1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciField.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciInlineKlass.hpp" 28 #include "ci/ciMethodData.hpp" 29 #include "ci/ciObjArrayKlass.hpp" 30 #include "ci/ciTypeFlow.hpp" 31 #include "classfile/javaClasses.hpp" 32 #include "classfile/symbolTable.hpp" 33 #include "classfile/vmSymbols.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "libadt/dict.hpp" 36 #include "memory/oopFactory.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/instanceKlass.hpp" 39 #include "oops/instanceMirrorKlass.hpp" 40 #include "oops/objArrayKlass.hpp" 41 #include "oops/typeArrayKlass.hpp" 42 #include "opto/arraycopynode.hpp" 43 #include "opto/callnode.hpp" 44 #include "opto/matcher.hpp" 45 #include "opto/node.hpp" 46 #include "opto/opcodes.hpp" 47 #include "opto/rangeinference.hpp" 48 #include "opto/runtime.hpp" 49 #include "opto/type.hpp" 50 #include "runtime/globals.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "utilities/checkedCast.hpp" 53 #include "utilities/debug.hpp" 54 #include "utilities/globalDefinitions.hpp" 55 #include "utilities/ostream.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #include "utilities/stringUtils.hpp" 58 59 // Portions of code courtesy of Clifford Click 60 61 // Optimization - Graph Style 62 63 // Dictionary of types shared among compilations. 64 Dict* Type::_shared_type_dict = nullptr; 65 const Type::Offset Type::Offset::top(Type::OffsetTop); 66 const Type::Offset Type::Offset::bottom(Type::OffsetBot); 67 68 const Type::Offset Type::Offset::meet(const Type::Offset other) const { 69 // Either is 'TOP' offset? Return the other offset! 70 if (_offset == OffsetTop) return other; 71 if (other._offset == OffsetTop) return *this; 72 // If either is different, return 'BOTTOM' offset 73 if (_offset != other._offset) return bottom; 74 return Offset(_offset); 75 } 76 77 const Type::Offset Type::Offset::dual() const { 78 if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM' 79 if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP' 80 return Offset(_offset); // Map everything else into self 81 } 82 83 const Type::Offset Type::Offset::add(intptr_t offset) const { 84 // Adding to 'TOP' offset? Return 'TOP'! 85 if (_offset == OffsetTop || offset == OffsetTop) return top; 86 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 87 if (_offset == OffsetBot || offset == OffsetBot) return bottom; 88 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 89 offset += (intptr_t)_offset; 90 if (offset != (int)offset || offset == OffsetTop) return bottom; 91 92 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 93 // It is possible to construct a negative offset during PhaseCCP 94 95 return Offset((int)offset); // Sum valid offsets 96 } 97 98 void Type::Offset::dump2(outputStream *st) const { 99 if (_offset == 0) { 100 return; 101 } else if (_offset == OffsetTop) { 102 st->print("+top"); 103 } 104 else if (_offset == OffsetBot) { 105 st->print("+bot"); 106 } else if (_offset) { 107 st->print("+%d", _offset); 108 } 109 } 110 111 // Array which maps compiler types to Basic Types 112 const Type::TypeInfo Type::_type_info[Type::lastype] = { 113 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 114 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 115 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 116 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 117 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 118 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 119 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 120 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 121 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 122 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 123 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces 124 125 #if defined(PPC64) 126 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 127 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 128 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 129 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 130 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 131 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 132 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 133 #elif defined(S390) 134 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 135 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 136 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 137 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 138 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 139 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 140 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 141 #else // all other 142 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 143 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 144 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 145 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 146 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 147 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 148 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 149 #endif 150 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 151 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 152 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 153 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 154 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 155 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 156 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 157 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 158 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 159 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 160 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 161 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 162 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 163 { HalfFloatBot, T_SHORT, "halffloat_top", false, Op_RegF, relocInfo::none }, // HalfFloatTop 164 { HalfFloatCon, T_SHORT, "hfcon:", false, Op_RegF, relocInfo::none }, // HalfFloatCon 165 { HalfFloatTop, T_SHORT, "short", false, Op_RegF, relocInfo::none }, // HalfFloatBot 166 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 167 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 168 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 169 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 170 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 171 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 172 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 173 }; 174 175 // Map ideal registers (machine types) to ideal types 176 const Type *Type::mreg2type[_last_machine_leaf]; 177 178 // Map basic types to canonical Type* pointers. 179 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 180 181 // Map basic types to constant-zero Types. 182 const Type* Type:: _zero_type[T_CONFLICT+1]; 183 184 // Map basic types to array-body alias types. 185 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 186 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr; 187 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr; 188 189 //============================================================================= 190 // Convenience common pre-built types. 191 const Type *Type::ABIO; // State-of-machine only 192 const Type *Type::BOTTOM; // All values 193 const Type *Type::CONTROL; // Control only 194 const Type *Type::DOUBLE; // All doubles 195 const Type *Type::HALF_FLOAT; // All half floats 196 const Type *Type::FLOAT; // All floats 197 const Type *Type::HALF; // Placeholder half of doublewide type 198 const Type *Type::MEMORY; // Abstract store only 199 const Type *Type::RETURN_ADDRESS; 200 const Type *Type::TOP; // No values in set 201 202 //------------------------------get_const_type--------------------------- 203 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 204 if (type == nullptr) { 205 return nullptr; 206 } else if (type->is_primitive_type()) { 207 return get_const_basic_type(type->basic_type()); 208 } else { 209 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 210 } 211 } 212 213 //---------------------------array_element_basic_type--------------------------------- 214 // Mapping to the array element's basic type. 215 BasicType Type::array_element_basic_type() const { 216 BasicType bt = basic_type(); 217 if (bt == T_INT) { 218 if (this == TypeInt::INT) return T_INT; 219 if (this == TypeInt::CHAR) return T_CHAR; 220 if (this == TypeInt::BYTE) return T_BYTE; 221 if (this == TypeInt::BOOL) return T_BOOLEAN; 222 if (this == TypeInt::SHORT) return T_SHORT; 223 return T_VOID; 224 } 225 return bt; 226 } 227 228 // For two instance arrays of same dimension, return the base element types. 229 // Otherwise or if the arrays have different dimensions, return null. 230 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 231 const TypeInstPtr **e1, const TypeInstPtr **e2) { 232 233 if (e1) *e1 = nullptr; 234 if (e2) *e2 = nullptr; 235 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr(); 236 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr(); 237 238 if (a1tap != nullptr && a2tap != nullptr) { 239 // Handle multidimensional arrays 240 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 241 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 242 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 243 a1tap = a1tp->is_aryptr(); 244 a2tap = a2tp->is_aryptr(); 245 a1tp = a1tap->elem()->make_ptr(); 246 a2tp = a2tap->elem()->make_ptr(); 247 } 248 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 249 if (e1) *e1 = a1tp->is_instptr(); 250 if (e2) *e2 = a2tp->is_instptr(); 251 } 252 } 253 } 254 255 //---------------------------get_typeflow_type--------------------------------- 256 // Import a type produced by ciTypeFlow. 257 const Type* Type::get_typeflow_type(ciType* type) { 258 switch (type->basic_type()) { 259 260 case ciTypeFlow::StateVector::T_BOTTOM: 261 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 262 return Type::BOTTOM; 263 264 case ciTypeFlow::StateVector::T_TOP: 265 assert(type == ciTypeFlow::StateVector::top_type(), ""); 266 return Type::TOP; 267 268 case ciTypeFlow::StateVector::T_NULL: 269 assert(type == ciTypeFlow::StateVector::null_type(), ""); 270 return TypePtr::NULL_PTR; 271 272 case ciTypeFlow::StateVector::T_LONG2: 273 // The ciTypeFlow pass pushes a long, then the half. 274 // We do the same. 275 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 276 return TypeInt::TOP; 277 278 case ciTypeFlow::StateVector::T_DOUBLE2: 279 // The ciTypeFlow pass pushes double, then the half. 280 // Our convention is the same. 281 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 282 return Type::TOP; 283 284 case T_ADDRESS: 285 assert(type->is_return_address(), ""); 286 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 287 288 case T_OBJECT: 289 return Type::get_const_type(type->unwrap())->join_speculative(type->is_null_free() ? TypePtr::NOTNULL : TypePtr::BOTTOM); 290 291 default: 292 // make sure we did not mix up the cases: 293 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 294 assert(type != ciTypeFlow::StateVector::top_type(), ""); 295 assert(type != ciTypeFlow::StateVector::null_type(), ""); 296 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 297 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 298 assert(!type->is_return_address(), ""); 299 300 return Type::get_const_type(type); 301 } 302 } 303 304 305 //-----------------------make_from_constant------------------------------------ 306 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 307 int stable_dimension, bool is_narrow_oop, 308 bool is_autobox_cache) { 309 switch (constant.basic_type()) { 310 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 311 case T_CHAR: return TypeInt::make(constant.as_char()); 312 case T_BYTE: return TypeInt::make(constant.as_byte()); 313 case T_SHORT: return TypeInt::make(constant.as_short()); 314 case T_INT: return TypeInt::make(constant.as_int()); 315 case T_LONG: return TypeLong::make(constant.as_long()); 316 case T_FLOAT: return TypeF::make(constant.as_float()); 317 case T_DOUBLE: return TypeD::make(constant.as_double()); 318 case T_ARRAY: 319 case T_OBJECT: { 320 const Type* con_type = nullptr; 321 ciObject* oop_constant = constant.as_object(); 322 if (oop_constant->is_null_object()) { 323 con_type = Type::get_zero_type(T_OBJECT); 324 } else { 325 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 326 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 327 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 328 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 329 } 330 if (stable_dimension > 0) { 331 assert(FoldStableValues, "sanity"); 332 assert(!con_type->is_zero_type(), "default value for stable field"); 333 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 334 } 335 } 336 if (is_narrow_oop) { 337 con_type = con_type->make_narrowoop(); 338 } 339 return con_type; 340 } 341 case T_ILLEGAL: 342 // Invalid ciConstant returned due to OutOfMemoryError in the CI 343 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 344 return nullptr; 345 default: 346 // Fall through to failure 347 return nullptr; 348 } 349 } 350 351 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 352 BasicType conbt = con.basic_type(); 353 switch (conbt) { 354 case T_BOOLEAN: conbt = T_BYTE; break; 355 case T_ARRAY: conbt = T_OBJECT; break; 356 default: break; 357 } 358 switch (loadbt) { 359 case T_BOOLEAN: loadbt = T_BYTE; break; 360 case T_NARROWOOP: loadbt = T_OBJECT; break; 361 case T_ARRAY: loadbt = T_OBJECT; break; 362 case T_ADDRESS: loadbt = T_OBJECT; break; 363 default: break; 364 } 365 if (conbt == loadbt) { 366 if (is_unsigned && conbt == T_BYTE) { 367 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 368 return ciConstant(T_INT, con.as_int() & 0xFF); 369 } else { 370 return con; 371 } 372 } 373 if (conbt == T_SHORT && loadbt == T_CHAR) { 374 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 375 return ciConstant(T_INT, con.as_int() & 0xFFFF); 376 } 377 return ciConstant(); // T_ILLEGAL 378 } 379 380 // Try to constant-fold a stable array element. 381 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 382 BasicType loadbt, bool is_unsigned_load) { 383 // Decode the results of GraphKit::array_element_address. 384 ciConstant element_value = array->element_value_by_offset(off); 385 if (element_value.basic_type() == T_ILLEGAL) { 386 return nullptr; // wrong offset 387 } 388 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 389 390 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 391 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 392 393 if (con.is_valid() && // not a mismatched access 394 !con.is_null_or_zero()) { // not a default value 395 bool is_narrow_oop = (loadbt == T_NARROWOOP); 396 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 397 } 398 return nullptr; 399 } 400 401 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 402 ciField* field; 403 ciType* type = holder->java_mirror_type(); 404 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 405 // Static field 406 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 407 } else { 408 // Instance field 409 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 410 } 411 if (field == nullptr) { 412 return nullptr; // Wrong offset 413 } 414 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 415 } 416 417 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 418 BasicType loadbt, bool is_unsigned_load) { 419 if (!field->is_constant()) { 420 return nullptr; // Non-constant field 421 } 422 ciConstant field_value; 423 if (field->is_static()) { 424 // final static field 425 field_value = field->constant_value(); 426 } else if (holder != nullptr) { 427 // final or stable non-static field 428 // Treat final non-static fields of trusted classes (classes in 429 // java.lang.invoke and sun.invoke packages and subpackages) as 430 // compile time constants. 431 field_value = field->constant_value_of(holder); 432 } 433 if (!field_value.is_valid()) { 434 return nullptr; // Not a constant 435 } 436 437 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 438 439 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 440 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 441 442 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 443 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 444 bool is_narrow_oop = (loadbt == T_NARROWOOP); 445 446 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 447 stable_dimension, is_narrow_oop, 448 field->is_autobox_cache()); 449 if (con_type != nullptr && field->is_call_site_target()) { 450 ciCallSite* call_site = holder->as_call_site(); 451 if (!call_site->is_fully_initialized_constant_call_site()) { 452 ciMethodHandle* target = con.as_object()->as_method_handle(); 453 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 454 } 455 } 456 return con_type; 457 } 458 459 //------------------------------make------------------------------------------- 460 // Create a simple Type, with default empty symbol sets. Then hashcons it 461 // and look for an existing copy in the type dictionary. 462 const Type *Type::make( enum TYPES t ) { 463 return (new Type(t))->hashcons(); 464 } 465 466 //------------------------------cmp-------------------------------------------- 467 bool Type::equals(const Type* t1, const Type* t2) { 468 if (t1->_base != t2->_base) { 469 return false; // Missed badly 470 } 471 472 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 473 return t1->eq(t2); 474 } 475 476 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 477 if (!include_speculative) { 478 return remove_speculative(); 479 } 480 return this; 481 } 482 483 //------------------------------hash------------------------------------------- 484 int Type::uhash( const Type *const t ) { 485 return (int)t->hash(); 486 } 487 488 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 489 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 490 491 //--------------------------Initialize_shared---------------------------------- 492 void Type::Initialize_shared(Compile* current) { 493 // This method does not need to be locked because the first system 494 // compilations (stub compilations) occur serially. If they are 495 // changed to proceed in parallel, then this section will need 496 // locking. 497 498 Arena* save = current->type_arena(); 499 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type); 500 501 current->set_type_arena(shared_type_arena); 502 503 // Map the boolean result of Type::equals into a comparator result that CmpKey expects. 504 CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t { 505 return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1; 506 }; 507 508 _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128); 509 current->set_type_dict(_shared_type_dict); 510 511 // Make shared pre-built types. 512 CONTROL = make(Control); // Control only 513 TOP = make(Top); // No values in set 514 MEMORY = make(Memory); // Abstract store only 515 ABIO = make(Abio); // State-of-machine only 516 RETURN_ADDRESS=make(Return_Address); 517 FLOAT = make(FloatBot); // All floats 518 HALF_FLOAT = make(HalfFloatBot); // All half floats 519 DOUBLE = make(DoubleBot); // All doubles 520 BOTTOM = make(Bottom); // Everything 521 HALF = make(Half); // Placeholder half of doublewide type 522 523 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 524 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 525 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 526 TypeF::ONE = TypeF::make(1.0); // Float 1 527 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 528 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 529 530 TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX 531 TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN 532 TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero) 533 TypeH::ONE = TypeH::make(one_jfloat16); // HalfFloat 1 534 TypeH::POS_INF = TypeH::make(pos_inf_jfloat16); 535 TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16); 536 537 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 538 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 539 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 540 TypeD::ONE = TypeD::make(1.0); // Double 1 541 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 542 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 543 544 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 545 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 546 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 547 TypeInt::ZERO = TypeInt::make( 0); // 0 548 TypeInt::ONE = TypeInt::make( 1); // 1 549 TypeInt::BOOL = TypeInt::make( 0, 1, WidenMin); // 0 or 1, FALSE or TRUE. 550 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 551 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 552 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 553 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 554 TypeInt::CC_NE = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{-1, 1}, {1, max_juint}, {0, 1}}, WidenMin)->is_int(); 555 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 556 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 557 TypeInt::BYTE = TypeInt::make(-128, 127, WidenMin); // Bytes 558 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 559 TypeInt::CHAR = TypeInt::make(0, 65535, WidenMin); // Java chars 560 TypeInt::SHORT = TypeInt::make(-32768, 32767, WidenMin); // Java shorts 561 TypeInt::NON_ZERO = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{min_jint, max_jint}, {1, max_juint}, {0, 0}}, WidenMin)->is_int(); 562 TypeInt::POS = TypeInt::make(0, max_jint, WidenMin); // Non-neg values 563 TypeInt::POS1 = TypeInt::make(1, max_jint, WidenMin); // Positive values 564 TypeInt::INT = TypeInt::make(min_jint, max_jint, WidenMax); // 32-bit integers 565 TypeInt::SYMINT = TypeInt::make(-max_jint, max_jint, WidenMin); // symmetric range 566 TypeInt::TYPE_DOMAIN = TypeInt::INT; 567 // CmpL is overloaded both as the bytecode computation returning 568 // a trinary (-1, 0, +1) integer result AND as an efficient long 569 // compare returning optimizer ideal-type flags. 570 assert(TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 571 assert(TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 572 assert(TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 573 assert(TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 574 575 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 576 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 577 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 578 TypeLong::ZERO = TypeLong::make( 0); // 0 579 TypeLong::ONE = TypeLong::make( 1); // 1 580 TypeLong::NON_ZERO = TypeLong::make_or_top(TypeIntPrototype<jlong, julong>{{min_jlong, max_jlong}, {1, max_julong}, {0, 0}}, WidenMin)->is_long(); 581 TypeLong::POS = TypeLong::make(0, max_jlong, WidenMin); // Non-neg values 582 TypeLong::NEG = TypeLong::make(min_jlong, -1, WidenMin); 583 TypeLong::LONG = TypeLong::make(min_jlong, max_jlong, WidenMax); // 64-bit integers 584 TypeLong::INT = TypeLong::make((jlong)min_jint, (jlong)max_jint,WidenMin); 585 TypeLong::UINT = TypeLong::make(0, (jlong)max_juint, WidenMin); 586 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 587 588 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 589 fboth[0] = Type::CONTROL; 590 fboth[1] = Type::CONTROL; 591 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 592 593 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 594 ffalse[0] = Type::CONTROL; 595 ffalse[1] = Type::TOP; 596 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 597 598 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 599 fneither[0] = Type::TOP; 600 fneither[1] = Type::TOP; 601 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 602 603 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 604 ftrue[0] = Type::TOP; 605 ftrue[1] = Type::CONTROL; 606 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 607 608 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 609 floop[0] = Type::CONTROL; 610 floop[1] = TypeInt::INT; 611 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 612 613 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0)); 614 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom); 615 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom); 616 617 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 618 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 619 620 const Type **fmembar = TypeTuple::fields(0); 621 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 622 623 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 624 fsc[0] = TypeInt::CC; 625 fsc[1] = Type::MEMORY; 626 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 627 628 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 629 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 630 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 631 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 632 false, nullptr, Offset(oopDesc::mark_offset_in_bytes())); 633 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 634 false, nullptr, Offset(oopDesc::klass_offset_in_bytes())); 635 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot); 636 637 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, Offset::bottom); 638 639 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 640 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 641 642 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 643 644 mreg2type[Op_Node] = Type::BOTTOM; 645 mreg2type[Op_Set ] = nullptr; 646 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 647 mreg2type[Op_RegI] = TypeInt::INT; 648 mreg2type[Op_RegP] = TypePtr::BOTTOM; 649 mreg2type[Op_RegF] = Type::FLOAT; 650 mreg2type[Op_RegD] = Type::DOUBLE; 651 mreg2type[Op_RegL] = TypeLong::LONG; 652 mreg2type[Op_RegFlags] = TypeInt::CC; 653 654 GrowableArray<ciInstanceKlass*> array_interfaces; 655 array_interfaces.push(current->env()->Cloneable_klass()); 656 array_interfaces.push(current->env()->Serializable_klass()); 657 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces); 658 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 659 660 TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr, false, Offset::bottom); 661 TypeAryPtr::RANGE = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes())); 662 663 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom); 664 665 #ifdef _LP64 666 if (UseCompressedOops) { 667 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 668 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 669 } else 670 #endif 671 { 672 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 673 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, false, false, false, false, false), nullptr /*ciArrayKlass::make(o)*/, false, Offset::bottom); 674 } 675 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_BYTE), true, Offset::bottom); 676 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_SHORT), true, Offset::bottom); 677 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_CHAR), true, Offset::bottom); 678 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_INT), true, Offset::bottom); 679 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_LONG), true, Offset::bottom); 680 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_FLOAT), true, Offset::bottom); 681 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS, false, false, true, true, true), ciTypeArrayKlass::make(T_DOUBLE), true, Offset::bottom); 682 TypeAryPtr::INLINES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS, /* stable= */ false, /* flat= */ true, false, false, false), nullptr, false, Offset::bottom); 683 684 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert. 685 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr; 686 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 687 TypeAryPtr::_array_body_type[T_FLAT_ELEMENT] = TypeAryPtr::OOPS; 688 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 689 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 690 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 691 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 692 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 693 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 694 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 695 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 696 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 697 698 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0)); 699 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0)); 700 701 const Type **fi2c = TypeTuple::fields(2); 702 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 703 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 704 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 705 706 const Type **intpair = TypeTuple::fields(2); 707 intpair[0] = TypeInt::INT; 708 intpair[1] = TypeInt::INT; 709 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 710 711 const Type **longpair = TypeTuple::fields(2); 712 longpair[0] = TypeLong::LONG; 713 longpair[1] = TypeLong::LONG; 714 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 715 716 const Type **intccpair = TypeTuple::fields(2); 717 intccpair[0] = TypeInt::INT; 718 intccpair[1] = TypeInt::CC; 719 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 720 721 const Type **longccpair = TypeTuple::fields(2); 722 longccpair[0] = TypeLong::LONG; 723 longccpair[1] = TypeInt::CC; 724 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 725 726 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 727 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 728 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 729 _const_basic_type[T_CHAR] = TypeInt::CHAR; 730 _const_basic_type[T_BYTE] = TypeInt::BYTE; 731 _const_basic_type[T_SHORT] = TypeInt::SHORT; 732 _const_basic_type[T_INT] = TypeInt::INT; 733 _const_basic_type[T_LONG] = TypeLong::LONG; 734 _const_basic_type[T_FLOAT] = Type::FLOAT; 735 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 736 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 737 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 738 _const_basic_type[T_FLAT_ELEMENT] = TypeInstPtr::BOTTOM; 739 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 740 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 741 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 742 743 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 744 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 745 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 746 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 747 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 748 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 749 _zero_type[T_INT] = TypeInt::ZERO; 750 _zero_type[T_LONG] = TypeLong::ZERO; 751 _zero_type[T_FLOAT] = TypeF::ZERO; 752 _zero_type[T_DOUBLE] = TypeD::ZERO; 753 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 754 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 755 _zero_type[T_FLAT_ELEMENT] = TypePtr::NULL_PTR; 756 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 757 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 758 759 // get_zero_type() should not happen for T_CONFLICT 760 _zero_type[T_CONFLICT]= nullptr; 761 762 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons(); 763 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 764 765 if (Matcher::supports_scalable_vector()) { 766 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 767 } 768 769 // Vector predefined types, it needs initialized _const_basic_type[]. 770 if (Matcher::vector_size_supported(T_BYTE, 4)) { 771 TypeVect::VECTS = TypeVect::make(T_BYTE, 4); 772 } 773 if (Matcher::vector_size_supported(T_FLOAT, 2)) { 774 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2); 775 } 776 if (Matcher::vector_size_supported(T_FLOAT, 4)) { 777 TypeVect::VECTX = TypeVect::make(T_FLOAT, 4); 778 } 779 if (Matcher::vector_size_supported(T_FLOAT, 8)) { 780 TypeVect::VECTY = TypeVect::make(T_FLOAT, 8); 781 } 782 if (Matcher::vector_size_supported(T_FLOAT, 16)) { 783 TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16); 784 } 785 786 mreg2type[Op_VecA] = TypeVect::VECTA; 787 mreg2type[Op_VecS] = TypeVect::VECTS; 788 mreg2type[Op_VecD] = TypeVect::VECTD; 789 mreg2type[Op_VecX] = TypeVect::VECTX; 790 mreg2type[Op_VecY] = TypeVect::VECTY; 791 mreg2type[Op_VecZ] = TypeVect::VECTZ; 792 793 LockNode::initialize_lock_Type(); 794 ArrayCopyNode::initialize_arraycopy_Type(); 795 OptoRuntime::initialize_types(); 796 797 // Restore working type arena. 798 current->set_type_arena(save); 799 current->set_type_dict(nullptr); 800 } 801 802 //------------------------------Initialize------------------------------------- 803 void Type::Initialize(Compile* current) { 804 assert(current->type_arena() != nullptr, "must have created type arena"); 805 806 if (_shared_type_dict == nullptr) { 807 Initialize_shared(current); 808 } 809 810 Arena* type_arena = current->type_arena(); 811 812 // Create the hash-cons'ing dictionary with top-level storage allocation 813 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 814 current->set_type_dict(tdic); 815 } 816 817 //------------------------------hashcons--------------------------------------- 818 // Do the hash-cons trick. If the Type already exists in the type table, 819 // delete the current Type and return the existing Type. Otherwise stick the 820 // current Type in the Type table. 821 const Type *Type::hashcons(void) { 822 DEBUG_ONLY(base()); // Check the assertion in Type::base(). 