1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "opto/adlcVMDeps.hpp"
29 #include "opto/compile.hpp"
30 #include "opto/rangeinference.hpp"
31 #include "runtime/handles.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
52 class TypeInt;
53 class TypeLong;
54 class TypeNarrowPtr;
55 class TypeNarrowOop;
56 class TypeNarrowKlass;
57 class TypeAry;
58 class TypeTuple;
59 class TypeVect;
60 class TypeVectA;
61 class TypeVectS;
62 class TypeVectD;
63 class TypeVectX;
64 class TypeVectY;
65 class TypeVectZ;
66 class TypeVectMask;
67 class TypePtr;
68 class TypeRawPtr;
69 class TypeOopPtr;
70 class TypeInstPtr;
71 class TypeAryPtr;
72 class TypeKlassPtr;
73 class TypeInstKlassPtr;
74 class TypeAryKlassPtr;
75 class TypeMetadataPtr;
76 class VerifyMeet;
77
78 template <class T, class U>
79 class TypeIntPrototype;
80
81 //------------------------------Type-------------------------------------------
82 // Basic Type object, represents a set of primitive Values.
83 // Types are hash-cons'd into a private class dictionary, so only one of each
84 // different kind of Type exists. Types are never modified after creation, so
85 // all their interesting fields are constant.
86 class Type {
87
88 public:
89 enum TYPES {
90 Bad=0, // Type check
91 Control, // Control of code (not in lattice)
92 Top, // Top of the lattice
93 Int, // Integer range (lo-hi)
94 Long, // Long integer range (lo-hi)
95 Half, // Placeholder half of doubleword
96 NarrowOop, // Compressed oop pointer
97 NarrowKlass, // Compressed klass pointer
98
99 Tuple, // Method signature or object layout
100 Array, // Array types
101
102 Interfaces, // Set of implemented interfaces for oop types
103
104 VectorMask, // Vector predicate/mask type
105 VectorA, // (Scalable) Vector types for vector length agnostic
106 VectorS, // 32bit Vector types
107 VectorD, // 64bit Vector types
108 VectorX, // 128bit Vector types
109 VectorY, // 256bit Vector types
110 VectorZ, // 512bit Vector types
111
112 AnyPtr, // Any old raw, klass, inst, or array pointer
113 RawPtr, // Raw (non-oop) pointers
114 OopPtr, // Any and all Java heap entities
115 InstPtr, // Instance pointers (non-array objects)
116 AryPtr, // Array pointers
117 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
118
119 MetadataPtr, // Generic metadata
120 KlassPtr, // Klass pointers
121 InstKlassPtr,
122 AryKlassPtr,
123
124 Function, // Function signature
125 Abio, // Abstract I/O
126 Return_Address, // Subroutine return address
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 // Min and max WIDEN values.
148 enum WIDEN {
149 WidenMin = 0,
150 WidenMax = 3
151 };
152
153 private:
154 typedef struct {
155 TYPES dual_type;
156 BasicType basic_type;
157 const char* msg;
158 bool isa_oop;
159 uint ideal_reg;
160 relocInfo::relocType reloc;
161 } TypeInfo;
162
163 // Dictionary of types shared among compilations.
164 static Dict* _shared_type_dict;
165 static const TypeInfo _type_info[];
166
167 static int uhash( const Type *const t );
168 // Structural equality check. Assumes that equals() has already compared
169 // the _base types and thus knows it can cast 't' appropriately.
170 virtual bool eq( const Type *t ) const;
171
172 // Top-level hash-table of types
173 static Dict *type_dict() {
174 return Compile::current()->type_dict();
175 }
176
177 // DUAL operation: reflect around lattice centerline. Used instead of
178 // join to ensure my lattice is symmetric up and down. Dual is computed
179 // lazily, on demand, and cached in _dual.
180 const Type *_dual; // Cached dual value
181
182
183 const Type *meet_helper(const Type *t, bool include_speculative) const;
184 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
185
186 protected:
187 // Each class of type is also identified by its base.
188 const TYPES _base; // Enum of Types type
189
190 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types
191 // ~Type(); // Use fast deallocation
192 const Type *hashcons(); // Hash-cons the type
193 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
194 const Type *join_helper(const Type *t, bool include_speculative) const {
195 assert_type_verify_empty();
196 return dual()->meet_helper(t->dual(), include_speculative)->dual();
197 }
198
199 void assert_type_verify_empty() const NOT_DEBUG_RETURN;
200
201 public:
202
203 inline void* operator new( size_t x ) throw() {
204 Compile* compile = Compile::current();
205 compile->set_type_last_size(x);
206 return compile->type_arena()->AmallocWords(x);
207 }
208 inline void operator delete( void* ptr ) {
209 Compile* compile = Compile::current();
210 compile->type_arena()->Afree(ptr,compile->type_last_size());
211 }
212
213 // Initialize the type system for a particular compilation.
214 static void Initialize(Compile* compile);
215
216 // Initialize the types shared by all compilations.
217 static void Initialize_shared(Compile* compile);
218
219 TYPES base() const {
220 assert(_base > Bad && _base < lastype, "sanity");
221 return _base;
222 }
223
224 // Create a new hash-consd type
225 static const Type *make(enum TYPES);
226 // Test for equivalence of types
227 static bool equals(const Type* t1, const Type* t2);
228 // Test for higher or equal in lattice
229 // Variant that drops the speculative part of the types
230 bool higher_equal(const Type* t) const {
231 return equals(meet(t), t->remove_speculative());
232 }
233 // Variant that keeps the speculative part of the types
234 bool higher_equal_speculative(const Type* t) const {
235 return equals(meet_speculative(t), t);
236 }
237
238 // MEET operation; lower in lattice.
239 // Variant that drops the speculative part of the types
240 const Type *meet(const Type *t) const {
241 return meet_helper(t, false);
242 }
243 // Variant that keeps the speculative part of the types
244 const Type *meet_speculative(const Type *t) const {
245 return meet_helper(t, true)->cleanup_speculative();
246 }
247 // WIDEN: 'widens' for Ints and other range types
248 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
249 // NARROW: complement for widen, used by pessimistic phases
250 virtual const Type *narrow( const Type *old ) const { return this; }
251
252 // DUAL operation: reflect around lattice centerline. Used instead of
253 // join to ensure my lattice is symmetric up and down.
254 const Type *dual() const { return _dual; }
255
256 // Compute meet dependent on base type
257 virtual const Type *xmeet( const Type *t ) const;
258 virtual const Type *xdual() const; // Compute dual right now.
259
260 // JOIN operation; higher in lattice. Done by finding the dual of the
261 // meet of the dual of the 2 inputs.
262 // Variant that drops the speculative part of the types
263 const Type *join(const Type *t) const {
264 return join_helper(t, false);
265 }
266 // Variant that keeps the speculative part of the types
267 const Type *join_speculative(const Type *t) const {
268 return join_helper(t, true)->cleanup_speculative();
269 }
270
271 // Modified version of JOIN adapted to the needs Node::Value.
272 // Normalizes all empty values to TOP. Does not kill _widen bits.
273 // Variant that drops the speculative part of the types
274 const Type *filter(const Type *kills) const {
275 return filter_helper(kills, false);
276 }
277 // Variant that keeps the speculative part of the types
278 const Type *filter_speculative(const Type *kills) const {
279 return filter_helper(kills, true)->cleanup_speculative();
280 }
281
282 // Returns true if this pointer points at memory which contains a
283 // compressed oop references.
284 bool is_ptr_to_narrowoop() const;
285 bool is_ptr_to_narrowklass() const;
286
287 // Convenience access
288 short geth() const;
289 virtual float getf() const;
290 double getd() const;
291
292 // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
293 template <typename TypeClass>
294 const TypeClass* try_cast() const;
295
296 const TypeInt *is_int() const;
297 const TypeInt *isa_int() const; // Returns null if not an Int
298 const TypeInteger* is_integer(BasicType bt) const;
299 const TypeInteger* isa_integer(BasicType bt) const;
300 const TypeLong *is_long() const;
301 const TypeLong *isa_long() const; // Returns null if not a Long
302 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot}
303 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
304 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon
305 const TypeH *isa_half_float() const; // Returns null if not a HalfFloat{Top,Con,Bot}
306 const TypeH *is_half_float_constant() const; // Asserts it is a HalfFloatCon
307 const TypeH *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
308 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot}
309 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
310 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon
311 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
312 const TypeAry *is_ary() const; // Array, NOT array pointer
313 const TypeAry *isa_ary() const; // Returns null of not ary
314 const TypeVect *is_vect() const; // Vector
315 const TypeVect *isa_vect() const; // Returns null if not a Vector
316 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector
317 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask
318 const TypePtr *is_ptr() const; // Asserts it is a ptr type
319 const TypePtr *isa_ptr() const; // Returns null if not ptr type
320 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
321 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
322 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
323 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type
324 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
325 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
326 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
327 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
328 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
329 const TypeInstPtr *is_instptr() const; // Instance
330 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
331 const TypeAryPtr *is_aryptr() const; // Array oop
332
333 template <typename TypeClass>
334 const TypeClass* cast() const;
335
336 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
337 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
338 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
339 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
340 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
341 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
342 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
343 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
344
345 virtual bool is_finite() const; // Has a finite value
346 virtual bool is_nan() const; // Is not a number (NaN)
347
348 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
349 const TypePtr* make_ptr() const;
350
351 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
352 // Asserts if the underlying type is not an oopptr or narrowoop.
353 const TypeOopPtr* make_oopptr() const;
354
355 // Returns this compressed pointer or the equivalent compressed version
356 // of this pointer type.
357 const TypeNarrowOop* make_narrowoop() const;
358
359 // Returns this compressed klass pointer or the equivalent
360 // compressed version of this pointer type.
