1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
52 class TypeInt;
53 class TypeLong;
54 class TypeNarrowPtr;
55 class TypeNarrowOop;
56 class TypeNarrowKlass;
57 class TypeAry;
58 class TypeTuple;
59 class TypeVect;
60 class TypeVectA;
61 class TypeVectS;
62 class TypeVectD;
63 class TypeVectX;
64 class TypeVectY;
65 class TypeVectZ;
66 class TypeVectMask;
67 class TypePtr;
68 class TypeRawPtr;
69 class TypeOopPtr;
70 class TypeInstPtr;
71 class TypeAryPtr;
72 class TypeKlassPtr;
73 class TypeInstKlassPtr;
74 class TypeAryKlassPtr;
75 class TypeMetadataPtr;
76 class VerifyMeet;
77
78 template <class T, class U>
79 class TypeIntPrototype;
80
81 //------------------------------Type-------------------------------------------
82 // Basic Type object, represents a set of primitive Values.
83 // Types are hash-cons'd into a private class dictionary, so only one of each
84 // different kind of Type exists. Types are never modified after creation, so
85 // all their interesting fields are constant.
86 class Type {
87
88 public:
89 enum TYPES {
90 Bad=0, // Type check
91 Control, // Control of code (not in lattice)
92 Top, // Top of the lattice
93 Int, // Integer range (lo-hi)
94 Long, // Long integer range (lo-hi)
95 Half, // Placeholder half of doubleword
96 NarrowOop, // Compressed oop pointer
97 NarrowKlass, // Compressed klass pointer
98
99 Tuple, // Method signature or object layout
100 Array, // Array types
101
102 Interfaces, // Set of implemented interfaces for oop types
103
104 VectorMask, // Vector predicate/mask type
105 VectorA, // (Scalable) Vector types for vector length agnostic
106 VectorS, // 32bit Vector types
107 VectorD, // 64bit Vector types
108 VectorX, // 128bit Vector types
109 VectorY, // 256bit Vector types
110 VectorZ, // 512bit Vector types
111
112 AnyPtr, // Any old raw, klass, inst, or array pointer
113 RawPtr, // Raw (non-oop) pointers
114 OopPtr, // Any and all Java heap entities
115 InstPtr, // Instance pointers (non-array objects)
116 AryPtr, // Array pointers
117 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
118
119 MetadataPtr, // Generic metadata
120 KlassPtr, // Klass pointers
121 InstKlassPtr,
122 AryKlassPtr,
123
124 Function, // Function signature
125 Abio, // Abstract I/O
126 Return_Address, // Subroutine return address
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
191 static int uhash( const Type *const t );
192 // Structural equality check. Assumes that equals() has already compared
193 // the _base types and thus knows it can cast 't' appropriately.
194 virtual bool eq( const Type *t ) const;
195
196 // Top-level hash-table of types
197 static Dict *type_dict() {
198 return Compile::current()->type_dict();
199 }
200
201 // DUAL operation: reflect around lattice centerline. Used instead of
202 // join to ensure my lattice is symmetric up and down. Dual is computed
203 // lazily, on demand, and cached in _dual.
204 const Type *_dual; // Cached dual value
205
206
207 const Type *meet_helper(const Type *t, bool include_speculative) const;
208 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
209
210 protected:
211 // Each class of type is also identified by its base.
212 const TYPES _base; // Enum of Types type
213
214 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types
215 // ~Type(); // Use fast deallocation
216 const Type *hashcons(); // Hash-cons the type
217 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
218 const Type *join_helper(const Type *t, bool include_speculative) const {
219 assert_type_verify_empty();
220 return dual()->meet_helper(t->dual(), include_speculative)->dual();
221 }
222
223 void assert_type_verify_empty() const NOT_DEBUG_RETURN;
224
225 public:
226
227 inline void* operator new( size_t x ) throw() {
228 Compile* compile = Compile::current();
229 compile->set_type_last_size(x);
230 return compile->type_arena()->AmallocWords(x);
231 }
232 inline void operator delete( void* ptr ) {
233 Compile* compile = Compile::current();
234 compile->type_arena()->Afree(ptr,compile->type_last_size());
235 }
236
237 // Initialize the type system for a particular compilation.
238 static void Initialize(Compile* compile);
239
240 // Initialize the types shared by all compilations.
241 static void Initialize_shared(Compile* compile);
242
243 TYPES base() const {
244 assert(_base > Bad && _base < lastype, "sanity");
245 return _base;
246 }
247
248 // Create a new hash-consd type
249 static const Type *make(enum TYPES);
250 // Test for equivalence of types
251 static bool equals(const Type* t1, const Type* t2);
252 // Test for higher or equal in lattice
253 // Variant that drops the speculative part of the types
254 bool higher_equal(const Type* t) const {
255 return equals(meet(t), t->remove_speculative());
256 }
257 // Variant that keeps the speculative part of the types
258 bool higher_equal_speculative(const Type* t) const {
259 return equals(meet_speculative(t), t);
260 }
261
262 // MEET operation; lower in lattice.
263 // Variant that drops the speculative part of the types
264 const Type *meet(const Type *t) const {
265 return meet_helper(t, false);
266 }
267 // Variant that keeps the speculative part of the types
268 const Type *meet_speculative(const Type *t) const {
269 return meet_helper(t, true)->cleanup_speculative();
270 }
271 // WIDEN: 'widens' for Ints and other range types
272 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
273 // NARROW: complement for widen, used by pessimistic phases
274 virtual const Type *narrow( const Type *old ) const { return this; }
275
276 // DUAL operation: reflect around lattice centerline. Used instead of
277 // join to ensure my lattice is symmetric up and down.
278 const Type *dual() const { return _dual; }
279
280 // Compute meet dependent on base type
281 virtual const Type *xmeet( const Type *t ) const;
282 virtual const Type *xdual() const; // Compute dual right now.
283
284 // JOIN operation; higher in lattice. Done by finding the dual of the
285 // meet of the dual of the 2 inputs.
286 // Variant that drops the speculative part of the types
287 const Type *join(const Type *t) const {
288 return join_helper(t, false);
289 }
290 // Variant that keeps the speculative part of the types
291 const Type *join_speculative(const Type *t) const {
292 return join_helper(t, true)->cleanup_speculative();
293 }
294
295 // Modified version of JOIN adapted to the needs Node::Value.
296 // Normalizes all empty values to TOP. Does not kill _widen bits.
297 // Variant that drops the speculative part of the types
298 const Type *filter(const Type *kills) const {
299 return filter_helper(kills, false);
300 }
301 // Variant that keeps the speculative part of the types
302 const Type *filter_speculative(const Type *kills) const {
303 return filter_helper(kills, true)->cleanup_speculative();
304 }
305
306 // Returns true if this pointer points at memory which contains a
307 // compressed oop references.
308 bool is_ptr_to_narrowoop() const;
309 bool is_ptr_to_narrowklass() const;
310
311 // Convenience access
312 short geth() const;
313 virtual float getf() const;
314 double getd() const;
315
316 // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
317 template <typename TypeClass>
318 const TypeClass* try_cast() const;
319
320 const TypeInt *is_int() const;
321 const TypeInt *isa_int() const; // Returns null if not an Int
322 const TypeInteger* is_integer(BasicType bt) const;
323 const TypeInteger* isa_integer(BasicType bt) const;
324 const TypeLong *is_long() const;
325 const TypeLong *isa_long() const; // Returns null if not a Long
326 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot}
327 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
328 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon
329 const TypeH *isa_half_float() const; // Returns null if not a HalfFloat{Top,Con,Bot}
330 const TypeH *is_half_float_constant() const; // Asserts it is a HalfFloatCon
331 const TypeH *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
332 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot}
333 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
334 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon
335 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
336 const TypeAry *is_ary() const; // Array, NOT array pointer
337 const TypeAry *isa_ary() const; // Returns null of not ary
338 const TypeVect *is_vect() const; // Vector
339 const TypeVect *isa_vect() const; // Returns null if not a Vector
340 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector
341 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask
342 const TypePtr *is_ptr() const; // Asserts it is a ptr type
343 const TypePtr *isa_ptr() const; // Returns null if not ptr type
344 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
345 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
346 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
347 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type
348 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
349 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
350 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
351 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
395
396 // TRUE if type is a singleton
397 virtual bool singleton(void) const;
398
399 // TRUE if type is above the lattice centerline, and is therefore vacuous
400 virtual bool empty(void) const;
401
402 // Return a hash for this type. The hash function is public so ConNode
403 // (constants) can hash on their constant, which is represented by a Type.
404 virtual uint hash() const;
405
406 // Map ideal registers (machine types) to ideal types
407 static const Type *mreg2type[];
408
409 // Printing, statistics
410 #ifndef PRODUCT
411 void dump_on(outputStream *st) const;
412 void dump() const {
413 dump_on(tty);
414 }
415 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
416 static void dump_stats();
417 // Groups of types, for debugging and visualization only.
418 enum class Category {
419 Data,
420 Memory,
421 Mixed, // Tuples with types of different categories.
422 Control,
423 Other, // {Type::Top, Type::Abio, Type::Bottom}.
424 Undef // {Type::Bad, Type::lastype}, for completeness.
425 };
426 // Return the category of this type.
427 Category category() const;
428 // Check recursively in tuples.
429 bool has_category(Category cat) const;
430
431 static const char* str(const Type* t);
432 #endif // !PRODUCT
433 void typerr(const Type *t) const; // Mixing types error
434
435 // Create basic type
436 static const Type* get_const_basic_type(BasicType type) {
437 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
438 return _const_basic_type[type];
439 }
440
441 // For two instance arrays of same dimension, return the base element types.
442 // Otherwise or if the arrays have different dimensions, return null.
443 static void get_arrays_base_elements(const Type *a1, const Type *a2,
444 const TypeInstPtr **e1, const TypeInstPtr **e2);
445
446 // Mapping to the array element's basic type.
447 BasicType array_element_basic_type() const;
448
449 enum InterfaceHandling {
450 trust_interfaces,
451 ignore_interfaces
452 };
453 // Create standard type for a ciType:
454 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
455
456 // Create standard zero value:
457 static const Type* get_zero_type(BasicType type) {
458 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
459 return _zero_type[type];
460 }
461
462 // Report if this is a zero value (not top).
