1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_TYPE_HPP 26 #define SHARE_OPTO_TYPE_HPP 27 28 #include "opto/adlcVMDeps.hpp" 29 #include "runtime/handles.hpp" 30 31 // Portions of code courtesy of Clifford Click 32 33 // Optimization - Graph Style 34 35 36 // This class defines a Type lattice. The lattice is used in the constant 37 // propagation algorithms, and for some type-checking of the iloc code. 38 // Basic types include RSD's (lower bound, upper bound, stride for integers), 39 // float & double precision constants, sets of data-labels and code-labels. 40 // The complete lattice is described below. Subtypes have no relationship to 41 // up or down in the lattice; that is entirely determined by the behavior of 42 // the MEET/JOIN functions. 43 44 class Dict; 45 class Type; 46 class TypeD; 47 class TypeF; 48 class TypeH; 49 class TypeInteger; 50 class TypeInt; 51 class TypeLong; 52 class TypeNarrowPtr; 53 class TypeNarrowOop; 54 class TypeNarrowKlass; 55 class TypeAry; 56 class TypeTuple; 57 class TypeVect; 58 class TypeVectA; 59 class TypeVectS; 60 class TypeVectD; 61 class TypeVectX; 62 class TypeVectY; 63 class TypeVectZ; 64 class TypeVectMask; 65 class TypePtr; 66 class TypeRawPtr; 67 class TypeOopPtr; 68 class TypeInstPtr; 69 class TypeAryPtr; 70 class TypeKlassPtr; 71 class TypeInstKlassPtr; 72 class TypeAryKlassPtr; 73 class TypeMetadataPtr; 74 class VerifyMeet; 75 76 //------------------------------Type------------------------------------------- 77 // Basic Type object, represents a set of primitive Values. 78 // Types are hash-cons'd into a private class dictionary, so only one of each 79 // different kind of Type exists. Types are never modified after creation, so 80 // all their interesting fields are constant. 81 class Type { 82 83 public: 84 enum TYPES { 85 Bad=0, // Type check 86 Control, // Control of code (not in lattice) 87 Top, // Top of the lattice 88 Int, // Integer range (lo-hi) 89 Long, // Long integer range (lo-hi) 90 Half, // Placeholder half of doubleword 91 NarrowOop, // Compressed oop pointer 92 NarrowKlass, // Compressed klass pointer 93 94 Tuple, // Method signature or object layout 95 Array, // Array types 96 97 Interfaces, // Set of implemented interfaces for oop types 98 99 VectorMask, // Vector predicate/mask type 100 VectorA, // (Scalable) Vector types for vector length agnostic 101 VectorS, // 32bit Vector types 102 VectorD, // 64bit Vector types 103 VectorX, // 128bit Vector types 104 VectorY, // 256bit Vector types 105 VectorZ, // 512bit Vector types 106 107 AnyPtr, // Any old raw, klass, inst, or array pointer 108 RawPtr, // Raw (non-oop) pointers 109 OopPtr, // Any and all Java heap entities 110 InstPtr, // Instance pointers (non-array objects) 111 AryPtr, // Array pointers 112 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) 113 114 MetadataPtr, // Generic metadata 115 KlassPtr, // Klass pointers 116 InstKlassPtr, 117 AryKlassPtr, 118 119 Function, // Function signature 120 Abio, // Abstract I/O 121 Return_Address, // Subroutine return address 122 Memory, // Abstract store 123 HalfFloatTop, // No float value 124 HalfFloatCon, // Floating point constant 125 HalfFloatBot, // Any float value 126 FloatTop, // No float value 127 FloatCon, // Floating point constant 128 FloatBot, // Any float value 129 DoubleTop, // No double value 130 DoubleCon, // Double precision constant 131 DoubleBot, // Any double value 132 Bottom, // Bottom of lattice 133 lastype // Bogus ending type (not in lattice) 134 }; 135 136 // Signal values for offsets from a base pointer 137 enum OFFSET_SIGNALS { 138 OffsetTop = -2000000000, // undefined offset 139 OffsetBot = -2000000001 // any possible offset 140 }; 141 142 // Min and max WIDEN values. 143 enum WIDEN { 144 WidenMin = 0, 145 WidenMax = 3 146 }; 147 148 private: 149 typedef struct { 150 TYPES dual_type; 151 BasicType basic_type; 152 const char* msg; 153 bool isa_oop; 154 uint ideal_reg; 155 relocInfo::relocType reloc; 156 } TypeInfo; 157 158 // Dictionary of types shared among compilations. 159 static Dict* _shared_type_dict; 160 static const TypeInfo _type_info[]; 161 162 static int uhash( const Type *const t ); 163 // Structural equality check. Assumes that equals() has already compared 164 // the _base types and thus knows it can cast 't' appropriately. 165 virtual bool eq( const Type *t ) const; 166 167 // Top-level hash-table of types 168 static Dict *type_dict() { 169 return Compile::current()->type_dict(); 170 } 171 172 // DUAL operation: reflect around lattice centerline. Used instead of 173 // join to ensure my lattice is symmetric up and down. Dual is computed 174 // lazily, on demand, and cached in _dual. 175 const Type *_dual; // Cached dual value 176 177 178 const Type *meet_helper(const Type *t, bool include_speculative) const; 179 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN; 180 181 protected: 182 // Each class of type is also identified by its base. 183 const TYPES _base; // Enum of Types type 184 185 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types 186 // ~Type(); // Use fast deallocation 187 const Type *hashcons(); // Hash-cons the type 188 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 189 const Type *join_helper(const Type *t, bool include_speculative) const { 190 assert_type_verify_empty(); 191 return dual()->meet_helper(t->dual(), include_speculative)->dual(); 192 } 193 194 void assert_type_verify_empty() const NOT_DEBUG_RETURN; 195 196 public: 197 198 inline void* operator new( size_t x ) throw() { 199 Compile* compile = Compile::current(); 200 compile->set_type_last_size(x); 201 return compile->type_arena()->AmallocWords(x); 202 } 203 inline void operator delete( void* ptr ) { 204 Compile* compile = Compile::current(); 205 compile->type_arena()->Afree(ptr,compile->type_last_size()); 206 } 207 208 // Initialize the type system for a particular compilation. 209 static void Initialize(Compile* compile); 210 211 // Initialize the types shared by all compilations. 212 static void Initialize_shared(Compile* compile); 213 214 TYPES base() const { 215 assert(_base > Bad && _base < lastype, "sanity"); 216 return _base; 217 } 218 219 // Create a new hash-consd type 220 static const Type *make(enum TYPES); 221 // Test for equivalence of types 222 static bool equals(const Type* t1, const Type* t2); 223 // Test for higher or equal in lattice 224 // Variant that drops the speculative part of the types 225 bool higher_equal(const Type* t) const { 226 return equals(meet(t), t->remove_speculative()); 227 } 228 // Variant that keeps the speculative part of the types 229 bool higher_equal_speculative(const Type* t) const { 230 return equals(meet_speculative(t), t); 231 } 232 233 // MEET operation; lower in lattice. 234 // Variant that drops the speculative part of the types 235 const Type *meet(const Type *t) const { 236 return meet_helper(t, false); 237 } 238 // Variant that keeps the speculative part of the types 239 const Type *meet_speculative(const Type *t) const { 240 return meet_helper(t, true)->cleanup_speculative(); 241 } 242 // WIDEN: 'widens' for Ints and other range types 243 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } 244 // NARROW: complement for widen, used by pessimistic phases 245 virtual const Type *narrow( const Type *old ) const { return this; } 246 247 // DUAL operation: reflect around lattice centerline. Used instead of 248 // join to ensure my lattice is symmetric up and down. 249 const Type *dual() const { return _dual; } 250 251 // Compute meet dependent on base type 252 virtual const Type *xmeet( const Type *t ) const; 253 virtual const Type *xdual() const; // Compute dual right now. 254 255 // JOIN operation; higher in lattice. Done by finding the dual of the 256 // meet of the dual of the 2 inputs. 257 // Variant that drops the speculative part of the types 258 const Type *join(const Type *t) const { 259 return join_helper(t, false); 260 } 261 // Variant that keeps the speculative part of the types 262 const Type *join_speculative(const Type *t) const { 263 return join_helper(t, true)->cleanup_speculative(); 264 } 265 266 // Modified version of JOIN adapted to the needs Node::Value. 267 // Normalizes all empty values to TOP. Does not kill _widen bits. 268 // Variant that drops the speculative part of the types 269 const Type *filter(const Type *kills) const { 270 return filter_helper(kills, false); 271 } 272 // Variant that keeps the speculative part of the types 273 const Type *filter_speculative(const Type *kills) const { 274 return filter_helper(kills, true)->cleanup_speculative(); 275 } 276 277 // Returns true if this pointer points at memory which contains a 278 // compressed oop references. 279 bool is_ptr_to_narrowoop() const; 280 bool is_ptr_to_narrowklass() const; 281 282 // Convenience access 283 short geth() const; 284 virtual float getf() const; 285 double getd() const; 286 287 const TypeInt *is_int() const; 288 const TypeInt *isa_int() const; // Returns null if not an Int 289 const TypeInteger* is_integer(BasicType bt) const; 290 const TypeInteger* isa_integer(BasicType bt) const; 291 const TypeLong *is_long() const; 292 const TypeLong *isa_long() const; // Returns null if not a Long 293 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot} 294 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon 295 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon 296 const TypeH *isa_half_float() const; // Returns null if not a Float{Top,Con,Bot} 297 const TypeH *is_half_float_constant() const; // Asserts it is a FloatCon 298 const TypeH *isa_half_float_constant() const; // Returns null if not a FloatCon 299 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot} 300 const TypeF *is_float_constant() const; // Asserts it is a FloatCon 301 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon 302 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer 303 const TypeAry *is_ary() const; // Array, NOT array pointer 304 const TypeAry *isa_ary() const; // Returns null of not ary 305 const TypeVect *is_vect() const; // Vector 306 const TypeVect *isa_vect() const; // Returns null if not a Vector 307 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector 308 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask 309 const TypePtr *is_ptr() const; // Asserts it is a ptr type 310 const TypePtr *isa_ptr() const; // Returns null if not ptr type 311 const TypeRawPtr *isa_rawptr() const; // NOT Java oop 312 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr 313 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer 314 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type 315 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer 316 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type 317 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type 318 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer 319 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr 320 const TypeInstPtr *is_instptr() const; // Instance 321 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr 322 const TypeAryPtr *is_aryptr() const; // Array oop 323 324 template <typename TypeClass> 325 const TypeClass* cast() const; 326 327 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type 328 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer 329 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr 330 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr 331 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr 332 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr 333 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr 334 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr 335 336 virtual bool is_finite() const; // Has a finite value 337 virtual bool is_nan() const; // Is not a number (NaN) 338 339 // Returns this ptr type or the equivalent ptr type for this compressed pointer. 