361 const TypeNarrowKlass* make_narrowklass() const;
362
363 // Special test for register pressure heuristic
364 bool is_floatingpoint() const; // True if Float or Double base type
365
366 // Do you have memory, directly or through a tuple?
367 bool has_memory( ) const;
368
369 // TRUE if type is a singleton
370 virtual bool singleton(void) const;
371
372 // TRUE if type is above the lattice centerline, and is therefore vacuous
373 virtual bool empty(void) const;
374
375 // Return a hash for this type. The hash function is public so ConNode
376 // (constants) can hash on their constant, which is represented by a Type.
377 virtual uint hash() const;
378
379 // Map ideal registers (machine types) to ideal types
380 static const Type *mreg2type[];
381
382 // Printing, statistics
383 #ifndef PRODUCT
384 void dump_on(outputStream *st) const;
385 void dump() const {
386 dump_on(tty);
387 }
388 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
389 static void dump_stats();
390 // Groups of types, for debugging and visualization only.
391 enum class Category {
392 Data,
393 Memory,
394 Mixed, // Tuples with types of different categories.
395 Control,
396 Other, // {Type::Top, Type::Abio, Type::Bottom}.
397 Undef // {Type::Bad, Type::lastype}, for completeness.
398 };
399 // Return the category of this type.
400 Category category() const;
401 // Check recursively in tuples.
402 bool has_category(Category cat) const;
403
404 static const char* str(const Type* t);
405 #endif // !PRODUCT
406 void typerr(const Type *t) const; // Mixing types error
407
408 // Create basic type
409 static const Type* get_const_basic_type(BasicType type) {
410 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
411 return _const_basic_type[type];
412 }
413
414 // For two instance arrays of same dimension, return the base element types.
415 // Otherwise or if the arrays have different dimensions, return null.
416 static void get_arrays_base_elements(const Type *a1, const Type *a2,
417 const TypeInstPtr **e1, const TypeInstPtr **e2);
418
419 // Mapping to the array element's basic type.
420 BasicType array_element_basic_type() const;
421
422 enum InterfaceHandling {
423 trust_interfaces,
424 ignore_interfaces
425 };
426 // Create standard type for a ciType:
427 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
428
429 // Create standard zero value:
430 static const Type* get_zero_type(BasicType type) {
431 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
432 return _zero_type[type];
433 }
434
435 // Report if this is a zero value (not top).
436 bool is_zero_type() const {
437 BasicType type = basic_type();
438 if (type == T_VOID || type >= T_CONFLICT)
439 return false;
440 else
441 return (this == _zero_type[type]);
442 }
443
444 // Convenience common pre-built types.
445 static const Type *ABIO;
446 static const Type *BOTTOM;
447 static const Type *CONTROL;
448 static const Type *DOUBLE;
449 static const Type *FLOAT;
450 static const Type *HALF_FLOAT;
451 static const Type *HALF;
452 static const Type *MEMORY;
453 static const Type *MULTI;
454 static const Type *RETURN_ADDRESS;
455 static const Type *TOP;
456
457 // Mapping from compiler type to VM BasicType
458 BasicType basic_type() const { return _type_info[_base].basic_type; }
459 uint ideal_reg() const { return _type_info[_base].ideal_reg; }
460 const char* msg() const { return _type_info[_base].msg; }
461 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
462 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
463
464 // Mapping from CI type system to compiler type:
465 static const Type* get_typeflow_type(ciType* type);
466
467 static const Type* make_from_constant(ciConstant constant,
468 bool require_constant = false,
469 int stable_dimension = 0,
470 bool is_narrow = false,
471 bool is_autobox_cache = false);
472
473 static const Type* make_constant_from_field(ciInstance* holder,
474 int off,
475 bool is_unsigned_load,
476 BasicType loadbt);
477
478 static const Type* make_constant_from_field(ciField* field,
479 ciInstance* holder,
480 BasicType loadbt,
481 bool is_unsigned_load);
482
483 static const Type* make_constant_from_array_element(ciArray* array,
484 int off,
485 int stable_dimension,
486 BasicType loadbt,
487 bool is_unsigned_load);
488
489 // Speculative type helper methods. See TypePtr.
490 virtual const TypePtr* speculative() const { return nullptr; }
491 virtual ciKlass* speculative_type() const { return nullptr; }
492 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
493 virtual bool speculative_maybe_null() const { return true; }
494 virtual bool speculative_always_null() const { return true; }
495 virtual const Type* remove_speculative() const { return this; }
496 virtual const Type* cleanup_speculative() const { return this; }
497 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
498 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
499 const Type* maybe_remove_speculative(bool include_speculative) const;
500
501 virtual bool maybe_null() const { return true; }
502 virtual bool is_known_instance() const { return false; }
503
504 private:
505 // support arrays
506 static const Type* _zero_type[T_CONFLICT+1];
507 static const Type* _const_basic_type[T_CONFLICT+1];
508 };
509
510 //------------------------------TypeF------------------------------------------
511 // Class of Float-Constant Types.
512 class TypeF : public Type {
513 TypeF( float f ) : Type(FloatCon), _f(f) {};
514 public:
515 virtual bool eq( const Type *t ) const;
516 virtual uint hash() const; // Type specific hashing
517 virtual bool singleton(void) const; // TRUE if type is a singleton
518 virtual bool empty(void) const; // TRUE if type is vacuous
519 public:
520 const float _f; // Float constant
521
522 static const TypeF *make(float f);
523
524 virtual bool is_finite() const; // Has a finite value
525 virtual bool is_nan() const; // Is not a number (NaN)
526
527 virtual const Type *xmeet( const Type *t ) const;
528 virtual const Type *xdual() const; // Compute dual right now.
529 // Convenience common pre-built types.
530 static const TypeF *MAX;
531 static const TypeF *MIN;
532 static const TypeF *ZERO; // positive zero only
533 static const TypeF *ONE;
534 static const TypeF *POS_INF;
535 static const TypeF *NEG_INF;
536 #ifndef PRODUCT
537 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
538 #endif
539 };
540
541 // Class of Half Float-Constant Types.
542 class TypeH : public Type {
543 TypeH(short f) : Type(HalfFloatCon), _f(f) {};
544 public:
545 virtual bool eq(const Type* t) const;
546 virtual uint hash() const; // Type specific hashing
547 virtual bool singleton(void) const; // TRUE if type is a singleton
548 virtual bool empty(void) const; // TRUE if type is vacuous
549 public:
550 const short _f; // Half Float constant
551
552 static const TypeH* make(float f);
553 static const TypeH* make(short f);
554
555 virtual bool is_finite() const; // Has a finite value
556 virtual bool is_nan() const; // Is not a number (NaN)
557
558 virtual float getf() const;
559 virtual const Type* xmeet(const Type* t) const;
560 virtual const Type* xdual() const; // Compute dual right now.
561 // Convenience common pre-built types.
562 static const TypeH* MAX;
563 static const TypeH* MIN;
564 static const TypeH* ZERO; // positive zero only
565 static const TypeH* ONE;
566 static const TypeH* POS_INF;
567 static const TypeH* NEG_INF;
568 #ifndef PRODUCT
569 virtual void dump2(Dict &d, uint depth, outputStream* st) const;
570 #endif
571 };
572
573 //------------------------------TypeD------------------------------------------
574 // Class of Double-Constant Types.
575 class TypeD : public Type {
576 TypeD( double d ) : Type(DoubleCon), _d(d) {};
577 public:
578 virtual bool eq( const Type *t ) const;
579 virtual uint hash() const; // Type specific hashing
580 virtual bool singleton(void) const; // TRUE if type is a singleton
581 virtual bool empty(void) const; // TRUE if type is vacuous
582 public:
583 const double _d; // Double constant
584
585 static const TypeD *make(double d);
586
587 virtual bool is_finite() const; // Has a finite value
588 virtual bool is_nan() const; // Is not a number (NaN)
589
590 virtual const Type *xmeet( const Type *t ) const;
591 virtual const Type *xdual() const; // Compute dual right now.
592 // Convenience common pre-built types.
593 static const TypeD *MAX;
594 static const TypeD *MIN;
595 static const TypeD *ZERO; // positive zero only
596 static const TypeD *ONE;
597 static const TypeD *POS_INF;
598 static const TypeD *NEG_INF;
599 #ifndef PRODUCT
600 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
601 #endif
602 };
603
604 class TypeInteger : public Type {
605 protected:
606 TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
607
608 // Denote that a set is a dual set.
609 // Dual sets are only used to compute the join of 2 sets, and not used
610 // outside.
611 const bool _is_dual;
612
613 public:
614 const short _widen; // Limit on times we widen this sucker
615
616 virtual jlong hi_as_long() const = 0;
617 virtual jlong lo_as_long() const = 0;
618 jlong get_con_as_long(BasicType bt) const;
619 bool is_con() const { return lo_as_long() == hi_as_long(); }
620 virtual short widen_limit() const { return _widen; }
621
622 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
623 static const TypeInteger* make(jlong con, BasicType bt);
624
625 static const TypeInteger* bottom(BasicType type);
626 static const TypeInteger* zero(BasicType type);
627 static const TypeInteger* one(BasicType type);
628 static const TypeInteger* minus_1(BasicType type);
629 };
630
631 /**
632 * Definition:
633 *
634 * A TypeInt represents a set of non-empty jint values. A jint v is an element
635 * of a TypeInt iff:
636 *
637 * v >= _lo && v <= _hi &&
638 * juint(v) >= _ulo && juint(v) <= _uhi &&
639 * _bits.is_satisfied_by(v)
640 *
641 * Multiple sets of parameters can represent the same set.
