basic_type() == v->element_basic_type(), "");
2643     return this;
2644   }
2645   case Top:
2646     break;
2647   }
2648   return this;
2649 }
2650 
2651 //------------------------------xdual------------------------------------------
2652 // Since each TypeVect is the only instance of its species, it is self-dual
2653 const Type* TypeVect::xdual() const {
2654   return this;
2655 }
2656 
2657 //------------------------------eq---------------------------------------------
2658 // Structural equality check for Type representations
2659 bool TypeVect::eq(const Type* t) const {
2660   const TypeVect* v = t->is_vect();
2661   return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2662 }
2663 
2664 //------------------------------hash-------------------------------------------
2665 // Type-specific hashing function.
2666 uint TypeVect::hash(void) const {
2667   return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2668 }
2669 
2670 //------------------------------singleton--------------------------------------
2671 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2672 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2673 // constant value (when vector is created with Replicate code).
2674 bool TypeVect::singleton(void) const {
2675 // There is no Con node for vectors yet.
2676 //  return _elem->singleton();
2677   return false;
2678 }
2679 
2680 bool TypeVect::empty(void) const {
2681   return false;
2682 }
2683 
2684 //------------------------------dump2------------------------------------------
2685 #ifndef PRODUCT
2686 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2687   switch (base()) {
2688   case VectorA:
2689     st->print("vectora"); break;
2690   case VectorS:
2691     st->print("vectors"); break;
2692   case VectorD:
2693     st->print("vectord"); break;
2694   case VectorX:
2695     st->print("vectorx"); break;
2696   case VectorY:
2697     st->print("vectory"); break;
2698   case VectorZ:
2699     st->print("vectorz"); break;
2700   case VectorMask:
2701     st->print("vectormask"); break;
2702   default:
2703     ShouldNotReachHere();
2704   }
2705   st->print("<%c,%u>", type2char(element_basic_type()), length());
2706 }
2707 #endif
2708 
2709 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2710   return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2711 }
2712 
2713 //=============================================================================
2714 // Convenience common pre-built types.
2715 const TypePtr *TypePtr::NULL_PTR;
2716 const TypePtr *TypePtr::NOTNULL;
2717 const TypePtr *TypePtr::BOTTOM;
2718 
2719 //------------------------------meet-------------------------------------------
2720 // Meet over the PTR enum
2721 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2722   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2723   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2724   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2725   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2726   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2727   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2728   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2729 };
2730 
2731 //------------------------------make-------------------------------------------
2732 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2733   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2734 }
2735 
2736 //------------------------------cast_to_ptr_type-------------------------------
2737 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2738   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2739   if( ptr == _ptr ) return this;
2740   return make(_base, ptr, _offset, _speculative, _inline_depth);
2741 }
2742 
2743 //------------------------------get_con----------------------------------------
2744 intptr_t TypePtr::get_con() const {
2745   assert( _ptr == Null, "" );
2746   return offset();
2747 }
2748 
2749 //------------------------------meet-------------------------------------------
2750 // Compute the MEET of two types.  It returns a new Type object.
2751 const Type *TypePtr::xmeet(const Type *t) const {
2752   const Type* res = xmeet_helper(t);
2753   if (res->isa_ptr() == nullptr) {
2754     return res;
2755   }
2756 
2757   const TypePtr* res_ptr = res->is_ptr();
2758   if (res_ptr->speculative() != nullptr) {
2759     // type->speculative() is null means that speculation is no better
2760     // than type, i.e. type->speculative() == type. So there are 2
2761     // ways to represent the fact that we have no useful speculative
2762     // data and we should use a single one to be able to test for
2763     // equality between types. Check whether type->speculative() ==
2764     // type and set speculative to null if it is the case.
2765     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2766       return res_ptr->remove_speculative();
2767     }
2768   }
2769 
2770   return res;
2771 }
2772 
2773 const Type *TypePtr::xmeet_helper(const Type *t) const {
2774   // Perform a fast test for common case; meeting the same types together.
2775   if( this == t ) return this;  // Meeting same type-rep?
2776 
2777   // Current "this->_base" is AnyPtr
2778   switch (t->base()) {          // switch on original type
2779   case Int:                     // Mixing ints & oops happens when javac
2780   case Long:                    // reuses local variables
2781   case HalfFloatTop:
2782   case HalfFloatCon:
2783   case HalfFloatBot:
2784   case FloatTop:
2785   case FloatCon:
2786   case FloatBot:
2787   case DoubleTop:
2788   case DoubleCon:
2789   case DoubleBot:
2790   case NarrowOop:
2791   case NarrowKlass:
2792   case Bottom:                  // Ye Olde Default
2793     return Type::BOTTOM;
2794   case Top:
2795     return this;
2796 
2797   case AnyPtr: {                // Meeting to AnyPtrs
2798     const TypePtr *tp = t->is_ptr();
2799     const TypePtr* speculative = xmeet_speculative(tp);
2800     int depth = meet_inline_depth(tp->inline_depth());
2801     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2802   }
2803   case RawPtr:                  // For these, flip the call around to cut down
2804   case OopPtr:
2805   case InstPtr:                 // on the cases I have to handle.
2806   case AryPtr:
2807   case MetadataPtr:
2808   case KlassPtr:
2809   case InstKlassPtr:
2810   case AryKlassPtr:
2811     return t->xmeet(this);      // Call in reverse direction
2812   default:                      // All else is a mistake
2813     typerr(t);
2814 
2815   }
2816   return this;
2817 }
2818 
2819 //------------------------------meet_offset------------------------------------
2820 Type::Offset TypePtr::meet_offset(int offset) const {
2821   return _offset.meet(Offset(offset));
2822 }
2823 
2824 //------------------------------dual_offset------------------------------------
2825 Type::Offset TypePtr::dual_offset() const {
2826   return _offset.dual();
2827 }
2828 
2829 //------------------------------xdual------------------------------------------
2830 // Dual: compute field-by-field dual
2831 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2832   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2833 };
2834 const Type *TypePtr::xdual() const {
2835   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2836 }
2837 
2838 //------------------------------xadd_offset------------------------------------
2839 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2840   return _offset.add(offset);
2841 }
2842 
2843 //------------------------------add_offset-------------------------------------
2844 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2845   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2846 }
2847 
2848 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2849   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2850 }
2851 
2852 //------------------------------eq---------------------------------------------
2853 // Structural equality check for Type representations
2854 bool TypePtr::eq( const Type *t ) const {
2855   const TypePtr *a = (const TypePtr*)t;
2856   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2857 }
2858 
2859 //------------------------------hash-------------------------------------------
2860 // Type-specific hashing function.
2861 uint TypePtr::hash(void) const {
2862   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2863 }
2864 
2865 /**
2866  * Return same type without a speculative part
2867  */
2868 const TypePtr* TypePtr::remove_speculative() const {
2869   if (_speculative == nullptr) {
2870     return this;
2871   }
2872   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2873   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2874 }
2875 
2876 /**
2877  * Return same type but drop speculative part if we know we won't use
2878  * it
2879  */
2880 const Type* TypePtr::cleanup_speculative() const {
2881   if (speculative() == nullptr) {
2882     return this;
2883   }
2884   const Type* no_spec = remove_speculative();
2885   // If this is NULL_PTR then we don't need the speculative type
2886   // (with_inline_depth in case the current type inline depth is
2887   // InlineDepthTop)
2888   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2889     return no_spec;
2890   }
2891   if (above_centerline(speculative()->ptr())) {
2892     return no_spec;
2893   }
2894   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2895   // If the speculative may be null and is an inexact klass then it
2896   // doesn't help
2897   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2898       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2899     return no_spec;
2900   }
2901   return this;
2902 }
2903 
2904 /**
2905  * dual of the speculative part of the type
2906  */
2907 const TypePtr* TypePtr::dual_speculative() const {
2908   if (_speculative == nullptr) {
2909     return nullptr;
2910   }
2911   return _speculative->dual()->is_ptr();
2912 }
2913 
2914 /**
2915  * meet of the speculative parts of 2 types
2916  *
2917  * @param other  type to meet with
2918  */
2919 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2920   bool this_has_spec = (_speculative != nullptr);
2921   bool other_has_spec = (other->speculative() != nullptr);
2922 
2923   if (!this_has_spec && !other_has_spec) {
2924     return nullptr;
2925   }
2926 
2927   // If we are at a point where control flow meets and one branch has
2928   // a speculative type and the other has not, we meet the speculative
2929   // type of one branch with the actual type of the other. If the
2930   // actual type is exact and the speculative is as well, then the
2931   // result is a speculative type which is exact and we can continue
2932   // speculation further.
2933   const TypePtr* this_spec = _speculative;
2934   const TypePtr* other_spec = other->speculative();
2935 
2936   if (!this_has_spec) {
2937     this_spec = this;
2938   }
2939 
2940   if (!other_has_spec) {
2941     other_spec = other;
2942   }
2943 
2944   return this_spec->meet(other_spec)->is_ptr();
2945 }
2946 
2947 /**
2948  * dual of the inline depth for this type (used for speculation)
2949  */
2950 int TypePtr::dual_inline_depth() const {
2951   return -inline_depth();
2952 }
2953 
2954 /**
2955  * meet of 2 inline depths (used for speculation)
2956  *
2957  * @param depth  depth to meet with
2958  */
2959 int TypePtr::meet_inline_depth(int depth) const {
2960   return MAX2(inline_depth(), depth);
2961 }
2962 
2963 /**
2964  * Are the speculative parts of 2 types equal?
2965  *
2966  * @param other  type to compare this one to
2967  */
2968 bool TypePtr::eq_speculative(const TypePtr* other) const {
2969   if (_speculative == nullptr || other->speculative() == nullptr) {
2970     return _speculative == other->speculative();
2971   }
2972 
2973   if (_speculative->base() != other->speculative()->base()) {
2974     return false;
2975   }
2976 
2977   return _speculative->eq(other->speculative());
2978 }
2979 
2980 /**
2981  * Hash of the speculative part of the type
2982  */
2983 int TypePtr::hash_speculative() const {
2984   if (_speculative == nullptr) {
2985     return 0;
2986   }
2987 
2988   return _speculative->hash();
2989 }
2990 
2991 /**
2992  * add offset to the speculative part of the type
2993  *
2994  * @param offset  offset to add
2995  */
2996 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2997   if (_speculative == nullptr) {
2998     return nullptr;
2999   }
3000   return _speculative->add_offset(offset)->is_ptr();
3001 }
3002 
3003 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
3004   if (_speculative == nullptr) {
3005     return nullptr;
3006   }
3007   return _speculative->with_offset(offset)->is_ptr();
3008 }
3009 
3010 /**
3011  * return exact klass from the speculative type if there's one
3012  */
3013 ciKlass* TypePtr::speculative_type() const {
3014   if (_speculative != nullptr && _speculative->isa_oopptr()) {
3015     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
3016     if (speculative->klass_is_exact()) {
3017       return speculative->exact_klass();
3018     }
3019   }
3020   return nullptr;
3021 }
3022 
3023 /**
3024  * return true if speculative type may be null
3025  */
3026 bool TypePtr::speculative_maybe_null() const {
3027   if (_speculative != nullptr) {
3028     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3029     return speculative->maybe_null();
3030   }
3031   return true;
3032 }
3033 
3034 bool TypePtr::speculative_always_null() const {
3035   if (_speculative != nullptr) {
3036     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3037     return speculative == TypePtr::NULL_PTR;
3038   }
3039   return false;
3040 }
3041 
3042 /**
3043  * Same as TypePtr::speculative_type() but return the klass only if
3044  * the speculative tells us is not null
3045  */
3046 ciKlass* TypePtr::speculative_type_not_null() const {
3047   if (speculative_maybe_null()) {
3048     return nullptr;
3049   }
3050   return speculative_type();
3051 }
3052 
3053 /**
3054  * Check whether new profiling would improve speculative type
3055  *
3056  * @param   exact_kls    class from profiling
3057  * @param   inline_depth inlining depth of profile point
3058  *
3059  * @return  true if type profile is valuable
3060  */
3061 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3062   // no profiling?
3063   if (exact_kls == nullptr) {
3064     return false;
3065   }
3066   if (speculative() == TypePtr::NULL_PTR) {
3067     return false;
3068   }
3069   // no speculative type or non exact speculative type?
3070   if (speculative_type() == nullptr) {
3071     return true;
3072   }
3073   // If the node already has an exact speculative type keep it,
3074   // unless it was provided by profiling that is at a deeper
3075   // inlining level. Profiling at a higher inlining depth is
3076   // expected to be less accurate.
3077   if (_speculative->inline_depth() == InlineDepthBottom) {
3078     return false;
3079   }
3080   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3081   return inline_depth < _speculative->inline_depth();
3082 }
3083 
3084 /**
3085  * Check whether new profiling would improve ptr (= tells us it is non
3086  * null)
3087  *
3088  * @param   ptr_kind always null or not null?
3089  *
3090  * @return  true if ptr profile is valuable
3091  */
3092 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3093   // profiling doesn't tell us anything useful
3094   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3095     return false;
3096   }
3097   // We already know this is not null
3098   if (!this->maybe_null()) {
3099     return false;
3100   }
3101   // We already know the speculative type cannot be null
3102   if (!speculative_maybe_null()) {
3103     return false;
3104   }
3105   // We already know this is always null
3106   if (this == TypePtr::NULL_PTR) {
3107     return false;
3108   }
3109   // We already know the speculative type is always null
3110   if (speculative_always_null()) {
3111     return false;
3112   }
3113   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3114     return false;
3115   }
3116   return true;
3117 }
3118 
3119 //------------------------------dump2------------------------------------------
3120 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3121   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3122 };
3123 
3124 #ifndef PRODUCT
3125 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3126   if( _ptr == Null ) st->print("null");
3127   else st->print("%s *", ptr_msg[_ptr]);
3128   _offset.dump2(st);
3129   dump_inline_depth(st);
3130   dump_speculative(st);
3131 }
3132 
3133 /**
3134  *dump the speculative part of the type
3135  */
3136 void TypePtr::dump_speculative(outputStream *st) const {
3137   if (_speculative != nullptr) {
3138     st->print(" (speculative=");
3139     _speculative->dump_on(st);
3140     st->print(")");
3141   }
3142 }
3143 
3144 /**
3145  *dump the inline depth of the type
3146  */
3147 void TypePtr::dump_inline_depth(outputStream *st) const {
3148   if (_inline_depth != InlineDepthBottom) {
3149     if (_inline_depth == InlineDepthTop) {
3150       st->print(" (inline_depth=InlineDepthTop)");
3151     } else {
3152       st->print(" (inline_depth=%d)", _inline_depth);
3153     }
3154   }
3155 }
3156 #endif
3157 
3158 //------------------------------singleton--------------------------------------
3159 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3160 // constants
3161 bool TypePtr::singleton(void) const {
3162   // TopPTR, Null, AnyNull, Constant are all singletons
3163   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3164 }
3165 
3166 bool TypePtr::empty(void) const {
3167   return (_offset == Offset::top) || above_centerline(_ptr);
3168 }
3169 
3170 //=============================================================================
3171 // Convenience common pre-built types.
3172 const TypeRawPtr *TypeRawPtr::BOTTOM;
3173 const TypeRawPtr *TypeRawPtr::NOTNULL;
3174 
3175 //------------------------------make-------------------------------------------
3176 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3177   assert( ptr != Constant, "what is the constant?" );
3178   assert( ptr != Null, "Use TypePtr for null" );
3179   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3180 }
3181 
3182 const TypeRawPtr *TypeRawPtr::make(address bits) {
3183   assert(bits != nullptr, "Use TypePtr for null");
3184   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3185 }
3186 
3187 //------------------------------cast_to_ptr_type-------------------------------
3188 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3189   assert( ptr != Constant, "what is the constant?" );
3190   assert( ptr != Null, "Use TypePtr for null" );
3191   assert( _bits == nullptr, "Why cast a constant address?");
3192   if( ptr == _ptr ) return this;
3193   return make(ptr);
3194 }
3195 
3196 //------------------------------get_con----------------------------------------
3197 intptr_t TypeRawPtr::get_con() const {
3198   assert( _ptr == Null || _ptr == Constant, "" );
3199   return (intptr_t)_bits;
3200 }
3201 
3202 //------------------------------meet-------------------------------------------
3203 // Compute the MEET of two types.  It returns a new Type object.
3204 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3205   // Perform a fast test for common case; meeting the same types together.
3206   if( this == t ) return this;  // Meeting same type-rep?
3207 
3208   // Current "this->_base" is RawPtr
3209   switch( t->base() ) {         // switch on original type
3210   case Bottom:                  // Ye Olde Default
3211     return t;
3212   case Top:
3213     return this;
3214   case AnyPtr:                  // Meeting to AnyPtrs
3215     break;
3216   case RawPtr: {                // might be top, bot, any/not or constant
3217     enum PTR tptr = t->is_ptr()->ptr();
3218     enum PTR ptr = meet_ptr( tptr );
3219     if( ptr == Constant ) {     // Cannot be equal constants, so...
3220       if( tptr == Constant && _ptr != Constant)  return t;
3221       if( _ptr == Constant && tptr != Constant)  return this;
3222       ptr = NotNull;            // Fall down in lattice
3223     }
3224     return make( ptr );
3225   }
3226 
3227   case OopPtr:
3228   case InstPtr:
3229   case AryPtr:
3230   case MetadataPtr:
3231   case KlassPtr:
3232   case InstKlassPtr:
3233   case AryKlassPtr:
3234     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3235   default:                      // All else is a mistake
3236     typerr(t);
3237   }
3238 
3239   // Found an AnyPtr type vs self-RawPtr type
3240   const TypePtr *tp = t->is_ptr();
3241   switch (tp->ptr()) {
3242   case TypePtr::TopPTR:  return this;
3243   case TypePtr::BotPTR:  return t;
3244   case TypePtr::Null:
3245     if( _ptr == TypePtr::TopPTR ) return t;
3246     return TypeRawPtr::BOTTOM;
3247   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3248   case TypePtr::AnyNull:
3249     if( _ptr == TypePtr::Constant) return this;
3250     return make( meet_ptr(TypePtr::AnyNull) );
3251   default: ShouldNotReachHere();
3252   }
3253   return this;
3254 }
3255 
3256 //------------------------------xdual------------------------------------------
3257 // Dual: compute field-by-field dual
3258 const Type *TypeRawPtr::xdual() const {
3259   return new TypeRawPtr( dual_ptr(), _bits );
3260 }
3261 
3262 //------------------------------add_offset-------------------------------------
3263 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3264   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3265   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3266   if( offset == 0 ) return this; // No change
3267   switch (_ptr) {
3268   case TypePtr::TopPTR:
3269   case TypePtr::BotPTR:
3270   case TypePtr::NotNull:
3271     return this;
3272   case TypePtr::Constant: {
3273     uintptr_t bits = (uintptr_t)_bits;
3274     uintptr_t sum = bits + offset;
3275     if (( offset < 0 )
3276         ? ( sum > bits )        // Underflow?