340 const TypePtr* make_ptr() const; 341 342 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. 343 // Asserts if the underlying type is not an oopptr or narrowoop. 344 const TypeOopPtr* make_oopptr() const; 345 346 // Returns this compressed pointer or the equivalent compressed version 347 // of this pointer type. 348 const TypeNarrowOop* make_narrowoop() const; 349 350 // Returns this compressed klass pointer or the equivalent 351 // compressed version of this pointer type. 352 const TypeNarrowKlass* make_narrowklass() const; 353 354 // Special test for register pressure heuristic 355 bool is_floatingpoint() const; // True if Float or Double base type 356 357 // Do you have memory, directly or through a tuple? 358 bool has_memory( ) const; 359 360 // TRUE if type is a singleton 361 virtual bool singleton(void) const; 362 363 // TRUE if type is above the lattice centerline, and is therefore vacuous 364 virtual bool empty(void) const; 365 366 // Return a hash for this type. The hash function is public so ConNode 367 // (constants) can hash on their constant, which is represented by a Type. 368 virtual uint hash() const; 369 370 // Map ideal registers (machine types) to ideal types 371 static const Type *mreg2type[]; 372 373 // Printing, statistics 374 #ifndef PRODUCT 375 void dump_on(outputStream *st) const; 376 void dump() const { 377 dump_on(tty); 378 } 379 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 380 static void dump_stats(); 381 // Groups of types, for debugging and visualization only. 382 enum class Category { 383 Data, 384 Memory, 385 Mixed, // Tuples with types of different categories. 386 Control, 387 Other, // {Type::Top, Type::Abio, Type::Bottom}. 388 Undef // {Type::Bad, Type::lastype}, for completeness. 389 }; 390 // Return the category of this type. 391 Category category() const; 392 // Check recursively in tuples. 393 bool has_category(Category cat) const; 394 395 static const char* str(const Type* t); 396 #endif // !PRODUCT 397 void typerr(const Type *t) const; // Mixing types error 398 399 // Create basic type 400 static const Type* get_const_basic_type(BasicType type) { 401 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type"); 402 return _const_basic_type[type]; 403 } 404 405 // For two instance arrays of same dimension, return the base element types. 406 // Otherwise or if the arrays have different dimensions, return null. 407 static void get_arrays_base_elements(const Type *a1, const Type *a2, 408 const TypeInstPtr **e1, const TypeInstPtr **e2); 409 410 // Mapping to the array element's basic type. 411 BasicType array_element_basic_type() const; 412 413 enum InterfaceHandling { 414 trust_interfaces, 415 ignore_interfaces 416 }; 417 // Create standard type for a ciType: 418 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces); 419 420 // Create standard zero value: 421 static const Type* get_zero_type(BasicType type) { 422 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type"); 423 return _zero_type[type]; 424 } 425 426 // Report if this is a zero value (not top). 427 bool is_zero_type() const { 428 BasicType type = basic_type(); 429 if (type == T_VOID || type >= T_CONFLICT) 430 return false; 431 else 432 return (this == _zero_type[type]); 433 } 434 435 // Convenience common pre-built types. 436 static const Type *ABIO; 437 static const Type *BOTTOM; 438 static const Type *CONTROL; 439 static const Type *DOUBLE; 440 static const Type *FLOAT; 441 static const Type *HALF_FLOAT; 442 static const Type *HALF; 443 static const Type *MEMORY; 444 static const Type *MULTI; 445 static const Type *RETURN_ADDRESS; 446 static const Type *TOP; 447 448 // Mapping from compiler type to VM BasicType 449 BasicType basic_type() const { return _type_info[_base].basic_type; } 450 uint ideal_reg() const { return _type_info[_base].ideal_reg; } 451 const char* msg() const { return _type_info[_base].msg; } 452 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } 453 relocInfo::relocType reloc() const { return _type_info[_base].reloc; } 454 455 // Mapping from CI type system to compiler type: 456 static const Type* get_typeflow_type(ciType* type); 457 458 static const Type* make_from_constant(ciConstant constant, 459 bool require_constant = false, 460 int stable_dimension = 0, 461 bool is_narrow = false, 462 bool is_autobox_cache = false); 463 464 static const Type* make_constant_from_field(ciInstance* holder, 465 int off, 466 bool is_unsigned_load, 467 BasicType loadbt); 468 469 static const Type* make_constant_from_field(ciField* field, 470 ciInstance* holder, 471 BasicType loadbt, 472 bool is_unsigned_load); 473 474 static const Type* make_constant_from_array_element(ciArray* array, 475 int off, 476 int stable_dimension, 477 BasicType loadbt, 478 bool is_unsigned_load); 479 480 // Speculative type helper methods. See TypePtr. 481 virtual const TypePtr* speculative() const { return nullptr; } 482 virtual ciKlass* speculative_type() const { return nullptr; } 483 virtual ciKlass* speculative_type_not_null() const { return nullptr; } 484 virtual bool speculative_maybe_null() const { return true; } 485 virtual bool speculative_always_null() const { return true; } 486 virtual const Type* remove_speculative() const { return this; } 487 virtual const Type* cleanup_speculative() const { return this; } 488 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; } 489 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } 490 const Type* maybe_remove_speculative(bool include_speculative) const; 491 492 virtual bool maybe_null() const { return true; } 493 virtual bool is_known_instance() const { return false; } 494 495 private: 496 // support arrays 497 static const Type* _zero_type[T_CONFLICT+1]; 498 static const Type* _const_basic_type[T_CONFLICT+1]; 499 }; 500 501 //------------------------------TypeF------------------------------------------ 502 // Class of Float-Constant Types. 503 class TypeF : public Type { 504 TypeF( float f ) : Type(FloatCon), _f(f) {}; 505 public: 506 virtual bool eq( const Type *t ) const; 507 virtual uint hash() const; // Type specific hashing 508 virtual bool singleton(void) const; // TRUE if type is a singleton 509 virtual bool empty(void) const; // TRUE if type is vacuous 510 public: 511 const float _f; // Float constant 512 513 static const TypeF *make(float f); 514 515 virtual bool is_finite() const; // Has a finite value 516 virtual bool is_nan() const; // Is not a number (NaN) 517 518 virtual const Type *xmeet( const Type *t ) const; 519 virtual const Type *xdual() const; // Compute dual right now. 520 // Convenience common pre-built types. 521 static const TypeF *MAX; 522 static const TypeF *MIN; 523 static const TypeF *ZERO; // positive zero only 524 static const TypeF *ONE; 525 static const TypeF *POS_INF; 526 static const TypeF *NEG_INF; 527 #ifndef PRODUCT 528 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 529 #endif 530 }; 531 532 // Class of Half Float-Constant Types. 533 class TypeH : public Type { 534 TypeH(short f) : Type(HalfFloatCon), _f(f) {}; 535 public: 536 virtual bool eq(const Type* t) const; 537 virtual uint hash() const; // Type specific hashing 538 virtual bool singleton(void) const; // TRUE if type is a singleton 539 virtual bool empty(void) const; // TRUE if type is vacuous 540 public: 541 const short _f; // Half Float constant 542 543 static const TypeH* make(float f); 544 static const TypeH* make(short f); 545 546 virtual bool is_finite() const; // Has a finite value 547 virtual bool is_nan() const; // Is not a number (NaN) 548 549 virtual float getf() const; 550 virtual const Type* xmeet(const Type* t) const; 551 virtual const Type* xdual() const; // Compute dual right now. 552 // Convenience common pre-built types. 553 static const TypeH* MAX; 554 static const TypeH* MIN; 555 static const TypeH* ZERO; // positive zero only 556 static const TypeH* ONE; 557 static const TypeH* POS_INF; 558 static const TypeH* NEG_INF; 559 #ifndef PRODUCT 560 virtual void dump2(Dict &d, uint depth, outputStream* st) const; 561 #endif 562 }; 563 564 //------------------------------TypeD------------------------------------------ 565 // Class of Double-Constant Types. 566 class TypeD : public Type { 567 TypeD( double d ) : Type(DoubleCon), _d(d) {}; 568 public: 569 virtual bool eq( const Type *t ) const; 570 virtual uint hash() const; // Type specific hashing 571 virtual bool singleton(void) const; // TRUE if type is a singleton 572 virtual bool empty(void) const; // TRUE if type is vacuous 573 public: 574 const double _d; // Double constant 575 576 static const TypeD *make(double d); 577 578 virtual bool is_finite() const; // Has a finite value 579 virtual bool is_nan() const; // Is not a number (NaN) 580 581 virtual const Type *xmeet( const Type *t ) const; 582 virtual const Type *xdual() const; // Compute dual right now. 583 // Convenience common pre-built types. 