1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciField.hpp"
  26 #include "ci/ciFlatArray.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "ci/ciMethodData.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeFlow.hpp"
  32 #include "classfile/javaClasses.hpp"
  33 #include "classfile/symbolTable.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "libadt/dict.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/instanceMirrorKlass.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "oops/typeArrayKlass.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/callnode.hpp"
  45 #include "opto/matcher.hpp"
  46 #include "opto/node.hpp"
  47 #include "opto/opcodes.hpp"
  48 #include "opto/rangeinference.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/type.hpp"
  51 #include "runtime/globals.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "utilities/checkedCast.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/ostream.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 #include "utilities/stringUtils.hpp"
  59 
  60 // Portions of code courtesy of Clifford Click
  61 
  62 // Optimization - Graph Style
  63 
  64 // Dictionary of types shared among compilations.
  65 Dict* Type::_shared_type_dict = nullptr;
  66 const Type::Offset Type::Offset::top(Type::OffsetTop);
  67 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  68 
  69 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  70   // Either is 'TOP' offset?  Return the other offset!
  71   if (_offset == OffsetTop) return other;
  72   if (other._offset == OffsetTop) return *this;
  73   // If either is different, return 'BOTTOM' offset
  74   if (_offset != other._offset) return bottom;
  75   return Offset(_offset);
  76 }
  77 
  78 const Type::Offset Type::Offset::dual() const {
  79   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  80   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  81   return Offset(_offset);               // Map everything else into self
  82 }
  83 
  84 const Type::Offset Type::Offset::add(intptr_t offset) const {
  85   // Adding to 'TOP' offset?  Return 'TOP'!
  86   if (_offset == OffsetTop || offset == OffsetTop) return top;
  87   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  88   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  89   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  90   offset += (intptr_t)_offset;
  91   if (offset != (int)offset || offset == OffsetTop) return bottom;
  92 
  93   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  94   // It is possible to construct a negative offset during PhaseCCP
  95 
  96   return Offset((int)offset);        // Sum valid offsets
  97 }
  98 
  99 void Type::Offset::dump2(outputStream *st) const {
 100   if (_offset == 0) {
 101     return;
 102   } else if (_offset == OffsetTop) {
 103     st->print("+top");
 104   }
 105   else if (_offset == OffsetBot) {
 106     st->print("+bot");
 107   } else if (_offset) {
 108     st->print("+%d", _offset);
 109   }
 110 }
 111 
 112 // Array which maps compiler types to Basic Types
 113 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 114   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 115   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 116   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 117   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 118   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 119   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 120   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 121   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 122   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 123   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 124   { Bad,             T_ARRAY,      "interfaces:",   false, Node::NotAMachineReg, relocInfo::none          },  // Interfaces
 125 
 126 #if defined(PPC64)
 127   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 128   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 129   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 130   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 131   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 132   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 133   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 134 #elif defined(S390)
 135   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 136   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 137   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 138   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 139   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 140   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 141   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 142 #else // all other
 143   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
 144   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
 145   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 146   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 147   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 148   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 149   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 150 #endif
 151   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 152   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 153   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 154   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 155   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 156   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 157   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 158   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
 159   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
 160   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 161   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 162   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 163   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 164   { HalfFloatBot,    T_SHORT,      "halffloat_top", false, Op_RegF,              relocInfo::none          },  // HalfFloatTop
 165   { HalfFloatCon,    T_SHORT,      "hfcon:",        false, Op_RegF,              relocInfo::none          },  // HalfFloatCon
 166   { HalfFloatTop,    T_SHORT,      "short",         false, Op_RegF,              relocInfo::none          },  // HalfFloatBot
 167   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 168   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 169   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 170   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 171   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 172   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 173   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 174 };
 175 
 176 // Map ideal registers (machine types) to ideal types
 177 const Type *Type::mreg2type[_last_machine_leaf];
 178 
 179 // Map basic types to canonical Type* pointers.
 180 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 181 
 182 // Map basic types to constant-zero Types.
 183 const Type* Type::            _zero_type[T_CONFLICT+1];
 184 
 185 // Map basic types to array-body alias types.
 186 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 187 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
 188 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
 189 
 190 //=============================================================================
 191 // Convenience common pre-built types.
 192 const Type *Type::ABIO;         // State-of-machine only
 193 const Type *Type::BOTTOM;       // All values
 194 const Type *Type::CONTROL;      // Control only
 195 const Type *Type::DOUBLE;       // All doubles
 196 const Type *Type::HALF_FLOAT;   // All half floats
 197 const Type *Type::FLOAT;        // All floats
 198 const Type *Type::HALF;         // Placeholder half of doublewide type
 199 const Type *Type::MEMORY;       // Abstract store only
 200 const Type *Type::RETURN_ADDRESS;
 201 const Type *Type::TOP;          // No values in set
 202 
 203 //------------------------------get_const_type---------------------------
 204 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
 205   if (type == nullptr) {
 206     return nullptr;
 207   } else if (type->is_primitive_type()) {
 208     return get_const_basic_type(type->basic_type());
 209   } else {
 210     return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
 211   }
 212 }
 213 
 214 //---------------------------array_element_basic_type---------------------------------
 215 // Mapping to the array element's basic type.
 216 BasicType Type::array_element_basic_type() const {
 217   BasicType bt = basic_type();
 218   if (bt == T_INT) {
 219     if (this == TypeInt::INT)   return T_INT;
 220     if (this == TypeInt::CHAR)  return T_CHAR;
 221     if (this == TypeInt::BYTE)  return T_BYTE;
 222     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 223     if (this == TypeInt::SHORT) return T_SHORT;
 224     return T_VOID;
 225   }
 226   return bt;
 227 }
 228 
 229 // For two instance arrays of same dimension, return the base element types.
 230 // Otherwise or if the arrays have different dimensions, return null.
 231 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 232                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 233 
 234   if (e1) *e1 = nullptr;
 235   if (e2) *e2 = nullptr;
 236   const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
 237   const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
 238 
 239   if (a1tap != nullptr && a2tap != nullptr) {
 240     // Handle multidimensional arrays
 241     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 242     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 243     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 244       a1tap = a1tp->is_aryptr();
 245       a2tap = a2tp->is_aryptr();
 246       a1tp = a1tap->elem()->make_ptr();
 247       a2tp = a2tap->elem()->make_ptr();
 248     }
 249     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 250       if (e1) *e1 = a1tp->is_instptr();
 251       if (e2) *e2 = a2tp->is_instptr();
 252     }
 253   }
 254 }
 255 
 256 //---------------------------get_typeflow_type---------------------------------
 257 // Import a type produced by ciTypeFlow.
 258 const Type* Type::get_typeflow_type(ciType* type) {
 259   switch (type->basic_type()) {
 260 
 261   case ciTypeFlow::StateVector::T_BOTTOM:
 262     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 263     return Type::BOTTOM;
 264 
 265   case ciTypeFlow::StateVector::T_TOP:
 266     assert(type == ciTypeFlow::StateVector::top_type(), "");
 267     return Type::TOP;
 268 
 269   case ciTypeFlow::StateVector::T_NULL:
 270     assert(type == ciTypeFlow::StateVector::null_type(), "");
 271     return TypePtr::NULL_PTR;
 272 
 273   case ciTypeFlow::StateVector::T_LONG2:
 274     // The ciTypeFlow pass pushes a long, then the half.
 275     // We do the same.
 276     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 277     return TypeInt::TOP;
 278 
 279   case ciTypeFlow::StateVector::T_DOUBLE2:
 280     // The ciTypeFlow pass pushes double, then the half.
 281     // Our convention is the same.
 282     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 283     return Type::TOP;
 284 
 285   case T_ADDRESS:
 286     assert(type->is_return_address(), "");
 287     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 288 
 289   case T_OBJECT:
 290     return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM);
 291 
 292   default:
 293     // make sure we did not mix up the cases:
 294     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 295     assert(type != ciTypeFlow::StateVector::top_type(), "");
 296     assert(type != ciTypeFlow::StateVector::null_type(), "");
 297     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 298     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 299     assert(!type->is_return_address(), "");
 300 
 301     return Type::get_const_type(type);
 302   }
 303 }
 304 
 305 
 306 //-----------------------make_from_constant------------------------------------
 307 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 308                                      int stable_dimension, bool is_narrow_oop,
 309                                      bool is_autobox_cache) {
 310   switch (constant.basic_type()) {
 311     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 312     case T_CHAR:     return TypeInt::make(constant.as_char());
 313     case T_BYTE:     return TypeInt::make(constant.as_byte());
 314     case T_SHORT:    return TypeInt::make(constant.as_short());
 315     case T_INT:      return TypeInt::make(constant.as_int());
 316     case T_LONG:     return TypeLong::make(constant.as_long());
 317     case T_FLOAT:    return TypeF::make(constant.as_float());
 318     case T_DOUBLE:   return TypeD::make(constant.as_double());
 319     case T_ARRAY:
 320     case T_OBJECT: {
 321         const Type* con_type = nullptr;
 322         ciObject* oop_constant = constant.as_object();
 323         if (oop_constant->is_null_object()) {
 324           con_type = Type::get_zero_type(T_OBJECT);
 325         } else {
 326           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 327           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 328           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 329             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 330           }
 331           if (stable_dimension > 0) {
 332             assert(FoldStableValues, "sanity");
 333             assert(!con_type->is_zero_type(), "default value for stable field");
 334             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 335           }
 336         }
 337         if (is_narrow_oop) {
 338           con_type = con_type->make_narrowoop();
 339         }
 340         return con_type;
 341       }
 342     case T_ILLEGAL:
 343       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 344       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 345       return nullptr;
 346     default:
 347       // Fall through to failure
 348       return nullptr;
 349   }
 350 }
 351 
 352 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 353   BasicType conbt = con.basic_type();
 354   switch (conbt) {
 355     case T_BOOLEAN: conbt = T_BYTE;   break;
 356     case T_ARRAY:   conbt = T_OBJECT; break;
 357     default:                          break;
 358   }
 359   switch (loadbt) {
 360     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 361     case T_NARROWOOP: loadbt = T_OBJECT; break;
 362     case T_ARRAY:     loadbt = T_OBJECT; break;
 363     case T_ADDRESS:   loadbt = T_OBJECT; break;
 364     default:                             break;
 365   }
 366   if (conbt == loadbt) {
 367     if (is_unsigned && conbt == T_BYTE) {
 368       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 369       return ciConstant(T_INT, con.as_int() & 0xFF);
 370     } else {
 371       return con;
 372     }
 373   }
 374   if (conbt == T_SHORT && loadbt == T_CHAR) {
 375     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 376     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 377   }
 378   return ciConstant(); // T_ILLEGAL
 379 }
 380 
 381 static const Type* make_constant_from_non_flat_array_element(ciArray* array, int off, int stable_dimension,
 382                                                    BasicType loadbt, bool is_unsigned_load) {
 383   // Decode the results of GraphKit::array_element_address.
 384   ciConstant element_value = array->element_value_by_offset(off);
 385   if (element_value.basic_type() == T_ILLEGAL) {
 386     return nullptr; // wrong offset
 387   }
 388   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 389 
 390   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 391          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 392 
 393   if (con.is_valid() &&          // not a mismatched access
 394       !con.is_null_or_zero()) {  // not a default value
 395     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 396     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 397   }
 398   return nullptr;
 399 }
 400 
 401 static const Type* make_constant_from_flat_array_element(ciFlatArray* array, int off, int field_offset, int stable_dimension,
 402                                                          BasicType loadbt, bool is_unsigned_load) {
 403   // Decode the results of GraphKit::array_element_address.
 404   ciConstant element_value = array->field_value_by_offset(off + field_offset);
 405   if (element_value.basic_type() == T_ILLEGAL) {
 406     return nullptr; // wrong offset
 407   }
 408   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 409 
 410   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 411          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 412 
 413   if (con.is_valid() &&          // not a mismatched access
 414       !con.is_null_or_zero()) {  // not a default value
 415     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 416     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 417   }
 418   return nullptr;
 419 }
 420 
 421 // Try to constant-fold a stable array element.
 422 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int field_offset, int stable_dimension,
 423                                                    BasicType loadbt, bool is_unsigned_load) {
 424   if (array->is_flat()) {
 425     return make_constant_from_flat_array_element(array->as_flat_array(), off, field_offset, stable_dimension, loadbt, is_unsigned_load);
 426   }
 427   return make_constant_from_non_flat_array_element(array, off, stable_dimension, loadbt, is_unsigned_load);
 428 }
 429 
 430 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 431   ciField* field;
 432   ciType* type = holder->java_mirror_type();
 433   if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 434     // Static field
 435     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 436   } else {
 437     // Instance field
 438     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 439   }
 440   if (field == nullptr) {
 441     return nullptr; // Wrong offset
 442   }
 443   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 444 }
 445 
 446 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 447                                            BasicType loadbt, bool is_unsigned_load) {
 448   if (!field->is_constant()) {
 449     return nullptr; // Non-constant field
 450   }
 451   ciConstant field_value;
 452   if (field->is_static()) {
 453     // final static field
 454     field_value = field->constant_value();
 455   } else if (holder != nullptr) {
 456     // final or stable non-static field
 457     // Treat final non-static fields of trusted classes (classes in
 458     // java.lang.invoke and sun.invoke packages and subpackages) as
 459     // compile time constants.
 460     field_value = field->constant_value_of(holder);
 461   }
 462   if (!field_value.is_valid()) {
 463     return nullptr; // Not a constant
 464   }
 465 
 466   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 467 
 468   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 469          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 470 
 471   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 472   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 473   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 474 
 475   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 476                                             stable_dimension, is_narrow_oop,
 477                                             field->is_autobox_cache());
 478   if (con_type != nullptr && field->is_call_site_target()) {
 479     ciCallSite* call_site = holder->as_call_site();
 480     if (!call_site->is_fully_initialized_constant_call_site()) {
 481       ciMethodHandle* target = con.as_object()->as_method_handle();
 482       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 483     }
 484   }
 485   return con_type;
 486 }
 487 
 488 //------------------------------make-------------------------------------------
 489 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 490 // and look for an existing copy in the type dictionary.
 491 const Type *Type::make( enum TYPES t ) {
 492   return (new Type(t))->hashcons();
 493 }
 494 
 495 //------------------------------cmp--------------------------------------------
 496 bool Type::equals(const Type* t1, const Type* t2) {
 497   if (t1->_base != t2->_base) {
 498     return false; // Missed badly
 499   }
 500 
 501   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 502   return t1->eq(t2);
 503 }
 504 
 505 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 506   if (!include_speculative) {
 507     return remove_speculative();
 508   }
 509   return this;
 510 }
 511 
 512 //------------------------------hash-------------------------------------------
 513 int Type::uhash( const Type *const t ) {
 514   return (int)t->hash();
 515 }
 516 
 517 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 518 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 519 
 520 //--------------------------Initialize_shared----------------------------------
 521 void Type::Initialize_shared(Compile* current) {
 522   // This method does not need to be locked because the first system
 523   // compilations (stub compilations) occur serially.  If they are
 524   // changed to proceed in parallel, then this section will need
 525   // locking.
 526 
 527   Arena* save = current->type_arena();
 528   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
 529 
 530   current->set_type_arena(shared_type_arena);
 531 
 532   // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
 533   CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
 534     return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
 535   };
 536 
 537   _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
 538   current->set_type_dict(_shared_type_dict);
 539 
 540   // Make shared pre-built types.
 541   CONTROL = make(Control);      // Control only
 542   TOP     = make(Top);          // No values in set
 543   MEMORY  = make(Memory);       // Abstract store only
 544   ABIO    = make(Abio);         // State-of-machine only
 545   RETURN_ADDRESS=make(Return_Address);
 546   FLOAT   = make(FloatBot);     // All floats
 547   HALF_FLOAT = make(HalfFloatBot); // All half floats
 548   DOUBLE  = make(DoubleBot);    // All doubles
 549   BOTTOM  = make(Bottom);       // Everything
 550   HALF    = make(Half);         // Placeholder half of doublewide type
 551 
 552   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 553   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 554   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 555   TypeF::ONE  = TypeF::make(1.0); // Float 1
 556   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 557   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 558 
 559   TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
 560   TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
 561   TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
 562   TypeH::ONE  = TypeH::make(one_jfloat16); // HalfFloat 1
 563   TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
 564   TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
 565 
 566   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 567   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 568   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 569   TypeD::ONE  = TypeD::make(1.0); // Double 1
 570   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 571   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 572 
 573   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 574   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 575   TypeInt::MINUS_1  = TypeInt::make(-1);  // -1
 576   TypeInt::ZERO     = TypeInt::make( 0);  //  0
 577   TypeInt::ONE      = TypeInt::make( 1);  //  1
 578   TypeInt::BOOL     = TypeInt::make( 0, 1, WidenMin);  // 0 or 1, FALSE or TRUE.
 579   TypeInt::CC       = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 580   TypeInt::CC_LT    = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 581   TypeInt::CC_GT    = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 582   TypeInt::CC_EQ    = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 583   TypeInt::CC_NE    = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{-1, 1}, {1, max_juint}, {0, 1}}, WidenMin)->is_int();
 584   TypeInt::CC_LE    = TypeInt::make(-1, 0, WidenMin);
 585   TypeInt::CC_GE    = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 586   TypeInt::BYTE     = TypeInt::make(-128, 127,     WidenMin); // Bytes
 587   TypeInt::UBYTE    = TypeInt::make(0, 255,        WidenMin); // Unsigned Bytes
 588   TypeInt::CHAR     = TypeInt::make(0, 65535,      WidenMin); // Java chars
 589   TypeInt::SHORT    = TypeInt::make(-32768, 32767, WidenMin); // Java shorts
 590   TypeInt::NON_ZERO = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{min_jint, max_jint}, {1, max_juint}, {0, 0}}, WidenMin)->is_int();
 591   TypeInt::POS      = TypeInt::make(0, max_jint,   WidenMin); // Non-neg values
 592   TypeInt::POS1     = TypeInt::make(1, max_jint,   WidenMin); // Positive values
 593   TypeInt::INT      = TypeInt::make(min_jint, max_jint, WidenMax); // 32-bit integers
 594   TypeInt::SYMINT   = TypeInt::make(-max_jint, max_jint, WidenMin); // symmetric range
 595   TypeInt::TYPE_DOMAIN = TypeInt::INT;
 596   // CmpL is overloaded both as the bytecode computation returning
 597   // a trinary (-1, 0, +1) integer result AND as an efficient long
 598   // compare returning optimizer ideal-type flags.
 599   assert(TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 600   assert(TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 601   assert(TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 602   assert(TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 603 
 604   TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
 605   TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
 606   TypeLong::MINUS_1  = TypeLong::make(-1);   // -1
 607   TypeLong::ZERO     = TypeLong::make( 0);   //  0
 608   TypeLong::ONE      = TypeLong::make( 1);   //  1
 609   TypeLong::NON_ZERO = TypeLong::make_or_top(TypeIntPrototype<jlong, julong>{{min_jlong, max_jlong}, {1, max_julong}, {0, 0}}, WidenMin)->is_long();
 610   TypeLong::POS      = TypeLong::make(0, max_jlong, WidenMin); // Non-neg values
 611   TypeLong::NEG      = TypeLong::make(min_jlong, -1, WidenMin);
 612   TypeLong::LONG     = TypeLong::make(min_jlong, max_jlong, WidenMax); // 64-bit integers
 613   TypeLong::INT      = TypeLong::make((jlong)min_jint, (jlong)max_jint,WidenMin);
 614   TypeLong::UINT     = TypeLong::make(0, (jlong)max_juint, WidenMin);
 615   TypeLong::TYPE_DOMAIN = TypeLong::LONG;
 616 
 617   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 618   fboth[0] = Type::CONTROL;
 619   fboth[1] = Type::CONTROL;
 620   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 621 
 622   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 623   ffalse[0] = Type::CONTROL;
 624   ffalse[1] = Type::TOP;
 625   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 626 
 627   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 628   fneither[0] = Type::TOP;
 629   fneither[1] = Type::TOP;
 630   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 631 
 632   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 633   ftrue[0] = Type::TOP;
 634   ftrue[1] = Type::CONTROL;
 635   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 636 
 637   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 638   floop[0] = Type::CONTROL;
 639   floop[1] = TypeInt::INT;
 640   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 641 
 642   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 643   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 644   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 645 
 646   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 647   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 648 
 649   const Type **fmembar = TypeTuple::fields(0);
 650   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 651 
 652   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 653   fsc[0] = TypeInt::CC;
 654   fsc[1] = Type::MEMORY;
 655   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 656 
 657   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 658   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 659   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 660   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 661                                            false, nullptr, Offset(oopDesc::mark_offset_in_bytes()));
 662   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 663                                            false, nullptr, Offset(oopDesc::klass_offset_in_bytes()));
 664   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 665 
 666   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom);
 667 
 668   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 669   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 670 
 671   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 672 
 673   mreg2type[Op_Node] = Type::BOTTOM;
 674   mreg2type[Op_Set ] = nullptr;
 675   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 676   mreg2type[Op_RegI] = TypeInt::INT;
 677   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 678   mreg2type[Op_RegF] = Type::FLOAT;
 679   mreg2type[Op_RegD] = Type::DOUBLE;
 680   mreg2type[Op_RegL] = TypeLong::LONG;
 681   mreg2type[Op_RegFlags] = TypeInt::CC;
 682 
 683   GrowableArray<ciInstanceKlass*> array_interfaces;
 684   array_interfaces.push(current->env()->Cloneable_klass());
 685   array_interfaces.push(current->env()->Serializable_klass());
 686   TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
 687   TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
 688 
 689   TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr, false, Offset::bottom);
 690   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 691 
 692   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 693 
 694 #ifdef _LP64
 695   if (UseCompressedOops) {
 696     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 697     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 698   } else
 699 #endif
 700   {
 701     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 702     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 703   }
 704   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 705   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 706   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 707   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 708   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 709   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 710   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 711   TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true, false, false, false), nullptr, false, Offset::bottom);
 712 
 713   // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
 714   TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
 715   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 716   TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS;
 717   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 718   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 719   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 720   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 721   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 722   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 723   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 724   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 725   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 726 
 727   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0));
 728   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0));
 729 
 730   const Type **fi2c = TypeTuple::fields(2);
 731   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 732   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 733   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 734 
 735   const Type **intpair = TypeTuple::fields(2);
 736   intpair[0] = TypeInt::INT;
 737   intpair[1] = TypeInt::INT;
 738   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 739 
 740   const Type **longpair = TypeTuple::fields(2);
 741   longpair[0] = TypeLong::LONG;
 742   longpair[1] = TypeLong::LONG;
 743   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 744 
 745   const Type **intccpair = TypeTuple::fields(2);
 746   intccpair[0] = TypeInt::INT;
 747   intccpair[1] = TypeInt::CC;
 748   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 749 
 750   const Type **longccpair = TypeTuple::fields(2);
 751   longccpair[0] = TypeLong::LONG;
 752   longccpair[1] = TypeInt::CC;
 753   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 754 
 755   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 756   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 757   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 758   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 759   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 760   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 761   _const_basic_type[T_INT]         = TypeInt::INT;
 762   _const_basic_type[T_LONG]        = TypeLong::LONG;
 763   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 764   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 765   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 766   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 767   _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM;
 768   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 769   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 770   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 771 
 772   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 773   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 774   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 775   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 776   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 777   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 778   _zero_type[T_INT]         = TypeInt::ZERO;
 779   _zero_type[T_LONG]        = TypeLong::ZERO;
 780   _zero_type[T_FLOAT]       = TypeF::ZERO;
 781   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 782   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 783   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 784   _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR;
 785   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 786   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 787 
 788   // get_zero_type() should not happen for T_CONFLICT
 789   _zero_type[T_CONFLICT]= nullptr;
 790 
 791   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
 792   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 793 
 794   if (Matcher::supports_scalable_vector()) {
 795     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 796   }
 797 
 798   // Vector predefined types, it needs initialized _const_basic_type[].
 799   if (Matcher::vector_size_supported(T_BYTE, 4)) {
 800     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 801   }
 802   if (Matcher::vector_size_supported(T_FLOAT, 2)) {
 803     TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
 804   }
 805   if (Matcher::vector_size_supported(T_FLOAT, 4)) {
 806     TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
 807   }
 808   if (Matcher::vector_size_supported(T_FLOAT, 8)) {
 809     TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
 810   }
 811   if (Matcher::vector_size_supported(T_FLOAT, 16)) {
 812     TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
 813   }
 814 
 815   mreg2type[Op_VecA] = TypeVect::VECTA;
 816   mreg2type[Op_VecS] = TypeVect::VECTS;
 817   mreg2type[Op_VecD] = TypeVect::VECTD;
 818   mreg2type[Op_VecX] = TypeVect::VECTX;
 819   mreg2type[Op_VecY] = TypeVect::VECTY;
 820   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 821 
 822   LockNode::initialize_lock_Type();
 823   ArrayCopyNode::initialize_arraycopy_Type();
 824   OptoRuntime::initialize_types();
 825 
 826   // Restore working type arena.
 827   current->set_type_arena(save);
 828   current->set_type_dict(nullptr);
 829 }
 830 
 831 //------------------------------Initialize-------------------------------------
 832 void Type::Initialize(Compile* current) {
 833   assert(current->type_arena() != nullptr, "must have created type arena");
 834 
 835   if (_shared_type_dict == nullptr) {
 836     Initialize_shared(current);
 837   }
 838 
 839   Arena* type_arena = current->type_arena();
 840 
 841   // Create the hash-cons'ing dictionary with top-level storage allocation
 842   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 843   current->set_type_dict(tdic);
 844 }
 845 
 846 //------------------------------hashcons---------------------------------------
 847 // Do the hash-cons trick.  If the Type already exists in the type table,
 848 // delete the current Type and return the existing Type.  Otherwise stick the
 849 // current Type in the Type table.
 850 const Type *Type::hashcons(void) {
 851   DEBUG_ONLY(base());           // Check the assertion in Type::base().
 852   // Look up the Type in the Type dictionary
 853   Dict *tdic = type_dict();
 854   Type* old = (Type*)(tdic->Insert(this, this, false));
 855   if( old ) {                   // Pre-existing Type?
 856     if( old != this )           // Yes, this guy is not the pre-existing?
 857       delete this;              // Yes, Nuke this guy
 858     assert( old->_dual, "" );
 859     return old;                 // Return pre-existing
 860   }
 861 
 862   // Every type has a dual (to make my lattice symmetric).
 863   // Since we just discovered a new Type, compute its dual right now.
 864   assert( !_dual, "" );         // No dual yet
 865   _dual = xdual();              // Compute the dual
 866   if (equals(this, _dual)) {    // Handle self-symmetric
 867     if (_dual != this) {
 868       delete _dual;
 869       _dual = this;
 870     }
 871     return this;
 872   }
 873   assert( !_dual->_dual, "" );  // No reverse dual yet
 874   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 875   // New Type, insert into Type table
 876   tdic->Insert((void*)_dual,(void*)_dual);
 877   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 878 #ifdef ASSERT
 879   Type *dual_dual = (Type*)_dual->xdual();
 880   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 881   delete dual_dual;
 882 #endif
 883   return this;                  // Return new Type
 884 }
 885 
 886 //------------------------------eq---------------------------------------------
 887 // Structural equality check for Type representations
 888 bool Type::eq( const Type * ) const {
 889   return true;                  // Nothing else can go wrong
 890 }
 891 
 892 //------------------------------hash-------------------------------------------
 893 // Type-specific hashing function.
 894 uint Type::hash(void) const {
 895   return _base;
 896 }
 897 
 898 //------------------------------is_finite--------------------------------------
 899 // Has a finite value
 900 bool Type::is_finite() const {
 901   return false;
 902 }
 903 
 904 //------------------------------is_nan-----------------------------------------
 905 // Is not a number (NaN)
 906 bool Type::is_nan()    const {
 907   return false;
 908 }
 909 
 910 #ifdef ASSERT
 911 class VerifyMeet;
 912 class VerifyMeetResult : public ArenaObj {
 913   friend class VerifyMeet;
 914   friend class Type;
 915 private:
 916   class VerifyMeetResultEntry {
 917   private:
 918     const Type* _in1;
 919     const Type* _in2;
 920     const Type* _res;
 921   public:
 922     VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
 923             _in1(in1), _in2(in2), _res(res) {
 924     }
 925     VerifyMeetResultEntry():
 926             _in1(nullptr), _in2(nullptr), _res(nullptr) {
 927     }
 928 
 929     bool operator==(const VerifyMeetResultEntry& rhs) const {
 930       return _in1 == rhs._in1 &&
 931              _in2 == rhs._in2 &&
 932              _res == rhs._res;
 933     }
 934 
 935     bool operator!=(const VerifyMeetResultEntry& rhs) const {
 936       return !(rhs == *this);
 937     }
 938 
 939     static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
 940       if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
 941         return -1;
 942       } else if (v1._in1 == v2._in1) {
 943         if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
 944           return -1;
 945         } else if (v1._in2 == v2._in2) {
 946           assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
 947           return 0;
 948         }
 949         return 1;
 950       }
 951       return 1;
 952     }
 953     const Type* res() const { return _res; }
 954   };
 955   uint _depth;
 956   GrowableArray<VerifyMeetResultEntry> _cache;
 957 
 958   // With verification code, the meet of A and B causes the computation of:
 959   // 1- meet(A, B)
 960   // 2- meet(B, A)
 961   // 3- meet(dual(meet(A, B)), dual(A))
 962   // 4- meet(dual(meet(A, B)), dual(B))
 963   // 5- meet(dual(A), dual(B))
 964   // 6- meet(dual(B), dual(A))
 965   // 7- meet(dual(meet(dual(A), dual(B))), A)
 966   // 8- meet(dual(meet(dual(A), dual(B))), B)
 967   //
 968   // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
 969   //
 970   // The meet of A[] and B[] triggers the computation of:
 971   // 1- meet(A[], B[][)
 972   //   1.1- meet(A, B)
 973   //   1.2- meet(B, A)
 974   //   1.3- meet(dual(meet(A, B)), dual(A))
 975   //   1.4- meet(dual(meet(A, B)), dual(B))
 976   //   1.5- meet(dual(A), dual(B))
 977   //   1.6- meet(dual(B), dual(A))
 978   //   1.7- meet(dual(meet(dual(A), dual(B))), A)
 979   //   1.8- meet(dual(meet(dual(A), dual(B))), B)
 980   // 2- meet(B[], A[])
 981   //   2.1- meet(B, A) = 1.2
 982   //   2.2- meet(A, B) = 1.1
 983   //   2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
 984   //   2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
 985   //   2.5- meet(dual(B), dual(A)) = 1.6
 986   //   2.6- meet(dual(A), dual(B)) = 1.5
 987   //   2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
 988   //   2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
 989   // etc.