3277         : ( sum < bits )) {     // Overflow?
3278       return BOTTOM;
3279     } else if ( sum == 0 ) {
3280       return TypePtr::NULL_PTR;
3281     } else {
3282       return make( (address)sum );
3283     }
3284   }
3285   default:  ShouldNotReachHere();
3286   }
3287 }
3288 
3289 //------------------------------eq---------------------------------------------
3290 // Structural equality check for Type representations
3291 bool TypeRawPtr::eq( const Type *t ) const {
3292   const TypeRawPtr *a = (const TypeRawPtr*)t;
3293   return _bits == a->_bits && TypePtr::eq(t);
3294 }
3295 
3296 //------------------------------hash-------------------------------------------
3297 // Type-specific hashing function.
3298 uint TypeRawPtr::hash(void) const {
3299   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3300 }
3301 
3302 //------------------------------dump2------------------------------------------
3303 #ifndef PRODUCT
3304 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3305   if( _ptr == Constant )
3306     st->print(INTPTR_FORMAT, p2i(_bits));
3307   else
3308     st->print("rawptr:%s", ptr_msg[_ptr]);
3309 }
3310 #endif
3311 
3312 //=============================================================================
3313 // Convenience common pre-built type.
3314 const TypeOopPtr *TypeOopPtr::BOTTOM;
3315 
3316 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3317         : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3318           _hash(0), _exact_klass(nullptr) {
3319   _interfaces.sort(compare);
3320   initialize();
3321 }
3322 
3323 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3324   // hashcons() can only delete the last thing that was allocated: to
3325   // make sure all memory for the newly created TypeInterfaces can be
3326   // freed if an identical one exists, allocate space for the array of
3327   // interfaces right after the TypeInterfaces object so that they
3328   // form a contiguous piece of memory.
3329   int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3330   size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3331 
3332   void* allocated_mem = operator new(total_size);
3333   ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3334   for (int i = 0; i < nb_interfaces; ++i) {
3335     interfaces_base[i] = interfaces->at(i);
3336   }
3337   TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3338   return (const TypeInterfaces*)result->hashcons();
3339 }
3340 
3341 void TypeInterfaces::initialize() {
3342   compute_hash();
3343   compute_exact_klass();
3344   DEBUG_ONLY(_initialized = true;)
3345 }
3346 
3347 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3348   if ((intptr_t)k1 < (intptr_t)k2) {
3349     return -1;
3350   } else if ((intptr_t)k1 > (intptr_t)k2) {
3351     return 1;
3352   }
3353   return 0;
3354 }
3355 
3356 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3357   return compare(*k1, *k2);
3358 }
3359 
3360 bool TypeInterfaces::eq(const Type* t) const {
3361   const TypeInterfaces* other = (const TypeInterfaces*)t;
3362   if (_interfaces.length() != other->_interfaces.length()) {
3363     return false;
3364   }
3365   for (int i = 0; i < _interfaces.length(); i++) {
3366     ciKlass* k1 = _interfaces.at(i);
3367     ciKlass* k2 = other->_interfaces.at(i);
3368     if (!k1->equals(k2)) {
3369       return false;
3370     }
3371   }
3372   return true;
3373 }
3374 
3375 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3376   assert(k->is_loaded(), "should be loaded");
3377   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3378   if (_interfaces.length() != interfaces->length()) {
3379     return false;
3380   }
3381   for (int i = 0; i < interfaces->length(); i++) {
3382     bool found = false;
3383     _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3384     if (!found) {
3385       return false;
3386     }
3387   }
3388   return true;
3389 }
3390 
3391 
3392 uint TypeInterfaces::hash() const {
3393   assert(_initialized, "must be");
3394   return _hash;
3395 }
3396 
3397 const Type* TypeInterfaces::xdual() const {
3398   return this;
3399 }
3400 
3401 void TypeInterfaces::compute_hash() {
3402   uint hash = 0;
3403   for (int i = 0; i < _interfaces.length(); i++) {
3404     ciKlass* k = _interfaces.at(i);
3405     hash += k->hash();
3406   }
3407   _hash = hash;
3408 }
3409 
3410 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3411   return (int)((*k1)->ident() - (*k2)->ident());
3412 }
3413 
3414 void TypeInterfaces::dump(outputStream* st) const {
3415   if (_interfaces.length() == 0) {
3416     return;
3417   }
3418   ResourceMark rm;
3419   st->print(" (");
3420   GrowableArray<ciInstanceKlass*> interfaces;
3421   interfaces.appendAll(&_interfaces);
3422   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3423   interfaces.sort(compare_interfaces);
3424   for (int i = 0; i < interfaces.length(); i++) {
3425     if (i > 0) {
3426       st->print(",");
3427     }
3428     ciKlass* k = interfaces.at(i);
3429     k->print_name_on(st);
3430   }
3431   st->print(")");
3432 }
3433 
3434 #ifdef ASSERT
3435 void TypeInterfaces::verify() const {
3436   for (int i = 1; i < _interfaces.length(); i++) {
3437     ciInstanceKlass* k1 = _interfaces.at(i-1);
3438     ciInstanceKlass* k2 = _interfaces.at(i);
3439     assert(compare(k2, k1) > 0, "should be ordered");
3440     assert(k1 != k2, "no duplicate");
3441   }
3442 }
3443 #endif
3444 
3445 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3446   GrowableArray<ciInstanceKlass*> result_list;
3447   int i = 0;
3448   int j = 0;
3449   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3450     while (i < _interfaces.length() &&
3451            (j >= other->_interfaces.length() ||
3452             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3453       result_list.push(_interfaces.at(i));
3454       i++;
3455     }
3456     while (j < other->_interfaces.length() &&
3457            (i >= _interfaces.length() ||
3458             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3459       result_list.push(other->_interfaces.at(j));
3460       j++;
3461     }
3462     if (i < _interfaces.length() &&
3463         j < other->_interfaces.length() &&
3464         _interfaces.at(i) == other->_interfaces.at(j)) {
3465       result_list.push(_interfaces.at(i));
3466       i++;
3467       j++;
3468     }
3469   }
3470   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3471 #ifdef ASSERT
3472   result->verify();
3473   for (int i = 0; i < _interfaces.length(); i++) {
3474     assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3475   }
3476   for (int i = 0; i < other->_interfaces.length(); i++) {
3477     assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3478   }
3479   for (int i = 0; i < result->_interfaces.length(); i++) {
3480     assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3481   }
3482 #endif
3483   return result;
3484 }
3485 
3486 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3487   GrowableArray<ciInstanceKlass*> result_list;
3488   int i = 0;
3489   int j = 0;
3490   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3491     while (i < _interfaces.length() &&
3492            (j >= other->_interfaces.length() ||
3493             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3494       i++;
3495     }
3496     while (j < other->_interfaces.length() &&
3497            (i >= _interfaces.length() ||
3498             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3499       j++;
3500     }
3501     if (i < _interfaces.length() &&
3502         j < other->_interfaces.length() &&
3503         _interfaces.at(i) == other->_interfaces.at(j)) {
3504       result_list.push(_interfaces.at(i));
3505       i++;
3506       j++;
3507     }
3508   }
3509   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3510 #ifdef ASSERT
3511   result->verify();
3512   for (int i = 0; i < _interfaces.length(); i++) {
3513     assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3514   }
3515   for (int i = 0; i < other->_interfaces.length(); i++) {
3516     assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3517   }
3518   for (int i = 0; i < result->_interfaces.length(); i++) {
3519     assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3520   }
3521 #endif
3522   return result;
3523 }
3524 
3525 // Is there a single ciKlass* that can represent the interface set?
3526 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3527   assert(_initialized, "must be");
3528   return _exact_klass;
3529 }
3530 
3531 void TypeInterfaces::compute_exact_klass() {
3532   if (_interfaces.length() == 0) {
3533     _exact_klass = nullptr;
3534     return;
3535   }
3536   ciInstanceKlass* res = nullptr;
3537   for (int i = 0; i < _interfaces.length(); i++) {
3538     ciInstanceKlass* interface = _interfaces.at(i);
3539     if (eq(interface)) {
3540       assert(res == nullptr, "");
3541       res = interface;
3542     }
3543   }
3544   _exact_klass = res;
3545 }
3546 
3547 #ifdef ASSERT
3548 void TypeInterfaces::verify_is_loaded() const {
3549   for (int i = 0; i < _interfaces.length(); i++) {
3550     ciKlass* interface = _interfaces.at(i);
3551     assert(interface->is_loaded(), "Interface not loaded");
3552   }
3553 }
3554 #endif
3555 
3556 // Can't be implemented because there's no way to know if the type is above or below the center line.
3557 const Type* TypeInterfaces::xmeet(const Type* t) const {
3558   ShouldNotReachHere();
3559   return Type::xmeet(t);
3560 }
3561 
3562 bool TypeInterfaces::singleton(void) const {
3563   ShouldNotReachHere();
3564   return Type::singleton();
3565 }
3566 
3567 bool TypeInterfaces::has_non_array_interface() const {
3568   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3569 
3570   return !TypeAryPtr::_array_interfaces->contains(this);
3571 }
3572 
3573 //------------------------------TypeOopPtr-------------------------------------
3574 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3575                        int instance_id, const TypePtr* speculative, int inline_depth)
3576   : TypePtr(t, ptr, offset, speculative, inline_depth),
3577     _const_oop(o), _klass(k),
3578     _interfaces(interfaces),
3579     _klass_is_exact(xk),
3580     _is_ptr_to_narrowoop(false),
3581     _is_ptr_to_narrowklass(false),
3582     _is_ptr_to_boxed_value(false),
3583     _is_ptr_to_strict_final_field(false),
3584     _instance_id(instance_id) {
3585 #ifdef ASSERT
3586   if (klass() != nullptr && klass()->is_loaded()) {
3587     interfaces->verify_is_loaded();
3588   }
3589 #endif
3590   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3591       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3592     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3593     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3594   }
3595 
3596   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3597       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3598     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3599     if (field != nullptr && field->is_strict() && field->is_final()) {
3600       _is_ptr_to_strict_final_field = true;
3601     }
3602   }
3603 
3604 #ifdef _LP64
3605   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3606     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3607       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3608     } else if (klass() == nullptr) {
3609       // Array with unknown body type
3610       assert(this->isa_aryptr(), "only arrays without klass");
3611       _is_ptr_to_narrowoop = UseCompressedOops;
3612     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3613       if (klass()->is_obj_array_klass()) {
3614         _is_ptr_to_narrowoop = true;
3615       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3616         // Check if the field of the inline type array element contains oops
3617         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3618         int foffset = field_offset.get() + vk->payload_offset();
3619         BasicType field_bt;
3620         ciField* field = vk->get_field_by_offset(foffset, false);
3621         if (field != nullptr) {
3622           field_bt = field->layout_type();
3623         } else {
3624           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3625           field_bt = T_BOOLEAN;
3626         }
3627         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(field_bt);
3628       }
3629     } else if (klass()->is_instance_klass()) {
3630       if (this->isa_klassptr()) {
3631         // Perm objects don't use compressed references
3632       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3633         // unsafe access
3634         _is_ptr_to_narrowoop = UseCompressedOops;
3635       } else {
3636         assert(this->isa_instptr(), "must be an instance ptr.");
3637         if (klass() == ciEnv::current()->Class_klass() &&
3638             (this->offset() == java_lang_Class::klass_offset() ||
3639              this->offset() == java_lang_Class::array_klass_offset())) {
3640           // Special hidden fields from the Class.
3641           assert(this->isa_instptr(), "must be an instance ptr.");
3642           _is_ptr_to_narrowoop = false;
3643         } else if (klass() == ciEnv::current()->Class_klass() &&
3644                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3645           // Static fields
3646           ciField* field = nullptr;
3647           if (const_oop() != nullptr) {
3648             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3649             field = k->get_field_by_offset(this->offset(), true);
3650           }
3651           if (field != nullptr) {
3652             BasicType basic_elem_type = field->layout_type();
3653             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3654           } else {
3655             // unsafe access
3656             _is_ptr_to_narrowoop = UseCompressedOops;
3657           }
3658         } else {
3659           // Instance fields which contains a compressed oop references.
3660           ciInstanceKlass* ik = klass()->as_instance_klass();
3661           ciField* field = ik->get_field_by_offset(this->offset(), false);
3662           if (field != nullptr) {
3663             BasicType basic_elem_type = field->layout_type();
3664             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3665           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3666             // Compile::find_alias_type() cast exactness on all types to verify
3667             // that it does not affect alias type.
3668             _is_ptr_to_narrowoop = UseCompressedOops;
3669           } else {
3670             // Type for the copy start in LibraryCallKit::inline_native_clone().
3671             _is_ptr_to_narrowoop = UseCompressedOops;
3672           }
3673         }
3674       }
3675     }
3676   }
3677 #endif // _LP64
3678 }
3679 
3680 //------------------------------make-------------------------------------------
3681 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3682                                    const TypePtr* speculative, int inline_depth) {
3683   assert(ptr != Constant, "no constant generic pointers");
3684   ciKlass*  k = Compile::current()->env()->Object_klass();
3685   bool      xk = false;
3686   ciObject* o = nullptr;
3687   const TypeInterfaces* interfaces = TypeInterfaces::make();
3688   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3689 }
3690 
3691 
3692 //------------------------------cast_to_ptr_type-------------------------------
3693 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3694   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3695   if( ptr == _ptr ) return this;
3696   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3697 }
3698 
3699 //-----------------------------cast_to_instance_id----------------------------
3700 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3701   // There are no instances of a general oop.
3702   // Return self unchanged.
3703   return this;
3704 }
3705 
3706 //-----------------------------cast_to_exactness-------------------------------
3707 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3708   // There is no such thing as an exact general oop.
3709   // Return self unchanged.
3710   return this;
3711 }
3712 
3713 //------------------------------as_klass_type----------------------------------
3714 // Return the klass type corresponding to this instance or array type.
3715 // It is the type that is loaded from an object of this type.
3716 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3717   ShouldNotReachHere();
3718   return nullptr;
3719 }
3720 
3721 //------------------------------meet-------------------------------------------
3722 // Compute the MEET of two types.  It returns a new Type object.
3723 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3724   // Perform a fast test for common case; meeting the same types together.
3725   if( this == t ) return this;  // Meeting same type-rep?
3726 
3727   // Current "this->_base" is OopPtr
3728   switch (t->base()) {          // switch on original type
3729 
3730   case Int:                     // Mixing ints & oops happens when javac
3731   case Long:                    // reuses local variables
3732   case HalfFloatTop:
3733   case HalfFloatCon:
3734   case HalfFloatBot:
3735   case FloatTop:
3736   case FloatCon:
3737   case FloatBot:
3738   case DoubleTop:
3739   case DoubleCon:
3740   case DoubleBot:
3741   case NarrowOop:
3742   case NarrowKlass:
3743   case Bottom:                  // Ye Olde Default
3744     return Type::BOTTOM;
3745   case Top:
3746     return this;
3747 
3748   default:                      // All else is a mistake
3749     typerr(t);
3750 
3751   case RawPtr:
3752   case MetadataPtr:
3753   case KlassPtr:
3754   case InstKlassPtr:
3755   case AryKlassPtr:
3756     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3757 
3758   case AnyPtr: {
3759     // Found an AnyPtr type vs self-OopPtr type
3760     const TypePtr *tp = t->is_ptr();
3761     Offset offset = meet_offset(tp->offset());
3762     PTR ptr = meet_ptr(tp->ptr());
3763     const TypePtr* speculative = xmeet_speculative(tp);
3764     int depth = meet_inline_depth(tp->inline_depth());
3765     switch (tp->ptr()) {
3766     case Null:
3767       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3768       // else fall through:
3769     case TopPTR:
3770     case AnyNull: {
3771       int instance_id = meet_instance_id(InstanceTop);
3772       return make(ptr, offset, instance_id, speculative, depth);
3773     }
3774     case BotPTR:
3775     case NotNull:
3776       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3777     default: typerr(t);
3778     }
3779   }
3780 
3781   case OopPtr: {                 // Meeting to other OopPtrs
3782     const TypeOopPtr *tp = t->is_oopptr();
3783     int instance_id = meet_instance_id(tp->instance_id());
3784     const TypePtr* speculative = xmeet_speculative(tp);
3785     int depth = meet_inline_depth(tp->inline_depth());
3786     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3787   }
3788 
3789   case InstPtr:                  // For these, flip the call around to cut down
3790   case AryPtr:
3791     return t->xmeet(this);      // Call in reverse direction
3792 
3793   } // End of switch
3794   return this;                  // Return the double constant
3795 }
3796 
3797 
3798 //------------------------------xdual------------------------------------------
3799 // Dual of a pure heap pointer.  No relevant klass or oop information.
3800 const Type *TypeOopPtr::xdual() const {
3801   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3802   assert(const_oop() == nullptr,             "no constants here");
3803   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3804 }
3805 
3806 //--------------------------make_from_klass_common-----------------------------
3807 // Computes the element-type given a klass.
3808 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3809   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3810     Compile* C = Compile::current();
3811     Dependencies* deps = C->dependencies();
3812     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3813     // Element is an instance
3814     bool klass_is_exact = false;
3815     if (klass->is_loaded()) {
3816       // Try to set klass_is_exact.
3817       ciInstanceKlass* ik = klass->as_instance_klass();
3818       klass_is_exact = ik->is_final();
3819       if (!klass_is_exact && klass_change
3820           && deps != nullptr && UseUniqueSubclasses) {
3821         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3822         if (sub != nullptr) {
3823           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3824           klass = ik = sub;
3825           klass_is_exact = sub->is_final();
3826         }
3827       }
3828       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3829           !ik->is_interface() && !ik->has_subklass()) {
3830         // Add a dependence; if concrete subclass added we need to recompile
3831         deps->assert_leaf_type(ik);
3832         klass_is_exact = true;
3833       }
3834     }
3835     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3836     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3837   } else if (klass->is_obj_array_klass()) {
3838     // Element is an object or inline type array. Recursively call ourself.
3839     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3840     // Determine null-free/flat properties
3841     const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3842     if (is_null_free) {
3843       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3844     }
3845     const TypeOopPtr* exact_etype = etype;
3846     if (etype->can_be_inline_type()) {
3847       // Use exact type if element can be an inline type
3848       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3849     }
3850     bool not_inline = !exact_etype->can_be_inline_type();
3851     bool not_null_free = not_inline;
3852     bool not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3853     bool atomic = klass->as_array_klass()->is_elem_atomic();
3854     // Even though MyValue is final, [LMyValue is not exact because null-free [LMyValue is a subtype.