463 bool is_zero_type() const {
464 BasicType type = basic_type();
465 if (type == T_VOID || type >= T_CONFLICT)
466 return false;
467 else
468 return (this == _zero_type[type]);
469 }
470
471 // Convenience common pre-built types.
472 static const Type *ABIO;
473 static const Type *BOTTOM;
474 static const Type *CONTROL;
475 static const Type *DOUBLE;
476 static const Type *FLOAT;
477 static const Type *HALF_FLOAT;
478 static const Type *HALF;
479 static const Type *MEMORY;
480 static const Type *MULTI;
481 static const Type *RETURN_ADDRESS;
482 static const Type *TOP;
483
484 // Mapping from compiler type to VM BasicType
485 BasicType basic_type() const { return _type_info[_base].basic_type; }
486 uint ideal_reg() const { return _type_info[_base].ideal_reg; }
487 const char* msg() const { return _type_info[_base].msg; }
488 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
489 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
490
491 // Mapping from CI type system to compiler type:
492 static const Type* get_typeflow_type(ciType* type);
493
494 static const Type* make_from_constant(ciConstant constant,
495 bool require_constant = false,
496 int stable_dimension = 0,
497 bool is_narrow = false,
498 bool is_autobox_cache = false);
499
500 static const Type* make_constant_from_field(ciInstance* holder,
501 int off,
502 bool is_unsigned_load,
503 BasicType loadbt);
504
505 static const Type* make_constant_from_field(ciField* field,
506 ciInstance* holder,
507 BasicType loadbt,
508 bool is_unsigned_load);
509
510 static const Type* make_constant_from_array_element(ciArray* array,
511 int off,
512 int stable_dimension,
513 BasicType loadbt,
514 bool is_unsigned_load);
515
516 // Speculative type helper methods. See TypePtr.
517 virtual const TypePtr* speculative() const { return nullptr; }
518 virtual ciKlass* speculative_type() const { return nullptr; }
519 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
520 virtual bool speculative_maybe_null() const { return true; }
521 virtual bool speculative_always_null() const { return true; }
522 virtual const Type* remove_speculative() const { return this; }
523 virtual const Type* cleanup_speculative() const { return this; }
524 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
525 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
526 const Type* maybe_remove_speculative(bool include_speculative) const;
527
528 virtual bool maybe_null() const { return true; }
529 virtual bool is_known_instance() const { return false; }
530
531 private:
532 // support arrays
533 static const Type* _zero_type[T_CONFLICT+1];
534 static const Type* _const_basic_type[T_CONFLICT+1];
535 };
536
537 //------------------------------TypeF------------------------------------------
538 // Class of Float-Constant Types.
539 class TypeF : public Type {
540 TypeF( float f ) : Type(FloatCon), _f(f) {};
541 public:
542 virtual bool eq( const Type *t ) const;
543 virtual uint hash() const; // Type specific hashing
544 virtual bool singleton(void) const; // TRUE if type is a singleton
545 virtual bool empty(void) const; // TRUE if type is vacuous
546 public:
547 const float _f; // Float constant
548
549 static const TypeF *make(float f);
550
551 virtual bool is_finite() const; // Has a finite value
552 virtual bool is_nan() const; // Is not a number (NaN)
553
554 virtual const Type *xmeet( const Type *t ) const;
555 virtual const Type *xdual() const; // Compute dual right now.
556 // Convenience common pre-built types.
557 static const TypeF *MAX;
558 static const TypeF *MIN;
559 static const TypeF *ZERO; // positive zero only
560 static const TypeF *ONE;
561 static const TypeF *POS_INF;
562 static const TypeF *NEG_INF;
563 #ifndef PRODUCT
564 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
565 #endif
566 };
567
568 // Class of Half Float-Constant Types.
569 class TypeH : public Type {
570 TypeH(short f) : Type(HalfFloatCon), _f(f) {};
571 public:
572 virtual bool eq(const Type* t) const;
573 virtual uint hash() const; // Type specific hashing
574 virtual bool singleton(void) const; // TRUE if type is a singleton
575 virtual bool empty(void) const; // TRUE if type is vacuous
576 public:
577 const short _f; // Half Float constant
578
579 static const TypeH* make(float f);
580 static const TypeH* make(short f);
581
582 virtual bool is_finite() const; // Has a finite value
583 virtual bool is_nan() const; // Is not a number (NaN)
584
585 virtual float getf() const;
586 virtual const Type* xmeet(const Type* t) const;
587 virtual const Type* xdual() const; // Compute dual right now.
588 // Convenience common pre-built types.
589 static const TypeH* MAX;
590 static const TypeH* MIN;
591 static const TypeH* ZERO; // positive zero only
592 static const TypeH* ONE;
593 static const TypeH* POS_INF;
594 static const TypeH* NEG_INF;
595 #ifndef PRODUCT
596 virtual void dump2(Dict &d, uint depth, outputStream* st) const;
597 #endif
598 };
599
600 //------------------------------TypeD------------------------------------------
601 // Class of Double-Constant Types.
602 class TypeD : public Type {
603 TypeD( double d ) : Type(DoubleCon), _d(d) {};
604 public:
605 virtual bool eq( const Type *t ) const;
606 virtual uint hash() const; // Type specific hashing
607 virtual bool singleton(void) const; // TRUE if type is a singleton
608 virtual bool empty(void) const; // TRUE if type is vacuous
609 public:
610 const double _d; // Double constant
611
612 static const TypeD *make(double d);
613
614 virtual bool is_finite() const; // Has a finite value
615 virtual bool is_nan() const; // Is not a number (NaN)
616
617 virtual const Type *xmeet( const Type *t ) const;
618 virtual const Type *xdual() const; // Compute dual right now.
619 // Convenience common pre-built types.
620 static const TypeD *MAX;
621 static const TypeD *MIN;
622 static const TypeD *ZERO; // positive zero only
623 static const TypeD *ONE;
624 static const TypeD *POS_INF;
625 static const TypeD *NEG_INF;
626 #ifndef PRODUCT
627 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
628 #endif
629 };
630
631 class TypeInteger : public Type {
632 protected:
633 TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
634
635 // Denote that a set is a dual set.
636 // Dual sets are only used to compute the join of 2 sets, and not used
637 // outside.
638 const bool _is_dual;
639
640 public:
641 const short _widen; // Limit on times we widen this sucker
642
643 virtual jlong hi_as_long() const = 0;
644 virtual jlong lo_as_long() const = 0;
645 jlong get_con_as_long(BasicType bt) const;
646 bool is_con() const { return lo_as_long() == hi_as_long(); }
647 virtual short widen_limit() const { return _widen; }
648
649 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
650 static const TypeInteger* make(jlong con, BasicType bt);
651
652 static const TypeInteger* bottom(BasicType type);
653 static const TypeInteger* zero(BasicType type);
654 static const TypeInteger* one(BasicType type);
655 static const TypeInteger* minus_1(BasicType type);
656 };
657
658 /**
659 * Definition:
660 *
661 * A TypeInt represents a set of non-empty jint values. A jint v is an element
662 * of a TypeInt iff:
663 *
664 * v >= _lo && v <= _hi &&
665 * juint(v) >= _ulo && juint(v) <= _uhi &&
666 * _bits.is_satisfied_by(v)
667 *
668 * Multiple sets of parameters can represent the same set.
669 * E.g: consider 2 TypeInt t1, t2
670 *
671 * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
672 * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
673 *
674 * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
675 * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
676 * which also represents {3, 5} such that any of these would be true:
677 *
678 * 1) t3._lo > t2._lo
679 * 2) t3._hi < t2._hi
680 * 3) t3._ulo > t2._ulo
681 * 4) t3._uhi < t2._uhi
682 * 5) (t3._bits._zeros &~ t2._bis._zeros) != 0
683 * 6) (t3._bits._ones &~ t2._bits._ones) != 0
684 *
685 * The 5-th condition mean that the subtraction of the bitsets represented by
686 * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
687 * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
688 * same applies to _bits._ones
689 *
690 * To simplify reasoning about the types in optimizations, we canonicalize
691 * every TypeInt to its tightest form, already at construction. E.g a TypeInt
692 * t with t._lo < 0 will definitely contain negative values. It also makes it
693 * trivial to determine if a TypeInt instance is a subset of another.
694 *
695 * Lemmas:
696 *
697 * 1. Since every TypeInt instance is non-empty and canonicalized, all the
698 * bounds must also be elements of such TypeInt. Or else, we can tighten the
699 * bounds by narrowing it by one, which contradicts the assumption of the
700 * TypeInt being canonical.
701 *
702 * 2.
703 * 2.1. _lo <= jint(_ulo)
704 * 2.2. _lo <= _hi
705 * 2.3. _lo <= jint(_uhi)
706 * 2.4. _ulo <= juint(_lo)
707 * 2.5. _ulo <= juint(_hi)
708 * 2.6. _ulo <= _uhi
709 * 2.7. _hi >= _lo
710 * 2.8. _hi >= jint(_ulo)
711 * 2.9. _hi >= jint(_uhi)
712 * 2.10. _uhi >= juint(_lo)
713 * 2.11. _uhi >= _ulo
714 * 2.12. _uhi >= juint(_hi)
715 *
716 * Proof of lemma 2:
717 *
718 * 2.1. _lo <= jint(_ulo):
719 * According the lemma 1, _ulo is an element of the TypeInt, so in the
720 * signed domain, it must not be less than the smallest element of that
721 * TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
722 * domain, or in a more programmatical way, _lo <= jint(_ulo).
723 * 2.2. _lo <= _hi:
724 * According the lemma 1, _hi is an element of the TypeInt, so in the
725 * signed domain, it must not be less than the smallest element of that
726 * TypeInt, which is _lo. Which means that _lo <= _hi.
727 *
728 * The other inequalities can be proved in a similar manner.
729 *
730 * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
731 *
732 * x <= y iff juint(x) <= juint(y)
733 * I.e. x <= y in the signed domain iff x <= y in the unsigned domain
734 *
735 * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
736 * TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
737 * (note that these intervals are disjoint in this case).
738 *
739 * Proof of lemma 4:
740 *
741 * For a TypeInt t, there are 3 possible cases:
742 *
743 * a. t._lo >= 0, we have:
744 *
745 * 0 <= t_lo <= jint(t._ulo) (lemma 2.1)
746 * juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
747 * == t._ulo (juint(jint(v)) == v with juint v)
748 * <= juint(t._lo) (lemma 2.4)
749 *
750 * Which means that t._lo == jint(t._ulo).
