1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
52 class TypeInt;
53 class TypeLong;
54 class TypeNarrowPtr;
55 class TypeNarrowOop;
56 class TypeNarrowKlass;
57 class TypeAry;
58 class TypeTuple;
59 class TypeVect;
60 class TypeVectA;
61 class TypeVectS;
62 class TypeVectD;
63 class TypeVectX;
64 class TypeVectY;
65 class TypeVectZ;
66 class TypeVectMask;
67 class TypePtr;
68 class TypeRawPtr;
69 class TypeOopPtr;
70 class TypeInstPtr;
71 class TypeAryPtr;
72 class TypeKlassPtr;
73 class TypeInstKlassPtr;
74 class TypeAryKlassPtr;
75 class TypeMetadataPtr;
76 class VerifyMeet;
77
78 template <class T, class U>
79 class TypeIntPrototype;
80
81 //------------------------------Type-------------------------------------------
82 // Basic Type object, represents a set of primitive Values.
83 // Types are hash-cons'd into a private class dictionary, so only one of each
84 // different kind of Type exists. Types are never modified after creation, so
85 // all their interesting fields are constant.
86 class Type {
87
88 public:
89 enum TYPES {
90 Bad=0, // Type check
91 Control, // Control of code (not in lattice)
92 Top, // Top of the lattice
93 Int, // Integer range (lo-hi)
94 Long, // Long integer range (lo-hi)
95 Half, // Placeholder half of doubleword
96 NarrowOop, // Compressed oop pointer
97 NarrowKlass, // Compressed klass pointer
98
99 Tuple, // Method signature or object layout
100 Array, // Array types
101
102 Interfaces, // Set of implemented interfaces for oop types
103
104 VectorMask, // Vector predicate/mask type
105 VectorA, // (Scalable) Vector types for vector length agnostic
106 VectorS, // 32bit Vector types
107 VectorD, // 64bit Vector types
108 VectorX, // 128bit Vector types
109 VectorY, // 256bit Vector types
110 VectorZ, // 512bit Vector types
111
112 AnyPtr, // Any old raw, klass, inst, or array pointer
113 RawPtr, // Raw (non-oop) pointers
114 OopPtr, // Any and all Java heap entities
115 InstPtr, // Instance pointers (non-array objects)
116 AryPtr, // Array pointers
117 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
118
119 MetadataPtr, // Generic metadata
120 KlassPtr, // Klass pointers
121 InstKlassPtr,
122 AryKlassPtr,
123
124 Function, // Function signature
125 Abio, // Abstract I/O
126 Return_Address, // Subroutine return address
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
191 static int uhash( const Type *const t );
192 // Structural equality check. Assumes that equals() has already compared
193 // the _base types and thus knows it can cast 't' appropriately.
194 virtual bool eq( const Type *t ) const;
195
196 // Top-level hash-table of types
197 static Dict *type_dict() {
198 return Compile::current()->type_dict();
199 }
200
201 // DUAL operation: reflect around lattice centerline. Used instead of
202 // join to ensure my lattice is symmetric up and down. Dual is computed
203 // lazily, on demand, and cached in _dual.
204 const Type *_dual; // Cached dual value
205
206
207 const Type *meet_helper(const Type *t, bool include_speculative) const;
208 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
209
210 protected:
211 // Each class of type is also identified by its base.
212 const TYPES _base; // Enum of Types type
213
214 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types
215 // ~Type(); // Use fast deallocation
216 const Type *hashcons(); // Hash-cons the type
217 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
218 const Type *join_helper(const Type *t, bool include_speculative) const {
219 assert_type_verify_empty();
220 return dual()->meet_helper(t->dual(), include_speculative)->dual();
221 }
222
223 void assert_type_verify_empty() const NOT_DEBUG_RETURN;
224
225 public:
226
227 inline void* operator new( size_t x ) throw() {
228 Compile* compile = Compile::current();
229 compile->set_type_last_size(x);
230 return compile->type_arena()->AmallocWords(x);
231 }
232 inline void operator delete( void* ptr ) {
233 Compile* compile = Compile::current();
234 compile->type_arena()->Afree(ptr,compile->type_last_size());
235 }
236
237 // Initialize the type system for a particular compilation.
238 static void Initialize(Compile* compile);
239
240 // Initialize the types shared by all compilations.
241 static void Initialize_shared(Compile* compile);
242
243 TYPES base() const {
244 assert(_base > Bad && _base < lastype, "sanity");
245 return _base;
246 }
247
248 // Create a new hash-consd type
249 static const Type *make(enum TYPES);
250 // Test for equivalence of types
251 static bool equals(const Type* t1, const Type* t2);
252 // Test for higher or equal in lattice
253 // Variant that drops the speculative part of the types
254 bool higher_equal(const Type* t) const {
255 return equals(meet(t), t->remove_speculative());
256 }
257 // Variant that keeps the speculative part of the types
258 bool higher_equal_speculative(const Type* t) const {
259 return equals(meet_speculative(t), t);
260 }
261
262 // MEET operation; lower in lattice.
263 // Variant that drops the speculative part of the types
264 const Type *meet(const Type *t) const {
265 return meet_helper(t, false);
266 }
267 // Variant that keeps the speculative part of the types
268 const Type *meet_speculative(const Type *t) const {
269 return meet_helper(t, true)->cleanup_speculative();
270 }
271 // WIDEN: 'widens' for Ints and other range types
272 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
273 // NARROW: complement for widen, used by pessimistic phases
274 virtual const Type *narrow( const Type *old ) const { return this; }
275
276 // DUAL operation: reflect around lattice centerline. Used instead of
277 // join to ensure my lattice is symmetric up and down.
278 const Type *dual() const { return _dual; }
279
280 // Compute meet dependent on base type
281 virtual const Type *xmeet( const Type *t ) const;
282 virtual const Type *xdual() const; // Compute dual right now.
283
284 // JOIN operation; higher in lattice. Done by finding the dual of the
285 // meet of the dual of the 2 inputs.
286 // Variant that drops the speculative part of the types
287 const Type *join(const Type *t) const {
288 return join_helper(t, false);
289 }
290 // Variant that keeps the speculative part of the types
291 const Type *join_speculative(const Type *t) const {
292 return join_helper(t, true)->cleanup_speculative();
293 }
294
295 // Modified version of JOIN adapted to the needs Node::Value.
296 // Normalizes all empty values to TOP. Does not kill _widen bits.
297 // Variant that drops the speculative part of the types
298 const Type *filter(const Type *kills) const {
299 return filter_helper(kills, false);
300 }
301 // Variant that keeps the speculative part of the types
302 const Type *filter_speculative(const Type *kills) const {
303 return filter_helper(kills, true)->cleanup_speculative();
304 }
305
306 // Returns true if this pointer points at memory which contains a
307 // compressed oop references.
308 bool is_ptr_to_narrowoop() const;
309 bool is_ptr_to_narrowklass() const;
310
311 // Convenience access
312 short geth() const;
313 virtual float getf() const;
314 double getd() const;
315
316 // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
317 template <typename TypeClass>
318 const TypeClass* try_cast() const;
319
320 const TypeInt *is_int() const;
321 const TypeInt *isa_int() const; // Returns null if not an Int
322 const TypeInteger* is_integer(BasicType bt) const;
323 const TypeInteger* isa_integer(BasicType bt) const;
324 const TypeLong *is_long() const;
325 const TypeLong *isa_long() const; // Returns null if not a Long
326 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot}
327 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
328 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon
329 const TypeH *isa_half_float() const; // Returns null if not a HalfFloat{Top,Con,Bot}
330 const TypeH *is_half_float_constant() const; // Asserts it is a HalfFloatCon
331 const TypeH *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
332 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot}
333 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
334 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon
335 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
336 const TypeAry *is_ary() const; // Array, NOT array pointer
337 const TypeAry *isa_ary() const; // Returns null of not ary
338 const TypeVect *is_vect() const; // Vector
339 const TypeVect *isa_vect() const; // Returns null if not a Vector
340 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector
341 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask
342 const TypePtr *is_ptr() const; // Asserts it is a ptr type
343 const TypePtr *isa_ptr() const; // Returns null if not ptr type
344 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
345 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
346 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
347 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type
348 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
349 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
350 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
351 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
395
396 // TRUE if type is a singleton
397 virtual bool singleton(void) const;
398
399 // TRUE if type is above the lattice centerline, and is therefore vacuous
400 virtual bool empty(void) const;
401
402 // Return a hash for this type. The hash function is public so ConNode
403 // (constants) can hash on their constant, which is represented by a Type.
404 virtual uint hash() const;
405
406 // Map ideal registers (machine types) to ideal types
407 static const Type *mreg2type[];
408
409 // Printing, statistics
410 #ifndef PRODUCT
411 void dump_on(outputStream *st) const;
412 void dump() const {
413 dump_on(tty);
414 }
415 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
416 static void dump_stats();
417 // Groups of types, for debugging and visualization only.
418 enum class Category {
419 Data,
420 Memory,
421 Mixed, // Tuples with types of different categories.
422 Control,
423 Other, // {Type::Top, Type::Abio, Type::Bottom}.
424 Undef // {Type::Bad, Type::lastype}, for completeness.
425 };
426 // Return the category of this type.
427 Category category() const;
428 // Check recursively in tuples.
429 bool has_category(Category cat) const;
430
431 static const char* str(const Type* t);
432 #endif // !PRODUCT
433 void typerr(const Type *t) const; // Mixing types error
434
435 // Create basic type
436 static const Type* get_const_basic_type(BasicType type) {
437 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
438 return _const_basic_type[type];
439 }
440
441 // For two instance arrays of same dimension, return the base element types.
442 // Otherwise or if the arrays have different dimensions, return null.
443 static void get_arrays_base_elements(const Type *a1, const Type *a2,
444 const TypeInstPtr **e1, const TypeInstPtr **e2);
445
446 // Mapping to the array element's basic type.
447 BasicType array_element_basic_type() const;
448
449 enum InterfaceHandling {
450 trust_interfaces,
451 ignore_interfaces
452 };
453 // Create standard type for a ciType:
454 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
455
456 // Create standard zero value:
457 static const Type* get_zero_type(BasicType type) {
458 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
459 return _zero_type[type];
460 }
461
462 // Report if this is a zero value (not top).
463 bool is_zero_type() const {
464 BasicType type = basic_type();
465 if (type == T_VOID || type >= T_CONFLICT)
466 return false;
467 else
468 return (this == _zero_type[type]);
469 }
470
471 // Convenience common pre-built types.