 990   // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
 991   // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
 992   // duration of the meet at the root of the recursive calls.
 993   //
 994   const Type* meet(const Type* t1, const Type* t2) {
 995     bool found = false;
 996     const VerifyMeetResultEntry meet(t1, t2, nullptr);
 997     int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
 998     const Type* res = nullptr;
 999     if (found) {
1000       res = _cache.at(pos).res();
1001     } else {
1002       res = t1->xmeet(t2);
1003       _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
1004       found = false;
1005       _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
1006       assert(found, "should be in table after it's added");
1007     }
1008     return res;
1009   }
1010 
1011   void add(const Type* t1, const Type* t2, const Type* res) {
1012     _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
1013   }
1014 
1015   bool empty_cache() const {
1016     return _cache.length() == 0;
1017   }
1018 public:
1019   VerifyMeetResult(Compile* C) :
1020           _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
1021   }
1022 };
1023 
1024 void Type::assert_type_verify_empty() const {
1025   assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
1026 }
1027 
1028 class VerifyMeet {
1029 private:
1030   Compile* _C;
1031 public:
1032   VerifyMeet(Compile* C) : _C(C) {
1033     if (C->_type_verify == nullptr) {
1034       C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
1035     }
1036     _C->_type_verify->_depth++;
1037   }
1038 
1039   ~VerifyMeet() {
1040     assert(_C->_type_verify->_depth != 0, "");
1041     _C->_type_verify->_depth--;
1042     if (_C->_type_verify->_depth == 0) {
1043       _C->_type_verify->_cache.trunc_to(0);
1044     }
1045   }
1046 
1047   const Type* meet(const Type* t1, const Type* t2) const {
1048     return _C->_type_verify->meet(t1, t2);
1049   }
1050 
1051   void add(const Type* t1, const Type* t2, const Type* res) const {
1052     _C->_type_verify->add(t1, t2, res);
1053   }
1054 };
1055 
1056 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
1057   Compile* C = Compile::current();
1058   const Type* mt2 = verify.meet(t, this);
1059 
1060   // Verify that:
1061   //      this meet t == t meet this
1062   if (mt != mt2) {
1063     tty->print_cr("=== Meet Not Commutative ===");
1064     tty->print("t           = ");   t->dump(); tty->cr();
1065     tty->print("this        = ");      dump(); tty->cr();
1066     tty->print("t meet this = "); mt2->dump(); tty->cr();
1067     tty->print("this meet t = ");  mt->dump(); tty->cr();
1068     fatal("meet not commutative");
1069   }
1070   const Type* dual_join = mt->_dual;
1071   const Type* t2t    = verify.meet(dual_join,t->_dual);
1072   const Type* t2this = verify.meet(dual_join,this->_dual);
1073 
1074   // Interface meet Oop is Not Symmetric:
1075   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
1076   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
1077 
1078   // Verify that:
1079   // 1)     mt_dual meet t_dual    == t_dual
1080   //    which corresponds to
1081   //       !(t meet this)  meet !t ==
1082   //       (!t join !this) meet !t == !t
1083   // 2)    mt_dual meet this_dual     == this_dual
1084   //    which corresponds to
1085   //       !(t meet this)  meet !this ==
1086   //       (!t join !this) meet !this == !this
1087   if (t2t != t->_dual || t2this != this->_dual) {
1088     tty->print_cr("=== Meet Not Symmetric ===");
1089     tty->print("t   =                   ");              t->dump(); tty->cr();
1090     tty->print("this=                   ");                 dump(); tty->cr();
1091     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
1092 
1093     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
1094     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
1095     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
1096 
1097     // 1)
1098     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
1099     // 2)
1100     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
1101     tty->cr();
1102     tty->print_cr("Fail: ");
1103     if (t2t != t->_dual) {
1104       tty->print_cr("- mt_dual meet t_dual != t_dual");
1105     }
1106     if (t2this != this->_dual) {
1107       tty->print_cr("- mt_dual meet this_dual != this_dual");
1108     }
1109     tty->cr();
1110 
1111     fatal("meet not symmetric");
1112   }
1113 }
1114 #endif
1115 
1116 //------------------------------meet-------------------------------------------
1117 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
1118 // commutative and the lattice is symmetric.
1119 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1120   if (isa_narrowoop() && t->isa_narrowoop()) {
1121     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1122     return result->make_narrowoop();
1123   }
1124   if (isa_narrowklass() && t->isa_narrowklass()) {
1125     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1126     return result->make_narrowklass();
1127   }
1128 
1129 #ifdef ASSERT
1130   Compile* C = Compile::current();
1131   VerifyMeet verify(C);
1132 #endif
1133 
1134   const Type *this_t = maybe_remove_speculative(include_speculative);
1135   t = t->maybe_remove_speculative(include_speculative);
1136 
1137   const Type *mt = this_t->xmeet(t);
1138 #ifdef ASSERT
1139   verify.add(this_t, t, mt);
1140   if (isa_narrowoop() || t->isa_narrowoop()) {
1141     return mt;
1142   }
1143   if (isa_narrowklass() || t->isa_narrowklass()) {
1144     return mt;
1145   }
1146   // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments
1147   if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) ||
1148       (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt;
1149   this_t->check_symmetrical(t, mt, verify);
1150   const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1151   this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1152 #endif
1153   return mt;
1154 }
1155 
1156 //------------------------------xmeet------------------------------------------
1157 // Compute the MEET of two types.  It returns a new Type object.
1158 const Type *Type::xmeet( const Type *t ) const {
1159   // Perform a fast test for common case; meeting the same types together.
1160   if( this == t ) return this;  // Meeting same type-rep?
1161 
1162   // Meeting TOP with anything?
1163   if( _base == Top ) return t;
1164 
1165   // Meeting BOTTOM with anything?
1166   if( _base == Bottom ) return BOTTOM;
1167 
1168   // Current "this->_base" is one of: Bad, Multi, Control, Top,
1169   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1170   switch (t->base()) {  // Switch on original type
1171 
1172   // Cut in half the number of cases I must handle.  Only need cases for when
1173   // the given enum "t->type" is less than or equal to the local enum "type".
1174   case HalfFloatCon:
1175   case FloatCon:
1176   case DoubleCon:
1177   case Int:
1178   case Long:
1179     return t->xmeet(this);
1180 
1181   case OopPtr:
1182     return t->xmeet(this);
1183 
1184   case InstPtr:
1185     return t->xmeet(this);
1186 
1187   case MetadataPtr:
1188   case KlassPtr:
1189   case InstKlassPtr:
1190   case AryKlassPtr:
1191     return t->xmeet(this);
1192 
1193   case AryPtr:
1194     return t->xmeet(this);
1195 
1196   case NarrowOop:
1197     return t->xmeet(this);
1198 
1199   case NarrowKlass:
1200     return t->xmeet(this);
1201 
1202   case Bad:                     // Type check
1203   default:                      // Bogus type not in lattice
1204     typerr(t);
1205     return Type::BOTTOM;
1206 
1207   case Bottom:                  // Ye Olde Default
1208     return t;
1209 
1210   case HalfFloatTop:
1211     if (_base == HalfFloatTop) { return this; }
1212   case HalfFloatBot:            // Half Float
1213     if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1214     if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1215     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1216     typerr(t);
1217     return Type::BOTTOM;
1218 
1219   case FloatTop:
1220     if (_base == FloatTop ) { return this; }
1221   case FloatBot:                // Float
1222     if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1223     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1224     if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1225     typerr(t);
1226     return Type::BOTTOM;
1227 
1228   case DoubleTop:
1229     if (_base == DoubleTop) { return this; }
1230   case DoubleBot:               // Double
1231     if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1232     if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1233     if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1234     typerr(t);
1235     return Type::BOTTOM;
1236 
1237   // These next few cases must match exactly or it is a compile-time error.
1238   case Control:                 // Control of code
1239   case Abio:                    // State of world outside of program
1240   case Memory:
1241     if (_base == t->_base)  { return this; }
1242     typerr(t);
1243     return Type::BOTTOM;
1244 
1245   case Top:                     // Top of the lattice
1246     return this;
1247   }
1248 
1249   // The type is unchanged
1250   return this;
1251 }
1252 
1253 //-----------------------------filter------------------------------------------
1254 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1255   const Type* ft = join_helper(kills, include_speculative);
1256   if (ft->empty())
1257     return Type::TOP;           // Canonical empty value
1258   return ft;
1259 }
1260 
1261 //------------------------------xdual------------------------------------------
1262 const Type *Type::xdual() const {
1263   // Note: the base() accessor asserts the sanity of _base.
1264   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1265   return new Type(_type_info[_base].dual_type);
1266 }
1267 
1268 //------------------------------has_memory-------------------------------------
1269 bool Type::has_memory() const {
1270   Type::TYPES tx = base();
1271   if (tx == Memory) return true;
1272   if (tx == Tuple) {
1273     const TypeTuple *t = is_tuple();
1274     for (uint i=0; i < t->cnt(); i++) {
1275       tx = t->field_at(i)->base();
1276       if (tx == Memory)  return true;
1277     }
1278   }
1279   return false;
1280 }
1281 
1282 #ifndef PRODUCT
1283 //------------------------------dump2------------------------------------------
1284 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1285   st->print("%s", _type_info[_base].msg);
1286 }
1287 
1288 //------------------------------dump-------------------------------------------
1289 void Type::dump_on(outputStream *st) const {
1290   ResourceMark rm;
1291   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1292   dump2(d,1, st);
1293   if (is_ptr_to_narrowoop()) {
1294     st->print(" [narrow]");
1295   } else if (is_ptr_to_narrowklass()) {
1296     st->print(" [narrowklass]");
1297   }
1298 }
1299 
1300 //-----------------------------------------------------------------------------
1301 const char* Type::str(const Type* t) {
1302   stringStream ss;
1303   t->dump_on(&ss);
1304   return ss.as_string();
1305 }
1306 #endif
1307 
1308 //------------------------------singleton--------------------------------------
1309 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1310 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1311 bool Type::singleton(void) const {
1312   return _base == Top || _base == Half;
1313 }
1314 
1315 //------------------------------empty------------------------------------------
1316 // TRUE if Type is a type with no values, FALSE otherwise.
1317 bool Type::empty(void) const {
1318   switch (_base) {
1319   case DoubleTop:
1320   case FloatTop:
1321   case HalfFloatTop:
1322   case Top:
1323     return true;
1324 
1325   case Half:
1326   case Abio:
1327   case Return_Address:
1328   case Memory:
1329   case Bottom:
1330   case HalfFloatBot:
1331   case FloatBot:
1332   case DoubleBot:
1333     return false;  // never a singleton, therefore never empty
1334 
1335   default:
1336     ShouldNotReachHere();
1337     return false;
1338   }
1339 }
1340 
1341 //------------------------------dump_stats-------------------------------------
1342 // Dump collected statistics to stderr
1343 #ifndef PRODUCT
1344 void Type::dump_stats() {
1345   tty->print("Types made: %d\n", type_dict()->Size());
1346 }
1347 #endif
1348 
1349 //------------------------------category---------------------------------------
1350 #ifndef PRODUCT
1351 Type::Category Type::category() const {
1352   const TypeTuple* tuple;
1353   switch (base()) {
1354     case Type::Int:
1355     case Type::Long:
1356     case Type::Half:
1357     case Type::NarrowOop:
1358     case Type::NarrowKlass:
1359     case Type::Array:
1360     case Type::VectorA:
1361     case Type::VectorS:
1362     case Type::VectorD:
1363     case Type::VectorX:
1364     case Type::VectorY:
1365     case Type::VectorZ:
1366     case Type::VectorMask:
1367     case Type::AnyPtr:
1368     case Type::RawPtr:
1369     case Type::OopPtr:
1370     case Type::InstPtr:
1371     case Type::AryPtr:
1372     case Type::MetadataPtr:
1373     case Type::KlassPtr:
1374     case Type::InstKlassPtr:
1375     case Type::AryKlassPtr:
1376     case Type::Function:
1377     case Type::Return_Address:
1378     case Type::HalfFloatTop:
1379     case Type::HalfFloatCon:
1380     case Type::HalfFloatBot:
1381     case Type::FloatTop:
1382     case Type::FloatCon:
1383     case Type::FloatBot:
1384     case Type::DoubleTop:
1385     case Type::DoubleCon:
1386     case Type::DoubleBot:
1387       return Category::Data;
1388     case Type::Memory:
1389       return Category::Memory;
1390     case Type::Control:
1391       return Category::Control;
1392     case Type::Top:
1393     case Type::Abio:
1394     case Type::Bottom:
1395       return Category::Other;
1396     case Type::Bad:
1397     case Type::lastype:
1398       return Category::Undef;
1399     case Type::Tuple:
1400       // Recursive case. Return CatMixed if the tuple contains types of
1401       // different categories (e.g. CallStaticJavaNode's type), or the specific
1402       // category if all types are of the same category (e.g. IfNode's type).
1403       tuple = is_tuple();
1404       if (tuple->cnt() == 0) {
1405         return Category::Undef;
1406       } else {
1407         Category first = tuple->field_at(0)->category();
1408         for (uint i = 1; i < tuple->cnt(); i++) {
1409           if (tuple->field_at(i)->category() != first) {
1410             return Category::Mixed;
1411           }
1412         }
1413         return first;
1414       }
1415     default:
1416       assert(false, "unmatched base type: all base types must be categorized");
1417   }
1418   return Category::Undef;
1419 }
1420 
1421 bool Type::has_category(Type::Category cat) const {
1422   if (category() == cat) {
1423     return true;
1424   }
1425   if (category() == Category::Mixed) {
1426     const TypeTuple* tuple = is_tuple();
1427     for (uint i = 0; i < tuple->cnt(); i++) {
1428       if (tuple->field_at(i)->has_category(cat)) {
1429         return true;
1430       }
1431     }
1432   }
1433   return false;
1434 }
1435 #endif
1436 
1437 //------------------------------typerr-----------------------------------------
1438 void Type::typerr( const Type *t ) const {
1439 #ifndef PRODUCT
1440   tty->print("\nError mixing types: ");
1441   dump();
1442   tty->print(" and ");
1443   t->dump();
1444   tty->print("\n");
1445 #endif
1446   ShouldNotReachHere();
1447 }
1448 
1449 
1450 //=============================================================================
1451 // Convenience common pre-built types.
1452 const TypeF *TypeF::MAX;        // Floating point max
1453 const TypeF *TypeF::MIN;        // Floating point min
1454 const TypeF *TypeF::ZERO;       // Floating point zero
1455 const TypeF *TypeF::ONE;        // Floating point one
1456 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1457 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1458 
1459 //------------------------------make-------------------------------------------
1460 // Create a float constant
1461 const TypeF *TypeF::make(float f) {
1462   return (TypeF*)(new TypeF(f))->hashcons();
1463 }
1464 
1465 //------------------------------meet-------------------------------------------
1466 // Compute the MEET of two types.  It returns a new Type object.
1467 const Type *TypeF::xmeet( const Type *t ) const {
1468   // Perform a fast test for common case; meeting the same types together.
1469   if( this == t ) return this;  // Meeting same type-rep?
1470 
1471   // Current "this->_base" is FloatCon
1472   switch (t->base()) {          // Switch on original type
1473   case AnyPtr:                  // Mixing with oops happens when javac
1474   case RawPtr:                  // reuses local variables
1475   case OopPtr:
1476   case InstPtr:
1477   case AryPtr:
1478   case MetadataPtr:
1479   case KlassPtr:
1480   case InstKlassPtr:
1481   case AryKlassPtr:
1482   case NarrowOop:
1483   case NarrowKlass:
1484   case Int:
1485   case Long:
1486   case HalfFloatTop:
1487   case HalfFloatCon:
1488   case HalfFloatBot:
1489   case DoubleTop:
1490   case DoubleCon:
1491   case DoubleBot:
1492   case Bottom:                  // Ye Olde Default
1493     return Type::BOTTOM;
1494 
1495   case FloatBot:
1496     return t;
1497 
1498   default:                      // All else is a mistake
1499     typerr(t);
1500 
1501   case FloatCon:                // Float-constant vs Float-constant?
1502     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1503                                 // must compare bitwise as positive zero, negative zero and NaN have
1504                                 // all the same representation in C++
1505       return FLOAT;             // Return generic float
1506                                 // Equal constants
1507   case Top:
1508   case FloatTop:
1509     break;                      // Return the float constant
1510   }
1511   return this;                  // Return the float constant
1512 }
1513 
1514 //------------------------------xdual------------------------------------------
1515 // Dual: symmetric
1516 const Type *TypeF::xdual() const {
1517   return this;
1518 }
1519 
1520 //------------------------------eq---------------------------------------------
1521 // Structural equality check for Type representations
1522 bool TypeF::eq(const Type *t) const {
1523   // Bitwise comparison to distinguish between +/-0. These values must be treated
1524   // as different to be consistent with C1 and the interpreter.
1525   return (jint_cast(_f) == jint_cast(t->getf()));
1526 }
1527 
1528 //------------------------------hash-------------------------------------------
1529 // Type-specific hashing function.
1530 uint TypeF::hash(void) const {
1531   return *(uint*)(&_f);
1532 }
1533 
1534 //------------------------------is_finite--------------------------------------
1535 // Has a finite value
1536 bool TypeF::is_finite() const {
1537   return g_isfinite(getf()) != 0;
1538 }
1539 
1540 //------------------------------is_nan-----------------------------------------
1541 // Is not a number (NaN)
1542 bool TypeF::is_nan()    const {
1543   return g_isnan(getf()) != 0;
1544 }
1545 
1546 //------------------------------dump2------------------------------------------
1547 // Dump float constant Type
1548 #ifndef PRODUCT
1549 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1550   Type::dump2(d,depth, st);
1551   st->print("%f", _f);
1552 }
1553 #endif
1554 
1555 //------------------------------singleton--------------------------------------
1556 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1557 // constants (Ldi nodes).  Singletons are integer, float or double constants
1558 // or a single symbol.
1559 bool TypeF::singleton(void) const {
1560   return true;                  // Always a singleton
1561 }
1562 
1563 bool TypeF::empty(void) const {
1564   return false;                 // always exactly a singleton
1565 }
1566 
1567 //=============================================================================
1568 // Convenience common pre-built types.
1569 const TypeH* TypeH::MAX;        // Half float max
1570 const TypeH* TypeH::MIN;        // Half float min
1571 const TypeH* TypeH::ZERO;       // Half float zero
1572 const TypeH* TypeH::ONE;        // Half float one
1573 const TypeH* TypeH::POS_INF;    // Half float positive infinity
1574 const TypeH* TypeH::NEG_INF;    // Half float negative infinity
1575 
1576 //------------------------------make-------------------------------------------
1577 // Create a halffloat constant
1578 const TypeH* TypeH::make(short f) {
1579   return (TypeH*)(new TypeH(f))->hashcons();
1580 }
1581 
1582 const TypeH* TypeH::make(float f) {
1583   assert(StubRoutines::f2hf_adr() != nullptr, "");
1584   short hf = StubRoutines::f2hf(f);
1585   return (TypeH*)(new TypeH(hf))->hashcons();
1586 }
1587 
1588 //------------------------------xmeet-------------------------------------------
1589 // Compute the MEET of two types.  It returns a new Type object.
1590 const Type* TypeH::xmeet(const Type* t) const {
1591   // Perform a fast test for common case; meeting the same types together.
1592   if (this == t) return this;  // Meeting same type-rep?
1593 
1594   // Current "this->_base" is FloatCon
1595   switch (t->base()) {          // Switch on original type
1596   case AnyPtr:                  // Mixing with oops happens when javac
1597   case RawPtr:                  // reuses local variables
1598   case OopPtr:
1599   case InstPtr:
1600   case AryPtr:
1601   case MetadataPtr:
1602   case KlassPtr:
1603   case InstKlassPtr:
1604   case AryKlassPtr:
1605   case NarrowOop:
1606   case NarrowKlass:
1607   case Int:
1608   case Long:
1609   case FloatTop:
1610   case FloatCon:
1611   case FloatBot:
1612   case DoubleTop:
1613   case DoubleCon:
1614   case DoubleBot:
1615   case Bottom:                  // Ye Olde Default
1616     return Type::BOTTOM;
1617 
1618   case HalfFloatBot:
1619     return t;
1620 
1621   default:                      // All else is a mistake
1622     typerr(t);
1623 
1624   case HalfFloatCon:            // Half float-constant vs Half float-constant?
1625     if (_f != t->geth()) {      // unequal constants?
1626                                 // must compare bitwise as positive zero, negative zero and NaN have
1627                                 // all the same representation in C++
1628       return HALF_FLOAT;        // Return generic float
1629     }                           // Equal constants
1630   case Top:
1631   case HalfFloatTop:
1632     break;                      // Return the Half float constant
1633   }
1634   return this;                  // Return the Half float constant
1635 }
1636 
1637 //------------------------------xdual------------------------------------------
1638 // Dual: symmetric
1639 const Type* TypeH::xdual() const {
1640   return this;
1641 }
1642 
1643 //------------------------------eq---------------------------------------------
1644 // Structural equality check for Type representations
1645 bool TypeH::eq(const Type* t) const {
1646   // Bitwise comparison to distinguish between +/-0. These values must be treated
1647   // as different to be consistent with C1 and the interpreter.
1648   return (_f == t->geth());
1649 }
1650 
1651 //------------------------------hash-------------------------------------------
1652 // Type-specific hashing function.
1653 uint TypeH::hash(void) const {
1654   return *(jshort*)(&_f);
1655 }
1656 
1657 //------------------------------is_finite--------------------------------------
1658 // Has a finite value
1659 bool TypeH::is_finite() const {
1660   assert(StubRoutines::hf2f_adr() != nullptr, "");
1661   float f = StubRoutines::hf2f(geth());
1662   return g_isfinite(f) != 0;
1663 }
1664 
1665 float TypeH::getf() const {
1666   assert(StubRoutines::hf2f_adr() != nullptr, "");
1667   return StubRoutines::hf2f(geth());
1668 }
1669 
1670 //------------------------------is_nan-----------------------------------------
1671 // Is not a number (NaN)
1672 bool TypeH::is_nan() const {
1673   assert(StubRoutines::hf2f_adr() != nullptr, "");
1674   float f = StubRoutines::hf2f(geth());
1675   return g_isnan(f) != 0;
1676 }
1677 
1678 //------------------------------dump2------------------------------------------
1679 // Dump float constant Type
1680 #ifndef PRODUCT
1681 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1682   Type::dump2(d,depth, st);
1683   st->print("%f", getf());
1684 }
1685 #endif
1686 
1687 //------------------------------singleton--------------------------------------
1688 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1689 // constants (Ldi nodes).  Singletons are integer, half float, float or double constants
1690 // or a single symbol.
1691 bool TypeH::singleton(void) const {
1692   return true;                  // Always a singleton
1693 }
1694 
1695 bool TypeH::empty(void) const {
1696   return false;                 // always exactly a singleton
1697 }
1698 
1699 //=============================================================================
1700 // Convenience common pre-built types.
1701 const TypeD *TypeD::MAX;        // Floating point max
1702 const TypeD *TypeD::MIN;        // Floating point min
1703 const TypeD *TypeD::ZERO;       // Floating point zero
1704 const TypeD *TypeD::ONE;        // Floating point one
1705 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1706 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1707 
1708 //------------------------------make-------------------------------------------
1709 const TypeD *TypeD::make(double d) {
1710   return (TypeD*)(new TypeD(d))->hashcons();
1711 }
1712 
1713 //------------------------------meet-------------------------------------------
1714 // Compute the MEET of two types.  It returns a new Type object.
1715 const Type *TypeD::xmeet( const Type *t ) const {
1716   // Perform a fast test for common case; meeting the same types together.
1717   if( this == t ) return this;  // Meeting same type-rep?
1718 
1719   // Current "this->_base" is DoubleCon
1720   switch (t->base()) {          // Switch on original type
1721   case AnyPtr:                  // Mixing with oops happens when javac
1722   case RawPtr:                  // reuses local variables
1723   case OopPtr:
1724   case InstPtr:
1725   case AryPtr:
1726   case MetadataPtr:
1727   case KlassPtr:
1728   case InstKlassPtr:
1729   case AryKlassPtr:
1730   case NarrowOop:
1731   case NarrowKlass:
1732   case Int:
1733   case Long:
1734   case HalfFloatTop:
1735   case HalfFloatCon:
1736   case HalfFloatBot:
1737   case FloatTop:
1738   case FloatCon:
1739   case FloatBot:
1740   case Bottom:                  // Ye Olde Default
1741     return Type::BOTTOM;
1742 
1743   case DoubleBot:
1744     return t;
1745 
1746   default:                      // All else is a mistake
1747     typerr(t);
1748 
1749   case DoubleCon:               // Double-constant vs Double-constant?
1750     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1751       return DOUBLE;            // Return generic double
1752   case Top:
1753   case DoubleTop:
1754     break;
1755   }
1756   return this;                  // Return the double constant
1757 }
1758 
1759 //------------------------------xdual------------------------------------------
1760 // Dual: symmetric
1761 const Type *TypeD::xdual() const {
1762   return this;
1763 }
1764 
1765 //------------------------------eq---------------------------------------------
1766 // Structural equality check for Type representations
1767 bool TypeD::eq(const Type *t) const {
1768   // Bitwise comparison to distinguish between +/-0. These values must be treated
1769   // as different to be consistent with C1 and the interpreter.
1770   return (jlong_cast(_d) == jlong_cast(t->getd()));
1771 }
1772 
1773 //------------------------------hash-------------------------------------------
1774 // Type-specific hashing function.
1775 uint TypeD::hash(void) const {
1776   return *(uint*)(&_d);
1777 }
1778 
1779 //------------------------------is_finite--------------------------------------
1780 // Has a finite value
1781 bool TypeD::is_finite() const {
1782   return g_isfinite(getd()) != 0;
1783 }
1784 
1785 //------------------------------is_nan-----------------------------------------
1786 // Is not a number (NaN)
1787 bool TypeD::is_nan()    const {
1788   return g_isnan(getd()) != 0;
1789 }
1790 
1791 //------------------------------dump2------------------------------------------
1792 // Dump double constant Type
1793 #ifndef PRODUCT
1794 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1795   Type::dump2(d,depth,st);
1796   st->print("%f", _d);
1797 }
1798 #endif
1799 
1800 //------------------------------singleton--------------------------------------
1801 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1802 // constants (Ldi nodes).  Singletons are integer, float or double constants
1803 // or a single symbol.
1804 bool TypeD::singleton(void) const {
1805   return true;                  // Always a singleton
1806 }
1807 
1808 bool TypeD::empty(void) const {
1809   return false;                 // always exactly a singleton
1810 }
1811 
1812 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1813   if (bt == T_INT) {
1814     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1815   }
1816   assert(bt == T_LONG, "basic type not an int or long");
1817   return TypeLong::make(lo, hi, w);
1818 }
1819 
1820 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1821   return make(con, con, WidenMin, bt);
1822 }
1823 
1824 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1825   if (bt == T_INT) {
1826     return is_int()->get_con();
1827   }
1828   assert(bt == T_LONG, "basic type not an int or long");
1829   return is_long()->get_con();
1830 }
1831 
1832 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1833   if (bt == T_INT) {
1834     return TypeInt::INT;
1835   }
1836   assert(bt == T_LONG, "basic type not an int or long");
1837   return TypeLong::LONG;
1838 }
1839 
1840 const TypeInteger* TypeInteger::zero(BasicType bt) {
1841   if (bt == T_INT) {
1842     return TypeInt::ZERO;
1843   }
1844   assert(bt == T_LONG, "basic type not an int or long");
1845   return TypeLong::ZERO;
1846 }
1847 
1848 const TypeInteger* TypeInteger::one(BasicType bt) {
1849   if (bt == T_INT) {
1850     return TypeInt::ONE;
1851   }
1852   assert(bt == T_LONG, "basic type not an int or long");
1853   return TypeLong::ONE;
1854 }
1855 
1856 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1857   if (bt == T_INT) {
1858     return TypeInt::MINUS_1;
1859   }
1860   assert(bt == T_LONG, "basic type not an int or long");
1861   return TypeLong::MINUS_1;
1862 }
1863 
1864 //=============================================================================
1865 // Convenience common pre-built types.
1866 const TypeInt* TypeInt::MAX;    // INT_MAX
1867 const TypeInt* TypeInt::MIN;    // INT_MIN
1868 const TypeInt* TypeInt::MINUS_1;// -1
1869 const TypeInt* TypeInt::ZERO;   // 0
1870 const TypeInt* TypeInt::ONE;    // 1
1871 const TypeInt* TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1872 const TypeInt* TypeInt::CC;     // -1,0 or 1, condition codes
1873 const TypeInt* TypeInt::CC_LT;  // [-1]  == MINUS_1
1874 const TypeInt* TypeInt::CC_GT;  // [1]   == ONE
1875 const TypeInt* TypeInt::CC_EQ;  // [0]   == ZERO
1876 const TypeInt* TypeInt::CC_NE;
1877 const TypeInt* TypeInt::CC_LE;  // [-1,0]
1878 const TypeInt* TypeInt::CC_GE;  // [0,1] == BOOL (!)