823 // Look up the Type in the Type dictionary 824 Dict *tdic = type_dict(); 825 Type* old = (Type*)(tdic->Insert(this, this, false)); 826 if( old ) { // Pre-existing Type? 827 if( old != this ) // Yes, this guy is not the pre-existing? 828 delete this; // Yes, Nuke this guy 829 assert( old->_dual, "" ); 830 return old; // Return pre-existing 831 } 832 833 // Every type has a dual (to make my lattice symmetric). 834 // Since we just discovered a new Type, compute its dual right now. 835 assert( !_dual, "" ); // No dual yet 836 _dual = xdual(); // Compute the dual 837 if (equals(this, _dual)) { // Handle self-symmetric 838 if (_dual != this) { 839 delete _dual; 840 _dual = this; 841 } 842 return this; 843 } 844 assert( !_dual->_dual, "" ); // No reverse dual yet 845 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 846 // New Type, insert into Type table 847 tdic->Insert((void*)_dual,(void*)_dual); 848 ((Type*)_dual)->_dual = this; // Finish up being symmetric 849 #ifdef ASSERT 850 Type *dual_dual = (Type*)_dual->xdual(); 851 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 852 delete dual_dual; 853 #endif 854 return this; // Return new Type 855 } 856 857 //------------------------------eq--------------------------------------------- 858 // Structural equality check for Type representations 859 bool Type::eq( const Type * ) const { 860 return true; // Nothing else can go wrong 861 } 862 863 //------------------------------hash------------------------------------------- 864 // Type-specific hashing function. 865 uint Type::hash(void) const { 866 return _base; 867 } 868 869 //------------------------------is_finite-------------------------------------- 870 // Has a finite value 871 bool Type::is_finite() const { 872 return false; 873 } 874 875 //------------------------------is_nan----------------------------------------- 876 // Is not a number (NaN) 877 bool Type::is_nan() const { 878 return false; 879 } 880 881 #ifdef ASSERT 882 class VerifyMeet; 883 class VerifyMeetResult : public ArenaObj { 884 friend class VerifyMeet; 885 friend class Type; 886 private: 887 class VerifyMeetResultEntry { 888 private: 889 const Type* _in1; 890 const Type* _in2; 891 const Type* _res; 892 public: 893 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res): 894 _in1(in1), _in2(in2), _res(res) { 895 } 896 VerifyMeetResultEntry(): 897 _in1(nullptr), _in2(nullptr), _res(nullptr) { 898 } 899 900 bool operator==(const VerifyMeetResultEntry& rhs) const { 901 return _in1 == rhs._in1 && 902 _in2 == rhs._in2 && 903 _res == rhs._res; 904 } 905 906 bool operator!=(const VerifyMeetResultEntry& rhs) const { 907 return !(rhs == *this); 908 } 909 910 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) { 911 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) { 912 return -1; 913 } else if (v1._in1 == v2._in1) { 914 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) { 915 return -1; 916 } else if (v1._in2 == v2._in2) { 917 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result"); 918 return 0; 919 } 920 return 1; 921 } 922 return 1; 923 } 924 const Type* res() const { return _res; } 925 }; 926 uint _depth; 927 GrowableArray<VerifyMeetResultEntry> _cache; 928 929 // With verification code, the meet of A and B causes the computation of: 930 // 1- meet(A, B) 931 // 2- meet(B, A) 932 // 3- meet(dual(meet(A, B)), dual(A)) 933 // 4- meet(dual(meet(A, B)), dual(B)) 934 // 5- meet(dual(A), dual(B)) 935 // 6- meet(dual(B), dual(A)) 936 // 7- meet(dual(meet(dual(A), dual(B))), A) 937 // 8- meet(dual(meet(dual(A), dual(B))), B) 938 // 939 // In addition the meet of A[] and B[] requires the computation of the meet of A and B. 940 // 941 // The meet of A[] and B[] triggers the computation of: 942 // 1- meet(A[], B[][) 943 // 1.1- meet(A, B) 944 // 1.2- meet(B, A) 945 // 1.3- meet(dual(meet(A, B)), dual(A)) 946 // 1.4- meet(dual(meet(A, B)), dual(B)) 947 // 1.5- meet(dual(A), dual(B)) 948 // 1.6- meet(dual(B), dual(A)) 949 // 1.7- meet(dual(meet(dual(A), dual(B))), A) 950 // 1.8- meet(dual(meet(dual(A), dual(B))), B) 951 // 2- meet(B[], A[]) 952 // 2.1- meet(B, A) = 1.2 953 // 2.2- meet(A, B) = 1.1 954 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4 955 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3 956 // 2.5- meet(dual(B), dual(A)) = 1.6 957 // 2.6- meet(dual(A), dual(B)) = 1.5 958 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8 959 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7 960 // etc. 961 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number 962 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the 963 // duration of the meet at the root of the recursive calls. 964 // 965 const Type* meet(const Type* t1, const Type* t2) { 966 bool found = false; 967 const VerifyMeetResultEntry meet(t1, t2, nullptr); 968 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 969 const Type* res = nullptr; 970 if (found) { 971 res = _cache.at(pos).res(); 972 } else { 973 res = t1->xmeet(t2); 974 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 975 found = false; 976 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found); 977 assert(found, "should be in table after it's added"); 978 } 979 return res; 980 } 981 982 void add(const Type* t1, const Type* t2, const Type* res) { 983 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res)); 984 } 985 986 bool empty_cache() const { 987 return _cache.length() == 0; 988 } 989 public: 990 VerifyMeetResult(Compile* C) : 991 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) { 992 } 993 }; 994 995 void Type::assert_type_verify_empty() const { 996 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded"); 997 } 998 999 class VerifyMeet { 1000 private: 1001 Compile* _C; 1002 public: 1003 VerifyMeet(Compile* C) : _C(C) { 1004 if (C->_type_verify == nullptr) { 1005 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C); 1006 } 1007 _C->_type_verify->_depth++; 1008 } 1009 1010 ~VerifyMeet() { 1011 assert(_C->_type_verify->_depth != 0, ""); 1012 _C->_type_verify->_depth--; 1013 if (_C->_type_verify->_depth == 0) { 1014 _C->_type_verify->_cache.trunc_to(0); 1015 } 1016 } 1017 1018 const Type* meet(const Type* t1, const Type* t2) const { 1019 return _C->_type_verify->meet(t1, t2); 1020 } 1021 1022 void add(const Type* t1, const Type* t2, const Type* res) const { 1023 _C->_type_verify->add(t1, t2, res); 1024 } 1025 }; 1026 1027 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const { 1028 Compile* C = Compile::current(); 1029 const Type* mt2 = verify.meet(t, this); 1030 1031 // Verify that: 1032 // this meet t == t meet this 1033 if (mt != mt2) { 1034 tty->print_cr("=== Meet Not Commutative ==="); 1035 tty->print("t = "); t->dump(); tty->cr(); 1036 tty->print("this = "); dump(); tty->cr(); 1037 tty->print("t meet this = "); mt2->dump(); tty->cr(); 1038 tty->print("this meet t = "); mt->dump(); tty->cr(); 1039 fatal("meet not commutative"); 1040 } 1041 const Type* dual_join = mt->_dual; 1042 const Type* t2t = verify.meet(dual_join,t->_dual); 1043 const Type* t2this = verify.meet(dual_join,this->_dual); 1044 1045 // Interface meet Oop is Not Symmetric: 1046 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 1047 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 1048 1049 // Verify that: 1050 // 1) mt_dual meet t_dual == t_dual 1051 // which corresponds to 1052 // !(t meet this) meet !t == 1053 // (!t join !this) meet !t == !t 1054 // 2) mt_dual meet this_dual == this_dual 1055 // which corresponds to 1056 // !(t meet this) meet !this == 1057 // (!t join !this) meet !this == !this 1058 if (t2t != t->_dual || t2this != this->_dual) { 1059 tty->print_cr("=== Meet Not Symmetric ==="); 1060 tty->print("t = "); t->dump(); tty->cr(); 1061 tty->print("this= "); dump(); tty->cr(); 1062 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 1063 1064 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 1065 tty->print("this_dual= "); _dual->dump(); tty->cr(); 1066 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 1067 1068 // 1) 1069 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 1070 // 2) 1071 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 1072 tty->cr(); 1073 tty->print_cr("Fail: "); 1074 if (t2t != t->_dual) { 1075 tty->print_cr("- mt_dual meet t_dual != t_dual"); 1076 } 1077 if (t2this != this->_dual) { 1078 tty->print_cr("- mt_dual meet this_dual != this_dual"); 1079 } 1080 tty->cr(); 1081 1082 fatal("meet not symmetric"); 1083 } 1084 } 1085 #endif 1086 1087 //------------------------------meet------------------------------------------- 1088 // Compute the MEET of two types. NOT virtual. It enforces that meet is 1089 // commutative and the lattice is symmetric. 1090 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 1091 if (isa_narrowoop() && t->isa_narrowoop()) { 1092 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 1093 return result->make_narrowoop(); 1094 } 1095 if (isa_narrowklass() && t->isa_narrowklass()) { 1096 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 1097 return result->make_narrowklass(); 1098 } 1099 1100 #ifdef ASSERT 1101 Compile* C = Compile::current(); 1102 VerifyMeet verify(C); 1103 #endif 1104 1105 const Type *this_t = maybe_remove_speculative(include_speculative); 1106 t = t->maybe_remove_speculative(include_speculative); 1107 1108 const Type *mt = this_t->xmeet(t); 1109 #ifdef ASSERT 1110 verify.add(this_t, t, mt); 1111 if (isa_narrowoop() || t->isa_narrowoop()) { 1112 return mt; 1113 } 1114 if (isa_narrowklass() || t->isa_narrowklass()) { 1115 return mt; 1116 } 1117 // TODO 8350865 This currently triggers a verification failure, the code around "// Even though MyValue is final" needs adjustments 1118 if ((this_t->isa_ptr() && this_t->is_ptr()->is_not_flat()) || 1119 (this_t->_dual->isa_ptr() && this_t->_dual->is_ptr()->is_not_flat())) return mt; 1120 this_t->check_symmetrical(t, mt, verify); 1121 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual); 1122 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify); 1123 #endif 1124 return mt; 1125 } 1126 1127 //------------------------------xmeet------------------------------------------ 1128 // Compute the MEET of two types. It returns a new Type object. 1129 const Type *Type::xmeet( const Type *t ) const { 1130 // Perform a fast test for common case; meeting the same types together. 1131 if( this == t ) return this; // Meeting same type-rep? 1132 1133 // Meeting TOP with anything? 1134 if( _base == Top ) return t; 1135 1136 // Meeting BOTTOM with anything? 1137 if( _base == Bottom ) return BOTTOM; 1138 1139 // Current "this->_base" is one of: Bad, Multi, Control, Top, 1140 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 1141 switch (t->base()) { // Switch on original type 1142 1143 // Cut in half the number of cases I must handle. Only need cases for when 1144 // the given enum "t->type" is less than or equal to the local enum "type". 1145 case HalfFloatCon: 1146 case FloatCon: 1147 case DoubleCon: 1148 case Int: 1149 case Long: 1150 return t->xmeet(this); 1151 1152 case OopPtr: 1153 return t->xmeet(this); 1154 1155 case InstPtr: 1156 return t->xmeet(this); 1157 1158 case MetadataPtr: 1159 case KlassPtr: 1160 case InstKlassPtr: 1161 case AryKlassPtr: 1162 return t->xmeet(this); 1163 1164 case AryPtr: 1165 return t->xmeet(this); 1166 1167 case NarrowOop: 1168 return t->xmeet(this); 1169 1170 case NarrowKlass: 1171 return t->xmeet(this); 1172 1173 case Bad: // Type check 1174 default: // Bogus type not in lattice 1175 typerr(t); 1176 return Type::BOTTOM; 1177 1178 case Bottom: // Ye Olde Default 1179 return t; 1180 1181 case HalfFloatTop: 1182 if (_base == HalfFloatTop) { return this; } 1183 case HalfFloatBot: // Half Float 1184 if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; } 1185 if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; } 1186 if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; } 1187 typerr(t); 1188 return Type::BOTTOM; 1189 1190 case FloatTop: 1191 if (_base == FloatTop ) { return this; } 1192 case FloatBot: // Float 1193 if (_base == FloatBot || _base == FloatTop) { return FLOAT; } 1194 if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; } 1195 if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; } 1196 typerr(t); 1197 return Type::BOTTOM; 1198 1199 case DoubleTop: 1200 if (_base == DoubleTop) { return this; } 1201 case DoubleBot: // Double 1202 if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; } 1203 if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; } 1204 if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; } 1205 typerr(t); 1206 return Type::BOTTOM; 1207 1208 // These next few cases must match exactly or it is a compile-time error. 1209 case Control: // Control of code 1210 case Abio: // State of world outside of program 1211 case Memory: 1212 if (_base == t->_base) { return this; } 1213 typerr(t); 1214 return Type::BOTTOM; 1215 1216 case Top: // Top of the lattice 1217 return this; 1218 } 1219 1220 // The type is unchanged 1221 return this; 1222 } 1223 1224 //-----------------------------filter------------------------------------------ 1225 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 1226 const Type* ft = join_helper(kills, include_speculative); 1227 if (ft->empty()) 1228 return Type::TOP; // Canonical empty value 1229 return ft; 1230 } 1231 1232 //------------------------------xdual------------------------------------------ 1233 const Type *Type::xdual() const { 1234 // Note: the base() accessor asserts the sanity of _base. 1235 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1236 return new Type(_type_info[_base].dual_type); 1237 } 1238 1239 //------------------------------has_memory------------------------------------- 1240 bool Type::has_memory() const { 1241 Type::TYPES tx = base(); 1242 if (tx == Memory) return true; 1243 if (tx == Tuple) { 1244 const TypeTuple *t = is_tuple(); 1245 for (uint i=0; i < t->cnt(); i++) { 1246 tx = t->field_at(i)->base(); 1247 if (tx == Memory) return true; 1248 } 1249 } 1250 return false; 1251 } 1252 1253 #ifndef PRODUCT 1254 //------------------------------dump2------------------------------------------ 1255 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1256 st->print("%s", _type_info[_base].msg); 1257 } 1258 1259 //------------------------------dump------------------------------------------- 1260 void Type::dump_on(outputStream *st) const { 1261 ResourceMark rm; 1262 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1263 dump2(d,1, st); 1264 if (is_ptr_to_narrowoop()) { 1265 st->print(" [narrow]"); 1266 } else if (is_ptr_to_narrowklass()) { 1267 st->print(" [narrowklass]"); 1268 } 1269 } 1270 1271 //----------------------------------------------------------------------------- 1272 const char* Type::str(const Type* t) { 1273 stringStream ss; 1274 t->dump_on(&ss); 1275 return ss.as_string(); 1276 } 1277 #endif 1278 1279 //------------------------------singleton-------------------------------------- 1280 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1281 // constants (Ldi nodes). Singletons are integer, float or double constants. 1282 bool Type::singleton(void) const { 1283 return _base == Top || _base == Half; 1284 } 1285 1286 //------------------------------empty------------------------------------------ 1287 // TRUE if Type is a type with no values, FALSE otherwise. 1288 bool Type::empty(void) const { 1289 switch (_base) { 1290 case DoubleTop: 1291 case FloatTop: 1292 case HalfFloatTop: 1293 case Top: 1294 return true; 1295 1296 case Half: 1297 case Abio: 1298 case Return_Address: 1299 case Memory: 1300 case Bottom: 1301 case HalfFloatBot: 1302 case FloatBot: 1303 case DoubleBot: 1304 return false; // never a singleton, therefore never empty 1305 1306 default: 1307 ShouldNotReachHere(); 1308 return false; 1309 } 1310 } 1311 1312 //------------------------------dump_stats------------------------------------- 1313 // Dump collected statistics to stderr 1314 #ifndef PRODUCT 1315 void Type::dump_stats() { 1316 tty->print("Types made: %d\n", type_dict()->Size()); 1317 } 1318 #endif 1319 1320 //------------------------------category--------------------------------------- 1321 #ifndef PRODUCT 1322 Type::Category Type::category() const { 1323 const TypeTuple* tuple; 1324 switch (base()) { 1325 case Type::Int: 1326 case Type::Long: 1327 case Type::Half: 1328 case Type::NarrowOop: 1329 case Type::NarrowKlass: 1330 case Type::Array: 1331 case Type::VectorA: 1332 case Type::VectorS: 1333 case Type::VectorD: 1334 case Type::VectorX: 1335 case Type::VectorY: 1336 case Type::VectorZ: 1337 case Type::VectorMask: 1338 case Type::AnyPtr: 1339 case Type::RawPtr: 1340 case Type::OopPtr: 1341 case Type::InstPtr: 1342 case Type::AryPtr: 1343 case Type::MetadataPtr: 1344 case Type::KlassPtr: 1345 case Type::InstKlassPtr: 1346 case Type::AryKlassPtr: 1347 case Type::Function: 1348 case Type::Return_Address: 1349 case Type::HalfFloatTop: 1350 case Type::HalfFloatCon: 1351 case Type::HalfFloatBot: 1352 case Type::FloatTop: 1353 case Type::FloatCon: 1354 case Type::FloatBot: 1355 case Type::DoubleTop: 1356 case Type::DoubleCon: 1357 case Type::DoubleBot: 1358 return Category::Data; 1359 case Type::Memory: 1360 return Category::Memory; 1361 case Type::Control: 1362 return Category::Control; 1363 case Type::Top: 1364 case Type::Abio: 1365 case Type::Bottom: 1366 return Category::Other; 1367 case Type::Bad: 1368 case Type::lastype: 1369 return Category::Undef; 1370 case Type::Tuple: 1371 // Recursive case. Return CatMixed if the tuple contains types of 1372 // different categories (e.g. CallStaticJavaNode's type), or the specific 1373 // category if all types are of the same category (e.g. IfNode's type). 1374 tuple = is_tuple(); 1375 if (tuple->cnt() == 0) { 1376 return Category::Undef; 1377 } else { 1378 Category first = tuple->field_at(0)->category(); 1379 for (uint i = 1; i < tuple->cnt(); i++) { 1380 if (tuple->field_at(i)->category() != first) { 1381 return Category::Mixed; 1382 } 1383 } 1384 return first; 1385 } 1386 default: 1387 assert(false, "unmatched base type: all base types must be categorized"); 1388 } 1389 return Category::Undef; 1390 } 1391 1392 bool Type::has_category(Type::Category cat) const { 1393 if (category() == cat) { 1394 return true; 1395 } 1396 if (category() == Category::Mixed) { 1397 const TypeTuple* tuple = is_tuple(); 1398 for (uint i = 0; i < tuple->cnt(); i++) { 1399 if (tuple->field_at(i)->has_category(cat)) { 1400 return true; 1401 } 1402 } 1403 } 1404 return false; 1405 } 1406 #endif 1407 1408 //------------------------------typerr----------------------------------------- 1409 void Type::typerr( const Type *t ) const { 1410 #ifndef PRODUCT 1411 tty->print("\nError mixing types: "); 1412 dump(); 1413 tty->print(" and "); 1414 t->dump(); 1415 tty->print("\n"); 1416 #endif 1417 ShouldNotReachHere(); 1418 } 1419 1420 1421 //============================================================================= 1422 // Convenience common pre-built types. 1423 const TypeF *TypeF::MAX; // Floating point max 1424 const TypeF *TypeF::MIN; // Floating point min 1425 const TypeF *TypeF::ZERO; // Floating point zero 1426 const TypeF *TypeF::ONE; // Floating point one 1427 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1428 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1429 1430 //------------------------------make------------------------------------------- 1431 // Create a float constant 1432 const TypeF *TypeF::make(float f) { 1433 return (TypeF*)(new TypeF(f))->hashcons(); 1434 } 1435 1436 //------------------------------meet------------------------------------------- 1437 // Compute the MEET of two types. It returns a new Type object. 1438 const Type *TypeF::xmeet( const Type *t ) const { 1439 // Perform a fast test for common case; meeting the same types together. 1440 if( this == t ) return this; // Meeting same type-rep? 1441 1442 // Current "this->_base" is FloatCon 1443 switch (t->base()) { // Switch on original type 1444 case AnyPtr: // Mixing with oops happens when javac 1445 case RawPtr: // reuses local variables 1446 case OopPtr: 1447 case InstPtr: 1448 case AryPtr: 1449 case MetadataPtr: 1450 case KlassPtr: 1451 case InstKlassPtr: 1452 case AryKlassPtr: 1453 case NarrowOop: 1454 case NarrowKlass: 1455 case Int: 1456 case Long: 1457 case HalfFloatTop: 1458 case HalfFloatCon: 1459 case HalfFloatBot: 1460 case DoubleTop: 1461 case DoubleCon: 1462 case DoubleBot: 1463 case Bottom: // Ye Olde Default 1464 return Type::BOTTOM; 1465 1466 case FloatBot: 1467 return t; 1468 1469 default: // All else is a mistake 1470 typerr(t); 1471 1472 case FloatCon: // Float-constant vs Float-constant? 1473 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1474 // must compare bitwise as positive zero, negative zero and NaN have 1475 // all the same representation in C++ 1476 return FLOAT; // Return generic float 1477 // Equal constants 1478 case Top: 1479 case FloatTop: 1480 break; // Return the float constant 1481 } 1482 return this; // Return the float constant 1483 } 1484 1485 //------------------------------xdual------------------------------------------ 1486 // Dual: symmetric 1487 const Type *TypeF::xdual() const { 1488 return this; 1489 } 1490 1491 //------------------------------eq--------------------------------------------- 1492 // Structural equality check for Type representations 1493 bool TypeF::eq(const Type *t) const { 1494 // Bitwise comparison to distinguish between +/-0. These values must be treated 1495 // as different to be consistent with C1 and the interpreter. 1496 return (jint_cast(_f) == jint_cast(t->getf())); 1497 } 1498 1499 //------------------------------hash------------------------------------------- 1500 // Type-specific hashing function. 1501 uint TypeF::hash(void) const { 1502 return *(uint*)(&_f); 1503 } 1504 1505 //------------------------------is_finite-------------------------------------- 1506 // Has a finite value 1507 bool TypeF::is_finite() const { 1508 return g_isfinite(getf()) != 0; 1509 } 1510 1511 //------------------------------is_nan----------------------------------------- 1512 // Is not a number (NaN) 1513 bool TypeF::is_nan() const { 1514 return g_isnan(getf()) != 0; 1515 } 1516 1517 //------------------------------dump2------------------------------------------ 1518 // Dump float constant Type 1519 #ifndef PRODUCT 1520 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1521 Type::dump2(d,depth, st); 1522 st->print("%f", _f); 1523 } 1524 #endif 1525 1526 //------------------------------singleton-------------------------------------- 1527 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1528 // constants (Ldi nodes). Singletons are integer, float or double constants 1529 // or a single symbol. 1530 bool TypeF::singleton(void) const { 1531 return true; // Always a singleton 1532 } 1533 1534 bool TypeF::empty(void) const { 1535 return false; // always exactly a singleton 1536 } 1537 1538 //============================================================================= 1539 // Convenience common pre-built types. 1540 const TypeH* TypeH::MAX; // Half float max 1541 const TypeH* TypeH::MIN; // Half float min 1542 const TypeH* TypeH::ZERO; // Half float zero 1543 const TypeH* TypeH::ONE; // Half float one 1544 const TypeH* TypeH::POS_INF; // Half float positive infinity 1545 const TypeH* TypeH::NEG_INF; // Half float negative infinity 1546 1547 //------------------------------make------------------------------------------- 1548 // Create a halffloat constant 1549 const TypeH* TypeH::make(short f) { 1550 return (TypeH*)(new TypeH(f))->hashcons(); 1551 } 1552 1553 const TypeH* TypeH::make(float f) { 1554 assert(StubRoutines::f2hf_adr() != nullptr, ""); 1555 short hf = StubRoutines::f2hf(f); 1556 return (TypeH*)(new TypeH(hf))->hashcons(); 1557 } 1558 1559 //------------------------------xmeet------------------------------------------- 1560 // Compute the MEET of two types. It returns a new Type object. 1561 const Type* TypeH::xmeet(const Type* t) const { 1562 // Perform a fast test for common case; meeting the same types together. 1563 if (this == t) return this; // Meeting same type-rep? 1564 1565 // Current "this->_base" is FloatCon 1566 switch (t->base()) { // Switch on original type 1567 case AnyPtr: // Mixing with oops happens when javac 1568 case RawPtr: // reuses local variables 1569 case OopPtr: 1570 case InstPtr: 1571 case AryPtr: 1572 case MetadataPtr: 1573 case KlassPtr: 1574 case InstKlassPtr: 1575 case AryKlassPtr: 1576 case NarrowOop: 1577 case NarrowKlass: 1578 case Int: 1579 case Long: 1580 case FloatTop: 1581 case FloatCon: 1582 case FloatBot: 1583 case DoubleTop: 1584 case DoubleCon: 1585 case DoubleBot: 1586 case Bottom: // Ye Olde Default 1587 return Type::BOTTOM; 1588 1589 case HalfFloatBot: 1590 return t; 1591 1592 default: // All else is a mistake 1593 typerr(t); 1594 1595 case HalfFloatCon: // Half float-constant vs Half float-constant? 1596 if (_f != t->geth()) { // unequal constants? 1597 // must compare bitwise as positive zero, negative zero and NaN have 1598 // all the same representation in C++ 1599 return HALF_FLOAT; // Return generic float 1600 } // Equal constants 1601 case Top: 1602 case HalfFloatTop: 1603 break; // Return the Half float constant 1604 } 1605 return this; // Return the Half float constant 1606 } 1607 1608 //------------------------------xdual------------------------------------------ 1609 // Dual: symmetric 1610 const Type* TypeH::xdual() const { 1611 return this; 1612 } 1613 1614 //------------------------------eq--------------------------------------------- 1615 // Structural equality check for Type representations 1616 bool TypeH::eq(const Type* t) const { 1617 // Bitwise comparison to distinguish between +/-0. These values must be treated 1618 // as different to be consistent with C1 and the interpreter. 1619 return (_f == t->geth()); 1620 } 1621 1622 //------------------------------hash------------------------------------------- 1623 // Type-specific hashing function. 1624 uint TypeH::hash(void) const { 1625 return *(jshort*)(&_f); 1626 } 1627 1628 //------------------------------is_finite-------------------------------------- 1629 // Has a finite value 1630 bool TypeH::is_finite() const { 1631 assert(StubRoutines::hf2f_adr() != nullptr, ""); 1632 float f = StubRoutines::hf2f(geth()); 1633 return g_isfinite(f) != 0; 1634 } 1635 1636 float TypeH::getf() const { 1637 assert(StubRoutines::hf2f_adr() != nullptr, ""); 1638 return StubRoutines::hf2f(geth()); 1639 } 1640 1641 //------------------------------is_nan----------------------------------------- 1642 // Is not a number (NaN) 1643 bool TypeH::is_nan() const { 1644 assert(StubRoutines::hf2f_adr() != nullptr, ""); 1645 float f = StubRoutines::hf2f(geth()); 1646 return g_isnan(f) != 0; 1647 } 1648 1649 //------------------------------dump2------------------------------------------ 1650 // Dump float constant Type 1651 #ifndef PRODUCT 1652 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const { 1653 Type::dump2(d,depth, st); 1654 st->print("%f", getf()); 1655 } 1656 #endif 1657 1658 //------------------------------singleton-------------------------------------- 1659 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1660 // constants (Ldi nodes). Singletons are integer, half float, float or double constants 1661 // or a single symbol. 1662 bool TypeH::singleton(void) const { 1663 return true; // Always a singleton 1664 } 1665 1666 bool TypeH::empty(void) const { 1667 return false; // always exactly a singleton 1668 } 1669 1670 //============================================================================= 1671 // Convenience common pre-built types. 1672 const TypeD *TypeD::MAX; // Floating point max 1673 const TypeD *TypeD::MIN; // Floating point min 1674 const TypeD *TypeD::ZERO; // Floating point zero 1675 const TypeD *TypeD::ONE; // Floating point one 1676 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1677 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1678 1679 //------------------------------make------------------------------------------- 1680 const TypeD *TypeD::make(double d) { 1681 return (TypeD*)(new TypeD(d))->hashcons(); 1682 } 1683 1684 //------------------------------meet------------------------------------------- 1685 // Compute the MEET of two types. It returns a new Type object. 1686 const Type *TypeD::xmeet( const Type *t ) const { 1687 // Perform a fast test for common case; meeting the same types together. 1688 if( this == t ) return this; // Meeting same type-rep? 1689 1690 // Current "this->_base" is DoubleCon 1691 switch (t->base()) { // Switch on original type 1692 case AnyPtr: // Mixing with oops happens when javac 1693 case RawPtr: // reuses local variables 1694 case OopPtr: 1695 case InstPtr: 1696 case AryPtr: 1697 case MetadataPtr: 1698 case KlassPtr: 1699 case InstKlassPtr: 1700 case AryKlassPtr: 1701 case NarrowOop: 1702 case NarrowKlass: 1703 case Int: 1704 case Long: 1705 case HalfFloatTop: 1706 case HalfFloatCon: 1707 case HalfFloatBot: 1708 case FloatTop: 1709 case FloatCon: 1710 case FloatBot: 1711 case Bottom: // Ye Olde Default 1712 return Type::BOTTOM; 1713 1714 case DoubleBot: 1715 return t; 1716 1717 default: // All else is a mistake 1718 typerr(t); 1719 1720 case DoubleCon: // Double-constant vs Double-constant? 1721 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1722 return DOUBLE; // Return generic double 1723 case Top: 1724 case DoubleTop: 1725 break; 1726 } 1727 return this; // Return the double constant 1728 } 1729 1730 //------------------------------xdual------------------------------------------ 1731 // Dual: symmetric 1732 const Type *TypeD::xdual() const { 1733 return this; 1734 } 1735 1736 //------------------------------eq--------------------------------------------- 1737 // Structural equality check for Type representations 1738 bool TypeD::eq(const Type *t) const { 1739 // Bitwise comparison to distinguish between +/-0. These values must be treated 1740 // as different to be consistent with C1 and the interpreter. 1741 return (jlong_cast(_d) == jlong_cast(t->getd())); 1742 } 1743 1744 //------------------------------hash------------------------------------------- 1745 // Type-specific hashing function. 1746 uint TypeD::hash(void) const { 1747 return *(uint*)(&_d); 1748 } 1749 1750 //------------------------------is_finite-------------------------------------- 1751 // Has a finite value 1752 bool TypeD::is_finite() const { 1753 return g_isfinite(getd()) != 0; 1754 } 1755 1756 //------------------------------is_nan----------------------------------------- 1757 // Is not a number (NaN) 1758 bool TypeD::is_nan() const { 1759 return g_isnan(getd()) != 0; 1760 } 1761 1762 //------------------------------dump2------------------------------------------ 1763 // Dump double constant Type 1764 #ifndef PRODUCT 1765 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1766 Type::dump2(d,depth,st); 1767 st->print("%f", _d); 1768 } 1769 #endif 1770 1771 //------------------------------singleton-------------------------------------- 1772 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1773 // constants (Ldi nodes). Singletons are integer, float or double constants 1774 // or a single symbol. 1775 bool TypeD::singleton(void) const { 1776 return true; // Always a singleton 1777 } 1778 1779 bool TypeD::empty(void) const { 1780 return false; // always exactly a singleton 1781 } 1782 1783 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1784 if (bt == T_INT) { 1785 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1786 } 1787 assert(bt == T_LONG, "basic type not an int or long"); 1788 return TypeLong::make(lo, hi, w); 1789 } 1790 1791 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) { 1792 return make(con, con, WidenMin, bt); 1793 } 1794 1795 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1796 if (bt == T_INT) { 1797 return is_int()->get_con(); 1798 } 1799 assert(bt == T_LONG, "basic type not an int or long"); 1800 return is_long()->get_con(); 1801 } 1802 1803 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1804 if (bt == T_INT) { 1805 return TypeInt::INT; 1806 } 1807 assert(bt == T_LONG, "basic type not an int or long"); 1808 return TypeLong::LONG; 1809 } 1810 1811 const TypeInteger* TypeInteger::zero(BasicType bt) { 1812 if (bt == T_INT) { 1813 return TypeInt::ZERO; 1814 } 1815 assert(bt == T_LONG, "basic type not an int or long"); 1816 return TypeLong::ZERO; 1817 } 1818 1819 const TypeInteger* TypeInteger::one(BasicType bt) { 1820 if (bt == T_INT) { 1821 return TypeInt::ONE; 1822 } 1823 assert(bt == T_LONG, "basic type not an int or long"); 1824 return TypeLong::ONE; 1825 } 1826 1827 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1828 if (bt == T_INT) { 1829 return TypeInt::MINUS_1; 1830 } 1831 assert(bt == T_LONG, "basic type not an int or long"); 1832 return TypeLong::MINUS_1; 1833 } 1834 1835 //============================================================================= 1836 // Convenience common pre-built types. 1837 const TypeInt* TypeInt::MAX; // INT_MAX 1838 const TypeInt* TypeInt::MIN; // INT_MIN 1839 const TypeInt* TypeInt::MINUS_1;// -1 1840 const TypeInt* TypeInt::ZERO; // 0 1841 const TypeInt* TypeInt::ONE; // 1 1842 const TypeInt* TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1843 const TypeInt* TypeInt::CC; // -1,0 or 1, condition codes 1844 const TypeInt* TypeInt::CC_LT; // [-1] == MINUS_1 1845 const TypeInt* TypeInt::CC_GT; // [1] == ONE 1846 const TypeInt* TypeInt::CC_EQ; // [0] == ZERO 1847 const TypeInt* TypeInt::CC_NE; 1848 const TypeInt* TypeInt::CC_LE; // [-1,0] 1849 const TypeInt* TypeInt::CC_GE; // [0,1] == BOOL (!) 