1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciField.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciTypeFlow.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/symbolTable.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/checkedCast.hpp"
  46 #include "utilities/powerOfTwo.hpp"
  47 #include "utilities/stringUtils.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 // Dictionary of types shared among compilations.
  54 Dict* Type::_shared_type_dict = nullptr;
  55 const Type::Offset Type::Offset::top(Type::OffsetTop);
  56 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  57 
  58 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  59   // Either is 'TOP' offset?  Return the other offset!
  60   if (_offset == OffsetTop) return other;
  61   if (other._offset == OffsetTop) return *this;
  62   // If either is different, return 'BOTTOM' offset
  63   if (_offset != other._offset) return bottom;
  64   return Offset(_offset);
  65 }
  66 
  67 const Type::Offset Type::Offset::dual() const {
  68   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  69   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  70   return Offset(_offset);               // Map everything else into self
  71 }
  72 
  73 const Type::Offset Type::Offset::add(intptr_t offset) const {
  74   // Adding to 'TOP' offset?  Return 'TOP'!
  75   if (_offset == OffsetTop || offset == OffsetTop) return top;
  76   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  77   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  78   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  79   offset += (intptr_t)_offset;
  80   if (offset != (int)offset || offset == OffsetTop) return bottom;
  81 
  82   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  83   // It is possible to construct a negative offset during PhaseCCP
  84 
  85   return Offset((int)offset);        // Sum valid offsets
  86 }
  87 
  88 void Type::Offset::dump2(outputStream *st) const {
  89   if (_offset == 0) {
  90     return;
  91   } else if (_offset == OffsetTop) {
  92     st->print("+top");
  93   }
  94   else if (_offset == OffsetBot) {
  95     st->print("+bot");
  96   } else if (_offset) {
  97     st->print("+%d", _offset);
  98   }
  99 }
 100 
 101 // Array which maps compiler types to Basic Types
 102 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 103   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 104   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 105   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 106   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 107   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 108   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 109   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 110   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 111   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 112   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 113   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 114 
 115 #if defined(PPC64)
 116   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 117   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 125   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 126   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 127   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 128   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 129   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 130   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 131 #else // all other
 132   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 133   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 134   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 135   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 136   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 137   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 138   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 139 #endif
 140   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 141   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 142   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 143   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 144   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 145   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 146   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 147   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 148   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 149   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 150   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 151   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 152   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 153   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 154   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 155   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 156   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 157   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 158   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 159   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 160 };
 161 
 162 // Map ideal registers (machine types) to ideal types
 163 const Type *Type::mreg2type[_last_machine_leaf];
 164 
 165 // Map basic types to canonical Type* pointers.
 166 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 167 
 168 // Map basic types to constant-zero Types.
 169 const Type* Type::            _zero_type[T_CONFLICT+1];
 170 
 171 // Map basic types to array-body alias types.
 172 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 173 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 174 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 175 
 176 //=============================================================================
 177 // Convenience common pre-built types.
 178 const Type *Type::ABIO;         // State-of-machine only
 179 const Type *Type::BOTTOM;       // All values
 180 const Type *Type::CONTROL;      // Control only
 181 const Type *Type::DOUBLE;       // All doubles
 182 const Type *Type::FLOAT;        // All floats
 183 const Type *Type::HALF;         // Placeholder half of doublewide type
 184 const Type *Type::MEMORY;       // Abstract store only
 185 const Type *Type::RETURN_ADDRESS;
 186 const Type *Type::TOP;          // No values in set
 187 
 188 //------------------------------get_const_type---------------------------
 189 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 190   if (type == nullptr) {
 191     return nullptr;
 192   } else if (type->is_primitive_type()) {
 193     return get_const_basic_type(type->basic_type());
 194   } else {
 195     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 196   }
 197 }
 198 
 199 //---------------------------array_element_basic_type---------------------------------
 200 // Mapping to the array element's basic type.
 201 BasicType Type::array_element_basic_type() const {
 202   BasicType bt = basic_type();
 203   if (bt == T_INT) {
 204     if (this == TypeInt::INT)   return T_INT;
 205     if (this == TypeInt::CHAR)  return T_CHAR;
 206     if (this == TypeInt::BYTE)  return T_BYTE;
 207     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 208     if (this == TypeInt::SHORT) return T_SHORT;
 209     return T_VOID;
 210   }
 211   return bt;
 212 }
 213 
 214 // For two instance arrays of same dimension, return the base element types.
 215 // Otherwise or if the arrays have different dimensions, return null.
 216 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 217                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 218 
 219   if (e1) *e1 = nullptr;
 220   if (e2) *e2 = nullptr;
 221   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 222   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 223 
 224   if (a1tap != nullptr && a2tap != nullptr) {
 225     // Handle multidimensional arrays
 226     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 227     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 228     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 229       a1tap = a1tp->is_aryptr();
 230       a2tap = a2tp->is_aryptr();
 231       a1tp = a1tap->elem()->make_ptr();
 232       a2tp = a2tap->elem()->make_ptr();
 233     }
 234     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 235       if (e1) *e1 = a1tp->is_instptr();
 236       if (e2) *e2 = a2tp->is_instptr();
 237     }
 238   }
 239 }
 240 
 241 //---------------------------get_typeflow_type---------------------------------
 242 // Import a type produced by ciTypeFlow.
 243 const Type* Type::get_typeflow_type(ciType* type) {
 244   switch (type->basic_type()) {
 245 
 246   case ciTypeFlow::StateVector::T_BOTTOM:
 247     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 248     return Type::BOTTOM;
 249 
 250   case ciTypeFlow::StateVector::T_TOP:
 251     assert(type == ciTypeFlow::StateVector::top_type(), "");
 252     return Type::TOP;
 253 
 254   case ciTypeFlow::StateVector::T_NULL:
 255     assert(type == ciTypeFlow::StateVector::null_type(), "");
 256     return TypePtr::NULL_PTR;
 257 
 258   case ciTypeFlow::StateVector::T_LONG2:
 259     // The ciTypeFlow pass pushes a long, then the half.
 260     // We do the same.
 261     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 262     return TypeInt::TOP;
 263 
 264   case ciTypeFlow::StateVector::T_DOUBLE2:
 265     // The ciTypeFlow pass pushes double, then the half.
 266     // Our convention is the same.
 267     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 268     return Type::TOP;
 269 
 270   case T_ADDRESS:
 271     assert(type->is_return_address(), "");
 272     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 273 
 274   case T_OBJECT:
 275     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 276 
 277   default:
 278     // make sure we did not mix up the cases:
 279     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 280     assert(type != ciTypeFlow::StateVector::top_type(), "");
 281     assert(type != ciTypeFlow::StateVector::null_type(), "");
 282     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 283     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 284     assert(!type->is_return_address(), "");
 285 
 286     return Type::get_const_type(type);
 287   }
 288 }
 289 
 290 
 291 //-----------------------make_from_constant------------------------------------
 292 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 293                                      int stable_dimension, bool is_narrow_oop,
 294                                      bool is_autobox_cache) {
 295   switch (constant.basic_type()) {
 296     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 297     case T_CHAR:     return TypeInt::make(constant.as_char());
 298     case T_BYTE:     return TypeInt::make(constant.as_byte());
 299     case T_SHORT:    return TypeInt::make(constant.as_short());
 300     case T_INT:      return TypeInt::make(constant.as_int());
 301     case T_LONG:     return TypeLong::make(constant.as_long());
 302     case T_FLOAT:    return TypeF::make(constant.as_float());
 303     case T_DOUBLE:   return TypeD::make(constant.as_double());
 304     case T_ARRAY:
 305     case T_OBJECT: {
 306         const Type* con_type = nullptr;
 307         ciObject* oop_constant = constant.as_object();
 308         if (oop_constant->is_null_object()) {
 309           con_type = Type::get_zero_type(T_OBJECT);
 310         } else {
 311           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 312           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 313           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 314             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 315           }
 316           if (stable_dimension > 0) {
 317             assert(FoldStableValues, "sanity");
 318             assert(!con_type->is_zero_type(), "default value for stable field");
 319             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 320           }
 321         }
 322         if (is_narrow_oop) {
 323           con_type = con_type->make_narrowoop();
 324         }
 325         return con_type;
 326       }
 327     case T_ILLEGAL:
 328       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 329       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 330       return nullptr;
 331     default:
 332       // Fall through to failure
 333       return nullptr;
 334   }
 335 }
 336 
 337 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 338   BasicType conbt = con.basic_type();
 339   switch (conbt) {
 340     case T_BOOLEAN: conbt = T_BYTE;   break;
 341     case T_ARRAY:   conbt = T_OBJECT; break;
 342     default:                          break;
 343   }
 344   switch (loadbt) {
 345     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 346     case T_NARROWOOP: loadbt = T_OBJECT; break;
 347     case T_ARRAY:     loadbt = T_OBJECT; break;
 348     case T_ADDRESS:   loadbt = T_OBJECT; break;
 349     default:                             break;
 350   }
 351   if (conbt == loadbt) {
 352     if (is_unsigned && conbt == T_BYTE) {
 353       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 354       return ciConstant(T_INT, con.as_int() & 0xFF);
 355     } else {
 356       return con;
 357     }
 358   }
 359   if (conbt == T_SHORT && loadbt == T_CHAR) {
 360     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 361     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 362   }
 363   return ciConstant(); // T_ILLEGAL
 364 }
 365 
 366 // Try to constant-fold a stable array element.
 367 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 368                                                    BasicType loadbt, bool is_unsigned_load) {
 369   // Decode the results of GraphKit::array_element_address.
 370   ciConstant element_value = array->element_value_by_offset(off);
 371   if (element_value.basic_type() == T_ILLEGAL) {
 372     return nullptr; // wrong offset
 373   }
 374   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 375 
 376   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 377          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 378 
 379   if (con.is_valid() &&          // not a mismatched access
 380       !con.is_null_or_zero()) {  // not a default value
 381     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 382     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 383   }
 384   return nullptr;
 385 }
 386 
 387 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 388   ciField* field;
 389   ciType* type = holder->java_mirror_type();
 390   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 391     // Static field
 392     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 393   } else {
 394     // Instance field
 395     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 396   }
 397   if (field == nullptr) {
 398     return nullptr; // Wrong offset
 399   }
 400   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 401 }
 402 
 403 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 404                                            BasicType loadbt, bool is_unsigned_load) {
 405   if (!field->is_constant()) {
 406     return nullptr; // Non-constant field
 407   }
 408   ciConstant field_value;
 409   if (field->is_static()) {
 410     // final static field
 411     field_value = field->constant_value();
 412   } else if (holder != nullptr) {
 413     // final or stable non-static field
 414     // Treat final non-static fields of trusted classes (classes in
 415     // java.lang.invoke and sun.invoke packages and subpackages) as
 416     // compile time constants.
 417     field_value = field->constant_value_of(holder);
 418   }
 419   if (!field_value.is_valid()) {
 420     return nullptr; // Not a constant
 421   }
 422 
 423   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 424 
 425   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 426          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 427 
 428   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 429   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 430   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 431 
 432   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 433                                             stable_dimension, is_narrow_oop,
 434                                             field->is_autobox_cache());
 435   if (con_type != nullptr && field->is_call_site_target()) {
 436     ciCallSite* call_site = holder->as_call_site();
 437     if (!call_site->is_fully_initialized_constant_call_site()) {
 438       ciMethodHandle* target = con.as_object()->as_method_handle();
 439       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 440     }
 441   }
 442   return con_type;
 443 }
 444 
 445 //------------------------------make-------------------------------------------
 446 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 447 // and look for an existing copy in the type dictionary.
 448 const Type *Type::make( enum TYPES t ) {
 449   return (new Type(t))->hashcons();
 450 }
 451 
 452 //------------------------------cmp--------------------------------------------
 453 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 454   if( t1->_base != t2->_base )
 455     return 1;                   // Missed badly
 456   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 457   return !t1->eq(t2);           // Return ZERO if equal
 458 }
 459 
 460 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 461   if (!include_speculative) {
 462     return remove_speculative();
 463   }
 464   return this;
 465 }
 466 
 467 //------------------------------hash-------------------------------------------
 468 int Type::uhash( const Type *const t ) {
 469   return (int)t->hash();
 470 }
 471 
 472 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 473 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 474 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 475 
 476 //--------------------------Initialize_shared----------------------------------
 477 void Type::Initialize_shared(Compile* current) {
 478   // This method does not need to be locked because the first system
 479   // compilations (stub compilations) occur serially.  If they are
 480   // changed to proceed in parallel, then this section will need
 481   // locking.
 482 
 483   Arena* save = current->type_arena();
 484   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 485 
 486   current->set_type_arena(shared_type_arena);
 487   _shared_type_dict =
 488     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 489                                   shared_type_arena, 128 );
 490   current->set_type_dict(_shared_type_dict);
 491 
 492   // Make shared pre-built types.
 493   CONTROL = make(Control);      // Control only
 494   TOP     = make(Top);          // No values in set
 495   MEMORY  = make(Memory);       // Abstract store only
 496   ABIO    = make(Abio);         // State-of-machine only
 497   RETURN_ADDRESS=make(Return_Address);
 498   FLOAT   = make(FloatBot);     // All floats
 499   DOUBLE  = make(DoubleBot);    // All doubles
 500   BOTTOM  = make(Bottom);       // Everything
 501   HALF    = make(Half);         // Placeholder half of doublewide type
 502 
 503   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 504   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 505   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 506   TypeF::ONE  = TypeF::make(1.0); // Float 1
 507   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 508   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 509 
 510   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 511   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 512   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 513   TypeD::ONE  = TypeD::make(1.0); // Double 1
 514   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 515   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 516 
 517   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 518   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 519   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 520   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 521   TypeInt::ONE     = TypeInt::make( 1);  //  1
 522   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 523   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 524   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 525   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 526   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 527   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 528   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 529   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 530   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 531   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 532   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 533   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 534   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 535   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 536   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 537   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 538   // CmpL is overloaded both as the bytecode computation returning
 539   // a trinary (-1,0,+1) integer result AND as an efficient long
 540   // compare returning optimizer ideal-type flags.
 541   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 542   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 543   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 544   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 545   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 546 
 547   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 548   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 549   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 550   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 551   TypeLong::ONE     = TypeLong::make( 1);        //  1
 552   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 553   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 554   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 555   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 556   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 557 
 558   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 559   fboth[0] = Type::CONTROL;
 560   fboth[1] = Type::CONTROL;
 561   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 562 
 563   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 564   ffalse[0] = Type::CONTROL;
 565   ffalse[1] = Type::TOP;
 566   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 567 
 568   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 569   fneither[0] = Type::TOP;
 570   fneither[1] = Type::TOP;
 571   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 572 
 573   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 574   ftrue[0] = Type::TOP;
 575   ftrue[1] = Type::CONTROL;
 576   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 577 
 578   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 579   floop[0] = Type::CONTROL;
 580   floop[1] = TypeInt::INT;
 581   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 582 
 583   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 584   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 585   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 586 
 587   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 588   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 589 
 590   const Type **fmembar = TypeTuple::fields(0);
 591   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 592 
 593   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 594   fsc[0] = TypeInt::CC;
 595   fsc[1] = Type::MEMORY;
 596   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 597 
 598   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 599   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 600   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 601   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 602                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 603   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 604                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 605   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 606 
 607   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 608 
 609   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 610   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 611 
 612   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 613 
 614   mreg2type[Op_Node] = Type::BOTTOM;
 615   mreg2type[Op_Set ] = 0;
 616   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 617   mreg2type[Op_RegI] = TypeInt::INT;
 618   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 619   mreg2type[Op_RegF] = Type::FLOAT;
 620   mreg2type[Op_RegD] = Type::DOUBLE;
 621   mreg2type[Op_RegL] = TypeLong::LONG;
 622   mreg2type[Op_RegFlags] = TypeInt::CC;
 623 
 624   GrowableArray<ciInstanceKlass*> array_interfaces;
 625   array_interfaces.push(current->env()->Cloneable_klass());
 626   array_interfaces.push(current->env()->Serializable_klass());
 627   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 628   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 629 
 630   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 631 
 632   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 633 
 634 #ifdef _LP64
 635   if (UseCompressedOops) {
 636     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 637     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 638   } else
 639 #endif
 640   {
 641     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 642     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 643   }
 644   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 645   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 646   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 647   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 648   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 649   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 650   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 651   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true), nullptr, false, Offset::bottom);
 652 
 653   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 654   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 655   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 656   TypeAryPtr::_array_body_type[T_PRIMITIVE_OBJECT] = TypeAryPtr::OOPS;
 657   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 658   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 659   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 660   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 661   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 662   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 663   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 664   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 665   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 666 
 667   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 668   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 669 
 670   const Type **fi2c = TypeTuple::fields(2);
 671   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 672   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 673   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 674 
 675   const Type **intpair = TypeTuple::fields(2);
 676   intpair[0] = TypeInt::INT;
 677   intpair[1] = TypeInt::INT;
 678   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 679 
 680   const Type **longpair = TypeTuple::fields(2);
 681   longpair[0] = TypeLong::LONG;
 682   longpair[1] = TypeLong::LONG;
 683   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 684 
 685   const Type **intccpair = TypeTuple::fields(2);
 686   intccpair[0] = TypeInt::INT;
 687   intccpair[1] = TypeInt::CC;
 688   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 689 
 690   const Type **longccpair = TypeTuple::fields(2);
 691   longccpair[0] = TypeLong::LONG;
 692   longccpair[1] = TypeInt::CC;
 693   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 694 
 695   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 696   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 697   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 698   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 699   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 700   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 701   _const_basic_type[T_INT]         = TypeInt::INT;
 702   _const_basic_type[T_LONG]        = TypeLong::LONG;
 703   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 704   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 705   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 706   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 707   _const_basic_type[T_PRIMITIVE_OBJECT] = TypeInstPtr::BOTTOM;
 708   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 709   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 710   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 711 
 712   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 713   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 714   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 715   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 716   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 717   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 718   _zero_type[T_INT]         = TypeInt::ZERO;
 719   _zero_type[T_LONG]        = TypeLong::ZERO;
 720   _zero_type[T_FLOAT]       = TypeF::ZERO;
 721   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 722   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 723   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 724   _zero_type[T_PRIMITIVE_OBJECT] = TypePtr::NULL_PTR;
 725   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 726   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 727 
 728   // get_zero_type() should not happen for T_CONFLICT
 729   _zero_type[T_CONFLICT]= nullptr;
 730 
 731   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 732   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 733 
 734   if (Matcher::supports_scalable_vector()) {
 735     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 736   }
 737 
 738   // Vector predefined types, it needs initialized _const_basic_type[].
 739   if (Matcher::vector_size_supported(T_BYTE,4)) {
 740     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 741   }
 742   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 743     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 744   }
 745   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 746     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 747   }
 748   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 749     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 750   }
 751   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 752     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 753   }
 754 
 755   mreg2type[Op_VecA] = TypeVect::VECTA;
 756   mreg2type[Op_VecS] = TypeVect::VECTS;
 757   mreg2type[Op_VecD] = TypeVect::VECTD;
 758   mreg2type[Op_VecX] = TypeVect::VECTX;
 759   mreg2type[Op_VecY] = TypeVect::VECTY;
 760   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 761 
 762   // Restore working type arena.
 763   current->set_type_arena(save);
 764   current->set_type_dict(nullptr);
 765 }
 766 
 767 //------------------------------Initialize-------------------------------------
 768 void Type::Initialize(Compile* current) {
 769   assert(current->type_arena() != nullptr, "must have created type arena");
 770 
 771   if (_shared_type_dict == nullptr) {
 772     Initialize_shared(current);
 773   }
 774 
 775   Arena* type_arena = current->type_arena();
 776 
 777   // Create the hash-cons'ing dictionary with top-level storage allocation
 778   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 779   current->set_type_dict(tdic);
 780 }
 781 
 782 //------------------------------hashcons---------------------------------------
 783 // Do the hash-cons trick.  If the Type already exists in the type table,
 784 // delete the current Type and return the existing Type.  Otherwise stick the
 785 // current Type in the Type table.
 786 const Type *Type::hashcons(void) {
 787   debug_only(base());           // Check the assertion in Type::base().
 788   // Look up the Type in the Type dictionary
 789   Dict *tdic = type_dict();
 790   Type* old = (Type*)(tdic->Insert(this, this, false));
 791   if( old ) {                   // Pre-existing Type?
 792     if( old != this )           // Yes, this guy is not the pre-existing?
 793       delete this;              // Yes, Nuke this guy
 794     assert( old->_dual, "" );
 795     return old;                 // Return pre-existing
 796   }
 797 
 798   // Every type has a dual (to make my lattice symmetric).
 799   // Since we just discovered a new Type, compute its dual right now.
 800   assert( !_dual, "" );         // No dual yet
 801   _dual = xdual();              // Compute the dual
 802   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 803     if (_dual != this) {
 804       delete _dual;
 805       _dual = this;
 806     }
 807     return this;
 808   }
 809   assert( !_dual->_dual, "" );  // No reverse dual yet
 810   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 811   // New Type, insert into Type table
 812   tdic->Insert((void*)_dual,(void*)_dual);
 813   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 814 #ifdef ASSERT
 815   Type *dual_dual = (Type*)_dual->xdual();
 816   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 817   delete dual_dual;
 818 #endif
 819   return this;                  // Return new Type
 820 }
 821 
 822 //------------------------------eq---------------------------------------------
 823 // Structural equality check for Type representations
 824 bool Type::eq( const Type * ) const {
 825   return true;                  // Nothing else can go wrong
 826 }
 827 
 828 //------------------------------hash-------------------------------------------
 829 // Type-specific hashing function.
 830 uint Type::hash(void) const {
 831   return _base;
 832 }
 833 
 834 //------------------------------is_finite--------------------------------------
 835 // Has a finite value
 836 bool Type::is_finite() const {
 837   return false;
 838 }
 839 
 840 //------------------------------is_nan-----------------------------------------
 841 // Is not a number (NaN)
 842 bool Type::is_nan()    const {
 843   return false;
 844 }
 845 
 846 #ifdef ASSERT
 847 class VerifyMeet;
 848 class VerifyMeetResult : public ArenaObj {
 849   friend class VerifyMeet;
 850   friend class Type;
 851 private:
 852   class VerifyMeetResultEntry {
 853   private:
 854     const Type* _in1;
 855     const Type* _in2;
 856     const Type* _res;
 857   public:
 858     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 859             _in1(in1), _in2(in2), _res(res) {
 860     }
 861     VerifyMeetResultEntry():
 862             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 863     }
 864 
 865     bool operator==(const VerifyMeetResultEntry& rhs) const {
 866       return _in1 == rhs._in1 &&
 867              _in2 == rhs._in2 &&
 868              _res == rhs._res;
 869     }
 870 
 871     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 872       return !(rhs == *this);
 873     }
 874 
 875     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 876       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 877         return -1;
 878       } else if (v1._in1 == v2._in1) {
 879         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 880           return -1;
 881         } else if (v1._in2 == v2._in2) {
 882           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 883           return 0;
 884         }
 885         return 1;
 886       }
 887       return 1;
 888     }
 889     const Type* res() const { return _res; }
 890   };
 891   uint _depth;
 892   GrowableArray<VerifyMeetResultEntry> _cache;
 893 
 894   // With verification code, the meet of A and B causes the computation of:
 895   // 1- meet(A, B)
 896   // 2- meet(B, A)
 897   // 3- meet(dual(meet(A, B)), dual(A))
 898   // 4- meet(dual(meet(A, B)), dual(B))
 899   // 5- meet(dual(A), dual(B))
 900   // 6- meet(dual(B), dual(A))
 901   // 7- meet(dual(meet(dual(A), dual(B))), A)
 902   // 8- meet(dual(meet(dual(A), dual(B))), B)
 903   //
 904   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 905   //
 906   // The meet of A[] and B[] triggers the computation of:
 907   // 1- meet(A[], B[][)
 908   //   1.1- meet(A, B)
 909   //   1.2- meet(B, A)
 910   //   1.3- meet(dual(meet(A, B)), dual(A))
 911   //   1.4- meet(dual(meet(A, B)), dual(B))
 912   //   1.5- meet(dual(A), dual(B))
 913   //   1.6- meet(dual(B), dual(A))
 914   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 915   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 916   // 2- meet(B[], A[])
 917   //   2.1- meet(B, A) = 1.2
 918   //   2.2- meet(A, B) = 1.1
 919   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 920   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 921   //   2.5- meet(dual(B), dual(A)) = 1.6
 922   //   2.6- meet(dual(A), dual(B)) = 1.5
 923   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 924   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 925   // etc.
 926   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 927   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 928   // duration of the meet at the root of the recursive calls.
 929   //
 930   const Type* meet(const Type* t1, const Type* t2) {
 931     bool found = false;
 932     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 933     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 934     const Type* res = nullptr;
 935     if (found) {
 936       res = _cache.at(pos).res();
 937     } else {
 938       res = t1->xmeet(t2);
 939       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 940       found = false;
 941       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 942       assert(found, "should be in table after it's added");
 943     }
 944     return res;
 945   }
 946 
 947   void add(const Type* t1, const Type* t2, const Type* res) {
 948     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
 949   }
 950 
 951   bool empty_cache() const {
 952     return _cache.length() == 0;
 953   }
 954 public:
 955   VerifyMeetResult(Compile* C) :
 956           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
 957   }
 958 };
 959 
 960 void Type::assert_type_verify_empty() const {
 961   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
 962 }
 963 
 964 class VerifyMeet {
 965 private:
 966   Compile* _C;
 967 public:
 968   VerifyMeet(Compile* C) : _C(C) {
 969     if (C->_type_verify == nullptr) {
 970       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
 971     }
 972     _C->_type_verify->_depth++;
 973   }
 974 
 975   ~VerifyMeet() {
 976     assert(_C->_type_verify->_depth != 0, "");
 977     _C->_type_verify->_depth--;
 978     if (_C->_type_verify->_depth == 0) {
 979       _C->_type_verify->_cache.trunc_to(0);
 980     }
 981   }
 982 
 983   const Type* meet(const Type* t1, const Type* t2) const {
 984     return _C->_type_verify->meet(t1, t2);
 985   }
 986 
 987   void add(const Type* t1, const Type* t2, const Type* res) const {
 988     _C->_type_verify->add(t1, t2, res);
 989   }
 990 };
 991 
 992 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
 993   Compile* C = Compile::current();
 994   const Type* mt2 = verify.meet(t, this);
 995   if (mt != mt2) {
 996     tty->print_cr("=== Meet Not Commutative ===");
 997     tty->print("t           = ");   t->dump(); tty->cr();
 998     tty->print("this        = ");      dump(); tty->cr();
 999     tty->print("t meet this = "); mt2->dump(); tty->cr();
1000     tty->print("this meet t = ");  mt->dump(); tty->cr();
1001     fatal("meet not commutative");
1002   }
1003   const Type* dual_join = mt->_dual;
1004   const Type* t2t    = verify.meet(dual_join,t->_dual);
1005   const Type* t2this = verify.meet(dual_join,this->_dual);
1006 
1007   // Interface meet Oop is Not Symmetric:
1008   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1009   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1010 
1011   if (t2t != t->_dual || t2this != this->_dual) {
1012     tty->print_cr("=== Meet Not Symmetric ===");
1013     tty->print("t   =                   ");              t->dump(); tty->cr();
1014     tty->print("this=                   ");                 dump(); tty->cr();
1015     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1016 
1017     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1018     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1019     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1020 
1021     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1022     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1023 
1024     fatal("meet not symmetric");
1025   }
1026 }
1027 #endif
1028 
1029 //------------------------------meet-------------------------------------------
1030 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1031 // commutative and the lattice is symmetric.