1879 const TypeInt* TypeInt::BYTE;   // Bytes, -128 to 127
1880 const TypeInt* TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1881 const TypeInt* TypeInt::CHAR;   // Java chars, 0-65535
1882 const TypeInt* TypeInt::SHORT;  // Java shorts, -32768-32767
1883 const TypeInt* TypeInt::NON_ZERO;
1884 const TypeInt* TypeInt::POS;    // Positive 32-bit integers or zero
1885 const TypeInt* TypeInt::POS1;   // Positive 32-bit integers
1886 const TypeInt* TypeInt::INT;    // 32-bit integers
1887 const TypeInt* TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1888 const TypeInt* TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1889 
1890 TypeInt::TypeInt(const TypeIntPrototype<jint, juint>& t, int widen, bool dual)
1891   : TypeInteger(Int, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1892     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1893   DEBUG_ONLY(t.verify_constraints());
1894 }
1895 
1896 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) {
1897   auto canonicalized_t = t.canonicalize_constraints();
1898   if (canonicalized_t.empty()) {
1899     return dual ? Type::BOTTOM : Type::TOP;
1900   }
1901   return (new TypeInt(canonicalized_t._data, widen, dual))->hashcons()->is_int();
1902 }
1903 
1904 const TypeInt* TypeInt::make(jint con) {
1905   juint ucon = con;
1906   return (new TypeInt(TypeIntPrototype<jint, juint>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1907                       WidenMin, false))->hashcons()->is_int();
1908 }
1909 
1910 const TypeInt* TypeInt::make(jint lo, jint hi, int widen) {
1911   assert(lo <= hi, "must be legal bounds");
1912   return make_or_top(TypeIntPrototype<jint, juint>{{lo, hi}, {0, max_juint}, {0, 0}}, widen)->is_int();
1913 }
1914 
1915 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen) {
1916   return make_or_top(t, widen, false);
1917 }
1918 
1919 bool TypeInt::contains(jint i) const {
1920   assert(!_is_dual, "dual types should only be used for join calculation");
1921   juint u = i;
1922   return i >= _lo && i <= _hi &&
1923          u >= _ulo && u <= _uhi &&
1924          _bits.is_satisfied_by(u);
1925 }
1926 
1927 bool TypeInt::contains(const TypeInt* t) const {
1928   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1929   return TypeIntHelper::int_type_is_subset(this, t);
1930 }
1931 
1932 #ifdef ASSERT
1933 bool TypeInt::strictly_contains(const TypeInt* t) const {
1934   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1935   return TypeIntHelper::int_type_is_subset(this, t) && !TypeIntHelper::int_type_is_equal(this, t);
1936 }
1937 #endif // ASSERT
1938 
1939 const Type* TypeInt::xmeet(const Type* t) const {
1940   return TypeIntHelper::int_type_xmeet(this, t);
1941 }
1942 
1943 const Type* TypeInt::xdual() const {
1944   return new TypeInt(TypeIntPrototype<jint, juint>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1945                      _widen, !_is_dual);
1946 }
1947 
1948 const Type* TypeInt::widen(const Type* old, const Type* limit) const {
1949   assert(!_is_dual, "dual types should only be used for join calculation");
1950   return TypeIntHelper::int_type_widen(this, old->isa_int(), limit->isa_int());
1951 }
1952 
1953 const Type* TypeInt::narrow(const Type* old) const {
1954   assert(!_is_dual, "dual types should only be used for join calculation");
1955   if (old == nullptr) {
1956     return this;
1957   }
1958 
1959   return TypeIntHelper::int_type_narrow(this, old->isa_int());
1960 }
1961 
1962 //-----------------------------filter------------------------------------------
1963 const Type* TypeInt::filter_helper(const Type* kills, bool include_speculative) const {
1964   assert(!_is_dual, "dual types should only be used for join calculation");
1965   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1966   if (ft == nullptr) {
1967     return Type::TOP;           // Canonical empty value
1968   }
1969   assert(!ft->_is_dual, "dual types should only be used for join calculation");
1970   if (ft->_widen < this->_widen) {
1971     // Do not allow the value of kill->_widen to affect the outcome.
1972     // The widen bits must be allowed to run freely through the graph.
1973     return (new TypeInt(TypeIntPrototype<jint, juint>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1974                         this->_widen, false))->hashcons();
1975   }
1976   return ft;
1977 }
1978 
1979 //------------------------------eq---------------------------------------------
1980 // Structural equality check for Type representations
1981 bool TypeInt::eq(const Type* t) const {
1982   const TypeInt* r = t->is_int();
1983   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
1984 }
1985 
1986 //------------------------------hash-------------------------------------------
1987 // Type-specific hashing function.
1988 uint TypeInt::hash(void) const {
1989   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
1990          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Int;
1991 }
1992 
1993 //------------------------------is_finite--------------------------------------
1994 // Has a finite value
1995 bool TypeInt::is_finite() const {
1996   return true;
1997 }
1998 
1999 //------------------------------singleton--------------------------------------
2000 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2001 // constants.
2002 bool TypeInt::singleton(void) const {
2003   return _lo == _hi;
2004 }
2005 
2006 bool TypeInt::empty(void) const {
2007   return false;
2008 }
2009 
2010 //=============================================================================
2011 // Convenience common pre-built types.
2012 const TypeLong* TypeLong::MAX;
2013 const TypeLong* TypeLong::MIN;
2014 const TypeLong* TypeLong::MINUS_1;// -1
2015 const TypeLong* TypeLong::ZERO; // 0
2016 const TypeLong* TypeLong::ONE;  // 1
2017 const TypeLong* TypeLong::NON_ZERO;
2018 const TypeLong* TypeLong::POS;  // >=0
2019 const TypeLong* TypeLong::NEG;
2020 const TypeLong* TypeLong::LONG; // 64-bit integers
2021 const TypeLong* TypeLong::INT;  // 32-bit subrange
2022 const TypeLong* TypeLong::UINT; // 32-bit unsigned subrange
2023 const TypeLong* TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
2024 
2025 TypeLong::TypeLong(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual)
2026   : TypeInteger(Long, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
2027     _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
2028   DEBUG_ONLY(t.verify_constraints());
2029 }
2030 
2031 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) {
2032   auto canonicalized_t = t.canonicalize_constraints();
2033   if (canonicalized_t.empty()) {
2034     return dual ? Type::BOTTOM : Type::TOP;
2035   }
2036   return (new TypeLong(canonicalized_t._data, widen, dual))->hashcons()->is_long();
2037 }
2038 
2039 const TypeLong* TypeLong::make(jlong con) {
2040   julong ucon = con;
2041   return (new TypeLong(TypeIntPrototype<jlong, julong>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
2042                        WidenMin, false))->hashcons()->is_long();
2043 }
2044 
2045 const TypeLong* TypeLong::make(jlong lo, jlong hi, int widen) {
2046   assert(lo <= hi, "must be legal bounds");
2047   return make_or_top(TypeIntPrototype<jlong, julong>{{lo, hi}, {0, max_julong}, {0, 0}}, widen)->is_long();
2048 }
2049 
2050 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen) {
2051   return make_or_top(t, widen, false);
2052 }
2053 
2054 bool TypeLong::contains(jlong i) const {
2055   assert(!_is_dual, "dual types should only be used for join calculation");
2056   julong u = i;
2057   return i >= _lo && i <= _hi &&
2058          u >= _ulo && u <= _uhi &&
2059          _bits.is_satisfied_by(u);
2060 }
2061 
2062 bool TypeLong::contains(const TypeLong* t) const {
2063   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
2064   return TypeIntHelper::int_type_is_subset(this, t);
2065 }
2066 
2067 #ifdef ASSERT
2068 bool TypeLong::strictly_contains(const TypeLong* t) const {
2069   assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
2070   return TypeIntHelper::int_type_is_subset(this, t) && !TypeIntHelper::int_type_is_equal(this, t);
2071 }
2072 #endif // ASSERT
2073 
2074 const Type* TypeLong::xmeet(const Type* t) const {
2075   return TypeIntHelper::int_type_xmeet(this, t);
2076 }
2077 
2078 const Type* TypeLong::xdual() const {
2079   return new TypeLong(TypeIntPrototype<jlong, julong>{{_lo, _hi}, {_ulo, _uhi}, _bits},
2080                       _widen, !_is_dual);
2081 }
2082 
2083 const Type* TypeLong::widen(const Type* old, const Type* limit) const {
2084   assert(!_is_dual, "dual types should only be used for join calculation");
2085   return TypeIntHelper::int_type_widen(this, old->isa_long(), limit->isa_long());
2086 }
2087 
2088 const Type* TypeLong::narrow(const Type* old) const {
2089   assert(!_is_dual, "dual types should only be used for join calculation");
2090   if (old == nullptr) {
2091     return this;
2092   }
2093 
2094   return TypeIntHelper::int_type_narrow(this, old->isa_long());
2095 }
2096 
2097 //-----------------------------filter------------------------------------------
2098 const Type* TypeLong::filter_helper(const Type* kills, bool include_speculative) const {
2099   assert(!_is_dual, "dual types should only be used for join calculation");
2100   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
2101   if (ft == nullptr) {
2102     return Type::TOP;           // Canonical empty value
2103   }
2104   assert(!ft->_is_dual, "dual types should only be used for join calculation");
2105   if (ft->_widen < this->_widen) {
2106     // Do not allow the value of kill->_widen to affect the outcome.
2107     // The widen bits must be allowed to run freely through the graph.
2108     return (new TypeLong(TypeIntPrototype<jlong, julong>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
2109                          this->_widen, false))->hashcons();
2110   }
2111   return ft;
2112 }
2113 
2114 //------------------------------eq---------------------------------------------
2115 // Structural equality check for Type representations
2116 bool TypeLong::eq(const Type* t) const {
2117   const TypeLong* r = t->is_long();
2118   return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
2119 }
2120 
2121 //------------------------------hash-------------------------------------------
2122 // Type-specific hashing function.
2123 uint TypeLong::hash(void) const {
2124   return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
2125          (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Long;
2126 }
2127 
2128 //------------------------------is_finite--------------------------------------
2129 // Has a finite value
2130 bool TypeLong::is_finite() const {
2131   return true;
2132 }
2133 
2134 //------------------------------singleton--------------------------------------
2135 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2136 // constants
2137 bool TypeLong::singleton(void) const {
2138   return _lo == _hi;
2139 }
2140 
2141 bool TypeLong::empty(void) const {
2142   return false;
2143 }
2144 
2145 //------------------------------dump2------------------------------------------
2146 #ifndef PRODUCT
2147 void TypeInt::dump2(Dict& d, uint depth, outputStream* st) const {
2148   TypeIntHelper::int_type_dump(this, st, false);
2149 }
2150 
2151 void TypeInt::dump_verbose() const {
2152   TypeIntHelper::int_type_dump(this, tty, true);
2153 }
2154 
2155 void TypeLong::dump2(Dict& d, uint depth, outputStream* st) const {
2156   TypeIntHelper::int_type_dump(this, st, false);
2157 }
2158 
2159 void TypeLong::dump_verbose() const {
2160   TypeIntHelper::int_type_dump(this, tty, true);
2161 }
2162 #endif
2163 
2164 //=============================================================================
2165 // Convenience common pre-built types.
2166 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
2167 const TypeTuple *TypeTuple::IFFALSE;
2168 const TypeTuple *TypeTuple::IFTRUE;
2169 const TypeTuple *TypeTuple::IFNEITHER;
2170 const TypeTuple *TypeTuple::LOOPBODY;
2171 const TypeTuple *TypeTuple::MEMBAR;
2172 const TypeTuple *TypeTuple::STORECONDITIONAL;
2173 const TypeTuple *TypeTuple::START_I2C;
2174 const TypeTuple *TypeTuple::INT_PAIR;
2175 const TypeTuple *TypeTuple::LONG_PAIR;
2176 const TypeTuple *TypeTuple::INT_CC_PAIR;
2177 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2178 
2179 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) {
2180   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) {
2181     ciField* field = vk->declared_nonstatic_field_at(i);
2182     if (field->is_flat()) {
2183       collect_inline_fields(field->type()->as_inline_klass(), field_array, pos);
2184       if (!field->is_null_free()) {
2185         // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder
2186         // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized.
2187         field_array[pos++] = Type::get_const_basic_type(T_INT);
2188       }
2189     } else {
2190       BasicType bt = field->type()->basic_type();
2191       const Type* ft = Type::get_const_type(field->type());
2192       field_array[pos++] = ft;
2193       if (type2size[bt] == 2) {
2194         field_array[pos++] = Type::HALF;
2195       }
2196     }
2197   }
2198 }
2199 
2200 //------------------------------make-------------------------------------------
2201 // Make a TypeTuple from the range of a method signature
2202 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) {
2203   ciType* return_type = sig->return_type();
2204   uint arg_cnt = return_type->size();
2205   if (ret_vt_fields) {
2206     arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1;
2207     // InlineTypeNode::NullMarker field used for null checking
2208     arg_cnt++;
2209   }
2210   const Type **field_array = fields(arg_cnt);
2211   switch (return_type->basic_type()) {
2212   case T_LONG:
2213     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2214     field_array[TypeFunc::Parms+1] = Type::HALF;
2215     break;
2216   case T_DOUBLE:
2217     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2218     field_array[TypeFunc::Parms+1] = Type::HALF;
2219     break;
2220   case T_OBJECT:
2221     if (return_type->is_inlinetype() && ret_vt_fields) {
2222       uint pos = TypeFunc::Parms;
2223       field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields
2224       collect_inline_fields(return_type->as_inline_klass(), field_array, pos);
2225       // InlineTypeNode::NullMarker field used for null checking
2226       field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2227       assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds");
2228       break;
2229     } else {
2230       field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM);
2231     }
2232     break;
2233   case T_ARRAY:
2234   case T_BOOLEAN:
2235   case T_CHAR:
2236   case T_FLOAT:
2237   case T_BYTE:
2238   case T_SHORT:
2239   case T_INT:
2240     field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2241     break;
2242   case T_VOID:
2243     break;
2244   default:
2245     ShouldNotReachHere();
2246   }
2247   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2248 }
2249 
2250 // Make a TypeTuple from the domain of a method signature
2251 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) {
2252   ciSignature* sig = method->signature();
2253   uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1);
2254   if (vt_fields_as_args) {
2255     arg_cnt = 0;
2256     assert(method->get_sig_cc() != nullptr, "Should have scalarized signature");
2257     for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) {
2258       arg_cnt += type2size[(*sig_cc)._bt];
2259     }
2260   }
2261 
2262   uint pos = TypeFunc::Parms;
2263   const Type** field_array = fields(arg_cnt);
2264   if (!method->is_static()) {
2265     ciInstanceKlass* recv = method->holder();
2266     if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) {
2267       collect_inline_fields(recv->as_inline_klass(), field_array, pos);
2268     } else {
2269       field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2270     }
2271   }
2272 
2273   int i = 0;
2274   while (pos < TypeFunc::Parms + arg_cnt) {
2275     ciType* type = sig->type_at(i);
2276     BasicType bt = type->basic_type();
2277 
2278     switch (bt) {
2279     case T_LONG:
2280       field_array[pos++] = TypeLong::LONG;
2281       field_array[pos++] = Type::HALF;
2282       break;
2283     case T_DOUBLE:
2284       field_array[pos++] = Type::DOUBLE;
2285       field_array[pos++] = Type::HALF;
2286       break;
2287     case T_OBJECT:
2288       if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) {
2289         // InlineTypeNode::NullMarker field used for null checking
2290         field_array[pos++] = get_const_basic_type(T_BOOLEAN);
2291         collect_inline_fields(type->as_inline_klass(), field_array, pos);
2292       } else {
2293         field_array[pos++] = get_const_type(type, interface_handling);
2294       }
2295       break;
2296     case T_ARRAY:
2297     case T_FLOAT:
2298     case T_INT:
2299       field_array[pos++] = get_const_type(type, interface_handling);
2300       break;
2301     case T_BOOLEAN:
2302     case T_CHAR:
2303     case T_BYTE:
2304     case T_SHORT:
2305       field_array[pos++] = TypeInt::INT;
2306       break;
2307     default:
2308       ShouldNotReachHere();
2309     }
2310     i++;
2311   }
2312   assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments");
2313 
2314   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2315 }
2316 
2317 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2318   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2319 }
2320 
2321 //------------------------------fields-----------------------------------------
2322 // Subroutine call type with space allocated for argument types
2323 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2324 const Type **TypeTuple::fields( uint arg_cnt ) {
2325   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2326   flds[TypeFunc::Control  ] = Type::CONTROL;
2327   flds[TypeFunc::I_O      ] = Type::ABIO;
2328   flds[TypeFunc::Memory   ] = Type::MEMORY;
2329   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2330   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2331 
2332   return flds;
2333 }
2334 
2335 //------------------------------meet-------------------------------------------
2336 // Compute the MEET of two types.  It returns a new Type object.
2337 const Type *TypeTuple::xmeet( const Type *t ) const {
2338   // Perform a fast test for common case; meeting the same types together.
2339   if( this == t ) return this;  // Meeting same type-rep?
2340 
2341   // Current "this->_base" is Tuple
2342   switch (t->base()) {          // switch on original type
2343 
2344   case Bottom:                  // Ye Olde Default
2345     return t;
2346 
2347   default:                      // All else is a mistake
2348     typerr(t);
2349 
2350   case Tuple: {                 // Meeting 2 signatures?
2351     const TypeTuple *x = t->is_tuple();
2352     assert( _cnt == x->_cnt, "" );
2353     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2354     for( uint i=0; i<_cnt; i++ )
2355       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2356     return TypeTuple::make(_cnt,fields);
2357   }
2358   case Top:
2359     break;
2360   }
2361   return this;                  // Return the double constant
2362 }
2363 
2364 //------------------------------xdual------------------------------------------
2365 // Dual: compute field-by-field dual
2366 const Type *TypeTuple::xdual() const {
2367   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2368   for( uint i=0; i<_cnt; i++ )
2369     fields[i] = _fields[i]->dual();
2370   return new TypeTuple(_cnt,fields);
2371 }
2372 
2373 //------------------------------eq---------------------------------------------
2374 // Structural equality check for Type representations
2375 bool TypeTuple::eq( const Type *t ) const {
2376   const TypeTuple *s = (const TypeTuple *)t;
2377   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2378   for (uint i = 0; i < _cnt; i++)
2379     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2380       return false;             // Missed
2381   return true;
2382 }
2383 
2384 //------------------------------hash-------------------------------------------
2385 // Type-specific hashing function.
2386 uint TypeTuple::hash(void) const {
2387   uintptr_t sum = _cnt;
2388   for( uint i=0; i<_cnt; i++ )
2389     sum += (uintptr_t)_fields[i];     // Hash on pointers directly
2390   return (uint)sum;
2391 }
2392 
2393 //------------------------------dump2------------------------------------------
2394 // Dump signature Type
2395 #ifndef PRODUCT
2396 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2397   st->print("{");
2398   if( !depth || d[this] ) {     // Check for recursive print
2399     st->print("...}");
2400     return;
2401   }
2402   d.Insert((void*)this, (void*)this);   // Stop recursion
2403   if( _cnt ) {
2404     uint i;
2405     for( i=0; i<_cnt-1; i++ ) {
2406       st->print("%d:", i);
2407       _fields[i]->dump2(d, depth-1, st);
2408       st->print(", ");
2409     }
2410     st->print("%d:", i);
2411     _fields[i]->dump2(d, depth-1, st);
2412   }
2413   st->print("}");
2414 }
2415 #endif
2416 
2417 //------------------------------singleton--------------------------------------
2418 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2419 // constants (Ldi nodes).  Singletons are integer, float or double constants
2420 // or a single symbol.
2421 bool TypeTuple::singleton(void) const {
2422   return false;                 // Never a singleton
2423 }
2424 
2425 bool TypeTuple::empty(void) const {
2426   for( uint i=0; i<_cnt; i++ ) {
2427     if (_fields[i]->empty())  return true;
2428   }
2429   return false;
2430 }
2431 
2432 //=============================================================================
2433 // Convenience common pre-built types.
2434 
2435 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2436   // Certain normalizations keep us sane when comparing types.
2437   // We do not want arrayOop variables to differ only by the wideness
2438   // of their index types.  Pick minimum wideness, since that is the
2439   // forced wideness of small ranges anyway.
2440   if (size->_widen != Type::WidenMin)
2441     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2442   else
2443     return size;
2444 }
2445 
2446 //------------------------------make-------------------------------------------
2447 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable,
2448                              bool flat, bool not_flat, bool not_null_free, bool atomic) {
2449   if (UseCompressedOops && elem->isa_oopptr()) {
2450     elem = elem->make_narrowoop();
2451   }
2452   size = normalize_array_size(size);
2453   return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons();
2454 }
2455 
2456 //------------------------------meet-------------------------------------------
2457 // Compute the MEET of two types.  It returns a new Type object.
2458 const Type *TypeAry::xmeet( const Type *t ) const {
2459   // Perform a fast test for common case; meeting the same types together.
2460   if( this == t ) return this;  // Meeting same type-rep?
2461 
2462   // Current "this->_base" is Ary
2463   switch (t->base()) {          // switch on original type
2464 
2465   case Bottom:                  // Ye Olde Default
2466     return t;
2467 
2468   default:                      // All else is a mistake
2469     typerr(t);
2470 
2471   case Array: {                 // Meeting 2 arrays?
2472     const TypeAry* a = t->is_ary();
2473     const Type* size = _size->xmeet(a->_size);
2474     const TypeInt* isize = size->isa_int();
2475     if (isize == nullptr) {
2476       assert(size == Type::TOP || size == Type::BOTTOM, "");
2477       return size;
2478     }
2479     return TypeAry::make(_elem->meet_speculative(a->_elem),
2480                          isize, _stable && a->_stable,
2481                          _flat && a->_flat,
2482                          _not_flat && a->_not_flat,
2483                          _not_null_free && a->_not_null_free,
2484                          _atomic && a->_atomic);
2485   }
2486   case Top:
2487     break;
2488   }
2489   return this;                  // Return the double constant
2490 }
2491 
2492 //------------------------------xdual------------------------------------------
2493 // Dual: compute field-by-field dual
2494 const Type *TypeAry::xdual() const {
2495   const TypeInt* size_dual = _size->dual()->is_int();
2496   size_dual = normalize_array_size(size_dual);
2497   return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic);
2498 }
2499 
2500 //------------------------------eq---------------------------------------------
2501 // Structural equality check for Type representations
2502 bool TypeAry::eq( const Type *t ) const {
2503   const TypeAry *a = (const TypeAry*)t;
2504   return _elem == a->_elem &&
2505     _stable == a->_stable &&
2506     _size == a->_size &&
2507     _flat == a->_flat &&
2508     _not_flat == a->_not_flat &&
2509     _not_null_free == a->_not_null_free &&
2510     _atomic == a->_atomic;
2511 
2512 }
2513 
2514 //------------------------------hash-------------------------------------------
2515 // Type-specific hashing function.
2516 uint TypeAry::hash(void) const {
2517   return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) +
2518       (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0);
2519 }
2520 
2521 /**
2522  * Return same type without a speculative part in the element
2523  */
2524 const TypeAry* TypeAry::remove_speculative() const {
2525   return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2526 }
2527 
2528 /**
2529  * Return same type with cleaned up speculative part of element
2530  */
2531 const Type* TypeAry::cleanup_speculative() const {
2532   return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic);
2533 }
2534 
2535 /**
2536  * Return same type but with a different inline depth (used for speculation)
2537  *
2538  * @param depth  depth to meet with
2539  */
2540 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2541   if (!UseInlineDepthForSpeculativeTypes) {
2542     return this;
2543   }
2544   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2545 }
2546 
2547 //------------------------------dump2------------------------------------------
2548 #ifndef PRODUCT
2549 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2550   if (_stable)  st->print("stable:");
2551   if (_flat) st->print("flat:");
2552   if (Verbose) {
2553     if (_not_flat) st->print("not flat:");
2554     if (_not_null_free) st->print("not null free:");
2555   }
2556   if (_atomic) st->print("atomic:");
2557   _elem->dump2(d, depth, st);
2558   st->print("[");
2559   _size->dump2(d, depth, st);
2560   st->print("]");
2561 }
2562 #endif
2563 
2564 //------------------------------singleton--------------------------------------
2565 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2566 // constants (Ldi nodes).  Singletons are integer, float or double constants
2567 // or a single symbol.
2568 bool TypeAry::singleton(void) const {
2569   return false;                 // Never a singleton
2570 }
2571 
2572 bool TypeAry::empty(void) const {
2573   return _elem->empty() || _size->empty();
2574 }
2575 
2576 //--------------------------ary_must_be_exact----------------------------------
2577 bool TypeAry::ary_must_be_exact() const {
2578   // This logic looks at the element type of an array, and returns true
2579   // if the element type is either a primitive or a final instance class.
2580   // In such cases, an array built on this ary must have no subclasses.
2581   if (_elem == BOTTOM)      return false;  // general array not exact
2582   if (_elem == TOP   )      return false;  // inverted general array not exact
2583   const TypeOopPtr*  toop = nullptr;
2584   if (UseCompressedOops && _elem->isa_narrowoop()) {
2585     toop = _elem->make_ptr()->isa_oopptr();
2586   } else {
2587     toop = _elem->isa_oopptr();
2588   }
2589   if (!toop)                return true;   // a primitive type, like int
2590   if (!toop->is_loaded())   return false;  // unloaded class
2591   const TypeInstPtr* tinst;
2592   if (_elem->isa_narrowoop())
2593     tinst = _elem->make_ptr()->isa_instptr();
2594   else
2595     tinst = _elem->isa_instptr();
2596   if (tinst) {
2597     if (tinst->instance_klass()->is_final()) {
2598       // Even though MyValue is final, [LMyValue is only exact if the array
2599       // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
2600       // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right?
2601       // If so, we should add '&& !_not_null_free'
2602       if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) {
2603         return false;
2604       }
2605       return true;
2606     }
2607     return false;
2608   }
2609   const TypeAryPtr*  tap;
2610   if (_elem->isa_narrowoop())
2611     tap = _elem->make_ptr()->isa_aryptr();
2612   else
2613     tap = _elem->isa_aryptr();
2614   if (tap)
2615     return tap->ary()->ary_must_be_exact();
2616   return false;
2617 }
2618 
2619 //==============================TypeVect=======================================
2620 // Convenience common pre-built types.
2621 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2622 const TypeVect* TypeVect::VECTS = nullptr; //  32-bit vectors
2623 const TypeVect* TypeVect::VECTD = nullptr; //  64-bit vectors
2624 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2625 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2626 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2627 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2628 
2629 //------------------------------make-------------------------------------------
2630 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2631   if (is_mask) {
2632     return makemask(elem_bt, length);
2633   }
2634   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2635   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2636   int size = length * type2aelembytes(elem_bt);
2637   switch (Matcher::vector_ideal_reg(size)) {
2638   case Op_VecA:
2639     return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2640   case Op_VecS:
2641     return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2642   case Op_RegL:
2643   case Op_VecD:
2644   case Op_RegD:
2645     return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2646   case Op_VecX:
2647     return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2648   case Op_VecY:
2649     return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2650   case Op_VecZ:
2651     return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2652   }
2653  ShouldNotReachHere();
2654   return nullptr;
2655 }
2656 
2657 // Create a vector mask type with the given element basic type and length.
2658 // - Returns "TypeVectMask" (PVectMask) for platforms that support the predicate
2659 //   feature and it is implemented properly in the backend, allowing the mask to
2660 //   be stored in a predicate/mask register.
2661 // - Returns a normal vector type "TypeVectA ~ TypeVectZ" (NVectMask) otherwise,
2662 //   where the vector mask is stored in a vector register.
2663 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2664   if (Matcher::has_predicated_vectors() &&
2665       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2666     return TypeVectMask::make(elem_bt, length);
2667   } else {
2668     return make(elem_bt, length);
2669   }
2670 }
2671 
2672 //------------------------------meet-------------------------------------------
2673 // Compute the MEET of two types. Since each TypeVect is the only instance of
2674 // its species, meeting often returns itself
2675 const Type* TypeVect::xmeet(const Type* t) const {
2676   // Perform a fast test for common case; meeting the same types together.
2677   if (this == t) {
2678     return this;
2679   }
2680 
2681   // Current "this->_base" is Vector
2682   switch (t->base()) {          // switch on original type
2683 
2684   case Bottom:                  // Ye Olde Default
2685     return t;
2686 
2687   default:                      // All else is a mistake
2688     typerr(t);
2689   case VectorMask:
2690   case VectorA:
2691   case VectorS:
2692   case VectorD:
2693   case VectorX:
2694   case VectorY:
2695   case VectorZ: {                // Meeting 2 vectors?
2696     const TypeVect* v = t->is_vect();
2697     assert(base() == v->base(), "");
2698     assert(length() == v->length(), "");
2699     assert(element_basic_type() == v->element_basic_type(), "");
2700     return this;
2701   }
2702   case Top:
2703     break;
2704   }
2705   return this;
2706 }
2707 
2708 //------------------------------xdual------------------------------------------
2709 // Since each TypeVect is the only instance of its species, it is self-dual
2710 const Type* TypeVect::xdual() const {
2711   return this;
2712 }
2713 
2714 //------------------------------eq---------------------------------------------
2715 // Structural equality check for Type representations
2716 bool TypeVect::eq(const Type* t) const {
2717   const TypeVect* v = t->is_vect();
2718   return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2719 }
2720 
2721 //------------------------------hash-------------------------------------------
2722 // Type-specific hashing function.
2723 uint TypeVect::hash(void) const {
2724   return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2725 }
2726 
2727 //------------------------------singleton--------------------------------------
2728 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2729 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2730 // constant value (when vector is created with Replicate code).
2731 bool TypeVect::singleton(void) const {
2732 // There is no Con node for vectors yet.
2733 //  return _elem->singleton();
2734   return false;
2735 }
2736 
2737 bool TypeVect::empty(void) const {
2738   return false;
2739 }
2740 
2741 //------------------------------dump2------------------------------------------
2742 #ifndef PRODUCT
2743 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2744   switch (base()) {
2745   case VectorA:
2746     st->print("vectora"); break;
2747   case VectorS:
2748     st->print("vectors"); break;
2749   case VectorD:
2750     st->print("vectord"); break;
2751   case VectorX:
2752     st->print("vectorx"); break;
2753   case VectorY:
2754     st->print("vectory"); break;
2755   case VectorZ:
2756     st->print("vectorz"); break;
2757   case VectorMask:
2758     st->print("vectormask"); break;
2759   default:
2760     ShouldNotReachHere();
2761   }
2762   st->print("<%c,%u>", type2char(element_basic_type()), length());
2763 }
2764 #endif
2765 
2766 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2767   return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2768 }
2769 
2770 //=============================================================================
2771 // Convenience common pre-built types.
2772 const TypePtr *TypePtr::NULL_PTR;
2773 const TypePtr *TypePtr::NOTNULL;
2774 const TypePtr *TypePtr::BOTTOM;
2775 
2776 //------------------------------meet-------------------------------------------
2777 // Meet over the PTR enum
2778 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2779   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2780   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2781   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2782   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2783   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2784   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2785   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2786 };
2787 
2788 //------------------------------make-------------------------------------------
2789 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2790   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2791 }
2792 
2793 //------------------------------cast_to_ptr_type-------------------------------
2794 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2795   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2796   if( ptr == _ptr ) return this;
2797   return make(_base, ptr, _offset, _speculative, _inline_depth);
2798 }
2799 
2800 //------------------------------get_con----------------------------------------
2801 intptr_t TypePtr::get_con() const {
2802   assert( _ptr == Null, "" );
2803   return offset();
2804 }
2805 
2806 //------------------------------meet-------------------------------------------
2807 // Compute the MEET of two types.  It returns a new Type object.