3855     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3856     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free, atomic);
3857     // We used to pass NotNull in here, asserting that the sub-arrays
3858     // are all not-null.  This is not true in generally, as code can
3859     // slam nullptrs down in the subarrays.
3860     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3861     return arr;
3862   } else if (klass->is_type_array_klass()) {
3863     // Element is an typeArray
3864     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3865     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3866                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3867     // We used to pass NotNull in here, asserting that the array pointer
3868     // is not-null. That was not true in general.
3869     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3870     return arr;
3871   } else if (klass->is_flat_array_klass()) {
3872     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3873     const bool is_null_free = klass->as_array_klass()->is_elem_null_free();
3874     if (is_null_free) {
3875       etype = etype->join_speculative(NOTNULL)->is_oopptr();
3876     }
3877     bool atomic = klass->as_array_klass()->is_elem_atomic();
3878     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true, /* not_flat= */ false, /* not_null_free= */ false, atomic);
3879     const bool exact = is_null_free; // Only exact if null-free because "null-free [LMyValue <: null-able [LMyValue".
3880     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, exact, Offset(0));
3881     return arr;
3882   } else {
3883     ShouldNotReachHere();
3884     return nullptr;
3885   }
3886 }
3887 
3888 //------------------------------make_from_constant-----------------------------
3889 // Make a java pointer from an oop constant
3890 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3891   assert(!o->is_null_object(), "null object not yet handled here.");
3892 
3893   const bool make_constant = require_constant || o->should_be_constant();
3894 
3895   ciKlass* klass = o->klass();
3896   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3897     // Element is an instance or inline type
3898     if (make_constant) {
3899       return TypeInstPtr::make(o);
3900     } else {
3901       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3902     }
3903   } else if (klass->is_obj_array_klass()) {
3904     // Element is an object array. Recursively call ourself.
3905     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3906     bool is_flat = o->as_array()->is_flat();
3907     bool is_null_free = o->as_array()->is_null_free();
3908     if (is_null_free) {
3909       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3910     }
3911     bool is_atomic = o->as_array()->is_atomic();
3912     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3913                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3914     // We used to pass NotNull in here, asserting that the sub-arrays
3915     // are all not-null.  This is not true in generally, as code can
3916     // slam nulls down in the subarrays.
3917     if (make_constant) {
3918       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3919     } else {
3920       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3921     }
3922   } else if (klass->is_type_array_klass()) {
3923     // Element is an typeArray
3924     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3925     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
3926                                         /* not_flat= */ true, /* not_null_free= */ true);
3927     // We used to pass NotNull in here, asserting that the array pointer
3928     // is not-null. That was not true in general.
3929     if (make_constant) {
3930       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3931     } else {
3932       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3933     }
3934   } else if (klass->is_flat_array_klass()) {
3935     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3936     bool is_null_free = o->as_array()->is_null_free();
3937     if (is_null_free) {
3938       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3939     }
3940     bool is_atomic = o->as_array()->is_atomic();
3941     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true,
3942                                         /* not_flat= */ false, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
3943     // We used to pass NotNull in here, asserting that the sub-arrays
3944     // are all not-null.  This is not true in generally, as code can
3945     // slam nullptrs down in the subarrays.
3946     if (make_constant) {
3947       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3948     } else {
3949       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3950     }
3951   }
3952 
3953   fatal("unhandled object type");
3954   return nullptr;
3955 }
3956 
3957 //------------------------------get_con----------------------------------------
3958 intptr_t TypeOopPtr::get_con() const {
3959   assert( _ptr == Null || _ptr == Constant, "" );
3960   assert(offset() >= 0, "");
3961 
3962   if (offset() != 0) {
3963     // After being ported to the compiler interface, the compiler no longer
3964     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3965     // to a handle at compile time.  This handle is embedded in the generated
3966     // code and dereferenced at the time the nmethod is made.  Until that time,
3967     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3968     // have access to the addresses!).  This does not seem to currently happen,
3969     // but this assertion here is to help prevent its occurrence.
3970     tty->print_cr("Found oop constant with non-zero offset");
3971     ShouldNotReachHere();
3972   }
3973 
3974   return (intptr_t)const_oop()->constant_encoding();
3975 }
3976 
3977 
3978 //-----------------------------filter------------------------------------------
3979 // Do not allow interface-vs.-noninterface joins to collapse to top.
3980 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3981 
3982   const Type* ft = join_helper(kills, include_speculative);
3983 
3984   if (ft->empty()) {
3985     return Type::TOP;           // Canonical empty value
3986   }
3987 
3988   return ft;
3989 }
3990 
3991 //------------------------------eq---------------------------------------------
3992 // Structural equality check for Type representations
3993 bool TypeOopPtr::eq( const Type *t ) const {
3994   const TypeOopPtr *a = (const TypeOopPtr*)t;
3995   if (_klass_is_exact != a->_klass_is_exact ||
3996       _instance_id != a->_instance_id)  return false;
3997   ciObject* one = const_oop();
3998   ciObject* two = a->const_oop();
3999   if (one == nullptr || two == nullptr) {
4000     return (one == two) && TypePtr::eq(t);
4001   } else {
4002     return one->equals(two) && TypePtr::eq(t);
4003   }
4004 }
4005 
4006 //------------------------------hash-------------------------------------------
4007 // Type-specific hashing function.
4008 uint TypeOopPtr::hash(void) const {
4009   return
4010     (uint)(const_oop() ? const_oop()->hash() : 0) +
4011     (uint)_klass_is_exact +
4012     (uint)_instance_id + TypePtr::hash();
4013 }
4014 
4015 //------------------------------dump2------------------------------------------
4016 #ifndef PRODUCT
4017 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4018   st->print("oopptr:%s", ptr_msg[_ptr]);
4019   if( _klass_is_exact ) st->print(":exact");
4020   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4021   _offset.dump2(st);
4022   if (_instance_id == InstanceTop)
4023     st->print(",iid=top");
4024   else if (_instance_id != InstanceBot)
4025     st->print(",iid=%d",_instance_id);
4026 
4027   dump_inline_depth(st);
4028   dump_speculative(st);
4029 }
4030 #endif
4031 
4032 //------------------------------singleton--------------------------------------
4033 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4034 // constants
4035 bool TypeOopPtr::singleton(void) const {
4036   // detune optimizer to not generate constant oop + constant offset as a constant!
4037   // TopPTR, Null, AnyNull, Constant are all singletons
4038   return (offset() == 0) && !below_centerline(_ptr);
4039 }
4040 
4041 //------------------------------add_offset-------------------------------------
4042 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4043   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4044 }
4045 
4046 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4047   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4048 }
4049 
4050 /**
4051  * Return same type without a speculative part
4052  */
4053 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4054   if (_speculative == nullptr) {
4055     return this;
4056   }
4057   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4058   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4059 }
4060 
4061 /**
4062  * Return same type but drop speculative part if we know we won't use
4063  * it
4064  */
4065 const Type* TypeOopPtr::cleanup_speculative() const {
4066   // If the klass is exact and the ptr is not null then there's
4067   // nothing that the speculative type can help us with
4068   if (klass_is_exact() && !maybe_null()) {
4069     return remove_speculative();
4070   }
4071   return TypePtr::cleanup_speculative();
4072 }
4073 
4074 /**
4075  * Return same type but with a different inline depth (used for speculation)
4076  *
4077  * @param depth  depth to meet with
4078  */
4079 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
4080   if (!UseInlineDepthForSpeculativeTypes) {
4081     return this;
4082   }
4083   return make(_ptr, _offset, _instance_id, _speculative, depth);
4084 }
4085 
4086 //------------------------------with_instance_id--------------------------------
4087 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
4088   assert(_instance_id != -1, "should be known");
4089   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
4090 }
4091 
4092 //------------------------------meet_instance_id--------------------------------
4093 int TypeOopPtr::meet_instance_id( int instance_id ) const {
4094   // Either is 'TOP' instance?  Return the other instance!
4095   if( _instance_id == InstanceTop ) return  instance_id;
4096   if(  instance_id == InstanceTop ) return _instance_id;
4097   // If either is different, return 'BOTTOM' instance
4098   if( _instance_id != instance_id ) return InstanceBot;
4099   return _instance_id;
4100 }
4101 
4102 //------------------------------dual_instance_id--------------------------------
4103 int TypeOopPtr::dual_instance_id( ) const {
4104   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
4105   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
4106   return _instance_id;              // Map everything else into self
4107 }
4108 
4109 
4110 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
4111   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
4112     return _interfaces->union_with(other->_interfaces);
4113   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
4114     return other->_interfaces;
4115   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
4116     return _interfaces;
4117   }
4118   return _interfaces->intersection_with(other->_interfaces);
4119 }
4120 
4121 /**
4122  * Check whether new profiling would improve speculative type
4123  *
4124  * @param   exact_kls    class from profiling
4125  * @param   inline_depth inlining depth of profile point
4126  *
4127  * @return  true if type profile is valuable
4128  */
4129 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
4130   // no way to improve an already exact type
4131   if (klass_is_exact()) {
4132     return false;
4133   }
4134   return TypePtr::would_improve_type(exact_kls, inline_depth);
4135 }
4136 
4137 //=============================================================================
4138 // Convenience common pre-built types.
4139 const TypeInstPtr *TypeInstPtr::NOTNULL;
4140 const TypeInstPtr *TypeInstPtr::BOTTOM;
4141 const TypeInstPtr *TypeInstPtr::MIRROR;
4142 const TypeInstPtr *TypeInstPtr::MARK;
4143 const TypeInstPtr *TypeInstPtr::KLASS;
4144 
4145 // Is there a single ciKlass* that can represent that type?
4146 ciKlass* TypeInstPtr::exact_klass_helper() const {
4147   if (_interfaces->empty()) {
4148     return _klass;
4149   }
4150   if (_klass != ciEnv::current()->Object_klass()) {
4151     if (_interfaces->eq(_klass->as_instance_klass())) {
4152       return _klass;
4153     }
4154     return nullptr;
4155   }
4156   return _interfaces->exact_klass();
4157 }
4158 
4159 //------------------------------TypeInstPtr-------------------------------------
4160 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4161                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4162   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4163     _flat_in_array(flat_in_array) {
4164   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4165   assert(k != nullptr &&
4166          (k->is_loaded() || o == nullptr),
4167          "cannot have constants with non-loaded klass");
4168   assert(!klass()->maybe_flat_in_array() || flat_in_array, "Should be flat in array");
4169   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4170 };
4171 
4172 //------------------------------make-------------------------------------------
4173 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4174                                      ciKlass* k,
4175                                      const TypeInterfaces* interfaces,
4176                                      bool xk,
4177                                      ciObject* o,
4178                                      Offset offset,
4179                                      bool flat_in_array,
4180                                      int instance_id,
4181                                      const TypePtr* speculative,
4182                                      int inline_depth) {
4183   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4184   // Either const_oop() is null or else ptr is Constant
4185   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4186           "constant pointers must have a value supplied" );
4187   // Ptr is never Null
4188   assert( ptr != Null, "null pointers are not typed" );
4189 
4190   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4191   if (ptr == Constant) {
4192     // Note:  This case includes meta-object constants, such as methods.
4193     xk = true;
4194   } else if (k->is_loaded()) {
4195     ciInstanceKlass* ik = k->as_instance_klass();
4196     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4197     assert(!ik->is_interface(), "no interface here");
4198     if (xk && ik->is_interface())  xk = false;  // no exact interface
4199   }
4200 
4201   // Check if this type is known to be flat in arrays
4202   flat_in_array = flat_in_array || k->maybe_flat_in_array();
4203 
4204   // Now hash this baby
4205   TypeInstPtr *result =
4206     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4207 
4208   return result;
4209 }
4210 
4211 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4212   if (k->is_instance_klass()) {
4213     if (k->is_loaded()) {
4214       if (k->is_interface() && interface_handling == ignore_interfaces) {
4215         assert(interface, "no interface expected");
4216         k = ciEnv::current()->Object_klass();
4217         const TypeInterfaces* interfaces = TypeInterfaces::make();
4218         return interfaces;
4219       }
4220       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4221       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4222       if (k->is_interface()) {
4223         assert(interface, "no interface expected");
4224         k = ciEnv::current()->Object_klass();
4225       } else {
4226         assert(klass, "no instance klass expected");
4227       }
4228       return interfaces;
4229     }
4230     const TypeInterfaces* interfaces = TypeInterfaces::make();
4231     return interfaces;
4232   }
4233   assert(array, "no array expected");
4234   assert(k->is_array_klass(), "Not an array?");
4235   ciType* e = k->as_array_klass()->base_element_type();
4236   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4237     if (interface_handling == ignore_interfaces) {
4238       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4239     }
4240   }
4241   return TypeAryPtr::_array_interfaces;
4242 }
4243 
4244 /**
4245  *  Create constant type for a constant boxed value
4246  */
4247 const Type* TypeInstPtr::get_const_boxed_value() const {
4248   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4249   assert((const_oop() != nullptr), "should be called only for constant object");
4250   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4251   BasicType bt = constant.basic_type();
4252   switch (bt) {
4253     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4254     case T_INT:      return TypeInt::make(constant.as_int());
4255     case T_CHAR:     return TypeInt::make(constant.as_char());
4256     case T_BYTE:     return TypeInt::make(constant.as_byte());
4257     case T_SHORT:    return TypeInt::make(constant.as_short());
4258     case T_FLOAT:    return TypeF::make(constant.as_float());
4259     case T_DOUBLE:   return TypeD::make(constant.as_double());
4260     case T_LONG:     return TypeLong::make(constant.as_long());
4261     default:         break;
4262   }
4263   fatal("Invalid boxed value type '%s'", type2name(bt));
4264   return nullptr;
4265 }
4266 
4267 //------------------------------cast_to_ptr_type-------------------------------
4268 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4269   if( ptr == _ptr ) return this;
4270   // Reconstruct _sig info here since not a problem with later lazy
4271   // construction, _sig will show up on demand.
4272   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4273 }
4274 
4275 
4276 //-----------------------------cast_to_exactness-------------------------------
4277 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4278   if( klass_is_exact == _klass_is_exact ) return this;
4279   if (!_klass->is_loaded())  return this;
4280   ciInstanceKlass* ik = _klass->as_instance_klass();
4281   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4282   assert(!ik->is_interface(), "no interface here");
4283   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4284 }
4285 
4286 //-----------------------------cast_to_instance_id----------------------------
4287 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4288   if( instance_id == _instance_id ) return this;
4289   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4290 }
4291 
4292 //------------------------------xmeet_unloaded---------------------------------
4293 // Compute the MEET of two InstPtrs when at least one is unloaded.
4294 // Assume classes are different since called after check for same name/class-loader
4295 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4296   Offset off = meet_offset(tinst->offset());
4297   PTR ptr = meet_ptr(tinst->ptr());
4298   int instance_id = meet_instance_id(tinst->instance_id());
4299   const TypePtr* speculative = xmeet_speculative(tinst);
4300   int depth = meet_inline_depth(tinst->inline_depth());
4301 
4302   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4303   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4304   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4305     //
4306     // Meet unloaded class with java/lang/Object
4307     //
4308     // Meet
4309     //          |                     Unloaded Class
4310     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4311     //  ===================================================================
4312     //   TOP    | ..........................Unloaded......................|
4313     //  AnyNull |  U-AN    |................Unloaded......................|
4314     // Constant | ... O-NN .................................. |   O-BOT   |
4315     //  NotNull | ... O-NN .................................. |   O-BOT   |
4316     //  BOTTOM  | ........................Object-BOTTOM ..................|
4317     //
4318     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4319     //
4320     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4321     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4322     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4323     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4324       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4325       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4326     }
4327     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4328 
4329     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4330   }
4331 
4332   // Both are unloaded, not the same class, not Object
4333   // Or meet unloaded with a different loaded class, not java/lang/Object
4334   if (ptr != TypePtr::BotPTR) {
4335     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4336   }
4337   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4338 }
4339 
4340 
4341 //------------------------------meet-------------------------------------------
4342 // Compute the MEET of two types.  It returns a new Type object.
4343 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4344   // Perform a fast test for common case; meeting the same types together.
4345   if( this == t ) return this;  // Meeting same type-rep?
4346 
4347   // Current "this->_base" is Pointer
4348   switch (t->base()) {          // switch on original type
4349 
4350   case Int:                     // Mixing ints & oops happens when javac
4351   case Long:                    // reuses local variables
4352   case HalfFloatTop:
4353   case HalfFloatCon:
4354   case HalfFloatBot:
4355   case FloatTop:
4356   case FloatCon:
4357   case FloatBot:
4358   case DoubleTop:
4359   case DoubleCon:
4360   case DoubleBot:
4361   case NarrowOop:
4362   case NarrowKlass:
4363   case Bottom:                  // Ye Olde Default
4364     return Type::BOTTOM;
4365   case Top:
4366     return this;
4367 
4368   default:                      // All else is a mistake
4369     typerr(t);
4370 
4371   case MetadataPtr:
4372   case KlassPtr:
4373   case InstKlassPtr:
4374   case AryKlassPtr:
4375   case RawPtr: return TypePtr::BOTTOM;
4376 
4377   case AryPtr: {                // All arrays inherit from Object class
4378     // Call in reverse direction to avoid duplication
4379     return t->is_aryptr()->xmeet_helper(this);
4380   }
4381 
4382   case OopPtr: {                // Meeting to OopPtrs
4383     // Found a OopPtr type vs self-InstPtr type
4384     const TypeOopPtr *tp = t->is_oopptr();
4385     Offset offset = meet_offset(tp->offset());
4386     PTR ptr = meet_ptr(tp->ptr());
4387     switch (tp->ptr()) {
4388     case TopPTR:
4389     case AnyNull: {
4390       int instance_id = meet_instance_id(InstanceTop);
4391       const TypePtr* speculative = xmeet_speculative(tp);
4392       int depth = meet_inline_depth(tp->inline_depth());
4393       return make(ptr, klass(), _interfaces, klass_is_exact(),
4394                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4395     }
4396     case NotNull:
4397     case BotPTR: {
4398       int instance_id = meet_instance_id(tp->instance_id());
4399       const TypePtr* speculative = xmeet_speculative(tp);
4400       int depth = meet_inline_depth(tp->inline_depth());
4401       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4402     }
4403     default: typerr(t);
4404     }
4405   }
4406 
4407   case AnyPtr: {                // Meeting to AnyPtrs
4408     // Found an AnyPtr type vs self-InstPtr type
4409     const TypePtr *tp = t->is_ptr();
4410     Offset offset = meet_offset(tp->offset());
4411     PTR ptr = meet_ptr(tp->ptr());
4412     int instance_id = meet_instance_id(InstanceTop);
4413     const TypePtr* speculative = xmeet_speculative(tp);
4414     int depth = meet_inline_depth(tp->inline_depth());
4415     switch (tp->ptr()) {
4416     case Null:
4417       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4418       // else fall through to AnyNull
4419     case TopPTR:
4420     case AnyNull: {
4421       return make(ptr, klass(), _interfaces, klass_is_exact(),
4422                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4423     }
4424     case NotNull:
4425     case BotPTR:
4426       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4427     default: typerr(t);
4428     }
4429   }
4430 
4431   /*
4432                  A-top         }
4433                /   |   \       }  Tops
4434            B-top A-any C-top   }
4435               | /  |  \ |      }  Any-nulls
4436            B-any   |   C-any   }
4437               |    |    |
4438            B-con A-con C-con   } constants; not comparable across classes
4439               |    |    |
4440            B-not   |   C-not   }
4441               | \  |  / |      }  not-nulls
4442            B-bot A-not C-bot   }
4443                \   |   /       }  Bottoms
4444                  A-bot         }
4445   */
4446 
4447   case InstPtr: {                // Meeting 2 Oops?
