1 /*
   2  * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/rangeinference.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeH;
  51 class   TypeInteger;
  52 class     TypeInt;
  53 class     TypeLong;
  54 class   TypeNarrowPtr;
  55 class     TypeNarrowOop;
  56 class     TypeNarrowKlass;
  57 class   TypeAry;
  58 class   TypeTuple;
  59 class   TypeVect;
  60 class     TypeVectA;
  61 class     TypeVectS;
  62 class     TypeVectD;
  63 class     TypeVectX;
  64 class     TypeVectY;
  65 class     TypeVectZ;
  66 class     TypeVectMask;
  67 class   TypePtr;
  68 class     TypeRawPtr;
  69 class     TypeOopPtr;
  70 class       TypeInstPtr;
  71 class       TypeAryPtr;
  72 class     TypeKlassPtr;
  73 class       TypeInstKlassPtr;
  74 class       TypeAryKlassPtr;
  75 class     TypeMetadataPtr;
  76 class VerifyMeet;
  77 
  78 template <class T, class U>
  79 class TypeIntPrototype;
  80 
  81 //------------------------------Type-------------------------------------------
  82 // Basic Type object, represents a set of primitive Values.
  83 // Types are hash-cons'd into a private class dictionary, so only one of each
  84 // different kind of Type exists.  Types are never modified after creation, so
  85 // all their interesting fields are constant.
  86 class Type {
  87 
  88 public:
  89   enum TYPES {
  90     Bad=0,                      // Type check
  91     Control,                    // Control of code (not in lattice)
  92     Top,                        // Top of the lattice
  93     Int,                        // Integer range (lo-hi)
  94     Long,                       // Long integer range (lo-hi)
  95     Half,                       // Placeholder half of doubleword
  96     NarrowOop,                  // Compressed oop pointer
  97     NarrowKlass,                // Compressed klass pointer
  98 
  99     Tuple,                      // Method signature or object layout
 100     Array,                      // Array types
 101 
 102     Interfaces,                 // Set of implemented interfaces for oop types
 103 
 104     VectorMask,                 // Vector predicate/mask type
 105     VectorA,                    // (Scalable) Vector types for vector length agnostic
 106     VectorS,                    //  32bit Vector types
 107     VectorD,                    //  64bit Vector types
 108     VectorX,                    // 128bit Vector types
 109     VectorY,                    // 256bit Vector types
 110     VectorZ,                    // 512bit Vector types
 111 
 112     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 113     RawPtr,                     // Raw (non-oop) pointers
 114     OopPtr,                     // Any and all Java heap entities
 115     InstPtr,                    // Instance pointers (non-array objects)
 116     AryPtr,                     // Array pointers
 117     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 118 
 119     MetadataPtr,                // Generic metadata
 120     KlassPtr,                   // Klass pointers
 121     InstKlassPtr,
 122     AryKlassPtr,
 123 
 124     Function,                   // Function signature
 125     Abio,                       // Abstract I/O
 126     Return_Address,             // Subroutine return address
 127     Memory,                     // Abstract store
 128     HalfFloatTop,               // No float value
 129     HalfFloatCon,               // Floating point constant
 130     HalfFloatBot,               // Any float value
 131     FloatTop,                   // No float value
 132     FloatCon,                   // Floating point constant
 133     FloatBot,                   // Any float value
 134     DoubleTop,                  // No double value
 135     DoubleCon,                  // Double precision constant
 136     DoubleBot,                  // Any double value
 137     Bottom,                     // Bottom of lattice
 138     lastype                     // Bogus ending type (not in lattice)
 139   };
 140 
 141   // Signal values for offsets from a base pointer
 142   enum OFFSET_SIGNALS {
 143     OffsetTop = -2000000000,    // undefined offset
 144     OffsetBot = -2000000001     // any possible offset
 145   };
 146 
 147   class Offset {
 148   private:
 149     int _offset;
 150 
 151   public:
 152     explicit Offset(int offset) : _offset(offset) {}
 153 
 154     const Offset meet(const Offset other) const;
 155     const Offset dual() const;
 156     const Offset add(intptr_t offset) const;
 157     bool operator==(const Offset& other) const {
 158       return _offset == other._offset;
 159     }
 160     bool operator!=(const Offset& other) const {
 161       return _offset != other._offset;
 162     }
 163     int get() const { return _offset; }
 164 
 165     void dump2(outputStream *st) const;
 166 
 167     static const Offset top;
 168     static const Offset bottom;
 169   };
 170 
 171   // Min and max WIDEN values.
 172   enum WIDEN {
 173     WidenMin = 0,
 174     WidenMax = 3
 175   };
 176 
 177 private:
 178   typedef struct {
 179     TYPES                dual_type;
 180     BasicType            basic_type;
 181     const char*          msg;
 182     bool                 isa_oop;
 183     uint                 ideal_reg;
 184     relocInfo::relocType reloc;
 185   } TypeInfo;
 186 
 187   // Dictionary of types shared among compilations.
 188   static Dict* _shared_type_dict;
 189   static const TypeInfo _type_info[];
 190 
 191   static int uhash( const Type *const t );
 192   // Structural equality check.  Assumes that equals() has already compared
 193   // the _base types and thus knows it can cast 't' appropriately.
 194   virtual bool eq( const Type *t ) const;
 195 
 196   // Top-level hash-table of types
 197   static Dict *type_dict() {
 198     return Compile::current()->type_dict();
 199   }
 200 
 201   // DUAL operation: reflect around lattice centerline.  Used instead of
 202   // join to ensure my lattice is symmetric up and down.  Dual is computed
 203   // lazily, on demand, and cached in _dual.
 204   const Type *_dual;            // Cached dual value
 205 
 206 
 207   const Type *meet_helper(const Type *t, bool include_speculative) const;
 208   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 209 
 210 protected:
 211   // Each class of type is also identified by its base.
 212   const TYPES _base;            // Enum of Types type
 213 
 214   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 215   // ~Type();                   // Use fast deallocation
 216   const Type *hashcons();       // Hash-cons the type
 217   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 218   const Type *join_helper(const Type *t, bool include_speculative) const {
 219     assert_type_verify_empty();
 220     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 221   }
 222 
 223   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 224 
 225 public:
 226 
 227   inline void* operator new( size_t x ) throw() {
 228     Compile* compile = Compile::current();
 229     compile->set_type_last_size(x);
 230     return compile->type_arena()->AmallocWords(x);
 231   }
 232   inline void operator delete( void* ptr ) {
 233     Compile* compile = Compile::current();
 234     compile->type_arena()->Afree(ptr,compile->type_last_size());
 235   }
 236 
 237   // Initialize the type system for a particular compilation.
 238   static void Initialize(Compile* compile);
 239 
 240   // Initialize the types shared by all compilations.
 241   static void Initialize_shared(Compile* compile);
 242 
 243   TYPES base() const {
 244     assert(_base > Bad && _base < lastype, "sanity");
 245     return _base;
 246   }
 247 
 248   // Create a new hash-consd type
 249   static const Type *make(enum TYPES);
 250   // Test for equivalence of types
 251   static bool equals(const Type* t1, const Type* t2);
 252   // Test for higher or equal in lattice
 253   // Variant that drops the speculative part of the types
 254   bool higher_equal(const Type* t) const {
 255     return equals(meet(t), t->remove_speculative());
 256   }
 257   // Variant that keeps the speculative part of the types
 258   bool higher_equal_speculative(const Type* t) const {
 259     return equals(meet_speculative(t), t);
 260   }
 261 
 262   // MEET operation; lower in lattice.
 263   // Variant that drops the speculative part of the types
 264   const Type *meet(const Type *t) const {
 265     return meet_helper(t, false);
 266   }
 267   // Variant that keeps the speculative part of the types
 268   const Type *meet_speculative(const Type *t) const {
 269     return meet_helper(t, true)->cleanup_speculative();
 270   }
 271   // WIDEN: 'widens' for Ints and other range types
 272   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 273   // NARROW: complement for widen, used by pessimistic phases
 274   virtual const Type *narrow( const Type *old ) const { return this; }
 275 
 276   // DUAL operation: reflect around lattice centerline.  Used instead of
 277   // join to ensure my lattice is symmetric up and down.
 278   const Type *dual() const { return _dual; }
 279 
 280   // Compute meet dependent on base type
 281   virtual const Type *xmeet( const Type *t ) const;
 282   virtual const Type *xdual() const;    // Compute dual right now.
 283 
 284   // JOIN operation; higher in lattice.  Done by finding the dual of the
 285   // meet of the dual of the 2 inputs.
 286   // Variant that drops the speculative part of the types
 287   const Type *join(const Type *t) const {
 288     return join_helper(t, false);
 289   }
 290   // Variant that keeps the speculative part of the types
 291   const Type *join_speculative(const Type *t) const {
 292     return join_helper(t, true)->cleanup_speculative();
 293   }
 294 
 295   // Modified version of JOIN adapted to the needs Node::Value.
 296   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 297   // Variant that drops the speculative part of the types
 298   const Type *filter(const Type *kills) const {
 299     return filter_helper(kills, false);
 300   }
 301   // Variant that keeps the speculative part of the types
 302   const Type *filter_speculative(const Type *kills) const {
 303     return filter_helper(kills, true)->cleanup_speculative();
 304   }
 305 
 306   // Returns true if this pointer points at memory which contains a
 307   // compressed oop references.
 308   bool is_ptr_to_narrowoop() const;
 309   bool is_ptr_to_narrowklass() const;
 310 
 311   // Convenience access
 312   short geth() const;
 313   virtual float getf() const;
 314   double getd() const;
 315 
 316   // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
 317   template <typename TypeClass>
 318   const TypeClass* try_cast() const;
 319 
 320   const TypeInt    *is_int() const;
 321   const TypeInt    *isa_int() const;             // Returns null if not an Int
 322   const TypeInteger* is_integer(BasicType bt) const;
 323   const TypeInteger* isa_integer(BasicType bt) const;
 324   const TypeLong   *is_long() const;
 325   const TypeLong   *isa_long() const;            // Returns null if not a Long
 326   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 327   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 328   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 329   const TypeH      *isa_half_float() const;          // Returns null if not a HalfFloat{Top,Con,Bot}
 330   const TypeH      *is_half_float_constant() const;  // Asserts it is a HalfFloatCon
 331   const TypeH      *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
 332   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 333   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 334   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 335   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 336   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 337   const TypeAry    *isa_ary() const;             // Returns null of not ary
 338   const TypeVect   *is_vect() const;             // Vector
 339   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 340   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 341   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 342   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 343   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 344   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 345   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 346   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 347   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 348   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 349   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 350   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 351   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 352   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 353   const TypeInstPtr  *is_instptr() const;        // Instance
 354   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 355   const TypeAryPtr   *is_aryptr() const;         // Array oop
 356 
 357   template <typename TypeClass>
 358   const TypeClass* cast() const;
 359 
 360   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 361   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 362   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 363   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 364   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 365   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 366   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 367   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 368 
 369   virtual bool      is_finite() const;           // Has a finite value
 370   virtual bool      is_nan()    const;           // Is not a number (NaN)
 371 
 372   bool is_inlinetypeptr() const;
 373   virtual ciInlineKlass* inline_klass() const;
 374 
 375   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 376   const TypePtr* make_ptr() const;
 377 
 378   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 379   // Asserts if the underlying type is not an oopptr or narrowoop.