584 static const TypeD *MAX; 585 static const TypeD *MIN; 586 static const TypeD *ZERO; // positive zero only 587 static const TypeD *ONE; 588 static const TypeD *POS_INF; 589 static const TypeD *NEG_INF; 590 #ifndef PRODUCT 591 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 592 #endif 593 }; 594 595 class TypeInteger : public Type { 596 protected: 597 TypeInteger(TYPES t, int w) : Type(t), _widen(w) {} 598 599 public: 600 const short _widen; // Limit on times we widen this sucker 601 602 virtual jlong hi_as_long() const = 0; 603 virtual jlong lo_as_long() const = 0; 604 jlong get_con_as_long(BasicType bt) const; 605 bool is_con() const { return lo_as_long() == hi_as_long(); } 606 virtual short widen_limit() const { return _widen; } 607 608 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt); 609 610 static const TypeInteger* bottom(BasicType type); 611 static const TypeInteger* zero(BasicType type); 612 static const TypeInteger* one(BasicType type); 613 static const TypeInteger* minus_1(BasicType type); 614 }; 615 616 617 618 //------------------------------TypeInt---------------------------------------- 619 // Class of integer ranges, the set of integers between a lower bound and an 620 // upper bound, inclusive. 621 class TypeInt : public TypeInteger { 622 TypeInt( jint lo, jint hi, int w ); 623 protected: 624 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 625 626 public: 627 typedef jint NativeType; 628 virtual bool eq( const Type *t ) const; 629 virtual uint hash() const; // Type specific hashing 630 virtual bool singleton(void) const; // TRUE if type is a singleton 631 virtual bool empty(void) const; // TRUE if type is vacuous 632 const jint _lo, _hi; // Lower bound, upper bound 633 634 static const TypeInt *make(jint lo); 635 // must always specify w 636 static const TypeInt *make(jint lo, jint hi, int w); 637 638 // Check for single integer 639 bool is_con() const { return _lo==_hi; } 640 bool is_con(jint i) const { return is_con() && _lo == i; } 641 jint get_con() const { assert(is_con(), "" ); return _lo; } 642 643 virtual bool is_finite() const; // Has a finite value 644 645 virtual const Type *xmeet( const Type *t ) const; 646 virtual const Type *xdual() const; // Compute dual right now. 647 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 648 virtual const Type *narrow( const Type *t ) const; 649 650 virtual jlong hi_as_long() const { return _hi; } 651 virtual jlong lo_as_long() const { return _lo; } 652 653 // Do not kill _widen bits. 654 // Convenience common pre-built types. 655 static const TypeInt *MAX; 656 static const TypeInt *MIN; 657 static const TypeInt *MINUS_1; 658 static const TypeInt *ZERO; 659 static const TypeInt *ONE; 660 static const TypeInt *BOOL; 661 static const TypeInt *CC; 662 static const TypeInt *CC_LT; // [-1] == MINUS_1 663 static const TypeInt *CC_GT; // [1] == ONE 664 static const TypeInt *CC_EQ; // [0] == ZERO 665 static const TypeInt *CC_LE; // [-1,0] 666 static const TypeInt *CC_GE; // [0,1] == BOOL (!) 667 static const TypeInt *BYTE; 668 static const TypeInt *UBYTE; 669 static const TypeInt *CHAR; 670 static const TypeInt *SHORT; 671 static const TypeInt *POS; 672 static const TypeInt *POS1; 673 static const TypeInt *INT; 674 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint] 675 static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT 676 677 static const TypeInt *as_self(const Type *t) { return t->is_int(); } 678 #ifndef PRODUCT 679 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 680 #endif 681 }; 682 683 684 //------------------------------TypeLong--------------------------------------- 685 // Class of long integer ranges, the set of integers between a lower bound and 686 // an upper bound, inclusive. 687 class TypeLong : public TypeInteger { 688 TypeLong( jlong lo, jlong hi, int w ); 689 protected: 690 // Do not kill _widen bits. 691 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 692 public: 693 typedef jlong NativeType; 694 virtual bool eq( const Type *t ) const; 695 virtual uint hash() const; // Type specific hashing 696 virtual bool singleton(void) const; // TRUE if type is a singleton 697 virtual bool empty(void) const; // TRUE if type is vacuous 698 public: 699 const jlong _lo, _hi; // Lower bound, upper bound 700 701 static const TypeLong *make(jlong lo); 702 // must always specify w 703 static const TypeLong *make(jlong lo, jlong hi, int w); 704 705 // Check for single integer 706 bool is_con() const { return _lo==_hi; } 707 bool is_con(jlong i) const { return is_con() && _lo == i; } 708 jlong get_con() const { assert(is_con(), "" ); return _lo; } 709 710 // Check for positive 32-bit value. 711 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } 712 713 virtual bool is_finite() const; // Has a finite value 714 715 virtual jlong hi_as_long() const { return _hi; } 716 virtual jlong lo_as_long() const { return _lo; } 717 718 virtual const Type *xmeet( const Type *t ) const; 719 virtual const Type *xdual() const; // Compute dual right now. 720 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 721 virtual const Type *narrow( const Type *t ) const; 722 // Convenience common pre-built types. 723 static const TypeLong *MAX; 724 static const TypeLong *MIN; 725 static const TypeLong *MINUS_1; 726 static const TypeLong *ZERO; 727 static const TypeLong *ONE; 728 static const TypeLong *POS; 729 static const TypeLong *LONG; 730 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint] 731 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint] 732 static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG 733 734 // static convenience methods. 735 static const TypeLong *as_self(const Type *t) { return t->is_long(); } 736 737 #ifndef PRODUCT 738 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping 739 #endif 740 }; 741 742 //------------------------------TypeTuple-------------------------------------- 743 // Class of Tuple Types, essentially type collections for function signatures 744 // and class layouts. It happens to also be a fast cache for the HotSpot 745 // signature types. 746 class TypeTuple : public Type { 747 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } 748 749 const uint _cnt; // Count of fields 750 const Type ** const _fields; // Array of field types 751 752 public: 753 virtual bool eq( const Type *t ) const; 754 virtual uint hash() const; // Type specific hashing 755 virtual bool singleton(void) const; // TRUE if type is a singleton 756 virtual bool empty(void) const; // TRUE if type is vacuous 757 758 // Accessors: 759 uint cnt() const { return _cnt; } 760 const Type* field_at(uint i) const { 761 assert(i < _cnt, "oob"); 762 return _fields[i]; 763 } 764 void set_field_at(uint i, const Type* t) { 765 assert(i < _cnt, "oob"); 766 _fields[i] = t; 767 } 768 769 static const TypeTuple *make( uint cnt, const Type **fields ); 770 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces); 771 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling); 772 773 // Subroutine call type with space allocated for argument types 774 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 775 static const Type **fields( uint arg_cnt ); 776 777 virtual const Type *xmeet( const Type *t ) const; 778 virtual const Type *xdual() const; // Compute dual right now. 779 // Convenience common pre-built types. 780 static const TypeTuple *IFBOTH; 781 static const TypeTuple *IFFALSE; 782 static const TypeTuple *IFTRUE; 783 static const TypeTuple *IFNEITHER; 784 static const TypeTuple *LOOPBODY; 785 static const TypeTuple *MEMBAR; 786 static const TypeTuple *STORECONDITIONAL; 787 static const TypeTuple *START_I2C; 788 static const TypeTuple *INT_PAIR; 789 static const TypeTuple *LONG_PAIR; 790 static const TypeTuple *INT_CC_PAIR; 791 static const TypeTuple *LONG_CC_PAIR; 792 #ifndef PRODUCT 793 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 794 #endif 795 }; 796 797 //------------------------------TypeAry---------------------------------------- 798 // Class of Array Types 799 class TypeAry : public Type { 800 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array), 801 _elem(elem), _size(size), _stable(stable) {} 802 public: 803 virtual bool eq( const Type *t ) const; 804 virtual uint hash() const; // Type specific hashing 805 virtual bool singleton(void) const; // TRUE if type is a singleton 806 virtual bool empty(void) const; // TRUE if type is vacuous 807 808 private: 809 const Type *_elem; // Element type of array 810 const TypeInt *_size; // Elements in array 811 const bool _stable; // Are elements @Stable? 812 friend class TypeAryPtr; 813 814 public: 815 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false); 816 817 virtual const Type *xmeet( const Type *t ) const; 818 virtual const Type *xdual() const; // Compute dual right now. 819 bool ary_must_be_exact() const; // true if arrays of such are never generic 820 virtual const TypeAry* remove_speculative() const; 821 virtual const Type* cleanup_speculative() const; 822 #ifndef PRODUCT 823 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 824 #endif 825 }; 826 827 //------------------------------TypeVect--------------------------------------- 828 // Class of Vector Types 829 class TypeVect : public Type { 830 const BasicType _elem_bt; // Vector's element type 831 const uint _length; // Elements in vector (power of 2) 832 833 protected: 834 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t), 835 _elem_bt(elem_bt), _length(length) {} 836 837 public: 838 BasicType element_basic_type() const { return _elem_bt; } 839 uint length() const { return _length; } 840 uint length_in_bytes() const { 841 return _length * type2aelembytes(element_basic_type()); 842 } 843 844 virtual bool eq(const Type* t) const; 845 virtual uint hash() const; // Type specific hashing 846 virtual bool singleton(void) const; // TRUE if type is a singleton 847 virtual bool empty(void) const; // TRUE if type is vacuous 848 849 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false); 850 static const TypeVect* makemask(const BasicType elem_bt, uint length); 851 852 virtual const Type* xmeet( const Type *t) const; 853 virtual const Type* xdual() const; // Compute dual right now. 854 855 static const TypeVect* VECTA; 856 static const TypeVect* VECTS; 857 static const TypeVect* VECTD; 858 static const TypeVect* VECTX; 859 static const TypeVect* VECTY; 860 static const TypeVect* VECTZ; 861 static const TypeVect* VECTMASK; 862 863 #ifndef PRODUCT 864 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping 865 #endif 866 }; 867 868 class TypeVectA : public TypeVect { 869 friend class TypeVect; 870 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {} 871 }; 872 873 class TypeVectS : public TypeVect { 874 friend class TypeVect; 875 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {} 876 }; 877 878 class TypeVectD : public