2808 const Type *TypePtr::xmeet(const Type *t) const {
2809   const Type* res = xmeet_helper(t);
2810   if (res->isa_ptr() == nullptr) {
2811     return res;
2812   }
2813 
2814   const TypePtr* res_ptr = res->is_ptr();
2815   if (res_ptr->speculative() != nullptr) {
2816     // type->speculative() is null means that speculation is no better
2817     // than type, i.e. type->speculative() == type. So there are 2
2818     // ways to represent the fact that we have no useful speculative
2819     // data and we should use a single one to be able to test for
2820     // equality between types. Check whether type->speculative() ==
2821     // type and set speculative to null if it is the case.
2822     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2823       return res_ptr->remove_speculative();
2824     }
2825   }
2826 
2827   return res;
2828 }
2829 
2830 const Type *TypePtr::xmeet_helper(const Type *t) const {
2831   // Perform a fast test for common case; meeting the same types together.
2832   if( this == t ) return this;  // Meeting same type-rep?
2833 
2834   // Current "this->_base" is AnyPtr
2835   switch (t->base()) {          // switch on original type
2836   case Int:                     // Mixing ints & oops happens when javac
2837   case Long:                    // reuses local variables
2838   case HalfFloatTop:
2839   case HalfFloatCon:
2840   case HalfFloatBot:
2841   case FloatTop:
2842   case FloatCon:
2843   case FloatBot:
2844   case DoubleTop:
2845   case DoubleCon:
2846   case DoubleBot:
2847   case NarrowOop:
2848   case NarrowKlass:
2849   case Bottom:                  // Ye Olde Default
2850     return Type::BOTTOM;
2851   case Top:
2852     return this;
2853 
2854   case AnyPtr: {                // Meeting to AnyPtrs
2855     const TypePtr *tp = t->is_ptr();
2856     const TypePtr* speculative = xmeet_speculative(tp);
2857     int depth = meet_inline_depth(tp->inline_depth());
2858     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2859   }
2860   case RawPtr:                  // For these, flip the call around to cut down
2861   case OopPtr:
2862   case InstPtr:                 // on the cases I have to handle.
2863   case AryPtr:
2864   case MetadataPtr:
2865   case KlassPtr:
2866   case InstKlassPtr:
2867   case AryKlassPtr:
2868     return t->xmeet(this);      // Call in reverse direction
2869   default:                      // All else is a mistake
2870     typerr(t);
2871 
2872   }
2873   return this;
2874 }
2875 
2876 //------------------------------meet_offset------------------------------------
2877 Type::Offset TypePtr::meet_offset(int offset) const {
2878   return _offset.meet(Offset(offset));
2879 }
2880 
2881 //------------------------------dual_offset------------------------------------
2882 Type::Offset TypePtr::dual_offset() const {
2883   return _offset.dual();
2884 }
2885 
2886 //------------------------------xdual------------------------------------------
2887 // Dual: compute field-by-field dual
2888 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2889   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2890 };
2891 
2892 const TypePtr::FlatInArray TypePtr::flat_in_array_dual[Uninitialized] = {
2893   /* TopFlat   -> */ MaybeFlat,
2894   /* Flat      -> */ NotFlat,
2895   /* NotFlat   -> */ Flat,
2896   /* MaybeFlat -> */ TopFlat
2897 };
2898 
2899 const char* const TypePtr::flat_in_array_msg[Uninitialized] = {
2900   "TOP flat in array", "flat in array", "not flat in array", "maybe flat in array"
2901 };
2902 
2903 const Type *TypePtr::xdual() const {
2904   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2905 }
2906 
2907 //------------------------------xadd_offset------------------------------------
2908 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2909   return _offset.add(offset);
2910 }
2911 
2912 //------------------------------add_offset-------------------------------------
2913 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2914   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2915 }
2916 
2917 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2918   return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth);
2919 }
2920 
2921 //------------------------------eq---------------------------------------------
2922 // Structural equality check for Type representations
2923 bool TypePtr::eq( const Type *t ) const {
2924   const TypePtr *a = (const TypePtr*)t;
2925   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2926 }
2927 
2928 //------------------------------hash-------------------------------------------
2929 // Type-specific hashing function.
2930 uint TypePtr::hash(void) const {
2931   return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth;
2932 }
2933 
2934 /**
2935  * Return same type without a speculative part
2936  */
2937 const TypePtr* TypePtr::remove_speculative() const {
2938   if (_speculative == nullptr) {
2939     return this;
2940   }
2941   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2942   return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2943 }
2944 
2945 /**
2946  * Return same type but drop speculative part if we know we won't use
2947  * it
2948  */
2949 const Type* TypePtr::cleanup_speculative() const {
2950   if (speculative() == nullptr) {
2951     return this;
2952   }
2953   const Type* no_spec = remove_speculative();
2954   // If this is NULL_PTR then we don't need the speculative type
2955   // (with_inline_depth in case the current type inline depth is
2956   // InlineDepthTop)
2957   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2958     return no_spec;
2959   }
2960   if (above_centerline(speculative()->ptr())) {
2961     return no_spec;
2962   }
2963   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2964   // If the speculative may be null and is an inexact klass then it
2965   // doesn't help
2966   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2967       (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2968     return no_spec;
2969   }
2970   return this;
2971 }
2972 
2973 /**
2974  * dual of the speculative part of the type
2975  */
2976 const TypePtr* TypePtr::dual_speculative() const {
2977   if (_speculative == nullptr) {
2978     return nullptr;
2979   }
2980   return _speculative->dual()->is_ptr();
2981 }
2982 
2983 /**
2984  * meet of the speculative parts of 2 types
2985  *
2986  * @param other  type to meet with
2987  */
2988 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2989   bool this_has_spec = (_speculative != nullptr);
2990   bool other_has_spec = (other->speculative() != nullptr);
2991 
2992   if (!this_has_spec && !other_has_spec) {
2993     return nullptr;
2994   }
2995 
2996   // If we are at a point where control flow meets and one branch has
2997   // a speculative type and the other has not, we meet the speculative
2998   // type of one branch with the actual type of the other. If the
2999   // actual type is exact and the speculative is as well, then the
3000   // result is a speculative type which is exact and we can continue
3001   // speculation further.
3002   const TypePtr* this_spec = _speculative;
3003   const TypePtr* other_spec = other->speculative();
3004 
3005   if (!this_has_spec) {
3006     this_spec = this;
3007   }
3008 
3009   if (!other_has_spec) {
3010     other_spec = other;
3011   }
3012 
3013   return this_spec->meet(other_spec)->is_ptr();
3014 }
3015 
3016 /**
3017  * dual of the inline depth for this type (used for speculation)
3018  */
3019 int TypePtr::dual_inline_depth() const {
3020   return -inline_depth();
3021 }
3022 
3023 /**
3024  * meet of 2 inline depths (used for speculation)
3025  *
3026  * @param depth  depth to meet with
3027  */
3028 int TypePtr::meet_inline_depth(int depth) const {
3029   return MAX2(inline_depth(), depth);
3030 }
3031 
3032 /**
3033  * Are the speculative parts of 2 types equal?
3034  *
3035  * @param other  type to compare this one to
3036  */
3037 bool TypePtr::eq_speculative(const TypePtr* other) const {
3038   if (_speculative == nullptr || other->speculative() == nullptr) {
3039     return _speculative == other->speculative();
3040   }
3041 
3042   if (_speculative->base() != other->speculative()->base()) {
3043     return false;
3044   }
3045 
3046   return _speculative->eq(other->speculative());
3047 }
3048 
3049 /**
3050  * Hash of the speculative part of the type
3051  */
3052 int TypePtr::hash_speculative() const {
3053   if (_speculative == nullptr) {
3054     return 0;
3055   }
3056 
3057   return _speculative->hash();
3058 }
3059 
3060 /**
3061  * add offset to the speculative part of the type
3062  *
3063  * @param offset  offset to add
3064  */
3065 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
3066   if (_speculative == nullptr) {
3067     return nullptr;
3068   }
3069   return _speculative->add_offset(offset)->is_ptr();
3070 }
3071 
3072 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
3073   if (_speculative == nullptr) {
3074     return nullptr;
3075   }
3076   return _speculative->with_offset(offset)->is_ptr();
3077 }
3078 
3079 /**
3080  * return exact klass from the speculative type if there's one
3081  */
3082 ciKlass* TypePtr::speculative_type() const {
3083   if (_speculative != nullptr && _speculative->isa_oopptr()) {
3084     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
3085     if (speculative->klass_is_exact()) {
3086       return speculative->exact_klass();
3087     }
3088   }
3089   return nullptr;
3090 }
3091 
3092 /**
3093  * return true if speculative type may be null
3094  */
3095 bool TypePtr::speculative_maybe_null() const {
3096   if (_speculative != nullptr) {
3097     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3098     return speculative->maybe_null();
3099   }
3100   return true;
3101 }
3102 
3103 bool TypePtr::speculative_always_null() const {
3104   if (_speculative != nullptr) {
3105     const TypePtr* speculative = _speculative->join(this)->is_ptr();
3106     return speculative == TypePtr::NULL_PTR;
3107   }
3108   return false;
3109 }
3110 
3111 /**
3112  * Same as TypePtr::speculative_type() but return the klass only if
3113  * the speculative tells us is not null
3114  */
3115 ciKlass* TypePtr::speculative_type_not_null() const {
3116   if (speculative_maybe_null()) {
3117     return nullptr;
3118   }
3119   return speculative_type();
3120 }
3121 
3122 /**
3123  * Check whether new profiling would improve speculative type
3124  *
3125  * @param   exact_kls    class from profiling
3126  * @param   inline_depth inlining depth of profile point
3127  *
3128  * @return  true if type profile is valuable
3129  */
3130 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3131   // no profiling?
3132   if (exact_kls == nullptr) {
3133     return false;
3134   }
3135   if (speculative() == TypePtr::NULL_PTR) {
3136     return false;
3137   }
3138   // no speculative type or non exact speculative type?
3139   if (speculative_type() == nullptr) {
3140     return true;
3141   }
3142   // If the node already has an exact speculative type keep it,
3143   // unless it was provided by profiling that is at a deeper
3144   // inlining level. Profiling at a higher inlining depth is
3145   // expected to be less accurate.
3146   if (_speculative->inline_depth() == InlineDepthBottom) {
3147     return false;
3148   }
3149   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
3150   return inline_depth < _speculative->inline_depth();
3151 }
3152 
3153 /**
3154  * Check whether new profiling would improve ptr (= tells us it is non
3155  * null)
3156  *
3157  * @param   ptr_kind always null or not null?
3158  *
3159  * @return  true if ptr profile is valuable
3160  */
3161 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
3162   // profiling doesn't tell us anything useful
3163   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
3164     return false;
3165   }
3166   // We already know this is not null
3167   if (!this->maybe_null()) {
3168     return false;
3169   }
3170   // We already know the speculative type cannot be null
3171   if (!speculative_maybe_null()) {
3172     return false;
3173   }
3174   // We already know this is always null
3175   if (this == TypePtr::NULL_PTR) {
3176     return false;
3177   }
3178   // We already know the speculative type is always null
3179   if (speculative_always_null()) {
3180     return false;
3181   }
3182   if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
3183     return false;
3184   }
3185   return true;
3186 }
3187 
3188 TypePtr::FlatInArray TypePtr::compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact) {
3189   if (!instance_klass->can_be_inline_klass(is_exact)) {
3190     // Definitely not a value class and thus never flat in an array.
3191     return NotFlat;
3192   }
3193   if (instance_klass->is_inlinetype() && instance_klass->as_inline_klass()->is_always_flat_in_array()) {
3194     return Flat;
3195   }
3196   // We don't know.
3197   return MaybeFlat;
3198 }
3199 
3200 // Compute flat in array property if we don't know anything about it (i.e. old_flat_in_array == MaybeFlat).
3201 TypePtr::FlatInArray TypePtr::compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
3202   FlatInArray old_flat_in_array) const {
3203   switch (old_flat_in_array) {
3204     case Flat:
3205       assert(can_be_inline_type(), "only value objects can be flat in array");
3206       assert(!instance_klass->is_inlinetype() || instance_klass->as_inline_klass()->is_always_flat_in_array(),
3207              "a value object is only marked flat in array if it's proven to be always flat in array");
3208       break;
3209     case NotFlat:
3210       assert(!instance_klass->maybe_flat_in_array(), "cannot be flat");
3211       break;
3212     case MaybeFlat:
3213       return compute_flat_in_array(instance_klass, is_exact);
3214       break;
3215     default:
3216       break;
3217   }
3218   return old_flat_in_array;
3219 }
3220 
3221 //------------------------------dump2------------------------------------------
3222 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3223   "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
3224 };
3225 
3226 #ifndef PRODUCT
3227 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3228   st->print("ptr:%s", ptr_msg[_ptr]);
3229   dump_offset(st);
3230   dump_inline_depth(st);
3231   dump_speculative(st);
3232 }
3233 
3234 void TypePtr::dump_offset(outputStream* st) const {
3235   _offset.dump2(st);
3236 }
3237 
3238 /**
3239  *dump the speculative part of the type
3240  */
3241 void TypePtr::dump_speculative(outputStream *st) const {
3242   if (_speculative != nullptr) {
3243     st->print(" (speculative=");
3244     _speculative->dump_on(st);
3245     st->print(")");
3246   }
3247 }
3248 
3249 /**
3250  *dump the inline depth of the type
3251  */
3252 void TypePtr::dump_inline_depth(outputStream *st) const {
3253   if (_inline_depth != InlineDepthBottom) {
3254     if (_inline_depth == InlineDepthTop) {
3255       st->print(" (inline_depth=InlineDepthTop)");
3256     } else {
3257       st->print(" (inline_depth=%d)", _inline_depth);
3258     }
3259   }
3260 }
3261 
3262 void TypePtr::dump_flat_in_array(FlatInArray flat_in_array, outputStream* st) {
3263   switch (flat_in_array) {
3264     case MaybeFlat:
3265     case NotFlat:
3266       if (!Verbose) {
3267         break;
3268       }
3269     case TopFlat:
3270     case Flat:
3271       st->print(" (%s)", flat_in_array_msg[flat_in_array]);
3272       break;
3273     default:
3274       ShouldNotReachHere();
3275   }
3276 }
3277 #endif
3278 
3279 //------------------------------singleton--------------------------------------
3280 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3281 // constants
3282 bool TypePtr::singleton(void) const {
3283   // TopPTR, Null, AnyNull, Constant are all singletons
3284   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3285 }
3286 
3287 bool TypePtr::empty(void) const {
3288   return (_offset == Offset::top) || above_centerline(_ptr);
3289 }
3290 
3291 //=============================================================================
3292 // Convenience common pre-built types.
3293 const TypeRawPtr *TypeRawPtr::BOTTOM;
3294 const TypeRawPtr *TypeRawPtr::NOTNULL;
3295 
3296 //------------------------------make-------------------------------------------
3297 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3298   assert( ptr != Constant, "what is the constant?" );
3299   assert( ptr != Null, "Use TypePtr for null" );
3300   return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3301 }
3302 
3303 const TypeRawPtr *TypeRawPtr::make(address bits) {
3304   assert(bits != nullptr, "Use TypePtr for null");
3305   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3306 }
3307 
3308 //------------------------------cast_to_ptr_type-------------------------------
3309 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3310   assert( ptr != Constant, "what is the constant?" );
3311   assert( ptr != Null, "Use TypePtr for null" );
3312   assert( _bits == nullptr, "Why cast a constant address?");
3313   if( ptr == _ptr ) return this;
3314   return make(ptr);
3315 }
3316 
3317 //------------------------------get_con----------------------------------------
3318 intptr_t TypeRawPtr::get_con() const {
3319   assert( _ptr == Null || _ptr == Constant, "" );
3320   return (intptr_t)_bits;
3321 }
3322 
3323 //------------------------------meet-------------------------------------------
3324 // Compute the MEET of two types.  It returns a new Type object.
3325 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3326   // Perform a fast test for common case; meeting the same types together.
3327   if( this == t ) return this;  // Meeting same type-rep?
3328 
3329   // Current "this->_base" is RawPtr
3330   switch( t->base() ) {         // switch on original type
3331   case Bottom:                  // Ye Olde Default
3332     return t;
3333   case Top:
3334     return this;
3335   case AnyPtr:                  // Meeting to AnyPtrs
3336     break;
3337   case RawPtr: {                // might be top, bot, any/not or constant
3338     enum PTR tptr = t->is_ptr()->ptr();
3339     enum PTR ptr = meet_ptr( tptr );
3340     if( ptr == Constant ) {     // Cannot be equal constants, so...
3341       if( tptr == Constant && _ptr != Constant)  return t;
3342       if( _ptr == Constant && tptr != Constant)  return this;
3343       ptr = NotNull;            // Fall down in lattice
3344     }
3345     return make( ptr );
3346   }
3347 
3348   case OopPtr:
3349   case InstPtr:
3350   case AryPtr:
3351   case MetadataPtr:
3352   case KlassPtr:
3353   case InstKlassPtr:
3354   case AryKlassPtr:
3355     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3356   default:                      // All else is a mistake
3357     typerr(t);
3358   }
3359 
3360   // Found an AnyPtr type vs self-RawPtr type
3361   const TypePtr *tp = t->is_ptr();
3362   switch (tp->ptr()) {
3363   case TypePtr::TopPTR:  return this;
3364   case TypePtr::BotPTR:  return t;
3365   case TypePtr::Null:
3366     if( _ptr == TypePtr::TopPTR ) return t;
3367     return TypeRawPtr::BOTTOM;
3368   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3369   case TypePtr::AnyNull:
3370     if( _ptr == TypePtr::Constant) return this;
3371     return make( meet_ptr(TypePtr::AnyNull) );
3372   default: ShouldNotReachHere();
3373   }
3374   return this;
3375 }
3376 
3377 //------------------------------xdual------------------------------------------
3378 // Dual: compute field-by-field dual
3379 const Type *TypeRawPtr::xdual() const {
3380   return new TypeRawPtr( dual_ptr(), _bits );
3381 }
3382 
3383 //------------------------------add_offset-------------------------------------
3384 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3385   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3386   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3387   if( offset == 0 ) return this; // No change
3388   switch (_ptr) {
3389   case TypePtr::TopPTR:
3390   case TypePtr::BotPTR:
3391   case TypePtr::NotNull:
3392     return this;
3393   case TypePtr::Constant: {
3394     uintptr_t bits = (uintptr_t)_bits;
3395     uintptr_t sum = bits + offset;
3396     if (( offset < 0 )
3397         ? ( sum > bits )        // Underflow?
3398         : ( sum < bits )) {     // Overflow?
3399       return BOTTOM;
3400     } else if ( sum == 0 ) {
3401       return TypePtr::NULL_PTR;
3402     } else {
3403       return make( (address)sum );
3404     }
3405   }
3406   default:  ShouldNotReachHere();
3407   }
3408 }
3409 
3410 //------------------------------eq---------------------------------------------
3411 // Structural equality check for Type representations
3412 bool TypeRawPtr::eq( const Type *t ) const {
3413   const TypeRawPtr *a = (const TypeRawPtr*)t;
3414   return _bits == a->_bits && TypePtr::eq(t);
3415 }
3416 
3417 //------------------------------hash-------------------------------------------
3418 // Type-specific hashing function.
3419 uint TypeRawPtr::hash(void) const {
3420   return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3421 }
3422 
3423 //------------------------------dump2------------------------------------------
3424 #ifndef PRODUCT
3425 void TypeRawPtr::dump2(Dict& d, uint depth, outputStream* st) const {
3426   if (_ptr == Constant) {
3427     st->print("rawptr:Constant:" INTPTR_FORMAT, p2i(_bits));
3428   } else {
3429     st->print("rawptr:%s", ptr_msg[_ptr]);
3430   }
3431 }
3432 #endif
3433 
3434 //=============================================================================
3435 // Convenience common pre-built type.
3436 const TypeOopPtr *TypeOopPtr::BOTTOM;
3437 
3438 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3439         : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3440           _hash(0), _exact_klass(nullptr) {
3441   _interfaces.sort(compare);
3442   initialize();
3443 }
3444 
3445 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3446   // hashcons() can only delete the last thing that was allocated: to
3447   // make sure all memory for the newly created TypeInterfaces can be
3448   // freed if an identical one exists, allocate space for the array of
3449   // interfaces right after the TypeInterfaces object so that they
3450   // form a contiguous piece of memory.
3451   int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3452   size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3453 
3454   void* allocated_mem = operator new(total_size);
3455   ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3456   for (int i = 0; i < nb_interfaces; ++i) {
3457     interfaces_base[i] = interfaces->at(i);
3458   }
3459   TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3460   return (const TypeInterfaces*)result->hashcons();
3461 }
3462 
3463 void TypeInterfaces::initialize() {
3464   compute_hash();
3465   compute_exact_klass();
3466   DEBUG_ONLY(_initialized = true;)
3467 }
3468 
3469 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3470   if ((intptr_t)k1 < (intptr_t)k2) {
3471     return -1;
3472   } else if ((intptr_t)k1 > (intptr_t)k2) {
3473     return 1;
3474   }
3475   return 0;
3476 }
3477 
3478 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3479   return compare(*k1, *k2);
3480 }
3481 
3482 bool TypeInterfaces::eq(const Type* t) const {
3483   const TypeInterfaces* other = (const TypeInterfaces*)t;
3484   if (_interfaces.length() != other->_interfaces.length()) {
3485     return false;
3486   }
3487   for (int i = 0; i < _interfaces.length(); i++) {
3488     ciKlass* k1 = _interfaces.at(i);
3489     ciKlass* k2 = other->_interfaces.at(i);
3490     if (!k1->equals(k2)) {
3491       return false;
3492     }
3493   }
3494   return true;
3495 }
3496 
3497 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3498   assert(k->is_loaded(), "should be loaded");
3499   GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3500   if (_interfaces.length() != interfaces->length()) {
3501     return false;
3502   }
3503   for (int i = 0; i < interfaces->length(); i++) {
3504     bool found = false;
3505     _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3506     if (!found) {
3507       return false;
3508     }
3509   }
3510   return true;
3511 }
3512 
3513 
3514 uint TypeInterfaces::hash() const {
3515   assert(_initialized, "must be");
3516   return _hash;
3517 }
3518 
3519 const Type* TypeInterfaces::xdual() const {
3520   return this;
3521 }
3522 
3523 void TypeInterfaces::compute_hash() {
3524   uint hash = 0;
3525   for (int i = 0; i < _interfaces.length(); i++) {
3526     ciKlass* k = _interfaces.at(i);
3527     hash += k->hash();
3528   }
3529   _hash = hash;
3530 }
3531 
3532 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3533   return (int)((*k1)->ident() - (*k2)->ident());
3534 }
3535 
3536 void TypeInterfaces::dump(outputStream* st) const {
3537   if (_interfaces.length() == 0) {
3538     return;
3539   }
3540   ResourceMark rm;
3541   st->print(" (");
3542   GrowableArray<ciInstanceKlass*> interfaces;
3543   interfaces.appendAll(&_interfaces);
3544   // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3545   interfaces.sort(compare_interfaces);
3546   for (int i = 0; i < interfaces.length(); i++) {
3547     if (i > 0) {
3548       st->print(",");
3549     }
3550     ciKlass* k = interfaces.at(i);
3551     k->print_name_on(st);
3552   }
3553   st->print(")");
3554 }
3555 
3556 #ifdef ASSERT
3557 void TypeInterfaces::verify() const {
3558   for (int i = 1; i < _interfaces.length(); i++) {
3559     ciInstanceKlass* k1 = _interfaces.at(i-1);
3560     ciInstanceKlass* k2 = _interfaces.at(i);
3561     assert(compare(k2, k1) > 0, "should be ordered");
3562     assert(k1 != k2, "no duplicate");
3563   }
3564 }
3565 #endif
3566 
3567 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3568   GrowableArray<ciInstanceKlass*> result_list;
3569   int i = 0;
3570   int j = 0;
3571   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3572     while (i < _interfaces.length() &&
3573            (j >= other->_interfaces.length() ||
3574             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3575       result_list.push(_interfaces.at(i));
3576       i++;
3577     }
3578     while (j < other->_interfaces.length() &&
3579            (i >= _interfaces.length() ||
3580             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3581       result_list.push(other->_interfaces.at(j));
3582       j++;
3583     }
3584     if (i < _interfaces.length() &&
3585         j < other->_interfaces.length() &&
3586         _interfaces.at(i) == other->_interfaces.at(j)) {
3587       result_list.push(_interfaces.at(i));
3588       i++;
3589       j++;
3590     }
3591   }
3592   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3593 #ifdef ASSERT
3594   result->verify();
3595   for (int i = 0; i < _interfaces.length(); i++) {
3596     assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3597   }
3598   for (int i = 0; i < other->_interfaces.length(); i++) {
3599     assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3600   }
3601   for (int i = 0; i < result->_interfaces.length(); i++) {
3602     assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3603   }
3604 #endif
3605   return result;
3606 }
3607 
3608 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3609   GrowableArray<ciInstanceKlass*> result_list;
3610   int i = 0;
3611   int j = 0;
3612   while (i < _interfaces.length() || j < other->_interfaces.length()) {
3613     while (i < _interfaces.length() &&
3614            (j >= other->_interfaces.length() ||
3615             compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3616       i++;
3617     }
3618     while (j < other->_interfaces.length() &&
3619            (i >= _interfaces.length() ||
3620             compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3621       j++;
3622     }
3623     if (i < _interfaces.length() &&
3624         j < other->_interfaces.length() &&
3625         _interfaces.at(i) == other->_interfaces.at(j)) {
3626       result_list.push(_interfaces.at(i));
3627       i++;
3628       j++;
3629     }
3630   }
3631   const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3632 #ifdef ASSERT
3633   result->verify();
3634   for (int i = 0; i < _interfaces.length(); i++) {
3635     assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3636   }
3637   for (int i = 0; i < other->_interfaces.length(); i++) {
3638     assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3639   }
3640   for (int i = 0; i < result->_interfaces.length(); i++) {
3641     assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3642   }
3643 #endif
3644   return result;
3645 }
3646 
3647 // Is there a single ciKlass* that can represent the interface set?
3648 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3649   assert(_initialized, "must be");
3650   return _exact_klass;
3651 }
3652 
3653 void TypeInterfaces::compute_exact_klass() {
3654   if (_interfaces.length() == 0) {
3655     _exact_klass = nullptr;
3656     return;
3657   }
3658   ciInstanceKlass* res = nullptr;
3659   for (int i = 0; i < _interfaces.length(); i++) {
3660     ciInstanceKlass* interface = _interfaces.at(i);
3661     if (eq(interface)) {
3662       assert(res == nullptr, "");
3663       res = interface;
3664     }
3665   }
3666   _exact_klass = res;
3667 }
3668 
3669 #ifdef ASSERT
3670 void TypeInterfaces::verify_is_loaded() const {
3671   for (int i = 0; i < _interfaces.length(); i++) {
3672     ciKlass* interface = _interfaces.at(i);
3673     assert(interface->is_loaded(), "Interface not loaded");
3674   }
3675 }
3676 #endif
3677 
3678 // Can't be implemented because there's no way to know if the type is above or below the center line.
3679 const Type* TypeInterfaces::xmeet(const Type* t) const {
3680   ShouldNotReachHere();
3681   return Type::xmeet(t);
3682 }
3683 
3684 bool TypeInterfaces::singleton(void) const {
3685   ShouldNotReachHere();
3686   return Type::singleton();
3687 }
3688 
3689 bool TypeInterfaces::has_non_array_interface() const {
3690   assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3691 
3692   return !TypeAryPtr::_array_interfaces->contains(this);
3693 }
3694 
3695 //------------------------------TypeOopPtr-------------------------------------
3696 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset,
3697                        int instance_id, const TypePtr* speculative, int inline_depth)
3698   : TypePtr(t, ptr, offset, speculative, inline_depth),
3699     _const_oop(o), _klass(k),
3700     _interfaces(interfaces),
3701     _klass_is_exact(xk),
3702     _is_ptr_to_narrowoop(false),
3703     _is_ptr_to_narrowklass(false),
3704     _is_ptr_to_boxed_value(false),
3705     _is_ptr_to_strict_final_field(false),
3706     _instance_id(instance_id) {
3707 #ifdef ASSERT
3708   if (klass() != nullptr && klass()->is_loaded()) {
3709     interfaces->verify_is_loaded();
3710   }
3711 #endif
3712   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3713       (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3714     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3715     _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value;
3716   }
3717 
3718   if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() &&
3719       this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) {
3720     ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false);
3721     if (field != nullptr && field->is_strict() && field->is_final()) {
3722       _is_ptr_to_strict_final_field = true;
3723     }
3724   }
3725 
3726 #ifdef _LP64
3727   if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) {
3728     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3729       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3730     } else if (klass() == nullptr) {
3731       // Array with unknown body type
3732       assert(this->isa_aryptr(), "only arrays without klass");
3733       _is_ptr_to_narrowoop = UseCompressedOops;
3734     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3735       if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3736         // Check if the field of the inline type array element contains oops
3737         ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass();
3738         int foffset = field_offset.get() + vk->payload_offset();
3739         BasicType field_bt;
3740         ciField* field = vk->get_field_by_offset(foffset, false);
3741         if (field != nullptr) {
3742           field_bt = field->layout_type();
3743         } else {
3744           assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset);
3745           field_bt = T_BOOLEAN;
3746         }
3747         _is_ptr_to_narrowoop = ::is_reference_type(field_bt);
3748       } else if (klass()->is_obj_array_klass()) {
3749         _is_ptr_to_narrowoop = true;
3750       }
3751     } else if (klass()->is_instance_klass()) {
3752       if (this->isa_klassptr()) {
3753         // Perm objects don't use compressed references
3754       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3755         // unsafe access
3756         _is_ptr_to_narrowoop = UseCompressedOops;
3757       } else {
3758         assert(this->isa_instptr(), "must be an instance ptr.");
3759         if (klass() == ciEnv::current()->Class_klass() &&
3760             (this->offset() == java_lang_Class::klass_offset() ||
3761              this->offset() == java_lang_Class::array_klass_offset())) {
3762           // Special hidden fields from the Class.