472 static const Type *ABIO;
473 static const Type *BOTTOM;
474 static const Type *CONTROL;
475 static const Type *DOUBLE;
476 static const Type *FLOAT;
477 static const Type *HALF_FLOAT;
478 static const Type *HALF;
479 static const Type *MEMORY;
480 static const Type *MULTI;
481 static const Type *RETURN_ADDRESS;
482 static const Type *TOP;
483
484 // Mapping from compiler type to VM BasicType
485 BasicType basic_type() const { return _type_info[_base].basic_type; }
486 uint ideal_reg() const { return _type_info[_base].ideal_reg; }
487 const char* msg() const { return _type_info[_base].msg; }
488 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
489 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
490
491 // Mapping from CI type system to compiler type:
492 static const Type* get_typeflow_type(ciType* type);
493
494 static const Type* make_from_constant(ciConstant constant,
495 bool require_constant = false,
496 int stable_dimension = 0,
497 bool is_narrow = false,
498 bool is_autobox_cache = false);
499
500 static const Type* make_constant_from_field(ciInstance* holder,
501 int off,
502 bool is_unsigned_load,
503 BasicType loadbt);
504
505 static const Type* make_constant_from_field(ciField* field,
506 ciInstance* holder,
507 BasicType loadbt,
508 bool is_unsigned_load);
509
510 static const Type* make_constant_from_array_element(ciArray* array,
511 int off,
512 int field_offset,
513 int stable_dimension,
514 BasicType loadbt,
515 bool is_unsigned_load);
516
517 // Speculative type helper methods. See TypePtr.
518 virtual const TypePtr* speculative() const { return nullptr; }
519 virtual ciKlass* speculative_type() const { return nullptr; }
520 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
521 virtual bool speculative_maybe_null() const { return true; }
522 virtual bool speculative_always_null() const { return true; }
523 virtual const Type* remove_speculative() const { return this; }
524 virtual const Type* cleanup_speculative() const { return this; }
525 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
526 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
527 const Type* maybe_remove_speculative(bool include_speculative) const;
528
529 virtual bool maybe_null() const { return true; }
530 virtual bool is_known_instance() const { return false; }
531
532 private:
533 // support arrays
534 static const Type* _zero_type[T_CONFLICT+1];
535 static const Type* _const_basic_type[T_CONFLICT+1];
536 };
537
538 //------------------------------TypeF------------------------------------------
539 // Class of Float-Constant Types.
540 class TypeF : public Type {
541 TypeF( float f ) : Type(FloatCon), _f(f) {};
542 public:
543 virtual bool eq( const Type *t ) const;
544 virtual uint hash() const; // Type specific hashing
545 virtual bool singleton(void) const; // TRUE if type is a singleton
546 virtual bool empty(void) const; // TRUE if type is vacuous
547 public:
548 const float _f; // Float constant
549
550 static const TypeF *make(float f);
551
552 virtual bool is_finite() const; // Has a finite value
553 virtual bool is_nan() const; // Is not a number (NaN)
554
555 virtual const Type *xmeet( const Type *t ) const;
556 virtual const Type *xdual() const; // Compute dual right now.
557 // Convenience common pre-built types.
558 static const TypeF *MAX;
559 static const TypeF *MIN;
560 static const TypeF *ZERO; // positive zero only
561 static const TypeF *ONE;
562 static const TypeF *POS_INF;
563 static const TypeF *NEG_INF;
564 #ifndef PRODUCT
565 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
566 #endif
567 };
568
569 // Class of Half Float-Constant Types.
570 class TypeH : public Type {
571 TypeH(short f) : Type(HalfFloatCon), _f(f) {};
572 public:
573 virtual bool eq(const Type* t) const;
574 virtual uint hash() const; // Type specific hashing
575 virtual bool singleton(void) const; // TRUE if type is a singleton
576 virtual bool empty(void) const; // TRUE if type is vacuous
577 public:
578 const short _f; // Half Float constant
579
580 static const TypeH* make(float f);
581 static const TypeH* make(short f);
582
583 virtual bool is_finite() const; // Has a finite value
584 virtual bool is_nan() const; // Is not a number (NaN)
585
586 virtual float getf() const;
587 virtual const Type* xmeet(const Type* t) const;
588 virtual const Type* xdual() const; // Compute dual right now.
589 // Convenience common pre-built types.
590 static const TypeH* MAX;
591 static const TypeH* MIN;
592 static const TypeH* ZERO; // positive zero only
593 static const TypeH* ONE;
594 static const TypeH* POS_INF;
595 static const TypeH* NEG_INF;
596 #ifndef PRODUCT
597 virtual void dump2(Dict &d, uint depth, outputStream* st) const;
598 #endif
599 };
600
601 //------------------------------TypeD------------------------------------------
602 // Class of Double-Constant Types.
603 class TypeD : public Type {
604 TypeD( double d ) : Type(DoubleCon), _d(d) {};
605 public:
606 virtual bool eq( const Type *t ) const;
607 virtual uint hash() const; // Type specific hashing
608 virtual bool singleton(void) const; // TRUE if type is a singleton
609 virtual bool empty(void) const; // TRUE if type is vacuous
610 public:
611 const double _d; // Double constant
612
613 static const TypeD *make(double d);
614
615 virtual bool is_finite() const; // Has a finite value
616 virtual bool is_nan() const; // Is not a number (NaN)
617
618 virtual const Type *xmeet( const Type *t ) const;
619 virtual const Type *xdual() const; // Compute dual right now.
620 // Convenience common pre-built types.
621 static const TypeD *MAX;
622 static const TypeD *MIN;
623 static const TypeD *ZERO; // positive zero only
624 static const TypeD *ONE;
625 static const TypeD *POS_INF;
626 static const TypeD *NEG_INF;
627 #ifndef PRODUCT
628 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
629 #endif
630 };
631
632 class TypeInteger : public Type {
633 protected:
634 TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
635
636 // Denote that a set is a dual set.
637 // Dual sets are only used to compute the join of 2 sets, and not used
638 // outside.
639 const bool _is_dual;
640
641 public:
642 const short _widen; // Limit on times we widen this sucker
643
644 virtual jlong hi_as_long() const = 0;
645 virtual jlong lo_as_long() const = 0;
646 jlong get_con_as_long(BasicType bt) const;
647 bool is_con() const { return lo_as_long() == hi_as_long(); }
648 virtual short widen_limit() const { return _widen; }
649
650 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
651 static const TypeInteger* make(jlong con, BasicType bt);
652
653 static const TypeInteger* bottom(BasicType type);
654 static const TypeInteger* zero(BasicType type);
655 static const TypeInteger* one(BasicType type);
656 static const TypeInteger* minus_1(BasicType type);
657 };
658
659 /**
660 * Definition:
661 *
662 * A TypeInt represents a set of non-empty jint values. A jint v is an element
663 * of a TypeInt iff:
664 *
665 * v >= _lo && v <= _hi &&
666 * juint(v) >= _ulo && juint(v) <= _uhi &&
667 * _bits.is_satisfied_by(v)
668 *
669 * Multiple sets of parameters can represent the same set.
670 * E.g: consider 2 TypeInt t1, t2
671 *
672 * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
673 * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
674 *
675 * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
676 * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
677 * which also represents {3, 5} such that any of these would be true:
678 *
679 * 1) t3._lo > t2._lo
680 * 2) t3._hi < t2._hi
681 * 3) t3._ulo > t2._ulo
682 * 4) t3._uhi < t2._uhi
683 * 5) (t3._bits._zeros &~ t2._bis._zeros) != 0
684 * 6) (t3._bits._ones &~ t2._bits._ones) != 0
685 *
686 * The 5-th condition mean that the subtraction of the bitsets represented by
687 * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
688 * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
689 * same applies to _bits._ones
690 *
691 * To simplify reasoning about the types in optimizations, we canonicalize
692 * every TypeInt to its tightest form, already at construction. E.g a TypeInt
693 * t with t._lo < 0 will definitely contain negative values. It also makes it
694 * trivial to determine if a TypeInt instance is a subset of another.
695 *
696 * Lemmas:
697 *
698 * 1. Since every TypeInt instance is non-empty and canonicalized, all the
699 * bounds must also be elements of such TypeInt. Or else, we can tighten the
700 * bounds by narrowing it by one, which contradicts the assumption of the
701 * TypeInt being canonical.
702 *
703 * 2.
704 * 2.1. _lo <= jint(_ulo)
705 * 2.2. _lo <= _hi
706 * 2.3. _lo <= jint(_uhi)
707 * 2.4. _ulo <= juint(_lo)
708 * 2.5. _ulo <= juint(_hi)
709 * 2.6. _ulo <= _uhi
710 * 2.7. _hi >= _lo
711 * 2.8. _hi >= jint(_ulo)
712 * 2.9. _hi >= jint(_uhi)
713 * 2.10. _uhi >= juint(_lo)
714 * 2.11. _uhi >= _ulo
715 * 2.12. _uhi >= juint(_hi)
716 *
717 * Proof of lemma 2:
718 *
719 * 2.1. _lo <= jint(_ulo):
720 * According the lemma 1, _ulo is an element of the TypeInt, so in the
721 * signed domain, it must not be less than the smallest element of that
722 * TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
723 * domain, or in a more programmatical way, _lo <= jint(_ulo).
724 * 2.2. _lo <= _hi:
725 * According the lemma 1, _hi is an element of the TypeInt, so in the
726 * signed domain, it must not be less than the smallest element of that
727 * TypeInt, which is _lo. Which means that _lo <= _hi.
728 *
729 * The other inequalities can be proved in a similar manner.
730 *
731 * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
732 *
733 * x <= y iff juint(x) <= juint(y)
734 * I.e. x <= y in the signed domain iff x <= y in the unsigned domain
735 *
736 * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
737 * TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
738 * (note that these intervals are disjoint in this case).
739 *
740 * Proof of lemma 4:
741 *
742 * For a TypeInt t, there are 3 possible cases:
743 *
744 * a. t._lo >= 0, we have:
745 *
746 * 0 <= t_lo <= jint(t._ulo) (lemma 2.1)
747 * juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
748 * == t._ulo (juint(jint(v)) == v with juint v)
749 * <= juint(t._lo) (lemma 2.4)
750 *
751 * Which means that t._lo == jint(t._ulo).
752 *
753 * Furthermore,
754 *
755 * 0 <= t._lo <= t._hi (lemma 2.2)
756 * 0 <= t._lo <= jint(t._uhi) (lemma 2.3)
757 * t._hi >= jint(t._uhi) (lemma 2.9)
758 *
759 * juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
760 * == t._uhi (juint(jint(v)) == v with juint v)
761 * >= juint(t._hi) (lemma 2.12)
762 *
763 * Which means that t._hi == jint(t._uhi).