TypeVect { 879 friend class TypeVect; 880 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {} 881 }; 882 883 class TypeVectX : public TypeVect { 884 friend class TypeVect; 885 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {} 886 }; 887 888 class TypeVectY : public TypeVect { 889 friend class TypeVect; 890 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {} 891 }; 892 893 class TypeVectZ : public TypeVect { 894 friend class TypeVect; 895 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {} 896 }; 897 898 class TypeVectMask : public TypeVect { 899 public: 900 friend class TypeVect; 901 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {} 902 static const TypeVectMask* make(const BasicType elem_bt, uint length); 903 }; 904 905 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr. 906 class TypeInterfaces : public Type { 907 private: 908 GrowableArrayFromArray<ciInstanceKlass*> _interfaces; 909 uint _hash; 910 ciInstanceKlass* _exact_klass; 911 DEBUG_ONLY(bool _initialized;) 912 913 void initialize(); 914 915 void verify() const NOT_DEBUG_RETURN; 916 void compute_hash(); 917 void compute_exact_klass(); 918 919 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces); 920 921 NONCOPYABLE(TypeInterfaces); 922 public: 923 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr); 924 bool eq(const Type* other) const; 925 bool eq(ciInstanceKlass* k) const; 926 uint hash() const; 927 const Type *xdual() const; 928 void dump(outputStream* st) const; 929 const TypeInterfaces* union_with(const TypeInterfaces* other) const; 930 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const; 931 bool contains(const TypeInterfaces* other) const { 932 return intersection_with(other)->eq(other); 933 } 934 bool empty() const { return _interfaces.length() == 0; } 935 936 ciInstanceKlass* exact_klass() const; 937 void verify_is_loaded() const NOT_DEBUG_RETURN; 938 939 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2); 940 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2); 941 942 const Type* xmeet(const Type* t) const; 943 944 bool singleton(void) const; 945 }; 946 947 //------------------------------TypePtr---------------------------------------- 948 // Class of machine Pointer Types: raw data, instances or arrays. 949 // If the _base enum is AnyPtr, then this refers to all of the above. 950 // Otherwise the _base will indicate which subset of pointers is affected, 951 // and the class will be inherited from. 952 class TypePtr : public Type { 953 friend class TypeNarrowPtr; 954 friend class Type; 955 protected: 956 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling); 957 958 public: 959 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; 960 protected: 961 TypePtr(TYPES t, PTR ptr, int offset, 962 const TypePtr* speculative = nullptr, 963 int inline_depth = InlineDepthBottom) : 964 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), 965 _ptr(ptr) {} 966 static const PTR ptr_meet[lastPTR][lastPTR]; 967 static const PTR ptr_dual[lastPTR]; 968 static const char * const ptr_msg[lastPTR]; 969 970 enum { 971 InlineDepthBottom = INT_MAX, 972 InlineDepthTop = -InlineDepthBottom 973 }; 974 975 // Extra type information profiling gave us. We propagate it the 976 // same way the rest of the type info is propagated. If we want to 977 // use it, then we have to emit a guard: this part of the type is 978 // not something we know but something we speculate about the type. 979 const TypePtr* _speculative; 980 // For speculative types, we record at what inlining depth the 981 // profiling point that provided the data is. We want to favor 982 // profile data coming from outer scopes which are likely better for 983 // the current compilation. 984 int _inline_depth; 985 986 // utility methods to work on the speculative part of the type 987 const TypePtr* dual_speculative() const; 988 const TypePtr* xmeet_speculative(const TypePtr* other) const; 989 bool eq_speculative(const TypePtr* other) const; 990 int hash_speculative() const; 991 const TypePtr* add_offset_speculative(intptr_t offset) const; 992 const TypePtr* with_offset_speculative(intptr_t offset) const; 993 #ifndef PRODUCT 994 void dump_speculative(outputStream *st) const; 995 #endif 996 997 // utility methods to work on the inline depth of the type 998 int dual_inline_depth() const; 999 int meet_inline_depth(int depth) const; 1000 #ifndef PRODUCT 1001 void dump_inline_depth(outputStream *st) const; 1002 #endif 1003 1004 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic. 1005 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for 1006 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what 1007 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was 1008 // encountered so the right logic specific to klasses or oops can be executed., 1009 enum MeetResult { 1010 QUICK, 1011 UNLOADED, 1012 SUBTYPE, 1013 NOT_SUBTYPE, 1014 LCA 1015 }; 1016 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, 1017 const T* other_type, ciKlass*& res_klass, bool& res_xk); 1018 1019 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 1020 ciKlass*& res_klass, bool& res_xk); 1021 1022 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1023 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other); 1024 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1025 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1026 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other); 1027 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1028 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1029 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1030 public: 1031 const int _offset; // Offset into oop, with TOP & BOT 1032 const PTR _ptr; // Pointer equivalence class 1033 1034 int offset() const { return _offset; } 1035 PTR ptr() const { return _ptr; } 1036 1037 static const TypePtr *make(TYPES t, PTR ptr, int offset, 1038 const TypePtr* speculative = nullptr, 1039 int inline_depth = InlineDepthBottom); 1040 1041 // Return a 'ptr' version of this type 1042 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; 1043 1044 virtual intptr_t get_con() const; 1045 1046 int xadd_offset( intptr_t offset ) const; 1047 virtual const TypePtr* add_offset(intptr_t offset) const; 1048 virtual const TypePtr* with_offset(intptr_t offset) const; 1049 virtual bool eq(const Type *t) const; 1050 virtual uint hash() const; // Type specific hashing 1051 1052 virtual bool singleton(void) const; // TRUE if type is a singleton 1053 virtual bool empty(void) const; // TRUE if type is vacuous 1054 virtual const Type *xmeet( const Type *t ) const; 1055 virtual const Type *xmeet_helper( const Type *t ) const; 1056 int meet_offset( int offset ) const; 1057 int dual_offset( ) const; 1058 virtual const Type *xdual() const; // Compute dual right now. 1059 1060 // meet, dual and join over pointer equivalence sets 1061 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } 1062 PTR dual_ptr() const { return ptr_dual[ptr()]; } 1063 1064 // This is textually confusing unless one recalls that 1065 // join(t) == dual()->meet(t->dual())->dual(). 1066 PTR join_ptr( const PTR in_ptr ) const { 1067 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; 1068 } 1069 1070 // Speculative type helper methods. 1071 virtual const TypePtr* speculative() const { return _speculative; } 1072 int inline_depth() const { return _inline_depth; } 1073 virtual ciKlass* speculative_type() const; 1074 virtual ciKlass* speculative_type_not_null() const; 1075 virtual bool speculative_maybe_null() const; 1076 virtual bool speculative_always_null() const; 1077 virtual const TypePtr* remove_speculative() const; 1078 virtual const Type* cleanup_speculative() const; 1079 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1080 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; 1081 virtual const TypePtr* with_inline_depth(int depth) const; 1082 1083 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } 1084 1085 // Tests for relation to centerline of type lattice: 1086 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } 1087 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } 1088 // Convenience common pre-built types. 1089 static const TypePtr *NULL_PTR; 1090 static const TypePtr *NOTNULL; 1091 static const TypePtr *BOTTOM; 1092 #ifndef PRODUCT 1093 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1094 #endif 1095 }; 1096 1097 //------------------------------TypeRawPtr------------------------------------- 1098 // Class of raw pointers, pointers to things other than Oops. Examples 1099 // include the stack pointer, top of heap, card-marking area, handles, etc. 1100 class TypeRawPtr : public TypePtr { 1101 protected: 1102 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){} 1103 public: 1104 virtual bool eq( const Type *t ) const; 1105 virtual uint hash() const; // Type specific hashing 1106 1107 const address _bits; // Constant value, if applicable 1108 1109 static const TypeRawPtr *make( PTR ptr ); 1110 static const TypeRawPtr *make( address bits ); 1111 1112 // Return a 'ptr' version of this type 1113 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const; 1114 1115 virtual intptr_t get_con() const; 1116 1117 virtual const TypePtr* add_offset(intptr_t offset) const; 1118 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;} 1119 1120 virtual const Type *xmeet( const Type *t ) const; 1121 virtual const Type *xdual() const; // Compute dual right now. 1122 // Convenience common pre-built types. 1123 static const TypeRawPtr *BOTTOM; 1124 static const TypeRawPtr *NOTNULL; 1125 #ifndef PRODUCT 1126 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1127 #endif 1128 }; 1129 1130 //------------------------------TypeOopPtr------------------------------------- 1131 // Some kind of oop (Java pointer), either instance or array. 1132 class TypeOopPtr : public TypePtr { 1133 friend class TypeAry; 1134 friend class TypePtr; 1135 friend class TypeInstPtr; 1136 friend class TypeAryPtr; 1137 protected: 1138 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id, 1139 const TypePtr* speculative, int inline_depth); 1140 public: 1141 virtual bool eq( const Type *t ) const; 1142 virtual uint hash() const; // Type specific hashing 1143 virtual bool singleton(void) const; // TRUE if type is a singleton 1144 enum { 1145 InstanceTop = -1, // undefined instance 1146 InstanceBot = 0 // any possible instance 1147 }; 1148 protected: 1149 1150 // Oop is null, unless this is a constant oop. 1151 ciObject* _const_oop; // Constant oop 1152 // If _klass is null, then so is _sig. This is an unloaded klass. 