4448     // Found an InstPtr sub-type vs self-InstPtr type
4449     const TypeInstPtr *tinst = t->is_instptr();
4450     Offset off = meet_offset(tinst->offset());
4451     PTR ptr = meet_ptr(tinst->ptr());
4452     int instance_id = meet_instance_id(tinst->instance_id());
4453     const TypePtr* speculative = xmeet_speculative(tinst);
4454     int depth = meet_inline_depth(tinst->inline_depth());
4455     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4456 
4457     ciKlass* tinst_klass = tinst->klass();
4458     ciKlass* this_klass  = klass();
4459 
4460     ciKlass* res_klass = nullptr;
4461     bool res_xk = false;
4462     bool res_flat_in_array = false;
4463     const Type* res;
4464     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4465 
4466     if (kind == UNLOADED) {
4467       // One of these classes has not been loaded
4468       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4469 #ifndef PRODUCT
4470       if (PrintOpto && Verbose) {
4471         tty->print("meet of unloaded classes resulted in: ");
4472         unloaded_meet->dump();
4473         tty->cr();
4474         tty->print("  this == ");
4475         dump();
4476         tty->cr();
4477         tty->print(" tinst == ");
4478         tinst->dump();
4479         tty->cr();
4480       }
4481 #endif
4482       res = unloaded_meet;
4483     } else {
4484       if (kind == NOT_SUBTYPE && instance_id > 0) {
4485         instance_id = InstanceBot;
4486       } else if (kind == LCA) {
4487         instance_id = InstanceBot;
4488       }
4489       ciObject* o = nullptr;             // Assume not constant when done
4490       ciObject* this_oop = const_oop();
4491       ciObject* tinst_oop = tinst->const_oop();
4492       if (ptr == Constant) {
4493         if (this_oop != nullptr && tinst_oop != nullptr &&
4494             this_oop->equals(tinst_oop))
4495           o = this_oop;
4496         else if (above_centerline(_ptr)) {
4497           assert(!tinst_klass->is_interface(), "");
4498           o = tinst_oop;
4499         } else if (above_centerline(tinst->_ptr)) {
4500           assert(!this_klass->is_interface(), "");
4501           o = this_oop;
4502         } else
4503           ptr = NotNull;
4504       }
4505       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4506     }
4507 
4508     return res;
4509 
4510   } // End of case InstPtr
4511 
4512   } // End of switch
4513   return this;                  // Return the double constant
4514 }
4515 
4516 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4517                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4518   ciKlass* this_klass = this_type->klass();
4519   ciKlass* other_klass = other_type->klass();
4520   const bool this_flat_in_array = this_type->flat_in_array();
4521   const bool other_flat_in_array = other_type->flat_in_array();
4522   const bool this_not_flat_in_array = this_type->not_flat_in_array();
4523   const bool other_not_flat_in_array = other_type->not_flat_in_array();
4524 
4525   bool this_xk = this_type->klass_is_exact();
4526   bool other_xk = other_type->klass_is_exact();
4527   PTR this_ptr = this_type->ptr();
4528   PTR other_ptr = other_type->ptr();
4529   const TypeInterfaces* this_interfaces = this_type->interfaces();
4530   const TypeInterfaces* other_interfaces = other_type->interfaces();
4531   // Check for easy case; klasses are equal (and perhaps not loaded!)
4532   // If we have constants, then we created oops so classes are loaded
4533   // and we can handle the constants further down.  This case handles
4534   // both-not-loaded or both-loaded classes
4535   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4536     res_klass = this_klass;
4537     res_xk = this_xk;
4538     res_flat_in_array = this_flat_in_array;
4539     return QUICK;
4540   }
4541 
4542   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4543   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4544     return UNLOADED;
4545   }
4546 
4547   // !!! Here's how the symmetry requirement breaks down into invariants:
4548   // If we split one up & one down AND they subtype, take the down man.
4549   // If we split one up & one down AND they do NOT subtype, "fall hard".
4550   // If both are up and they subtype, take the subtype class.
4551   // If both are up and they do NOT subtype, "fall hard".
4552   // If both are down and they subtype, take the supertype class.
4553   // If both are down and they do NOT subtype, "fall hard".
4554   // Constants treated as down.
4555 
4556   // Now, reorder the above list; observe that both-down+subtype is also
4557   // "fall hard"; "fall hard" becomes the default case:
4558   // If we split one up & one down AND they subtype, take the down man.
4559   // If both are up and they subtype, take the subtype class.
4560 
4561   // If both are down and they subtype, "fall hard".
4562   // If both are down and they do NOT subtype, "fall hard".
4563   // If both are up and they do NOT subtype, "fall hard".
4564   // If we split one up & one down AND they do NOT subtype, "fall hard".
4565 
4566   // If a proper subtype is exact, and we return it, we return it exactly.
4567   // If a proper supertype is exact, there can be no subtyping relationship!
4568   // If both types are equal to the subtype, exactness is and-ed below the
4569   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4570 
4571   // Flat in Array property _flat_in_array.
4572   // For simplicity, _flat_in_array is a boolean but we actually have a tri state:
4573   // - Flat in array       -> flat_in_array()
4574   // - Not flat in array   -> not_flat_in_array()
4575   // - Maybe flat in array -> !not_flat_in_array()
4576   //
4577   // Maybe we should convert _flat_in_array to a proper lattice with four elements at some point:
4578   //
4579   //                  Top
4580   //    Flat in Array     Not Flat in Array
4581   //          Maybe Flat in Array
4582   //
4583   // where
4584   //     Top = dual(maybe Flat In Array) = "Flat in Array AND Not Flat in Array"
4585   //
4586   // But for now we stick with the current model with _flat_in_array as a boolean.
4587   //
4588   // When meeting two InstPtr types, we want to have the following behavior:
4589   //
4590   // (FiA-M) Meet(this, other):
4591   //     'this' and 'other' are either the same klass OR sub klasses:
4592   //
4593   //                yes maybe no
4594   //           yes   y    m    m                      y = Flat in Array
4595   //         maybe   m    m    m                      n = Not Flat in Array
4596   //            no   m    m    n                      m = Maybe Flat in Array
4597   //
4598   //  Join(this, other):
4599   //     (FiA-J-Same) 'this' and 'other' are the SAME klass:
4600   //
4601   //                yes maybe no                      E = Empty set
4602   //           yes   y    y    E                      y = Flat in Array
4603   //         maybe   y    m    m                      n = Not Flat in Array
4604   //            no   E    m    n                      m = Maybe Flat in Array
4605   //
4606   //     (FiA-J-Sub) 'this' and 'other' are SUB klasses:
4607   //
4608   //               yes maybe no   -> Super Klass      E = Empty set
4609   //          yes   y    y    y                       y = Flat in Array
4610   //        maybe   y    m    m                       n = Not Flat in Array
4611   //           no   E    m    n                       m = Maybe Flat in Array
4612   //           |
4613   //           v
4614   //       Sub Klass
4615   //
4616   //     Note the difference when joining a super klass that is not flat in array with a sub klass that is compared to
4617   //     the same klass case. We will take over the flat in array property of the sub klass. This can be done because
4618   //     the super klass could be Object (i.e. not an inline type and thus not flat in array) while the sub klass is a
4619   //     value class which can be flat in array.
4620   //
4621   //     The empty set is only a possible result when matching 'ptr' above the center line (i.e. joining). In this case,
4622   //     we can "fall hard" by setting 'ptr' to NotNull such that when we take the dual of that meet above the center
4623   //     line, we get an empty set again.
4624   //
4625   //     Note: When changing to a separate lattice with _flat_in_array we may want to add TypeInst(Klass)Ptr::empty()
4626   //           that returns true when the meet result is FlatInArray::Top (i.e. dual(maybe flat in array)).
4627 
4628   const T* subtype = nullptr;
4629   bool subtype_exact = false;
4630   bool flat_in_array = false;
4631   bool is_empty = false;
4632   if (this_type->is_same_java_type_as(other_type)) {
4633     // Same klass
4634     subtype = this_type;
4635     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4636     if (above_centerline(ptr)) {
4637       // Case (FiA-J-Same)
4638       // One is flat in array and the other not? Result is empty/"fall hard".
4639       is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4640     }
4641   } else if (!other_xk && is_meet_subtype_of(this_type, other_type)) {
4642     subtype = this_type;     // Pick subtyping class
4643     subtype_exact = this_xk;
4644     if (above_centerline(ptr)) {
4645       // Case (FiA-J-Sub)
4646       is_empty = this_not_flat_in_array && other_flat_in_array;
4647       if (!is_empty) {
4648         bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4649         flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4650       }
4651     }
4652   } else if (!this_xk && is_meet_subtype_of(other_type, this_type)) {
4653     subtype = other_type;    // Pick subtyping class
4654     subtype_exact = other_xk;
4655     if (above_centerline(ptr)) {
4656       // Case (FiA-J-Sub)
4657       is_empty = this_flat_in_array && other_not_flat_in_array;
4658       if (!is_empty) {
4659         bool this_flat_other_maybe_flat = this_flat_in_array && (!other_flat_in_array && !other_not_flat_in_array);
4660         flat_in_array = other_flat_in_array || this_flat_other_maybe_flat;
4661       }
4662     }
4663   }
4664 
4665 
4666   if (subtype && !is_empty) {
4667     if (above_centerline(ptr)) {
4668       // Both types are empty.
4669       this_type = other_type = subtype;
4670       this_xk = other_xk = subtype_exact;
4671       // Case (FiA-J-Sub)
4672       bool other_flat_this_maybe_flat = other_flat_in_array && (!this_flat_in_array && !this_not_flat_in_array);
4673       flat_in_array = this_flat_in_array || other_flat_this_maybe_flat;
4674       // One is flat in array and the other not? Result is empty/"fall hard".
4675       is_empty = (this_flat_in_array && other_not_flat_in_array) || (this_not_flat_in_array && other_flat_in_array);
4676     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4677       // this_type is empty while other_type is not. Take other_type.
4678       this_type = other_type;
4679       this_xk = other_xk;
4680       flat_in_array = other_flat_in_array;
4681     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4682       // other_type is empty while this_type is not. Take this_type.
4683       other_type = this_type; // this is down; keep down man
4684       flat_in_array = this_flat_in_array;
4685     } else {
4686       // this_type and other_type are both non-empty.
4687       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4688       // Case (FiA-M)
4689       // Meeting two types below the center line: Only flat in array if both are.
4690       flat_in_array = this_flat_in_array && other_flat_in_array;
4691     }
4692   }
4693 
4694   // Check for classes now being equal
4695   if (this_type->is_same_java_type_as(other_type) && !is_empty) {
4696     // If the klasses are equal, the constants may still differ.  Fall to
4697     // NotNull if they do (neither constant is null; that is a special case
4698     // handled elsewhere).
4699     res_klass = this_type->klass();
4700     res_xk = this_xk;
4701     res_flat_in_array = flat_in_array;
4702     return SUBTYPE;
4703   } // Else classes are not equal
4704 
4705   // Since klasses are different, we require a LCA in the Java
4706   // class hierarchy - which means we have to fall to at least NotNull.
4707   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4708     ptr = NotNull;
4709   }
4710 
4711   interfaces = this_interfaces->intersection_with(other_interfaces);
4712 
4713   // Now we find the LCA of Java classes
4714   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4715 
4716   res_klass = k;
4717   res_xk = false;
4718   res_flat_in_array = this_flat_in_array && other_flat_in_array;
4719 
4720   return LCA;
4721 }
4722 
4723 template<class T> bool TypePtr::is_meet_subtype_of(const T* sub_type, const T* super_type) {
4724   return sub_type->is_meet_subtype_of(super_type) && !(super_type->flat_in_array() && sub_type->not_flat_in_array());
4725 }
4726 
4727 //------------------------java_mirror_type--------------------------------------
4728 ciType* TypeInstPtr::java_mirror_type() const {
4729   // must be a singleton type
4730   if( const_oop() == nullptr )  return nullptr;
4731 
4732   // must be of type java.lang.Class
4733   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4734   return const_oop()->as_instance()->java_mirror_type();
4735 }
4736 
4737 
4738 //------------------------------xdual------------------------------------------
4739 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4740 // inheritance mechanism.
4741 const Type *TypeInstPtr::xdual() const {
4742   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4743 }
4744 
4745 //------------------------------eq---------------------------------------------
4746 // Structural equality check for Type representations
4747 bool TypeInstPtr::eq( const Type *t ) const {
4748   const TypeInstPtr *p = t->is_instptr();
4749   return
4750     klass()->equals(p->klass()) &&
4751     flat_in_array() == p->flat_in_array() &&
4752     _interfaces->eq(p->_interfaces) &&
4753     TypeOopPtr::eq(p);          // Check sub-type stuff
4754 }
4755 
4756 //------------------------------hash-------------------------------------------
4757 // Type-specific hashing function.
4758 uint TypeInstPtr::hash(void) const {
4759   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4760 }
4761 
4762 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4763   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4764 }
4765 
4766 
4767 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4768   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4769 }
4770 
4771 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4772   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4773 }
4774 
4775 
4776 //------------------------------dump2------------------------------------------
4777 // Dump oop Type
4778 #ifndef PRODUCT
4779 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4780   // Print the name of the klass.
4781   klass()->print_name_on(st);
4782   _interfaces->dump(st);
4783 
4784   switch( _ptr ) {
4785   case Constant:
4786     if (WizardMode || Verbose) {
4787       ResourceMark rm;
4788       stringStream ss;
4789 
4790       st->print(" ");
4791       const_oop()->print_oop(&ss);
4792       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4793       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4794       char* buf = ss.as_string(/* c_heap= */false);
4795       StringUtils::replace_no_expand(buf, "\n", "");
4796       st->print_raw(buf);
4797     }
4798   case BotPTR:
4799     if (!WizardMode && !Verbose) {
4800       if( _klass_is_exact ) st->print(":exact");
4801       break;
4802     }
4803   case TopPTR:
4804   case AnyNull:
4805   case NotNull:
4806     st->print(":%s", ptr_msg[_ptr]);
4807     if( _klass_is_exact ) st->print(":exact");
4808     break;
4809   default:
4810     break;
4811   }
4812 
4813   _offset.dump2(st);
4814 
4815   st->print(" *");
4816 
4817   if (flat_in_array() && !klass()->is_inlinetype()) {
4818     st->print(" (flat in array)");
4819   }
4820 
4821   if (_instance_id == InstanceTop)
4822     st->print(",iid=top");
4823   else if (_instance_id != InstanceBot)
4824     st->print(",iid=%d",_instance_id);
4825 
4826   dump_inline_depth(st);
4827   dump_speculative(st);
4828 }
4829 #endif
4830 
4831 //------------------------------add_offset-------------------------------------
4832 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4833   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4834               _instance_id, add_offset_speculative(offset), _inline_depth);
4835 }
4836 
4837 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4838   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4839               _instance_id, with_offset_speculative(offset), _inline_depth);
4840 }
4841 
4842 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4843   if (_speculative == nullptr) {
4844     return this;
4845   }
4846   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4847   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4848               _instance_id, nullptr, _inline_depth);
4849 }
4850 
4851 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4852   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, speculative, _inline_depth);
4853 }
4854 
4855 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4856   if (!UseInlineDepthForSpeculativeTypes) {
4857     return this;
4858   }
4859   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4860 }
4861 
4862 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4863   assert(is_known_instance(), "should be known");
4864   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4865 }
4866 
4867 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4868   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4869 }
4870 
4871 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4872   bool xk = klass_is_exact();
4873   ciInstanceKlass* ik = klass()->as_instance_klass();
4874   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4875     if (_interfaces->eq(ik)) {
4876       Compile* C = Compile::current();
4877       Dependencies* deps = C->dependencies();
4878       deps->assert_leaf_type(ik);
4879       xk = true;
4880     }
4881   }
4882   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4883 }
4884 
4885 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4886   static_assert(std::is_base_of<T2, T1>::value, "");
4887 
4888   if (!this_one->is_instance_type(other)) {
4889     return false;
4890   }
4891 
4892   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4893     return true;
4894   }
4895 
4896   return this_one->klass()->is_subtype_of(other->klass()) &&
4897          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4898 }
4899 
4900 
4901 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4902   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4903 }
4904 
4905 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4906   static_assert(std::is_base_of<T2, T1>::value, "");
4907   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4908     return true;
4909   }
4910 
4911   if (this_one->is_instance_type(other)) {
4912     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4913   }
4914 
4915   int dummy;
4916   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4917   if (this_top_or_bottom) {
4918     return false;
4919   }
4920 
4921   const T1* other_ary = this_one->is_array_type(other);
4922   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4923   const TypePtr* this_elem = this_one->elem()->make_ptr();
4924   if (other_elem != nullptr && this_elem != nullptr) {
4925     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4926   }
4927   if (other_elem == nullptr && this_elem == nullptr) {
4928     return this_one->klass()->is_subtype_of(other->klass());
4929   }
4930 
4931   return false;
4932 }
4933 
4934 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4935   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4936 }
4937 
4938 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4939   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4940 }
4941 
4942 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4943   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4944 }
4945 
4946 //=============================================================================
4947 // Convenience common pre-built types.
