1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/rangeinference.hpp"
  31 #include "runtime/handles.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeH;
  51 class   TypeInteger;
  52 class     TypeInt;
  53 class     TypeLong;
  54 class   TypeNarrowPtr;
  55 class     TypeNarrowOop;
  56 class     TypeNarrowKlass;
  57 class   TypeAry;
  58 class   TypeTuple;
  59 class   TypeVect;
  60 class     TypeVectA;
  61 class     TypeVectS;
  62 class     TypeVectD;
  63 class     TypeVectX;
  64 class     TypeVectY;
  65 class     TypeVectZ;
  66 class     TypeVectMask;
  67 class   TypePtr;
  68 class     TypeRawPtr;
  69 class     TypeOopPtr;
  70 class       TypeInstPtr;
  71 class       TypeAryPtr;
  72 class     TypeKlassPtr;
  73 class       TypeInstKlassPtr;
  74 class       TypeAryKlassPtr;
  75 class     TypeMetadataPtr;
  76 class VerifyMeet;
  77 
  78 template <class T, class U>
  79 class TypeIntPrototype;
  80 
  81 //------------------------------Type-------------------------------------------
  82 // Basic Type object, represents a set of primitive Values.
  83 // Types are hash-cons'd into a private class dictionary, so only one of each
  84 // different kind of Type exists.  Types are never modified after creation, so
  85 // all their interesting fields are constant.
  86 class Type {
  87 
  88 public:
  89   enum TYPES {
  90     Bad=0,                      // Type check
  91     Control,                    // Control of code (not in lattice)
  92     Top,                        // Top of the lattice
  93     Int,                        // Integer range (lo-hi)
  94     Long,                       // Long integer range (lo-hi)
  95     Half,                       // Placeholder half of doubleword
  96     NarrowOop,                  // Compressed oop pointer
  97     NarrowKlass,                // Compressed klass pointer
  98 
  99     Tuple,                      // Method signature or object layout
 100     Array,                      // Array types
 101 
 102     Interfaces,                 // Set of implemented interfaces for oop types
 103 
 104     VectorMask,                 // Vector predicate/mask type
 105     VectorA,                    // (Scalable) Vector types for vector length agnostic
 106     VectorS,                    //  32bit Vector types
 107     VectorD,                    //  64bit Vector types
 108     VectorX,                    // 128bit Vector types
 109     VectorY,                    // 256bit Vector types
 110     VectorZ,                    // 512bit Vector types
 111 
 112     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 113     RawPtr,                     // Raw (non-oop) pointers
 114     OopPtr,                     // Any and all Java heap entities
 115     InstPtr,                    // Instance pointers (non-array objects)
 116     AryPtr,                     // Array pointers
 117     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 118 
 119     MetadataPtr,                // Generic metadata
 120     KlassPtr,                   // Klass pointers
 121     InstKlassPtr,
 122     AryKlassPtr,
 123 
 124     Function,                   // Function signature
 125     Abio,                       // Abstract I/O
 126     Return_Address,             // Subroutine return address
 127     Memory,                     // Abstract store
 128     HalfFloatTop,               // No float value
 129     HalfFloatCon,               // Floating point constant
 130     HalfFloatBot,               // Any float value
 131     FloatTop,                   // No float value
 132     FloatCon,                   // Floating point constant
 133     FloatBot,                   // Any float value
 134     DoubleTop,                  // No double value
 135     DoubleCon,                  // Double precision constant
 136     DoubleBot,                  // Any double value
 137     Bottom,                     // Bottom of lattice
 138     lastype                     // Bogus ending type (not in lattice)
 139   };
 140 
 141   // Signal values for offsets from a base pointer
 142   enum OFFSET_SIGNALS {
 143     OffsetTop = -2000000000,    // undefined offset
 144     OffsetBot = -2000000001     // any possible offset
 145   };
 146 
 147   // Min and max WIDEN values.
 148   enum WIDEN {
 149     WidenMin = 0,
 150     WidenMax = 3
 151   };
 152 
 153 private:
 154   typedef struct {
 155     TYPES                dual_type;
 156     BasicType            basic_type;
 157     const char*          msg;
 158     bool                 isa_oop;
 159     uint                 ideal_reg;
 160     relocInfo::relocType reloc;
 161   } TypeInfo;
 162 
 163   // Dictionary of types shared among compilations.
 164   static Dict* _shared_type_dict;
 165   static const TypeInfo _type_info[];
 166 
 167   static int uhash( const Type *const t );
 168   // Structural equality check.  Assumes that equals() has already compared
 169   // the _base types and thus knows it can cast 't' appropriately.
 170   virtual bool eq( const Type *t ) const;
 171 
 172   // Top-level hash-table of types
 173   static Dict *type_dict() {
 174     return Compile::current()->type_dict();
 175   }
 176 
 177   // DUAL operation: reflect around lattice centerline.  Used instead of
 178   // join to ensure my lattice is symmetric up and down.  Dual is computed
 179   // lazily, on demand, and cached in _dual.
 180   const Type *_dual;            // Cached dual value
 181 
 182 
 183   const Type *meet_helper(const Type *t, bool include_speculative) const;
 184   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 185 
 186 protected:
 187   // Each class of type is also identified by its base.
 188   const TYPES _base;            // Enum of Types type
 189 
 190   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 191   // ~Type();                   // Use fast deallocation
 192   const Type *hashcons();       // Hash-cons the type
 193   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 194   const Type *join_helper(const Type *t, bool include_speculative) const {
 195     assert_type_verify_empty();
 196     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 197   }
 198 
 199   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 200 
 201 public:
 202 
 203   inline void* operator new( size_t x ) throw() {
 204     Compile* compile = Compile::current();
 205     compile->set_type_last_size(x);
 206     return compile->type_arena()->AmallocWords(x);
 207   }
 208   inline void operator delete( void* ptr ) {
 209     Compile* compile = Compile::current();
 210     compile->type_arena()->Afree(ptr,compile->type_last_size());
 211   }
 212 
 213   // Initialize the type system for a particular compilation.
 214   static void Initialize(Compile* compile);
 215 
 216   // Initialize the types shared by all compilations.
 217   static void Initialize_shared(Compile* compile);
 218 
 219   TYPES base() const {
 220     assert(_base > Bad && _base < lastype, "sanity");
 221     return _base;
 222   }
 223 
 224   // Create a new hash-consd type
 225   static const Type *make(enum TYPES);
 226   // Test for equivalence of types
 227   static bool equals(const Type* t1, const Type* t2);
 228   // Test for higher or equal in lattice
 229   // Variant that drops the speculative part of the types
 230   bool higher_equal(const Type* t) const {
 231     return equals(meet(t), t->remove_speculative());
 232   }
 233   // Variant that keeps the speculative part of the types
 234   bool higher_equal_speculative(const Type* t) const {
 235     return equals(meet_speculative(t), t);
 236   }
 237 
 238   // MEET operation; lower in lattice.
 239   // Variant that drops the speculative part of the types
 240   const Type *meet(const Type *t) const {
 241     return meet_helper(t, false);
 242   }
 243   // Variant that keeps the speculative part of the types
 244   const Type *meet_speculative(const Type *t) const {
 245     return meet_helper(t, true)->cleanup_speculative();
 246   }
 247   // WIDEN: 'widens' for Ints and other range types
 248   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 249   // NARROW: complement for widen, used by pessimistic phases
 250   virtual const Type *narrow( const Type *old ) const { return this; }
 251 
 252   // DUAL operation: reflect around lattice centerline.  Used instead of
 253   // join to ensure my lattice is symmetric up and down.
 254   const Type *dual() const { return _dual; }
 255 
 256   // Compute meet dependent on base type
 257   virtual const Type *xmeet( const Type *t ) const;
 258   virtual const Type *xdual() const;    // Compute dual right now.
 259 
 260   // JOIN operation; higher in lattice.  Done by finding the dual of the
 261   // meet of the dual of the 2 inputs.
 262   // Variant that drops the speculative part of the types
 263   const Type *join(const Type *t) const {
 264     return join_helper(t, false);
 265   }
 266   // Variant that keeps the speculative part of the types
 267   const Type *join_speculative(const Type *t) const {
 268     return join_helper(t, true)->cleanup_speculative();
 269   }
 270 
 271   // Modified version of JOIN adapted to the needs Node::Value.
 272   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 273   // Variant that drops the speculative part of the types
 274   const Type *filter(const Type *kills) const {
 275     return filter_helper(kills, false);
 276   }
 277   // Variant that keeps the speculative part of the types
 278   const Type *filter_speculative(const Type *kills) const {
 279     return filter_helper(kills, true)->cleanup_speculative();
 280   }
 281 
 282   // Returns true if this pointer points at memory which contains a
 283   // compressed oop references.
 284   bool is_ptr_to_narrowoop() const;
 285   bool is_ptr_to_narrowklass() const;
 286 
 287   // Convenience access
 288   short geth() const;
 289   virtual float getf() const;
 290   double getd() const;
 291 
 292   // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
 293   template <typename TypeClass>
 294   const TypeClass* try_cast() const;
 295 
 296   const TypeInt    *is_int() const;
 297   const TypeInt    *isa_int() const;             // Returns null if not an Int
 298   const TypeInteger* is_integer(BasicType bt) const;
 299   const TypeInteger* isa_integer(BasicType bt) const;
 300   const TypeLong   *is_long() const;
 301   const TypeLong   *isa_long() const;            // Returns null if not a Long
 302   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 303   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 304   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 305   const TypeH      *isa_half_float() const;          // Returns null if not a HalfFloat{Top,Con,Bot}
 306   const TypeH      *is_half_float_constant() const;  // Asserts it is a HalfFloatCon
 307   const TypeH      *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
 308   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 309   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 310   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 311   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 312   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 313   const TypeAry    *isa_ary() const;             // Returns null of not ary
 314   const TypeVect   *is_vect() const;             // Vector
 315   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 316   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 317   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 318   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 319   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 320   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 321   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 322   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 323   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 324   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 325   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 326   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 327   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 328   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 329   const TypeInstPtr  *is_instptr() const;        // Instance
 330   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 331   const TypeAryPtr   *is_aryptr() const;         // Array oop
 332 
 333   template <typename TypeClass>
 334   const TypeClass* cast() const;
 335 
 336   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 337   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 338   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 339   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 340   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 341   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 342   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 343   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 344 
 345   virtual bool      is_finite() const;           // Has a finite value
 346   virtual bool      is_nan()    const;           // Is not a number (NaN)
 347 
 348   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 349   const TypePtr* make_ptr() const;
 350 
 351   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 352   // Asserts if the underlying type is not an oopptr or narrowoop.