1032 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1033   if (isa_narrowoop() && t->isa_narrowoop()) {
1034     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1035     return result->make_narrowoop();
1036   }
1037   if (isa_narrowklass() && t->isa_narrowklass()) {
1038     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1039     return result->make_narrowklass();
1040   }
1041 
1042 #ifdef ASSERT
1043   Compile* C = Compile::current();
1044   VerifyMeet verify(C);
1045 #endif
1046 
1047   const Type *this_t = maybe_remove_speculative(include_speculative);
1048   t = t->maybe_remove_speculative(include_speculative);
1049 
1050   const Type *mt = this_t->xmeet(t);
1051 #ifdef ASSERT
1052   verify.add(this_t, t, mt);
1053   if (isa_narrowoop() || t->isa_narrowoop()) {
1054     return mt;
1055   }
1056   if (isa_narrowklass() || t->isa_narrowklass()) {
1057     return mt;
1058   }
1059   this_t->check_symmetrical(t, mt, verify);
1060   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1061   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1062 #endif
1063   return mt;
1064 }
1065 
1066 //------------------------------xmeet------------------------------------------
1067 // Compute the MEET of two types.  It returns a new Type object.
1068 const Type *Type::xmeet( const Type *t ) const {
1069   // Perform a fast test for common case; meeting the same types together.
1070   if( this == t ) return this;  // Meeting same type-rep?
1071 
1072   // Meeting TOP with anything?
1073   if( _base == Top ) return t;
1074 
1075   // Meeting BOTTOM with anything?
1076   if( _base == Bottom ) return BOTTOM;
1077 
1078   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1079   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1080   switch (t->base()) {  // Switch on original type
1081 
1082   // Cut in half the number of cases I must handle.  Only need cases for when
1083   // the given enum "t->type" is less than or equal to the local enum "type".
1084   case FloatCon:
1085   case DoubleCon:
1086   case Int:
1087   case Long:
1088     return t->xmeet(this);
1089 
1090   case OopPtr:
1091     return t->xmeet(this);
1092 
1093   case InstPtr:
1094     return t->xmeet(this);
1095 
1096   case MetadataPtr:
1097   case KlassPtr:
1098   case InstKlassPtr:
1099   case AryKlassPtr:
1100     return t->xmeet(this);
1101 
1102   case AryPtr:
1103     return t->xmeet(this);
1104 
1105   case NarrowOop:
1106     return t->xmeet(this);
1107 
1108   case NarrowKlass:
1109     return t->xmeet(this);
1110 
1111   case Bad:                     // Type check
1112   default:                      // Bogus type not in lattice
1113     typerr(t);
1114     return Type::BOTTOM;
1115 
1116   case Bottom:                  // Ye Olde Default
1117     return t;
1118 
1119   case FloatTop:
1120     if( _base == FloatTop ) return this;
1121   case FloatBot:                // Float
1122     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
1123     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
1124     typerr(t);
1125     return Type::BOTTOM;
1126 
1127   case DoubleTop:
1128     if( _base == DoubleTop ) return this;
1129   case DoubleBot:               // Double
1130     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1131     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1132     typerr(t);
1133     return Type::BOTTOM;
1134 
1135   // These next few cases must match exactly or it is a compile-time error.
1136   case Control:                 // Control of code
1137   case Abio:                    // State of world outside of program
1138   case Memory:
1139     if( _base == t->_base )  return this;
1140     typerr(t);
1141     return Type::BOTTOM;
1142 
1143   case Top:                     // Top of the lattice
1144     return this;
1145   }
1146 
1147   // The type is unchanged
1148   return this;
1149 }
1150 
1151 //-----------------------------filter------------------------------------------
1152 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1153   const Type* ft = join_helper(kills, include_speculative);
1154   if (ft->empty())
1155     return Type::TOP;           // Canonical empty value
1156   return ft;
1157 }
1158 
1159 //------------------------------xdual------------------------------------------
1160 const Type *Type::xdual() const {
1161   // Note: the base() accessor asserts the sanity of _base.
1162   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1163   return new Type(_type_info[_base].dual_type);
1164 }
1165 
1166 //------------------------------has_memory-------------------------------------
1167 bool Type::has_memory() const {
1168   Type::TYPES tx = base();
1169   if (tx == Memory) return true;
1170   if (tx == Tuple) {
1171     const TypeTuple *t = is_tuple();
1172     for (uint i=0; i < t->cnt(); i++) {
1173       tx = t->field_at(i)->base();
1174       if (tx == Memory)  return true;
1175     }
1176   }
1177   return false;
1178 }
1179 
1180 #ifndef PRODUCT
1181 //------------------------------dump2------------------------------------------
1182 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1183   st->print("%s", _type_info[_base].msg);
1184 }
1185 
1186 //------------------------------dump-------------------------------------------
1187 void Type::dump_on(outputStream *st) const {
1188   ResourceMark rm;
1189   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1190   dump2(d,1, st);
1191   if (is_ptr_to_narrowoop()) {
1192     st->print(" [narrow]");
1193   } else if (is_ptr_to_narrowklass()) {
1194     st->print(" [narrowklass]");
1195   }
1196 }
1197 
1198 //-----------------------------------------------------------------------------
1199 const char* Type::str(const Type* t) {
1200   stringStream ss;
1201   t->dump_on(&ss);
1202   return ss.as_string();
1203 }
1204 #endif
1205 
1206 //------------------------------singleton--------------------------------------
1207 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1208 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1209 bool Type::singleton(void) const {
1210   return _base == Top || _base == Half;
1211 }
1212 
1213 //------------------------------empty------------------------------------------
1214 // TRUE if Type is a type with no values, FALSE otherwise.
1215 bool Type::empty(void) const {
1216   switch (_base) {
1217   case DoubleTop:
1218   case FloatTop:
1219   case Top:
1220     return true;
1221 
1222   case Half:
1223   case Abio:
1224   case Return_Address:
1225   case Memory:
1226   case Bottom:
1227   case FloatBot:
1228   case DoubleBot:
1229     return false;  // never a singleton, therefore never empty
1230 
1231   default:
1232     ShouldNotReachHere();
1233     return false;
1234   }
1235 }
1236 
1237 //------------------------------dump_stats-------------------------------------
1238 // Dump collected statistics to stderr
1239 #ifndef PRODUCT
1240 void Type::dump_stats() {
1241   tty->print("Types made: %d\n", type_dict()->Size());
1242 }
1243 #endif
1244 
1245 //------------------------------category---------------------------------------
1246 #ifndef PRODUCT
1247 Type::Category Type::category() const {
1248   const TypeTuple* tuple;
1249   switch (base()) {
1250     case Type::Int:
1251     case Type::Long:
1252     case Type::Half:
1253     case Type::NarrowOop:
1254     case Type::NarrowKlass:
1255     case Type::Array:
1256     case Type::VectorA:
1257     case Type::VectorS:
1258     case Type::VectorD:
1259     case Type::VectorX:
1260     case Type::VectorY:
1261     case Type::VectorZ:
1262     case Type::VectorMask:
1263     case Type::AnyPtr:
1264     case Type::RawPtr:
1265     case Type::OopPtr:
1266     case Type::InstPtr:
1267     case Type::AryPtr:
1268     case Type::MetadataPtr:
1269     case Type::KlassPtr:
1270     case Type::InstKlassPtr:
1271     case Type::AryKlassPtr:
1272     case Type::Function:
1273     case Type::Return_Address:
1274     case Type::FloatTop:
1275     case Type::FloatCon:
1276     case Type::FloatBot:
1277     case Type::DoubleTop:
1278     case Type::DoubleCon:
1279     case Type::DoubleBot:
1280       return Category::Data;
1281     case Type::Memory:
1282       return Category::Memory;
1283     case Type::Control:
1284       return Category::Control;
1285     case Type::Top:
1286     case Type::Abio:
1287     case Type::Bottom:
1288       return Category::Other;
1289     case Type::Bad:
1290     case Type::lastype:
1291       return Category::Undef;
1292     case Type::Tuple:
1293       // Recursive case. Return CatMixed if the tuple contains types of
1294       // different categories (e.g. CallStaticJavaNode's type), or the specific
1295       // category if all types are of the same category (e.g. IfNode's type).
1296       tuple = is_tuple();
1297       if (tuple->cnt() == 0) {
1298         return Category::Undef;
1299       } else {
1300         Category first = tuple->field_at(0)->category();
1301         for (uint i = 1; i < tuple->cnt(); i++) {
1302           if (tuple->field_at(i)->category() != first) {
1303             return Category::Mixed;
1304           }
1305         }
1306         return first;
1307       }
1308     default:
1309       assert(false, "unmatched base type: all base types must be categorized");
1310   }
1311   return Category::Undef;
1312 }
1313 
1314 bool Type::has_category(Type::Category cat) const {
1315   if (category() == cat) {
1316     return true;
1317   }
1318   if (category() == Category::Mixed) {
1319     const TypeTuple* tuple = is_tuple();
1320     for (uint i = 0; i < tuple->cnt(); i++) {
1321       if (tuple->field_at(i)->has_category(cat)) {
1322         return true;
1323       }
1324     }
1325   }
1326   return false;
1327 }
1328 #endif
1329 
1330 //------------------------------typerr-----------------------------------------
1331 void Type::typerr( const Type *t ) const {
1332 #ifndef PRODUCT
1333   tty->print("\nError mixing types: ");
1334   dump();
1335   tty->print(" and ");
1336   t->dump();
1337   tty->print("\n");
1338 #endif
1339   ShouldNotReachHere();
1340 }
1341 
1342 
1343 //=============================================================================
1344 // Convenience common pre-built types.
1345 const TypeF *TypeF::MAX;        // Floating point max
1346 const TypeF *TypeF::MIN;        // Floating point min
1347 const TypeF *TypeF::ZERO;       // Floating point zero
1348 const TypeF *TypeF::ONE;        // Floating point one
1349 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1350 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1351 
1352 //------------------------------make-------------------------------------------
1353 // Create a float constant
1354 const TypeF *TypeF::make(float f) {
1355   return (TypeF*)(new TypeF(f))->hashcons();
1356 }
1357 
1358 //------------------------------meet-------------------------------------------
1359 // Compute the MEET of two types.  It returns a new Type object.
1360 const Type *TypeF::xmeet( const Type *t ) const {
1361   // Perform a fast test for common case; meeting the same types together.
1362   if( this == t ) return this;  // Meeting same type-rep?
1363 
1364   // Current "this->_base" is FloatCon
1365   switch (t->base()) {          // Switch on original type
1366   case AnyPtr:                  // Mixing with oops happens when javac
1367   case RawPtr:                  // reuses local variables
1368   case OopPtr:
1369   case InstPtr:
1370   case AryPtr:
1371   case MetadataPtr:
1372   case KlassPtr:
1373   case InstKlassPtr:
1374   case AryKlassPtr:
1375   case NarrowOop:
1376   case NarrowKlass:
1377   case Int:
1378   case Long:
1379   case DoubleTop:
1380   case DoubleCon:
1381   case DoubleBot:
1382   case Bottom:                  // Ye Olde Default
1383     return Type::BOTTOM;
1384 
1385   case FloatBot:
1386     return t;
1387 
1388   default:                      // All else is a mistake
1389     typerr(t);
1390 
1391   case FloatCon:                // Float-constant vs Float-constant?
1392     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1393                                 // must compare bitwise as positive zero, negative zero and NaN have
1394                                 // all the same representation in C++
1395       return FLOAT;             // Return generic float
1396                                 // Equal constants
1397   case Top:
1398   case FloatTop:
1399     break;                      // Return the float constant
1400   }
1401   return this;                  // Return the float constant
1402 }
1403 
1404 //------------------------------xdual------------------------------------------
1405 // Dual: symmetric
1406 const Type *TypeF::xdual() const {
1407   return this;
1408 }
1409 
1410 //------------------------------eq---------------------------------------------
1411 // Structural equality check for Type representations
1412 bool TypeF::eq(const Type *t) const {
1413   // Bitwise comparison to distinguish between +/-0. These values must be treated
1414   // as different to be consistent with C1 and the interpreter.
1415   return (jint_cast(_f) == jint_cast(t->getf()));
1416 }
1417 
1418 //------------------------------hash-------------------------------------------
1419 // Type-specific hashing function.
1420 uint TypeF::hash(void) const {
1421   return *(uint*)(&_f);
1422 }
1423 
1424 //------------------------------is_finite--------------------------------------
1425 // Has a finite value
1426 bool TypeF::is_finite() const {
1427   return g_isfinite(getf()) != 0;
1428 }
1429 
1430 //------------------------------is_nan-----------------------------------------
1431 // Is not a number (NaN)
1432 bool TypeF::is_nan()    const {
1433   return g_isnan(getf()) != 0;
1434 }
1435 
1436 //------------------------------dump2------------------------------------------
1437 // Dump float constant Type
1438 #ifndef PRODUCT
1439 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1440   Type::dump2(d,depth, st);
1441   st->print("%f", _f);
1442 }
1443 #endif
1444 
1445 //------------------------------singleton--------------------------------------
1446 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1447 // constants (Ldi nodes).  Singletons are integer, float or double constants
1448 // or a single symbol.
1449 bool TypeF::singleton(void) const {
1450   return true;                  // Always a singleton
1451 }
1452 
1453 bool TypeF::empty(void) const {
1454   return false;                 // always exactly a singleton
1455 }
1456 
1457 //=============================================================================
1458 // Convenience common pre-built types.
1459 const TypeD *TypeD::MAX;        // Floating point max
1460 const TypeD *TypeD::MIN;        // Floating point min
1461 const TypeD *TypeD::ZERO;       // Floating point zero
1462 const TypeD *TypeD::ONE;        // Floating point one
1463 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1464 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1465 
1466 //------------------------------make-------------------------------------------
1467 const TypeD *TypeD::make(double d) {
1468   return (TypeD*)(new TypeD(d))->hashcons();
1469 }
1470 
1471 //------------------------------meet-------------------------------------------
1472 // Compute the MEET of two types.  It returns a new Type object.
1473 const Type *TypeD::xmeet( const Type *t ) const {
1474   // Perform a fast test for common case; meeting the same types together.
1475   if( this == t ) return this;  // Meeting same type-rep?
1476 
1477   // Current "this->_base" is DoubleCon
1478   switch (t->base()) {          // Switch on original type
1479   case AnyPtr:                  // Mixing with oops happens when javac
1480   case RawPtr:                  // reuses local variables
1481   case OopPtr:
1482   case InstPtr:
1483   case AryPtr:
1484   case MetadataPtr:
1485   case KlassPtr:
1486   case InstKlassPtr:
1487   case AryKlassPtr:
1488   case NarrowOop:
1489   case NarrowKlass:
1490   case Int:
1491   case Long:
1492   case FloatTop:
1493   case FloatCon:
1494   case FloatBot:
1495   case Bottom:                  // Ye Olde Default
1496     return Type::BOTTOM;
1497 
1498   case DoubleBot:
1499     return t;
1500 
1501   default:                      // All else is a mistake
1502     typerr(t);
1503 
1504   case DoubleCon:               // Double-constant vs Double-constant?
1505     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1506       return DOUBLE;            // Return generic double
1507   case Top:
1508   case DoubleTop:
1509     break;
1510   }
1511   return this;                  // Return the double constant
1512 }
1513 
1514 //------------------------------xdual------------------------------------------
1515 // Dual: symmetric
1516 const Type *TypeD::xdual() const {
1517   return this;
1518 }
1519 
1520 //------------------------------eq---------------------------------------------
1521 // Structural equality check for Type representations
1522 bool TypeD::eq(const Type *t) const {
1523   // Bitwise comparison to distinguish between +/-0. These values must be treated
1524   // as different to be consistent with C1 and the interpreter.
1525   return (jlong_cast(_d) == jlong_cast(t->getd()));
1526 }
1527 
1528 //------------------------------hash-------------------------------------------
1529 // Type-specific hashing function.
1530 uint TypeD::hash(void) const {
1531   return *(uint*)(&_d);
1532 }
1533 
1534 //------------------------------is_finite--------------------------------------
1535 // Has a finite value
1536 bool TypeD::is_finite() const {
1537   return g_isfinite(getd()) != 0;
1538 }
1539 
1540 //------------------------------is_nan-----------------------------------------
1541 // Is not a number (NaN)
1542 bool TypeD::is_nan()    const {
1543   return g_isnan(getd()) != 0;
1544 }
1545 
1546 //------------------------------dump2------------------------------------------
1547 // Dump double constant Type
1548 #ifndef PRODUCT
1549 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1550   Type::dump2(d,depth,st);
1551   st->print("%f", _d);
1552 }
1553 #endif
1554 
1555 //------------------------------singleton--------------------------------------
1556 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1557 // constants (Ldi nodes).  Singletons are integer, float or double constants
1558 // or a single symbol.
1559 bool TypeD::singleton(void) const {
1560   return true;                  // Always a singleton
1561 }
1562 
1563 bool TypeD::empty(void) const {
1564   return false;                 // always exactly a singleton
1565 }
1566 
1567 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1568   if (bt == T_INT) {
1569     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1570   }
1571   assert(bt == T_LONG, "basic type not an int or long");
1572   return TypeLong::make(lo, hi, w);
1573 }
1574 
1575 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1576   if (bt == T_INT) {
1577     return is_int()->get_con();
1578   }
1579   assert(bt == T_LONG, "basic type not an int or long");
1580   return is_long()->get_con();
1581 }
1582 
1583 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1584   if (bt == T_INT) {
1585     return TypeInt::INT;
1586   }
1587   assert(bt == T_LONG, "basic type not an int or long");
1588   return TypeLong::LONG;
1589 }
1590 
1591 const TypeInteger* TypeInteger::zero(BasicType bt) {
1592   if (bt == T_INT) {
1593     return TypeInt::ZERO;
1594   }
1595   assert(bt == T_LONG, "basic type not an int or long");
1596   return TypeLong::ZERO;
1597 }
1598 
1599 const TypeInteger* TypeInteger::one(BasicType bt) {
1600   if (bt == T_INT) {
1601     return TypeInt::ONE;
1602   }
1603   assert(bt == T_LONG, "basic type not an int or long");
1604   return TypeLong::ONE;
1605 }
1606 
1607 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1608   if (bt == T_INT) {
1609     return TypeInt::MINUS_1;
1610   }
1611   assert(bt == T_LONG, "basic type not an int or long");
1612   return TypeLong::MINUS_1;
1613 }
1614 
1615 //=============================================================================
1616 // Convenience common pre-built types.
1617 const TypeInt *TypeInt::MAX;    // INT_MAX
1618 const TypeInt *TypeInt::MIN;    // INT_MIN
1619 const TypeInt *TypeInt::MINUS_1;// -1
1620 const TypeInt *TypeInt::ZERO;   // 0
1621 const TypeInt *TypeInt::ONE;    // 1
1622 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1623 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1624 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1625 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1626 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1627 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1628 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1629 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1630 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1631 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1632 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1633 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1634 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1635 const TypeInt *TypeInt::INT;    // 32-bit integers
1636 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1637 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1638 
1639 //------------------------------TypeInt----------------------------------------
1640 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) {
1641 }
1642 
1643 //------------------------------make-------------------------------------------
1644 const TypeInt *TypeInt::make( jint lo ) {
1645   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1646 }
1647 
1648 static int normalize_int_widen( jint lo, jint hi, int w ) {
1649   // Certain normalizations keep us sane when comparing types.
1650   // The 'SMALLINT' covers constants and also CC and its relatives.
1651   if (lo <= hi) {
1652     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1653     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1654   } else {
1655     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1656     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1657   }
1658   return w;
1659 }
1660 
1661 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1662   w = normalize_int_widen(lo, hi, w);
1663   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1664 }
1665 
1666 //------------------------------meet-------------------------------------------
1667 // Compute the MEET of two types.  It returns a new Type representation object
1668 // with reference count equal to the number of Types pointing at it.
1669 // Caller should wrap a Types around it.
1670 const Type *TypeInt::xmeet( const Type *t ) const {
1671   // Perform a fast test for common case; meeting the same types together.
1672   if( this == t ) return this;  // Meeting same type?
1673 
1674   // Currently "this->_base" is a TypeInt
1675   switch (t->base()) {          // Switch on original type
1676   case AnyPtr:                  // Mixing with oops happens when javac
1677   case RawPtr:                  // reuses local variables
1678   case OopPtr:
1679   case InstPtr:
1680   case AryPtr:
1681   case MetadataPtr:
1682   case KlassPtr:
1683   case InstKlassPtr:
1684   case AryKlassPtr:
1685   case NarrowOop:
1686   case NarrowKlass:
1687   case Long:
1688   case FloatTop:
1689   case FloatCon:
1690   case FloatBot:
1691   case DoubleTop:
1692   case DoubleCon:
1693   case DoubleBot:
1694   case Bottom:                  // Ye Olde Default
1695     return Type::BOTTOM;
1696   default:                      // All else is a mistake
1697     typerr(t);
1698   case Top:                     // No change
1699     return this;
1700   case Int:                     // Int vs Int?
1701     break;
1702   }
1703 
1704   // Expand covered set
1705   const TypeInt *r = t->is_int();
1706   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1707 }
1708 
1709 //------------------------------xdual------------------------------------------
1710 // Dual: reverse hi & lo; flip widen
1711 const Type *TypeInt::xdual() const {
1712   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1713   return new TypeInt(_hi,_lo,w);
1714 }
1715 
1716 //------------------------------widen------------------------------------------
1717 // Only happens for optimistic top-down optimizations.
1718 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1719   // Coming from TOP or such; no widening
1720   if( old->base() != Int ) return this;
1721   const TypeInt *ot = old->is_int();
1722 
1723   // If new guy is equal to old guy, no widening
1724   if( _lo == ot->_lo && _hi == ot->_hi )
1725     return old;
1726 
1727   // If new guy contains old, then we widened
1728   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1729     // New contains old
1730     // If new guy is already wider than old, no widening
1731     if( _widen > ot->_widen ) return this;
1732     // If old guy was a constant, do not bother
1733     if (ot->_lo == ot->_hi)  return this;
1734     // Now widen new guy.
1735     // Check for widening too far
1736     if (_widen == WidenMax) {
1737       int max = max_jint;
1738       int min = min_jint;
1739       if (limit->isa_int()) {
1740         max = limit->is_int()->_hi;
1741         min = limit->is_int()->_lo;
1742       }
1743       if (min < _lo && _hi < max) {
1744         // If neither endpoint is extremal yet, push out the endpoint
1745         // which is closer to its respective limit.
1746         if (_lo >= 0 ||                 // easy common case
1747             ((juint)_lo - min) >= ((juint)max - _hi)) {
1748           // Try to widen to an unsigned range type of 31 bits:
1749           return make(_lo, max, WidenMax);
1750         } else {
1751           return make(min, _hi, WidenMax);
1752         }
1753       }
1754       return TypeInt::INT;
1755     }
1756     // Returned widened new guy
1757     return make(_lo,_hi,_widen+1);
1758   }
1759 
1760   // If old guy contains new, then we probably widened too far & dropped to
1761   // bottom.  Return the wider fellow.
1762   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1763     return old;
1764 
1765   //fatal("Integer value range is not subset");
1766   //return this;
1767   return TypeInt::INT;
1768 }
1769 
1770 //------------------------------narrow---------------------------------------
1771 // Only happens for pessimistic optimizations.
1772 const Type *TypeInt::narrow( const Type *old ) const {
1773   if (_lo >= _hi)  return this;   // already narrow enough
1774   if (old == nullptr)  return this;
1775   const TypeInt* ot = old->isa_int();
1776   if (ot == nullptr)  return this;
1777   jint olo = ot->_lo;
1778   jint ohi = ot->_hi;
1779 
1780   // If new guy is equal to old guy, no narrowing
1781   if (_lo == olo && _hi == ohi)  return old;
1782 
1783   // If old guy was maximum range, allow the narrowing
1784   if (olo == min_jint && ohi == max_jint)  return this;
1785 
1786   if (_lo < olo || _hi > ohi)
1787     return this;                // doesn't narrow; pretty weird
1788 
1789   // The new type narrows the old type, so look for a "death march".
1790   // See comments on PhaseTransform::saturate.
1791   juint nrange = (juint)_hi - _lo;
1792   juint orange = (juint)ohi - olo;
1793   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1794     // Use the new type only if the range shrinks a lot.
1795     // We do not want the optimizer computing 2^31 point by point.
1796     return old;
1797   }
1798 
1799   return this;
1800 }
1801 
1802 //-----------------------------filter------------------------------------------
1803 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1804   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1805   if (ft == nullptr || ft->empty())
1806     return Type::TOP;           // Canonical empty value
1807   if (ft->_widen < this->_widen) {
1808     // Do not allow the value of kill->_widen to affect the outcome.
1809     // The widen bits must be allowed to run freely through the graph.
1810     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1811   }
1812   return ft;
1813 }
1814 
1815 //------------------------------eq---------------------------------------------
1816 // Structural equality check for Type representations
1817 bool TypeInt::eq( const Type *t ) const {
1818   const TypeInt *r = t->is_int(); // Handy access
1819   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1820 }
1821 
1822 //------------------------------hash-------------------------------------------
1823 // Type-specific hashing function.
1824 uint TypeInt::hash(void) const {
1825   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Int;
1826 }
1827 
1828 //------------------------------is_finite--------------------------------------
1829 // Has a finite value
1830 bool TypeInt::is_finite() const {
1831   return true;
1832 }
1833 
1834 //------------------------------dump2------------------------------------------
1835 // Dump TypeInt
1836 #ifndef PRODUCT
1837 static const char* intname(char* buf, size_t buf_size, jint n) {
1838   if (n == min_jint)
1839     return "min";
1840   else if (n < min_jint + 10000)
1841     os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint);
1842   else if (n == max_jint)
1843     return "max";
1844   else if (n > max_jint - 10000)
1845     os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n);
1846   else
1847     os::snprintf_checked(buf, buf_size, INT32_FORMAT, n);
1848   return buf;
1849 }
1850 
1851 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1852   char buf[40], buf2[40];
1853   if (_lo == min_jint && _hi == max_jint)
1854     st->print("int");
1855   else if (is_con())
1856     st->print("int:%s", intname(buf, sizeof(buf), get_con()));
1857   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1858     st->print("bool");
1859   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1860     st->print("byte");
1861   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1862     st->print("char");
1863   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1864     st->print("short");
1865   else if (_hi == max_jint)
1866     st->print("int:>=%s", intname(buf, sizeof(buf), _lo));
1867   else if (_lo == min_jint)
1868     st->print("int:<=%s", intname(buf, sizeof(buf), _hi));
1869   else
1870     st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi));
1871 
1872   if (_widen != 0 && this != TypeInt::INT)
1873     st->print(":%.*s", _widen, "wwww");
1874 }
1875 #endif
1876 
1877 //------------------------------singleton--------------------------------------
1878 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1879 // constants.
1880 bool TypeInt::singleton(void) const {
1881   return _lo >= _hi;
1882 }
1883 
1884 bool TypeInt::empty(void) const {
1885   return _lo > _hi;
1886 }
1887 
1888 //=============================================================================
1889 // Convenience common pre-built types.
1890 const TypeLong *TypeLong::MAX;
1891 const TypeLong *TypeLong::MIN;
1892 const TypeLong *TypeLong::MINUS_1;// -1
1893 const TypeLong *TypeLong::ZERO; // 0
1894 const TypeLong *TypeLong::ONE;  // 1
1895 const TypeLong *TypeLong::POS;  // >=0
1896 const TypeLong *TypeLong::LONG; // 64-bit integers
1897 const TypeLong *TypeLong::INT;  // 32-bit subrange
1898 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1899 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1900 
1901 //------------------------------TypeLong---------------------------------------
1902 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) {
1903 }
1904 
1905 //------------------------------make-------------------------------------------
1906 const TypeLong *TypeLong::make( jlong lo ) {
1907   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1908 }
1909 
1910 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1911   // Certain normalizations keep us sane when comparing types.
1912   // The 'SMALLINT' covers constants.
1913   if (lo <= hi) {
1914     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1915     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1916   } else {
1917     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1918     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1919   }
1920   return w;
1921 }
1922 
1923 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1924   w = normalize_long_widen(lo, hi, w);
1925   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1926 }
1927 
1928 
1929 //------------------------------meet-------------------------------------------
1930 // Compute the MEET of two types.  It returns a new Type representation object
1931 // with reference count equal to the number of Types pointing at it.
1932 // Caller should wrap a Types around it.
1933 const Type *TypeLong::xmeet( const Type *t ) const {
1934   // Perform a fast test for common case; meeting the same types together.
1935   if( this == t ) return this;  // Meeting same type?