642 * E.g: consider 2 TypeInt t1, t2
643 *
644 * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
645 * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
646 *
647 * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
648 * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
649 * which also represents {3, 5} such that any of these would be true:
650 *
651 * 1) t3._lo > t2._lo
652 * 2) t3._hi < t2._hi
653 * 3) t3._ulo > t2._ulo
654 * 4) t3._uhi < t2._uhi
655 * 5) (t3._bits._zeros &~ t2._bis._zeros) != 0
656 * 6) (t3._bits._ones &~ t2._bits._ones) != 0
657 *
658 * The 5-th condition mean that the subtraction of the bitsets represented by
659 * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
660 * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
661 * same applies to _bits._ones
662 *
663 * To simplify reasoning about the types in optimizations, we canonicalize
664 * every TypeInt to its tightest form, already at construction. E.g a TypeInt
665 * t with t._lo < 0 will definitely contain negative values. It also makes it
666 * trivial to determine if a TypeInt instance is a subset of another.
667 *
668 * Lemmas:
669 *
670 * 1. Since every TypeInt instance is non-empty and canonicalized, all the
671 * bounds must also be elements of such TypeInt. Or else, we can tighten the
672 * bounds by narrowing it by one, which contradicts the assumption of the
673 * TypeInt being canonical.
674 *
675 * 2.
676 * 2.1. _lo <= jint(_ulo)
677 * 2.2. _lo <= _hi
678 * 2.3. _lo <= jint(_uhi)
679 * 2.4. _ulo <= juint(_lo)
680 * 2.5. _ulo <= juint(_hi)
681 * 2.6. _ulo <= _uhi
682 * 2.7. _hi >= _lo
683 * 2.8. _hi >= jint(_ulo)
684 * 2.9. _hi >= jint(_uhi)
685 * 2.10. _uhi >= juint(_lo)
686 * 2.11. _uhi >= _ulo
687 * 2.12. _uhi >= juint(_hi)
688 *
689 * Proof of lemma 2:
690 *
691 * 2.1. _lo <= jint(_ulo):
692 * According the lemma 1, _ulo is an element of the TypeInt, so in the
693 * signed domain, it must not be less than the smallest element of that
694 * TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
695 * domain, or in a more programmatical way, _lo <= jint(_ulo).
696 * 2.2. _lo <= _hi:
697 * According the lemma 1, _hi is an element of the TypeInt, so in the
698 * signed domain, it must not be less than the smallest element of that
699 * TypeInt, which is _lo. Which means that _lo <= _hi.
700 *
701 * The other inequalities can be proved in a similar manner.
702 *
703 * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
704 *
705 * x <= y iff juint(x) <= juint(y)
706 * I.e. x <= y in the signed domain iff x <= y in the unsigned domain
707 *
708 * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
709 * TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
710 * (note that these intervals are disjoint in this case).
711 *
712 * Proof of lemma 4:
713 *
714 * For a TypeInt t, there are 3 possible cases:
715 *
716 * a. t._lo >= 0, we have:
717 *
718 * 0 <= t_lo <= jint(t._ulo) (lemma 2.1)
719 * juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
720 * == t._ulo (juint(jint(v)) == v with juint v)
721 * <= juint(t._lo) (lemma 2.4)
722 *
723 * Which means that t._lo == jint(t._ulo).
724 *
725 * Furthermore,
726 *
727 * 0 <= t._lo <= t._hi (lemma 2.2)
728 * 0 <= t._lo <= jint(t._uhi) (lemma 2.3)
729 * t._hi >= jint(t._uhi) (lemma 2.9)
730 *
731 * juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
732 * == t._uhi (juint(jint(v)) == v with juint v)
733 * >= juint(t._hi) (lemma 2.12)
734 *
735 * Which means that t._hi == jint(t._uhi).
736 * In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
737 *
738 * b. t._hi < 0. Similarly, we can conclude that:
739 * t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
740 *
741 * c. t._lo < 0, t._hi >= 0.
742 *
743 * Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
744 * because all negative values is larger than all non-negative values in the
745 * unsigned domain.
746 *
747 * Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
748 * similar to the reasoning above.
749 *
750 * In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
751 * [jint(t._ulo), t._hi].
752 *
753 * Below is an illustration of the TypeInt in this case, the intervals that
754 * the elements can be in are marked using the = symbol. Note how the
755 * negative range in the signed domain wrap around in the unsigned domain.
756 *
757 * Signed:
758 * -----lo=========uhi---------0--------ulo==========hi-----
759 * Unsigned:
760 * 0--------ulo==========hi----------lo=========uhi---------
761 *
762 * This property is useful for our analysis of TypeInt values. Additionally,
763 * it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
764 * same applies to jint(_ulo) and _hi.
765 *
766 * We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
767 * a TypeInt consists of 2 simple intervals, each of which has its bounds
768 * being both >= 0 or both < 0. If both simple intervals lie in the same half
769 * of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
770 * _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
771 * half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
772 * domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
773 * [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
774 */
775 class TypeInt : public TypeInteger {
776 private:
777 TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
778 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
779
780 friend class TypeIntHelper;
781
782 protected:
783 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
784
785 public:
786 typedef jint NativeType;
787 virtual bool eq(const Type* t) const;
788 virtual uint hash() const; // Type specific hashing
789 virtual bool singleton(void) const; // TRUE if type is a singleton
790 virtual bool empty(void) const; // TRUE if type is vacuous
791 // A value is in the set represented by this TypeInt if it satisfies all
792 // the below constraints, see contains(jint)
793 const jint _lo, _hi; // Lower bound, upper bound in the signed domain
794 const juint _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
795 const KnownBits<juint> _bits;
796
797 static const TypeInt* make(jint con);
798 // must always specify w
799 static const TypeInt* make(jint lo, jint hi, int widen);
800 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
801 static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
802
803 // Check for single integer
804 bool is_con() const { return _lo == _hi; }
805 bool is_con(jint i) const { return is_con() && _lo == i; }
806 jint get_con() const { assert(is_con(), ""); return _lo; }
807 // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
808 // argument are also elements of this type)
809 bool contains(jint i) const;
810 bool contains(const TypeInt* t) const;
811
812 virtual bool is_finite() const; // Has a finite value
813
814 virtual const Type* xmeet(const Type* t) const;
815 virtual const Type* xdual() const; // Compute dual right now.
816 virtual const Type* widen(const Type* t, const Type* limit_type) const;
817 virtual const Type* narrow(const Type* t) const;
818
819 virtual jlong hi_as_long() const { return _hi; }
820 virtual jlong lo_as_long() const { return _lo; }
821
822 // Do not kill _widen bits.
823 // Convenience common pre-built types.
824 static const TypeInt* MAX;
825 static const TypeInt* MIN;
826 static const TypeInt* MINUS_1;
827 static const TypeInt* ZERO;
828 static const TypeInt* ONE;
829 static const TypeInt* BOOL;
830 static const TypeInt* CC;
831 static const TypeInt* CC_LT; // [-1] == MINUS_1
832 static const TypeInt* CC_GT; // [1] == ONE
833 static const TypeInt* CC_EQ; // [0] == ZERO
834 static const TypeInt* CC_NE; // [-1, 1]
835 static const TypeInt* CC_LE; // [-1,0]
836 static const TypeInt* CC_GE; // [0,1] == BOOL (!)
837 static const TypeInt* BYTE;
838 static const TypeInt* UBYTE;
839 static const TypeInt* CHAR;
840 static const TypeInt* SHORT;
841 static const TypeInt* NON_ZERO;
842 static const TypeInt* POS;
843 static const TypeInt* POS1;
844 static const TypeInt* INT;
845 static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
846 static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
847
848 static const TypeInt* as_self(const Type* t) { return t->is_int(); }
849 #ifndef PRODUCT
850 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
851 void dump_verbose() const;
852 #endif
853 };
854
855 // Similar to TypeInt
856 class TypeLong : public TypeInteger {
857 private:
858 TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
859 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
860
861 friend class TypeIntHelper;
862
863 protected:
864 // Do not kill _widen bits.
865 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
866 public:
867 typedef jlong NativeType;
868 virtual bool eq( const Type *t ) const;
869 virtual uint hash() const; // Type specific hashing
870 virtual bool singleton(void) const; // TRUE if type is a singleton
871 virtual bool empty(void) const; // TRUE if type is vacuous
872 public:
873 // A value is in the set represented by this TypeLong if it satisfies all
874 // the below constraints, see contains(jlong)
875 const jlong _lo, _hi; // Lower bound, upper bound in the signed domain
876 const julong _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
877 const KnownBits<julong> _bits;
878
879 static const TypeLong* make(jlong con);
880 // must always specify w
881 static const TypeLong* make(jlong lo, jlong hi, int widen);
882 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
883 static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
884
885 // Check for single integer
886 bool is_con() const { return _lo == _hi; }
887 bool is_con(jlong i) const { return is_con() && _lo == i; }
888 jlong get_con() const { assert(is_con(), "" ); return _lo; }
889 // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
890 // argument are also elements of this type)
891 bool contains(jlong i) const;
892 bool contains(const TypeLong* t) const;
893
894 // Check for positive 32-bit value.
895 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
896
897 virtual bool is_finite() const; // Has a finite value
898
899 virtual jlong hi_as_long() const { return _hi; }
900 virtual jlong lo_as_long() const { return _lo; }
901
902 virtual const Type* xmeet(const Type* t) const;
903 virtual const Type* xdual() const; // Compute dual right now.
904 virtual const Type* widen(const Type* t, const Type* limit_type) const;
905 virtual const Type* narrow(const Type* t) const;
906 // Convenience common pre-built types.
907 static const TypeLong* MAX;
908 static const TypeLong* MIN;
909 static const TypeLong* MINUS_1;
910 static const TypeLong* ZERO;
911 static const TypeLong* ONE;
912 static const TypeLong* NON_ZERO;
913 static const TypeLong* POS;
914 static const TypeLong* NEG;
915 static const TypeLong* LONG;
916 static const TypeLong* INT; // 32-bit subrange [min_jint..max_jint]
917 static const TypeLong* UINT; // 32-bit unsigned [0..max_juint]
918 static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
919
920 // static convenience methods.