 353   const TypeOopPtr* make_oopptr() const;
 354 
 355   // Returns this compressed pointer or the equivalent compressed version
 356   // of this pointer type.
 357   const TypeNarrowOop* make_narrowoop() const;
 358 
 359   // Returns this compressed klass pointer or the equivalent
 360   // compressed version of this pointer type.
 361   const TypeNarrowKlass* make_narrowklass() const;
 362 
 363   // Special test for register pressure heuristic
 364   bool is_floatingpoint() const;        // True if Float or Double base type
 365 
 366   // Do you have memory, directly or through a tuple?
 367   bool has_memory( ) const;
 368 
 369   // TRUE if type is a singleton
 370   virtual bool singleton(void) const;
 371 
 372   // TRUE if type is above the lattice centerline, and is therefore vacuous
 373   virtual bool empty(void) const;
 374 
 375   // Return a hash for this type.  The hash function is public so ConNode
 376   // (constants) can hash on their constant, which is represented by a Type.
 377   virtual uint hash() const;
 378 
 379   // Map ideal registers (machine types) to ideal types
 380   static const Type *mreg2type[];
 381 
 382   // Printing, statistics
 383 #ifndef PRODUCT
 384   void         dump_on(outputStream *st) const;
 385   void         dump() const {
 386     dump_on(tty);
 387   }
 388   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 389   static  void dump_stats();
 390   // Groups of types, for debugging and visualization only.
 391   enum class Category {
 392     Data,
 393     Memory,
 394     Mixed,   // Tuples with types of different categories.
 395     Control,
 396     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 397     Undef    // {Type::Bad, Type::lastype}, for completeness.
 398   };
 399   // Return the category of this type.
 400   Category category() const;
 401   // Check recursively in tuples.
 402   bool has_category(Category cat) const;
 403 
 404   static const char* str(const Type* t);
 405 #endif // !PRODUCT
 406   void typerr(const Type *t) const; // Mixing types error
 407 
 408   // Create basic type
 409   static const Type* get_const_basic_type(BasicType type) {
 410     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 411     return _const_basic_type[type];
 412   }
 413 
 414   // For two instance arrays of same dimension, return the base element types.
 415   // Otherwise or if the arrays have different dimensions, return null.
 416   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 417                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 418 
 419   // Mapping to the array element's basic type.
 420   BasicType array_element_basic_type() const;
 421 
 422   enum InterfaceHandling {
 423       trust_interfaces,
 424       ignore_interfaces
 425   };
 426   // Create standard type for a ciType:
 427   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 428 
 429   // Create standard zero value:
 430   static const Type* get_zero_type(BasicType type) {
 431     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 432     return _zero_type[type];
 433   }
 434 
 435   // Report if this is a zero value (not top).
 436   bool is_zero_type() const {
 437     BasicType type = basic_type();
 438     if (type == T_VOID || type >= T_CONFLICT)
 439       return false;
 440     else
 441       return (this == _zero_type[type]);
 442   }
 443 
 444   // Convenience common pre-built types.
 445   static const Type *ABIO;
 446   static const Type *BOTTOM;
 447   static const Type *CONTROL;
 448   static const Type *DOUBLE;
 449   static const Type *FLOAT;
 450   static const Type *HALF_FLOAT;
 451   static const Type *HALF;
 452   static const Type *MEMORY;
 453   static const Type *MULTI;
 454   static const Type *RETURN_ADDRESS;
 455   static const Type *TOP;
 456 
 457   // Mapping from compiler type to VM BasicType
 458   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 459   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 460   const char* msg() const            { return _type_info[_base].msg; }
 461   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 462   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 463 
 464   // Mapping from CI type system to compiler type:
 465   static const Type* get_typeflow_type(ciType* type);
 466 
 467   static const Type* make_from_constant(ciConstant constant,
 468                                         bool require_constant = false,
 469                                         int stable_dimension = 0,
 470                                         bool is_narrow = false,
 471                                         bool is_autobox_cache = false);
 472 
 473   static const Type* make_constant_from_field(ciInstance* holder,
 474                                               int off,
 475                                               bool is_unsigned_load,
 476                                               BasicType loadbt);
 477 
 478   static const Type* make_constant_from_field(ciField* field,
 479                                               ciInstance* holder,
 480                                               BasicType loadbt,
 481                                               bool is_unsigned_load);
 482 
 483   static const Type* make_constant_from_array_element(ciArray* array,
 484                                                       int off,
 485                                                       int stable_dimension,
 486                                                       BasicType loadbt,
 487                                                       bool is_unsigned_load);
 488 
 489   // Speculative type helper methods. See TypePtr.
 490   virtual const TypePtr* speculative() const                                  { return nullptr; }
 491   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 492   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 493   virtual bool speculative_maybe_null() const                                 { return true; }
 494   virtual bool speculative_always_null() const                                { return true; }
 495   virtual const Type* remove_speculative() const                              { return this; }
 496   virtual const Type* cleanup_speculative() const                             { return this; }
 497   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 498   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 499   const Type* maybe_remove_speculative(bool include_speculative) const;
 500 
 501   virtual bool maybe_null() const { return true; }
 502   virtual bool is_known_instance() const { return false; }
 503 
 504 private:
 505   // support arrays
 506   static const Type*        _zero_type[T_CONFLICT+1];
 507   static const Type* _const_basic_type[T_CONFLICT+1];
 508 };
 509 
 510 //------------------------------TypeF------------------------------------------
 511 // Class of Float-Constant Types.
 512 class TypeF : public Type {
 513   TypeF( float f ) : Type(FloatCon), _f(f) {};
 514 public:
 515   virtual bool eq( const Type *t ) const;
 516   virtual uint hash() const;             // Type specific hashing
 517   virtual bool singleton(void) const;    // TRUE if type is a singleton
 518   virtual bool empty(void) const;        // TRUE if type is vacuous
 519 public:
 520   const float _f;               // Float constant
 521 
 522   static const TypeF *make(float f);
 523 
 524   virtual bool        is_finite() const;  // Has a finite value
 525   virtual bool        is_nan()    const;  // Is not a number (NaN)
 526 
 527   virtual const Type *xmeet( const Type *t ) const;
 528   virtual const Type *xdual() const;    // Compute dual right now.
 529   // Convenience common pre-built types.
 530   static const TypeF *MAX;
 531   static const TypeF *MIN;
 532   static const TypeF *ZERO; // positive zero only
 533   static const TypeF *ONE;
 534   static const TypeF *POS_INF;
 535   static const TypeF *NEG_INF;
 536 #ifndef PRODUCT
 537   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 538 #endif
 539 };
 540 
 541 // Class of Half Float-Constant Types.
 542 class TypeH : public Type {
 543   TypeH(short f) : Type(HalfFloatCon), _f(f) {};
 544 public:
 545   virtual bool eq(const Type* t) const;
 546   virtual uint hash() const;             // Type specific hashing
 547   virtual bool singleton(void) const;    // TRUE if type is a singleton
 548   virtual bool empty(void) const;        // TRUE if type is vacuous
 549 public:
 550   const short _f;                        // Half Float constant
 551 
 552   static const TypeH* make(float f);
 553   static const TypeH* make(short f);
 554 
 555   virtual bool is_finite() const;  // Has a finite value
 556   virtual bool is_nan() const;     // Is not a number (NaN)
 557 
 558   virtual float getf() const;
 559   virtual const Type* xmeet(const Type* t) const;
 560   virtual const Type* xdual() const;    // Compute dual right now.
 561   // Convenience common pre-built types.
 562   static const TypeH* MAX;
 563   static const TypeH* MIN;
 564   static const TypeH* ZERO; // positive zero only
 565   static const TypeH* ONE;
 566   static const TypeH* POS_INF;
 567   static const TypeH* NEG_INF;
 568 #ifndef PRODUCT
 569   virtual void dump2(Dict &d, uint depth, outputStream* st) const;
 570 #endif
 571 };
 572 
 573 //------------------------------TypeD------------------------------------------
 574 // Class of Double-Constant Types.
 575 class TypeD : public Type {
 576   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 577 public:
 578   virtual bool eq( const Type *t ) const;
 579   virtual uint hash() const;             // Type specific hashing
 580   virtual bool singleton(void) const;    // TRUE if type is a singleton
 581   virtual bool empty(void) const;        // TRUE if type is vacuous
 582 public:
 583   const double _d;              // Double constant
 584 
 585   static const TypeD *make(double d);
 586 
 587   virtual bool        is_finite() const;  // Has a finite value
 588   virtual bool        is_nan()    const;  // Is not a number (NaN)
 589 
 590   virtual const Type *xmeet( const Type *t ) const;
 591   virtual const Type *xdual() const;    // Compute dual right now.
 592   // Convenience common pre-built types.
 593   static const TypeD *MAX;
 594   static const TypeD *MIN;
 595   static const TypeD *ZERO; // positive zero only
 596   static const TypeD *ONE;
 597   static const TypeD *POS_INF;
 598   static const TypeD *NEG_INF;
 599 #ifndef PRODUCT
 600   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 601 #endif
 602 };
 603 
 604 class TypeInteger : public Type {
 605 protected:
 606   TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
 607 
 608   // Denote that a set is a dual set.
 609   // Dual sets are only used to compute the join of 2 sets, and not used
 610   // outside.
 611   const bool _is_dual;
 612 
 613 public:
 614   const short _widen;           // Limit on times we widen this sucker
 615 
 616   virtual jlong hi_as_long() const = 0;
 617   virtual jlong lo_as_long() const = 0;
 618   jlong get_con_as_long(BasicType bt) const;
 619   bool is_con() const { return lo_as_long() == hi_as_long(); }
 620   virtual short widen_limit() const { return _widen; }
 621 
 622   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 623   static const TypeInteger* make(jlong con, BasicType bt);
 624 
 625   static const TypeInteger* bottom(BasicType type);
 626   static const TypeInteger* zero(BasicType type);
 627   static const TypeInteger* one(BasicType type);
 628   static const TypeInteger* minus_1(BasicType type);
 629 };
 630 
 631 /**
 632  * Definition:
 633  *
 634  * A TypeInt represents a set of non-empty jint values. A jint v is an element
 635  * of a TypeInt iff:
 636  *
 637  *   v >= _lo && v <= _hi &&
 638  *   juint(v) >= _ulo && juint(v) <= _uhi &&
 639  *   _bits.is_satisfied_by(v)
 640  *
 641  * Multiple sets of parameters can represent the same set.