1850 const TypeInt* TypeInt::BYTE; // Bytes, -128 to 127 1851 const TypeInt* TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1852 const TypeInt* TypeInt::CHAR; // Java chars, 0-65535 1853 const TypeInt* TypeInt::SHORT; // Java shorts, -32768-32767 1854 const TypeInt* TypeInt::NON_ZERO; 1855 const TypeInt* TypeInt::POS; // Positive 32-bit integers or zero 1856 const TypeInt* TypeInt::POS1; // Positive 32-bit integers 1857 const TypeInt* TypeInt::INT; // 32-bit integers 1858 const TypeInt* TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1859 const TypeInt* TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1860 1861 TypeInt::TypeInt(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) 1862 : TypeInteger(Int, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi), 1863 _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) { 1864 DEBUG_ONLY(t.verify_constraints()); 1865 } 1866 1867 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) { 1868 auto canonicalized_t = t.canonicalize_constraints(); 1869 if (canonicalized_t.empty()) { 1870 return dual ? Type::BOTTOM : Type::TOP; 1871 } 1872 return (new TypeInt(canonicalized_t._data, widen, dual))->hashcons()->is_int(); 1873 } 1874 1875 const TypeInt* TypeInt::make(jint con) { 1876 juint ucon = con; 1877 return (new TypeInt(TypeIntPrototype<jint, juint>{{con, con}, {ucon, ucon}, {~ucon, ucon}}, 1878 WidenMin, false))->hashcons()->is_int(); 1879 } 1880 1881 const TypeInt* TypeInt::make(jint lo, jint hi, int widen) { 1882 assert(lo <= hi, "must be legal bounds"); 1883 return make_or_top(TypeIntPrototype<jint, juint>{{lo, hi}, {0, max_juint}, {0, 0}}, widen)->is_int(); 1884 } 1885 1886 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen) { 1887 return make_or_top(t, widen, false); 1888 } 1889 1890 bool TypeInt::contains(jint i) const { 1891 assert(!_is_dual, "dual types should only be used for join calculation"); 1892 juint u = i; 1893 return i >= _lo && i <= _hi && 1894 u >= _ulo && u <= _uhi && 1895 _bits.is_satisfied_by(u); 1896 } 1897 1898 bool TypeInt::contains(const TypeInt* t) const { 1899 assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation"); 1900 return TypeIntHelper::int_type_is_subset(this, t); 1901 } 1902 1903 const Type* TypeInt::xmeet(const Type* t) const { 1904 return TypeIntHelper::int_type_xmeet(this, t); 1905 } 1906 1907 const Type* TypeInt::xdual() const { 1908 return new TypeInt(TypeIntPrototype<jint, juint>{{_lo, _hi}, {_ulo, _uhi}, _bits}, 1909 _widen, !_is_dual); 1910 } 1911 1912 const Type* TypeInt::widen(const Type* old, const Type* limit) const { 1913 assert(!_is_dual, "dual types should only be used for join calculation"); 1914 return TypeIntHelper::int_type_widen(this, old->isa_int(), limit->isa_int()); 1915 } 1916 1917 const Type* TypeInt::narrow(const Type* old) const { 1918 assert(!_is_dual, "dual types should only be used for join calculation"); 1919 if (old == nullptr) { 1920 return this; 1921 } 1922 1923 return TypeIntHelper::int_type_narrow(this, old->isa_int()); 1924 } 1925 1926 //-----------------------------filter------------------------------------------ 1927 const Type* TypeInt::filter_helper(const Type* kills, bool include_speculative) const { 1928 assert(!_is_dual, "dual types should only be used for join calculation"); 1929 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1930 if (ft == nullptr) { 1931 return Type::TOP; // Canonical empty value 1932 } 1933 assert(!ft->_is_dual, "dual types should only be used for join calculation"); 1934 if (ft->_widen < this->_widen) { 1935 // Do not allow the value of kill->_widen to affect the outcome. 1936 // The widen bits must be allowed to run freely through the graph. 1937 return (new TypeInt(TypeIntPrototype<jint, juint>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits}, 1938 this->_widen, false))->hashcons(); 1939 } 1940 return ft; 1941 } 1942 1943 //------------------------------eq--------------------------------------------- 1944 // Structural equality check for Type representations 1945 bool TypeInt::eq(const Type* t) const { 1946 const TypeInt* r = t->is_int(); 1947 return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual; 1948 } 1949 1950 //------------------------------hash------------------------------------------- 1951 // Type-specific hashing function. 1952 uint TypeInt::hash(void) const { 1953 return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi + 1954 (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Int; 1955 } 1956 1957 //------------------------------is_finite-------------------------------------- 1958 // Has a finite value 1959 bool TypeInt::is_finite() const { 1960 return true; 1961 } 1962 1963 //------------------------------singleton-------------------------------------- 1964 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1965 // constants. 1966 bool TypeInt::singleton(void) const { 1967 return _lo == _hi; 1968 } 1969 1970 bool TypeInt::empty(void) const { 1971 return false; 1972 } 1973 1974 //============================================================================= 1975 // Convenience common pre-built types. 1976 const TypeLong* TypeLong::MAX; 1977 const TypeLong* TypeLong::MIN; 1978 const TypeLong* TypeLong::MINUS_1;// -1 1979 const TypeLong* TypeLong::ZERO; // 0 1980 const TypeLong* TypeLong::ONE; // 1 1981 const TypeLong* TypeLong::NON_ZERO; 1982 const TypeLong* TypeLong::POS; // >=0 1983 const TypeLong* TypeLong::NEG; 1984 const TypeLong* TypeLong::LONG; // 64-bit integers 1985 const TypeLong* TypeLong::INT; // 32-bit subrange 1986 const TypeLong* TypeLong::UINT; // 32-bit unsigned subrange 1987 const TypeLong* TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1988 1989 TypeLong::TypeLong(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) 1990 : TypeInteger(Long, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi), 1991 _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) { 1992 DEBUG_ONLY(t.verify_constraints()); 1993 } 1994 1995 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) { 1996 auto canonicalized_t = t.canonicalize_constraints(); 1997 if (canonicalized_t.empty()) { 1998 return dual ? Type::BOTTOM : Type::TOP; 1999 } 2000 return (new TypeLong(canonicalized_t._data, widen, dual))->hashcons()->is_long(); 2001 } 2002 2003 const TypeLong* TypeLong::make(jlong con) { 2004 julong ucon = con; 2005 return (new TypeLong(TypeIntPrototype<jlong, julong>{{con, con}, {ucon, ucon}, {~ucon, ucon}}, 2006 WidenMin, false))->hashcons()->is_long(); 2007 } 2008 2009 const TypeLong* TypeLong::make(jlong lo, jlong hi, int widen) { 2010 assert(lo <= hi, "must be legal bounds"); 2011 return make_or_top(TypeIntPrototype<jlong, julong>{{lo, hi}, {0, max_julong}, {0, 0}}, widen)->is_long(); 2012 } 2013 2014 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen) { 2015 return make_or_top(t, widen, false); 2016 } 2017 2018 bool TypeLong::contains(jlong i) const { 2019 assert(!_is_dual, "dual types should only be used for join calculation"); 2020 julong u = i; 2021 return i >= _lo && i <= _hi && 2022 u >= _ulo && u <= _uhi && 2023 _bits.is_satisfied_by(u); 2024 } 2025 2026 bool TypeLong::contains(const TypeLong* t) const { 2027 assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation"); 2028 return TypeIntHelper::int_type_is_subset(this, t); 2029 } 2030 2031 const Type* TypeLong::xmeet(const Type* t) const { 2032 return TypeIntHelper::int_type_xmeet(this, t); 2033 } 2034 2035 const Type* TypeLong::xdual() const { 2036 return new TypeLong(TypeIntPrototype<jlong, julong>{{_lo, _hi}, {_ulo, _uhi}, _bits}, 2037 _widen, !_is_dual); 2038 } 2039 2040 const Type* TypeLong::widen(const Type* old, const Type* limit) const { 2041 assert(!_is_dual, "dual types should only be used for join calculation"); 2042 return TypeIntHelper::int_type_widen(this, old->isa_long(), limit->isa_long()); 2043 } 2044 2045 const Type* TypeLong::narrow(const Type* old) const { 2046 assert(!_is_dual, "dual types should only be used for join calculation"); 2047 if (old == nullptr) { 2048 return this; 2049 } 2050 2051 return TypeIntHelper::int_type_narrow(this, old->isa_long()); 2052 } 2053 2054 //-----------------------------filter------------------------------------------ 2055 const Type* TypeLong::filter_helper(const Type* kills, bool include_speculative) const { 2056 assert(!_is_dual, "dual types should only be used for join calculation"); 2057 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 2058 if (ft == nullptr) { 2059 return Type::TOP; // Canonical empty value 2060 } 2061 assert(!ft->_is_dual, "dual types should only be used for join calculation"); 2062 if (ft->_widen < this->_widen) { 2063 // Do not allow the value of kill->_widen to affect the outcome. 2064 // The widen bits must be allowed to run freely through the graph. 2065 return (new TypeLong(TypeIntPrototype<jlong, julong>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits}, 2066 this->_widen, false))->hashcons(); 2067 } 2068 return ft; 2069 } 2070 2071 //------------------------------eq--------------------------------------------- 2072 // Structural equality check for Type representations 2073 bool TypeLong::eq(const Type* t) const { 2074 const TypeLong* r = t->is_long(); 2075 return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual; 2076 } 2077 2078 //------------------------------hash------------------------------------------- 2079 // Type-specific hashing function. 2080 uint TypeLong::hash(void) const { 2081 return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi + 2082 (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Long; 2083 } 2084 2085 //------------------------------is_finite-------------------------------------- 2086 // Has a finite value 2087 bool TypeLong::is_finite() const { 2088 return true; 2089 } 2090 2091 //------------------------------singleton-------------------------------------- 2092 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2093 // constants 2094 bool TypeLong::singleton(void) const { 2095 return _lo == _hi; 2096 } 2097 2098 bool TypeLong::empty(void) const { 2099 return false; 2100 } 2101 2102 //------------------------------dump2------------------------------------------ 2103 #ifndef PRODUCT 2104 void TypeInt::dump2(Dict& d, uint depth, outputStream* st) const { 2105 TypeIntHelper::int_type_dump(this, st, false); 2106 } 2107 2108 void TypeInt::dump_verbose() const { 2109 TypeIntHelper::int_type_dump(this, tty, true); 2110 } 2111 2112 void TypeLong::dump2(Dict& d, uint depth, outputStream* st) const { 2113 TypeIntHelper::int_type_dump(this, st, false); 2114 } 2115 2116 void TypeLong::dump_verbose() const { 2117 TypeIntHelper::int_type_dump(this, tty, true); 2118 } 2119 #endif 2120 2121 //============================================================================= 2122 // Convenience common pre-built types. 2123 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 2124 const TypeTuple *TypeTuple::IFFALSE; 2125 const TypeTuple *TypeTuple::IFTRUE; 2126 const TypeTuple *TypeTuple::IFNEITHER; 2127 const TypeTuple *TypeTuple::LOOPBODY; 2128 const TypeTuple *TypeTuple::MEMBAR; 2129 const TypeTuple *TypeTuple::STORECONDITIONAL; 2130 const TypeTuple *TypeTuple::START_I2C; 2131 const TypeTuple *TypeTuple::INT_PAIR; 2132 const TypeTuple *TypeTuple::LONG_PAIR; 2133 const TypeTuple *TypeTuple::INT_CC_PAIR; 2134 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2135 2136 static void collect_inline_fields(ciInlineKlass* vk, const Type** field_array, uint& pos) { 2137 for (int i = 0; i < vk->nof_declared_nonstatic_fields(); i++) { 2138 ciField* field = vk->declared_nonstatic_field_at(i); 2139 if (field->is_flat()) { 2140 collect_inline_fields(field->type()->as_inline_klass(), field_array, pos); 2141 if (!field->is_null_free()) { 2142 // Use T_INT instead of T_BOOLEAN here because the upper bits can contain garbage if the holder 2143 // is null and C2 will only zero them for T_INT assuming that T_BOOLEAN is already canonicalized. 2144 field_array[pos++] = Type::get_const_basic_type(T_INT); 2145 } 2146 } else { 2147 BasicType bt = field->type()->basic_type(); 2148 const Type* ft = Type::get_const_type(field->type()); 2149 field_array[pos++] = ft; 2150 if (type2size[bt] == 2) { 2151 field_array[pos++] = Type::HALF; 2152 } 2153 } 2154 } 2155 } 2156 2157 //------------------------------make------------------------------------------- 2158 // Make a TypeTuple from the range of a method signature 2159 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling, bool ret_vt_fields) { 2160 ciType* return_type = sig->return_type(); 2161 uint arg_cnt = return_type->size(); 2162 if (ret_vt_fields) { 2163 arg_cnt = return_type->as_inline_klass()->inline_arg_slots() + 1; 2164 // InlineTypeNode::NullMarker field used for null checking 2165 arg_cnt++; 2166 } 2167 const Type **field_array = fields(arg_cnt); 2168 switch (return_type->basic_type()) { 2169 case T_LONG: 2170 field_array[TypeFunc::Parms] = TypeLong::LONG; 2171 field_array[TypeFunc::Parms+1] = Type::HALF; 2172 break; 2173 case T_DOUBLE: 2174 field_array[TypeFunc::Parms] = Type::DOUBLE; 2175 field_array[TypeFunc::Parms+1] = Type::HALF; 2176 break; 2177 case T_OBJECT: 2178 if (return_type->is_inlinetype() && ret_vt_fields) { 2179 uint pos = TypeFunc::Parms; 2180 field_array[pos++] = get_const_type(return_type); // Oop might be null when returning as fields 2181 collect_inline_fields(return_type->as_inline_klass(), field_array, pos); 2182 // InlineTypeNode::NullMarker field used for null checking 2183 field_array[pos++] = get_const_basic_type(T_BOOLEAN); 2184 assert(pos == (TypeFunc::Parms + arg_cnt), "out of bounds"); 2185 break; 2186 } else { 2187 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling)->join_speculative(TypePtr::BOTTOM); 2188 } 2189 break; 2190 case T_ARRAY: 2191 case T_BOOLEAN: 2192 case T_CHAR: 2193 case T_FLOAT: 2194 case T_BYTE: 2195 case T_SHORT: 2196 case T_INT: 2197 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2198 break; 2199 case T_VOID: 2200 break; 2201 default: 2202 ShouldNotReachHere(); 2203 } 2204 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2205 } 2206 2207 // Make a TypeTuple from the domain of a method signature 2208 const TypeTuple *TypeTuple::make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args) { 2209 ciSignature* sig = method->signature(); 2210 uint arg_cnt = sig->size() + (method->is_static() ? 0 : 1); 2211 if (vt_fields_as_args) { 2212 arg_cnt = 0; 2213 assert(method->get_sig_cc() != nullptr, "Should have scalarized signature"); 2214 for (ExtendedSignature sig_cc = ExtendedSignature(method->get_sig_cc(), SigEntryFilter()); !sig_cc.at_end(); ++sig_cc) { 2215 arg_cnt += type2size[(*sig_cc)._bt]; 2216 } 2217 } 2218 2219 uint pos = TypeFunc::Parms; 2220 const Type** field_array = fields(arg_cnt); 2221 if (!method->is_static()) { 2222 ciInstanceKlass* recv = method->holder(); 2223 if (vt_fields_as_args && recv->is_inlinetype() && recv->as_inline_klass()->can_be_passed_as_fields() && method->is_scalarized_arg(0)) { 2224 collect_inline_fields(recv->as_inline_klass(), field_array, pos); 2225 } else { 2226 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2227 } 2228 } 2229 2230 int i = 0; 2231 while (pos < TypeFunc::Parms + arg_cnt) { 2232 ciType* type = sig->type_at(i); 2233 BasicType bt = type->basic_type(); 2234 2235 switch (bt) { 2236 case T_LONG: 2237 field_array[pos++] = TypeLong::LONG; 2238 field_array[pos++] = Type::HALF; 2239 break; 2240 case T_DOUBLE: 2241 field_array[pos++] = Type::DOUBLE; 2242 field_array[pos++] = Type::HALF; 2243 break; 2244 case T_OBJECT: 2245 if (type->is_inlinetype() && vt_fields_as_args && method->is_scalarized_arg(i + (method->is_static() ? 0 : 1))) { 2246 // InlineTypeNode::NullMarker field used for null checking 2247 field_array[pos++] = get_const_basic_type(T_BOOLEAN); 2248 collect_inline_fields(type->as_inline_klass(), field_array, pos); 2249 } else { 2250 field_array[pos++] = get_const_type(type, interface_handling); 2251 } 2252 break; 2253 case T_ARRAY: 2254 case T_FLOAT: 2255 case T_INT: 2256 field_array[pos++] = get_const_type(type, interface_handling); 2257 break; 2258 case T_BOOLEAN: 2259 case T_CHAR: 2260 case T_BYTE: 2261 case T_SHORT: 2262 field_array[pos++] = TypeInt::INT; 2263 break; 2264 default: 2265 ShouldNotReachHere(); 2266 } 2267 i++; 2268 } 2269 assert(pos == TypeFunc::Parms + arg_cnt, "wrong number of arguments"); 2270 2271 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2272 } 2273 2274 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2275 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2276 } 2277 2278 //------------------------------fields----------------------------------------- 2279 // Subroutine call type with space allocated for argument types 2280 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2281 const Type **TypeTuple::fields( uint arg_cnt ) { 2282 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2283 flds[TypeFunc::Control ] = Type::CONTROL; 2284 flds[TypeFunc::I_O ] = Type::ABIO; 2285 flds[TypeFunc::Memory ] = Type::MEMORY; 2286 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2287 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2288 2289 return flds; 2290 } 2291 2292 //------------------------------meet------------------------------------------- 2293 // Compute the MEET of two types. It returns a new Type object. 2294 const Type *TypeTuple::xmeet( const Type *t ) const { 2295 // Perform a fast test for common case; meeting the same types together. 2296 if( this == t ) return this; // Meeting same type-rep? 2297 2298 // Current "this->_base" is Tuple 2299 switch (t->base()) { // switch on original type 2300 2301 case Bottom: // Ye Olde Default 2302 return t; 2303 2304 default: // All else is a mistake 2305 typerr(t); 2306 2307 case Tuple: { // Meeting 2 signatures? 2308 const TypeTuple *x = t->is_tuple(); 2309 assert( _cnt == x->_cnt, "" ); 2310 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2311 for( uint i=0; i<_cnt; i++ ) 2312 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2313 return TypeTuple::make(_cnt,fields); 2314 } 2315 case Top: 2316 break; 2317 } 2318 return this; // Return the double constant 2319 } 2320 2321 //------------------------------xdual------------------------------------------ 2322 // Dual: compute field-by-field dual 2323 const Type *TypeTuple::xdual() const { 2324 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2325 for( uint i=0; i<_cnt; i++ ) 2326 fields[i] = _fields[i]->dual(); 2327 return new TypeTuple(_cnt,fields); 2328 } 2329 2330 //------------------------------eq--------------------------------------------- 2331 // Structural equality check for Type representations 2332 bool TypeTuple::eq( const Type *t ) const { 2333 const TypeTuple *s = (const TypeTuple *)t; 2334 if (_cnt != s->_cnt) return false; // Unequal field counts 2335 for (uint i = 0; i < _cnt; i++) 2336 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2337 return false; // Missed 2338 return true; 2339 } 2340 2341 //------------------------------hash------------------------------------------- 2342 // Type-specific hashing function. 2343 uint TypeTuple::hash(void) const { 2344 uintptr_t sum = _cnt; 2345 for( uint i=0; i<_cnt; i++ ) 2346 sum += (uintptr_t)_fields[i]; // Hash on pointers directly 2347 return (uint)sum; 2348 } 2349 2350 //------------------------------dump2------------------------------------------ 2351 // Dump signature Type 2352 #ifndef PRODUCT 2353 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2354 st->print("{"); 2355 if( !depth || d[this] ) { // Check for recursive print 2356 st->print("...}"); 2357 return; 2358 } 2359 d.Insert((void*)this, (void*)this); // Stop recursion 2360 if( _cnt ) { 2361 uint i; 2362 for( i=0; i<_cnt-1; i++ ) { 2363 st->print("%d:", i); 2364 _fields[i]->dump2(d, depth-1, st); 2365 st->print(", "); 2366 } 2367 st->print("%d:", i); 2368 _fields[i]->dump2(d, depth-1, st); 2369 } 2370 st->print("}"); 2371 } 2372 #endif 2373 2374 //------------------------------singleton-------------------------------------- 2375 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2376 // constants (Ldi nodes). Singletons are integer, float or double constants 2377 // or a single symbol. 2378 bool TypeTuple::singleton(void) const { 2379 return false; // Never a singleton 2380 } 2381 2382 bool TypeTuple::empty(void) const { 2383 for( uint i=0; i<_cnt; i++ ) { 2384 if (_fields[i]->empty()) return true; 2385 } 2386 return false; 2387 } 2388 2389 //============================================================================= 2390 // Convenience common pre-built types. 2391 2392 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2393 // Certain normalizations keep us sane when comparing types. 2394 // We do not want arrayOop variables to differ only by the wideness 2395 // of their index types. Pick minimum wideness, since that is the 2396 // forced wideness of small ranges anyway. 2397 if (size->_widen != Type::WidenMin) 2398 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2399 else 2400 return size; 2401 } 2402 2403 //------------------------------make------------------------------------------- 2404 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable, 2405 bool flat, bool not_flat, bool not_null_free, bool atomic) { 2406 if (UseCompressedOops && elem->isa_oopptr()) { 2407 elem = elem->make_narrowoop(); 2408 } 2409 size = normalize_array_size(size); 2410 return (TypeAry*)(new TypeAry(elem, size, stable, flat, not_flat, not_null_free, atomic))->hashcons(); 2411 } 2412 2413 //------------------------------meet------------------------------------------- 2414 // Compute the MEET of two types. It returns a new Type object. 2415 const Type *TypeAry::xmeet( const Type *t ) const { 2416 // Perform a fast test for common case; meeting the same types together. 2417 if( this == t ) return this; // Meeting same type-rep? 2418 2419 // Current "this->_base" is Ary 2420 switch (t->base()) { // switch on original type 2421 2422 case Bottom: // Ye Olde Default 2423 return t; 2424 2425 default: // All else is a mistake 2426 typerr(t); 2427 2428 case Array: { // Meeting 2 arrays? 2429 const TypeAry* a = t->is_ary(); 2430 const Type* size = _size->xmeet(a->_size); 2431 const TypeInt* isize = size->isa_int(); 2432 if (isize == nullptr) { 2433 assert(size == Type::TOP || size == Type::BOTTOM, ""); 2434 return size; 2435 } 2436 return TypeAry::make(_elem->meet_speculative(a->_elem), 2437 isize, _stable && a->_stable, 2438 _flat && a->_flat, 2439 _not_flat && a->_not_flat, 2440 _not_null_free && a->_not_null_free, 2441 _atomic && a->_atomic); 2442 } 2443 case Top: 2444 break; 2445 } 2446 return this; // Return the double constant 2447 } 2448 2449 //------------------------------xdual------------------------------------------ 2450 // Dual: compute field-by-field dual 2451 const Type *TypeAry::xdual() const { 2452 const TypeInt* size_dual = _size->dual()->is_int(); 2453 size_dual = normalize_array_size(size_dual); 2454 return new TypeAry(_elem->dual(), size_dual, !_stable, !_flat, !_not_flat, !_not_null_free, !_atomic); 2455 } 2456 2457 //------------------------------eq--------------------------------------------- 2458 // Structural equality check for Type representations 2459 bool TypeAry::eq( const Type *t ) const { 2460 const TypeAry *a = (const TypeAry*)t; 2461 return _elem == a->_elem && 2462 _stable == a->_stable && 2463 _size == a->_size && 2464 _flat == a->_flat && 2465 _not_flat == a->_not_flat && 2466 _not_null_free == a->_not_null_free && 2467 _atomic == a->_atomic; 2468 2469 } 2470 2471 //------------------------------hash------------------------------------------- 2472 // Type-specific hashing function. 2473 uint TypeAry::hash(void) const { 2474 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0) + 2475 (uint)(_flat ? 44 : 0) + (uint)(_not_flat ? 45 : 0) + (uint)(_not_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0); 2476 } 2477 2478 /** 2479 * Return same type without a speculative part in the element 2480 */ 2481 const TypeAry* TypeAry::remove_speculative() const { 2482 return make(_elem->remove_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic); 2483 } 2484 2485 /** 2486 * Return same type with cleaned up speculative part of element 2487 */ 2488 const Type* TypeAry::cleanup_speculative() const { 2489 return make(_elem->cleanup_speculative(), _size, _stable, _flat, _not_flat, _not_null_free, _atomic); 2490 } 2491 2492 /** 2493 * Return same type but with a different inline depth (used for speculation) 2494 * 2495 * @param depth depth to meet with 2496 */ 2497 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2498 if (!UseInlineDepthForSpeculativeTypes) { 2499 return this; 2500 } 2501 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2502 } 2503 2504 //------------------------------dump2------------------------------------------ 2505 #ifndef PRODUCT 2506 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2507 if (_stable) st->print("stable:"); 2508 if (_flat) st->print("flat:"); 2509 if (Verbose) { 2510 if (_not_flat) st->print("not flat:"); 2511 if (_not_null_free) st->print("not null free:"); 2512 } 2513 if (_atomic) st->print("atomic:"); 2514 _elem->dump2(d, depth, st); 2515 st->print("["); 2516 _size->dump2(d, depth, st); 2517 st->print("]"); 2518 } 2519 #endif 2520 2521 //------------------------------singleton-------------------------------------- 2522 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2523 // constants (Ldi nodes). Singletons are integer, float or double constants 2524 // or a single symbol. 2525 bool TypeAry::singleton(void) const { 2526 return false; // Never a singleton 2527 } 2528 2529 bool TypeAry::empty(void) const { 2530 return _elem->empty() || _size->empty(); 2531 } 2532 2533 //--------------------------ary_must_be_exact---------------------------------- 2534 bool TypeAry::ary_must_be_exact() const { 2535 // This logic looks at the element type of an array, and returns true 2536 // if the element type is either a primitive or a final instance class. 2537 // In such cases, an array built on this ary must have no subclasses. 2538 if (_elem == BOTTOM) return false; // general array not exact 2539 if (_elem == TOP ) return false; // inverted general array not exact 2540 const TypeOopPtr* toop = nullptr; 2541 if (UseCompressedOops && _elem->isa_narrowoop()) { 2542 toop = _elem->make_ptr()->isa_oopptr(); 2543 } else { 2544 toop = _elem->isa_oopptr(); 2545 } 2546 if (!toop) return true; // a primitive type, like int 2547 if (!toop->is_loaded()) return false; // unloaded class 2548 const TypeInstPtr* tinst; 2549 if (_elem->isa_narrowoop()) 2550 tinst = _elem->make_ptr()->isa_instptr(); 2551 else 2552 tinst = _elem->isa_instptr(); 2553 if (tinst) { 2554 if (tinst->instance_klass()->is_final()) { 2555 // Even though MyValue is final, [LMyValue is only exact if the array 2556 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue. 2557 // TODO 8350865 If we know that the array can't be null-free, it's allowed to be exact, right? 2558 // If so, we should add '&& !_not_null_free' 2559 if (tinst->is_inlinetypeptr() && (tinst->ptr() != TypePtr::NotNull)) { 2560 return false; 2561 } 2562 return true; 2563 } 2564 return false; 2565 } 2566 const TypeAryPtr* tap; 2567 if (_elem->isa_narrowoop()) 2568 tap = _elem->make_ptr()->isa_aryptr(); 2569 else 2570 tap = _elem->isa_aryptr(); 2571 if (tap) 2572 return tap->ary()->ary_must_be_exact(); 2573 return false; 2574 } 2575 2576 //==============================TypeVect======================================= 2577 // Convenience common pre-built types. 2578 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic 2579 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors 2580 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors 2581 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors 2582 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors 2583 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors 2584 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector 2585 2586 //------------------------------make------------------------------------------- 2587 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) { 2588 if (is_mask) { 2589 return makemask(elem_bt, length); 2590 } 2591 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2592 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2593 int size = length * type2aelembytes(elem_bt); 2594 switch (Matcher::vector_ideal_reg(size)) { 2595 case Op_VecA: 2596 return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons(); 2597 case Op_VecS: 2598 return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons(); 2599 case Op_RegL: 2600 case Op_VecD: 2601 case Op_RegD: 2602 return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons(); 2603 case Op_VecX: 2604 return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons(); 2605 case Op_VecY: 2606 return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons(); 2607 case Op_VecZ: 2608 return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons(); 2609 } 2610 ShouldNotReachHere(); 2611 return nullptr; 2612 } 2613 2614 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) { 2615 if (Matcher::has_predicated_vectors() && 2616 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2617 return TypeVectMask::make(elem_bt, length); 2618 } else { 2619 return make(elem_bt, length); 2620 } 2621 } 2622 2623 //------------------------------meet------------------------------------------- 2624 // Compute the MEET of two types. Since each TypeVect is the only instance of 2625 // its species, meeting often returns itself 2626 const Type* TypeVect::xmeet(const Type* t) const { 2627 // Perform a fast test for common case; meeting the same types together. 2628 if (this == t) { 2629 return this; 2630 } 2631 2632 // Current "this->_base" is Vector 2633 switch (t->base()) { // switch on original type 2634 2635 case Bottom: // Ye Olde Default 2636 return t; 2637 2638 default: // All else is a mistake 2639 typerr(t); 2640 case VectorMask: 2641 case VectorA: 2642 case VectorS: 2643 case VectorD: 2644 case VectorX: 2645 case VectorY: 2646 case VectorZ: { // Meeting 2 vectors? 2647 const TypeVect* v = t->is_vect(); 2648 assert(base() == v->base(), ""); 2649 assert(length() == v->length(), ""); 2650 assert(element_basic_type() == v->element_basic_type(), ""); 2651 return this; 2652 } 2653 case Top: 2654 break; 2655 } 2656 return this; 2657 } 2658 2659 //------------------------------xdual------------------------------------------ 2660 // Since each TypeVect is the only instance of its species, it is self-dual 2661 const Type* TypeVect::xdual() const { 2662 return this; 2663 } 2664 2665 //------------------------------eq--------------------------------------------- 2666 // Structural equality check for Type representations 2667 bool TypeVect::eq(const Type* t) const { 2668 const TypeVect* v = t->is_vect(); 2669 return (element_basic_type() == v->element_basic_type()) && (length() == v->length()); 2670 } 2671 2672 //------------------------------hash------------------------------------------- 2673 // Type-specific hashing function. 2674 uint TypeVect::hash(void) const { 2675 return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length; 2676 } 2677 2678 //------------------------------singleton-------------------------------------- 2679 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2680 // constants (Ldi nodes). Vector is singleton if all elements are the same 2681 // constant value (when vector is created with Replicate code). 2682 bool TypeVect::singleton(void) const { 2683 // There is no Con node for vectors yet. 2684 // return _elem->singleton(); 2685 return false; 2686 } 2687 2688 bool TypeVect::empty(void) const { 2689 return false; 2690 } 2691 2692 //------------------------------dump2------------------------------------------ 2693 #ifndef PRODUCT 2694 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const { 2695 switch (base()) { 2696 case VectorA: 2697 st->print("vectora"); break; 2698 case VectorS: 2699 st->print("vectors"); break; 2700 case VectorD: 2701 st->print("vectord"); break; 2702 case VectorX: 2703 st->print("vectorx"); break; 2704 case VectorY: 2705 st->print("vectory"); break; 2706 case VectorZ: 2707 st->print("vectorz"); break; 2708 case VectorMask: 2709 st->print("vectormask"); break; 2710 default: 2711 ShouldNotReachHere(); 2712 } 2713 st->print("<%c,%u>", type2char(element_basic_type()), length()); 2714 } 2715 #endif 2716 2717 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) { 2718 return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons(); 2719 } 2720 2721 //============================================================================= 2722 // Convenience common pre-built types. 2723 const TypePtr *TypePtr::NULL_PTR; 2724 const TypePtr *TypePtr::NOTNULL; 2725 const TypePtr *TypePtr::BOTTOM; 2726 2727 //------------------------------meet------------------------------------------- 2728 // Meet over the PTR enum 2729 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2730 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2731 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2732 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2733 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2734 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2735 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2736 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2737 }; 2738 2739 //------------------------------make------------------------------------------- 2740 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) { 2741 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2742 } 2743 2744 //------------------------------cast_to_ptr_type------------------------------- 2745 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2746 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2747 if( ptr == _ptr ) return this; 2748 return make(_base, ptr, _offset, _speculative, _inline_depth); 2749 } 2750 2751 //------------------------------get_con---------------------------------------- 2752 intptr_t TypePtr::get_con() const { 2753 assert( _ptr == Null, "" ); 2754 return offset(); 2755 } 2756 2757 //------------------------------meet------------------------------------------- 2758 // Compute the MEET of two types. It returns a new Type object. 