921 static const TypeLong* as_self(const Type* t) { return t->is_long(); }
922
923 #ifndef PRODUCT
924 virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
925 void dump_verbose() const;
926 #endif
927 };
928
929 //------------------------------TypeTuple--------------------------------------
930 // Class of Tuple Types, essentially type collections for function signatures
931 // and class layouts. It happens to also be a fast cache for the HotSpot
932 // signature types.
933 class TypeTuple : public Type {
934 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
935
936 const uint _cnt; // Count of fields
937 const Type ** const _fields; // Array of field types
938
939 public:
940 virtual bool eq( const Type *t ) const;
941 virtual uint hash() const; // Type specific hashing
942 virtual bool singleton(void) const; // TRUE if type is a singleton
943 virtual bool empty(void) const; // TRUE if type is vacuous
944
945 // Accessors:
946 uint cnt() const { return _cnt; }
947 const Type* field_at(uint i) const {
948 assert(i < _cnt, "oob");
949 return _fields[i];
950 }
951 void set_field_at(uint i, const Type* t) {
952 assert(i < _cnt, "oob");
953 _fields[i] = t;
954 }
955
956 static const TypeTuple *make( uint cnt, const Type **fields );
957 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
958 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
959
960 // Subroutine call type with space allocated for argument types
961 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
962 static const Type **fields( uint arg_cnt );
963
964 virtual const Type *xmeet( const Type *t ) const;
965 virtual const Type *xdual() const; // Compute dual right now.
966 // Convenience common pre-built types.
967 static const TypeTuple *IFBOTH;
968 static const TypeTuple *IFFALSE;
969 static const TypeTuple *IFTRUE;
970 static const TypeTuple *IFNEITHER;
971 static const TypeTuple *LOOPBODY;
972 static const TypeTuple *MEMBAR;
973 static const TypeTuple *STORECONDITIONAL;
974 static const TypeTuple *START_I2C;
975 static const TypeTuple *INT_PAIR;
976 static const TypeTuple *LONG_PAIR;
977 static const TypeTuple *INT_CC_PAIR;
978 static const TypeTuple *LONG_CC_PAIR;
979 #ifndef PRODUCT
980 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
981 #endif
982 };
983
984 //------------------------------TypeAry----------------------------------------
985 // Class of Array Types
986 class TypeAry : public Type {
987 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
988 _elem(elem), _size(size), _stable(stable) {}
989 public:
990 virtual bool eq( const Type *t ) const;
991 virtual uint hash() const; // Type specific hashing
992 virtual bool singleton(void) const; // TRUE if type is a singleton
993 virtual bool empty(void) const; // TRUE if type is vacuous
994
995 private:
996 const Type *_elem; // Element type of array
997 const TypeInt *_size; // Elements in array
998 const bool _stable; // Are elements @Stable?
999 friend class TypeAryPtr;
1000
1001 public:
1002 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1003
1004 virtual const Type *xmeet( const Type *t ) const;
1005 virtual const Type *xdual() const; // Compute dual right now.
1006 bool ary_must_be_exact() const; // true if arrays of such are never generic
1007 virtual const TypeAry* remove_speculative() const;
1008 virtual const Type* cleanup_speculative() const;
1009 #ifndef PRODUCT
1010 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1011 #endif
1012 };
1013
1014 //------------------------------TypeVect---------------------------------------
1015 // Class of Vector Types
1016 class TypeVect : public Type {
1017 const BasicType _elem_bt; // Vector's element type
1018 const uint _length; // Elements in vector (power of 2)
1019
1020 protected:
1021 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1022 _elem_bt(elem_bt), _length(length) {}
1023
1024 public:
1025 BasicType element_basic_type() const { return _elem_bt; }
1026 uint length() const { return _length; }
1027 uint length_in_bytes() const {
1028 return _length * type2aelembytes(element_basic_type());
1029 }
1030
1031 virtual bool eq(const Type* t) const;
1032 virtual uint hash() const; // Type specific hashing
1033 virtual bool singleton(void) const; // TRUE if type is a singleton
1034 virtual bool empty(void) const; // TRUE if type is vacuous
1035
1036 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1037 static const TypeVect* makemask(const BasicType elem_bt, uint length);
1038
1039 virtual const Type* xmeet( const Type *t) const;
1040 virtual const Type* xdual() const; // Compute dual right now.
1041
1042 static const TypeVect* VECTA;
1043 static const TypeVect* VECTS;
1044 static const TypeVect* VECTD;
1045 static const TypeVect* VECTX;
1046 static const TypeVect* VECTY;
1047 static const TypeVect* VECTZ;
1048 static const TypeVect* VECTMASK;
1049
1050 #ifndef PRODUCT
1051 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1052 #endif
1053 };
1054
1055 class TypeVectA : public TypeVect {
1056 friend class TypeVect;
1057 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1058 };
1059
1060 class TypeVectS : public TypeVect {
1061 friend class TypeVect;
1062 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1063 };
1064
1065 class TypeVectD : public TypeVect {
1066 friend class TypeVect;
1067 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1068 };
1069
1070 class TypeVectX : public TypeVect {
1071 friend class TypeVect;
1072 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1073 };
1074
1075 class TypeVectY : public TypeVect {
1076 friend class TypeVect;
1077 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1078 };
1079
1080 class TypeVectZ : public TypeVect {
1081 friend class TypeVect;
1082 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1083 };
1084
1085 class TypeVectMask : public TypeVect {
1086 public:
1087 friend class TypeVect;
1088 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1089 static const TypeVectMask* make(const BasicType elem_bt, uint length);
1090 };
1091
1092 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1093 class TypeInterfaces : public Type {
1094 private:
1095 GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1096 uint _hash;
1097 ciInstanceKlass* _exact_klass;
1098 DEBUG_ONLY(bool _initialized;)
1099
1100 void initialize();
1101
1102 void verify() const NOT_DEBUG_RETURN;
1103 void compute_hash();
1104 void compute_exact_klass();
1105
1106 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1107
1108 NONCOPYABLE(TypeInterfaces);
1109 public:
1110 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1111 bool eq(const Type* other) const;
1112 bool eq(ciInstanceKlass* k) const;
1113 uint hash() const;
1114 const Type *xdual() const;
1115 void dump(outputStream* st) const;
1116 const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1117 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1118 bool contains(const TypeInterfaces* other) const {
1119 return intersection_with(other)->eq(other);
1120 }
1121 bool empty() const { return _interfaces.length() == 0; }
1122
1123 ciInstanceKlass* exact_klass() const;
1124 void verify_is_loaded() const NOT_DEBUG_RETURN;
1125
1126 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1127 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1128
1129 const Type* xmeet(const Type* t) const;
1130
1131 bool singleton(void) const;
1132 bool has_non_array_interface() const;
1133 };
1134
1135 //------------------------------TypePtr----------------------------------------
1136 // Class of machine Pointer Types: raw data, instances or arrays.
1137 // If the _base enum is AnyPtr, then this refers to all of the above.
1138 // Otherwise the _base will indicate which subset of pointers is affected,
1139 // and the class will be inherited from.
1140 class TypePtr : public Type {
1141 friend class TypeNarrowPtr;
1142 friend class Type;
1143 protected:
1144 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1145
1146 public:
1147 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1148 protected:
1149 TypePtr(TYPES t, PTR ptr, int offset,
1150 const TypePtr* speculative = nullptr,
1151 int inline_depth = InlineDepthBottom) :
1152 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1153 _ptr(ptr) {}
1154 static const PTR ptr_meet[lastPTR][lastPTR];
1155 static const PTR ptr_dual[lastPTR];
1156 static const char * const ptr_msg[lastPTR];
1157
1158 enum {
1159 InlineDepthBottom = INT_MAX,
1160 InlineDepthTop = -InlineDepthBottom
1161 };
1162
1163 // Extra type information profiling gave us. We propagate it the
1164 // same way the rest of the type info is propagated. If we want to
1165 // use it, then we have to emit a guard: this part of the type is
1166 // not something we know but something we speculate about the type.
1167 const TypePtr* _speculative;
1168 // For speculative types, we record at what inlining depth the
1169 // profiling point that provided the data is. We want to favor
1170 // profile data coming from outer scopes which are likely better for
1171 // the current compilation.
1172 int _inline_depth;
1173
1174 // utility methods to work on the speculative part of the type
1175 const TypePtr* dual_speculative() const;
1176 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1177 bool eq_speculative(const TypePtr* other) const;
1178 int hash_speculative() const;
1179 const TypePtr* add_offset_speculative(intptr_t offset) const;
1180 const TypePtr* with_offset_speculative(intptr_t offset) const;
1181
1182 // utility methods to work on the inline depth of the type
1183 int dual_inline_depth() const;
1184 int meet_inline_depth(int depth) const;
1185
1186 #ifndef PRODUCT
1187 void dump_speculative(outputStream* st) const;
1188 void dump_inline_depth(outputStream* st) const;
1189 void dump_offset(outputStream* st) const;
1190 #endif
1191
1192 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1193 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1194 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1195 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1196 // encountered so the right logic specific to klasses or oops can be executed.,
1197 enum MeetResult {
1198 QUICK,
1199 UNLOADED,
1200 SUBTYPE,
1201 NOT_SUBTYPE,
1202 LCA
1203 };
1204 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1205 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1206
1207 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1208 ciKlass*& res_klass, bool& res_xk);
1209
1210 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1211 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1212 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1213 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1214 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1215 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1216 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1217 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1218 public:
1219 const int _offset; // Offset into oop, with TOP & BOT
1220 const PTR _ptr; // Pointer equivalence class
1221
1222 int offset() const { return _offset; }
1223 PTR ptr() const { return _ptr; }
1224
1225 static const TypePtr *make(TYPES t, PTR ptr, int offset,
1226 const TypePtr* speculative = nullptr,
1227 int inline_depth = InlineDepthBottom);
1228
1229 // Return a 'ptr' version of this type
1230 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1231
1232 virtual intptr_t get_con() const;
1233
1234 int xadd_offset( intptr_t offset ) const;
1235 virtual const TypePtr* add_offset(intptr_t offset) const;
1236 virtual const TypePtr* with_offset(intptr_t offset) const;
1237 virtual bool eq(const Type *t) const;
1238 virtual uint hash() const; // Type specific hashing
1239
1240 virtual bool singleton(void) const; // TRUE if type is a singleton
1241 virtual bool empty(void) const; // TRUE if type is vacuous
1242 virtual const Type *xmeet( const Type *t ) const;
1243 virtual const Type *xmeet_helper( const Type *t ) const;
1244 int meet_offset( int offset ) const;
1245 int dual_offset( ) const;
1246 virtual const Type *xdual() const; // Compute dual right now.