 642  * E.g: consider 2 TypeInt t1, t2
 643  *
 644  * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
 645  * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
 646  *
 647  * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
 648  * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
 649  * which also represents {3, 5} such that any of these would be true:
 650  *
 651  *  1)  t3._lo  > t2._lo
 652  *  2)  t3._hi  < t2._hi
 653  *  3)  t3._ulo > t2._ulo
 654  *  4)  t3._uhi < t2._uhi
 655  *  5)  (t3._bits._zeros &~ t2._bis._zeros) != 0
 656  *  6)  (t3._bits._ones  &~ t2._bits._ones) != 0
 657  *
 658  * The 5-th condition mean that the subtraction of the bitsets represented by
 659  * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
 660  * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
 661  * same applies to _bits._ones
 662  *
 663  * To simplify reasoning about the types in optimizations, we canonicalize
 664  * every TypeInt to its tightest form, already at construction. E.g a TypeInt
 665  * t with t._lo < 0 will definitely contain negative values. It also makes it
 666  * trivial to determine if a TypeInt instance is a subset of another.
 667  *
 668  * Lemmas:
 669  *
 670  * 1. Since every TypeInt instance is non-empty and canonicalized, all the
 671  *   bounds must also be elements of such TypeInt. Or else, we can tighten the
 672  *   bounds by narrowing it by one, which contradicts the assumption of the
 673  *   TypeInt being canonical.
 674  *
 675  * 2.
 676  *   2.1.  _lo <= jint(_ulo)
 677  *   2.2.  _lo <= _hi
 678  *   2.3.  _lo <= jint(_uhi)
 679  *   2.4.  _ulo <= juint(_lo)
 680  *   2.5.  _ulo <= juint(_hi)
 681  *   2.6.  _ulo <= _uhi
 682  *   2.7.  _hi >= _lo
 683  *   2.8.  _hi >= jint(_ulo)
 684  *   2.9.  _hi >= jint(_uhi)
 685  *   2.10. _uhi >= juint(_lo)
 686  *   2.11. _uhi >= _ulo
 687  *   2.12. _uhi >= juint(_hi)
 688  *
 689  *   Proof of lemma 2:
 690  *
 691  *   2.1. _lo <= jint(_ulo):
 692  *     According the lemma 1, _ulo is an element of the TypeInt, so in the
 693  *     signed domain, it must not be less than the smallest element of that
 694  *     TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
 695  *     domain, or in a more programmatical way, _lo <= jint(_ulo).
 696  *   2.2. _lo <= _hi:
 697  *     According the lemma 1, _hi is an element of the TypeInt, so in the
 698  *     signed domain, it must not be less than the smallest element of that
 699  *     TypeInt, which is _lo. Which means that _lo <= _hi.
 700  *
 701  *   The other inequalities can be proved in a similar manner.
 702  *
 703  * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
 704  *
 705  *   x <= y iff juint(x) <= juint(y)
 706  *   I.e. x <= y in the signed domain iff x <= y in the unsigned domain
 707  *
 708  * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
 709  *   TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
 710  *   (note that these intervals are disjoint in this case).
 711  *
 712  *   Proof of lemma 4:
 713  *
 714  *   For a TypeInt t, there are 3 possible cases:
 715  *
 716  *   a. t._lo >= 0, we have:
 717  *
 718  *     0 <= t_lo <= jint(t._ulo)           (lemma 2.1)
 719  *     juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
 720  *                  == t._ulo              (juint(jint(v)) == v with juint v)
 721  *                  <= juint(t._lo)        (lemma 2.4)
 722  *
 723  *     Which means that t._lo == jint(t._ulo).
 724  *
 725  *     Furthermore,
 726  *
 727  *     0 <= t._lo <= t._hi                 (lemma 2.2)
 728  *     0 <= t._lo <= jint(t._uhi)          (lemma 2.3)
 729  *     t._hi >= jint(t._uhi)               (lemma 2.9)
 730  *
 731  *     juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
 732  *                  == t._uhi              (juint(jint(v)) == v with juint v)
 733  *                  >= juint(t._hi)        (lemma 2.12)
 734  *
 735  *     Which means that t._hi == jint(t._uhi).
 736  *     In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 737  *
 738  *   b. t._hi < 0. Similarly, we can conclude that:
 739  *     t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 740  *
 741  *   c. t._lo < 0, t._hi >= 0.
 742  *
 743  *     Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
 744  *     because all negative values is larger than all non-negative values in the
 745  *     unsigned domain.
 746  *
 747  *     Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
 748  *     similar to the reasoning above.
 749  *
 750  *     In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
 751  *     [jint(t._ulo), t._hi].
 752  *
 753  *     Below is an illustration of the TypeInt in this case, the intervals that
 754  *     the elements can be in are marked using the = symbol. Note how the
 755  *     negative range in the signed domain wrap around in the unsigned domain.
 756  *
 757  *     Signed:
 758  *     -----lo=========uhi---------0--------ulo==========hi-----
 759  *     Unsigned:
 760  *                                 0--------ulo==========hi----------lo=========uhi---------
 761  *
 762  *   This property is useful for our analysis of TypeInt values. Additionally,
 763  *   it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
 764  *   same applies to jint(_ulo) and _hi.
 765  *
 766  *   We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
 767  *   a TypeInt consists of 2 simple intervals, each of which has its bounds
 768  *   being both >= 0 or both < 0. If both simple intervals lie in the same half
 769  *   of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
 770  *   _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
 771  *   half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
 772  *   domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
 773  *   [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
 774  */
 775 class TypeInt : public TypeInteger {
 776 private:
 777   TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
 778   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
 779 
 780   friend class TypeIntHelper;
 781 
 782 protected:
 783   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 784 
 785 public:
 786   typedef jint NativeType;
 787   virtual bool eq(const Type* t) const;
 788   virtual uint hash() const;             // Type specific hashing
 789   virtual bool singleton(void) const;    // TRUE if type is a singleton
 790   virtual bool empty(void) const;        // TRUE if type is vacuous
 791   // A value is in the set represented by this TypeInt if it satisfies all
 792   // the below constraints, see contains(jint)
 793   const jint _lo, _hi;       // Lower bound, upper bound in the signed domain
 794   const juint _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 795   const KnownBits<juint> _bits;
 796 
 797   static const TypeInt* make(jint con);
 798   // must always specify w
 799   static const TypeInt* make(jint lo, jint hi, int widen);
 800   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
 801   static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
 802   static const TypeInt* make(const TypeIntMirror<jint, juint>& t, int widen) {
 803     return (new TypeInt(TypeIntPrototype<jint, juint>{{t._lo, t._hi}, {t._ulo, t._uhi}, t._bits}, widen, false))->hashcons()->is_int();
 804   }
 805 
 806   // Check for single integer
 807   bool is_con() const { return _lo == _hi; }
 808   bool is_con(jint i) const { return is_con() && _lo == i; }
 809   jint get_con() const { assert(is_con(), "");  return _lo; }
 810   // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
 811   // argument are also elements of this type)
 812   bool contains(jint i) const;
 813   bool contains(const TypeInt* t) const;
 814 
 815 #ifdef ASSERT
 816   // Check whether t is a proper subset (i.e. a subset that is not equal to the superset) of this
 817   bool strictly_contains(const TypeInt* t) const;
 818 #endif // ASSERT
 819 
 820   virtual bool is_finite() const;  // Has a finite value
 821 
 822   virtual const Type* xmeet(const Type* t) const;
 823   virtual const Type* xdual() const;    // Compute dual right now.
 824   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 825   virtual const Type* narrow(const Type* t) const;
 826 
 827   virtual jlong hi_as_long() const { return _hi; }
 828   virtual jlong lo_as_long() const { return _lo; }
 829 
 830   // Do not kill _widen bits.
 831   // Convenience common pre-built types.
 832   static const TypeInt* MAX;
 833   static const TypeInt* MIN;
 834   static const TypeInt* MINUS_1;
 835   static const TypeInt* ZERO;
 836   static const TypeInt* ONE;
 837   static const TypeInt* BOOL;
 838   static const TypeInt* CC;
 839   static const TypeInt* CC_LT;  // [-1]  == MINUS_1
 840   static const TypeInt* CC_GT;  // [1]   == ONE
 841   static const TypeInt* CC_EQ;  // [0]   == ZERO
 842   static const TypeInt* CC_NE;  // [-1, 1]
 843   static const TypeInt* CC_LE;  // [-1,0]
 844   static const TypeInt* CC_GE;  // [0,1] == BOOL (!)
 845   static const TypeInt* BYTE;
 846   static const TypeInt* UBYTE;
 847   static const TypeInt* CHAR;
 848   static const TypeInt* SHORT;
 849   static const TypeInt* NON_ZERO;
 850   static const TypeInt* POS;
 851   static const TypeInt* POS1;
 852   static const TypeInt* INT;
 853   static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
 854   static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
 855 
 856   static const TypeInt* as_self(const Type* t) { return t->is_int(); }
 857 #ifndef PRODUCT
 858   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
 859   void dump_verbose() const;
 860 #endif
 861 };
 862 
 863 // Similar to TypeInt
 864 class TypeLong : public TypeInteger {
 865 private:
 866   TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
 867   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
 868 
 869   friend class TypeIntHelper;
 870 
 871 protected:
 872   // Do not kill _widen bits.
 873   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 874 public:
 875   typedef jlong NativeType;
 876   virtual bool eq( const Type *t ) const;
 877   virtual uint hash() const;             // Type specific hashing
 878   virtual bool singleton(void) const;    // TRUE if type is a singleton
 879   virtual bool empty(void) const;        // TRUE if type is vacuous
 880 public:
 881   // A value is in the set represented by this TypeLong if it satisfies all
 882   // the below constraints, see contains(jlong)
 883   const jlong _lo, _hi;       // Lower bound, upper bound in the signed domain
 884   const julong _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 885   const KnownBits<julong> _bits;
 886 
 887   static const TypeLong* make(jlong con);
 888   // must always specify w
 889   static const TypeLong* make(jlong lo, jlong hi, int widen);
 890   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
 891   static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
 892   static const TypeLong* make(const TypeIntMirror<jlong, julong>& t, int widen) {
 893     return (new TypeLong(TypeIntPrototype<jlong, julong>{{t._lo, t._hi}, {t._ulo, t._uhi}, t._bits}, widen, false))->hashcons()->is_long();
 894   }
 895 
 896   // Check for single integer
 897   bool is_con() const { return _lo == _hi; }
 898   bool is_con(jlong i) const { return is_con() && _lo == i; }
 899   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 900   // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
 901   // argument are also elements of this type)
 902   bool contains(jlong i) const;
 903   bool contains(const TypeLong* t) const;
 904 
 905 #ifdef ASSERT
 906   // Check whether t is a proper subset (i.e. a subset that is not equal to the superset) of this
 907   bool strictly_contains(const TypeLong* t) const;
 908 #endif // ASSERT
 909 
 910   // Check for positive 32-bit value.