2759 const Type *TypePtr::xmeet(const Type *t) const { 2760 const Type* res = xmeet_helper(t); 2761 if (res->isa_ptr() == nullptr) { 2762 return res; 2763 } 2764 2765 const TypePtr* res_ptr = res->is_ptr(); 2766 if (res_ptr->speculative() != nullptr) { 2767 // type->speculative() is null means that speculation is no better 2768 // than type, i.e. type->speculative() == type. So there are 2 2769 // ways to represent the fact that we have no useful speculative 2770 // data and we should use a single one to be able to test for 2771 // equality between types. Check whether type->speculative() == 2772 // type and set speculative to null if it is the case. 2773 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2774 return res_ptr->remove_speculative(); 2775 } 2776 } 2777 2778 return res; 2779 } 2780 2781 const Type *TypePtr::xmeet_helper(const Type *t) const { 2782 // Perform a fast test for common case; meeting the same types together. 2783 if( this == t ) return this; // Meeting same type-rep? 2784 2785 // Current "this->_base" is AnyPtr 2786 switch (t->base()) { // switch on original type 2787 case Int: // Mixing ints & oops happens when javac 2788 case Long: // reuses local variables 2789 case HalfFloatTop: 2790 case HalfFloatCon: 2791 case HalfFloatBot: 2792 case FloatTop: 2793 case FloatCon: 2794 case FloatBot: 2795 case DoubleTop: 2796 case DoubleCon: 2797 case DoubleBot: 2798 case NarrowOop: 2799 case NarrowKlass: 2800 case Bottom: // Ye Olde Default 2801 return Type::BOTTOM; 2802 case Top: 2803 return this; 2804 2805 case AnyPtr: { // Meeting to AnyPtrs 2806 const TypePtr *tp = t->is_ptr(); 2807 const TypePtr* speculative = xmeet_speculative(tp); 2808 int depth = meet_inline_depth(tp->inline_depth()); 2809 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2810 } 2811 case RawPtr: // For these, flip the call around to cut down 2812 case OopPtr: 2813 case InstPtr: // on the cases I have to handle. 2814 case AryPtr: 2815 case MetadataPtr: 2816 case KlassPtr: 2817 case InstKlassPtr: 2818 case AryKlassPtr: 2819 return t->xmeet(this); // Call in reverse direction 2820 default: // All else is a mistake 2821 typerr(t); 2822 2823 } 2824 return this; 2825 } 2826 2827 //------------------------------meet_offset------------------------------------ 2828 Type::Offset TypePtr::meet_offset(int offset) const { 2829 return _offset.meet(Offset(offset)); 2830 } 2831 2832 //------------------------------dual_offset------------------------------------ 2833 Type::Offset TypePtr::dual_offset() const { 2834 return _offset.dual(); 2835 } 2836 2837 //------------------------------xdual------------------------------------------ 2838 // Dual: compute field-by-field dual 2839 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2840 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2841 }; 2842 2843 const TypePtr::FlatInArray TypePtr::flat_in_array_dual[Uninitialized] = { 2844 /* TopFlat -> */ MaybeFlat, 2845 /* Flat -> */ NotFlat, 2846 /* NotFlat -> */ Flat, 2847 /* MaybeFlat -> */ TopFlat 2848 }; 2849 2850 const char* const TypePtr::flat_in_array_msg[Uninitialized] = { 2851 "TOP flat in array", "flat in array", "not flat in array", "maybe flat in array" 2852 }; 2853 2854 const Type *TypePtr::xdual() const { 2855 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2856 } 2857 2858 //------------------------------xadd_offset------------------------------------ 2859 Type::Offset TypePtr::xadd_offset(intptr_t offset) const { 2860 return _offset.add(offset); 2861 } 2862 2863 //------------------------------add_offset------------------------------------- 2864 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2865 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2866 } 2867 2868 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2869 return make(AnyPtr, _ptr, Offset(offset), _speculative, _inline_depth); 2870 } 2871 2872 //------------------------------eq--------------------------------------------- 2873 // Structural equality check for Type representations 2874 bool TypePtr::eq( const Type *t ) const { 2875 const TypePtr *a = (const TypePtr*)t; 2876 return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth; 2877 } 2878 2879 //------------------------------hash------------------------------------------- 2880 // Type-specific hashing function. 2881 uint TypePtr::hash(void) const { 2882 return (uint)_ptr + (uint)offset() + (uint)hash_speculative() + (uint)_inline_depth; 2883 } 2884 2885 /** 2886 * Return same type without a speculative part 2887 */ 2888 const TypePtr* TypePtr::remove_speculative() const { 2889 if (_speculative == nullptr) { 2890 return this; 2891 } 2892 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2893 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth); 2894 } 2895 2896 /** 2897 * Return same type but drop speculative part if we know we won't use 2898 * it 2899 */ 2900 const Type* TypePtr::cleanup_speculative() const { 2901 if (speculative() == nullptr) { 2902 return this; 2903 } 2904 const Type* no_spec = remove_speculative(); 2905 // If this is NULL_PTR then we don't need the speculative type 2906 // (with_inline_depth in case the current type inline depth is 2907 // InlineDepthTop) 2908 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2909 return no_spec; 2910 } 2911 if (above_centerline(speculative()->ptr())) { 2912 return no_spec; 2913 } 2914 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2915 // If the speculative may be null and is an inexact klass then it 2916 // doesn't help 2917 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2918 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) { 2919 return no_spec; 2920 } 2921 return this; 2922 } 2923 2924 /** 2925 * dual of the speculative part of the type 2926 */ 2927 const TypePtr* TypePtr::dual_speculative() const { 2928 if (_speculative == nullptr) { 2929 return nullptr; 2930 } 2931 return _speculative->dual()->is_ptr(); 2932 } 2933 2934 /** 2935 * meet of the speculative parts of 2 types 2936 * 2937 * @param other type to meet with 2938 */ 2939 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2940 bool this_has_spec = (_speculative != nullptr); 2941 bool other_has_spec = (other->speculative() != nullptr); 2942 2943 if (!this_has_spec && !other_has_spec) { 2944 return nullptr; 2945 } 2946 2947 // If we are at a point where control flow meets and one branch has 2948 // a speculative type and the other has not, we meet the speculative 2949 // type of one branch with the actual type of the other. If the 2950 // actual type is exact and the speculative is as well, then the 2951 // result is a speculative type which is exact and we can continue 2952 // speculation further. 2953 const TypePtr* this_spec = _speculative; 2954 const TypePtr* other_spec = other->speculative(); 2955 2956 if (!this_has_spec) { 2957 this_spec = this; 2958 } 2959 2960 if (!other_has_spec) { 2961 other_spec = other; 2962 } 2963 2964 return this_spec->meet(other_spec)->is_ptr(); 2965 } 2966 2967 /** 2968 * dual of the inline depth for this type (used for speculation) 2969 */ 2970 int TypePtr::dual_inline_depth() const { 2971 return -inline_depth(); 2972 } 2973 2974 /** 2975 * meet of 2 inline depths (used for speculation) 2976 * 2977 * @param depth depth to meet with 2978 */ 2979 int TypePtr::meet_inline_depth(int depth) const { 2980 return MAX2(inline_depth(), depth); 2981 } 2982 2983 /** 2984 * Are the speculative parts of 2 types equal? 2985 * 2986 * @param other type to compare this one to 2987 */ 2988 bool TypePtr::eq_speculative(const TypePtr* other) const { 2989 if (_speculative == nullptr || other->speculative() == nullptr) { 2990 return _speculative == other->speculative(); 2991 } 2992 2993 if (_speculative->base() != other->speculative()->base()) { 2994 return false; 2995 } 2996 2997 return _speculative->eq(other->speculative()); 2998 } 2999 3000 /** 3001 * Hash of the speculative part of the type 3002 */ 3003 int TypePtr::hash_speculative() const { 3004 if (_speculative == nullptr) { 3005 return 0; 3006 } 3007 3008 return _speculative->hash(); 3009 } 3010 3011 /** 3012 * add offset to the speculative part of the type 3013 * 3014 * @param offset offset to add 3015 */ 3016 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 3017 if (_speculative == nullptr) { 3018 return nullptr; 3019 } 3020 return _speculative->add_offset(offset)->is_ptr(); 3021 } 3022 3023 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 3024 if (_speculative == nullptr) { 3025 return nullptr; 3026 } 3027 return _speculative->with_offset(offset)->is_ptr(); 3028 } 3029 3030 /** 3031 * return exact klass from the speculative type if there's one 3032 */ 3033 ciKlass* TypePtr::speculative_type() const { 3034 if (_speculative != nullptr && _speculative->isa_oopptr()) { 3035 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 3036 if (speculative->klass_is_exact()) { 3037 return speculative->exact_klass(); 3038 } 3039 } 3040 return nullptr; 3041 } 3042 3043 /** 3044 * return true if speculative type may be null 3045 */ 3046 bool TypePtr::speculative_maybe_null() const { 3047 if (_speculative != nullptr) { 3048 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 3049 return speculative->maybe_null(); 3050 } 3051 return true; 3052 } 3053 3054 bool TypePtr::speculative_always_null() const { 3055 if (_speculative != nullptr) { 3056 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 3057 return speculative == TypePtr::NULL_PTR; 3058 } 3059 return false; 3060 } 3061 3062 /** 3063 * Same as TypePtr::speculative_type() but return the klass only if 3064 * the speculative tells us is not null 3065 */ 3066 ciKlass* TypePtr::speculative_type_not_null() const { 3067 if (speculative_maybe_null()) { 3068 return nullptr; 3069 } 3070 return speculative_type(); 3071 } 3072 3073 /** 3074 * Check whether new profiling would improve speculative type 3075 * 3076 * @param exact_kls class from profiling 3077 * @param inline_depth inlining depth of profile point 3078 * 3079 * @return true if type profile is valuable 3080 */ 3081 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3082 // no profiling? 3083 if (exact_kls == nullptr) { 3084 return false; 3085 } 3086 if (speculative() == TypePtr::NULL_PTR) { 3087 return false; 3088 } 3089 // no speculative type or non exact speculative type? 3090 if (speculative_type() == nullptr) { 3091 return true; 3092 } 3093 // If the node already has an exact speculative type keep it, 3094 // unless it was provided by profiling that is at a deeper 3095 // inlining level. Profiling at a higher inlining depth is 3096 // expected to be less accurate. 3097 if (_speculative->inline_depth() == InlineDepthBottom) { 3098 return false; 3099 } 3100 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 3101 return inline_depth < _speculative->inline_depth(); 3102 } 3103 3104 /** 3105 * Check whether new profiling would improve ptr (= tells us it is non 3106 * null) 3107 * 3108 * @param ptr_kind always null or not null? 3109 * 3110 * @return true if ptr profile is valuable 3111 */ 3112 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 3113 // profiling doesn't tell us anything useful 3114 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 3115 return false; 3116 } 3117 // We already know this is not null 3118 if (!this->maybe_null()) { 3119 return false; 3120 } 3121 // We already know the speculative type cannot be null 3122 if (!speculative_maybe_null()) { 3123 return false; 3124 } 3125 // We already know this is always null 3126 if (this == TypePtr::NULL_PTR) { 3127 return false; 3128 } 3129 // We already know the speculative type is always null 3130 if (speculative_always_null()) { 3131 return false; 3132 } 3133 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) { 3134 return false; 3135 } 3136 return true; 3137 } 3138 3139 TypePtr::FlatInArray TypePtr::compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact) { 3140 if (!instance_klass->can_be_inline_klass(is_exact)) { 3141 // Definitely not a value class and thus never flat in an array. 3142 return NotFlat; 3143 } 3144 if (instance_klass->is_inlinetype() && instance_klass->as_inline_klass()->is_always_flat_in_array()) { 3145 return Flat; 3146 } 3147 // We don't know. 3148 return MaybeFlat; 3149 } 3150 3151 // Compute flat in array property if we don't know anything about it (i.e. old_flat_in_array == MaybeFlat). 3152 TypePtr::FlatInArray TypePtr::compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact, 3153 FlatInArray old_flat_in_array) const { 3154 switch (old_flat_in_array) { 3155 case Flat: 3156 assert(can_be_inline_type(), "only value objects can be flat in array"); 3157 assert(!instance_klass->is_inlinetype() || instance_klass->as_inline_klass()->is_always_flat_in_array(), 3158 "a value object is only marked flat in array if it's proven to be always flat in array"); 3159 break; 3160 case NotFlat: 3161 assert(!instance_klass->maybe_flat_in_array(), "cannot be flat"); 3162 break; 3163 case MaybeFlat: 3164 return compute_flat_in_array(instance_klass, is_exact); 3165 break; 3166 default: 3167 break; 3168 } 3169 return old_flat_in_array; 3170 } 3171 3172 //------------------------------dump2------------------------------------------ 3173 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 3174 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR" 3175 }; 3176 3177 #ifndef PRODUCT 3178 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3179 st->print("ptr:%s", ptr_msg[_ptr]); 3180 dump_offset(st); 3181 dump_inline_depth(st); 3182 dump_speculative(st); 3183 } 3184 3185 void TypePtr::dump_offset(outputStream* st) const { 3186 _offset.dump2(st); 3187 } 3188 3189 /** 3190 *dump the speculative part of the type 3191 */ 3192 void TypePtr::dump_speculative(outputStream *st) const { 3193 if (_speculative != nullptr) { 3194 st->print(" (speculative="); 3195 _speculative->dump_on(st); 3196 st->print(")"); 3197 } 3198 } 3199 3200 /** 3201 *dump the inline depth of the type 3202 */ 3203 void TypePtr::dump_inline_depth(outputStream *st) const { 3204 if (_inline_depth != InlineDepthBottom) { 3205 if (_inline_depth == InlineDepthTop) { 3206 st->print(" (inline_depth=InlineDepthTop)"); 3207 } else { 3208 st->print(" (inline_depth=%d)", _inline_depth); 3209 } 3210 } 3211 } 3212 3213 void TypePtr::dump_flat_in_array(FlatInArray flat_in_array, outputStream* st) { 3214 switch (flat_in_array) { 3215 case MaybeFlat: 3216 case NotFlat: 3217 if (!Verbose) { 3218 break; 3219 } 3220 case TopFlat: 3221 case Flat: 3222 st->print(" (%s)", flat_in_array_msg[flat_in_array]); 3223 break; 3224 default: 3225 ShouldNotReachHere(); 3226 } 3227 } 3228 #endif 3229 3230 //------------------------------singleton-------------------------------------- 3231 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3232 // constants 3233 bool TypePtr::singleton(void) const { 3234 // TopPTR, Null, AnyNull, Constant are all singletons 3235 return (_offset != Offset::bottom) && !below_centerline(_ptr); 3236 } 3237 3238 bool TypePtr::empty(void) const { 3239 return (_offset == Offset::top) || above_centerline(_ptr); 3240 } 3241 3242 //============================================================================= 3243 // Convenience common pre-built types. 3244 const TypeRawPtr *TypeRawPtr::BOTTOM; 3245 const TypeRawPtr *TypeRawPtr::NOTNULL; 3246 3247 //------------------------------make------------------------------------------- 3248 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3249 assert( ptr != Constant, "what is the constant?" ); 3250 assert( ptr != Null, "Use TypePtr for null" ); 3251 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons(); 3252 } 3253 3254 const TypeRawPtr *TypeRawPtr::make(address bits) { 3255 assert(bits != nullptr, "Use TypePtr for null"); 3256 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3257 } 3258 3259 //------------------------------cast_to_ptr_type------------------------------- 3260 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3261 assert( ptr != Constant, "what is the constant?" ); 3262 assert( ptr != Null, "Use TypePtr for null" ); 3263 assert( _bits == nullptr, "Why cast a constant address?"); 3264 if( ptr == _ptr ) return this; 3265 return make(ptr); 3266 } 3267 3268 //------------------------------get_con---------------------------------------- 3269 intptr_t TypeRawPtr::get_con() const { 3270 assert( _ptr == Null || _ptr == Constant, "" ); 3271 return (intptr_t)_bits; 3272 } 3273 3274 //------------------------------meet------------------------------------------- 3275 // Compute the MEET of two types. It returns a new Type object. 3276 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3277 // Perform a fast test for common case; meeting the same types together. 3278 if( this == t ) return this; // Meeting same type-rep? 3279 3280 // Current "this->_base" is RawPtr 3281 switch( t->base() ) { // switch on original type 3282 case Bottom: // Ye Olde Default 3283 return t; 3284 case Top: 3285 return this; 3286 case AnyPtr: // Meeting to AnyPtrs 3287 break; 3288 case RawPtr: { // might be top, bot, any/not or constant 3289 enum PTR tptr = t->is_ptr()->ptr(); 3290 enum PTR ptr = meet_ptr( tptr ); 3291 if( ptr == Constant ) { // Cannot be equal constants, so... 3292 if( tptr == Constant && _ptr != Constant) return t; 3293 if( _ptr == Constant && tptr != Constant) return this; 3294 ptr = NotNull; // Fall down in lattice 3295 } 3296 return make( ptr ); 3297 } 3298 3299 case OopPtr: 3300 case InstPtr: 3301 case AryPtr: 3302 case MetadataPtr: 3303 case KlassPtr: 3304 case InstKlassPtr: 3305 case AryKlassPtr: 3306 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3307 default: // All else is a mistake 3308 typerr(t); 3309 } 3310 3311 // Found an AnyPtr type vs self-RawPtr type 3312 const TypePtr *tp = t->is_ptr(); 3313 switch (tp->ptr()) { 3314 case TypePtr::TopPTR: return this; 3315 case TypePtr::BotPTR: return t; 3316 case TypePtr::Null: 3317 if( _ptr == TypePtr::TopPTR ) return t; 3318 return TypeRawPtr::BOTTOM; 3319 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3320 case TypePtr::AnyNull: 3321 if( _ptr == TypePtr::Constant) return this; 3322 return make( meet_ptr(TypePtr::AnyNull) ); 3323 default: ShouldNotReachHere(); 3324 } 3325 return this; 3326 } 3327 3328 //------------------------------xdual------------------------------------------ 3329 // Dual: compute field-by-field dual 3330 const Type *TypeRawPtr::xdual() const { 3331 return new TypeRawPtr( dual_ptr(), _bits ); 3332 } 3333 3334 //------------------------------add_offset------------------------------------- 3335 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3336 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3337 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3338 if( offset == 0 ) return this; // No change 3339 switch (_ptr) { 3340 case TypePtr::TopPTR: 3341 case TypePtr::BotPTR: 3342 case TypePtr::NotNull: 3343 return this; 3344 case TypePtr::Constant: { 3345 uintptr_t bits = (uintptr_t)_bits; 3346 uintptr_t sum = bits + offset; 3347 if (( offset < 0 ) 3348 ? ( sum > bits ) // Underflow? 3349 : ( sum < bits )) { // Overflow? 3350 return BOTTOM; 3351 } else if ( sum == 0 ) { 3352 return TypePtr::NULL_PTR; 3353 } else { 3354 return make( (address)sum ); 3355 } 3356 } 3357 default: ShouldNotReachHere(); 3358 } 3359 } 3360 3361 //------------------------------eq--------------------------------------------- 3362 // Structural equality check for Type representations 3363 bool TypeRawPtr::eq( const Type *t ) const { 3364 const TypeRawPtr *a = (const TypeRawPtr*)t; 3365 return _bits == a->_bits && TypePtr::eq(t); 3366 } 3367 3368 //------------------------------hash------------------------------------------- 3369 // Type-specific hashing function. 3370 uint TypeRawPtr::hash(void) const { 3371 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash(); 3372 } 3373 3374 //------------------------------dump2------------------------------------------ 3375 #ifndef PRODUCT 3376 void TypeRawPtr::dump2(Dict& d, uint depth, outputStream* st) const { 3377 if (_ptr == Constant) { 3378 st->print("rawptr:Constant:" INTPTR_FORMAT, p2i(_bits)); 3379 } else { 3380 st->print("rawptr:%s", ptr_msg[_ptr]); 3381 } 3382 } 3383 #endif 3384 3385 //============================================================================= 3386 // Convenience common pre-built type. 3387 const TypeOopPtr *TypeOopPtr::BOTTOM; 3388 3389 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces) 3390 : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces), 3391 _hash(0), _exact_klass(nullptr) { 3392 _interfaces.sort(compare); 3393 initialize(); 3394 } 3395 3396 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) { 3397 // hashcons() can only delete the last thing that was allocated: to 3398 // make sure all memory for the newly created TypeInterfaces can be 3399 // freed if an identical one exists, allocate space for the array of 3400 // interfaces right after the TypeInterfaces object so that they 3401 // form a contiguous piece of memory. 3402 int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length(); 3403 size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*); 3404 3405 void* allocated_mem = operator new(total_size); 3406 ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces)); 3407 for (int i = 0; i < nb_interfaces; ++i) { 3408 interfaces_base[i] = interfaces->at(i); 3409 } 3410 TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces); 3411 return (const TypeInterfaces*)result->hashcons(); 3412 } 3413 3414 void TypeInterfaces::initialize() { 3415 compute_hash(); 3416 compute_exact_klass(); 3417 DEBUG_ONLY(_initialized = true;) 3418 } 3419 3420 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) { 3421 if ((intptr_t)k1 < (intptr_t)k2) { 3422 return -1; 3423 } else if ((intptr_t)k1 > (intptr_t)k2) { 3424 return 1; 3425 } 3426 return 0; 3427 } 3428 3429 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3430 return compare(*k1, *k2); 3431 } 3432 3433 bool TypeInterfaces::eq(const Type* t) const { 3434 const TypeInterfaces* other = (const TypeInterfaces*)t; 3435 if (_interfaces.length() != other->_interfaces.length()) { 3436 return false; 3437 } 3438 for (int i = 0; i < _interfaces.length(); i++) { 3439 ciKlass* k1 = _interfaces.at(i); 3440 ciKlass* k2 = other->_interfaces.at(i); 3441 if (!k1->equals(k2)) { 3442 return false; 3443 } 3444 } 3445 return true; 3446 } 3447 3448 bool TypeInterfaces::eq(ciInstanceKlass* k) const { 3449 assert(k->is_loaded(), "should be loaded"); 3450 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces(); 3451 if (_interfaces.length() != interfaces->length()) { 3452 return false; 3453 } 3454 for (int i = 0; i < interfaces->length(); i++) { 3455 bool found = false; 3456 _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found); 3457 if (!found) { 3458 return false; 3459 } 3460 } 3461 return true; 3462 } 3463 3464 3465 uint TypeInterfaces::hash() const { 3466 assert(_initialized, "must be"); 3467 return _hash; 3468 } 3469 3470 const Type* TypeInterfaces::xdual() const { 3471 return this; 3472 } 3473 3474 void TypeInterfaces::compute_hash() { 3475 uint hash = 0; 3476 for (int i = 0; i < _interfaces.length(); i++) { 3477 ciKlass* k = _interfaces.at(i); 3478 hash += k->hash(); 3479 } 3480 _hash = hash; 3481 } 3482 3483 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) { 3484 return (int)((*k1)->ident() - (*k2)->ident()); 3485 } 3486 3487 void TypeInterfaces::dump(outputStream* st) const { 3488 if (_interfaces.length() == 0) { 3489 return; 3490 } 3491 ResourceMark rm; 3492 st->print(" ("); 3493 GrowableArray<ciInstanceKlass*> interfaces; 3494 interfaces.appendAll(&_interfaces); 3495 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3496 interfaces.sort(compare_interfaces); 3497 for (int i = 0; i < interfaces.length(); i++) { 3498 if (i > 0) { 3499 st->print(","); 3500 } 3501 ciKlass* k = interfaces.at(i); 3502 k->print_name_on(st); 3503 } 3504 st->print(")"); 3505 } 3506 3507 #ifdef ASSERT 3508 void TypeInterfaces::verify() const { 3509 for (int i = 1; i < _interfaces.length(); i++) { 3510 ciInstanceKlass* k1 = _interfaces.at(i-1); 3511 ciInstanceKlass* k2 = _interfaces.at(i); 3512 assert(compare(k2, k1) > 0, "should be ordered"); 3513 assert(k1 != k2, "no duplicate"); 3514 } 3515 } 3516 #endif 3517 3518 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const { 3519 GrowableArray<ciInstanceKlass*> result_list; 3520 int i = 0; 3521 int j = 0; 3522 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3523 while (i < _interfaces.length() && 3524 (j >= other->_interfaces.length() || 3525 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3526 result_list.push(_interfaces.at(i)); 3527 i++; 3528 } 3529 while (j < other->_interfaces.length() && 3530 (i >= _interfaces.length() || 3531 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3532 result_list.push(other->_interfaces.at(j)); 3533 j++; 3534 } 3535 if (i < _interfaces.length() && 3536 j < other->_interfaces.length() && 3537 _interfaces.at(i) == other->_interfaces.at(j)) { 3538 result_list.push(_interfaces.at(i)); 3539 i++; 3540 j++; 3541 } 3542 } 3543 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3544 #ifdef ASSERT 3545 result->verify(); 3546 for (int i = 0; i < _interfaces.length(); i++) { 3547 assert(result->_interfaces.contains(_interfaces.at(i)), "missing"); 3548 } 3549 for (int i = 0; i < other->_interfaces.length(); i++) { 3550 assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3551 } 3552 for (int i = 0; i < result->_interfaces.length(); i++) { 3553 assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3554 } 3555 #endif 3556 return result; 3557 } 3558 3559 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const { 3560 GrowableArray<ciInstanceKlass*> result_list; 3561 int i = 0; 3562 int j = 0; 3563 while (i < _interfaces.length() || j < other->_interfaces.length()) { 3564 while (i < _interfaces.length() && 3565 (j >= other->_interfaces.length() || 3566 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) { 3567 i++; 3568 } 3569 while (j < other->_interfaces.length() && 3570 (i >= _interfaces.length() || 3571 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) { 3572 j++; 3573 } 3574 if (i < _interfaces.length() && 3575 j < other->_interfaces.length() && 3576 _interfaces.at(i) == other->_interfaces.at(j)) { 3577 result_list.push(_interfaces.at(i)); 3578 i++; 3579 j++; 3580 } 3581 } 3582 const TypeInterfaces* result = TypeInterfaces::make(&result_list); 3583 #ifdef ASSERT 3584 result->verify(); 3585 for (int i = 0; i < _interfaces.length(); i++) { 3586 assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing"); 3587 } 3588 for (int i = 0; i < other->_interfaces.length(); i++) { 3589 assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing"); 3590 } 3591 for (int i = 0; i < result->_interfaces.length(); i++) { 3592 assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing"); 3593 } 3594 #endif 3595 return result; 3596 } 3597 3598 // Is there a single ciKlass* that can represent the interface set? 3599 ciInstanceKlass* TypeInterfaces::exact_klass() const { 3600 assert(_initialized, "must be"); 3601 return _exact_klass; 3602 } 3603 3604 void TypeInterfaces::compute_exact_klass() { 3605 if (_interfaces.length() == 0) { 3606 _exact_klass = nullptr; 3607 return; 3608 } 3609 ciInstanceKlass* res = nullptr; 3610 for (int i = 0; i < _interfaces.length(); i++) { 3611 ciInstanceKlass* interface = _interfaces.at(i); 3612 if (eq(interface)) { 3613 assert(res == nullptr, ""); 3614 res = interface; 3615 } 3616 } 3617 _exact_klass = res; 3618 } 3619 3620 #ifdef ASSERT 3621 void TypeInterfaces::verify_is_loaded() const { 3622 for (int i = 0; i < _interfaces.length(); i++) { 3623 ciKlass* interface = _interfaces.at(i); 3624 assert(interface->is_loaded(), "Interface not loaded"); 3625 } 3626 } 3627 #endif 3628 3629 // Can't be implemented because there's no way to know if the type is above or below the center line. 3630 const Type* TypeInterfaces::xmeet(const Type* t) const { 3631 ShouldNotReachHere(); 3632 return Type::xmeet(t); 3633 } 3634 3635 bool TypeInterfaces::singleton(void) const { 3636 ShouldNotReachHere(); 3637 return Type::singleton(); 3638 } 3639 3640 bool TypeInterfaces::has_non_array_interface() const { 3641 assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?"); 3642 3643 return !TypeAryPtr::_array_interfaces->contains(this); 3644 } 3645 3646 //------------------------------TypeOopPtr------------------------------------- 3647 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, 3648 int instance_id, const TypePtr* speculative, int inline_depth) 3649 : TypePtr(t, ptr, offset, speculative, inline_depth), 3650 _const_oop(o), _klass(k), 3651 _interfaces(interfaces), 3652 _klass_is_exact(xk), 3653 _is_ptr_to_narrowoop(false), 3654 _is_ptr_to_narrowklass(false), 3655 _is_ptr_to_boxed_value(false), 3656 _is_ptr_to_strict_final_field(false), 3657 _instance_id(instance_id) { 3658 #ifdef ASSERT 3659 if (klass() != nullptr && klass()->is_loaded()) { 3660 interfaces->verify_is_loaded(); 3661 } 3662 #endif 3663 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3664 (offset.get() > 0) && xk && (k != nullptr) && k->is_instance_klass()) { 3665 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get()); 3666 _is_ptr_to_strict_final_field = _is_ptr_to_boxed_value; 3667 } 3668 3669 if (klass() != nullptr && klass()->is_instance_klass() && klass()->is_loaded() && 3670 this->offset() != Type::OffsetBot && this->offset() != Type::OffsetTop) { 3671 ciField* field = klass()->as_instance_klass()->get_field_by_offset(this->offset(), false); 3672 if (field != nullptr && field->is_strict() && field->is_final()) { 3673 _is_ptr_to_strict_final_field = true; 3674 } 3675 } 3676 3677 #ifdef _LP64 3678 if (this->offset() > 0 || this->offset() == Type::OffsetTop || this->offset() == Type::OffsetBot) { 3679 if (this->offset() == oopDesc::klass_offset_in_bytes()) { 3680 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3681 } else if (klass() == nullptr) { 3682 // Array with unknown body type 3683 assert(this->isa_aryptr(), "only arrays without klass"); 3684 _is_ptr_to_narrowoop = UseCompressedOops; 3685 } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) { 3686 if (klass()->is_flat_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) { 3687 // Check if the field of the inline type array element contains oops 3688 ciInlineKlass* vk = klass()->as_flat_array_klass()->element_klass()->as_inline_klass(); 3689 int foffset = field_offset.get() + vk->payload_offset(); 3690 BasicType field_bt; 3691 ciField* field = vk->get_field_by_offset(foffset, false); 3692 if (field != nullptr) { 3693 field_bt = field->layout_type(); 3694 } else { 3695 assert(field_offset.get() == vk->null_marker_offset_in_payload(), "no field or null marker of %s at offset %d", vk->name()->as_utf8(), foffset); 3696 field_bt = T_BOOLEAN; 3697 } 3698 _is_ptr_to_narrowoop = ::is_reference_type(field_bt); 3699 } else if (klass()->is_obj_array_klass()) { 3700 _is_ptr_to_narrowoop = true; 3701 } 3702 } else if (klass()->is_instance_klass()) { 3703 if (this->isa_klassptr()) { 3704 // Perm objects don't use compressed references 3705 } else if (_offset == Offset::bottom || _offset == Offset::top) { 3706 // unsafe access 3707 _is_ptr_to_narrowoop = UseCompressedOops; 3708 } else { 3709 assert(this->isa_instptr(), "must be an instance ptr."); 3710 if (klass() == ciEnv::current()->Class_klass() && 3711 (this->offset() == java_lang_Class::klass_offset() || 3712 this->offset() == java_lang_Class::array_klass_offset())) { 3713 // Special hidden fields from the Class. 3714 assert(this->isa_instptr(), "must be an instance ptr."); 3715 _is_ptr_to_narrowoop = false; 3716 } else if (klass() == ciEnv::current()->Class_klass() && 3717 this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) { 3718 // Static fields 3719 BasicType basic_elem_type = T_ILLEGAL; 3720 if (const_oop() != nullptr) { 3721 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3722 basic_elem_type = k->get_field_type_by_offset(this->offset(), true); 3723 } 3724 if (basic_elem_type != T_ILLEGAL) { 3725 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3726 } else { 3727 // unsafe access 3728 _is_ptr_to_narrowoop = UseCompressedOops; 3729 } 3730 } else { 3731 // Instance fields which contains a compressed oop references. 