 380   const TypeOopPtr* make_oopptr() const;
 381 
 382   // Returns this compressed pointer or the equivalent compressed version
 383   // of this pointer type.
 384   const TypeNarrowOop* make_narrowoop() const;
 385 
 386   // Returns this compressed klass pointer or the equivalent
 387   // compressed version of this pointer type.
 388   const TypeNarrowKlass* make_narrowklass() const;
 389 
 390   // Special test for register pressure heuristic
 391   bool is_floatingpoint() const;        // True if Float or Double base type
 392 
 393   // Do you have memory, directly or through a tuple?
 394   bool has_memory( ) const;
 395 
 396   // TRUE if type is a singleton
 397   virtual bool singleton(void) const;
 398 
 399   // TRUE if type is above the lattice centerline, and is therefore vacuous
 400   virtual bool empty(void) const;
 401 
 402   // Return a hash for this type.  The hash function is public so ConNode
 403   // (constants) can hash on their constant, which is represented by a Type.
 404   virtual uint hash() const;
 405 
 406   // Map ideal registers (machine types) to ideal types
 407   static const Type *mreg2type[];
 408 
 409   // Printing, statistics
 410 #ifndef PRODUCT
 411   void         dump_on(outputStream *st) const;
 412   void         dump() const {
 413     dump_on(tty);
 414   }
 415   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 416   static  void dump_stats();
 417   // Groups of types, for debugging and visualization only.
 418   enum class Category {
 419     Data,
 420     Memory,
 421     Mixed,   // Tuples with types of different categories.
 422     Control,
 423     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 424     Undef    // {Type::Bad, Type::lastype}, for completeness.
 425   };
 426   // Return the category of this type.
 427   Category category() const;
 428   // Check recursively in tuples.
 429   bool has_category(Category cat) const;
 430 
 431   static const char* str(const Type* t);
 432 #endif // !PRODUCT
 433   void typerr(const Type *t) const; // Mixing types error
 434 
 435   // Create basic type
 436   static const Type* get_const_basic_type(BasicType type) {
 437     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 438     return _const_basic_type[type];
 439   }
 440 
 441   // For two instance arrays of same dimension, return the base element types.
 442   // Otherwise or if the arrays have different dimensions, return null.
 443   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 444                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 445 
 446   // Mapping to the array element's basic type.
 447   BasicType array_element_basic_type() const;
 448 
 449   enum InterfaceHandling {
 450       trust_interfaces,
 451       ignore_interfaces
 452   };
 453   // Create standard type for a ciType:
 454   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 455 
 456   // Create standard zero value:
 457   static const Type* get_zero_type(BasicType type) {
 458     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 459     return _zero_type[type];
 460   }
 461 
 462   // Report if this is a zero value (not top).
 463   bool is_zero_type() const {
 464     BasicType type = basic_type();
 465     if (type == T_VOID || type >= T_CONFLICT)
 466       return false;
 467     else
 468       return (this == _zero_type[type]);
 469   }
 470 
 471   // Convenience common pre-built types.
 472   static const Type *ABIO;
 473   static const Type *BOTTOM;
 474   static const Type *CONTROL;
 475   static const Type *DOUBLE;
 476   static const Type *FLOAT;
 477   static const Type *HALF_FLOAT;
 478   static const Type *HALF;
 479   static const Type *MEMORY;
 480   static const Type *MULTI;
 481   static const Type *RETURN_ADDRESS;
 482   static const Type *TOP;
 483 
 484   // Mapping from compiler type to VM BasicType
 485   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 486   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 487   const char* msg() const            { return _type_info[_base].msg; }
 488   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 489   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 490 
 491   // Mapping from CI type system to compiler type:
 492   static const Type* get_typeflow_type(ciType* type);
 493 
 494   static const Type* make_from_constant(ciConstant constant,
 495                                         bool require_constant = false,
 496                                         int stable_dimension = 0,
 497                                         bool is_narrow = false,
 498                                         bool is_autobox_cache = false);
 499 
 500   static const Type* make_constant_from_field(ciInstance* holder,
 501                                               int off,
 502                                               bool is_unsigned_load,
 503                                               BasicType loadbt);
 504 
 505   static const Type* make_constant_from_field(ciField* field,
 506                                               ciInstance* holder,
 507                                               BasicType loadbt,
 508                                               bool is_unsigned_load);
 509 
 510   static const Type* make_constant_from_array_element(ciArray* array,
 511                                                       int off,
 512                                                       int field_offset,
 513                                                       int stable_dimension,
 514                                                       BasicType loadbt,
 515                                                       bool is_unsigned_load);
 516 
 517   // Speculative type helper methods. See TypePtr.
 518   virtual const TypePtr* speculative() const                                  { return nullptr; }
 519   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 520   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 521   virtual bool speculative_maybe_null() const                                 { return true; }
 522   virtual bool speculative_always_null() const                                { return true; }
 523   virtual const Type* remove_speculative() const                              { return this; }
 524   virtual const Type* cleanup_speculative() const                             { return this; }
 525   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 526   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 527   const Type* maybe_remove_speculative(bool include_speculative) const;
 528 
 529   virtual bool maybe_null() const { return true; }
 530   virtual bool is_known_instance() const { return false; }
 531 
 532 private:
 533   // support arrays
 534   static const Type*        _zero_type[T_CONFLICT+1];
 535   static const Type* _const_basic_type[T_CONFLICT+1];
 536 };
 537 
 538 //------------------------------TypeF------------------------------------------
 539 // Class of Float-Constant Types.
 540 class TypeF : public Type {
 541   TypeF( float f ) : Type(FloatCon), _f(f) {};
 542 public:
 543   virtual bool eq( const Type *t ) const;
 544   virtual uint hash() const;             // Type specific hashing
 545   virtual bool singleton(void) const;    // TRUE if type is a singleton
 546   virtual bool empty(void) const;        // TRUE if type is vacuous
 547 public:
 548   const float _f;               // Float constant
 549 
 550   static const TypeF *make(float f);
 551 
 552   virtual bool        is_finite() const;  // Has a finite value
 553   virtual bool        is_nan()    const;  // Is not a number (NaN)
 554 
 555   virtual const Type *xmeet( const Type *t ) const;
 556   virtual const Type *xdual() const;    // Compute dual right now.
 557   // Convenience common pre-built types.
 558   static const TypeF *MAX;
 559   static const TypeF *MIN;
 560   static const TypeF *ZERO; // positive zero only
 561   static const TypeF *ONE;
 562   static const TypeF *POS_INF;
 563   static const TypeF *NEG_INF;
 564 #ifndef PRODUCT
 565   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 566 #endif
 567 };
 568 
 569 // Class of Half Float-Constant Types.
 570 class TypeH : public Type {
 571   TypeH(short f) : Type(HalfFloatCon), _f(f) {};
 572 public:
 573   virtual bool eq(const Type* t) const;
 574   virtual uint hash() const;             // Type specific hashing
 575   virtual bool singleton(void) const;    // TRUE if type is a singleton
 576   virtual bool empty(void) const;        // TRUE if type is vacuous
 577 public:
 578   const short _f;                        // Half Float constant
 579 
 580   static const TypeH* make(float f);
 581   static const TypeH* make(short f);
 582 
 583   virtual bool is_finite() const;  // Has a finite value
 584   virtual bool is_nan() const;     // Is not a number (NaN)
 585 
 586   virtual float getf() const;
 587   virtual const Type* xmeet(const Type* t) const;
 588   virtual const Type* xdual() const;    // Compute dual right now.
 589   // Convenience common pre-built types.
 590   static const TypeH* MAX;
 591   static const TypeH* MIN;
 592   static const TypeH* ZERO; // positive zero only
 593   static const TypeH* ONE;
 594   static const TypeH* POS_INF;
 595   static const TypeH* NEG_INF;
 596 #ifndef PRODUCT
 597   virtual void dump2(Dict &d, uint depth, outputStream* st) const;
 598 #endif
 599 };
 600 
 601 //------------------------------TypeD------------------------------------------
 602 // Class of Double-Constant Types.
 603 class TypeD : public Type {
 604   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 605 public:
 606   virtual bool eq( const Type *t ) const;
 607   virtual uint hash() const;             // Type specific hashing
 608   virtual bool singleton(void) const;    // TRUE if type is a singleton
 609   virtual bool empty(void) const;        // TRUE if type is vacuous
 610 public:
 611   const double _d;              // Double constant
 612 
 613   static const TypeD *make(double d);
 614 
 615   virtual bool        is_finite() const;  // Has a finite value
 616   virtual bool        is_nan()    const;  // Is not a number (NaN)
 617 
 618   virtual const Type *xmeet( const Type *t ) const;
 619   virtual const Type *xdual() const;    // Compute dual right now.
 620   // Convenience common pre-built types.
 621   static const TypeD *MAX;
 622   static const TypeD *MIN;
 623   static const TypeD *ZERO; // positive zero only
 624   static const TypeD *ONE;
 625   static const TypeD *POS_INF;
 626   static const TypeD *NEG_INF;
 627 #ifndef PRODUCT
 628   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 629 #endif
 630 };
 631 
 632 class TypeInteger : public Type {
 633 protected:
 634   TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
 635 
 636   // Denote that a set is a dual set.
 637   // Dual sets are only used to compute the join of 2 sets, and not used
 638   // outside.
 639   const bool _is_dual;
 640 
 641 public:
 642   const short _widen;           // Limit on times we widen this sucker
 643 
 644   virtual jlong hi_as_long() const = 0;
 645   virtual jlong lo_as_long() const = 0;
 646   jlong get_con_as_long(BasicType bt) const;
 647   bool is_con() const { return lo_as_long() == hi_as_long(); }
 648   virtual short widen_limit() const { return _widen; }
 649 
 650   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 651   static const TypeInteger* make(jlong con, BasicType bt);
 652 
 653   static const TypeInteger* bottom(BasicType type);
 654   static const TypeInteger* zero(BasicType type);
 655   static const TypeInteger* one(BasicType type);
 656   static const TypeInteger* minus_1(BasicType type);
 657 };
 658 
 659 /**
 660  * Definition:
 661  *
 662  * A TypeInt represents a set of non-empty jint values. A jint v is an element
 663  * of a TypeInt iff:
 664  *
 665  *   v >= _lo && v <= _hi &&
 666  *   juint(v) >= _ulo && juint(v) <= _uhi &&
 667  *   _bits.is_satisfied_by(v)
 668  *
 669  * Multiple sets of parameters can represent the same set.