764 * In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
765 *
766 * b. t._hi < 0. Similarly, we can conclude that:
767 * t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
768 *
769 * c. t._lo < 0, t._hi >= 0.
770 *
771 * Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
772 * because all negative values is larger than all non-negative values in the
773 * unsigned domain.
774 *
775 * Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
776 * similar to the reasoning above.
777 *
778 * In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
779 * [jint(t._ulo), t._hi].
780 *
781 * Below is an illustration of the TypeInt in this case, the intervals that
782 * the elements can be in are marked using the = symbol. Note how the
783 * negative range in the signed domain wrap around in the unsigned domain.
784 *
785 * Signed:
786 * -----lo=========uhi---------0--------ulo==========hi-----
787 * Unsigned:
788 * 0--------ulo==========hi----------lo=========uhi---------
789 *
790 * This property is useful for our analysis of TypeInt values. Additionally,
791 * it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
792 * same applies to jint(_ulo) and _hi.
793 *
794 * We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
795 * a TypeInt consists of 2 simple intervals, each of which has its bounds
796 * being both >= 0 or both < 0. If both simple intervals lie in the same half
797 * of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
798 * _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
799 * half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
800 * domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
801 * [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
802 */
803 class TypeInt : public TypeInteger {
804 private:
805 TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
806 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
807
808 friend class TypeIntHelper;
809
810 protected:
811 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
812
813 public:
814 typedef jint NativeType;
815 virtual bool eq(const Type* t) const;
816 virtual uint hash() const; // Type specific hashing
817 virtual bool singleton(void) const; // TRUE if type is a singleton
818 virtual bool empty(void) const; // TRUE if type is vacuous
819 // A value is in the set represented by this TypeInt if it satisfies all
820 // the below constraints, see contains(jint)
821 const jint _lo, _hi; // Lower bound, upper bound in the signed domain
822 const juint _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
823 const KnownBits<juint> _bits;
824
825 static const TypeInt* make(jint con);
826 // must always specify w
827 static const TypeInt* make(jint lo, jint hi, int widen);
828 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
829 static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
830 static const TypeInt* make(const TypeIntMirror<jint, juint>& t, int widen) {
831 return (new TypeInt(TypeIntPrototype<jint, juint>{{t._lo, t._hi}, {t._ulo, t._uhi}, t._bits}, widen, false))->hashcons()->is_int();
832 }
833
834 // Check for single integer
835 bool is_con() const { return _lo == _hi; }
836 bool is_con(jint i) const { return is_con() && _lo == i; }
837 jint get_con() const { assert(is_con(), ""); return _lo; }
838 // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
839 // argument are also elements of this type)
840 bool contains(jint i) const;
841 bool contains(const TypeInt* t) const;
842
843 #ifdef ASSERT
844 // Check whether t is a proper subset (i.e. a subset that is not equal to the superset) of this
845 bool strictly_contains(const TypeInt* t) const;
846 #endif // ASSERT
847
848 virtual bool is_finite() const; // Has a finite value
849
850 virtual const Type* xmeet(const Type* t) const;
851 virtual const Type* xdual() const; // Compute dual right now.
852 virtual const Type* widen(const Type* t, const Type* limit_type) const;
853 virtual const Type* narrow(const Type* t) const;
854
855 virtual jlong hi_as_long() const { return _hi; }
856 virtual jlong lo_as_long() const { return _lo; }
857
858 // Do not kill _widen bits.
859 // Convenience common pre-built types.
860 static const TypeInt* MAX;
861 static const TypeInt* MIN;
862 static const TypeInt* MINUS_1;
863 static const TypeInt* ZERO;
864 static const TypeInt* ONE;
865 static const TypeInt* BOOL;
866 static const TypeInt* CC;
867 static const TypeInt* CC_LT; // [-1] == MINUS_1
868 static const TypeInt* CC_GT; // [1] == ONE
869 static const TypeInt* CC_EQ; // [0] == ZERO
870 static const TypeInt* CC_NE; // [-1, 1]
871 static const TypeInt* CC_LE; // [-1,0]
872 static const TypeInt* CC_GE; // [0,1] == BOOL (!)
873 static const TypeInt* BYTE;
874 static const TypeInt* UBYTE;
875 static const TypeInt* CHAR;
876 static const TypeInt* SHORT;
877 static const TypeInt* NON_ZERO;
878 static const TypeInt* POS;
879 static const TypeInt* POS1;
880 static const TypeInt* INT;
881 static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
882 static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
883
884 static const TypeInt* as_self(const Type* t) { return t->is_int(); }
885 #ifndef PRODUCT
886 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
887 void dump_verbose() const;
888 #endif
889 };
890
891 // Similar to TypeInt
892 class TypeLong : public TypeInteger {
893 private:
894 TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
895 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
896
897 friend class TypeIntHelper;
898
899 protected:
900 // Do not kill _widen bits.
901 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
902 public:
903 typedef jlong NativeType;
904 virtual bool eq( const Type *t ) const;
905 virtual uint hash() const; // Type specific hashing
906 virtual bool singleton(void) const; // TRUE if type is a singleton
907 virtual bool empty(void) const; // TRUE if type is vacuous
908 public:
909 // A value is in the set represented by this TypeLong if it satisfies all
910 // the below constraints, see contains(jlong)
911 const jlong _lo, _hi; // Lower bound, upper bound in the signed domain
912 const julong _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
913 const KnownBits<julong> _bits;
914
915 static const TypeLong* make(jlong con);
916 // must always specify w
917 static const TypeLong* make(jlong lo, jlong hi, int widen);
918 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
919 static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
920 static const TypeLong* make(const TypeIntMirror<jlong, julong>& t, int widen) {
921 return (new TypeLong(TypeIntPrototype<jlong, julong>{{t._lo, t._hi}, {t._ulo, t._uhi}, t._bits}, widen, false))->hashcons()->is_long();
922 }
923
924 // Check for single integer
925 bool is_con() const { return _lo == _hi; }
926 bool is_con(jlong i) const { return is_con() && _lo == i; }
927 jlong get_con() const { assert(is_con(), "" ); return _lo; }
928 // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
929 // argument are also elements of this type)
930 bool contains(jlong i) const;
931 bool contains(const TypeLong* t) const;
932
933 #ifdef ASSERT
934 // Check whether t is a proper subset (i.e. a subset that is not equal to the superset) of this
935 bool strictly_contains(const TypeLong* t) const;
936 #endif // ASSERT
937
938 // Check for positive 32-bit value.
939 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
940
941 virtual bool is_finite() const; // Has a finite value
942
943 virtual jlong hi_as_long() const { return _hi; }
944 virtual jlong lo_as_long() const { return _lo; }
945
946 virtual const Type* xmeet(const Type* t) const;
947 virtual const Type* xdual() const; // Compute dual right now.
948 virtual const Type* widen(const Type* t, const Type* limit_type) const;
949 virtual const Type* narrow(const Type* t) const;
950 // Convenience common pre-built types.
951 static const TypeLong* MAX;
952 static const TypeLong* MIN;
953 static const TypeLong* MINUS_1;
954 static const TypeLong* ZERO;
955 static const TypeLong* ONE;
956 static const TypeLong* NON_ZERO;
957 static const TypeLong* POS;
958 static const TypeLong* NEG;
959 static const TypeLong* LONG;
960 static const TypeLong* INT; // 32-bit subrange [min_jint..max_jint]
961 static const TypeLong* UINT; // 32-bit unsigned [0..max_juint]
962 static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
963
964 // static convenience methods.
965 static const TypeLong* as_self(const Type* t) { return t->is_long(); }
966
967 #ifndef PRODUCT
968 virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
969 void dump_verbose() const;
970 #endif
971 };
972
973 //------------------------------TypeTuple--------------------------------------
974 // Class of Tuple Types, essentially type collections for function signatures
975 // and class layouts. It happens to also be a fast cache for the HotSpot
976 // signature types.
977 class TypeTuple : public Type {
978 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
979
980 const uint _cnt; // Count of fields
981 const Type ** const _fields; // Array of field types
982
983 public:
984 virtual bool eq( const Type *t ) const;
985 virtual uint hash() const; // Type specific hashing
986 virtual bool singleton(void) const; // TRUE if type is a singleton
987 virtual bool empty(void) const; // TRUE if type is vacuous
988
989 // Accessors:
990 uint cnt() const { return _cnt; }
991 const Type* field_at(uint i) const {
992 assert(i < _cnt, "oob");
993 return _fields[i];
994 }
995 void set_field_at(uint i, const Type* t) {
996 assert(i < _cnt, "oob");
997 _fields[i] = t;
998 }
999
1000 static const TypeTuple *make( uint cnt, const Type **fields );
1001 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
1002 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
1003
1004 // Subroutine call type with space allocated for argument types
1005 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1006 static const Type **fields( uint arg_cnt );
1007
1008 virtual const Type *xmeet( const Type *t ) const;
1009 virtual const Type *xdual() const; // Compute dual right now.
1010 // Convenience common pre-built types.
1011 static const TypeTuple *IFBOTH;
1012 static const TypeTuple *IFFALSE;
1013 static const TypeTuple *IFTRUE;
1014 static const TypeTuple *IFNEITHER;
1015 static const TypeTuple *LOOPBODY;
1016 static const TypeTuple *MEMBAR;
1017 static const TypeTuple *STORECONDITIONAL;
1018 static const TypeTuple *START_I2C;
1019 static const TypeTuple *INT_PAIR;
1020 static const TypeTuple *LONG_PAIR;
1021 static const TypeTuple *INT_CC_PAIR;
1022 static const TypeTuple *LONG_CC_PAIR;
1023 #ifndef PRODUCT
1024 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1025 #endif
1026 };
1027
1028 //------------------------------TypeAry----------------------------------------
1029 // Class of Array Types
1030 class TypeAry : public Type {
1031 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1032 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1033 public:
1034 virtual bool eq( const Type *t ) const;
1035 virtual uint hash() const; // Type specific hashing
1036 virtual bool singleton(void) const; // TRUE if type is a singleton
1037 virtual bool empty(void) const; // TRUE if type is vacuous
1038
1039 private:
1040 const Type *_elem; // Element type of array
1041 const TypeInt *_size; // Elements in array
1042 const bool _stable; // Are elements @Stable?