3732 ciInstanceKlass* ik = klass()->as_instance_klass(); 3733 BasicType basic_elem_type = ik->get_field_type_by_offset(this->offset(), false); 3734 if (basic_elem_type != T_ILLEGAL) { 3735 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3736 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3737 // Compile::find_alias_type() cast exactness on all types to verify 3738 // that it does not affect alias type. 3739 _is_ptr_to_narrowoop = UseCompressedOops; 3740 } else { 3741 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3742 _is_ptr_to_narrowoop = UseCompressedOops; 3743 } 3744 } 3745 } 3746 } 3747 } 3748 #endif // _LP64 3749 } 3750 3751 //------------------------------make------------------------------------------- 3752 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id, 3753 const TypePtr* speculative, int inline_depth) { 3754 assert(ptr != Constant, "no constant generic pointers"); 3755 ciKlass* k = Compile::current()->env()->Object_klass(); 3756 bool xk = false; 3757 ciObject* o = nullptr; 3758 const TypeInterfaces* interfaces = TypeInterfaces::make(); 3759 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons(); 3760 } 3761 3762 3763 //------------------------------cast_to_ptr_type------------------------------- 3764 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3765 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3766 if( ptr == _ptr ) return this; 3767 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3768 } 3769 3770 //-----------------------------cast_to_instance_id---------------------------- 3771 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3772 // There are no instances of a general oop. 3773 // Return self unchanged. 3774 return this; 3775 } 3776 3777 //-----------------------------cast_to_exactness------------------------------- 3778 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3779 // There is no such thing as an exact general oop. 3780 // Return self unchanged. 3781 return this; 3782 } 3783 3784 //------------------------------as_klass_type---------------------------------- 3785 // Return the klass type corresponding to this instance or array type. 3786 // It is the type that is loaded from an object of this type. 3787 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3788 ShouldNotReachHere(); 3789 return nullptr; 3790 } 3791 3792 //------------------------------meet------------------------------------------- 3793 // Compute the MEET of two types. It returns a new Type object. 3794 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3795 // Perform a fast test for common case; meeting the same types together. 3796 if( this == t ) return this; // Meeting same type-rep? 3797 3798 // Current "this->_base" is OopPtr 3799 switch (t->base()) { // switch on original type 3800 3801 case Int: // Mixing ints & oops happens when javac 3802 case Long: // reuses local variables 3803 case HalfFloatTop: 3804 case HalfFloatCon: 3805 case HalfFloatBot: 3806 case FloatTop: 3807 case FloatCon: 3808 case FloatBot: 3809 case DoubleTop: 3810 case DoubleCon: 3811 case DoubleBot: 3812 case NarrowOop: 3813 case NarrowKlass: 3814 case Bottom: // Ye Olde Default 3815 return Type::BOTTOM; 3816 case Top: 3817 return this; 3818 3819 default: // All else is a mistake 3820 typerr(t); 3821 3822 case RawPtr: 3823 case MetadataPtr: 3824 case KlassPtr: 3825 case InstKlassPtr: 3826 case AryKlassPtr: 3827 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3828 3829 case AnyPtr: { 3830 // Found an AnyPtr type vs self-OopPtr type 3831 const TypePtr *tp = t->is_ptr(); 3832 Offset offset = meet_offset(tp->offset()); 3833 PTR ptr = meet_ptr(tp->ptr()); 3834 const TypePtr* speculative = xmeet_speculative(tp); 3835 int depth = meet_inline_depth(tp->inline_depth()); 3836 switch (tp->ptr()) { 3837 case Null: 3838 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3839 // else fall through: 3840 case TopPTR: 3841 case AnyNull: { 3842 int instance_id = meet_instance_id(InstanceTop); 3843 return make(ptr, offset, instance_id, speculative, depth); 3844 } 3845 case BotPTR: 3846 case NotNull: 3847 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3848 default: typerr(t); 3849 } 3850 } 3851 3852 case OopPtr: { // Meeting to other OopPtrs 3853 const TypeOopPtr *tp = t->is_oopptr(); 3854 int instance_id = meet_instance_id(tp->instance_id()); 3855 const TypePtr* speculative = xmeet_speculative(tp); 3856 int depth = meet_inline_depth(tp->inline_depth()); 3857 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3858 } 3859 3860 case InstPtr: // For these, flip the call around to cut down 3861 case AryPtr: 3862 return t->xmeet(this); // Call in reverse direction 3863 3864 } // End of switch 3865 return this; // Return the double constant 3866 } 3867 3868 3869 //------------------------------xdual------------------------------------------ 3870 // Dual of a pure heap pointer. No relevant klass or oop information. 3871 const Type *TypeOopPtr::xdual() const { 3872 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3873 assert(const_oop() == nullptr, "no constants here"); 3874 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth()); 3875 } 3876 3877 //--------------------------make_from_klass_common----------------------------- 3878 // Computes the element-type given a klass. 3879 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3880 if (klass->is_instance_klass() || klass->is_inlinetype()) { 3881 Compile* C = Compile::current(); 3882 Dependencies* deps = C->dependencies(); 3883 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 3884 // Element is an instance 3885 bool klass_is_exact = false; 3886 ciInstanceKlass* ik = klass->as_instance_klass(); 3887 if (klass->is_loaded()) { 3888 // Try to set klass_is_exact. 3889 klass_is_exact = ik->is_final(); 3890 if (!klass_is_exact && klass_change 3891 && deps != nullptr && UseUniqueSubclasses) { 3892 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3893 if (sub != nullptr) { 3894 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3895 klass = ik = sub; 3896 klass_is_exact = sub->is_final(); 3897 } 3898 } 3899 if (!klass_is_exact && try_for_exact && deps != nullptr && 3900 !ik->is_interface() && !ik->has_subklass()) { 3901 // Add a dependence; if concrete subclass added we need to recompile 3902 deps->assert_leaf_type(ik); 3903 klass_is_exact = true; 3904 } 3905 } 3906 FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact); 3907 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3908 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, Offset(0), flat_in_array); 3909 } else if (klass->is_obj_array_klass()) { 3910 // Element is an object or inline type array. Recursively call ourself. 3911 ciObjArrayKlass* array_klass = klass->as_obj_array_klass(); 3912 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(array_klass->element_klass(), /* klass_change= */ false, try_for_exact, interface_handling); 3913 bool xk = array_klass->is_loaded() && array_klass->is_refined(); 3914 3915 // Determine null-free/flat properties 3916 bool flat; 3917 bool not_flat; 3918 bool is_null_free; 3919 bool not_null_free; 3920 bool atomic; 3921 if (xk) { 3922 flat = array_klass->is_flat_array_klass(); 3923 not_flat = !flat; 3924 is_null_free = array_klass->is_elem_null_free(); 3925 not_null_free = !is_null_free; 3926 atomic = array_klass->is_elem_atomic(); 3927 3928 if (is_null_free) { 3929 etype = etype->join_speculative(NOTNULL)->is_oopptr(); 3930 } 3931 } else { 3932 const TypeOopPtr* exact_etype = etype; 3933 if (etype->can_be_inline_type()) { 3934 // Use exact type if element can be an inline type 3935 exact_etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), /* klass_change= */ true, /* try_for_exact= */ true, interface_handling); 3936 } 3937 3938 flat = false; 3939 bool not_inline = !exact_etype->can_be_inline_type(); 3940 not_null_free = not_inline; 3941 not_flat = !UseArrayFlattening || not_inline || (exact_etype->is_inlinetypeptr() && !exact_etype->inline_klass()->maybe_flat_in_array()); 3942 atomic = not_flat; 3943 } 3944 3945 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, flat, not_flat, not_null_free, atomic); 3946 // We used to pass NotNull in here, asserting that the sub-arrays 3947 // are all not-null. This is not true in generally, as code can 3948 // slam nullptrs down in the subarrays. 3949 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, Offset(0)); 3950 return arr; 3951 } else if (klass->is_type_array_klass()) { 3952 // Element is an typeArray 3953 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3954 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, 3955 /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true, true); 3956 // We used to pass NotNull in here, asserting that the array pointer 3957 // is not-null. That was not true in general. 3958 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0)); 3959 return arr; 3960 } else { 3961 ShouldNotReachHere(); 3962 return nullptr; 3963 } 3964 } 3965 3966 //------------------------------make_from_constant----------------------------- 3967 // Make a java pointer from an oop constant 3968 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3969 assert(!o->is_null_object(), "null object not yet handled here."); 3970 3971 const bool make_constant = require_constant || o->should_be_constant(); 3972 3973 ciKlass* klass = o->klass(); 3974 if (klass->is_instance_klass() || klass->is_inlinetype()) { 3975 // Element is an instance or inline type 3976 if (make_constant) { 3977 return TypeInstPtr::make(o); 3978 } else { 3979 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, Offset(0)); 3980 } 3981 } else if (klass->is_obj_array_klass()) { 3982 // Element is an object array. Recursively call ourself. 3983 const TypeOopPtr* etype = TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass(), trust_interfaces); 3984 bool is_flat = o->as_array()->is_flat(); 3985 bool is_null_free = o->as_array()->is_null_free(); 3986 if (is_null_free) { 3987 etype = etype->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 3988 } 3989 bool is_atomic = o->as_array()->is_atomic(); 3990 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ is_flat, 3991 /* not_flat= */ !is_flat, /* not_null_free= */ !is_null_free, /* atomic= */ is_atomic); 3992 // We used to pass NotNull in here, asserting that the sub-arrays 3993 // are all not-null. This is not true in generally, as code can 3994 // slam nulls down in the subarrays. 3995 if (make_constant) { 3996 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0)); 3997 } else { 3998 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0)); 3999 } 4000 } else if (klass->is_type_array_klass()) { 4001 // Element is an typeArray 4002 const Type* etype = (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 4003 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()), /* stable= */ false, /* flat= */ false, 4004 /* not_flat= */ true, /* not_null_free= */ true, true); 4005 // We used to pass NotNull in here, asserting that the array pointer 4006 // is not-null. That was not true in general. 4007 if (make_constant) { 4008 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0)); 4009 } else { 4010 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0)); 4011 } 4012 } 4013 4014 fatal("unhandled object type"); 4015 return nullptr; 4016 } 4017 4018 //------------------------------get_con---------------------------------------- 4019 intptr_t TypeOopPtr::get_con() const { 4020 assert( _ptr == Null || _ptr == Constant, "" ); 4021 assert(offset() >= 0, ""); 4022 4023 if (offset() != 0) { 4024 // After being ported to the compiler interface, the compiler no longer 4025 // directly manipulates the addresses of oops. Rather, it only has a pointer 4026 // to a handle at compile time. This handle is embedded in the generated 4027 // code and dereferenced at the time the nmethod is made. Until that time, 4028 // it is not reasonable to do arithmetic with the addresses of oops (we don't 4029 // have access to the addresses!). This does not seem to currently happen, 4030 // but this assertion here is to help prevent its occurrence. 4031 tty->print_cr("Found oop constant with non-zero offset"); 4032 ShouldNotReachHere(); 4033 } 4034 4035 return (intptr_t)const_oop()->constant_encoding(); 4036 } 4037 4038 4039 //-----------------------------filter------------------------------------------ 4040 // Do not allow interface-vs.-noninterface joins to collapse to top. 4041 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 4042 4043 const Type* ft = join_helper(kills, include_speculative); 4044 4045 if (ft->empty()) { 4046 return Type::TOP; // Canonical empty value 4047 } 4048 4049 return ft; 4050 } 4051 4052 //------------------------------eq--------------------------------------------- 4053 // Structural equality check for Type representations 4054 bool TypeOopPtr::eq( const Type *t ) const { 4055 const TypeOopPtr *a = (const TypeOopPtr*)t; 4056 if (_klass_is_exact != a->_klass_is_exact || 4057 _instance_id != a->_instance_id) return false; 4058 ciObject* one = const_oop(); 4059 ciObject* two = a->const_oop(); 4060 if (one == nullptr || two == nullptr) { 4061 return (one == two) && TypePtr::eq(t); 4062 } else { 4063 return one->equals(two) && TypePtr::eq(t); 4064 } 4065 } 4066 4067 //------------------------------hash------------------------------------------- 4068 // Type-specific hashing function. 4069 uint TypeOopPtr::hash(void) const { 4070 return 4071 (uint)(const_oop() ? const_oop()->hash() : 0) + 4072 (uint)_klass_is_exact + 4073 (uint)_instance_id + TypePtr::hash(); 4074 } 4075 4076 //------------------------------dump2------------------------------------------ 4077 #ifndef PRODUCT 4078 void TypeOopPtr::dump2(Dict& d, uint depth, outputStream* st) const { 4079 st->print("oopptr:%s", ptr_msg[_ptr]); 4080 if (_klass_is_exact) { 4081 st->print(":exact"); 4082 } 4083 if (const_oop() != nullptr) { 4084 st->print(":" INTPTR_FORMAT, p2i(const_oop())); 4085 } 4086 dump_offset(st); 4087 dump_instance_id(st); 4088 dump_inline_depth(st); 4089 dump_speculative(st); 4090 } 4091 4092 void TypeOopPtr::dump_instance_id(outputStream* st) const { 4093 if (_instance_id == InstanceTop) { 4094 st->print(",iid=top"); 4095 } else if (_instance_id == InstanceBot) { 4096 st->print(",iid=bot"); 4097 } else { 4098 st->print(",iid=%d", _instance_id); 4099 } 4100 } 4101 #endif 4102 4103 //------------------------------singleton-------------------------------------- 4104 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 4105 // constants 4106 bool TypeOopPtr::singleton(void) const { 4107 // detune optimizer to not generate constant oop + constant offset as a constant! 4108 // TopPTR, Null, AnyNull, Constant are all singletons 4109 return (offset() == 0) && !below_centerline(_ptr); 4110 } 4111 4112 //------------------------------add_offset------------------------------------- 4113 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 4114 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 4115 } 4116 4117 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 4118 return make(_ptr, Offset(offset), _instance_id, with_offset_speculative(offset), _inline_depth); 4119 } 4120 4121 /** 4122 * Return same type without a speculative part 4123 */ 4124 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 4125 if (_speculative == nullptr) { 4126 return this; 4127 } 4128 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4129 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth); 4130 } 4131 4132 /** 4133 * Return same type but drop speculative part if we know we won't use 4134 * it 4135 */ 4136 const Type* TypeOopPtr::cleanup_speculative() const { 4137 // If the klass is exact and the ptr is not null then there's 4138 // nothing that the speculative type can help us with 4139 if (klass_is_exact() && !maybe_null()) { 4140 return remove_speculative(); 4141 } 4142 return TypePtr::cleanup_speculative(); 4143 } 4144 4145 /** 4146 * Return same type but with a different inline depth (used for speculation) 4147 * 4148 * @param depth depth to meet with 4149 */ 4150 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 4151 if (!UseInlineDepthForSpeculativeTypes) { 4152 return this; 4153 } 4154 return make(_ptr, _offset, _instance_id, _speculative, depth); 4155 } 4156 4157 //------------------------------with_instance_id-------------------------------- 4158 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 4159 assert(_instance_id != -1, "should be known"); 4160 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 4161 } 4162 4163 //------------------------------meet_instance_id-------------------------------- 4164 int TypeOopPtr::meet_instance_id( int instance_id ) const { 4165 // Either is 'TOP' instance? Return the other instance! 4166 if( _instance_id == InstanceTop ) return instance_id; 4167 if( instance_id == InstanceTop ) return _instance_id; 4168 // If either is different, return 'BOTTOM' instance 4169 if( _instance_id != instance_id ) return InstanceBot; 4170 return _instance_id; 4171 } 4172 4173 //------------------------------dual_instance_id-------------------------------- 4174 int TypeOopPtr::dual_instance_id( ) const { 4175 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 4176 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 4177 return _instance_id; // Map everything else into self 4178 } 4179 4180 4181 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 4182 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 4183 return _interfaces->union_with(other->_interfaces); 4184 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 4185 return other->_interfaces; 4186 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 4187 return _interfaces; 4188 } 4189 return _interfaces->intersection_with(other->_interfaces); 4190 } 4191 4192 /** 4193 * Check whether new profiling would improve speculative type 4194 * 4195 * @param exact_kls class from profiling 4196 * @param inline_depth inlining depth of profile point 4197 * 4198 * @return true if type profile is valuable 4199 */ 4200 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 4201 // no way to improve an already exact type 4202 if (klass_is_exact()) { 4203 return false; 4204 } 4205 return TypePtr::would_improve_type(exact_kls, inline_depth); 4206 } 4207 4208 //============================================================================= 4209 // Convenience common pre-built types. 4210 const TypeInstPtr *TypeInstPtr::NOTNULL; 4211 const TypeInstPtr *TypeInstPtr::BOTTOM; 4212 const TypeInstPtr *TypeInstPtr::MIRROR; 4213 const TypeInstPtr *TypeInstPtr::MARK; 4214 const TypeInstPtr *TypeInstPtr::KLASS; 4215 4216 // Is there a single ciKlass* that can represent that type? 4217 ciKlass* TypeInstPtr::exact_klass_helper() const { 4218 if (_interfaces->empty()) { 4219 return _klass; 4220 } 4221 if (_klass != ciEnv::current()->Object_klass()) { 4222 if (_interfaces->eq(_klass->as_instance_klass())) { 4223 return _klass; 4224 } 4225 return nullptr; 4226 } 4227 return _interfaces->exact_klass(); 4228 } 4229 4230 //------------------------------TypeInstPtr------------------------------------- 4231 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset off, 4232 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative, int inline_depth) 4233 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth), 4234 _flat_in_array(flat_in_array) { 4235 4236 assert(flat_in_array != Uninitialized, "must be set now"); 4237 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here"); 4238 assert(k != nullptr && 4239 (k->is_loaded() || o == nullptr), 4240 "cannot have constants with non-loaded klass"); 4241 }; 4242 4243 //------------------------------make------------------------------------------- 4244 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 4245 ciKlass* k, 4246 const TypeInterfaces* interfaces, 4247 bool xk, 4248 ciObject* o, 4249 Offset offset, 4250 FlatInArray flat_in_array, 4251 int instance_id, 4252 const TypePtr* speculative, 4253 int inline_depth) { 4254 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 4255 // Either const_oop() is null or else ptr is Constant 4256 assert( (!o && ptr != Constant) || (o && ptr == Constant), 4257 "constant pointers must have a value supplied" ); 4258 // Ptr is never Null 4259 assert( ptr != Null, "null pointers are not typed" ); 4260 4261 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4262 ciInstanceKlass* ik = k->as_instance_klass(); 4263 if (ptr == Constant) { 4264 // Note: This case includes meta-object constants, such as methods. 4265 xk = true; 4266 } else if (k->is_loaded()) { 4267 if (!xk && ik->is_final()) xk = true; // no inexact final klass 4268 assert(!ik->is_interface(), "no interface here"); 4269 if (xk && ik->is_interface()) xk = false; // no exact interface 4270 } 4271 4272 if (flat_in_array == Uninitialized) { 4273 flat_in_array = compute_flat_in_array(ik, xk); 4274 } 4275 // Now hash this baby 4276 TypeInstPtr *result = 4277 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id, speculative, inline_depth))->hashcons(); 4278 4279 return result; 4280 } 4281 4282 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 4283 if (k->is_instance_klass()) { 4284 if (k->is_loaded()) { 4285 if (k->is_interface() && interface_handling == ignore_interfaces) { 4286 assert(interface, "no interface expected"); 4287 k = ciEnv::current()->Object_klass(); 4288 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4289 return interfaces; 4290 } 4291 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces(); 4292 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces); 4293 if (k->is_interface()) { 4294 assert(interface, "no interface expected"); 4295 k = ciEnv::current()->Object_klass(); 4296 } else { 4297 assert(klass, "no instance klass expected"); 4298 } 4299 return interfaces; 4300 } 4301 const TypeInterfaces* interfaces = TypeInterfaces::make(); 4302 return interfaces; 4303 } 4304 assert(array, "no array expected"); 4305 assert(k->is_array_klass(), "Not an array?"); 4306 ciType* e = k->as_array_klass()->base_element_type(); 4307 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 4308 if (interface_handling == ignore_interfaces) { 4309 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 4310 } 4311 } 4312 return TypeAryPtr::_array_interfaces; 4313 } 4314 4315 /** 4316 * Create constant type for a constant boxed value 4317 */ 4318 const Type* TypeInstPtr::get_const_boxed_value() const { 4319 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 4320 assert((const_oop() != nullptr), "should be called only for constant object"); 4321 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 4322 BasicType bt = constant.basic_type(); 4323 switch (bt) { 4324 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 4325 case T_INT: return TypeInt::make(constant.as_int()); 4326 case T_CHAR: return TypeInt::make(constant.as_char()); 4327 case T_BYTE: return TypeInt::make(constant.as_byte()); 4328 case T_SHORT: return TypeInt::make(constant.as_short()); 4329 case T_FLOAT: return TypeF::make(constant.as_float()); 4330 case T_DOUBLE: return TypeD::make(constant.as_double()); 4331 case T_LONG: return TypeLong::make(constant.as_long()); 4332 default: break; 4333 } 4334 fatal("Invalid boxed value type '%s'", type2name(bt)); 4335 return nullptr; 4336 } 4337 4338 //------------------------------cast_to_ptr_type------------------------------- 4339 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 4340 if( ptr == _ptr ) return this; 4341 // Reconstruct _sig info here since not a problem with later lazy 4342 // construction, _sig will show up on demand. 4343 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _flat_in_array, _instance_id, _speculative, _inline_depth); 4344 } 4345 4346 4347 //-----------------------------cast_to_exactness------------------------------- 4348 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 4349 if( klass_is_exact == _klass_is_exact ) return this; 4350 if (!_klass->is_loaded()) return this; 4351 ciInstanceKlass* ik = _klass->as_instance_klass(); 4352 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 4353 assert(!ik->is_interface(), "no interface here"); 4354 FlatInArray flat_in_array = compute_flat_in_array(ik, klass_is_exact); 4355 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, flat_in_array, _instance_id, _speculative, _inline_depth); 4356 } 4357 4358 //-----------------------------cast_to_instance_id---------------------------- 4359 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 4360 if( instance_id == _instance_id ) return this; 4361 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth); 4362 } 4363 4364 //------------------------------xmeet_unloaded--------------------------------- 4365 // Compute the MEET of two InstPtrs when at least one is unloaded. 4366 // Assume classes are different since called after check for same name/class-loader 4367 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const { 4368 Offset off = meet_offset(tinst->offset()); 4369 PTR ptr = meet_ptr(tinst->ptr()); 4370 int instance_id = meet_instance_id(tinst->instance_id()); 4371 const TypePtr* speculative = xmeet_speculative(tinst); 4372 int depth = meet_inline_depth(tinst->inline_depth()); 4373 4374 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 4375 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 4376 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 4377 // 4378 // Meet unloaded class with java/lang/Object 4379 // 4380 // Meet 4381 // | Unloaded Class 4382 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4383 // =================================================================== 4384 // TOP | ..........................Unloaded......................| 4385 // AnyNull | U-AN |................Unloaded......................| 4386 // Constant | ... O-NN .................................. | O-BOT | 4387 // NotNull | ... O-NN .................................. | O-BOT | 4388 // BOTTOM | ........................Object-BOTTOM ..................| 4389 // 4390 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4391 // 4392 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4393 else if (loaded->ptr() == TypePtr::AnyNull) { 4394 FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array()); 4395 return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, flat_in_array, instance_id, 4396 speculative, depth); 4397 } 4398 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4399 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4400 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); } 4401 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); } 4402 } 4403 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); } 4404 4405 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative); 4406 } 4407 4408 // Both are unloaded, not the same class, not Object 4409 // Or meet unloaded with a different loaded class, not java/lang/Object 4410 if (ptr != TypePtr::BotPTR) { 4411 return TypeInstPtr::NOTNULL->with_speculative(speculative); 4412 } 4413 return TypeInstPtr::BOTTOM->with_speculative(speculative); 4414 } 4415 4416 4417 //------------------------------meet------------------------------------------- 4418 // Compute the MEET of two types. It returns a new Type object. 4419 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4420 // Perform a fast test for common case; meeting the same types together. 4421 if( this == t ) return this; // Meeting same type-rep? 4422 4423 // Current "this->_base" is Pointer 4424 switch (t->base()) { // switch on original type 4425 4426 case Int: // Mixing ints & oops happens when javac 4427 case Long: // reuses local variables 4428 case HalfFloatTop: 4429 case HalfFloatCon: 4430 case HalfFloatBot: 4431 case FloatTop: 4432 case FloatCon: 4433 case FloatBot: 4434 case DoubleTop: 4435 case DoubleCon: 4436 case DoubleBot: 4437 case NarrowOop: 4438 case NarrowKlass: 4439 case Bottom: // Ye Olde Default 4440 return Type::BOTTOM; 4441 case Top: 4442 return this; 4443 4444 default: // All else is a mistake 4445 typerr(t); 4446 4447 case MetadataPtr: 4448 case KlassPtr: 4449 case InstKlassPtr: 4450 case AryKlassPtr: 4451 case RawPtr: return TypePtr::BOTTOM; 4452 4453 case AryPtr: { // All arrays inherit from Object class 4454 // Call in reverse direction to avoid duplication 4455 return t->is_aryptr()->xmeet_helper(this); 4456 } 4457 4458 case OopPtr: { // Meeting to OopPtrs 4459 // Found a OopPtr type vs self-InstPtr type 4460 const TypeOopPtr *tp = t->is_oopptr(); 4461 Offset offset = meet_offset(tp->offset()); 4462 PTR ptr = meet_ptr(tp->ptr()); 4463 switch (tp->ptr()) { 4464 case TopPTR: 4465 case AnyNull: { 4466 int instance_id = meet_instance_id(InstanceTop); 4467 const TypePtr* speculative = xmeet_speculative(tp); 4468 int depth = meet_inline_depth(tp->inline_depth()); 4469 return make(ptr, klass(), _interfaces, klass_is_exact(), 4470 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth); 4471 } 4472 case NotNull: 4473 case BotPTR: { 4474 int instance_id = meet_instance_id(tp->instance_id()); 4475 const TypePtr* speculative = xmeet_speculative(tp); 4476 int depth = meet_inline_depth(tp->inline_depth()); 4477 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4478 } 4479 default: typerr(t); 4480 } 4481 } 4482 4483 case AnyPtr: { // Meeting to AnyPtrs 4484 // Found an AnyPtr type vs self-InstPtr type 4485 const TypePtr *tp = t->is_ptr(); 4486 Offset offset = meet_offset(tp->offset()); 4487 PTR ptr = meet_ptr(tp->ptr()); 4488 int instance_id = meet_instance_id(InstanceTop); 4489 const TypePtr* speculative = xmeet_speculative(tp); 4490 int depth = meet_inline_depth(tp->inline_depth()); 4491 switch (tp->ptr()) { 4492 case Null: 4493 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4494 // else fall through to AnyNull 4495 case TopPTR: 4496 case AnyNull: { 4497 return make(ptr, klass(), _interfaces, klass_is_exact(), 4498 (ptr == Constant ? const_oop() : nullptr), offset, flat_in_array(), instance_id, speculative, depth); 4499 } 4500 case NotNull: 4501 case BotPTR: 4502 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4503 default: typerr(t); 4504 } 4505 } 4506 4507 /* 4508 A-top } 4509 / | \ } Tops 4510 B-top A-any C-top } 4511 | / | \ | } Any-nulls 4512 B-any | C-any } 4513 | | | 4514 B-con A-con C-con } constants; not comparable across classes 4515 | | | 4516 B-not | C-not } 4517 | \ | / | } not-nulls 4518 B-bot A-not C-bot } 4519 \ | / } Bottoms 4520 A-bot } 4521 */ 4522 4523 case InstPtr: { // Meeting 2 Oops? 4524 // Found an InstPtr sub-type vs self-InstPtr type 4525 const TypeInstPtr *tinst = t->is_instptr(); 4526 Offset off = meet_offset(tinst->offset()); 4527 PTR ptr = meet_ptr(tinst->ptr()); 4528 int instance_id = meet_instance_id(tinst->instance_id()); 4529 const TypePtr* speculative = xmeet_speculative(tinst); 4530 int depth = meet_inline_depth(tinst->inline_depth()); 4531 const TypeInterfaces* interfaces = meet_interfaces(tinst); 4532 4533 ciKlass* tinst_klass = tinst->klass(); 4534 ciKlass* this_klass = klass(); 4535 4536 ciKlass* res_klass = nullptr; 4537 bool res_xk = false; 4538 const Type* res; 4539 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk); 4540 4541 if (kind == UNLOADED) { 4542 // One of these classes has not been loaded 4543 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4544 #ifndef PRODUCT 4545 if (PrintOpto && Verbose) { 4546 tty->print("meet of unloaded classes resulted in: "); 4547 unloaded_meet->dump(); 4548 tty->cr(); 4549 tty->print(" this == "); 4550 dump(); 4551 tty->cr(); 4552 tty->print(" tinst == "); 4553 tinst->dump(); 4554 tty->cr(); 4555 } 4556 #endif 4557 res = unloaded_meet; 4558 } else { 4559 FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tinst->flat_in_array()); 4560 if (kind == NOT_SUBTYPE && instance_id > 0) { 4561 instance_id = InstanceBot; 4562 } else if (kind == LCA) { 4563 instance_id = InstanceBot; 4564 } 4565 ciObject* o = nullptr; // Assume not constant when done 4566 ciObject* this_oop = const_oop(); 4567 ciObject* tinst_oop = tinst->const_oop(); 4568 if (ptr == Constant) { 4569 if (this_oop != nullptr && tinst_oop != nullptr && 4570 this_oop->equals(tinst_oop)) 4571 o = this_oop; 4572 else if (above_centerline(_ptr)) { 4573 assert(!tinst_klass->is_interface(), ""); 4574 o = tinst_oop; 4575 } else if (above_centerline(tinst->_ptr)) { 4576 assert(!this_klass->is_interface(), ""); 4577 o = this_oop; 4578 } else 4579 ptr = NotNull; 4580 } 4581 res = make(ptr, res_klass, interfaces, res_xk, o, off, flat_in_array, instance_id, speculative, depth); 4582 } 4583 4584 return res; 4585 4586 } // End of case InstPtr 4587 4588 } // End of switch 4589 return this; // Return the double constant 4590 } 4591 4592 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type, 4593 ciKlass*& res_klass, bool& res_xk) { 4594 ciKlass* this_klass = this_type->klass(); 4595 ciKlass* other_klass = other_type->klass(); 4596 4597 bool this_xk = this_type->klass_is_exact(); 4598 bool other_xk = other_type->klass_is_exact(); 4599 PTR this_ptr = this_type->ptr(); 4600 PTR other_ptr = other_type->ptr(); 4601 const TypeInterfaces* this_interfaces = this_type->interfaces(); 4602 const TypeInterfaces* other_interfaces = other_type->interfaces(); 4603 // Check for easy case; klasses are equal (and perhaps not loaded!) 4604 // If we have constants, then we created oops so classes are loaded 4605 // and we can handle the constants further down. This case handles 4606 // both-not-loaded or both-loaded classes 4607 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) { 4608 res_klass = this_klass; 4609 res_xk = this_xk; 4610 return QUICK; 4611 } 4612 4613 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4614 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4615 return UNLOADED; 4616 } 4617 4618 // !!! Here's how the symmetry requirement breaks down into invariants: 4619 // If we split one up & one down AND they subtype, take the down man. 4620 // If we split one up & one down AND they do NOT subtype, "fall hard". 4621 // If both are up and they subtype, take the subtype class. 4622 // If both are up and they do NOT subtype, "fall hard". 4623 // If both are down and they subtype, take the supertype class. 4624 // If both are down and they do NOT subtype, "fall hard". 4625 // Constants treated as down. 4626 4627 // Now, reorder the above list; observe that both-down+subtype is also 4628 // "fall hard"; "fall hard" becomes the default case: 4629 // If we split one up & one down AND they subtype, take the down man. 4630 // If both are up and they subtype, take the subtype class. 