4948 const TypeAryPtr* TypeAryPtr::BOTTOM;
4949 const TypeAryPtr *TypeAryPtr::RANGE;
4950 const TypeAryPtr *TypeAryPtr::OOPS;
4951 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4952 const TypeAryPtr *TypeAryPtr::BYTES;
4953 const TypeAryPtr *TypeAryPtr::SHORTS;
4954 const TypeAryPtr *TypeAryPtr::CHARS;
4955 const TypeAryPtr *TypeAryPtr::INTS;
4956 const TypeAryPtr *TypeAryPtr::LONGS;
4957 const TypeAryPtr *TypeAryPtr::FLOATS;
4958 const TypeAryPtr *TypeAryPtr::DOUBLES;
4959 const TypeAryPtr *TypeAryPtr::INLINES;
4960 
4961 //------------------------------make-------------------------------------------
4962 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4963                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4964   assert(!(k == nullptr && ary->_elem->isa_int()),
4965          "integral arrays must be pre-equipped with a class");
4966   if (!xk)  xk = ary->ary_must_be_exact();
4967   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4968   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4969       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4970     k = nullptr;
4971   }
4972   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4973 }
4974 
4975 //------------------------------make-------------------------------------------
4976 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4977                                    int instance_id, const TypePtr* speculative, int inline_depth,
4978                                    bool is_autobox_cache) {
4979   assert(!(k == nullptr && ary->_elem->isa_int()),
4980          "integral arrays must be pre-equipped with a class");
4981   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4982   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4983   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4984   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4985       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4986     k = nullptr;
4987   }
4988   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4989 }
4990 
4991 //------------------------------cast_to_ptr_type-------------------------------
4992 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4993   if( ptr == _ptr ) return this;
4994   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4995 }
4996 
4997 
4998 //-----------------------------cast_to_exactness-------------------------------
4999 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5000   if( klass_is_exact == _klass_is_exact ) return this;
5001   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
5002   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5003 }
5004 
5005 //-----------------------------cast_to_instance_id----------------------------
5006 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5007   if( instance_id == _instance_id ) return this;
5008   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5009 }
5010 
5011 
5012 //-----------------------------max_array_length-------------------------------
5013 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5014 jint TypeAryPtr::max_array_length(BasicType etype) {
5015   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5016     if (etype == T_NARROWOOP) {
5017       etype = T_OBJECT;
5018     } else if (etype == T_ILLEGAL) { // bottom[]
5019       etype = T_BYTE; // will produce conservatively high value
5020     } else {
5021       fatal("not an element type: %s", type2name(etype));
5022     }
5023   }
5024   return arrayOopDesc::max_array_length(etype);
5025 }
5026 
5027 //-----------------------------narrow_size_type-------------------------------
5028 // Narrow the given size type to the index range for the given array base type.
5029 // Return null if the resulting int type becomes empty.
5030 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
5031   jint hi = size->_hi;
5032   jint lo = size->_lo;
5033   jint min_lo = 0;
5034   jint max_hi = max_array_length(elem()->array_element_basic_type());
5035   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
5036   bool chg = false;
5037   if (lo < min_lo) {
5038     lo = min_lo;
5039     if (size->is_con()) {
5040       hi = lo;
5041     }
5042     chg = true;
5043   }
5044   if (hi > max_hi) {
5045     hi = max_hi;
5046     if (size->is_con()) {
5047       lo = hi;
5048     }
5049     chg = true;
5050   }
5051   // Negative length arrays will produce weird intermediate dead fast-path code
5052   if (lo > hi) {
5053     return TypeInt::ZERO;
5054   }
5055   if (!chg) {
5056     return size;
5057   }
5058   return TypeInt::make(lo, hi, Type::WidenMin);
5059 }
5060 
5061 //-------------------------------cast_to_size----------------------------------
5062 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5063   assert(new_size != nullptr, "");
5064   new_size = narrow_size_type(new_size);
5065   if (new_size == size())  return this;
5066   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5067   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5068 }
5069 
5070 //-------------------------------cast_to_not_flat------------------------------
5071 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5072   if (not_flat == is_not_flat()) {
5073     return this;
5074   }
5075   assert(!not_flat || !is_flat(), "inconsistency");
5076   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5077   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5078   // We keep the speculative part if it contains information about flat-/nullability.
5079   // Make sure it's removed if it's not better than the non-speculative type anymore.
5080   if (res->speculative() == res->remove_speculative()) {
5081     return res->remove_speculative();
5082   }
5083   return res;
5084 }
5085 
5086 //-------------------------------cast_to_not_null_free-------------------------
5087 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5088   if (not_null_free == is_not_null_free()) {
5089     return this;
5090   }
5091   assert(!not_null_free || !is_null_free(), "inconsistency");
5092   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5093   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5094                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5095   // We keep the speculative part if it contains information about flat-/nullability.
5096   // Make sure it's removed if it's not better than the non-speculative type anymore.
5097   if (res->speculative() == res->remove_speculative()) {
5098     return res->remove_speculative();
5099   }
5100   return res;
5101 }
5102 
5103 //---------------------------------update_properties---------------------------
5104 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5105   if ((from->is_flat()          && is_not_flat()) ||
5106       (from->is_not_flat()      && is_flat()) ||
5107       (from->is_null_free()     && is_not_null_free()) ||
5108       (from->is_not_null_free() && is_null_free())) {
5109     return nullptr; // Inconsistent properties
5110   }
5111   const TypeAryPtr* res = this;
5112   if (from->is_not_null_free()) {
5113     res = res->cast_to_not_null_free();
5114   }
5115   if (from->is_not_flat()) {
5116     res = res->cast_to_not_flat();
5117   }
5118   return res;
5119 }
5120 
5121 jint TypeAryPtr::flat_layout_helper() const {
5122   return klass()->as_flat_array_klass()->layout_helper();
5123 }
5124 
5125 int TypeAryPtr::flat_elem_size() const {
5126   return klass()->as_flat_array_klass()->element_byte_size();
5127 }
5128 
5129 int TypeAryPtr::flat_log_elem_size() const {
5130   return klass()->as_flat_array_klass()->log2_element_size();
5131 }
5132 
5133 //------------------------------cast_to_stable---------------------------------
5134 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5135   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5136     return this;
5137 
5138   const Type* elem = this->elem();
5139   const TypePtr* elem_ptr = elem->make_ptr();
5140 
5141   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5142     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5143     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5144   }
5145 
5146   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5147 
5148   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5149 }
5150 
5151 //-----------------------------stable_dimension--------------------------------
5152 int TypeAryPtr::stable_dimension() const {
5153   if (!is_stable())  return 0;
5154   int dim = 1;
5155   const TypePtr* elem_ptr = elem()->make_ptr();
5156   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5157     dim += elem_ptr->is_aryptr()->stable_dimension();
5158   return dim;
5159 }
5160 
5161 //----------------------cast_to_autobox_cache-----------------------------------
5162 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5163   if (is_autobox_cache())  return this;
5164   const TypeOopPtr* etype = elem()->make_oopptr();
5165   if (etype == nullptr)  return this;
5166   // The pointers in the autobox arrays are always non-null.
5167   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5168   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5169   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5170 }
5171 
5172 //------------------------------eq---------------------------------------------
5173 // Structural equality check for Type representations
5174 bool TypeAryPtr::eq( const Type *t ) const {
5175   const TypeAryPtr *p = t->is_aryptr();
5176   return
5177     _ary == p->_ary &&  // Check array
5178     TypeOopPtr::eq(p) &&// Check sub-parts
5179     _field_offset == p->_field_offset;
5180 }
5181 
5182 //------------------------------hash-------------------------------------------
5183 // Type-specific hashing function.
5184 uint TypeAryPtr::hash(void) const {
5185   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5186 }
5187 
5188 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5189   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5190 }
5191 
5192 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5193   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5194 }
5195 
5196 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5197   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5198 }
5199 //------------------------------meet-------------------------------------------
5200 // Compute the MEET of two types.  It returns a new Type object.
5201 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5202   // Perform a fast test for common case; meeting the same types together.
5203   if( this == t ) return this;  // Meeting same type-rep?
5204   // Current "this->_base" is Pointer
5205   switch (t->base()) {          // switch on original type
5206 
5207   // Mixing ints & oops happens when javac reuses local variables
5208   case Int:
5209   case Long:
5210   case HalfFloatTop:
5211   case HalfFloatCon:
5212   case HalfFloatBot:
5213   case FloatTop:
5214   case FloatCon:
5215   case FloatBot:
5216   case DoubleTop:
5217   case DoubleCon:
5218   case DoubleBot:
5219   case NarrowOop:
5220   case NarrowKlass:
5221   case Bottom:                  // Ye Olde Default
5222     return Type::BOTTOM;
5223   case Top:
5224     return this;
5225 
5226   default:                      // All else is a mistake
5227     typerr(t);
5228 
5229   case OopPtr: {                // Meeting to OopPtrs
5230     // Found a OopPtr type vs self-AryPtr type
5231     const TypeOopPtr *tp = t->is_oopptr();
5232     Offset offset = meet_offset(tp->offset());
5233     PTR ptr = meet_ptr(tp->ptr());
5234     int depth = meet_inline_depth(tp->inline_depth());
5235     const TypePtr* speculative = xmeet_speculative(tp);
5236     switch (tp->ptr()) {
5237     case TopPTR:
5238     case AnyNull: {
5239       int instance_id = meet_instance_id(InstanceTop);
5240       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5241                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5242     }
5243     case BotPTR:
5244     case NotNull: {
5245       int instance_id = meet_instance_id(tp->instance_id());
5246       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5247     }
5248     default: ShouldNotReachHere();
5249     }
5250   }
5251 
5252   case AnyPtr: {                // Meeting two AnyPtrs
5253     // Found an AnyPtr type vs self-AryPtr type
5254     const TypePtr *tp = t->is_ptr();
5255     Offset offset = meet_offset(tp->offset());
5256     PTR ptr = meet_ptr(tp->ptr());
5257     const TypePtr* speculative = xmeet_speculative(tp);
5258     int depth = meet_inline_depth(tp->inline_depth());
5259     switch (tp->ptr()) {
5260     case TopPTR:
5261       return this;
5262     case BotPTR:
5263     case NotNull:
5264       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5265     case Null:
5266       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5267       // else fall through to AnyNull
5268     case AnyNull: {
5269       int instance_id = meet_instance_id(InstanceTop);
5270       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5271                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5272     }
5273     default: ShouldNotReachHere();
5274     }
5275   }
5276 
5277   case MetadataPtr:
5278   case KlassPtr:
5279   case InstKlassPtr:
5280   case AryKlassPtr:
5281   case RawPtr: return TypePtr::BOTTOM;
5282 
5283   case AryPtr: {                // Meeting 2 references?
5284     const TypeAryPtr *tap = t->is_aryptr();
5285     Offset off = meet_offset(tap->offset());
5286     Offset field_off = meet_field_offset(tap->field_offset());
5287     const Type* tm = _ary->meet_speculative(tap->_ary);
5288     const TypeAry* tary = tm->isa_ary();
5289     if (tary == nullptr) {
5290       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5291       return tm;
5292     }
5293     PTR ptr = meet_ptr(tap->ptr());
5294     int instance_id = meet_instance_id(tap->instance_id());
5295     const TypePtr* speculative = xmeet_speculative(tap);
5296     int depth = meet_inline_depth(tap->inline_depth());
5297 
5298     ciKlass* res_klass = nullptr;
5299     bool res_xk = false;
5300     bool res_flat = false;
5301     bool res_not_flat = false;
5302     bool res_not_null_free = false;
5303     bool res_atomic = false;
5304     const Type* elem = tary->_elem;
5305     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5306       instance_id = InstanceBot;
5307     } else if (this->is_flat() != tap->is_flat()) {
5308       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5309       if (tary->_flat) {
5310         // Result is in a flat representation
5311         off = Offset(is_flat() ? offset() : tap->offset());
5312         field_off = is_flat() ? field_offset() : tap->field_offset();
5313       } else if (below_centerline(ptr)) {
5314         // Result is in a non-flat representation
5315         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5316         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5317       } else if (flat_offset() == tap->flat_offset()) {
5318         off = Offset(!is_flat() ? offset() : tap->offset());
5319         field_off = !is_flat() ? field_offset() : tap->field_offset();
5320       }
5321     }
5322 
5323     ciObject* o = nullptr;             // Assume not constant when done
5324     ciObject* this_oop = const_oop();
5325     ciObject* tap_oop = tap->const_oop();
5326     if (ptr == Constant) {
5327       if (this_oop != nullptr && tap_oop != nullptr &&
5328           this_oop->equals(tap_oop)) {
5329         o = tap_oop;
5330       } else if (above_centerline(_ptr)) {
5331         o = tap_oop;
5332       } else if (above_centerline(tap->_ptr)) {
5333         o = this_oop;
5334       } else {
5335         ptr = NotNull;
5336       }
5337     }
5338     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5339   }
5340 
5341   // All arrays inherit from Object class
5342   case InstPtr: {
5343     const TypeInstPtr *tp = t->is_instptr();
5344     Offset offset = meet_offset(tp->offset());
5345     PTR ptr = meet_ptr(tp->ptr());
5346     int instance_id = meet_instance_id(tp->instance_id());
5347     const TypePtr* speculative = xmeet_speculative(tp);
5348     int depth = meet_inline_depth(tp->inline_depth());
5349     const TypeInterfaces* interfaces = meet_interfaces(tp);
5350     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5351     const TypeInterfaces* this_interfaces = _interfaces;
5352 
5353     switch (ptr) {
5354     case TopPTR:
5355     case AnyNull:                // Fall 'down' to dual of object klass
5356       // For instances when a subclass meets a superclass we fall
5357       // below the centerline when the superclass is exact. We need to
5358       // do the same here.
5359       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5360         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5361       } else {
5362         // cannot subclass, so the meet has to fall badly below the centerline
5363         ptr = NotNull;
5364         instance_id = InstanceBot;
5365         interfaces = this_interfaces->intersection_with(tp_interfaces);
5366         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5367       }
5368     case Constant:
5369     case NotNull:
5370     case BotPTR:                // Fall down to object klass
5371       // LCA is object_klass, but if we subclass from the top we can do better
5372       if (above_centerline(tp->ptr())) {
5373         // If 'tp'  is above the centerline and it is Object class
5374         // then we can subclass in the Java class hierarchy.
5375         // For instances when a subclass meets a superclass we fall
5376         // below the centerline when the superclass is exact. We need
5377         // to do the same here.
5378         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5379           // that is, my array type is a subtype of 'tp' klass
5380           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5381                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5382         }
5383       }
5384       // The other case cannot happen, since t cannot be a subtype of an array.
5385       // The meet falls down to Object class below centerline.
5386       if (ptr == Constant) {
5387          ptr = NotNull;
5388       }
5389       if (instance_id > 0) {
5390         instance_id = InstanceBot;
5391       }
5392       interfaces = this_interfaces->intersection_with(tp_interfaces);
5393       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5394     default: typerr(t);
5395     }
5396   }
5397   }
5398   return this;                  // Lint noise
5399 }
5400 
5401 
5402 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5403                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5404   int dummy;
5405   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5406   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5407   ciKlass* this_klass = this_ary->klass();
5408   ciKlass* other_klass = other_ary->klass();
5409   bool this_xk = this_ary->klass_is_exact();
5410   bool other_xk = other_ary->klass_is_exact();
5411   PTR this_ptr = this_ary->ptr();
5412   PTR other_ptr = other_ary->ptr();
5413   bool this_flat = this_ary->is_flat();
5414   bool this_not_flat = this_ary->is_not_flat();
5415   bool other_flat = other_ary->is_flat();
5416   bool other_not_flat = other_ary->is_not_flat();
5417   bool this_not_null_free = this_ary->is_not_null_free();
5418   bool other_not_null_free = other_ary->is_not_null_free();
5419   bool this_atomic = this_ary->is_atomic();
5420   bool other_atomic = other_ary->is_atomic();
5421   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5422   res_klass = nullptr;
5423   MeetResult result = SUBTYPE;
5424   res_flat = this_flat && other_flat;
5425   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5426   res_not_flat = this_not_flat && other_not_flat;
5427   res_not_null_free = this_not_null_free && other_not_null_free;
5428   res_atomic = this_atomic && other_atomic;
5429 
5430   if (elem->isa_int()) {
5431     // Integral array element types have irrelevant lattice relations.
5432     // It is the klass that determines array layout, not the element type.
5433       if (this_top_or_bottom) {
5434         res_klass = other_klass;
5435       } else if (other_top_or_bottom || other_klass == this_klass) {
5436       res_klass = this_klass;
5437     } else {
5438       // Something like byte[int+] meets char[int+].
5439       // This must fall to bottom, not (int[-128..65535])[int+].
5440       // instance_id = InstanceBot;
5441       elem = Type::BOTTOM;
5442       result = NOT_SUBTYPE;
5443       if (above_centerline(ptr) || ptr == Constant) {
5444         ptr = NotNull;
5445         res_xk = false;
5446         return NOT_SUBTYPE;
5447       }
5448     }
5449   } else {// Non integral arrays.
5450     // Must fall to bottom if exact klasses in upper lattice
5451     // are not equal or super klass is exact.
5452     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5453         // meet with top[] and bottom[] are processed further down:
5454         !this_top_or_bottom && !other_top_or_bottom &&
5455         // both are exact and not equal:
5456         ((other_xk && this_xk) ||
5457          // 'tap'  is exact and super or unrelated:
5458          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5459          // 'this' is exact and super or unrelated:
5460          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5461       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5462         elem = Type::BOTTOM;
5463       }
5464       ptr = NotNull;
5465       res_xk = false;
5466       return NOT_SUBTYPE;
5467     }
5468   }
5469 
5470   res_xk = false;
5471   switch (other_ptr) {
5472     case AnyNull:
5473     case TopPTR:
5474       // Compute new klass on demand, do not use tap->_klass
5475       if (below_centerline(this_ptr)) {
5476         res_xk = this_xk;
5477         if (this_ary->is_flat()) {
5478           elem = this_ary->elem();
5479         }
5480       } else {
5481         res_xk = (other_xk || this_xk);
5482       }
5483       break;
5484     case Constant: {
5485       if (this_ptr == Constant && same_nullness) {
5486         // Only exact if same nullness since:
5487         //     null-free [LMyValue <: nullable [LMyValue.
