1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/rangeinference.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeH;
  51 class   TypeInteger;
  52 class     TypeInt;
  53 class     TypeLong;
  54 class   TypeNarrowPtr;
  55 class     TypeNarrowOop;
  56 class     TypeNarrowKlass;
  57 class   TypeAry;
  58 class   TypeTuple;
  59 class   TypeVect;
  60 class     TypeVectA;
  61 class     TypeVectS;
  62 class     TypeVectD;
  63 class     TypeVectX;
  64 class     TypeVectY;
  65 class     TypeVectZ;
  66 class     TypeVectMask;
  67 class   TypePtr;
  68 class     TypeRawPtr;
  69 class     TypeOopPtr;
  70 class       TypeInstPtr;
  71 class       TypeAryPtr;
  72 class     TypeKlassPtr;
  73 class       TypeInstKlassPtr;
  74 class       TypeAryKlassPtr;
  75 class     TypeMetadataPtr;
  76 class VerifyMeet;
  77 
  78 template <class T, class U>
  79 class TypeIntPrototype;
  80 
  81 //------------------------------Type-------------------------------------------
  82 // Basic Type object, represents a set of primitive Values.
  83 // Types are hash-cons'd into a private class dictionary, so only one of each
  84 // different kind of Type exists.  Types are never modified after creation, so
  85 // all their interesting fields are constant.
  86 class Type {
  87 
  88 public:
  89   enum TYPES {
  90     Bad=0,                      // Type check
  91     Control,                    // Control of code (not in lattice)
  92     Top,                        // Top of the lattice
  93     Int,                        // Integer range (lo-hi)
  94     Long,                       // Long integer range (lo-hi)
  95     Half,                       // Placeholder half of doubleword
  96     NarrowOop,                  // Compressed oop pointer
  97     NarrowKlass,                // Compressed klass pointer
  98 
  99     Tuple,                      // Method signature or object layout
 100     Array,                      // Array types
 101 
 102     Interfaces,                 // Set of implemented interfaces for oop types
 103 
 104     VectorMask,                 // Vector predicate/mask type
 105     VectorA,                    // (Scalable) Vector types for vector length agnostic
 106     VectorS,                    //  32bit Vector types
 107     VectorD,                    //  64bit Vector types
 108     VectorX,                    // 128bit Vector types
 109     VectorY,                    // 256bit Vector types
 110     VectorZ,                    // 512bit Vector types
 111 
 112     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 113     RawPtr,                     // Raw (non-oop) pointers
 114     OopPtr,                     // Any and all Java heap entities
 115     InstPtr,                    // Instance pointers (non-array objects)
 116     AryPtr,                     // Array pointers
 117     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 118 
 119     MetadataPtr,                // Generic metadata
 120     KlassPtr,                   // Klass pointers
 121     InstKlassPtr,
 122     AryKlassPtr,
 123 
 124     Function,                   // Function signature
 125     Abio,                       // Abstract I/O
 126     Return_Address,             // Subroutine return address
 127     Memory,                     // Abstract store
 128     HalfFloatTop,               // No float value
 129     HalfFloatCon,               // Floating point constant
 130     HalfFloatBot,               // Any float value
 131     FloatTop,                   // No float value
 132     FloatCon,                   // Floating point constant
 133     FloatBot,                   // Any float value
 134     DoubleTop,                  // No double value
 135     DoubleCon,                  // Double precision constant
 136     DoubleBot,                  // Any double value
 137     Bottom,                     // Bottom of lattice
 138     lastype                     // Bogus ending type (not in lattice)
 139   };
 140 
 141   // Signal values for offsets from a base pointer
 142   enum OFFSET_SIGNALS {
 143     OffsetTop = -2000000000,    // undefined offset
 144     OffsetBot = -2000000001     // any possible offset
 145   };
 146 
 147   class Offset {
 148   private:
 149     int _offset;
 150 
 151   public:
 152     explicit Offset(int offset) : _offset(offset) {}
 153 
 154     const Offset meet(const Offset other) const;
 155     const Offset dual() const;
 156     const Offset add(intptr_t offset) const;
 157     bool operator==(const Offset& other) const {
 158       return _offset == other._offset;
 159     }
 160     bool operator!=(const Offset& other) const {
 161       return _offset != other._offset;
 162     }
 163     int get() const { return _offset; }
 164 
 165     void dump2(outputStream *st) const;
 166 
 167     static const Offset top;
 168     static const Offset bottom;
 169   };
 170 
 171   // Min and max WIDEN values.
 172   enum WIDEN {
 173     WidenMin = 0,
 174     WidenMax = 3
 175   };
 176 
 177 private:
 178   typedef struct {
 179     TYPES                dual_type;
 180     BasicType            basic_type;
 181     const char*          msg;
 182     bool                 isa_oop;
 183     uint                 ideal_reg;
 184     relocInfo::relocType reloc;
 185   } TypeInfo;
 186 
 187   // Dictionary of types shared among compilations.
 188   static Dict* _shared_type_dict;
 189   static const TypeInfo _type_info[];
 190 
 191   static int uhash( const Type *const t );
 192   // Structural equality check.  Assumes that equals() has already compared
 193   // the _base types and thus knows it can cast 't' appropriately.
 194   virtual bool eq( const Type *t ) const;
 195 
 196   // Top-level hash-table of types
 197   static Dict *type_dict() {
 198     return Compile::current()->type_dict();
 199   }
 200 
 201   // DUAL operation: reflect around lattice centerline.  Used instead of
 202   // join to ensure my lattice is symmetric up and down.  Dual is computed
 203   // lazily, on demand, and cached in _dual.
 204   const Type *_dual;            // Cached dual value
 205 
 206 
 207   const Type *meet_helper(const Type *t, bool include_speculative) const;
 208   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 209 
 210 protected:
 211   // Each class of type is also identified by its base.
 212   const TYPES _base;            // Enum of Types type
 213 
 214   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 215   // ~Type();                   // Use fast deallocation
 216   const Type *hashcons();       // Hash-cons the type
 217   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 218   const Type *join_helper(const Type *t, bool include_speculative) const {
 219     assert_type_verify_empty();
 220     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 221   }
 222 
 223   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 224 
 225 public:
 226 
 227   inline void* operator new( size_t x ) throw() {
 228     Compile* compile = Compile::current();
 229     compile->set_type_last_size(x);
 230     return compile->type_arena()->AmallocWords(x);
 231   }
 232   inline void operator delete( void* ptr ) {
 233     Compile* compile = Compile::current();
 234     compile->type_arena()->Afree(ptr,compile->type_last_size());
 235   }
 236 
 237   // Initialize the type system for a particular compilation.
 238   static void Initialize(Compile* compile);
 239 
 240   // Initialize the types shared by all compilations.
 241   static void Initialize_shared(Compile* compile);
 242 
 243   TYPES base() const {
 244     assert(_base > Bad && _base < lastype, "sanity");
 245     return _base;
 246   }
 247 
 248   // Create a new hash-consd type
 249   static const Type *make(enum TYPES);
 250   // Test for equivalence of types
 251   static bool equals(const Type* t1, const Type* t2);
 252   // Test for higher or equal in lattice
 253   // Variant that drops the speculative part of the types
 254   bool higher_equal(const Type* t) const {
 255     return equals(meet(t), t->remove_speculative());
 256   }
 257   // Variant that keeps the speculative part of the types
 258   bool higher_equal_speculative(const Type* t) const {
 259     return equals(meet_speculative(t), t);
 260   }
 261 
 262   // MEET operation; lower in lattice.
 263   // Variant that drops the speculative part of the types
 264   const Type *meet(const Type *t) const {
 265     return meet_helper(t, false);
 266   }
 267   // Variant that keeps the speculative part of the types
 268   const Type *meet_speculative(const Type *t) const {
 269     return meet_helper(t, true)->cleanup_speculative();
 270   }
 271   // WIDEN: 'widens' for Ints and other range types
 272   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 273   // NARROW: complement for widen, used by pessimistic phases
 274   virtual const Type *narrow( const Type *old ) const { return this; }
 275 
 276   // DUAL operation: reflect around lattice centerline.  Used instead of
 277   // join to ensure my lattice is symmetric up and down.
 278   const Type *dual() const { return _dual; }
 279 
 280   // Compute meet dependent on base type
 281   virtual const Type *xmeet( const Type *t ) const;
 282   virtual const Type *xdual() const;    // Compute dual right now.
 283 
 284   // JOIN operation; higher in lattice.  Done by finding the dual of the
 285   // meet of the dual of the 2 inputs.
 286   // Variant that drops the speculative part of the types
 287   const Type *join(const Type *t) const {
 288     return join_helper(t, false);
 289   }
 290   // Variant that keeps the speculative part of the types
 291   const Type *join_speculative(const Type *t) const {
 292     return join_helper(t, true)->cleanup_speculative();
 293   }
 294 
 295   // Modified version of JOIN adapted to the needs Node::Value.
 296   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 297   // Variant that drops the speculative part of the types
 298   const Type *filter(const Type *kills) const {
 299     return filter_helper(kills, false);
 300   }
 301   // Variant that keeps the speculative part of the types
 302   const Type *filter_speculative(const Type *kills) const {
 303     return filter_helper(kills, true)->cleanup_speculative();
 304   }
 305 
 306   // Returns true if this pointer points at memory which contains a
 307   // compressed oop references.
 308   bool is_ptr_to_narrowoop() const;
 309   bool is_ptr_to_narrowklass() const;
 310 
 311   // Convenience access
 312   short geth() const;
 313   virtual float getf() const;
 314   double getd() const;
 315 
 316   // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
 317   template <typename TypeClass>
 318   const TypeClass* try_cast() const;
 319 
 320   const TypeInt    *is_int() const;
 321   const TypeInt    *isa_int() const;             // Returns null if not an Int
 322   const TypeInteger* is_integer(BasicType bt) const;
 323   const TypeInteger* isa_integer(BasicType bt) const;
 324   const TypeLong   *is_long() const;
 325   const TypeLong   *isa_long() const;            // Returns null if not a Long
 326   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 327   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 328   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 329   const TypeH      *isa_half_float() const;          // Returns null if not a HalfFloat{Top,Con,Bot}
 330   const TypeH      *is_half_float_constant() const;  // Asserts it is a HalfFloatCon
 331   const TypeH      *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
 332   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 333   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 334   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 335   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 336   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 337   const TypeAry    *isa_ary() const;             // Returns null of not ary
 338   const TypeVect   *is_vect() const;             // Vector
 339   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 340   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 341   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 342   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 343   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 344   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 345   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 346   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 347   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 348   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 349   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 350   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 351   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 352   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 353   const TypeInstPtr  *is_instptr() const;        // Instance
 354   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 355   const TypeAryPtr   *is_aryptr() const;         // Array oop
 356 
 357   template <typename TypeClass>
 358   const TypeClass* cast() const;
 359 
 360   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 361   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 362   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 363   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 364   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 365   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 366   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 367   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 368 
 369   virtual bool      is_finite() const;           // Has a finite value
 370   virtual bool      is_nan()    const;           // Is not a number (NaN)
 371 
 372   bool is_inlinetypeptr() const;
 373   virtual ciInlineKlass* inline_klass() const;
 374 
 375   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 376   const TypePtr* make_ptr() const;
 377 
 378   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 379   // Asserts if the underlying type is not an oopptr or narrowoop.