1936 
1937   // Currently "this->_base" is a TypeLong
1938   switch (t->base()) {          // Switch on original type
1939   case AnyPtr:                  // Mixing with oops happens when javac
1940   case RawPtr:                  // reuses local variables
1941   case OopPtr:
1942   case InstPtr:
1943   case AryPtr:
1944   case MetadataPtr:
1945   case KlassPtr:
1946   case InstKlassPtr:
1947   case AryKlassPtr:
1948   case NarrowOop:
1949   case NarrowKlass:
1950   case Int:
1951   case FloatTop:
1952   case FloatCon:
1953   case FloatBot:
1954   case DoubleTop:
1955   case DoubleCon:
1956   case DoubleBot:
1957   case Bottom:                  // Ye Olde Default
1958     return Type::BOTTOM;
1959   default:                      // All else is a mistake
1960     typerr(t);
1961   case Top:                     // No change
1962     return this;
1963   case Long:                    // Long vs Long?
1964     break;
1965   }
1966 
1967   // Expand covered set
1968   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1969   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1970 }
1971 
1972 //------------------------------xdual------------------------------------------
1973 // Dual: reverse hi & lo; flip widen
1974 const Type *TypeLong::xdual() const {
1975   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1976   return new TypeLong(_hi,_lo,w);
1977 }
1978 
1979 //------------------------------widen------------------------------------------
1980 // Only happens for optimistic top-down optimizations.
1981 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1982   // Coming from TOP or such; no widening
1983   if( old->base() != Long ) return this;
1984   const TypeLong *ot = old->is_long();
1985 
1986   // If new guy is equal to old guy, no widening
1987   if( _lo == ot->_lo && _hi == ot->_hi )
1988     return old;
1989 
1990   // If new guy contains old, then we widened
1991   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1992     // New contains old
1993     // If new guy is already wider than old, no widening
1994     if( _widen > ot->_widen ) return this;
1995     // If old guy was a constant, do not bother
1996     if (ot->_lo == ot->_hi)  return this;
1997     // Now widen new guy.
1998     // Check for widening too far
1999     if (_widen == WidenMax) {
2000       jlong max = max_jlong;
2001       jlong min = min_jlong;
2002       if (limit->isa_long()) {
2003         max = limit->is_long()->_hi;
2004         min = limit->is_long()->_lo;
2005       }
2006       if (min < _lo && _hi < max) {
2007         // If neither endpoint is extremal yet, push out the endpoint
2008         // which is closer to its respective limit.
2009         if (_lo >= 0 ||                 // easy common case
2010             ((julong)_lo - min) >= ((julong)max - _hi)) {
2011           // Try to widen to an unsigned range type of 32/63 bits:
2012           if (max >= max_juint && _hi < max_juint)
2013             return make(_lo, max_juint, WidenMax);
2014           else
2015             return make(_lo, max, WidenMax);
2016         } else {
2017           return make(min, _hi, WidenMax);
2018         }
2019       }
2020       return TypeLong::LONG;
2021     }
2022     // Returned widened new guy
2023     return make(_lo,_hi,_widen+1);
2024   }
2025 
2026   // If old guy contains new, then we probably widened too far & dropped to
2027   // bottom.  Return the wider fellow.
2028   if ( ot->_lo <= _lo && ot->_hi >= _hi )
2029     return old;
2030 
2031   //  fatal("Long value range is not subset");
2032   // return this;
2033   return TypeLong::LONG;
2034 }
2035 
2036 //------------------------------narrow----------------------------------------
2037 // Only happens for pessimistic optimizations.
2038 const Type *TypeLong::narrow( const Type *old ) const {
2039   if (_lo >= _hi)  return this;   // already narrow enough
2040   if (old == nullptr)  return this;
2041   const TypeLong* ot = old->isa_long();
2042   if (ot == nullptr)  return this;
2043   jlong olo = ot->_lo;
2044   jlong ohi = ot->_hi;
2045 
2046   // If new guy is equal to old guy, no narrowing
2047   if (_lo == olo && _hi == ohi)  return old;
2048 
2049   // If old guy was maximum range, allow the narrowing
2050   if (olo == min_jlong && ohi == max_jlong)  return this;
2051 
2052   if (_lo < olo || _hi > ohi)
2053     return this;                // doesn't narrow; pretty weird
2054 
2055   // The new type narrows the old type, so look for a "death march".
2056   // See comments on PhaseTransform::saturate.
2057   julong nrange = (julong)_hi - _lo;
2058   julong orange = (julong)ohi - olo;
2059   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
2060     // Use the new type only if the range shrinks a lot.
2061     // We do not want the optimizer computing 2^31 point by point.
2062     return old;
2063   }
2064 
2065   return this;
2066 }
2067 
2068 //-----------------------------filter------------------------------------------
2069 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
2070   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2071   if (ft == nullptr || ft->empty())
2072     return Type::TOP;           // Canonical empty value
2073   if (ft->_widen < this->_widen) {
2074     // Do not allow the value of kill->_widen to affect the outcome.
2075     // The widen bits must be allowed to run freely through the graph.
2076     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
2077   }
2078   return ft;
2079 }
2080 
2081 //------------------------------eq---------------------------------------------
2082 // Structural equality check for Type representations
2083 bool TypeLong::eq( const Type *t ) const {
2084   const TypeLong *r = t->is_long(); // Handy access
2085   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
2086 }
2087 
2088 //------------------------------hash-------------------------------------------
2089 // Type-specific hashing function.
2090 uint TypeLong::hash(void) const {
2091   return (uint)_lo + (uint)_hi + (uint)_widen + (uint)Type::Long;
2092 }
2093 
2094 //------------------------------is_finite--------------------------------------
2095 // Has a finite value
2096 bool TypeLong::is_finite() const {
2097   return true;
2098 }
2099 
2100 //------------------------------dump2------------------------------------------
2101 // Dump TypeLong
2102 #ifndef PRODUCT
2103 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) {
2104   if (n > x) {
2105     if (n >= x + 10000)  return nullptr;
2106     os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x);
2107   } else if (n < x) {
2108     if (n <= x - 10000)  return nullptr;
2109     os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n);
2110   } else {
2111     return xname;
2112   }
2113   return buf;
2114 }
2115 
2116 static const char* longname(char* buf, size_t buf_size, jlong n) {
2117   const char* str;
2118   if (n == min_jlong)
2119     return "min";
2120   else if (n < min_jlong + 10000)
2121     os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong);
2122   else if (n == max_jlong)
2123     return "max";
2124   else if (n > max_jlong - 10000)
2125     os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n);
2126   else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != nullptr)
2127     return str;
2128   else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != nullptr)
2129     return str;
2130   else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != nullptr)
2131     return str;
2132   else
2133     os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n);
2134   return buf;
2135 }
2136 
2137 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
2138   char buf[80], buf2[80];
2139   if (_lo == min_jlong && _hi == max_jlong)
2140     st->print("long");
2141   else if (is_con())
2142     st->print("long:%s", longname(buf, sizeof(buf), get_con()));
2143   else if (_hi == max_jlong)
2144     st->print("long:>=%s", longname(buf, sizeof(buf), _lo));
2145   else if (_lo == min_jlong)
2146     st->print("long:<=%s", longname(buf, sizeof(buf), _hi));
2147   else
2148     st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2),  _hi));
2149 
2150   if (_widen != 0 && this != TypeLong::LONG)
2151     st->print(":%.*s", _widen, "wwww");
2152 }
2153 #endif
2154 
2155 //------------------------------singleton--------------------------------------
2156 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2157 // constants
2158 bool TypeLong::singleton(void) const {
2159   return _lo >= _hi;
2160 }
2161 
2162 bool TypeLong::empty(void) const {
2163   return _lo > _hi;
2164 }
2165 
2166 //=============================================================================
2167 // Convenience common pre-built types.
2168 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2169 const TypeTuple *TypeTuple::IFFALSE;
2170 const TypeTuple *TypeTuple::IFTRUE;
2171 const TypeTuple *TypeTuple::IFNEITHER;
2172 const TypeTuple *TypeTuple::LOOPBODY;
2173 const TypeTuple *TypeTuple::MEMBAR;
2174 const TypeTuple *TypeTuple::STORECONDITIONAL;
2175 const TypeTuple *TypeTuple::START_I2C;
2176 const TypeTuple *TypeTuple::INT_PAIR;
2177 const TypeTuple *TypeTuple::LONG_PAIR;
2178 const TypeTuple *TypeTuple::INT_CC_PAIR;
2179 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2180 
2181 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2182   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
2183     ciField* field = vk->nonstatic_field_at(j);
2184     // TODO 8325106 The field could be null free, right? Shouldn't we set the type to null-free here?
2185     BasicType bt = field->type()->basic_type();
2186     const Type* ft = Type::get_const_type(field->type());
2187     field_array[pos++] = ft;
2188     if (type2size[bt] == 2) {
2189       field_array[pos++] = Type::HALF;
2190     }
2191   }
2192 }
2193 
2194 //------------------------------make-------------------------------------------
2195 // Make a TypeTuple from the range of a method signature
2196 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2197   ciType* return_type = sig->return_type();
2198   uint arg_cnt = return_type->size();
2199   if (ret_vt_fields) {
2200     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2201     // InlineTypeNode::IsInit field used for null checking
2202     arg_cnt++;
2203   }
2204   const Type **field_array = fields(arg_cnt);
2205   switch (return_type->basic_type()) {
2206   case T_LONG:
2207     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2208     field_array[TypeFunc::Parms+1] = Type::HALF;
2209     break;
2210   case T_DOUBLE:
2211     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2212     field_array[TypeFunc::Parms+1] = Type::HALF;
2213     break;
2214   case T_OBJECT:
2215     if (return_type->is_inlinetype() && ret_vt_fields) {
2216       uint pos = TypeFunc::Parms;
2217       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2218       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2219       // InlineTypeNode::IsInit field used for null checking
2220       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2221       break;
2222     } else {
2223       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2224     }
2225     break;
2226   case T_ARRAY:
2227   case T_BOOLEAN:
2228   case T_CHAR:
2229   case T_FLOAT:
2230   case T_BYTE:
2231   case T_SHORT:
2232   case T_INT:
2233     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2234     break;
2235   case T_VOID:
2236     break;
2237   default:
2238     ShouldNotReachHere();
2239   }
2240   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2241 }
2242 
2243 // Make a TypeTuple from the domain of a method signature
2244 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2245   ciSignature* sig = method->signature();
2246   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2247   if (vt_fields_as_args) {
2248     arg_cnt = 0;
2249     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2250     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2251       arg_cnt += type2size[(*sig_cc)._bt];
2252     }
2253   }
2254 
2255   uint pos = TypeFunc::Parms;
2256   const Type** field_array = fields(arg_cnt);
2257   if (!method->is_static()) {
2258     ciInstanceKlass* recv = method->holder();
2259     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2260       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2261     } else {
2262       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2263     }
2264   }
2265 
2266   int i = 0;
2267   while (pos < TypeFunc::Parms + arg_cnt) {
2268     ciType* type = sig->type_at(i);
2269     BasicType bt = type->basic_type();
2270 
2271     switch (bt) {
2272     case T_LONG:
2273       field_array[pos++] = TypeLong::LONG;
2274       field_array[pos++] = Type::HALF;
2275       break;
2276     case T_DOUBLE:
2277       field_array[pos++] = Type::DOUBLE;
2278       field_array[pos++] = Type::HALF;
2279       break;
2280     case T_OBJECT:
2281       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2282         // InlineTypeNode::IsInit field used for null checking
2283         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2284         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2285       } else {
2286         field_array[pos++] = get_const_type(type, interface_handling);
2287       }
2288       break;
2289     case T_ARRAY:
2290     case T_FLOAT:
2291     case T_INT:
2292       field_array[pos++] = get_const_type(type, interface_handling);
2293       break;
2294     case T_BOOLEAN:
2295     case T_CHAR:
2296     case T_BYTE:
2297     case T_SHORT:
2298       field_array[pos++] = TypeInt::INT;
2299       break;
2300     default:
2301       ShouldNotReachHere();
2302     }
2303     i++;
2304   }
2305   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2306 
2307   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2308 }
2309 
2310 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2311   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2312 }
2313 
2314 //------------------------------fields-----------------------------------------
2315 // Subroutine call type with space allocated for argument types
2316 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2317 const Type **TypeTuple::fields( uint arg_cnt ) {
2318   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2319   flds[TypeFunc::Control  ] = Type::CONTROL;
2320   flds[TypeFunc::I_O      ] = Type::ABIO;
2321   flds[TypeFunc::Memory   ] = Type::MEMORY;
2322   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2323   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2324 
2325   return flds;
2326 }
2327 
2328 //------------------------------meet-------------------------------------------
2329 // Compute the MEET of two types.  It returns a new Type object.
2330 const Type *TypeTuple::xmeet( const Type *t ) const {
2331   // Perform a fast test for common case; meeting the same types together.
2332   if( this == t ) return this;  // Meeting same type-rep?
2333 
2334   // Current "this->_base" is Tuple
2335   switch (t->base()) {          // switch on original type
2336 
2337   case Bottom:                  // Ye Olde Default
2338     return t;
2339 
2340   default:                      // All else is a mistake
2341     typerr(t);
2342 
2343   case Tuple: {                 // Meeting 2 signatures?
2344     const TypeTuple *x = t->is_tuple();
2345     assert( _cnt == x->_cnt, "" );
2346     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2347     for( uint i=0; i<_cnt; i++ )
2348       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2349     return TypeTuple::make(_cnt,fields);
2350   }
2351   case Top:
2352     break;
2353   }
2354   return this;                  // Return the double constant
2355 }
2356 
2357 //------------------------------xdual------------------------------------------
2358 // Dual: compute field-by-field dual
2359 const Type *TypeTuple::xdual() const {
2360   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2361   for( uint i=0; i<_cnt; i++ )
2362     fields[i] = _fields[i]->dual();
2363   return new TypeTuple(_cnt,fields);
2364 }
2365 
2366 //------------------------------eq---------------------------------------------
2367 // Structural equality check for Type representations
2368 bool TypeTuple::eq( const Type *t ) const {
2369   const TypeTuple *s = (const TypeTuple *)t;
2370   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2371   for (uint i = 0; i < _cnt; i++)
2372     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2373       return false;             // Missed
2374   return true;
2375 }
2376 
2377 //------------------------------hash-------------------------------------------
2378 // Type-specific hashing function.
2379 uint TypeTuple::hash(void) const {
2380   uintptr_t sum = _cnt;
2381   for( uint i=0; i<_cnt; i++ )
2382     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2383   return (uint)sum;
2384 }
2385 
2386 //------------------------------dump2------------------------------------------
2387 // Dump signature Type
2388 #ifndef PRODUCT
2389 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2390   st->print("{");
2391   if( !depth || d[this] ) {     // Check for recursive print
2392     st->print("...}");
2393     return;
2394   }
2395   d.Insert((void*)this, (void*)this);   // Stop recursion
2396   if( _cnt ) {
2397     uint i;
2398     for( i=0; i<_cnt-1; i++ ) {
2399       st->print("%d:", i);
2400       _fields[i]->dump2(d, depth-1, st);
2401       st->print(", ");
2402     }
2403     st->print("%d:", i);
2404     _fields[i]->dump2(d, depth-1, st);
2405   }
2406   st->print("}");
2407 }
2408 #endif
2409 
2410 //------------------------------singleton--------------------------------------
2411 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2412 // constants (Ldi nodes).  Singletons are integer, float or double constants
2413 // or a single symbol.
2414 bool TypeTuple::singleton(void) const {
2415   return false;                 // Never a singleton
2416 }
2417 
2418 bool TypeTuple::empty(void) const {
2419   for( uint i=0; i<_cnt; i++ ) {
2420     if (_fields[i]->empty())  return true;
2421   }
2422   return false;
2423 }
2424 
2425 //=============================================================================
2426 // Convenience common pre-built types.
2427 
2428 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2429   // Certain normalizations keep us sane when comparing types.
2430   // We do not want arrayOop variables to differ only by the wideness
2431   // of their index types.  Pick minimum wideness, since that is the
2432   // forced wideness of small ranges anyway.
2433   if (size->_widen != Type::WidenMin)
2434     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2435   else
2436     return size;
2437 }
2438 
2439 //------------------------------make-------------------------------------------
2440 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2441                              bool flat, bool not_flat, bool not_null_free) {
2442   if (UseCompressedOops && elem->isa_oopptr()) {
2443     elem = elem->make_narrowoop();
2444   }
2445   size = normalize_array_size(size);
2446   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free))->hashcons();
2447 }
2448 
2449 //------------------------------meet-------------------------------------------
2450 // Compute the MEET of two types.  It returns a new Type object.
2451 const Type *TypeAry::xmeet( const Type *t ) const {
2452   // Perform a fast test for common case; meeting the same types together.
2453   if( this == t ) return this;  // Meeting same type-rep?
2454 
2455   // Current "this->_base" is Ary
2456   switch (t->base()) {          // switch on original type
2457 
2458   case Bottom:                  // Ye Olde Default
2459     return t;
2460 
2461   default:                      // All else is a mistake
2462     typerr(t);
2463 
2464   case Array: {                 // Meeting 2 arrays?
2465     const TypeAry *a = t->is_ary();
2466     return TypeAry::make(_elem->meet_speculative(a->_elem),
2467                          _size->xmeet(a->_size)->is_int(),
2468                          _stable && a->_stable,
2469                          _flat && a->_flat,
2470                          _not_flat && a->_not_flat,
2471                          _not_null_free && a->_not_null_free);
2472   }
2473   case Top:
2474     break;
2475   }
2476   return this;                  // Return the double constant
2477 }
2478 
2479 //------------------------------xdual------------------------------------------
2480 // Dual: compute field-by-field dual
2481 const Type *TypeAry::xdual() const {
2482   const TypeInt* size_dual = _size->dual()->is_int();
2483   size_dual = normalize_array_size(size_dual);
2484   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free);
2485 }
2486 
2487 //------------------------------eq---------------------------------------------
2488 // Structural equality check for Type representations
2489 bool TypeAry::eq( const Type *t ) const {
2490   const TypeAry *a = (const TypeAry*)t;
2491   return _elem == a->_elem &&
2492     _stable == a->_stable &&
2493     _size == a->_size &&
2494     _flat == a->_flat &&
2495     _not_flat == a->_not_flat &&
2496     _not_null_free == a->_not_null_free;
2497 
2498 }
2499 
2500 //------------------------------hash-------------------------------------------
2501 // Type-specific hashing function.
2502 uint TypeAry::hash(void) const {
2503   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2504       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0);
2505 }
2506 
2507 /**
2508  * Return same type without a speculative part in the element
2509  */
2510 const TypeAry* TypeAry::remove_speculative() const {
2511   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2512 }
2513 
2514 /**
2515  * Return same type with cleaned up speculative part of element
2516  */
2517 const Type* TypeAry::cleanup_speculative() const {
2518   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free);
2519 }
2520 
2521 /**
2522  * Return same type but with a different inline depth (used for speculation)
2523  *
2524  * @param depth  depth to meet with
2525  */
2526 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2527   if (!UseInlineDepthForSpeculativeTypes) {
2528     return this;
2529   }
2530   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2531 }
2532 
2533 //------------------------------dump2------------------------------------------
2534 #ifndef PRODUCT
2535 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2536   if (_stable)  st->print("stable:");
2537   if (_flat) st->print("flat:");
2538   if (Verbose) {
2539     if (_not_flat) st->print("not flat:");
2540     if (_not_null_free) st->print("not null free:");
2541   }
2542   _elem->dump2(d, depth, st);
2543   st->print("[");
2544   _size->dump2(d, depth, st);
2545   st->print("]");
2546 }
2547 #endif
2548 
2549 //------------------------------singleton--------------------------------------
2550 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2551 // constants (Ldi nodes).  Singletons are integer, float or double constants
2552 // or a single symbol.
2553 bool TypeAry::singleton(void) const {
2554   return false;                 // Never a singleton
2555 }
2556 
2557 bool TypeAry::empty(void) const {
2558   return _elem->empty() || _size->empty();
2559 }
2560 
2561 //--------------------------ary_must_be_exact----------------------------------
2562 bool TypeAry::ary_must_be_exact() const {
2563   // This logic looks at the element type of an array, and returns true
2564   // if the element type is either a primitive or a final instance class.
2565   // In such cases, an array built on this ary must have no subclasses.
2566   if (_elem == BOTTOM)      return false;  // general array not exact
2567   if (_elem == TOP   )      return false;  // inverted general array not exact
2568   const TypeOopPtr*  toop = nullptr;
2569   if (UseCompressedOops && _elem->isa_narrowoop()) {
2570     toop = _elem->make_ptr()->isa_oopptr();
2571   } else {
2572     toop = _elem->isa_oopptr();
2573   }
2574   if (!toop)                return true;   // a primitive type, like int
2575   if (!toop->is_loaded())   return false;  // unloaded class
2576   const TypeInstPtr* tinst;
2577   if (_elem->isa_narrowoop())
2578     tinst = _elem->make_ptr()->isa_instptr();
2579   else
2580     tinst = _elem->isa_instptr();
2581   if (tinst) {
2582     if (tinst->instance_klass()->is_final()) {
2583       // TODO 8325106 Fix comment
2584       // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
2585       if (tinst->is_inlinetypeptr() && (tinst->ptr() == TypePtr::BotPTR || tinst->ptr() == TypePtr::TopPTR)) {
2586         return false;
2587       }
2588       return true;
2589     }
2590     return false;
2591   }
2592   const TypeAryPtr*  tap;
2593   if (_elem->isa_narrowoop())
2594     tap = _elem->make_ptr()->isa_aryptr();
2595   else
2596     tap = _elem->isa_aryptr();
2597   if (tap)
2598     return tap->ary()->ary_must_be_exact();
2599   return false;
2600 }
2601 
2602 //==============================TypeVect=======================================
2603 // Convenience common pre-built types.
2604 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2605 const TypeVect *TypeVect::VECTS = nullptr; //  32-bit vectors
2606 const TypeVect *TypeVect::VECTD = nullptr; //  64-bit vectors
2607 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2608 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2609 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2610 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2611 
2612 //------------------------------make-------------------------------------------
2613 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) {
2614   if (is_mask) {
2615     return makemask(elem, length);
2616   }
2617   BasicType elem_bt = elem->array_element_basic_type();
2618   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2619   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2620   int size = length * type2aelembytes(elem_bt);
2621   switch (Matcher::vector_ideal_reg(size)) {
2622   case Op_VecA:
2623     return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2624   case Op_VecS:
2625     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2626   case Op_RegL:
2627   case Op_VecD:
2628   case Op_RegD:
2629     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2630   case Op_VecX:
2631     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2632   case Op_VecY:
2633     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2634   case Op_VecZ:
2635     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2636   }
2637  ShouldNotReachHere();
2638   return nullptr;
2639 }
2640 
2641 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2642   BasicType elem_bt = elem->array_element_basic_type();
2643   if (Matcher::has_predicated_vectors() &&
2644       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2645     return TypeVectMask::make(elem, length);
2646   } else {
2647     return make(elem, length);
2648   }
2649 }
2650 
2651 //------------------------------meet-------------------------------------------
2652 // Compute the MEET of two types.  It returns a new Type object.
2653 const Type *TypeVect::xmeet( const Type *t ) const {
2654   // Perform a fast test for common case; meeting the same types together.
2655   if( this == t ) return this;  // Meeting same type-rep?
2656 
2657   // Current "this->_base" is Vector
2658   switch (t->base()) {          // switch on original type
2659 
2660   case Bottom:                  // Ye Olde Default
2661     return t;
2662 
2663   default:                      // All else is a mistake
2664     typerr(t);
2665   case VectorMask: {
2666     const TypeVectMask* v = t->is_vectmask();
2667     assert(  base() == v->base(), "");
2668     assert(length() == v->length(), "");
2669     assert(element_basic_type() == v->element_basic_type(), "");
2670     return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2671   }
2672   case VectorA:
2673   case VectorS:
2674   case VectorD:
2675   case VectorX:
2676   case VectorY:
2677   case VectorZ: {                // Meeting 2 vectors?
2678     const TypeVect* v = t->is_vect();
2679     assert(  base() == v->base(), "");
2680     assert(length() == v->length(), "");
2681     assert(element_basic_type() == v->element_basic_type(), "");
2682     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2683   }
2684   case Top:
2685     break;
2686   }
2687   return this;
2688 }
2689 
2690 //------------------------------xdual------------------------------------------
2691 // Dual: compute field-by-field dual
2692 const Type *TypeVect::xdual() const {
2693   return new TypeVect(base(), _elem->dual(), _length);
2694 }
2695 
2696 //------------------------------eq---------------------------------------------
2697 // Structural equality check for Type representations
2698 bool TypeVect::eq(const Type *t) const {
2699   const TypeVect *v = t->is_vect();
2700   return (_elem == v->_elem) && (_length == v->_length);
2701 }
2702 
2703 //------------------------------hash-------------------------------------------
2704 // Type-specific hashing function.
2705 uint TypeVect::hash(void) const {
2706   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_length;
2707 }
2708 
2709 //------------------------------singleton--------------------------------------
2710 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2711 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2712 // constant value (when vector is created with Replicate code).
2713 bool TypeVect::singleton(void) const {
2714 // There is no Con node for vectors yet.
2715 //  return _elem->singleton();
2716   return false;
2717 }
2718 
2719 bool TypeVect::empty(void) const {
2720   return _elem->empty();
2721 }
2722 
2723 //------------------------------dump2------------------------------------------
2724 #ifndef PRODUCT
2725 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2726   switch (base()) {
2727   case VectorA:
2728     st->print("vectora["); break;
2729   case VectorS:
2730     st->print("vectors["); break;
2731   case VectorD:
2732     st->print("vectord["); break;
2733   case VectorX:
2734     st->print("vectorx["); break;
2735   case VectorY:
2736     st->print("vectory["); break;
2737   case VectorZ:
2738     st->print("vectorz["); break;
2739   case VectorMask:
2740     st->print("vectormask["); break;
2741   default:
2742     ShouldNotReachHere();
2743   }
2744   st->print("%d]:{", _length);
2745   _elem->dump2(d, depth, st);
2746   st->print("}");
2747 }
2748 #endif
2749 
2750 bool TypeVectMask::eq(const Type *t) const {
2751   const TypeVectMask *v = t->is_vectmask();
2752   return (element_type() == v->element_type()) && (length() == v->length());
2753 }
2754 
2755 const Type *TypeVectMask::xdual() const {
2756   return new TypeVectMask(element_type()->dual(), length());
2757 }
2758 
2759 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) {
2760   return make(get_const_basic_type(elem_bt), length);
2761 }
2762 
2763 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) {
2764   const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length);
2765   return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons();
2766 }
2767 
2768 //=============================================================================
2769 // Convenience common pre-built types.
2770 const TypePtr *TypePtr::NULL_PTR;
2771 const TypePtr *TypePtr::NOTNULL;
2772 const TypePtr *TypePtr::BOTTOM;
2773 
2774 //------------------------------meet-------------------------------------------
2775 // Meet over the PTR enum
2776 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2777   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2778   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2779   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2780   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2781   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2782   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2783   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2784 };
2785 
2786 //------------------------------make-------------------------------------------
2787 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2788   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2789 }
2790 
2791 //------------------------------cast_to_ptr_type-------------------------------
2792 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2793   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2794   if( ptr == _ptr ) return this;
2795   return make(_base, ptr, _offset, _speculative, _inline_depth);
2796 }
2797 
2798 //------------------------------get_con----------------------------------------
2799 intptr_t TypePtr::get_con() const {
2800   assert( _ptr == Null, "" );
2801   return offset();
2802 }
2803 
2804 //------------------------------meet-------------------------------------------
2805 // Compute the MEET of two types.  It returns a new Type object.
2806 const Type *TypePtr::xmeet(const Type *t) const {
2807   const Type* res = xmeet_helper(t);
2808   if (res->isa_ptr() == nullptr) {
2809     return res;
2810   }
2811 
2812   const TypePtr* res_ptr = res->is_ptr();
2813   if (res_ptr->speculative() != nullptr) {
2814     // type->speculative() is null means that speculation is no better
2815     // than type, i.e. type->speculative() == type. So there are 2
2816     // ways to represent the fact that we have no useful speculative
2817     // data and we should use a single one to be able to test for
2818     // equality between types. Check whether type->speculative() ==
2819     // type and set speculative to null if it is the case.