1247
1248 // meet, dual and join over pointer equivalence sets
1249 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1250 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1251
1252 // This is textually confusing unless one recalls that
1253 // join(t) == dual()->meet(t->dual())->dual().
1254 PTR join_ptr( const PTR in_ptr ) const {
1255 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1256 }
1257
1258 // Speculative type helper methods.
1259 virtual const TypePtr* speculative() const { return _speculative; }
1260 int inline_depth() const { return _inline_depth; }
1261 virtual ciKlass* speculative_type() const;
1262 virtual ciKlass* speculative_type_not_null() const;
1263 virtual bool speculative_maybe_null() const;
1264 virtual bool speculative_always_null() const;
1265 virtual const TypePtr* remove_speculative() const;
1266 virtual const Type* cleanup_speculative() const;
1267 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1268 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1269 virtual const TypePtr* with_inline_depth(int depth) const;
1270
1271 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1272
1273 // Tests for relation to centerline of type lattice:
1274 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1275 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1276 // Convenience common pre-built types.
1277 static const TypePtr *NULL_PTR;
1278 static const TypePtr *NOTNULL;
1279 static const TypePtr *BOTTOM;
1280 #ifndef PRODUCT
1281 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1282 #endif
1283 };
1284
1285 //------------------------------TypeRawPtr-------------------------------------
1286 // Class of raw pointers, pointers to things other than Oops. Examples
1287 // include the stack pointer, top of heap, card-marking area, handles, etc.
1288 class TypeRawPtr : public TypePtr {
1289 protected:
1290 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1291 public:
1292 virtual bool eq( const Type *t ) const;
1293 virtual uint hash() const; // Type specific hashing
1294
1295 const address _bits; // Constant value, if applicable
1296
1297 static const TypeRawPtr *make( PTR ptr );
1298 static const TypeRawPtr *make( address bits );
1299
1300 // Return a 'ptr' version of this type
1301 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1302
1303 virtual intptr_t get_con() const;
1304
1305 virtual const TypePtr* add_offset(intptr_t offset) const;
1306 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1307
1308 virtual const Type *xmeet( const Type *t ) const;
1309 virtual const Type *xdual() const; // Compute dual right now.
1310 // Convenience common pre-built types.
1311 static const TypeRawPtr *BOTTOM;
1312 static const TypeRawPtr *NOTNULL;
1313 #ifndef PRODUCT
1314 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1315 #endif
1316 };
1317
1318 //------------------------------TypeOopPtr-------------------------------------
1319 // Some kind of oop (Java pointer), either instance or array.
1320 class TypeOopPtr : public TypePtr {
1321 friend class TypeAry;
1322 friend class TypePtr;
1323 friend class TypeInstPtr;
1324 friend class TypeAryPtr;
1325 protected:
1326 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1327 const TypePtr* speculative, int inline_depth);
1328 public:
1329 virtual bool eq( const Type *t ) const;
1330 virtual uint hash() const; // Type specific hashing
1331 virtual bool singleton(void) const; // TRUE if type is a singleton
1332 enum {
1333 InstanceTop = -1, // undefined instance
1334 InstanceBot = 0 // any possible instance
1335 };
1336 protected:
1337
1338 // Oop is null, unless this is a constant oop.
1339 ciObject* _const_oop; // Constant oop
1340 // If _klass is null, then so is _sig. This is an unloaded klass.
1341 ciKlass* _klass; // Klass object
1342
1343 const TypeInterfaces* _interfaces;
1344
1345 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1346 bool _klass_is_exact;
1347 bool _is_ptr_to_narrowoop;
1348 bool _is_ptr_to_narrowklass;
1349 bool _is_ptr_to_boxed_value;
1350
1351 // If not InstanceTop or InstanceBot, indicates that this is
1352 // a particular instance of this type which is distinct.
1353 // This is the node index of the allocation node creating this instance.
1354 int _instance_id;
1355
1356 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1357
1358 int dual_instance_id() const;
1359 int meet_instance_id(int uid) const;
1360
1361 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1362
1363 // Do not allow interface-vs.-noninterface joins to collapse to top.
1364 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1365
1366 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1367 virtual ciKlass* klass() const { return _klass; }
1368
1369 #ifndef PRODUCT
1370 void dump_instance_id(outputStream* st) const;
1371 #endif // PRODUCT
1372
1373 public:
1374
1375 bool is_java_subtype_of(const TypeOopPtr* other) const {
1376 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1377 }
1378
1379 bool is_same_java_type_as(const TypePtr* other) const {
1380 return is_same_java_type_as_helper(other->is_oopptr());
1381 }
1382
1383 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1384 ShouldNotReachHere(); return false;
1385 }
1386
1387 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1388 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1389 }
1390 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1391 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1392
1393
1394 // Creates a type given a klass. Correctly handles multi-dimensional arrays
1395 // Respects UseUniqueSubclasses.
1396 // If the klass is final, the resulting type will be exact.
1397 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1398 return make_from_klass_common(klass, true, false, interface_handling);
1399 }
1400 // Same as before, but will produce an exact type, even if
1401 // the klass is not final, as long as it has exactly one implementation.
1402 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1403 return make_from_klass_common(klass, true, true, interface_handling);
1404 }
1405 // Same as before, but does not respects UseUniqueSubclasses.
1406 // Use this only for creating array element types.
1407 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1408 return make_from_klass_common(klass, false, false, interface_handling);
1409 }
1410 // Creates a singleton type given an object.
1411 // If the object cannot be rendered as a constant,
1412 // may return a non-singleton type.
1413 // If require_constant, produce a null if a singleton is not possible.
1414 static const TypeOopPtr* make_from_constant(ciObject* o,
1415 bool require_constant = false);
1416
1417 // Make a generic (unclassed) pointer to an oop.
1418 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1419 const TypePtr* speculative = nullptr,
1420 int inline_depth = InlineDepthBottom);
1421
1422 ciObject* const_oop() const { return _const_oop; }
1423 // Exact klass, possibly an interface or an array of interface
1424 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1425 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1426
1427 virtual bool is_loaded() const { return klass()->is_loaded(); }
1428 virtual bool klass_is_exact() const { return _klass_is_exact; }
1429
1430 // Returns true if this pointer points at memory which contains a
1431 // compressed oop references.
1432 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1433 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1434 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1435 bool is_known_instance() const { return _instance_id > 0; }
1436 int instance_id() const { return _instance_id; }
1437 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1438
1439 virtual intptr_t get_con() const;
1440
1441 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1442
1443 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1444
1445 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1446
1447 // corresponding pointer to klass, for a given instance
1448 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1449
1450 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1451 virtual const TypePtr* add_offset(intptr_t offset) const;
1452
1453 // Speculative type helper methods.
1454 virtual const TypeOopPtr* remove_speculative() const;
1455 virtual const Type* cleanup_speculative() const;
1456 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1457 virtual const TypePtr* with_inline_depth(int depth) const;
1458
1459 virtual const TypePtr* with_instance_id(int instance_id) const;
1460
1461 virtual const Type *xdual() const; // Compute dual right now.
1462 // the core of the computation of the meet for TypeOopPtr and for its subclasses
1463 virtual const Type *xmeet_helper(const Type *t) const;
1464
1465 // Convenience common pre-built type.
1466 static const TypeOopPtr *BOTTOM;
1467 #ifndef PRODUCT
1468 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1469 #endif
1470 private:
1471 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1472 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1473 }
1474
1475 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1476 ShouldNotReachHere(); return false;
1477 }
1478
1479 virtual const TypeInterfaces* interfaces() const {
1480 return _interfaces;
1481 };
1482
1483 const TypeOopPtr* is_reference_type(const Type* other) const {
1484 return other->isa_oopptr();
1485 }
1486
1487 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1488 return other->isa_aryptr();
1489 }
1490
1491 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1492 return other->isa_instptr();
1493 }
1494 };
1495
1496 //------------------------------TypeInstPtr------------------------------------
1497 // Class of Java object pointers, pointing either to non-array Java instances
1498 // or to a Klass* (including array klasses).
1499 class TypeInstPtr : public TypeOopPtr {
1500 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1501 const TypePtr* speculative, int inline_depth);
1502 virtual bool eq( const Type *t ) const;
1503 virtual uint hash() const; // Type specific hashing
1504
1505 ciKlass* exact_klass_helper() const;
1506
1507 public:
1508
1509 // Instance klass, ignoring any interface
1510 ciInstanceKlass* instance_klass() const {
1511 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1512 return klass()->as_instance_klass();
1513 }
1514
1515 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1516 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1517 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1518
1519 // Make a pointer to a constant oop.
1520 static const TypeInstPtr *make(ciObject* o) {
1521 ciKlass* k = o->klass();
1522 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1523 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1524 }
1525 // Make a pointer to a constant oop with offset.