 380   const TypeOopPtr* make_oopptr() const;
 381 
 382   // Returns this compressed pointer or the equivalent compressed version
 383   // of this pointer type.
 384   const TypeNarrowOop* make_narrowoop() const;
 385 
 386   // Returns this compressed klass pointer or the equivalent
 387   // compressed version of this pointer type.
 388   const TypeNarrowKlass* make_narrowklass() const;
 389 
 390   // Special test for register pressure heuristic
 391   bool is_floatingpoint() const;        // True if Float or Double base type
 392 
 393   // Do you have memory, directly or through a tuple?
 394   bool has_memory( ) const;
 395 
 396   // TRUE if type is a singleton
 397   virtual bool singleton(void) const;
 398 
 399   // TRUE if type is above the lattice centerline, and is therefore vacuous
 400   virtual bool empty(void) const;
 401 
 402   // Return a hash for this type.  The hash function is public so ConNode
 403   // (constants) can hash on their constant, which is represented by a Type.
 404   virtual uint hash() const;
 405 
 406   // Map ideal registers (machine types) to ideal types
 407   static const Type *mreg2type[];
 408 
 409   // Printing, statistics
 410 #ifndef PRODUCT
 411   void         dump_on(outputStream *st) const;
 412   void         dump() const {
 413     dump_on(tty);
 414   }
 415   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 416   static  void dump_stats();
 417   // Groups of types, for debugging and visualization only.
 418   enum class Category {
 419     Data,
 420     Memory,
 421     Mixed,   // Tuples with types of different categories.
 422     Control,
 423     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 424     Undef    // {Type::Bad, Type::lastype}, for completeness.
 425   };
 426   // Return the category of this type.
 427   Category category() const;
 428   // Check recursively in tuples.
 429   bool has_category(Category cat) const;
 430 
 431   static const char* str(const Type* t);
 432 #endif // !PRODUCT
 433   void typerr(const Type *t) const; // Mixing types error
 434 
 435   // Create basic type
 436   static const Type* get_const_basic_type(BasicType type) {
 437     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 438     return _const_basic_type[type];
 439   }
 440 
 441   // For two instance arrays of same dimension, return the base element types.
 442   // Otherwise or if the arrays have different dimensions, return null.
 443   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 444                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 445 
 446   // Mapping to the array element's basic type.
 447   BasicType array_element_basic_type() const;
 448 
 449   enum InterfaceHandling {
 450       trust_interfaces,
 451       ignore_interfaces
 452   };
 453   // Create standard type for a ciType:
 454   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 455 
 456   // Create standard zero value:
 457   static const Type* get_zero_type(BasicType type) {
 458     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 459     return _zero_type[type];
 460   }
 461 
 462   // Report if this is a zero value (not top).
 463   bool is_zero_type() const {
 464     BasicType type = basic_type();
 465     if (type == T_VOID || type >= T_CONFLICT)
 466       return false;
 467     else
 468       return (this == _zero_type[type]);
 469   }
 470 
 471   // Convenience common pre-built types.
 472   static const Type *ABIO;
 473   static const Type *BOTTOM;
 474   static const Type *CONTROL;
 475   static const Type *DOUBLE;
 476   static const Type *FLOAT;
 477   static const Type *HALF_FLOAT;
 478   static const Type *HALF;
 479   static const Type *MEMORY;
 480   static const Type *MULTI;
 481   static const Type *RETURN_ADDRESS;
 482   static const Type *TOP;
 483 
 484   // Mapping from compiler type to VM BasicType
 485   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 486   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 487   const char* msg() const            { return _type_info[_base].msg; }
 488   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 489   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 490 
 491   // Mapping from CI type system to compiler type:
 492   static const Type* get_typeflow_type(ciType* type);
 493 
 494   static const Type* make_from_constant(ciConstant constant,
 495                                         bool require_constant = false,
 496                                         int stable_dimension = 0,
 497                                         bool is_narrow = false,
 498                                         bool is_autobox_cache = false);
 499 
 500   static const Type* make_constant_from_field(ciInstance* holder,
 501                                               int off,
 502                                               bool is_unsigned_load,
 503                                               BasicType loadbt);
 504 
 505   static const Type* make_constant_from_field(ciField* field,
 506                                               ciInstance* holder,
 507                                               BasicType loadbt,
 508                                               bool is_unsigned_load);
 509 
 510   static const Type* make_constant_from_array_element(ciArray* array,
 511                                                       int off,
 512                                                       int stable_dimension,
 513                                                       BasicType loadbt,
 514                                                       bool is_unsigned_load);
 515 
 516   // Speculative type helper methods. See TypePtr.
 517   virtual const TypePtr* speculative() const                                  { return nullptr; }
 518   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 519   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 520   virtual bool speculative_maybe_null() const                                 { return true; }
 521   virtual bool speculative_always_null() const                                { return true; }
 522   virtual const Type* remove_speculative() const                              { return this; }
 523   virtual const Type* cleanup_speculative() const                             { return this; }
 524   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 525   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 526   const Type* maybe_remove_speculative(bool include_speculative) const;
 527 
 528   virtual bool maybe_null() const { return true; }
 529   virtual bool is_known_instance() const { return false; }
 530 
 531 private:
 532   // support arrays
 533   static const Type*        _zero_type[T_CONFLICT+1];
 534   static const Type* _const_basic_type[T_CONFLICT+1];
 535 };
 536 
 537 //------------------------------TypeF------------------------------------------
 538 // Class of Float-Constant Types.
 539 class TypeF : public Type {
 540   TypeF( float f ) : Type(FloatCon), _f(f) {};
 541 public:
 542   virtual bool eq( const Type *t ) const;
 543   virtual uint hash() const;             // Type specific hashing
 544   virtual bool singleton(void) const;    // TRUE if type is a singleton
 545   virtual bool empty(void) const;        // TRUE if type is vacuous
 546 public:
 547   const float _f;               // Float constant
 548 
 549   static const TypeF *make(float f);
 550 
 551   virtual bool        is_finite() const;  // Has a finite value
 552   virtual bool        is_nan()    const;  // Is not a number (NaN)
 553 
 554   virtual const Type *xmeet( const Type *t ) const;
 555   virtual const Type *xdual() const;    // Compute dual right now.
 556   // Convenience common pre-built types.
 557   static const TypeF *MAX;
 558   static const TypeF *MIN;
 559   static const TypeF *ZERO; // positive zero only
 560   static const TypeF *ONE;
 561   static const TypeF *POS_INF;
 562   static const TypeF *NEG_INF;
 563 #ifndef PRODUCT
 564   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 565 #endif
 566 };
 567 
 568 // Class of Half Float-Constant Types.
 569 class TypeH : public Type {
 570   TypeH(short f) : Type(HalfFloatCon), _f(f) {};
 571 public:
 572   virtual bool eq(const Type* t) const;
 573   virtual uint hash() const;             // Type specific hashing
 574   virtual bool singleton(void) const;    // TRUE if type is a singleton
 575   virtual bool empty(void) const;        // TRUE if type is vacuous
 576 public:
 577   const short _f;                        // Half Float constant
 578 
 579   static const TypeH* make(float f);
 580   static const TypeH* make(short f);
 581 
 582   virtual bool is_finite() const;  // Has a finite value
 583   virtual bool is_nan() const;     // Is not a number (NaN)
 584 
 585   virtual float getf() const;
 586   virtual const Type* xmeet(const Type* t) const;
 587   virtual const Type* xdual() const;    // Compute dual right now.
 588   // Convenience common pre-built types.
 589   static const TypeH* MAX;
 590   static const TypeH* MIN;
 591   static const TypeH* ZERO; // positive zero only
 592   static const TypeH* ONE;
 593   static const TypeH* POS_INF;
 594   static const TypeH* NEG_INF;
 595 #ifndef PRODUCT
 596   virtual void dump2(Dict &d, uint depth, outputStream* st) const;
 597 #endif
 598 };
 599 
 600 //------------------------------TypeD------------------------------------------
 601 // Class of Double-Constant Types.
 602 class TypeD : public Type {
 603   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 604 public:
 605   virtual bool eq( const Type *t ) const;
 606   virtual uint hash() const;             // Type specific hashing
 607   virtual bool singleton(void) const;    // TRUE if type is a singleton
 608   virtual bool empty(void) const;        // TRUE if type is vacuous
 609 public:
 610   const double _d;              // Double constant
 611 
 612   static const TypeD *make(double d);
 613 
 614   virtual bool        is_finite() const;  // Has a finite value
 615   virtual bool        is_nan()    const;  // Is not a number (NaN)
 616 
 617   virtual const Type *xmeet( const Type *t ) const;
 618   virtual const Type *xdual() const;    // Compute dual right now.
 619   // Convenience common pre-built types.
 620   static const TypeD *MAX;
 621   static const TypeD *MIN;
 622   static const TypeD *ZERO; // positive zero only
 623   static const TypeD *ONE;
 624   static const TypeD *POS_INF;
 625   static const TypeD *NEG_INF;
 626 #ifndef PRODUCT
 627   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 628 #endif
 629 };
 630 
 631 class TypeInteger : public Type {
 632 protected:
 633   TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
 634 
 635   // Denote that a set is a dual set.
 636   // Dual sets are only used to compute the join of 2 sets, and not used
 637   // outside.
 638   const bool _is_dual;
 639 
 640 public:
 641   const short _widen;           // Limit on times we widen this sucker
 642 
 643   virtual jlong hi_as_long() const = 0;
 644   virtual jlong lo_as_long() const = 0;
 645   jlong get_con_as_long(BasicType bt) const;
 646   bool is_con() const { return lo_as_long() == hi_as_long(); }
 647   virtual short widen_limit() const { return _widen; }
 648 
 649   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 650   static const TypeInteger* make(jlong con, BasicType bt);
 651 
 652   static const TypeInteger* bottom(BasicType type);
 653   static const TypeInteger* zero(BasicType type);
 654   static const TypeInteger* one(BasicType type);
 655   static const TypeInteger* minus_1(BasicType type);
 656 };
 657 
 658 /**
 659  * Definition:
 660  *
 661  * A TypeInt represents a set of non-empty jint values. A jint v is an element
 662  * of a TypeInt iff:
 663  *
 664  *   v >= _lo && v <= _hi &&
 665  *   juint(v) >= _ulo && juint(v) <= _uhi &&
 666  *   _bits.is_satisfied_by(v)
 667  *
 668  * Multiple sets of parameters can represent the same set.