2820     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2821       return res_ptr->remove_speculative();
2822     }
2823   }
2824 
2825   return res;
2826 }
2827 
2828 const Type *TypePtr::xmeet_helper(const Type *t) const {
2829   // Perform a fast test for common case; meeting the same types together.
2830   if( this == t ) return this;  // Meeting same type-rep?
2831 
2832   // Current "this->_base" is AnyPtr
2833   switch (t->base()) {          // switch on original type
2834   case Int:                     // Mixing ints & oops happens when javac
2835   case Long:                    // reuses local variables
2836   case FloatTop:
2837   case FloatCon:
2838   case FloatBot:
2839   case DoubleTop:
2840   case DoubleCon:
2841   case DoubleBot:
2842   case NarrowOop:
2843   case NarrowKlass:
2844   case Bottom:                  // Ye Olde Default
2845     return Type::BOTTOM;
2846   case Top:
2847     return this;
2848 
2849   case AnyPtr: {                // Meeting to AnyPtrs
2850     const TypePtr *tp = t->is_ptr();
2851     const TypePtr* speculative = xmeet_speculative(tp);
2852     int depth = meet_inline_depth(tp->inline_depth());
2853     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2854   }
2855   case RawPtr:                  // For these, flip the call around to cut down
2856   case OopPtr:
2857   case InstPtr:                 // on the cases I have to handle.
2858   case AryPtr:
2859   case MetadataPtr:
2860   case KlassPtr:
2861   case InstKlassPtr:
2862   case AryKlassPtr:
2863     return t->xmeet(this);      // Call in reverse direction
2864   default:                      // All else is a mistake
2865     typerr(t);
2866 
2867   }
2868   return this;
2869 }
2870 
2871 //------------------------------meet_offset------------------------------------
2872 Type::Offset TypePtr::meet_offset(int offset) const {
2873   return _offset.meet(Offset(offset));
2874 }
2875 
2876 //------------------------------dual_offset------------------------------------
2877 Type::Offset TypePtr::dual_offset() const {
2878   return _offset.dual();
2879 }
2880 
2881 //------------------------------xdual------------------------------------------
2882 // Dual: compute field-by-field dual
2883 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2884   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2885 };
2886 const Type *TypePtr::xdual() const {
2887   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2888 }
2889 
2890 //------------------------------xadd_offset------------------------------------
2891 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2892   return _offset.add(offset);
2893 }
2894 
2895 //------------------------------add_offset-------------------------------------
2896 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2897   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2898 }
2899 
2900 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2901   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2902 }
2903 
2904 //------------------------------eq---------------------------------------------
2905 // Structural equality check for Type representations
2906 bool TypePtr::eq( const Type *t ) const {
2907   const TypePtr *a = (const TypePtr*)t;
2908   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2909 }
2910 
2911 //------------------------------hash-------------------------------------------
2912 // Type-specific hashing function.
2913 uint TypePtr::hash(void) const {
2914   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2915 }
2916 
2917 /**
2918  * Return same type without a speculative part
2919  */
2920 const TypePtr* TypePtr::remove_speculative() const {
2921   if (_speculative == nullptr) {
2922     return this;
2923   }
2924   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2925   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2926 }
2927 
2928 /**
2929  * Return same type but drop speculative part if we know we won't use
2930  * it
2931  */
2932 const Type* TypePtr::cleanup_speculative() const {
2933   if (speculative() == nullptr) {
2934     return this;
2935   }
2936   const Type* no_spec = remove_speculative();
2937   // If this is NULL_PTR then we don't need the speculative type
2938   // (with_inline_depth in case the current type inline depth is
2939   // InlineDepthTop)
2940   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2941     return no_spec;
2942   }
2943   if (above_centerline(speculative()->ptr())) {
2944     return no_spec;
2945   }
2946   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2947   // If the speculative may be null and is an inexact klass then it
2948   // doesn't help
2949   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2950       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2951     return no_spec;
2952   }
2953   return this;
2954 }
2955 
2956 /**
2957  * dual of the speculative part of the type
2958  */
2959 const TypePtr* TypePtr::dual_speculative() const {
2960   if (_speculative == nullptr) {
2961     return nullptr;
2962   }
2963   return _speculative->dual()->is_ptr();
2964 }
2965 
2966 /**
2967  * meet of the speculative parts of 2 types
2968  *
2969  * @param other  type to meet with
2970  */
2971 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2972   bool this_has_spec = (_speculative != nullptr);
2973   bool other_has_spec = (other->speculative() != nullptr);
2974 
2975   if (!this_has_spec && !other_has_spec) {
2976     return nullptr;
2977   }
2978 
2979   // If we are at a point where control flow meets and one branch has
2980   // a speculative type and the other has not, we meet the speculative
2981   // type of one branch with the actual type of the other. If the
2982   // actual type is exact and the speculative is as well, then the
2983   // result is a speculative type which is exact and we can continue
2984   // speculation further.
2985   const TypePtr* this_spec = _speculative;
2986   const TypePtr* other_spec = other->speculative();
2987 
2988   if (!this_has_spec) {
2989     this_spec = this;
2990   }
2991 
2992   if (!other_has_spec) {
2993     other_spec = other;
2994   }
2995 
2996   return this_spec->meet(other_spec)->is_ptr();
2997 }
2998 
2999 /**
3000  * dual of the inline depth for this type (used for speculation)
3001  */
3002 int TypePtr::dual_inline_depth() const {
3003   return -inline_depth();
3004 }
3005 
3006 /**
3007  * meet of 2 inline depths (used for speculation)
3008  *
3009  * @param depth  depth to meet with
3010  */
3011 int TypePtr::meet_inline_depth(int depth) const {
3012   return MAX2(inline_depth(), depth);
3013 }
3014 
3015 /**
3016  * Are the speculative parts of 2 types equal?
3017  *
3018  * @param other  type to compare this one to
3019  */
3020 bool TypePtr::eq_speculative(const TypePtr* other) const {
3021   if (_speculative == nullptr || other->speculative() == nullptr) {
3022     return _speculative == other->speculative();
3023   }
3024 
3025   if (_speculative->base() != other->speculative()->base()) {
3026     return false;
3027   }
3028 
3029   return _speculative->eq(other->speculative());
3030 }
3031 
3032 /**
3033  * Hash of the speculative part of the type
3034  */
3035 int TypePtr::hash_speculative() const {
3036   if (_speculative == nullptr) {
3037     return 0;
3038   }
3039 
3040   return _speculative->hash();
3041 }
3042 
3043 /**
3044  * add offset to the speculative part of the type
3045  *
3046  * @param offset  offset to add
3047  */
3048 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
3049   if (_speculative == nullptr) {
3050     return nullptr;
3051   }
3052   return _speculative->add_offset(offset)->is_ptr();
3053 }
3054 
3055 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
3056   if (_speculative == nullptr) {
3057     return nullptr;
3058   }
3059   return _speculative->with_offset(offset)->is_ptr();
3060 }
3061 
3062 /**
3063  * return exact klass from the speculative type if there's one
3064  */
3065 ciKlass* TypePtr::speculative_type() const {
3066   if (_speculative != nullptr && _speculative->isa_oopptr()) {
3067     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
3068     if (speculative->klass_is_exact()) {
3069       return speculative->exact_klass();
3070     }
3071   }
3072   return nullptr;
3073 }
3074 
3075 /**
3076  * return true if speculative type may be null
3077  */
3078 bool TypePtr::speculative_maybe_null() const {
3079   if (_speculative != nullptr) {
3080     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3081     return speculative->maybe_null();
3082   }
3083   return true;
3084 }
3085 
3086 bool TypePtr::speculative_always_null() const {
3087   if (_speculative != nullptr) {
3088     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3089     return speculative == TypePtr::NULL_PTR;
3090   }
3091   return false;
3092 }
3093 
3094 /**
3095  * Same as TypePtr::speculative_type() but return the klass only if
3096  * the speculative tells us is not null
3097  */
3098 ciKlass* TypePtr::speculative_type_not_null() const {
3099   if (speculative_maybe_null()) {
3100     return nullptr;
3101   }
3102   return speculative_type();
3103 }
3104 
3105 /**
3106  * Check whether new profiling would improve speculative type
3107  *
3108  * @param   exact_kls    class from profiling
3109  * @param   inline_depth inlining depth of profile point
3110  *
3111  * @return  true if type profile is valuable
3112  */
3113 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3114   // no profiling?
3115   if (exact_kls == nullptr) {
3116     return false;
3117   }
3118   if (speculative() == TypePtr::NULL_PTR) {
3119     return false;
3120   }
3121   // no speculative type or non exact speculative type?
3122   if (speculative_type() == nullptr) {
3123     return true;
3124   }
3125   // If the node already has an exact speculative type keep it,
3126   // unless it was provided by profiling that is at a deeper
3127   // inlining level. Profiling at a higher inlining depth is
3128   // expected to be less accurate.
3129   if (_speculative->inline_depth() == InlineDepthBottom) {
3130     return false;
3131   }
3132   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3133   return inline_depth < _speculative->inline_depth();
3134 }
3135 
3136 /**
3137  * Check whether new profiling would improve ptr (= tells us it is non
3138  * null)
3139  *
3140  * @param   ptr_kind always null or not null?
3141  *
3142  * @return  true if ptr profile is valuable
3143  */
3144 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3145   // profiling doesn't tell us anything useful
3146   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3147     return false;
3148   }
3149   // We already know this is not null
3150   if (!this->maybe_null()) {
3151     return false;
3152   }
3153   // We already know the speculative type cannot be null
3154   if (!speculative_maybe_null()) {
3155     return false;
3156   }
3157   // We already know this is always null
3158   if (this == TypePtr::NULL_PTR) {
3159     return false;
3160   }
3161   // We already know the speculative type is always null
3162   if (speculative_always_null()) {
3163     return false;
3164   }
3165   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3166     return false;
3167   }
3168   return true;
3169 }
3170 
3171 //------------------------------dump2------------------------------------------
3172 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3173   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3174 };
3175 
3176 #ifndef PRODUCT
3177 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3178   if( _ptr == Null ) st->print("null");
3179   else st->print("%s *", ptr_msg[_ptr]);
3180   _offset.dump2(st);
3181   dump_inline_depth(st);
3182   dump_speculative(st);
3183 }
3184 
3185 /**
3186  *dump the speculative part of the type
3187  */
3188 void TypePtr::dump_speculative(outputStream *st) const {
3189   if (_speculative != nullptr) {
3190     st->print(" (speculative=");
3191     _speculative->dump_on(st);
3192     st->print(")");
3193   }
3194 }
3195 
3196 /**
3197  *dump the inline depth of the type
3198  */
3199 void TypePtr::dump_inline_depth(outputStream *st) const {
3200   if (_inline_depth != InlineDepthBottom) {
3201     if (_inline_depth == InlineDepthTop) {
3202       st->print(" (inline_depth=InlineDepthTop)");
3203     } else {
3204       st->print(" (inline_depth=%d)", _inline_depth);
3205     }
3206   }
3207 }
3208 #endif
3209 
3210 //------------------------------singleton--------------------------------------
3211 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3212 // constants
3213 bool TypePtr::singleton(void) const {
3214   // TopPTR, Null, AnyNull, Constant are all singletons
3215   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3216 }
3217 
3218 bool TypePtr::empty(void) const {
3219   return (_offset == Offset::top) || above_centerline(_ptr);
3220 }
3221 
3222 //=============================================================================
3223 // Convenience common pre-built types.
3224 const TypeRawPtr *TypeRawPtr::BOTTOM;
3225 const TypeRawPtr *TypeRawPtr::NOTNULL;
3226 
3227 //------------------------------make-------------------------------------------
3228 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3229   assert( ptr != Constant, "what is the constant?" );
3230   assert( ptr != Null, "Use TypePtr for null" );
3231   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3232 }
3233 
3234 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3235   assert( bits, "Use TypePtr for null" );
3236   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3237 }
3238 
3239 //------------------------------cast_to_ptr_type-------------------------------
3240 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3241   assert( ptr != Constant, "what is the constant?" );
3242   assert( ptr != Null, "Use TypePtr for null" );
3243   assert( _bits==0, "Why cast a constant address?");
3244   if( ptr == _ptr ) return this;
3245   return make(ptr);
3246 }
3247 
3248 //------------------------------get_con----------------------------------------
3249 intptr_t TypeRawPtr::get_con() const {
3250   assert( _ptr == Null || _ptr == Constant, "" );
3251   return (intptr_t)_bits;
3252 }
3253 
3254 //------------------------------meet-------------------------------------------
3255 // Compute the MEET of two types.  It returns a new Type object.
3256 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3257   // Perform a fast test for common case; meeting the same types together.
3258   if( this == t ) return this;  // Meeting same type-rep?
3259 
3260   // Current "this->_base" is RawPtr
3261   switch( t->base() ) {         // switch on original type
3262   case Bottom:                  // Ye Olde Default
3263     return t;
3264   case Top:
3265     return this;
3266   case AnyPtr:                  // Meeting to AnyPtrs
3267     break;
3268   case RawPtr: {                // might be top, bot, any/not or constant
3269     enum PTR tptr = t->is_ptr()->ptr();
3270     enum PTR ptr = meet_ptr( tptr );
3271     if( ptr == Constant ) {     // Cannot be equal constants, so...
3272       if( tptr == Constant && _ptr != Constant)  return t;
3273       if( _ptr == Constant && tptr != Constant)  return this;
3274       ptr = NotNull;            // Fall down in lattice
3275     }
3276     return make( ptr );
3277   }
3278 
3279   case OopPtr:
3280   case InstPtr:
3281   case AryPtr:
3282   case MetadataPtr:
3283   case KlassPtr:
3284   case InstKlassPtr:
3285   case AryKlassPtr:
3286     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3287   default:                      // All else is a mistake
3288     typerr(t);
3289   }
3290 
3291   // Found an AnyPtr type vs self-RawPtr type
3292   const TypePtr *tp = t->is_ptr();
3293   switch (tp->ptr()) {
3294   case TypePtr::TopPTR:  return this;
3295   case TypePtr::BotPTR:  return t;
3296   case TypePtr::Null:
3297     if( _ptr == TypePtr::TopPTR ) return t;
3298     return TypeRawPtr::BOTTOM;
3299   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3300   case TypePtr::AnyNull:
3301     if( _ptr == TypePtr::Constant) return this;
3302     return make( meet_ptr(TypePtr::AnyNull) );
3303   default: ShouldNotReachHere();
3304   }
3305   return this;
3306 }
3307 
3308 //------------------------------xdual------------------------------------------
3309 // Dual: compute field-by-field dual
3310 const Type *TypeRawPtr::xdual() const {
3311   return new TypeRawPtr( dual_ptr(), _bits );
3312 }
3313 
3314 //------------------------------add_offset-------------------------------------
3315 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3316   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3317   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3318   if( offset == 0 ) return this; // No change
3319   switch (_ptr) {
3320   case TypePtr::TopPTR:
3321   case TypePtr::BotPTR:
3322   case TypePtr::NotNull:
3323     return this;
3324   case TypePtr::Null:
3325   case TypePtr::Constant: {
3326     address bits = _bits+offset;
3327     if ( bits == 0 ) return TypePtr::NULL_PTR;
3328     return make( bits );
3329   }
3330   default:  ShouldNotReachHere();
3331   }
3332   return nullptr;                  // Lint noise
3333 }
3334 
3335 //------------------------------eq---------------------------------------------
3336 // Structural equality check for Type representations
3337 bool TypeRawPtr::eq( const Type *t ) const {
3338   const TypeRawPtr *a = (const TypeRawPtr*)t;
3339   return _bits == a->_bits && TypePtr::eq(t);
3340 }
3341 
3342 //------------------------------hash-------------------------------------------
3343 // Type-specific hashing function.
3344 uint TypeRawPtr::hash(void) const {
3345   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3346 }
3347 
3348 //------------------------------dump2------------------------------------------
3349 #ifndef PRODUCT
3350 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3351   if( _ptr == Constant )
3352     st->print(INTPTR_FORMAT, p2i(_bits));
3353   else
3354     st->print("rawptr:%s", ptr_msg[_ptr]);
3355 }
3356 #endif
3357 
3358 //=============================================================================
3359 // Convenience common pre-built type.
3360 const TypeOopPtr *TypeOopPtr::BOTTOM;
3361 
3362 TypeInterfaces::TypeInterfaces()
3363         : Type(Interfaces), _list(Compile::current()->type_arena(), 0, 0, nullptr),
3364           _hash(0), _exact_klass(nullptr) {
3365   DEBUG_ONLY(_initialized = true);
3366 }
3367 
3368 TypeInterfaces::TypeInterfaces(GrowableArray<ciInstanceKlass*>* interfaces)
3369         : Type(Interfaces), _list(Compile::current()->type_arena(), interfaces->length(), 0, nullptr),
3370           _hash(0), _exact_klass(nullptr) {
3371   for (int i = 0; i < interfaces->length(); i++) {
3372     add(interfaces->at(i));
3373   }
3374   initialize();
3375 }
3376 
3377 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3378   TypeInterfaces* result = (interfaces == nullptr) ? new TypeInterfaces() : new TypeInterfaces(interfaces);
3379   return (const TypeInterfaces*)result->hashcons();
3380 }
3381 
3382 void TypeInterfaces::initialize() {
3383   compute_hash();
3384   compute_exact_klass();
3385   DEBUG_ONLY(_initialized = true;)
3386 }
3387 
3388 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3389   if ((intptr_t)k1 < (intptr_t)k2) {
3390     return -1;
3391   } else if ((intptr_t)k1 > (intptr_t)k2) {
3392     return 1;
3393   }
3394   return 0;
3395 }
3396 
3397 void TypeInterfaces::add(ciInstanceKlass* interface) {
3398   assert(interface->is_interface(), "for interfaces only");
3399   _list.insert_sorted<compare>(interface);
3400   verify();
3401 }
3402 
3403 bool TypeInterfaces::eq(const Type* t) const {
3404   const TypeInterfaces* other = (const TypeInterfaces*)t;
3405   if (_list.length() != other->_list.length()) {
3406     return false;
3407   }
3408   for (int i = 0; i < _list.length(); i++) {
3409     ciKlass* k1 = _list.at(i);
3410     ciKlass* k2 = other->_list.at(i);
3411     if (!k1->equals(k2)) {
3412       return false;
3413     }
3414   }
3415   return true;
3416 }
3417 
3418 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3419   assert(k->is_loaded(), "should be loaded");
3420   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3421   if (_list.length() != interfaces->length()) {
3422     return false;
3423   }
3424   for (int i = 0; i < interfaces->length(); i++) {
3425     bool found = false;
3426     _list.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3427     if (!found) {
3428       return false;
3429     }
3430   }
3431   return true;
3432 }
3433 
3434 
3435 uint TypeInterfaces::hash() const {
3436   assert(_initialized, "must be");
3437   return _hash;
3438 }
3439 
3440 const Type* TypeInterfaces::xdual() const {
3441   return this;
3442 }
3443 
3444 void TypeInterfaces::compute_hash() {
3445   uint hash = 0;
3446   for (int i = 0; i < _list.length(); i++) {
3447     ciKlass* k = _list.at(i);
3448     hash += k->hash();
3449   }
3450   _hash = hash;
3451 }
3452 
3453 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3454   return (int)((*k1)->ident() - (*k2)->ident());
3455 }
3456 
3457 void TypeInterfaces::dump(outputStream* st) const {
3458   if (_list.length() == 0) {
3459     return;
3460   }
3461   ResourceMark rm;
3462   st->print(" (");
3463   GrowableArray<ciInstanceKlass*> interfaces;
3464   interfaces.appendAll(&_list);
3465   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3466   interfaces.sort(compare_interfaces);
3467   for (int i = 0; i < interfaces.length(); i++) {
3468     if (i > 0) {
3469       st->print(",");
3470     }
3471     ciKlass* k = interfaces.at(i);
3472     k->print_name_on(st);
3473   }
3474   st->print(")");
3475 }
3476 
3477 #ifdef ASSERT
3478 void TypeInterfaces::verify() const {
3479   for (int i = 1; i < _list.length(); i++) {
3480     ciInstanceKlass* k1 = _list.at(i-1);
3481     ciInstanceKlass* k2 = _list.at(i);
3482     assert(compare(k2, k1) > 0, "should be ordered");
3483     assert(k1 != k2, "no duplicate");
3484   }
3485 }
3486 #endif
3487 
3488 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3489   GrowableArray<ciInstanceKlass*> result_list;
3490   int i = 0;
3491   int j = 0;
3492   while (i < _list.length() || j < other->_list.length()) {
3493     while (i < _list.length() &&
3494            (j >= other->_list.length() ||
3495             compare(_list.at(i), other->_list.at(j)) < 0)) {
3496       result_list.push(_list.at(i));
3497       i++;
3498     }
3499     while (j < other->_list.length() &&
3500            (i >= _list.length() ||
3501             compare(other->_list.at(j), _list.at(i)) < 0)) {
3502       result_list.push(other->_list.at(j));
3503       j++;
3504     }
3505     if (i < _list.length() &&
3506         j < other->_list.length() &&
3507         _list.at(i) == other->_list.at(j)) {
3508       result_list.push(_list.at(i));
3509       i++;
3510       j++;
3511     }
3512   }
3513   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3514 #ifdef ASSERT
3515   result->verify();
3516   for (int i = 0; i < _list.length(); i++) {
3517     assert(result->_list.contains(_list.at(i)), "missing");
3518   }
3519   for (int i = 0; i < other->_list.length(); i++) {
3520     assert(result->_list.contains(other->_list.at(i)), "missing");
3521   }
3522   for (int i = 0; i < result->_list.length(); i++) {
3523     assert(_list.contains(result->_list.at(i)) || other->_list.contains(result->_list.at(i)), "missing");
3524   }
3525 #endif
3526   return result;
3527 }
3528 
3529 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3530   GrowableArray<ciInstanceKlass*> result_list;
3531   int i = 0;
3532   int j = 0;
3533   while (i < _list.length() || j < other->_list.length()) {
3534     while (i < _list.length() &&
3535            (j >= other->_list.length() ||
3536             compare(_list.at(i), other->_list.at(j)) < 0)) {
3537       i++;
3538     }
3539     while (j < other->_list.length() &&
3540            (i >= _list.length() ||
3541             compare(other->_list.at(j), _list.at(i)) < 0)) {
3542       j++;
3543     }
3544     if (i < _list.length() &&
3545         j < other->_list.length() &&
3546         _list.at(i) == other->_list.at(j)) {
3547       result_list.push(_list.at(i));
3548       i++;
3549       j++;
3550     }
3551   }
3552   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3553 #ifdef ASSERT
3554   result->verify();
3555   for (int i = 0; i < _list.length(); i++) {
3556     assert(!other->_list.contains(_list.at(i)) || result->_list.contains(_list.at(i)), "missing");
3557   }
3558   for (int i = 0; i < other->_list.length(); i++) {
3559     assert(!_list.contains(other->_list.at(i)) || result->_list.contains(other->_list.at(i)), "missing");
3560   }
3561   for (int i = 0; i < result->_list.length(); i++) {
3562     assert(_list.contains(result->_list.at(i)) && other->_list.contains(result->_list.at(i)), "missing");
3563   }
3564 #endif
3565   return result;
3566 }
3567 
3568 // Is there a single ciKlass* that can represent the interface set?
3569 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3570   assert(_initialized, "must be");
3571   return _exact_klass;
3572 }
3573 
3574 void TypeInterfaces::compute_exact_klass() {
3575   if (_list.length() == 0) {
3576     _exact_klass = nullptr;
3577     return;
3578   }
3579   ciInstanceKlass* res = nullptr;
3580   for (int i = 0; i < _list.length(); i++) {
3581     ciInstanceKlass* interface = _list.at(i);
3582     if (eq(interface)) {
3583       assert(res == nullptr, "");
3584       res = interface;
3585     }
3586   }
3587   _exact_klass = res;
3588 }
3589 
3590 #ifdef ASSERT
3591 void TypeInterfaces::verify_is_loaded() const {
3592   for (int i = 0; i < _list.length(); i++) {
3593     ciKlass* interface = _list.at(i);
3594     assert(interface->is_loaded(), "Interface not loaded");
3595   }
3596 }
3597 #endif
3598 
3599 // Can't be implemented because there's no way to know if the type is above or below the center line.
3600 const Type* TypeInterfaces::xmeet(const Type* t) const {
3601   ShouldNotReachHere();
3602   return Type::xmeet(t);
3603 }
3604 
3605 bool TypeInterfaces::singleton(void) const {
3606   ShouldNotReachHere();
3607   return Type::singleton();
3608 }
3609 
3610 //------------------------------TypeOopPtr-------------------------------------
3611 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3612                        int instance_id, const TypePtr* speculative, int inline_depth)
3613   : TypePtr(t, ptr, offset, speculative, inline_depth),
3614     _const_oop(o), _klass(k),
3615     _interfaces(interfaces),
3616     _klass_is_exact(xk),
3617     _is_ptr_to_narrowoop(false),
3618     _is_ptr_to_narrowklass(false),
3619     _is_ptr_to_boxed_value(false),
3620     _instance_id(instance_id) {
3621 #ifdef ASSERT
3622   if (klass() != nullptr && klass()->is_loaded()) {
3623     interfaces->verify_is_loaded();
3624   }
3625 #endif
3626   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3627       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3628     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3629   }
3630 #ifdef _LP64
3631   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3632     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3633       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3634     } else if (klass() == nullptr) {
3635       // Array with unknown body type
3636       assert(this->isa_aryptr(), "only arrays without klass");
3637       _is_ptr_to_narrowoop = UseCompressedOops;
3638     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3639       if (klass()->is_obj_array_klass()) {
3640         _is_ptr_to_narrowoop = true;
3641       } else if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3642         // Check if the field of the inline type array element contains oops
3643         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3644         int foffset = field_offset.get() + vk->first_field_offset();
3645         ciField* field = vk->get_field_by_offset(foffset, false);
3646         assert(field != nullptr, "missing field");
3647         BasicType bt = field->layout_type();
3648         _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(bt);
3649       }
3650     } else if (klass()->is_instance_klass()) {
3651       if (this->isa_klassptr()) {
3652         // Perm objects don't use compressed references
3653       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3654         // unsafe access
3655         _is_ptr_to_narrowoop = UseCompressedOops;
3656       } else {
3657         assert(this->isa_instptr(), "must be an instance ptr.");
3658         if (klass() == ciEnv::current()->Class_klass() &&
3659             (this->offset() == java_lang_Class::klass_offset() ||
3660              this->offset() == java_lang_Class::array_klass_offset())) {
3661           // Special hidden fields from the Class.
3662           assert(this->isa_instptr(), "must be an instance ptr.");
3663           _is_ptr_to_narrowoop = false;
3664         } else if (klass() == ciEnv::current()->Class_klass() &&
3665                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3666           // Static fields
3667           ciField* field = nullptr;
3668           if (const_oop() != nullptr) {
3669             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3670             // TODO 8325106 remove?
3671             if (k->is_inlinetype() && this->offset() == k->as_inline_klass()->default_value_offset()) {
3672               // Special hidden field that contains the oop of the default inline type
3673               // basic_elem_type = T_PRIMITIVE_OBJECT;
3674              _is_ptr_to_narrowoop = UseCompressedOops;
3675             } else {
3676               field = k->get_field_by_offset(this->offset(), true);
3677               if (field != nullptr) {
3678                 BasicType basic_elem_type = field->layout_type();
3679                 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3680               } else {
3681                 // unsafe access
3682                 _is_ptr_to_narrowoop = UseCompressedOops;
3683               }
3684             }
3685           }
3686         } else {
3687           // Instance fields which contains a compressed oop references.
3688           ciInstanceKlass* ik = klass()->as_instance_klass();
3689           ciField* field = ik->get_field_by_offset(this->offset(), false);
3690           if (field != nullptr) {
3691             BasicType basic_elem_type = field->layout_type();
3692             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3693           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3694             // Compile::find_alias_type() cast exactness on all types to verify
3695             // that it does not affect alias type.
3696             _is_ptr_to_narrowoop = UseCompressedOops;
3697           } else {
3698             // Type for the copy start in LibraryCallKit::inline_native_clone().