1526 static const TypeInstPtr *make(ciObject* o, int offset) {
1527 ciKlass* k = o->klass();
1528 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1529 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1530 }
1531
1532 // Make a pointer to some value of type klass.
1533 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1534 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1535 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1536 }
1537
1538 // Make a pointer to some non-polymorphic value of exactly type klass.
1539 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1540 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1541 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1542 }
1543
1544 // Make a pointer to some value of type klass with offset.
1545 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1546 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1547 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1548 }
1549
1550 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1551 int instance_id = InstanceBot,
1552 const TypePtr* speculative = nullptr,
1553 int inline_depth = InlineDepthBottom);
1554
1555 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1556 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1557 return make(ptr, k, interfaces, xk, o, offset, instance_id);
1558 }
1559
1560 /** Create constant type for a constant boxed value */
1561 const Type* get_const_boxed_value() const;
1562
1563 // If this is a java.lang.Class constant, return the type for it or null.
1564 // Pass to Type::get_const_type to turn it to a type, which will usually
1565 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1566 ciType* java_mirror_type() const;
1567
1568 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1569
1570 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1571
1572 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1573
1574 virtual const TypePtr* add_offset(intptr_t offset) const;
1575 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1576
1577 // Speculative type helper methods.
1578 virtual const TypeInstPtr* remove_speculative() const;
1579 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1580 virtual const TypePtr* with_inline_depth(int depth) const;
1581 virtual const TypePtr* with_instance_id(int instance_id) const;
1582
1583 // the core of the computation of the meet of 2 types
1584 virtual const Type *xmeet_helper(const Type *t) const;
1585 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1586 virtual const Type *xdual() const; // Compute dual right now.
1587
1588 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1589
1590 // Convenience common pre-built types.
1591 static const TypeInstPtr *NOTNULL;
1592 static const TypeInstPtr *BOTTOM;
1593 static const TypeInstPtr *MIRROR;
1594 static const TypeInstPtr *MARK;
1595 static const TypeInstPtr *KLASS;
1596 #ifndef PRODUCT
1597 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1598 #endif
1599
1600 private:
1601 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1602
1603 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1604 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1605 }
1606
1607 };
1608
1609 //------------------------------TypeAryPtr-------------------------------------
1610 // Class of Java array pointers
1611 class TypeAryPtr : public TypeOopPtr {
1612 friend class Type;
1613 friend class TypePtr;
1614 friend class TypeInterfaces;
1615
1616 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1617 int offset, int instance_id, bool is_autobox_cache,
1618 const TypePtr* speculative, int inline_depth)
1619 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1620 _ary(ary),
1621 _is_autobox_cache(is_autobox_cache)
1622 {
1623 int dummy;
1624 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1625
1626 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1627 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1628 _offset != arrayOopDesc::klass_offset_in_bytes()) {
1629 _is_ptr_to_narrowoop = true;
1630 }
1631
1632 }
1633 virtual bool eq( const Type *t ) const;
1634 virtual uint hash() const; // Type specific hashing
1635 const TypeAry *_ary; // Array we point into
1636 const bool _is_autobox_cache;
1637
1638 ciKlass* compute_klass() const;
1639
1640 // A pointer to delay allocation to Type::Initialize_shared()
1641
1642 static const TypeInterfaces* _array_interfaces;
1643 ciKlass* exact_klass_helper() const;
1644 // Only guaranteed non null for array of basic types
1645 ciKlass* klass() const;
1646
1647 public:
1648
1649 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1650 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1651 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1652
1653 // returns base element type, an instance klass (and not interface) for object arrays
1654 const Type* base_element_type(int& dims) const;
1655
1656 // Accessors
1657 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1658
1659 const TypeAry* ary() const { return _ary; }
1660 const Type* elem() const { return _ary->_elem; }
1661 const TypeInt* size() const { return _ary->_size; }
1662 bool is_stable() const { return _ary->_stable; }
1663
1664 bool is_autobox_cache() const { return _is_autobox_cache; }
1665
1666 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1667 int instance_id = InstanceBot,
1668 const TypePtr* speculative = nullptr,
1669 int inline_depth = InlineDepthBottom);
1670 // Constant pointer to array
1671 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1672 int instance_id = InstanceBot,
1673 const TypePtr* speculative = nullptr,
1674 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1675
1676 // Return a 'ptr' version of this type
1677 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1678
1679 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1680
1681 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1682
1683 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1684 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1685
1686 virtual bool empty(void) const; // TRUE if type is vacuous
1687 virtual const TypePtr *add_offset( intptr_t offset ) const;
1688 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1689 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1690
1691 // Speculative type helper methods.
1692 virtual const TypeAryPtr* remove_speculative() const;
1693 virtual const TypePtr* with_inline_depth(int depth) const;
1694 virtual const TypePtr* with_instance_id(int instance_id) const;
1695
1696 // the core of the computation of the meet of 2 types
1697 virtual const Type *xmeet_helper(const Type *t) const;
1698 virtual const Type *xdual() const; // Compute dual right now.
1699
1700 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1701 int stable_dimension() const;
1702
1703 const TypeAryPtr* cast_to_autobox_cache() const;
1704
1705 static jint max_array_length(BasicType etype) ;
1706 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1707
1708 // Convenience common pre-built types.
1709 static const TypeAryPtr* BOTTOM;
1710 static const TypeAryPtr* RANGE;
1711 static const TypeAryPtr* OOPS;
1712 static const TypeAryPtr* NARROWOOPS;
1713 static const TypeAryPtr* BYTES;
1714 static const TypeAryPtr* SHORTS;
1715 static const TypeAryPtr* CHARS;
1716 static const TypeAryPtr* INTS;
1717 static const TypeAryPtr* LONGS;
1718 static const TypeAryPtr* FLOATS;
1719 static const TypeAryPtr* DOUBLES;
1720 // selects one of the above:
1721 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1722 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1723 return _array_body_type[elem];
1724 }
1725 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1726 // sharpen the type of an int which is used as an array size
1727 #ifndef PRODUCT
1728 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1729 #endif
1730 private:
1731 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1732 };
1733
1734 //------------------------------TypeMetadataPtr-------------------------------------
1735 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1736 class TypeMetadataPtr : public TypePtr {
1737 protected:
1738 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1739 // Do not allow interface-vs.-noninterface joins to collapse to top.
1740 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1741 public:
1742 virtual bool eq( const Type *t ) const;
1743 virtual uint hash() const; // Type specific hashing
1744 virtual bool singleton(void) const; // TRUE if type is a singleton
1745
1746 private:
1747 ciMetadata* _metadata;
1748
1749 public:
1750 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1751
1752 static const TypeMetadataPtr* make(ciMethod* m);
1753 static const TypeMetadataPtr* make(ciMethodData* m);
1754
1755 ciMetadata* metadata() const { return _metadata; }
1756
1757 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1758
1759 virtual const TypePtr *add_offset( intptr_t offset ) const;
1760
1761 virtual const Type *xmeet( const Type *t ) const;
1762 virtual const Type *xdual() const; // Compute dual right now.
1763
1764 virtual intptr_t get_con() const;
1765
1766 // Convenience common pre-built types.
1767 static const TypeMetadataPtr *BOTTOM;
1768
1769 #ifndef PRODUCT
1770 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1771 #endif
1772 };
1773
1774 //------------------------------TypeKlassPtr-----------------------------------
1775 // Class of Java Klass pointers
1776 class TypeKlassPtr : public TypePtr {
1777 friend class TypeInstKlassPtr;
1778 friend class TypeAryKlassPtr;
1779 friend class TypePtr;
1780 protected:
1781 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1782
1783 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1784
1785 public:
1786 virtual bool eq( const Type *t ) const;
1787 virtual uint hash() const;
1788 virtual bool singleton(void) const; // TRUE if type is a singleton
1789
1790 protected:
1791
1792 ciKlass* _klass;
1793 const TypeInterfaces* _interfaces;
1794 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1795 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1796 virtual ciKlass* exact_klass_helper() const;
1797 virtual ciKlass* klass() const { return _klass; }
1798
1799 public:
1800
1801 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1802 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1803 }
1804 bool is_same_java_type_as(const TypePtr* other) const {
1805 return is_same_java_type_as_helper(other->is_klassptr());
1806 }
1807
1808 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1809 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1810 }
1811 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1812 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1813 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1814
1815 // Exact klass, possibly an interface or an array of interface
1816 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1817 virtual bool klass_is_exact() const { return _ptr == Constant; }
1818
1819 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1820 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1821
1822 virtual bool is_loaded() const { return _klass->is_loaded(); }
1823
1824 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1825
1826 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1827
1828 // corresponding pointer to instance, for a given class
1829 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1830
1831 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1832 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1833 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1834
1835 virtual intptr_t get_con() const;
1836
1837 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1838
1839 virtual const TypeKlassPtr* try_improve() const { return this; }
1840
1841 private:
1842 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1843 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1844 }
1845
1846 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1847 ShouldNotReachHere(); return false;
1848 }
1849
1850 virtual const TypeInterfaces* interfaces() const {
1851 return _interfaces;
1852 };
1853
1854 const TypeKlassPtr* is_reference_type(const Type* other) const {
1855 return other->isa_klassptr();
1856 }
1857
1858 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1859 return other->isa_aryklassptr();
1860 }
1861
1862 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1863 return other->isa_instklassptr();
1864 }
1865 };
1866
1867 // Instance klass pointer, mirrors TypeInstPtr
1868 class TypeInstKlassPtr : public TypeKlassPtr {
1869
1870 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1871 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1872 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1873 }
1874
1875 virtual bool must_be_exact() const;
1876
1877 public:
1878 // Instance klass ignoring any interface
1879 ciInstanceKlass* instance_klass() const {
1880 assert(!klass()->is_interface(), "");
1881 return klass()->as_instance_klass();
1882 }
1883
1884 bool might_be_an_array() const;
1885
1886 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1887 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1888 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1889
1890 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1891 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1892 return make(TypePtr::Constant, k, interfaces, 0);
1893 }
1894 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1895
1896 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1897 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1898 return make(ptr, k, interfaces, offset);
1899 }
1900
1901 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1902
1903 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1904
1905 // corresponding pointer to instance, for a given class
1906 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1907 virtual uint hash() const;
1908 virtual bool eq(const Type *t) const;
1909
1910 virtual const TypePtr *add_offset( intptr_t offset ) const;
1911 virtual const Type *xmeet( const Type *t ) const;
1912 virtual const Type *xdual() const;
1913 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1914
1915 virtual const TypeKlassPtr* try_improve() const;
1916
1917 // Convenience common pre-built types.