 669  * E.g: consider 2 TypeInt t1, t2
 670  *
 671  * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
 672  * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
 673  *
 674  * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
 675  * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
 676  * which also represents {3, 5} such that any of these would be true:
 677  *
 678  *  1)  t3._lo  > t2._lo
 679  *  2)  t3._hi  < t2._hi
 680  *  3)  t3._ulo > t2._ulo
 681  *  4)  t3._uhi < t2._uhi
 682  *  5)  (t3._bits._zeros &~ t2._bis._zeros) != 0
 683  *  6)  (t3._bits._ones  &~ t2._bits._ones) != 0
 684  *
 685  * The 5-th condition mean that the subtraction of the bitsets represented by
 686  * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
 687  * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
 688  * same applies to _bits._ones
 689  *
 690  * To simplify reasoning about the types in optimizations, we canonicalize
 691  * every TypeInt to its tightest form, already at construction. E.g a TypeInt
 692  * t with t._lo < 0 will definitely contain negative values. It also makes it
 693  * trivial to determine if a TypeInt instance is a subset of another.
 694  *
 695  * Lemmas:
 696  *
 697  * 1. Since every TypeInt instance is non-empty and canonicalized, all the
 698  *   bounds must also be elements of such TypeInt. Or else, we can tighten the
 699  *   bounds by narrowing it by one, which contradicts the assumption of the
 700  *   TypeInt being canonical.
 701  *
 702  * 2.
 703  *   2.1.  _lo <= jint(_ulo)
 704  *   2.2.  _lo <= _hi
 705  *   2.3.  _lo <= jint(_uhi)
 706  *   2.4.  _ulo <= juint(_lo)
 707  *   2.5.  _ulo <= juint(_hi)
 708  *   2.6.  _ulo <= _uhi
 709  *   2.7.  _hi >= _lo
 710  *   2.8.  _hi >= jint(_ulo)
 711  *   2.9.  _hi >= jint(_uhi)
 712  *   2.10. _uhi >= juint(_lo)
 713  *   2.11. _uhi >= _ulo
 714  *   2.12. _uhi >= juint(_hi)
 715  *
 716  *   Proof of lemma 2:
 717  *
 718  *   2.1. _lo <= jint(_ulo):
 719  *     According the lemma 1, _ulo is an element of the TypeInt, so in the
 720  *     signed domain, it must not be less than the smallest element of that
 721  *     TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
 722  *     domain, or in a more programmatical way, _lo <= jint(_ulo).
 723  *   2.2. _lo <= _hi:
 724  *     According the lemma 1, _hi is an element of the TypeInt, so in the
 725  *     signed domain, it must not be less than the smallest element of that
 726  *     TypeInt, which is _lo. Which means that _lo <= _hi.
 727  *
 728  *   The other inequalities can be proved in a similar manner.
 729  *
 730  * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
 731  *
 732  *   x <= y iff juint(x) <= juint(y)
 733  *   I.e. x <= y in the signed domain iff x <= y in the unsigned domain
 734  *
 735  * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
 736  *   TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
 737  *   (note that these intervals are disjoint in this case).
 738  *
 739  *   Proof of lemma 4:
 740  *
 741  *   For a TypeInt t, there are 3 possible cases:
 742  *
 743  *   a. t._lo >= 0, we have:
 744  *
 745  *     0 <= t_lo <= jint(t._ulo)           (lemma 2.1)
 746  *     juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
 747  *                  == t._ulo              (juint(jint(v)) == v with juint v)
 748  *                  <= juint(t._lo)        (lemma 2.4)
 749  *
 750  *     Which means that t._lo == jint(t._ulo).
 751  *
 752  *     Furthermore,
 753  *
 754  *     0 <= t._lo <= t._hi                 (lemma 2.2)
 755  *     0 <= t._lo <= jint(t._uhi)          (lemma 2.3)
 756  *     t._hi >= jint(t._uhi)               (lemma 2.9)
 757  *
 758  *     juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
 759  *                  == t._uhi              (juint(jint(v)) == v with juint v)
 760  *                  >= juint(t._hi)        (lemma 2.12)
 761  *
 762  *     Which means that t._hi == jint(t._uhi).
 763  *     In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 764  *
 765  *   b. t._hi < 0. Similarly, we can conclude that:
 766  *     t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 767  *
 768  *   c. t._lo < 0, t._hi >= 0.
 769  *
 770  *     Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
 771  *     because all negative values is larger than all non-negative values in the
 772  *     unsigned domain.
 773  *
 774  *     Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
 775  *     similar to the reasoning above.
 776  *
 777  *     In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
 778  *     [jint(t._ulo), t._hi].
 779  *
 780  *     Below is an illustration of the TypeInt in this case, the intervals that
 781  *     the elements can be in are marked using the = symbol. Note how the
 782  *     negative range in the signed domain wrap around in the unsigned domain.
 783  *
 784  *     Signed:
 785  *     -----lo=========uhi---------0--------ulo==========hi-----
 786  *     Unsigned:
 787  *                                 0--------ulo==========hi----------lo=========uhi---------
 788  *
 789  *   This property is useful for our analysis of TypeInt values. Additionally,
 790  *   it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
 791  *   same applies to jint(_ulo) and _hi.
 792  *
 793  *   We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
 794  *   a TypeInt consists of 2 simple intervals, each of which has its bounds
 795  *   being both >= 0 or both < 0. If both simple intervals lie in the same half
 796  *   of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
 797  *   _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
 798  *   half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
 799  *   domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
 800  *   [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
 801  */
 802 class TypeInt : public TypeInteger {
 803 private:
 804   TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
 805   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
 806 
 807   friend class TypeIntHelper;
 808 
 809 protected:
 810   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 811 
 812 public:
 813   typedef jint NativeType;
 814   virtual bool eq(const Type* t) const;
 815   virtual uint hash() const;             // Type specific hashing
 816   virtual bool singleton(void) const;    // TRUE if type is a singleton
 817   virtual bool empty(void) const;        // TRUE if type is vacuous
 818   // A value is in the set represented by this TypeInt if it satisfies all
 819   // the below constraints, see contains(jint)
 820   const jint _lo, _hi;       // Lower bound, upper bound in the signed domain
 821   const juint _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 822   const KnownBits<juint> _bits;
 823 
 824   static const TypeInt* make(jint con);
 825   // must always specify w
 826   static const TypeInt* make(jint lo, jint hi, int widen);
 827   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
 828   static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
 829 
 830   // Check for single integer
 831   bool is_con() const { return _lo == _hi; }
 832   bool is_con(jint i) const { return is_con() && _lo == i; }
 833   jint get_con() const { assert(is_con(), "");  return _lo; }
 834   // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
 835   // argument are also elements of this type)
 836   bool contains(jint i) const;
 837   bool contains(const TypeInt* t) const;
 838 
 839   virtual bool is_finite() const;  // Has a finite value
 840 
 841   virtual const Type* xmeet(const Type* t) const;
 842   virtual const Type* xdual() const;    // Compute dual right now.
 843   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 844   virtual const Type* narrow(const Type* t) const;
 845 
 846   virtual jlong hi_as_long() const { return _hi; }
 847   virtual jlong lo_as_long() const { return _lo; }
 848 
 849   // Do not kill _widen bits.
 850   // Convenience common pre-built types.
 851   static const TypeInt* MAX;
 852   static const TypeInt* MIN;
 853   static const TypeInt* MINUS_1;
 854   static const TypeInt* ZERO;
 855   static const TypeInt* ONE;
 856   static const TypeInt* BOOL;
 857   static const TypeInt* CC;
 858   static const TypeInt* CC_LT;  // [-1]  == MINUS_1
 859   static const TypeInt* CC_GT;  // [1]   == ONE
 860   static const TypeInt* CC_EQ;  // [0]   == ZERO
 861   static const TypeInt* CC_NE;  // [-1, 1]
 862   static const TypeInt* CC_LE;  // [-1,0]
 863   static const TypeInt* CC_GE;  // [0,1] == BOOL (!)
 864   static const TypeInt* BYTE;
 865   static const TypeInt* UBYTE;
 866   static const TypeInt* CHAR;
 867   static const TypeInt* SHORT;
 868   static const TypeInt* NON_ZERO;
 869   static const TypeInt* POS;
 870   static const TypeInt* POS1;
 871   static const TypeInt* INT;
 872   static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
 873   static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
 874 
 875   static const TypeInt* as_self(const Type* t) { return t->is_int(); }
 876 #ifndef PRODUCT
 877   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
 878   void dump_verbose() const;
 879 #endif
 880 };
 881 
 882 // Similar to TypeInt
 883 class TypeLong : public TypeInteger {
 884 private:
 885   TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
 886   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
 887 
 888   friend class TypeIntHelper;
 889 
 890 protected:
 891   // Do not kill _widen bits.
 892   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 893 public:
 894   typedef jlong NativeType;
 895   virtual bool eq( const Type *t ) const;
 896   virtual uint hash() const;             // Type specific hashing
 897   virtual bool singleton(void) const;    // TRUE if type is a singleton
 898   virtual bool empty(void) const;        // TRUE if type is vacuous
 899 public:
 900   // A value is in the set represented by this TypeLong if it satisfies all
 901   // the below constraints, see contains(jlong)
 902   const jlong _lo, _hi;       // Lower bound, upper bound in the signed domain
 903   const julong _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 904   const KnownBits<julong> _bits;
 905 
 906   static const TypeLong* make(jlong con);
 907   // must always specify w
 908   static const TypeLong* make(jlong lo, jlong hi, int widen);
 909   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
 910   static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
 911 
 912   // Check for single integer
 913   bool is_con() const { return _lo == _hi; }
 914   bool is_con(jlong i) const { return is_con() && _lo == i; }
 915   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 916   // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
 917   // argument are also elements of this type)
 918   bool contains(jlong i) const;
 919   bool contains(const TypeLong* t) const;
 920 
 921   // Check for positive 32-bit value.
 922   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 923 
 924   virtual bool        is_finite() const;  // Has a finite value
 925 
 926   virtual jlong hi_as_long() const { return _hi; }
 927   virtual jlong lo_as_long() const { return _lo; }
 928 
 929   virtual const Type* xmeet(const Type* t) const;
 930   virtual const Type* xdual() const;    // Compute dual right now.
 931   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 932   virtual const Type* narrow(const Type* t) const;
 933   // Convenience common pre-built types.
 934   static const TypeLong* MAX;
 935   static const TypeLong* MIN;
 936   static const TypeLong* MINUS_1;
 937   static const TypeLong* ZERO;
 938   static const TypeLong* ONE;
 939   static const TypeLong* NON_ZERO;
 940   static const TypeLong* POS;
 941   static const TypeLong* NEG;
 942   static const TypeLong* LONG;
 943   static const TypeLong* INT;    // 32-bit subrange [min_jint..max_jint]
 944   static const TypeLong* UINT;   // 32-bit unsigned [0..max_juint]
 945   static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
 946 
 947   // static convenience methods.
 948   static const TypeLong* as_self(const Type* t) { return t->is_long(); }
 949 
 950 #ifndef PRODUCT
 951   virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
 952   void dump_verbose() const;
 953 #endif
 954 };
 955 
 956 //------------------------------TypeTuple--------------------------------------
 957 // Class of Tuple Types, essentially type collections for function signatures
 958 // and class layouts.  It happens to also be a fast cache for the HotSpot
 959 // signature types.