3699             _is_ptr_to_narrowoop = UseCompressedOops;
3700           }
3701         }
3702       }
3703     }
3704   }
3705 #endif
3706 }
3707 
3708 //------------------------------make-------------------------------------------
3709 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3710                                    const TypePtr* speculative, int inline_depth) {
3711   assert(ptr != Constant, "no constant generic pointers");
3712   ciKlass*  k = Compile::current()->env()->Object_klass();
3713   bool      xk = false;
3714   ciObject* o = nullptr;
3715   const TypeInterfaces* interfaces = TypeInterfaces::make();
3716   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3717 }
3718 
3719 
3720 //------------------------------cast_to_ptr_type-------------------------------
3721 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3722   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3723   if( ptr == _ptr ) return this;
3724   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3725 }
3726 
3727 //-----------------------------cast_to_instance_id----------------------------
3728 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3729   // There are no instances of a general oop.
3730   // Return self unchanged.
3731   return this;
3732 }
3733 
3734 //-----------------------------cast_to_exactness-------------------------------
3735 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3736   // There is no such thing as an exact general oop.
3737   // Return self unchanged.
3738   return this;
3739 }
3740 
3741 //------------------------------as_klass_type----------------------------------
3742 // Return the klass type corresponding to this instance or array type.
3743 // It is the type that is loaded from an object of this type.
3744 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3745   ShouldNotReachHere();
3746   return nullptr;
3747 }
3748 
3749 //------------------------------meet-------------------------------------------
3750 // Compute the MEET of two types.  It returns a new Type object.
3751 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3752   // Perform a fast test for common case; meeting the same types together.
3753   if( this == t ) return this;  // Meeting same type-rep?
3754 
3755   // Current "this->_base" is OopPtr
3756   switch (t->base()) {          // switch on original type
3757 
3758   case Int:                     // Mixing ints & oops happens when javac
3759   case Long:                    // reuses local variables
3760   case FloatTop:
3761   case FloatCon:
3762   case FloatBot:
3763   case DoubleTop:
3764   case DoubleCon:
3765   case DoubleBot:
3766   case NarrowOop:
3767   case NarrowKlass:
3768   case Bottom:                  // Ye Olde Default
3769     return Type::BOTTOM;
3770   case Top:
3771     return this;
3772 
3773   default:                      // All else is a mistake
3774     typerr(t);
3775 
3776   case RawPtr:
3777   case MetadataPtr:
3778   case KlassPtr:
3779   case InstKlassPtr:
3780   case AryKlassPtr:
3781     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3782 
3783   case AnyPtr: {
3784     // Found an AnyPtr type vs self-OopPtr type
3785     const TypePtr *tp = t->is_ptr();
3786     Offset offset = meet_offset(tp->offset());
3787     PTR ptr = meet_ptr(tp->ptr());
3788     const TypePtr* speculative = xmeet_speculative(tp);
3789     int depth = meet_inline_depth(tp->inline_depth());
3790     switch (tp->ptr()) {
3791     case Null:
3792       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3793       // else fall through:
3794     case TopPTR:
3795     case AnyNull: {
3796       int instance_id = meet_instance_id(InstanceTop);
3797       return make(ptr, offset, instance_id, speculative, depth);
3798     }
3799     case BotPTR:
3800     case NotNull:
3801       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3802     default: typerr(t);
3803     }
3804   }
3805 
3806   case OopPtr: {                 // Meeting to other OopPtrs
3807     const TypeOopPtr *tp = t->is_oopptr();
3808     int instance_id = meet_instance_id(tp->instance_id());
3809     const TypePtr* speculative = xmeet_speculative(tp);
3810     int depth = meet_inline_depth(tp->inline_depth());
3811     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3812   }
3813 
3814   case InstPtr:                  // For these, flip the call around to cut down
3815   case AryPtr:
3816     return t->xmeet(this);      // Call in reverse direction
3817 
3818   } // End of switch
3819   return this;                  // Return the double constant
3820 }
3821 
3822 
3823 //------------------------------xdual------------------------------------------
3824 // Dual of a pure heap pointer.  No relevant klass or oop information.
3825 const Type *TypeOopPtr::xdual() const {
3826   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3827   assert(const_oop() == nullptr,             "no constants here");
3828   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3829 }
3830 
3831 //--------------------------make_from_klass_common-----------------------------
3832 // Computes the element-type given a klass.
3833 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3834   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3835     Compile* C = Compile::current();
3836     Dependencies* deps = C->dependencies();
3837     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3838     // Element is an instance
3839     bool klass_is_exact = false;
3840     if (klass->is_loaded()) {
3841       // Try to set klass_is_exact.
3842       ciInstanceKlass* ik = klass->as_instance_klass();
3843       klass_is_exact = ik->is_final();
3844       if (!klass_is_exact && klass_change
3845           && deps != nullptr && UseUniqueSubclasses) {
3846         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3847         if (sub != nullptr) {
3848           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3849           klass = ik = sub;
3850           klass_is_exact = sub->is_final();
3851         }
3852       }
3853       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3854           !ik->is_interface() && !ik->has_subklass()) {
3855         // Add a dependence; if concrete subclass added we need to recompile
3856         deps->assert_leaf_type(ik);
3857         klass_is_exact = true;
3858       }
3859     }
3860     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3861     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0));
3862   } else if (klass->is_obj_array_klass()) {
3863     // Element is an object or inline type array. Recursively call ourself.
3864     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3865     // Determine null-free/flat properties
3866     const TypeOopPtr* exact_etype = etype;
3867     if (etype->can_be_inline_type()) {
3868       // Use exact type if element can be an inline type
3869       exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3870     }
3871     bool not_null_free = !exact_etype->can_be_inline_type();
3872     bool not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
3873 
3874     // TODO 8325106 Fix comment
3875     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
3876     bool xk = etype->klass_is_exact() && !etype->is_inlinetypeptr();
3877     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, not_flat, not_null_free);
3878     // We used to pass NotNull in here, asserting that the sub-arrays
3879     // are all not-null.  This is not true in generally, as code can
3880     // slam nullptrs down in the subarrays.
3881     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3882     return arr;
3883   } else if (klass->is_type_array_klass()) {
3884     // Element is an typeArray
3885     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3886     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
3887                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3888     // We used to pass NotNull in here, asserting that the array pointer
3889     // is not-null. That was not true in general.
3890     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3891     return arr;
3892   } else if (klass->is_flat_array_klass()) {
3893     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3894     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3895     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ true);
3896     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3897     return arr;
3898   } else {
3899     ShouldNotReachHere();
3900     return nullptr;
3901   }
3902 }
3903 
3904 //------------------------------make_from_constant-----------------------------
3905 // Make a java pointer from an oop constant
3906 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3907   assert(!o->is_null_object(), "null object not yet handled here.");
3908 
3909   const bool make_constant = require_constant || o->should_be_constant();
3910 
3911   ciKlass* klass = o->klass();
3912   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3913     // Element is an instance or inline type
3914     if (make_constant) {
3915       return TypeInstPtr::make(o);
3916     } else {
3917       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
3918     }
3919   } else if (klass->is_obj_array_klass()) {
3920     // Element is an object array. Recursively call ourself.
3921     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3922     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3923                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3924     // We used to pass NotNull in here, asserting that the sub-arrays
3925     // are all not-null.  This is not true in generally, as code can
3926     // slam nulls down in the subarrays.
3927     if (make_constant) {
3928       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3929     } else {
3930       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3931     }
3932   } else if (klass->is_type_array_klass()) {
3933     // Element is an typeArray
3934     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3935     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()),
3936                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3937     // We used to pass NotNull in here, asserting that the array pointer
3938     // is not-null. That was not true in general.
3939     if (make_constant) {
3940       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3941     } else {
3942       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3943     }
3944   } else if (klass->is_flat_array_klass()) {
3945     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
3946     etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
3947     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ true);
3948     // We used to pass NotNull in here, asserting that the sub-arrays
3949     // are all not-null.  This is not true in generally, as code can
3950     // slam nullptrs down in the subarrays.
3951     if (make_constant) {
3952       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3953     } else {
3954       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3955     }
3956   }
3957 
3958   fatal("unhandled object type");
3959   return nullptr;
3960 }
3961 
3962 //------------------------------get_con----------------------------------------
3963 intptr_t TypeOopPtr::get_con() const {
3964   assert( _ptr == Null || _ptr == Constant, "" );
3965   assert(offset() >= 0, "");
3966 
3967   if (offset() != 0) {
3968     // After being ported to the compiler interface, the compiler no longer
3969     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3970     // to a handle at compile time.  This handle is embedded in the generated
3971     // code and dereferenced at the time the nmethod is made.  Until that time,
3972     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3973     // have access to the addresses!).  This does not seem to currently happen,
3974     // but this assertion here is to help prevent its occurrence.
3975     tty->print_cr("Found oop constant with non-zero offset");
3976     ShouldNotReachHere();
3977   }
3978 
3979   return (intptr_t)const_oop()->constant_encoding();
3980 }
3981 
3982 
3983 //-----------------------------filter------------------------------------------
3984 // Do not allow interface-vs.-noninterface joins to collapse to top.
3985 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3986 
3987   const Type* ft = join_helper(kills, include_speculative);
3988   const TypeInstPtr* ftip = ft->isa_instptr();
3989   const TypeInstPtr* ktip = kills->isa_instptr();
3990 
3991   if (ft->empty()) {
3992     return Type::TOP;           // Canonical empty value
3993   }
3994 
3995   return ft;
3996 }
3997 
3998 //------------------------------eq---------------------------------------------
3999 // Structural equality check for Type representations
4000 bool TypeOopPtr::eq( const Type *t ) const {
4001   const TypeOopPtr *a = (const TypeOopPtr*)t;
4002   if (_klass_is_exact != a->_klass_is_exact ||
4003       _instance_id != a->_instance_id)  return false;
4004   ciObject* one = const_oop();
4005   ciObject* two = a->const_oop();
4006   if (one == nullptr || two == nullptr) {
4007     return (one == two) && TypePtr::eq(t);
4008   } else {
4009     return one->equals(two) && TypePtr::eq(t);
4010   }
4011 }
4012 
4013 //------------------------------hash-------------------------------------------
4014 // Type-specific hashing function.
4015 uint TypeOopPtr::hash(void) const {
4016   return
4017     (uint)(const_oop() ? const_oop()->hash() : 0) +
4018     (uint)_klass_is_exact +
4019     (uint)_instance_id + TypePtr::hash();
4020 }
4021 
4022 //------------------------------dump2------------------------------------------
4023 #ifndef PRODUCT
4024 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4025   st->print("oopptr:%s", ptr_msg[_ptr]);
4026   if( _klass_is_exact ) st->print(":exact");
4027   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
4028   _offset.dump2(st);
4029   if (_instance_id == InstanceTop)
4030     st->print(",iid=top");
4031   else if (_instance_id != InstanceBot)
4032     st->print(",iid=%d",_instance_id);
4033 
4034   dump_inline_depth(st);
4035   dump_speculative(st);
4036 }
4037 #endif
4038 
4039 //------------------------------singleton--------------------------------------
4040 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4041 // constants
4042 bool TypeOopPtr::singleton(void) const {
4043   // detune optimizer to not generate constant oop + constant offset as a constant!
4044   // TopPTR, Null, AnyNull, Constant are all singletons
4045   return (offset() == 0) && !below_centerline(_ptr);
4046 }
4047 
4048 //------------------------------add_offset-------------------------------------
4049 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4050   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4051 }
4052 
4053 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4054   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4055 }
4056 
4057 /**
4058  * Return same type without a speculative part
4059  */
4060 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4061   if (_speculative == nullptr) {
4062     return this;
4063   }
4064   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4065   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4066 }
4067 
4068 /**
4069  * Return same type but drop speculative part if we know we won't use
4070  * it
4071  */
4072 const Type* TypeOopPtr::cleanup_speculative() const {
4073   // If the klass is exact and the ptr is not null then there's
4074   // nothing that the speculative type can help us with
4075   if (klass_is_exact() && !maybe_null()) {
4076     return remove_speculative();
4077   }
4078   return TypePtr::cleanup_speculative();
4079 }
4080 
4081 /**
4082  * Return same type but with a different inline depth (used for speculation)
4083  *
4084  * @param depth  depth to meet with
4085  */
4086 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
4087   if (!UseInlineDepthForSpeculativeTypes) {
4088     return this;
4089   }
4090   return make(_ptr, _offset, _instance_id, _speculative, depth);
4091 }
4092 
4093 //------------------------------with_instance_id--------------------------------
4094 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
4095   assert(_instance_id != -1, "should be known");
4096   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
4097 }
4098 
4099 //------------------------------meet_instance_id--------------------------------
4100 int TypeOopPtr::meet_instance_id( int instance_id ) const {
4101   // Either is 'TOP' instance?  Return the other instance!
4102   if( _instance_id == InstanceTop ) return  instance_id;
4103   if(  instance_id == InstanceTop ) return _instance_id;
4104   // If either is different, return 'BOTTOM' instance
4105   if( _instance_id != instance_id ) return InstanceBot;
4106   return _instance_id;
4107 }
4108 
4109 //------------------------------dual_instance_id--------------------------------
4110 int TypeOopPtr::dual_instance_id( ) const {
4111   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
4112   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
4113   return _instance_id;              // Map everything else into self
4114 }
4115 
4116 
4117 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
4118   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
4119     return _interfaces->union_with(other->_interfaces);
4120   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
4121     return other->_interfaces;
4122   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
4123     return _interfaces;
4124   }
4125   return _interfaces->intersection_with(other->_interfaces);
4126 }
4127 
4128 /**
4129  * Check whether new profiling would improve speculative type
4130  *
4131  * @param   exact_kls    class from profiling
4132  * @param   inline_depth inlining depth of profile point
4133  *
4134  * @return  true if type profile is valuable
4135  */
4136 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
4137   // no way to improve an already exact type
4138   if (klass_is_exact()) {
4139     return false;
4140   }
4141   return TypePtr::would_improve_type(exact_kls, inline_depth);
4142 }
4143 
4144 //=============================================================================
4145 // Convenience common pre-built types.
4146 const TypeInstPtr *TypeInstPtr::NOTNULL;
4147 const TypeInstPtr *TypeInstPtr::BOTTOM;
4148 const TypeInstPtr *TypeInstPtr::MIRROR;
4149 const TypeInstPtr *TypeInstPtr::MARK;
4150 const TypeInstPtr *TypeInstPtr::KLASS;
4151 
4152 // Is there a single ciKlass* that can represent that type?
4153 ciKlass* TypeInstPtr::exact_klass_helper() const {
4154   if (_interfaces->empty()) {
4155     return _klass;
4156   }
4157   if (_klass != ciEnv::current()->Object_klass()) {
4158     if (_interfaces->eq(_klass->as_instance_klass())) {
4159       return _klass;
4160     }
4161     return nullptr;
4162   }
4163   return _interfaces->exact_klass();
4164 }
4165 
4166 //------------------------------TypeInstPtr-------------------------------------
4167 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4168                          bool flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4169   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4170     _flat_in_array(flat_in_array) {
4171   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4172   assert(k != nullptr &&
4173          (k->is_loaded() || o == nullptr),
4174          "cannot have constants with non-loaded klass");
4175   assert(!klass()->flat_in_array() || flat_in_array, "Should be flat in array");
4176   assert(!flat_in_array || can_be_inline_type(), "Only inline types can be flat in array");
4177 };
4178 
4179 //------------------------------make-------------------------------------------
4180 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4181                                      ciKlass* k,
4182                                      const TypeInterfaces* interfaces,
4183                                      bool xk,
4184                                      ciObject* o,
4185                                      Offset offset,
4186                                      bool flat_in_array,
4187                                      int instance_id,
4188                                      const TypePtr* speculative,
4189                                      int inline_depth) {
4190   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4191   // Either const_oop() is null or else ptr is Constant
4192   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4193           "constant pointers must have a value supplied" );
4194   // Ptr is never Null
4195   assert( ptr != Null, "null pointers are not typed" );
4196 
4197   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4198   if (ptr == Constant) {
4199     // Note:  This case includes meta-object constants, such as methods.
4200     xk = true;
4201   } else if (k->is_loaded()) {
4202     ciInstanceKlass* ik = k->as_instance_klass();
4203     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4204     assert(!ik->is_interface(), "no interface here");
4205     if (xk && ik->is_interface())  xk = false;  // no exact interface
4206   }
4207 
4208   // Check if this type is known to be flat in arrays
4209   flat_in_array = flat_in_array || k->flat_in_array();
4210 
4211   // Now hash this baby
4212   TypeInstPtr *result =
4213     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4214 
4215   return result;
4216 }
4217 
4218 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4219   if (k->is_instance_klass()) {
4220     if (k->is_loaded()) {
4221       if (k->is_interface() && interface_handling == ignore_interfaces) {
4222         assert(interface, "no interface expected");
4223         k = ciEnv::current()->Object_klass();
4224         const TypeInterfaces* interfaces = TypeInterfaces::make();
4225         return interfaces;
4226       }
4227       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4228       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4229       if (k->is_interface()) {
4230         assert(interface, "no interface expected");
4231         k = ciEnv::current()->Object_klass();
4232       } else {
4233         assert(klass, "no instance klass expected");
4234       }
4235       return interfaces;
4236     }
4237     const TypeInterfaces* interfaces = TypeInterfaces::make();
4238     return interfaces;
4239   }
4240   assert(array, "no array expected");
4241   assert(k->is_array_klass(), "Not an array?");
4242   ciType* e = k->as_array_klass()->base_element_type();
4243   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4244     if (interface_handling == ignore_interfaces) {
4245       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4246     }
4247   }
4248   return TypeAryPtr::_array_interfaces;
4249 }
4250 
4251 /**
4252  *  Create constant type for a constant boxed value
4253  */
4254 const Type* TypeInstPtr::get_const_boxed_value() const {
4255   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4256   assert((const_oop() != nullptr), "should be called only for constant object");
4257   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4258   BasicType bt = constant.basic_type();
4259   switch (bt) {
4260     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4261     case T_INT:      return TypeInt::make(constant.as_int());
4262     case T_CHAR:     return TypeInt::make(constant.as_char());
4263     case T_BYTE:     return TypeInt::make(constant.as_byte());
4264     case T_SHORT:    return TypeInt::make(constant.as_short());
4265     case T_FLOAT:    return TypeF::make(constant.as_float());
4266     case T_DOUBLE:   return TypeD::make(constant.as_double());
4267     case T_LONG:     return TypeLong::make(constant.as_long());
4268     default:         break;
4269   }
4270   fatal("Invalid boxed value type '%s'", type2name(bt));
4271   return nullptr;
4272 }
4273 
4274 //------------------------------cast_to_ptr_type-------------------------------
4275 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4276   if( ptr == _ptr ) return this;
4277   // Reconstruct _sig info here since not a problem with later lazy
4278   // construction, _sig will show up on demand.
4279   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4280 }
4281 
4282 
4283 //-----------------------------cast_to_exactness-------------------------------
4284 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4285   if( klass_is_exact == _klass_is_exact ) return this;
4286   if (!_klass->is_loaded())  return this;
4287   ciInstanceKlass* ik = _klass->as_instance_klass();
4288   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4289   assert(!ik->is_interface(), "no interface here");
4290   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4291 }
4292 
4293 //-----------------------------cast_to_instance_id----------------------------
4294 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4295   if( instance_id == _instance_id ) return this;
4296   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4297 }
4298 
4299 //------------------------------xmeet_unloaded---------------------------------
4300 // Compute the MEET of two InstPtrs when at least one is unloaded.
4301 // Assume classes are different since called after check for same name/class-loader
4302 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4303   Offset off = meet_offset(tinst->offset());
4304   PTR ptr = meet_ptr(tinst->ptr());
4305   int instance_id = meet_instance_id(tinst->instance_id());
4306   const TypePtr* speculative = xmeet_speculative(tinst);
4307   int depth = meet_inline_depth(tinst->inline_depth());
4308 
4309   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4310   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4311   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4312     //
4313     // Meet unloaded class with java/lang/Object
4314     //
4315     // Meet
4316     //          |                     Unloaded Class
4317     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4318     //  ===================================================================
4319     //   TOP    | ..........................Unloaded......................|
4320     //  AnyNull |  U-AN    |................Unloaded......................|
4321     // Constant | ... O-NN .................................. |   O-BOT   |
4322     //  NotNull | ... O-NN .................................. |   O-BOT   |
4323     //  BOTTOM  | ........................Object-BOTTOM ..................|
4324     //
4325     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4326     //
4327     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded; }
4328     else if (loaded->ptr() == TypePtr::AnyNull)  { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, false, instance_id, speculative, depth); }
4329     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM; }
4330     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4331       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM;  }
4332       else                                       { return TypeInstPtr::NOTNULL; }
4333     }
4334     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4335 
4336     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4337   }
4338 
4339   // Both are unloaded, not the same class, not Object
4340   // Or meet unloaded with a different loaded class, not java/lang/Object
4341   if (ptr != TypePtr::BotPTR) {
4342     return TypeInstPtr::NOTNULL;
4343   }
4344   return TypeInstPtr::BOTTOM;
4345 }
4346 
4347 
4348 //------------------------------meet-------------------------------------------
4349 // Compute the MEET of two types.  It returns a new Type object.
4350 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4351   // Perform a fast test for common case; meeting the same types together.
4352   if( this == t ) return this;  // Meeting same type-rep?
4353 
4354   // Current "this->_base" is Pointer
4355   switch (t->base()) {          // switch on original type
4356 
4357   case Int:                     // Mixing ints & oops happens when javac
4358   case Long:                    // reuses local variables
4359   case FloatTop:
4360   case FloatCon:
4361   case FloatBot:
4362   case DoubleTop:
4363   case DoubleCon:
4364   case DoubleBot:
4365   case NarrowOop:
4366   case NarrowKlass:
4367   case Bottom:                  // Ye Olde Default
4368     return Type::BOTTOM;
4369   case Top:
4370     return this;
4371 
4372   default:                      // All else is a mistake
4373     typerr(t);
4374 
4375   case MetadataPtr:
4376   case KlassPtr:
4377   case InstKlassPtr:
4378   case AryKlassPtr:
4379   case RawPtr: return TypePtr::BOTTOM;
4380 
4381   case AryPtr: {                // All arrays inherit from Object class
4382     // Call in reverse direction to avoid duplication
4383     return t->is_aryptr()->xmeet_helper(this);
4384   }
4385 
4386   case OopPtr: {                // Meeting to OopPtrs
4387     // Found a OopPtr type vs self-InstPtr type
4388     const TypeOopPtr *tp = t->is_oopptr();
4389     Offset offset = meet_offset(tp->offset());
4390     PTR ptr = meet_ptr(tp->ptr());
4391     switch (tp->ptr()) {
4392     case TopPTR:
4393     case AnyNull: {
4394       int instance_id = meet_instance_id(InstanceTop);
4395       const TypePtr* speculative = xmeet_speculative(tp);
4396       int depth = meet_inline_depth(tp->inline_depth());
4397       return make(ptr, klass(), _interfaces, klass_is_exact(),
4398                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4399     }
4400     case NotNull:
4401     case BotPTR: {
4402       int instance_id = meet_instance_id(tp->instance_id());
4403       const TypePtr* speculative = xmeet_speculative(tp);
4404       int depth = meet_inline_depth(tp->inline_depth());
4405       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4406     }
4407     default: typerr(t);
4408     }
4409   }
4410 
4411   case AnyPtr: {                // Meeting to AnyPtrs
4412     // Found an AnyPtr type vs self-InstPtr type
4413     const TypePtr *tp = t->is_ptr();
4414     Offset offset = meet_offset(tp->offset());
4415     PTR ptr = meet_ptr(tp->ptr());
4416     int instance_id = meet_instance_id(InstanceTop);
4417     const TypePtr* speculative = xmeet_speculative(tp);
4418     int depth = meet_inline_depth(tp->inline_depth());
4419     switch (tp->ptr()) {
4420     case Null:
4421       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4422       // else fall through to AnyNull
4423     case TopPTR:
4424     case AnyNull: {
4425       return make(ptr, klass(), _interfaces, klass_is_exact(),
4426                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4427     }
4428     case NotNull:
4429     case BotPTR:
4430       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4431     default: typerr(t);
4432     }
4433   }
4434 
4435   /*
4436                  A-top         }
4437                /   |   \       }  Tops
4438            B-top A-any C-top   }
4439               | /  |  \ |      }  Any-nulls
4440            B-any   |   C-any   }
4441               |    |    |
4442            B-con A-con C-con   } constants; not comparable across classes
4443               |    |    |
4444            B-not   |   C-not   }
4445               | \  |  / |      }  not-nulls
4446            B-bot A-not C-bot   }
4447                \   |   /       }  Bottoms
4448                  A-bot         }
4449   */
4450 
4451   case InstPtr: {                // Meeting 2 Oops?
4452     // Found an InstPtr sub-type vs self-InstPtr type
4453     const TypeInstPtr *tinst = t->is_instptr();
4454     Offset off = meet_offset(tinst->offset());
4455     PTR ptr = meet_ptr(tinst->ptr());
4456     int instance_id = meet_instance_id(tinst->instance_id());
4457     const TypePtr* speculative = xmeet_speculative(tinst);
4458     int depth = meet_inline_depth(tinst->inline_depth());
4459     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4460 
4461     ciKlass* tinst_klass = tinst->klass();
4462     ciKlass* this_klass  = klass();
4463 
4464     ciKlass* res_klass = nullptr;
4465     bool res_xk = false;
4466     bool res_flat_in_array = false;
4467     const Type* res;
4468     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk, res_flat_in_array);
4469 
4470     if (kind == UNLOADED) {
4471       // One of these classes has not been loaded
4472       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4473 #ifndef PRODUCT
4474       if (PrintOpto && Verbose) {
4475         tty->print("meet of unloaded classes resulted in: ");
4476         unloaded_meet->dump();
4477         tty->cr();
4478         tty->print("  this == ");
4479         dump();
4480         tty->cr();
4481         tty->print(" tinst == ");
4482         tinst->dump();
4483         tty->cr();
4484       }
4485 #endif
4486       res = unloaded_meet;
4487     } else {
4488       if (kind == NOT_SUBTYPE && instance_id > 0) {
4489         instance_id = InstanceBot;
4490       } else if (kind == LCA) {
4491         instance_id = InstanceBot;
4492       }
4493       ciObject* o = nullptr;             // Assume not constant when done
4494       ciObject* this_oop = const_oop();
4495       ciObject* tinst_oop = tinst->const_oop();
4496       if (ptr == Constant) {
4497         if (this_oop != nullptr && tinst_oop != nullptr &&
4498             this_oop->equals(tinst_oop))
4499           o = this_oop;
4500         else if (above_centerline(_ptr)) {
4501           assert(!tinst_klass->is_interface(), "");
4502           o = tinst_oop;
4503         } else if (above_centerline(tinst->_ptr)) {
4504           assert(!this_klass->is_interface(), "");
4505           o = this_oop;
4506         } else
4507           ptr = NotNull;
4508       }
4509       res = make(ptr, res_klass, interfaces, res_xk, o, off, res_flat_in_array, instance_id, speculative, depth);
4510     }
4511 
4512     return res;
4513 
4514   } // End of case InstPtr
4515 
4516   } // End of switch
4517   return this;                  // Return the double constant
4518 }
4519 
4520 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4521                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flat_in_array) {
4522   ciKlass* this_klass = this_type->klass();
4523   ciKlass* other_klass = other_type->klass();
4524   bool this_flat_in_array = this_type->flat_in_array();
4525   bool other_flat_in_array = other_type->flat_in_array();
4526   bool this_flat_in_array_orig = this_flat_in_array;
4527   bool other_flat_in_array_orig = other_flat_in_array;
4528   bool this_xk = this_type->klass_is_exact();
4529   bool other_xk = other_type->klass_is_exact();
4530   PTR this_ptr = this_type->ptr();
4531   PTR other_ptr = other_type->ptr();
4532   const TypeInterfaces* this_interfaces = this_type->interfaces();
4533   const TypeInterfaces* other_interfaces = other_type->interfaces();
4534   // Check for easy case; klasses are equal (and perhaps not loaded!)