751 *
752 * Furthermore,
753 *
754 * 0 <= t._lo <= t._hi (lemma 2.2)
755 * 0 <= t._lo <= jint(t._uhi) (lemma 2.3)
756 * t._hi >= jint(t._uhi) (lemma 2.9)
757 *
758 * juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
759 * == t._uhi (juint(jint(v)) == v with juint v)
760 * >= juint(t._hi) (lemma 2.12)
761 *
762 * Which means that t._hi == jint(t._uhi).
763 * In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
764 *
765 * b. t._hi < 0. Similarly, we can conclude that:
766 * t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
767 *
768 * c. t._lo < 0, t._hi >= 0.
769 *
770 * Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
771 * because all negative values is larger than all non-negative values in the
772 * unsigned domain.
773 *
774 * Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
775 * similar to the reasoning above.
776 *
777 * In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
778 * [jint(t._ulo), t._hi].
779 *
780 * Below is an illustration of the TypeInt in this case, the intervals that
781 * the elements can be in are marked using the = symbol. Note how the
782 * negative range in the signed domain wrap around in the unsigned domain.
783 *
784 * Signed:
785 * -----lo=========uhi---------0--------ulo==========hi-----
786 * Unsigned:
787 * 0--------ulo==========hi----------lo=========uhi---------
788 *
789 * This property is useful for our analysis of TypeInt values. Additionally,
790 * it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
791 * same applies to jint(_ulo) and _hi.
792 *
793 * We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
794 * a TypeInt consists of 2 simple intervals, each of which has its bounds
795 * being both >= 0 or both < 0. If both simple intervals lie in the same half
796 * of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
797 * _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
798 * half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
799 * domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
800 * [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
801 */
802 class TypeInt : public TypeInteger {
803 private:
804 TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
805 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
806
807 friend class TypeIntHelper;
808
809 protected:
810 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
811
812 public:
813 typedef jint NativeType;
814 virtual bool eq(const Type* t) const;
815 virtual uint hash() const; // Type specific hashing
816 virtual bool singleton(void) const; // TRUE if type is a singleton
817 virtual bool empty(void) const; // TRUE if type is vacuous
818 // A value is in the set represented by this TypeInt if it satisfies all
819 // the below constraints, see contains(jint)
820 const jint _lo, _hi; // Lower bound, upper bound in the signed domain
821 const juint _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
822 const KnownBits<juint> _bits;
823
824 static const TypeInt* make(jint con);
825 // must always specify w
826 static const TypeInt* make(jint lo, jint hi, int widen);
827 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
828 static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
829
830 // Check for single integer
831 bool is_con() const { return _lo == _hi; }
832 bool is_con(jint i) const { return is_con() && _lo == i; }
833 jint get_con() const { assert(is_con(), ""); return _lo; }
834 // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
835 // argument are also elements of this type)
836 bool contains(jint i) const;
837 bool contains(const TypeInt* t) const;
838
839 virtual bool is_finite() const; // Has a finite value
840
841 virtual const Type* xmeet(const Type* t) const;
842 virtual const Type* xdual() const; // Compute dual right now.
843 virtual const Type* widen(const Type* t, const Type* limit_type) const;
844 virtual const Type* narrow(const Type* t) const;
845
846 virtual jlong hi_as_long() const { return _hi; }
847 virtual jlong lo_as_long() const { return _lo; }
848
849 // Do not kill _widen bits.
850 // Convenience common pre-built types.
851 static const TypeInt* MAX;
852 static const TypeInt* MIN;
853 static const TypeInt* MINUS_1;
854 static const TypeInt* ZERO;
855 static const TypeInt* ONE;
856 static const TypeInt* BOOL;
857 static const TypeInt* CC;
858 static const TypeInt* CC_LT; // [-1] == MINUS_1
859 static const TypeInt* CC_GT; // [1] == ONE
860 static const TypeInt* CC_EQ; // [0] == ZERO
861 static const TypeInt* CC_NE; // [-1, 1]
862 static const TypeInt* CC_LE; // [-1,0]
863 static const TypeInt* CC_GE; // [0,1] == BOOL (!)
864 static const TypeInt* BYTE;
865 static const TypeInt* UBYTE;
866 static const TypeInt* CHAR;
867 static const TypeInt* SHORT;
868 static const TypeInt* NON_ZERO;
869 static const TypeInt* POS;
870 static const TypeInt* POS1;
871 static const TypeInt* INT;
872 static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
873 static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
874
875 static const TypeInt* as_self(const Type* t) { return t->is_int(); }
876 #ifndef PRODUCT
877 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
878 void dump_verbose() const;
879 #endif
880 };
881
882 // Similar to TypeInt
883 class TypeLong : public TypeInteger {
884 private:
885 TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
886 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
887
888 friend class TypeIntHelper;
889
890 protected:
891 // Do not kill _widen bits.
892 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
893 public:
894 typedef jlong NativeType;
895 virtual bool eq( const Type *t ) const;
896 virtual uint hash() const; // Type specific hashing
897 virtual bool singleton(void) const; // TRUE if type is a singleton
898 virtual bool empty(void) const; // TRUE if type is vacuous
899 public:
900 // A value is in the set represented by this TypeLong if it satisfies all
901 // the below constraints, see contains(jlong)
902 const jlong _lo, _hi; // Lower bound, upper bound in the signed domain
903 const julong _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
904 const KnownBits<julong> _bits;
905
906 static const TypeLong* make(jlong con);
907 // must always specify w
908 static const TypeLong* make(jlong lo, jlong hi, int widen);
909 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
910 static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
911
912 // Check for single integer
913 bool is_con() const { return _lo == _hi; }
914 bool is_con(jlong i) const { return is_con() && _lo == i; }
915 jlong get_con() const { assert(is_con(), "" ); return _lo; }
916 // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
917 // argument are also elements of this type)
918 bool contains(jlong i) const;
919 bool contains(const TypeLong* t) const;
920
921 // Check for positive 32-bit value.
922 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
923
924 virtual bool is_finite() const; // Has a finite value
925
926 virtual jlong hi_as_long() const { return _hi; }
927 virtual jlong lo_as_long() const { return _lo; }
928
929 virtual const Type* xmeet(const Type* t) const;
930 virtual const Type* xdual() const; // Compute dual right now.
931 virtual const Type* widen(const Type* t, const Type* limit_type) const;
932 virtual const Type* narrow(const Type* t) const;
933 // Convenience common pre-built types.
934 static const TypeLong* MAX;
935 static const TypeLong* MIN;
936 static const TypeLong* MINUS_1;
937 static const TypeLong* ZERO;
938 static const TypeLong* ONE;
939 static const TypeLong* NON_ZERO;
940 static const TypeLong* POS;
941 static const TypeLong* NEG;
942 static const TypeLong* LONG;
943 static const TypeLong* INT; // 32-bit subrange [min_jint..max_jint]
944 static const TypeLong* UINT; // 32-bit unsigned [0..max_juint]
945 static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
946
947 // static convenience methods.
948 static const TypeLong* as_self(const Type* t) { return t->is_long(); }
949
950 #ifndef PRODUCT
951 virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
952 void dump_verbose() const;
953 #endif
954 };
955
956 //------------------------------TypeTuple--------------------------------------
957 // Class of Tuple Types, essentially type collections for function signatures
958 // and class layouts. It happens to also be a fast cache for the HotSpot
959 // signature types.
960 class TypeTuple : public Type {
961 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
962
963 const uint _cnt; // Count of fields
964 const Type ** const _fields; // Array of field types
965
966 public:
967 virtual bool eq( const Type *t ) const;
968 virtual uint hash() const; // Type specific hashing
969 virtual bool singleton(void) const; // TRUE if type is a singleton
970 virtual bool empty(void) const; // TRUE if type is vacuous
971
972 // Accessors:
973 uint cnt() const { return _cnt; }
974 const Type* field_at(uint i) const {
975 assert(i < _cnt, "oob");
976 return _fields[i];
977 }
978 void set_field_at(uint i, const Type* t) {
979 assert(i < _cnt, "oob");
980 _fields[i] = t;
981 }
982
983 static const TypeTuple *make( uint cnt, const Type **fields );
984 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
985 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
986
987 // Subroutine call type with space allocated for argument types
988 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
989 static const Type **fields( uint arg_cnt );
990
991 virtual const Type *xmeet( const Type *t ) const;
992 virtual const Type *xdual() const; // Compute dual right now.
993 // Convenience common pre-built types.
994 static const TypeTuple *IFBOTH;
995 static const TypeTuple *IFFALSE;
996 static const TypeTuple *IFTRUE;
997 static const TypeTuple *IFNEITHER;
998 static const TypeTuple *LOOPBODY;
999 static const TypeTuple *MEMBAR;
1000 static const TypeTuple *STORECONDITIONAL;
1001 static const TypeTuple *START_I2C;
1002 static const TypeTuple *INT_PAIR;
1003 static const TypeTuple *LONG_PAIR;
1004 static const TypeTuple *INT_CC_PAIR;
1005 static const TypeTuple *LONG_CC_PAIR;
1006 #ifndef PRODUCT
1007 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1008 #endif
1009 };
1010
1011 //------------------------------TypeAry----------------------------------------
1012 // Class of Array Types
1013 class TypeAry : public Type {
1014 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1015 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1016 public:
1017 virtual bool eq( const Type *t ) const;
1018 virtual uint hash() const; // Type specific hashing
1019 virtual bool singleton(void) const; // TRUE if type is a singleton
1020 virtual bool empty(void) const; // TRUE if type is vacuous
1021
1022 private:
1023 const Type *_elem; // Element type of array
1024 const TypeInt *_size; // Elements in array
1025 const bool _stable; // Are elements @Stable?
1026
1027 // Inline type array properties
1028 const bool _flat; // Array is flat
1029 const bool _not_flat; // Array is never flat
1030 const bool _not_null_free; // Array is never null-free
1031 const bool _atomic; // Array is atomic
1032
1033 friend class TypeAryPtr;
1034
1035 public:
1036 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1037 bool flat, bool not_flat, bool not_null_free, bool atomic);
1038
1039 virtual const Type *xmeet( const Type *t ) const;
1040 virtual const Type *xdual() const; // Compute dual right now.