 911   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 912 
 913   virtual bool        is_finite() const;  // Has a finite value
 914 
 915   virtual jlong hi_as_long() const { return _hi; }
 916   virtual jlong lo_as_long() const { return _lo; }
 917 
 918   virtual const Type* xmeet(const Type* t) const;
 919   virtual const Type* xdual() const;    // Compute dual right now.
 920   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 921   virtual const Type* narrow(const Type* t) const;
 922   // Convenience common pre-built types.
 923   static const TypeLong* MAX;
 924   static const TypeLong* MIN;
 925   static const TypeLong* MINUS_1;
 926   static const TypeLong* ZERO;
 927   static const TypeLong* ONE;
 928   static const TypeLong* NON_ZERO;
 929   static const TypeLong* POS;
 930   static const TypeLong* NEG;
 931   static const TypeLong* LONG;
 932   static const TypeLong* INT;    // 32-bit subrange [min_jint..max_jint]
 933   static const TypeLong* UINT;   // 32-bit unsigned [0..max_juint]
 934   static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
 935 
 936   // static convenience methods.
 937   static const TypeLong* as_self(const Type* t) { return t->is_long(); }
 938 
 939 #ifndef PRODUCT
 940   virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
 941   void dump_verbose() const;
 942 #endif
 943 };
 944 
 945 //------------------------------TypeTuple--------------------------------------
 946 // Class of Tuple Types, essentially type collections for function signatures
 947 // and class layouts.  It happens to also be a fast cache for the HotSpot
 948 // signature types.
 949 class TypeTuple : public Type {
 950   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 951 
 952   const uint          _cnt;              // Count of fields
 953   const Type ** const _fields;           // Array of field types
 954 
 955 public:
 956   virtual bool eq( const Type *t ) const;
 957   virtual uint hash() const;             // Type specific hashing
 958   virtual bool singleton(void) const;    // TRUE if type is a singleton
 959   virtual bool empty(void) const;        // TRUE if type is vacuous
 960 
 961   // Accessors:
 962   uint cnt() const { return _cnt; }
 963   const Type* field_at(uint i) const {
 964     assert(i < _cnt, "oob");
 965     return _fields[i];
 966   }
 967   void set_field_at(uint i, const Type* t) {
 968     assert(i < _cnt, "oob");
 969     _fields[i] = t;
 970   }
 971 
 972   static const TypeTuple *make( uint cnt, const Type **fields );
 973   static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
 974   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
 975 
 976   // Subroutine call type with space allocated for argument types
 977   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 978   static const Type **fields( uint arg_cnt );
 979 
 980   virtual const Type *xmeet( const Type *t ) const;
 981   virtual const Type *xdual() const;    // Compute dual right now.
 982   // Convenience common pre-built types.
 983   static const TypeTuple *IFBOTH;
 984   static const TypeTuple *IFFALSE;
 985   static const TypeTuple *IFTRUE;
 986   static const TypeTuple *IFNEITHER;
 987   static const TypeTuple *LOOPBODY;
 988   static const TypeTuple *MEMBAR;
 989   static const TypeTuple *STORECONDITIONAL;
 990   static const TypeTuple *START_I2C;
 991   static const TypeTuple *INT_PAIR;
 992   static const TypeTuple *LONG_PAIR;
 993   static const TypeTuple *INT_CC_PAIR;
 994   static const TypeTuple *LONG_CC_PAIR;
 995 #ifndef PRODUCT
 996   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 997 #endif
 998 };
 999 
1000 //------------------------------TypeAry----------------------------------------
1001 // Class of Array Types
1002 class TypeAry : public Type {
1003   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
1004       _elem(elem), _size(size), _stable(stable) {}
1005 public:
1006   virtual bool eq( const Type *t ) const;
1007   virtual uint hash() const;             // Type specific hashing
1008   virtual bool singleton(void) const;    // TRUE if type is a singleton
1009   virtual bool empty(void) const;        // TRUE if type is vacuous
1010 
1011 private:
1012   const Type *_elem;            // Element type of array
1013   const TypeInt *_size;         // Elements in array
1014   const bool _stable;           // Are elements @Stable?
1015   friend class TypeAryPtr;
1016 
1017 public:
1018   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1019 
1020   virtual const Type *xmeet( const Type *t ) const;
1021   virtual const Type *xdual() const;    // Compute dual right now.
1022   bool ary_must_be_exact() const;  // true if arrays of such are never generic
1023   virtual const TypeAry* remove_speculative() const;
1024   virtual const Type* cleanup_speculative() const;
1025 #ifndef PRODUCT
1026   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1027 #endif
1028 };
1029 
1030 //------------------------------TypeVect---------------------------------------
1031 // Basic class of vector (mask) types.
1032 class TypeVect : public Type {
1033   const BasicType _elem_bt;  // Vector's element type
1034   const uint _length;  // Elements in vector (power of 2)
1035 
1036 protected:
1037   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1038     _elem_bt(elem_bt), _length(length) {}
1039 
1040 public:
1041   BasicType element_basic_type() const { return _elem_bt; }
1042   uint length() const { return _length; }
1043   uint length_in_bytes() const {
1044     return _length * type2aelembytes(element_basic_type());
1045   }
1046 
1047   virtual bool eq(const Type* t) const;
1048   virtual uint hash() const;             // Type specific hashing
1049   virtual bool singleton(void) const;    // TRUE if type is a singleton
1050   virtual bool empty(void) const;        // TRUE if type is vacuous
1051 
1052   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1053   static const TypeVect* makemask(const BasicType elem_bt, uint length);
1054 
1055   virtual const Type* xmeet( const Type *t) const;
1056   virtual const Type* xdual() const;     // Compute dual right now.
1057 
1058   static const TypeVect* VECTA;
1059   static const TypeVect* VECTS;
1060   static const TypeVect* VECTD;
1061   static const TypeVect* VECTX;
1062   static const TypeVect* VECTY;
1063   static const TypeVect* VECTZ;
1064   static const TypeVect* VECTMASK;
1065 
1066 #ifndef PRODUCT
1067   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1068 #endif
1069 };
1070 
1071 // TypeVect subclasses representing vectors or vector masks with "BVectMask" or "NVectMask"
1072 // layout (see vectornode.hpp for detailed notes on vector mask representations), mapped
1073 // to vector registers and distinguished by vector register size:
1074 //
1075 // - TypeVectA: Scalable vector type (variable size, e.g., AArch64 SVE, RISC-V RVV)
1076 // - TypeVectS: 32-bit vector type
1077 // - TypeVectD: 64-bit vector type
1078 // - TypeVectX: 128-bit vector type
1079 // - TypeVectY: 256-bit vector type
1080 // - TypeVectZ: 512-bit vector type
1081 class TypeVectA : public TypeVect {
1082   friend class TypeVect;
1083   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1084 };
1085 
1086 class TypeVectS : public TypeVect {
1087   friend class TypeVect;
1088   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1089 };
1090 
1091 class TypeVectD : public TypeVect {
1092   friend class TypeVect;
1093   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1094 };
1095 
1096 class TypeVectX : public TypeVect {
1097   friend class TypeVect;
1098   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1099 };
1100 
1101 class TypeVectY : public TypeVect {
1102   friend class TypeVect;
1103   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1104 };
1105 
1106 class TypeVectZ : public TypeVect {
1107   friend class TypeVect;
1108   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1109 };
1110 
1111 // Class of TypeVectMask, representing vector masks with "PVectMask" layout (see
1112 // vectornode.hpp for detailed notes on vector mask representations), mapped to
1113 // dedicated hardware predicate/mask registers.
1114 class TypeVectMask : public TypeVect {
1115 public:
1116   friend class TypeVect;
1117   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1118   static const TypeVectMask* make(const BasicType elem_bt, uint length);
1119 };
1120 
1121 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1122 class TypeInterfaces : public Type {
1123 private:
1124   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1125   uint _hash;
1126   ciInstanceKlass* _exact_klass;
1127   DEBUG_ONLY(bool _initialized;)
1128 
1129   void initialize();
1130 
1131   void verify() const NOT_DEBUG_RETURN;
1132   void compute_hash();
1133   void compute_exact_klass();
1134 
1135   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1136 
1137   NONCOPYABLE(TypeInterfaces);
1138 public:
1139   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1140   bool eq(const Type* other) const;
1141   bool eq(ciInstanceKlass* k) const;
1142   uint hash() const;
1143   const Type *xdual() const;
1144   void dump(outputStream* st) const;
1145   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1146   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1147   bool contains(const TypeInterfaces* other) const {
1148     return intersection_with(other)->eq(other);
1149   }
1150   bool empty() const { return _interfaces.length() == 0; }
1151 
1152   ciInstanceKlass* exact_klass() const;
1153   void verify_is_loaded() const NOT_DEBUG_RETURN;
1154 
1155   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1156   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1157 
1158   const Type* xmeet(const Type* t) const;
1159 
1160   bool singleton(void) const;
1161   bool has_non_array_interface() const;
1162 };
1163 
1164 //------------------------------TypePtr----------------------------------------
1165 // Class of machine Pointer Types: raw data, instances or arrays.
1166 // If the _base enum is AnyPtr, then this refers to all of the above.
1167 // Otherwise the _base will indicate which subset of pointers is affected,
1168 // and the class will be inherited from.
1169 class TypePtr : public Type {
1170   friend class TypeNarrowPtr;
1171   friend class Type;
1172 protected:
1173   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1174 
1175 public:
1176   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1177 protected:
1178   TypePtr(TYPES t, PTR ptr, int offset,
1179           const TypePtr* speculative = nullptr,
1180           int inline_depth = InlineDepthBottom) :
1181     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1182     _ptr(ptr) {}
1183   static const PTR ptr_meet[lastPTR][lastPTR];
1184   static const PTR ptr_dual[lastPTR];
1185   static const char * const ptr_msg[lastPTR];
1186 
1187   enum {
1188     InlineDepthBottom = INT_MAX,
1189     InlineDepthTop = -InlineDepthBottom
1190   };
1191 
1192   // Extra type information profiling gave us. We propagate it the
1193   // same way the rest of the type info is propagated. If we want to
1194   // use it, then we have to emit a guard: this part of the type is
1195   // not something we know but something we speculate about the type.