4535   // If we have constants, then we created oops so classes are loaded
4536   // and we can handle the constants further down.  This case handles
4537   // both-not-loaded or both-loaded classes
4538   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk && this_flat_in_array == other_flat_in_array) {
4539     res_klass = this_klass;
4540     res_xk = this_xk;
4541     res_flat_in_array = this_flat_in_array;
4542     return QUICK;
4543   }
4544 
4545   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4546   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4547     return UNLOADED;
4548   }
4549 
4550   // !!! Here's how the symmetry requirement breaks down into invariants:
4551   // If we split one up & one down AND they subtype, take the down man.
4552   // If we split one up & one down AND they do NOT subtype, "fall hard".
4553   // If both are up and they subtype, take the subtype class.
4554   // If both are up and they do NOT subtype, "fall hard".
4555   // If both are down and they subtype, take the supertype class.
4556   // If both are down and they do NOT subtype, "fall hard".
4557   // Constants treated as down.
4558 
4559   // Now, reorder the above list; observe that both-down+subtype is also
4560   // "fall hard"; "fall hard" becomes the default case:
4561   // If we split one up & one down AND they subtype, take the down man.
4562   // If both are up and they subtype, take the subtype class.
4563 
4564   // If both are down and they subtype, "fall hard".
4565   // If both are down and they do NOT subtype, "fall hard".
4566   // If both are up and they do NOT subtype, "fall hard".
4567   // If we split one up & one down AND they do NOT subtype, "fall hard".
4568 
4569   // If a proper subtype is exact, and we return it, we return it exactly.
4570   // If a proper supertype is exact, there can be no subtyping relationship!
4571   // If both types are equal to the subtype, exactness is and-ed below the
4572   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4573 
4574   // Check for subtyping:
4575   const T* subtype = nullptr;
4576   bool subtype_exact = false;
4577   bool flat_array = false;
4578   if (this_type->is_same_java_type_as(other_type)) {
4579     subtype = this_type;
4580     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4581     flat_array = below_centerline(ptr) ? (this_flat_in_array && other_flat_in_array) : (this_flat_in_array || other_flat_in_array);
4582   } else if (!other_xk && this_type->is_meet_subtype_of(other_type) && (!other_flat_in_array || this_flat_in_array)) {
4583     subtype = this_type;     // Pick subtyping class
4584     subtype_exact = this_xk;
4585     flat_array = this_flat_in_array;
4586   } else if (!this_xk && other_type->is_meet_subtype_of(this_type) && (!this_flat_in_array || other_flat_in_array)) {
4587     subtype = other_type;    // Pick subtyping class
4588     subtype_exact = other_xk;
4589     flat_array = other_flat_in_array;
4590   }
4591 
4592   if (subtype) {
4593     if (above_centerline(ptr)) { // both are up?
4594       this_type = other_type = subtype;
4595       this_xk = other_xk = subtype_exact;
4596       this_flat_in_array = other_flat_in_array = flat_array;
4597     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4598       this_type = other_type; // tinst is down; keep down man
4599       this_xk = other_xk;
4600       this_flat_in_array = other_flat_in_array;
4601     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4602       other_type = this_type; // this is down; keep down man
4603       other_xk = this_xk;
4604       other_flat_in_array = this_flat_in_array;
4605     } else {
4606       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4607       this_flat_in_array = flat_array;
4608     }
4609   }
4610 
4611   // Check for classes now being equal
4612   if (this_type->is_same_java_type_as(other_type)) {
4613     // If the klasses are equal, the constants may still differ.  Fall to
4614     // NotNull if they do (neither constant is null; that is a special case
4615     // handled elsewhere).
4616     res_klass = this_type->klass();
4617     res_xk = this_xk;
4618     res_flat_in_array = this_flat_in_array;
4619     return SUBTYPE;
4620   } // Else classes are not equal
4621 
4622   // Since klasses are different, we require a LCA in the Java
4623   // class hierarchy - which means we have to fall to at least NotNull.
4624   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4625     ptr = NotNull;
4626   }
4627 
4628   interfaces = this_interfaces->intersection_with(other_interfaces);
4629 
4630   // Now we find the LCA of Java classes
4631   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4632 
4633   res_klass = k;
4634   res_xk = false;
4635   res_flat_in_array = this_flat_in_array_orig && other_flat_in_array_orig;
4636 
4637   return LCA;
4638 }
4639 
4640 //------------------------java_mirror_type--------------------------------------
4641 ciType* TypeInstPtr::java_mirror_type() const {
4642   // must be a singleton type
4643   if( const_oop() == nullptr )  return nullptr;
4644 
4645   // must be of type java.lang.Class
4646   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4647   return const_oop()->as_instance()->java_mirror_type();
4648 }
4649 
4650 
4651 //------------------------------xdual------------------------------------------
4652 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4653 // inheritance mechanism.
4654 const Type *TypeInstPtr::xdual() const {
4655   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4656 }
4657 
4658 //------------------------------eq---------------------------------------------
4659 // Structural equality check for Type representations
4660 bool TypeInstPtr::eq( const Type *t ) const {
4661   const TypeInstPtr *p = t->is_instptr();
4662   return
4663     klass()->equals(p->klass()) &&
4664     flat_in_array() == p->flat_in_array() &&
4665     _interfaces->eq(p->_interfaces) &&
4666     TypeOopPtr::eq(p);          // Check sub-type stuff
4667 }
4668 
4669 //------------------------------hash-------------------------------------------
4670 // Type-specific hashing function.
4671 uint TypeInstPtr::hash(void) const {
4672   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + (uint)flat_in_array();
4673 }
4674 
4675 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4676   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4677 }
4678 
4679 
4680 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4681   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4682 }
4683 
4684 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4685   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4686 }
4687 
4688 
4689 //------------------------------dump2------------------------------------------
4690 // Dump oop Type
4691 #ifndef PRODUCT
4692 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4693   // Print the name of the klass.
4694   klass()->print_name_on(st);
4695   _interfaces->dump(st);
4696 
4697   switch( _ptr ) {
4698   case Constant:
4699     if (WizardMode || Verbose) {
4700       ResourceMark rm;
4701       stringStream ss;
4702 
4703       st->print(" ");
4704       const_oop()->print_oop(&ss);
4705       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4706       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4707       char* buf = ss.as_string(/* c_heap= */false);
4708       StringUtils::replace_no_expand(buf, "\n", "");
4709       st->print_raw(buf);
4710     }
4711   case BotPTR:
4712     if (!WizardMode && !Verbose) {
4713       if( _klass_is_exact ) st->print(":exact");
4714       break;
4715     }
4716   case TopPTR:
4717   case AnyNull:
4718   case NotNull:
4719     st->print(":%s", ptr_msg[_ptr]);
4720     if( _klass_is_exact ) st->print(":exact");
4721     break;
4722   default:
4723     break;
4724   }
4725 
4726   _offset.dump2(st);
4727 
4728   st->print(" *");
4729 
4730   if (flat_in_array() && !klass()->is_inlinetype()) {
4731     st->print(" (flat in array)");
4732   }
4733 
4734   if (_instance_id == InstanceTop)
4735     st->print(",iid=top");
4736   else if (_instance_id != InstanceBot)
4737     st->print(",iid=%d",_instance_id);
4738 
4739   dump_inline_depth(st);
4740   dump_speculative(st);
4741 }
4742 #endif
4743 
4744 //------------------------------add_offset-------------------------------------
4745 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4746   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), flat_in_array(),
4747               _instance_id, add_offset_speculative(offset), _inline_depth);
4748 }
4749 
4750 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4751   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), flat_in_array(),
4752               _instance_id, with_offset_speculative(offset), _inline_depth);
4753 }
4754 
4755 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4756   if (_speculative == nullptr) {
4757     return this;
4758   }
4759   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4760   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(),
4761               _instance_id, nullptr, _inline_depth);
4762 }
4763 
4764 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4765   if (!UseInlineDepthForSpeculativeTypes) {
4766     return this;
4767   }
4768   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), _instance_id, _speculative, depth);
4769 }
4770 
4771 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4772   assert(is_known_instance(), "should be known");
4773   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, flat_in_array(), instance_id, _speculative, _inline_depth);
4774 }
4775 
4776 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4777   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, true, _instance_id, _speculative, _inline_depth);
4778 }
4779 
4780 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4781   bool xk = klass_is_exact();
4782   ciInstanceKlass* ik = klass()->as_instance_klass();
4783   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4784     if (_interfaces->eq(ik)) {
4785       Compile* C = Compile::current();
4786       Dependencies* deps = C->dependencies();
4787       deps->assert_leaf_type(ik);
4788       xk = true;
4789     }
4790   }
4791   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array());
4792 }
4793 
4794 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4795   static_assert(std::is_base_of<T2, T1>::value, "");
4796 
4797   if (!this_one->is_instance_type(other)) {
4798     return false;
4799   }
4800 
4801   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4802     return true;
4803   }
4804 
4805   return this_one->klass()->is_subtype_of(other->klass()) &&
4806          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4807 }
4808 
4809 
4810 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4811   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4812 }
4813 
4814 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4815   static_assert(std::is_base_of<T2, T1>::value, "");
4816   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4817     return true;
4818   }
4819 
4820   if (this_one->is_instance_type(other)) {
4821     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4822   }
4823 
4824   int dummy;
4825   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4826   if (this_top_or_bottom) {
4827     return false;
4828   }
4829 
4830   const T1* other_ary = this_one->is_array_type(other);
4831   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4832   const TypePtr* this_elem = this_one->elem()->make_ptr();
4833   if (other_elem != nullptr && this_elem != nullptr) {
4834     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4835   }
4836   if (other_elem == nullptr && this_elem == nullptr) {
4837     return this_one->_klass->is_subtype_of(other->_klass);
4838   }
4839 
4840   return false;
4841 }
4842 
4843 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4844   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4845 }
4846 
4847 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4848   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4849 }
4850 
4851 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4852   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4853 }
4854 
4855 //=============================================================================
4856 // Convenience common pre-built types.
4857 const TypeAryPtr *TypeAryPtr::RANGE;
4858 const TypeAryPtr *TypeAryPtr::OOPS;
4859 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4860 const TypeAryPtr *TypeAryPtr::BYTES;
4861 const TypeAryPtr *TypeAryPtr::SHORTS;
4862 const TypeAryPtr *TypeAryPtr::CHARS;
4863 const TypeAryPtr *TypeAryPtr::INTS;
4864 const TypeAryPtr *TypeAryPtr::LONGS;
4865 const TypeAryPtr *TypeAryPtr::FLOATS;
4866 const TypeAryPtr *TypeAryPtr::DOUBLES;
4867 const TypeAryPtr *TypeAryPtr::INLINES;
4868 
4869 //------------------------------make-------------------------------------------
4870 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4871                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4872   assert(!(k == nullptr && ary->_elem->isa_int()),
4873          "integral arrays must be pre-equipped with a class");
4874   if (!xk)  xk = ary->ary_must_be_exact();
4875   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4876   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4877       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4878     k = nullptr;
4879   }
4880   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4881     k = nullptr;
4882   }
4883   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4884 }
4885 
4886 //------------------------------make-------------------------------------------
4887 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4888                                    int instance_id, const TypePtr* speculative, int inline_depth,
4889                                    bool is_autobox_cache) {
4890   assert(!(k == nullptr && ary->_elem->isa_int()),
4891          "integral arrays must be pre-equipped with a class");
4892   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4893   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
4894   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4895   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4896       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4897     k = nullptr;
4898   }
4899   if (k != nullptr && k->is_flat_array_klass() && !ary->_flat) {
4900     k = nullptr;
4901   }
4902   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4903 }
4904 
4905 //------------------------------cast_to_ptr_type-------------------------------
4906 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4907   if( ptr == _ptr ) return this;
4908   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4909 }
4910 
4911 
4912 //-----------------------------cast_to_exactness-------------------------------
4913 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4914   if( klass_is_exact == _klass_is_exact ) return this;
4915   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4916   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4917 }
4918 
4919 //-----------------------------cast_to_instance_id----------------------------
4920 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4921   if( instance_id == _instance_id ) return this;
4922   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4923 }
4924 
4925 
4926 //-----------------------------max_array_length-------------------------------
4927 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4928 jint TypeAryPtr::max_array_length(BasicType etype) {
4929   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4930     if (etype == T_NARROWOOP) {
4931       etype = T_OBJECT;
4932     } else if (etype == T_ILLEGAL) { // bottom[]
4933       etype = T_BYTE; // will produce conservatively high value
4934     } else {
4935       fatal("not an element type: %s", type2name(etype));
4936     }
4937   }
4938   return arrayOopDesc::max_array_length(etype);
4939 }
4940 
4941 //-----------------------------narrow_size_type-------------------------------
4942 // Narrow the given size type to the index range for the given array base type.
4943 // Return null if the resulting int type becomes empty.
4944 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4945   jint hi = size->_hi;
4946   jint lo = size->_lo;
4947   jint min_lo = 0;
4948   jint max_hi = max_array_length(elem()->array_element_basic_type());
4949   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4950   bool chg = false;
4951   if (lo < min_lo) {
4952     lo = min_lo;
4953     if (size->is_con()) {
4954       hi = lo;
4955     }
4956     chg = true;
4957   }
4958   if (hi > max_hi) {
4959     hi = max_hi;
4960     if (size->is_con()) {
4961       lo = hi;
4962     }
4963     chg = true;
4964   }
4965   // Negative length arrays will produce weird intermediate dead fast-path code
4966   if (lo > hi)
4967     return TypeInt::ZERO;
4968   if (!chg)
4969     return size;
4970   return TypeInt::make(lo, hi, Type::WidenMin);
4971 }
4972 
4973 //-------------------------------cast_to_size----------------------------------
4974 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4975   assert(new_size != nullptr, "");
4976   new_size = narrow_size_type(new_size);
4977   if (new_size == size())  return this;
4978   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free());
4979   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4980 }
4981 
4982 //-------------------------------cast_to_not_flat------------------------------
4983 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
4984   if (not_flat == is_not_flat()) {
4985     return this;
4986   }
4987   assert(!not_flat || !is_flat(), "inconsistency");
4988   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free());
4989   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4990   // We keep the speculative part if it contains information about flat-/nullability.
4991   // Make sure it's removed if it's not better than the non-speculative type anymore.
4992   if (res->speculative() == res->remove_speculative()) {
4993     return res->remove_speculative();
4994   }
4995   return res;
4996 }
4997 
4998 //-------------------------------cast_to_not_null_free-------------------------
4999 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5000   if (not_null_free == is_not_null_free()) {
5001     return this;
5002   }
5003   assert(!not_null_free || !is_flat(), "inconsistency");
5004   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), /* not_flat= */ not_null_free ? true : is_not_flat(), not_null_free);
5005   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5006                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5007   // We keep the speculative part if it contains information about flat-/nullability.
5008   // Make sure it's removed if it's not better than the non-speculative type anymore.
5009   if (res->speculative() == res->remove_speculative()) {
5010     return res->remove_speculative();
5011   }
5012   return res;
5013 }
5014 
5015 //---------------------------------update_properties---------------------------
5016 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5017   if ((from->is_flat()          && is_not_flat()) ||
5018       (from->is_not_flat()      && is_flat()) ||
5019       (from->is_null_free()     && is_not_null_free()) ||
5020       (from->is_not_null_free() && is_null_free())) {
5021     return nullptr; // Inconsistent properties
5022   } else if (from->is_not_null_free()) {
5023     return cast_to_not_null_free(); // Implies not flat
5024   } else if (from->is_not_flat()) {
5025     return cast_to_not_flat();
5026   }
5027   return this;
5028 }
5029 
5030 jint TypeAryPtr::flat_layout_helper() const {
5031   return klass()->as_flat_array_klass()->layout_helper();
5032 }
5033 
5034 int TypeAryPtr::flat_elem_size() const {
5035   return klass()->as_flat_array_klass()->element_byte_size();
5036 }
5037 
5038 int TypeAryPtr::flat_log_elem_size() const {
5039   return klass()->as_flat_array_klass()->log2_element_size();
5040 }
5041 
5042 //------------------------------cast_to_stable---------------------------------
5043 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5044   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5045     return this;
5046 
5047   const Type* elem = this->elem();
5048   const TypePtr* elem_ptr = elem->make_ptr();
5049 
5050   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5051     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5052     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5053   }
5054 
5055   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free());
5056 
5057   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5058 }
5059 
5060 //-----------------------------stable_dimension--------------------------------
5061 int TypeAryPtr::stable_dimension() const {
5062   if (!is_stable())  return 0;
5063   int dim = 1;
5064   const TypePtr* elem_ptr = elem()->make_ptr();
5065   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5066     dim += elem_ptr->is_aryptr()->stable_dimension();
5067   return dim;
5068 }
5069 
5070 //----------------------cast_to_autobox_cache-----------------------------------
5071 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5072   if (is_autobox_cache())  return this;
5073   const TypeOopPtr* etype = elem()->make_oopptr();
5074   if (etype == nullptr)  return this;
5075   // The pointers in the autobox arrays are always non-null.
5076   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5077   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free());
5078   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5079 }
5080 
5081 //------------------------------eq---------------------------------------------
5082 // Structural equality check for Type representations
5083 bool TypeAryPtr::eq( const Type *t ) const {
5084   const TypeAryPtr *p = t->is_aryptr();
5085   return
5086     _ary == p->_ary &&  // Check array
5087     TypeOopPtr::eq(p) &&// Check sub-parts
5088     _field_offset == p->_field_offset;
5089 }
5090 
5091 //------------------------------hash-------------------------------------------
5092 // Type-specific hashing function.
5093 uint TypeAryPtr::hash(void) const {
5094   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5095 }
5096 
5097 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5098   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5099 }
5100 
5101 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5102   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5103 }
5104 
5105 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5106   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5107 }
5108 //------------------------------meet-------------------------------------------
5109 // Compute the MEET of two types.  It returns a new Type object.
5110 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5111   // Perform a fast test for common case; meeting the same types together.
5112   if( this == t ) return this;  // Meeting same type-rep?
5113   // Current "this->_base" is Pointer
5114   switch (t->base()) {          // switch on original type
5115 
5116   // Mixing ints & oops happens when javac reuses local variables
5117   case Int:
5118   case Long:
5119   case FloatTop:
5120   case FloatCon:
5121   case FloatBot:
5122   case DoubleTop:
5123   case DoubleCon:
5124   case DoubleBot:
5125   case NarrowOop:
5126   case NarrowKlass:
5127   case Bottom:                  // Ye Olde Default
5128     return Type::BOTTOM;
5129   case Top:
5130     return this;
5131 
5132   default:                      // All else is a mistake
5133     typerr(t);
5134 
5135   case OopPtr: {                // Meeting to OopPtrs
5136     // Found a OopPtr type vs self-AryPtr type
5137     const TypeOopPtr *tp = t->is_oopptr();
5138     Offset offset = meet_offset(tp->offset());
5139     PTR ptr = meet_ptr(tp->ptr());
5140     int depth = meet_inline_depth(tp->inline_depth());
5141     const TypePtr* speculative = xmeet_speculative(tp);
5142     switch (tp->ptr()) {
5143     case TopPTR:
5144     case AnyNull: {
5145       int instance_id = meet_instance_id(InstanceTop);
5146       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5147                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5148     }
5149     case BotPTR:
5150     case NotNull: {
5151       int instance_id = meet_instance_id(tp->instance_id());
5152       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5153     }
5154     default: ShouldNotReachHere();
5155     }
5156   }
5157 
5158   case AnyPtr: {                // Meeting two AnyPtrs
5159     // Found an AnyPtr type vs self-AryPtr type
5160     const TypePtr *tp = t->is_ptr();
5161     Offset offset = meet_offset(tp->offset());
5162     PTR ptr = meet_ptr(tp->ptr());
5163     const TypePtr* speculative = xmeet_speculative(tp);
5164     int depth = meet_inline_depth(tp->inline_depth());
5165     switch (tp->ptr()) {
5166     case TopPTR:
5167       return this;
5168     case BotPTR:
5169     case NotNull:
5170       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5171     case Null:
5172       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5173       // else fall through to AnyNull
5174     case AnyNull: {
5175       int instance_id = meet_instance_id(InstanceTop);
5176       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5177                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5178     }
5179     default: ShouldNotReachHere();
5180     }
5181   }
5182 
5183   case MetadataPtr:
5184   case KlassPtr:
5185   case InstKlassPtr:
5186   case AryKlassPtr:
5187   case RawPtr: return TypePtr::BOTTOM;
5188 
5189   case AryPtr: {                // Meeting 2 references?
5190     const TypeAryPtr *tap = t->is_aryptr();
5191     Offset off = meet_offset(tap->offset());
5192     Offset field_off = meet_field_offset(tap->field_offset());
5193     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
5194     PTR ptr = meet_ptr(tap->ptr());
5195     int instance_id = meet_instance_id(tap->instance_id());
5196     const TypePtr* speculative = xmeet_speculative(tap);
5197     int depth = meet_inline_depth(tap->inline_depth());
5198 
5199     ciKlass* res_klass = nullptr;
5200     bool res_xk = false;
5201     bool res_flat = false;
5202     bool res_not_flat = false;
5203     bool res_not_null_free = false;
5204     const Type* elem = tary->_elem;
5205     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free) == NOT_SUBTYPE) {
5206       instance_id = InstanceBot;
5207     } else if (this->is_flat() != tap->is_flat()) {
5208       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5209       if (tary->_flat) {
5210         // Result is in a flat representation
5211         off = Offset(is_flat() ? offset() : tap->offset());
5212         field_off = is_flat() ? field_offset() : tap->field_offset();
5213       } else if (below_centerline(ptr)) {
5214         // Result is in a non-flat representation
5215         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5216         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5217       } else if (flat_offset() == tap->flat_offset()) {
5218         off = Offset(!is_flat() ? offset() : tap->offset());
5219         field_off = !is_flat() ? field_offset() : tap->field_offset();
5220       }
5221     }
5222 
5223     ciObject* o = nullptr;             // Assume not constant when done
5224     ciObject* this_oop = const_oop();
5225     ciObject* tap_oop = tap->const_oop();
5226     if (ptr == Constant) {
5227       if (this_oop != nullptr && tap_oop != nullptr &&
5228           this_oop->equals(tap_oop)) {
5229         o = tap_oop;
5230       } else if (above_centerline(_ptr)) {
5231         o = tap_oop;
5232       } else if (above_centerline(tap->_ptr)) {
5233         o = this_oop;
5234       } else {
5235         ptr = NotNull;
5236       }
5237     }
5238     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5239   }
5240 
5241   // All arrays inherit from Object class
5242   case InstPtr: {
5243     const TypeInstPtr *tp = t->is_instptr();
5244     Offset offset = meet_offset(tp->offset());
5245     PTR ptr = meet_ptr(tp->ptr());
5246     int instance_id = meet_instance_id(tp->instance_id());
5247     const TypePtr* speculative = xmeet_speculative(tp);
5248     int depth = meet_inline_depth(tp->inline_depth());
5249     const TypeInterfaces* interfaces = meet_interfaces(tp);
5250     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5251     const TypeInterfaces* this_interfaces = _interfaces;
5252 
5253     switch (ptr) {
5254     case TopPTR:
5255     case AnyNull:                // Fall 'down' to dual of object klass
5256       // For instances when a subclass meets a superclass we fall
5257       // below the centerline when the superclass is exact. We need to
5258       // do the same here.
5259       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5260         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5261       } else {
5262         // cannot subclass, so the meet has to fall badly below the centerline
5263         ptr = NotNull;
5264         instance_id = InstanceBot;
5265         interfaces = this_interfaces->intersection_with(tp_interfaces);
5266         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5267       }
5268     case Constant:
5269     case NotNull:
5270     case BotPTR:                // Fall down to object klass
5271       // LCA is object_klass, but if we subclass from the top we can do better
5272       if (above_centerline(tp->ptr())) {
5273         // If 'tp'  is above the centerline and it is Object class
5274         // then we can subclass in the Java class hierarchy.
5275         // For instances when a subclass meets a superclass we fall
5276         // below the centerline when the superclass is exact. We need
5277         // to do the same here.
5278         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact() && !tp->flat_in_array()) {
5279           // that is, my array type is a subtype of 'tp' klass
5280           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5281                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5282         }
5283       }
5284       // The other case cannot happen, since t cannot be a subtype of an array.
5285       // The meet falls down to Object class below centerline.
5286       if (ptr == Constant) {
5287          ptr = NotNull;
5288       }
5289       if (instance_id > 0) {
5290         instance_id = InstanceBot;
5291       }
5292       interfaces = this_interfaces->intersection_with(tp_interfaces);
5293       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, false, instance_id, speculative, depth);
5294     default: typerr(t);
5295     }
5296   }
5297   }
5298   return this;                  // Lint noise
5299 }
5300 
5301 
5302 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5303                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free) {
5304   int dummy;
5305   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5306   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5307   ciKlass* this_klass = this_ary->klass();
5308   ciKlass* other_klass = other_ary->klass();
5309   bool this_xk = this_ary->klass_is_exact();
5310   bool other_xk = other_ary->klass_is_exact();
5311   PTR this_ptr = this_ary->ptr();
5312   PTR other_ptr = other_ary->ptr();
5313   bool this_flat = this_ary->is_flat();
5314   bool this_not_flat = this_ary->is_not_flat();
5315   bool other_flat = other_ary->is_flat();
5316   bool other_not_flat = other_ary->is_not_flat();
5317   bool this_not_null_free = this_ary->is_not_null_free();
5318   bool other_not_null_free = other_ary->is_not_null_free();
5319   res_klass = nullptr;
5320   MeetResult result = SUBTYPE;
5321   res_flat = this_flat && other_flat;
5322   res_not_flat = this_not_flat && other_not_flat;
5323   res_not_null_free = this_not_null_free && other_not_null_free;
5324 
5325   if (elem->isa_int()) {
5326     // Integral array element types have irrelevant lattice relations.
5327     // It is the klass that determines array layout, not the element type.
5328       if (this_top_or_bottom) {
5329         res_klass = other_klass;
5330       } else if (other_top_or_bottom || other_klass == this_klass) {
5331       res_klass = this_klass;
5332     } else {
5333       // Something like byte[int+] meets char[int+].
5334       // This must fall to bottom, not (int[-128..65535])[int+].
5335       // instance_id = InstanceBot;
5336       elem = Type::BOTTOM;
5337       result = NOT_SUBTYPE;
5338       if (above_centerline(ptr) || ptr == Constant) {
5339         ptr = NotNull;
5340         res_xk = false;
5341         return NOT_SUBTYPE;
5342       }
5343     }
5344   } else {// Non integral arrays.
5345     // Must fall to bottom if exact klasses in upper lattice
5346     // are not equal or super klass is exact.