1041 bool ary_must_be_exact() const; // true if arrays of such are never generic
1042 virtual const TypeAry* remove_speculative() const;
1043 virtual const Type* cleanup_speculative() const;
1044 #ifndef PRODUCT
1045 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1046 #endif
1047 };
1048
1049 //------------------------------TypeVect---------------------------------------
1050 // Class of Vector Types
1051 class TypeVect : public Type {
1052 const BasicType _elem_bt; // Vector's element type
1053 const uint _length; // Elements in vector (power of 2)
1054
1055 protected:
1056 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1057 _elem_bt(elem_bt), _length(length) {}
1058
1059 public:
1060 BasicType element_basic_type() const { return _elem_bt; }
1061 uint length() const { return _length; }
1062 uint length_in_bytes() const {
1063 return _length * type2aelembytes(element_basic_type());
1064 }
1065
1066 virtual bool eq(const Type* t) const;
1067 virtual uint hash() const; // Type specific hashing
1068 virtual bool singleton(void) const; // TRUE if type is a singleton
1069 virtual bool empty(void) const; // TRUE if type is vacuous
1070
1071 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1072 static const TypeVect* makemask(const BasicType elem_bt, uint length);
1073
1074 virtual const Type* xmeet( const Type *t) const;
1075 virtual const Type* xdual() const; // Compute dual right now.
1076
1077 static const TypeVect* VECTA;
1078 static const TypeVect* VECTS;
1079 static const TypeVect* VECTD;
1080 static const TypeVect* VECTX;
1081 static const TypeVect* VECTY;
1082 static const TypeVect* VECTZ;
1083 static const TypeVect* VECTMASK;
1084
1085 #ifndef PRODUCT
1086 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1087 #endif
1088 };
1089
1090 class TypeVectA : public TypeVect {
1091 friend class TypeVect;
1092 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1093 };
1094
1095 class TypeVectS : public TypeVect {
1096 friend class TypeVect;
1097 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1098 };
1099
1100 class TypeVectD : public TypeVect {
1101 friend class TypeVect;
1102 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1103 };
1104
1105 class TypeVectX : public TypeVect {
1106 friend class TypeVect;
1107 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1108 };
1109
1110 class TypeVectY : public TypeVect {
1111 friend class TypeVect;
1112 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1113 };
1114
1115 class TypeVectZ : public TypeVect {
1116 friend class TypeVect;
1117 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1118 };
1119
1120 class TypeVectMask : public TypeVect {
1121 public:
1122 friend class TypeVect;
1123 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1124 static const TypeVectMask* make(const BasicType elem_bt, uint length);
1125 };
1126
1127 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1128 class TypeInterfaces : public Type {
1129 private:
1130 GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1131 uint _hash;
1132 ciInstanceKlass* _exact_klass;
1133 DEBUG_ONLY(bool _initialized;)
1134
1135 void initialize();
1136
1137 void verify() const NOT_DEBUG_RETURN;
1138 void compute_hash();
1139 void compute_exact_klass();
1140
1141 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1142
1143 NONCOPYABLE(TypeInterfaces);
1144 public:
1145 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1146 bool eq(const Type* other) const;
1147 bool eq(ciInstanceKlass* k) const;
1148 uint hash() const;
1149 const Type *xdual() const;
1150 void dump(outputStream* st) const;
1151 const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1152 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1153 bool contains(const TypeInterfaces* other) const {
1154 return intersection_with(other)->eq(other);
1155 }
1156 bool empty() const { return _interfaces.length() == 0; }
1157
1158 ciInstanceKlass* exact_klass() const;
1159 void verify_is_loaded() const NOT_DEBUG_RETURN;
1160
1161 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1162 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1163
1164 const Type* xmeet(const Type* t) const;
1165
1166 bool singleton(void) const;
1167 bool has_non_array_interface() const;
1168 };
1169
1170 //------------------------------TypePtr----------------------------------------
1171 // Class of machine Pointer Types: raw data, instances or arrays.
1172 // If the _base enum is AnyPtr, then this refers to all of the above.
1173 // Otherwise the _base will indicate which subset of pointers is affected,
1174 // and the class will be inherited from.
1175 class TypePtr : public Type {
1176 friend class TypeNarrowPtr;
1177 friend class Type;
1178 protected:
1179 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1180
1181 public:
1182 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1183
1184 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1185 //
1186 // FlatInArray defines the following Boolean Lattice structure
1187 //
1188 // TopFlat
1189 // / \
1190 // Flat NotFlat
1191 // \ /
1192 // MaybeFlat
1193 //
1194 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1195 enum FlatInArray {
1196 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1197 Flat, // An instance is always flat in an array.
1198 NotFlat, // An instance is never flat in an array.
1199 MaybeFlat, // We don't know whether an instance is flat in an array.
1200 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1201 };
1202 protected:
1203 TypePtr(TYPES t, PTR ptr, Offset offset,
1204 const TypePtr* speculative = nullptr,
1205 int inline_depth = InlineDepthBottom) :
1206 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1207 _ptr(ptr) {}
1208 static const PTR ptr_meet[lastPTR][lastPTR];
1209 static const PTR ptr_dual[lastPTR];
1210 static const char * const ptr_msg[lastPTR];
1211
1212 static const FlatInArray flat_in_array_dual[Uninitialized];
1213 static const char* const flat_in_array_msg[Uninitialized];
1214
1215 enum {
1216 InlineDepthBottom = INT_MAX,
1217 InlineDepthTop = -InlineDepthBottom
1218 };
1219
1220 // Extra type information profiling gave us. We propagate it the
1221 // same way the rest of the type info is propagated. If we want to
1222 // use it, then we have to emit a guard: this part of the type is
1223 // not something we know but something we speculate about the type.
1224 const TypePtr* _speculative;
1225 // For speculative types, we record at what inlining depth the
1226 // profiling point that provided the data is. We want to favor
1227 // profile data coming from outer scopes which are likely better for
1228 // the current compilation.
1229 int _inline_depth;
1230
1231 // utility methods to work on the speculative part of the type
1232 const TypePtr* dual_speculative() const;
1233 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1234 bool eq_speculative(const TypePtr* other) const;
1235 int hash_speculative() const;
1236 const TypePtr* add_offset_speculative(intptr_t offset) const;
1237 const TypePtr* with_offset_speculative(intptr_t offset) const;
1238
1239 // utility methods to work on the inline depth of the type
1240 int dual_inline_depth() const;
1241 int meet_inline_depth(int depth) const;
1242
1243 #ifndef PRODUCT
1244 void dump_speculative(outputStream* st) const;
1245 void dump_inline_depth(outputStream* st) const;
1246 void dump_offset(outputStream* st) const;
1247 #endif
1248
1249 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1250 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1251 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1252 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1253 // encountered so the right logic specific to klasses or oops can be executed.,
1254 enum MeetResult {
1255 QUICK,
1256 UNLOADED,
1257 SUBTYPE,
1258 NOT_SUBTYPE,
1259 LCA
1260 };
1261 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1262 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1263 protected:
1264 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1265
1266 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1267 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1268
1269 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1270 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1271 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1272 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1274 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1275 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1276 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277 public:
1278 const Offset _offset; // Offset into oop, with TOP & BOT
1279 const PTR _ptr; // Pointer equivalence class
1280
1281 int offset() const { return _offset.get(); }
1282 PTR ptr() const { return _ptr; }
1283
1284 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1285 const TypePtr* speculative = nullptr,
1286 int inline_depth = InlineDepthBottom);
1287
1288 // Return a 'ptr' version of this type
1289 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1290
1291 virtual intptr_t get_con() const;
1292
1293 Type::Offset xadd_offset(intptr_t offset) const;
1294 virtual const TypePtr* add_offset(intptr_t offset) const;
1295 virtual const TypePtr* with_offset(intptr_t offset) const;
1296 virtual int flat_offset() const { return offset(); }
1297 virtual bool eq(const Type *t) const;
1298 virtual uint hash() const; // Type specific hashing
1299
1300 virtual bool singleton(void) const; // TRUE if type is a singleton
1301 virtual bool empty(void) const; // TRUE if type is vacuous
1302 virtual const Type *xmeet( const Type *t ) const;
1303 virtual const Type *xmeet_helper( const Type *t ) const;
1304 Offset meet_offset(int offset) const;
1305 Offset dual_offset() const;
1306 virtual const Type *xdual() const; // Compute dual right now.
1307
1308 // meet, dual and join over pointer equivalence sets
1309 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1310 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1311
1312 // This is textually confusing unless one recalls that
1313 // join(t) == dual()->meet(t->dual())->dual().
1314 PTR join_ptr( const PTR in_ptr ) const {
1315 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1316 }
1317
1318 // Speculative type helper methods.
1319 virtual const TypePtr* speculative() const { return _speculative; }
1320 int inline_depth() const { return _inline_depth; }
1321 virtual ciKlass* speculative_type() const;
1322 virtual ciKlass* speculative_type_not_null() const;
1323 virtual bool speculative_maybe_null() const;
1324 virtual bool speculative_always_null() const;
1325 virtual const TypePtr* remove_speculative() const;
1326 virtual const Type* cleanup_speculative() const;
1327 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1328 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1329 virtual const TypePtr* with_inline_depth(int depth) const;
1330
1331 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1332
1333 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1334
1335 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1336 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1337 FlatInArray old_flat_in_array) const;
1338
1339 virtual bool can_be_inline_type() const { return false; }
1340 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1341 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1342 virtual FlatInArray flat_in_array() const { return NotFlat; }
1343 virtual bool is_flat() const { return false; }
1344 virtual bool is_not_flat() const { return false; }
1345 virtual bool is_null_free() const { return false; }
1346 virtual bool is_not_null_free() const { return false; }
1347 virtual bool is_atomic() const { return false; }
1348
1349 // Tests for relation to centerline of type lattice:
1350 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1351 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1352 // Convenience common pre-built types.
1353 static const TypePtr *NULL_PTR;
1354 static const TypePtr *NOTNULL;
1355 static const TypePtr *BOTTOM;
1356 #ifndef PRODUCT
1357 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1358 #endif
1359 };
1360
1361 //------------------------------TypeRawPtr-------------------------------------
1362 // Class of raw pointers, pointers to things other than Oops. Examples
1363 // include the stack pointer, top of heap, card-marking area, handles, etc.