 670  * E.g: consider 2 TypeInt t1, t2
 671  *
 672  * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
 673  * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
 674  *
 675  * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
 676  * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
 677  * which also represents {3, 5} such that any of these would be true:
 678  *
 679  *  1)  t3._lo  > t2._lo
 680  *  2)  t3._hi  < t2._hi
 681  *  3)  t3._ulo > t2._ulo
 682  *  4)  t3._uhi < t2._uhi
 683  *  5)  (t3._bits._zeros &~ t2._bis._zeros) != 0
 684  *  6)  (t3._bits._ones  &~ t2._bits._ones) != 0
 685  *
 686  * The 5-th condition mean that the subtraction of the bitsets represented by
 687  * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
 688  * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
 689  * same applies to _bits._ones
 690  *
 691  * To simplify reasoning about the types in optimizations, we canonicalize
 692  * every TypeInt to its tightest form, already at construction. E.g a TypeInt
 693  * t with t._lo < 0 will definitely contain negative values. It also makes it
 694  * trivial to determine if a TypeInt instance is a subset of another.
 695  *
 696  * Lemmas:
 697  *
 698  * 1. Since every TypeInt instance is non-empty and canonicalized, all the
 699  *   bounds must also be elements of such TypeInt. Or else, we can tighten the
 700  *   bounds by narrowing it by one, which contradicts the assumption of the
 701  *   TypeInt being canonical.
 702  *
 703  * 2.
 704  *   2.1.  _lo <= jint(_ulo)
 705  *   2.2.  _lo <= _hi
 706  *   2.3.  _lo <= jint(_uhi)
 707  *   2.4.  _ulo <= juint(_lo)
 708  *   2.5.  _ulo <= juint(_hi)
 709  *   2.6.  _ulo <= _uhi
 710  *   2.7.  _hi >= _lo
 711  *   2.8.  _hi >= jint(_ulo)
 712  *   2.9.  _hi >= jint(_uhi)
 713  *   2.10. _uhi >= juint(_lo)
 714  *   2.11. _uhi >= _ulo
 715  *   2.12. _uhi >= juint(_hi)
 716  *
 717  *   Proof of lemma 2:
 718  *
 719  *   2.1. _lo <= jint(_ulo):
 720  *     According the lemma 1, _ulo is an element of the TypeInt, so in the
 721  *     signed domain, it must not be less than the smallest element of that
 722  *     TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
 723  *     domain, or in a more programmatical way, _lo <= jint(_ulo).
 724  *   2.2. _lo <= _hi:
 725  *     According the lemma 1, _hi is an element of the TypeInt, so in the
 726  *     signed domain, it must not be less than the smallest element of that
 727  *     TypeInt, which is _lo. Which means that _lo <= _hi.
 728  *
 729  *   The other inequalities can be proved in a similar manner.
 730  *
 731  * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
 732  *
 733  *   x <= y iff juint(x) <= juint(y)
 734  *   I.e. x <= y in the signed domain iff x <= y in the unsigned domain
 735  *
 736  * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
 737  *   TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
 738  *   (note that these intervals are disjoint in this case).
 739  *
 740  *   Proof of lemma 4:
 741  *
 742  *   For a TypeInt t, there are 3 possible cases:
 743  *
 744  *   a. t._lo >= 0, we have:
 745  *
 746  *     0 <= t_lo <= jint(t._ulo)           (lemma 2.1)
 747  *     juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
 748  *                  == t._ulo              (juint(jint(v)) == v with juint v)
 749  *                  <= juint(t._lo)        (lemma 2.4)
 750  *
 751  *     Which means that t._lo == jint(t._ulo).
 752  *
 753  *     Furthermore,
 754  *
 755  *     0 <= t._lo <= t._hi                 (lemma 2.2)
 756  *     0 <= t._lo <= jint(t._uhi)          (lemma 2.3)
 757  *     t._hi >= jint(t._uhi)               (lemma 2.9)
 758  *
 759  *     juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
 760  *                  == t._uhi              (juint(jint(v)) == v with juint v)
 761  *                  >= juint(t._hi)        (lemma 2.12)
 762  *
 763  *     Which means that t._hi == jint(t._uhi).
 764  *     In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 765  *
 766  *   b. t._hi < 0. Similarly, we can conclude that:
 767  *     t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 768  *
 769  *   c. t._lo < 0, t._hi >= 0.
 770  *
 771  *     Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
 772  *     because all negative values is larger than all non-negative values in the
 773  *     unsigned domain.
 774  *
 775  *     Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
 776  *     similar to the reasoning above.
 777  *
 778  *     In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
 779  *     [jint(t._ulo), t._hi].
 780  *
 781  *     Below is an illustration of the TypeInt in this case, the intervals that
 782  *     the elements can be in are marked using the = symbol. Note how the
 783  *     negative range in the signed domain wrap around in the unsigned domain.
 784  *
 785  *     Signed:
 786  *     -----lo=========uhi---------0--------ulo==========hi-----
 787  *     Unsigned:
 788  *                                 0--------ulo==========hi----------lo=========uhi---------
 789  *
 790  *   This property is useful for our analysis of TypeInt values. Additionally,
 791  *   it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
 792  *   same applies to jint(_ulo) and _hi.
 793  *
 794  *   We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
 795  *   a TypeInt consists of 2 simple intervals, each of which has its bounds
 796  *   being both >= 0 or both < 0. If both simple intervals lie in the same half
 797  *   of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
 798  *   _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
 799  *   half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
 800  *   domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
 801  *   [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
 802  */
 803 class TypeInt : public TypeInteger {
 804 private:
 805   TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
 806   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
 807 
 808   friend class TypeIntHelper;
 809 
 810 protected:
 811   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 812 
 813 public:
 814   typedef jint NativeType;
 815   virtual bool eq(const Type* t) const;
 816   virtual uint hash() const;             // Type specific hashing
 817   virtual bool singleton(void) const;    // TRUE if type is a singleton
 818   virtual bool empty(void) const;        // TRUE if type is vacuous
 819   // A value is in the set represented by this TypeInt if it satisfies all
 820   // the below constraints, see contains(jint)
 821   const jint _lo, _hi;       // Lower bound, upper bound in the signed domain
 822   const juint _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 823   const KnownBits<juint> _bits;
 824 
 825   static const TypeInt* make(jint con);
 826   // must always specify w
 827   static const TypeInt* make(jint lo, jint hi, int widen);
 828   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
 829   static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
 830 
 831   // Check for single integer
 832   bool is_con() const { return _lo == _hi; }
 833   bool is_con(jint i) const { return is_con() && _lo == i; }
 834   jint get_con() const { assert(is_con(), "");  return _lo; }
 835   // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
 836   // argument are also elements of this type)
 837   bool contains(jint i) const;
 838   bool contains(const TypeInt* t) const;
 839 
 840   virtual bool is_finite() const;  // Has a finite value
 841 
 842   virtual const Type* xmeet(const Type* t) const;
 843   virtual const Type* xdual() const;    // Compute dual right now.
 844   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 845   virtual const Type* narrow(const Type* t) const;
 846 
 847   virtual jlong hi_as_long() const { return _hi; }
 848   virtual jlong lo_as_long() const { return _lo; }
 849 
 850   // Do not kill _widen bits.
 851   // Convenience common pre-built types.
 852   static const TypeInt* MAX;
 853   static const TypeInt* MIN;
 854   static const TypeInt* MINUS_1;
 855   static const TypeInt* ZERO;
 856   static const TypeInt* ONE;
 857   static const TypeInt* BOOL;
 858   static const TypeInt* CC;
 859   static const TypeInt* CC_LT;  // [-1]  == MINUS_1
 860   static const TypeInt* CC_GT;  // [1]   == ONE
 861   static const TypeInt* CC_EQ;  // [0]   == ZERO
 862   static const TypeInt* CC_NE;  // [-1, 1]
 863   static const TypeInt* CC_LE;  // [-1,0]
 864   static const TypeInt* CC_GE;  // [0,1] == BOOL (!)
 865   static const TypeInt* BYTE;
 866   static const TypeInt* UBYTE;
 867   static const TypeInt* CHAR;
 868   static const TypeInt* SHORT;
 869   static const TypeInt* NON_ZERO;
 870   static const TypeInt* POS;
 871   static const TypeInt* POS1;
 872   static const TypeInt* INT;
 873   static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
 874   static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
 875 
 876   static const TypeInt* as_self(const Type* t) { return t->is_int(); }
 877 #ifndef PRODUCT
 878   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
 879   void dump_verbose() const;
 880 #endif
 881 };
 882 
 883 // Similar to TypeInt
 884 class TypeLong : public TypeInteger {
 885 private:
 886   TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
 887   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
 888 
 889   friend class TypeIntHelper;
 890 
 891 protected:
 892   // Do not kill _widen bits.
 893   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 894 public:
 895   typedef jlong NativeType;
 896   virtual bool eq( const Type *t ) const;
 897   virtual uint hash() const;             // Type specific hashing
 898   virtual bool singleton(void) const;    // TRUE if type is a singleton
 899   virtual bool empty(void) const;        // TRUE if type is vacuous
 900 public:
 901   // A value is in the set represented by this TypeLong if it satisfies all
 902   // the below constraints, see contains(jlong)
 903   const jlong _lo, _hi;       // Lower bound, upper bound in the signed domain
 904   const julong _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 905   const KnownBits<julong> _bits;
 906 
 907   static const TypeLong* make(jlong con);
 908   // must always specify w
 909   static const TypeLong* make(jlong lo, jlong hi, int widen);
 910   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
 911   static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
 912 
 913   // Check for single integer
 914   bool is_con() const { return _lo == _hi; }
 915   bool is_con(jlong i) const { return is_con() && _lo == i; }
 916   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 917   // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
 918   // argument are also elements of this type)
 919   bool contains(jlong i) const;
 920   bool contains(const TypeLong* t) const;
 921 
 922   // Check for positive 32-bit value.
 923   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 924 
 925   virtual bool        is_finite() const;  // Has a finite value
 926 
 927   virtual jlong hi_as_long() const { return _hi; }
 928   virtual jlong lo_as_long() const { return _lo; }
 929 
 930   virtual const Type* xmeet(const Type* t) const;
 931   virtual const Type* xdual() const;    // Compute dual right now.
 932   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 933   virtual const Type* narrow(const Type* t) const;
 934   // Convenience common pre-built types.
 935   static const TypeLong* MAX;
 936   static const TypeLong* MIN;
 937   static const TypeLong* MINUS_1;
 938   static const TypeLong* ZERO;
 939   static const TypeLong* ONE;
 940   static const TypeLong* NON_ZERO;
 941   static const TypeLong* POS;
 942   static const TypeLong* NEG;
 943   static const TypeLong* LONG;
 944   static const TypeLong* INT;    // 32-bit subrange [min_jint..max_jint]
 945   static const TypeLong* UINT;   // 32-bit unsigned [0..max_juint]
 946   static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
 947 
 948   // static convenience methods.
 949   static const TypeLong* as_self(const Type* t) { return t->is_long(); }
 950 
 951 #ifndef PRODUCT
 952   virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
 953   void dump_verbose() const;
 954 #endif
 955 };
 956 
 957 //------------------------------TypeTuple--------------------------------------
 958 // Class of Tuple Types, essentially type collections for function signatures
 959 // and class layouts.  It happens to also be a fast cache for the HotSpot
 960 // signature types.