3763           assert(this->isa_instptr(), "must be an instance ptr.");
3764           _is_ptr_to_narrowoop = false;
3765         } else if (klass() == ciEnv::current()->Class_klass() &&
3766                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3767           // Static fields
3768           BasicType basic_elem_type = T_ILLEGAL;
3769           if (const_oop() != nullptr) {
3770             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3771             basic_elem_type = k->get_field_type_by_offset(this->offset(), true);
3772           }
3773           if (basic_elem_type != T_ILLEGAL) {
3774             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3775           } else {
3776             // unsafe access
3777             _is_ptr_to_narrowoop = UseCompressedOops;
3778           }
3779         } else {
3780           // Instance fields which contains a compressed oop references.
3781           ciInstanceKlass* ik = klass()->as_instance_klass();
3782           BasicType basic_elem_type = ik->get_field_type_by_offset(this->offset(), false);
3783           if (basic_elem_type != T_ILLEGAL) {
3784             _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3785           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3786             // Compile::find_alias_type() cast exactness on all types to verify
3787             // that it does not affect alias type.
3788             _is_ptr_to_narrowoop = UseCompressedOops;
3789           } else {
3790             // Type for the copy start in LibraryCallKit::inline_native_clone().
3791             _is_ptr_to_narrowoop = UseCompressedOops;
3792           }
3793         }
3794       }
3795     }
3796   }
3797 #endif // _LP64
3798 }
3799 
3800 //------------------------------make-------------------------------------------
3801 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3802                                    const TypePtr* speculative, int inline_depth) {
3803   assert(ptr != Constant, "no constant generic pointers");
3804   ciKlass*  k = Compile::current()->env()->Object_klass();
3805   bool      xk = false;
3806   ciObject* o = nullptr;
3807   const TypeInterfaces* interfaces = TypeInterfaces::make();
3808   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3809 }
3810 
3811 
3812 //------------------------------cast_to_ptr_type-------------------------------
3813 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3814   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3815   if( ptr == _ptr ) return this;
3816   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3817 }
3818 
3819 //-----------------------------cast_to_instance_id----------------------------
3820 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3821   // There are no instances of a general oop.
3822   // Return self unchanged.
3823   return this;
3824 }
3825 
3826 //-----------------------------cast_to_exactness-------------------------------
3827 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3828   // There is no such thing as an exact general oop.
3829   // Return self unchanged.
3830   return this;
3831 }
3832 
3833 //------------------------------as_klass_type----------------------------------
3834 // Return the klass type corresponding to this instance or array type.
3835 // It is the type that is loaded from an object of this type.
3836 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3837   ShouldNotReachHere();
3838   return nullptr;
3839 }
3840 
3841 //------------------------------meet-------------------------------------------
3842 // Compute the MEET of two types.  It returns a new Type object.
3843 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3844   // Perform a fast test for common case; meeting the same types together.
3845   if( this == t ) return this;  // Meeting same type-rep?
3846 
3847   // Current "this->_base" is OopPtr
3848   switch (t->base()) {          // switch on original type
3849 
3850   case Int:                     // Mixing ints & oops happens when javac
3851   case Long:                    // reuses local variables
3852   case HalfFloatTop:
3853   case HalfFloatCon:
3854   case HalfFloatBot:
3855   case FloatTop:
3856   case FloatCon:
3857   case FloatBot:
3858   case DoubleTop:
3859   case DoubleCon:
3860   case DoubleBot:
3861   case NarrowOop:
3862   case NarrowKlass:
3863   case Bottom:                  // Ye Olde Default
3864     return Type::BOTTOM;
3865   case Top:
3866     return this;
3867 
3868   default:                      // All else is a mistake
3869     typerr(t);
3870 
3871   case RawPtr:
3872   case MetadataPtr:
3873   case KlassPtr:
3874   case InstKlassPtr:
3875   case AryKlassPtr:
3876     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3877 
3878   case AnyPtr: {
3879     // Found an AnyPtr type vs self-OopPtr type
3880     const TypePtr *tp = t->is_ptr();
3881     Offset offset = meet_offset(tp->offset());
3882     PTR ptr = meet_ptr(tp->ptr());
3883     const TypePtr* speculative = xmeet_speculative(tp);
3884     int depth = meet_inline_depth(tp->inline_depth());
3885     switch (tp->ptr()) {
3886     case Null:
3887       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3888       // else fall through:
3889     case TopPTR:
3890     case AnyNull: {
3891       int instance_id = meet_instance_id(InstanceTop);
3892       return make(ptr, offset, instance_id, speculative, depth);
3893     }
3894     case BotPTR:
3895     case NotNull:
3896       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3897     default: typerr(t);
3898     }
3899   }
3900 
3901   case OopPtr: {                 // Meeting to other OopPtrs
3902     const TypeOopPtr *tp = t->is_oopptr();
3903     int instance_id = meet_instance_id(tp->instance_id());
3904     const TypePtr* speculative = xmeet_speculative(tp);
3905     int depth = meet_inline_depth(tp->inline_depth());
3906     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3907   }
3908 
3909   case InstPtr:                  // For these, flip the call around to cut down
3910   case AryPtr:
3911     return t->xmeet(this);      // Call in reverse direction
3912 
3913   } // End of switch
3914   return this;                  // Return the double constant
3915 }
3916 
3917 
3918 //------------------------------xdual------------------------------------------
3919 // Dual of a pure heap pointer.  No relevant klass or oop information.
3920 const Type *TypeOopPtr::xdual() const {
3921   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3922   assert(const_oop() == nullptr,             "no constants here");
3923   return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3924 }
3925 
3926 //--------------------------make_from_klass_common-----------------------------
3927 // Computes the element-type given a klass.
3928 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3929   if (klass->is_instance_klass() || klass->is_inlinetype()) {
3930     Compile* C = Compile::current();
3931     Dependencies* deps = C->dependencies();
3932     assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3933     // Element is an instance
3934     bool klass_is_exact = false;
3935     ciInstanceKlass* ik = klass->as_instance_klass();
3936     if (klass->is_loaded()) {
3937       // Try to set klass_is_exact.
3938       klass_is_exact = ik->is_final();
3939       if (!klass_is_exact && klass_change
3940           && deps != nullptr && UseUniqueSubclasses) {
3941         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3942         if (sub != nullptr) {
3943           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3944           klass = ik = sub;
3945           klass_is_exact = sub->is_final();
3946         }
3947       }
3948       if (!klass_is_exact && try_for_exact && deps != nullptr &&
3949           !ik->is_interface() && !ik->has_subklass()) {
3950         // Add a dependence; if concrete subclass added we need to recompile
3951         deps->assert_leaf_type(ik);
3952         klass_is_exact = true;
3953       }
3954     }
3955     FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
3956     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3957     return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0), flat_in_array);
3958   } else if (klass->is_obj_array_klass()) {
3959     // Element is an object or inline type array. Recursively call ourself.
3960     ciObjArrayKlass* array_klass = klass->as_obj_array_klass();
3961     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(array_klass->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling);
3962     bool xk = array_klass->is_loaded() && array_klass->is_refined();
3963 
3964     // Determine null-free/flat properties
3965     bool flat;
3966     bool not_flat;
3967     bool is_null_free;
3968     bool not_null_free;
3969     bool atomic;
3970     if (xk) {
3971       flat = array_klass->is_flat_array_klass();
3972       not_flat = !flat;
3973       is_null_free = array_klass->is_elem_null_free();
3974       not_null_free = !is_null_free;
3975       atomic = array_klass->is_elem_atomic();
3976 
3977       if (is_null_free) {
3978         etype = etype->join_speculative(NOTNULL)->is_oopptr();
3979       }
3980     } else {
3981       const TypeOopPtr* exact_etype = etype;
3982       if (etype->can_be_inline_type()) {
3983         // Use exact type if element can be an inline type
3984         exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling);
3985       }
3986 
3987       flat = false;
3988       bool not_inline = !exact_etype->can_be_inline_type();
3989       not_null_free = not_inline;
3990       not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array());
3991       atomic = not_flat;
3992     }
3993 
3994     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, flat, not_flat, not_null_free, atomic);
3995     // We used to pass NotNull in here, asserting that the sub-arrays
3996     // are all not-null.  This is not true in generally, as code can
3997     // slam nullptrs down in the subarrays.
3998     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0));
3999     return arr;
4000   } else if (klass->is_type_array_klass()) {
4001     // Element is an typeArray
4002     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
4003     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS,
4004                                         /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true);
4005     // We used to pass NotNull in here, asserting that the array pointer
4006     // is not-null. That was not true in general.
4007     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
4008     return arr;
4009   } else {
4010     ShouldNotReachHere();
4011     return nullptr;
4012   }
4013 }
4014 
4015 //------------------------------make_from_constant-----------------------------
4016 // Make a java pointer from an oop constant
4017 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
4018   assert(!o->is_null_object(), "null object not yet handled here.");
4019 
4020   const bool make_constant = require_constant || o->should_be_constant();
4021 
4022   ciKlass* klass = o->klass();
4023   if (klass->is_instance_klass() || klass->is_inlinetype()) {
4024     // Element is an instance or inline type
4025     if (make_constant) {
4026       return TypeInstPtr::make(o);
4027     } else {
4028       return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0));
4029     }
4030   } else if (klass->is_obj_array_klass()) {
4031     // Element is an object array. Recursively call ourself.
4032     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces);
4033     bool is_flat = o->as_array()->is_flat();
4034     bool is_null_free = o->as_array()->is_null_free();
4035     if (is_null_free) {
4036       etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr();
4037     }
4038     bool is_atomic = o->as_array()->is_atomic();
4039     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ is_flat,
4040                                         /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic);
4041     // We used to pass NotNull in here, asserting that the sub-arrays
4042     // are all not-null.  This is not true in generally, as code can
4043     // slam nulls down in the subarrays.
4044     if (make_constant) {
4045       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4046     } else {
4047       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4048     }
4049   } else if (klass->is_type_array_klass()) {
4050     // Element is an typeArray
4051     const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
4052     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false,
4053                                         /* not_flat= */ true, /* not_null_free= */ true, true);
4054     // We used to pass NotNull in here, asserting that the array pointer
4055     // is not-null. That was not true in general.
4056     if (make_constant) {
4057       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
4058     } else {
4059       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
4060     }
4061   }
4062 
4063   fatal("unhandled object type");
4064   return nullptr;
4065 }
4066 
4067 //------------------------------get_con----------------------------------------
4068 intptr_t TypeOopPtr::get_con() const {
4069   assert( _ptr == Null || _ptr == Constant, "" );
4070   assert(offset() >= 0, "");
4071 
4072   if (offset() != 0) {
4073     // After being ported to the compiler interface, the compiler no longer
4074     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4075     // to a handle at compile time.  This handle is embedded in the generated
4076     // code and dereferenced at the time the nmethod is made.  Until that time,
4077     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4078     // have access to the addresses!).  This does not seem to currently happen,
4079     // but this assertion here is to help prevent its occurrence.
4080     tty->print_cr("Found oop constant with non-zero offset");
4081     ShouldNotReachHere();
4082   }
4083 
4084   return (intptr_t)const_oop()->constant_encoding();
4085 }
4086 
4087 
4088 //-----------------------------filter------------------------------------------
4089 // Do not allow interface-vs.-noninterface joins to collapse to top.
4090 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
4091 
4092   const Type* ft = join_helper(kills, include_speculative);
4093 
4094   if (ft->empty()) {
4095     return Type::TOP;           // Canonical empty value
4096   }
4097 
4098   return ft;
4099 }
4100 
4101 //------------------------------eq---------------------------------------------
4102 // Structural equality check for Type representations
4103 bool TypeOopPtr::eq( const Type *t ) const {
4104   const TypeOopPtr *a = (const TypeOopPtr*)t;
4105   if (_klass_is_exact != a->_klass_is_exact ||
4106       _instance_id != a->_instance_id)  return false;
4107   ciObject* one = const_oop();
4108   ciObject* two = a->const_oop();
4109   if (one == nullptr || two == nullptr) {
4110     return (one == two) && TypePtr::eq(t);
4111   } else {
4112     return one->equals(two) && TypePtr::eq(t);
4113   }
4114 }
4115 
4116 //------------------------------hash-------------------------------------------
4117 // Type-specific hashing function.
4118 uint TypeOopPtr::hash(void) const {
4119   return
4120     (uint)(const_oop() ? const_oop()->hash() : 0) +
4121     (uint)_klass_is_exact +
4122     (uint)_instance_id + TypePtr::hash();
4123 }
4124 
4125 //------------------------------dump2------------------------------------------
4126 #ifndef PRODUCT
4127 void TypeOopPtr::dump2(Dict& d, uint depth, outputStream* st) const {
4128   st->print("oopptr:%s", ptr_msg[_ptr]);
4129   if (_klass_is_exact) {
4130     st->print(":exact");
4131   }
4132   if (const_oop() != nullptr) {
4133     st->print(":" INTPTR_FORMAT, p2i(const_oop()));
4134   }
4135   dump_offset(st);
4136   dump_instance_id(st);
4137   dump_inline_depth(st);
4138   dump_speculative(st);
4139 }
4140 
4141 void TypeOopPtr::dump_instance_id(outputStream* st) const {
4142   if (_instance_id == InstanceTop) {
4143     st->print(",iid=top");
4144   } else if (_instance_id == InstanceBot) {
4145     st->print(",iid=bot");
4146   } else {
4147     st->print(",iid=%d", _instance_id);
4148   }
4149 }
4150 #endif
4151 
4152 //------------------------------singleton--------------------------------------
4153 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4154 // constants
4155 bool TypeOopPtr::singleton(void) const {
4156   // detune optimizer to not generate constant oop + constant offset as a constant!
4157   // TopPTR, Null, AnyNull, Constant are all singletons
4158   return (offset() == 0) && !below_centerline(_ptr);
4159 }
4160 
4161 //------------------------------add_offset-------------------------------------
4162 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
4163   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4164 }
4165 
4166 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
4167   return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth);
4168 }
4169 
4170 /**
4171  * Return same type without a speculative part
4172  */
4173 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
4174   if (_speculative == nullptr) {
4175     return this;
4176   }
4177   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4178   return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
4179 }
4180 
4181 /**
4182  * Return same type but drop speculative part if we know we won't use
4183  * it
4184  */
4185 const Type* TypeOopPtr::cleanup_speculative() const {
4186   // If the klass is exact and the ptr is not null then there's
4187   // nothing that the speculative type can help us with
4188   if (klass_is_exact() && !maybe_null()) {
4189     return remove_speculative();
4190   }
4191   return TypePtr::cleanup_speculative();
4192 }
4193 
4194 /**
4195  * Return same type but with a different inline depth (used for speculation)
4196  *
4197  * @param depth  depth to meet with
4198  */
4199 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
4200   if (!UseInlineDepthForSpeculativeTypes) {
4201     return this;
4202   }
4203   return make(_ptr, _offset, _instance_id, _speculative, depth);
4204 }
4205 
4206 //------------------------------with_instance_id--------------------------------
4207 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
4208   assert(_instance_id != -1, "should be known");
4209   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
4210 }
4211 
4212 //------------------------------meet_instance_id--------------------------------
4213 int TypeOopPtr::meet_instance_id( int instance_id ) const {
4214   // Either is 'TOP' instance?  Return the other instance!
4215   if( _instance_id == InstanceTop ) return  instance_id;
4216   if(  instance_id == InstanceTop ) return _instance_id;
4217   // If either is different, return 'BOTTOM' instance
4218   if( _instance_id != instance_id ) return InstanceBot;
4219   return _instance_id;
4220 }
4221 
4222 //------------------------------dual_instance_id--------------------------------
4223 int TypeOopPtr::dual_instance_id( ) const {
4224   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
4225   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
4226   return _instance_id;              // Map everything else into self
4227 }
4228 
4229 
4230 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
4231   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
4232     return _interfaces->union_with(other->_interfaces);
4233   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
4234     return other->_interfaces;
4235   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
4236     return _interfaces;
4237   }
4238   return _interfaces->intersection_with(other->_interfaces);
4239 }
4240 
4241 /**
4242  * Check whether new profiling would improve speculative type
4243  *
4244  * @param   exact_kls    class from profiling
4245  * @param   inline_depth inlining depth of profile point
4246  *
4247  * @return  true if type profile is valuable
4248  */
4249 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
4250   // no way to improve an already exact type
4251   if (klass_is_exact()) {
4252     return false;
4253   }
4254   return TypePtr::would_improve_type(exact_kls, inline_depth);
4255 }
4256 
4257 //=============================================================================
4258 // Convenience common pre-built types.
4259 const TypeInstPtr *TypeInstPtr::NOTNULL;
4260 const TypeInstPtr *TypeInstPtr::BOTTOM;
4261 const TypeInstPtr *TypeInstPtr::MIRROR;
4262 const TypeInstPtr *TypeInstPtr::MARK;
4263 const TypeInstPtr *TypeInstPtr::KLASS;
4264 
4265 // Is there a single ciKlass* that can represent that type?
4266 ciKlass* TypeInstPtr::exact_klass_helper() const {
4267   if (_interfaces->empty()) {
4268     return _klass;
4269   }
4270   if (_klass != ciEnv::current()->Object_klass()) {
4271     if (_interfaces->eq(_klass->as_instance_klass())) {
4272       return _klass;
4273     }
4274     return nullptr;
4275   }
4276   return _interfaces->exact_klass();
4277 }
4278 
4279 //------------------------------TypeInstPtr-------------------------------------
4280 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off,
4281                          FlatInArray flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth)
4282   : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
4283     _flat_in_array(flat_in_array) {
4284 
4285   assert(flat_in_array != Uninitialized, "must be set now");
4286   assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
4287   assert(k != nullptr &&
4288          (k->is_loaded() || o == nullptr),
4289          "cannot have constants with non-loaded klass");
4290 };
4291 
4292 //------------------------------make-------------------------------------------
4293 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
4294                                      ciKlass* k,
4295                                      const TypeInterfaces* interfaces,
4296                                      bool xk,
4297                                      ciObject* o,
4298                                      Offset offset,
4299                                      FlatInArray flat_in_array,
4300                                      int instance_id,
4301                                      const TypePtr* speculative,
4302                                      int inline_depth) {
4303   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
4304   // Either const_oop() is null or else ptr is Constant
4305   assert( (!o && ptr != Constant) || (o && ptr == Constant),
4306           "constant pointers must have a value supplied" );
4307   // Ptr is never Null
4308   assert( ptr != Null, "null pointers are not typed" );
4309 
4310   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4311   ciInstanceKlass* ik = k->as_instance_klass();
4312   if (ptr == Constant) {
4313     // Note:  This case includes meta-object constants, such as methods.
4314     xk = true;
4315   } else if (k->is_loaded()) {
4316     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
4317     assert(!ik->is_interface(), "no interface here");
4318     if (xk && ik->is_interface())  xk = false;  // no exact interface
4319   }
4320 
4321   if (flat_in_array == Uninitialized) {
4322     flat_in_array = compute_flat_in_array(ik, xk);
4323   }
4324   // Now hash this baby
4325   TypeInstPtr *result =
4326     (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons();
4327 
4328   return result;
4329 }
4330 
4331 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4332   if (k->is_instance_klass()) {
4333     if (k->is_loaded()) {
4334       if (k->is_interface() && interface_handling == ignore_interfaces) {
4335         assert(interface, "no interface expected");
4336         k = ciEnv::current()->Object_klass();
4337         const TypeInterfaces* interfaces = TypeInterfaces::make();
4338         return interfaces;
4339       }
4340       GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4341       const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4342       if (k->is_interface()) {
4343         assert(interface, "no interface expected");
4344         k = ciEnv::current()->Object_klass();
4345       } else {
4346         assert(klass, "no instance klass expected");
4347       }
4348       return interfaces;
4349     }
4350     const TypeInterfaces* interfaces = TypeInterfaces::make();
4351     return interfaces;
4352   }
4353   assert(array, "no array expected");
4354   assert(k->is_array_klass(), "Not an array?");
4355   ciType* e = k->as_array_klass()->base_element_type();
4356   if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4357     if (interface_handling == ignore_interfaces) {
4358       k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4359     }
4360   }
4361   return TypeAryPtr::_array_interfaces;
4362 }
4363 
4364 /**
4365  *  Create constant type for a constant boxed value
4366  */
4367 const Type* TypeInstPtr::get_const_boxed_value() const {
4368   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4369   assert((const_oop() != nullptr), "should be called only for constant object");
4370   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4371   BasicType bt = constant.basic_type();
4372   switch (bt) {
4373     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
4374     case T_INT:      return TypeInt::make(constant.as_int());
4375     case T_CHAR:     return TypeInt::make(constant.as_char());
4376     case T_BYTE:     return TypeInt::make(constant.as_byte());
4377     case T_SHORT:    return TypeInt::make(constant.as_short());
4378     case T_FLOAT:    return TypeF::make(constant.as_float());
4379     case T_DOUBLE:   return TypeD::make(constant.as_double());
4380     case T_LONG:     return TypeLong::make(constant.as_long());
4381     default:         break;
4382   }
4383   fatal("Invalid boxed value type '%s'", type2name(bt));
4384   return nullptr;
4385 }
4386 
4387 //------------------------------cast_to_ptr_type-------------------------------
4388 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4389   if( ptr == _ptr ) return this;
4390   // Reconstruct _sig info here since not a problem with later lazy
4391   // construction, _sig will show up on demand.
4392   return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth);
4393 }
4394 
4395 
4396 //-----------------------------cast_to_exactness-------------------------------
4397 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4398   if( klass_is_exact == _klass_is_exact ) return this;
4399   if (!_klass->is_loaded())  return this;
4400   ciInstanceKlass* ik = _klass->as_instance_klass();
4401   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
4402   assert(!ik->is_interface(), "no interface here");
4403   FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact);
4404   return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, flat_in_array, _instance_id, _speculative, _inline_depth);
4405 }
4406 
4407 //-----------------------------cast_to_instance_id----------------------------
4408 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4409   if( instance_id == _instance_id ) return this;
4410   return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4411 }
4412 
4413 //------------------------------xmeet_unloaded---------------------------------
4414 // Compute the MEET of two InstPtrs when at least one is unloaded.
4415 // Assume classes are different since called after check for same name/class-loader
4416 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4417   Offset off = meet_offset(tinst->offset());
4418   PTR ptr = meet_ptr(tinst->ptr());
4419   int instance_id = meet_instance_id(tinst->instance_id());
4420   const TypePtr* speculative = xmeet_speculative(tinst);
4421   int depth = meet_inline_depth(tinst->inline_depth());
4422 
4423   const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
4424   const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
4425   if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4426     //
4427     // Meet unloaded class with java/lang/Object
4428     //
4429     // Meet
4430     //          |                     Unloaded Class
4431     //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
4432     //  ===================================================================
4433     //   TOP    | ..........................Unloaded......................|
4434     //  AnyNull |  U-AN    |................Unloaded......................|
4435     // Constant | ... O-NN .................................. |   O-BOT   |
4436     //  NotNull | ... O-NN .................................. |   O-BOT   |
4437     //  BOTTOM  | ........................Object-BOTTOM ..................|
4438     //
4439     assert(loaded->ptr() != TypePtr::Null, "insanity check");
4440     //
4441     if (loaded->ptr() == TypePtr::TopPTR)        { return unloaded->with_speculative(speculative); }
4442     else if (loaded->ptr() == TypePtr::AnyNull)  {
4443       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4444       return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, flat_in_array, instance_id,
4445                   speculative, depth);
4446     }
4447     else if (loaded->ptr() == TypePtr::BotPTR)   { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4448     else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4449       if (unloaded->ptr() == TypePtr::BotPTR)    { return TypeInstPtr::BOTTOM->with_speculative(speculative);  }
4450       else                                       { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4451     }
4452     else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4453 
4454     return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4455   }
4456 
4457   // Both are unloaded, not the same class, not Object
4458   // Or meet unloaded with a different loaded class, not java/lang/Object
4459   if (ptr != TypePtr::BotPTR) {
4460     return TypeInstPtr::NOTNULL->with_speculative(speculative);
4461   }
4462   return TypeInstPtr::BOTTOM->with_speculative(speculative);
4463 }
4464 
4465 
4466 //------------------------------meet-------------------------------------------
4467 // Compute the MEET of two types.  It returns a new Type object.
4468 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4469   // Perform a fast test for common case; meeting the same types together.
4470   if( this == t ) return this;  // Meeting same type-rep?
4471 
4472   // Current "this->_base" is Pointer
4473   switch (t->base()) {          // switch on original type
4474 
4475   case Int:                     // Mixing ints & oops happens when javac
4476   case Long:                    // reuses local variables
4477   case HalfFloatTop:
4478   case HalfFloatCon:
4479   case HalfFloatBot:
4480   case FloatTop:
4481   case FloatCon:
4482   case FloatBot:
4483   case DoubleTop:
4484   case DoubleCon:
4485   case DoubleBot:
4486   case NarrowOop:
4487   case NarrowKlass:
4488   case Bottom:                  // Ye Olde Default
4489     return Type::BOTTOM;
4490   case Top:
4491     return this;
4492 
4493   default:                      // All else is a mistake
4494     typerr(t);
4495 
4496   case MetadataPtr:
4497   case KlassPtr:
4498   case InstKlassPtr:
4499   case AryKlassPtr:
4500   case RawPtr: return TypePtr::BOTTOM;
4501 
4502   case AryPtr: {                // All arrays inherit from Object class
4503     // Call in reverse direction to avoid duplication
4504     return t->is_aryptr()->xmeet_helper(this);
4505   }
4506 
4507   case OopPtr: {                // Meeting to OopPtrs
4508     // Found a OopPtr type vs self-InstPtr type
4509     const TypeOopPtr *tp = t->is_oopptr();
4510     Offset offset = meet_offset(tp->offset());
4511     PTR ptr = meet_ptr(tp->ptr());
4512     switch (tp->ptr()) {
4513     case TopPTR:
4514     case AnyNull: {
4515       int instance_id = meet_instance_id(InstanceTop);
4516       const TypePtr* speculative = xmeet_speculative(tp);
4517       int depth = meet_inline_depth(tp->inline_depth());
4518       return make(ptr, klass(), _interfaces, klass_is_exact(),
4519                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4520     }
4521     case NotNull:
4522     case BotPTR: {
4523       int instance_id = meet_instance_id(tp->instance_id());
4524       const TypePtr* speculative = xmeet_speculative(tp);
4525       int depth = meet_inline_depth(tp->inline_depth());
4526       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4527     }
4528     default: typerr(t);
4529     }
4530   }
4531 
4532   case AnyPtr: {                // Meeting to AnyPtrs
4533     // Found an AnyPtr type vs self-InstPtr type
4534     const TypePtr *tp = t->is_ptr();
4535     Offset offset = meet_offset(tp->offset());
4536     PTR ptr = meet_ptr(tp->ptr());
4537     int instance_id = meet_instance_id(InstanceTop);
4538     const TypePtr* speculative = xmeet_speculative(tp);
4539     int depth = meet_inline_depth(tp->inline_depth());
4540     switch (tp->ptr()) {
4541     case Null:
4542       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4543       // else fall through to AnyNull
4544     case TopPTR:
4545     case AnyNull: {
4546       return make(ptr, klass(), _interfaces, klass_is_exact(),
4547                   (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth);
4548     }
4549     case NotNull:
4550     case BotPTR:
4551       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4552     default: typerr(t);
4553     }
4554   }
4555 
4556   /*
4557                  A-top         }
4558                /   |   \       }  Tops
4559            B-top A-any C-top   }
4560               | /  |  \ |      }  Any-nulls
4561            B-any   |   C-any   }
4562               |    |    |
4563            B-con A-con C-con   } constants; not comparable across classes
4564               |    |    |
4565            B-not   |   C-not   }
4566               | \  |  / |      }  not-nulls
4567            B-bot A-not C-bot   }
4568                \   |   /       }  Bottoms
4569                  A-bot         }
4570   */
4571 
4572   case InstPtr: {                // Meeting 2 Oops?
4573     // Found an InstPtr sub-type vs self-InstPtr type
4574     const TypeInstPtr *tinst = t->is_instptr();
4575     Offset off = meet_offset(tinst->offset());
4576     PTR ptr = meet_ptr(tinst->ptr());
4577     int instance_id = meet_instance_id(tinst->instance_id());
4578     const TypePtr* speculative = xmeet_speculative(tinst);
4579     int depth = meet_inline_depth(tinst->inline_depth());
4580     const TypeInterfaces* interfaces = meet_interfaces(tinst);
4581 
4582     ciKlass* tinst_klass = tinst->klass();
4583     ciKlass* this_klass  = klass();
4584 
4585     ciKlass* res_klass = nullptr;
4586     bool res_xk = false;
4587     const Type* res;
4588     MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4589 
4590     if (kind == UNLOADED) {
4591       // One of these classes has not been loaded
4592       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4593 #ifndef PRODUCT
4594       if (PrintOpto && Verbose) {
4595         tty->print("meet of unloaded classes resulted in: ");
4596         unloaded_meet->dump();
4597         tty->cr();
4598         tty->print("  this == ");
4599         dump();
4600         tty->cr();
4601         tty->print(" tinst == ");
4602         tinst->dump();
4603         tty->cr();
4604       }
4605 #endif
4606       res = unloaded_meet;
4607     } else {
4608       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array());
4609       if (kind == NOT_SUBTYPE && instance_id > 0) {
4610         instance_id = InstanceBot;
4611       } else if (kind == LCA) {
4612         instance_id = InstanceBot;
4613       }
4614       ciObject* o = nullptr;             // Assume not constant when done
4615       ciObject* this_oop = const_oop();
4616       ciObject* tinst_oop = tinst->const_oop();
4617       if (ptr == Constant) {
4618         if (this_oop != nullptr && tinst_oop != nullptr &&
4619             this_oop->equals(tinst_oop))
4620           o = this_oop;
4621         else if (above_centerline(_ptr)) {
4622           assert(!tinst_klass->is_interface(), "");
4623           o = tinst_oop;
4624         } else if (above_centerline(tinst->_ptr)) {
4625           assert(!this_klass->is_interface(), "");
4626           o = this_oop;
4627         } else
4628           ptr = NotNull;
4629       }
4630       res = make(ptr, res_klass, interfaces, res_xk, o, off, flat_in_array, instance_id, speculative, depth);
4631     }
4632 
4633     return res;
4634 
4635   } // End of case InstPtr
4636 
4637   } // End of switch
4638   return this;                  // Return the double constant
4639 }
4640 
4641 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4642                                                             ciKlass*& res_klass, bool& res_xk) {
4643   ciKlass* this_klass = this_type->klass();
4644   ciKlass* other_klass = other_type->klass();
4645 
4646   bool this_xk = this_type->klass_is_exact();
4647   bool other_xk = other_type->klass_is_exact();
4648   PTR this_ptr = this_type->ptr();
4649   PTR other_ptr = other_type->ptr();
4650   const TypeInterfaces* this_interfaces = this_type->interfaces();
4651   const TypeInterfaces* other_interfaces = other_type->interfaces();
4652   // Check for easy case; klasses are equal (and perhaps not loaded!)
