1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeInteger;
  51 class     TypeInt;
  52 class     TypeLong;
  53 class   TypeNarrowPtr;
  54 class     TypeNarrowOop;
  55 class     TypeNarrowKlass;
  56 class   TypeAry;
  57 class   TypeTuple;
  58 class   TypeVect;
  59 class     TypeVectA;
  60 class     TypeVectS;
  61 class     TypeVectD;
  62 class     TypeVectX;
  63 class     TypeVectY;
  64 class     TypeVectZ;
  65 class     TypeVectMask;
  66 class   TypePtr;
  67 class     TypeRawPtr;
  68 class     TypeOopPtr;
  69 class       TypeInstPtr;
  70 class       TypeAryPtr;
  71 class     TypeKlassPtr;
  72 class       TypeInstKlassPtr;
  73 class       TypeAryKlassPtr;
  74 class     TypeMetadataPtr;
  75 
  76 //------------------------------Type-------------------------------------------
  77 // Basic Type object, represents a set of primitive Values.
  78 // Types are hash-cons'd into a private class dictionary, so only one of each
  79 // different kind of Type exists.  Types are never modified after creation, so
  80 // all their interesting fields are constant.
  81 class Type {
  82   friend class VMStructs;
  83 
  84 public:
  85   enum TYPES {
  86     Bad=0,                      // Type check
  87     Control,                    // Control of code (not in lattice)
  88     Top,                        // Top of the lattice
  89     Int,                        // Integer range (lo-hi)
  90     Long,                       // Long integer range (lo-hi)
  91     Half,                       // Placeholder half of doubleword
  92     NarrowOop,                  // Compressed oop pointer
  93     NarrowKlass,                // Compressed klass pointer
  94 
  95     Tuple,                      // Method signature or object layout
  96     Array,                      // Array types
  97 
  98     VectorMask,                 // Vector predicate/mask type
  99     VectorA,                    // (Scalable) Vector types for vector length agnostic
 100     VectorS,                    //  32bit Vector types
 101     VectorD,                    //  64bit Vector types
 102     VectorX,                    // 128bit Vector types
 103     VectorY,                    // 256bit Vector types
 104     VectorZ,                    // 512bit Vector types
 105 
 106     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 107     RawPtr,                     // Raw (non-oop) pointers
 108     OopPtr,                     // Any and all Java heap entities
 109     InstPtr,                    // Instance pointers (non-array objects)
 110     AryPtr,                     // Array pointers
 111     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 112 
 113     MetadataPtr,                // Generic metadata
 114     KlassPtr,                   // Klass pointers
 115     InstKlassPtr,
 116     AryKlassPtr,
 117 
 118     Function,                   // Function signature
 119     Abio,                       // Abstract I/O
 120     Return_Address,             // Subroutine return address
 121     Memory,                     // Abstract store
 122     FloatTop,                   // No float value
 123     FloatCon,                   // Floating point constant
 124     FloatBot,                   // Any float value
 125     DoubleTop,                  // No double value
 126     DoubleCon,                  // Double precision constant
 127     DoubleBot,                  // Any double value
 128     Bottom,                     // Bottom of lattice
 129     lastype                     // Bogus ending type (not in lattice)
 130   };
 131 
 132   // Signal values for offsets from a base pointer
 133   enum OFFSET_SIGNALS {
 134     OffsetTop = -2000000000,    // undefined offset
 135     OffsetBot = -2000000001     // any possible offset
 136   };
 137 
 138   class Offset {
 139   private:
 140     int _offset;
 141 
 142   public:
 143     explicit Offset(int offset) : _offset(offset) {}
 144 
 145     const Offset meet(const Offset other) const;
 146     const Offset dual() const;
 147     const Offset add(intptr_t offset) const;
 148     bool operator==(const Offset& other) const {
 149       return _offset == other._offset;
 150     }
 151     bool operator!=(const Offset& other) const {
 152       return _offset != other._offset;
 153     }
 154     int get() const { return _offset; }
 155 
 156     void dump2(outputStream *st) const;
 157 
 158     static const Offset top;
 159     static const Offset bottom;
 160   };
 161 
 162   // Min and max WIDEN values.
 163   enum WIDEN {
 164     WidenMin = 0,
 165     WidenMax = 3
 166   };
 167 
 168 private:
 169   typedef struct {
 170     TYPES                dual_type;
 171     BasicType            basic_type;
 172     const char*          msg;
 173     bool                 isa_oop;
 174     uint                 ideal_reg;
 175     relocInfo::relocType reloc;
 176   } TypeInfo;
 177 
 178   // Dictionary of types shared among compilations.
 179   static Dict* _shared_type_dict;
 180   static const TypeInfo _type_info[];
 181 
 182   static int uhash( const Type *const t );
 183   // Structural equality check.  Assumes that cmp() has already compared
 184   // the _base types and thus knows it can cast 't' appropriately.