 961 class TypeTuple : public Type {
 962   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 963 
 964   const uint          _cnt;              // Count of fields
 965   const Type ** const _fields;           // Array of field types
 966 
 967 public:
 968   virtual bool eq( const Type *t ) const;
 969   virtual uint hash() const;             // Type specific hashing
 970   virtual bool singleton(void) const;    // TRUE if type is a singleton
 971   virtual bool empty(void) const;        // TRUE if type is vacuous
 972 
 973   // Accessors:
 974   uint cnt() const { return _cnt; }
 975   const Type* field_at(uint i) const {
 976     assert(i < _cnt, "oob");
 977     return _fields[i];
 978   }
 979   void set_field_at(uint i, const Type* t) {
 980     assert(i < _cnt, "oob");
 981     _fields[i] = t;
 982   }
 983 
 984   static const TypeTuple *make( uint cnt, const Type **fields );
 985   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 986   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 987 
 988   // Subroutine call type with space allocated for argument types
 989   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 990   static const Type **fields( uint arg_cnt );
 991 
 992   virtual const Type *xmeet( const Type *t ) const;
 993   virtual const Type *xdual() const;    // Compute dual right now.
 994   // Convenience common pre-built types.
 995   static const TypeTuple *IFBOTH;
 996   static const TypeTuple *IFFALSE;
 997   static const TypeTuple *IFTRUE;
 998   static const TypeTuple *IFNEITHER;
 999   static const TypeTuple *LOOPBODY;
1000   static const TypeTuple *MEMBAR;
1001   static const TypeTuple *STORECONDITIONAL;
1002   static const TypeTuple *START_I2C;
1003   static const TypeTuple *INT_PAIR;
1004   static const TypeTuple *LONG_PAIR;
1005   static const TypeTuple *INT_CC_PAIR;
1006   static const TypeTuple *LONG_CC_PAIR;
1007 #ifndef PRODUCT
1008   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1009 #endif
1010 };
1011 
1012 //------------------------------TypeAry----------------------------------------
1013 // Class of Array Types
1014 class TypeAry : public Type {
1015   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1016       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1017 public:
1018   virtual bool eq( const Type *t ) const;
1019   virtual uint hash() const;             // Type specific hashing
1020   virtual bool singleton(void) const;    // TRUE if type is a singleton
1021   virtual bool empty(void) const;        // TRUE if type is vacuous
1022 
1023 private:
1024   const Type *_elem;            // Element type of array
1025   const TypeInt *_size;         // Elements in array
1026   const bool _stable;           // Are elements @Stable?
1027 
1028   // Inline type array properties
1029   const bool _flat;             // Array is flat
1030   const bool _not_flat;         // Array is never flat
1031   const bool _not_null_free;    // Array is never null-free
1032   const bool _atomic;           // Array is atomic
1033 
1034   friend class TypeAryPtr;
1035 
1036 public:
1037   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1038                              bool flat, bool not_flat, bool not_null_free, bool atomic);
1039 
1040   virtual const Type *xmeet( const Type *t ) const;
1041   virtual const Type *xdual() const;    // Compute dual right now.
1042   bool ary_must_be_exact() const;  // true if arrays of such are never generic
1043   virtual const TypeAry* remove_speculative() const;
1044   virtual const Type* cleanup_speculative() const;
1045 #ifndef PRODUCT
1046   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1047 #endif
1048 };
1049 
1050 //------------------------------TypeVect---------------------------------------
1051 // Class of Vector Types
1052 class TypeVect : public Type {
1053   const BasicType _elem_bt;  // Vector's element type
1054   const uint _length;  // Elements in vector (power of 2)
1055 
1056 protected:
1057   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1058     _elem_bt(elem_bt), _length(length) {}
1059 
1060 public:
1061   BasicType element_basic_type() const { return _elem_bt; }
1062   uint length() const { return _length; }
1063   uint length_in_bytes() const {
1064     return _length * type2aelembytes(element_basic_type());
1065   }
1066 
1067   virtual bool eq(const Type* t) const;
1068   virtual uint hash() const;             // Type specific hashing
1069   virtual bool singleton(void) const;    // TRUE if type is a singleton
1070   virtual bool empty(void) const;        // TRUE if type is vacuous
1071 
1072   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1073   static const TypeVect* makemask(const BasicType elem_bt, uint length);
1074 
1075   virtual const Type* xmeet( const Type *t) const;
1076   virtual const Type* xdual() const;     // Compute dual right now.
1077 
1078   static const TypeVect* VECTA;
1079   static const TypeVect* VECTS;
1080   static const TypeVect* VECTD;
1081   static const TypeVect* VECTX;
1082   static const TypeVect* VECTY;
1083   static const TypeVect* VECTZ;
1084   static const TypeVect* VECTMASK;
1085 
1086 #ifndef PRODUCT
1087   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1088 #endif
1089 };
1090 
1091 class TypeVectA : public TypeVect {
1092   friend class TypeVect;
1093   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1094 };
1095 
1096 class TypeVectS : public TypeVect {
1097   friend class TypeVect;
1098   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1099 };
1100 
1101 class TypeVectD : public TypeVect {
1102   friend class TypeVect;
1103   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1104 };
1105 
1106 class TypeVectX : public TypeVect {
1107   friend class TypeVect;
1108   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1109 };
1110 
1111 class TypeVectY : public TypeVect {
1112   friend class TypeVect;
1113   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1114 };
1115 
1116 class TypeVectZ : public TypeVect {
1117   friend class TypeVect;
1118   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1119 };
1120 
1121 class TypeVectMask : public TypeVect {
1122 public:
1123   friend class TypeVect;
1124   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1125   static const TypeVectMask* make(const BasicType elem_bt, uint length);
1126 };
1127 
1128 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1129 class TypeInterfaces : public Type {
1130 private:
1131   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1132   uint _hash;
1133   ciInstanceKlass* _exact_klass;
1134   DEBUG_ONLY(bool _initialized;)
1135 
1136   void initialize();
1137 
1138   void verify() const NOT_DEBUG_RETURN;
1139   void compute_hash();
1140   void compute_exact_klass();
1141 
1142   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1143 
1144   NONCOPYABLE(TypeInterfaces);
1145 public:
1146   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1147   bool eq(const Type* other) const;
1148   bool eq(ciInstanceKlass* k) const;
1149   uint hash() const;
1150   const Type *xdual() const;
1151   void dump(outputStream* st) const;
1152   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1153   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1154   bool contains(const TypeInterfaces* other) const {
1155     return intersection_with(other)->eq(other);
1156   }
1157   bool empty() const { return _interfaces.length() == 0; }
1158 
1159   ciInstanceKlass* exact_klass() const;
1160   void verify_is_loaded() const NOT_DEBUG_RETURN;
1161 
1162   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1163   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1164 
1165   const Type* xmeet(const Type* t) const;
1166 
1167   bool singleton(void) const;
1168   bool has_non_array_interface() const;
1169 };
1170 
1171 //------------------------------TypePtr----------------------------------------
1172 // Class of machine Pointer Types: raw data, instances or arrays.
1173 // If the _base enum is AnyPtr, then this refers to all of the above.
1174 // Otherwise the _base will indicate which subset of pointers is affected,
1175 // and the class will be inherited from.
1176 class TypePtr : public Type {
1177   friend class TypeNarrowPtr;
1178   friend class Type;
1179 protected:
1180   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1181 
1182 public:
1183   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1184 
1185   // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1186   //
1187   // FlatInArray defines the following Boolean Lattice structure
1188   //
1189   //     TopFlat
1190   //    /      \
1191   //  Flat   NotFlat
1192   //    \      /
1193   //   MaybeFlat
1194   //
1195   // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1196   enum FlatInArray {
1197     TopFlat,        // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1198     Flat,           // An instance is always flat in an array.
1199     NotFlat,        // An instance is never flat in an array.
1200     MaybeFlat,      // We don't know whether an instance is flat in an array.
1201     Uninitialized   // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1202   };
1203 protected:
1204   TypePtr(TYPES t, PTR ptr, Offset offset,
1205           const TypePtr* speculative = nullptr,
1206           int inline_depth = InlineDepthBottom) :
1207     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1208     _ptr(ptr) {}
1209   static const PTR ptr_meet[lastPTR][lastPTR];
1210   static const PTR ptr_dual[lastPTR];
1211   static const char * const ptr_msg[lastPTR];
1212 
1213   static const FlatInArray flat_in_array_dual[Uninitialized];
1214   static const char* const flat_in_array_msg[Uninitialized];
1215 
1216   enum {
1217     InlineDepthBottom = INT_MAX,
1218     InlineDepthTop = -InlineDepthBottom
1219   };
1220 
1221   // Extra type information profiling gave us. We propagate it the
1222   // same way the rest of the type info is propagated. If we want to
1223   // use it, then we have to emit a guard: this part of the type is
1224   // not something we know but something we speculate about the type.
1225   const TypePtr*   _speculative;
1226   // For speculative types, we record at what inlining depth the
1227   // profiling point that provided the data is. We want to favor
1228   // profile data coming from outer scopes which are likely better for
1229   // the current compilation.
1230   int _inline_depth;
1231 
1232   // utility methods to work on the speculative part of the type
1233   const TypePtr* dual_speculative() const;
1234   const TypePtr* xmeet_speculative(const TypePtr* other) const;
1235   bool eq_speculative(const TypePtr* other) const;
1236   int hash_speculative() const;
1237   const TypePtr* add_offset_speculative(intptr_t offset) const;
1238   const TypePtr* with_offset_speculative(intptr_t offset) const;
1239 
1240   // utility methods to work on the inline depth of the type
1241   int dual_inline_depth() const;
1242   int meet_inline_depth(int depth) const;
1243 
1244 #ifndef PRODUCT
1245   void dump_speculative(outputStream* st) const;
1246   void dump_inline_depth(outputStream* st) const;
1247   void dump_offset(outputStream* st) const;
1248 #endif
1249 
1250   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1251   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1252   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1253   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1254   // encountered so the right logic specific to klasses or oops can be executed.,
1255   enum MeetResult {
1256     QUICK,
1257     UNLOADED,
1258     SUBTYPE,
1259     NOT_SUBTYPE,
1260     LCA
1261   };
1262   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1263                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
1264  protected:
1265   static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1266 
1267   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1268                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1269 
1270   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1271   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1272   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1274   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1275   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1276   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1278 public:
1279   const Offset _offset;         // Offset into oop, with TOP & BOT
1280   const PTR _ptr;               // Pointer equivalence class
1281 
1282   int offset() const { return _offset.get(); }
1283   PTR ptr()    const { return _ptr; }
1284 
1285   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1286                              const TypePtr* speculative = nullptr,
1287                              int inline_depth = InlineDepthBottom);
1288 
1289   // Return a 'ptr' version of this type
1290   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1291 
1292   virtual intptr_t get_con() const;
1293 
1294   Type::Offset xadd_offset(intptr_t offset) const;
1295   virtual const TypePtr* add_offset(intptr_t offset) const;
1296   virtual const TypePtr* with_offset(intptr_t offset) const;
1297   virtual int flat_offset() const { return offset(); }
1298   virtual bool eq(const Type *t) const;
1299   virtual uint hash() const;             // Type specific hashing
1300 
1301   virtual bool singleton(void) const;    // TRUE if type is a singleton
1302   virtual bool empty(void) const;        // TRUE if type is vacuous
1303   virtual const Type *xmeet( const Type *t ) const;
1304   virtual const Type *xmeet_helper( const Type *t ) const;
1305   Offset meet_offset(int offset) const;
1306   Offset dual_offset() const;
1307   virtual const Type *xdual() const;    // Compute dual right now.