1043
1044 // Inline type array properties
1045 const bool _flat; // Array is flat
1046 const bool _not_flat; // Array is never flat
1047 const bool _not_null_free; // Array is never null-free
1048 const bool _atomic; // Array is atomic
1049
1050 friend class TypeAryPtr;
1051
1052 public:
1053 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1054 bool flat, bool not_flat, bool not_null_free, bool atomic);
1055
1056 virtual const Type *xmeet( const Type *t ) const;
1057 virtual const Type *xdual() const; // Compute dual right now.
1058 bool ary_must_be_exact() const; // true if arrays of such are never generic
1059 virtual const TypeAry* remove_speculative() const;
1060 virtual const Type* cleanup_speculative() const;
1061 #ifndef PRODUCT
1062 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1063 #endif
1064 };
1065
1066 //------------------------------TypeVect---------------------------------------
1067 // Basic class of vector (mask) types.
1068 class TypeVect : public Type {
1069 const BasicType _elem_bt; // Vector's element type
1070 const uint _length; // Elements in vector (power of 2)
1071
1072 protected:
1073 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1074 _elem_bt(elem_bt), _length(length) {}
1075
1076 public:
1077 BasicType element_basic_type() const { return _elem_bt; }
1078 uint length() const { return _length; }
1079 uint length_in_bytes() const {
1080 return _length * type2aelembytes(element_basic_type());
1081 }
1082
1083 virtual bool eq(const Type* t) const;
1084 virtual uint hash() const; // Type specific hashing
1085 virtual bool singleton(void) const; // TRUE if type is a singleton
1086 virtual bool empty(void) const; // TRUE if type is vacuous
1087
1088 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1089 static const TypeVect* makemask(const BasicType elem_bt, uint length);
1090
1091 virtual const Type* xmeet( const Type *t) const;
1092 virtual const Type* xdual() const; // Compute dual right now.
1093
1094 static const TypeVect* VECTA;
1095 static const TypeVect* VECTS;
1096 static const TypeVect* VECTD;
1097 static const TypeVect* VECTX;
1098 static const TypeVect* VECTY;
1099 static const TypeVect* VECTZ;
1100 static const TypeVect* VECTMASK;
1101
1102 #ifndef PRODUCT
1103 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1104 #endif
1105 };
1106
1107 // TypeVect subclasses representing vectors or vector masks with "BVectMask" or "NVectMask"
1108 // layout (see vectornode.hpp for detailed notes on vector mask representations), mapped
1109 // to vector registers and distinguished by vector register size:
1110 //
1111 // - TypeVectA: Scalable vector type (variable size, e.g., AArch64 SVE, RISC-V RVV)
1112 // - TypeVectS: 32-bit vector type
1113 // - TypeVectD: 64-bit vector type
1114 // - TypeVectX: 128-bit vector type
1115 // - TypeVectY: 256-bit vector type
1116 // - TypeVectZ: 512-bit vector type
1117 class TypeVectA : public TypeVect {
1118 friend class TypeVect;
1119 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1120 };
1121
1122 class TypeVectS : public TypeVect {
1123 friend class TypeVect;
1124 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1125 };
1126
1127 class TypeVectD : public TypeVect {
1128 friend class TypeVect;
1129 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1130 };
1131
1132 class TypeVectX : public TypeVect {
1133 friend class TypeVect;
1134 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1135 };
1136
1137 class TypeVectY : public TypeVect {
1138 friend class TypeVect;
1139 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1140 };
1141
1142 class TypeVectZ : public TypeVect {
1143 friend class TypeVect;
1144 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1145 };
1146
1147 // Class of TypeVectMask, representing vector masks with "PVectMask" layout (see
1148 // vectornode.hpp for detailed notes on vector mask representations), mapped to
1149 // dedicated hardware predicate/mask registers.
1150 class TypeVectMask : public TypeVect {
1151 public:
1152 friend class TypeVect;
1153 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1154 static const TypeVectMask* make(const BasicType elem_bt, uint length);
1155 };
1156
1157 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1158 class TypeInterfaces : public Type {
1159 private:
1160 GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1161 uint _hash;
1162 ciInstanceKlass* _exact_klass;
1163 DEBUG_ONLY(bool _initialized;)
1164
1165 void initialize();
1166
1167 void verify() const NOT_DEBUG_RETURN;
1168 void compute_hash();
1169 void compute_exact_klass();
1170
1171 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1172
1173 NONCOPYABLE(TypeInterfaces);
1174 public:
1175 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1176 bool eq(const Type* other) const;
1177 bool eq(ciInstanceKlass* k) const;
1178 uint hash() const;
1179 const Type *xdual() const;
1180 void dump(outputStream* st) const;
1181 const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1182 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1183 bool contains(const TypeInterfaces* other) const {
1184 return intersection_with(other)->eq(other);
1185 }
1186 bool empty() const { return _interfaces.length() == 0; }
1187
1188 ciInstanceKlass* exact_klass() const;
1189 void verify_is_loaded() const NOT_DEBUG_RETURN;
1190
1191 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1192 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1193
1194 const Type* xmeet(const Type* t) const;
1195
1196 bool singleton(void) const;
1197 bool has_non_array_interface() const;
1198 };
1199
1200 //------------------------------TypePtr----------------------------------------
1201 // Class of machine Pointer Types: raw data, instances or arrays.
1202 // If the _base enum is AnyPtr, then this refers to all of the above.
1203 // Otherwise the _base will indicate which subset of pointers is affected,
1204 // and the class will be inherited from.
1205 class TypePtr : public Type {
1206 friend class TypeNarrowPtr;
1207 friend class Type;
1208 protected:
1209 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1210
1211 public:
1212 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1213
1214 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1215 //
1216 // FlatInArray defines the following Boolean Lattice structure
1217 //
1218 // TopFlat
1219 // / \
1220 // Flat NotFlat
1221 // \ /
1222 // MaybeFlat
1223 //
1224 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1225 enum FlatInArray {
1226 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1227 Flat, // An instance is always flat in an array.
1228 NotFlat, // An instance is never flat in an array.
1229 MaybeFlat, // We don't know whether an instance is flat in an array.
1230 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1231 };
1232 protected:
1233 TypePtr(TYPES t, PTR ptr, Offset offset,
1234 const TypePtr* speculative = nullptr,
1235 int inline_depth = InlineDepthBottom) :
1236 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1237 _ptr(ptr) {}
1238 static const PTR ptr_meet[lastPTR][lastPTR];
1239 static const PTR ptr_dual[lastPTR];
1240 static const char * const ptr_msg[lastPTR];
1241
1242 static const FlatInArray flat_in_array_dual[Uninitialized];
1243 static const char* const flat_in_array_msg[Uninitialized];
1244
1245 enum {
1246 InlineDepthBottom = INT_MAX,
1247 InlineDepthTop = -InlineDepthBottom
1248 };
1249
1250 // Extra type information profiling gave us. We propagate it the
1251 // same way the rest of the type info is propagated. If we want to
1252 // use it, then we have to emit a guard: this part of the type is
1253 // not something we know but something we speculate about the type.
1254 const TypePtr* _speculative;
1255 // For speculative types, we record at what inlining depth the
1256 // profiling point that provided the data is. We want to favor
1257 // profile data coming from outer scopes which are likely better for
1258 // the current compilation.
1259 int _inline_depth;
1260
1261 // utility methods to work on the speculative part of the type
1262 const TypePtr* dual_speculative() const;
1263 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1264 bool eq_speculative(const TypePtr* other) const;
1265 int hash_speculative() const;
1266 const TypePtr* add_offset_speculative(intptr_t offset) const;
1267 const TypePtr* with_offset_speculative(intptr_t offset) const;
1268
1269 // utility methods to work on the inline depth of the type
1270 int dual_inline_depth() const;
1271 int meet_inline_depth(int depth) const;
1272
1273 #ifndef PRODUCT
1274 void dump_speculative(outputStream* st) const;
1275 void dump_inline_depth(outputStream* st) const;
1276 void dump_offset(outputStream* st) const;
1277 #endif
1278
1279 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1280 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1281 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1282 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1283 // encountered so the right logic specific to klasses or oops can be executed.,
1284 enum MeetResult {
1285 QUICK,
1286 UNLOADED,
1287 SUBTYPE,
1288 NOT_SUBTYPE,
1289 LCA
1290 };
1291 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1292 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1293 protected:
1294 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1295
1296 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1297 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1298
1299 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1300 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1301 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1302 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1303 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1304 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1305 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1306 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1307 public:
1308 const Offset _offset; // Offset into oop, with TOP & BOT
1309 const PTR _ptr; // Pointer equivalence class
1310
1311 int offset() const { return _offset.get(); }
1312 PTR ptr() const { return _ptr; }
1313
1314 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1315 const TypePtr* speculative = nullptr,
1316 int inline_depth = InlineDepthBottom);
1317
1318 // Return a 'ptr' version of this type
1319 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1320
1321 virtual intptr_t get_con() const;
1322
1323 Type::Offset xadd_offset(intptr_t offset) const;
1324 virtual const TypePtr* add_offset(intptr_t offset) const;
1325 virtual const TypePtr* with_offset(intptr_t offset) const;
1326 virtual int flat_offset() const { return offset(); }
1327 virtual bool eq(const Type *t) const;
1328 virtual uint hash() const; // Type specific hashing
1329
1330 virtual bool singleton(void) const; // TRUE if type is a singleton
1331 virtual bool empty(void) const; // TRUE if type is vacuous
1332 virtual const Type *xmeet( const Type *t ) const;
1333 virtual const Type *xmeet_helper( const Type *t ) const;
1334 Offset meet_offset(int offset) const;
1335 Offset dual_offset() const;
1336 virtual const Type *xdual() const; // Compute dual right now.
1337
1338 // meet, dual and join over pointer equivalence sets
1339 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1340 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1341
1342 // This is textually confusing unless one recalls that
1343 // join(t) == dual()->meet(t->dual())->dual().
1344 PTR join_ptr( const PTR in_ptr ) const {
1345 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1346 }
1347
1348 // Speculative type helper methods.
1349 virtual const TypePtr* speculative() const { return _speculative; }
1350 int inline_depth() const { return _inline_depth; }
1351 virtual ciKlass* speculative_type() const;
1352 virtual ciKlass* speculative_type_not_null() const;
1353 virtual bool speculative_maybe_null() const;
1354 virtual bool speculative_always_null() const;
1355 virtual const TypePtr* remove_speculative() const;
1356 virtual const Type* cleanup_speculative() const;
1357 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1358 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1359 virtual const TypePtr* with_inline_depth(int depth) const;
1360
1361 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1362
1363 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1364
1365 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1366 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1367 FlatInArray old_flat_in_array) const;
1368
1369 virtual bool can_be_inline_type() const { return false; }
1370 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1371 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1372 virtual FlatInArray flat_in_array() const { return NotFlat; }
1373 virtual bool is_flat() const { return false; }
1374 virtual bool is_not_flat() const { return false; }
1375 virtual bool is_null_free() const { return false; }
1376 virtual bool is_not_null_free() const { return false; }
1377 virtual bool is_atomic() const { return false; }
1378
1379 // Tests for relation to centerline of type lattice:
1380 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1381 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1382 // Convenience common pre-built types.