5488         res_xk = true;
5489       } else if (above_centerline(this_ptr)) {
5490         res_xk = true;
5491       } else {
5492         // Only precise for identical arrays
5493         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5494         // Even though MyValue is final, [LMyValue is only exact if the array
5495         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5496         if (res_xk && !res_null_free && !res_not_null_free) {
5497           ptr = NotNull;
5498           res_xk = false;
5499         }
5500       }
5501       break;
5502     }
5503     case NotNull:
5504     case BotPTR:
5505       // Compute new klass on demand, do not use tap->_klass
5506       if (above_centerline(this_ptr)) {
5507         res_xk = other_xk;
5508         if (other_ary->is_flat()) {
5509           elem = other_ary->elem();
5510         }
5511       } else {
5512         res_xk = (other_xk && this_xk) &&
5513                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5514         // Even though MyValue is final, [LMyValue is only exact if the array
5515         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5516         if (res_xk && !res_null_free && !res_not_null_free) {
5517           ptr = NotNull;
5518           res_xk = false;
5519         }
5520       }
5521       break;
5522     default:  {
5523       ShouldNotReachHere();
5524       return result;
5525     }
5526   }
5527   return result;
5528 }
5529 
5530 
5531 //------------------------------xdual------------------------------------------
5532 // Dual: compute field-by-field dual
5533 const Type *TypeAryPtr::xdual() const {
5534   bool xk = _klass_is_exact;
5535   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5536 }
5537 
5538 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5539   return _field_offset.meet(offset);
5540 }
5541 
5542 //------------------------------dual_offset------------------------------------
5543 Type::Offset TypeAryPtr::dual_field_offset() const {
5544   return _field_offset.dual();
5545 }
5546 
5547 //------------------------------dump2------------------------------------------
5548 #ifndef PRODUCT
5549 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5550   _ary->dump2(d,depth,st);
5551   _interfaces->dump(st);
5552 
5553   switch( _ptr ) {
5554   case Constant:
5555     const_oop()->print(st);
5556     break;
5557   case BotPTR:
5558     if (!WizardMode && !Verbose) {
5559       if( _klass_is_exact ) st->print(":exact");
5560       break;
5561     }
5562   case TopPTR:
5563   case AnyNull:
5564   case NotNull:
5565     st->print(":%s", ptr_msg[_ptr]);
5566     if( _klass_is_exact ) st->print(":exact");
5567     break;
5568   default:
5569     break;
5570   }
5571 
5572   if (is_flat()) {
5573     st->print(":flat");
5574     st->print("(");
5575     _field_offset.dump2(st);
5576     st->print(")");
5577   } else if (is_not_flat()) {
5578     st->print(":not_flat");
5579   }
5580   if (is_null_free()) {
5581     st->print(":null free");
5582   }
5583   if (is_atomic()) {
5584     st->print(":atomic");
5585   }
5586   if (Verbose) {
5587     if (is_not_flat()) {
5588       st->print(":not flat");
5589     }
5590     if (is_not_null_free()) {
5591       st->print(":nullable");
5592     }
5593   }
5594   if (offset() != 0) {
5595     BasicType basic_elem_type = elem()->basic_type();
5596     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5597     if( _offset == Offset::top )       st->print("+undefined");
5598     else if( _offset == Offset::bottom )  st->print("+any");
5599     else if( offset() < header_size ) st->print("+%d", offset());
5600     else {
5601       if (basic_elem_type == T_ILLEGAL) {
5602         st->print("+any");
5603       } else {
5604         int elem_size = type2aelembytes(basic_elem_type);
5605         st->print("[%d]", (offset() - header_size)/elem_size);
5606       }
5607     }
5608   }
5609   st->print(" *");
5610   if (_instance_id == InstanceTop)
5611     st->print(",iid=top");
5612   else if (_instance_id != InstanceBot)
5613     st->print(",iid=%d",_instance_id);
5614 
5615   dump_inline_depth(st);
5616   dump_speculative(st);
5617 }
5618 #endif
5619 
5620 bool TypeAryPtr::empty(void) const {
5621   if (_ary->empty())       return true;
5622   // FIXME: Does this belong here? Or in the meet code itself?
5623   if (is_flat() && is_not_flat()) {
5624     return true;
5625   }
5626   return TypeOopPtr::empty();
5627 }
5628 
5629 //------------------------------add_offset-------------------------------------
5630 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5631   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5632 }
5633 
5634 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5635   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5636 }
5637 
5638 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5639   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5640 }
5641 
5642 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5643   if (_speculative == nullptr) {
5644     return this;
5645   }
5646   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5647   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5648 }
5649 
5650 const Type* TypeAryPtr::cleanup_speculative() const {
5651   if (speculative() == nullptr) {
5652     return this;
5653   }
5654   // Keep speculative part if it contains information about flat-/nullability
5655   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5656   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5657       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5658     return this;
5659   }
5660   return TypeOopPtr::cleanup_speculative();
5661 }
5662 
5663 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5664   if (!UseInlineDepthForSpeculativeTypes) {
5665     return this;
5666   }
5667   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5668 }
5669 
5670 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5671   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5672 }
5673 
5674 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5675   int adj = 0;
5676   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5677     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5678       adj = _offset.get();
5679       offset += _offset.get();
5680     }
5681     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5682     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5683       offset += _field_offset.get();
5684       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5685         offset += header;
5686       }
5687     }
5688     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5689       // Try to get the field of the inline type array element we are pointing to
5690       ciInlineKlass* vk = elem()->inline_klass();
5691       int shift = flat_log_elem_size();
5692       int mask = (1 << shift) - 1;
5693       intptr_t field_offset = ((offset - header) & mask);
5694       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5695       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5696         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5697       }
5698     }
5699   }
5700   return add_offset(offset - adj);
5701 }
5702 
5703 // Return offset incremented by field_offset for flat inline type arrays
5704 int TypeAryPtr::flat_offset() const {
5705   int offset = _offset.get();
5706   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5707       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5708     offset += _field_offset.get();
5709   }
5710   return offset;
5711 }
5712 
5713 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5714   assert(is_known_instance(), "should be known");
5715   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5716 }
5717 
5718 //=============================================================================
5719 
5720 
5721 //------------------------------hash-------------------------------------------
5722 // Type-specific hashing function.
5723 uint TypeNarrowPtr::hash(void) const {
5724   return _ptrtype->hash() + 7;
5725 }
5726 
5727 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5728   return _ptrtype->singleton();
5729 }
5730 
5731 bool TypeNarrowPtr::empty(void) const {
5732   return _ptrtype->empty();
5733 }
5734 
5735 intptr_t TypeNarrowPtr::get_con() const {
5736   return _ptrtype->get_con();
5737 }
5738 
5739 bool TypeNarrowPtr::eq( const Type *t ) const {
5740   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5741   if (tc != nullptr) {
5742     if (_ptrtype->base() != tc->_ptrtype->base()) {
5743       return false;
5744     }
5745     return tc->_ptrtype->eq(_ptrtype);
5746   }
5747   return false;
5748 }
5749 
5750 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5751   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5752   return make_same_narrowptr(odual);
5753 }
5754 
5755 
5756 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5757   if (isa_same_narrowptr(kills)) {
5758     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5759     if (ft->empty())
5760       return Type::TOP;           // Canonical empty value
5761     if (ft->isa_ptr()) {
5762       return make_hash_same_narrowptr(ft->isa_ptr());
5763     }
5764     return ft;
5765   } else if (kills->isa_ptr()) {
5766     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5767     if (ft->empty())
5768       return Type::TOP;           // Canonical empty value
5769     return ft;
5770   } else {
5771     return Type::TOP;
5772   }
5773 }
5774 
5775 //------------------------------xmeet------------------------------------------
5776 // Compute the MEET of two types.  It returns a new Type object.
5777 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5778   // Perform a fast test for common case; meeting the same types together.
5779   if( this == t ) return this;  // Meeting same type-rep?
5780 
5781   if (t->base() == base()) {
5782     const Type* result = _ptrtype->xmeet(t->make_ptr());
5783     if (result->isa_ptr()) {
5784       return make_hash_same_narrowptr(result->is_ptr());
5785     }
5786     return result;
5787   }
5788 
5789   // Current "this->_base" is NarrowKlass or NarrowOop
5790   switch (t->base()) {          // switch on original type
5791 
5792   case Int:                     // Mixing ints & oops happens when javac
5793   case Long:                    // reuses local variables
5794   case HalfFloatTop:
5795   case HalfFloatCon:
5796   case HalfFloatBot:
5797   case FloatTop:
5798   case FloatCon:
5799   case FloatBot:
5800   case DoubleTop:
5801   case DoubleCon:
5802   case DoubleBot:
5803   case AnyPtr:
5804   case RawPtr:
5805   case OopPtr:
5806   case InstPtr:
5807   case AryPtr:
5808   case MetadataPtr:
5809   case KlassPtr:
5810   case InstKlassPtr:
5811   case AryKlassPtr:
5812   case NarrowOop:
5813   case NarrowKlass:
5814   case Bottom:                  // Ye Olde Default
5815     return Type::BOTTOM;
5816   case Top:
5817     return this;
5818 
5819   default:                      // All else is a mistake
5820     typerr(t);
5821 
5822   } // End of switch
5823 
5824   return this;
5825 }
5826 
5827 #ifndef PRODUCT
5828 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5829   _ptrtype->dump2(d, depth, st);
5830 }
5831 #endif
5832 
5833 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5834 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5835 
5836 
5837 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5838   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5839 }
5840 
5841 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5842   return make(_ptrtype->remove_speculative()->is_ptr());
5843 }
5844 
5845 const Type* TypeNarrowOop::cleanup_speculative() const {
5846   return make(_ptrtype->cleanup_speculative()->is_ptr());
5847 }
5848 
5849 #ifndef PRODUCT
5850 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5851   st->print("narrowoop: ");
5852   TypeNarrowPtr::dump2(d, depth, st);
5853 }
5854 #endif
5855 
5856 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5857 
5858 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5859   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5860 }
5861 
5862 #ifndef PRODUCT
5863 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5864   st->print("narrowklass: ");
5865   TypeNarrowPtr::dump2(d, depth, st);
5866 }
5867 #endif
5868 
5869 
5870 //------------------------------eq---------------------------------------------
5871 // Structural equality check for Type representations
5872 bool TypeMetadataPtr::eq( const Type *t ) const {
5873   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5874   ciMetadata* one = metadata();
5875   ciMetadata* two = a->metadata();
5876   if (one == nullptr || two == nullptr) {
5877     return (one == two) && TypePtr::eq(t);
5878   } else {
5879     return one->equals(two) && TypePtr::eq(t);
5880   }
5881 }
5882 
5883 //------------------------------hash-------------------------------------------
5884 // Type-specific hashing function.
5885 uint TypeMetadataPtr::hash(void) const {
5886   return
5887     (metadata() ? metadata()->hash() : 0) +
5888     TypePtr::hash();
5889 }
5890 
5891 //------------------------------singleton--------------------------------------
5892 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5893 // constants
5894 bool TypeMetadataPtr::singleton(void) const {
5895   // detune optimizer to not generate constant metadata + constant offset as a constant!
5896   // TopPTR, Null, AnyNull, Constant are all singletons
5897   return (offset() == 0) && !below_centerline(_ptr);
5898 }
5899 
5900 //------------------------------add_offset-------------------------------------
5901 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5902   return make( _ptr, _metadata, xadd_offset(offset));
5903 }
5904 
5905 //-----------------------------filter------------------------------------------
5906 // Do not allow interface-vs.-noninterface joins to collapse to top.
5907 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5908   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5909   if (ft == nullptr || ft->empty())
5910     return Type::TOP;           // Canonical empty value
5911   return ft;
5912 }
5913 
5914  //------------------------------get_con----------------------------------------
5915 intptr_t TypeMetadataPtr::get_con() const {
5916   assert( _ptr == Null || _ptr == Constant, "" );
5917   assert(offset() >= 0, "");
5918 
5919   if (offset() != 0) {
5920     // After being ported to the compiler interface, the compiler no longer
5921     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5922     // to a handle at compile time.  This handle is embedded in the generated
5923     // code and dereferenced at the time the nmethod is made.  Until that time,
5924     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5925     // have access to the addresses!).  This does not seem to currently happen,
5926     // but this assertion here is to help prevent its occurrence.
5927     tty->print_cr("Found oop constant with non-zero offset");
5928     ShouldNotReachHere();
5929   }
5930 
5931   return (intptr_t)metadata()->constant_encoding();
5932 }
5933 
5934 //------------------------------cast_to_ptr_type-------------------------------
5935 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5936   if( ptr == _ptr ) return this;
5937   return make(ptr, metadata(), _offset);
5938 }
5939 
5940 //------------------------------meet-------------------------------------------
5941 // Compute the MEET of two types.  It returns a new Type object.
5942 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5943   // Perform a fast test for common case; meeting the same types together.
5944   if( this == t ) return this;  // Meeting same type-rep?
5945 
5946   // Current "this->_base" is OopPtr
5947   switch (t->base()) {          // switch on original type
5948 
5949   case Int:                     // Mixing ints & oops happens when javac
5950   case Long:                    // reuses local variables
5951   case HalfFloatTop:
5952   case HalfFloatCon:
5953   case HalfFloatBot:
5954   case FloatTop:
5955   case FloatCon:
5956   case FloatBot:
5957   case DoubleTop:
5958   case DoubleCon:
5959   case DoubleBot:
5960   case NarrowOop:
5961   case NarrowKlass:
5962   case Bottom:                  // Ye Olde Default
5963     return Type::BOTTOM;
5964   case Top:
5965     return this;
5966 
5967   default:                      // All else is a mistake
5968     typerr(t);
5969 
5970   case AnyPtr: {
5971     // Found an AnyPtr type vs self-OopPtr type
5972     const TypePtr *tp = t->is_ptr();
5973     Offset offset = meet_offset(tp->offset());
5974     PTR ptr = meet_ptr(tp->ptr());
5975     switch (tp->ptr()) {
5976     case Null:
5977       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5978       // else fall through:
5979     case TopPTR:
5980     case AnyNull: {
5981       return make(ptr, _metadata, offset);
5982     }
5983     case BotPTR:
5984     case NotNull:
5985       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5986     default: typerr(t);
5987     }
5988   }
5989 
5990   case RawPtr:
5991   case KlassPtr:
5992   case InstKlassPtr:
5993   case AryKlassPtr:
5994   case OopPtr:
5995   case InstPtr:
5996   case AryPtr:
5997     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5998 
5999   case MetadataPtr: {
6000     const TypeMetadataPtr *tp = t->is_metadataptr();
6001     Offset offset = meet_offset(tp->offset());
6002     PTR tptr = tp->ptr();
6003     PTR ptr = meet_ptr(tptr);
6004     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6005     if (tptr == TopPTR || _ptr == TopPTR ||
6006         metadata()->equals(tp->metadata())) {
6007       return make(ptr, md, offset);
6008     }
6009     // metadata is different
6010     if( ptr == Constant ) {  // Cannot be equal constants, so...
6011       if( tptr == Constant && _ptr != Constant)  return t;
6012       if( _ptr == Constant && tptr != Constant)  return this;
6013       ptr = NotNull;            // Fall down in lattice
6014     }
6015     return make(ptr, nullptr, offset);
6016     break;
6017   }
6018   } // End of switch
6019   return this;                  // Return the double constant
6020 }
6021 
6022 
6023 //------------------------------xdual------------------------------------------
6024 // Dual of a pure metadata pointer.
6025 const Type *TypeMetadataPtr::xdual() const {
6026   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6027 }
6028 
6029 //------------------------------dump2------------------------------------------
6030 #ifndef PRODUCT
6031 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6032   st->print("metadataptr:%s", ptr_msg[_ptr]);
6033   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
6034   switch (offset()) {
6035   case OffsetTop: st->print("+top"); break;
6036   case OffsetBot: st->print("+any"); break;
6037   case         0: break;
6038   default:        st->print("+%d",offset()); break;
6039   }
6040 }
6041 #endif
6042 
6043 
6044 //=============================================================================
6045 // Convenience common pre-built type.
6046 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6047 
6048 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6049   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6050 }
6051 
6052 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6053   return make(Constant, m, Offset(0));
6054 }
6055 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6056   return make(Constant, m, Offset(0));
6057 }
6058 
6059 //------------------------------make-------------------------------------------
6060 // Create a meta data constant
6061 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6062   assert(m == nullptr || !m->is_klass(), "wrong type");
6063   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6064 }
6065 
6066 
6067 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6068   const Type* elem = _ary->_elem;
6069   bool xk = klass_is_exact();
6070   if (elem->make_oopptr() != nullptr) {
6071     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6072     if (elem->is_klassptr()->klass_is_exact() &&
6073         // Even though MyValue is final, [LMyValue is only exact if the array
6074         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6075         // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6076         // If so, we should add '|| is_not_null_free()'
6077         (is_null_free() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
6078       xk = true;
6079     }
6080   }
6081   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_flat() || is_null_free());
6082 }
6083 
6084 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6085   if (klass->is_instance_klass()) {
6086     return TypeInstKlassPtr::make(klass, interface_handling);
6087   }
6088   return TypeAryKlassPtr::make(klass, interface_handling);
6089 }
6090 
6091 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
6092   if (klass->is_instance_klass()) {
6093     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
6094     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
6095   }
6096   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
6097 }
6098 
6099 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)
6100   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6101   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6102          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6103 }
6104 
6105 // Is there a single ciKlass* that can represent that type?
6106 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6107   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6108   if (_interfaces->empty()) {
6109     return _klass;
6110   }
6111   if (_klass != ciEnv::current()->Object_klass()) {
6112     if (_interfaces->eq(_klass->as_instance_klass())) {
6113       return _klass;
6114     }
6115     return nullptr;
6116   }
6117   return _interfaces->exact_klass();
6118 }
6119 
6120 //------------------------------eq---------------------------------------------
6121 // Structural equality check for Type representations
6122 bool TypeKlassPtr::eq(const Type *t) const {
6123   const TypeKlassPtr *p = t->is_klassptr();
6124   return
6125     _interfaces->eq(p->_interfaces) &&
6126     TypePtr::eq(p);
6127 }
6128 
6129 //------------------------------hash-------------------------------------------
6130 // Type-specific hashing function.
6131 uint TypeKlassPtr::hash(void) const {
6132   return TypePtr::hash() + _interfaces->hash();
6133 }
6134 
6135 //------------------------------singleton--------------------------------------
6136 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6137 // constants
6138 bool TypeKlassPtr::singleton(void) const {
6139   // detune optimizer to not generate constant klass + constant offset as a constant!
6140   // TopPTR, Null, AnyNull, Constant are all singletons
6141   return (offset() == 0) && !below_centerline(_ptr);
6142 }
6143 
6144 // Do not allow interface-vs.-noninterface joins to collapse to top.
6145 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6146   // logic here mirrors the one from TypeOopPtr::filter. See comments
6147   // there.
6148   const Type* ft = join_helper(kills, include_speculative);
6149 
6150   if (ft->empty()) {
6151     return Type::TOP;           // Canonical empty value
6152   }
6153 
6154   return ft;
6155 }
6156 
6157 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6158   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6159     return _interfaces->union_with(other->_interfaces);
6160   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6161     return other->_interfaces;
6162   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6163     return _interfaces;
6164   }
6165   return _interfaces->intersection_with(other->_interfaces);
6166 }
6167 
6168 //------------------------------get_con----------------------------------------
6169 intptr_t TypeKlassPtr::get_con() const {
6170   assert( _ptr == Null || _ptr == Constant, "" );
6171   assert( offset() >= 0, "" );
6172 
6173   if (offset() != 0) {
6174     // After being ported to the compiler interface, the compiler no longer
6175     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6176     // to a handle at compile time.  This handle is embedded in the generated
6177     // code and dereferenced at the time the nmethod is made.  Until that time,
6178     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6179     // have access to the addresses!).  This does not seem to currently happen,
6180     // but this assertion here is to help prevent its occurrence.