1308 
1309   // meet, dual and join over pointer equivalence sets
1310   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1311   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1312 
1313   // This is textually confusing unless one recalls that
1314   // join(t) == dual()->meet(t->dual())->dual().
1315   PTR join_ptr( const PTR in_ptr ) const {
1316     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1317   }
1318 
1319   // Speculative type helper methods.
1320   virtual const TypePtr* speculative() const { return _speculative; }
1321   int inline_depth() const                   { return _inline_depth; }
1322   virtual ciKlass* speculative_type() const;
1323   virtual ciKlass* speculative_type_not_null() const;
1324   virtual bool speculative_maybe_null() const;
1325   virtual bool speculative_always_null() const;
1326   virtual const TypePtr* remove_speculative() const;
1327   virtual const Type* cleanup_speculative() const;
1328   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1329   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1330   virtual const TypePtr* with_inline_depth(int depth) const;
1331 
1332   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1333 
1334   NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1335 
1336   static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1337   FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1338                                                FlatInArray old_flat_in_array) const;
1339 
1340   virtual bool can_be_inline_type() const { return false; }
1341   virtual bool is_flat_in_array()     const { return flat_in_array() == Flat; }
1342   virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1343   virtual FlatInArray flat_in_array() const { return NotFlat; }
1344   virtual bool is_flat()            const { return false; }
1345   virtual bool is_not_flat()        const { return false; }
1346   virtual bool is_null_free()       const { return false; }
1347   virtual bool is_not_null_free()   const { return false; }
1348   virtual bool is_atomic()          const { return false; }
1349 
1350   // Tests for relation to centerline of type lattice:
1351   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1352   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1353   // Convenience common pre-built types.
1354   static const TypePtr *NULL_PTR;
1355   static const TypePtr *NOTNULL;
1356   static const TypePtr *BOTTOM;
1357 #ifndef PRODUCT
1358   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1359 #endif
1360 };
1361 
1362 //------------------------------TypeRawPtr-------------------------------------
1363 // Class of raw pointers, pointers to things other than Oops.  Examples
1364 // include the stack pointer, top of heap, card-marking area, handles, etc.
1365 class TypeRawPtr : public TypePtr {
1366 protected:
1367   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1368 public:
1369   virtual bool eq( const Type *t ) const;
1370   virtual uint hash() const;    // Type specific hashing
1371 
1372   const address _bits;          // Constant value, if applicable
1373 
1374   static const TypeRawPtr *make( PTR ptr );
1375   static const TypeRawPtr *make( address bits );
1376 
1377   // Return a 'ptr' version of this type
1378   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1379 
1380   virtual intptr_t get_con() const;
1381 
1382   virtual const TypePtr* add_offset(intptr_t offset) const;
1383   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1384 
1385   virtual const Type *xmeet( const Type *t ) const;
1386   virtual const Type *xdual() const;    // Compute dual right now.
1387   // Convenience common pre-built types.
1388   static const TypeRawPtr *BOTTOM;
1389   static const TypeRawPtr *NOTNULL;
1390 #ifndef PRODUCT
1391   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1392 #endif
1393 };
1394 
1395 //------------------------------TypeOopPtr-------------------------------------
1396 // Some kind of oop (Java pointer), either instance or array.
1397 class TypeOopPtr : public TypePtr {
1398   friend class TypeAry;
1399   friend class TypePtr;
1400   friend class TypeInstPtr;
1401   friend class TypeAryPtr;
1402 protected:
1403  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1404             const TypePtr* speculative, int inline_depth);
1405 public:
1406   virtual bool eq( const Type *t ) const;
1407   virtual uint hash() const;             // Type specific hashing
1408   virtual bool singleton(void) const;    // TRUE if type is a singleton
1409   enum {
1410    InstanceTop = -1,   // undefined instance
1411    InstanceBot = 0     // any possible instance
1412   };
1413 protected:
1414 
1415   // Oop is null, unless this is a constant oop.
1416   ciObject*     _const_oop;   // Constant oop
1417   // If _klass is null, then so is _sig.  This is an unloaded klass.
1418   ciKlass*      _klass;       // Klass object
1419 
1420   const TypeInterfaces* _interfaces;
1421 
1422   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1423   bool          _klass_is_exact;
1424   bool          _is_ptr_to_narrowoop;
1425   bool          _is_ptr_to_narrowklass;
1426   bool          _is_ptr_to_boxed_value;
1427   bool          _is_ptr_to_strict_final_field;
1428 
1429   // If not InstanceTop or InstanceBot, indicates that this is
1430   // a particular instance of this type which is distinct.
1431   // This is the node index of the allocation node creating this instance.
1432   int           _instance_id;
1433 
1434   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1435 
1436   int dual_instance_id() const;
1437   int meet_instance_id(int uid) const;
1438 
1439   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1440 
1441   // Do not allow interface-vs.-noninterface joins to collapse to top.
1442   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1443 
1444   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1445   virtual ciKlass* klass() const { return _klass; }
1446 
1447 #ifndef PRODUCT
1448   void dump_instance_id(outputStream* st) const;
1449 #endif // PRODUCT
1450 
1451 public:
1452 
1453   bool is_java_subtype_of(const TypeOopPtr* other) const {
1454     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1455   }
1456 
1457   bool is_same_java_type_as(const TypePtr* other) const {
1458     return is_same_java_type_as_helper(other->is_oopptr());
1459   }
1460 
1461   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1462     ShouldNotReachHere(); return false;
1463   }
1464 
1465   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1466     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1467   }
1468   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1469   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1470 
1471 
1472   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1473   // Respects UseUniqueSubclasses.
1474   // If the klass is final, the resulting type will be exact.
1475   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1476     return make_from_klass_common(klass, true, false, interface_handling);
1477   }
1478   // Same as before, but will produce an exact type, even if
1479   // the klass is not final, as long as it has exactly one implementation.
1480   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1481     return make_from_klass_common(klass, true, true, interface_handling);
1482   }
1483   // Same as before, but does not respects UseUniqueSubclasses.
1484   // Use this only for creating array element types.
1485   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1486     return make_from_klass_common(klass, false, false, interface_handling);
1487   }
1488   // Creates a singleton type given an object.
1489   // If the object cannot be rendered as a constant,
1490   // may return a non-singleton type.
1491   // If require_constant, produce a null if a singleton is not possible.
1492   static const TypeOopPtr* make_from_constant(ciObject* o,
1493                                               bool require_constant = false);
1494 
1495   // Make a generic (unclassed) pointer to an oop.
1496   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1497                                 const TypePtr* speculative = nullptr,
1498                                 int inline_depth = InlineDepthBottom);
1499 
1500   ciObject* const_oop()    const { return _const_oop; }
1501   // Exact klass, possibly an interface or an array of interface
1502   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1503   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1504 
1505   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1506   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1507 
1508   // Returns true if this pointer points at memory which contains a
1509   // compressed oop references.
1510   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1511   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1512   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1513   bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1514   bool is_known_instance()       const { return _instance_id > 0; }
1515   int  instance_id()             const { return _instance_id; }
1516   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1517 
1518   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1519   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1520 
1521   virtual intptr_t get_con() const;
1522 
1523   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1524 
1525   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1526 
1527   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1528 
1529   // corresponding pointer to klass, for a given instance
1530   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1531 
1532   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1533   virtual const TypePtr* add_offset(intptr_t offset) const;
1534 
1535   // Speculative type helper methods.
1536   virtual const TypeOopPtr* remove_speculative() const;
1537   virtual const Type* cleanup_speculative() const;
1538   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1539   virtual const TypePtr* with_inline_depth(int depth) const;
1540 
1541   virtual const TypePtr* with_instance_id(int instance_id) const;
1542 
1543   virtual const Type *xdual() const;    // Compute dual right now.
1544   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1545   virtual const Type *xmeet_helper(const Type *t) const;
1546 
1547   // Convenience common pre-built type.
1548   static const TypeOopPtr *BOTTOM;
1549 #ifndef PRODUCT
1550   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1551 #endif
1552 private:
1553   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1554     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1555   }
1556 
1557   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1558     ShouldNotReachHere(); return false;
1559   }
1560 
1561   virtual const TypeInterfaces* interfaces() const {
1562     return _interfaces;
1563   };
1564 
1565   const TypeOopPtr* is_reference_type(const Type* other) const {
1566     return other->isa_oopptr();
1567   }
1568 
1569   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1570     return other->isa_aryptr();
1571   }
1572 
1573   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1574     return other->isa_instptr();
1575   }
1576 };
1577 
1578 //------------------------------TypeInstPtr------------------------------------
1579 // Class of Java object pointers, pointing either to non-array Java instances
1580 // or to a Klass* (including array klasses).
1581 class TypeInstPtr : public TypeOopPtr {
1582   // Can this instance be in a flat array?
1583   FlatInArray _flat_in_array;
1584 
1585   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1586               FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1587               int inline_depth);
1588   virtual bool eq( const Type *t ) const;
1589   virtual uint hash() const;             // Type specific hashing
1590   ciKlass* exact_klass_helper() const;
1591 
1592 public:
1593 
1594   // Instance klass, ignoring any interface
1595   ciInstanceKlass* instance_klass() const {
1596     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1597     return klass()->as_instance_klass();
1598   }
1599 
1600   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1601   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1603 
1604   // Make a pointer to a constant oop.
1605   static const TypeInstPtr *make(ciObject* o) {
1606     ciKlass* k = o->klass();
1607     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1608     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1609   }
1610   // Make a pointer to a constant oop with offset.
1611   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1612     ciKlass* k = o->klass();
1613     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1614     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1615   }
1616 
1617   // Make a pointer to some value of type klass.
1618   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1619     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1620     return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1621   }
1622 
1623   // Make a pointer to some non-polymorphic value of exactly type klass.
1624   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1625     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1626     return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1627   }
1628 
1629   // Make a pointer to some value of type klass with offset.
1630   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1631     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1632     return make(ptr, klass, interfaces, false, nullptr, offset);
1633   }
1634 
1635   // Make a pointer to an oop.
1636   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1637                                  FlatInArray flat_in_array = Uninitialized,
1638                                  int instance_id = InstanceBot,
1639                                  const TypePtr* speculative = nullptr,
1640                                  int inline_depth = InlineDepthBottom);
1641 
1642   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1643                                  FlatInArray flat_in_array = Uninitialized) {
1644     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1645     return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1646   }
1647 
1648   /** Create constant type for a constant boxed value */
1649   const Type* get_const_boxed_value() const;
1650 
1651   // If this is a java.lang.Class constant, return the type for it or null.
1652   // Pass to Type::get_const_type to turn it to a type, which will usually
1653   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1654   ciType* java_mirror_type() const;
1655 
1656   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1657 
1658   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1659 
1660   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1661 
1662   virtual bool empty() const;
1663   virtual const TypePtr* add_offset(intptr_t offset) const;
1664   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1665 
1666   // Speculative type helper methods.