4653   // If we have constants, then we created oops so classes are loaded
4654   // and we can handle the constants further down.  This case handles
4655   // both-not-loaded or both-loaded classes
4656   if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4657     res_klass = this_klass;
4658     res_xk = this_xk;
4659     return QUICK;
4660   }
4661 
4662   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4663   if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4664     return UNLOADED;
4665   }
4666 
4667   // !!! Here's how the symmetry requirement breaks down into invariants:
4668   // If we split one up & one down AND they subtype, take the down man.
4669   // If we split one up & one down AND they do NOT subtype, "fall hard".
4670   // If both are up and they subtype, take the subtype class.
4671   // If both are up and they do NOT subtype, "fall hard".
4672   // If both are down and they subtype, take the supertype class.
4673   // If both are down and they do NOT subtype, "fall hard".
4674   // Constants treated as down.
4675 
4676   // Now, reorder the above list; observe that both-down+subtype is also
4677   // "fall hard"; "fall hard" becomes the default case:
4678   // If we split one up & one down AND they subtype, take the down man.
4679   // If both are up and they subtype, take the subtype class.
4680 
4681   // If both are down and they subtype, "fall hard".
4682   // If both are down and they do NOT subtype, "fall hard".
4683   // If both are up and they do NOT subtype, "fall hard".
4684   // If we split one up & one down AND they do NOT subtype, "fall hard".
4685 
4686   // If a proper subtype is exact, and we return it, we return it exactly.
4687   // If a proper supertype is exact, there can be no subtyping relationship!
4688   // If both types are equal to the subtype, exactness is and-ed below the
4689   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4690 
4691   const T* subtype = nullptr;
4692   bool subtype_exact = false;
4693   if (this_type->is_same_java_type_as(other_type)) {
4694     // Same klass
4695     subtype = this_type;
4696     subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4697   } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4698     subtype = this_type;     // Pick subtyping class
4699     subtype_exact = this_xk;
4700   } else if (!this_xk && other_type->is_meet_subtype_of(this_type)) {
4701     subtype = other_type;    // Pick subtyping class
4702     subtype_exact = other_xk;
4703   }
4704 
4705   if (subtype != nullptr) {
4706     if (above_centerline(ptr)) {
4707       // Both types are empty.
4708       this_type = other_type = subtype;
4709       this_xk = other_xk = subtype_exact;
4710     } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4711       // this_type is empty while other_type is not. Take other_type.
4712       this_type = other_type;
4713       this_xk = other_xk;
4714     } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4715       // other_type is empty while this_type is not. Take this_type.
4716       other_type = this_type; // this is down; keep down man
4717     } else {
4718       // this_type and other_type are both non-empty.
4719       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4720     }
4721   }
4722 
4723   // Check for classes now being equal
4724   if (this_type->is_same_java_type_as(other_type)) {
4725     // If the klasses are equal, the constants may still differ.  Fall to
4726     // NotNull if they do (neither constant is null; that is a special case
4727     // handled elsewhere).
4728     res_klass = this_type->klass();
4729     res_xk = this_xk;
4730     return SUBTYPE;
4731   } // Else classes are not equal
4732 
4733   // Since klasses are different, we require a LCA in the Java
4734   // class hierarchy - which means we have to fall to at least NotNull.
4735   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4736     ptr = NotNull;
4737   }
4738 
4739   interfaces = this_interfaces->intersection_with(other_interfaces);
4740 
4741   // Now we find the LCA of Java classes
4742   ciKlass* k = this_klass->least_common_ancestor(other_klass);
4743 
4744   res_klass = k;
4745   res_xk = false;
4746   return LCA;
4747 }
4748 
4749 //                Top-Flat    Flat        Not-Flat    Maybe-Flat
4750 // -------------------------------------------------------------
4751 //    Top-Flat    Top-Flat    Flat        Not-Flat    Maybe-Flat
4752 //        Flat    Flat        Flat        Maybe-Flat  Maybe-Flat
4753 //    Not-Flat    Not-Flat    Maybe-Flat  Not-Flat    Maybe-Flat
4754 //  Maybe-Flat    Maybe-Flat  Maybe-Flat  Maybe-Flat  Maybe-flat
4755 TypePtr::FlatInArray TypePtr::meet_flat_in_array(const FlatInArray left, const FlatInArray right) {
4756   if (left == TopFlat) {
4757     return right;
4758   }
4759   if (right == TopFlat) {
4760     return left;
4761   }
4762   if (left == MaybeFlat || right == MaybeFlat) {
4763     return MaybeFlat;
4764   }
4765 
4766   switch (left) {
4767     case Flat:
4768       if (right == Flat) {
4769         return Flat;
4770       }
4771       return MaybeFlat;
4772     case NotFlat:
4773       if (right == NotFlat) {
4774         return NotFlat;
4775       }
4776       return MaybeFlat;
4777     default:
4778       ShouldNotReachHere();
4779       return Uninitialized;
4780   }
4781 }
4782 
4783 //------------------------java_mirror_type--------------------------------------
4784 ciType* TypeInstPtr::java_mirror_type() const {
4785   // must be a singleton type
4786   if( const_oop() == nullptr )  return nullptr;
4787 
4788   // must be of type java.lang.Class
4789   if( klass() != ciEnv::current()->Class_klass() )  return nullptr;
4790   return const_oop()->as_instance()->java_mirror_type();
4791 }
4792 
4793 
4794 //------------------------------xdual------------------------------------------
4795 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4796 // inheritance mechanism.
4797 const Type* TypeInstPtr::xdual() const {
4798   return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(),
4799                          dual_flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4800 }
4801 
4802 //------------------------------eq---------------------------------------------
4803 // Structural equality check for Type representations
4804 bool TypeInstPtr::eq( const Type *t ) const {
4805   const TypeInstPtr *p = t->is_instptr();
4806   return
4807     klass()->equals(p->klass()) &&
4808     _flat_in_array == p->_flat_in_array &&
4809     _interfaces->eq(p->_interfaces) &&
4810     TypeOopPtr::eq(p);          // Check sub-type stuff
4811 }
4812 
4813 //------------------------------hash-------------------------------------------
4814 // Type-specific hashing function.
4815 uint TypeInstPtr::hash() const {
4816   return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + static_cast<uint>(_flat_in_array);
4817 }
4818 
4819 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4820   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4821 }
4822 
4823 
4824 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4825   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4826 }
4827 
4828 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4829   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4830 }
4831 
4832 
4833 //------------------------------dump2------------------------------------------
4834 // Dump oop Type
4835 #ifndef PRODUCT
4836 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4837   // Print the name of the klass.
4838   st->print("instptr:");
4839   klass()->print_name_on(st);
4840   _interfaces->dump(st);
4841 
4842   if (_ptr == Constant && (WizardMode || Verbose)) {
4843     ResourceMark rm;
4844     stringStream ss;
4845 
4846     st->print(" ");
4847     const_oop()->print_oop(&ss);
4848     // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4849     // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4850     char* buf = ss.as_string(/* c_heap= */false);
4851     StringUtils::replace_no_expand(buf, "\n", "");
4852     st->print_raw(buf);
4853   }
4854 
4855   st->print(":%s", ptr_msg[_ptr]);
4856   if (_klass_is_exact) {
4857     st->print(":exact");
4858   }
4859 
4860   st->print(" *");
4861 
4862   dump_offset(st);
4863   dump_instance_id(st);
4864   dump_inline_depth(st);
4865   dump_speculative(st);
4866   dump_flat_in_array(_flat_in_array, st);
4867 }
4868 #endif
4869 
4870 bool TypeInstPtr::empty() const {
4871   if (_flat_in_array == TopFlat) {
4872     return true;
4873   }
4874   return TypeOopPtr::empty();
4875 }
4876 
4877 //------------------------------add_offset-------------------------------------
4878 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4879   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), _flat_in_array,
4880               _instance_id, add_offset_speculative(offset), _inline_depth);
4881 }
4882 
4883 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4884   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), _flat_in_array,
4885               _instance_id, with_offset_speculative(offset), _inline_depth);
4886 }
4887 
4888 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4889   if (_speculative == nullptr) {
4890     return this;
4891   }
4892   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4893   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array,
4894               _instance_id, nullptr, _inline_depth);
4895 }
4896 
4897 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4898   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, speculative, _inline_depth);
4899 }
4900 
4901 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4902   if (!UseInlineDepthForSpeculativeTypes) {
4903     return this;
4904   }
4905   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, _speculative, depth);
4906 }
4907 
4908 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4909   assert(is_known_instance(), "should be known");
4910   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth);
4911 }
4912 
4913 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const {
4914   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, Flat, _instance_id, _speculative, _inline_depth);
4915 }
4916 
4917 const TypeInstPtr *TypeInstPtr::cast_to_maybe_flat_in_array() const {
4918   return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, MaybeFlat, _instance_id, _speculative, _inline_depth);
4919 }
4920 
4921 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4922   bool xk = klass_is_exact();
4923   ciInstanceKlass* ik = klass()->as_instance_klass();
4924   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4925     if (_interfaces->eq(ik)) {
4926       Compile* C = Compile::current();
4927       Dependencies* deps = C->dependencies();
4928       deps->assert_leaf_type(ik);
4929       xk = true;
4930     }
4931   }
4932   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
4933   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array);
4934 }
4935 
4936 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4937   static_assert(std::is_base_of<T2, T1>::value, "");
4938 
4939   if (!this_one->is_instance_type(other)) {
4940     return false;
4941   }
4942 
4943   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4944     return true;
4945   }
4946 
4947   return this_one->klass()->is_subtype_of(other->klass()) &&
4948          (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4949 }
4950 
4951 
4952 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4953   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4954 }
4955 
4956 template <class T1, class T2>  bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4957   static_assert(std::is_base_of<T2, T1>::value, "");
4958   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4959     return true;
4960   }
4961 
4962   if (this_one->is_instance_type(other)) {
4963     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4964   }
4965 
4966   int dummy;
4967   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4968   if (this_top_or_bottom) {
4969     return false;
4970   }
4971 
4972   const T1* other_ary = this_one->is_array_type(other);
4973   const TypePtr* other_elem = other_ary->elem()->make_ptr();
4974   const TypePtr* this_elem = this_one->elem()->make_ptr();
4975   if (other_elem != nullptr && this_elem != nullptr) {
4976     return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4977   }
4978   if (other_elem == nullptr && this_elem == nullptr) {
4979     return this_one->klass()->is_subtype_of(other->klass());
4980   }
4981 
4982   return false;
4983 }
4984 
4985 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4986   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4987 }
4988 
4989 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4990   return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4991 }
4992 
4993 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4994   return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4995 }
4996 
4997 //=============================================================================
4998 // Convenience common pre-built types.
4999 const TypeAryPtr* TypeAryPtr::BOTTOM;
5000 const TypeAryPtr *TypeAryPtr::RANGE;
5001 const TypeAryPtr *TypeAryPtr::OOPS;
5002 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
5003 const TypeAryPtr *TypeAryPtr::BYTES;
5004 const TypeAryPtr *TypeAryPtr::SHORTS;
5005 const TypeAryPtr *TypeAryPtr::CHARS;
5006 const TypeAryPtr *TypeAryPtr::INTS;
5007 const TypeAryPtr *TypeAryPtr::LONGS;
5008 const TypeAryPtr *TypeAryPtr::FLOATS;
5009 const TypeAryPtr *TypeAryPtr::DOUBLES;
5010 const TypeAryPtr *TypeAryPtr::INLINES;
5011 
5012 //------------------------------make-------------------------------------------
5013 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
5014                                    int instance_id, const TypePtr* speculative, int inline_depth) {
5015   assert(!(k == nullptr && ary->_elem->isa_int()),
5016          "integral arrays must be pre-equipped with a class");
5017   if (!xk)  xk = ary->ary_must_be_exact();
5018   assert(instance_id <= 0 || xk, "instances are always exactly typed");
5019   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5020       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5021     k = nullptr;
5022   }
5023   return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
5024 }
5025 
5026 //------------------------------make-------------------------------------------
5027 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
5028                                    int instance_id, const TypePtr* speculative, int inline_depth,
5029                                    bool is_autobox_cache) {
5030   assert(!(k == nullptr && ary->_elem->isa_int()),
5031          "integral arrays must be pre-equipped with a class");
5032   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
5033   if (!xk)  xk = (o != nullptr) || ary->ary_must_be_exact();
5034   assert(instance_id <= 0 || xk, "instances are always exactly typed");
5035   if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
5036       k->as_obj_array_klass()->base_element_klass()->is_interface()) {
5037     k = nullptr;
5038   }
5039   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
5040 }
5041 
5042 //------------------------------cast_to_ptr_type-------------------------------
5043 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
5044   if( ptr == _ptr ) return this;
5045   return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5046 }
5047 
5048 
5049 //-----------------------------cast_to_exactness-------------------------------
5050 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
5051   if( klass_is_exact == _klass_is_exact ) return this;
5052   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
5053   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5054 }
5055 
5056 //-----------------------------cast_to_instance_id----------------------------
5057 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
5058   if( instance_id == _instance_id ) return this;
5059   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
5060 }
5061 
5062 
5063 //-----------------------------max_array_length-------------------------------
5064 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
5065 jint TypeAryPtr::max_array_length(BasicType etype) {
5066   if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
5067     if (etype == T_NARROWOOP) {
5068       etype = T_OBJECT;
5069     } else if (etype == T_ILLEGAL) { // bottom[]
5070       etype = T_BYTE; // will produce conservatively high value
5071     } else {
5072       fatal("not an element type: %s", type2name(etype));
5073     }
5074   }
5075   return arrayOopDesc::max_array_length(etype);
5076 }
5077 
5078 //-----------------------------narrow_size_type-------------------------------
5079 // Narrow the given size type to the index range for the given array base type.
5080 // Return null if the resulting int type becomes empty.
5081 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
5082   jint hi = size->_hi;
5083   jint lo = size->_lo;
5084   jint min_lo = 0;
5085   jint max_hi = max_array_length(elem()->array_element_basic_type());
5086   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
5087   bool chg = false;
5088   if (lo < min_lo) {
5089     lo = min_lo;
5090     if (size->is_con()) {
5091       hi = lo;
5092     }
5093     chg = true;
5094   }
5095   if (hi > max_hi) {
5096     hi = max_hi;
5097     if (size->is_con()) {
5098       lo = hi;
5099     }
5100     chg = true;
5101   }
5102   // Negative length arrays will produce weird intermediate dead fast-path code
5103   if (lo > hi) {
5104     return TypeInt::ZERO;
5105   }
5106   if (!chg) {
5107     return size;
5108   }
5109   return TypeInt::make(lo, hi, Type::WidenMin);
5110 }
5111 
5112 //-------------------------------cast_to_size----------------------------------
5113 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
5114   assert(new_size != nullptr, "");
5115   new_size = narrow_size_type(new_size);
5116   if (new_size == size())  return this;
5117   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5118   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5119 }
5120 
5121 const TypeAryPtr* TypeAryPtr::cast_to_flat(bool flat) const {
5122   if (flat == is_flat()) {
5123     return this;
5124   }
5125   assert(!flat || !is_not_flat(), "inconsistency");
5126   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), flat, is_not_flat(), is_not_null_free(), is_atomic());
5127   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5128   if (res->speculative() == res->remove_speculative()) {
5129     return res->remove_speculative();
5130   }
5131   return res;
5132 }
5133 
5134 //-------------------------------cast_to_not_flat------------------------------
5135 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const {
5136   if (not_flat == is_not_flat()) {
5137     return this;
5138   }
5139   assert(!not_flat || !is_flat(), "inconsistency");
5140   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic());
5141   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5142   // We keep the speculative part if it contains information about flat-/nullability.
5143   // Make sure it's removed if it's not better than the non-speculative type anymore.
5144   if (res->speculative() == res->remove_speculative()) {
5145     return res->remove_speculative();
5146   }
5147   return res;
5148 }
5149 
5150 const TypeAryPtr* TypeAryPtr::cast_to_null_free(bool null_free) const {
5151   if (null_free == is_null_free()) {
5152     return this;
5153   }
5154   assert(!null_free || !is_not_null_free(), "inconsistency");
5155   const Type* elem = this->elem();
5156   const Type* new_elem = elem->make_ptr();
5157   if (null_free) {
5158     new_elem = new_elem->join_speculative(TypePtr::NOTNULL);
5159   } else {
5160     new_elem = new_elem->meet_speculative(TypePtr::NULL_PTR);
5161   }
5162   new_elem = elem->isa_narrowoop() ? new_elem->make_narrowoop() : new_elem;
5163   const TypeAry* new_ary = TypeAry::make(new_elem, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5164   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5165   if (res->speculative() == res->remove_speculative()) {
5166     return res->remove_speculative();
5167   }
5168   return res;
5169 }
5170 
5171 //-------------------------------cast_to_not_null_free-------------------------
5172 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const {
5173   if (not_null_free == is_not_null_free()) {
5174     return this;
5175   }
5176   assert(!not_null_free || !is_null_free(), "inconsistency");
5177   const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic());
5178   const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset,
5179                                _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5180   // We keep the speculative part if it contains information about flat-/nullability.
5181   // Make sure it's removed if it's not better than the non-speculative type anymore.
5182   if (res->speculative() == res->remove_speculative()) {
5183     return res->remove_speculative();
5184   }
5185   return res;
5186 }
5187 
5188 //---------------------------------update_properties---------------------------
5189 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const {
5190   if ((from->is_flat()          && is_not_flat()) ||
5191       (from->is_not_flat()      && is_flat()) ||
5192       (from->is_null_free()     && is_not_null_free()) ||
5193       (from->is_not_null_free() && is_null_free())) {
5194     return nullptr; // Inconsistent properties
5195   }
5196   const TypeAryPtr* res = this;
5197   if (from->is_not_null_free()) {
5198     res = res->cast_to_not_null_free();
5199   }
5200   if (from->is_not_flat()) {
5201     res = res->cast_to_not_flat();
5202   }
5203   return res;
5204 }
5205 
5206 jint TypeAryPtr::flat_layout_helper() const {
5207   return exact_klass()->as_flat_array_klass()->layout_helper();
5208 }
5209 
5210 int TypeAryPtr::flat_elem_size() const {
5211   return exact_klass()->as_flat_array_klass()->element_byte_size();
5212 }
5213 
5214 int TypeAryPtr::flat_log_elem_size() const {
5215   return exact_klass()->as_flat_array_klass()->log2_element_size();
5216 }
5217 
5218 //------------------------------cast_to_stable---------------------------------
5219 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
5220   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
5221     return this;
5222 
5223   const Type* elem = this->elem();
5224   const TypePtr* elem_ptr = elem->make_ptr();
5225 
5226   if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
5227     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
5228     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
5229   }
5230 
5231   const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5232 
5233   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5234 }
5235 
5236 //-----------------------------stable_dimension--------------------------------
5237 int TypeAryPtr::stable_dimension() const {
5238   if (!is_stable())  return 0;
5239   int dim = 1;
5240   const TypePtr* elem_ptr = elem()->make_ptr();
5241   if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
5242     dim += elem_ptr->is_aryptr()->stable_dimension();
5243   return dim;
5244 }
5245 
5246 //----------------------cast_to_autobox_cache-----------------------------------
5247 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
5248   if (is_autobox_cache())  return this;
5249   const TypeOopPtr* etype = elem()->make_oopptr();
5250   if (etype == nullptr)  return this;
5251   // The pointers in the autobox arrays are always non-null.
5252   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5253   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic());
5254   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
5255 }
5256 
5257 //------------------------------eq---------------------------------------------
5258 // Structural equality check for Type representations
5259 bool TypeAryPtr::eq( const Type *t ) const {
5260   const TypeAryPtr *p = t->is_aryptr();
5261   return
5262     _ary == p->_ary &&  // Check array
5263     TypeOopPtr::eq(p) &&// Check sub-parts
5264     _field_offset == p->_field_offset;
5265 }
5266 
5267 //------------------------------hash-------------------------------------------
5268 // Type-specific hashing function.
5269 uint TypeAryPtr::hash(void) const {
5270   return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
5271 }
5272 
5273 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5274   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5275 }
5276 
5277 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
5278   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
5279 }
5280 
5281 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
5282   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
5283 }
5284 //------------------------------meet-------------------------------------------
5285 // Compute the MEET of two types.  It returns a new Type object.
5286 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
5287   // Perform a fast test for common case; meeting the same types together.
5288   if( this == t ) return this;  // Meeting same type-rep?
5289   // Current "this->_base" is Pointer
5290   switch (t->base()) {          // switch on original type
5291 
5292   // Mixing ints & oops happens when javac reuses local variables
5293   case Int:
5294   case Long:
5295   case HalfFloatTop:
5296   case HalfFloatCon:
5297   case HalfFloatBot:
5298   case FloatTop:
5299   case FloatCon:
5300   case FloatBot:
5301   case DoubleTop:
5302   case DoubleCon:
5303   case DoubleBot:
5304   case NarrowOop:
5305   case NarrowKlass:
5306   case Bottom:                  // Ye Olde Default
5307     return Type::BOTTOM;
5308   case Top:
5309     return this;
5310 
5311   default:                      // All else is a mistake
5312     typerr(t);
5313 
5314   case OopPtr: {                // Meeting to OopPtrs
5315     // Found a OopPtr type vs self-AryPtr type
5316     const TypeOopPtr *tp = t->is_oopptr();
5317     Offset offset = meet_offset(tp->offset());
5318     PTR ptr = meet_ptr(tp->ptr());
5319     int depth = meet_inline_depth(tp->inline_depth());
5320     const TypePtr* speculative = xmeet_speculative(tp);
5321     switch (tp->ptr()) {
5322     case TopPTR:
5323     case AnyNull: {
5324       int instance_id = meet_instance_id(InstanceTop);
5325       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5326                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5327     }
5328     case BotPTR:
5329     case NotNull: {
5330       int instance_id = meet_instance_id(tp->instance_id());
5331       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
5332     }
5333     default: ShouldNotReachHere();
5334     }
5335   }
5336 
5337   case AnyPtr: {                // Meeting two AnyPtrs
5338     // Found an AnyPtr type vs self-AryPtr type
5339     const TypePtr *tp = t->is_ptr();
5340     Offset offset = meet_offset(tp->offset());
5341     PTR ptr = meet_ptr(tp->ptr());
5342     const TypePtr* speculative = xmeet_speculative(tp);
5343     int depth = meet_inline_depth(tp->inline_depth());
5344     switch (tp->ptr()) {
5345     case TopPTR:
5346       return this;
5347     case BotPTR:
5348     case NotNull:
5349       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5350     case Null:
5351       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5352       // else fall through to AnyNull
5353     case AnyNull: {
5354       int instance_id = meet_instance_id(InstanceTop);
5355       return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5356                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5357     }
5358     default: ShouldNotReachHere();
5359     }
5360   }
5361 
5362   case MetadataPtr:
5363   case KlassPtr:
5364   case InstKlassPtr:
5365   case AryKlassPtr:
5366   case RawPtr: return TypePtr::BOTTOM;
5367 
5368   case AryPtr: {                // Meeting 2 references?
5369     const TypeAryPtr *tap = t->is_aryptr();
5370     Offset off = meet_offset(tap->offset());
5371     Offset field_off = meet_field_offset(tap->field_offset());
5372     const Type* tm = _ary->meet_speculative(tap->_ary);
5373     const TypeAry* tary = tm->isa_ary();
5374     if (tary == nullptr) {
5375       assert(tm == Type::TOP || tm == Type::BOTTOM, "");
5376       return tm;
5377     }
5378     PTR ptr = meet_ptr(tap->ptr());
5379     int instance_id = meet_instance_id(tap->instance_id());
5380     const TypePtr* speculative = xmeet_speculative(tap);
5381     int depth = meet_inline_depth(tap->inline_depth());
5382 
5383     ciKlass* res_klass = nullptr;
5384     bool res_xk = false;
5385     bool res_flat = false;
5386     bool res_not_flat = false;
5387     bool res_not_null_free = false;
5388     bool res_atomic = false;
5389     const Type* elem = tary->_elem;
5390     if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) {
5391       instance_id = InstanceBot;
5392     } else if (this->is_flat() != tap->is_flat()) {
5393       // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly.
5394       if (tary->_flat) {
5395         // Result is in a flat representation
5396         off = Offset(is_flat() ? offset() : tap->offset());
5397         field_off = is_flat() ? field_offset() : tap->field_offset();
5398       } else if (below_centerline(ptr)) {
5399         // Result is in a non-flat representation
5400         off = Offset(flat_offset()).meet(Offset(tap->flat_offset()));
5401         field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom;
5402       } else if (flat_offset() == tap->flat_offset()) {
5403         off = Offset(!is_flat() ? offset() : tap->offset());
5404         field_off = !is_flat() ? field_offset() : tap->field_offset();
5405       }
5406     }
5407 
5408     ciObject* o = nullptr;             // Assume not constant when done
5409     ciObject* this_oop = const_oop();
5410     ciObject* tap_oop = tap->const_oop();
5411     if (ptr == Constant) {
5412       if (this_oop != nullptr && tap_oop != nullptr &&
5413           this_oop->equals(tap_oop)) {
5414         o = tap_oop;
5415       } else if (above_centerline(_ptr)) {
5416         o = tap_oop;
5417       } else if (above_centerline(tap->_ptr)) {
5418         o = this_oop;
5419       } else {
5420         ptr = NotNull;
5421       }
5422     }
5423     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth);
5424   }
5425 
5426   // All arrays inherit from Object class
5427   case InstPtr: {
5428     const TypeInstPtr *tp = t->is_instptr();
5429     Offset offset = meet_offset(tp->offset());
5430     PTR ptr = meet_ptr(tp->ptr());
5431     int instance_id = meet_instance_id(tp->instance_id());
5432     const TypePtr* speculative = xmeet_speculative(tp);
5433     int depth = meet_inline_depth(tp->inline_depth());
5434     const TypeInterfaces* interfaces = meet_interfaces(tp);
5435     const TypeInterfaces* tp_interfaces = tp->_interfaces;
5436     const TypeInterfaces* this_interfaces = _interfaces;
5437 
5438     switch (ptr) {
5439     case TopPTR:
5440     case AnyNull:                // Fall 'down' to dual of object klass
5441       // For instances when a subclass meets a superclass we fall
5442       // below the centerline when the superclass is exact. We need to
5443       // do the same here.
5444       //
5445       // Flat in array:
5446       // We do
5447       //   dual(TypeAryPtr) MEET dual(TypeInstPtr)
5448       // If TypeInstPtr is anything else than Object, then the result of the meet is bottom Object (i.e. we could have
5449       // instances or arrays).
5450       // If TypeInstPtr is an Object and either
5451       // - exact
5452       // - inexact AND flat in array == dual(not flat in array) (i.e. not an array type)
5453       // then the result of the meet is bottom Object (i.e. we could have instances or arrays).
5454       // Otherwise, we meet two array pointers and create a new TypeAryPtr.
5455       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5456           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5457         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5458       } else {
5459         // cannot subclass, so the meet has to fall badly below the centerline
5460         ptr = NotNull;
5461         instance_id = InstanceBot;
5462         interfaces = this_interfaces->intersection_with(tp_interfaces);
5463         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5464         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, flat_in_array, instance_id, speculative, depth);
5465       }
5466     case Constant:
5467     case NotNull:
5468     case BotPTR: { // Fall down to object klass
5469       // LCA is object_klass, but if we subclass from the top we can do better
5470       if (above_centerline(tp->ptr())) {
5471         // If 'tp'  is above the centerline and it is Object class
5472         // then we can subclass in the Java class hierarchy.
5473         // For instances when a subclass meets a superclass we fall
5474         // below the centerline when the superclass is exact. We need
5475         // to do the same here.
5476 
5477         // Flat in array: We do TypeAryPtr MEET dual(TypeInstPtr), same applies as above in TopPTR/AnyNull case.
5478         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
5479             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
5480           // that is, my array type is a subtype of 'tp' klass
5481           return make(ptr, (ptr == Constant ? const_oop() : nullptr),
5482                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
5483         }
5484       }
5485       // The other case cannot happen, since t cannot be a subtype of an array.
5486       // The meet falls down to Object class below centerline.
5487       if (ptr == Constant) {
5488         ptr = NotNull;
5489       }
5490       if (instance_id > 0) {
5491         instance_id = InstanceBot;
5492       }
5493 
5494       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
5495       interfaces = this_interfaces->intersection_with(tp_interfaces);
5496       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset,
5497                                flat_in_array, instance_id, speculative, depth);
5498     }
5499     default: typerr(t);
5500     }
5501   }
5502   }
5503   return this;                  // Lint noise
5504 }
5505 
5506 
5507 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
5508                                                            ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) {
5509   int dummy;
5510   bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
5511   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
5512   ciKlass* this_klass = this_ary->klass();
5513   ciKlass* other_klass = other_ary->klass();
5514   bool this_xk = this_ary->klass_is_exact();
5515   bool other_xk = other_ary->klass_is_exact();
5516   PTR this_ptr = this_ary->ptr();
5517   PTR other_ptr = other_ary->ptr();
5518   bool this_flat = this_ary->is_flat();
5519   bool this_not_flat = this_ary->is_not_flat();
5520   bool other_flat = other_ary->is_flat();
5521   bool other_not_flat = other_ary->is_not_flat();
5522   bool this_not_null_free = this_ary->is_not_null_free();
5523   bool other_not_null_free = other_ary->is_not_null_free();
5524   bool this_atomic = this_ary->is_atomic();
5525   bool other_atomic = other_ary->is_atomic();
5526   const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free();
5527   res_klass = nullptr;
5528   MeetResult result = SUBTYPE;
5529   res_flat = this_flat && other_flat;
5530   bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free();
5531   res_not_flat = this_not_flat && other_not_flat;
5532   res_not_null_free = this_not_null_free && other_not_null_free;
5533   res_atomic = this_atomic && other_atomic;
5534 
5535   if (elem->isa_int()) {
5536     // Integral array element types have irrelevant lattice relations.