1364 class TypeRawPtr : public TypePtr {
1365 protected:
1366 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1367 public:
1368 virtual bool eq( const Type *t ) const;
1369 virtual uint hash() const; // Type specific hashing
1370
1371 const address _bits; // Constant value, if applicable
1372
1373 static const TypeRawPtr *make( PTR ptr );
1374 static const TypeRawPtr *make( address bits );
1375
1376 // Return a 'ptr' version of this type
1377 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1378
1379 virtual intptr_t get_con() const;
1380
1381 virtual const TypePtr* add_offset(intptr_t offset) const;
1382 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1383
1384 virtual const Type *xmeet( const Type *t ) const;
1385 virtual const Type *xdual() const; // Compute dual right now.
1386 // Convenience common pre-built types.
1387 static const TypeRawPtr *BOTTOM;
1388 static const TypeRawPtr *NOTNULL;
1389 #ifndef PRODUCT
1390 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1391 #endif
1392 };
1393
1394 //------------------------------TypeOopPtr-------------------------------------
1395 // Some kind of oop (Java pointer), either instance or array.
1396 class TypeOopPtr : public TypePtr {
1397 friend class TypeAry;
1398 friend class TypePtr;
1399 friend class TypeInstPtr;
1400 friend class TypeAryPtr;
1401 protected:
1402 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1403 const TypePtr* speculative, int inline_depth);
1404 public:
1405 virtual bool eq( const Type *t ) const;
1406 virtual uint hash() const; // Type specific hashing
1407 virtual bool singleton(void) const; // TRUE if type is a singleton
1408 enum {
1409 InstanceTop = -1, // undefined instance
1410 InstanceBot = 0 // any possible instance
1411 };
1412 protected:
1413
1414 // Oop is null, unless this is a constant oop.
1415 ciObject* _const_oop; // Constant oop
1416 // If _klass is null, then so is _sig. This is an unloaded klass.
1417 ciKlass* _klass; // Klass object
1418
1419 const TypeInterfaces* _interfaces;
1420
1421 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1422 bool _klass_is_exact;
1423 bool _is_ptr_to_narrowoop;
1424 bool _is_ptr_to_narrowklass;
1425 bool _is_ptr_to_boxed_value;
1426 bool _is_ptr_to_strict_final_field;
1427
1428 // If not InstanceTop or InstanceBot, indicates that this is
1429 // a particular instance of this type which is distinct.
1430 // This is the node index of the allocation node creating this instance.
1431 int _instance_id;
1432
1433 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1434
1435 int dual_instance_id() const;
1436 int meet_instance_id(int uid) const;
1437
1438 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1439
1440 // Do not allow interface-vs.-noninterface joins to collapse to top.
1441 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1442
1443 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1444 virtual ciKlass* klass() const { return _klass; }
1445
1446 #ifndef PRODUCT
1447 void dump_instance_id(outputStream* st) const;
1448 #endif // PRODUCT
1449
1450 public:
1451
1452 bool is_java_subtype_of(const TypeOopPtr* other) const {
1453 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1454 }
1455
1456 bool is_same_java_type_as(const TypePtr* other) const {
1457 return is_same_java_type_as_helper(other->is_oopptr());
1458 }
1459
1460 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1461 ShouldNotReachHere(); return false;
1462 }
1463
1464 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1465 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1466 }
1467 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1468 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1469
1470
1471 // Creates a type given a klass. Correctly handles multi-dimensional arrays
1472 // Respects UseUniqueSubclasses.
1473 // If the klass is final, the resulting type will be exact.
1474 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1475 return make_from_klass_common(klass, true, false, interface_handling);
1476 }
1477 // Same as before, but will produce an exact type, even if
1478 // the klass is not final, as long as it has exactly one implementation.
1479 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1480 return make_from_klass_common(klass, true, true, interface_handling);
1481 }
1482 // Same as before, but does not respects UseUniqueSubclasses.
1483 // Use this only for creating array element types.
1484 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1485 return make_from_klass_common(klass, false, false, interface_handling);
1486 }
1487 // Creates a singleton type given an object.
1488 // If the object cannot be rendered as a constant,
1489 // may return a non-singleton type.
1490 // If require_constant, produce a null if a singleton is not possible.
1491 static const TypeOopPtr* make_from_constant(ciObject* o,
1492 bool require_constant = false);
1493
1494 // Make a generic (unclassed) pointer to an oop.
1495 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1496 const TypePtr* speculative = nullptr,
1497 int inline_depth = InlineDepthBottom);
1498
1499 ciObject* const_oop() const { return _const_oop; }
1500 // Exact klass, possibly an interface or an array of interface
1501 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1502 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1503
1504 virtual bool is_loaded() const { return klass()->is_loaded(); }
1505 virtual bool klass_is_exact() const { return _klass_is_exact; }
1506
1507 // Returns true if this pointer points at memory which contains a
1508 // compressed oop references.
1509 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1510 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1511 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1512 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1513 bool is_known_instance() const { return _instance_id > 0; }
1514 int instance_id() const { return _instance_id; }
1515 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1516
1517 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1518 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1519
1520 virtual intptr_t get_con() const;
1521
1522 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1523
1524 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1525
1526 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1527
1528 // corresponding pointer to klass, for a given instance
1529 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1530
1531 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1532 virtual const TypePtr* add_offset(intptr_t offset) const;
1533
1534 // Speculative type helper methods.
1535 virtual const TypeOopPtr* remove_speculative() const;
1536 virtual const Type* cleanup_speculative() const;
1537 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1538 virtual const TypePtr* with_inline_depth(int depth) const;
1539
1540 virtual const TypePtr* with_instance_id(int instance_id) const;
1541
1542 virtual const Type *xdual() const; // Compute dual right now.
1543 // the core of the computation of the meet for TypeOopPtr and for its subclasses
1544 virtual const Type *xmeet_helper(const Type *t) const;
1545
1546 // Convenience common pre-built type.
1547 static const TypeOopPtr *BOTTOM;
1548 #ifndef PRODUCT
1549 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1550 #endif
1551 private:
1552 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1553 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1554 }
1555
1556 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1557 ShouldNotReachHere(); return false;
1558 }
1559
1560 virtual const TypeInterfaces* interfaces() const {
1561 return _interfaces;
1562 };
1563
1564 const TypeOopPtr* is_reference_type(const Type* other) const {
1565 return other->isa_oopptr();
1566 }
1567
1568 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1569 return other->isa_aryptr();
1570 }
1571
1572 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1573 return other->isa_instptr();
1574 }
1575 };
1576
1577 //------------------------------TypeInstPtr------------------------------------
1578 // Class of Java object pointers, pointing either to non-array Java instances
1579 // or to a Klass* (including array klasses).
1580 class TypeInstPtr : public TypeOopPtr {
1581 // Can this instance be in a flat array?
1582 FlatInArray _flat_in_array;
1583
1584 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1585 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1586 int inline_depth);
1587 virtual bool eq( const Type *t ) const;
1588 virtual uint hash() const; // Type specific hashing
1589 ciKlass* exact_klass_helper() const;
1590
1591 public:
1592
1593 // Instance klass, ignoring any interface
1594 ciInstanceKlass* instance_klass() const {
1595 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1596 return klass()->as_instance_klass();
1597 }
1598
1599 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1600 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1601 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602
1603 // Make a pointer to a constant oop.
1604 static const TypeInstPtr *make(ciObject* o) {
1605 ciKlass* k = o->klass();
1606 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1607 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1608 }
1609 // Make a pointer to a constant oop with offset.
1610 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1611 ciKlass* k = o->klass();
1612 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1613 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1614 }
1615
1616 // Make a pointer to some value of type klass.
1617 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1618 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1619 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1620 }
1621
1622 // Make a pointer to some non-polymorphic value of exactly type klass.
1623 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1624 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1625 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1626 }
1627
1628 // Make a pointer to some value of type klass with offset.
1629 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1630 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1631 return make(ptr, klass, interfaces, false, nullptr, offset);
1632 }
1633
1634 // Make a pointer to an oop.
1635 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1636 FlatInArray flat_in_array = Uninitialized,
1637 int instance_id = InstanceBot,
1638 const TypePtr* speculative = nullptr,
1639 int inline_depth = InlineDepthBottom);
1640
1641 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1642 FlatInArray flat_in_array = Uninitialized) {
1643 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1644 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1645 }
1646
1647 /** Create constant type for a constant boxed value */
1648 const Type* get_const_boxed_value() const;
1649
1650 // If this is a java.lang.Class constant, return the type for it or null.
1651 // Pass to Type::get_const_type to turn it to a type, which will usually
1652 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1653 ciType* java_mirror_type() const;
1654
1655 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1656
1657 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1658
1659 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1660
1661 virtual bool empty() const;
1662 virtual const TypePtr* add_offset(intptr_t offset) const;
1663 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1664
1665 // Speculative type helper methods.
1666 virtual const TypeInstPtr* remove_speculative() const;
1667 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1668 virtual const TypePtr* with_inline_depth(int depth) const;
1669 virtual const TypePtr* with_instance_id(int instance_id) const;
1670
1671 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1672 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1673 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1674
1675 FlatInArray dual_flat_in_array() const {
1676 return flat_in_array_dual[_flat_in_array];
1677 }
1678
1679 // the core of the computation of the meet of 2 types
1680 virtual const Type *xmeet_helper(const Type *t) const;
1681 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1682 virtual const Type *xdual() const; // Compute dual right now.
1683
1684 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1685
1686 virtual bool can_be_inline_array() const;
1687
1688 // Convenience common pre-built types.