1196   const TypePtr*   _speculative;
1197   // For speculative types, we record at what inlining depth the
1198   // profiling point that provided the data is. We want to favor
1199   // profile data coming from outer scopes which are likely better for
1200   // the current compilation.
1201   int _inline_depth;
1202 
1203   // utility methods to work on the speculative part of the type
1204   const TypePtr* dual_speculative() const;
1205   const TypePtr* xmeet_speculative(const TypePtr* other) const;
1206   bool eq_speculative(const TypePtr* other) const;
1207   int hash_speculative() const;
1208   const TypePtr* add_offset_speculative(intptr_t offset) const;
1209   const TypePtr* with_offset_speculative(intptr_t offset) const;
1210 
1211   // utility methods to work on the inline depth of the type
1212   int dual_inline_depth() const;
1213   int meet_inline_depth(int depth) const;
1214 
1215 #ifndef PRODUCT
1216   void dump_speculative(outputStream* st) const;
1217   void dump_inline_depth(outputStream* st) const;
1218   void dump_offset(outputStream* st) const;
1219 #endif
1220 
1221   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1222   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1223   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1224   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1225   // encountered so the right logic specific to klasses or oops can be executed.,
1226   enum MeetResult {
1227     QUICK,
1228     UNLOADED,
1229     SUBTYPE,
1230     NOT_SUBTYPE,
1231     LCA
1232   };
1233   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1234                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
1235 
1236   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1237                                                   ciKlass*& res_klass, bool& res_xk);
1238 
1239   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1240   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1241   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1242   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1243   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1244   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1245   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1246   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1247 public:
1248   const int _offset;            // Offset into oop, with TOP & BOT
1249   const PTR _ptr;               // Pointer equivalence class
1250 
1251   int offset() const { return _offset; }
1252   PTR ptr()    const { return _ptr; }
1253 
1254   static const TypePtr *make(TYPES t, PTR ptr, int offset,
1255                              const TypePtr* speculative = nullptr,
1256                              int inline_depth = InlineDepthBottom);
1257 
1258   // Return a 'ptr' version of this type
1259   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1260 
1261   virtual intptr_t get_con() const;
1262 
1263   int xadd_offset( intptr_t offset ) const;
1264   virtual const TypePtr* add_offset(intptr_t offset) const;
1265   virtual const TypePtr* with_offset(intptr_t offset) const;
1266   virtual bool eq(const Type *t) const;
1267   virtual uint hash() const;             // Type specific hashing
1268 
1269   virtual bool singleton(void) const;    // TRUE if type is a singleton
1270   virtual bool empty(void) const;        // TRUE if type is vacuous
1271   virtual const Type *xmeet( const Type *t ) const;
1272   virtual const Type *xmeet_helper( const Type *t ) const;
1273   int meet_offset( int offset ) const;
1274   int dual_offset( ) const;
1275   virtual const Type *xdual() const;    // Compute dual right now.
1276 
1277   // meet, dual and join over pointer equivalence sets
1278   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1279   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1280 
1281   // This is textually confusing unless one recalls that
1282   // join(t) == dual()->meet(t->dual())->dual().
1283   PTR join_ptr( const PTR in_ptr ) const {
1284     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1285   }
1286 
1287   // Speculative type helper methods.
1288   virtual const TypePtr* speculative() const { return _speculative; }
1289   int inline_depth() const                   { return _inline_depth; }
1290   virtual ciKlass* speculative_type() const;
1291   virtual ciKlass* speculative_type_not_null() const;
1292   virtual bool speculative_maybe_null() const;
1293   virtual bool speculative_always_null() const;
1294   virtual const TypePtr* remove_speculative() const;
1295   virtual const Type* cleanup_speculative() const;
1296   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1297   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1298   virtual const TypePtr* with_inline_depth(int depth) const;
1299 
1300   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1301 
1302   // Tests for relation to centerline of type lattice:
1303   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1304   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1305   // Convenience common pre-built types.
1306   static const TypePtr *NULL_PTR;
1307   static const TypePtr *NOTNULL;
1308   static const TypePtr *BOTTOM;
1309 #ifndef PRODUCT
1310   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1311 #endif
1312 };
1313 
1314 //------------------------------TypeRawPtr-------------------------------------
1315 // Class of raw pointers, pointers to things other than Oops.  Examples
1316 // include the stack pointer, top of heap, card-marking area, handles, etc.
1317 class TypeRawPtr : public TypePtr {
1318 protected:
1319   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1320 public:
1321   virtual bool eq( const Type *t ) const;
1322   virtual uint hash() const;    // Type specific hashing
1323 
1324   const address _bits;          // Constant value, if applicable
1325 
1326   static const TypeRawPtr *make( PTR ptr );
1327   static const TypeRawPtr *make( address bits );
1328 
1329   // Return a 'ptr' version of this type
1330   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1331 
1332   virtual intptr_t get_con() const;
1333 
1334   virtual const TypePtr* add_offset(intptr_t offset) const;
1335   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1336 
1337   virtual const Type *xmeet( const Type *t ) const;
1338   virtual const Type *xdual() const;    // Compute dual right now.
1339   // Convenience common pre-built types.
1340   static const TypeRawPtr *BOTTOM;
1341   static const TypeRawPtr *NOTNULL;
1342 #ifndef PRODUCT
1343   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1344 #endif
1345 };
1346 
1347 //------------------------------TypeOopPtr-------------------------------------
1348 // Some kind of oop (Java pointer), either instance or array.
1349 class TypeOopPtr : public TypePtr {
1350   friend class TypeAry;
1351   friend class TypePtr;
1352   friend class TypeInstPtr;
1353   friend class TypeAryPtr;
1354 protected:
1355  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1356             const TypePtr* speculative, int inline_depth);
1357 public:
1358   virtual bool eq( const Type *t ) const;
1359   virtual uint hash() const;             // Type specific hashing
1360   virtual bool singleton(void) const;    // TRUE if type is a singleton
1361   enum {
1362    InstanceTop = -1,   // undefined instance
1363    InstanceBot = 0     // any possible instance
1364   };
1365 protected:
1366 
1367   // Oop is null, unless this is a constant oop.
1368   ciObject*     _const_oop;   // Constant oop
1369   // If _klass is null, then so is _sig.  This is an unloaded klass.
1370   ciKlass*      _klass;       // Klass object
1371 
1372   const TypeInterfaces* _interfaces;
1373 
1374   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1375   bool          _klass_is_exact;
1376   bool          _is_ptr_to_narrowoop;
1377   bool          _is_ptr_to_narrowklass;
1378   bool          _is_ptr_to_boxed_value;
1379 
1380   // If not InstanceTop or InstanceBot, indicates that this is
1381   // a particular instance of this type which is distinct.
1382   // This is the node index of the allocation node creating this instance.
1383   int           _instance_id;
1384 
1385   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1386 
1387   int dual_instance_id() const;
1388   int meet_instance_id(int uid) const;
1389 
1390   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1391 
1392   // Do not allow interface-vs.-noninterface joins to collapse to top.
1393   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1394 
1395   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1396   virtual ciKlass* klass() const { return _klass;     }
1397 
1398 #ifndef PRODUCT
1399   void dump_instance_id(outputStream* st) const;
1400 #endif // PRODUCT
1401 
1402 public:
1403 
1404   bool is_java_subtype_of(const TypeOopPtr* other) const {
1405     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1406   }
1407 
1408   bool is_same_java_type_as(const TypePtr* other) const {
1409     return is_same_java_type_as_helper(other->is_oopptr());
1410   }
1411 
1412   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1413     ShouldNotReachHere(); return false;
1414   }
1415 
1416   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1417     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1418   }
1419   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1420   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1421 
1422 
1423   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1424   // Respects UseUniqueSubclasses.
1425   // If the klass is final, the resulting type will be exact.
1426   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1427     return make_from_klass_common(klass, true, false, interface_handling);
1428   }
1429   // Same as before, but will produce an exact type, even if
1430   // the klass is not final, as long as it has exactly one implementation.
1431   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1432     return make_from_klass_common(klass, true, true, interface_handling);
1433   }
1434   // Same as before, but does not respects UseUniqueSubclasses.
1435   // Use this only for creating array element types.
1436   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1437     return make_from_klass_common(klass, false, false, interface_handling);
1438   }
1439   // Creates a singleton type given an object.
1440   // If the object cannot be rendered as a constant,
1441   // may return a non-singleton type.
1442   // If require_constant, produce a null if a singleton is not possible.
1443   static const TypeOopPtr* make_from_constant(ciObject* o,
1444                                               bool require_constant = false);
1445 
1446   // Make a generic (unclassed) pointer to an oop.
1447   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1448                                 const TypePtr* speculative = nullptr,
1449                                 int inline_depth = InlineDepthBottom);
1450 
1451   ciObject* const_oop()    const { return _const_oop; }
1452   // Exact klass, possibly an interface or an array of interface
1453   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1454   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1455 
1456   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1457   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1458 
1459   // Returns true if this pointer points at memory which contains a
1460   // compressed oop references.
1461   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1462   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1463   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1464   bool is_known_instance()       const { return _instance_id > 0; }
1465   int  instance_id()             const { return _instance_id; }
1466   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1467 
1468   virtual intptr_t get_con() const;
1469 
1470   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1471 
1472   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1473 
1474   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1475 
1476   // corresponding pointer to klass, for a given instance
1477   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1478 
1479   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1480   virtual const TypePtr* add_offset(intptr_t offset) const;
1481 
1482   // Speculative type helper methods.
1483   virtual const TypeOopPtr* remove_speculative() const;
1484   virtual const Type* cleanup_speculative() const;
1485   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1486   virtual const TypePtr* with_inline_depth(int depth) const;
1487 
1488   virtual const TypePtr* with_instance_id(int instance_id) const;
1489 
1490   virtual const Type *xdual() const;    // Compute dual right now.
1491   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1492   virtual const Type *xmeet_helper(const Type *t) const;
1493 
1494   // Convenience common pre-built type.