5537     // It is the klass that determines array layout, not the element type.
5538       if (this_top_or_bottom) {
5539         res_klass = other_klass;
5540       } else if (other_top_or_bottom || other_klass == this_klass) {
5541       res_klass = this_klass;
5542     } else {
5543       // Something like byte[int+] meets char[int+].
5544       // This must fall to bottom, not (int[-128..65535])[int+].
5545       // instance_id = InstanceBot;
5546       elem = Type::BOTTOM;
5547       result = NOT_SUBTYPE;
5548       if (above_centerline(ptr) || ptr == Constant) {
5549         ptr = NotNull;
5550         res_xk = false;
5551         return NOT_SUBTYPE;
5552       }
5553     }
5554   } else {// Non integral arrays.
5555     // Must fall to bottom if exact klasses in upper lattice
5556     // are not equal or super klass is exact.
5557     if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5558         // meet with top[] and bottom[] are processed further down:
5559         !this_top_or_bottom && !other_top_or_bottom &&
5560         // both are exact and not equal:
5561         ((other_xk && this_xk) ||
5562          // 'tap'  is exact and super or unrelated:
5563          (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5564          // 'this' is exact and super or unrelated:
5565          (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5566       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5567         elem = Type::BOTTOM;
5568       }
5569       ptr = NotNull;
5570       res_xk = false;
5571       return NOT_SUBTYPE;
5572     }
5573   }
5574 
5575   res_xk = false;
5576   switch (other_ptr) {
5577     case AnyNull:
5578     case TopPTR:
5579       // Compute new klass on demand, do not use tap->_klass
5580       if (below_centerline(this_ptr)) {
5581         res_xk = this_xk;
5582         if (this_ary->is_flat()) {
5583           elem = this_ary->elem();
5584         }
5585       } else {
5586         res_xk = (other_xk || this_xk);
5587       }
5588       break;
5589     case Constant: {
5590       if (this_ptr == Constant && same_nullness) {
5591         // Only exact if same nullness since:
5592         //     null-free [LMyValue <: nullable [LMyValue.
5593         res_xk = true;
5594       } else if (above_centerline(this_ptr)) {
5595         res_xk = true;
5596       } else {
5597         // Only precise for identical arrays
5598         res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5599         // Even though MyValue is final, [LMyValue is only exact if the array
5600         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5601         if (res_xk && !res_null_free && !res_not_null_free) {
5602           ptr = NotNull;
5603           res_xk = false;
5604         }
5605       }
5606       break;
5607     }
5608     case NotNull:
5609     case BotPTR:
5610       // Compute new klass on demand, do not use tap->_klass
5611       if (above_centerline(this_ptr)) {
5612         res_xk = other_xk;
5613         if (other_ary->is_flat()) {
5614           elem = other_ary->elem();
5615         }
5616       } else {
5617         res_xk = (other_xk && this_xk) &&
5618                  (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5619         // Even though MyValue is final, [LMyValue is only exact if the array
5620         // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue.
5621         if (res_xk && !res_null_free && !res_not_null_free) {
5622           ptr = NotNull;
5623           res_xk = false;
5624         }
5625       }
5626       break;
5627     default:  {
5628       ShouldNotReachHere();
5629       return result;
5630     }
5631   }
5632   return result;
5633 }
5634 
5635 
5636 //------------------------------xdual------------------------------------------
5637 // Dual: compute field-by-field dual
5638 const Type *TypeAryPtr::xdual() const {
5639   bool xk = _klass_is_exact;
5640   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5641 }
5642 
5643 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
5644   return _field_offset.meet(offset);
5645 }
5646 
5647 //------------------------------dual_offset------------------------------------
5648 Type::Offset TypeAryPtr::dual_field_offset() const {
5649   return _field_offset.dual();
5650 }
5651 
5652 //------------------------------dump2------------------------------------------
5653 #ifndef PRODUCT
5654 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5655   st->print("aryptr:");
5656   _ary->dump2(d, depth, st);
5657   _interfaces->dump(st);
5658 
5659   if (_ptr == Constant) {
5660     const_oop()->print(st);
5661   }
5662 
5663   st->print(":%s", ptr_msg[_ptr]);
5664   if (_klass_is_exact) {
5665     st->print(":exact");
5666   }
5667 
5668   if (is_flat()) {
5669     st->print(":flat");
5670     st->print("(");
5671     _field_offset.dump2(st);
5672     st->print(")");
5673   } else if (is_not_flat()) {
5674     st->print(":not_flat");
5675   }
5676   if (is_null_free()) {
5677     st->print(":null free");
5678   }
5679   if (is_atomic()) {
5680     st->print(":atomic");
5681   }
5682   if (Verbose) {
5683     if (is_not_flat()) {
5684       st->print(":not flat");
5685     }
5686     if (is_not_null_free()) {
5687       st->print(":nullable");
5688     }
5689   }
5690   if (offset() != 0) {
5691     BasicType basic_elem_type = elem()->basic_type();
5692     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5693     if( _offset == Offset::top )       st->print("+undefined");
5694     else if( _offset == Offset::bottom )  st->print("+any");
5695     else if( offset() < header_size ) st->print("+%d", offset());
5696     else {
5697       if (basic_elem_type == T_ILLEGAL) {
5698         st->print("+any");
5699       } else {
5700         int elem_size = type2aelembytes(basic_elem_type);
5701         st->print("[%d]", (offset() - header_size)/elem_size);
5702       }
5703     }
5704   }
5705 
5706   dump_instance_id(st);
5707   dump_inline_depth(st);
5708   dump_speculative(st);
5709 }
5710 #endif
5711 
5712 bool TypeAryPtr::empty(void) const {
5713   if (_ary->empty())       return true;
5714   // FIXME: Does this belong here? Or in the meet code itself?
5715   if (is_flat() && is_not_flat()) {
5716     return true;
5717   }
5718   return TypeOopPtr::empty();
5719 }
5720 
5721 //------------------------------add_offset-------------------------------------
5722 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5723   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5724 }
5725 
5726 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5727   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache);
5728 }
5729 
5730 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5731   return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5732 }
5733 
5734 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5735   if (_speculative == nullptr) {
5736     return this;
5737   }
5738   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5739   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache);
5740 }
5741 
5742 const Type* TypeAryPtr::cleanup_speculative() const {
5743   if (speculative() == nullptr) {
5744     return this;
5745   }
5746   // Keep speculative part if it contains information about flat-/nullability
5747   const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr();
5748   if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) &&
5749       (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) {
5750     return this;
5751   }
5752   return TypeOopPtr::cleanup_speculative();
5753 }
5754 
5755 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5756   if (!UseInlineDepthForSpeculativeTypes) {
5757     return this;
5758   }
5759   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
5760 }
5761 
5762 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
5763   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
5764 }
5765 
5766 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
5767   int adj = 0;
5768   if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) {
5769     if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
5770       adj = _offset.get();
5771       offset += _offset.get();
5772     }
5773     uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
5774     if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
5775       offset += _field_offset.get();
5776       if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
5777         offset += header;
5778       }
5779     }
5780     if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) {
5781       // Try to get the field of the inline type array element we are pointing to
5782       ciInlineKlass* vk = elem()->inline_klass();
5783       int shift = flat_log_elem_size();
5784       int mask = (1 << shift) - 1;
5785       intptr_t field_offset = ((offset - header) & mask);
5786       ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false);
5787       if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) {
5788         return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
5789       }
5790     }
5791   }
5792   return add_offset(offset - adj);
5793 }
5794 
5795 // Return offset incremented by field_offset for flat inline type arrays
5796 int TypeAryPtr::flat_offset() const {
5797   int offset = _offset.get();
5798   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
5799       _field_offset != Offset::bottom && _field_offset != Offset::top) {
5800     offset += _field_offset.get();
5801   }
5802   return offset;
5803 }
5804 
5805 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5806   assert(is_known_instance(), "should be known");
5807   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth);
5808 }
5809 
5810 //=============================================================================
5811 
5812 
5813 //------------------------------hash-------------------------------------------
5814 // Type-specific hashing function.
5815 uint TypeNarrowPtr::hash(void) const {
5816   return _ptrtype->hash() + 7;
5817 }
5818 
5819 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5820   return _ptrtype->singleton();
5821 }
5822 
5823 bool TypeNarrowPtr::empty(void) const {
5824   return _ptrtype->empty();
5825 }
5826 
5827 intptr_t TypeNarrowPtr::get_con() const {
5828   return _ptrtype->get_con();
5829 }
5830 
5831 bool TypeNarrowPtr::eq( const Type *t ) const {
5832   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5833   if (tc != nullptr) {
5834     if (_ptrtype->base() != tc->_ptrtype->base()) {
5835       return false;
5836     }
5837     return tc->_ptrtype->eq(_ptrtype);
5838   }
5839   return false;
5840 }
5841 
5842 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5843   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5844   return make_same_narrowptr(odual);
5845 }
5846 
5847 
5848 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5849   if (isa_same_narrowptr(kills)) {
5850     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5851     if (ft->empty())
5852       return Type::TOP;           // Canonical empty value
5853     if (ft->isa_ptr()) {
5854       return make_hash_same_narrowptr(ft->isa_ptr());
5855     }
5856     return ft;
5857   } else if (kills->isa_ptr()) {
5858     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5859     if (ft->empty())
5860       return Type::TOP;           // Canonical empty value
5861     return ft;
5862   } else {
5863     return Type::TOP;
5864   }
5865 }
5866 
5867 //------------------------------xmeet------------------------------------------
5868 // Compute the MEET of two types.  It returns a new Type object.
5869 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5870   // Perform a fast test for common case; meeting the same types together.
5871   if( this == t ) return this;  // Meeting same type-rep?
5872 
5873   if (t->base() == base()) {
5874     const Type* result = _ptrtype->xmeet(t->make_ptr());
5875     if (result->isa_ptr()) {
5876       return make_hash_same_narrowptr(result->is_ptr());
5877     }
5878     return result;
5879   }
5880 
5881   // Current "this->_base" is NarrowKlass or NarrowOop
5882   switch (t->base()) {          // switch on original type
5883 
5884   case Int:                     // Mixing ints & oops happens when javac
5885   case Long:                    // reuses local variables
5886   case HalfFloatTop:
5887   case HalfFloatCon:
5888   case HalfFloatBot:
5889   case FloatTop:
5890   case FloatCon:
5891   case FloatBot:
5892   case DoubleTop:
5893   case DoubleCon:
5894   case DoubleBot:
5895   case AnyPtr:
5896   case RawPtr:
5897   case OopPtr:
5898   case InstPtr:
5899   case AryPtr:
5900   case MetadataPtr:
5901   case KlassPtr:
5902   case InstKlassPtr:
5903   case AryKlassPtr:
5904   case NarrowOop:
5905   case NarrowKlass:
5906   case Bottom:                  // Ye Olde Default
5907     return Type::BOTTOM;
5908   case Top:
5909     return this;
5910 
5911   default:                      // All else is a mistake
5912     typerr(t);
5913 
5914   } // End of switch
5915 
5916   return this;
5917 }
5918 
5919 #ifndef PRODUCT
5920 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5921   _ptrtype->dump2(d, depth, st);
5922 }
5923 #endif
5924 
5925 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5926 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5927 
5928 
5929 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5930   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5931 }
5932 
5933 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5934   return make(_ptrtype->remove_speculative()->is_ptr());
5935 }
5936 
5937 const Type* TypeNarrowOop::cleanup_speculative() const {
5938   return make(_ptrtype->cleanup_speculative()->is_ptr());
5939 }
5940 
5941 #ifndef PRODUCT
5942 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5943   st->print("narrowoop: ");
5944   TypeNarrowPtr::dump2(d, depth, st);
5945 }
5946 #endif
5947 
5948 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5949 
5950 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5951   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5952 }
5953 
5954 #ifndef PRODUCT
5955 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5956   st->print("narrowklass: ");
5957   TypeNarrowPtr::dump2(d, depth, st);
5958 }
5959 #endif
5960 
5961 
5962 //------------------------------eq---------------------------------------------
5963 // Structural equality check for Type representations
5964 bool TypeMetadataPtr::eq( const Type *t ) const {
5965   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5966   ciMetadata* one = metadata();
5967   ciMetadata* two = a->metadata();
5968   if (one == nullptr || two == nullptr) {
5969     return (one == two) && TypePtr::eq(t);
5970   } else {
5971     return one->equals(two) && TypePtr::eq(t);
5972   }
5973 }
5974 
5975 //------------------------------hash-------------------------------------------
5976 // Type-specific hashing function.
5977 uint TypeMetadataPtr::hash(void) const {
5978   return
5979     (metadata() ? metadata()->hash() : 0) +
5980     TypePtr::hash();
5981 }
5982 
5983 //------------------------------singleton--------------------------------------
5984 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5985 // constants
5986 bool TypeMetadataPtr::singleton(void) const {
5987   // detune optimizer to not generate constant metadata + constant offset as a constant!
5988   // TopPTR, Null, AnyNull, Constant are all singletons
5989   return (offset() == 0) && !below_centerline(_ptr);
5990 }
5991 
5992 //------------------------------add_offset-------------------------------------
5993 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5994   return make( _ptr, _metadata, xadd_offset(offset));
5995 }
5996 
5997 //-----------------------------filter------------------------------------------
5998 // Do not allow interface-vs.-noninterface joins to collapse to top.
5999 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
6000   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
6001   if (ft == nullptr || ft->empty())
6002     return Type::TOP;           // Canonical empty value
6003   return ft;
6004 }
6005 
6006  //------------------------------get_con----------------------------------------
6007 intptr_t TypeMetadataPtr::get_con() const {
6008   assert( _ptr == Null || _ptr == Constant, "" );
6009   assert(offset() >= 0, "");
6010 
6011   if (offset() != 0) {
6012     // After being ported to the compiler interface, the compiler no longer
6013     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6014     // to a handle at compile time.  This handle is embedded in the generated
6015     // code and dereferenced at the time the nmethod is made.  Until that time,
6016     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6017     // have access to the addresses!).  This does not seem to currently happen,
6018     // but this assertion here is to help prevent its occurrence.
6019     tty->print_cr("Found oop constant with non-zero offset");
6020     ShouldNotReachHere();
6021   }
6022 
6023   return (intptr_t)metadata()->constant_encoding();
6024 }
6025 
6026 //------------------------------cast_to_ptr_type-------------------------------
6027 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
6028   if( ptr == _ptr ) return this;
6029   return make(ptr, metadata(), _offset);
6030 }
6031 
6032 //------------------------------meet-------------------------------------------
6033 // Compute the MEET of two types.  It returns a new Type object.
6034 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
6035   // Perform a fast test for common case; meeting the same types together.
6036   if( this == t ) return this;  // Meeting same type-rep?
6037 
6038   // Current "this->_base" is OopPtr
6039   switch (t->base()) {          // switch on original type
6040 
6041   case Int:                     // Mixing ints & oops happens when javac
6042   case Long:                    // reuses local variables
6043   case HalfFloatTop:
6044   case HalfFloatCon:
6045   case HalfFloatBot:
6046   case FloatTop:
6047   case FloatCon:
6048   case FloatBot:
6049   case DoubleTop:
6050   case DoubleCon:
6051   case DoubleBot:
6052   case NarrowOop:
6053   case NarrowKlass:
6054   case Bottom:                  // Ye Olde Default
6055     return Type::BOTTOM;
6056   case Top:
6057     return this;
6058 
6059   default:                      // All else is a mistake
6060     typerr(t);
6061 
6062   case AnyPtr: {
6063     // Found an AnyPtr type vs self-OopPtr type
6064     const TypePtr *tp = t->is_ptr();
6065     Offset offset = meet_offset(tp->offset());
6066     PTR ptr = meet_ptr(tp->ptr());
6067     switch (tp->ptr()) {
6068     case Null:
6069       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6070       // else fall through:
6071     case TopPTR:
6072     case AnyNull: {
6073       return make(ptr, _metadata, offset);
6074     }
6075     case BotPTR:
6076     case NotNull:
6077       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6078     default: typerr(t);
6079     }
6080   }
6081 
6082   case RawPtr:
6083   case KlassPtr:
6084   case InstKlassPtr:
6085   case AryKlassPtr:
6086   case OopPtr:
6087   case InstPtr:
6088   case AryPtr:
6089     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
6090 
6091   case MetadataPtr: {
6092     const TypeMetadataPtr *tp = t->is_metadataptr();
6093     Offset offset = meet_offset(tp->offset());
6094     PTR tptr = tp->ptr();
6095     PTR ptr = meet_ptr(tptr);
6096     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
6097     if (tptr == TopPTR || _ptr == TopPTR ||
6098         metadata()->equals(tp->metadata())) {
6099       return make(ptr, md, offset);
6100     }
6101     // metadata is different
6102     if( ptr == Constant ) {  // Cannot be equal constants, so...
6103       if( tptr == Constant && _ptr != Constant)  return t;
6104       if( _ptr == Constant && tptr != Constant)  return this;
6105       ptr = NotNull;            // Fall down in lattice
6106     }
6107     return make(ptr, nullptr, offset);
6108     break;
6109   }
6110   } // End of switch
6111   return this;                  // Return the double constant
6112 }
6113 
6114 
6115 //------------------------------xdual------------------------------------------
6116 // Dual of a pure metadata pointer.
6117 const Type *TypeMetadataPtr::xdual() const {
6118   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
6119 }
6120 
6121 //------------------------------dump2------------------------------------------
6122 #ifndef PRODUCT
6123 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
6124   st->print("metadataptr:%s", ptr_msg[_ptr]);
6125   if (metadata() != nullptr) {
6126     st->print(":" INTPTR_FORMAT, p2i(metadata()));
6127   }
6128   dump_offset(st);
6129 }
6130 #endif
6131 
6132 
6133 //=============================================================================
6134 // Convenience common pre-built type.
6135 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
6136 
6137 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
6138   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
6139 }
6140 
6141 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
6142   return make(Constant, m, Offset(0));
6143 }
6144 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
6145   return make(Constant, m, Offset(0));
6146 }
6147 
6148 //------------------------------make-------------------------------------------
6149 // Create a meta data constant
6150 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
6151   assert(m == nullptr || !m->is_klass(), "wrong type");
6152   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
6153 }
6154 
6155 
6156 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
6157   const Type* elem = _ary->_elem;
6158   bool xk = klass_is_exact();
6159   bool is_refined = false;
6160   if (elem->make_oopptr() != nullptr) {
6161     is_refined = true;
6162     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
6163     if (elem->isa_aryklassptr()) {
6164       const TypeAryKlassPtr* elem_klass = elem->is_aryklassptr();
6165       if (elem_klass->is_refined_type()) {
6166         elem = elem_klass->cast_to_non_refined();
6167       }
6168     } else {
6169       const TypeInstKlassPtr* elem_klass = elem->is_instklassptr();
6170       if (try_for_exact && !xk && elem_klass->klass_is_exact() &&
6171           !elem_klass->exact_klass()->as_instance_klass()->can_be_inline_klass()) {
6172         xk = true;
6173       }
6174     }
6175   }
6176   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined);
6177 }
6178 
6179 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6180   if (klass->is_instance_klass()) {
6181     return TypeInstKlassPtr::make(klass, interface_handling);
6182   }
6183   return TypeAryKlassPtr::make(klass, interface_handling);
6184 }
6185 
6186 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset)
6187   : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
6188   assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
6189          klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
6190 }
6191 
6192 // Is there a single ciKlass* that can represent that type?
6193 ciKlass* TypeKlassPtr::exact_klass_helper() const {
6194   assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
6195   if (_interfaces->empty()) {
6196     return _klass;
6197   }
6198   if (_klass != ciEnv::current()->Object_klass()) {
6199     if (_interfaces->eq(_klass->as_instance_klass())) {
6200       return _klass;
6201     }
6202     return nullptr;
6203   }
6204   return _interfaces->exact_klass();
6205 }
6206 
6207 //------------------------------eq---------------------------------------------
6208 // Structural equality check for Type representations
6209 bool TypeKlassPtr::eq(const Type *t) const {
6210   const TypeKlassPtr *p = t->is_klassptr();
6211   return
6212     _interfaces->eq(p->_interfaces) &&
6213     TypePtr::eq(p);
6214 }
6215 
6216 //------------------------------hash-------------------------------------------
6217 // Type-specific hashing function.
6218 uint TypeKlassPtr::hash(void) const {
6219   return TypePtr::hash() + _interfaces->hash();
6220 }
6221 
6222 //------------------------------singleton--------------------------------------
6223 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6224 // constants
6225 bool TypeKlassPtr::singleton(void) const {
6226   // detune optimizer to not generate constant klass + constant offset as a constant!
6227   // TopPTR, Null, AnyNull, Constant are all singletons
6228   return (offset() == 0) && !below_centerline(_ptr);
6229 }
6230 
6231 // Do not allow interface-vs.-noninterface joins to collapse to top.
6232 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
6233   // logic here mirrors the one from TypeOopPtr::filter. See comments
6234   // there.
6235   const Type* ft = join_helper(kills, include_speculative);
6236 
6237   if (ft->empty()) {
6238     return Type::TOP;           // Canonical empty value
6239   }
6240 
6241   return ft;
6242 }
6243 
6244 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
6245   if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
6246     return _interfaces->union_with(other->_interfaces);
6247   } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
6248     return other->_interfaces;
6249   } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
6250     return _interfaces;
6251   }
6252   return _interfaces->intersection_with(other->_interfaces);
6253 }
6254 
6255 //------------------------------get_con----------------------------------------
6256 intptr_t TypeKlassPtr::get_con() const {
6257   assert( _ptr == Null || _ptr == Constant, "" );
6258   assert( offset() >= 0, "" );
6259 
6260   if (offset() != 0) {
6261     // After being ported to the compiler interface, the compiler no longer
6262     // directly manipulates the addresses of oops.  Rather, it only has a pointer
6263     // to a handle at compile time.  This handle is embedded in the generated
6264     // code and dereferenced at the time the nmethod is made.  Until that time,
6265     // it is not reasonable to do arithmetic with the addresses of oops (we don't
6266     // have access to the addresses!).  This does not seem to currently happen,
6267     // but this assertion here is to help prevent its occurrence.
6268     tty->print_cr("Found oop constant with non-zero offset");
6269     ShouldNotReachHere();
6270   }
6271 
6272   ciKlass* k = exact_klass();
6273 
6274   return (intptr_t)k->constant_encoding();
6275 }
6276 
6277 //=============================================================================
6278 // Convenience common pre-built types.
6279 
6280 // Not-null object klass or below
6281 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
6282 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
6283 
6284 bool TypeInstKlassPtr::eq(const Type *t) const {
6285   const TypeInstKlassPtr* p = t->is_instklassptr();
6286   return
6287     klass()->equals(p->klass()) &&
6288     _flat_in_array == p->_flat_in_array &&
6289     TypeKlassPtr::eq(p);
6290 }
6291 
6292 uint TypeInstKlassPtr::hash() const {
6293   return klass()->hash() + TypeKlassPtr::hash() + static_cast<uint>(_flat_in_array);
6294 }
6295 
6296 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array) {
6297   if (flat_in_array == Uninitialized) {
6298     flat_in_array = compute_flat_in_array(k->as_instance_klass(), ptr == Constant);
6299   }
6300   TypeInstKlassPtr *r =
6301     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons();
6302 
6303   return r;
6304 }
6305 
6306 bool TypeInstKlassPtr::empty() const {
6307   if (_flat_in_array == TopFlat) {
6308     return true;
6309   }
6310   return TypeKlassPtr::empty();
6311 }
6312 
6313 //------------------------------add_offset-------------------------------------
6314 // Access internals of klass object
6315 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
6316   return make(_ptr, klass(), _interfaces, xadd_offset(offset), _flat_in_array);
6317 }
6318 
6319 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
6320   return make(_ptr, klass(), _interfaces, Offset(offset), _flat_in_array);
6321 }
6322 
6323 //------------------------------cast_to_ptr_type-------------------------------
6324 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
6325   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
6326   if( ptr == _ptr ) return this;
6327   return make(ptr, _klass, _interfaces, _offset, _flat_in_array);
6328 }
6329 
6330 
6331 bool TypeInstKlassPtr::must_be_exact() const {
6332   if (!_klass->is_loaded())  return false;
6333   ciInstanceKlass* ik = _klass->as_instance_klass();
6334   if (ik->is_final())  return true;  // cannot clear xk
6335   return false;
6336 }
6337 
6338 //-----------------------------cast_to_exactness-------------------------------
6339 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6340   if (klass_is_exact == (_ptr == Constant)) return this;
6341   if (must_be_exact()) return this;
6342   ciKlass* k = klass();
6343   FlatInArray flat_in_array = compute_flat_in_array(k->as_instance_klass(), klass_is_exact);
6344   return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array);
6345 }
6346 
6347 
6348 //-----------------------------as_instance_type--------------------------------
6349 // Corresponding type for an instance of the given class.
6350 // It will be NotNull, and exact if and only if the klass type is exact.
6351 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
6352   ciKlass* k = klass();
6353   bool xk = klass_is_exact();
6354   Compile* C = Compile::current();
6355   Dependencies* deps = C->dependencies();
6356   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6357   // Element is an instance
6358   bool klass_is_exact = false;
6359   const TypeInterfaces* interfaces = _interfaces;
6360   ciInstanceKlass* ik = k->as_instance_klass();
6361   if (k->is_loaded()) {
6362     // Try to set klass_is_exact.
6363     klass_is_exact = ik->is_final();
6364     if (!klass_is_exact && klass_change
6365         && deps != nullptr && UseUniqueSubclasses) {
6366       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6367       if (sub != nullptr) {
6368         if (_interfaces->eq(sub)) {
6369           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6370           k = ik = sub;
6371           xk = sub->is_final();
6372         }
6373       }
6374     }
6375   }
6376 
6377   FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array);
6378   return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array);
6379 }
6380 
6381 //------------------------------xmeet------------------------------------------
6382 // Compute the MEET of two types, return a new Type object.
6383 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
6384   // Perform a fast test for common case; meeting the same types together.
6385   if( this == t ) return this;  // Meeting same type-rep?
6386 
6387   // Current "this->_base" is Pointer
6388   switch (t->base()) {          // switch on original type
6389 
6390   case Int:                     // Mixing ints & oops happens when javac
6391   case Long:                    // reuses local variables
6392   case HalfFloatTop:
6393   case HalfFloatCon:
6394   case HalfFloatBot:
6395   case FloatTop:
6396   case FloatCon:
6397   case FloatBot:
6398   case DoubleTop:
6399   case DoubleCon:
6400   case DoubleBot:
6401   case NarrowOop:
6402   case NarrowKlass:
6403   case Bottom:                  // Ye Olde Default
6404     return Type::BOTTOM;
6405   case Top:
6406     return this;
6407 
6408   default:                      // All else is a mistake
6409     typerr(t);
6410 
6411   case AnyPtr: {                // Meeting to AnyPtrs
6412     // Found an AnyPtr type vs self-KlassPtr type
6413     const TypePtr *tp = t->is_ptr();
6414     Offset offset = meet_offset(tp->offset());
6415     PTR ptr = meet_ptr(tp->ptr());
6416     switch (tp->ptr()) {
6417     case TopPTR:
6418       return this;
6419     case Null:
6420       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6421     case AnyNull:
6422       return make(ptr, klass(), _interfaces, offset, _flat_in_array);
6423     case BotPTR:
6424     case NotNull:
6425       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6426     default: typerr(t);
6427     }
6428   }
6429 
6430   case RawPtr:
6431   case MetadataPtr:
6432   case OopPtr:
6433   case AryPtr:                  // Meet with AryPtr
6434   case InstPtr:                 // Meet with InstPtr
6435       return TypePtr::BOTTOM;
6436 
6437   //
6438   //             A-top         }
6439   //           /   |   \       }  Tops
6440   //       B-top A-any C-top   }
6441   //          | /  |  \ |      }  Any-nulls
6442   //       B-any   |   C-any   }
6443   //          |    |    |
6444   //       B-con A-con C-con   } constants; not comparable across classes
6445   //          |    |    |
6446   //       B-not   |   C-not   }
6447   //          | \  |  / |      }  not-nulls
6448   //       B-bot A-not C-bot   }
6449   //           \   |   /       }  Bottoms
6450   //             A-bot         }
6451   //
6452 
6453   case InstKlassPtr: {  // Meet two KlassPtr types
6454     const TypeInstKlassPtr *tkls = t->is_instklassptr();
6455     Offset  off     = meet_offset(tkls->offset());
6456     PTR  ptr     = meet_ptr(tkls->ptr());
6457     const TypeInterfaces* interfaces = meet_interfaces(tkls);
6458 
6459     ciKlass* res_klass = nullptr;
6460     bool res_xk = false;
6461     const FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tkls->flat_in_array());
6462     switch (meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
6463       case UNLOADED:
6464         ShouldNotReachHere();
6465       case SUBTYPE:
6466       case NOT_SUBTYPE:
6467       case LCA:
6468       case QUICK: {
6469         assert(res_xk == (ptr == Constant), "");
6470         const Type* res = make(ptr, res_klass, interfaces, off, flat_in_array);
6471         return res;
6472       }
6473       default:
6474         ShouldNotReachHere();
6475     }
6476   } // End of case KlassPtr
6477   case AryKlassPtr: {                // All arrays inherit from Object class
6478     const TypeAryKlassPtr *tp = t->is_aryklassptr();
6479     Offset offset = meet_offset(tp->offset());
6480     PTR ptr = meet_ptr(tp->ptr());
6481     const TypeInterfaces* interfaces = meet_interfaces(tp);
6482     const TypeInterfaces* tp_interfaces = tp->_interfaces;
6483     const TypeInterfaces* this_interfaces = _interfaces;
6484 
6485     switch (ptr) {
6486     case TopPTR:
6487     case AnyNull:                // Fall 'down' to dual of object klass
6488       // For instances when a subclass meets a superclass we fall
6489       // below the centerline when the superclass is exact. We need to
6490       // do the same here.
6491       //
6492       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6493       if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6494           !klass_is_exact() && !is_not_flat_in_array()) {
6495         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6496       } else {
6497         // cannot subclass, so the meet has to fall badly below the centerline
6498         ptr = NotNull;
6499         interfaces = _interfaces->intersection_with(tp->_interfaces);
6500         FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6501         return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6502       }
6503     case Constant:
6504     case NotNull:
6505     case BotPTR: { // Fall down to object klass
6506       // LCA is object_klass, but if we subclass from the top we can do better
6507       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
6508         // If 'this' (InstPtr) is above the centerline and it is Object class
6509         // then we can subclass in the Java class hierarchy.