1383 static const TypePtr *NULL_PTR;
1384 static const TypePtr *NOTNULL;
1385 static const TypePtr *BOTTOM;
1386 #ifndef PRODUCT
1387 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1388 #endif
1389 };
1390
1391 //------------------------------TypeRawPtr-------------------------------------
1392 // Class of raw pointers, pointers to things other than Oops. Examples
1393 // include the stack pointer, top of heap, card-marking area, handles, etc.
1394 class TypeRawPtr : public TypePtr {
1395 protected:
1396 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1397 public:
1398 virtual bool eq( const Type *t ) const;
1399 virtual uint hash() const; // Type specific hashing
1400
1401 const address _bits; // Constant value, if applicable
1402
1403 static const TypeRawPtr *make( PTR ptr );
1404 static const TypeRawPtr *make( address bits );
1405
1406 // Return a 'ptr' version of this type
1407 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1408
1409 virtual intptr_t get_con() const;
1410
1411 virtual const TypePtr* add_offset(intptr_t offset) const;
1412 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1413
1414 virtual const Type *xmeet( const Type *t ) const;
1415 virtual const Type *xdual() const; // Compute dual right now.
1416 // Convenience common pre-built types.
1417 static const TypeRawPtr *BOTTOM;
1418 static const TypeRawPtr *NOTNULL;
1419 #ifndef PRODUCT
1420 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1421 #endif
1422 };
1423
1424 //------------------------------TypeOopPtr-------------------------------------
1425 // Some kind of oop (Java pointer), either instance or array.
1426 class TypeOopPtr : public TypePtr {
1427 friend class TypeAry;
1428 friend class TypePtr;
1429 friend class TypeInstPtr;
1430 friend class TypeAryPtr;
1431 protected:
1432 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1433 const TypePtr* speculative, int inline_depth);
1434 public:
1435 virtual bool eq( const Type *t ) const;
1436 virtual uint hash() const; // Type specific hashing
1437 virtual bool singleton(void) const; // TRUE if type is a singleton
1438 enum {
1439 InstanceTop = -1, // undefined instance
1440 InstanceBot = 0 // any possible instance
1441 };
1442 protected:
1443
1444 // Oop is null, unless this is a constant oop.
1445 ciObject* _const_oop; // Constant oop
1446 // If _klass is null, then so is _sig. This is an unloaded klass.
1447 ciKlass* _klass; // Klass object
1448
1449 const TypeInterfaces* _interfaces;
1450
1451 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1452 bool _klass_is_exact;
1453 bool _is_ptr_to_narrowoop;
1454 bool _is_ptr_to_narrowklass;
1455 bool _is_ptr_to_boxed_value;
1456 bool _is_ptr_to_strict_final_field;
1457
1458 // If not InstanceTop or InstanceBot, indicates that this is
1459 // a particular instance of this type which is distinct.
1460 // This is the node index of the allocation node creating this instance.
1461 int _instance_id;
1462
1463 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1464
1465 int dual_instance_id() const;
1466 int meet_instance_id(int uid) const;
1467
1468 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1469
1470 // Do not allow interface-vs.-noninterface joins to collapse to top.
1471 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1472
1473 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1474 virtual ciKlass* klass() const { return _klass; }
1475
1476 #ifndef PRODUCT
1477 void dump_instance_id(outputStream* st) const;
1478 #endif // PRODUCT
1479
1480 public:
1481
1482 bool is_java_subtype_of(const TypeOopPtr* other) const {
1483 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1484 }
1485
1486 bool is_same_java_type_as(const TypePtr* other) const {
1487 return is_same_java_type_as_helper(other->is_oopptr());
1488 }
1489
1490 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1491 ShouldNotReachHere(); return false;
1492 }
1493
1494 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1495 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1496 }
1497 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1498 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1499
1500
1501 // Creates a type given a klass. Correctly handles multi-dimensional arrays
1502 // Respects UseUniqueSubclasses.
1503 // If the klass is final, the resulting type will be exact.
1504 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1505 return make_from_klass_common(klass, true, false, interface_handling);
1506 }
1507 // Same as before, but will produce an exact type, even if
1508 // the klass is not final, as long as it has exactly one implementation.
1509 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1510 return make_from_klass_common(klass, true, true, interface_handling);
1511 }
1512 // Same as before, but does not respects UseUniqueSubclasses.
1513 // Use this only for creating array element types.
1514 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1515 return make_from_klass_common(klass, false, false, interface_handling);
1516 }
1517 // Creates a singleton type given an object.
1518 // If the object cannot be rendered as a constant,
1519 // may return a non-singleton type.
1520 // If require_constant, produce a null if a singleton is not possible.
1521 static const TypeOopPtr* make_from_constant(ciObject* o,
1522 bool require_constant = false);
1523
1524 // Make a generic (unclassed) pointer to an oop.
1525 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1526 const TypePtr* speculative = nullptr,
1527 int inline_depth = InlineDepthBottom);
1528
1529 ciObject* const_oop() const { return _const_oop; }
1530 // Exact klass, possibly an interface or an array of interface
1531 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1532 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1533
1534 virtual bool is_loaded() const { return klass()->is_loaded(); }
1535 virtual bool klass_is_exact() const { return _klass_is_exact; }
1536
1537 // Returns true if this pointer points at memory which contains a
1538 // compressed oop references.
1539 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1540 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1541 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1542 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1543 bool is_known_instance() const { return _instance_id > 0; }
1544 int instance_id() const { return _instance_id; }
1545 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1546
1547 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1548 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1549
1550 virtual intptr_t get_con() const;
1551
1552 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1553
1554 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1555
1556 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1557
1558 // corresponding pointer to klass, for a given instance
1559 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1560
1561 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1562 virtual const TypePtr* add_offset(intptr_t offset) const;
1563
1564 // Speculative type helper methods.
1565 virtual const TypeOopPtr* remove_speculative() const;
1566 virtual const Type* cleanup_speculative() const;
1567 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1568 virtual const TypePtr* with_inline_depth(int depth) const;
1569
1570 virtual const TypePtr* with_instance_id(int instance_id) const;
1571
1572 virtual const Type *xdual() const; // Compute dual right now.
1573 // the core of the computation of the meet for TypeOopPtr and for its subclasses
1574 virtual const Type *xmeet_helper(const Type *t) const;
1575
1576 // Convenience common pre-built type.
1577 static const TypeOopPtr *BOTTOM;
1578 #ifndef PRODUCT
1579 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1580 #endif
1581 private:
1582 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1583 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1584 }
1585
1586 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1587 ShouldNotReachHere(); return false;
1588 }
1589
1590 virtual const TypeInterfaces* interfaces() const {
1591 return _interfaces;
1592 };
1593
1594 const TypeOopPtr* is_reference_type(const Type* other) const {
1595 return other->isa_oopptr();
1596 }
1597
1598 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1599 return other->isa_aryptr();
1600 }
1601
1602 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1603 return other->isa_instptr();
1604 }
1605 };
1606
1607 //------------------------------TypeInstPtr------------------------------------
1608 // Class of Java object pointers, pointing either to non-array Java instances
1609 // or to a Klass* (including array klasses).
1610 class TypeInstPtr : public TypeOopPtr {
1611 // Can this instance be in a flat array?
1612 FlatInArray _flat_in_array;
1613
1614 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1615 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1616 int inline_depth);
1617 virtual bool eq( const Type *t ) const;
1618 virtual uint hash() const; // Type specific hashing
1619 ciKlass* exact_klass_helper() const;
1620
1621 public:
1622
1623 // Instance klass, ignoring any interface
1624 ciInstanceKlass* instance_klass() const {
1625 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1626 return klass()->as_instance_klass();
1627 }
1628
1629 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1630 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1631 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1632
1633 // Make a pointer to a constant oop.
1634 static const TypeInstPtr *make(ciObject* o) {
1635 ciKlass* k = o->klass();
1636 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1637 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1638 }
1639 // Make a pointer to a constant oop with offset.
1640 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1641 ciKlass* k = o->klass();
1642 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1643 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1644 }
1645
1646 // Make a pointer to some value of type klass.
1647 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1648 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1649 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1650 }
1651
1652 // Make a pointer to some non-polymorphic value of exactly type klass.
1653 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1654 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1655 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1656 }
1657
1658 // Make a pointer to some value of type klass with offset.
1659 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1660 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1661 return make(ptr, klass, interfaces, false, nullptr, offset);
1662 }
1663
1664 // Make a pointer to an oop.
1665 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1666 FlatInArray flat_in_array = Uninitialized,
1667 int instance_id = InstanceBot,
1668 const TypePtr* speculative = nullptr,
1669 int inline_depth = InlineDepthBottom);
1670
1671 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1672 FlatInArray flat_in_array = Uninitialized) {
1673 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1674 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1675 }
1676
1677 /** Create constant type for a constant boxed value */
1678 const Type* get_const_boxed_value() const;
1679
1680 // If this is a java.lang.Class constant, return the type for it or null.
1681 // Pass to Type::get_const_type to turn it to a type, which will usually
1682 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1683 ciType* java_mirror_type() const;
1684
1685 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1686
1687 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1688
1689 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1690
1691 virtual bool empty() const;
1692 virtual const TypePtr* add_offset(intptr_t offset) const;
1693 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1694
1695 // Speculative type helper methods.
1696 virtual const TypeInstPtr* remove_speculative() const;
1697 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1698 virtual const TypePtr* with_inline_depth(int depth) const;
1699 virtual const TypePtr* with_instance_id(int instance_id) const;
1700
1701 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1702 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1703 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1704
1705 FlatInArray dual_flat_in_array() const {
1706 return flat_in_array_dual[_flat_in_array];
1707 }
1708
1709 // the core of the computation of the meet of 2 types
1710 virtual const Type *xmeet_helper(const Type *t) const;
1711 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1712 virtual const Type *xdual() const; // Compute dual right now.
1713
1714 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1715
1716 virtual bool can_be_inline_array() const;
1717
1718 // Convenience common pre-built types.