4631 4632 // If both are down and they subtype, "fall hard". 4633 // If both are down and they do NOT subtype, "fall hard". 4634 // If both are up and they do NOT subtype, "fall hard". 4635 // If we split one up & one down AND they do NOT subtype, "fall hard". 4636 4637 // If a proper subtype is exact, and we return it, we return it exactly. 4638 // If a proper supertype is exact, there can be no subtyping relationship! 4639 // If both types are equal to the subtype, exactness is and-ed below the 4640 // centerline and or-ed above it. (N.B. Constants are always exact.) 4641 4642 const T* subtype = nullptr; 4643 bool subtype_exact = false; 4644 if (this_type->is_same_java_type_as(other_type)) { 4645 // Same klass 4646 subtype = this_type; 4647 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4648 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) { 4649 subtype = this_type; // Pick subtyping class 4650 subtype_exact = this_xk; 4651 } else if (!this_xk && other_type->is_meet_subtype_of(this_type)) { 4652 subtype = other_type; // Pick subtyping class 4653 subtype_exact = other_xk; 4654 } 4655 4656 if (subtype != nullptr) { 4657 if (above_centerline(ptr)) { 4658 // Both types are empty. 4659 this_type = other_type = subtype; 4660 this_xk = other_xk = subtype_exact; 4661 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4662 // this_type is empty while other_type is not. Take other_type. 4663 this_type = other_type; 4664 this_xk = other_xk; 4665 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4666 // other_type is empty while this_type is not. Take this_type. 4667 other_type = this_type; // this is down; keep down man 4668 } else { 4669 // this_type and other_type are both non-empty. 4670 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4671 } 4672 } 4673 4674 // Check for classes now being equal 4675 if (this_type->is_same_java_type_as(other_type)) { 4676 // If the klasses are equal, the constants may still differ. Fall to 4677 // NotNull if they do (neither constant is null; that is a special case 4678 // handled elsewhere). 4679 res_klass = this_type->klass(); 4680 res_xk = this_xk; 4681 return SUBTYPE; 4682 } // Else classes are not equal 4683 4684 // Since klasses are different, we require a LCA in the Java 4685 // class hierarchy - which means we have to fall to at least NotNull. 4686 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4687 ptr = NotNull; 4688 } 4689 4690 interfaces = this_interfaces->intersection_with(other_interfaces); 4691 4692 // Now we find the LCA of Java classes 4693 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4694 4695 res_klass = k; 4696 res_xk = false; 4697 return LCA; 4698 } 4699 4700 // Top-Flat Flat Not-Flat Maybe-Flat 4701 // ------------------------------------------------------------- 4702 // Top-Flat Top-Flat Flat Not-Flat Maybe-Flat 4703 // Flat Flat Flat Maybe-Flat Maybe-Flat 4704 // Not-Flat Not-Flat Maybe-Flat Not-Flat Maybe-Flat 4705 // Maybe-Flat Maybe-Flat Maybe-Flat Maybe-Flat Maybe-flat 4706 TypePtr::FlatInArray TypePtr::meet_flat_in_array(const FlatInArray left, const FlatInArray right) { 4707 if (left == TopFlat) { 4708 return right; 4709 } 4710 if (right == TopFlat) { 4711 return left; 4712 } 4713 if (left == MaybeFlat || right == MaybeFlat) { 4714 return MaybeFlat; 4715 } 4716 4717 switch (left) { 4718 case Flat: 4719 if (right == Flat) { 4720 return Flat; 4721 } 4722 return MaybeFlat; 4723 case NotFlat: 4724 if (right == NotFlat) { 4725 return NotFlat; 4726 } 4727 return MaybeFlat; 4728 default: 4729 ShouldNotReachHere(); 4730 return Uninitialized; 4731 } 4732 } 4733 4734 //------------------------java_mirror_type-------------------------------------- 4735 ciType* TypeInstPtr::java_mirror_type() const { 4736 // must be a singleton type 4737 if( const_oop() == nullptr ) return nullptr; 4738 4739 // must be of type java.lang.Class 4740 if( klass() != ciEnv::current()->Class_klass() ) return nullptr; 4741 return const_oop()->as_instance()->java_mirror_type(); 4742 } 4743 4744 4745 //------------------------------xdual------------------------------------------ 4746 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4747 // inheritance mechanism. 4748 const Type* TypeInstPtr::xdual() const { 4749 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), 4750 dual_flat_in_array(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4751 } 4752 4753 //------------------------------eq--------------------------------------------- 4754 // Structural equality check for Type representations 4755 bool TypeInstPtr::eq( const Type *t ) const { 4756 const TypeInstPtr *p = t->is_instptr(); 4757 return 4758 klass()->equals(p->klass()) && 4759 _flat_in_array == p->_flat_in_array && 4760 _interfaces->eq(p->_interfaces) && 4761 TypeOopPtr::eq(p); // Check sub-type stuff 4762 } 4763 4764 //------------------------------hash------------------------------------------- 4765 // Type-specific hashing function. 4766 uint TypeInstPtr::hash() const { 4767 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash() + static_cast<uint>(_flat_in_array); 4768 } 4769 4770 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4771 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4772 } 4773 4774 4775 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4776 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4777 } 4778 4779 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4780 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4781 } 4782 4783 4784 //------------------------------dump2------------------------------------------ 4785 // Dump oop Type 4786 #ifndef PRODUCT 4787 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4788 // Print the name of the klass. 4789 st->print("instptr:"); 4790 klass()->print_name_on(st); 4791 _interfaces->dump(st); 4792 4793 if (_ptr == Constant && (WizardMode || Verbose)) { 4794 ResourceMark rm; 4795 stringStream ss; 4796 4797 st->print(" "); 4798 const_oop()->print_oop(&ss); 4799 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4800 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4801 char* buf = ss.as_string(/* c_heap= */false); 4802 StringUtils::replace_no_expand(buf, "\n", ""); 4803 st->print_raw(buf); 4804 } 4805 4806 st->print(":%s", ptr_msg[_ptr]); 4807 if (_klass_is_exact) { 4808 st->print(":exact"); 4809 } 4810 4811 st->print(" *"); 4812 4813 dump_offset(st); 4814 dump_instance_id(st); 4815 dump_inline_depth(st); 4816 dump_speculative(st); 4817 dump_flat_in_array(_flat_in_array, st); 4818 } 4819 #endif 4820 4821 bool TypeInstPtr::empty() const { 4822 if (_flat_in_array == TopFlat) { 4823 return true; 4824 } 4825 return TypeOopPtr::empty(); 4826 } 4827 4828 //------------------------------add_offset------------------------------------- 4829 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4830 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), _flat_in_array, 4831 _instance_id, add_offset_speculative(offset), _inline_depth); 4832 } 4833 4834 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4835 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), Offset(offset), _flat_in_array, 4836 _instance_id, with_offset_speculative(offset), _inline_depth); 4837 } 4838 4839 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4840 if (_speculative == nullptr) { 4841 return this; 4842 } 4843 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4844 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, 4845 _instance_id, nullptr, _inline_depth); 4846 } 4847 4848 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const { 4849 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, speculative, _inline_depth); 4850 } 4851 4852 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4853 if (!UseInlineDepthForSpeculativeTypes) { 4854 return this; 4855 } 4856 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, _instance_id, _speculative, depth); 4857 } 4858 4859 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4860 assert(is_known_instance(), "should be known"); 4861 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _flat_in_array, instance_id, _speculative, _inline_depth); 4862 } 4863 4864 const TypeInstPtr *TypeInstPtr::cast_to_flat_in_array() const { 4865 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, Flat, _instance_id, _speculative, _inline_depth); 4866 } 4867 4868 const TypeInstPtr *TypeInstPtr::cast_to_maybe_flat_in_array() const { 4869 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, MaybeFlat, _instance_id, _speculative, _inline_depth); 4870 } 4871 4872 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4873 bool xk = klass_is_exact(); 4874 ciInstanceKlass* ik = klass()->as_instance_klass(); 4875 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4876 if (_interfaces->eq(ik)) { 4877 Compile* C = Compile::current(); 4878 Dependencies* deps = C->dependencies(); 4879 deps->assert_leaf_type(ik); 4880 xk = true; 4881 } 4882 } 4883 FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array); 4884 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, Offset(0), flat_in_array); 4885 } 4886 4887 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4888 static_assert(std::is_base_of<T2, T1>::value, ""); 4889 4890 if (!this_one->is_instance_type(other)) { 4891 return false; 4892 } 4893 4894 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4895 return true; 4896 } 4897 4898 return this_one->klass()->is_subtype_of(other->klass()) && 4899 (!this_xk || this_one->_interfaces->contains(other->_interfaces)); 4900 } 4901 4902 4903 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4904 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4905 } 4906 4907 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4908 static_assert(std::is_base_of<T2, T1>::value, ""); 4909 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) { 4910 return true; 4911 } 4912 4913 if (this_one->is_instance_type(other)) { 4914 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces); 4915 } 4916 4917 int dummy; 4918 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4919 if (this_top_or_bottom) { 4920 return false; 4921 } 4922 4923 const T1* other_ary = this_one->is_array_type(other); 4924 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4925 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4926 if (other_elem != nullptr && this_elem != nullptr) { 4927 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4928 } 4929 if (other_elem == nullptr && this_elem == nullptr) { 4930 return this_one->klass()->is_subtype_of(other->klass()); 4931 } 4932 4933 return false; 4934 } 4935 4936 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4937 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4938 } 4939 4940 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4941 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4942 } 4943 4944 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4945 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4946 } 4947 4948 //============================================================================= 4949 // Convenience common pre-built types. 4950 const TypeAryPtr* TypeAryPtr::BOTTOM; 4951 const TypeAryPtr *TypeAryPtr::RANGE; 4952 const TypeAryPtr *TypeAryPtr::OOPS; 4953 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4954 const TypeAryPtr *TypeAryPtr::BYTES; 4955 const TypeAryPtr *TypeAryPtr::SHORTS; 4956 const TypeAryPtr *TypeAryPtr::CHARS; 4957 const TypeAryPtr *TypeAryPtr::INTS; 4958 const TypeAryPtr *TypeAryPtr::LONGS; 4959 const TypeAryPtr *TypeAryPtr::FLOATS; 4960 const TypeAryPtr *TypeAryPtr::DOUBLES; 4961 const TypeAryPtr *TypeAryPtr::INLINES; 4962 4963 //------------------------------make------------------------------------------- 4964 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset, 4965 int instance_id, const TypePtr* speculative, int inline_depth) { 4966 assert(!(k == nullptr && ary->_elem->isa_int()), 4967 "integral arrays must be pre-equipped with a class"); 4968 if (!xk) xk = ary->ary_must_be_exact(); 4969 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4970 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4971 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4972 k = nullptr; 4973 } 4974 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons(); 4975 } 4976 4977 //------------------------------make------------------------------------------- 4978 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset, 4979 int instance_id, const TypePtr* speculative, int inline_depth, 4980 bool is_autobox_cache) { 4981 assert(!(k == nullptr && ary->_elem->isa_int()), 4982 "integral arrays must be pre-equipped with a class"); 4983 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4984 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact(); 4985 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4986 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() && 4987 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4988 k = nullptr; 4989 } 4990 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4991 } 4992 4993 //------------------------------cast_to_ptr_type------------------------------- 4994 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4995 if( ptr == _ptr ) return this; 4996 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 4997 } 4998 4999 5000 //-----------------------------cast_to_exactness------------------------------- 5001 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 5002 if( klass_is_exact == _klass_is_exact ) return this; 5003 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 5004 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5005 } 5006 5007 //-----------------------------cast_to_instance_id---------------------------- 5008 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 5009 if( instance_id == _instance_id ) return this; 5010 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache); 5011 } 5012 5013 5014 //-----------------------------max_array_length------------------------------- 5015 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 5016 jint TypeAryPtr::max_array_length(BasicType etype) { 5017 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 5018 if (etype == T_NARROWOOP) { 5019 etype = T_OBJECT; 5020 } else if (etype == T_ILLEGAL) { // bottom[] 5021 etype = T_BYTE; // will produce conservatively high value 5022 } else { 5023 fatal("not an element type: %s", type2name(etype)); 5024 } 5025 } 5026 return arrayOopDesc::max_array_length(etype); 5027 } 5028 5029 //-----------------------------narrow_size_type------------------------------- 5030 // Narrow the given size type to the index range for the given array base type. 5031 // Return null if the resulting int type becomes empty. 5032 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 5033 jint hi = size->_hi; 5034 jint lo = size->_lo; 5035 jint min_lo = 0; 5036 jint max_hi = max_array_length(elem()->array_element_basic_type()); 5037 //if (index_not_size) --max_hi; // type of a valid array index, FTR 5038 bool chg = false; 5039 if (lo < min_lo) { 5040 lo = min_lo; 5041 if (size->is_con()) { 5042 hi = lo; 5043 } 5044 chg = true; 5045 } 5046 if (hi > max_hi) { 5047 hi = max_hi; 5048 if (size->is_con()) { 5049 lo = hi; 5050 } 5051 chg = true; 5052 } 5053 // Negative length arrays will produce weird intermediate dead fast-path code 5054 if (lo > hi) { 5055 return TypeInt::ZERO; 5056 } 5057 if (!chg) { 5058 return size; 5059 } 5060 return TypeInt::make(lo, hi, Type::WidenMin); 5061 } 5062 5063 //-------------------------------cast_to_size---------------------------------- 5064 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 5065 assert(new_size != nullptr, ""); 5066 new_size = narrow_size_type(new_size); 5067 if (new_size == size()) return this; 5068 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic()); 5069 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5070 } 5071 5072 const TypeAryPtr* TypeAryPtr::cast_to_flat(bool flat) const { 5073 if (flat == is_flat()) { 5074 return this; 5075 } 5076 assert(!flat || !is_not_flat(), "inconsistency"); 5077 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), flat, is_not_flat(), is_not_null_free(), is_atomic()); 5078 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5079 if (res->speculative() == res->remove_speculative()) { 5080 return res->remove_speculative(); 5081 } 5082 return res; 5083 } 5084 5085 //-------------------------------cast_to_not_flat------------------------------ 5086 const TypeAryPtr* TypeAryPtr::cast_to_not_flat(bool not_flat) const { 5087 if (not_flat == is_not_flat()) { 5088 return this; 5089 } 5090 assert(!not_flat || !is_flat(), "inconsistency"); 5091 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), not_flat, is_not_null_free(), is_atomic()); 5092 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5093 // We keep the speculative part if it contains information about flat-/nullability. 5094 // Make sure it's removed if it's not better than the non-speculative type anymore. 5095 if (res->speculative() == res->remove_speculative()) { 5096 return res->remove_speculative(); 5097 } 5098 return res; 5099 } 5100 5101 const TypeAryPtr* TypeAryPtr::cast_to_null_free(bool null_free) const { 5102 if (null_free == is_null_free()) { 5103 return this; 5104 } 5105 assert(!null_free || !is_not_null_free(), "inconsistency"); 5106 const Type* elem = this->elem(); 5107 const Type* new_elem = elem->make_ptr(); 5108 if (null_free) { 5109 new_elem = new_elem->join_speculative(TypePtr::NOTNULL); 5110 } else { 5111 new_elem = new_elem->meet_speculative(TypePtr::NULL_PTR); 5112 } 5113 new_elem = elem->isa_narrowoop() ? new_elem->make_narrowoop() : new_elem; 5114 const TypeAry* new_ary = TypeAry::make(new_elem, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic()); 5115 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5116 if (res->speculative() == res->remove_speculative()) { 5117 return res->remove_speculative(); 5118 } 5119 return res; 5120 } 5121 5122 //-------------------------------cast_to_not_null_free------------------------- 5123 const TypeAryPtr* TypeAryPtr::cast_to_not_null_free(bool not_null_free) const { 5124 if (not_null_free == is_not_null_free()) { 5125 return this; 5126 } 5127 assert(!not_null_free || !is_null_free(), "inconsistency"); 5128 const TypeAry* new_ary = TypeAry::make(elem(), size(), is_stable(), is_flat(), is_not_flat(), not_null_free, is_atomic()); 5129 const TypeAryPtr* res = make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, 5130 _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5131 // We keep the speculative part if it contains information about flat-/nullability. 5132 // Make sure it's removed if it's not better than the non-speculative type anymore. 5133 if (res->speculative() == res->remove_speculative()) { 5134 return res->remove_speculative(); 5135 } 5136 return res; 5137 } 5138 5139 //---------------------------------update_properties--------------------------- 5140 const TypeAryPtr* TypeAryPtr::update_properties(const TypeAryPtr* from) const { 5141 if ((from->is_flat() && is_not_flat()) || 5142 (from->is_not_flat() && is_flat()) || 5143 (from->is_null_free() && is_not_null_free()) || 5144 (from->is_not_null_free() && is_null_free())) { 5145 return nullptr; // Inconsistent properties 5146 } 5147 const TypeAryPtr* res = this; 5148 if (from->is_not_null_free()) { 5149 res = res->cast_to_not_null_free(); 5150 } 5151 if (from->is_not_flat()) { 5152 res = res->cast_to_not_flat(); 5153 } 5154 return res; 5155 } 5156 5157 jint TypeAryPtr::flat_layout_helper() const { 5158 return exact_klass()->as_flat_array_klass()->layout_helper(); 5159 } 5160 5161 int TypeAryPtr::flat_elem_size() const { 5162 return exact_klass()->as_flat_array_klass()->element_byte_size(); 5163 } 5164 5165 int TypeAryPtr::flat_log_elem_size() const { 5166 return exact_klass()->as_flat_array_klass()->log2_element_size(); 5167 } 5168 5169 //------------------------------cast_to_stable--------------------------------- 5170 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 5171 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 5172 return this; 5173 5174 const Type* elem = this->elem(); 5175 const TypePtr* elem_ptr = elem->make_ptr(); 5176 5177 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) { 5178 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 5179 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 5180 } 5181 5182 const TypeAry* new_ary = TypeAry::make(elem, size(), stable, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()); 5183 5184 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5185 } 5186 5187 //-----------------------------stable_dimension-------------------------------- 5188 int TypeAryPtr::stable_dimension() const { 5189 if (!is_stable()) return 0; 5190 int dim = 1; 5191 const TypePtr* elem_ptr = elem()->make_ptr(); 5192 if (elem_ptr != nullptr && elem_ptr->isa_aryptr()) 5193 dim += elem_ptr->is_aryptr()->stable_dimension(); 5194 return dim; 5195 } 5196 5197 //----------------------cast_to_autobox_cache----------------------------------- 5198 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 5199 if (is_autobox_cache()) return this; 5200 const TypeOopPtr* etype = elem()->make_oopptr(); 5201 if (etype == nullptr) return this; 5202 // The pointers in the autobox arrays are always non-null. 5203 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 5204 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable(), is_flat(), is_not_flat(), is_not_null_free(), is_atomic()); 5205 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 5206 } 5207 5208 //------------------------------eq--------------------------------------------- 5209 // Structural equality check for Type representations 5210 bool TypeAryPtr::eq( const Type *t ) const { 5211 const TypeAryPtr *p = t->is_aryptr(); 5212 return 5213 _ary == p->_ary && // Check array 5214 TypeOopPtr::eq(p) &&// Check sub-parts 5215 _field_offset == p->_field_offset; 5216 } 5217 5218 //------------------------------hash------------------------------------------- 5219 // Type-specific hashing function. 5220 uint TypeAryPtr::hash(void) const { 5221 return (uint)(uintptr_t)_ary + TypeOopPtr::hash() + _field_offset.get(); 5222 } 5223 5224 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 5225 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 5226 } 5227 5228 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 5229 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 5230 } 5231 5232 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 5233 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 5234 } 5235 //------------------------------meet------------------------------------------- 5236 // Compute the MEET of two types. It returns a new Type object. 5237 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 5238 // Perform a fast test for common case; meeting the same types together. 5239 if( this == t ) return this; // Meeting same type-rep? 5240 // Current "this->_base" is Pointer 5241 switch (t->base()) { // switch on original type 5242 5243 // Mixing ints & oops happens when javac reuses local variables 5244 case Int: 5245 case Long: 5246 case HalfFloatTop: 5247 case HalfFloatCon: 5248 case HalfFloatBot: 5249 case FloatTop: 5250 case FloatCon: 5251 case FloatBot: 5252 case DoubleTop: 5253 case DoubleCon: 5254 case DoubleBot: 5255 case NarrowOop: 5256 case NarrowKlass: 5257 case Bottom: // Ye Olde Default 5258 return Type::BOTTOM; 5259 case Top: 5260 return this; 5261 5262 default: // All else is a mistake 5263 typerr(t); 5264 5265 case OopPtr: { // Meeting to OopPtrs 5266 // Found a OopPtr type vs self-AryPtr type 5267 const TypeOopPtr *tp = t->is_oopptr(); 5268 Offset offset = meet_offset(tp->offset()); 5269 PTR ptr = meet_ptr(tp->ptr()); 5270 int depth = meet_inline_depth(tp->inline_depth()); 5271 const TypePtr* speculative = xmeet_speculative(tp); 5272 switch (tp->ptr()) { 5273 case TopPTR: 5274 case AnyNull: { 5275 int instance_id = meet_instance_id(InstanceTop); 5276 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5277 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5278 } 5279 case BotPTR: 5280 case NotNull: { 5281 int instance_id = meet_instance_id(tp->instance_id()); 5282 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 5283 } 5284 default: ShouldNotReachHere(); 5285 } 5286 } 5287 5288 case AnyPtr: { // Meeting two AnyPtrs 5289 // Found an AnyPtr type vs self-AryPtr type 5290 const TypePtr *tp = t->is_ptr(); 5291 Offset offset = meet_offset(tp->offset()); 5292 PTR ptr = meet_ptr(tp->ptr()); 5293 const TypePtr* speculative = xmeet_speculative(tp); 5294 int depth = meet_inline_depth(tp->inline_depth()); 5295 switch (tp->ptr()) { 5296 case TopPTR: 5297 return this; 5298 case BotPTR: 5299 case NotNull: 5300 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 5301 case Null: 5302 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 5303 // else fall through to AnyNull 5304 case AnyNull: { 5305 int instance_id = meet_instance_id(InstanceTop); 5306 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5307 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5308 } 5309 default: ShouldNotReachHere(); 5310 } 5311 } 5312 5313 case MetadataPtr: 5314 case KlassPtr: 5315 case InstKlassPtr: 5316 case AryKlassPtr: 5317 case RawPtr: return TypePtr::BOTTOM; 5318 5319 case AryPtr: { // Meeting 2 references? 5320 const TypeAryPtr *tap = t->is_aryptr(); 5321 Offset off = meet_offset(tap->offset()); 5322 Offset field_off = meet_field_offset(tap->field_offset()); 5323 const Type* tm = _ary->meet_speculative(tap->_ary); 5324 const TypeAry* tary = tm->isa_ary(); 5325 if (tary == nullptr) { 5326 assert(tm == Type::TOP || tm == Type::BOTTOM, ""); 5327 return tm; 5328 } 5329 PTR ptr = meet_ptr(tap->ptr()); 5330 int instance_id = meet_instance_id(tap->instance_id()); 5331 const TypePtr* speculative = xmeet_speculative(tap); 5332 int depth = meet_inline_depth(tap->inline_depth()); 5333 5334 ciKlass* res_klass = nullptr; 5335 bool res_xk = false; 5336 bool res_flat = false; 5337 bool res_not_flat = false; 5338 bool res_not_null_free = false; 5339 bool res_atomic = false; 5340 const Type* elem = tary->_elem; 5341 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic) == NOT_SUBTYPE) { 5342 instance_id = InstanceBot; 5343 } else if (this->is_flat() != tap->is_flat()) { 5344 // Meeting flat inline type array with non-flat array. Adjust (field) offset accordingly. 5345 if (tary->_flat) { 5346 // Result is in a flat representation 5347 off = Offset(is_flat() ? offset() : tap->offset()); 5348 field_off = is_flat() ? field_offset() : tap->field_offset(); 5349 } else if (below_centerline(ptr)) { 5350 // Result is in a non-flat representation 5351 off = Offset(flat_offset()).meet(Offset(tap->flat_offset())); 5352 field_off = (field_off == Offset::top) ? Offset::top : Offset::bottom; 5353 } else if (flat_offset() == tap->flat_offset()) { 5354 off = Offset(!is_flat() ? offset() : tap->offset()); 5355 field_off = !is_flat() ? field_offset() : tap->field_offset(); 5356 } 5357 } 5358 5359 ciObject* o = nullptr; // Assume not constant when done 5360 ciObject* this_oop = const_oop(); 5361 ciObject* tap_oop = tap->const_oop(); 5362 if (ptr == Constant) { 5363 if (this_oop != nullptr && tap_oop != nullptr && 5364 this_oop->equals(tap_oop)) { 5365 o = tap_oop; 5366 } else if (above_centerline(_ptr)) { 5367 o = tap_oop; 5368 } else if (above_centerline(tap->_ptr)) { 5369 o = this_oop; 5370 } else { 5371 ptr = NotNull; 5372 } 5373 } 5374 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable, res_flat, res_not_flat, res_not_null_free, res_atomic), res_klass, res_xk, off, field_off, instance_id, speculative, depth); 5375 } 5376 5377 // All arrays inherit from Object class 5378 case InstPtr: { 5379 const TypeInstPtr *tp = t->is_instptr(); 5380 Offset offset = meet_offset(tp->offset()); 5381 PTR ptr = meet_ptr(tp->ptr()); 5382 int instance_id = meet_instance_id(tp->instance_id()); 5383 const TypePtr* speculative = xmeet_speculative(tp); 5384 int depth = meet_inline_depth(tp->inline_depth()); 5385 const TypeInterfaces* interfaces = meet_interfaces(tp); 5386 const TypeInterfaces* tp_interfaces = tp->_interfaces; 5387 const TypeInterfaces* this_interfaces = _interfaces; 5388 5389 switch (ptr) { 5390 case TopPTR: 5391 case AnyNull: // Fall 'down' to dual of object klass 5392 // For instances when a subclass meets a superclass we fall 5393 // below the centerline when the superclass is exact. We need to 5394 // do the same here. 5395 // 5396 // Flat in array: 5397 // We do 5398 // dual(TypeAryPtr) MEET dual(TypeInstPtr) 5399 // If TypeInstPtr is anything else than Object, then the result of the meet is bottom Object (i.e. we could have 5400 // instances or arrays). 5401 // If TypeInstPtr is an Object and either 5402 // - exact 5403 // - inexact AND flat in array == dual(not flat in array) (i.e. not an array type) 5404 // then the result of the meet is bottom Object (i.e. we could have instances or arrays). 5405 // Otherwise, we meet two array pointers and create a new TypeAryPtr. 5406 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 5407 !tp->klass_is_exact() && !tp->is_not_flat_in_array()) { 5408 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5409 } else { 5410 // cannot subclass, so the meet has to fall badly below the centerline 5411 ptr = NotNull; 5412 instance_id = InstanceBot; 5413 interfaces = this_interfaces->intersection_with(tp_interfaces); 5414 FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array()); 5415 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, flat_in_array, instance_id, speculative, depth); 5416 } 5417 case Constant: 5418 case NotNull: 5419 case BotPTR: { // Fall down to object klass 5420 // LCA is object_klass, but if we subclass from the top we can do better 5421 if (above_centerline(tp->ptr())) { 5422 // If 'tp' is above the centerline and it is Object class 5423 // then we can subclass in the Java class hierarchy. 5424 // For instances when a subclass meets a superclass we fall 5425 // below the centerline when the superclass is exact. We need 5426 // to do the same here. 5427 5428 // Flat in array: We do TypeAryPtr MEET dual(TypeInstPtr), same applies as above in TopPTR/AnyNull case. 5429 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 5430 !tp->klass_is_exact() && !tp->is_not_flat_in_array()) { 5431 // that is, my array type is a subtype of 'tp' klass 5432 return make(ptr, (ptr == Constant ? const_oop() : nullptr), 5433 _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth); 5434 } 5435 } 5436 // The other case cannot happen, since t cannot be a subtype of an array. 5437 // The meet falls down to Object class below centerline. 5438 if (ptr == Constant) { 5439 ptr = NotNull; 5440 } 5441 if (instance_id > 0) { 5442 instance_id = InstanceBot; 5443 } 5444 5445 FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array()); 5446 interfaces = this_interfaces->intersection_with(tp_interfaces); 5447 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, 5448 flat_in_array, instance_id, speculative, depth); 5449 } 5450 default: typerr(t); 5451 } 5452 } 5453 } 5454 return this; // Lint noise 5455 } 5456 5457 5458 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 5459 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool& res_not_flat, bool& res_not_null_free, bool &res_atomic) { 5460 int dummy; 5461 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 5462 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 5463 ciKlass* this_klass = this_ary->klass(); 5464 ciKlass* other_klass = other_ary->klass(); 5465 bool this_xk = this_ary->klass_is_exact(); 5466 bool other_xk = other_ary->klass_is_exact(); 5467 PTR this_ptr = this_ary->ptr(); 5468 PTR other_ptr = other_ary->ptr(); 5469 bool this_flat = this_ary->is_flat(); 5470 bool this_not_flat = this_ary->is_not_flat(); 5471 bool other_flat = other_ary->is_flat(); 5472 bool other_not_flat = other_ary->is_not_flat(); 5473 bool this_not_null_free = this_ary->is_not_null_free(); 5474 bool other_not_null_free = other_ary->is_not_null_free(); 5475 bool this_atomic = this_ary->is_atomic(); 5476 bool other_atomic = other_ary->is_atomic(); 5477 const bool same_nullness = this_ary->is_null_free() == other_ary->is_null_free(); 5478 res_klass = nullptr; 5479 MeetResult result = SUBTYPE; 5480 res_flat = this_flat && other_flat; 5481 bool res_null_free = this_ary->is_null_free() && other_ary->is_null_free(); 5482 res_not_flat = this_not_flat && other_not_flat; 5483 res_not_null_free = this_not_null_free && other_not_null_free; 5484 res_atomic = this_atomic && other_atomic; 5485 5486 if (elem->isa_int()) { 5487 // Integral array element types have irrelevant lattice relations. 5488 // It is the klass that determines array layout, not the element type. 5489 if (this_top_or_bottom) { 5490 res_klass = other_klass; 5491 } else if (other_top_or_bottom || other_klass == this_klass) { 5492 res_klass = this_klass; 5493 } else { 5494 // Something like byte[int+] meets char[int+]. 5495 // This must fall to bottom, not (int[-128..65535])[int+]. 5496 // instance_id = InstanceBot; 5497 elem = Type::BOTTOM; 5498 result = NOT_SUBTYPE; 5499 if (above_centerline(ptr) || ptr == Constant) { 5500 ptr = NotNull; 5501 res_xk = false; 5502 return NOT_SUBTYPE; 5503 } 5504 } 5505 } else {// Non integral arrays. 5506 // Must fall to bottom if exact klasses in upper lattice 5507 // are not equal or super klass is exact. 