 185   virtual bool eq( const Type *t ) const;
 186 
 187   // Top-level hash-table of types
 188   static Dict *type_dict() {
 189     return Compile::current()->type_dict();
 190   }
 191 
 192   // DUAL operation: reflect around lattice centerline.  Used instead of
 193   // join to ensure my lattice is symmetric up and down.  Dual is computed
 194   // lazily, on demand, and cached in _dual.
 195   const Type *_dual;            // Cached dual value
 196 
 197 
 198   const Type *meet_helper(const Type *t, bool include_speculative) const;
 199   void check_symmetrical(const Type *t, const Type *mt) const;
 200 
 201 protected:
 202   // Each class of type is also identified by its base.
 203   const TYPES _base;            // Enum of Types type
 204 
 205   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 206   // ~Type();                   // Use fast deallocation
 207   const Type *hashcons();       // Hash-cons the type
 208   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 209   const Type *join_helper(const Type *t, bool include_speculative) const {
 210     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 211   }
 212 
 213 public:
 214 
 215   inline void* operator new( size_t x ) throw() {
 216     Compile* compile = Compile::current();
 217     compile->set_type_last_size(x);
 218     return compile->type_arena()->AmallocWords(x);
 219   }
 220   inline void operator delete( void* ptr ) {
 221     Compile* compile = Compile::current();
 222     compile->type_arena()->Afree(ptr,compile->type_last_size());
 223   }
 224 
 225   // Initialize the type system for a particular compilation.
 226   static void Initialize(Compile* compile);
 227 
 228   // Initialize the types shared by all compilations.
 229   static void Initialize_shared(Compile* compile);
 230 
 231   TYPES base() const {
 232     assert(_base > Bad && _base < lastype, "sanity");
 233     return _base;
 234   }
 235 
 236   // Create a new hash-consd type
 237   static const Type *make(enum TYPES);
 238   // Test for equivalence of types
 239   static int cmp( const Type *const t1, const Type *const t2 );
 240   // Test for higher or equal in lattice
 241   // Variant that drops the speculative part of the types
 242   bool higher_equal(const Type *t) const {
 243     return !cmp(meet(t),t->remove_speculative());
 244   }
 245   // Variant that keeps the speculative part of the types
 246   bool higher_equal_speculative(const Type *t) const {
 247     return !cmp(meet_speculative(t),t);
 248   }
 249 
 250   // MEET operation; lower in lattice.
 251   // Variant that drops the speculative part of the types
 252   const Type *meet(const Type *t) const {
 253     return meet_helper(t, false);
 254   }
 255   // Variant that keeps the speculative part of the types
 256   const Type *meet_speculative(const Type *t) const {
 257     return meet_helper(t, true)->cleanup_speculative();
 258   }
 259   // WIDEN: 'widens' for Ints and other range types
 260   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 261   // NARROW: complement for widen, used by pessimistic phases
 262   virtual const Type *narrow( const Type *old ) const { return this; }
 263 
 264   // DUAL operation: reflect around lattice centerline.  Used instead of
 265   // join to ensure my lattice is symmetric up and down.
 266   const Type *dual() const { return _dual; }
 267 
 268   // Compute meet dependent on base type
 269   virtual const Type *xmeet( const Type *t ) const;
 270   virtual const Type *xdual() const;    // Compute dual right now.
 271 
 272   // JOIN operation; higher in lattice.  Done by finding the dual of the
 273   // meet of the dual of the 2 inputs.
 274   // Variant that drops the speculative part of the types
 275   const Type *join(const Type *t) const {
 276     return join_helper(t, false);
 277   }
 278   // Variant that keeps the speculative part of the types
 279   const Type *join_speculative(const Type *t) const {
 280     return join_helper(t, true)->cleanup_speculative();
 281   }
 282 
 283   // Modified version of JOIN adapted to the needs Node::Value.
 284   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 285   // Variant that drops the speculative part of the types
 286   const Type *filter(const Type *kills) const {
 287     return filter_helper(kills, false);
 288   }
 289   // Variant that keeps the speculative part of the types
 290   const Type *filter_speculative(const Type *kills) const {
 291     return filter_helper(kills, true)->cleanup_speculative();
 292   }
 293 
 294   // Returns true if this pointer points at memory which contains a
 295   // compressed oop references.