1667   virtual const TypeInstPtr* remove_speculative() const;
1668   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1669   virtual const TypePtr* with_inline_depth(int depth) const;
1670   virtual const TypePtr* with_instance_id(int instance_id) const;
1671 
1672   virtual const TypeInstPtr* cast_to_flat_in_array() const;
1673   virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1674   virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1675 
1676   FlatInArray dual_flat_in_array() const {
1677     return flat_in_array_dual[_flat_in_array];
1678   }
1679 
1680   // the core of the computation of the meet of 2 types
1681   virtual const Type *xmeet_helper(const Type *t) const;
1682   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1683   virtual const Type *xdual() const;    // Compute dual right now.
1684 
1685   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1686 
1687   virtual bool can_be_inline_array() const;
1688 
1689   // Convenience common pre-built types.
1690   static const TypeInstPtr *NOTNULL;
1691   static const TypeInstPtr *BOTTOM;
1692   static const TypeInstPtr *MIRROR;
1693   static const TypeInstPtr *MARK;
1694   static const TypeInstPtr *KLASS;
1695 #ifndef PRODUCT
1696   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1697 #endif
1698 
1699 private:
1700   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1701 
1702   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1703     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1704   }
1705 
1706 };
1707 
1708 //------------------------------TypeAryPtr-------------------------------------
1709 // Class of Java array pointers
1710 class TypeAryPtr : public TypeOopPtr {
1711   friend class Type;
1712   friend class TypePtr;
1713   friend class TypeInstPtr;
1714   friend class TypeInterfaces;
1715 
1716   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1717              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1718              const TypePtr* speculative, int inline_depth)
1719     : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1720     _ary(ary),
1721     _is_autobox_cache(is_autobox_cache),
1722     _field_offset(field_offset)
1723  {
1724     int dummy;
1725     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1726 
1727     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1728         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1729         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1730       _is_ptr_to_narrowoop = true;
1731     }
1732 
1733   }
1734   virtual bool eq( const Type *t ) const;
1735   virtual uint hash() const;    // Type specific hashing
1736   const TypeAry *_ary;          // Array we point into
1737   const bool     _is_autobox_cache;
1738   // For flat inline type arrays, each field of the inline type in
1739   // the array has its own memory slice so we need to keep track of
1740   // which field is accessed
1741   const Offset _field_offset;
1742   Offset meet_field_offset(const Type::Offset offset) const;
1743   Offset dual_field_offset() const;
1744 
1745   ciKlass* compute_klass() const;
1746 
1747   // A pointer to delay allocation to Type::Initialize_shared()
1748 
1749   static const TypeInterfaces* _array_interfaces;
1750   ciKlass* exact_klass_helper() const;
1751   // Only guaranteed non null for array of basic types
1752   ciKlass* klass() const;
1753 
1754 public:
1755 
1756   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1757   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1759 
1760   // returns base element type, an instance klass (and not interface) for object arrays
1761   const Type* base_element_type(int& dims) const;
1762 
1763   // Accessors
1764   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1765 
1766   const TypeAry* ary() const  { return _ary; }
1767   const Type*    elem() const { return _ary->_elem; }
1768   const TypeInt* size() const { return _ary->_size; }
1769   bool      is_stable() const { return _ary->_stable; }
1770 
1771   // Inline type array properties
1772   bool is_flat()          const { return _ary->_flat; }
1773   bool is_not_flat()      const { return _ary->_not_flat; }
1774   bool is_null_free()     const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1775   bool is_not_null_free() const { return _ary->_not_null_free; }
1776   bool is_atomic()        const { return _ary->_atomic; }
1777 
1778   bool is_autobox_cache() const { return _is_autobox_cache; }
1779 
1780   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1781                                 Offset field_offset = Offset::bottom,
1782                                 int instance_id = InstanceBot,
1783                                 const TypePtr* speculative = nullptr,
1784                                 int inline_depth = InlineDepthBottom);
1785   // Constant pointer to array
1786   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1787                                 Offset field_offset = Offset::bottom,
1788                                 int instance_id = InstanceBot,
1789                                 const TypePtr* speculative = nullptr,
1790                                 int inline_depth = InlineDepthBottom,
1791                                 bool is_autobox_cache = false);
1792 
1793   // Return a 'ptr' version of this type
1794   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1795 
1796   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1797 
1798   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1799 
1800   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1801   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1802 
1803   virtual bool empty(void) const;        // TRUE if type is vacuous
1804   virtual const TypePtr *add_offset( intptr_t offset ) const;
1805   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1806   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1807 
1808   // Speculative type helper methods.
1809   virtual const TypeAryPtr* remove_speculative() const;
1810   virtual const Type* cleanup_speculative() const;
1811   virtual const TypePtr* with_inline_depth(int depth) const;
1812   virtual const TypePtr* with_instance_id(int instance_id) const;
1813 
1814   // the core of the computation of the meet of 2 types
1815   virtual const Type *xmeet_helper(const Type *t) const;
1816   virtual const Type *xdual() const;    // Compute dual right now.
1817 
1818   // Inline type array properties
1819   const TypeAryPtr* cast_to_flat(bool flat) const;
1820   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1821   const TypeAryPtr* cast_to_null_free(bool null_free) const;
1822   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1823   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1824   jint flat_layout_helper() const;
1825   int flat_elem_size() const;
1826   int flat_log_elem_size() const;
1827 
1828   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1829   int stable_dimension() const;
1830 
1831   const TypeAryPtr* cast_to_autobox_cache() const;
1832 
1833   static jint max_array_length(BasicType etype);
1834 
1835   int flat_offset() const;
1836   const Offset field_offset() const { return _field_offset; }
1837   const TypeAryPtr* with_field_offset(int offset) const;
1838   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1839 
1840   virtual bool can_be_inline_type() const { return false; }
1841   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1842 
1843   virtual bool can_be_inline_array() const;
1844 
1845   // Convenience common pre-built types.
1846   static const TypeAryPtr* BOTTOM;
1847   static const TypeAryPtr *RANGE;
1848   static const TypeAryPtr *OOPS;
1849   static const TypeAryPtr *NARROWOOPS;
1850   static const TypeAryPtr *BYTES;
1851   static const TypeAryPtr *SHORTS;
1852   static const TypeAryPtr *CHARS;
1853   static const TypeAryPtr *INTS;
1854   static const TypeAryPtr *LONGS;
1855   static const TypeAryPtr *FLOATS;
1856   static const TypeAryPtr *DOUBLES;
1857   static const TypeAryPtr *INLINES;
1858   // selects one of the above:
1859   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1860     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1861     return _array_body_type[elem];
1862   }
1863   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1864   // sharpen the type of an int which is used as an array size
1865 #ifndef PRODUCT
1866   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1867 #endif
1868 private:
1869   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1870 };
1871 
1872 //------------------------------TypeMetadataPtr-------------------------------------
1873 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1874 class TypeMetadataPtr : public TypePtr {
1875 protected:
1876   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1877   // Do not allow interface-vs.-noninterface joins to collapse to top.
1878   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1879 public:
1880   virtual bool eq( const Type *t ) const;
1881   virtual uint hash() const;             // Type specific hashing
1882   virtual bool singleton(void) const;    // TRUE if type is a singleton
1883 
1884 private:
1885   ciMetadata*   _metadata;
1886 
1887 public:
1888   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1889 
1890   static const TypeMetadataPtr* make(ciMethod* m);
1891   static const TypeMetadataPtr* make(ciMethodData* m);
1892 
1893   ciMetadata* metadata() const { return _metadata; }
1894 
1895   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1896 
1897   virtual const TypePtr *add_offset( intptr_t offset ) const;
1898 
1899   virtual const Type *xmeet( const Type *t ) const;
1900   virtual const Type *xdual() const;    // Compute dual right now.
1901 
1902   virtual intptr_t get_con() const;
1903 
1904   // Convenience common pre-built types.
1905   static const TypeMetadataPtr *BOTTOM;
1906 
1907 #ifndef PRODUCT
1908   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1909 #endif
1910 };
1911 
1912 //------------------------------TypeKlassPtr-----------------------------------
1913 // Class of Java Klass pointers
1914 class TypeKlassPtr : public TypePtr {
1915   friend class TypeInstKlassPtr;
1916   friend class TypeAryKlassPtr;
1917   friend class TypePtr;
1918 protected:
1919   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1920 
1921   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1922 
1923 public:
1924   virtual bool eq( const Type *t ) const;
1925   virtual uint hash() const;
1926   virtual bool singleton(void) const;    // TRUE if type is a singleton
1927 
1928 protected:
1929 
1930   ciKlass* _klass;
1931   const TypeInterfaces* _interfaces;
1932   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1933   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1934   virtual ciKlass* exact_klass_helper() const;
1935   virtual ciKlass* klass() const { return  _klass; }
1936 
1937 public:
1938 
1939   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1940     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1941   }
1942   bool is_same_java_type_as(const TypePtr* other) const {
1943     return is_same_java_type_as_helper(other->is_klassptr());
1944   }
1945 
1946   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1947     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1948   }
1949   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1950   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1952 
1953   // Exact klass, possibly an interface or an array of interface
1954   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1955   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1956 
1957   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1958 
1959   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1960 
1961   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1962 
1963   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1964 
1965   // corresponding pointer to instance, for a given class
1966   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1967 
1968   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1969   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1970   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1971 
1972   virtual intptr_t get_con() const;
1973 
1974   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1975 
1976   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1977 
1978   virtual const TypeKlassPtr* try_improve() const { return this; }
1979 
1980 private:
1981   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1982     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1983   }
1984 
1985   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1986     ShouldNotReachHere(); return false;
1987   }
1988 
1989   virtual const TypeInterfaces* interfaces() const {
1990     return _interfaces;
1991   };
1992 
1993   const TypeKlassPtr* is_reference_type(const Type* other) const {
1994     return other->isa_klassptr();
1995   }
1996 
1997   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1998     return other->isa_aryklassptr();
1999   }
2000 
2001   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2002     return other->isa_instklassptr();
2003   }
2004 };
2005 
2006 // Instance klass pointer, mirrors TypeInstPtr
2007 class TypeInstKlassPtr : public TypeKlassPtr {
2008   // Can an instance of this class be in a flat array?