5508 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 5509 // meet with top[] and bottom[] are processed further down: 5510 !this_top_or_bottom && !other_top_or_bottom && 5511 // both are exact and not equal: 5512 ((other_xk && this_xk) || 5513 // 'tap' is exact and super or unrelated: 5514 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 5515 // 'this' is exact and super or unrelated: 5516 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 5517 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 5518 elem = Type::BOTTOM; 5519 } 5520 ptr = NotNull; 5521 res_xk = false; 5522 return NOT_SUBTYPE; 5523 } 5524 } 5525 5526 res_xk = false; 5527 switch (other_ptr) { 5528 case AnyNull: 5529 case TopPTR: 5530 // Compute new klass on demand, do not use tap->_klass 5531 if (below_centerline(this_ptr)) { 5532 res_xk = this_xk; 5533 if (this_ary->is_flat()) { 5534 elem = this_ary->elem(); 5535 } 5536 } else { 5537 res_xk = (other_xk || this_xk); 5538 } 5539 break; 5540 case Constant: { 5541 if (this_ptr == Constant && same_nullness) { 5542 // Only exact if same nullness since: 5543 // null-free [LMyValue <: nullable [LMyValue. 5544 res_xk = true; 5545 } else if (above_centerline(this_ptr)) { 5546 res_xk = true; 5547 } else { 5548 // Only precise for identical arrays 5549 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 5550 // Even though MyValue is final, [LMyValue is only exact if the array 5551 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue. 5552 if (res_xk && !res_null_free && !res_not_null_free) { 5553 ptr = NotNull; 5554 res_xk = false; 5555 } 5556 } 5557 break; 5558 } 5559 case NotNull: 5560 case BotPTR: 5561 // Compute new klass on demand, do not use tap->_klass 5562 if (above_centerline(this_ptr)) { 5563 res_xk = other_xk; 5564 if (other_ary->is_flat()) { 5565 elem = other_ary->elem(); 5566 } 5567 } else { 5568 res_xk = (other_xk && this_xk) && 5569 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 5570 // Even though MyValue is final, [LMyValue is only exact if the array 5571 // is (not) null-free due to null-free [LMyValue <: null-able [LMyValue. 5572 if (res_xk && !res_null_free && !res_not_null_free) { 5573 ptr = NotNull; 5574 res_xk = false; 5575 } 5576 } 5577 break; 5578 default: { 5579 ShouldNotReachHere(); 5580 return result; 5581 } 5582 } 5583 return result; 5584 } 5585 5586 5587 //------------------------------xdual------------------------------------------ 5588 // Dual: compute field-by-field dual 5589 const Type *TypeAryPtr::xdual() const { 5590 bool xk = _klass_is_exact; 5591 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, xk, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 5592 } 5593 5594 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const { 5595 return _field_offset.meet(offset); 5596 } 5597 5598 //------------------------------dual_offset------------------------------------ 5599 Type::Offset TypeAryPtr::dual_field_offset() const { 5600 return _field_offset.dual(); 5601 } 5602 5603 //------------------------------dump2------------------------------------------ 5604 #ifndef PRODUCT 5605 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5606 st->print("aryptr:"); 5607 _ary->dump2(d, depth, st); 5608 _interfaces->dump(st); 5609 5610 if (_ptr == Constant) { 5611 const_oop()->print(st); 5612 } 5613 5614 st->print(":%s", ptr_msg[_ptr]); 5615 if (_klass_is_exact) { 5616 st->print(":exact"); 5617 } 5618 5619 if (is_flat()) { 5620 st->print(":flat"); 5621 st->print("("); 5622 _field_offset.dump2(st); 5623 st->print(")"); 5624 } else if (is_not_flat()) { 5625 st->print(":not_flat"); 5626 } 5627 if (is_null_free()) { 5628 st->print(":null free"); 5629 } 5630 if (is_atomic()) { 5631 st->print(":atomic"); 5632 } 5633 if (Verbose) { 5634 if (is_not_flat()) { 5635 st->print(":not flat"); 5636 } 5637 if (is_not_null_free()) { 5638 st->print(":nullable"); 5639 } 5640 } 5641 if (offset() != 0) { 5642 BasicType basic_elem_type = elem()->basic_type(); 5643 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5644 if( _offset == Offset::top ) st->print("+undefined"); 5645 else if( _offset == Offset::bottom ) st->print("+any"); 5646 else if( offset() < header_size ) st->print("+%d", offset()); 5647 else { 5648 if (basic_elem_type == T_ILLEGAL) { 5649 st->print("+any"); 5650 } else { 5651 int elem_size = type2aelembytes(basic_elem_type); 5652 st->print("[%d]", (offset() - header_size)/elem_size); 5653 } 5654 } 5655 } 5656 5657 dump_instance_id(st); 5658 dump_inline_depth(st); 5659 dump_speculative(st); 5660 } 5661 #endif 5662 5663 bool TypeAryPtr::empty(void) const { 5664 if (_ary->empty()) return true; 5665 // FIXME: Does this belong here? Or in the meet code itself? 5666 if (is_flat() && is_not_flat()) { 5667 return true; 5668 } 5669 return TypeOopPtr::empty(); 5670 } 5671 5672 //------------------------------add_offset------------------------------------- 5673 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5674 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache); 5675 } 5676 5677 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5678 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, Offset(offset), _field_offset, _instance_id, with_offset_speculative(offset), _inline_depth, _is_autobox_cache); 5679 } 5680 5681 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5682 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5683 } 5684 5685 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5686 if (_speculative == nullptr) { 5687 return this; 5688 } 5689 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5690 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, nullptr, _inline_depth, _is_autobox_cache); 5691 } 5692 5693 const Type* TypeAryPtr::cleanup_speculative() const { 5694 if (speculative() == nullptr) { 5695 return this; 5696 } 5697 // Keep speculative part if it contains information about flat-/nullability 5698 const TypeAryPtr* spec_aryptr = speculative()->isa_aryptr(); 5699 if (spec_aryptr != nullptr && !above_centerline(spec_aryptr->ptr()) && 5700 (spec_aryptr->is_not_flat() || spec_aryptr->is_not_null_free())) { 5701 return this; 5702 } 5703 return TypeOopPtr::cleanup_speculative(); 5704 } 5705 5706 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5707 if (!UseInlineDepthForSpeculativeTypes) { 5708 return this; 5709 } 5710 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache); 5711 } 5712 5713 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const { 5714 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache); 5715 } 5716 5717 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const { 5718 int adj = 0; 5719 if (is_flat() && klass_is_exact() && offset != Type::OffsetBot && offset != Type::OffsetTop) { 5720 if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) { 5721 adj = _offset.get(); 5722 offset += _offset.get(); 5723 } 5724 uint header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT); 5725 if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) { 5726 offset += _field_offset.get(); 5727 if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) { 5728 offset += header; 5729 } 5730 } 5731 if (elem()->make_oopptr()->is_inlinetypeptr() && (offset >= (intptr_t)header || offset < 0)) { 5732 // Try to get the field of the inline type array element we are pointing to 5733 ciInlineKlass* vk = elem()->inline_klass(); 5734 int shift = flat_log_elem_size(); 5735 int mask = (1 << shift) - 1; 5736 intptr_t field_offset = ((offset - header) & mask); 5737 ciField* field = vk->get_field_by_offset(field_offset + vk->payload_offset(), false); 5738 if (field != nullptr || field_offset == vk->null_marker_offset_in_payload()) { 5739 return with_field_offset(field_offset)->add_offset(offset - field_offset - adj); 5740 } 5741 } 5742 } 5743 return add_offset(offset - adj); 5744 } 5745 5746 // Return offset incremented by field_offset for flat inline type arrays 5747 int TypeAryPtr::flat_offset() const { 5748 int offset = _offset.get(); 5749 if (offset != Type::OffsetBot && offset != Type::OffsetTop && 5750 _field_offset != Offset::bottom && _field_offset != Offset::top) { 5751 offset += _field_offset.get(); 5752 } 5753 return offset; 5754 } 5755 5756 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5757 assert(is_known_instance(), "should be known"); 5758 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth); 5759 } 5760 5761 //============================================================================= 5762 5763 5764 //------------------------------hash------------------------------------------- 5765 // Type-specific hashing function. 5766 uint TypeNarrowPtr::hash(void) const { 5767 return _ptrtype->hash() + 7; 5768 } 5769 5770 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5771 return _ptrtype->singleton(); 5772 } 5773 5774 bool TypeNarrowPtr::empty(void) const { 5775 return _ptrtype->empty(); 5776 } 5777 5778 intptr_t TypeNarrowPtr::get_con() const { 5779 return _ptrtype->get_con(); 5780 } 5781 5782 bool TypeNarrowPtr::eq( const Type *t ) const { 5783 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5784 if (tc != nullptr) { 5785 if (_ptrtype->base() != tc->_ptrtype->base()) { 5786 return false; 5787 } 5788 return tc->_ptrtype->eq(_ptrtype); 5789 } 5790 return false; 5791 } 5792 5793 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5794 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5795 return make_same_narrowptr(odual); 5796 } 5797 5798 5799 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5800 if (isa_same_narrowptr(kills)) { 5801 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5802 if (ft->empty()) 5803 return Type::TOP; // Canonical empty value 5804 if (ft->isa_ptr()) { 5805 return make_hash_same_narrowptr(ft->isa_ptr()); 5806 } 5807 return ft; 5808 } else if (kills->isa_ptr()) { 5809 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5810 if (ft->empty()) 5811 return Type::TOP; // Canonical empty value 5812 return ft; 5813 } else { 5814 return Type::TOP; 5815 } 5816 } 5817 5818 //------------------------------xmeet------------------------------------------ 5819 // Compute the MEET of two types. It returns a new Type object. 5820 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5821 // Perform a fast test for common case; meeting the same types together. 5822 if( this == t ) return this; // Meeting same type-rep? 5823 5824 if (t->base() == base()) { 5825 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5826 if (result->isa_ptr()) { 5827 return make_hash_same_narrowptr(result->is_ptr()); 5828 } 5829 return result; 5830 } 5831 5832 // Current "this->_base" is NarrowKlass or NarrowOop 5833 switch (t->base()) { // switch on original type 5834 5835 case Int: // Mixing ints & oops happens when javac 5836 case Long: // reuses local variables 5837 case HalfFloatTop: 5838 case HalfFloatCon: 5839 case HalfFloatBot: 5840 case FloatTop: 5841 case FloatCon: 5842 case FloatBot: 5843 case DoubleTop: 5844 case DoubleCon: 5845 case DoubleBot: 5846 case AnyPtr: 5847 case RawPtr: 5848 case OopPtr: 5849 case InstPtr: 5850 case AryPtr: 5851 case MetadataPtr: 5852 case KlassPtr: 5853 case InstKlassPtr: 5854 case AryKlassPtr: 5855 case NarrowOop: 5856 case NarrowKlass: 5857 case Bottom: // Ye Olde Default 5858 return Type::BOTTOM; 5859 case Top: 5860 return this; 5861 5862 default: // All else is a mistake 5863 typerr(t); 5864 5865 } // End of switch 5866 5867 return this; 5868 } 5869 5870 #ifndef PRODUCT 5871 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5872 _ptrtype->dump2(d, depth, st); 5873 } 5874 #endif 5875 5876 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5877 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5878 5879 5880 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5881 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5882 } 5883 5884 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5885 return make(_ptrtype->remove_speculative()->is_ptr()); 5886 } 5887 5888 const Type* TypeNarrowOop::cleanup_speculative() const { 5889 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5890 } 5891 5892 #ifndef PRODUCT 5893 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5894 st->print("narrowoop: "); 5895 TypeNarrowPtr::dump2(d, depth, st); 5896 } 5897 #endif 5898 5899 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5900 5901 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5902 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5903 } 5904 5905 #ifndef PRODUCT 5906 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5907 st->print("narrowklass: "); 5908 TypeNarrowPtr::dump2(d, depth, st); 5909 } 5910 #endif 5911 5912 5913 //------------------------------eq--------------------------------------------- 5914 // Structural equality check for Type representations 5915 bool TypeMetadataPtr::eq( const Type *t ) const { 5916 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5917 ciMetadata* one = metadata(); 5918 ciMetadata* two = a->metadata(); 5919 if (one == nullptr || two == nullptr) { 5920 return (one == two) && TypePtr::eq(t); 5921 } else { 5922 return one->equals(two) && TypePtr::eq(t); 5923 } 5924 } 5925 5926 //------------------------------hash------------------------------------------- 5927 // Type-specific hashing function. 5928 uint TypeMetadataPtr::hash(void) const { 5929 return 5930 (metadata() ? metadata()->hash() : 0) + 5931 TypePtr::hash(); 5932 } 5933 5934 //------------------------------singleton-------------------------------------- 5935 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5936 // constants 5937 bool TypeMetadataPtr::singleton(void) const { 5938 // detune optimizer to not generate constant metadata + constant offset as a constant! 5939 // TopPTR, Null, AnyNull, Constant are all singletons 5940 return (offset() == 0) && !below_centerline(_ptr); 5941 } 5942 5943 //------------------------------add_offset------------------------------------- 5944 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5945 return make( _ptr, _metadata, xadd_offset(offset)); 5946 } 5947 5948 //-----------------------------filter------------------------------------------ 5949 // Do not allow interface-vs.-noninterface joins to collapse to top. 5950 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5951 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5952 if (ft == nullptr || ft->empty()) 5953 return Type::TOP; // Canonical empty value 5954 return ft; 5955 } 5956 5957 //------------------------------get_con---------------------------------------- 5958 intptr_t TypeMetadataPtr::get_con() const { 5959 assert( _ptr == Null || _ptr == Constant, "" ); 5960 assert(offset() >= 0, ""); 5961 5962 if (offset() != 0) { 5963 // After being ported to the compiler interface, the compiler no longer 5964 // directly manipulates the addresses of oops. Rather, it only has a pointer 5965 // to a handle at compile time. This handle is embedded in the generated 5966 // code and dereferenced at the time the nmethod is made. Until that time, 5967 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5968 // have access to the addresses!). This does not seem to currently happen, 5969 // but this assertion here is to help prevent its occurrence. 5970 tty->print_cr("Found oop constant with non-zero offset"); 5971 ShouldNotReachHere(); 5972 } 5973 5974 return (intptr_t)metadata()->constant_encoding(); 5975 } 5976 5977 //------------------------------cast_to_ptr_type------------------------------- 5978 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5979 if( ptr == _ptr ) return this; 5980 return make(ptr, metadata(), _offset); 5981 } 5982 5983 //------------------------------meet------------------------------------------- 5984 // Compute the MEET of two types. It returns a new Type object. 5985 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5986 // Perform a fast test for common case; meeting the same types together. 5987 if( this == t ) return this; // Meeting same type-rep? 5988 5989 // Current "this->_base" is OopPtr 5990 switch (t->base()) { // switch on original type 5991 5992 case Int: // Mixing ints & oops happens when javac 5993 case Long: // reuses local variables 5994 case HalfFloatTop: 5995 case HalfFloatCon: 5996 case HalfFloatBot: 5997 case FloatTop: 5998 case FloatCon: 5999 case FloatBot: 6000 case DoubleTop: 6001 case DoubleCon: 6002 case DoubleBot: 6003 case NarrowOop: 6004 case NarrowKlass: 6005 case Bottom: // Ye Olde Default 6006 return Type::BOTTOM; 6007 case Top: 6008 return this; 6009 6010 default: // All else is a mistake 6011 typerr(t); 6012 6013 case AnyPtr: { 6014 // Found an AnyPtr type vs self-OopPtr type 6015 const TypePtr *tp = t->is_ptr(); 6016 Offset offset = meet_offset(tp->offset()); 6017 PTR ptr = meet_ptr(tp->ptr()); 6018 switch (tp->ptr()) { 6019 case Null: 6020 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6021 // else fall through: 6022 case TopPTR: 6023 case AnyNull: { 6024 return make(ptr, _metadata, offset); 6025 } 6026 case BotPTR: 6027 case NotNull: 6028 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6029 default: typerr(t); 6030 } 6031 } 6032 6033 case RawPtr: 6034 case KlassPtr: 6035 case InstKlassPtr: 6036 case AryKlassPtr: 6037 case OopPtr: 6038 case InstPtr: 6039 case AryPtr: 6040 return TypePtr::BOTTOM; // Oop meet raw is not well defined 6041 6042 case MetadataPtr: { 6043 const TypeMetadataPtr *tp = t->is_metadataptr(); 6044 Offset offset = meet_offset(tp->offset()); 6045 PTR tptr = tp->ptr(); 6046 PTR ptr = meet_ptr(tptr); 6047 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 6048 if (tptr == TopPTR || _ptr == TopPTR || 6049 metadata()->equals(tp->metadata())) { 6050 return make(ptr, md, offset); 6051 } 6052 // metadata is different 6053 if( ptr == Constant ) { // Cannot be equal constants, so... 6054 if( tptr == Constant && _ptr != Constant) return t; 6055 if( _ptr == Constant && tptr != Constant) return this; 6056 ptr = NotNull; // Fall down in lattice 6057 } 6058 return make(ptr, nullptr, offset); 6059 break; 6060 } 6061 } // End of switch 6062 return this; // Return the double constant 6063 } 6064 6065 6066 //------------------------------xdual------------------------------------------ 6067 // Dual of a pure metadata pointer. 6068 const Type *TypeMetadataPtr::xdual() const { 6069 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 6070 } 6071 6072 //------------------------------dump2------------------------------------------ 6073 #ifndef PRODUCT 6074 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 6075 st->print("metadataptr:%s", ptr_msg[_ptr]); 6076 if (metadata() != nullptr) { 6077 st->print(":" INTPTR_FORMAT, p2i(metadata())); 6078 } 6079 dump_offset(st); 6080 } 6081 #endif 6082 6083 6084 //============================================================================= 6085 // Convenience common pre-built type. 6086 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 6087 6088 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset): 6089 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 6090 } 6091 6092 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 6093 return make(Constant, m, Offset(0)); 6094 } 6095 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 6096 return make(Constant, m, Offset(0)); 6097 } 6098 6099 //------------------------------make------------------------------------------- 6100 // Create a meta data constant 6101 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) { 6102 assert(m == nullptr || !m->is_klass(), "wrong type"); 6103 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 6104 } 6105 6106 6107 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 6108 const Type* elem = _ary->_elem; 6109 bool xk = klass_is_exact(); 6110 bool is_refined = false; 6111 if (elem->make_oopptr() != nullptr) { 6112 is_refined = true; 6113 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 6114 if (elem->isa_aryklassptr()) { 6115 const TypeAryKlassPtr* elem_klass = elem->is_aryklassptr(); 6116 if (elem_klass->is_refined_type()) { 6117 elem = elem_klass->cast_to_non_refined(); 6118 } 6119 } else { 6120 const TypeInstKlassPtr* elem_klass = elem->is_instklassptr(); 6121 if (try_for_exact && !xk && elem_klass->klass_is_exact() && 6122 !elem_klass->exact_klass()->as_instance_klass()->can_be_inline_klass()) { 6123 xk = true; 6124 } 6125 } 6126 } 6127 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), Offset(0), is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined); 6128 } 6129 6130 const TypeKlassPtr* TypeKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6131 if (klass->is_instance_klass()) { 6132 return TypeInstKlassPtr::make(klass, interface_handling); 6133 } 6134 return TypeAryKlassPtr::make(klass, interface_handling); 6135 } 6136 6137 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset) 6138 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 6139 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 6140 klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 6141 } 6142 6143 // Is there a single ciKlass* that can represent that type? 6144 ciKlass* TypeKlassPtr::exact_klass_helper() const { 6145 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 6146 if (_interfaces->empty()) { 6147 return _klass; 6148 } 6149 if (_klass != ciEnv::current()->Object_klass()) { 6150 if (_interfaces->eq(_klass->as_instance_klass())) { 6151 return _klass; 6152 } 6153 return nullptr; 6154 } 6155 return _interfaces->exact_klass(); 6156 } 6157 6158 //------------------------------eq--------------------------------------------- 6159 // Structural equality check for Type representations 6160 bool TypeKlassPtr::eq(const Type *t) const { 6161 const TypeKlassPtr *p = t->is_klassptr(); 6162 return 6163 _interfaces->eq(p->_interfaces) && 6164 TypePtr::eq(p); 6165 } 6166 6167 //------------------------------hash------------------------------------------- 6168 // Type-specific hashing function. 6169 uint TypeKlassPtr::hash(void) const { 6170 return TypePtr::hash() + _interfaces->hash(); 6171 } 6172 6173 //------------------------------singleton-------------------------------------- 6174 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6175 // constants 6176 bool TypeKlassPtr::singleton(void) const { 6177 // detune optimizer to not generate constant klass + constant offset as a constant! 6178 // TopPTR, Null, AnyNull, Constant are all singletons 6179 return (offset() == 0) && !below_centerline(_ptr); 6180 } 6181 6182 // Do not allow interface-vs.-noninterface joins to collapse to top. 6183 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 6184 // logic here mirrors the one from TypeOopPtr::filter. See comments 6185 // there. 6186 const Type* ft = join_helper(kills, include_speculative); 6187 6188 if (ft->empty()) { 6189 return Type::TOP; // Canonical empty value 6190 } 6191 6192 return ft; 6193 } 6194 6195 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 6196 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 6197 return _interfaces->union_with(other->_interfaces); 6198 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 6199 return other->_interfaces; 6200 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 6201 return _interfaces; 6202 } 6203 return _interfaces->intersection_with(other->_interfaces); 6204 } 6205 6206 //------------------------------get_con---------------------------------------- 6207 intptr_t TypeKlassPtr::get_con() const { 6208 assert( _ptr == Null || _ptr == Constant, "" ); 6209 assert( offset() >= 0, "" ); 6210 6211 if (offset() != 0) { 6212 // After being ported to the compiler interface, the compiler no longer 6213 // directly manipulates the addresses of oops. Rather, it only has a pointer 6214 // to a handle at compile time. This handle is embedded in the generated 6215 // code and dereferenced at the time the nmethod is made. Until that time, 6216 // it is not reasonable to do arithmetic with the addresses of oops (we don't 6217 // have access to the addresses!). This does not seem to currently happen, 6218 // but this assertion here is to help prevent its occurrence. 6219 tty->print_cr("Found oop constant with non-zero offset"); 6220 ShouldNotReachHere(); 6221 } 6222 6223 ciKlass* k = exact_klass(); 6224 6225 return (intptr_t)k->constant_encoding(); 6226 } 6227 6228 //============================================================================= 6229 // Convenience common pre-built types. 6230 6231 // Not-null object klass or below 6232 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 6233 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 6234 6235 bool TypeInstKlassPtr::eq(const Type *t) const { 6236 const TypeInstKlassPtr* p = t->is_instklassptr(); 6237 return 6238 klass()->equals(p->klass()) && 6239 _flat_in_array == p->_flat_in_array && 6240 TypeKlassPtr::eq(p); 6241 } 6242 6243 uint TypeInstKlassPtr::hash() const { 6244 return klass()->hash() + TypeKlassPtr::hash() + static_cast<uint>(_flat_in_array); 6245 } 6246 6247 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array) { 6248 if (flat_in_array == Uninitialized) { 6249 flat_in_array = compute_flat_in_array(k->as_instance_klass(), ptr == Constant); 6250 } 6251 TypeInstKlassPtr *r = 6252 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset, flat_in_array))->hashcons(); 6253 6254 return r; 6255 } 6256 6257 bool TypeInstKlassPtr::empty() const { 6258 if (_flat_in_array == TopFlat) { 6259 return true; 6260 } 6261 return TypeKlassPtr::empty(); 6262 } 6263 6264 //------------------------------add_offset------------------------------------- 6265 // Access internals of klass object 6266 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const { 6267 return make(_ptr, klass(), _interfaces, xadd_offset(offset), _flat_in_array); 6268 } 6269 6270 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 6271 return make(_ptr, klass(), _interfaces, Offset(offset), _flat_in_array); 6272 } 6273 6274 //------------------------------cast_to_ptr_type------------------------------- 6275 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 6276 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 6277 if( ptr == _ptr ) return this; 6278 return make(ptr, _klass, _interfaces, _offset, _flat_in_array); 6279 } 6280 6281 6282 bool TypeInstKlassPtr::must_be_exact() const { 6283 if (!_klass->is_loaded()) return false; 6284 ciInstanceKlass* ik = _klass->as_instance_klass(); 6285 if (ik->is_final()) return true; // cannot clear xk 6286 return false; 6287 } 6288 6289 //-----------------------------cast_to_exactness------------------------------- 6290 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6291 if (klass_is_exact == (_ptr == Constant)) return this; 6292 if (must_be_exact()) return this; 6293 ciKlass* k = klass(); 6294 FlatInArray flat_in_array = compute_flat_in_array(k->as_instance_klass(), klass_is_exact); 6295 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset, flat_in_array); 6296 } 6297 6298 6299 //-----------------------------as_instance_type-------------------------------- 6300 // Corresponding type for an instance of the given class. 6301 // It will be NotNull, and exact if and only if the klass type is exact. 6302 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 6303 ciKlass* k = klass(); 6304 bool xk = klass_is_exact(); 6305 Compile* C = Compile::current(); 6306 Dependencies* deps = C->dependencies(); 6307 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6308 // Element is an instance 6309 bool klass_is_exact = false; 6310 const TypeInterfaces* interfaces = _interfaces; 6311 ciInstanceKlass* ik = k->as_instance_klass(); 6312 if (k->is_loaded()) { 6313 // Try to set klass_is_exact. 6314 klass_is_exact = ik->is_final(); 6315 if (!klass_is_exact && klass_change 6316 && deps != nullptr && UseUniqueSubclasses) { 6317 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6318 if (sub != nullptr) { 6319 if (_interfaces->eq(sub)) { 6320 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6321 k = ik = sub; 6322 xk = sub->is_final(); 6323 } 6324 } 6325 } 6326 } 6327 6328 FlatInArray flat_in_array = compute_flat_in_array_if_unknown(ik, xk, _flat_in_array); 6329 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, Offset(0), flat_in_array); 6330 } 6331 6332 //------------------------------xmeet------------------------------------------ 6333 // Compute the MEET of two types, return a new Type object. 6334 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 6335 // Perform a fast test for common case; meeting the same types together. 6336 if( this == t ) return this; // Meeting same type-rep? 6337 6338 // Current "this->_base" is Pointer 6339 switch (t->base()) { // switch on original type 6340 6341 case Int: // Mixing ints & oops happens when javac 6342 case Long: // reuses local variables 6343 case HalfFloatTop: 6344 case HalfFloatCon: 6345 case HalfFloatBot: 6346 case FloatTop: 6347 case FloatCon: 6348 case FloatBot: 6349 case DoubleTop: 6350 case DoubleCon: 6351 case DoubleBot: 6352 case NarrowOop: 6353 case NarrowKlass: 6354 case Bottom: // Ye Olde Default 6355 return Type::BOTTOM; 6356 case Top: 6357 return this; 6358 6359 default: // All else is a mistake 6360 typerr(t); 6361 6362 case AnyPtr: { // Meeting to AnyPtrs 6363 // Found an AnyPtr type vs self-KlassPtr type 6364 const TypePtr *tp = t->is_ptr(); 6365 Offset offset = meet_offset(tp->offset()); 6366 PTR ptr = meet_ptr(tp->ptr()); 6367 switch (tp->ptr()) { 6368 case TopPTR: 6369 return this; 6370 case Null: 6371 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6372 case AnyNull: 6373 return make(ptr, klass(), _interfaces, offset, _flat_in_array); 6374 case BotPTR: 6375 case NotNull: 6376 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6377 default: typerr(t); 6378 } 6379 } 6380 6381 case RawPtr: 6382 case MetadataPtr: 6383 case OopPtr: 6384 case AryPtr: // Meet with AryPtr 6385 case InstPtr: // Meet with InstPtr 6386 return TypePtr::BOTTOM; 6387 6388 // 6389 // A-top } 6390 // / | \ } Tops 6391 // B-top A-any C-top } 6392 // | / | \ | } Any-nulls 6393 // B-any | C-any } 6394 // | | | 6395 // B-con A-con C-con } constants; not comparable across classes 6396 // | | | 6397 // B-not | C-not } 6398 // | \ | / | } not-nulls 6399 // B-bot A-not C-bot } 6400 // \ | / } Bottoms 6401 // A-bot } 6402 // 6403 6404 case InstKlassPtr: { // Meet two KlassPtr types 6405 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 6406 Offset off = meet_offset(tkls->offset()); 6407 PTR ptr = meet_ptr(tkls->ptr()); 6408 const TypeInterfaces* interfaces = meet_interfaces(tkls); 6409 6410 ciKlass* res_klass = nullptr; 6411 bool res_xk = false; 6412 const FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, tkls->flat_in_array()); 6413 switch (meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) { 6414 case UNLOADED: 6415 ShouldNotReachHere(); 6416 case SUBTYPE: 6417 case NOT_SUBTYPE: 6418 case LCA: 6419 case QUICK: { 6420 assert(res_xk == (ptr == Constant), ""); 6421 const Type* res = make(ptr, res_klass, interfaces, off, flat_in_array); 6422 return res; 6423 } 6424 default: 6425 ShouldNotReachHere(); 6426 } 6427 } // End of case KlassPtr 6428 case AryKlassPtr: { // All arrays inherit from Object class 6429 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 6430 Offset offset = meet_offset(tp->offset()); 6431 PTR ptr = meet_ptr(tp->ptr()); 6432 const TypeInterfaces* interfaces = meet_interfaces(tp); 6433 const TypeInterfaces* tp_interfaces = tp->_interfaces; 6434 const TypeInterfaces* this_interfaces = _interfaces; 6435 6436 switch (ptr) { 6437 case TopPTR: 6438 case AnyNull: // Fall 'down' to dual of object klass 6439 // For instances when a subclass meets a superclass we fall 6440 // below the centerline when the superclass is exact. We need to 6441 // do the same here. 6442 // 6443 // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper(). 6444 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && 6445 !klass_is_exact() && !is_not_flat_in_array()) { 6446 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type()); 6447 } else { 6448 // cannot subclass, so the meet has to fall badly below the centerline 6449 ptr = NotNull; 6450 interfaces = _interfaces->intersection_with(tp->_interfaces); 6451 FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat); 6452 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array); 6453 } 6454 case Constant: 6455 case NotNull: 6456 case BotPTR: { // Fall down to object klass 6457 // LCA is object_klass, but if we subclass from the top we can do better 6458 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 6459 // If 'this' (InstPtr) is above the centerline and it is Object class 6460 // then we can subclass in the Java class hierarchy. 6461 // For instances when a subclass meets a superclass we fall 6462 // below the centerline when the superclass is exact. We need 6463 // to do the same here. 6464 // 6465 // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper(). 6466 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && 6467 !klass_is_exact() && !is_not_flat_in_array()) { 6468 // that is, tp's array type is a subtype of my klass 6469 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset, tp->is_not_flat(), tp->is_not_null_free(), tp->is_flat(), tp->is_null_free(), tp->is_atomic(), tp->is_refined_type()); 6470 } 6471 } 6472 // The other case cannot happen, since I cannot be a subtype of an array. 6473 // The meet falls down to Object class below centerline. 