1495   static const TypeOopPtr *BOTTOM;
1496 #ifndef PRODUCT
1497   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1498 #endif
1499 private:
1500   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1501     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1502   }
1503 
1504   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1505     ShouldNotReachHere(); return false;
1506   }
1507 
1508   virtual const TypeInterfaces* interfaces() const {
1509     return _interfaces;
1510   };
1511 
1512   const TypeOopPtr* is_reference_type(const Type* other) const {
1513     return other->isa_oopptr();
1514   }
1515 
1516   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1517     return other->isa_aryptr();
1518   }
1519 
1520   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1521     return other->isa_instptr();
1522   }
1523 };
1524 
1525 //------------------------------TypeInstPtr------------------------------------
1526 // Class of Java object pointers, pointing either to non-array Java instances
1527 // or to a Klass* (including array klasses).
1528 class TypeInstPtr : public TypeOopPtr {
1529   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1530               const TypePtr* speculative, int inline_depth);
1531   virtual bool eq( const Type *t ) const;
1532   virtual uint hash() const;             // Type specific hashing
1533 
1534   ciKlass* exact_klass_helper() const;
1535 
1536 public:
1537 
1538   // Instance klass, ignoring any interface
1539   ciInstanceKlass* instance_klass() const {
1540     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1541     return klass()->as_instance_klass();
1542   }
1543 
1544   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1545   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1546   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1547 
1548   // Make a pointer to a constant oop.
1549   static const TypeInstPtr *make(ciObject* o) {
1550     ciKlass* k = o->klass();
1551     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1552     return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1553   }
1554   // Make a pointer to a constant oop with offset.
1555   static const TypeInstPtr *make(ciObject* o, int offset) {
1556     ciKlass* k = o->klass();
1557     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1558     return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1559   }
1560 
1561   // Make a pointer to some value of type klass.
1562   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1563     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1564     return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1565   }
1566 
1567   // Make a pointer to some non-polymorphic value of exactly type klass.
1568   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1569     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1570     return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1571   }
1572 
1573   // Make a pointer to some value of type klass with offset.
1574   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1575     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1576     return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1577   }
1578 
1579   static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1580                                  int instance_id = InstanceBot,
1581                                  const TypePtr* speculative = nullptr,
1582                                  int inline_depth = InlineDepthBottom);
1583 
1584   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1585     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1586     return make(ptr, k, interfaces, xk, o, offset, instance_id);
1587   }
1588 
1589   /** Create constant type for a constant boxed value */
1590   const Type* get_const_boxed_value() const;
1591 
1592   // If this is a java.lang.Class constant, return the type for it or null.
1593   // Pass to Type::get_const_type to turn it to a type, which will usually
1594   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1595   ciType* java_mirror_type() const;
1596 
1597   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1598 
1599   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1600 
1601   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1602 
1603   virtual const TypePtr* add_offset(intptr_t offset) const;
1604   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1605 
1606   // Speculative type helper methods.
1607   virtual const TypeInstPtr* remove_speculative() const;
1608   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1609   virtual const TypePtr* with_inline_depth(int depth) const;
1610   virtual const TypePtr* with_instance_id(int instance_id) const;
1611 
1612   // the core of the computation of the meet of 2 types
1613   virtual const Type *xmeet_helper(const Type *t) const;
1614   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1615   virtual const Type *xdual() const;    // Compute dual right now.
1616 
1617   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1618 
1619   // Convenience common pre-built types.
1620   static const TypeInstPtr *NOTNULL;
1621   static const TypeInstPtr *BOTTOM;
1622   static const TypeInstPtr *MIRROR;
1623   static const TypeInstPtr *MARK;
1624   static const TypeInstPtr *KLASS;
1625 #ifndef PRODUCT
1626   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1627 #endif
1628 
1629 private:
1630   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1631 
1632   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1633     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1634   }
1635 
1636 };
1637 
1638 //------------------------------TypeAryPtr-------------------------------------
1639 // Class of Java array pointers
1640 class TypeAryPtr : public TypeOopPtr {
1641   friend class Type;
1642   friend class TypePtr;
1643   friend class TypeInterfaces;
1644 
1645   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1646               int offset, int instance_id, bool is_autobox_cache,
1647               const TypePtr* speculative, int inline_depth)
1648     : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1649     _ary(ary),
1650     _is_autobox_cache(is_autobox_cache)
1651  {
1652     int dummy;
1653     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1654 
1655     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1656         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1657         _offset != arrayOopDesc::klass_offset_in_bytes()) {
1658       _is_ptr_to_narrowoop = true;
1659     }
1660 
1661   }
1662   virtual bool eq( const Type *t ) const;
1663   virtual uint hash() const;    // Type specific hashing
1664   const TypeAry *_ary;          // Array we point into
1665   const bool     _is_autobox_cache;
1666 
1667   ciKlass* compute_klass() const;
1668 
1669   // A pointer to delay allocation to Type::Initialize_shared()
1670 
1671   static const TypeInterfaces* _array_interfaces;
1672   ciKlass* exact_klass_helper() const;
1673   // Only guaranteed non null for array of basic types
1674   ciKlass* klass() const;
1675 
1676 public:
1677 
1678   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1679   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1680   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1681 
1682   // returns base element type, an instance klass (and not interface) for object arrays
1683   const Type* base_element_type(int& dims) const;
1684 
1685   // Accessors
1686   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1687 
1688   const TypeAry* ary() const  { return _ary; }
1689   const Type*    elem() const { return _ary->_elem; }
1690   const TypeInt* size() const { return _ary->_size; }
1691   bool      is_stable() const { return _ary->_stable; }
1692 
1693   bool is_autobox_cache() const { return _is_autobox_cache; }
1694 
1695   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1696                                 int instance_id = InstanceBot,
1697                                 const TypePtr* speculative = nullptr,
1698                                 int inline_depth = InlineDepthBottom);
1699   // Constant pointer to array
1700   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1701                                 int instance_id = InstanceBot,
1702                                 const TypePtr* speculative = nullptr,
1703                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1704 
1705   // Return a 'ptr' version of this type
1706   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1707 
1708   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1709 
1710   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1711 
1712   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1713   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1714 
1715   virtual bool empty(void) const;        // TRUE if type is vacuous
1716   virtual const TypePtr *add_offset( intptr_t offset ) const;
1717   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1718   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1719 
1720   // Speculative type helper methods.
1721   virtual const TypeAryPtr* remove_speculative() const;
1722   virtual const TypePtr* with_inline_depth(int depth) const;
1723   virtual const TypePtr* with_instance_id(int instance_id) const;
1724 
1725   // the core of the computation of the meet of 2 types
1726   virtual const Type *xmeet_helper(const Type *t) const;
1727   virtual const Type *xdual() const;    // Compute dual right now.
1728 
1729   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1730   int stable_dimension() const;
1731 
1732   const TypeAryPtr* cast_to_autobox_cache() const;
1733 
1734   static jint max_array_length(BasicType etype) ;
1735   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1736 
1737   // Convenience common pre-built types.
1738   static const TypeAryPtr* BOTTOM;
1739   static const TypeAryPtr* RANGE;
1740   static const TypeAryPtr* OOPS;
1741   static const TypeAryPtr* NARROWOOPS;
1742   static const TypeAryPtr* BYTES;
1743   static const TypeAryPtr* SHORTS;
1744   static const TypeAryPtr* CHARS;
1745   static const TypeAryPtr* INTS;
1746   static const TypeAryPtr* LONGS;
1747   static const TypeAryPtr* FLOATS;
1748   static const TypeAryPtr* DOUBLES;
1749   // selects one of the above:
1750   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1751     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1752     return _array_body_type[elem];
1753   }
1754   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1755   // sharpen the type of an int which is used as an array size
1756 #ifndef PRODUCT
1757   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1758 #endif
1759 private:
1760   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1761 };
1762 
1763 //------------------------------TypeMetadataPtr-------------------------------------
1764 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1765 class TypeMetadataPtr : public TypePtr {
1766 protected:
1767   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1768   // Do not allow interface-vs.-noninterface joins to collapse to top.
1769   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1770 public:
1771   virtual bool eq( const Type *t ) const;
1772   virtual uint hash() const;             // Type specific hashing
1773   virtual bool singleton(void) const;    // TRUE if type is a singleton
1774 
1775 private:
1776   ciMetadata*   _metadata;
1777 
1778 public:
1779   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1780 
1781   static const TypeMetadataPtr* make(ciMethod* m);
1782   static const TypeMetadataPtr* make(ciMethodData* m);
1783 
1784   ciMetadata* metadata() const { return _metadata; }
1785 
1786   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1787 
1788   virtual const TypePtr *add_offset( intptr_t offset ) const;
1789 
1790   virtual const Type *xmeet( const Type *t ) const;
1791   virtual const Type *xdual() const;    // Compute dual right now.
1792 
1793   virtual intptr_t get_con() const;
1794 
1795   // Convenience common pre-built types.