2009   const FlatInArray _flat_in_array;
2010 
2011   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2012     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2013     assert(flat_in_array != Uninitialized, "must be set now");
2014     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2015   }
2016 
2017   virtual bool must_be_exact() const;
2018 
2019 public:
2020   // Instance klass ignoring any interface
2021   ciInstanceKlass* instance_klass() const {
2022     assert(!klass()->is_interface(), "");
2023     return klass()->as_instance_klass();
2024   }
2025 
2026   bool might_be_an_array() const;
2027 
2028   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2029   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2031 
2032   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2033 
2034   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2035     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2036     return make(TypePtr::Constant, k, interfaces, Offset(0));
2037   }
2038 
2039   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2040                                       FlatInArray flat_in_array = Uninitialized);
2041 
2042   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2043     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2044     return make(ptr, k, interfaces, offset, flat_in_array);
2045   }
2046 
2047   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2048 
2049   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2050 
2051   // corresponding pointer to instance, for a given class
2052   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2053   virtual uint hash() const;
2054   virtual bool eq(const Type *t) const;
2055 
2056 
2057   virtual bool empty() const;
2058   virtual const TypePtr *add_offset( intptr_t offset ) const;
2059   virtual const Type    *xmeet( const Type *t ) const;
2060   virtual const Type    *xdual() const;
2061   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2062 
2063   virtual const TypeKlassPtr* try_improve() const;
2064 
2065   virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2066 
2067   FlatInArray dual_flat_in_array() const {
2068     return flat_in_array_dual[_flat_in_array];
2069   }
2070 
2071   virtual bool can_be_inline_array() const;
2072 
2073   // Convenience common pre-built types.
2074   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2075   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2076 
2077 #ifndef PRODUCT
2078   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2079 #endif // PRODUCT
2080 
2081 private:
2082   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2083 };
2084 
2085 // Array klass pointer, mirrors TypeAryPtr
2086 class TypeAryKlassPtr : public TypeKlassPtr {
2087   friend class TypeInstKlassPtr;
2088   friend class Type;
2089   friend class TypePtr;
2090 
2091   const Type *_elem;
2092   const bool _not_flat;      // Array is never flat
2093   const bool _not_null_free; // Array is never null-free
2094   const bool _flat;
2095   const bool _null_free;
2096   const bool _atomic;
2097   const bool _refined_type;
2098 
2099   static const TypeInterfaces* _array_interfaces;
2100   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2101     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2102     assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2103   }
2104 
2105   virtual ciKlass* exact_klass_helper() const;
2106   // Only guaranteed non null for array of basic types
2107   virtual ciKlass* klass() const;
2108 
2109   virtual bool must_be_exact() const;
2110 
2111   bool dual_flat() const {
2112     return _flat;
2113   }
2114 
2115   bool meet_flat(bool other) const {
2116     return _flat && other;
2117   }
2118 
2119   bool dual_null_free() const {
2120     return _null_free;
2121   }
2122 
2123   bool meet_null_free(bool other) const {
2124     return _null_free && other;
2125   }
2126 
2127   bool dual_atomic() const {
2128     return _atomic;
2129   }
2130 
2131   bool meet_atomic(bool other) const {
2132     return _atomic && other;
2133   }
2134 
2135 public:
2136 
2137   // returns base element type, an instance klass (and not interface) for object arrays
2138   const Type* base_element_type(int& dims) const;
2139 
2140   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2141 
2142   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2143   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2145 
2146   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2147 
2148   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2149   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2150 
2151   const TypeAryKlassPtr* cast_to_non_refined() const;
2152   const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2153 
2154   const Type *elem() const { return _elem; }
2155 
2156   virtual bool eq(const Type *t) const;
2157   virtual uint hash() const;             // Type specific hashing
2158 
2159   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2160 
2161   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2162 
2163   // corresponding pointer to instance, for a given class
2164   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2165 
2166   virtual const TypePtr *add_offset( intptr_t offset ) const;
2167   virtual const Type    *xmeet( const Type *t ) const;
2168   virtual const Type    *xdual() const;      // Compute dual right now.
2169 
2170   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2171 
2172   virtual bool empty(void) const {
2173     return TypeKlassPtr::empty() || _elem->empty();
2174   }
2175 
2176   bool is_flat()          const { return _flat; }
2177   bool is_not_flat()      const { return _not_flat; }
2178   bool is_null_free()     const { return _null_free; }
2179   bool is_not_null_free() const { return _not_null_free; }
2180   bool is_atomic()        const { return _atomic; }
2181   bool is_refined_type()  const { return _refined_type; }
2182   virtual bool can_be_inline_array() const;
2183 
2184 #ifndef PRODUCT
2185   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2186 #endif
2187 private:
2188   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2189 };
2190 
2191 class TypeNarrowPtr : public Type {
2192 protected:
2193   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2194 
2195   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2196                                                   _ptrtype(ptrtype) {
2197     assert(ptrtype->offset() == 0 ||
2198            ptrtype->offset() == OffsetBot ||
2199            ptrtype->offset() == OffsetTop, "no real offsets");
2200   }
2201 
2202   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2203   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2204   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2205   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2206   // Do not allow interface-vs.-noninterface joins to collapse to top.
2207   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2208 public:
2209   virtual bool eq( const Type *t ) const;
2210   virtual uint hash() const;             // Type specific hashing
2211   virtual bool singleton(void) const;    // TRUE if type is a singleton
2212 
2213   virtual const Type *xmeet( const Type *t ) const;
2214   virtual const Type *xdual() const;    // Compute dual right now.
2215 
2216   virtual intptr_t get_con() const;
2217 
2218   virtual bool empty(void) const;        // TRUE if type is vacuous
2219 
2220   // returns the equivalent ptr type for this compressed pointer
2221   const TypePtr *get_ptrtype() const {
2222     return _ptrtype;
2223   }
2224 
2225   bool is_known_instance() const {
2226     return _ptrtype->is_known_instance();
2227   }
2228 
2229 #ifndef PRODUCT
2230   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2231 #endif
2232 };
2233 
2234 //------------------------------TypeNarrowOop----------------------------------
2235 // A compressed reference to some kind of Oop.  This type wraps around
2236 // a preexisting TypeOopPtr and forwards most of it's operations to
2237 // the underlying type.  It's only real purpose is to track the
2238 // oopness of the compressed oop value when we expose the conversion
2239 // between the normal and the compressed form.
2240 class TypeNarrowOop : public TypeNarrowPtr {
2241 protected:
2242   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2243   }
2244 
2245   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2246     return t->isa_narrowoop();
2247   }
2248 
2249   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2250     return t->is_narrowoop();
2251   }
2252 
2253   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2254     return new TypeNarrowOop(t);
2255   }
2256 
2257   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2258     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2259   }
2260 
2261 public:
2262 
2263   static const TypeNarrowOop *make( const TypePtr* type);
2264 
2265   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2266     return make(TypeOopPtr::make_from_constant(con, require_constant));
2267   }
2268 
2269   static const TypeNarrowOop *BOTTOM;
2270   static const TypeNarrowOop *NULL_PTR;
2271 
2272   virtual const TypeNarrowOop* remove_speculative() const;
2273   virtual const Type* cleanup_speculative() const;
2274 
2275 #ifndef PRODUCT
2276   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2277 #endif
2278 };
2279 
2280 //------------------------------TypeNarrowKlass----------------------------------
2281 // A compressed reference to klass pointer.  This type wraps around a
2282 // preexisting TypeKlassPtr and forwards most of it's operations to
2283 // the underlying type.
2284 class TypeNarrowKlass : public TypeNarrowPtr {
2285 protected:
2286   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2287   }
2288 
2289   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2290     return t->isa_narrowklass();
2291   }
2292 
2293   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2294     return t->is_narrowklass();
2295   }
2296 
2297   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2298     return new TypeNarrowKlass(t);
2299   }
2300 
2301   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2302     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2303   }
2304 
2305 public:
2306   static const TypeNarrowKlass *make( const TypePtr* type);
2307 
2308   // static const TypeNarrowKlass *BOTTOM;
2309   static const TypeNarrowKlass *NULL_PTR;
2310 
2311 #ifndef PRODUCT
2312   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2313 #endif
2314 };
2315 
2316 //------------------------------TypeFunc---------------------------------------
2317 // Class of Array Types
2318 class TypeFunc : public Type {
2319   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2320     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2321   virtual bool eq( const Type *t ) const;
2322   virtual uint hash() const;             // Type specific hashing
2323   virtual bool singleton(void) const;    // TRUE if type is a singleton
2324   virtual bool empty(void) const;        // TRUE if type is vacuous
2325 
2326   // Domains of inputs: inline type arguments are not passed by
2327   // reference, instead each field of the inline type is passed as an
2328   // argument. We maintain 2 views of the argument list here: one
2329   // based on the signature (with an inline type argument as a single
2330   // slot), one based on the actual calling convention (with a value
2331   // type argument as a list of its fields).
2332   const TypeTuple* const _domain_sig;
2333   const TypeTuple* const _domain_cc;
2334   // Range of results. Similar to domains: an inline type result can be
2335   // returned in registers in which case range_cc lists all fields and
2336   // is the actual calling convention.
2337   const TypeTuple* const _range_sig;
2338   const TypeTuple* const _range_cc;
2339 
2340 public:
2341   // Constants are shared among ADLC and VM
2342   enum { Control    = AdlcVMDeps::Control,
2343          I_O        = AdlcVMDeps::I_O,
2344          Memory     = AdlcVMDeps::Memory,
2345          FramePtr   = AdlcVMDeps::FramePtr,
2346          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2347          Parms      = AdlcVMDeps::Parms
2348   };
2349 
2350 
2351   // Accessors:
2352   const TypeTuple* domain_sig() const { return _domain_sig; }
2353   const TypeTuple* domain_cc()  const { return _domain_cc; }
2354   const TypeTuple* range_sig()  const { return _range_sig; }
2355   const TypeTuple* range_cc()   const { return _range_cc; }
2356 
2357   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2358   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2359                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2360   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2361 
2362   virtual const Type *xmeet( const Type *t ) const;
2363   virtual const Type *xdual() const;    // Compute dual right now.
2364 
2365   BasicType return_type() const;
2366 
2367   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2368 
2369 #ifndef PRODUCT
2370   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2371 #endif
2372   // Convenience common pre-built types.