1153 ciKlass* _klass; // Klass object 1154 1155 const TypeInterfaces* _interfaces; 1156 1157 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) 1158 bool _klass_is_exact; 1159 bool _is_ptr_to_narrowoop; 1160 bool _is_ptr_to_narrowklass; 1161 bool _is_ptr_to_boxed_value; 1162 1163 // If not InstanceTop or InstanceBot, indicates that this is 1164 // a particular instance of this type which is distinct. 1165 // This is the node index of the allocation node creating this instance. 1166 int _instance_id; 1167 1168 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling); 1169 1170 int dual_instance_id() const; 1171 int meet_instance_id(int uid) const; 1172 1173 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const; 1174 1175 // Do not allow interface-vs.-noninterface joins to collapse to top. 1176 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1177 1178 virtual ciKlass* exact_klass_helper() const { return nullptr; } 1179 virtual ciKlass* klass() const { return _klass; } 1180 1181 public: 1182 1183 bool is_java_subtype_of(const TypeOopPtr* other) const { 1184 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1185 } 1186 1187 bool is_same_java_type_as(const TypePtr* other) const { 1188 return is_same_java_type_as_helper(other->is_oopptr()); 1189 } 1190 1191 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const { 1192 ShouldNotReachHere(); return false; 1193 } 1194 1195 bool maybe_java_subtype_of(const TypeOopPtr* other) const { 1196 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1197 } 1198 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1199 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1200 1201 1202 // Creates a type given a klass. Correctly handles multi-dimensional arrays 1203 // Respects UseUniqueSubclasses. 1204 // If the klass is final, the resulting type will be exact. 1205 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1206 return make_from_klass_common(klass, true, false, interface_handling); 1207 } 1208 // Same as before, but will produce an exact type, even if 1209 // the klass is not final, as long as it has exactly one implementation. 1210 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) { 1211 return make_from_klass_common(klass, true, true, interface_handling); 1212 } 1213 // Same as before, but does not respects UseUniqueSubclasses. 1214 // Use this only for creating array element types. 1215 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1216 return make_from_klass_common(klass, false, false, interface_handling); 1217 } 1218 // Creates a singleton type given an object. 1219 // If the object cannot be rendered as a constant, 1220 // may return a non-singleton type. 1221 // If require_constant, produce a null if a singleton is not possible. 1222 static const TypeOopPtr* make_from_constant(ciObject* o, 1223 bool require_constant = false); 1224 1225 // Make a generic (unclassed) pointer to an oop. 1226 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, 1227 const TypePtr* speculative = nullptr, 1228 int inline_depth = InlineDepthBottom); 1229 1230 ciObject* const_oop() const { return _const_oop; } 1231 // Exact klass, possibly an interface or an array of interface 1232 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1233 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); } 1234 1235 virtual bool is_loaded() const { return klass()->is_loaded(); } 1236 virtual bool klass_is_exact() const { return _klass_is_exact; } 1237 1238 // Returns true if this pointer points at memory which contains a 1239 // compressed oop references. 1240 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } 1241 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } 1242 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } 1243 bool is_known_instance() const { return _instance_id > 0; } 1244 int instance_id() const { return _instance_id; } 1245 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } 1246 1247 virtual intptr_t get_con() const; 1248 1249 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const; 1250 1251 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const; 1252 1253 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; 1254 1255 // corresponding pointer to klass, for a given instance 1256 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1257 1258 virtual const TypeOopPtr* with_offset(intptr_t offset) const; 1259 virtual const TypePtr* add_offset(intptr_t offset) const; 1260 1261 // Speculative type helper methods. 1262 virtual const TypeOopPtr* remove_speculative() const; 1263 virtual const Type* cleanup_speculative() const; 1264 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1265 virtual const TypePtr* with_inline_depth(int depth) const; 1266 1267 virtual const TypePtr* with_instance_id(int instance_id) const; 1268 1269 virtual const Type *xdual() const; // Compute dual right now. 1270 // the core of the computation of the meet for TypeOopPtr and for its subclasses 1271 virtual const Type *xmeet_helper(const Type *t) const; 1272 1273 // Convenience common pre-built type. 1274 static const TypeOopPtr *BOTTOM; 1275 #ifndef PRODUCT 1276 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1277 #endif 1278 private: 1279 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1280 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact()); 1281 } 1282 1283 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const { 1284 ShouldNotReachHere(); return false; 1285 } 1286 1287 virtual const TypeInterfaces* interfaces() const { 1288 return _interfaces; 1289 }; 1290 1291 const TypeOopPtr* is_reference_type(const Type* other) const { 1292 return other->isa_oopptr(); 1293 } 1294 1295 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const { 1296 return other->isa_aryptr(); 1297 } 1298 1299 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const { 1300 return other->isa_instptr(); 1301 } 1302 }; 1303 1304 //------------------------------TypeInstPtr------------------------------------ 1305 // Class of Java object pointers, pointing either to non-array Java instances 1306 // or to a Klass* (including array klasses). 1307 class TypeInstPtr : public TypeOopPtr { 1308 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id, 1309 const TypePtr* speculative, int inline_depth); 1310 virtual bool eq( const Type *t ) const; 1311 virtual uint hash() const; // Type specific hashing 1312 1313 ciKlass* exact_klass_helper() const; 1314 1315 public: 1316 1317 // Instance klass, ignoring any interface 1318 ciInstanceKlass* instance_klass() const { 1319 assert(!(klass()->is_loaded() && klass()->is_interface()), ""); 1320 return klass()->as_instance_klass(); 1321 } 1322 1323 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1324 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1325 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1326 1327 // Make a pointer to a constant oop. 1328 static const TypeInstPtr *make(ciObject* o) { 1329 ciKlass* k = o->klass(); 1330 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1331 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot); 1332 } 1333 // Make a pointer to a constant oop with offset. 1334 static const TypeInstPtr *make(ciObject* o, int offset) { 1335 ciKlass* k = o->klass(); 1336 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1337 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot); 1338 } 1339 1340 // Make a pointer to some value of type klass. 1341 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1342 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 1343 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot); 1344 } 1345 1346 // Make a pointer to some non-polymorphic value of exactly type klass. 1347 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { 1348 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1349 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot); 1350 } 1351 1352 // Make a pointer to some value of type klass with offset. 1353 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) { 1354 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1355 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot); 1356 } 1357 1358 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 1359 int instance_id = InstanceBot, 1360 const TypePtr* speculative = nullptr, 1361 int inline_depth = InlineDepthBottom); 1362 1363 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) { 1364 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1365 return make(ptr, k, interfaces, xk, o, offset, instance_id); 1366 } 1367 1368 /** Create constant type for a constant boxed value */ 1369 const Type* get_const_boxed_value() const; 1370 1371 // If this is a java.lang.Class constant, return the type for it or null. 1372 // Pass to Type::get_const_type to turn it to a type, which will usually 1373 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. 1374 ciType* java_mirror_type() const; 1375 1376 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const; 1377 1378 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const; 1379 1380 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const; 1381 1382 virtual const TypePtr* add_offset(intptr_t offset) const; 1383 virtual const TypeInstPtr* with_offset(intptr_t offset) const; 1384 1385 // Speculative type helper methods. 1386 virtual const TypeInstPtr* remove_speculative() const; 1387 const TypeInstPtr* with_speculative(const TypePtr* speculative) const; 1388 virtual const TypePtr* with_inline_depth(int depth) const; 1389 virtual const TypePtr* with_instance_id(int instance_id) const; 1390 1391 // the core of the computation of the meet of 2 types 1392 virtual const Type *xmeet_helper(const Type *t) const; 1393 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const; 1394 virtual const Type *xdual() const; // Compute dual right now. 1395 1396 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1397 1398 // Convenience common pre-built types. 