1796   static const TypeMetadataPtr *BOTTOM;
1797 
1798 #ifndef PRODUCT
1799   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1800 #endif
1801 };
1802 
1803 //------------------------------TypeKlassPtr-----------------------------------
1804 // Class of Java Klass pointers
1805 class TypeKlassPtr : public TypePtr {
1806   friend class TypeInstKlassPtr;
1807   friend class TypeAryKlassPtr;
1808   friend class TypePtr;
1809 protected:
1810   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1811 
1812   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1813 
1814 public:
1815   virtual bool eq( const Type *t ) const;
1816   virtual uint hash() const;
1817   virtual bool singleton(void) const;    // TRUE if type is a singleton
1818 
1819 protected:
1820 
1821   ciKlass* _klass;
1822   const TypeInterfaces* _interfaces;
1823   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1824   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1825   virtual ciKlass* exact_klass_helper() const;
1826   virtual ciKlass* klass() const { return  _klass; }
1827 
1828 public:
1829 
1830   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1831     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1832   }
1833   bool is_same_java_type_as(const TypePtr* other) const {
1834     return is_same_java_type_as_helper(other->is_klassptr());
1835   }
1836 
1837   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1838     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1839   }
1840   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1841   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1842   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1843 
1844   // Exact klass, possibly an interface or an array of interface
1845   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1846   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1847 
1848   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1849   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1850 
1851   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1852 
1853   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1854 
1855   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1856 
1857   // corresponding pointer to instance, for a given class
1858   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1859 
1860   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1861   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1862   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1863 
1864   virtual intptr_t get_con() const;
1865 
1866   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1867 
1868   virtual const TypeKlassPtr* try_improve() const { return this; }
1869 
1870 private:
1871   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1872     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1873   }
1874 
1875   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1876     ShouldNotReachHere(); return false;
1877   }
1878 
1879   virtual const TypeInterfaces* interfaces() const {
1880     return _interfaces;
1881   };
1882 
1883   const TypeKlassPtr* is_reference_type(const Type* other) const {
1884     return other->isa_klassptr();
1885   }
1886 
1887   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1888     return other->isa_aryklassptr();
1889   }
1890 
1891   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1892     return other->isa_instklassptr();
1893   }
1894 };
1895 
1896 // Instance klass pointer, mirrors TypeInstPtr
1897 class TypeInstKlassPtr : public TypeKlassPtr {
1898 
1899   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1900     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1901     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1902   }
1903 
1904   virtual bool must_be_exact() const;
1905 
1906 public:
1907   // Instance klass ignoring any interface
1908   ciInstanceKlass* instance_klass() const {
1909     assert(!klass()->is_interface(), "");
1910     return klass()->as_instance_klass();
1911   }
1912 
1913   bool might_be_an_array() const;
1914 
1915   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1916   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1917   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1918 
1919   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1920     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1921     return make(TypePtr::Constant, k, interfaces, 0);
1922   }
1923   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1924 
1925   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1926     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1927     return make(ptr, k, interfaces, offset);
1928   }
1929 
1930   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1931 
1932   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1933 
1934   // corresponding pointer to instance, for a given class
1935   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1936   virtual uint hash() const;
1937   virtual bool eq(const Type *t) const;
1938 
1939   virtual const TypePtr *add_offset( intptr_t offset ) const;
1940   virtual const Type    *xmeet( const Type *t ) const;
1941   virtual const Type    *xdual() const;
1942   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1943 
1944   virtual const TypeKlassPtr* try_improve() const;
1945 
1946   // Convenience common pre-built types.
1947   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1948   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1949 
1950 #ifndef PRODUCT
1951   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
1952 #endif // PRODUCT
1953 
1954 private:
1955   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1956 };
1957 
1958 // Array klass pointer, mirrors TypeAryPtr
1959 class TypeAryKlassPtr : public TypeKlassPtr {
1960   friend class TypeInstKlassPtr;
1961   friend class Type;
1962   friend class TypePtr;
1963 
1964   const Type *_elem;
1965 
1966   static const TypeInterfaces* _array_interfaces;
1967   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1968     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1969     assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1970   }
1971 
1972   virtual ciKlass* exact_klass_helper() const;
1973   // Only guaranteed non null for array of basic types
1974   virtual ciKlass* klass() const;
1975 
1976   virtual bool must_be_exact() const;
1977 
1978 public:
1979 
1980   // returns base element type, an instance klass (and not interface) for object arrays
1981   const Type* base_element_type(int& dims) const;
1982 
1983   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1984 
1985   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1986   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1987   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1988 
1989   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1990 
1991   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1992   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1993 
1994   const Type *elem() const { return _elem; }
1995 
1996   virtual bool eq(const Type *t) const;
1997   virtual uint hash() const;             // Type specific hashing
1998 
1999   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2000 
2001   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2002 
2003   // corresponding pointer to instance, for a given class
2004   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2005 
2006   virtual const TypePtr *add_offset( intptr_t offset ) const;
2007   virtual const Type    *xmeet( const Type *t ) const;
2008   virtual const Type    *xdual() const;      // Compute dual right now.
2009 
2010   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2011 
2012   virtual bool empty(void) const {
2013     return TypeKlassPtr::empty() || _elem->empty();
2014   }
2015 
2016 #ifndef PRODUCT
2017   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2018 #endif
2019 private:
2020   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2021 };
2022 
2023 class TypeNarrowPtr : public Type {
2024 protected:
2025   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2026 
2027   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2028                                                   _ptrtype(ptrtype) {
2029     assert(ptrtype->offset() == 0 ||
2030            ptrtype->offset() == OffsetBot ||
2031            ptrtype->offset() == OffsetTop, "no real offsets");
2032   }
2033 
2034   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2035   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2036   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2037   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2038   // Do not allow interface-vs.-noninterface joins to collapse to top.
2039   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2040 public:
2041   virtual bool eq( const Type *t ) const;
2042   virtual uint hash() const;             // Type specific hashing
2043   virtual bool singleton(void) const;    // TRUE if type is a singleton
2044 
2045   virtual const Type *xmeet( const Type *t ) const;
2046   virtual const Type *xdual() const;    // Compute dual right now.
2047 
2048   virtual intptr_t get_con() const;
2049 
2050   virtual bool empty(void) const;        // TRUE if type is vacuous
2051 
2052   // returns the equivalent ptr type for this compressed pointer
2053   const TypePtr *get_ptrtype() const {
2054     return _ptrtype;
2055   }
2056 
2057   bool is_known_instance() const {
2058     return _ptrtype->is_known_instance();
2059   }
2060 
2061 #ifndef PRODUCT
2062   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2063 #endif
2064 };
2065 
2066 //------------------------------TypeNarrowOop----------------------------------
2067 // A compressed reference to some kind of Oop.  This type wraps around
2068 // a preexisting TypeOopPtr and forwards most of it's operations to
2069 // the underlying type.  It's only real purpose is to track the
2070 // oopness of the compressed oop value when we expose the conversion
2071 // between the normal and the compressed form.
2072 class TypeNarrowOop : public TypeNarrowPtr {
2073 protected:
2074   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2075   }
2076 
2077   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2078     return t->isa_narrowoop();
2079   }
2080 
2081   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2082     return t->is_narrowoop();
2083   }
2084 
2085   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2086     return new TypeNarrowOop(t);
2087   }
2088 
2089   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2090     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2091   }
2092 
2093 public:
2094 
2095   static const TypeNarrowOop *make( const TypePtr* type);
2096 
2097   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2098     return make(TypeOopPtr::make_from_constant(con, require_constant));
2099   }
2100 
2101   static const TypeNarrowOop *BOTTOM;
2102   static const TypeNarrowOop *NULL_PTR;
2103 
2104   virtual const TypeNarrowOop* remove_speculative() const;
2105   virtual const Type* cleanup_speculative() const;
2106 
2107 #ifndef PRODUCT
2108   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2109 #endif
2110 };
2111 
2112 //------------------------------TypeNarrowKlass----------------------------------
2113 // A compressed reference to klass pointer.  This type wraps around a
2114 // preexisting TypeKlassPtr and forwards most of it's operations to
2115 // the underlying type.
2116 class TypeNarrowKlass : public TypeNarrowPtr {
2117 protected:
2118   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2119   }
2120 
2121   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2122     return t->isa_narrowklass();
2123   }
2124 
2125   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2126     return t->is_narrowklass();
2127   }
2128 
2129   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2130     return new TypeNarrowKlass(t);
2131   }
2132 
2133   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2134     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2135   }
2136 
2137 public:
2138   static const TypeNarrowKlass *make( const TypePtr* type);
2139 
2140   // static const TypeNarrowKlass *BOTTOM;
2141   static const TypeNarrowKlass *NULL_PTR;
2142 
2143 #ifndef PRODUCT
2144   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2145 #endif
2146 };
2147 
2148 //------------------------------TypeFunc---------------------------------------
2149 // Class of Array Types
2150 class TypeFunc : public Type {
2151   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
2152   virtual bool eq( const Type *t ) const;
2153   virtual uint hash() const;             // Type specific hashing
2154   virtual bool singleton(void) const;    // TRUE if type is a singleton
2155   virtual bool empty(void) const;        // TRUE if type is vacuous
2156 
2157   const TypeTuple* const _domain;     // Domain of inputs
2158   const TypeTuple* const _range;      // Range of results
2159 
2160 public:
2161   // Constants are shared among ADLC and VM
2162   enum { Control    = AdlcVMDeps::Control,
2163          I_O        = AdlcVMDeps::I_O,
2164          Memory     = AdlcVMDeps::Memory,
2165          FramePtr   = AdlcVMDeps::FramePtr,
2166          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2167          Parms      = AdlcVMDeps::Parms
2168   };
2169 
2170 
2171   // Accessors:
2172   const TypeTuple* domain() const { return _domain; }
2173   const TypeTuple* range()  const { return _range; }
2174 
2175   static const TypeFunc *make(ciMethod* method);
2176   static const TypeFunc *make(ciSignature signature, const Type* extra);
2177   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2178 
2179   virtual const Type *xmeet( const Type *t ) const;
2180   virtual const Type *xdual() const;    // Compute dual right now.
2181 
2182   BasicType return_type() const;
2183 
2184 #ifndef PRODUCT
2185   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2186 #endif
2187   // Convenience common pre-built types.