 960 class TypeTuple : public Type {
 961   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 962 
 963   const uint          _cnt;              // Count of fields
 964   const Type ** const _fields;           // Array of field types
 965 
 966 public:
 967   virtual bool eq( const Type *t ) const;
 968   virtual uint hash() const;             // Type specific hashing
 969   virtual bool singleton(void) const;    // TRUE if type is a singleton
 970   virtual bool empty(void) const;        // TRUE if type is vacuous
 971 
 972   // Accessors:
 973   uint cnt() const { return _cnt; }
 974   const Type* field_at(uint i) const {
 975     assert(i < _cnt, "oob");
 976     return _fields[i];
 977   }
 978   void set_field_at(uint i, const Type* t) {
 979     assert(i < _cnt, "oob");
 980     _fields[i] = t;
 981   }
 982 
 983   static const TypeTuple *make( uint cnt, const Type **fields );
 984   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 985   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 986 
 987   // Subroutine call type with space allocated for argument types
 988   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 989   static const Type **fields( uint arg_cnt );
 990 
 991   virtual const Type *xmeet( const Type *t ) const;
 992   virtual const Type *xdual() const;    // Compute dual right now.
 993   // Convenience common pre-built types.
 994   static const TypeTuple *IFBOTH;
 995   static const TypeTuple *IFFALSE;
 996   static const TypeTuple *IFTRUE;
 997   static const TypeTuple *IFNEITHER;
 998   static const TypeTuple *LOOPBODY;
 999   static const TypeTuple *MEMBAR;
1000   static const TypeTuple *STORECONDITIONAL;
1001   static const TypeTuple *START_I2C;
1002   static const TypeTuple *INT_PAIR;
1003   static const TypeTuple *LONG_PAIR;
1004   static const TypeTuple *INT_CC_PAIR;
1005   static const TypeTuple *LONG_CC_PAIR;
1006 #ifndef PRODUCT
1007   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1008 #endif
1009 };
1010 
1011 //------------------------------TypeAry----------------------------------------
1012 // Class of Array Types
1013 class TypeAry : public Type {
1014   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1015       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1016 public:
1017   virtual bool eq( const Type *t ) const;
1018   virtual uint hash() const;             // Type specific hashing
1019   virtual bool singleton(void) const;    // TRUE if type is a singleton
1020   virtual bool empty(void) const;        // TRUE if type is vacuous
1021 
1022 private:
1023   const Type *_elem;            // Element type of array
1024   const TypeInt *_size;         // Elements in array
1025   const bool _stable;           // Are elements @Stable?
1026 
1027   // Inline type array properties
1028   const bool _flat;             // Array is flat
1029   const bool _not_flat;         // Array is never flat
1030   const bool _not_null_free;    // Array is never null-free
1031   const bool _atomic;           // Array is atomic
1032 
1033   friend class TypeAryPtr;
1034 
1035 public:
1036   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1037                              bool flat, bool not_flat, bool not_null_free, bool atomic);
1038 
1039   virtual const Type *xmeet( const Type *t ) const;
1040   virtual const Type *xdual() const;    // Compute dual right now.
1041   bool ary_must_be_exact() const;  // true if arrays of such are never generic
1042   virtual const TypeAry* remove_speculative() const;
1043   virtual const Type* cleanup_speculative() const;
1044 #ifndef PRODUCT
1045   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1046 #endif
1047 };
1048 
1049 //------------------------------TypeVect---------------------------------------
1050 // Class of Vector Types
1051 class TypeVect : public Type {
1052   const BasicType _elem_bt;  // Vector's element type
1053   const uint _length;  // Elements in vector (power of 2)
1054 
1055 protected:
1056   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1057     _elem_bt(elem_bt), _length(length) {}
1058 
1059 public:
1060   BasicType element_basic_type() const { return _elem_bt; }
1061   uint length() const { return _length; }
1062   uint length_in_bytes() const {
1063     return _length * type2aelembytes(element_basic_type());
1064   }
1065 
1066   virtual bool eq(const Type* t) const;
1067   virtual uint hash() const;             // Type specific hashing
1068   virtual bool singleton(void) const;    // TRUE if type is a singleton
1069   virtual bool empty(void) const;        // TRUE if type is vacuous
1070 
1071   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1072   static const TypeVect* makemask(const BasicType elem_bt, uint length);
1073 
1074   virtual const Type* xmeet( const Type *t) const;
1075   virtual const Type* xdual() const;     // Compute dual right now.
1076 
1077   static const TypeVect* VECTA;
1078   static const TypeVect* VECTS;
1079   static const TypeVect* VECTD;
1080   static const TypeVect* VECTX;
1081   static const TypeVect* VECTY;
1082   static const TypeVect* VECTZ;
1083   static const TypeVect* VECTMASK;
1084 
1085 #ifndef PRODUCT
1086   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1087 #endif
1088 };
1089 
1090 class TypeVectA : public TypeVect {
1091   friend class TypeVect;
1092   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1093 };
1094 
1095 class TypeVectS : public TypeVect {
1096   friend class TypeVect;
1097   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1098 };
1099 
1100 class TypeVectD : public TypeVect {
1101   friend class TypeVect;
1102   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1103 };
1104 
1105 class TypeVectX : public TypeVect {
1106   friend class TypeVect;
1107   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1108 };
1109 
1110 class TypeVectY : public TypeVect {
1111   friend class TypeVect;
1112   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1113 };
1114 
1115 class TypeVectZ : public TypeVect {
1116   friend class TypeVect;
1117   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1118 };
1119 
1120 class TypeVectMask : public TypeVect {
1121 public:
1122   friend class TypeVect;
1123   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1124   static const TypeVectMask* make(const BasicType elem_bt, uint length);
1125 };
1126 
1127 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1128 class TypeInterfaces : public Type {
1129 private:
1130   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1131   uint _hash;
1132   ciInstanceKlass* _exact_klass;
1133   DEBUG_ONLY(bool _initialized;)
1134 
1135   void initialize();
1136 
1137   void verify() const NOT_DEBUG_RETURN;
1138   void compute_hash();
1139   void compute_exact_klass();
1140 
1141   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1142 
1143   NONCOPYABLE(TypeInterfaces);
1144 public:
1145   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1146   bool eq(const Type* other) const;
1147   bool eq(ciInstanceKlass* k) const;
1148   uint hash() const;
1149   const Type *xdual() const;
1150   void dump(outputStream* st) const;
1151   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1152   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1153   bool contains(const TypeInterfaces* other) const {
1154     return intersection_with(other)->eq(other);
1155   }
1156   bool empty() const { return _interfaces.length() == 0; }
1157 
1158   ciInstanceKlass* exact_klass() const;
1159   void verify_is_loaded() const NOT_DEBUG_RETURN;
1160 
1161   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1162   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1163 
1164   const Type* xmeet(const Type* t) const;
1165 
1166   bool singleton(void) const;
1167   bool has_non_array_interface() const;
1168 };
1169 
1170 //------------------------------TypePtr----------------------------------------
1171 // Class of machine Pointer Types: raw data, instances or arrays.
1172 // If the _base enum is AnyPtr, then this refers to all of the above.
1173 // Otherwise the _base will indicate which subset of pointers is affected,
1174 // and the class will be inherited from.
1175 class TypePtr : public Type {
1176   friend class TypeNarrowPtr;
1177   friend class Type;
1178 protected:
1179   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1180 
1181 public:
1182   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1183 
1184   // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1185   //
1186   // FlatInArray defines the following Boolean Lattice structure
1187   //
1188   //     TopFlat
1189   //    /      \
1190   //  Flat   NotFlat
1191   //    \      /
1192   //   MaybeFlat
1193   //
1194   // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1195   enum FlatInArray {
1196     TopFlat,        // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1197     Flat,           // An instance is always flat in an array.
1198     NotFlat,        // An instance is never flat in an array.
1199     MaybeFlat,      // We don't know whether an instance is flat in an array.
1200     Uninitialized   // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1201   };
1202 protected:
1203   TypePtr(TYPES t, PTR ptr, Offset offset,
1204           const TypePtr* speculative = nullptr,
1205           int inline_depth = InlineDepthBottom) :
1206     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1207     _ptr(ptr) {}
1208   static const PTR ptr_meet[lastPTR][lastPTR];
1209   static const PTR ptr_dual[lastPTR];
1210   static const char * const ptr_msg[lastPTR];
1211 
1212   static const FlatInArray flat_in_array_dual[Uninitialized];
1213   static const char* const flat_in_array_msg[Uninitialized];
1214 
1215   enum {
1216     InlineDepthBottom = INT_MAX,
1217     InlineDepthTop = -InlineDepthBottom
1218   };
1219 
1220   // Extra type information profiling gave us. We propagate it the
1221   // same way the rest of the type info is propagated. If we want to
1222   // use it, then we have to emit a guard: this part of the type is
1223   // not something we know but something we speculate about the type.
1224   const TypePtr*   _speculative;
1225   // For speculative types, we record at what inlining depth the
1226   // profiling point that provided the data is. We want to favor
1227   // profile data coming from outer scopes which are likely better for
1228   // the current compilation.
1229   int _inline_depth;
1230 
1231   // utility methods to work on the speculative part of the type
1232   const TypePtr* dual_speculative() const;
1233   const TypePtr* xmeet_speculative(const TypePtr* other) const;
1234   bool eq_speculative(const TypePtr* other) const;
1235   int hash_speculative() const;
1236   const TypePtr* add_offset_speculative(intptr_t offset) const;
1237   const TypePtr* with_offset_speculative(intptr_t offset) const;
1238 
1239   // utility methods to work on the inline depth of the type
1240   int dual_inline_depth() const;
1241   int meet_inline_depth(int depth) const;
1242 
1243 #ifndef PRODUCT
1244   void dump_speculative(outputStream* st) const;
1245   void dump_inline_depth(outputStream* st) const;
1246   void dump_offset(outputStream* st) const;
1247 #endif
1248 
1249   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1250   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1251   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1252   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1253   // encountered so the right logic specific to klasses or oops can be executed.,
1254   enum MeetResult {
1255     QUICK,
1256     UNLOADED,
1257     SUBTYPE,
1258     NOT_SUBTYPE,
1259     LCA
1260   };
1261   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1262                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
1263  protected:
1264   static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1265 
1266   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1267                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1268 
1269   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1270   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1271   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1272   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1274   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1275   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1276   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277 public:
1278   const Offset _offset;         // Offset into oop, with TOP & BOT
1279   const PTR _ptr;               // Pointer equivalence class
1280 
1281   int offset() const { return _offset.get(); }
1282   PTR ptr()    const { return _ptr; }
1283 
1284   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1285                              const TypePtr* speculative = nullptr,
1286                              int inline_depth = InlineDepthBottom);
1287 
1288   // Return a 'ptr' version of this type
1289   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1290 
1291   virtual intptr_t get_con() const;
1292 
1293   Type::Offset xadd_offset(intptr_t offset) const;
1294   virtual const TypePtr* add_offset(intptr_t offset) const;
1295   virtual const TypePtr* with_offset(intptr_t offset) const;
1296   virtual int flat_offset() const { return offset(); }
1297   virtual bool eq(const Type *t) const;
1298   virtual uint hash() const;             // Type specific hashing
1299 
1300   virtual bool singleton(void) const;    // TRUE if type is a singleton
1301   virtual bool empty(void) const;        // TRUE if type is vacuous
1302   virtual const Type *xmeet( const Type *t ) const;
1303   virtual const Type *xmeet_helper( const Type *t ) const;
1304   Offset meet_offset(int offset) const;
1305   Offset dual_offset() const;
1306   virtual const Type *xdual() const;    // Compute dual right now.