1399 static const TypeInstPtr *NOTNULL; 1400 static const TypeInstPtr *BOTTOM; 1401 static const TypeInstPtr *MIRROR; 1402 static const TypeInstPtr *MARK; 1403 static const TypeInstPtr *KLASS; 1404 #ifndef PRODUCT 1405 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1406 #endif 1407 1408 private: 1409 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1410 1411 virtual bool is_meet_same_type_as(const TypePtr* other) const { 1412 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces); 1413 } 1414 1415 }; 1416 1417 //------------------------------TypeAryPtr------------------------------------- 1418 // Class of Java array pointers 1419 class TypeAryPtr : public TypeOopPtr { 1420 friend class Type; 1421 friend class TypePtr; 1422 1423 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, 1424 int offset, int instance_id, bool is_autobox_cache, 1425 const TypePtr* speculative, int inline_depth) 1426 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth), 1427 _ary(ary), 1428 _is_autobox_cache(is_autobox_cache) 1429 { 1430 int dummy; 1431 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM); 1432 1433 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) && 1434 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() && 1435 _offset != arrayOopDesc::klass_offset_in_bytes()) { 1436 _is_ptr_to_narrowoop = true; 1437 } 1438 1439 } 1440 virtual bool eq( const Type *t ) const; 1441 virtual uint hash() const; // Type specific hashing 1442 const TypeAry *_ary; // Array we point into 1443 const bool _is_autobox_cache; 1444 1445 ciKlass* compute_klass() const; 1446 1447 // A pointer to delay allocation to Type::Initialize_shared() 1448 1449 static const TypeInterfaces* _array_interfaces; 1450 ciKlass* exact_klass_helper() const; 1451 // Only guaranteed non null for array of basic types 1452 ciKlass* klass() const; 1453 1454 public: 1455 1456 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1457 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1458 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1459 1460 // returns base element type, an instance klass (and not interface) for object arrays 1461 const Type* base_element_type(int& dims) const; 1462 1463 // Accessors 1464 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); } 1465 1466 const TypeAry* ary() const { return _ary; } 1467 const Type* elem() const { return _ary->_elem; } 1468 const TypeInt* size() const { return _ary->_size; } 1469 bool is_stable() const { return _ary->_stable; } 1470 1471 bool is_autobox_cache() const { return _is_autobox_cache; } 1472 1473 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1474 int instance_id = InstanceBot, 1475 const TypePtr* speculative = nullptr, 1476 int inline_depth = InlineDepthBottom); 1477 // Constant pointer to array 1478 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1479 int instance_id = InstanceBot, 1480 const TypePtr* speculative = nullptr, 1481 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false); 1482 1483 // Return a 'ptr' version of this type 1484 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const; 1485 1486 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const; 1487 1488 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const; 1489 1490 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; 1491 virtual const TypeInt* narrow_size_type(const TypeInt* size) const; 1492 1493 virtual bool empty(void) const; // TRUE if type is vacuous 1494 virtual const TypePtr *add_offset( intptr_t offset ) const; 1495 virtual const TypeAryPtr *with_offset( intptr_t offset ) const; 1496 const TypeAryPtr* with_ary(const TypeAry* ary) const; 1497 1498 // Speculative type helper methods. 1499 virtual const TypeAryPtr* remove_speculative() const; 1500 virtual const TypePtr* with_inline_depth(int depth) const; 1501 virtual const TypePtr* with_instance_id(int instance_id) const; 1502 1503 // the core of the computation of the meet of 2 types 1504 virtual const Type *xmeet_helper(const Type *t) const; 1505 virtual const Type *xdual() const; // Compute dual right now. 1506 1507 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; 1508 int stable_dimension() const; 1509 1510 const TypeAryPtr* cast_to_autobox_cache() const; 1511 1512 static jint max_array_length(BasicType etype) ; 1513 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1514 1515 // Convenience common pre-built types. 1516 static const TypeAryPtr* BOTTOM; 1517 static const TypeAryPtr* RANGE; 1518 static const TypeAryPtr* OOPS; 1519 static const TypeAryPtr* NARROWOOPS; 1520 static const TypeAryPtr* BYTES; 1521 static const TypeAryPtr* SHORTS; 1522 static const TypeAryPtr* CHARS; 1523 static const TypeAryPtr* INTS; 1524 static const TypeAryPtr* LONGS; 1525 static const TypeAryPtr* FLOATS; 1526 static const TypeAryPtr* DOUBLES; 1527 // selects one of the above: 1528 static const TypeAryPtr *get_array_body_type(BasicType elem) { 1529 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type"); 1530 return _array_body_type[elem]; 1531 } 1532 static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; 1533 // sharpen the type of an int which is used as an array size 1534 #ifndef PRODUCT 1535 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1536 #endif 1537 private: 1538 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1539 }; 1540 1541 //------------------------------TypeMetadataPtr------------------------------------- 1542 // Some kind of metadata, either Method*, MethodData* or CPCacheOop 1543 class TypeMetadataPtr : public TypePtr { 1544 protected: 1545 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset); 1546 // Do not allow interface-vs.-noninterface joins to collapse to top. 1547 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1548 public: 1549 virtual bool eq( const Type *t ) const; 1550 virtual uint hash() const; // Type specific hashing 1551 virtual bool singleton(void) const; // TRUE if type is a singleton 1552 1553 private: 1554 ciMetadata* _metadata; 1555 1556 public: 1557 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset); 1558 1559 static const TypeMetadataPtr* make(ciMethod* m); 1560 static const TypeMetadataPtr* make(ciMethodData* m); 1561 1562 ciMetadata* metadata() const { return _metadata; } 1563 1564 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const; 1565 1566 virtual const TypePtr *add_offset( intptr_t offset ) const; 1567 1568 virtual const Type *xmeet( const Type *t ) const; 1569 virtual const Type *xdual() const; // Compute dual right now. 1570 1571 virtual intptr_t get_con() const; 1572 1573 // Convenience common pre-built types. 1574 static const TypeMetadataPtr *BOTTOM; 1575 1576 #ifndef PRODUCT 1577 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1578 #endif 1579 }; 1580 1581 //------------------------------TypeKlassPtr----------------------------------- 1582 // Class of Java Klass pointers 1583 class TypeKlassPtr : public TypePtr { 1584 friend class TypeInstKlassPtr; 1585 friend class TypeAryKlassPtr; 1586 friend class TypePtr; 1587 protected: 1588 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset); 1589 1590 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1591 1592 public: 1593 virtual bool eq( const Type *t ) const; 1594 virtual uint hash() const; 1595 virtual bool singleton(void) const; // TRUE if type is a singleton 1596 1597 protected: 1598 1599 ciKlass* _klass; 1600 const TypeInterfaces* _interfaces; 1601 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const; 1602 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; } 1603 virtual ciKlass* exact_klass_helper() const; 1604 virtual ciKlass* klass() const { return _klass; } 1605 1606 public: 1607 1608 bool is_java_subtype_of(const TypeKlassPtr* other) const { 1609 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1610 } 1611 bool is_same_java_type_as(const TypePtr* other) const { 1612 return is_same_java_type_as_helper(other->is_klassptr()); 1613 } 1614 1615 bool maybe_java_subtype_of(const TypeKlassPtr* other) const { 1616 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1617 } 1618 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; } 1619 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1620 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1621 1622 // Exact klass, possibly an interface or an array of interface 1623 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1624 virtual bool klass_is_exact() const { return _ptr == Constant; } 1625 1626 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces); 1627 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces); 1628 1629 virtual bool is_loaded() const { return _klass->is_loaded(); } 1630 1631 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; } 1632 1633 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; } 1634 1635 // corresponding pointer to instance, for a given class 1636 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; } 1637 1638 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; } 1639 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; } 1640 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; } 1641 1642 virtual intptr_t get_con() const; 1643 1644 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; } 1645 1646 virtual const TypeKlassPtr* try_improve() const { return this; } 1647 1648 #ifndef PRODUCT 1649 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1650 #endif 1651 private: 1652 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1653 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact()); 1654 } 1655 1656 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const { 1657 ShouldNotReachHere(); return false; 1658 } 1659 1660 virtual const TypeInterfaces* interfaces() const { 1661 return _interfaces; 1662 }; 1663 1664 const TypeKlassPtr* is_reference_type(const Type* other) const { 1665 return other->isa_klassptr(); 1666 } 1667 1668 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const { 1669 return other->isa_aryklassptr(); 1670 } 1671 1672 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const { 1673 return other->isa_instklassptr(); 1674 } 1675 }; 1676 1677 // Instance klass pointer, mirrors TypeInstPtr 1678 class TypeInstKlassPtr : public TypeKlassPtr { 1679 1680 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 1681 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) { 1682 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), ""); 1683 } 1684 1685 virtual bool must_be_exact() const; 1686 1687 public: 1688 // Instance klass ignoring any interface 1689 ciInstanceKlass* instance_klass() const { 1690 assert(!klass()->is_interface(), ""); 1691 return klass()->as_instance_klass(); 1692 } 1693 1694 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1695 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1696 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1697 1698 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) { 1699 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling); 1700 return make(TypePtr::Constant, k, interfaces, 0); 1701 } 1702 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset); 1703 1704 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) { 1705 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1706 return make(ptr, k, interfaces, offset); 1707 } 1708 1709 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const; 1710 1711 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1712 1713 // corresponding pointer to instance, for a given class 1714 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1715 virtual uint hash() const; 1716 virtual bool eq(const Type *t) const; 1717 1718 virtual const TypePtr *add_offset( intptr_t offset ) const; 1719 virtual const Type *xmeet( const Type *t ) const; 1720 virtual const Type *xdual() const; 1721 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const; 1722 1723 virtual const TypeKlassPtr* try_improve() const; 1724 1725 // Convenience common pre-built types. 