1689 static const TypeInstPtr *NOTNULL;
1690 static const TypeInstPtr *BOTTOM;
1691 static const TypeInstPtr *MIRROR;
1692 static const TypeInstPtr *MARK;
1693 static const TypeInstPtr *KLASS;
1694 #ifndef PRODUCT
1695 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1696 #endif
1697
1698 private:
1699 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1700
1701 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1702 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1703 }
1704
1705 };
1706
1707 //------------------------------TypeAryPtr-------------------------------------
1708 // Class of Java array pointers
1709 class TypeAryPtr : public TypeOopPtr {
1710 friend class Type;
1711 friend class TypePtr;
1712 friend class TypeInstPtr;
1713 friend class TypeInterfaces;
1714
1715 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1716 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1717 const TypePtr* speculative, int inline_depth)
1718 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1719 _ary(ary),
1720 _is_autobox_cache(is_autobox_cache),
1721 _field_offset(field_offset)
1722 {
1723 int dummy;
1724 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1725
1726 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1727 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1728 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1729 _is_ptr_to_narrowoop = true;
1730 }
1731
1732 }
1733 virtual bool eq( const Type *t ) const;
1734 virtual uint hash() const; // Type specific hashing
1735 const TypeAry *_ary; // Array we point into
1736 const bool _is_autobox_cache;
1737 // For flat inline type arrays, each field of the inline type in
1738 // the array has its own memory slice so we need to keep track of
1739 // which field is accessed
1740 const Offset _field_offset;
1741 Offset meet_field_offset(const Type::Offset offset) const;
1742 Offset dual_field_offset() const;
1743
1744 ciKlass* compute_klass() const;
1745
1746 // A pointer to delay allocation to Type::Initialize_shared()
1747
1748 static const TypeInterfaces* _array_interfaces;
1749 ciKlass* exact_klass_helper() const;
1750 // Only guaranteed non null for array of basic types
1751 ciKlass* klass() const;
1752
1753 public:
1754
1755 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1756 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1757 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758
1759 // returns base element type, an instance klass (and not interface) for object arrays
1760 const Type* base_element_type(int& dims) const;
1761
1762 // Accessors
1763 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1764
1765 const TypeAry* ary() const { return _ary; }
1766 const Type* elem() const { return _ary->_elem; }
1767 const TypeInt* size() const { return _ary->_size; }
1768 bool is_stable() const { return _ary->_stable; }
1769
1770 // Inline type array properties
1771 bool is_flat() const { return _ary->_flat; }
1772 bool is_not_flat() const { return _ary->_not_flat; }
1773 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1774 bool is_not_null_free() const { return _ary->_not_null_free; }
1775 bool is_atomic() const { return _ary->_atomic; }
1776
1777 bool is_autobox_cache() const { return _is_autobox_cache; }
1778
1779 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1780 Offset field_offset = Offset::bottom,
1781 int instance_id = InstanceBot,
1782 const TypePtr* speculative = nullptr,
1783 int inline_depth = InlineDepthBottom);
1784 // Constant pointer to array
1785 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1786 Offset field_offset = Offset::bottom,
1787 int instance_id = InstanceBot,
1788 const TypePtr* speculative = nullptr,
1789 int inline_depth = InlineDepthBottom,
1790 bool is_autobox_cache = false);
1791
1792 // Return a 'ptr' version of this type
1793 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1794
1795 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1796
1797 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1798
1799 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1800 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1801
1802 virtual bool empty(void) const; // TRUE if type is vacuous
1803 virtual const TypePtr *add_offset( intptr_t offset ) const;
1804 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1805 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1806
1807 // Speculative type helper methods.
1808 virtual const TypeAryPtr* remove_speculative() const;
1809 virtual const Type* cleanup_speculative() const;
1810 virtual const TypePtr* with_inline_depth(int depth) const;
1811 virtual const TypePtr* with_instance_id(int instance_id) const;
1812
1813 // the core of the computation of the meet of 2 types
1814 virtual const Type *xmeet_helper(const Type *t) const;
1815 virtual const Type *xdual() const; // Compute dual right now.
1816
1817 // Inline type array properties
1818 const TypeAryPtr* cast_to_flat(bool flat) const;
1819 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1820 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1821 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1822 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1823 jint flat_layout_helper() const;
1824 int flat_elem_size() const;
1825 int flat_log_elem_size() const;
1826
1827 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1828 int stable_dimension() const;
1829
1830 const TypeAryPtr* cast_to_autobox_cache() const;
1831
1832 static jint max_array_length(BasicType etype);
1833
1834 int flat_offset() const;
1835 const Offset field_offset() const { return _field_offset; }
1836 const TypeAryPtr* with_field_offset(int offset) const;
1837 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1838
1839 virtual bool can_be_inline_type() const { return false; }
1840 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1841
1842 virtual bool can_be_inline_array() const;
1843
1844 // Convenience common pre-built types.
1845 static const TypeAryPtr* BOTTOM;
1846 static const TypeAryPtr *RANGE;
1847 static const TypeAryPtr *OOPS;
1848 static const TypeAryPtr *NARROWOOPS;
1849 static const TypeAryPtr *BYTES;
1850 static const TypeAryPtr *SHORTS;
1851 static const TypeAryPtr *CHARS;
1852 static const TypeAryPtr *INTS;
1853 static const TypeAryPtr *LONGS;
1854 static const TypeAryPtr *FLOATS;
1855 static const TypeAryPtr *DOUBLES;
1856 static const TypeAryPtr *INLINES;
1857 // selects one of the above:
1858 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1859 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1860 return _array_body_type[elem];
1861 }
1862 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1863 // sharpen the type of an int which is used as an array size
1864 #ifndef PRODUCT
1865 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1866 #endif
1867 private:
1868 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1869 };
1870
1871 //------------------------------TypeMetadataPtr-------------------------------------
1872 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1873 class TypeMetadataPtr : public TypePtr {
1874 protected:
1875 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1876 // Do not allow interface-vs.-noninterface joins to collapse to top.
1877 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1878 public:
1879 virtual bool eq( const Type *t ) const;
1880 virtual uint hash() const; // Type specific hashing
1881 virtual bool singleton(void) const; // TRUE if type is a singleton
1882
1883 private:
1884 ciMetadata* _metadata;
1885
1886 public:
1887 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1888
1889 static const TypeMetadataPtr* make(ciMethod* m);
1890 static const TypeMetadataPtr* make(ciMethodData* m);
1891
1892 ciMetadata* metadata() const { return _metadata; }
1893
1894 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1895
1896 virtual const TypePtr *add_offset( intptr_t offset ) const;
1897
1898 virtual const Type *xmeet( const Type *t ) const;
1899 virtual const Type *xdual() const; // Compute dual right now.
1900
1901 virtual intptr_t get_con() const;
1902
1903 // Convenience common pre-built types.
1904 static const TypeMetadataPtr *BOTTOM;
1905
1906 #ifndef PRODUCT
1907 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1908 #endif
1909 };
1910
1911 //------------------------------TypeKlassPtr-----------------------------------
1912 // Class of Java Klass pointers
1913 class TypeKlassPtr : public TypePtr {
1914 friend class TypeInstKlassPtr;
1915 friend class TypeAryKlassPtr;
1916 friend class TypePtr;
1917 protected:
1918 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1919
1920 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1921
1922 public:
1923 virtual bool eq( const Type *t ) const;
1924 virtual uint hash() const;
1925 virtual bool singleton(void) const; // TRUE if type is a singleton
1926
1927 protected:
1928
1929 ciKlass* _klass;
1930 const TypeInterfaces* _interfaces;
1931 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1932 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1933 virtual ciKlass* exact_klass_helper() const;
1934 virtual ciKlass* klass() const { return _klass; }
1935
1936 public:
1937
1938 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1939 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1940 }
1941 bool is_same_java_type_as(const TypePtr* other) const {
1942 return is_same_java_type_as_helper(other->is_klassptr());
1943 }
1944
1945 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1946 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1947 }
1948 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1949 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1950 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951
1952 // Exact klass, possibly an interface or an array of interface
1953 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1954 virtual bool klass_is_exact() const { return _ptr == Constant; }
1955
1956 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1957
1958 virtual bool is_loaded() const { return _klass->is_loaded(); }
1959
1960 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1961
1962 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1963
1964 // corresponding pointer to instance, for a given class
1965 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1966
1967 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1968 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1969 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1970
1971 virtual intptr_t get_con() const;
1972
1973 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1974
1975 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1976
1977 virtual const TypeKlassPtr* try_improve() const { return this; }
1978
1979 private:
1980 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1981 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1982 }
1983
1984 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1985 ShouldNotReachHere(); return false;
1986 }
1987
1988 virtual const TypeInterfaces* interfaces() const {
1989 return _interfaces;
1990 };
1991
1992 const TypeKlassPtr* is_reference_type(const Type* other) const {
1993 return other->isa_klassptr();
1994 }
1995
1996 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1997 return other->isa_aryklassptr();
1998 }
1999
2000 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2001 return other->isa_instklassptr();
2002 }
2003 };
2004
2005 // Instance klass pointer, mirrors TypeInstPtr
2006 class TypeInstKlassPtr : public TypeKlassPtr {
2007 // Can an instance of this class be in a flat array?
2008 const FlatInArray _flat_in_array;
2009
2010 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2011 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2012 assert(flat_in_array != Uninitialized, "must be set now");
2013 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2014 }
2015
2016 virtual bool must_be_exact() const;
2017
2018 public:
2019 // Instance klass ignoring any interface
2020 ciInstanceKlass* instance_klass() const {
2021 assert(!klass()->is_interface(), "");
2022 return klass()->as_instance_klass();
2023 }
2024
2025 bool might_be_an_array() const;
2026
2027 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2028 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2029 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030
2031 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2032
2033 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2034 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2035 return make(TypePtr::Constant, k, interfaces, Offset(0));
2036 }
2037
2038 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2039 FlatInArray flat_in_array = Uninitialized);
2040
2041 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2042 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2043 return make(ptr, k, interfaces, offset, flat_in_array);
2044 }
2045
2046 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2047
2048 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2049
2050 // corresponding pointer to instance, for a given class
2051 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2052 virtual uint hash() const;
2053 virtual bool eq(const Type *t) const;
2054
2055
2056 virtual bool empty() const;
2057 virtual const TypePtr *add_offset( intptr_t offset ) const;
2058 virtual const Type *xmeet( const Type *t ) const;
2059 virtual const Type *xdual() const;
2060 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2061
2062 virtual const TypeKlassPtr* try_improve() const;
2063
2064 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2065
2066 FlatInArray dual_flat_in_array() const {
2067 return flat_in_array_dual[_flat_in_array];
2068 }
2069
2070 virtual bool can_be_inline_array() const;
2071
2072 // Convenience common pre-built types.