 296   bool is_ptr_to_narrowoop() const;
 297   bool is_ptr_to_narrowklass() const;
 298 
 299   // Convenience access
 300   float getf() const;
 301   double getd() const;
 302 
 303   const TypeInt    *is_int() const;
 304   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 305   const TypeInteger* is_integer(BasicType bt) const;
 306   const TypeInteger* isa_integer(BasicType bt) const;
 307   const TypeLong   *is_long() const;
 308   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 309   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 310   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 311   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 312   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 313   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 314   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 315   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 316   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 317   const TypeAry    *isa_ary() const;             // Returns NULL of not ary
 318   const TypeVect   *is_vect() const;             // Vector
 319   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 320   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 321   const TypeVectMask *isa_vectmask() const;      // Returns NULL if not a Vector Predicate/Mask
 322   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 323   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 324   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 325   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 326   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 327   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 328   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 329   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 330   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 331   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 332   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 333   const TypeInstPtr  *is_instptr() const;        // Instance
 334   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 335   const TypeAryPtr   *is_aryptr() const;         // Array oop
 336 
 337   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 338   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 339   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 340   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 341   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns NULL if not IntKlassPtr
 342   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 343   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns NULL if not AryKlassPtr
 344   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 345 
 346   virtual bool      is_finite() const;           // Has a finite value
 347   virtual bool      is_nan()    const;           // Is not a number (NaN)
 348 
 349   bool is_inlinetypeptr() const;
 350   virtual ciInlineKlass* inline_klass() const;
 351 
 352   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 353   const TypePtr* make_ptr() const;
 354 
 355   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 356   // Asserts if the underlying type is not an oopptr or narrowoop.
 357   const TypeOopPtr* make_oopptr() const;
 358 
 359   // Returns this compressed pointer or the equivalent compressed version
 360   // of this pointer type.
 361   const TypeNarrowOop* make_narrowoop() const;
 362 
 363   // Returns this compressed klass pointer or the equivalent
 364   // compressed version of this pointer type.
 365   const TypeNarrowKlass* make_narrowklass() const;
 366 
 367   // Special test for register pressure heuristic
 368   bool is_floatingpoint() const;        // True if Float or Double base type
 369 
 370   // Do you have memory, directly or through a tuple?
 371   bool has_memory( ) const;
 372 
 373   // TRUE if type is a singleton
 374   virtual bool singleton(void) const;
 375 
 376   // TRUE if type is above the lattice centerline, and is therefore vacuous
 377   virtual bool empty(void) const;
 378 
 379   // Return a hash for this type.  The hash function is public so ConNode
 380   // (constants) can hash on their constant, which is represented by a Type.
 381   virtual int hash() const;
 382 
 383   // Map ideal registers (machine types) to ideal types
 384   static const Type *mreg2type[];
 385 
 386   // Printing, statistics
 387 #ifndef PRODUCT
 388   void         dump_on(outputStream *st) const;
 389   void         dump() const {
 390     dump_on(tty);
 391   }
 392   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 393   static  void dump_stats();
 394   // Groups of types, for debugging and visualization only.
 395   enum class Category {
 396     Data,
 397     Memory,
 398     Mixed,   // Tuples with types of different categories.
 399     Control,
 400     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 401     Undef    // {Type::Bad, Type::lastype}, for completeness.
 402   };
 403   // Return the category of this type.
 404   Category category() const;
 405   // Check recursively in tuples.
 406   bool has_category(Category cat) const;
 407 
 408   static const char* str(const Type* t);
 409 #endif // !PRODUCT
 410   void typerr(const Type *t) const; // Mixing types error
 411 
 412   // Create basic type
 413   static const Type* get_const_basic_type(BasicType type) {
 414     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 415     return _const_basic_type[type];
 416   }
 417 
 418   // For two instance arrays of same dimension, return the base element types.
 419   // Otherwise or if the arrays have different dimensions, return NULL.
 420   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 421                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 422 
 423   // Mapping to the array element's basic type.
 424   BasicType array_element_basic_type() const;
 425 
 426   enum InterfaceHandling {
 427       trust_interfaces,
 428       ignore_interfaces
 429   };
 430   // Create standard type for a ciType:
 431   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 432 
 433   // Create standard zero value:
 434   static const Type* get_zero_type(BasicType type) {
 435     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 436     return _zero_type[type];
 437   }
 438 
 439   // Report if this is a zero value (not top).
 440   bool is_zero_type() const {
 441     BasicType type = basic_type();
 442     if (type == T_VOID || type >= T_CONFLICT)
 443       return false;
 444     else
 445       return (this == _zero_type[type]);
 446   }
 447 
 448   // Convenience common pre-built types.