2188 };
2189 
2190 //------------------------------accessors--------------------------------------
2191 inline bool Type::is_ptr_to_narrowoop() const {
2192 #ifdef _LP64
2193   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2194 #else
2195   return false;
2196 #endif
2197 }
2198 
2199 inline bool Type::is_ptr_to_narrowklass() const {
2200 #ifdef _LP64
2201   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2202 #else
2203   return false;
2204 #endif
2205 }
2206 
2207 inline float Type::getf() const {
2208   assert( _base == FloatCon, "Not a FloatCon" );
2209   return ((TypeF*)this)->_f;
2210 }
2211 
2212 inline short Type::geth() const {
2213   assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2214   return ((TypeH*)this)->_f;
2215 }
2216 
2217 inline double Type::getd() const {
2218   assert( _base == DoubleCon, "Not a DoubleCon" );
2219   return ((TypeD*)this)->_d;
2220 }
2221 
2222 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2223   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2224   return (TypeInteger*)this;
2225 }
2226 
2227 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2228   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2229 }
2230 
2231 inline const TypeInt *Type::is_int() const {
2232   assert( _base == Int, "Not an Int" );
2233   return (TypeInt*)this;
2234 }
2235 
2236 inline const TypeInt *Type::isa_int() const {
2237   return ( _base == Int ? (TypeInt*)this : nullptr);
2238 }
2239 
2240 inline const TypeLong *Type::is_long() const {
2241   assert( _base == Long, "Not a Long" );
2242   return (TypeLong*)this;
2243 }
2244 
2245 inline const TypeLong *Type::isa_long() const {
2246   return ( _base == Long ? (TypeLong*)this : nullptr);
2247 }
2248 
2249 inline const TypeH* Type::isa_half_float() const {
2250   return ((_base == HalfFloatTop ||
2251            _base == HalfFloatCon ||
2252            _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2253 }
2254 
2255 inline const TypeH* Type::is_half_float_constant() const {
2256   assert( _base == HalfFloatCon, "Not a HalfFloat" );
2257   return (TypeH*)this;
2258 }
2259 
2260 inline const TypeH* Type::isa_half_float_constant() const {
2261   return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2262 }
2263 
2264 inline const TypeF *Type::isa_float() const {
2265   return ((_base == FloatTop ||
2266            _base == FloatCon ||
2267            _base == FloatBot) ? (TypeF*)this : nullptr);
2268 }
2269 
2270 inline const TypeF *Type::is_float_constant() const {
2271   assert( _base == FloatCon, "Not a Float" );
2272   return (TypeF*)this;
2273 }
2274 
2275 inline const TypeF *Type::isa_float_constant() const {
2276   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2277 }
2278 
2279 inline const TypeD *Type::isa_double() const {
2280   return ((_base == DoubleTop ||
2281            _base == DoubleCon ||
2282            _base == DoubleBot) ? (TypeD*)this : nullptr);
2283 }
2284 
2285 inline const TypeD *Type::is_double_constant() const {
2286   assert( _base == DoubleCon, "Not a Double" );
2287   return (TypeD*)this;
2288 }
2289 
2290 inline const TypeD *Type::isa_double_constant() const {
2291   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2292 }
2293 
2294 inline const TypeTuple *Type::is_tuple() const {
2295   assert( _base == Tuple, "Not a Tuple" );
2296   return (TypeTuple*)this;
2297 }
2298 
2299 inline const TypeAry *Type::is_ary() const {
2300   assert( _base == Array , "Not an Array" );
2301   return (TypeAry*)this;
2302 }
2303 
2304 inline const TypeAry *Type::isa_ary() const {
2305   return ((_base == Array) ? (TypeAry*)this : nullptr);
2306 }
2307 
2308 inline const TypeVectMask *Type::is_vectmask() const {
2309   assert( _base == VectorMask, "Not a Vector Mask" );
2310   return (TypeVectMask*)this;
2311 }
2312 
2313 inline const TypeVectMask *Type::isa_vectmask() const {
2314   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2315 }
2316 
2317 inline const TypeVect *Type::is_vect() const {
2318   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2319   return (TypeVect*)this;
2320 }
2321 
2322 inline const TypeVect *Type::isa_vect() const {
2323   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2324 }
2325 
2326 inline const TypePtr *Type::is_ptr() const {
2327   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2328   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2329   return (TypePtr*)this;
2330 }
2331 
2332 inline const TypePtr *Type::isa_ptr() const {
2333   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2334   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2335 }
2336 
2337 inline const TypeOopPtr *Type::is_oopptr() const {
2338   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2339   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2340   return (TypeOopPtr*)this;
2341 }
2342 
2343 inline const TypeOopPtr *Type::isa_oopptr() const {
2344   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2345   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2346 }
2347 
2348 inline const TypeRawPtr *Type::isa_rawptr() const {
2349   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2350 }
2351 
2352 inline const TypeRawPtr *Type::is_rawptr() const {
2353   assert( _base == RawPtr, "Not a raw pointer" );
2354   return (TypeRawPtr*)this;
2355 }
2356 
2357 inline const TypeInstPtr *Type::isa_instptr() const {
2358   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2359 }
2360 
2361 inline const TypeInstPtr *Type::is_instptr() const {
2362   assert( _base == InstPtr, "Not an object pointer" );
2363   return (TypeInstPtr*)this;
2364 }
2365 
2366 inline const TypeAryPtr *Type::isa_aryptr() const {
2367   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2368 }
2369 
2370 inline const TypeAryPtr *Type::is_aryptr() const {
2371   assert( _base == AryPtr, "Not an array pointer" );
2372   return (TypeAryPtr*)this;
2373 }
2374 
2375 inline const TypeNarrowOop *Type::is_narrowoop() const {
2376   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2377   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2378   return (TypeNarrowOop*)this;
2379 }
2380 
2381 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2382   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2383   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2384 }
2385 
2386 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2387   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2388   return (TypeNarrowKlass*)this;
2389 }
2390 
2391 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2392   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2393 }
2394 
2395 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2396   // MetadataPtr is the first and CPCachePtr the last
2397   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2398   return (TypeMetadataPtr*)this;
2399 }
2400 
2401 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2402   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2403 }
2404 
2405 inline const TypeKlassPtr *Type::isa_klassptr() const {
2406   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2407 }
2408 
2409 inline const TypeKlassPtr *Type::is_klassptr() const {
2410   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2411   return (TypeKlassPtr*)this;
2412 }
2413 
2414 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2415   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2416 }
2417 
2418 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2419   assert(_base == InstKlassPtr, "Not a klass pointer");
2420   return (TypeInstKlassPtr*)this;
2421 }
2422 
2423 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2424   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2425 }
2426 
2427 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2428   assert(_base == AryKlassPtr, "Not a klass pointer");
2429   return (TypeAryKlassPtr*)this;
2430 }
2431 
2432 inline const TypePtr* Type::make_ptr() const {
2433   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2434                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2435                                                        isa_ptr());
2436 }
2437 
2438 inline const TypeOopPtr* Type::make_oopptr() const {
2439   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2440 }
2441 
2442 inline const TypeNarrowOop* Type::make_narrowoop() const {
2443   return (_base == NarrowOop) ? is_narrowoop() :
2444                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2445 }
2446 
2447 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2448   return (_base == NarrowKlass) ? is_narrowklass() :
2449                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2450 }
2451 
2452 inline bool Type::is_floatingpoint() const {
2453   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2454       (_base == FloatCon)  || (_base == FloatBot) ||
2455       (_base == DoubleCon) || (_base == DoubleBot) )
2456     return true;
2457   return false;
2458 }
2459 
2460 template <>
2461 inline const TypeInt* Type::cast<TypeInt>() const {
2462   return is_int();
2463 }
2464 
2465 template <>
2466 inline const TypeLong* Type::cast<TypeLong>() const {
2467   return is_long();
2468 }
2469 
2470 template <>
2471 inline const TypeInt* Type::try_cast<TypeInt>() const {
2472   return isa_int();
2473 }
2474 
2475 template <>
2476 inline const TypeLong* Type::try_cast<TypeLong>() const {
2477   return isa_long();
2478 }
2479 
2480 // ===============================================================
2481 // Things that need to be 64-bits in the 64-bit build but
2482 // 32-bits in the 32-bit build.  Done this way to get full
2483 // optimization AND strong typing.
2484 #ifdef _LP64
2485 
2486 // For type queries and asserts
2487 #define is_intptr_t  is_long
2488 #define isa_intptr_t isa_long
2489 #define find_intptr_t_type find_long_type
2490 #define find_intptr_t_con  find_long_con
2491 #define TypeX        TypeLong
2492 #define Type_X       Type::Long
2493 #define TypeX_X      TypeLong::LONG
2494 #define TypeX_ZERO   TypeLong::ZERO
2495 // For 'ideal_reg' machine registers
2496 #define Op_RegX      Op_RegL
2497 // For phase->intcon variants
2498 #define MakeConX     longcon
2499 #define ConXNode     ConLNode
2500 // For array index arithmetic
2501 #define MulXNode     MulLNode
2502 #define AndXNode     AndLNode
2503 #define OrXNode      OrLNode
2504 #define CmpXNode     CmpLNode
2505 #define SubXNode     SubLNode
2506 #define LShiftXNode  LShiftLNode
2507 // For object size computation:
2508 #define AddXNode     AddLNode
2509 #define RShiftXNode  RShiftLNode
2510 // For card marks and hashcodes
2511 #define URShiftXNode URShiftLNode
2512 // For shenandoahSupport
2513 #define LoadXNode    LoadLNode
2514 #define StoreXNode   StoreLNode
2515 // Opcodes
2516 #define Op_LShiftX   Op_LShiftL
2517 #define Op_AndX      Op_AndL
2518 #define Op_AddX      Op_AddL
2519 #define Op_SubX      Op_SubL
2520 #define Op_XorX      Op_XorL
2521 #define Op_URShiftX  Op_URShiftL
2522 #define Op_LoadX     Op_LoadL
2523 // conversions
2524 #define ConvI2X(x)   ConvI2L(x)
2525 #define ConvL2X(x)   (x)
2526 #define ConvX2I(x)   ConvL2I(x)
2527 #define ConvX2L(x)   (x)
2528 #define ConvX2UL(x)  (x)
2529 
2530 #else
2531 
2532 // For type queries and asserts
2533 #define is_intptr_t  is_int
2534 #define isa_intptr_t isa_int
2535 #define find_intptr_t_type find_int_type
2536 #define find_intptr_t_con  find_int_con
2537 #define TypeX        TypeInt
2538 #define Type_X       Type::Int
2539 #define TypeX_X      TypeInt::INT
2540 #define TypeX_ZERO   TypeInt::ZERO
2541 // For 'ideal_reg' machine registers
2542 #define Op_RegX      Op_RegI
2543 // For phase->intcon variants
2544 #define MakeConX     intcon
2545 #define ConXNode     ConINode
2546 // For array index arithmetic
2547 #define MulXNode     MulINode
2548 #define AndXNode     AndINode
2549 #define OrXNode      OrINode
2550 #define CmpXNode     CmpINode
2551 #define SubXNode     SubINode
2552 #define LShiftXNode  LShiftINode
2553 // For object size computation:
2554 #define AddXNode     AddINode
2555 #define RShiftXNode  RShiftINode
2556 // For card marks and hashcodes
2557 #define URShiftXNode URShiftINode
2558 // For shenandoahSupport
2559 #define LoadXNode    LoadINode
2560 #define StoreXNode   StoreINode
2561 // Opcodes
2562 #define Op_LShiftX   Op_LShiftI
2563 #define Op_AndX      Op_AndI
2564 #define Op_AddX      Op_AddI
2565 #define Op_SubX      Op_SubI
2566 #define Op_XorX      Op_XorI
2567 #define Op_URShiftX  Op_URShiftI
2568 #define Op_LoadX     Op_LoadI
2569 // conversions
2570 #define ConvI2X(x)   (x)
2571 #define ConvL2X(x)   ConvL2I(x)
2572 #define ConvX2I(x)   (x)
2573 #define ConvX2L(x)   ConvI2L(x)
2574 #define ConvX2UL(x)  ConvI2UL(x)
2575 
2576 #endif
2577 
2578 #endif // SHARE_OPTO_TYPE_HPP