1918 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1919 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1920
1921 #ifndef PRODUCT
1922 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
1923 #endif // PRODUCT
1924
1925 private:
1926 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1927 };
1928
1929 // Array klass pointer, mirrors TypeAryPtr
1930 class TypeAryKlassPtr : public TypeKlassPtr {
1931 friend class TypeInstKlassPtr;
1932 friend class Type;
1933 friend class TypePtr;
1934
1935 const Type *_elem;
1936
1937 static const TypeInterfaces* _array_interfaces;
1938 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1939 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1940 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1941 }
1942
1943 virtual ciKlass* exact_klass_helper() const;
1944 // Only guaranteed non null for array of basic types
1945 virtual ciKlass* klass() const;
1946
1947 virtual bool must_be_exact() const;
1948
1949 public:
1950
1951 // returns base element type, an instance klass (and not interface) for object arrays
1952 const Type* base_element_type(int& dims) const;
1953
1954 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1955
1956 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1957 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1958 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1959
1960 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1961
1962 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1963 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1964
1965 const Type *elem() const { return _elem; }
1966
1967 virtual bool eq(const Type *t) const;
1968 virtual uint hash() const; // Type specific hashing
1969
1970 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1971
1972 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1973
1974 // corresponding pointer to instance, for a given class
1975 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1976
1977 virtual const TypePtr *add_offset( intptr_t offset ) const;
1978 virtual const Type *xmeet( const Type *t ) const;
1979 virtual const Type *xdual() const; // Compute dual right now.
1980
1981 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1982
1983 virtual bool empty(void) const {
1984 return TypeKlassPtr::empty() || _elem->empty();
1985 }
1986
1987 #ifndef PRODUCT
1988 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1989 #endif
1990 private:
1991 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1992 };
1993
1994 class TypeNarrowPtr : public Type {
1995 protected:
1996 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1997
1998 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1999 _ptrtype(ptrtype) {
2000 assert(ptrtype->offset() == 0 ||
2001 ptrtype->offset() == OffsetBot ||
2002 ptrtype->offset() == OffsetTop, "no real offsets");
2003 }
2004
2005 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2006 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2007 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2008 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2009 // Do not allow interface-vs.-noninterface joins to collapse to top.
2010 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2011 public:
2012 virtual bool eq( const Type *t ) const;
2013 virtual uint hash() const; // Type specific hashing
2014 virtual bool singleton(void) const; // TRUE if type is a singleton
2015
2016 virtual const Type *xmeet( const Type *t ) const;
2017 virtual const Type *xdual() const; // Compute dual right now.
2018
2019 virtual intptr_t get_con() const;
2020
2021 virtual bool empty(void) const; // TRUE if type is vacuous
2022
2023 // returns the equivalent ptr type for this compressed pointer
2024 const TypePtr *get_ptrtype() const {
2025 return _ptrtype;
2026 }
2027
2028 bool is_known_instance() const {
2029 return _ptrtype->is_known_instance();
2030 }
2031
2032 #ifndef PRODUCT
2033 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2034 #endif
2035 };
2036
2037 //------------------------------TypeNarrowOop----------------------------------
2038 // A compressed reference to some kind of Oop. This type wraps around
2039 // a preexisting TypeOopPtr and forwards most of it's operations to
2040 // the underlying type. It's only real purpose is to track the
2041 // oopness of the compressed oop value when we expose the conversion
2042 // between the normal and the compressed form.
2043 class TypeNarrowOop : public TypeNarrowPtr {
2044 protected:
2045 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2046 }
2047
2048 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2049 return t->isa_narrowoop();
2050 }
2051
2052 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2053 return t->is_narrowoop();
2054 }
2055
2056 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2057 return new TypeNarrowOop(t);
2058 }
2059
2060 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2061 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2062 }
2063
2064 public:
2065
2066 static const TypeNarrowOop *make( const TypePtr* type);
2067
2068 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2069 return make(TypeOopPtr::make_from_constant(con, require_constant));
2070 }
2071
2072 static const TypeNarrowOop *BOTTOM;
2073 static const TypeNarrowOop *NULL_PTR;
2074
2075 virtual const TypeNarrowOop* remove_speculative() const;
2076 virtual const Type* cleanup_speculative() const;
2077
2078 #ifndef PRODUCT
2079 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2080 #endif
2081 };
2082
2083 //------------------------------TypeNarrowKlass----------------------------------
2084 // A compressed reference to klass pointer. This type wraps around a
2085 // preexisting TypeKlassPtr and forwards most of it's operations to
2086 // the underlying type.
2087 class TypeNarrowKlass : public TypeNarrowPtr {
2088 protected:
2089 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2090 }
2091
2092 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2093 return t->isa_narrowklass();
2094 }
2095
2096 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2097 return t->is_narrowklass();
2098 }
2099
2100 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2101 return new TypeNarrowKlass(t);
2102 }
2103
2104 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2105 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2106 }
2107
2108 public:
2109 static const TypeNarrowKlass *make( const TypePtr* type);
2110
2111 // static const TypeNarrowKlass *BOTTOM;
2112 static const TypeNarrowKlass *NULL_PTR;
2113
2114 #ifndef PRODUCT
2115 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2116 #endif
2117 };
2118
2119 //------------------------------TypeFunc---------------------------------------
2120 // Class of Array Types
2121 class TypeFunc : public Type {
2122 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
2123 virtual bool eq( const Type *t ) const;
2124 virtual uint hash() const; // Type specific hashing
2125 virtual bool singleton(void) const; // TRUE if type is a singleton
2126 virtual bool empty(void) const; // TRUE if type is vacuous
2127
2128 const TypeTuple* const _domain; // Domain of inputs
2129 const TypeTuple* const _range; // Range of results
2130
2131 public:
2132 // Constants are shared among ADLC and VM
2133 enum { Control = AdlcVMDeps::Control,
2134 I_O = AdlcVMDeps::I_O,
2135 Memory = AdlcVMDeps::Memory,
2136 FramePtr = AdlcVMDeps::FramePtr,
2137 ReturnAdr = AdlcVMDeps::ReturnAdr,
2138 Parms = AdlcVMDeps::Parms
2139 };
2140
2141
2142 // Accessors:
2143 const TypeTuple* domain() const { return _domain; }
2144 const TypeTuple* range() const { return _range; }
2145
2146 static const TypeFunc *make(ciMethod* method);
2147 static const TypeFunc *make(ciSignature signature, const Type* extra);
2148 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2149
2150 virtual const Type *xmeet( const Type *t ) const;
2151 virtual const Type *xdual() const; // Compute dual right now.
2152
2153 BasicType return_type() const;
2154
2155 #ifndef PRODUCT
2156 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2157 #endif
2158 // Convenience common pre-built types.