5347     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5348         // meet with top[] and bottom[] are processed further down:
5349         !this_top_or_bottom && !other_top_or_bottom &&
5350         // both are exact and not equal:
5351         ((other_xk && this_xk) ||
5352          // 'tap'  is exact and super or unrelated:
5353          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5354          // 'this' is exact and super or unrelated:
5355          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5356       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5357         elem = Type::BOTTOM;
5358       }
5359       ptr = NotNull;
5360       res_xk = false;
5361       return NOT_SUBTYPE;
5362     }
5363   }
5364 
5365   res_xk = false;
5366   switch (other_ptr) {
5367     case AnyNull:
5368     case TopPTR:
5369       // Compute new klass on demand, do not use tap->_klass
5370       if (below_centerline(this_ptr)) {
5371         res_xk = this_xk;
5372         if (this_ary->is_flat()) {
5373           elem = this_ary->elem();
5374         }
5375       } else {
5376         res_xk = (other_xk || this_xk);
5377       }
5378       break;
5379     case Constant: {
5380       if (this_ptr == Constant) {
5381         res_xk = true;
5382       } else if (above_centerline(this_ptr)) {
5383         res_xk = true;
5384       } else {
5385         // Only precise for identical arrays
5386         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5387         // TODO 8325106 Fix comment
5388         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5389         if (res_xk && !res_not_null_free) {
5390           res_xk = false;
5391         }
5392       }
5393       break;
5394     }
5395     case NotNull:
5396     case BotPTR:
5397       // Compute new klass on demand, do not use tap->_klass
5398       if (above_centerline(this_ptr)) {
5399         res_xk = other_xk;
5400         if (other_ary->is_flat()) {
5401           elem = other_ary->elem();
5402         }
5403       } else {
5404         res_xk = (other_xk && this_xk) &&
5405                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5406         // TODO 8325106 Fix comment
5407         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5408         if (res_xk && !res_not_null_free) {
5409           res_xk = false;
5410         }
5411       }
5412       break;
5413     default:  {
5414       ShouldNotReachHere();
5415       return result;
5416     }
5417   }
5418   return result;
5419 }
5420 
5421 
5422 //------------------------------xdual------------------------------------------
5423 // Dual: compute field-by-field dual
5424 const Type *TypeAryPtr::xdual() const {
5425   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5426 }
5427 
5428 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5429   return _field_offset.meet(offset);
5430 }
5431 
5432 //------------------------------dual_offset------------------------------------
5433 Type::Offset TypeAryPtr::dual_field_offset() const {
5434   return _field_offset.dual();
5435 }
5436 
5437 //------------------------------dump2------------------------------------------
5438 #ifndef PRODUCT
5439 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5440   _ary->dump2(d,depth,st);
5441   _interfaces->dump(st);
5442 
5443   switch( _ptr ) {
5444   case Constant:
5445     const_oop()->print(st);
5446     break;
5447   case BotPTR:
5448     if (!WizardMode && !Verbose) {
5449       if( _klass_is_exact ) st->print(":exact");
5450       break;
5451     }
5452   case TopPTR:
5453   case AnyNull:
5454   case NotNull:
5455     st->print(":%s", ptr_msg[_ptr]);
5456     if( _klass_is_exact ) st->print(":exact");
5457     break;
5458   default:
5459     break;
5460   }
5461 
5462   if (is_flat()) {
5463     st->print(":flat");
5464     st->print("(");
5465     _field_offset.dump2(st);
5466     st->print(")");
5467   }
5468   if (is_null_free()) {
5469     st->print(":null_free");
5470   }
5471   if (offset() != 0) {
5472     int header_size = objArrayOopDesc::header_size() * wordSize;
5473     if( _offset == Offset::top )       st->print("+undefined");
5474     else if( _offset == Offset::bottom )  st->print("+any");
5475     else if( offset() < header_size ) st->print("+%d", offset());
5476     else {
5477       BasicType basic_elem_type = elem()->basic_type();
5478       if (basic_elem_type == T_ILLEGAL) {
5479         st->print("+any");
5480       } else {
5481         int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5482         int elem_size = type2aelembytes(basic_elem_type);
5483         st->print("[%d]", (offset() - array_base)/elem_size);
5484       }
5485     }
5486   }
5487   st->print(" *");
5488   if (_instance_id == InstanceTop)
5489     st->print(",iid=top");
5490   else if (_instance_id != InstanceBot)
5491     st->print(",iid=%d",_instance_id);
5492 
5493   dump_inline_depth(st);
5494   dump_speculative(st);
5495 }
5496 #endif
5497 
5498 bool TypeAryPtr::empty(void) const {
5499   if (_ary->empty())       return true;
5500   // FIXME: Does this belong here? Or in the meet code itself?
5501   if (is_flat() && is_not_flat()) {
5502     return true;
5503   }
5504   return TypeOopPtr::empty();
5505 }
5506 
5507 //------------------------------add_offset-------------------------------------
5508 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5509   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5510 }
5511 
5512 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5513   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5514 }
5515 
5516 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5517   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5518 }
5519 
5520 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5521   if (_speculative == nullptr) {
5522     return this;
5523   }
5524   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5525   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5526 }
5527 
5528 const Type* TypeAryPtr::cleanup_speculative() const {
5529   if (speculative() == nullptr) {
5530     return this;
5531   }
5532   // Keep speculative part if it contains information about flat-/nullability
5533   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5534   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5535       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5536     return this;
5537   }
5538   return TypeOopPtr::cleanup_speculative();
5539 }
5540 
5541 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5542   if (!UseInlineDepthForSpeculativeTypes) {
5543     return this;
5544   }
5545   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5546 }
5547 
5548 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5549   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5550 }
5551 
5552 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5553   int adj = 0;
5554   if (is_flat() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5555     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5556       adj = _offset.get();
5557       offset += _offset.get();
5558     }
5559     uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
5560     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5561       offset += _field_offset.get();
5562       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5563         offset += header;
5564       }
5565     }
5566     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5567       // Try to get the field of the inline type array element we are pointing to
5568       ciInlineKlass* vk = elem()->inline_klass();
5569       int shift = flat_log_elem_size();
5570       int mask = (1 << shift) - 1;
5571       intptr_t field_offset = ((offset - header) & mask);
5572       ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
5573       if (field != nullptr) {
5574         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5575       }
5576     }
5577   }
5578   return add_offset(offset - adj);
5579 }
5580 
5581 // Return offset incremented by field_offset for flat inline type arrays
5582 int TypeAryPtr::flat_offset() const {
5583   int offset = _offset.get();
5584   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5585       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5586     offset += _field_offset.get();
5587   }
5588   return offset;
5589 }
5590 
5591 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5592   assert(is_known_instance(), "should be known");
5593   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5594 }
5595 
5596 //=============================================================================
5597 
5598 
5599 //------------------------------hash-------------------------------------------
5600 // Type-specific hashing function.
5601 uint TypeNarrowPtr::hash(void) const {
5602   return _ptrtype->hash() + 7;
5603 }
5604 
5605 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5606   return _ptrtype->singleton();
5607 }
5608 
5609 bool TypeNarrowPtr::empty(void) const {
5610   return _ptrtype->empty();
5611 }
5612 
5613 intptr_t TypeNarrowPtr::get_con() const {
5614   return _ptrtype->get_con();
5615 }
5616 
5617 bool TypeNarrowPtr::eq( const Type *t ) const {
5618   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5619   if (tc != nullptr) {
5620     if (_ptrtype->base() != tc->_ptrtype->base()) {
5621       return false;
5622     }
5623     return tc->_ptrtype->eq(_ptrtype);
5624   }
5625   return false;
5626 }
5627 
5628 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5629   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5630   return make_same_narrowptr(odual);
5631 }
5632 
5633 
5634 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5635   if (isa_same_narrowptr(kills)) {
5636     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5637     if (ft->empty())
5638       return Type::TOP;           // Canonical empty value
5639     if (ft->isa_ptr()) {
5640       return make_hash_same_narrowptr(ft->isa_ptr());
5641     }
5642     return ft;
5643   } else if (kills->isa_ptr()) {
5644     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5645     if (ft->empty())
5646       return Type::TOP;           // Canonical empty value
5647     return ft;
5648   } else {
5649     return Type::TOP;
5650   }
5651 }
5652 
5653 //------------------------------xmeet------------------------------------------
5654 // Compute the MEET of two types.  It returns a new Type object.
5655 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5656   // Perform a fast test for common case; meeting the same types together.
5657   if( this == t ) return this;  // Meeting same type-rep?
5658 
5659   if (t->base() == base()) {
5660     const Type* result = _ptrtype->xmeet(t->make_ptr());
5661     if (result->isa_ptr()) {
5662       return make_hash_same_narrowptr(result->is_ptr());
5663     }
5664     return result;
5665   }
5666 
5667   // Current "this->_base" is NarrowKlass or NarrowOop
5668   switch (t->base()) {          // switch on original type
5669 
5670   case Int:                     // Mixing ints & oops happens when javac
5671   case Long:                    // reuses local variables
5672   case FloatTop:
5673   case FloatCon:
5674   case FloatBot:
5675   case DoubleTop:
5676   case DoubleCon:
5677   case DoubleBot:
5678   case AnyPtr:
5679   case RawPtr:
5680   case OopPtr:
5681   case InstPtr:
5682   case AryPtr:
5683   case MetadataPtr:
5684   case KlassPtr:
5685   case InstKlassPtr:
5686   case AryKlassPtr:
5687   case NarrowOop:
5688   case NarrowKlass:
5689   case Bottom:                  // Ye Olde Default
5690     return Type::BOTTOM;
5691   case Top:
5692     return this;
5693 
5694   default:                      // All else is a mistake
5695     typerr(t);
5696 
5697   } // End of switch
5698 
5699   return this;
5700 }
5701 
5702 #ifndef PRODUCT
5703 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5704   _ptrtype->dump2(d, depth, st);
5705 }
5706 #endif
5707 
5708 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5709 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5710 
5711 
5712 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5713   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5714 }
5715 
5716 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5717   return make(_ptrtype->remove_speculative()->is_ptr());
5718 }
5719 
5720 const Type* TypeNarrowOop::cleanup_speculative() const {
5721   return make(_ptrtype->cleanup_speculative()->is_ptr());
5722 }
5723 
5724 #ifndef PRODUCT
5725 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5726   st->print("narrowoop: ");
5727   TypeNarrowPtr::dump2(d, depth, st);
5728 }
5729 #endif
5730 
5731 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5732 
5733 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5734   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5735 }
5736 
5737 #ifndef PRODUCT
5738 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5739   st->print("narrowklass: ");
5740   TypeNarrowPtr::dump2(d, depth, st);
5741 }
5742 #endif
5743 
5744 
5745 //------------------------------eq---------------------------------------------
5746 // Structural equality check for Type representations
5747 bool TypeMetadataPtr::eq( const Type *t ) const {
5748   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5749   ciMetadata* one = metadata();
5750   ciMetadata* two = a->metadata();
5751   if (one == nullptr || two == nullptr) {
5752     return (one == two) && TypePtr::eq(t);
5753   } else {
5754     return one->equals(two) && TypePtr::eq(t);
5755   }
5756 }
5757 
5758 //------------------------------hash-------------------------------------------
5759 // Type-specific hashing function.
5760 uint TypeMetadataPtr::hash(void) const {
5761   return
5762     (metadata() ? metadata()->hash() : 0) +
5763     TypePtr::hash();
5764 }
5765 
5766 //------------------------------singleton--------------------------------------
5767 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5768 // constants
5769 bool TypeMetadataPtr::singleton(void) const {
5770   // detune optimizer to not generate constant metadata + constant offset as a constant!
5771   // TopPTR, Null, AnyNull, Constant are all singletons
5772   return (offset() == 0) && !below_centerline(_ptr);
5773 }
5774 
5775 //------------------------------add_offset-------------------------------------
5776 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5777   return make( _ptr, _metadata, xadd_offset(offset));
5778 }
5779 
5780 //-----------------------------filter------------------------------------------
5781 // Do not allow interface-vs.-noninterface joins to collapse to top.
5782 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5783   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5784   if (ft == nullptr || ft->empty())
5785     return Type::TOP;           // Canonical empty value
5786   return ft;
5787 }
5788 
5789  //------------------------------get_con----------------------------------------
5790 intptr_t TypeMetadataPtr::get_con() const {
5791   assert( _ptr == Null || _ptr == Constant, "" );
5792   assert(offset() >= 0, "");
5793 
5794   if (offset() != 0) {
5795     // After being ported to the compiler interface, the compiler no longer
5796     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5797     // to a handle at compile time.  This handle is embedded in the generated
5798     // code and dereferenced at the time the nmethod is made.  Until that time,
5799     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5800     // have access to the addresses!).  This does not seem to currently happen,
5801     // but this assertion here is to help prevent its occurrence.
5802     tty->print_cr("Found oop constant with non-zero offset");
5803     ShouldNotReachHere();
5804   }
5805 
5806   return (intptr_t)metadata()->constant_encoding();
5807 }
5808 
5809 //------------------------------cast_to_ptr_type-------------------------------
5810 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5811   if( ptr == _ptr ) return this;
5812   return make(ptr, metadata(), _offset);
5813 }
5814 
5815 //------------------------------meet-------------------------------------------
5816 // Compute the MEET of two types.  It returns a new Type object.
5817 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5818   // Perform a fast test for common case; meeting the same types together.
5819   if( this == t ) return this;  // Meeting same type-rep?
5820 
5821   // Current "this->_base" is OopPtr
5822   switch (t->base()) {          // switch on original type
5823 
5824   case Int:                     // Mixing ints & oops happens when javac
5825   case Long:                    // reuses local variables
5826   case FloatTop:
5827   case FloatCon:
5828   case FloatBot:
5829   case DoubleTop:
5830   case DoubleCon:
5831   case DoubleBot:
5832   case NarrowOop:
5833   case NarrowKlass:
5834   case Bottom:                  // Ye Olde Default
5835     return Type::BOTTOM;
5836   case Top:
5837     return this;
5838 
5839   default:                      // All else is a mistake
5840     typerr(t);
5841 
5842   case AnyPtr: {
5843     // Found an AnyPtr type vs self-OopPtr type
5844     const TypePtr *tp = t->is_ptr();
5845     Offset offset = meet_offset(tp->offset());
5846     PTR ptr = meet_ptr(tp->ptr());
5847     switch (tp->ptr()) {
5848     case Null:
5849       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5850       // else fall through:
5851     case TopPTR:
5852     case AnyNull: {
5853       return make(ptr, _metadata, offset);
5854     }
5855     case BotPTR:
5856     case NotNull:
5857       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5858     default: typerr(t);
5859     }
5860   }
5861 
5862   case RawPtr:
5863   case KlassPtr:
5864   case InstKlassPtr:
5865   case AryKlassPtr:
5866   case OopPtr:
5867   case InstPtr:
5868   case AryPtr:
5869     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5870 
5871   case MetadataPtr: {
5872     const TypeMetadataPtr *tp = t->is_metadataptr();
5873     Offset offset = meet_offset(tp->offset());
5874     PTR tptr = tp->ptr();
5875     PTR ptr = meet_ptr(tptr);
5876     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5877     if (tptr == TopPTR || _ptr == TopPTR ||
5878         metadata()->equals(tp->metadata())) {
5879       return make(ptr, md, offset);
5880     }
5881     // metadata is different
5882     if( ptr == Constant ) {  // Cannot be equal constants, so...
5883       if( tptr == Constant && _ptr != Constant)  return t;
5884       if( _ptr == Constant && tptr != Constant)  return this;
5885       ptr = NotNull;            // Fall down in lattice
5886     }
5887     return make(ptr, nullptr, offset);
5888     break;
5889   }
5890   } // End of switch
5891   return this;                  // Return the double constant
5892 }
5893 
5894 
5895 //------------------------------xdual------------------------------------------
5896 // Dual of a pure metadata pointer.
5897 const Type *TypeMetadataPtr::xdual() const {
5898   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5899 }
5900 
5901 //------------------------------dump2------------------------------------------
5902 #ifndef PRODUCT
5903 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5904   st->print("metadataptr:%s", ptr_msg[_ptr]);
5905   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5906   switch (offset()) {
5907   case OffsetTop: st->print("+top"); break;
5908   case OffsetBot: st->print("+any"); break;
5909   case         0: break;
5910   default:        st->print("+%d",offset()); break;
5911   }
5912 }
5913 #endif
5914 
5915 
5916 //=============================================================================
5917 // Convenience common pre-built type.
5918 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5919 
5920 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5921   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5922 }
5923 
5924 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5925   return make(Constant, m, Offset(0));
5926 }
5927 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5928   return make(Constant, m, Offset(0));
5929 }
5930 
5931 //------------------------------make-------------------------------------------
5932 // Create a meta data constant
5933 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5934   assert(m == nullptr || !m->is_klass(), "wrong type");
5935   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5936 }
5937 
5938 
5939 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5940   const Type* elem = _ary->_elem;
5941   bool xk = klass_is_exact();
5942   if (elem->make_oopptr() != nullptr) {
5943     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5944     if (elem->is_klassptr()->klass_is_exact() &&
5945         // TODO 8325106 Fix comment
5946         // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
5947         (is_null_free() || is_flat() || !_ary->_elem->make_oopptr()->is_inlinetypeptr())) {
5948       xk = true;
5949     }
5950   }
5951   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_null_free());
5952 }
5953 
5954 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5955   if (klass->is_instance_klass()) {
5956     return TypeInstKlassPtr::make(klass, interface_handling);
5957   }
5958   return TypeAryKlassPtr::make(klass, interface_handling);
5959 }
5960 
5961 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling) {
5962   if (klass->is_instance_klass()) {
5963     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5964     return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5965   }
5966   return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5967 }
5968 
5969 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)
5970   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5971   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5972          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5973 }
5974 
5975 // Is there a single ciKlass* that can represent that type?
5976 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5977   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5978   if (_interfaces->empty()) {
5979     return _klass;
5980   }
5981   if (_klass != ciEnv::current()->Object_klass()) {
5982     if (_interfaces->eq(_klass->as_instance_klass())) {
5983       return _klass;
5984     }
5985     return nullptr;
5986   }
5987   return _interfaces->exact_klass();
5988 }
5989 
5990 //------------------------------eq---------------------------------------------
5991 // Structural equality check for Type representations
5992 bool TypeKlassPtr::eq(const Type *t) const {
5993   const TypeKlassPtr *p = t->is_klassptr();
5994   return
5995     _interfaces->eq(p->_interfaces) &&
5996     TypePtr::eq(p);
5997 }
5998 
5999 //------------------------------hash-------------------------------------------
6000 // Type-specific hashing function.
6001 uint TypeKlassPtr::hash(void) const {
6002   return TypePtr::hash() + _interfaces->hash();
6003 }
6004 
6005 //------------------------------singleton--------------------------------------
6006 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6007 // constants
6008 bool TypeKlassPtr::singleton(void) const {
6009   // detune optimizer to not generate constant klass + constant offset as a constant!
6010   // TopPTR, Null, AnyNull, Constant are all singletons
6011   return (offset() == 0) && !below_centerline(_ptr);
6012 }
6013 
6014 // Do not allow interface-vs.-noninterface joins to collapse to top.
6015 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6016   // logic here mirrors the one from TypeOopPtr::filter. See comments
6017   // there.
6018   const Type* ft = join_helper(kills, include_speculative);
6019   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
6020   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
6021 
6022   if (ft->empty()) {
6023     return Type::TOP;           // Canonical empty value
6024   }
6025 
6026   return ft;
6027 }
6028 
6029 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6030   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6031     return _interfaces->union_with(other->_interfaces);
6032   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6033     return other->_interfaces;
6034   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6035     return _interfaces;
6036   }
6037   return _interfaces->intersection_with(other->_interfaces);
6038 }
6039 
6040 //------------------------------get_con----------------------------------------
6041 intptr_t TypeKlassPtr::get_con() const {
6042   assert( _ptr == Null || _ptr == Constant, "" );
6043   assert( offset() >= 0, "" );
6044 
6045   if (offset() != 0) {
6046     // After being ported to the compiler interface, the compiler no longer
6047     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6048     // to a handle at compile time.  This handle is embedded in the generated
6049     // code and dereferenced at the time the nmethod is made.  Until that time,
6050     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6051     // have access to the addresses!).  This does not seem to currently happen,
6052     // but this assertion here is to help prevent its occurrence.
6053     tty->print_cr("Found oop constant with non-zero offset");
6054     ShouldNotReachHere();
6055   }
6056 
6057   ciKlass* k = exact_klass();
6058 
6059   return (intptr_t)k->constant_encoding();
6060 }
6061 
6062 //------------------------------dump2------------------------------------------
6063 // Dump Klass Type
6064 #ifndef PRODUCT
6065 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
6066   switch(_ptr) {
6067   case Constant:
6068     st->print("precise ");
6069   case NotNull:
6070     {
6071       const char *name = klass()->name()->as_utf8();
6072       if (name) {
6073         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
6074       } else {
6075         ShouldNotReachHere();
6076       }
6077       _interfaces->dump(st);
6078     }
6079   case BotPTR:
6080     if (!WizardMode && !Verbose && _ptr != Constant) break;
6081   case TopPTR:
6082   case AnyNull:
6083     st->print(":%s", ptr_msg[_ptr]);
6084     if (_ptr == Constant) st->print(":exact");
6085     break;
6086   default:
6087     break;
6088   }
6089   if (Verbose) {
6090     if (isa_instklassptr() && is_instklassptr()->flat_in_array()) st->print(":flat in array");
6091   }
6092   _offset.dump2(st);
6093   st->print(" *");
6094 }
6095 #endif
6096 
6097 //=============================================================================
6098 // Convenience common pre-built types.
6099 
6100 // Not-null object klass or below
6101 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6102 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6103 
6104 bool TypeInstKlassPtr::eq(const Type *t) const {
6105   const TypeKlassPtr *p = t->is_klassptr();
6106   return
6107     klass()->equals(p->klass()) &&
6108     flat_in_array() == p->flat_in_array() &&
6109     TypeKlassPtr::eq(p);
6110 }
6111 
6112 uint TypeInstKlassPtr::hash(void) const {
6113   return klass()->hash() + TypeKlassPtr::hash() + (uint)flat_in_array();
6114 }
6115 
6116 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) {
6117   flat_in_array = flat_in_array || k->flat_in_array();
6118 
6119   TypeInstKlassPtr *r =
6120     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6121 
6122   return r;
6123 }
6124 
6125 //------------------------------add_offset-------------------------------------
6126 // Access internals of klass object
6127 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6128   return make(_ptr, klass(), _interfaces, xadd_offset(offset), flat_in_array());
6129 }
6130 
6131 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6132   return make(_ptr, klass(), _interfaces, Offset(offset), flat_in_array());
6133 }
6134 
6135 //------------------------------cast_to_ptr_type-------------------------------
6136 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6137   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6138   if( ptr == _ptr ) return this;
6139   return make(ptr, _klass, _interfaces, _offset, flat_in_array());
6140 }
6141 
6142 
6143 bool TypeInstKlassPtr::must_be_exact() const {
6144   if (!_klass->is_loaded())  return false;
6145   ciInstanceKlass* ik = _klass->as_instance_klass();
6146   if (ik->is_final())  return true;  // cannot clear xk
6147   return false;
6148 }
6149 
6150 //-----------------------------cast_to_exactness-------------------------------
6151 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6152   if (klass_is_exact == (_ptr == Constant)) return this;
6153   if (must_be_exact()) return this;
6154   ciKlass* k = klass();
6155   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array());
6156 }
6157 
6158 
6159 //-----------------------------as_instance_type--------------------------------
6160 // Corresponding type for an instance of the given class.
6161 // It will be NotNull, and exact if and only if the klass type is exact.
6162 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6163   ciKlass* k = klass();
6164   bool xk = klass_is_exact();
6165   Compile* C = Compile::current();
6166   Dependencies* deps = C->dependencies();
6167   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6168   // Element is an instance
6169   bool klass_is_exact = false;
6170   const TypeInterfaces* interfaces = _interfaces;
6171   if (k->is_loaded()) {
6172     // Try to set klass_is_exact.
6173     ciInstanceKlass* ik = k->as_instance_klass();
6174     klass_is_exact = ik->is_final();
6175     if (!klass_is_exact && klass_change
6176         && deps != nullptr && UseUniqueSubclasses) {
6177       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6178       if (sub != nullptr) {
6179         if (_interfaces->eq(sub)) {
6180           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6181           k = ik = sub;
6182           xk = sub->is_final();
6183         }
6184       }
6185     }
6186   }
6187   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array() && !klass()->is_inlinetype());
6188 }
6189 
6190 //------------------------------xmeet------------------------------------------
6191 // Compute the MEET of two types, return a new Type object.
6192 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6193   // Perform a fast test for common case; meeting the same types together.
6194   if( this == t ) return this;  // Meeting same type-rep?
6195 
6196   // Current "this->_base" is Pointer
6197   switch (t->base()) {          // switch on original type
6198 
6199   case Int:                     // Mixing ints & oops happens when javac
6200   case Long:                    // reuses local variables
6201   case FloatTop:
6202   case FloatCon:
6203   case FloatBot:
6204   case DoubleTop:
6205   case DoubleCon:
6206   case DoubleBot:
6207   case NarrowOop:
6208   case NarrowKlass:
6209   case Bottom:                  // Ye Olde Default
6210     return Type::BOTTOM;
6211   case Top:
6212     return this;
6213 
6214   default:                      // All else is a mistake
6215     typerr(t);
6216 
6217   case AnyPtr: {                // Meeting to AnyPtrs
6218     // Found an AnyPtr type vs self-KlassPtr type
6219     const TypePtr *tp = t->is_ptr();
6220     Offset offset = meet_offset(tp->offset());
6221     PTR ptr = meet_ptr(tp->ptr());
6222     switch (tp->ptr()) {
6223     case TopPTR:
6224       return this;
6225     case Null:
6226       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6227     case AnyNull:
6228       return make(ptr, klass(), _interfaces, offset, flat_in_array());
6229     case BotPTR:
6230     case NotNull:
6231       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6232     default: typerr(t);
6233     }
6234   }
6235 
6236   case RawPtr:
6237   case MetadataPtr:
6238   case OopPtr:
6239   case AryPtr:                  // Meet with AryPtr
6240   case InstPtr:                 // Meet with InstPtr
6241       return TypePtr::BOTTOM;
6242 
6243   //
6244   //             A-top         }
6245   //           /   |   \       }  Tops
6246   //       B-top A-any C-top   }
6247   //          | /  |  \ |      }  Any-nulls
6248   //       B-any   |   C-any   }
6249   //          |    |    |
6250   //       B-con A-con C-con   } constants; not comparable across classes
6251   //          |    |    |
6252   //       B-not   |   C-not   }
6253   //          | \  |  / |      }  not-nulls
6254   //       B-bot A-not C-bot   }
6255   //           \   |   /       }  Bottoms
6256   //             A-bot         }
6257   //
6258 
6259   case InstKlassPtr: {  // Meet two KlassPtr types
6260     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6261     Offset  off     = meet_offset(tkls->offset());
6262     PTR  ptr     = meet_ptr(tkls->ptr());
6263     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6264 
6265     ciKlass* res_klass = nullptr;
6266     bool res_xk = false;
6267     bool res_flat_in_array = false;
6268     switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk, res_flat_in_array)) {
6269       case UNLOADED:
6270         ShouldNotReachHere();
6271       case SUBTYPE:
6272       case NOT_SUBTYPE:
6273       case LCA:
6274       case QUICK: {
6275         assert(res_xk == (ptr == Constant), "");
6276         const Type* res = make(ptr, res_klass, interfaces, off, res_flat_in_array);
6277         return res;
6278       }
6279       default:
6280         ShouldNotReachHere();
6281     }
6282   } // End of case KlassPtr
6283   case AryKlassPtr: {                // All arrays inherit from Object class
6284     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6285     Offset offset = meet_offset(tp->offset());
6286     PTR ptr = meet_ptr(tp->ptr());
6287     const TypeInterfaces* interfaces = meet_interfaces(tp);
6288     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6289     const TypeInterfaces* this_interfaces = _interfaces;
6290 
6291     switch (ptr) {
6292     case TopPTR:
6293     case AnyNull:                // Fall 'down' to dual of object klass
6294       // For instances when a subclass meets a superclass we fall
6295       // below the centerline when the superclass is exact. We need to
6296       // do the same here.
6297       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6298         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6299       } else {
6300         // cannot subclass, so the meet has to fall badly below the centerline
6301         ptr = NotNull;
6302         interfaces = _interfaces->intersection_with(tp->_interfaces);
6303         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6304       }
6305     case Constant:
6306     case NotNull:
6307     case BotPTR:                // Fall down to object klass
6308       // LCA is object_klass, but if we subclass from the top we can do better
6309       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6310         // If 'this' (InstPtr) is above the centerline and it is Object class
6311         // then we can subclass in the Java class hierarchy.
6312         // For instances when a subclass meets a superclass we fall
6313         // below the centerline when the superclass is exact. We need
6314         // to do the same here.
6315         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
6316           // that is, tp's array type is a subtype of my klass
6317           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_null_free());
6318         }
6319       }
6320       // The other case cannot happen, since I cannot be a subtype of an array.
6321       // The meet falls down to Object class below centerline.