2373 };
2374 
2375 //------------------------------accessors--------------------------------------
2376 inline bool Type::is_ptr_to_narrowoop() const {
2377 #ifdef _LP64
2378   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2379 #else
2380   return false;
2381 #endif
2382 }
2383 
2384 inline bool Type::is_ptr_to_narrowklass() const {
2385 #ifdef _LP64
2386   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2387 #else
2388   return false;
2389 #endif
2390 }
2391 
2392 inline float Type::getf() const {
2393   assert( _base == FloatCon, "Not a FloatCon" );
2394   return ((TypeF*)this)->_f;
2395 }
2396 
2397 inline short Type::geth() const {
2398   assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2399   return ((TypeH*)this)->_f;
2400 }
2401 
2402 inline double Type::getd() const {
2403   assert( _base == DoubleCon, "Not a DoubleCon" );
2404   return ((TypeD*)this)->_d;
2405 }
2406 
2407 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2408   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2409   return (TypeInteger*)this;
2410 }
2411 
2412 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2413   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2414 }
2415 
2416 inline const TypeInt *Type::is_int() const {
2417   assert( _base == Int, "Not an Int" );
2418   return (TypeInt*)this;
2419 }
2420 
2421 inline const TypeInt *Type::isa_int() const {
2422   return ( _base == Int ? (TypeInt*)this : nullptr);
2423 }
2424 
2425 inline const TypeLong *Type::is_long() const {
2426   assert( _base == Long, "Not a Long" );
2427   return (TypeLong*)this;
2428 }
2429 
2430 inline const TypeLong *Type::isa_long() const {
2431   return ( _base == Long ? (TypeLong*)this : nullptr);
2432 }
2433 
2434 inline const TypeH* Type::isa_half_float() const {
2435   return ((_base == HalfFloatTop ||
2436            _base == HalfFloatCon ||
2437            _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2438 }
2439 
2440 inline const TypeH* Type::is_half_float_constant() const {
2441   assert( _base == HalfFloatCon, "Not a HalfFloat" );
2442   return (TypeH*)this;
2443 }
2444 
2445 inline const TypeH* Type::isa_half_float_constant() const {
2446   return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2447 }
2448 
2449 inline const TypeF *Type::isa_float() const {
2450   return ((_base == FloatTop ||
2451            _base == FloatCon ||
2452            _base == FloatBot) ? (TypeF*)this : nullptr);
2453 }
2454 
2455 inline const TypeF *Type::is_float_constant() const {
2456   assert( _base == FloatCon, "Not a Float" );
2457   return (TypeF*)this;
2458 }
2459 
2460 inline const TypeF *Type::isa_float_constant() const {
2461   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2462 }
2463 
2464 inline const TypeD *Type::isa_double() const {
2465   return ((_base == DoubleTop ||
2466            _base == DoubleCon ||
2467            _base == DoubleBot) ? (TypeD*)this : nullptr);
2468 }
2469 
2470 inline const TypeD *Type::is_double_constant() const {
2471   assert( _base == DoubleCon, "Not a Double" );
2472   return (TypeD*)this;
2473 }
2474 
2475 inline const TypeD *Type::isa_double_constant() const {
2476   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2477 }
2478 
2479 inline const TypeTuple *Type::is_tuple() const {
2480   assert( _base == Tuple, "Not a Tuple" );
2481   return (TypeTuple*)this;
2482 }
2483 
2484 inline const TypeAry *Type::is_ary() const {
2485   assert( _base == Array , "Not an Array" );
2486   return (TypeAry*)this;
2487 }
2488 
2489 inline const TypeAry *Type::isa_ary() const {
2490   return ((_base == Array) ? (TypeAry*)this : nullptr);
2491 }
2492 
2493 inline const TypeVectMask *Type::is_vectmask() const {
2494   assert( _base == VectorMask, "Not a Vector Mask" );
2495   return (TypeVectMask*)this;
2496 }
2497 
2498 inline const TypeVectMask *Type::isa_vectmask() const {
2499   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2500 }
2501 
2502 inline const TypeVect *Type::is_vect() const {
2503   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2504   return (TypeVect*)this;
2505 }
2506 
2507 inline const TypeVect *Type::isa_vect() const {
2508   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2509 }
2510 
2511 inline const TypePtr *Type::is_ptr() const {
2512   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2513   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2514   return (TypePtr*)this;
2515 }
2516 
2517 inline const TypePtr *Type::isa_ptr() const {
2518   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2519   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2520 }
2521 
2522 inline const TypeOopPtr *Type::is_oopptr() const {
2523   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2524   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2525   return (TypeOopPtr*)this;
2526 }
2527 
2528 inline const TypeOopPtr *Type::isa_oopptr() const {
2529   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2530   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2531 }
2532 
2533 inline const TypeRawPtr *Type::isa_rawptr() const {
2534   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2535 }
2536 
2537 inline const TypeRawPtr *Type::is_rawptr() const {
2538   assert( _base == RawPtr, "Not a raw pointer" );
2539   return (TypeRawPtr*)this;
2540 }
2541 
2542 inline const TypeInstPtr *Type::isa_instptr() const {
2543   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2544 }
2545 
2546 inline const TypeInstPtr *Type::is_instptr() const {
2547   assert( _base == InstPtr, "Not an object pointer" );
2548   return (TypeInstPtr*)this;
2549 }
2550 
2551 inline const TypeAryPtr *Type::isa_aryptr() const {
2552   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2553 }
2554 
2555 inline const TypeAryPtr *Type::is_aryptr() const {
2556   assert( _base == AryPtr, "Not an array pointer" );
2557   return (TypeAryPtr*)this;
2558 }
2559 
2560 inline const TypeNarrowOop *Type::is_narrowoop() const {
2561   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2562   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2563   return (TypeNarrowOop*)this;
2564 }
2565 
2566 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2567   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2568   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2569 }
2570 
2571 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2572   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2573   return (TypeNarrowKlass*)this;
2574 }
2575 
2576 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2577   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2578 }
2579 
2580 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2581   // MetadataPtr is the first and CPCachePtr the last
2582   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2583   return (TypeMetadataPtr*)this;
2584 }
2585 
2586 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2587   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2588 }
2589 
2590 inline const TypeKlassPtr *Type::isa_klassptr() const {
2591   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2592 }
2593 
2594 inline const TypeKlassPtr *Type::is_klassptr() const {
2595   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2596   return (TypeKlassPtr*)this;
2597 }
2598 
2599 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2600   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2601 }
2602 
2603 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2604   assert(_base == InstKlassPtr, "Not a klass pointer");
2605   return (TypeInstKlassPtr*)this;
2606 }
2607 
2608 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2609   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2610 }
2611 
2612 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2613   assert(_base == AryKlassPtr, "Not a klass pointer");
2614   return (TypeAryKlassPtr*)this;
2615 }
2616 
2617 inline const TypePtr* Type::make_ptr() const {
2618   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2619                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2620                                                        isa_ptr());
2621 }
2622 
2623 inline const TypeOopPtr* Type::make_oopptr() const {
2624   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2625 }
2626 
2627 inline const TypeNarrowOop* Type::make_narrowoop() const {
2628   return (_base == NarrowOop) ? is_narrowoop() :
2629                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2630 }
2631 
2632 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2633   return (_base == NarrowKlass) ? is_narrowklass() :
2634                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2635 }
2636 
2637 inline bool Type::is_floatingpoint() const {
2638   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2639       (_base == FloatCon)  || (_base == FloatBot) ||
2640       (_base == DoubleCon) || (_base == DoubleBot) )
2641     return true;
2642   return false;
2643 }
2644 
2645 inline bool Type::is_inlinetypeptr() const {
2646   return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2647 }
2648 
2649 inline ciInlineKlass* Type::inline_klass() const {
2650   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2651 }
2652 
2653 template <>
2654 inline const TypeInt* Type::cast<TypeInt>() const {
2655   return is_int();
2656 }
2657 
2658 template <>
2659 inline const TypeLong* Type::cast<TypeLong>() const {
2660   return is_long();
2661 }
2662 
2663 template <>
2664 inline const TypeInt* Type::try_cast<TypeInt>() const {
2665   return isa_int();
2666 }
2667 
2668 template <>
2669 inline const TypeLong* Type::try_cast<TypeLong>() const {
2670   return isa_long();
2671 }
2672 
2673 // ===============================================================
2674 // Things that need to be 64-bits in the 64-bit build but
2675 // 32-bits in the 32-bit build.  Done this way to get full
2676 // optimization AND strong typing.
2677 #ifdef _LP64
2678 
2679 // For type queries and asserts
2680 #define is_intptr_t  is_long
2681 #define isa_intptr_t isa_long
2682 #define find_intptr_t_type find_long_type
2683 #define find_intptr_t_con  find_long_con
2684 #define TypeX        TypeLong
2685 #define Type_X       Type::Long
2686 #define TypeX_X      TypeLong::LONG
2687 #define TypeX_ZERO   TypeLong::ZERO
2688 // For 'ideal_reg' machine registers
2689 #define Op_RegX      Op_RegL
2690 // For phase->intcon variants
2691 #define MakeConX     longcon
2692 #define ConXNode     ConLNode
2693 // For array index arithmetic
2694 #define MulXNode     MulLNode
2695 #define AndXNode     AndLNode
2696 #define OrXNode      OrLNode
2697 #define CmpXNode     CmpLNode
2698 #define CmpUXNode    CmpULNode
2699 #define SubXNode     SubLNode
2700 #define LShiftXNode  LShiftLNode
2701 // For object size computation:
2702 #define AddXNode     AddLNode
2703 #define RShiftXNode  RShiftLNode
2704 // For card marks and hashcodes
2705 #define URShiftXNode URShiftLNode
2706 // For shenandoahSupport
2707 #define LoadXNode    LoadLNode
2708 #define StoreXNode   StoreLNode
2709 // Opcodes
2710 #define Op_LShiftX   Op_LShiftL
2711 #define Op_AndX      Op_AndL
2712 #define Op_AddX      Op_AddL
2713 #define Op_SubX      Op_SubL
2714 #define Op_XorX      Op_XorL
2715 #define Op_URShiftX  Op_URShiftL
2716 #define Op_LoadX     Op_LoadL
2717 #define Op_StoreX    Op_StoreL
2718 // conversions
2719 #define ConvI2X(x)   ConvI2L(x)
2720 #define ConvL2X(x)   (x)
2721 #define ConvX2I(x)   ConvL2I(x)
2722 #define ConvX2L(x)   (x)
2723 #define ConvX2UL(x)  (x)
2724 
2725 #else
2726 
2727 // For type queries and asserts
2728 #define is_intptr_t  is_int
2729 #define isa_intptr_t isa_int
2730 #define find_intptr_t_type find_int_type
2731 #define find_intptr_t_con  find_int_con
2732 #define TypeX        TypeInt
2733 #define Type_X       Type::Int
2734 #define TypeX_X      TypeInt::INT
2735 #define TypeX_ZERO   TypeInt::ZERO
2736 // For 'ideal_reg' machine registers
2737 #define Op_RegX      Op_RegI
2738 // For phase->intcon variants
2739 #define MakeConX     intcon
2740 #define ConXNode     ConINode
2741 // For array index arithmetic
2742 #define MulXNode     MulINode
2743 #define AndXNode     AndINode
2744 #define OrXNode      OrINode
2745 #define CmpXNode     CmpINode
2746 #define CmpUXNode    CmpUNode
2747 #define SubXNode     SubINode
2748 #define LShiftXNode  LShiftINode
2749 // For object size computation:
2750 #define AddXNode     AddINode
2751 #define RShiftXNode  RShiftINode
2752 // For card marks and hashcodes
2753 #define URShiftXNode URShiftINode
2754 // For shenandoahSupport
2755 #define LoadXNode    LoadINode
2756 #define StoreXNode   StoreINode
2757 // Opcodes
2758 #define Op_LShiftX   Op_LShiftI
2759 #define Op_AndX      Op_AndI
2760 #define Op_AddX      Op_AddI
2761 #define Op_SubX      Op_SubI
2762 #define Op_XorX      Op_XorI
2763 #define Op_URShiftX  Op_URShiftI
2764 #define Op_LoadX     Op_LoadI
2765 #define Op_StoreX    Op_StoreI
2766 // conversions
2767 #define ConvI2X(x)   (x)
2768 #define ConvL2X(x)   ConvL2I(x)
2769 #define ConvX2I(x)   (x)
2770 #define ConvX2L(x)   ConvI2L(x)
2771 #define ConvX2UL(x)  ConvI2UL(x)
2772 
2773 #endif
2774 
2775 #endif // SHARE_OPTO_TYPE_HPP