2159 };
2160
2161 //------------------------------accessors--------------------------------------
2162 inline bool Type::is_ptr_to_narrowoop() const {
2163 #ifdef _LP64
2164 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2165 #else
2166 return false;
2167 #endif
2168 }
2169
2170 inline bool Type::is_ptr_to_narrowklass() const {
2171 #ifdef _LP64
2172 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2173 #else
2174 return false;
2175 #endif
2176 }
2177
2178 inline float Type::getf() const {
2179 assert( _base == FloatCon, "Not a FloatCon" );
2180 return ((TypeF*)this)->_f;
2181 }
2182
2183 inline short Type::geth() const {
2184 assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2185 return ((TypeH*)this)->_f;
2186 }
2187
2188 inline double Type::getd() const {
2189 assert( _base == DoubleCon, "Not a DoubleCon" );
2190 return ((TypeD*)this)->_d;
2191 }
2192
2193 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2194 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2195 return (TypeInteger*)this;
2196 }
2197
2198 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2199 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2200 }
2201
2202 inline const TypeInt *Type::is_int() const {
2203 assert( _base == Int, "Not an Int" );
2204 return (TypeInt*)this;
2205 }
2206
2207 inline const TypeInt *Type::isa_int() const {
2208 return ( _base == Int ? (TypeInt*)this : nullptr);
2209 }
2210
2211 inline const TypeLong *Type::is_long() const {
2212 assert( _base == Long, "Not a Long" );
2213 return (TypeLong*)this;
2214 }
2215
2216 inline const TypeLong *Type::isa_long() const {
2217 return ( _base == Long ? (TypeLong*)this : nullptr);
2218 }
2219
2220 inline const TypeH* Type::isa_half_float() const {
2221 return ((_base == HalfFloatTop ||
2222 _base == HalfFloatCon ||
2223 _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2224 }
2225
2226 inline const TypeH* Type::is_half_float_constant() const {
2227 assert( _base == HalfFloatCon, "Not a HalfFloat" );
2228 return (TypeH*)this;
2229 }
2230
2231 inline const TypeH* Type::isa_half_float_constant() const {
2232 return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2233 }
2234
2235 inline const TypeF *Type::isa_float() const {
2236 return ((_base == FloatTop ||
2237 _base == FloatCon ||
2238 _base == FloatBot) ? (TypeF*)this : nullptr);
2239 }
2240
2241 inline const TypeF *Type::is_float_constant() const {
2242 assert( _base == FloatCon, "Not a Float" );
2243 return (TypeF*)this;
2244 }
2245
2246 inline const TypeF *Type::isa_float_constant() const {
2247 return ( _base == FloatCon ? (TypeF*)this : nullptr);
2248 }
2249
2250 inline const TypeD *Type::isa_double() const {
2251 return ((_base == DoubleTop ||
2252 _base == DoubleCon ||
2253 _base == DoubleBot) ? (TypeD*)this : nullptr);
2254 }
2255
2256 inline const TypeD *Type::is_double_constant() const {
2257 assert( _base == DoubleCon, "Not a Double" );
2258 return (TypeD*)this;
2259 }
2260
2261 inline const TypeD *Type::isa_double_constant() const {
2262 return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2263 }
2264
2265 inline const TypeTuple *Type::is_tuple() const {
2266 assert( _base == Tuple, "Not a Tuple" );
2267 return (TypeTuple*)this;
2268 }
2269
2270 inline const TypeAry *Type::is_ary() const {
2271 assert( _base == Array , "Not an Array" );
2272 return (TypeAry*)this;
2273 }
2274
2275 inline const TypeAry *Type::isa_ary() const {
2276 return ((_base == Array) ? (TypeAry*)this : nullptr);
2277 }
2278
2279 inline const TypeVectMask *Type::is_vectmask() const {
2280 assert( _base == VectorMask, "Not a Vector Mask" );
2281 return (TypeVectMask*)this;
2282 }
2283
2284 inline const TypeVectMask *Type::isa_vectmask() const {
2285 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2286 }
2287
2288 inline const TypeVect *Type::is_vect() const {
2289 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2290 return (TypeVect*)this;
2291 }
2292
2293 inline const TypeVect *Type::isa_vect() const {
2294 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2295 }
2296
2297 inline const TypePtr *Type::is_ptr() const {
2298 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2299 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2300 return (TypePtr*)this;
2301 }
2302
2303 inline const TypePtr *Type::isa_ptr() const {
2304 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2305 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2306 }
2307
2308 inline const TypeOopPtr *Type::is_oopptr() const {
2309 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2310 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2311 return (TypeOopPtr*)this;
2312 }
2313
2314 inline const TypeOopPtr *Type::isa_oopptr() const {
2315 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2316 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2317 }
2318
2319 inline const TypeRawPtr *Type::isa_rawptr() const {
2320 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2321 }
2322
2323 inline const TypeRawPtr *Type::is_rawptr() const {
2324 assert( _base == RawPtr, "Not a raw pointer" );
2325 return (TypeRawPtr*)this;
2326 }
2327
2328 inline const TypeInstPtr *Type::isa_instptr() const {
2329 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2330 }
2331
2332 inline const TypeInstPtr *Type::is_instptr() const {
2333 assert( _base == InstPtr, "Not an object pointer" );
2334 return (TypeInstPtr*)this;
2335 }
2336
2337 inline const TypeAryPtr *Type::isa_aryptr() const {
2338 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2339 }
2340
2341 inline const TypeAryPtr *Type::is_aryptr() const {
2342 assert( _base == AryPtr, "Not an array pointer" );
2343 return (TypeAryPtr*)this;
2344 }
2345
2346 inline const TypeNarrowOop *Type::is_narrowoop() const {
2347 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2348 assert(_base == NarrowOop, "Not a narrow oop" ) ;
2349 return (TypeNarrowOop*)this;
2350 }
2351
2352 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2353 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2354 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2355 }
2356
2357 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2358 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2359 return (TypeNarrowKlass*)this;
2360 }
2361
2362 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2363 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2364 }
2365
2366 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2367 // MetadataPtr is the first and CPCachePtr the last
2368 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2369 return (TypeMetadataPtr*)this;
2370 }
2371
2372 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2373 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2374 }
2375
2376 inline const TypeKlassPtr *Type::isa_klassptr() const {
2377 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2378 }
2379
2380 inline const TypeKlassPtr *Type::is_klassptr() const {
2381 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2382 return (TypeKlassPtr*)this;
2383 }
2384
2385 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2386 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2387 }
2388
2389 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2390 assert(_base == InstKlassPtr, "Not a klass pointer");
2391 return (TypeInstKlassPtr*)this;
2392 }
2393
2394 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2395 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2396 }
2397
2398 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2399 assert(_base == AryKlassPtr, "Not a klass pointer");
2400 return (TypeAryKlassPtr*)this;
2401 }
2402
2403 inline const TypePtr* Type::make_ptr() const {
2404 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2405 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2406 isa_ptr());
2407 }
2408
2409 inline const TypeOopPtr* Type::make_oopptr() const {
2410 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2411 }
2412
2413 inline const TypeNarrowOop* Type::make_narrowoop() const {
2414 return (_base == NarrowOop) ? is_narrowoop() :
2415 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2416 }
2417
2418 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2419 return (_base == NarrowKlass) ? is_narrowklass() :
2420 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2421 }
2422
2423 inline bool Type::is_floatingpoint() const {
2424 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2425 (_base == FloatCon) || (_base == FloatBot) ||
2426 (_base == DoubleCon) || (_base == DoubleBot) )
2427 return true;
2428 return false;
2429 }
2430
2431 template <>
2432 inline const TypeInt* Type::cast<TypeInt>() const {
2433 return is_int();
2434 }
2435
2436 template <>
2437 inline const TypeLong* Type::cast<TypeLong>() const {
2438 return is_long();
2439 }
2440
2441 template <>
2442 inline const TypeInt* Type::try_cast<TypeInt>() const {
2443 return isa_int();
2444 }
2445
2446 template <>
2447 inline const TypeLong* Type::try_cast<TypeLong>() const {
2448 return isa_long();
2449 }
2450
2451 // ===============================================================
2452 // Things that need to be 64-bits in the 64-bit build but
2453 // 32-bits in the 32-bit build. Done this way to get full
2454 // optimization AND strong typing.
2455 #ifdef _LP64
2456
2457 // For type queries and asserts
2458 #define is_intptr_t is_long
2459 #define isa_intptr_t isa_long
2460 #define find_intptr_t_type find_long_type
2461 #define find_intptr_t_con find_long_con
2462 #define TypeX TypeLong
2463 #define Type_X Type::Long
2464 #define TypeX_X TypeLong::LONG
2465 #define TypeX_ZERO TypeLong::ZERO
2466 // For 'ideal_reg' machine registers
2467 #define Op_RegX Op_RegL
2468 // For phase->intcon variants
2469 #define MakeConX longcon
2470 #define ConXNode ConLNode
2471 // For array index arithmetic
2472 #define MulXNode MulLNode
2473 #define AndXNode AndLNode
2474 #define OrXNode OrLNode
2475 #define CmpXNode CmpLNode
2476 #define SubXNode SubLNode
2477 #define LShiftXNode LShiftLNode
2478 // For object size computation:
2479 #define AddXNode AddLNode
2480 #define RShiftXNode RShiftLNode
2481 // For card marks and hashcodes
2482 #define URShiftXNode URShiftLNode
2483 // For shenandoahSupport
2484 #define LoadXNode LoadLNode
2485 #define StoreXNode StoreLNode
2486 // Opcodes
2487 #define Op_LShiftX Op_LShiftL
2488 #define Op_AndX Op_AndL
2489 #define Op_AddX Op_AddL
2490 #define Op_SubX Op_SubL
2491 #define Op_XorX Op_XorL
2492 #define Op_URShiftX Op_URShiftL
2493 #define Op_LoadX Op_LoadL
2494 // conversions
2495 #define ConvI2X(x) ConvI2L(x)
2496 #define ConvL2X(x) (x)
2497 #define ConvX2I(x) ConvL2I(x)
2498 #define ConvX2L(x) (x)
2499 #define ConvX2UL(x) (x)
2500
2501 #else
2502
2503 // For type queries and asserts
2504 #define is_intptr_t is_int
2505 #define isa_intptr_t isa_int
2506 #define find_intptr_t_type find_int_type
2507 #define find_intptr_t_con find_int_con
2508 #define TypeX TypeInt
2509 #define Type_X Type::Int
2510 #define TypeX_X TypeInt::INT
2511 #define TypeX_ZERO TypeInt::ZERO
2512 // For 'ideal_reg' machine registers
2513 #define Op_RegX Op_RegI
2514 // For phase->intcon variants
2515 #define MakeConX intcon
2516 #define ConXNode ConINode
2517 // For array index arithmetic
2518 #define MulXNode MulINode
2519 #define AndXNode AndINode
2520 #define OrXNode OrINode
2521 #define CmpXNode CmpINode
2522 #define SubXNode SubINode
2523 #define LShiftXNode LShiftINode
2524 // For object size computation:
2525 #define AddXNode AddINode
2526 #define RShiftXNode RShiftINode
2527 // For card marks and hashcodes
2528 #define URShiftXNode URShiftINode
2529 // For shenandoahSupport
2530 #define LoadXNode LoadINode
2531 #define StoreXNode StoreINode
2532 // Opcodes
2533 #define Op_LShiftX Op_LShiftI
2534 #define Op_AndX Op_AndI
2535 #define Op_AddX Op_AddI
2536 #define Op_SubX Op_SubI
2537 #define Op_XorX Op_XorI
2538 #define Op_URShiftX Op_URShiftI
2539 #define Op_LoadX Op_LoadI
2540 // conversions
2541 #define ConvI2X(x) (x)
2542 #define ConvL2X(x) ConvL2I(x)
2543 #define ConvX2I(x) (x)
2544 #define ConvX2L(x) ConvI2L(x)
2545 #define ConvX2UL(x) ConvI2UL(x)
2546
2547 #endif
2548
2549 #endif // SHARE_OPTO_TYPE_HPP