1719 static const TypeInstPtr *NOTNULL;
1720 static const TypeInstPtr *BOTTOM;
1721 static const TypeInstPtr *MIRROR;
1722 static const TypeInstPtr *MARK;
1723 static const TypeInstPtr *KLASS;
1724 #ifndef PRODUCT
1725 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1726 #endif
1727
1728 private:
1729 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1730
1731 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1732 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1733 }
1734
1735 };
1736
1737 //------------------------------TypeAryPtr-------------------------------------
1738 // Class of Java array pointers
1739 class TypeAryPtr : public TypeOopPtr {
1740 friend class Type;
1741 friend class TypePtr;
1742 friend class TypeInstPtr;
1743 friend class TypeInterfaces;
1744
1745 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1746 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1747 const TypePtr* speculative, int inline_depth)
1748 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1749 _ary(ary),
1750 _is_autobox_cache(is_autobox_cache),
1751 _field_offset(field_offset)
1752 {
1753 int dummy;
1754 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1755
1756 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1757 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1758 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1759 _is_ptr_to_narrowoop = true;
1760 }
1761
1762 }
1763 virtual bool eq( const Type *t ) const;
1764 virtual uint hash() const; // Type specific hashing
1765 const TypeAry *_ary; // Array we point into
1766 const bool _is_autobox_cache;
1767 // For flat inline type arrays, each field of the inline type in
1768 // the array has its own memory slice so we need to keep track of
1769 // which field is accessed
1770 const Offset _field_offset;
1771 Offset meet_field_offset(const Type::Offset offset) const;
1772 Offset dual_field_offset() const;
1773
1774 ciKlass* compute_klass() const;
1775
1776 // A pointer to delay allocation to Type::Initialize_shared()
1777
1778 static const TypeInterfaces* _array_interfaces;
1779 ciKlass* exact_klass_helper() const;
1780 // Only guaranteed non null for array of basic types
1781 ciKlass* klass() const;
1782
1783 public:
1784
1785 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1786 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1787 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1788
1789 // returns base element type, an instance klass (and not interface) for object arrays
1790 const Type* base_element_type(int& dims) const;
1791
1792 // Accessors
1793 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1794
1795 const TypeAry* ary() const { return _ary; }
1796 const Type* elem() const { return _ary->_elem; }
1797 const TypeInt* size() const { return _ary->_size; }
1798 bool is_stable() const { return _ary->_stable; }
1799
1800 // Inline type array properties
1801 bool is_flat() const { return _ary->_flat; }
1802 bool is_not_flat() const { return _ary->_not_flat; }
1803 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1804 bool is_not_null_free() const { return _ary->_not_null_free; }
1805 bool is_atomic() const { return _ary->_atomic; }
1806
1807 bool is_autobox_cache() const { return _is_autobox_cache; }
1808
1809 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1810 Offset field_offset = Offset::bottom,
1811 int instance_id = InstanceBot,
1812 const TypePtr* speculative = nullptr,
1813 int inline_depth = InlineDepthBottom);
1814 // Constant pointer to array
1815 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1816 Offset field_offset = Offset::bottom,
1817 int instance_id = InstanceBot,
1818 const TypePtr* speculative = nullptr,
1819 int inline_depth = InlineDepthBottom,
1820 bool is_autobox_cache = false);
1821
1822 // Return a 'ptr' version of this type
1823 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1824
1825 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1826
1827 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1828
1829 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1830 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1831
1832 virtual bool empty(void) const; // TRUE if type is vacuous
1833 virtual const TypePtr *add_offset( intptr_t offset ) const;
1834 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1835 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1836
1837 // Speculative type helper methods.
1838 virtual const TypeAryPtr* remove_speculative() const;
1839 virtual const Type* cleanup_speculative() const;
1840 virtual const TypePtr* with_inline_depth(int depth) const;
1841 virtual const TypePtr* with_instance_id(int instance_id) const;
1842
1843 // the core of the computation of the meet of 2 types
1844 virtual const Type *xmeet_helper(const Type *t) const;
1845 virtual const Type *xdual() const; // Compute dual right now.
1846
1847 // Inline type array properties
1848 const TypeAryPtr* cast_to_flat(bool flat) const;
1849 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1850 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1851 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1852 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1853 jint flat_layout_helper() const;
1854 int flat_elem_size() const;
1855 int flat_log_elem_size() const;
1856
1857 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1858 int stable_dimension() const;
1859
1860 const TypeAryPtr* cast_to_autobox_cache() const;
1861
1862 static jint max_array_length(BasicType etype);
1863
1864 int flat_offset() const;
1865 const Offset field_offset() const { return _field_offset; }
1866 const TypeAryPtr* with_field_offset(int offset) const;
1867 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1868
1869 virtual bool can_be_inline_type() const { return false; }
1870 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1871
1872 virtual bool can_be_inline_array() const;
1873
1874 // Convenience common pre-built types.
1875 static const TypeAryPtr* BOTTOM;
1876 static const TypeAryPtr *RANGE;
1877 static const TypeAryPtr *OOPS;
1878 static const TypeAryPtr *NARROWOOPS;
1879 static const TypeAryPtr *BYTES;
1880 static const TypeAryPtr *SHORTS;
1881 static const TypeAryPtr *CHARS;
1882 static const TypeAryPtr *INTS;
1883 static const TypeAryPtr *LONGS;
1884 static const TypeAryPtr *FLOATS;
1885 static const TypeAryPtr *DOUBLES;
1886 static const TypeAryPtr *INLINES;
1887 // selects one of the above:
1888 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1889 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1890 return _array_body_type[elem];
1891 }
1892 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1893 // sharpen the type of an int which is used as an array size
1894 #ifndef PRODUCT
1895 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1896 #endif
1897 private:
1898 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1899 };
1900
1901 //------------------------------TypeMetadataPtr-------------------------------------
1902 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1903 class TypeMetadataPtr : public TypePtr {
1904 protected:
1905 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1906 // Do not allow interface-vs.-noninterface joins to collapse to top.
1907 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1908 public:
1909 virtual bool eq( const Type *t ) const;
1910 virtual uint hash() const; // Type specific hashing
1911 virtual bool singleton(void) const; // TRUE if type is a singleton
1912
1913 private:
1914 ciMetadata* _metadata;
1915
1916 public:
1917 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1918
1919 static const TypeMetadataPtr* make(ciMethod* m);
1920 static const TypeMetadataPtr* make(ciMethodData* m);
1921
1922 ciMetadata* metadata() const { return _metadata; }
1923
1924 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1925
1926 virtual const TypePtr *add_offset( intptr_t offset ) const;
1927
1928 virtual const Type *xmeet( const Type *t ) const;
1929 virtual const Type *xdual() const; // Compute dual right now.
1930
1931 virtual intptr_t get_con() const;
1932
1933 // Convenience common pre-built types.
1934 static const TypeMetadataPtr *BOTTOM;
1935
1936 #ifndef PRODUCT
1937 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1938 #endif
1939 };
1940
1941 //------------------------------TypeKlassPtr-----------------------------------
1942 // Class of Java Klass pointers
1943 class TypeKlassPtr : public TypePtr {
1944 friend class TypeInstKlassPtr;
1945 friend class TypeAryKlassPtr;
1946 friend class TypePtr;
1947 protected:
1948 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1949
1950 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1951
1952 public:
1953 virtual bool eq( const Type *t ) const;
1954 virtual uint hash() const;
1955 virtual bool singleton(void) const; // TRUE if type is a singleton
1956
1957 protected:
1958
1959 ciKlass* _klass;
1960 const TypeInterfaces* _interfaces;
1961 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1962 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1963 virtual ciKlass* exact_klass_helper() const;
1964 virtual ciKlass* klass() const { return _klass; }
1965
1966 public:
1967
1968 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1969 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1970 }
1971 bool is_same_java_type_as(const TypePtr* other) const {
1972 return is_same_java_type_as_helper(other->is_klassptr());
1973 }
1974
1975 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1976 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1977 }
1978 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1979 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1980 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1981
1982 // Exact klass, possibly an interface or an array of interface
1983 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1984 virtual bool klass_is_exact() const { return _ptr == Constant; }
1985
1986 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1987
1988 virtual bool is_loaded() const { return _klass->is_loaded(); }
1989
1990 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1991
1992 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1993
1994 // corresponding pointer to instance, for a given class
1995 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1996
1997 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1998 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1999 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
2000
2001 virtual intptr_t get_con() const;
2002
2003 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
2004
2005 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
2006
2007 virtual const TypeKlassPtr* try_improve() const { return this; }
2008
2009 private:
2010 virtual bool is_meet_subtype_of(const TypePtr* other) const {
2011 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
2012 }
2013
2014 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
2015 ShouldNotReachHere(); return false;
2016 }
2017
2018 virtual const TypeInterfaces* interfaces() const {
2019 return _interfaces;
2020 };
2021
2022 const TypeKlassPtr* is_reference_type(const Type* other) const {
2023 return other->isa_klassptr();
2024 }
2025
2026 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
2027 return other->isa_aryklassptr();
2028 }
2029
2030 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2031 return other->isa_instklassptr();
2032 }
2033 };
2034
2035 // Instance klass pointer, mirrors TypeInstPtr
2036 class TypeInstKlassPtr : public TypeKlassPtr {
2037 // Can an instance of this class be in a flat array?
2038 const FlatInArray _flat_in_array;
2039
2040 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2041 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2042 assert(flat_in_array != Uninitialized, "must be set now");
2043 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2044 }
2045
2046 virtual bool must_be_exact() const;
2047
2048 public:
2049 // Instance klass ignoring any interface
2050 ciInstanceKlass* instance_klass() const {
2051 assert(!klass()->is_interface(), "");
2052 return klass()->as_instance_klass();
2053 }
2054
2055 bool might_be_an_array() const;
2056
2057 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2058 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2059 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2060
2061 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2062
2063 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2064 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2065 return make(TypePtr::Constant, k, interfaces, Offset(0));
2066 }
2067
2068 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2069 FlatInArray flat_in_array = Uninitialized);
2070
2071 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2072 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2073 return make(ptr, k, interfaces, offset, flat_in_array);
2074 }
2075
2076 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2077
2078 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2079
2080 // corresponding pointer to instance, for a given class
2081 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2082 virtual uint hash() const;
2083 virtual bool eq(const Type *t) const;
2084
2085
2086 virtual bool empty() const;
2087 virtual const TypePtr *add_offset( intptr_t offset ) const;
2088 virtual const Type *xmeet( const Type *t ) const;
2089 virtual const Type *xdual() const;
2090 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2091
2092 virtual const TypeKlassPtr* try_improve() const;
2093
2094 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2095
2096 FlatInArray dual_flat_in_array() const {
2097 return flat_in_array_dual[_flat_in_array];
2098 }
2099
2100 virtual bool can_be_inline_array() const;
2101
2102 // Convenience common pre-built types.