1726 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below 1727 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same 1728 private: 1729 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1730 }; 1731 1732 // Array klass pointer, mirrors TypeAryPtr 1733 class TypeAryKlassPtr : public TypeKlassPtr { 1734 friend class TypeInstKlassPtr; 1735 friend class Type; 1736 friend class TypePtr; 1737 1738 const Type *_elem; 1739 1740 static const TypeInterfaces* _array_interfaces; 1741 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset) 1742 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) { 1743 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), ""); 1744 } 1745 1746 virtual ciKlass* exact_klass_helper() const; 1747 // Only guaranteed non null for array of basic types 1748 virtual ciKlass* klass() const; 1749 1750 virtual bool must_be_exact() const; 1751 1752 public: 1753 1754 // returns base element type, an instance klass (and not interface) for object arrays 1755 const Type* base_element_type(int& dims) const; 1756 1757 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling); 1758 1759 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1760 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1761 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1762 1763 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); } 1764 1765 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset); 1766 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling); 1767 1768 const Type *elem() const { return _elem; } 1769 1770 virtual bool eq(const Type *t) const; 1771 virtual uint hash() const; // Type specific hashing 1772 1773 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const; 1774 1775 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1776 1777 // corresponding pointer to instance, for a given class 1778 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1779 1780 virtual const TypePtr *add_offset( intptr_t offset ) const; 1781 virtual const Type *xmeet( const Type *t ) const; 1782 virtual const Type *xdual() const; // Compute dual right now. 1783 1784 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const; 1785 1786 virtual bool empty(void) const { 1787 return TypeKlassPtr::empty() || _elem->empty(); 1788 } 1789 1790 #ifndef PRODUCT 1791 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1792 #endif 1793 private: 1794 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1795 }; 1796 1797 class TypeNarrowPtr : public Type { 1798 protected: 1799 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR 1800 1801 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), 1802 _ptrtype(ptrtype) { 1803 assert(ptrtype->offset() == 0 || 1804 ptrtype->offset() == OffsetBot || 1805 ptrtype->offset() == OffsetTop, "no real offsets"); 1806 } 1807 1808 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; 1809 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; 1810 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; 1811 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; 1812 // Do not allow interface-vs.-noninterface joins to collapse to top. 1813 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1814 public: 1815 virtual bool eq( const Type *t ) const; 1816 virtual uint hash() const; // Type specific hashing 1817 virtual bool singleton(void) const; // TRUE if type is a singleton 1818 1819 virtual const Type *xmeet( const Type *t ) const; 1820 virtual const Type *xdual() const; // Compute dual right now. 1821 1822 virtual intptr_t get_con() const; 1823 1824 virtual bool empty(void) const; // TRUE if type is vacuous 1825 1826 // returns the equivalent ptr type for this compressed pointer 1827 const TypePtr *get_ptrtype() const { 1828 return _ptrtype; 1829 } 1830 1831 bool is_known_instance() const { 1832 return _ptrtype->is_known_instance(); 1833 } 1834 1835 #ifndef PRODUCT 1836 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1837 #endif 1838 }; 1839 1840 //------------------------------TypeNarrowOop---------------------------------- 1841 // A compressed reference to some kind of Oop. This type wraps around 1842 // a preexisting TypeOopPtr and forwards most of it's operations to 1843 // the underlying type. It's only real purpose is to track the 1844 // oopness of the compressed oop value when we expose the conversion 1845 // between the normal and the compressed form. 1846 class TypeNarrowOop : public TypeNarrowPtr { 1847 protected: 1848 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { 1849 } 1850 1851 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1852 return t->isa_narrowoop(); 1853 } 1854 1855 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1856 return t->is_narrowoop(); 1857 } 1858 1859 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1860 return new TypeNarrowOop(t); 1861 } 1862 1863 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1864 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); 1865 } 1866 1867 public: 1868 1869 static const TypeNarrowOop *make( const TypePtr* type); 1870 1871 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { 1872 return make(TypeOopPtr::make_from_constant(con, require_constant)); 1873 } 1874 1875 static const TypeNarrowOop *BOTTOM; 1876 static const TypeNarrowOop *NULL_PTR; 1877 1878 virtual const TypeNarrowOop* remove_speculative() const; 1879 virtual const Type* cleanup_speculative() const; 1880 1881 #ifndef PRODUCT 1882 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1883 #endif 1884 }; 1885 1886 //------------------------------TypeNarrowKlass---------------------------------- 1887 // A compressed reference to klass pointer. This type wraps around a 1888 // preexisting TypeKlassPtr and forwards most of it's operations to 1889 // the underlying type. 1890 class TypeNarrowKlass : public TypeNarrowPtr { 1891 protected: 1892 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { 1893 } 1894 1895 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1896 return t->isa_narrowklass(); 1897 } 1898 1899 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1900 return t->is_narrowklass(); 1901 } 1902 1903 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1904 return new TypeNarrowKlass(t); 1905 } 1906 1907 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1908 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); 1909 } 1910 1911 public: 1912 static const TypeNarrowKlass *make( const TypePtr* type); 1913 1914 // static const TypeNarrowKlass *BOTTOM; 1915 static const TypeNarrowKlass *NULL_PTR; 1916 1917 #ifndef PRODUCT 1918 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1919 #endif 1920 }; 1921 1922 //------------------------------TypeFunc--------------------------------------- 1923 // Class of Array Types 1924 class TypeFunc : public Type { 1925 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {} 1926 virtual bool eq( const Type *t ) const; 1927 virtual uint hash() const; // Type specific hashing 1928 virtual bool singleton(void) const; // TRUE if type is a singleton 1929 virtual bool empty(void) const; // TRUE if type is vacuous 1930 1931 const TypeTuple* const _domain; // Domain of inputs 1932 const TypeTuple* const _range; // Range of results 1933 1934 public: 1935 // Constants are shared among ADLC and VM 1936 enum { Control = AdlcVMDeps::Control, 1937 I_O = AdlcVMDeps::I_O, 1938 Memory = AdlcVMDeps::Memory, 1939 FramePtr = AdlcVMDeps::FramePtr, 1940 ReturnAdr = AdlcVMDeps::ReturnAdr, 1941 Parms = AdlcVMDeps::Parms 1942 }; 1943 1944 1945 // Accessors: 1946 const TypeTuple* domain() const { return _domain; } 1947 const TypeTuple* range() const { return _range; } 1948 1949 static const TypeFunc *make(ciMethod* method); 1950 static const TypeFunc *make(ciSignature signature, const Type* extra); 1951 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); 1952 1953 virtual const Type *xmeet( const Type *t ) const; 1954 virtual const Type *xdual() const; // Compute dual right now. 1955 1956 BasicType return_type() const; 1957 1958 #ifndef PRODUCT 1959 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1960 #endif 1961 // Convenience common pre-built types. 1962 }; 1963 1964 //------------------------------accessors-------------------------------------- 1965 inline bool Type::is_ptr_to_narrowoop() const { 1966 #ifdef _LP64 1967 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv()); 1968 #else 1969 return false; 1970 #endif 1971 } 1972 1973 inline bool Type::is_ptr_to_narrowklass() const { 1974 #ifdef _LP64 1975 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv()); 1976 #else 1977 return false; 1978 #endif 1979 } 1980 1981 inline float Type::getf() const { 1982 assert( _base == FloatCon, "Not a FloatCon" ); 1983 return ((TypeF*)this)->_f; 1984 } 1985 1986 inline short Type::geth() const { 1987 assert(_base == HalfFloatCon, "Not a HalfFloatCon"); 1988 return ((TypeH*)this)->_f; 1989 } 1990 1991 inline double Type::getd() const { 1992 assert( _base == DoubleCon, "Not a DoubleCon" ); 1993 return ((TypeD*)this)->_d; 1994 } 1995 1996 inline const TypeInteger *Type::is_integer(BasicType bt) const { 1997 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int"); 1998 return (TypeInteger*)this; 1999 } 2000 2001 inline const TypeInteger *Type::isa_integer(BasicType bt) const { 2002 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr); 2003 } 2004 2005 inline const TypeInt *Type::is_int() const { 2006 assert( _base == Int, "Not an Int" ); 2007 return (TypeInt*)this; 2008 } 2009 2010 inline const TypeInt *Type::isa_int() const { 2011 return ( _base == Int ? (TypeInt*)this : nullptr); 2012 } 2013 2014 inline const TypeLong *Type::is_long() const { 2015 assert( _base == Long, "Not a Long" ); 2016 return (TypeLong*)this; 2017 } 2018 2019 inline