2073 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2074 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2075
2076 #ifndef PRODUCT
2077 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2078 #endif // PRODUCT
2079
2080 private:
2081 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2082 };
2083
2084 // Array klass pointer, mirrors TypeAryPtr
2085 class TypeAryKlassPtr : public TypeKlassPtr {
2086 friend class TypeInstKlassPtr;
2087 friend class Type;
2088 friend class TypePtr;
2089
2090 const Type *_elem;
2091 const bool _not_flat; // Array is never flat
2092 const bool _not_null_free; // Array is never null-free
2093 const bool _flat;
2094 const bool _null_free;
2095 const bool _atomic;
2096 const bool _refined_type;
2097
2098 static const TypeInterfaces* _array_interfaces;
2099 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2100 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2101 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2102 }
2103
2104 virtual ciKlass* exact_klass_helper() const;
2105 // Only guaranteed non null for array of basic types
2106 virtual ciKlass* klass() const;
2107
2108 virtual bool must_be_exact() const;
2109
2110 bool dual_flat() const {
2111 return _flat;
2112 }
2113
2114 bool meet_flat(bool other) const {
2115 return _flat && other;
2116 }
2117
2118 bool dual_null_free() const {
2119 return _null_free;
2120 }
2121
2122 bool meet_null_free(bool other) const {
2123 return _null_free && other;
2124 }
2125
2126 bool dual_atomic() const {
2127 return _atomic;
2128 }
2129
2130 bool meet_atomic(bool other) const {
2131 return _atomic && other;
2132 }
2133
2134 public:
2135
2136 // returns base element type, an instance klass (and not interface) for object arrays
2137 const Type* base_element_type(int& dims) const;
2138
2139 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2140
2141 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2142 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2143 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144
2145 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2146
2147 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2148 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2149
2150 const TypeAryKlassPtr* cast_to_non_refined() const;
2151 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2152
2153 const Type *elem() const { return _elem; }
2154
2155 virtual bool eq(const Type *t) const;
2156 virtual uint hash() const; // Type specific hashing
2157
2158 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2159
2160 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2161
2162 // corresponding pointer to instance, for a given class
2163 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2164
2165 virtual const TypePtr *add_offset( intptr_t offset ) const;
2166 virtual const Type *xmeet( const Type *t ) const;
2167 virtual const Type *xdual() const; // Compute dual right now.
2168
2169 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2170
2171 virtual bool empty(void) const {
2172 return TypeKlassPtr::empty() || _elem->empty();
2173 }
2174
2175 bool is_flat() const { return _flat; }
2176 bool is_not_flat() const { return _not_flat; }
2177 bool is_null_free() const { return _null_free; }
2178 bool is_not_null_free() const { return _not_null_free; }
2179 bool is_atomic() const { return _atomic; }
2180 bool is_refined_type() const { return _refined_type; }
2181 virtual bool can_be_inline_array() const;
2182
2183 #ifndef PRODUCT
2184 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2185 #endif
2186 private:
2187 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2188 };
2189
2190 class TypeNarrowPtr : public Type {
2191 protected:
2192 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2193
2194 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2195 _ptrtype(ptrtype) {
2196 assert(ptrtype->offset() == 0 ||
2197 ptrtype->offset() == OffsetBot ||
2198 ptrtype->offset() == OffsetTop, "no real offsets");
2199 }
2200
2201 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2202 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2203 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2204 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2205 // Do not allow interface-vs.-noninterface joins to collapse to top.
2206 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2207 public:
2208 virtual bool eq( const Type *t ) const;
2209 virtual uint hash() const; // Type specific hashing
2210 virtual bool singleton(void) const; // TRUE if type is a singleton
2211
2212 virtual const Type *xmeet( const Type *t ) const;
2213 virtual const Type *xdual() const; // Compute dual right now.
2214
2215 virtual intptr_t get_con() const;
2216
2217 virtual bool empty(void) const; // TRUE if type is vacuous
2218
2219 // returns the equivalent ptr type for this compressed pointer
2220 const TypePtr *get_ptrtype() const {
2221 return _ptrtype;
2222 }
2223
2224 bool is_known_instance() const {
2225 return _ptrtype->is_known_instance();
2226 }
2227
2228 #ifndef PRODUCT
2229 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2230 #endif
2231 };
2232
2233 //------------------------------TypeNarrowOop----------------------------------
2234 // A compressed reference to some kind of Oop. This type wraps around
2235 // a preexisting TypeOopPtr and forwards most of it's operations to
2236 // the underlying type. It's only real purpose is to track the
2237 // oopness of the compressed oop value when we expose the conversion
2238 // between the normal and the compressed form.
2239 class TypeNarrowOop : public TypeNarrowPtr {
2240 protected:
2241 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2242 }
2243
2244 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2245 return t->isa_narrowoop();
2246 }
2247
2248 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2249 return t->is_narrowoop();
2250 }
2251
2252 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2253 return new TypeNarrowOop(t);
2254 }
2255
2256 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2257 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2258 }
2259
2260 public:
2261
2262 static const TypeNarrowOop *make( const TypePtr* type);
2263
2264 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2265 return make(TypeOopPtr::make_from_constant(con, require_constant));
2266 }
2267
2268 static const TypeNarrowOop *BOTTOM;
2269 static const TypeNarrowOop *NULL_PTR;
2270
2271 virtual const TypeNarrowOop* remove_speculative() const;
2272 virtual const Type* cleanup_speculative() const;
2273
2274 #ifndef PRODUCT
2275 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2276 #endif
2277 };
2278
2279 //------------------------------TypeNarrowKlass----------------------------------
2280 // A compressed reference to klass pointer. This type wraps around a
2281 // preexisting TypeKlassPtr and forwards most of it's operations to
2282 // the underlying type.
2283 class TypeNarrowKlass : public TypeNarrowPtr {
2284 protected:
2285 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2286 }
2287
2288 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2289 return t->isa_narrowklass();
2290 }
2291
2292 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2293 return t->is_narrowklass();
2294 }
2295
2296 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2297 return new TypeNarrowKlass(t);
2298 }
2299
2300 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2301 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2302 }
2303
2304 public:
2305 static const TypeNarrowKlass *make( const TypePtr* type);
2306
2307 // static const TypeNarrowKlass *BOTTOM;
2308 static const TypeNarrowKlass *NULL_PTR;
2309
2310 #ifndef PRODUCT
2311 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2312 #endif
2313 };
2314
2315 //------------------------------TypeFunc---------------------------------------
2316 // Class of Array Types
2317 class TypeFunc : public Type {
2318 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2319 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2320 virtual bool eq( const Type *t ) const;
2321 virtual uint hash() const; // Type specific hashing
2322 virtual bool singleton(void) const; // TRUE if type is a singleton
2323 virtual bool empty(void) const; // TRUE if type is vacuous
2324
2325 // Domains of inputs: inline type arguments are not passed by
2326 // reference, instead each field of the inline type is passed as an
2327 // argument. We maintain 2 views of the argument list here: one
2328 // based on the signature (with an inline type argument as a single
2329 // slot), one based on the actual calling convention (with a value
2330 // type argument as a list of its fields).
2331 const TypeTuple* const _domain_sig;
2332 const TypeTuple* const _domain_cc;
2333 // Range of results. Similar to domains: an inline type result can be
2334 // returned in registers in which case range_cc lists all fields and
2335 // is the actual calling convention.
2336 const TypeTuple* const _range_sig;
2337 const TypeTuple* const _range_cc;
2338
2339 public:
2340 // Constants are shared among ADLC and VM
2341 enum { Control = AdlcVMDeps::Control,
2342 I_O = AdlcVMDeps::I_O,
2343 Memory = AdlcVMDeps::Memory,
2344 FramePtr = AdlcVMDeps::FramePtr,
2345 ReturnAdr = AdlcVMDeps::ReturnAdr,
2346 Parms = AdlcVMDeps::Parms
2347 };
2348
2349
2350 // Accessors:
2351 const TypeTuple* domain_sig() const { return _domain_sig; }
2352 const TypeTuple* domain_cc() const { return _domain_cc; }
2353 const TypeTuple* range_sig() const { return _range_sig; }
2354 const TypeTuple* range_cc() const { return _range_cc; }
2355
2356 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2357 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2358 const TypeTuple* range_sig, const TypeTuple* range_cc);
2359 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2360
2361 virtual const Type *xmeet( const Type *t ) const;
2362 virtual const Type *xdual() const; // Compute dual right now.
2363
2364 BasicType return_type() const;
2365
2366 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2367
2368 #ifndef PRODUCT
2369 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2370 #endif
2371 // Convenience common pre-built types.