2103 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2104 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2105
2106 #ifndef PRODUCT
2107 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2108 #endif // PRODUCT
2109
2110 private:
2111 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2112 };
2113
2114 // Array klass pointer, mirrors TypeAryPtr
2115 class TypeAryKlassPtr : public TypeKlassPtr {
2116 friend class TypeInstKlassPtr;
2117 friend class Type;
2118 friend class TypePtr;
2119
2120 const Type *_elem;
2121 const bool _not_flat; // Array is never flat
2122 const bool _not_null_free; // Array is never null-free
2123 const bool _flat;
2124 const bool _null_free;
2125 const bool _atomic;
2126 const bool _refined_type;
2127
2128 static const TypeInterfaces* _array_interfaces;
2129 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2130 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2131 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2132 }
2133
2134 virtual ciKlass* exact_klass_helper() const;
2135 // Only guaranteed non null for array of basic types
2136 virtual ciKlass* klass() const;
2137
2138 virtual bool must_be_exact() const;
2139
2140 bool dual_flat() const {
2141 return _flat;
2142 }
2143
2144 bool meet_flat(bool other) const {
2145 return _flat && other;
2146 }
2147
2148 bool dual_null_free() const {
2149 return _null_free;
2150 }
2151
2152 bool meet_null_free(bool other) const {
2153 return _null_free && other;
2154 }
2155
2156 bool dual_atomic() const {
2157 return _atomic;
2158 }
2159
2160 bool meet_atomic(bool other) const {
2161 return _atomic && other;
2162 }
2163
2164 public:
2165
2166 // returns base element type, an instance klass (and not interface) for object arrays
2167 const Type* base_element_type(int& dims) const;
2168
2169 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2170
2171 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2172 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2173 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2174
2175 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2176
2177 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2178 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2179
2180 const TypeAryKlassPtr* cast_to_non_refined() const;
2181 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2182
2183 const Type *elem() const { return _elem; }
2184
2185 virtual bool eq(const Type *t) const;
2186 virtual uint hash() const; // Type specific hashing
2187
2188 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2189
2190 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2191
2192 // corresponding pointer to instance, for a given class
2193 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2194
2195 virtual const TypePtr *add_offset( intptr_t offset ) const;
2196 virtual const Type *xmeet( const Type *t ) const;
2197 virtual const Type *xdual() const; // Compute dual right now.
2198
2199 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2200
2201 virtual bool empty(void) const {
2202 return TypeKlassPtr::empty() || _elem->empty();
2203 }
2204
2205 bool is_flat() const { return _flat; }
2206 bool is_not_flat() const { return _not_flat; }
2207 bool is_null_free() const { return _null_free; }
2208 bool is_not_null_free() const { return _not_null_free; }
2209 bool is_atomic() const { return _atomic; }
2210 bool is_refined_type() const { return _refined_type; }
2211 virtual bool can_be_inline_array() const;
2212
2213 #ifndef PRODUCT
2214 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2215 #endif
2216 private:
2217 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2218 };
2219
2220 class TypeNarrowPtr : public Type {
2221 protected:
2222 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2223
2224 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2225 _ptrtype(ptrtype) {
2226 assert(ptrtype->offset() == 0 ||
2227 ptrtype->offset() == OffsetBot ||
2228 ptrtype->offset() == OffsetTop, "no real offsets");
2229 }
2230
2231 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2232 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2233 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2234 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2235 // Do not allow interface-vs.-noninterface joins to collapse to top.
2236 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2237 public:
2238 virtual bool eq( const Type *t ) const;
2239 virtual uint hash() const; // Type specific hashing
2240 virtual bool singleton(void) const; // TRUE if type is a singleton
2241
2242 virtual const Type *xmeet( const Type *t ) const;
2243 virtual const Type *xdual() const; // Compute dual right now.
2244
2245 virtual intptr_t get_con() const;
2246
2247 virtual bool empty(void) const; // TRUE if type is vacuous
2248
2249 // returns the equivalent ptr type for this compressed pointer
2250 const TypePtr *get_ptrtype() const {
2251 return _ptrtype;
2252 }
2253
2254 bool is_known_instance() const {
2255 return _ptrtype->is_known_instance();
2256 }
2257
2258 #ifndef PRODUCT
2259 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2260 #endif
2261 };
2262
2263 //------------------------------TypeNarrowOop----------------------------------
2264 // A compressed reference to some kind of Oop. This type wraps around
2265 // a preexisting TypeOopPtr and forwards most of it's operations to
2266 // the underlying type. It's only real purpose is to track the
2267 // oopness of the compressed oop value when we expose the conversion
2268 // between the normal and the compressed form.
2269 class TypeNarrowOop : public TypeNarrowPtr {
2270 protected:
2271 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2272 }
2273
2274 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2275 return t->isa_narrowoop();
2276 }
2277
2278 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2279 return t->is_narrowoop();
2280 }
2281
2282 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2283 return new TypeNarrowOop(t);
2284 }
2285
2286 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2287 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2288 }
2289
2290 public:
2291
2292 static const TypeNarrowOop *make( const TypePtr* type);
2293
2294 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2295 return make(TypeOopPtr::make_from_constant(con, require_constant));
2296 }
2297
2298 static const TypeNarrowOop *BOTTOM;
2299 static const TypeNarrowOop *NULL_PTR;
2300
2301 virtual const TypeNarrowOop* remove_speculative() const;
2302 virtual const Type* cleanup_speculative() const;
2303
2304 #ifndef PRODUCT
2305 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2306 #endif
2307 };
2308
2309 //------------------------------TypeNarrowKlass----------------------------------
2310 // A compressed reference to klass pointer. This type wraps around a
2311 // preexisting TypeKlassPtr and forwards most of it's operations to
2312 // the underlying type.
2313 class TypeNarrowKlass : public TypeNarrowPtr {
2314 protected:
2315 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2316 }
2317
2318 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2319 return t->isa_narrowklass();
2320 }
2321
2322 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2323 return t->is_narrowklass();
2324 }
2325
2326 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2327 return new TypeNarrowKlass(t);
2328 }
2329
2330 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2331 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2332 }
2333
2334 public:
2335 static const TypeNarrowKlass *make( const TypePtr* type);
2336
2337 // static const TypeNarrowKlass *BOTTOM;
2338 static const TypeNarrowKlass *NULL_PTR;
2339
2340 #ifndef PRODUCT
2341 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2342 #endif
2343 };
2344
2345 //------------------------------TypeFunc---------------------------------------
2346 // Class of Array Types
2347 class TypeFunc : public Type {
2348 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2349 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2350 virtual bool eq( const Type *t ) const;
2351 virtual uint hash() const; // Type specific hashing
2352 virtual bool singleton(void) const; // TRUE if type is a singleton
2353 virtual bool empty(void) const; // TRUE if type is vacuous
2354
2355 // Domains of inputs: inline type arguments are not passed by
2356 // reference, instead each field of the inline type is passed as an
2357 // argument. We maintain 2 views of the argument list here: one
2358 // based on the signature (with an inline type argument as a single
2359 // slot), one based on the actual calling convention (with a value
2360 // type argument as a list of its fields).
2361 const TypeTuple* const _domain_sig;
2362 const TypeTuple* const _domain_cc;
2363 // Range of results. Similar to domains: an inline type result can be
2364 // returned in registers in which case range_cc lists all fields and
2365 // is the actual calling convention.
2366 const TypeTuple* const _range_sig;
2367 const TypeTuple* const _range_cc;
2368
2369 public:
2370 // Constants are shared among ADLC and VM
2371 enum { Control = AdlcVMDeps::Control,
2372 I_O = AdlcVMDeps::I_O,
2373 Memory = AdlcVMDeps::Memory,
2374 FramePtr = AdlcVMDeps::FramePtr,
2375 ReturnAdr = AdlcVMDeps::ReturnAdr,
2376 Parms = AdlcVMDeps::Parms
2377 };
2378
2379
2380 // Accessors:
2381 const TypeTuple* domain_sig() const { return _domain_sig; }
2382 const TypeTuple* domain_cc() const { return _domain_cc; }
2383 const TypeTuple* range_sig() const { return _range_sig; }
2384 const TypeTuple* range_cc() const { return _range_cc; }
2385
2386 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2387 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2388 const TypeTuple* range_sig, const TypeTuple* range_cc);
2389 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2390
2391 virtual const Type *xmeet( const Type *t ) const;
2392 virtual const Type *xdual() const; // Compute dual right now.
2393
2394 BasicType return_type() const;
2395
2396 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2397
2398 #ifndef PRODUCT
2399 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2400 #endif
2401 // Convenience common pre-built types.