1307 
1308   // meet, dual and join over pointer equivalence sets
1309   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1310   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1311 
1312   // This is textually confusing unless one recalls that
1313   // join(t) == dual()->meet(t->dual())->dual().
1314   PTR join_ptr( const PTR in_ptr ) const {
1315     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1316   }
1317 
1318   // Speculative type helper methods.
1319   virtual const TypePtr* speculative() const { return _speculative; }
1320   int inline_depth() const                   { return _inline_depth; }
1321   virtual ciKlass* speculative_type() const;
1322   virtual ciKlass* speculative_type_not_null() const;
1323   virtual bool speculative_maybe_null() const;
1324   virtual bool speculative_always_null() const;
1325   virtual const TypePtr* remove_speculative() const;
1326   virtual const Type* cleanup_speculative() const;
1327   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1328   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1329   virtual const TypePtr* with_inline_depth(int depth) const;
1330 
1331   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1332 
1333   NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1334 
1335   static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1336   FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1337                                                FlatInArray old_flat_in_array) const;
1338 
1339   virtual bool can_be_inline_type() const { return false; }
1340   virtual bool is_flat_in_array()     const { return flat_in_array() == Flat; }
1341   virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1342   virtual FlatInArray flat_in_array() const { return NotFlat; }
1343   virtual bool is_flat()            const { return false; }
1344   virtual bool is_not_flat()        const { return false; }
1345   virtual bool is_null_free()       const { return false; }
1346   virtual bool is_not_null_free()   const { return false; }
1347   virtual bool is_atomic()          const { return false; }
1348 
1349   // Tests for relation to centerline of type lattice:
1350   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1351   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1352   // Convenience common pre-built types.
1353   static const TypePtr *NULL_PTR;
1354   static const TypePtr *NOTNULL;
1355   static const TypePtr *BOTTOM;
1356 #ifndef PRODUCT
1357   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1358 #endif
1359 };
1360 
1361 //------------------------------TypeRawPtr-------------------------------------
1362 // Class of raw pointers, pointers to things other than Oops.  Examples
1363 // include the stack pointer, top of heap, card-marking area, handles, etc.
1364 class TypeRawPtr : public TypePtr {
1365 protected:
1366   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1367 public:
1368   virtual bool eq( const Type *t ) const;
1369   virtual uint hash() const;    // Type specific hashing
1370 
1371   const address _bits;          // Constant value, if applicable
1372 
1373   static const TypeRawPtr *make( PTR ptr );
1374   static const TypeRawPtr *make( address bits );
1375 
1376   // Return a 'ptr' version of this type
1377   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1378 
1379   virtual intptr_t get_con() const;
1380 
1381   virtual const TypePtr* add_offset(intptr_t offset) const;
1382   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1383 
1384   virtual const Type *xmeet( const Type *t ) const;
1385   virtual const Type *xdual() const;    // Compute dual right now.
1386   // Convenience common pre-built types.
1387   static const TypeRawPtr *BOTTOM;
1388   static const TypeRawPtr *NOTNULL;
1389 #ifndef PRODUCT
1390   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1391 #endif
1392 };
1393 
1394 //------------------------------TypeOopPtr-------------------------------------
1395 // Some kind of oop (Java pointer), either instance or array.
1396 class TypeOopPtr : public TypePtr {
1397   friend class TypeAry;
1398   friend class TypePtr;
1399   friend class TypeInstPtr;
1400   friend class TypeAryPtr;
1401 protected:
1402  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1403             const TypePtr* speculative, int inline_depth);
1404 public:
1405   virtual bool eq( const Type *t ) const;
1406   virtual uint hash() const;             // Type specific hashing
1407   virtual bool singleton(void) const;    // TRUE if type is a singleton
1408   enum {
1409    InstanceTop = -1,   // undefined instance
1410    InstanceBot = 0     // any possible instance
1411   };
1412 protected:
1413 
1414   // Oop is null, unless this is a constant oop.
1415   ciObject*     _const_oop;   // Constant oop
1416   // If _klass is null, then so is _sig.  This is an unloaded klass.
1417   ciKlass*      _klass;       // Klass object
1418 
1419   const TypeInterfaces* _interfaces;
1420 
1421   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1422   bool          _klass_is_exact;
1423   bool          _is_ptr_to_narrowoop;
1424   bool          _is_ptr_to_narrowklass;
1425   bool          _is_ptr_to_boxed_value;
1426   bool          _is_ptr_to_strict_final_field;
1427 
1428   // If not InstanceTop or InstanceBot, indicates that this is
1429   // a particular instance of this type which is distinct.
1430   // This is the node index of the allocation node creating this instance.
1431   int           _instance_id;
1432 
1433   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1434 
1435   int dual_instance_id() const;
1436   int meet_instance_id(int uid) const;
1437 
1438   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1439 
1440   // Do not allow interface-vs.-noninterface joins to collapse to top.
1441   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1442 
1443   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1444   virtual ciKlass* klass() const { return _klass; }
1445 
1446 #ifndef PRODUCT
1447   void dump_instance_id(outputStream* st) const;
1448 #endif // PRODUCT
1449 
1450 public:
1451 
1452   bool is_java_subtype_of(const TypeOopPtr* other) const {
1453     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1454   }
1455 
1456   bool is_same_java_type_as(const TypePtr* other) const {
1457     return is_same_java_type_as_helper(other->is_oopptr());
1458   }
1459 
1460   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1461     ShouldNotReachHere(); return false;
1462   }
1463 
1464   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1465     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1466   }
1467   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1468   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1469 
1470 
1471   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1472   // Respects UseUniqueSubclasses.
1473   // If the klass is final, the resulting type will be exact.
1474   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1475     return make_from_klass_common(klass, true, false, interface_handling);
1476   }
1477   // Same as before, but will produce an exact type, even if
1478   // the klass is not final, as long as it has exactly one implementation.
1479   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1480     return make_from_klass_common(klass, true, true, interface_handling);
1481   }
1482   // Same as before, but does not respects UseUniqueSubclasses.
1483   // Use this only for creating array element types.
1484   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1485     return make_from_klass_common(klass, false, false, interface_handling);
1486   }
1487   // Creates a singleton type given an object.
1488   // If the object cannot be rendered as a constant,
1489   // may return a non-singleton type.
1490   // If require_constant, produce a null if a singleton is not possible.
1491   static const TypeOopPtr* make_from_constant(ciObject* o,
1492                                               bool require_constant = false);
1493 
1494   // Make a generic (unclassed) pointer to an oop.
1495   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1496                                 const TypePtr* speculative = nullptr,
1497                                 int inline_depth = InlineDepthBottom);
1498 
1499   ciObject* const_oop()    const { return _const_oop; }
1500   // Exact klass, possibly an interface or an array of interface
1501   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1502   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1503 
1504   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1505   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1506 
1507   // Returns true if this pointer points at memory which contains a
1508   // compressed oop references.
1509   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1510   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1511   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1512   bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1513   bool is_known_instance()       const { return _instance_id > 0; }
1514   int  instance_id()             const { return _instance_id; }
1515   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1516 
1517   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1518   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1519 
1520   virtual intptr_t get_con() const;
1521 
1522   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1523 
1524   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1525 
1526   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1527 
1528   // corresponding pointer to klass, for a given instance
1529   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1530 
1531   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1532   virtual const TypePtr* add_offset(intptr_t offset) const;
1533 
1534   // Speculative type helper methods.
1535   virtual const TypeOopPtr* remove_speculative() const;
1536   virtual const Type* cleanup_speculative() const;
1537   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1538   virtual const TypePtr* with_inline_depth(int depth) const;
1539 
1540   virtual const TypePtr* with_instance_id(int instance_id) const;
1541 
1542   virtual const Type *xdual() const;    // Compute dual right now.
1543   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1544   virtual const Type *xmeet_helper(const Type *t) const;
1545 
1546   // Convenience common pre-built type.
1547   static const TypeOopPtr *BOTTOM;
1548 #ifndef PRODUCT
1549   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1550 #endif
1551 private:
1552   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1553     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1554   }
1555 
1556   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1557     ShouldNotReachHere(); return false;
1558   }
1559 
1560   virtual const TypeInterfaces* interfaces() const {
1561     return _interfaces;
1562   };
1563 
1564   const TypeOopPtr* is_reference_type(const Type* other) const {
1565     return other->isa_oopptr();
1566   }
1567 
1568   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1569     return other->isa_aryptr();
1570   }
1571 
1572   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1573     return other->isa_instptr();
1574   }
1575 };
1576 
1577 //------------------------------TypeInstPtr------------------------------------
1578 // Class of Java object pointers, pointing either to non-array Java instances
1579 // or to a Klass* (including array klasses).
1580 class TypeInstPtr : public TypeOopPtr {
1581   // Can this instance be in a flat array?
1582   FlatInArray _flat_in_array;
1583 
1584   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1585               FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1586               int inline_depth);
1587   virtual bool eq( const Type *t ) const;
1588   virtual uint hash() const;             // Type specific hashing
1589   ciKlass* exact_klass_helper() const;
1590 
1591 public:
1592 
1593   // Instance klass, ignoring any interface
1594   ciInstanceKlass* instance_klass() const {
1595     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1596     return klass()->as_instance_klass();
1597   }
1598 
1599   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1600   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1601   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602 
1603   // Make a pointer to a constant oop.
1604   static const TypeInstPtr *make(ciObject* o) {
1605     ciKlass* k = o->klass();
1606     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1607     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1608   }
1609   // Make a pointer to a constant oop with offset.
1610   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1611     ciKlass* k = o->klass();
1612     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1613     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1614   }
1615 
1616   // Make a pointer to some value of type klass.
1617   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1618     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1619     return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1620   }
1621 
1622   // Make a pointer to some non-polymorphic value of exactly type klass.
1623   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1624     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1625     return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1626   }
1627 
1628   // Make a pointer to some value of type klass with offset.
1629   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1630     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1631     return make(ptr, klass, interfaces, false, nullptr, offset);
1632   }
1633 
1634   // Make a pointer to an oop.
1635   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1636                                  FlatInArray flat_in_array = Uninitialized,
1637                                  int instance_id = InstanceBot,
1638                                  const TypePtr* speculative = nullptr,
1639                                  int inline_depth = InlineDepthBottom);
1640 
1641   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1642                                  FlatInArray flat_in_array = Uninitialized) {
1643     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1644     return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1645   }
1646 
1647   /** Create constant type for a constant boxed value */
1648   const Type* get_const_boxed_value() const;
1649 
1650   // If this is a java.lang.Class constant, return the type for it or null.
1651   // Pass to Type::get_const_type to turn it to a type, which will usually
1652   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1653   ciType* java_mirror_type() const;
1654 
1655   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1656 
1657   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1658 
1659   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1660 
1661   virtual bool empty() const;
1662   virtual const TypePtr* add_offset(intptr_t offset) const;
1663   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1664 
1665   // Speculative type helper methods.