const TypeLong *Type::isa_long() const { 2020 return ( _base == Long ? (TypeLong*)this : nullptr); 2021 } 2022 2023 inline const TypeH* Type::isa_half_float() const { 2024 return ((_base == HalfFloatTop || 2025 _base == HalfFloatCon || 2026 _base == HalfFloatBot) ? (TypeH*)this : nullptr); 2027 } 2028 2029 inline const TypeH* Type::is_half_float_constant() const { 2030 assert( _base == HalfFloatCon, "Not a HalfFloat" ); 2031 return (TypeH*)this; 2032 } 2033 2034 inline const TypeH* Type::isa_half_float_constant() const { 2035 return (_base == HalfFloatCon ? (TypeH*)this : nullptr); 2036 } 2037 2038 inline const TypeF *Type::isa_float() const { 2039 return ((_base == FloatTop || 2040 _base == FloatCon || 2041 _base == FloatBot) ? (TypeF*)this : nullptr); 2042 } 2043 2044 inline const TypeF *Type::is_float_constant() const { 2045 assert( _base == FloatCon, "Not a Float" ); 2046 return (TypeF*)this; 2047 } 2048 2049 inline const TypeF *Type::isa_float_constant() const { 2050 return ( _base == FloatCon ? (TypeF*)this : nullptr); 2051 } 2052 2053 inline const TypeD *Type::isa_double() const { 2054 return ((_base == DoubleTop || 2055 _base == DoubleCon || 2056 _base == DoubleBot) ? (TypeD*)this : nullptr); 2057 } 2058 2059 inline const TypeD *Type::is_double_constant() const { 2060 assert( _base == DoubleCon, "Not a Double" ); 2061 return (TypeD*)this; 2062 } 2063 2064 inline const TypeD *Type::isa_double_constant() const { 2065 return ( _base == DoubleCon ? (TypeD*)this : nullptr); 2066 } 2067 2068 inline const TypeTuple *Type::is_tuple() const { 2069 assert( _base == Tuple, "Not a Tuple" ); 2070 return (TypeTuple*)this; 2071 } 2072 2073 inline const TypeAry *Type::is_ary() const { 2074 assert( _base == Array , "Not an Array" ); 2075 return (TypeAry*)this; 2076 } 2077 2078 inline const TypeAry *Type::isa_ary() const { 2079 return ((_base == Array) ? (TypeAry*)this : nullptr); 2080 } 2081 2082 inline const TypeVectMask *Type::is_vectmask() const { 2083 assert( _base == VectorMask, "Not a Vector Mask" ); 2084 return (TypeVectMask*)this; 2085 } 2086 2087 inline const TypeVectMask *Type::isa_vectmask() const { 2088 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr; 2089 } 2090 2091 inline const TypeVect *Type::is_vect() const { 2092 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" ); 2093 return (TypeVect*)this; 2094 } 2095 2096 inline const TypeVect *Type::isa_vect() const { 2097 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr; 2098 } 2099 2100 inline const TypePtr *Type::is_ptr() const { 2101 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2102 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer"); 2103 return (TypePtr*)this; 2104 } 2105 2106 inline const TypePtr *Type::isa_ptr() const { 2107 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2108 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr; 2109 } 2110 2111 inline const TypeOopPtr *Type::is_oopptr() const { 2112 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2113 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ; 2114 return (TypeOopPtr*)this; 2115 } 2116 2117 inline const TypeOopPtr *Type::isa_oopptr() const { 2118 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2119 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr; 2120 } 2121 2122 inline const TypeRawPtr *Type::isa_rawptr() const { 2123 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr; 2124 } 2125 2126 inline const TypeRawPtr *Type::is_rawptr() const { 2127 assert( _base == RawPtr, "Not a raw pointer" ); 2128 return (TypeRawPtr*)this; 2129 } 2130 2131 inline const TypeInstPtr *Type::isa_instptr() const { 2132 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr; 2133 } 2134 2135 inline const TypeInstPtr *Type::is_instptr() const { 2136 assert( _base == InstPtr, "Not an object pointer" ); 2137 return (TypeInstPtr*)this; 2138 } 2139 2140 inline const TypeAryPtr *Type::isa_aryptr() const { 2141 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr; 2142 } 2143 2144 inline const TypeAryPtr *Type::is_aryptr() const { 2145 assert( _base == AryPtr, "Not an array pointer" ); 2146 return (TypeAryPtr*)this; 2147 } 2148 2149 inline const TypeNarrowOop *Type::is_narrowoop() const { 2150 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2151 assert(_base == NarrowOop, "Not a narrow oop" ) ; 2152 return (TypeNarrowOop*)this; 2153 } 2154 2155 inline const TypeNarrowOop *Type::isa_narrowoop() const { 2156 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2157 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr; 2158 } 2159 2160 inline const TypeNarrowKlass *Type::is_narrowklass() const { 2161 assert(_base == NarrowKlass, "Not a narrow oop" ) ; 2162 return (TypeNarrowKlass*)this; 2163 } 2164 2165 inline const TypeNarrowKlass *Type::isa_narrowklass() const { 2166 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr; 2167 } 2168 2169 inline const TypeMetadataPtr *Type::is_metadataptr() const { 2170 // MetadataPtr is the first and CPCachePtr the last 2171 assert(_base == MetadataPtr, "Not a metadata pointer" ) ; 2172 return (TypeMetadataPtr*)this; 2173 } 2174 2175 inline const TypeMetadataPtr *Type::isa_metadataptr() const { 2176 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr; 2177 } 2178 2179 inline const TypeKlassPtr *Type::isa_klassptr() const { 2180 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr; 2181 } 2182 2183 inline const TypeKlassPtr *Type::is_klassptr() const { 2184 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer"); 2185 return (TypeKlassPtr*)this; 2186 } 2187 2188 inline const TypeInstKlassPtr *Type::isa_instklassptr() const { 2189 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr; 2190 } 2191 2192 inline const TypeInstKlassPtr *Type::is_instklassptr() const { 2193 assert(_base == InstKlassPtr, "Not a klass pointer"); 2194 return (TypeInstKlassPtr*)this; 2195 } 2196 2197 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const { 2198 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr; 2199 } 2200 2201 inline const TypeAryKlassPtr *Type::is_aryklassptr() const { 2202 assert(_base == AryKlassPtr, "Not a klass pointer"); 2203 return (TypeAryKlassPtr*)this; 2204 } 2205 2206 inline const TypePtr* Type::make_ptr() const { 2207 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : 2208 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : 2209 isa_ptr()); 2210 } 2211 2212 inline const TypeOopPtr* Type::make_oopptr() const { 2213 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); 2214 } 2215 2216 inline const TypeNarrowOop* Type::make_narrowoop() const { 2217 return (_base == NarrowOop) ? is_narrowoop() : 2218 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr); 2219 } 2220 2221 inline const TypeNarrowKlass* Type::make_narrowklass() const { 2222 return (_base == NarrowKlass) ? is_narrowklass() : 2223 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr); 2224 } 2225 2226 inline bool Type::is_floatingpoint() const { 2227 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) || 2228 (_base == FloatCon) || (_base == FloatBot) || 2229 (_base == DoubleCon) || (_base == DoubleBot) ) 2230 return true; 2231 return false; 2232 } 2233 2234 template <> 2235 inline const TypeInt* Type::cast<TypeInt>() const { 2236 return is_int(); 2237 } 2238 2239 template <> 2240 inline const TypeLong* Type::cast<TypeLong>() const { 2241 return is_long(); 2242 } 2243 2244 // =============================================================== 2245 // Things that need to be 64-bits in the 64-bit build but 2246 // 32-bits in the 32-bit build. Done this way to get full 2247 // optimization AND strong typing. 2248 #ifdef _LP64 2249 2250 // For type queries and asserts 2251 #define is_intptr_t is_long 2252 #define isa_intptr_t isa_long 2253 #define find_intptr_t_type find_long_type 2254 #define find_intptr_t_con find_long_con 2255 #define TypeX TypeLong 2256 #define Type_X Type::Long 2257 #define TypeX_X TypeLong::LONG 2258 #define TypeX_ZERO TypeLong::ZERO 2259 // For 'ideal_reg' machine registers 2260 #define Op_RegX Op_RegL 2261 // For phase->intcon variants 2262 #define MakeConX longcon 2263 #define ConXNode ConLNode 2264 // For array index arithmetic 2265 #define MulXNode MulLNode 2266 #define AndXNode AndLNode 2267 #define OrXNode OrLNode 2268 #define CmpXNode CmpLNode 2269 #define SubXNode SubLNode 2270 #define LShiftXNode LShiftLNode 2271 // For object size computation: 2272 #define AddXNode AddLNode 2273 #define RShiftXNode RShiftLNode 2274 // For card marks and hashcodes 2275 #define URShiftXNode URShiftLNode 2276 // For shenandoahSupport 2277 #define LoadXNode LoadLNode 2278 #define StoreXNode StoreLNode 2279 // Opcodes 2280 #define Op_LShiftX Op_LShiftL 2281 #define Op_AndX Op_AndL 2282 #define Op_AddX Op_AddL 2283 #define Op_SubX Op_SubL 2284 #define Op_XorX Op_XorL 2285 #define Op_URShiftX Op_URShiftL 2286 #define Op_LoadX Op_LoadL 2287 // conversions 2288 #define ConvI2X(x) ConvI2L(x) 2289 #define ConvL2X(x) (x) 2290 #define ConvX2I(x) ConvL2I(x) 2291 #define ConvX2L(x) (x) 2292 #define ConvX2UL(x) (x) 2293 2294 #else 2295 2296 // For type queries and asserts 2297 #define is_intptr_t is_int 2298 #define isa_intptr_t isa_int 2299 #define find_intptr_t_type find_int_type 2300 #define find_intptr_t_con find_int_con 2301 #define TypeX TypeInt 2302 #define Type_X Type::Int 2303 #define TypeX_X TypeInt::INT 2304 #define TypeX_ZERO TypeInt::ZERO 2305 // For 'ideal_reg' machine registers 2306 #define Op_RegX Op_RegI 2307 // For phase->intcon variants 2308 #define MakeConX intcon 2309 #define ConXNode ConINode 2310 // For array index arithmetic 2311 #define MulXNode MulINode 2312 #define AndXNode AndINode 2313 #define OrXNode OrINode 2314 #define CmpXNode CmpINode 2315 #define SubXNode SubINode 2316 #define LShiftXNode LShiftINode 2317 // For object size computation: 2318 #define AddXNode AddINode 2319 #define RShiftXNode RShiftINode 2320 // For card marks and hashcodes 2321 #define URShiftXNode URShiftINode 2322 // For shenandoahSupport 2323 #define LoadXNode LoadINode 2324 #define StoreXNode StoreINode 2325 // Opcodes 2326 #define Op_LShiftX Op_LShiftI 2327 #define Op_AndX Op_AndI 2328 #define Op_AddX Op_AddI 2329 #define Op_SubX Op_SubI 2330 #define Op_XorX Op_XorI 2331 #define Op_URShiftX Op_URShiftI 2332 #define Op_LoadX Op_LoadI 2333 // conversions 2334 #define ConvI2X(x) (x) 2335 #define ConvL2X(x) ConvL2I(x) 2336 #define ConvX2I(x) (x) 2337 #define ConvX2L(x) ConvI2L(x) 2338 #define ConvX2UL(x) ConvI2UL(x) 2339 2340 #endif 2341 2342 #endif // SHARE_OPTO_TYPE_HPP