2372 };
2373
2374 //------------------------------accessors--------------------------------------
2375 inline bool Type::is_ptr_to_narrowoop() const {
2376 #ifdef _LP64
2377 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2378 #else
2379 return false;
2380 #endif
2381 }
2382
2383 inline bool Type::is_ptr_to_narrowklass() const {
2384 #ifdef _LP64
2385 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2386 #else
2387 return false;
2388 #endif
2389 }
2390
2391 inline float Type::getf() const {
2392 assert( _base == FloatCon, "Not a FloatCon" );
2393 return ((TypeF*)this)->_f;
2394 }
2395
2396 inline short Type::geth() const {
2397 assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2398 return ((TypeH*)this)->_f;
2399 }
2400
2401 inline double Type::getd() const {
2402 assert( _base == DoubleCon, "Not a DoubleCon" );
2403 return ((TypeD*)this)->_d;
2404 }
2405
2406 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2407 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2408 return (TypeInteger*)this;
2409 }
2410
2411 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2412 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2413 }
2414
2415 inline const TypeInt *Type::is_int() const {
2416 assert( _base == Int, "Not an Int" );
2417 return (TypeInt*)this;
2418 }
2419
2420 inline const TypeInt *Type::isa_int() const {
2421 return ( _base == Int ? (TypeInt*)this : nullptr);
2422 }
2423
2424 inline const TypeLong *Type::is_long() const {
2425 assert( _base == Long, "Not a Long" );
2426 return (TypeLong*)this;
2427 }
2428
2429 inline const TypeLong *Type::isa_long() const {
2430 return ( _base == Long ? (TypeLong*)this : nullptr);
2431 }
2432
2433 inline const TypeH* Type::isa_half_float() const {
2434 return ((_base == HalfFloatTop ||
2435 _base == HalfFloatCon ||
2436 _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2437 }
2438
2439 inline const TypeH* Type::is_half_float_constant() const {
2440 assert( _base == HalfFloatCon, "Not a HalfFloat" );
2441 return (TypeH*)this;
2442 }
2443
2444 inline const TypeH* Type::isa_half_float_constant() const {
2445 return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2446 }
2447
2448 inline const TypeF *Type::isa_float() const {
2449 return ((_base == FloatTop ||
2450 _base == FloatCon ||
2451 _base == FloatBot) ? (TypeF*)this : nullptr);
2452 }
2453
2454 inline const TypeF *Type::is_float_constant() const {
2455 assert( _base == FloatCon, "Not a Float" );
2456 return (TypeF*)this;
2457 }
2458
2459 inline const TypeF *Type::isa_float_constant() const {
2460 return ( _base == FloatCon ? (TypeF*)this : nullptr);
2461 }
2462
2463 inline const TypeD *Type::isa_double() const {
2464 return ((_base == DoubleTop ||
2465 _base == DoubleCon ||
2466 _base == DoubleBot) ? (TypeD*)this : nullptr);
2467 }
2468
2469 inline const TypeD *Type::is_double_constant() const {
2470 assert( _base == DoubleCon, "Not a Double" );
2471 return (TypeD*)this;
2472 }
2473
2474 inline const TypeD *Type::isa_double_constant() const {
2475 return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2476 }
2477
2478 inline const TypeTuple *Type::is_tuple() const {
2479 assert( _base == Tuple, "Not a Tuple" );
2480 return (TypeTuple*)this;
2481 }
2482
2483 inline const TypeAry *Type::is_ary() const {
2484 assert( _base == Array , "Not an Array" );
2485 return (TypeAry*)this;
2486 }
2487
2488 inline const TypeAry *Type::isa_ary() const {
2489 return ((_base == Array) ? (TypeAry*)this : nullptr);
2490 }
2491
2492 inline const TypeVectMask *Type::is_vectmask() const {
2493 assert( _base == VectorMask, "Not a Vector Mask" );
2494 return (TypeVectMask*)this;
2495 }
2496
2497 inline const TypeVectMask *Type::isa_vectmask() const {
2498 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2499 }
2500
2501 inline const TypeVect *Type::is_vect() const {
2502 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2503 return (TypeVect*)this;
2504 }
2505
2506 inline const TypeVect *Type::isa_vect() const {
2507 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2508 }
2509
2510 inline const TypePtr *Type::is_ptr() const {
2511 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2512 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2513 return (TypePtr*)this;
2514 }
2515
2516 inline const TypePtr *Type::isa_ptr() const {
2517 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2518 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2519 }
2520
2521 inline const TypeOopPtr *Type::is_oopptr() const {
2522 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2523 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2524 return (TypeOopPtr*)this;
2525 }
2526
2527 inline const TypeOopPtr *Type::isa_oopptr() const {
2528 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2529 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2530 }
2531
2532 inline const TypeRawPtr *Type::isa_rawptr() const {
2533 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2534 }
2535
2536 inline const TypeRawPtr *Type::is_rawptr() const {
2537 assert( _base == RawPtr, "Not a raw pointer" );
2538 return (TypeRawPtr*)this;
2539 }
2540
2541 inline const TypeInstPtr *Type::isa_instptr() const {
2542 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2543 }
2544
2545 inline const TypeInstPtr *Type::is_instptr() const {
2546 assert( _base == InstPtr, "Not an object pointer" );
2547 return (TypeInstPtr*)this;
2548 }
2549
2550 inline const TypeAryPtr *Type::isa_aryptr() const {
2551 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2552 }
2553
2554 inline const TypeAryPtr *Type::is_aryptr() const {
2555 assert( _base == AryPtr, "Not an array pointer" );
2556 return (TypeAryPtr*)this;
2557 }
2558
2559 inline const TypeNarrowOop *Type::is_narrowoop() const {
2560 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2561 assert(_base == NarrowOop, "Not a narrow oop" ) ;
2562 return (TypeNarrowOop*)this;
2563 }
2564
2565 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2566 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2567 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2568 }
2569
2570 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2571 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2572 return (TypeNarrowKlass*)this;
2573 }
2574
2575 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2576 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2577 }
2578
2579 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2580 // MetadataPtr is the first and CPCachePtr the last
2581 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2582 return (TypeMetadataPtr*)this;
2583 }
2584
2585 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2586 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2587 }
2588
2589 inline const TypeKlassPtr *Type::isa_klassptr() const {
2590 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2591 }
2592
2593 inline const TypeKlassPtr *Type::is_klassptr() const {
2594 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2595 return (TypeKlassPtr*)this;
2596 }
2597
2598 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2599 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2600 }
2601
2602 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2603 assert(_base == InstKlassPtr, "Not a klass pointer");
2604 return (TypeInstKlassPtr*)this;
2605 }
2606
2607 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2608 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2609 }
2610
2611 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2612 assert(_base == AryKlassPtr, "Not a klass pointer");
2613 return (TypeAryKlassPtr*)this;
2614 }
2615
2616 inline const TypePtr* Type::make_ptr() const {
2617 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2618 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2619 isa_ptr());
2620 }
2621
2622 inline const TypeOopPtr* Type::make_oopptr() const {
2623 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2624 }
2625
2626 inline const TypeNarrowOop* Type::make_narrowoop() const {
2627 return (_base == NarrowOop) ? is_narrowoop() :
2628 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2629 }
2630
2631 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2632 return (_base == NarrowKlass) ? is_narrowklass() :
2633 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2634 }
2635
2636 inline bool Type::is_floatingpoint() const {
2637 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2638 (_base == FloatCon) || (_base == FloatBot) ||
2639 (_base == DoubleCon) || (_base == DoubleBot) )
2640 return true;
2641 return false;
2642 }
2643
2644 inline bool Type::is_inlinetypeptr() const {
2645 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2646 }
2647
2648 inline ciInlineKlass* Type::inline_klass() const {
2649 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2650 }
2651
2652 template <>
2653 inline const TypeInt* Type::cast<TypeInt>() const {
2654 return is_int();
2655 }
2656
2657 template <>
2658 inline const TypeLong* Type::cast<TypeLong>() const {
2659 return is_long();
2660 }
2661
2662 template <>
2663 inline const TypeInt* Type::try_cast<TypeInt>() const {
2664 return isa_int();
2665 }
2666
2667 template <>
2668 inline const TypeLong* Type::try_cast<TypeLong>() const {
2669 return isa_long();
2670 }
2671
2672 // ===============================================================
2673 // Things that need to be 64-bits in the 64-bit build but
2674 // 32-bits in the 32-bit build. Done this way to get full
2675 // optimization AND strong typing.
2676 #ifdef _LP64
2677
2678 // For type queries and asserts
2679 #define is_intptr_t is_long
2680 #define isa_intptr_t isa_long
2681 #define find_intptr_t_type find_long_type
2682 #define find_intptr_t_con find_long_con
2683 #define TypeX TypeLong
2684 #define Type_X Type::Long
2685 #define TypeX_X TypeLong::LONG
2686 #define TypeX_ZERO TypeLong::ZERO
2687 // For 'ideal_reg' machine registers
2688 #define Op_RegX Op_RegL
2689 // For phase->intcon variants
2690 #define MakeConX longcon
2691 #define ConXNode ConLNode
2692 // For array index arithmetic
2693 #define MulXNode MulLNode
2694 #define AndXNode AndLNode
2695 #define OrXNode OrLNode
2696 #define CmpXNode CmpLNode
2697 #define CmpUXNode CmpULNode
2698 #define SubXNode SubLNode
2699 #define LShiftXNode LShiftLNode
2700 // For object size computation:
2701 #define AddXNode AddLNode
2702 #define RShiftXNode RShiftLNode
2703 // For card marks and hashcodes
2704 #define URShiftXNode URShiftLNode
2705 // For shenandoahSupport
2706 #define LoadXNode LoadLNode
2707 #define StoreXNode StoreLNode
2708 // Opcodes
2709 #define Op_LShiftX Op_LShiftL
2710 #define Op_AndX Op_AndL
2711 #define Op_AddX Op_AddL
2712 #define Op_SubX Op_SubL
2713 #define Op_XorX Op_XorL
2714 #define Op_URShiftX Op_URShiftL
2715 #define Op_LoadX Op_LoadL
2716 #define Op_StoreX Op_StoreL
2717 // conversions
2718 #define ConvI2X(x) ConvI2L(x)
2719 #define ConvL2X(x) (x)
2720 #define ConvX2I(x) ConvL2I(x)
2721 #define ConvX2L(x) (x)
2722 #define ConvX2UL(x) (x)
2723
2724 #else
2725
2726 // For type queries and asserts
2727 #define is_intptr_t is_int
2728 #define isa_intptr_t isa_int
2729 #define find_intptr_t_type find_int_type
2730 #define find_intptr_t_con find_int_con
2731 #define TypeX TypeInt
2732 #define Type_X Type::Int
2733 #define TypeX_X TypeInt::INT
2734 #define TypeX_ZERO TypeInt::ZERO
2735 // For 'ideal_reg' machine registers
2736 #define Op_RegX Op_RegI
2737 // For phase->intcon variants
2738 #define MakeConX intcon
2739 #define ConXNode ConINode
2740 // For array index arithmetic
2741 #define MulXNode MulINode
2742 #define AndXNode AndINode
2743 #define OrXNode OrINode
2744 #define CmpXNode CmpINode
2745 #define CmpUXNode CmpUNode
2746 #define SubXNode SubINode
2747 #define LShiftXNode LShiftINode
2748 // For object size computation:
2749 #define AddXNode AddINode
2750 #define RShiftXNode RShiftINode
2751 // For card marks and hashcodes
2752 #define URShiftXNode URShiftINode
2753 // For shenandoahSupport
2754 #define LoadXNode LoadINode
2755 #define StoreXNode StoreINode
2756 // Opcodes
2757 #define Op_LShiftX Op_LShiftI
2758 #define Op_AndX Op_AndI
2759 #define Op_AddX Op_AddI
2760 #define Op_SubX Op_SubI
2761 #define Op_XorX Op_XorI
2762 #define Op_URShiftX Op_URShiftI
2763 #define Op_LoadX Op_LoadI
2764 #define Op_StoreX Op_StoreI
2765 // conversions
2766 #define ConvI2X(x) (x)
2767 #define ConvL2X(x) ConvL2I(x)
2768 #define ConvX2I(x) (x)
2769 #define ConvX2L(x) ConvI2L(x)
2770 #define ConvX2UL(x) ConvI2UL(x)
2771
2772 #endif
2773
2774 #endif // SHARE_OPTO_TYPE_HPP