1666   virtual const TypeInstPtr* remove_speculative() const;
1667   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1668   virtual const TypePtr* with_inline_depth(int depth) const;
1669   virtual const TypePtr* with_instance_id(int instance_id) const;
1670 
1671   virtual const TypeInstPtr* cast_to_flat_in_array() const;
1672   virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1673   virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1674 
1675   FlatInArray dual_flat_in_array() const {
1676     return flat_in_array_dual[_flat_in_array];
1677   }
1678 
1679   // the core of the computation of the meet of 2 types
1680   virtual const Type *xmeet_helper(const Type *t) const;
1681   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1682   virtual const Type *xdual() const;    // Compute dual right now.
1683 
1684   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1685 
1686   virtual bool can_be_inline_array() const;
1687 
1688   // Convenience common pre-built types.
1689   static const TypeInstPtr *NOTNULL;
1690   static const TypeInstPtr *BOTTOM;
1691   static const TypeInstPtr *MIRROR;
1692   static const TypeInstPtr *MARK;
1693   static const TypeInstPtr *KLASS;
1694 #ifndef PRODUCT
1695   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1696 #endif
1697 
1698 private:
1699   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1700 
1701   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1702     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1703   }
1704 
1705 };
1706 
1707 //------------------------------TypeAryPtr-------------------------------------
1708 // Class of Java array pointers
1709 class TypeAryPtr : public TypeOopPtr {
1710   friend class Type;
1711   friend class TypePtr;
1712   friend class TypeInstPtr;
1713   friend class TypeInterfaces;
1714 
1715   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1716              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1717              const TypePtr* speculative, int inline_depth)
1718     : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1719     _ary(ary),
1720     _is_autobox_cache(is_autobox_cache),
1721     _field_offset(field_offset)
1722  {
1723     int dummy;
1724     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1725 
1726     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1727         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1728         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1729       _is_ptr_to_narrowoop = true;
1730     }
1731 
1732   }
1733   virtual bool eq( const Type *t ) const;
1734   virtual uint hash() const;    // Type specific hashing
1735   const TypeAry *_ary;          // Array we point into
1736   const bool     _is_autobox_cache;
1737   // For flat inline type arrays, each field of the inline type in
1738   // the array has its own memory slice so we need to keep track of
1739   // which field is accessed
1740   const Offset _field_offset;
1741   Offset meet_field_offset(const Type::Offset offset) const;
1742   Offset dual_field_offset() const;
1743 
1744   ciKlass* compute_klass() const;
1745 
1746   // A pointer to delay allocation to Type::Initialize_shared()
1747 
1748   static const TypeInterfaces* _array_interfaces;
1749   ciKlass* exact_klass_helper() const;
1750   // Only guaranteed non null for array of basic types
1751   ciKlass* klass() const;
1752 
1753 public:
1754 
1755   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1756   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1757   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758 
1759   // returns base element type, an instance klass (and not interface) for object arrays
1760   const Type* base_element_type(int& dims) const;
1761 
1762   // Accessors
1763   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1764 
1765   const TypeAry* ary() const  { return _ary; }
1766   const Type*    elem() const { return _ary->_elem; }
1767   const TypeInt* size() const { return _ary->_size; }
1768   bool      is_stable() const { return _ary->_stable; }
1769 
1770   // Inline type array properties
1771   bool is_flat()          const { return _ary->_flat; }
1772   bool is_not_flat()      const { return _ary->_not_flat; }
1773   bool is_null_free()     const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1774   bool is_not_null_free() const { return _ary->_not_null_free; }
1775   bool is_atomic()        const { return _ary->_atomic; }
1776 
1777   bool is_autobox_cache() const { return _is_autobox_cache; }
1778 
1779   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1780                                 Offset field_offset = Offset::bottom,
1781                                 int instance_id = InstanceBot,
1782                                 const TypePtr* speculative = nullptr,
1783                                 int inline_depth = InlineDepthBottom);
1784   // Constant pointer to array
1785   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1786                                 Offset field_offset = Offset::bottom,
1787                                 int instance_id = InstanceBot,
1788                                 const TypePtr* speculative = nullptr,
1789                                 int inline_depth = InlineDepthBottom,
1790                                 bool is_autobox_cache = false);
1791 
1792   // Return a 'ptr' version of this type
1793   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1794 
1795   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1796 
1797   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1798 
1799   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1800   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1801 
1802   virtual bool empty(void) const;        // TRUE if type is vacuous
1803   virtual const TypePtr *add_offset( intptr_t offset ) const;
1804   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1805   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1806 
1807   // Speculative type helper methods.
1808   virtual const TypeAryPtr* remove_speculative() const;
1809   virtual const Type* cleanup_speculative() const;
1810   virtual const TypePtr* with_inline_depth(int depth) const;
1811   virtual const TypePtr* with_instance_id(int instance_id) const;
1812 
1813   // the core of the computation of the meet of 2 types
1814   virtual const Type *xmeet_helper(const Type *t) const;
1815   virtual const Type *xdual() const;    // Compute dual right now.
1816 
1817   // Inline type array properties
1818   const TypeAryPtr* cast_to_flat(bool flat) const;
1819   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1820   const TypeAryPtr* cast_to_null_free(bool null_free) const;
1821   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1822   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1823   jint flat_layout_helper() const;
1824   int flat_elem_size() const;
1825   int flat_log_elem_size() const;
1826 
1827   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1828   int stable_dimension() const;
1829 
1830   const TypeAryPtr* cast_to_autobox_cache() const;
1831 
1832   static jint max_array_length(BasicType etype);
1833 
1834   int flat_offset() const;
1835   const Offset field_offset() const { return _field_offset; }
1836   const TypeAryPtr* with_field_offset(int offset) const;
1837   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1838 
1839   virtual bool can_be_inline_type() const { return false; }
1840   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1841 
1842   virtual bool can_be_inline_array() const;
1843 
1844   // Convenience common pre-built types.
1845   static const TypeAryPtr* BOTTOM;
1846   static const TypeAryPtr *RANGE;
1847   static const TypeAryPtr *OOPS;
1848   static const TypeAryPtr *NARROWOOPS;
1849   static const TypeAryPtr *BYTES;
1850   static const TypeAryPtr *SHORTS;
1851   static const TypeAryPtr *CHARS;
1852   static const TypeAryPtr *INTS;
1853   static const TypeAryPtr *LONGS;
1854   static const TypeAryPtr *FLOATS;
1855   static const TypeAryPtr *DOUBLES;
1856   static const TypeAryPtr *INLINES;
1857   // selects one of the above:
1858   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1859     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1860     return _array_body_type[elem];
1861   }
1862   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1863   // sharpen the type of an int which is used as an array size
1864 #ifndef PRODUCT
1865   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1866 #endif
1867 private:
1868   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1869 };
1870 
1871 //------------------------------TypeMetadataPtr-------------------------------------
1872 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1873 class TypeMetadataPtr : public TypePtr {
1874 protected:
1875   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1876   // Do not allow interface-vs.-noninterface joins to collapse to top.
1877   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1878 public:
1879   virtual bool eq( const Type *t ) const;
1880   virtual uint hash() const;             // Type specific hashing
1881   virtual bool singleton(void) const;    // TRUE if type is a singleton
1882 
1883 private:
1884   ciMetadata*   _metadata;
1885 
1886 public:
1887   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1888 
1889   static const TypeMetadataPtr* make(ciMethod* m);
1890   static const TypeMetadataPtr* make(ciMethodData* m);
1891 
1892   ciMetadata* metadata() const { return _metadata; }
1893 
1894   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1895 
1896   virtual const TypePtr *add_offset( intptr_t offset ) const;
1897 
1898   virtual const Type *xmeet( const Type *t ) const;
1899   virtual const Type *xdual() const;    // Compute dual right now.
1900 
1901   virtual intptr_t get_con() const;
1902 
1903   // Convenience common pre-built types.
1904   static const TypeMetadataPtr *BOTTOM;
1905 
1906 #ifndef PRODUCT
1907   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1908 #endif
1909 };
1910 
1911 //------------------------------TypeKlassPtr-----------------------------------
1912 // Class of Java Klass pointers
1913 class TypeKlassPtr : public TypePtr {
1914   friend class TypeInstKlassPtr;
1915   friend class TypeAryKlassPtr;
1916   friend class TypePtr;
1917 protected:
1918   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1919 
1920   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1921 
1922 public:
1923   virtual bool eq( const Type *t ) const;
1924   virtual uint hash() const;
1925   virtual bool singleton(void) const;    // TRUE if type is a singleton
1926 
1927 protected:
1928 
1929   ciKlass* _klass;
1930   const TypeInterfaces* _interfaces;
1931   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1932   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1933   virtual ciKlass* exact_klass_helper() const;
1934   virtual ciKlass* klass() const { return  _klass; }
1935 
1936 public:
1937 
1938   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1939     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1940   }
1941   bool is_same_java_type_as(const TypePtr* other) const {
1942     return is_same_java_type_as_helper(other->is_klassptr());
1943   }
1944 
1945   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1946     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1947   }
1948   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1949   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1950   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951 
1952   // Exact klass, possibly an interface or an array of interface
1953   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1954   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1955 
1956   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1957 
1958   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1959 
1960   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1961 
1962   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1963 
1964   // corresponding pointer to instance, for a given class
1965   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1966 
1967   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1968   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1969   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1970 
1971   virtual intptr_t get_con() const;
1972 
1973   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1974 
1975   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1976 
1977   virtual const TypeKlassPtr* try_improve() const { return this; }
1978 
1979 private:
1980   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1981     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1982   }
1983 
1984   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1985     ShouldNotReachHere(); return false;
1986   }
1987 
1988   virtual const TypeInterfaces* interfaces() const {
1989     return _interfaces;
1990   };
1991 
1992   const TypeKlassPtr* is_reference_type(const Type* other) const {
1993     return other->isa_klassptr();
1994   }
1995 
1996   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1997     return other->isa_aryklassptr();
1998   }
1999 
2000   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2001     return other->isa_instklassptr();
2002   }
2003 };
2004 
2005 // Instance klass pointer, mirrors TypeInstPtr
2006 class TypeInstKlassPtr : public TypeKlassPtr {
2007   // Can an instance of this class be in a flat array?