6474 if( ptr == Constant ) 6475 ptr = NotNull; 6476 interfaces = this_interfaces->intersection_with(tp_interfaces); 6477 FlatInArray flat_in_array = meet_flat_in_array(_flat_in_array, NotFlat); 6478 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array); 6479 } 6480 default: typerr(t); 6481 } 6482 } 6483 6484 } // End of switch 6485 return this; // Return the double constant 6486 } 6487 6488 //------------------------------xdual------------------------------------------ 6489 // Dual: compute field-by-field dual 6490 const Type* TypeInstKlassPtr::xdual() const { 6491 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset(), dual_flat_in_array()); 6492 } 6493 6494 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6495 static_assert(std::is_base_of<T2, T1>::value, ""); 6496 if (!this_one->is_loaded() || !other->is_loaded()) { 6497 return false; 6498 } 6499 if (!this_one->is_instance_type(other)) { 6500 return false; 6501 } 6502 6503 if (!other_exact) { 6504 return false; 6505 } 6506 6507 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) { 6508 return true; 6509 } 6510 6511 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6512 } 6513 6514 bool TypeInstKlassPtr::might_be_an_array() const { 6515 if (!instance_klass()->is_java_lang_Object()) { 6516 // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types. 6517 return false; 6518 } 6519 if (interfaces()->has_non_array_interface()) { 6520 // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array. 6521 return false; 6522 } 6523 // Cannot prove it's not an array. 6524 return true; 6525 } 6526 6527 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6528 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6529 } 6530 6531 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 6532 static_assert(std::is_base_of<T2, T1>::value, ""); 6533 if (!this_one->is_loaded() || !other->is_loaded()) { 6534 return false; 6535 } 6536 if (!this_one->is_instance_type(other)) { 6537 return false; 6538 } 6539 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces); 6540 } 6541 6542 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6543 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 6544 } 6545 6546 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6547 static_assert(std::is_base_of<T2, T1>::value, ""); 6548 if (!this_one->is_loaded() || !other->is_loaded()) { 6549 return true; 6550 } 6551 6552 if (this_one->is_array_type(other)) { 6553 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces); 6554 } 6555 6556 assert(this_one->is_instance_type(other), "unsupported"); 6557 6558 if (this_exact && other_exact) { 6559 return this_one->is_java_subtype_of(other); 6560 } 6561 6562 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) { 6563 return false; 6564 } 6565 6566 if (this_exact) { 6567 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces); 6568 } 6569 6570 return true; 6571 } 6572 6573 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6574 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 6575 } 6576 6577 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 6578 if (!UseUniqueSubclasses) { 6579 return this; 6580 } 6581 ciKlass* k = klass(); 6582 Compile* C = Compile::current(); 6583 Dependencies* deps = C->dependencies(); 6584 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity"); 6585 if (k->is_loaded()) { 6586 ciInstanceKlass* ik = k->as_instance_klass(); 6587 if (deps != nullptr) { 6588 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 6589 if (sub != nullptr) { 6590 bool improve_to_exact = sub->is_final() && _ptr == NotNull; 6591 const TypeInstKlassPtr* improved = TypeInstKlassPtr::make(improve_to_exact ? Constant : _ptr, sub, _offset); 6592 if (improved->_interfaces->contains(_interfaces)) { 6593 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 6594 return improved; 6595 } 6596 } 6597 } 6598 } 6599 return this; 6600 } 6601 6602 bool TypeInstKlassPtr::can_be_inline_array() const { 6603 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryKlassPtr::_array_interfaces->contains(_interfaces); 6604 } 6605 6606 #ifndef PRODUCT 6607 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const { 6608 st->print("instklassptr:"); 6609 klass()->print_name_on(st); 6610 _interfaces->dump(st); 6611 st->print(":%s", ptr_msg[_ptr]); 6612 dump_offset(st); 6613 dump_flat_in_array(_flat_in_array, st); 6614 } 6615 #endif // PRODUCT 6616 6617 bool TypeAryKlassPtr::can_be_inline_array() const { 6618 return _elem->isa_instklassptr() && _elem->is_instklassptr()->_klass->can_be_inline_klass(); 6619 } 6620 6621 bool TypeInstPtr::can_be_inline_array() const { 6622 return _klass->equals(ciEnv::current()->Object_klass()) && TypeAryPtr::_array_interfaces->contains(_interfaces); 6623 } 6624 6625 bool TypeAryPtr::can_be_inline_array() const { 6626 return elem()->make_ptr() && elem()->make_ptr()->isa_instptr() && elem()->make_ptr()->is_instptr()->_klass->can_be_inline_klass(); 6627 } 6628 6629 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) { 6630 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type))->hashcons(); 6631 } 6632 6633 const TypeAryKlassPtr* TypeAryKlassPtr::make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type) { 6634 const Type* etype; 6635 if (k->is_obj_array_klass()) { 6636 // Element is an object array. Recursively call ourself. 6637 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 6638 etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 6639 k = nullptr; 6640 } else if (k->is_type_array_klass()) { 6641 // Element is an typeArray 6642 etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 6643 } else { 6644 ShouldNotReachHere(); 6645 } 6646 6647 return TypeAryKlassPtr::make(ptr, etype, k, offset, not_flat, not_null_free, flat, null_free, atomic, refined_type); 6648 } 6649 6650 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 6651 ciArrayKlass* k = klass->as_array_klass(); 6652 if (k->is_refined()) { 6653 return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, !k->is_flat_array_klass(), !k->is_elem_null_free(), 6654 k->is_flat_array_klass(), k->is_elem_null_free(), k->is_elem_atomic(), true); 6655 } else { 6656 // Use the default combination to canonicalize all non-refined klass pointers 6657 return TypeAryKlassPtr::make(Constant, k, Offset(0), interface_handling, true, true, false, false, true, false); 6658 } 6659 } 6660 6661 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_non_refined() const { 6662 assert(is_refined_type(), "must be a refined type"); 6663 PTR ptr = _ptr; 6664 // There can be multiple refined array types corresponding to a single unrefined type 6665 if (ptr == NotNull && elem()->is_klassptr()->klass_is_exact()) { 6666 ptr = Constant; 6667 } 6668 return make(ptr, elem(), nullptr, _offset, true, true, false, false, true, false); 6669 } 6670 6671 // Get the (non-)refined array klass ptr 6672 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_refined_array_klass_ptr(bool refined) const { 6673 if ((refined == is_refined_type()) || !klass_is_exact() || !exact_klass()->is_obj_array_klass()) { 6674 return this; 6675 } 6676 ciArrayKlass* k = exact_klass()->as_array_klass(); 6677 k = ciObjArrayKlass::make(k->element_klass(), refined); 6678 return make(k, trust_interfaces); 6679 } 6680 6681 //------------------------------eq--------------------------------------------- 6682 // Structural equality check for Type representations 6683 bool TypeAryKlassPtr::eq(const Type *t) const { 6684 const TypeAryKlassPtr *p = t->is_aryklassptr(); 6685 return 6686 _elem == p->_elem && // Check array 6687 _flat == p->_flat && 6688 _not_flat == p->_not_flat && 6689 _null_free == p->_null_free && 6690 _not_null_free == p->_not_null_free && 6691 _atomic == p->_atomic && 6692 _refined_type == p->_refined_type && 6693 TypeKlassPtr::eq(p); // Check sub-parts 6694 } 6695 6696 //------------------------------hash------------------------------------------- 6697 // Type-specific hashing function. 6698 uint TypeAryKlassPtr::hash(void) const { 6699 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash() + (uint)(_not_flat ? 43 : 0) + 6700 (uint)(_not_null_free ? 44 : 0) + (uint)(_flat ? 45 : 0) + (uint)(_null_free ? 46 : 0) + (uint)(_atomic ? 47 : 0) + (uint)(_refined_type ? 48 : 0); 6701 } 6702 6703 //----------------------compute_klass------------------------------------------ 6704 // Compute the defining klass for this class 6705 ciKlass* TypeAryPtr::compute_klass() const { 6706 // Compute _klass based on element type. 6707 ciKlass* k_ary = nullptr; 6708 const TypeInstPtr *tinst; 6709 const TypeAryPtr *tary; 6710 const Type* el = elem(); 6711 if (el->isa_narrowoop()) { 6712 el = el->make_ptr(); 6713 } 6714 6715 // Get element klass 6716 if ((tinst = el->isa_instptr()) != nullptr) { 6717 // Leave k_ary at nullptr. 6718 } else if ((tary = el->isa_aryptr()) != nullptr) { 6719 // Leave k_ary at nullptr. 6720 } else if ((el->base() == Type::Top) || 6721 (el->base() == Type::Bottom)) { 6722 // element type of Bottom occurs from meet of basic type 6723 // and object; Top occurs when doing join on Bottom. 6724 // Leave k_ary at null. 6725 } else { 6726 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class"); 6727 // Compute array klass directly from basic type 6728 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6729 } 6730 return k_ary; 6731 } 6732 6733 //------------------------------klass------------------------------------------ 6734 // Return the defining klass for this class 6735 ciKlass* TypeAryPtr::klass() const { 6736 if( _klass ) return _klass; // Return cached value, if possible 6737 6738 // Oops, need to compute _klass and cache it 6739 ciKlass* k_ary = compute_klass(); 6740 6741 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6742 // The _klass field acts as a cache of the underlying 6743 // ciKlass for this array type. In order to set the field, 6744 // we need to cast away const-ness. 6745 // 6746 // IMPORTANT NOTE: we *never* set the _klass field for the 6747 // type TypeAryPtr::OOPS. This Type is shared between all 6748 // active compilations. However, the ciKlass which represents 6749 // this Type is *not* shared between compilations, so caching 6750 // this value would result in fetching a dangling pointer. 6751 // 6752 // Recomputing the underlying ciKlass for each request is 6753 // a bit less efficient than caching, but calls to 6754 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6755 ((TypeAryPtr*)this)->_klass = k_ary; 6756 } 6757 return k_ary; 6758 } 6759 6760 // Is there a single ciKlass* that can represent that type? 6761 ciKlass* TypeAryPtr::exact_klass_helper() const { 6762 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6763 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6764 if (k == nullptr) { 6765 return nullptr; 6766 } 6767 if (k->is_array_klass() && k->as_array_klass()->is_refined()) { 6768 // We have no mechanism to create an array of refined arrays 6769 k = ciObjArrayKlass::make(k->as_array_klass()->element_klass(), false); 6770 } 6771 if (klass_is_exact()) { 6772 return ciObjArrayKlass::make(k, true, is_null_free(), is_atomic()); 6773 } else { 6774 // We may reach here if called recursively, must be an unrefined type then 6775 return ciObjArrayKlass::make(k, false); 6776 } 6777 } 6778 6779 return klass(); 6780 } 6781 6782 const Type* TypeAryPtr::base_element_type(int& dims) const { 6783 const Type* elem = this->elem(); 6784 dims = 1; 6785 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6786 elem = elem->make_ptr()->is_aryptr()->elem(); 6787 dims++; 6788 } 6789 return elem; 6790 } 6791 6792 //------------------------------add_offset------------------------------------- 6793 // Access internals of klass object 6794 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6795 return make(_ptr, elem(), klass(), xadd_offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type); 6796 } 6797 6798 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6799 return make(_ptr, elem(), klass(), Offset(offset), is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type); 6800 } 6801 6802 //------------------------------cast_to_ptr_type------------------------------- 6803 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6804 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6805 if (ptr == _ptr) return this; 6806 return make(ptr, elem(), _klass, _offset, is_not_flat(), is_not_null_free(), _flat, _null_free, _atomic, _refined_type); 6807 } 6808 6809 bool TypeAryKlassPtr::must_be_exact() const { 6810 assert(klass_is_exact(), "precondition"); 6811 if (_elem == Type::BOTTOM || _elem == Type::TOP) { 6812 return false; 6813 } 6814 const TypeKlassPtr* elem = _elem->isa_klassptr(); 6815 if (elem == nullptr) { 6816 // primitive arrays 6817 return true; 6818 } 6819 6820 // refined types are final 6821 return _refined_type; 6822 } 6823 6824 //-----------------------------cast_to_exactness------------------------------- 6825 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6826 if (klass_is_exact == this->klass_is_exact()) { 6827 return this; 6828 } 6829 if (!klass_is_exact && must_be_exact()) { 6830 return this; 6831 } 6832 const Type* elem = this->elem(); 6833 if (elem->isa_klassptr() && !klass_is_exact) { 6834 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6835 } 6836 6837 if (klass_is_exact) { 6838 // cast_to_exactness(true) really means get the LCA of all values represented by this 6839 // TypeAryKlassPtr. As a result, it must be an unrefined klass pointer. 6840 return make(Constant, elem, nullptr, _offset, true, true, false, false, true, false); 6841 } else { 6842 // cast_to_exactness(false) means get the TypeAryKlassPtr representing all values that subtype 6843 // this value 6844 bool not_inline = !_elem->isa_instklassptr() || !_elem->is_instklassptr()->instance_klass()->can_be_inline_klass(); 6845 bool not_flat = !UseArrayFlattening || not_inline || 6846 (_elem->isa_instklassptr() && _elem->is_instklassptr()->instance_klass()->is_inlinetype() && !_elem->is_instklassptr()->instance_klass()->maybe_flat_in_array()); 6847 bool not_null_free = not_inline; 6848 bool atomic = not_flat; 6849 return make(NotNull, elem, nullptr, _offset, not_flat, not_null_free, false, false, atomic, false); 6850 } 6851 } 6852 6853 //-----------------------------as_instance_type-------------------------------- 6854 // Corresponding type for an instance of the given class. 6855 // It will be NotNull, and exact if and only if the klass type is exact. 6856 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6857 ciKlass* k = klass(); 6858 bool xk = klass_is_exact(); 6859 const Type* el = nullptr; 6860 if (elem()->isa_klassptr()) { 6861 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6862 k = nullptr; 6863 } else { 6864 el = elem(); 6865 } 6866 bool null_free = _null_free; 6867 if (null_free && el->isa_ptr()) { 6868 el = el->is_ptr()->join_speculative(TypePtr::NOTNULL); 6869 } 6870 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS, false, is_flat(), is_not_flat(), is_not_null_free(), is_atomic()), k, xk, Offset(0)); 6871 } 6872 6873 6874 //------------------------------xmeet------------------------------------------ 6875 // Compute the MEET of two types, return a new Type object. 6876 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6877 // Perform a fast test for common case; meeting the same types together. 6878 if( this == t ) return this; // Meeting same type-rep? 6879 6880 // Current "this->_base" is Pointer 6881 switch (t->base()) { // switch on original type 6882 6883 case Int: // Mixing ints & oops happens when javac 6884 case Long: // reuses local variables 6885 case HalfFloatTop: 6886 case HalfFloatCon: 6887 case HalfFloatBot: 6888 case FloatTop: 6889 case FloatCon: 6890 case FloatBot: 6891 case DoubleTop: 6892 case DoubleCon: 6893 case DoubleBot: 6894 case NarrowOop: 6895 case NarrowKlass: 6896 case Bottom: // Ye Olde Default 6897 return Type::BOTTOM; 6898 case Top: 6899 return this; 6900 6901 default: // All else is a mistake 6902 typerr(t); 6903 6904 case AnyPtr: { // Meeting to AnyPtrs 6905 // Found an AnyPtr type vs self-KlassPtr type 6906 const TypePtr *tp = t->is_ptr(); 6907 Offset offset = meet_offset(tp->offset()); 6908 PTR ptr = meet_ptr(tp->ptr()); 6909 switch (tp->ptr()) { 6910 case TopPTR: 6911 return this; 6912 case Null: 6913 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6914 case AnyNull: 6915 return make(ptr, _elem, klass(), offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type()); 6916 case BotPTR: 6917 case NotNull: 6918 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6919 default: typerr(t); 6920 } 6921 } 6922 6923 case RawPtr: 6924 case MetadataPtr: 6925 case OopPtr: 6926 case AryPtr: // Meet with AryPtr 6927 case InstPtr: // Meet with InstPtr 6928 return TypePtr::BOTTOM; 6929 6930 // 6931 // A-top } 6932 // / | \ } Tops 6933 // B-top A-any C-top } 6934 // | / | \ | } Any-nulls 6935 // B-any | C-any } 6936 // | | | 6937 // B-con A-con C-con } constants; not comparable across classes 6938 // | | | 6939 // B-not | C-not } 6940 // | \ | / | } not-nulls 6941 // B-bot A-not C-bot } 6942 // \ | / } Bottoms 6943 // A-bot } 6944 // 6945 6946 case AryKlassPtr: { // Meet two KlassPtr types 6947 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6948 Offset off = meet_offset(tap->offset()); 6949 const Type* elem = _elem->meet(tap->_elem); 6950 PTR ptr = meet_ptr(tap->ptr()); 6951 ciKlass* res_klass = nullptr; 6952 bool res_xk = false; 6953 bool res_flat = false; 6954 bool res_not_flat = false; 6955 bool res_not_null_free = false; 6956 bool res_atomic = false; 6957 MeetResult res = meet_aryptr(ptr, elem, this, tap, 6958 res_klass, res_xk, res_flat, res_not_flat, res_not_null_free, res_atomic); 6959 assert(res_xk == (ptr == Constant), ""); 6960 bool flat = meet_flat(tap->_flat); 6961 bool null_free = meet_null_free(tap->_null_free); 6962 bool atomic = meet_atomic(tap->_atomic); 6963 bool refined_type = _refined_type && tap->_refined_type; 6964 if (res == NOT_SUBTYPE) { 6965 flat = false; 6966 null_free = false; 6967 atomic = false; 6968 refined_type = false; 6969 } else if (res == SUBTYPE) { 6970 if (above_centerline(tap->ptr()) && !above_centerline(this->ptr())) { 6971 flat = _flat; 6972 null_free = _null_free; 6973 atomic = _atomic; 6974 refined_type = _refined_type; 6975 } else if (above_centerline(this->ptr()) && !above_centerline(tap->ptr())) { 6976 flat = tap->_flat; 6977 null_free = tap->_null_free; 6978 atomic = tap->_atomic; 6979 refined_type = tap->_refined_type; 6980 } else if (above_centerline(this->ptr()) && above_centerline(tap->ptr())) { 6981 flat = _flat || tap->_flat; 6982 null_free = _null_free || tap->_null_free; 6983 atomic = _atomic || tap->_atomic; 6984 refined_type = _refined_type || tap->_refined_type; 6985 } else if (res_xk && _refined_type != tap->_refined_type) { 6986 // This can happen if the phi emitted by LibraryCallKit::load_default_refined_array_klass/load_non_refined_array_klass 6987 // is processed before the typeArray guard is folded. Both inputs are constant but the input corresponding to the 6988 // typeArray will go away. Don't constant fold it yet but wait for the control input to collapse. 6989 ptr = PTR::NotNull; 6990 } 6991 } 6992 return make(ptr, elem, res_klass, off, res_not_flat, res_not_null_free, flat, null_free, atomic, refined_type); 6993 } // End of case KlassPtr 6994 case InstKlassPtr: { 6995 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6996 Offset offset = meet_offset(tp->offset()); 6997 PTR ptr = meet_ptr(tp->ptr()); 6998 const TypeInterfaces* interfaces = meet_interfaces(tp); 6999 const TypeInterfaces* tp_interfaces = tp->_interfaces; 7000 const TypeInterfaces* this_interfaces = _interfaces; 7001 7002 switch (ptr) { 7003 case TopPTR: 7004 case AnyNull: // Fall 'down' to dual of object klass 7005 // For instances when a subclass meets a superclass we fall 7006 // below the centerline when the superclass is exact. We need to 7007 // do the same here. 7008 // 7009 // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper(). 7010 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 7011 !tp->klass_is_exact() && !tp->is_not_flat_in_array()) { 7012 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type()); 7013 } else { 7014 // cannot subclass, so the meet has to fall badly below the centerline 7015 ptr = NotNull; 7016 interfaces = this_interfaces->intersection_with(tp->_interfaces); 7017 FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array()); 7018 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, flat_in_array); 7019 } 7020 case Constant: 7021 case NotNull: 7022 case BotPTR: { // Fall down to object klass 7023 // LCA is object_klass, but if we subclass from the top we can do better 7024 if (above_centerline(tp->ptr())) { 7025 // If 'tp' is above the centerline and it is Object class 7026 // then we can subclass in the Java class hierarchy. 7027 // For instances when a subclass meets a superclass we fall 7028 // below the centerline when the superclass is exact. We need 7029 // to do the same here. 7030 // 7031 // Flat in array: See explanation for meet with TypeInstPtr in TypeAryPtr::xmeet_helper(). 7032 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && 7033 !tp->klass_is_exact() && !tp->is_not_flat_in_array()) { 7034 // that is, my array type is a subtype of 'tp' klass 7035 return make(ptr, _elem, _klass, offset, is_not_flat(), is_not_null_free(), is_flat(), is_null_free(), is_atomic(), is_refined_type()); 7036 } 7037 } 7038 // The other case cannot happen, since t cannot be a subtype of an array. 7039 // The meet falls down to Object class below centerline. 7040 if (ptr == Constant) 7041 ptr = NotNull; 7042 interfaces = this_interfaces->intersection_with(tp_interfaces); 7043 FlatInArray flat_in_array = meet_flat_in_array(NotFlat, tp->flat_in_array()); 7044 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset, tp->flat_in_array()); 7045 } 7046 default: typerr(t); 7047 } 7048 } 7049 7050 } // End of switch 7051 return this; // Return the double constant 7052 } 7053 7054 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 7055 static_assert(std::is_base_of<T2, T1>::value, ""); 7056 7057 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 7058 return true; 7059 } 7060 7061 int dummy; 7062 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 7063 7064 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 7065 return false; 7066 } 7067 7068 if (this_one->is_instance_type(other)) { 7069 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) && 7070 other_exact; 7071 } 7072 7073 assert(this_one->is_array_type(other), ""); 7074 const T1* other_ary = this_one->is_array_type(other); 7075 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 7076 if (other_top_or_bottom) { 7077 return false; 7078 } 7079 7080 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 7081 const TypePtr* this_elem = this_one->elem()->make_ptr(); 7082 if (this_elem != nullptr && other_elem != nullptr) { 7083 if (other->is_null_free() && !this_one->is_null_free()) { 7084 return false; // A nullable array can't be a subtype of a null-free array 7085 } 7086 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 7087 } 7088 if (this_elem == nullptr && other_elem == nullptr) { 7089 return this_one->klass()->is_subtype_of(other->klass()); 7090 } 7091 return false; 7092 } 7093 7094 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 7095 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 7096 } 7097 7098 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 7099 static_assert(std::is_base_of<T2, T1>::value, ""); 7100 7101 int dummy; 7102 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 7103 7104 if (!this_one->is_array_type(other) || 7105 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 7106 return false; 7107 } 7108 const T1* other_ary = this_one->is_array_type(other); 7109 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 7110 7111 if (other_top_or_bottom) { 7112 return false; 7113 } 7114 7115 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 7116 const TypePtr* this_elem = this_one->elem()->make_ptr(); 7117 if (other_elem != nullptr && this_elem != nullptr) { 7118 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 7119 } 7120 if (other_elem == nullptr && this_elem == nullptr) { 7121 return this_one->klass()->equals(other->klass()); 7122 } 7123 return false; 7124 } 7125 7126 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 7127 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 7128 } 7129 7130 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 7131 static_assert(std::is_base_of<T2, T1>::value, ""); 7132 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) { 7133 return true; 7134 } 7135 if (!this_one->is_loaded() || !other->is_loaded()) { 7136 return true; 7137 } 7138 if (this_one->is_instance_type(other)) { 7139 return other->klass()->equals(ciEnv::current()->Object_klass()) && 7140 this_one->_interfaces->contains(other->_interfaces); 7141 } 7142 7143 int dummy; 7144 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 7145 if (this_top_or_bottom) { 7146 return true; 7147 } 7148 7149 assert(this_one->is_array_type(other), ""); 7150 7151 const T1* other_ary = this_one->is_array_type(other); 7152 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 7153 if (other_top_or_bottom) { 7154 return true; 7155 } 7156 if (this_exact && other_exact) { 7157 return this_one->is_java_subtype_of(other); 7158 } 7159 7160 const TypePtr* this_elem = this_one->elem()->make_ptr(); 7161 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 7162 if (other_elem != nullptr && this_elem != nullptr) { 7163 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 7164 } 7165 if (other_elem == nullptr && this_elem == nullptr) { 7166 return this_one->klass()->is_subtype_of(other->klass()); 7167 } 7168 return false; 7169 } 7170 7171 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 7172 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 7173 } 7174 7175 //------------------------------xdual------------------------------------------ 7176 // Dual: compute field-by-field dual 7177 const Type *TypeAryKlassPtr::xdual() const { 7178 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset(), !is_not_flat(), !is_not_null_free(), dual_flat(), dual_null_free(), dual_atomic(), _refined_type); 7179 } 7180 7181 // Is there a single ciKlass* that can represent that type? 7182 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 7183 if (elem()->isa_klassptr()) { 7184 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 7185 if (k == nullptr) { 7186 return nullptr; 7187 } 7188 assert(!k->is_array_klass() || !k->as_array_klass()->is_refined(), "no mechanism to create an array of refined arrays %s", k->name()->as_utf8()); 7189 k = ciArrayKlass::make(k, is_null_free(), is_atomic(), _refined_type); 7190 return k; 7191 } 7192 7193 return klass(); 7194 } 7195 7196 ciKlass* TypeAryKlassPtr::klass() const { 7197 if (_klass != nullptr) { 7198 return _klass; 7199 } 7200 ciKlass* k = nullptr; 7201 if (elem()->isa_klassptr()) { 7202 // leave null 7203 } else if ((elem()->base() == Type::Top) || 7204 (elem()->base() == Type::Bottom)) { 7205 } else { 7206 k = ciTypeArrayKlass::make(elem()->basic_type()); 7207 ((TypeAryKlassPtr*)this)->_klass = k; 7208 } 7209 return k; 7210 } 7211 7212 //------------------------------dump2------------------------------------------ 7213 // Dump Klass Type 7214 #ifndef PRODUCT 7215 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 7216 st->print("aryklassptr:["); 7217 _elem->dump2(d, depth, st); 7218 _interfaces->dump(st); 7219 st->print(":%s", ptr_msg[_ptr]); 7220 if (_flat) st->print(":flat"); 7221 if (_null_free) st->print(":null free"); 7222 if (_atomic) st->print(":atomic"); 7223 if (_refined_type) st->print(":refined_type"); 7224 if (Verbose) { 7225 if (_not_flat) st->print(":not flat"); 7226 if (_not_null_free) st->print(":nullable"); 7227 } 7228 dump_offset(st); 7229 } 7230 #endif 7231 7232 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 7233 const Type* elem = this->elem(); 7234 dims = 1; 7235 while (elem->isa_aryklassptr()) { 7236 elem = elem->is_aryklassptr()->elem(); 7237 dims++; 7238 } 7239 return elem; 7240 } 7241 7242 //============================================================================= 7243 // Convenience common pre-built types. 7244 7245 //------------------------------make------------------------------------------- 7246 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc, 7247 const TypeTuple *range_sig, const TypeTuple *range_cc) { 7248 return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons(); 7249 } 7250 7251 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) { 7252 return make(domain, domain, range, range); 7253 } 7254 7255 //------------------------------osr_domain----------------------------- 7256 const TypeTuple* osr_domain() { 7257 const Type **fields = TypeTuple::fields(2); 7258 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 7259 return TypeTuple::make(TypeFunc::Parms+1, fields); 7260 } 7261 7262 //------------------------------make------------------------------------------- 7263 const TypeFunc* TypeFunc::make(ciMethod* method, bool is_osr_compilation) { 7264 Compile* C = Compile::current(); 7265 const TypeFunc* tf = nullptr; 7266 if (!is_osr_compilation) { 7267 tf = C->last_tf(method); // check cache 7268 if (tf != nullptr) return tf; // The hit rate here is almost 50%. 7269 } 7270 // Inline types are not passed/returned by reference, instead each field of 7271 // the inline type is passed/returned as an argument. We maintain two views of 7272 // the argument/return list here: one based on the signature (with an inline 7273 // type argument/return as a single slot), one based on the actual calling 7274 // convention (with an inline type argument/return as a list of its fields). 7275 bool has_scalar_args = method->has_scalarized_args() && !is_osr_compilation; 7276 // Fall back to the non-scalarized calling convention when compiling a call via a mismatching method 7277 if (method != C->method() && method->get_Method()->mismatch()) { 7278 has_scalar_args = false; 7279 } 7280 const TypeTuple* domain_sig = is_osr_compilation ? osr_domain() : TypeTuple::make_domain(method, ignore_interfaces, false); 7281 const TypeTuple* domain_cc = has_scalar_args ? TypeTuple::make_domain(method, ignore_interfaces, true) : domain_sig; 7282 ciSignature* sig = method->signature(); 7283 bool has_scalar_ret = !method->is_native() && sig->return_type()->is_inlinetype() && sig->return_type()->as_inline_klass()->can_be_returned_as_fields(); 7284 const TypeTuple* range_sig = TypeTuple::make_range(sig, ignore_interfaces, false); 7285 const TypeTuple* range_cc = has_scalar_ret ? TypeTuple::make_range(sig, ignore_interfaces, true) : range_sig; 7286 tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc); 7287 if (!is_osr_compilation) { 7288 C->set_last_tf(method, tf); // fill cache 7289 } 7290 return tf; 7291 } 7292 7293 //------------------------------meet------------------------------------------- 7294 // Compute the MEET of two types. It returns a new Type object. 7295 const Type *TypeFunc::xmeet( const Type *t ) const { 7296 // Perform a fast test for common case; meeting the same types together. 7297 if( this == t ) return this; // Meeting same type-rep? 7298 7299 // Current "this->_base" is Func 7300 switch (t->base()) { // switch on original type 7301 7302 case Bottom: // Ye Olde Default 7303 return t; 7304 7305 default: // All else is a mistake 7306 typerr(t); 7307 7308 case Top: 7309 break; 7310 } 7311 return this; // Return the double constant 7312 } 7313 7314 //------------------------------xdual------------------------------------------ 7315 // Dual: compute field-by-field dual 7316 const Type *TypeFunc::xdual() const { 7317 return this; 7318 } 7319 7320 //------------------------------eq--------------------------------------------- 7321 // Structural equality check for Type representations 7322 bool TypeFunc::eq( const Type *t ) const { 7323 const TypeFunc *a = (const TypeFunc*)t; 7324 return _domain_sig == a->_domain_sig && 7325 _domain_cc == a->_domain_cc && 7326 _range_sig == a->_range_sig && 7327 _range_cc == a->_range_cc; 7328 } 7329 7330 //------------------------------hash------------------------------------------- 7331 // Type-specific hashing function. 7332 uint TypeFunc::hash(void) const { 7333 return (uint)(intptr_t)_domain_sig + (uint)(intptr_t)_domain_cc + (uint)(intptr_t)_range_sig + (uint)(intptr_t)_range_cc; 7334 } 7335 7336 //------------------------------dump2------------------------------------------ 7337 // Dump Function Type 7338 #ifndef PRODUCT 7339 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 7340 if( _range_sig->cnt() <= Parms ) 7341 st->print("void"); 7342 else { 7343 uint i; 7344 for (i = Parms; i < _range_sig->cnt()-1; i++) { 7345 _range_sig->field_at(i)->dump2(d,depth,st); 7346 st->print("/"); 7347 } 7348 _range_sig->field_at(i)->dump2(d,depth,st); 7349 } 7350 st->print(" "); 7351 st->print("( "); 7352 if( !depth || d[this] ) { // Check for recursive dump 7353 st->print("...)"); 7354 return; 7355 } 7356 d.Insert((void*)this,(void*)this); // Stop recursion 7357 if (Parms < _domain_sig->cnt()) 7358 _domain_sig->field_at(Parms)->dump2(d,depth-1,st); 7359 for (uint i = Parms+1; i < _domain_sig->cnt(); i++) { 7360 st->print(", "); 7361 _domain_sig->field_at(i)->dump2(d,depth-1,st); 7362 } 7363 st->print(" )"); 7364 } 7365 #endif 7366 7367 //------------------------------singleton-------------------------------------- 7368 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 7369 // constants (Ldi nodes). Singletons are integer, float or double constants 7370 // or a single symbol. 7371 bool TypeFunc::singleton(void) const { 7372 return false; // Never a singleton 7373 } 7374 7375 bool TypeFunc::empty(void) const { 7376 return false; // Never empty 7377 } 7378 7379 7380 BasicType TypeFunc::return_type() const{ 7381 if (range_sig()->cnt() == TypeFunc::Parms) { 7382 return T_VOID; 7383 } 7384 return range_sig()->field_at(TypeFunc::Parms)->basic_type(); 7385 } --- EOF ---