6181     tty->print_cr("Found oop constant with non-zero offset");
6182     ShouldNotReachHere();
6183   }
6184 
6185   ciKlass* k = exact_klass();
6186 
6187   return (intptr_t)k->constant_encoding();
6188 }
6189 
6190 //------------------------------dump2------------------------------------------
6191 // Dump Klass Type
6192 #ifndef PRODUCT
6193 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
6194   switch(_ptr) {
6195   case Constant:
6196     st->print("precise ");
6197   case NotNull:
6198     {
6199       const char *name = klass()->name()->as_utf8();
6200       if (name) {
6201         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6202       } else {
6203         ShouldNotReachHere();
6204       }
6205       _interfaces->dump(st);
6206     }
6207   case BotPTR:
6208     if (!WizardMode && !Verbose && _ptr != Constant) break;
6209   case TopPTR:
6210   case AnyNull:
6211     st->print(":%s", ptr_msg[_ptr]);
6212     if (_ptr == Constant) st->print(":exact");
6213     break;
6214   default:
6215     break;
6216   }
6217   if (Verbose) {
6218     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");
6219   }
6220   _offset.dump2(st);
6221   st->print(" *");
6222 
6223   if (flat_in_array() && !klass()->is_inlinetype()) {
6224     st->print(" (flat in array)");
6225   }
6226 }
6227 #endif
6228 
6229 //=============================================================================
6230 // Convenience common pre-built types.
6231 
6232 // Not-null object klass or below
6233 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6234 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6235 
6236 bool TypeInstKlassPtr::eq(const Type *t) const {
6237   const TypeKlassPtr *p = t->is_klassptr();
6238   return
6239     klass()->equals(p->klass()) &&
6240     flat_in_array() == p->flat_in_array() &&
6241     TypeKlassPtr::eq(p);
6242 }
6243 
6244 uint TypeInstKlassPtr::hash(void) const {
6245   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6246 }
6247 
6248 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6249   flat_in_array = flat_in_array || k->maybe_flat_in_array();
6250 
6251   TypeInstKlassPtr *r =
6252     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6253 
6254   return r;
6255 }
6256 
6257 //------------------------------add_offset-------------------------------------
6258 // Access internals of klass object
6259 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6260   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6261 }
6262 
6263 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6264   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6265 }
6266 
6267 //------------------------------cast_to_ptr_type-------------------------------
6268 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6269   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6270   if( ptr == _ptr ) return this;
6271   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6272 }
6273 
6274 
6275 bool TypeInstKlassPtr::must_be_exact() const {
6276   if (!_klass->is_loaded())  return false;
6277   ciInstanceKlass* ik = _klass->as_instance_klass();
6278   if (ik->is_final())  return true;  // cannot clear xk
6279   return false;
6280 }
6281 
6282 //-----------------------------cast_to_exactness-------------------------------
6283 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6284   if (klass_is_exact == (_ptr == Constant)) return this;
6285   if (must_be_exact()) return this;
6286   ciKlass* k = klass();
6287   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6288 }
6289 
6290 
6291 //-----------------------------as_instance_type--------------------------------
6292 // Corresponding type for an instance of the given class.
6293 // It will be NotNull, and exact if and only if the klass type is exact.
6294 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6295   ciKlass* k = klass();
6296   bool xk = klass_is_exact();
6297   Compile* C = Compile::current();
6298   Dependencies* deps = C->dependencies();
6299   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6300   // Element is an instance
6301   bool klass_is_exact = false;
6302   const TypeInterfaces* interfaces = _interfaces;
6303   if (k->is_loaded()) {
6304     // Try to set klass_is_exact.
6305     ciInstanceKlass* ik = k->as_instance_klass();
6306     klass_is_exact = ik->is_final();
6307     if (!klass_is_exact && klass_change
6308         && deps != nullptr && UseUniqueSubclasses) {
6309       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6310       if (sub != nullptr) {
6311         if (_interfaces->eq(sub)) {
6312           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6313           k = ik = sub;
6314           xk = sub->is_final();
6315         }
6316       }
6317     }
6318   }
6319   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6320 }
6321 
6322 //------------------------------xmeet------------------------------------------
6323 // Compute the MEET of two types, return a new Type object.
6324 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6325   // Perform a fast test for common case; meeting the same types together.
6326   if( this == t ) return this;  // Meeting same type-rep?
6327 
6328   // Current "this->_base" is Pointer
6329   switch (t->base()) {          // switch on original type
6330 
6331   case Int:                     // Mixing ints & oops happens when javac
6332   case Long:                    // reuses local variables
6333   case HalfFloatTop:
6334   case HalfFloatCon:
6335   case HalfFloatBot:
6336   case FloatTop:
6337   case FloatCon:
6338   case FloatBot:
6339   case DoubleTop:
6340   case DoubleCon:
6341   case DoubleBot:
6342   case NarrowOop:
6343   case NarrowKlass:
6344   case Bottom:                  // Ye Olde Default
6345     return Type::BOTTOM;
6346   case Top:
6347     return this;
6348 
6349   default:                      // All else is a mistake
6350     typerr(t);
6351 
6352   case AnyPtr: {                // Meeting to AnyPtrs
6353     // Found an AnyPtr type vs self-KlassPtr type
6354     const TypePtr *tp = t->is_ptr();
6355     Offset offset = meet_offset(tp->offset());
6356     PTR ptr = meet_ptr(tp->ptr());
6357     switch (tp->ptr()) {
6358     case TopPTR:
6359       return this;
6360     case Null:
6361       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6362     case AnyNull:
6363       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6364     case BotPTR:
6365     case NotNull:
6366       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6367     default: typerr(t);
6368     }
6369   }
6370 
6371   case RawPtr:
6372   case MetadataPtr:
6373   case OopPtr:
6374   case AryPtr:                  // Meet with AryPtr
6375   case InstPtr:                 // Meet with InstPtr
6376       return TypePtr::BOTTOM;
6377 
6378   //
6379   //             A-top         }
6380   //           /   |   \       }  Tops
6381   //       B-top A-any C-top   }
6382   //          | /  |  \ |      }  Any-nulls
6383   //       B-any   |   C-any   }
6384   //          |    |    |
6385   //       B-con A-con C-con   } constants; not comparable across classes
6386   //          |    |    |
6387   //       B-not   |   C-not   }
6388   //          | \  |  / |      }  not-nulls
6389   //       B-bot A-not C-bot   }
6390   //           \   |   /       }  Bottoms
6391   //             A-bot         }
6392   //
6393 
6394   case InstKlassPtr: {  // Meet two KlassPtr types
6395     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6396     Offset  off     = meet_offset(tkls->offset());
6397     PTR  ptr     = meet_ptr(tkls->ptr());
6398     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6399 
6400     ciKlass* res_klass = nullptr;
6401     bool res_xk = false;
6402     bool res_flat_in_array = false;
6403     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6404       case UNLOADED:
6405         ShouldNotReachHere();
6406       case SUBTYPE:
6407       case NOT_SUBTYPE:
6408       case LCA:
6409       case QUICK: {
6410         assert(res_xk == (ptr == Constant), "");
6411         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6412         return res;
6413       }
6414       default:
6415         ShouldNotReachHere();
6416     }
6417   } // End of case KlassPtr
6418   case AryKlassPtr: {                // All arrays inherit from Object class
6419     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6420     Offset offset = meet_offset(tp->offset());
6421     PTR ptr = meet_ptr(tp->ptr());
6422     const TypeInterfaces* interfaces = meet_interfaces(tp);
6423     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6424     const TypeInterfaces* this_interfaces = _interfaces;
6425 
6426     switch (ptr) {
6427     case TopPTR:
6428     case AnyNull:                // Fall 'down' to dual of object klass
6429       // For instances when a subclass meets a superclass we fall
6430       // below the centerline when the superclass is exact. We need to
6431       // do the same here.
6432       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6433         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6434       } else {
6435         // cannot subclass, so the meet has to fall badly below the centerline
6436         ptr = NotNull;
6437         interfaces = _interfaces->intersection_with(tp->_interfaces);
6438         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6439       }
6440     case Constant:
6441     case NotNull:
6442     case BotPTR:                // Fall down to object klass
6443       // LCA is object_klass, but if we subclass from the top we can do better
6444       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6445         // If 'this' (InstPtr) is above the centerline and it is Object class
6446         // then we can subclass in the Java class hierarchy.
6447         // For instances when a subclass meets a superclass we fall
6448         // below the centerline when the superclass is exact. We need
6449         // to do the same here.
6450         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6451           // that is, tp's array type is a subtype of my klass
6452           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6453         }
6454       }
6455       // The other case cannot happen, since I cannot be a subtype of an array.
6456       // The meet falls down to Object class below centerline.
6457       if( ptr == Constant )
6458          ptr = NotNull;
6459       interfaces = this_interfaces->intersection_with(tp_interfaces);
6460       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6461     default: typerr(t);
6462     }
6463   }
6464 
6465   } // End of switch
6466   return this;                  // Return the double constant
6467 }
6468 
6469 //------------------------------xdual------------------------------------------
6470 // Dual: compute field-by-field dual
6471 const Type    *TypeInstKlassPtr::xdual() const {
6472   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6473 }
6474 
6475 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6476   static_assert(std::is_base_of<T2, T1>::value, "");
6477   if (!this_one->is_loaded() || !other->is_loaded()) {
6478     return false;
6479   }
6480   if (!this_one->is_instance_type(other)) {
6481     return false;
6482   }
6483 
6484   if (!other_exact) {
6485     return false;
6486   }
6487 
6488   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6489     return true;
6490   }
6491 
6492   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6493 }
6494 
6495 bool TypeInstKlassPtr::might_be_an_array() const {
6496   if (!instance_klass()->is_java_lang_Object()) {
6497     // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types.
6498     return false;
6499   }
6500   if (interfaces()->has_non_array_interface()) {
6501     // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array.
6502     return false;
6503   }
6504   // Cannot prove it's not an array.
6505   return true;
6506 }
6507 
6508 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6509   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6510 }
6511 
6512 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6513   static_assert(std::is_base_of<T2, T1>::value, "");
6514   if (!this_one->is_loaded() || !other->is_loaded()) {
6515     return false;
6516   }
6517   if (!this_one->is_instance_type(other)) {
6518     return false;
6519   }
6520   return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
6521 }
6522 
6523 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6524   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6525 }
6526 
6527 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6528   static_assert(std::is_base_of<T2, T1>::value, "");
6529   if (!this_one->is_loaded() || !other->is_loaded()) {
6530     return true;
6531   }
6532 
6533   if (this_one->is_array_type(other)) {
6534     return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
6535   }
6536 
6537   assert(this_one->is_instance_type(other), "unsupported");
6538 
6539   if (this_exact && other_exact) {
6540     return this_one->is_java_subtype_of(other);
6541   }
6542 
6543   if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
6544     return false;
6545   }
6546 
6547   if (this_exact) {
6548     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6549   }
6550 
6551   return true;
6552 }
6553 
6554 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6555   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6556 }
6557 
6558 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6559   if (!UseUniqueSubclasses) {
6560     return this;
6561   }
6562   ciKlass* k = klass();
6563   Compile* C = Compile::current();
6564   Dependencies* deps = C->dependencies();
6565   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6566   const TypeInterfaces* interfaces = _interfaces;
6567   if (k->is_loaded()) {
6568     ciInstanceKlass* ik = k->as_instance_klass();
6569     bool klass_is_exact = ik->is_final();
6570     if (!klass_is_exact &&
6571         deps != nullptr) {
6572       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6573       if (sub != nullptr) {
6574         if (_interfaces->eq(sub)) {
6575           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6576           k = ik = sub;
6577           klass_is_exact = sub->is_final();
6578           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6579         }
6580       }
6581     }
6582   }
6583   return this;
6584 }
6585 
6586 bool TypeInstKlassPtr::can_be_inline_array() const {
6587   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6588 }
6589 
6590 bool TypeAryKlassPtr::can_be_inline_array() const {
6591   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6592 }
6593 
6594 bool TypeInstPtr::can_be_inline_array() const {
6595   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6596 }
6597 
6598 bool TypeAryPtr::can_be_inline_array() const {
6599   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6600 }
6601 
6602 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6603   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6604 }
6605 
6606 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6607   if (k->is_obj_array_klass()) {
6608     // Element is an object array. Recursively call ourself.
6609     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6610     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6611     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6612   } else if (k->is_type_array_klass()) {
6613     // Element is an typeArray
6614     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6615     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic);
6616   } else if (k->is_flat_array_klass()) {
6617     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6618     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6619     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6620   } else {
6621     ShouldNotReachHere();
6622     return nullptr;
6623   }
6624 }
6625 
6626 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool refined_type) {
6627   bool flat = k->is_flat_array_klass();
6628   bool null_free = k->as_array_klass()->is_elem_null_free();
6629   bool atomic = k->as_array_klass()->is_elem_atomic();
6630 
6631   bool not_inline = k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false);
6632   bool not_null_free = (ptr == Constant) ? !null_free : not_inline;
6633   bool not_flat = (ptr == Constant) ? !flat : (!UseArrayFlattening || not_inline ||
6634                    (k->as_array_klass()->element_klass() != nullptr &&
6635                     k->as_array_klass()->element_klass()->is_inlinetype() &&
6636                    !k->as_array_klass()->element_klass()->maybe_flat_in_array()));
6637 
6638   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6639 }
6640 
6641 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling, bool refined_type) {
6642   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling, refined_type);
6643 }
6644 
6645 // Get the (non-)refined array klass ptr
6646 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6647   if ((refined == is_refined_type()) || !klass_is_exact() || (!exact_klass()->is_obj_array_klass() && !exact_klass()->is_flat_array_klass())) {
6648     return this;
6649   }
6650   ciKlass* eklass = elem()->is_klassptr()->exact_klass_helper();
6651   if (elem()->isa_aryklassptr()) {
6652     eklass = exact_klass()->as_obj_array_klass()->element_klass();
6653   }
6654   ciKlass* array_klass = ciArrayKlass::make(eklass, eklass->is_inlinetype() ? is_null_free() : false, eklass->is_inlinetype() ? is_atomic() : true, refined);
6655   return make(_ptr, array_klass, Offset(0), trust_interfaces, refined);
6656 }
6657 
6658 //------------------------------eq---------------------------------------------
6659 // Structural equality check for Type representations
6660 bool TypeAryKlassPtr::eq(const Type *t) const {
6661   const TypeAryKlassPtr *p = t->is_aryklassptr();
6662   return
6663     _elem == p->_elem &&  // Check array
6664     _flat == p->_flat &&
6665     _not_flat == p->_not_flat &&
6666     _null_free == p->_null_free &&
6667     _not_null_free == p->_not_null_free &&
6668     _atomic == p->_atomic &&
6669     _refined_type == p->_refined_type &&
6670     TypeKlassPtr::eq(p);  // Check sub-parts
6671 }
6672 
6673 //------------------------------hash-------------------------------------------
6674 // Type-specific hashing function.
6675 uint TypeAryKlassPtr::hash(void) const {
6676   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6677       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6678 }
6679 
6680 //----------------------compute_klass------------------------------------------
6681 // Compute the defining klass for this class
6682 ciKlass* TypeAryPtr::compute_klass() const {
6683   // Compute _klass based on element type.
6684   ciKlass* k_ary = nullptr;
6685   const TypeInstPtr *tinst;
6686   const TypeAryPtr *tary;
6687   const Type* el = elem();
6688   if (el->isa_narrowoop()) {
6689     el = el->make_ptr();
6690   }
6691 
6692   // Get element klass
6693   if (is_flat() && el->is_inlinetypeptr()) {
6694     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6695     if (el->inline_klass() != nullptr) {
6696       // TODO 8350865 We assume atomic if the atomic layout is available, use is_atomic() here
6697       bool atomic = is_null_free() ? el->inline_klass()->has_atomic_layout() : el->inline_klass()->has_nullable_atomic_layout();
6698       k_ary = ciArrayKlass::make(el->inline_klass(), is_null_free(), atomic, true);
6699     }
6700   } else if ((tinst = el->isa_instptr()) != nullptr) {
6701     // Leave k_ary at nullptr.
6702   } else if ((tary = el->isa_aryptr()) != nullptr) {
6703     // Leave k_ary at nullptr.
6704   } else if ((el->base() == Type::Top) ||
6705              (el->base() == Type::Bottom)) {
6706     // element type of Bottom occurs from meet of basic type
6707     // and object; Top occurs when doing join on Bottom.
6708     // Leave k_ary at null.
6709   } else {
6710     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6711     // Compute array klass directly from basic type
6712     k_ary = ciTypeArrayKlass::make(el->basic_type());
6713   }
6714   return k_ary;
6715 }
6716 
6717 //------------------------------klass------------------------------------------
6718 // Return the defining klass for this class
6719 ciKlass* TypeAryPtr::klass() const {
6720   if( _klass ) return _klass;   // Return cached value, if possible
6721 
6722   // Oops, need to compute _klass and cache it
6723   ciKlass* k_ary = compute_klass();
6724 
6725   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6726     // The _klass field acts as a cache of the underlying
6727     // ciKlass for this array type.  In order to set the field,
6728     // we need to cast away const-ness.
6729     //
6730     // IMPORTANT NOTE: we *never* set the _klass field for the
6731     // type TypeAryPtr::OOPS.  This Type is shared between all
6732     // active compilations.  However, the ciKlass which represents
6733     // this Type is *not* shared between compilations, so caching
6734     // this value would result in fetching a dangling pointer.
6735     //
6736     // Recomputing the underlying ciKlass for each request is
6737     // a bit less efficient than caching, but calls to
6738     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6739     ((TypeAryPtr*)this)->_klass = k_ary;
6740   }
6741   return k_ary;
6742 }
6743 
6744 // Is there a single ciKlass* that can represent that type?