2008   const FlatInArray _flat_in_array;
2009 
2010   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2011     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2012     assert(flat_in_array != Uninitialized, "must be set now");
2013     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2014   }
2015 
2016   virtual bool must_be_exact() const;
2017 
2018 public:
2019   // Instance klass ignoring any interface
2020   ciInstanceKlass* instance_klass() const {
2021     assert(!klass()->is_interface(), "");
2022     return klass()->as_instance_klass();
2023   }
2024 
2025   bool might_be_an_array() const;
2026 
2027   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2028   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2029   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030 
2031   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2032 
2033   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2034     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2035     return make(TypePtr::Constant, k, interfaces, Offset(0));
2036   }
2037 
2038   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2039                                       FlatInArray flat_in_array = Uninitialized);
2040 
2041   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2042     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2043     return make(ptr, k, interfaces, offset, flat_in_array);
2044   }
2045 
2046   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2047 
2048   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2049 
2050   // corresponding pointer to instance, for a given class
2051   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2052   virtual uint hash() const;
2053   virtual bool eq(const Type *t) const;
2054 
2055 
2056   virtual bool empty() const;
2057   virtual const TypePtr *add_offset( intptr_t offset ) const;
2058   virtual const Type    *xmeet( const Type *t ) const;
2059   virtual const Type    *xdual() const;
2060   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2061 
2062   virtual const TypeKlassPtr* try_improve() const;
2063 
2064   virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2065 
2066   FlatInArray dual_flat_in_array() const {
2067     return flat_in_array_dual[_flat_in_array];
2068   }
2069 
2070   virtual bool can_be_inline_array() const;
2071 
2072   // Convenience common pre-built types.
2073   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2074   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2075 
2076 #ifndef PRODUCT
2077   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2078 #endif // PRODUCT
2079 
2080 private:
2081   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2082 };
2083 
2084 // Array klass pointer, mirrors TypeAryPtr
2085 class TypeAryKlassPtr : public TypeKlassPtr {
2086   friend class TypeInstKlassPtr;
2087   friend class Type;
2088   friend class TypePtr;
2089 
2090   const Type *_elem;
2091   const bool _not_flat;      // Array is never flat
2092   const bool _not_null_free; // Array is never null-free
2093   const bool _flat;
2094   const bool _null_free;
2095   const bool _atomic;
2096   const bool _refined_type;
2097 
2098   static const TypeInterfaces* _array_interfaces;
2099   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2100     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2101     assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2102   }
2103 
2104   virtual ciKlass* exact_klass_helper() const;
2105   // Only guaranteed non null for array of basic types
2106   virtual ciKlass* klass() const;
2107 
2108   virtual bool must_be_exact() const;
2109 
2110   bool dual_flat() const {
2111     return _flat;
2112   }
2113 
2114   bool meet_flat(bool other) const {
2115     return _flat && other;
2116   }
2117 
2118   bool dual_null_free() const {
2119     return _null_free;
2120   }
2121 
2122   bool meet_null_free(bool other) const {
2123     return _null_free && other;
2124   }
2125 
2126   bool dual_atomic() const {
2127     return _atomic;
2128   }
2129 
2130   bool meet_atomic(bool other) const {
2131     return _atomic && other;
2132   }
2133 
2134 public:
2135 
2136   // returns base element type, an instance klass (and not interface) for object arrays
2137   const Type* base_element_type(int& dims) const;
2138 
2139   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2140 
2141   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2142   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2143   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144 
2145   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2146 
2147   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2148   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2149 
2150   const TypeAryKlassPtr* cast_to_non_refined() const;
2151   const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2152 
2153   const Type *elem() const { return _elem; }
2154 
2155   virtual bool eq(const Type *t) const;
2156   virtual uint hash() const;             // Type specific hashing
2157 
2158   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2159 
2160   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2161 
2162   // corresponding pointer to instance, for a given class
2163   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2164 
2165   virtual const TypePtr *add_offset( intptr_t offset ) const;
2166   virtual const Type    *xmeet( const Type *t ) const;
2167   virtual const Type    *xdual() const;      // Compute dual right now.
2168 
2169   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2170 
2171   virtual bool empty(void) const {
2172     return TypeKlassPtr::empty() || _elem->empty();
2173   }
2174 
2175   bool is_flat()          const { return _flat; }
2176   bool is_not_flat()      const { return _not_flat; }
2177   bool is_null_free()     const { return _null_free; }
2178   bool is_not_null_free() const { return _not_null_free; }
2179   bool is_atomic()        const { return _atomic; }
2180   bool is_refined_type()  const { return _refined_type; }
2181   virtual bool can_be_inline_array() const;
2182 
2183 #ifndef PRODUCT
2184   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2185 #endif
2186 private:
2187   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2188 };
2189 
2190 class TypeNarrowPtr : public Type {
2191 protected:
2192   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2193 
2194   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2195                                                   _ptrtype(ptrtype) {
2196     assert(ptrtype->offset() == 0 ||
2197            ptrtype->offset() == OffsetBot ||
2198            ptrtype->offset() == OffsetTop, "no real offsets");
2199   }
2200 
2201   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2202   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2203   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2204   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2205   // Do not allow interface-vs.-noninterface joins to collapse to top.
2206   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2207 public:
2208   virtual bool eq( const Type *t ) const;
2209   virtual uint hash() const;             // Type specific hashing
2210   virtual bool singleton(void) const;    // TRUE if type is a singleton
2211 
2212   virtual const Type *xmeet( const Type *t ) const;
2213   virtual const Type *xdual() const;    // Compute dual right now.
2214 
2215   virtual intptr_t get_con() const;
2216 
2217   virtual bool empty(void) const;        // TRUE if type is vacuous
2218 
2219   // returns the equivalent ptr type for this compressed pointer
2220   const TypePtr *get_ptrtype() const {
2221     return _ptrtype;
2222   }
2223 
2224   bool is_known_instance() const {
2225     return _ptrtype->is_known_instance();
2226   }
2227 
2228 #ifndef PRODUCT
2229   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2230 #endif
2231 };
2232 
2233 //------------------------------TypeNarrowOop----------------------------------
2234 // A compressed reference to some kind of Oop.  This type wraps around
2235 // a preexisting TypeOopPtr and forwards most of it's operations to
2236 // the underlying type.  It's only real purpose is to track the
2237 // oopness of the compressed oop value when we expose the conversion
2238 // between the normal and the compressed form.
2239 class TypeNarrowOop : public TypeNarrowPtr {
2240 protected:
2241   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2242   }
2243 
2244   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2245     return t->isa_narrowoop();
2246   }
2247 
2248   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2249     return t->is_narrowoop();
2250   }
2251 
2252   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2253     return new TypeNarrowOop(t);
2254   }
2255 
2256   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2257     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2258   }
2259 
2260 public:
2261 
2262   static const TypeNarrowOop *make( const TypePtr* type);
2263 
2264   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2265     return make(TypeOopPtr::make_from_constant(con, require_constant));
2266   }
2267 
2268   static const TypeNarrowOop *BOTTOM;
2269   static const TypeNarrowOop *NULL_PTR;
2270 
2271   virtual const TypeNarrowOop* remove_speculative() const;
2272   virtual const Type* cleanup_speculative() const;
2273 
2274 #ifndef PRODUCT
2275   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2276 #endif
2277 };
2278 
2279 //------------------------------TypeNarrowKlass----------------------------------
2280 // A compressed reference to klass pointer.  This type wraps around a
2281 // preexisting TypeKlassPtr and forwards most of it's operations to
2282 // the underlying type.
2283 class TypeNarrowKlass : public TypeNarrowPtr {
2284 protected:
2285   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2286   }
2287 
2288   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2289     return t->isa_narrowklass();
2290   }
2291 
2292   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2293     return t->is_narrowklass();
2294   }
2295 
2296   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2297     return new TypeNarrowKlass(t);
2298   }
2299 
2300   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2301     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2302   }
2303 
2304 public:
2305   static const TypeNarrowKlass *make( const TypePtr* type);
2306 
2307   // static const TypeNarrowKlass *BOTTOM;
2308   static const TypeNarrowKlass *NULL_PTR;
2309 
2310 #ifndef PRODUCT
2311   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2312 #endif
2313 };
2314 
2315 //------------------------------TypeFunc---------------------------------------
2316 // Class of Array Types
2317 class TypeFunc : public Type {
2318   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2319     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2320   virtual bool eq( const Type *t ) const;
2321   virtual uint hash() const;             // Type specific hashing
2322   virtual bool singleton(void) const;    // TRUE if type is a singleton
2323   virtual bool empty(void) const;        // TRUE if type is vacuous
2324 
2325   // Domains of inputs: inline type arguments are not passed by
2326   // reference, instead each field of the inline type is passed as an
2327   // argument. We maintain 2 views of the argument list here: one
2328   // based on the signature (with an inline type argument as a single
2329   // slot), one based on the actual calling convention (with a value
2330   // type argument as a list of its fields).
2331   const TypeTuple* const _domain_sig;
2332   const TypeTuple* const _domain_cc;
2333   // Range of results. Similar to domains: an inline type result can be
2334   // returned in registers in which case range_cc lists all fields and
2335   // is the actual calling convention.
2336   const TypeTuple* const _range_sig;
2337   const TypeTuple* const _range_cc;
2338 
2339 public:
2340   // Constants are shared among ADLC and VM
2341   enum { Control    = AdlcVMDeps::Control,
2342          I_O        = AdlcVMDeps::I_O,
2343          Memory     = AdlcVMDeps::Memory,
2344          FramePtr   = AdlcVMDeps::FramePtr,
2345          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2346          Parms      = AdlcVMDeps::Parms
2347   };
2348 
2349 
2350   // Accessors:
2351   const TypeTuple* domain_sig() const { return _domain_sig; }
2352   const TypeTuple* domain_cc()  const { return _domain_cc; }
2353   const TypeTuple* range_sig()  const { return _range_sig; }
2354   const TypeTuple* range_cc()   const { return _range_cc; }
2355 
2356   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2357   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2358                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2359   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2360 
2361   virtual const Type *xmeet( const Type *t ) const;
2362   virtual const Type *xdual() const;    // Compute dual right now.
2363 
2364   BasicType return_type() const;
2365 
2366   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2367 
2368 #ifndef PRODUCT
2369   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2370 #endif
2371   // Convenience common pre-built types.