2402 };
2403
2404 //------------------------------accessors--------------------------------------
2405 inline bool Type::is_ptr_to_narrowoop() const {
2406 #ifdef _LP64
2407 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2408 #else
2409 return false;
2410 #endif
2411 }
2412
2413 inline bool Type::is_ptr_to_narrowklass() const {
2414 #ifdef _LP64
2415 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2416 #else
2417 return false;
2418 #endif
2419 }
2420
2421 inline float Type::getf() const {
2422 assert( _base == FloatCon, "Not a FloatCon" );
2423 return ((TypeF*)this)->_f;
2424 }
2425
2426 inline short Type::geth() const {
2427 assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2428 return ((TypeH*)this)->_f;
2429 }
2430
2431 inline double Type::getd() const {
2432 assert( _base == DoubleCon, "Not a DoubleCon" );
2433 return ((TypeD*)this)->_d;
2434 }
2435
2436 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2437 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2438 return (TypeInteger*)this;
2439 }
2440
2441 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2442 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2443 }
2444
2445 inline const TypeInt *Type::is_int() const {
2446 assert( _base == Int, "Not an Int" );
2447 return (TypeInt*)this;
2448 }
2449
2450 inline const TypeInt *Type::isa_int() const {
2451 return ( _base == Int ? (TypeInt*)this : nullptr);
2452 }
2453
2454 inline const TypeLong *Type::is_long() const {
2455 assert( _base == Long, "Not a Long" );
2456 return (TypeLong*)this;
2457 }
2458
2459 inline const TypeLong *Type::isa_long() const {
2460 return ( _base == Long ? (TypeLong*)this : nullptr);
2461 }
2462
2463 inline const TypeH* Type::isa_half_float() const {
2464 return ((_base == HalfFloatTop ||
2465 _base == HalfFloatCon ||
2466 _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2467 }
2468
2469 inline const TypeH* Type::is_half_float_constant() const {
2470 assert( _base == HalfFloatCon, "Not a HalfFloat" );
2471 return (TypeH*)this;
2472 }
2473
2474 inline const TypeH* Type::isa_half_float_constant() const {
2475 return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2476 }
2477
2478 inline const TypeF *Type::isa_float() const {
2479 return ((_base == FloatTop ||
2480 _base == FloatCon ||
2481 _base == FloatBot) ? (TypeF*)this : nullptr);
2482 }
2483
2484 inline const TypeF *Type::is_float_constant() const {
2485 assert( _base == FloatCon, "Not a Float" );
2486 return (TypeF*)this;
2487 }
2488
2489 inline const TypeF *Type::isa_float_constant() const {
2490 return ( _base == FloatCon ? (TypeF*)this : nullptr);
2491 }
2492
2493 inline const TypeD *Type::isa_double() const {
2494 return ((_base == DoubleTop ||
2495 _base == DoubleCon ||
2496 _base == DoubleBot) ? (TypeD*)this : nullptr);
2497 }
2498
2499 inline const TypeD *Type::is_double_constant() const {
2500 assert( _base == DoubleCon, "Not a Double" );
2501 return (TypeD*)this;
2502 }
2503
2504 inline const TypeD *Type::isa_double_constant() const {
2505 return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2506 }
2507
2508 inline const TypeTuple *Type::is_tuple() const {
2509 assert( _base == Tuple, "Not a Tuple" );
2510 return (TypeTuple*)this;
2511 }
2512
2513 inline const TypeAry *Type::is_ary() const {
2514 assert( _base == Array , "Not an Array" );
2515 return (TypeAry*)this;
2516 }
2517
2518 inline const TypeAry *Type::isa_ary() const {
2519 return ((_base == Array) ? (TypeAry*)this : nullptr);
2520 }
2521
2522 inline const TypeVectMask *Type::is_vectmask() const {
2523 assert( _base == VectorMask, "Not a Vector Mask" );
2524 return (TypeVectMask*)this;
2525 }
2526
2527 inline const TypeVectMask *Type::isa_vectmask() const {
2528 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2529 }
2530
2531 inline const TypeVect *Type::is_vect() const {
2532 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2533 return (TypeVect*)this;
2534 }
2535
2536 inline const TypeVect *Type::isa_vect() const {
2537 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2538 }
2539
2540 inline const TypePtr *Type::is_ptr() const {
2541 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2542 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2543 return (TypePtr*)this;
2544 }
2545
2546 inline const TypePtr *Type::isa_ptr() const {
2547 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2548 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2549 }
2550
2551 inline const TypeOopPtr *Type::is_oopptr() const {
2552 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2553 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2554 return (TypeOopPtr*)this;
2555 }
2556
2557 inline const TypeOopPtr *Type::isa_oopptr() const {
2558 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2559 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2560 }
2561
2562 inline const TypeRawPtr *Type::isa_rawptr() const {
2563 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2564 }
2565
2566 inline const TypeRawPtr *Type::is_rawptr() const {
2567 assert( _base == RawPtr, "Not a raw pointer" );
2568 return (TypeRawPtr*)this;
2569 }
2570
2571 inline const TypeInstPtr *Type::isa_instptr() const {
2572 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2573 }
2574
2575 inline const TypeInstPtr *Type::is_instptr() const {
2576 assert( _base == InstPtr, "Not an object pointer" );
2577 return (TypeInstPtr*)this;
2578 }
2579
2580 inline const TypeAryPtr *Type::isa_aryptr() const {
2581 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2582 }
2583
2584 inline const TypeAryPtr *Type::is_aryptr() const {
2585 assert( _base == AryPtr, "Not an array pointer" );
2586 return (TypeAryPtr*)this;
2587 }
2588
2589 inline const TypeNarrowOop *Type::is_narrowoop() const {
2590 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2591 assert(_base == NarrowOop, "Not a narrow oop" ) ;
2592 return (TypeNarrowOop*)this;
2593 }
2594
2595 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2596 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2597 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2598 }
2599
2600 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2601 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2602 return (TypeNarrowKlass*)this;
2603 }
2604
2605 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2606 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2607 }
2608
2609 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2610 // MetadataPtr is the first and CPCachePtr the last
2611 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2612 return (TypeMetadataPtr*)this;
2613 }
2614
2615 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2616 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2617 }
2618
2619 inline const TypeKlassPtr *Type::isa_klassptr() const {
2620 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2621 }
2622
2623 inline const TypeKlassPtr *Type::is_klassptr() const {
2624 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2625 return (TypeKlassPtr*)this;
2626 }
2627
2628 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2629 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2630 }
2631
2632 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2633 assert(_base == InstKlassPtr, "Not a klass pointer");
2634 return (TypeInstKlassPtr*)this;
2635 }
2636
2637 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2638 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2639 }
2640
2641 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2642 assert(_base == AryKlassPtr, "Not a klass pointer");
2643 return (TypeAryKlassPtr*)this;
2644 }
2645
2646 inline const TypePtr* Type::make_ptr() const {
2647 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2648 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2649 isa_ptr());
2650 }
2651
2652 inline const TypeOopPtr* Type::make_oopptr() const {
2653 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2654 }
2655
2656 inline const TypeNarrowOop* Type::make_narrowoop() const {
2657 return (_base == NarrowOop) ? is_narrowoop() :
2658 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2659 }
2660
2661 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2662 return (_base == NarrowKlass) ? is_narrowklass() :
2663 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2664 }
2665
2666 inline bool Type::is_floatingpoint() const {
2667 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2668 (_base == FloatCon) || (_base == FloatBot) ||
2669 (_base == DoubleCon) || (_base == DoubleBot) )
2670 return true;
2671 return false;
2672 }
2673
2674 inline bool Type::is_inlinetypeptr() const {
2675 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2676 }
2677
2678 inline ciInlineKlass* Type::inline_klass() const {
2679 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2680 }
2681
2682 template <>
2683 inline const TypeInt* Type::cast<TypeInt>() const {
2684 return is_int();
2685 }
2686
2687 template <>
2688 inline const TypeLong* Type::cast<TypeLong>() const {
2689 return is_long();
2690 }
2691
2692 template <>
2693 inline const TypeInt* Type::try_cast<TypeInt>() const {
2694 return isa_int();
2695 }
2696
2697 template <>
2698 inline const TypeLong* Type::try_cast<TypeLong>() const {
2699 return isa_long();
2700 }
2701
2702 // ===============================================================
2703 // Things that need to be 64-bits in the 64-bit build but
2704 // 32-bits in the 32-bit build. Done this way to get full
2705 // optimization AND strong typing.
2706 #ifdef _LP64
2707
2708 // For type queries and asserts
2709 #define is_intptr_t is_long
2710 #define isa_intptr_t isa_long
2711 #define find_intptr_t_type find_long_type
2712 #define find_intptr_t_con find_long_con
2713 #define TypeX TypeLong
2714 #define Type_X Type::Long
2715 #define TypeX_X TypeLong::LONG
2716 #define TypeX_ZERO TypeLong::ZERO
2717 // For 'ideal_reg' machine registers
2718 #define Op_RegX Op_RegL
2719 // For phase->intcon variants
2720 #define MakeConX longcon
2721 #define ConXNode ConLNode
2722 // For array index arithmetic
2723 #define MulXNode MulLNode
2724 #define AndXNode AndLNode
2725 #define OrXNode OrLNode
2726 #define CmpXNode CmpLNode
2727 #define CmpUXNode CmpULNode
2728 #define SubXNode SubLNode
2729 #define LShiftXNode LShiftLNode
2730 // For object size computation:
2731 #define AddXNode AddLNode
2732 #define RShiftXNode RShiftLNode
2733 // For card marks and hashcodes
2734 #define URShiftXNode URShiftLNode
2735 // For shenandoahSupport
2736 #define LoadXNode LoadLNode
2737 #define StoreXNode StoreLNode
2738 // Opcodes
2739 #define Op_LShiftX Op_LShiftL
2740 #define Op_AndX Op_AndL
2741 #define Op_AddX Op_AddL
2742 #define Op_SubX Op_SubL
2743 #define Op_XorX Op_XorL
2744 #define Op_URShiftX Op_URShiftL
2745 #define Op_LoadX Op_LoadL
2746 #define Op_StoreX Op_StoreL
2747 // conversions
2748 #define ConvI2X(x) ConvI2L(x)
2749 #define ConvL2X(x) (x)
2750 #define ConvX2I(x) ConvL2I(x)
2751 #define ConvX2L(x) (x)
2752 #define ConvX2UL(x) (x)
2753
2754 #else
2755
2756 // For type queries and asserts
2757 #define is_intptr_t is_int
2758 #define isa_intptr_t isa_int
2759 #define find_intptr_t_type find_int_type
2760 #define find_intptr_t_con find_int_con
2761 #define TypeX TypeInt
2762 #define Type_X Type::Int
2763 #define TypeX_X TypeInt::INT
2764 #define TypeX_ZERO TypeInt::ZERO
2765 // For 'ideal_reg' machine registers
2766 #define Op_RegX Op_RegI
2767 // For phase->intcon variants
2768 #define MakeConX intcon
2769 #define ConXNode ConINode
2770 // For array index arithmetic
2771 #define MulXNode MulINode
2772 #define AndXNode AndINode
2773 #define OrXNode OrINode
2774 #define CmpXNode CmpINode
2775 #define CmpUXNode CmpUNode
2776 #define SubXNode SubINode
2777 #define LShiftXNode LShiftINode
2778 // For object size computation:
2779 #define AddXNode AddINode
2780 #define RShiftXNode RShiftINode
2781 // For card marks and hashcodes
2782 #define URShiftXNode URShiftINode
2783 // For shenandoahSupport
2784 #define LoadXNode LoadINode
2785 #define StoreXNode StoreINode
2786 // Opcodes
2787 #define Op_LShiftX Op_LShiftI
2788 #define Op_AndX Op_AndI
2789 #define Op_AddX Op_AddI
2790 #define Op_SubX Op_SubI
2791 #define Op_XorX Op_XorI
2792 #define Op_URShiftX Op_URShiftI
2793 #define Op_LoadX Op_LoadI
2794 #define Op_StoreX Op_StoreI
2795 // conversions
2796 #define ConvI2X(x) (x)
2797 #define ConvL2X(x) ConvL2I(x)
2798 #define ConvX2I(x) (x)
2799 #define ConvX2L(x) ConvI2L(x)
2800 #define ConvX2UL(x) ConvI2UL(x)
2801
2802 #endif
2803
2804 #endif // SHARE_OPTO_TYPE_HPP