6510         // For instances when a subclass meets a superclass we fall
6511         // below the centerline when the superclass is exact. We need
6512         // to do the same here.
6513         //
6514         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
6515         if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) &&
6516             !klass_is_exact() && !is_not_flat_in_array()) {
6517           // that is, tp's array type is a subtype of my klass
6518           return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type());
6519         }
6520       }
6521       // The other case cannot happen, since I cannot be a subtype of an array.
6522       // The meet falls down to Object class below centerline.
6523       if( ptr == Constant )
6524         ptr = NotNull;
6525       interfaces = this_interfaces->intersection_with(tp_interfaces);
6526       FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat);
6527       return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
6528     }
6529     default: typerr(t);
6530     }
6531   }
6532 
6533   } // End of switch
6534   return this;                  // Return the double constant
6535 }
6536 
6537 //------------------------------xdual------------------------------------------
6538 // Dual: compute field-by-field dual
6539 const Type* TypeInstKlassPtr::xdual() const {
6540   return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), dual_flat_in_array());
6541 }
6542 
6543 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6544   static_assert(std::is_base_of<T2, T1>::value, "");
6545   if (!this_one->is_loaded() || !other->is_loaded()) {
6546     return false;
6547   }
6548   if (!this_one->is_instance_type(other)) {
6549     return false;
6550   }
6551 
6552   if (!other_exact) {
6553     return false;
6554   }
6555 
6556   if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
6557     return true;
6558   }
6559 
6560   return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6561 }
6562 
6563 bool TypeInstKlassPtr::might_be_an_array() const {
6564   if (!instance_klass()->is_java_lang_Object()) {
6565     // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types.
6566     return false;
6567   }
6568   if (interfaces()->has_non_array_interface()) {
6569     // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array.
6570     return false;
6571   }
6572   // Cannot prove it's not an array.
6573   return true;
6574 }
6575 
6576 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6577   return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6578 }
6579 
6580 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
6581   static_assert(std::is_base_of<T2, T1>::value, "");
6582   if (!this_one->is_loaded() || !other->is_loaded()) {
6583     return false;
6584   }
6585   if (!this_one->is_instance_type(other)) {
6586     return false;
6587   }
6588   return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
6589 }
6590 
6591 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6592   return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
6593 }
6594 
6595 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6596   static_assert(std::is_base_of<T2, T1>::value, "");
6597   if (!this_one->is_loaded() || !other->is_loaded()) {
6598     return true;
6599   }
6600 
6601   if (this_one->is_array_type(other)) {
6602     return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass())  && other->_interfaces->contains(this_one->_interfaces);
6603   }
6604 
6605   assert(this_one->is_instance_type(other), "unsupported");
6606 
6607   if (this_exact && other_exact) {
6608     return this_one->is_java_subtype_of(other);
6609   }
6610 
6611   if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
6612     return false;
6613   }
6614 
6615   if (this_exact) {
6616     return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
6617   }
6618 
6619   return true;
6620 }
6621 
6622 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6623   return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
6624 }
6625 
6626 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
6627   if (!UseUniqueSubclasses) {
6628     return this;
6629   }
6630   ciKlass* k = klass();
6631   Compile* C = Compile::current();
6632   Dependencies* deps = C->dependencies();
6633   assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
6634   if (k->is_loaded()) {
6635     ciInstanceKlass* ik = k->as_instance_klass();
6636     if (deps != nullptr) {
6637       ciInstanceKlass* sub = ik->unique_concrete_subklass();
6638       if (sub != nullptr) {
6639         bool improve_to_exact = sub->is_final() && _ptr == NotNull;
6640         const TypeInstKlassPtr* improved = TypeInstKlassPtr::make(improve_to_exact ? Constant : _ptr, sub, _offset);
6641         if (improved->_interfaces->contains(_interfaces)) {
6642           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
6643           return improved;
6644         }
6645       }
6646     }
6647   }
6648   return this;
6649 }
6650 
6651 bool TypeInstKlassPtr::can_be_inline_array() const {
6652   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces);
6653 }
6654 
6655 #ifndef PRODUCT
6656 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
6657   st->print("instklassptr:");
6658   klass()->print_name_on(st);
6659   _interfaces->dump(st);
6660   st->print(":%s", ptr_msg[_ptr]);
6661   dump_offset(st);
6662   dump_flat_in_array(_flat_in_array, st);
6663 }
6664 #endif // PRODUCT
6665 
6666 bool TypeAryKlassPtr::can_be_inline_array() const {
6667   return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass();
6668 }
6669 
6670 bool TypeInstPtr::can_be_inline_array() const {
6671   return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces);
6672 }
6673 
6674 bool TypeAryPtr::can_be_inline_array() const {
6675   return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass();
6676 }
6677 
6678 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6679   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons();
6680 }
6681 
6682 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) {
6683   const Type* etype;
6684   if (k->is_obj_array_klass()) {
6685     // Element is an object array. Recursively call ourself.
6686     ciKlass* eklass = k->as_obj_array_klass()->element_klass();
6687     etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
6688     k = nullptr;
6689   } else if (k->is_type_array_klass()) {
6690     // Element is an typeArray
6691     etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6692   } else {
6693     ShouldNotReachHere();
6694   }
6695 
6696   return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type);
6697 }
6698 
6699 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6700   ciArrayKlass* k = klass->as_array_klass();
6701   if (k->is_refined()) {
6702     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, !k->is_flat_array_klass(), !k->is_elem_null_free(),
6703                                  k->is_flat_array_klass(), k->is_elem_null_free(), k->is_elem_atomic(), true);
6704   } else {
6705     // Use the default combination to canonicalize all non-refined klass pointers
6706     return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, true, true, false, false, true, false);
6707   }
6708 }
6709 
6710 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_non_refined() const {
6711   assert(is_refined_type(), "must be a refined type");
6712   PTR ptr = _ptr;
6713   // There can be multiple refined array types corresponding to a single unrefined type
6714   if (ptr == NotNull && elem()->is_klassptr()->klass_is_exact()) {
6715     ptr = Constant;
6716   }
6717   return make(ptr, elem(), nullptr, _offset, true, true, false, false, true, false);
6718 }
6719 
6720 // Get the (non-)refined array klass ptr
6721 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const {
6722   if ((refined == is_refined_type()) || !klass_is_exact() || !exact_klass()->is_obj_array_klass()) {
6723     return this;
6724   }
6725   ciArrayKlass* k = exact_klass()->as_array_klass();
6726   k = ciObjArrayKlass::make(k->element_klass(), refined);
6727   return make(k, trust_interfaces);
6728 }
6729 
6730 //------------------------------eq---------------------------------------------
6731 // Structural equality check for Type representations
6732 bool TypeAryKlassPtr::eq(const Type *t) const {
6733   const TypeAryKlassPtr *p = t->is_aryklassptr();
6734   return
6735     _elem == p->_elem &&  // Check array
6736     _flat == p->_flat &&
6737     _not_flat == p->_not_flat &&
6738     _null_free == p->_null_free &&
6739     _not_null_free == p->_not_null_free &&
6740     _atomic == p->_atomic &&
6741     _refined_type == p->_refined_type &&
6742     TypeKlassPtr::eq(p);  // Check sub-parts
6743 }
6744 
6745 //------------------------------hash-------------------------------------------
6746 // Type-specific hashing function.
6747 uint TypeAryKlassPtr::hash(void) const {
6748   return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) +
6749       (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0)  + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0);
6750 }
6751 
6752 //----------------------compute_klass------------------------------------------
6753 // Compute the defining klass for this class
6754 ciKlass* TypeAryPtr::compute_klass() const {
6755   // Compute _klass based on element type.
6756   ciKlass* k_ary = nullptr;
6757   const TypeInstPtr *tinst;
6758   const TypeAryPtr *tary;
6759   const Type* el = elem();
6760   if (el->isa_narrowoop()) {
6761     el = el->make_ptr();
6762   }
6763 
6764   // Get element klass
6765   if ((tinst = el->isa_instptr()) != nullptr) {
6766     // Leave k_ary at nullptr.
6767   } else if ((tary = el->isa_aryptr()) != nullptr) {
6768     // Leave k_ary at nullptr.
6769   } else if ((el->base() == Type::Top) ||
6770              (el->base() == Type::Bottom)) {
6771     // element type of Bottom occurs from meet of basic type
6772     // and object; Top occurs when doing join on Bottom.
6773     // Leave k_ary at null.
6774   } else {
6775     assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6776     // Compute array klass directly from basic type
6777     k_ary = ciTypeArrayKlass::make(el->basic_type());
6778   }
6779   return k_ary;
6780 }
6781 
6782 //------------------------------klass------------------------------------------
6783 // Return the defining klass for this class
6784 ciKlass* TypeAryPtr::klass() const {
6785   if( _klass ) return _klass;   // Return cached value, if possible
6786 
6787   // Oops, need to compute _klass and cache it
6788   ciKlass* k_ary = compute_klass();
6789 
6790   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6791     // The _klass field acts as a cache of the underlying
6792     // ciKlass for this array type.  In order to set the field,
6793     // we need to cast away const-ness.
6794     //
6795     // IMPORTANT NOTE: we *never* set the _klass field for the
6796     // type TypeAryPtr::OOPS.  This Type is shared between all
6797     // active compilations.  However, the ciKlass which represents
6798     // this Type is *not* shared between compilations, so caching
6799     // this value would result in fetching a dangling pointer.
6800     //
6801     // Recomputing the underlying ciKlass for each request is
6802     // a bit less efficient than caching, but calls to
6803     // TypeAryPtr::OOPS->klass() are not common enough to matter.
6804     ((TypeAryPtr*)this)->_klass = k_ary;
6805   }
6806   return k_ary;
6807 }
6808 
6809 // Is there a single ciKlass* that can represent that type?
6810 ciKlass* TypeAryPtr::exact_klass_helper() const {
6811   if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6812     ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6813     if (k == nullptr) {
6814       return nullptr;
6815     }
6816     if (k->is_array_klass() && k->as_array_klass()->is_refined()) {
6817       // We have no mechanism to create an array of refined arrays
6818       k = ciObjArrayKlass::make(k->as_array_klass()->element_klass(), false);
6819     }
6820     if (klass_is_exact()) {
6821       return ciObjArrayKlass::make(k, true, is_null_free(), is_atomic());
6822     } else {
6823       // We may reach here if called recursively, must be an unrefined type then
6824       return ciObjArrayKlass::make(k, false);
6825     }
6826   }
6827 
6828   return klass();
6829 }
6830 
6831 const Type* TypeAryPtr::base_element_type(int& dims) const {
6832   const Type* elem = this->elem();
6833   dims = 1;
6834   while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6835     elem = elem->make_ptr()->is_aryptr()->elem();
6836     dims++;
6837   }
6838   return elem;
6839 }
6840 
6841 //------------------------------add_offset-------------------------------------
6842 // Access internals of klass object
6843 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6844   return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6845 }
6846 
6847 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6848   return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6849 }
6850 
6851 //------------------------------cast_to_ptr_type-------------------------------
6852 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6853   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6854   if (ptr == _ptr) return this;
6855   return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type);
6856 }
6857 
6858 bool TypeAryKlassPtr::must_be_exact() const {
6859   assert(klass_is_exact(), "precondition");
6860   if (_elem == Type::BOTTOM || _elem == Type::TOP) {
6861     return false;
6862   }
6863   const TypeKlassPtr* elem = _elem->isa_klassptr();
6864   if (elem == nullptr) {
6865     // primitive arrays
6866     return true;
6867   }
6868 
6869   // refined types are final
6870   return _refined_type;
6871 }
6872 
6873 //-----------------------------cast_to_exactness-------------------------------
6874 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6875   if (klass_is_exact == this->klass_is_exact()) {
6876     return this;
6877   }
6878   if (!klass_is_exact && must_be_exact()) {
6879     return this;
6880   }
6881   const Type* elem = this->elem();
6882   if (elem->isa_klassptr() && !klass_is_exact) {
6883     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6884   }
6885 
6886   if (klass_is_exact) {
6887     // cast_to_exactness(true) really means get the LCA of all values represented by this
6888     // TypeAryKlassPtr. As a result, it must be an unrefined klass pointer.
6889     return make(Constant, elem, nullptr, _offset, true, true, false, false, true, false);
6890   } else {
6891     // cast_to_exactness(false) means get the TypeAryKlassPtr representing all values that subtype
6892     // this value
6893     bool not_inline = !_elem->isa_instklassptr() || !_elem->is_instklassptr()->instance_klass()->can_be_inline_klass();
6894     bool not_flat = !UseArrayFlattening || not_inline ||
6895                     (_elem->isa_instklassptr() && _elem->is_instklassptr()->instance_klass()->is_inlinetype() && !_elem->is_instklassptr()->instance_klass()->maybe_flat_in_array());
6896     bool not_null_free = not_inline;
6897     bool atomic = not_flat;
6898     return make(NotNull, elem, nullptr, _offset, not_flat, not_null_free, false, false, atomic, false);
6899   }
6900 }
6901 
6902 //-----------------------------as_instance_type--------------------------------
6903 // Corresponding type for an instance of the given class.
6904 // It will be NotNull, and exact if and only if the klass type is exact.
6905 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6906   ciKlass* k = klass();
6907   bool    xk = klass_is_exact();
6908   const Type* el = nullptr;
6909   if (elem()->isa_klassptr()) {
6910     el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6911     k = nullptr;
6912   } else {
6913     el = elem();
6914   }
6915   bool null_free = _null_free;
6916   if (null_free && el->isa_ptr()) {
6917     el = el->is_ptr()->join_speculative(TypePtr::NOTNULL);
6918   }
6919   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0));
6920 }
6921 
6922 
6923 //------------------------------xmeet------------------------------------------
6924 // Compute the MEET of two types, return a new Type object.
6925 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
6926   // Perform a fast test for common case; meeting the same types together.
6927   if( this == t ) return this;  // Meeting same type-rep?
6928 
6929   // Current "this->_base" is Pointer
6930   switch (t->base()) {          // switch on original type
6931 
6932   case Int:                     // Mixing ints & oops happens when javac
6933   case Long:                    // reuses local variables
6934   case HalfFloatTop:
6935   case HalfFloatCon:
6936   case HalfFloatBot:
6937   case FloatTop:
6938   case FloatCon:
6939   case FloatBot:
6940   case DoubleTop:
6941   case DoubleCon:
6942   case DoubleBot:
6943   case NarrowOop:
6944   case NarrowKlass:
6945   case Bottom:                  // Ye Olde Default
6946     return Type::BOTTOM;
6947   case Top:
6948     return this;
6949 
6950   default:                      // All else is a mistake
6951     typerr(t);
6952 
6953   case AnyPtr: {                // Meeting to AnyPtrs
6954     // Found an AnyPtr type vs self-KlassPtr type
6955     const TypePtr *tp = t->is_ptr();
6956     Offset offset = meet_offset(tp->offset());
6957     PTR ptr = meet_ptr(tp->ptr());
6958     switch (tp->ptr()) {
6959     case TopPTR:
6960       return this;
6961     case Null:
6962       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6963     case AnyNull:
6964       return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
6965     case BotPTR:
6966     case NotNull:
6967       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6968     default: typerr(t);
6969     }
6970   }
6971 
6972   case RawPtr:
6973   case MetadataPtr:
6974   case OopPtr:
6975   case AryPtr:                  // Meet with AryPtr
6976   case InstPtr:                 // Meet with InstPtr
6977     return TypePtr::BOTTOM;
6978 
6979   //
6980   //             A-top         }
6981   //           /   |   \       }  Tops
6982   //       B-top A-any C-top   }
6983   //          | /  |  \ |      }  Any-nulls
6984   //       B-any   |   C-any   }
6985   //          |    |    |
6986   //       B-con A-con C-con   } constants; not comparable across classes
6987   //          |    |    |
6988   //       B-not   |   C-not   }
6989   //          | \  |  / |      }  not-nulls
6990   //       B-bot A-not C-bot   }
6991   //           \   |   /       }  Bottoms
6992   //             A-bot         }
6993   //
6994 
6995   case AryKlassPtr: {  // Meet two KlassPtr types
6996     const TypeAryKlassPtr *tap = t->is_aryklassptr();
6997     Offset off = meet_offset(tap->offset());
6998     const Type* elem = _elem->meet(tap->_elem);
6999     PTR ptr = meet_ptr(tap->ptr());
7000     ciKlass* res_klass = nullptr;
7001     bool res_xk = false;
7002     bool res_flat = false;
7003     bool res_not_flat = false;
7004     bool res_not_null_free = false;
7005     bool res_atomic = false;
7006     MeetResult res = meet_aryptr(ptr, elem, this, tap,
7007                                  res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic);
7008     assert(res_xk == (ptr == Constant), "");
7009     bool flat = meet_flat(tap->_flat);
7010     bool null_free = meet_null_free(tap->_null_free);
7011     bool atomic = meet_atomic(tap->_atomic);
7012     bool refined_type = _refined_type && tap->_refined_type;
7013     if (res == NOT_SUBTYPE) {
7014       flat = false;
7015       null_free = false;
7016       atomic = false;
7017       refined_type = false;
7018     } else if (res == SUBTYPE) {
7019       if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) {
7020         flat = _flat;
7021         null_free = _null_free;
7022         atomic = _atomic;
7023         refined_type = _refined_type;
7024       } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) {
7025         flat = tap->_flat;
7026         null_free = tap->_null_free;
7027         atomic = tap->_atomic;
7028         refined_type = tap->_refined_type;
7029       } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) {
7030         flat = _flat || tap->_flat;
7031         null_free = _null_free || tap->_null_free;
7032         atomic = _atomic || tap->_atomic;
7033         refined_type = _refined_type || tap->_refined_type;
7034       } else if (res_xk && _refined_type != tap->_refined_type) {
7035         // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass
7036         // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the
7037         // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse.
7038         ptr = PTR::NotNull;
7039       }
7040     }
7041     return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type);
7042   } // End of case KlassPtr
7043   case InstKlassPtr: {
7044     const TypeInstKlassPtr *tp = t->is_instklassptr();
7045     Offset offset = meet_offset(tp->offset());
7046     PTR ptr = meet_ptr(tp->ptr());
7047     const TypeInterfaces* interfaces = meet_interfaces(tp);
7048     const TypeInterfaces* tp_interfaces = tp->_interfaces;
7049     const TypeInterfaces* this_interfaces = _interfaces;
7050 
7051     switch (ptr) {
7052     case TopPTR:
7053     case AnyNull:                // Fall 'down' to dual of object klass
7054       // For instances when a subclass meets a superclass we fall
7055       // below the centerline when the superclass is exact. We need to
7056       // do the same here.
7057       //
7058       // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7059       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7060           !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7061         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7062       } else {
7063         // cannot subclass, so the meet has to fall badly below the centerline
7064         ptr = NotNull;
7065         interfaces = this_interfaces->intersection_with(tp->_interfaces);
7066         FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7067         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array);
7068       }
7069     case Constant:
7070     case NotNull:
7071     case BotPTR: { // Fall down to object klass
7072       // LCA is object_klass, but if we subclass from the top we can do better
7073       if (above_centerline(tp->ptr())) {
7074         // If 'tp'  is above the centerline and it is Object class
7075         // then we can subclass in the Java class hierarchy.
7076         // For instances when a subclass meets a superclass we fall
7077         // below the centerline when the superclass is exact. We need
7078         // to do the same here.
7079         //
7080         // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper().
7081         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
7082             !tp->klass_is_exact() && !tp->is_not_flat_in_array()) {
7083           // that is, my array type is a subtype of 'tp' klass
7084           return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type());
7085         }
7086       }
7087       // The other case cannot happen, since t cannot be a subtype of an array.
7088       // The meet falls down to Object class below centerline.
7089       if (ptr == Constant)
7090         ptr = NotNull;
7091       interfaces = this_interfaces->intersection_with(tp_interfaces);
7092       FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array());
7093       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, tp->flat_in_array());
7094     }
7095     default: typerr(t);
7096     }
7097   }
7098 
7099   } // End of switch
7100   return this;                  // Return the double constant
7101 }
7102 
7103 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7104   static_assert(std::is_base_of<T2, T1>::value, "");
7105 
7106   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7107     return true;
7108   }
7109 
7110   int dummy;
7111   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7112 
7113   if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7114     return false;
7115   }
7116 
7117   if (this_one->is_instance_type(other)) {
7118     return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
7119            other_exact;
7120   }
7121 
7122   assert(this_one->is_array_type(other), "");
7123   const T1* other_ary = this_one->is_array_type(other);
7124   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7125   if (other_top_or_bottom) {
7126     return false;
7127   }
7128 
7129   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7130   const TypePtr* this_elem = this_one->elem()->make_ptr();
7131   if (this_elem != nullptr && other_elem != nullptr) {
7132     if (other->is_null_free() && !this_one->is_null_free()) {
7133       return false; // A nullable array can't be a subtype of a null-free array
7134     }
7135     return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7136   }
7137   if (this_elem == nullptr && other_elem == nullptr) {
7138     return this_one->klass()->is_subtype_of(other->klass());
7139   }
7140   return false;
7141 }
7142 
7143 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7144   return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7145 }
7146 
7147 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
7148   static_assert(std::is_base_of<T2, T1>::value, "");
7149 
7150   int dummy;
7151   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7152 
7153   if (!this_one->is_array_type(other) ||
7154       !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
7155     return false;
7156   }
7157   const T1* other_ary = this_one->is_array_type(other);
7158   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7159 
7160   if (other_top_or_bottom) {
7161     return false;
7162   }
7163 
7164   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7165   const TypePtr* this_elem = this_one->elem()->make_ptr();
7166   if (other_elem != nullptr && this_elem != nullptr) {
7167     return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
7168   }
7169   if (other_elem == nullptr && this_elem == nullptr) {
7170     return this_one->klass()->equals(other->klass());
7171   }
7172   return false;
7173 }
7174 
7175 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
7176   return TypePtr::is_same_java_type_as_helper_for_array(this, other);
7177 }
7178 
7179 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
7180   static_assert(std::is_base_of<T2, T1>::value, "");
7181   if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
7182     return true;
7183   }
7184   if (!this_one->is_loaded() || !other->is_loaded()) {
7185     return true;
7186   }
7187   if (this_one->is_instance_type(other)) {
7188     return other->klass()->equals(ciEnv::current()->Object_klass()) &&
7189            this_one->_interfaces->contains(other->_interfaces);
7190   }
7191 
7192   int dummy;
7193   bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
7194   if (this_top_or_bottom) {
7195     return true;
7196   }
7197 
7198   assert(this_one->is_array_type(other), "");
7199 
7200   const T1* other_ary = this_one->is_array_type(other);
7201   bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
7202   if (other_top_or_bottom) {
7203     return true;
7204   }
7205   if (this_exact && other_exact) {
7206     return this_one->is_java_subtype_of(other);
7207   }
7208 
7209   const TypePtr* this_elem = this_one->elem()->make_ptr();
7210   const TypePtr* other_elem = other_ary->elem()->make_ptr();
7211   if (other_elem != nullptr && this_elem != nullptr) {
7212     return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
7213   }
7214   if (other_elem == nullptr && this_elem == nullptr) {
7215     return this_one->klass()->is_subtype_of(other->klass());
7216   }
7217   return false;
7218 }
7219 
7220 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
7221   return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
7222 }
7223 
7224 //------------------------------xdual------------------------------------------
7225 // Dual: compute field-by-field dual
7226 const Type    *TypeAryKlassPtr::xdual() const {
7227   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type);
7228 }
7229 
7230 // Is there a single ciKlass* that can represent that type?
7231 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
7232   if (elem()->isa_klassptr()) {
7233     ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
7234     if (k == nullptr) {
7235       return nullptr;
7236     }
7237     assert(!k->is_array_klass() || !k->as_array_klass()->is_refined(), "no mechanism to create an array of refined arrays %s", k->name()->as_utf8());
7238     k = ciArrayKlass::make(k, is_null_free(), is_atomic(), _refined_type);
7239     return k;
7240   }
7241 
7242   return klass();
7243 }
7244 
7245 ciKlass* TypeAryKlassPtr::klass() const {
7246   if (_klass != nullptr) {
7247     return _klass;
7248   }
7249   ciKlass* k = nullptr;
7250   if (elem()->isa_klassptr()) {
7251     // leave null
7252   } else if ((elem()->base() == Type::Top) ||
7253              (elem()->base() == Type::Bottom)) {
7254   } else {
7255     k = ciTypeArrayKlass::make(elem()->basic_type());
7256     ((TypeAryKlassPtr*)this)->_klass = k;
7257   }
7258   return k;
7259 }
7260 
7261 //------------------------------dump2------------------------------------------
7262 // Dump Klass Type
7263 #ifndef PRODUCT
7264 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
7265   st->print("aryklassptr:[");
7266   _elem->dump2(d, depth, st);
7267   _interfaces->dump(st);
7268   st->print(":%s", ptr_msg[_ptr]);
7269   if (_flat) st->print(":flat");
7270   if (_null_free) st->print(":null free");
7271   if (_atomic) st->print(":atomic");
7272   if (_refined_type) st->print(":refined_type");
7273   if (Verbose) {
7274     if (_not_flat) st->print(":not flat");
7275     if (_not_null_free) st->print(":nullable");
7276   }
7277   dump_offset(st);
7278 }
7279 #endif
7280 
7281 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
7282   const Type* elem = this->elem();
7283   dims = 1;
7284   while (elem->isa_aryklassptr()) {
7285     elem = elem->is_aryklassptr()->elem();
7286     dims++;
7287   }
7288   return elem;
7289 }
7290 
7291 //=============================================================================
7292 // Convenience common pre-built types.
7293 
7294 //------------------------------make-------------------------------------------
7295 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
7296                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
7297   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
7298 }
7299 
7300 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
7301   return make(domain, domain, range, range);
7302 }
7303 
7304 //------------------------------osr_domain-----------------------------
7305 const TypeTuple* osr_domain() {
7306   const Type **fields = TypeTuple::fields(2);
7307   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
7308   return TypeTuple::make(TypeFunc::Parms+1, fields);
7309 }
7310 
7311 //------------------------------make-------------------------------------------
7312 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) {
7313   Compile* C = Compile::current();
7314   const TypeFunc* tf = nullptr;
7315   if (!is_osr_compilation) {
7316     tf = C->last_tf(method); // check cache
7317     if (tf != nullptr)  return tf;  // The hit rate here is almost 50%.
7318   }
7319   // Inline types are not passed/returned by reference, instead each field of
7320   // the inline type is passed/returned as an argument. We maintain two views of
7321   // the argument/return list here: one based on the signature (with an inline
7322   // type argument/return as a single slot), one based on the actual calling
7323   // convention (with an inline type argument/return as a list of its fields).
7324   bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation;
7325   // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method
7326   if (method != C->method() && method->get_Method()->mismatch()) {
7327     has_scalar_args = false;
7328   }
7329   const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false);
7330   const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig;
7331   ciSignature* sig = method->signature();
7332   bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields();
7333   const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false);
7334   const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig;
7335   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
7336   if (!is_osr_compilation) {
7337     C->set_last_tf(method, tf);  // fill cache
7338   }
7339   return tf;
7340 }
7341 
7342 //------------------------------meet-------------------------------------------
7343 // Compute the MEET of two types.  It returns a new Type object.
7344 const Type *TypeFunc::xmeet( const Type *t ) const {
7345   // Perform a fast test for common case; meeting the same types together.
7346   if( this == t ) return this;  // Meeting same type-rep?
7347 
7348   // Current "this->_base" is Func
7349   switch (t->base()) {          // switch on original type
7350 
7351   case Bottom:                  // Ye Olde Default
7352     return t;
7353 
7354   default:                      // All else is a mistake
7355     typerr(t);
7356 
7357   case Top:
7358     break;
7359   }
7360   return this;                  // Return the double constant
7361 }
7362 
7363 //------------------------------xdual------------------------------------------
7364 // Dual: compute field-by-field dual
7365 const Type *TypeFunc::xdual() const {
7366   return this;
7367 }
7368 
7369 //------------------------------eq---------------------------------------------
7370 // Structural equality check for Type representations
7371 bool TypeFunc::eq( const Type *t ) const {
7372   const TypeFunc *a = (const TypeFunc*)t;
7373   return _domain_sig == a->_domain_sig &&
7374     _domain_cc == a->_domain_cc &&
7375     _range_sig == a->_range_sig &&
7376     _range_cc == a->_range_cc;
7377 }
7378 
7379 //------------------------------hash-------------------------------------------
7380 // Type-specific hashing function.
7381 uint TypeFunc::hash(void) const {
7382   return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc;
7383 }
7384 
7385 //------------------------------dump2------------------------------------------
7386 // Dump Function Type
7387 #ifndef PRODUCT
7388 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
7389   if( _range_sig->cnt() <= Parms )
7390     st->print("void");
7391   else {
7392     uint i;
7393     for (i = Parms; i < _range_sig->cnt()-1; i++) {
7394       _range_sig->field_at(i)->dump2(d,depth,st);
7395       st->print("/");
7396     }
7397     _range_sig->field_at(i)->dump2(d,depth,st);
7398   }
7399   st->print(" ");
7400   st->print("( ");
7401   if( !depth || d[this] ) {     // Check for recursive dump
7402     st->print("...)");
7403     return;
7404   }
7405   d.Insert((void*)this,(void*)this);    // Stop recursion
7406   if (Parms < _domain_sig->cnt())
7407     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
7408   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
7409     st->print(", ");
7410     _domain_sig->field_at(i)->dump2(d,depth-1,st);
7411   }
7412   st->print(" )");
7413 }
7414 #endif
7415 
7416 //------------------------------singleton--------------------------------------
7417 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
7418 // constants (Ldi nodes).  Singletons are integer, float or double constants
7419 // or a single symbol.
7420 bool TypeFunc::singleton(void) const {
7421   return false;                 // Never a singleton
7422 }
7423 
7424 bool TypeFunc::empty(void) const {
7425   return false;                 // Never empty
7426 }
7427 
7428 
7429 BasicType TypeFunc::return_type() const{
7430   if (range_sig()->cnt() == TypeFunc::Parms) {
7431     return T_VOID;
7432   }
7433   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
7434 }