6322       if( ptr == Constant )
6323          ptr = NotNull;
6324       interfaces = this_interfaces->intersection_with(tp_interfaces);
6325       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6326     default: typerr(t);
6327     }
6328   }
6329 
6330   } // End of switch
6331   return this;                  // Return the double constant
6332 }
6333 
6334 //------------------------------xdual------------------------------------------
6335 // Dual: compute field-by-field dual
6336 const Type    *TypeInstKlassPtr::xdual() const {
6337   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), flat_in_array());
6338 }
6339 
6340 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6341   static_assert(std::is_base_of<T2, T1>::value, "");
6342   if (!this_one->is_loaded() || !other->is_loaded()) {
6343     return false;
6344   }
6345   if (!this_one->is_instance_type(other)) {
6346     return false;
6347   }
6348 
6349   if (!other_exact) {
6350     return false;
6351   }
6352 
6353   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6354     return true;
6355   }
6356 
6357   return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces->contains(other->_interfaces);
6358 }
6359 
6360 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6361   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6362 }
6363 
6364 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6365   static_assert(std::is_base_of<T2, T1>::value, "");
6366   if (!this_one->is_loaded() || !other->is_loaded()) {
6367     return false;
6368   }
6369   if (!this_one->is_instance_type(other)) {
6370     return false;
6371   }
6372   return this_one->_klass->equals(other->_klass) && this_one->_interfaces->eq(other->_interfaces);
6373 }
6374 
6375 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6376   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6377 }
6378 
6379 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6380   static_assert(std::is_base_of<T2, T1>::value, "");
6381   if (!this_one->is_loaded() || !other->is_loaded()) {
6382     return true;
6383   }
6384 
6385   if (this_one->is_array_type(other)) {
6386     return !this_exact && this_one->_klass->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
6387   }
6388 
6389   assert(this_one->is_instance_type(other), "unsupported");
6390 
6391   if (this_exact && other_exact) {
6392     return this_one->is_java_subtype_of(other);
6393   }
6394 
6395   if (!this_one->_klass->is_subtype_of(other->_klass) && !other->_klass->is_subtype_of(this_one->_klass)) {
6396     return false;
6397   }
6398 
6399   if (this_exact) {
6400     return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces->contains(other->_interfaces);
6401   }
6402 
6403   return true;
6404 }
6405 
6406 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6407   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6408 }
6409 
6410 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6411   if (!UseUniqueSubclasses) {
6412     return this;
6413   }
6414   ciKlass* k = klass();
6415   Compile* C = Compile::current();
6416   Dependencies* deps = C->dependencies();
6417   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6418   const TypeInterfaces* interfaces = _interfaces;
6419   if (k->is_loaded()) {
6420     ciInstanceKlass* ik = k->as_instance_klass();
6421     bool klass_is_exact = ik->is_final();
6422     if (!klass_is_exact &&
6423         deps != nullptr) {
6424       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6425       if (sub != nullptr) {
6426         if (_interfaces->eq(sub)) {
6427           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6428           k = ik = sub;
6429           klass_is_exact = sub->is_final();
6430           return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
6431         }
6432       }
6433     }
6434   }
6435   return this;
6436 }
6437 
6438 bool TypeInstKlassPtr::can_be_inline_array() const {
6439   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6440 }
6441 
6442 bool TypeAryKlassPtr::can_be_inline_array() const {
6443   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6444 }
6445 
6446 bool TypeInstPtr::can_be_inline_array() const {
6447   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6448 }
6449 
6450 bool TypeAryPtr::can_be_inline_array() const {
6451   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6452 }
6453 
6454 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free) {
6455   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, null_free))->hashcons();
6456 }
6457 
6458 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free) {
6459   if (k->is_obj_array_klass()) {
6460     // Element is an object array. Recursively call ourself.
6461     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6462     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6463     // TODO 8325106 Fix comment
6464     // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6465     if (etype->klass_is_exact() && etype->isa_instklassptr() && etype->is_instklassptr()->klass()->is_inlinetype() && !null_free) {
6466       etype = TypeInstKlassPtr::make(NotNull, etype->is_instklassptr()->klass(), Offset(etype->is_instklassptr()->offset()));
6467     }
6468     return TypeAryKlassPtr::make(ptr, etype, nullptr, offset, not_flat, not_null_free, null_free);
6469   } else if (k->is_type_array_klass()) {
6470     // Element is an typeArray
6471     const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6472     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6473   } else if (k->is_flat_array_klass()) {
6474     ciKlass* eklass = k->as_flat_array_klass()->element_klass();
6475     const TypeKlassPtr* etype = TypeKlassPtr::make(eklass);
6476     return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, null_free);
6477   } else {
6478     ShouldNotReachHere();
6479     return nullptr;
6480   }
6481 }
6482 
6483 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling) {
6484   // TODO 8325106 remove?
6485   bool null_free = k->as_array_klass()->is_elem_null_free();
6486   bool not_null_free = (ptr == Constant) ? !null_free : !k->is_flat_array_klass() && (k->is_type_array_klass() || !k->as_array_klass()->element_klass()->can_be_inline_klass(false));
6487 
6488   bool not_flat = !UseFlatArray || not_null_free || (k->as_array_klass()->element_klass() != nullptr &&
6489                                                      k->as_array_klass()->element_klass()->is_inlinetype() &&
6490                                                      !k->as_array_klass()->element_klass()->flat_in_array());
6491 
6492   return TypeAryKlassPtr::make(ptr, k, offset, interface_handling, not_flat, not_null_free, null_free);
6493 }
6494 
6495 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6496   return TypeAryKlassPtr::make(Constant, klass, Offset(0), interface_handling);
6497 }
6498 
6499 //------------------------------eq---------------------------------------------
6500 // Structural equality check for Type representations
6501 bool TypeAryKlassPtr::eq(const Type *t) const {
6502   const TypeAryKlassPtr *p = t->is_aryklassptr();
6503   return
6504     _elem == p->_elem &&  // Check array
6505     _not_flat == p->_not_flat &&
6506     _not_null_free == p->_not_null_free &&
6507     _null_free == p->_null_free &&
6508     TypeKlassPtr::eq(p);  // Check sub-parts
6509 }
6510 
6511 //------------------------------hash-------------------------------------------
6512 // Type-specific hashing function.
6513 uint TypeAryKlassPtr::hash(void) const {
6514   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6515       (uint)(_not_null_free ? 44 : 0) + (uint)(_null_free ? 45 : 0);
6516 }
6517 
6518 //----------------------compute_klass------------------------------------------
6519 // Compute the defining klass for this class
6520 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
6521   // Compute _klass based on element type.
6522   ciKlass* k_ary = nullptr;
6523   const TypeInstPtr *tinst;
6524   const TypeAryPtr *tary;
6525   const Type* el = elem();
6526   if (el->isa_narrowoop()) {
6527     el = el->make_ptr();
6528   }
6529 
6530   // Get element klass
6531   if (is_flat() && el->is_inlinetypeptr()) {
6532     // Klass is required by TypeAryPtr::flat_layout_helper() and others
6533     if (el->inline_klass() != nullptr) {
6534       k_ary = ciArrayKlass::make(el->inline_klass(), /* null_free */ true);
6535     }
6536   } else if ((tinst = el->isa_instptr()) != nullptr) {
6537     // Leave k_ary at nullptr.
6538   } else if ((tary = el->isa_aryptr()) != nullptr) {
6539     // Leave k_ary at nullptr.
6540   } else if ((el->base() == Type::Top) ||
6541              (el->base() == Type::Bottom)) {
6542     // element type of Bottom occurs from meet of basic type
6543     // and object; Top occurs when doing join on Bottom.
6544     // Leave k_ary at null.
6545   } else {
6546     // Cannot compute array klass directly from basic type,
6547     // since subtypes of TypeInt all have basic type T_INT.
6548 #ifdef ASSERT
6549     if (verify && el->isa_int()) {
6550       // Check simple cases when verifying klass.
6551       BasicType bt = T_ILLEGAL;
6552       if (el == TypeInt::BYTE) {
6553         bt = T_BYTE;
6554       } else if (el == TypeInt::SHORT) {
6555         bt = T_SHORT;
6556       } else if (el == TypeInt::CHAR) {
6557         bt = T_CHAR;
6558       } else if (el == TypeInt::INT) {
6559         bt = T_INT;
6560       } else {
6561         return _klass; // just return specified klass
6562       }
6563       return ciTypeArrayKlass::make(bt);
6564     }
6565 #endif
6566     assert(!el->isa_int(),
6567            "integral arrays must be pre-equipped with a class");
6568     // Compute array klass directly from basic type
6569     k_ary = ciTypeArrayKlass::make(el->basic_type());
6570   }
6571   return k_ary;
6572 }
6573 
6574 //------------------------------klass------------------------------------------
6575 // Return the defining klass for this class
6576 ciKlass* TypeAryPtr::klass() const {
6577   if( _klass ) return _klass;   // Return cached value, if possible
6578 
6579   // Oops, need to compute _klass and cache it
6580   ciKlass* k_ary = compute_klass();
6581 
6582   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6583     // The _klass field acts as a cache of the underlying
6584     // ciKlass for this array type.  In order to set the field,
6585     // we need to cast away const-ness.
6586     //
6587     // IMPORTANT NOTE: we *never* set the _klass field for the
6588     // type TypeAryPtr::OOPS.  This Type is shared between all
6589     // active compilations.  However, the ciKlass which represents
6590     // this Type is *not* shared between compilations, so caching
6591     // this value would result in fetching a dangling pointer.
6592     //
6593     // Recomputing the underlying ciKlass for each request is
6594     // a bit less efficient than caching, but calls to
6595     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6596     ((TypeAryPtr*)this)->_klass = k_ary;
6597   }
6598   return k_ary;
6599 }
6600 
6601 // Is there a single ciKlass* that can represent that type?
6602 ciKlass* TypeAryPtr::exact_klass_helper() const {
6603   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6604     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6605     if (k == nullptr) {
6606       return nullptr;
6607     }
6608     k = ciArrayKlass::make(k, is_null_free());
6609     return k;
6610   }
6611 
6612   return klass();
6613 }
6614 
6615 const Type* TypeAryPtr::base_element_type(int& dims) const {
6616   const Type* elem = this->elem();
6617   dims = 1;
6618   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6619     elem = elem->make_ptr()->is_aryptr()->elem();
6620     dims++;
6621   }
6622   return elem;
6623 }
6624 
6625 //------------------------------add_offset-------------------------------------
6626 // Access internals of klass object
6627 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6628   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6629 }
6630 
6631 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6632   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _null_free);
6633 }
6634 
6635 //------------------------------cast_to_ptr_type-------------------------------
6636 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6637   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6638   if (ptr == _ptr) return this;
6639   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _null_free);
6640 }
6641 
6642 bool TypeAryKlassPtr::must_be_exact() const {
6643   if (_elem == Type::BOTTOM) return false;
6644   if (_elem == Type::TOP   ) return false;
6645   const TypeKlassPtr*  tk = _elem->isa_klassptr();
6646   if (!tk)             return true;   // a primitive type, like int
6647   // TODO 8325106 Fix comment
6648   // Even if MyValue is exact, [LMyValue is not exact due to [QMyValue <: [LMyValue.
6649   if (tk->isa_instklassptr() && tk->klass()->is_inlinetype() && !is_null_free()) {
6650     return false;
6651   }
6652   return tk->must_be_exact();
6653 }
6654 
6655 
6656 //-----------------------------cast_to_exactness-------------------------------
6657 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6658   if (must_be_exact() && !klass_is_exact) return this;  // cannot clear xk
6659   if (klass_is_exact == this->klass_is_exact()) {
6660     return this;
6661   }
6662   ciKlass* k = _klass;
6663   const Type* elem = this->elem();
6664   if (elem->isa_klassptr() && !klass_is_exact) {
6665     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6666   }
6667   bool not_flat = is_not_flat();
6668   bool not_null_free = is_not_null_free();
6669   if (_elem->isa_klassptr()) {
6670     if (klass_is_exact || _elem->isa_aryklassptr()) {
6671       assert(!is_null_free() && !is_flat(), "null-free (or flat) inline type arrays should always be exact");
6672       // An array can't be null-free (or flat) if the klass is exact
6673       not_null_free = true;
6674       not_flat = true;
6675     } else {
6676       // Klass is not exact (anymore), re-compute null-free/flat properties
6677       const TypeOopPtr* exact_etype = TypeOopPtr::make_from_klass_unique(_elem->is_instklassptr()->instance_klass());
6678       not_null_free = !exact_etype->can_be_inline_type();
6679       not_flat = !UseFlatArray || not_null_free || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->flat_in_array());
6680     }
6681   }
6682   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset, not_flat, not_null_free, _null_free);
6683 }
6684 
6685 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_null_free() const {
6686   return make(_ptr, elem(), klass(), _offset, is_not_flat(), false, true);
6687 }
6688 
6689 //-----------------------------as_instance_type--------------------------------
6690 // Corresponding type for an instance of the given class.
6691 // It will be NotNull, and exact if and only if the klass type is exact.
6692 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6693   ciKlass* k = klass();
6694   bool    xk = klass_is_exact();
6695   const Type* el = nullptr;
6696   if (elem()->isa_klassptr()) {
6697     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6698     k = nullptr;
6699   } else {
6700     el = elem();
6701   }
6702   bool null_free = _null_free;
6703   if (null_free && el->isa_ptr()) {
6704     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6705   }
6706   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free()), k, xk, Offset(0));
6707 }
6708 
6709 
6710 //------------------------------xmeet------------------------------------------
6711 // Compute the MEET of two types, return a new Type object.
6712 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6713   // Perform a fast test for common case; meeting the same types together.
6714   if( this == t ) return this;  // Meeting same type-rep?
6715 
6716   // Current "this->_base" is Pointer
6717   switch (t->base()) {          // switch on original type
6718 
6719   case Int:                     // Mixing ints & oops happens when javac
6720   case Long:                    // reuses local variables
6721   case FloatTop:
6722   case FloatCon:
6723   case FloatBot:
6724   case DoubleTop:
6725   case DoubleCon:
6726   case DoubleBot:
6727   case NarrowOop:
6728   case NarrowKlass:
6729   case Bottom:                  // Ye Olde Default
6730     return Type::BOTTOM;
6731   case Top:
6732     return this;
6733 
6734   default:                      // All else is a mistake
6735     typerr(t);
6736 
6737   case AnyPtr: {                // Meeting to AnyPtrs
6738     // Found an AnyPtr type vs self-KlassPtr type
6739     const TypePtr *tp = t->is_ptr();
6740     Offset offset = meet_offset(tp->offset());
6741     PTR ptr = meet_ptr(tp->ptr());
6742     switch (tp->ptr()) {
6743     case TopPTR:
6744       return this;
6745     case Null:
6746       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6747     case AnyNull:
6748       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_null_free());
6749     case BotPTR:
6750     case NotNull:
6751       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6752     default: typerr(t);
6753     }
6754   }
6755 
6756   case RawPtr:
6757   case MetadataPtr:
6758   case OopPtr:
6759   case AryPtr:                  // Meet with AryPtr
6760   case InstPtr:                 // Meet with InstPtr
6761     return TypePtr::BOTTOM;
6762 
6763   //
6764   //             A-top         }
6765   //           /   |   \       }  Tops
6766   //       B-top A-any C-top   }
6767   //          | /  |  \ |      }  Any-nulls
6768   //       B-any   |   C-any   }
6769   //          |    |    |
6770   //       B-con A-con C-con   } constants; not comparable across classes
6771   //          |    |    |
6772   //       B-not   |   C-not   }
6773   //          | \  |  / |      }  not-nulls
6774   //       B-bot A-not C-bot   }
6775   //           \   |   /       }  Bottoms
6776   //             A-bot         }
6777   //
6778 
6779   case AryKlassPtr: {  // Meet two KlassPtr types
6780     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6781     Offset off = meet_offset(tap->offset());
6782     const Type* elem = _elem->meet(tap->_elem);
6783     PTR ptr = meet_ptr(tap->ptr());
6784     ciKlass* res_klass = nullptr;
6785     bool res_xk = false;
6786     bool res_flat = false;
6787     bool res_not_flat = false;
6788     bool res_not_null_free = false;
6789     MeetResult res = meet_aryptr(ptr, elem, this, tap,
6790                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free);
6791     assert(res_xk == (ptr == Constant), "");
6792     bool null_free = meet_null_free(tap->_null_free);
6793     if (res == NOT_SUBTYPE) {
6794       null_free = false;
6795     } else if (res == SUBTYPE) {
6796       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
6797         null_free = _null_free;
6798       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
6799         null_free = tap->_null_free;
6800       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
6801         null_free = _null_free || tap->_null_free;
6802       }
6803     }
6804     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, null_free);
6805   } // End of case KlassPtr
6806   case InstKlassPtr: {
6807     const TypeInstKlassPtr *tp = t->is_instklassptr();
6808     Offset offset = meet_offset(tp->offset());
6809     PTR ptr = meet_ptr(tp->ptr());
6810     const TypeInterfaces* interfaces = meet_interfaces(tp);
6811     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6812     const TypeInterfaces* this_interfaces = _interfaces;
6813 
6814     switch (ptr) {
6815     case TopPTR:
6816     case AnyNull:                // Fall 'down' to dual of object klass
6817       // For instances when a subclass meets a superclass we fall
6818       // below the centerline when the superclass is exact. We need to
6819       // do the same here.
6820       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6821         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6822       } else {
6823         // cannot subclass, so the meet has to fall badly below the centerline
6824         ptr = NotNull;
6825         interfaces = this_interfaces->intersection_with(tp->_interfaces);
6826         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6827       }
6828     case Constant:
6829     case NotNull:
6830     case BotPTR:                // Fall down to object klass
6831       // LCA is object_klass, but if we subclass from the top we can do better
6832       if (above_centerline(tp->ptr())) {
6833         // If 'tp'  is above the centerline and it is Object class
6834         // then we can subclass in the Java class hierarchy.
6835         // For instances when a subclass meets a superclass we fall
6836         // below the centerline when the superclass is exact. We need
6837         // to do the same here.
6838         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->intersection_with(tp_interfaces)->eq(tp_interfaces) && !tp->klass_is_exact()) {
6839           // that is, my array type is a subtype of 'tp' klass
6840           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_null_free());
6841         }
6842       }
6843       // The other case cannot happen, since t cannot be a subtype of an array.
6844       // The meet falls down to Object class below centerline.
6845       if (ptr == Constant)
6846          ptr = NotNull;
6847       interfaces = this_interfaces->intersection_with(tp_interfaces);
6848       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, false);
6849     default: typerr(t);
6850     }
6851   }
6852 
6853   } // End of switch
6854   return this;                  // Return the double constant
6855 }
6856 
6857 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6858   static_assert(std::is_base_of<T2, T1>::value, "");
6859 
6860   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6861     return true;
6862   }
6863 
6864   int dummy;
6865   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6866 
6867   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6868     return false;
6869   }
6870 
6871   if (this_one->is_instance_type(other)) {
6872     return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces) && other_exact;
6873   }
6874 
6875   assert(this_one->is_array_type(other), "");
6876   const T1* other_ary = this_one->is_array_type(other);
6877   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6878   if (other_top_or_bottom) {
6879     return false;
6880   }
6881 
6882   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6883   const TypePtr* this_elem = this_one->elem()->make_ptr();
6884   if (this_elem != nullptr && other_elem != nullptr) {
6885     if (other->is_null_free() && !this_one->is_null_free()) {
6886       // TODO 8325106 Fix comment
6887       return false; // [LMyValue is not a subtype of [QMyValue
6888     }
6889     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6890   }
6891   if (this_elem == nullptr && other_elem == nullptr) {
6892     return this_one->_klass->is_subtype_of(other->_klass);
6893   }
6894   return false;
6895 }
6896 
6897 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6898   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6899 }
6900 
6901 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6902   static_assert(std::is_base_of<T2, T1>::value, "");
6903 
6904   int dummy;
6905   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6906 
6907   if (!this_one->is_array_type(other) ||
6908       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6909     return false;
6910   }
6911   const T1* other_ary = this_one->is_array_type(other);
6912   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6913 
6914   if (other_top_or_bottom) {
6915     return false;
6916   }
6917 
6918   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6919   const TypePtr* this_elem = this_one->elem()->make_ptr();
6920   if (other_elem != nullptr && this_elem != nullptr) {
6921     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6922   }
6923   if (other_elem == nullptr && this_elem == nullptr) {
6924     assert(this_one->_klass != nullptr && other->_klass != nullptr, "");
6925     return this_one->_klass->equals(other->_klass);
6926   }
6927   return false;
6928 }
6929 
6930 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6931   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6932 }
6933 
6934 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6935   static_assert(std::is_base_of<T2, T1>::value, "");
6936   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6937     return true;
6938   }
6939   int dummy;
6940   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6941   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6942     return true;
6943   }
6944   if (this_one->is_instance_type(other)) {
6945     return other->_klass->equals(ciEnv::current()->Object_klass()) && other->_interfaces->intersection_with(this_one->_interfaces)->eq(other->_interfaces);
6946   }
6947   assert(this_one->is_array_type(other), "");
6948 
6949   const T1* other_ary = this_one->is_array_type(other);
6950   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6951   if (other_top_or_bottom) {
6952     return true;
6953   }
6954   if (this_exact && other_exact) {
6955     return this_one->is_java_subtype_of(other);
6956   }
6957 
6958   const TypePtr* this_elem = this_one->elem()->make_ptr();
6959   const TypePtr* other_elem = other_ary->elem()->make_ptr();
6960   if (other_elem != nullptr && this_elem != nullptr) {
6961     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6962   }
6963   if (other_elem == nullptr && this_elem == nullptr) {
6964     return this_one->_klass->is_subtype_of(other->_klass);
6965   }
6966   return false;
6967 }
6968 
6969 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6970   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6971 }
6972 
6973 //------------------------------xdual------------------------------------------
6974 // Dual: compute field-by-field dual
6975 const Type    *TypeAryKlassPtr::xdual() const {
6976   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_null_free());
6977 }
6978 
6979 // Is there a single ciKlass* that can represent that type?
6980 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6981   if (elem()->isa_klassptr()) {
6982     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6983     if (k == nullptr) {
6984       return nullptr;
6985     }
6986     k = ciArrayKlass::make(k, _null_free);
6987     return k;
6988   }
6989 
6990   return klass();
6991 }
6992 
6993 ciKlass* TypeAryKlassPtr::klass() const {
6994   if (_klass != nullptr) {
6995     return _klass;
6996   }
6997   ciKlass* k = nullptr;
6998   if (elem()->isa_klassptr()) {
6999     // leave null
7000   } else if ((elem()->base() == Type::Top) ||
7001              (elem()->base() == Type::Bottom)) {
7002   } else {
7003     k = ciTypeArrayKlass::make(elem()->basic_type());
7004     ((TypeAryKlassPtr*)this)->_klass = k;
7005   }
7006   return k;
7007 }
7008 
7009 //------------------------------dump2------------------------------------------
7010 // Dump Klass Type
7011 #ifndef PRODUCT
7012 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7013   switch( _ptr ) {
7014   case Constant:
7015     st->print("precise ");
7016   case NotNull:
7017     {
7018       st->print("[");
7019       _elem->dump2(d, depth, st);
7020       _interfaces->dump(st);
7021       st->print(": ");
7022     }
7023   case BotPTR:
7024     if( !WizardMode && !Verbose && _ptr != Constant ) break;
7025   case TopPTR:
7026   case AnyNull:
7027     st->print(":%s", ptr_msg[_ptr]);
7028     if( _ptr == Constant ) st->print(":exact");
7029     break;
7030   default:
7031     break;
7032   }
7033   if (is_flat()) st->print(":flat");
7034   if (_null_free) st->print(":null free");
7035   if (Verbose) {
7036     if (_not_flat) st->print(":not flat");
7037     if (_not_null_free) st->print(":not null free");
7038   }
7039 
7040   _offset.dump2(st);
7041 
7042   st->print(" *");
7043 }
7044 #endif
7045 
7046 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7047   const Type* elem = this->elem();
7048   dims = 1;
7049   while (elem->isa_aryklassptr()) {
7050     elem = elem->is_aryklassptr()->elem();
7051     dims++;
7052   }
7053   return elem;
7054 }
7055 
7056 //=============================================================================
7057 // Convenience common pre-built types.
7058 
7059 //------------------------------make-------------------------------------------
7060 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7061                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7062   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7063 }
7064 
7065 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7066   return make(domain, domain, range, range);
7067 }
7068 
7069 //------------------------------osr_domain-----------------------------
7070 const TypeTuple* osr_domain() {
7071   const Type **fields = TypeTuple::fields(2);
7072   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7073   return TypeTuple::make(TypeFunc::Parms+1, fields);
7074 }
7075 
7076 //------------------------------make-------------------------------------------
7077 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7078   Compile* C = Compile::current();
7079   const TypeFunc* tf = nullptr;
7080   if (!is_osr_compilation) {
7081     tf = C->last_tf(method); // check cache
7082     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7083   }
7084   // Inline types are not passed/returned by reference, instead each field of
7085   // the inline type is passed/returned as an argument. We maintain two views of
7086   // the argument/return list here: one based on the signature (with an inline
7087   // type argument/return as a single slot), one based on the actual calling
7088   // convention (with an inline type argument/return as a list of its fields).
7089   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7090   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7091   if (method != C->method() && method->get_Method()->mismatch()) {
7092     has_scalar_args = false;
7093   }
7094   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7095   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7096   ciSignature* sig = method->signature();
7097   bool has_scalar_ret = sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7098   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7099   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7100   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7101   if (!is_osr_compilation) {
7102     C->set_last_tf(method, tf);  // fill cache
7103   }
7104   return tf;
7105 }
7106 
7107 //------------------------------meet-------------------------------------------
7108 // Compute the MEET of two types.  It returns a new Type object.
7109 const Type *TypeFunc::xmeet( const Type *t ) const {
7110   // Perform a fast test for common case; meeting the same types together.
7111   if( this == t ) return this;  // Meeting same type-rep?
7112 
7113   // Current "this->_base" is Func
7114   switch (t->base()) {          // switch on original type
7115 
7116   case Bottom:                  // Ye Olde Default
7117     return t;
7118 
7119   default:                      // All else is a mistake
7120     typerr(t);
7121 
7122   case Top:
7123     break;
7124   }
7125   return this;                  // Return the double constant
7126 }
7127 
7128 //------------------------------xdual------------------------------------------
7129 // Dual: compute field-by-field dual
7130 const Type *TypeFunc::xdual() const {
7131   return this;
7132 }
7133 
7134 //------------------------------eq---------------------------------------------
7135 // Structural equality check for Type representations
7136 bool TypeFunc::eq( const Type *t ) const {
7137   const TypeFunc *a = (const TypeFunc*)t;
7138   return _domain_sig == a->_domain_sig &&
7139     _domain_cc == a->_domain_cc &&
7140     _range_sig == a->_range_sig &&
7141     _range_cc == a->_range_cc;
7142 }
7143 
7144 //------------------------------hash-------------------------------------------
7145 // Type-specific hashing function.
7146 uint TypeFunc::hash(void) const {
7147   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7148 }
7149 
7150 //------------------------------dump2------------------------------------------
7151 // Dump Function Type
7152 #ifndef PRODUCT
7153 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7154   if( _range_sig->cnt() <= Parms )
7155     st->print("void");
7156   else {
7157     uint i;
7158     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7159       _range_sig->field_at(i)->dump2(d,depth,st);
7160       st->print("/");
7161     }
7162     _range_sig->field_at(i)->dump2(d,depth,st);
7163   }
7164   st->print(" ");
7165   st->print("( ");
7166   if( !depth || d[this] ) {     // Check for recursive dump
7167     st->print("...)");
7168     return;
7169   }
7170   d.Insert((void*)this,(void*)this);    // Stop recursion
7171   if (Parms < _domain_sig->cnt())
7172     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7173   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7174     st->print(", ");
7175     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7176   }
7177   st->print(" )");
7178 }
7179 #endif
7180 
7181 //------------------------------singleton--------------------------------------
7182 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7183 // constants (Ldi nodes).  Singletons are integer, float or double constants
7184 // or a single symbol.
7185 bool TypeFunc::singleton(void) const {
7186   return false;                 // Never a singleton
7187 }
7188 
7189 bool TypeFunc::empty(void) const {
7190   return false;                 // Never empty
7191 }
7192 
7193 
7194 BasicType TypeFunc::return_type() const{
7195   if (range_sig()->cnt() == TypeFunc::Parms) {
7196     return T_VOID;
7197   }
7198   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7199 }