6745 ciKlass* TypeAryPtr::exact_klass_helper() const {
6746   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6747     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6748     if (k == nullptr) {
6749       return nullptr;
6750     }
6751     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), is_flat() || is_null_free());
6752     return k;
6753   }
6754 
6755   return klass();
6756 }
6757 
6758 const Type* TypeAryPtr::base_element_type(int& dims) const {
6759   const Type* elem = this->elem();
6760   dims = 1;
6761   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6762     elem = elem->make_ptr()->is_aryptr()->elem();
6763     dims++;
6764   }
6765   return elem;
6766 }
6767 
6768 //------------------------------add_offset-------------------------------------
6769 // Access internals of klass object
6770 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6771   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6772 }
6773 
6774 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6775   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6776 }
6777 
6778 //------------------------------cast_to_ptr_type-------------------------------
6779 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6780   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6781   if (ptr == _ptr) return this;
6782   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6783 }
6784 
6785 bool TypeAryKlassPtr::must_be_exact() const {
6786   if (_elem == Type::BOTTOM) return false;
6787   if (_elem == Type::TOP   ) return false;
6788   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6789   if (!tk)             return true;   // a primitive type, like int
6790   // Even though MyValue is final, [LMyValue is only exact if the array
6791   // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
6792   // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
6793   // If so, we should add '&& !is_not_null_free()'
6794   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6795     return false;
6796   }
6797   return tk->must_be_exact();
6798 }
6799 
6800 
6801 //-----------------------------cast_to_exactness-------------------------------
6802 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6803   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6804   if (klass_is_exact == this->klass_is_exact()) {
6805     return this;
6806   }
6807   ciKlass* k = _klass;
6808   const Type* elem = this->elem();
6809   if (elem->isa_klassptr() && !klass_is_exact) {
6810     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6811   }
6812   bool not_flat = is_not_flat();
6813   bool not_null_free = is_not_null_free();
6814   if (_elem->isa_klassptr()) {
6815     if (klass_is_exact || _elem->isa_aryklassptr()) {
6816       assert((!is_null_free() && !is_flat()) ||
6817              _elem->is_klassptr()->klass()->is_abstract() || _elem->is_klassptr()->klass()->is_java_lang_Object(),
6818              "null-free (or flat) concrete inline type arrays should always be exact");
6819       // An array can't be null-free (or flat) if the klass is exact
6820       not_null_free = true;
6821       not_flat = true;
6822     } else {
6823       // Klass is not exact (anymore), re-compute null-free/flat properties
6824       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6825       bool not_inline = !exact_etype->can_be_inline_type();
6826       not_null_free = not_inline;
6827       not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
6828     }
6829   }
6830   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _flat, _null_free, _atomic, _refined_type);
6831 }
6832 
6833 //-----------------------------as_instance_type--------------------------------
6834 // Corresponding type for an instance of the given class.
6835 // It will be NotNull, and exact if and only if the klass type is exact.
6836 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6837   ciKlass* k = klass();
6838   bool    xk = klass_is_exact();
6839   const Type* el = nullptr;
6840   if (elem()->isa_klassptr()) {
6841     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6842     k = nullptr;
6843   } else {
6844     el = elem();
6845   }
6846   bool null_free = _null_free;
6847   if (null_free && el->isa_ptr()) {
6848     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6849   }
6850   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6851 }
6852 
6853 
6854 //------------------------------xmeet------------------------------------------
6855 // Compute the MEET of two types, return a new Type object.
6856 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6857   // Perform a fast test for common case; meeting the same types together.
6858   if( this == t ) return this;  // Meeting same type-rep?
6859 
6860   // Current "this->_base" is Pointer
6861   switch (t->base()) {          // switch on original type
6862 
6863   case Int:                     // Mixing ints & oops happens when javac
6864   case Long:                    // reuses local variables
6865   case HalfFloatTop:
6866   case HalfFloatCon:
6867   case HalfFloatBot:
6868   case FloatTop:
6869   case FloatCon:
6870   case FloatBot:
6871   case DoubleTop:
6872   case DoubleCon:
6873   case DoubleBot:
6874   case NarrowOop:
6875   case NarrowKlass:
6876   case Bottom:                  // Ye Olde Default
6877     return Type::BOTTOM;
6878   case Top:
6879     return this;
6880 
6881   default:                      // All else is a mistake
6882     typerr(t);
6883 
6884   case AnyPtr: {                // Meeting to AnyPtrs
6885     // Found an AnyPtr type vs self-KlassPtr type
6886     const TypePtr *tp = t->is_ptr();
6887     Offset offset = meet_offset(tp->offset());
6888     PTR ptr = meet_ptr(tp->ptr());
6889     switch (tp->ptr()) {
6890     case TopPTR:
6891       return this;
6892     case Null:
6893       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6894     case AnyNull:
6895       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6896     case BotPTR:
6897     case NotNull:
6898       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6899     default: typerr(t);
6900     }
6901   }
6902 
6903   case RawPtr:
6904   case MetadataPtr:
6905   case OopPtr:
6906   case AryPtr:                  // Meet with AryPtr
6907   case InstPtr:                 // Meet with InstPtr
6908     return TypePtr::BOTTOM;
6909 
6910   //
6911   //             A-top         }
6912   //           /   |   \       }  Tops
6913   //       B-top A-any C-top   }
6914   //          | /  |  \ |      }  Any-nulls
6915   //       B-any   |   C-any   }
6916   //          |    |    |
6917   //       B-con A-con C-con   } constants; not comparable across classes
6918   //          |    |    |
6919   //       B-not   |   C-not   }
6920   //          | \  |  / |      }  not-nulls
6921   //       B-bot A-not C-bot   }
6922   //           \   |   /       }  Bottoms
6923   //             A-bot         }
6924   //
6925 
6926   case AryKlassPtr: {  // Meet two KlassPtr types
6927     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6928     Offset off = meet_offset(tap->offset());
6929     const Type* elem = _elem->meet(tap->_elem);
6930     PTR ptr = meet_ptr(tap->ptr());
6931     ciKlass* res_klass = nullptr;
6932     bool res_xk = false;
6933     bool res_flat = false;
6934     bool res_not_flat = false;
6935     bool res_not_null_free = false;
6936     bool res_atomic = false;
6937     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6938                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
6939     assert(res_xk == (ptr == Constant), "");
6940     bool flat = meet_flat(tap->_flat);
6941     bool null_free = meet_null_free(tap->_null_free);
6942     bool atomic = meet_atomic(tap->_atomic);
6943     bool refined_type = _refined_type && tap->_refined_type;
6944     if (res == NOT_SUBTYPE) {
6945       flat = false;
6946       null_free = false;
6947       atomic = false;
6948       refined_type = false;
6949     } else if (res == SUBTYPE) {
6950       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6951         flat = _flat;
6952         null_free = _null_free;
6953         atomic = _atomic;
6954         refined_type = _refined_type;
6955       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6956         flat = tap->_flat;
6957         null_free = tap->_null_free;
6958         atomic = tap->_atomic;
6959         refined_type = tap->_refined_type;
6960       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6961         flat = _flat || tap->_flat;
6962         null_free = _null_free || tap->_null_free;
6963         atomic = _atomic || tap->_atomic;
6964         refined_type = _refined_type || tap->_refined_type;
6965       } else if (res_xk && _refined_type != tap->_refined_type) {
6966         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
6967         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
6968         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
6969         ptr = PTR::NotNull;
6970       }
6971     }
6972     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
6973   } // End of case KlassPtr
6974   case InstKlassPtr: {
6975     const TypeInstKlassPtr *tp = t->is_instklassptr();
6976     Offset offset = meet_offset(tp->offset());
6977     PTR ptr = meet_ptr(tp->ptr());
6978     const TypeInterfaces* interfaces = meet_interfaces(tp);
6979     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6980     const TypeInterfaces* this_interfaces = _interfaces;
6981 
6982     switch (ptr) {
6983     case TopPTR:
6984     case AnyNull:                // Fall 'down' to dual of object klass
6985       // For instances when a subclass meets a superclass we fall
6986       // below the centerline when the superclass is exact. We need to
6987       // do the same here.
6988       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6989           !tp->klass_is_exact()) {
6990         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6991       } else {
6992         // cannot subclass, so the meet has to fall badly below the centerline
6993         ptr = NotNull;
6994         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6995         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6996       }
6997     case Constant:
6998     case NotNull:
6999     case BotPTR:                // Fall down to object klass
7000       // LCA is object_klass, but if we subclass from the top we can do better
7001       if (above_centerline(tp->ptr())) {
7002         // If 'tp'  is above the centerline and it is Object class
7003         // then we can subclass in the Java class hierarchy.
7004         // For instances when a subclass meets a superclass we fall
7005         // below the centerline when the superclass is exact. We need
7006         // to do the same here.
7007         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7008             !tp->klass_is_exact()) {
7009           // that is, my array type is a subtype of 'tp' klass
7010           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7011         }
7012       }
7013       // The other case cannot happen, since t cannot be a subtype of an array.
7014       // The meet falls down to Object class below centerline.
7015       if (ptr == Constant)
7016          ptr = NotNull;
7017       interfaces = this_interfaces->intersection_with(tp_interfaces);
7018       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
7019     default: typerr(t);
7020     }
7021   }
7022 
7023   } // End of switch
7024   return this;                  // Return the double constant
7025 }
7026 
7027 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7028   static_assert(std::is_base_of<T2, T1>::value, "");
7029 
7030   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7031     return true;
7032   }
7033 
7034   int dummy;
7035   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7036 
7037   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7038     return false;
7039   }
7040 
7041   if (this_one->is_instance_type(other)) {
7042     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7043            other_exact;
7044   }
7045 
7046   assert(this_one->is_array_type(other), "");
7047   const T1* other_ary = this_one->is_array_type(other);
7048   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7049   if (other_top_or_bottom) {
7050     return false;
7051   }
7052 
7053   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7054   const TypePtr* this_elem = this_one->elem()->make_ptr();
7055   if (this_elem != nullptr && other_elem != nullptr) {
7056     if (other->is_null_free() && !this_one->is_null_free()) {
7057       return false; // A nullable array can't be a subtype of a null-free array
7058     }
7059     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7060   }
7061   if (this_elem == nullptr && other_elem == nullptr) {
7062     return this_one->klass()->is_subtype_of(other->klass());
7063   }
7064   return false;
7065 }
7066 
7067 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7068   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7069 }
7070 
7071 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7072   static_assert(std::is_base_of<T2, T1>::value, "");
7073 
7074   int dummy;
7075   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7076 
7077   if (!this_one->is_array_type(other) ||
7078       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7079     return false;
7080   }
7081   const T1* other_ary = this_one->is_array_type(other);
7082   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7083 
7084   if (other_top_or_bottom) {
7085     return false;
7086   }
7087 
7088   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7089   const TypePtr* this_elem = this_one->elem()->make_ptr();
7090   if (other_elem != nullptr && this_elem != nullptr) {
7091     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
7092   }
7093   if (other_elem == nullptr && this_elem == nullptr) {
7094     return this_one->klass()->equals(other->klass());
7095   }
7096   return false;
7097 }
7098 
7099 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
7100   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
7101 }
7102 
7103 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7104   static_assert(std::is_base_of<T2, T1>::value, "");
7105   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7106     return true;
7107   }
7108   if (!this_one->is_loaded() || !other->is_loaded()) {
7109     return true;
7110   }
7111   if (this_one->is_instance_type(other)) {
7112     return other->klass()->equals(ciEnv::current()->Object_klass()) &&
7113            this_one->_interfaces->contains(other->_interfaces);
7114   }
7115 
7116   int dummy;
7117   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7118   if (this_top_or_bottom) {
7119     return true;
7120   }
7121 
7122   assert(this_one->is_array_type(other), "");
7123 
7124   const T1* other_ary = this_one->is_array_type(other);
7125   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7126   if (other_top_or_bottom) {
7127     return true;
7128   }
7129   if (this_exact && other_exact) {
7130     return this_one->is_java_subtype_of(other);
7131   }
7132 
7133   const TypePtr* this_elem = this_one->elem()->make_ptr();
7134   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7135   if (other_elem != nullptr && this_elem != nullptr) {
7136     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7137   }
7138   if (other_elem == nullptr && this_elem == nullptr) {
7139     return this_one->klass()->is_subtype_of(other->klass());
7140   }
7141   return false;
7142 }
7143 
7144 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7145   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7146 }
7147 
7148 //------------------------------xdual------------------------------------------
7149 // Dual: compute field-by-field dual
7150 const Type    *TypeAryKlassPtr::xdual() const {
7151   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7152 }
7153 
7154 // Is there a single ciKlass* that can represent that type?
7155 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7156   if (elem()->isa_klassptr()) {
7157     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7158     if (k == nullptr) {
7159       return nullptr;
7160     }
7161     k = ciArrayKlass::make(k, k->is_inlinetype() ? is_null_free() : false, k->is_inlinetype() ? is_atomic() : true, _refined_type);
7162     return k;
7163   }
7164 
7165   return klass();
7166 }
7167 
7168 ciKlass* TypeAryKlassPtr::klass() const {
7169   if (_klass != nullptr) {
7170     return _klass;
7171   }
7172   ciKlass* k = nullptr;
7173   if (elem()->isa_klassptr()) {
7174     // leave null
7175   } else if ((elem()->base() == Type::Top) ||
7176              (elem()->base() == Type::Bottom)) {
7177   } else {
7178     k = ciTypeArrayKlass::make(elem()->basic_type());
7179     ((TypeAryKlassPtr*)this)->_klass = k;
7180   }
7181   return k;
7182 }
7183 
7184 //------------------------------dump2------------------------------------------
7185 // Dump Klass Type
7186 #ifndef PRODUCT
7187 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7188   switch( _ptr ) {
7189   case Constant:
7190     st->print("precise ");
7191   case NotNull:
7192     {
7193       st->print("[");
7194       _elem->dump2(d, depth, st);
7195       _interfaces->dump(st);
7196       st->print(": ");
7197     }
7198   case BotPTR:
7199     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7200   case TopPTR:
7201   case AnyNull:
7202     st->print(":%s", ptr_msg[_ptr]);
7203     if( _ptr == Constant ) st->print(":exact");
7204     break;
7205   default:
7206     break;
7207   }
7208   if (_flat) st->print(":flat");
7209   if (_null_free) st->print(":null free");
7210   if (_atomic) st->print(":atomic");
7211   if (_refined_type) st->print(":refined_type");
7212   if (Verbose) {
7213     if (_not_flat) st->print(":not flat");
7214     if (_not_null_free) st->print(":nullable");
7215   }
7216 
7217   _offset.dump2(st);
7218 
7219   st->print(" *");
7220 }
7221 #endif
7222 
7223 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7224   const Type* elem = this->elem();
7225   dims = 1;
7226   while (elem->isa_aryklassptr()) {
7227     elem = elem->is_aryklassptr()->elem();
7228     dims++;
7229   }
7230   return elem;
7231 }
7232 
7233 //=============================================================================
7234 // Convenience common pre-built types.
7235 
7236 //------------------------------make-------------------------------------------
7237 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7238                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7239   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7240 }
7241 
7242 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7243   return make(domain, domain, range, range);
7244 }
7245 
7246 //------------------------------osr_domain-----------------------------
7247 const TypeTuple* osr_domain() {
7248   const Type **fields = TypeTuple::fields(2);
7249   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7250   return TypeTuple::make(TypeFunc::Parms+1, fields);
7251 }
7252 
7253 //------------------------------make-------------------------------------------
7254 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7255   Compile* C = Compile::current();
7256   const TypeFunc* tf = nullptr;
7257   if (!is_osr_compilation) {
7258     tf = C->last_tf(method); // check cache
7259     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7260   }
7261   // Inline types are not passed/returned by reference, instead each field of
7262   // the inline type is passed/returned as an argument. We maintain two views of
7263   // the argument/return list here: one based on the signature (with an inline
7264   // type argument/return as a single slot), one based on the actual calling
7265   // convention (with an inline type argument/return as a list of its fields).
7266   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7267   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7268   if (method != C->method() && method->get_Method()->mismatch()) {
7269     has_scalar_args = false;
7270   }
7271   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7272   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7273   ciSignature* sig = method->signature();
7274   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7275   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7276   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7277   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7278   if (!is_osr_compilation) {
7279     C->set_last_tf(method, tf);  // fill cache
7280   }
7281   return tf;
7282 }
7283 
7284 //------------------------------meet-------------------------------------------
7285 // Compute the MEET of two types.  It returns a new Type object.
7286 const Type *TypeFunc::xmeet( const Type *t ) const {
7287   // Perform a fast test for common case; meeting the same types together.
7288   if( this == t ) return this;  // Meeting same type-rep?
7289 
7290   // Current "this->_base" is Func
7291   switch (t->base()) {          // switch on original type
7292 
7293   case Bottom:                  // Ye Olde Default
7294     return t;
7295 
7296   default:                      // All else is a mistake
7297     typerr(t);
7298 
7299   case Top:
7300     break;
7301   }
7302   return this;                  // Return the double constant
7303 }
7304 
7305 //------------------------------xdual------------------------------------------
7306 // Dual: compute field-by-field dual
7307 const Type *TypeFunc::xdual() const {
7308   return this;
7309 }
7310 
7311 //------------------------------eq---------------------------------------------
7312 // Structural equality check for Type representations
7313 bool TypeFunc::eq( const Type *t ) const {
7314   const TypeFunc *a = (const TypeFunc*)t;
7315   return _domain_sig == a->_domain_sig &&
7316     _domain_cc == a->_domain_cc &&
7317     _range_sig == a->_range_sig &&
7318     _range_cc == a->_range_cc;
7319 }
7320 
7321 //------------------------------hash-------------------------------------------
7322 // Type-specific hashing function.
7323 uint TypeFunc::hash(void) const {
7324   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7325 }
7326 
7327 //------------------------------dump2------------------------------------------
7328 // Dump Function Type
7329 #ifndef PRODUCT
7330 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7331   if( _range_sig->cnt() <= Parms )
7332     st->print("void");
7333   else {
7334     uint i;
7335     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7336       _range_sig->field_at(i)->dump2(d,depth,st);
7337       st->print("/");
7338     }
7339     _range_sig->field_at(i)->dump2(d,depth,st);
7340   }
7341   st->print(" ");
7342   st->print("( ");
7343   if( !depth || d[this] ) {     // Check for recursive dump
7344     st->print("...)");
7345     return;
7346   }
7347   d.Insert((void*)this,(void*)this);    // Stop recursion
7348   if (Parms < _domain_sig->cnt())
7349     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7350   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7351     st->print(", ");
7352     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7353   }
7354   st->print(" )");
7355 }
7356 #endif
7357 
7358 //------------------------------singleton--------------------------------------
7359 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7360 // constants (Ldi nodes).  Singletons are integer, float or double constants
7361 // or a single symbol.
7362 bool TypeFunc::singleton(void) const {
7363   return false;                 // Never a singleton
7364 }
7365 
7366 bool TypeFunc::empty(void) const {
7367   return false;                 // Never empty
7368 }
7369 
7370 
7371 BasicType TypeFunc::return_type() const{
7372   if (range_sig()->cnt() == TypeFunc::Parms) {
7373     return T_VOID;
7374   }
7375   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7376 }