2372 };
2373 
2374 //------------------------------accessors--------------------------------------
2375 inline bool Type::is_ptr_to_narrowoop() const {
2376 #ifdef _LP64
2377   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2378 #else
2379   return false;
2380 #endif
2381 }
2382 
2383 inline bool Type::is_ptr_to_narrowklass() const {
2384 #ifdef _LP64
2385   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2386 #else
2387   return false;
2388 #endif
2389 }
2390 
2391 inline float Type::getf() const {
2392   assert( _base == FloatCon, "Not a FloatCon" );
2393   return ((TypeF*)this)->_f;
2394 }
2395 
2396 inline short Type::geth() const {
2397   assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2398   return ((TypeH*)this)->_f;
2399 }
2400 
2401 inline double Type::getd() const {
2402   assert( _base == DoubleCon, "Not a DoubleCon" );
2403   return ((TypeD*)this)->_d;
2404 }
2405 
2406 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2407   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2408   return (TypeInteger*)this;
2409 }
2410 
2411 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2412   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2413 }
2414 
2415 inline const TypeInt *Type::is_int() const {
2416   assert( _base == Int, "Not an Int" );
2417   return (TypeInt*)this;
2418 }
2419 
2420 inline const TypeInt *Type::isa_int() const {
2421   return ( _base == Int ? (TypeInt*)this : nullptr);
2422 }
2423 
2424 inline const TypeLong *Type::is_long() const {
2425   assert( _base == Long, "Not a Long" );
2426   return (TypeLong*)this;
2427 }
2428 
2429 inline const TypeLong *Type::isa_long() const {
2430   return ( _base == Long ? (TypeLong*)this : nullptr);
2431 }
2432 
2433 inline const TypeH* Type::isa_half_float() const {
2434   return ((_base == HalfFloatTop ||
2435            _base == HalfFloatCon ||
2436            _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2437 }
2438 
2439 inline const TypeH* Type::is_half_float_constant() const {
2440   assert( _base == HalfFloatCon, "Not a HalfFloat" );
2441   return (TypeH*)this;
2442 }
2443 
2444 inline const TypeH* Type::isa_half_float_constant() const {
2445   return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2446 }
2447 
2448 inline const TypeF *Type::isa_float() const {
2449   return ((_base == FloatTop ||
2450            _base == FloatCon ||
2451            _base == FloatBot) ? (TypeF*)this : nullptr);
2452 }
2453 
2454 inline const TypeF *Type::is_float_constant() const {
2455   assert( _base == FloatCon, "Not a Float" );
2456   return (TypeF*)this;
2457 }
2458 
2459 inline const TypeF *Type::isa_float_constant() const {
2460   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2461 }
2462 
2463 inline const TypeD *Type::isa_double() const {
2464   return ((_base == DoubleTop ||
2465            _base == DoubleCon ||
2466            _base == DoubleBot) ? (TypeD*)this : nullptr);
2467 }
2468 
2469 inline const TypeD *Type::is_double_constant() const {
2470   assert( _base == DoubleCon, "Not a Double" );
2471   return (TypeD*)this;
2472 }
2473 
2474 inline const TypeD *Type::isa_double_constant() const {
2475   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2476 }
2477 
2478 inline const TypeTuple *Type::is_tuple() const {
2479   assert( _base == Tuple, "Not a Tuple" );
2480   return (TypeTuple*)this;
2481 }
2482 
2483 inline const TypeAry *Type::is_ary() const {
2484   assert( _base == Array , "Not an Array" );
2485   return (TypeAry*)this;
2486 }
2487 
2488 inline const TypeAry *Type::isa_ary() const {
2489   return ((_base == Array) ? (TypeAry*)this : nullptr);
2490 }
2491 
2492 inline const TypeVectMask *Type::is_vectmask() const {
2493   assert( _base == VectorMask, "Not a Vector Mask" );
2494   return (TypeVectMask*)this;
2495 }
2496 
2497 inline const TypeVectMask *Type::isa_vectmask() const {
2498   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2499 }
2500 
2501 inline const TypeVect *Type::is_vect() const {
2502   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2503   return (TypeVect*)this;
2504 }
2505 
2506 inline const TypeVect *Type::isa_vect() const {
2507   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2508 }
2509 
2510 inline const TypePtr *Type::is_ptr() const {
2511   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2512   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2513   return (TypePtr*)this;
2514 }
2515 
2516 inline const TypePtr *Type::isa_ptr() const {
2517   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2518   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2519 }
2520 
2521 inline const TypeOopPtr *Type::is_oopptr() const {
2522   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2523   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2524   return (TypeOopPtr*)this;
2525 }
2526 
2527 inline const TypeOopPtr *Type::isa_oopptr() const {
2528   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2529   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2530 }
2531 
2532 inline const TypeRawPtr *Type::isa_rawptr() const {
2533   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2534 }
2535 
2536 inline const TypeRawPtr *Type::is_rawptr() const {
2537   assert( _base == RawPtr, "Not a raw pointer" );
2538   return (TypeRawPtr*)this;
2539 }
2540 
2541 inline const TypeInstPtr *Type::isa_instptr() const {
2542   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2543 }
2544 
2545 inline const TypeInstPtr *Type::is_instptr() const {
2546   assert( _base == InstPtr, "Not an object pointer" );
2547   return (TypeInstPtr*)this;
2548 }
2549 
2550 inline const TypeAryPtr *Type::isa_aryptr() const {
2551   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2552 }
2553 
2554 inline const TypeAryPtr *Type::is_aryptr() const {
2555   assert( _base == AryPtr, "Not an array pointer" );
2556   return (TypeAryPtr*)this;
2557 }
2558 
2559 inline const TypeNarrowOop *Type::is_narrowoop() const {
2560   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2561   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2562   return (TypeNarrowOop*)this;
2563 }
2564 
2565 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2566   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2567   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2568 }
2569 
2570 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2571   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2572   return (TypeNarrowKlass*)this;
2573 }
2574 
2575 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2576   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2577 }
2578 
2579 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2580   // MetadataPtr is the first and CPCachePtr the last
2581   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2582   return (TypeMetadataPtr*)this;
2583 }
2584 
2585 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2586   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2587 }
2588 
2589 inline const TypeKlassPtr *Type::isa_klassptr() const {
2590   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2591 }
2592 
2593 inline const TypeKlassPtr *Type::is_klassptr() const {
2594   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2595   return (TypeKlassPtr*)this;
2596 }
2597 
2598 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2599   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2600 }
2601 
2602 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2603   assert(_base == InstKlassPtr, "Not a klass pointer");
2604   return (TypeInstKlassPtr*)this;
2605 }
2606 
2607 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2608   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2609 }
2610 
2611 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2612   assert(_base == AryKlassPtr, "Not a klass pointer");
2613   return (TypeAryKlassPtr*)this;
2614 }
2615 
2616 inline const TypePtr* Type::make_ptr() const {
2617   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2618                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2619                                                        isa_ptr());
2620 }
2621 
2622 inline const TypeOopPtr* Type::make_oopptr() const {
2623   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2624 }
2625 
2626 inline const TypeNarrowOop* Type::make_narrowoop() const {
2627   return (_base == NarrowOop) ? is_narrowoop() :
2628                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2629 }
2630 
2631 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2632   return (_base == NarrowKlass) ? is_narrowklass() :
2633                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2634 }
2635 
2636 inline bool Type::is_floatingpoint() const {
2637   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2638       (_base == FloatCon)  || (_base == FloatBot) ||
2639       (_base == DoubleCon) || (_base == DoubleBot) )
2640     return true;
2641   return false;
2642 }
2643 
2644 inline bool Type::is_inlinetypeptr() const {
2645   return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2646 }
2647 
2648 inline ciInlineKlass* Type::inline_klass() const {
2649   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2650 }
2651 
2652 template <>
2653 inline const TypeInt* Type::cast<TypeInt>() const {
2654   return is_int();
2655 }
2656 
2657 template <>
2658 inline const TypeLong* Type::cast<TypeLong>() const {
2659   return is_long();
2660 }
2661 
2662 template <>
2663 inline const TypeInt* Type::try_cast<TypeInt>() const {
2664   return isa_int();
2665 }
2666 
2667 template <>
2668 inline const TypeLong* Type::try_cast<TypeLong>() const {
2669   return isa_long();
2670 }
2671 
2672 // ===============================================================
2673 // Things that need to be 64-bits in the 64-bit build but
2674 // 32-bits in the 32-bit build.  Done this way to get full
2675 // optimization AND strong typing.
2676 #ifdef _LP64
2677 
2678 // For type queries and asserts
2679 #define is_intptr_t  is_long
2680 #define isa_intptr_t isa_long
2681 #define find_intptr_t_type find_long_type
2682 #define find_intptr_t_con  find_long_con
2683 #define TypeX        TypeLong
2684 #define Type_X       Type::Long
2685 #define TypeX_X      TypeLong::LONG
2686 #define TypeX_ZERO   TypeLong::ZERO
2687 // For 'ideal_reg' machine registers
2688 #define Op_RegX      Op_RegL
2689 // For phase->intcon variants
2690 #define MakeConX     longcon
2691 #define ConXNode     ConLNode
2692 // For array index arithmetic
2693 #define MulXNode     MulLNode
2694 #define AndXNode     AndLNode
2695 #define OrXNode      OrLNode
2696 #define CmpXNode     CmpLNode
2697 #define CmpUXNode    CmpULNode
2698 #define SubXNode     SubLNode
2699 #define LShiftXNode  LShiftLNode
2700 // For object size computation:
2701 #define AddXNode     AddLNode
2702 #define RShiftXNode  RShiftLNode
2703 // For card marks and hashcodes
2704 #define URShiftXNode URShiftLNode
2705 // For shenandoahSupport
2706 #define LoadXNode    LoadLNode
2707 #define StoreXNode   StoreLNode
2708 // Opcodes
2709 #define Op_LShiftX   Op_LShiftL
2710 #define Op_AndX      Op_AndL
2711 #define Op_AddX      Op_AddL
2712 #define Op_SubX      Op_SubL
2713 #define Op_XorX      Op_XorL
2714 #define Op_URShiftX  Op_URShiftL
2715 #define Op_LoadX     Op_LoadL
2716 #define Op_StoreX    Op_StoreL
2717 // conversions
2718 #define ConvI2X(x)   ConvI2L(x)
2719 #define ConvL2X(x)   (x)
2720 #define ConvX2I(x)   ConvL2I(x)
2721 #define ConvX2L(x)   (x)
2722 #define ConvX2UL(x)  (x)
2723 
2724 #else
2725 
2726 // For type queries and asserts
2727 #define is_intptr_t  is_int
2728 #define isa_intptr_t isa_int
2729 #define find_intptr_t_type find_int_type
2730 #define find_intptr_t_con  find_int_con
2731 #define TypeX        TypeInt
2732 #define Type_X       Type::Int
2733 #define TypeX_X      TypeInt::INT
2734 #define TypeX_ZERO   TypeInt::ZERO
2735 // For 'ideal_reg' machine registers
2736 #define Op_RegX      Op_RegI
2737 // For phase->intcon variants
2738 #define MakeConX     intcon
2739 #define ConXNode     ConINode
2740 // For array index arithmetic
2741 #define MulXNode     MulINode
2742 #define AndXNode     AndINode
2743 #define OrXNode      OrINode
2744 #define CmpXNode     CmpINode
2745 #define CmpUXNode    CmpUNode
2746 #define SubXNode     SubINode
2747 #define LShiftXNode  LShiftINode
2748 // For object size computation:
2749 #define AddXNode     AddINode
2750 #define RShiftXNode  RShiftINode
2751 // For card marks and hashcodes
2752 #define URShiftXNode URShiftINode
2753 // For shenandoahSupport
2754 #define LoadXNode    LoadINode
2755 #define StoreXNode   StoreINode
2756 // Opcodes
2757 #define Op_LShiftX   Op_LShiftI
2758 #define Op_AndX      Op_AndI
2759 #define Op_AddX      Op_AddI
2760 #define Op_SubX      Op_SubI
2761 #define Op_XorX      Op_XorI
2762 #define Op_URShiftX  Op_URShiftI
2763 #define Op_LoadX     Op_LoadI
2764 #define Op_StoreX    Op_StoreI
2765 // conversions
2766 #define ConvI2X(x)   (x)
2767 #define ConvL2X(x)   ConvL2I(x)
2768 #define ConvX2I(x)   (x)
2769 #define ConvX2L(x)   ConvI2L(x)
2770 #define ConvX2UL(x)  ConvI2UL(x)
2771 
2772 #endif
2773 
2774 #endif // SHARE_OPTO_TYPE_HPP