 449   static const Type *ABIO;
 450   static const Type *BOTTOM;
 451   static const Type *CONTROL;
 452   static const Type *DOUBLE;
 453   static const Type *FLOAT;
 454   static const Type *HALF;
 455   static const Type *MEMORY;
 456   static const Type *MULTI;
 457   static const Type *RETURN_ADDRESS;
 458   static const Type *TOP;
 459 
 460   // Mapping from compiler type to VM BasicType
 461   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 462   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 463   const char* msg() const            { return _type_info[_base].msg; }
 464   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 465   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 466 
 467   // Mapping from CI type system to compiler type:
 468   static const Type* get_typeflow_type(ciType* type);
 469 
 470   static const Type* make_from_constant(ciConstant constant,
 471                                         bool require_constant = false,
 472                                         int stable_dimension = 0,
 473                                         bool is_narrow = false,
 474                                         bool is_autobox_cache = false);
 475 
 476   static const Type* make_constant_from_field(ciInstance* holder,
 477                                               int off,
 478                                               bool is_unsigned_load,
 479                                               BasicType loadbt);
 480 
 481   static const Type* make_constant_from_field(ciField* field,
 482                                               ciInstance* holder,
 483                                               BasicType loadbt,
 484                                               bool is_unsigned_load);
 485 
 486   static const Type* make_constant_from_array_element(ciArray* array,
 487                                                       int off,
 488                                                       int stable_dimension,
 489                                                       BasicType loadbt,
 490                                                       bool is_unsigned_load);
 491 
 492   // Speculative type helper methods. See TypePtr.
 493   virtual const TypePtr* speculative() const                                  { return NULL; }
 494   virtual ciKlass* speculative_type() const                                   { return NULL; }
 495   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 496   virtual bool speculative_maybe_null() const                                 { return true; }
 497   virtual bool speculative_always_null() const                                { return true; }
 498   virtual const Type* remove_speculative() const                              { return this; }
 499   virtual const Type* cleanup_speculative() const                             { return this; }
 500   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 501   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 502   const Type* maybe_remove_speculative(bool include_speculative) const;
 503 
 504   virtual bool maybe_null() const { return true; }
 505   virtual bool is_known_instance() const { return false; }
 506 
 507 private:
 508   // support arrays
 509   static const Type*        _zero_type[T_CONFLICT+1];
 510   static const Type* _const_basic_type[T_CONFLICT+1];
 511 };
 512 
 513 //------------------------------TypeF------------------------------------------
 514 // Class of Float-Constant Types.
 515 class TypeF : public Type {
 516   TypeF( float f ) : Type(FloatCon), _f(f) {};
 517 public:
 518   virtual bool eq( const Type *t ) const;
 519   virtual int  hash() const;             // Type specific hashing
 520   virtual bool singleton(void) const;    // TRUE if type is a singleton
 521   virtual bool empty(void) const;        // TRUE if type is vacuous
 522 public:
 523   const float _f;               // Float constant
 524 
 525   static const TypeF *make(float f);
 526 
 527   virtual bool        is_finite() const;  // Has a finite value
 528   virtual bool        is_nan()    const;  // Is not a number (NaN)
 529 
 530   virtual const Type *xmeet( const Type *t ) const;
 531   virtual const Type *xdual() const;    // Compute dual right now.
 532   // Convenience common pre-built types.
 533   static const TypeF *MAX;
 534   static const TypeF *MIN;
 535   static const TypeF *ZERO; // positive zero only
 536   static const TypeF *ONE;
 537   static const TypeF *POS_INF;
 538   static const TypeF *NEG_INF;
 539 #ifndef PRODUCT
 540   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 541 #endif
 542 };
 543 
 544 //------------------------------TypeD------------------------------------------
 545 // Class of Double-Constant Types.
 546 class TypeD : public Type {
 547   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 548 public:
 549   virtual bool eq( const Type *t ) const;
 550   virtual int  hash() const;             // Type specific hashing
 551   virtual bool singleton(void) const;    // TRUE if type is a singleton
 552   virtual bool empty(void) const;        // TRUE if type is vacuous
 553 public:
 554   const double _d;              // Double constant
 555 
 556   static const TypeD *make(double d);
 557 
 558   virtual bool        is_finite() const;  // Has a finite value
 559   virtual bool        is_nan()    const;  // Is not a number (NaN)
 560 
 561   virtual const Type *xmeet( const Type *t ) const;
 562   virtual const Type *xdual() const;    // Compute dual right now.
 563   // Convenience common pre-built types.
 564   static const TypeD *MAX;
 565   static const TypeD *MIN;
 566   static const TypeD *ZERO; // positive zero only
 567   static const TypeD *ONE;
 568   static const TypeD *POS_INF;
 569   static const TypeD *NEG_INF;
 570 #ifndef PRODUCT
 571   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 572 #endif
 573 };
 574 
 575 class TypeInteger : public Type {
 576 protected:
 577   TypeInteger(TYPES t, int w) : Type(t), _widen(w) {}
 578 
 579 public:
 580   const short _widen;           // Limit on times we widen this sucker
 581 
 582   virtual jlong hi_as_long() const = 0;
 583   virtual jlong lo_as_long() const = 0;
 584   jlong get_con_as_long(BasicType bt) const;
 585   bool is_con() const { return lo_as_long() == hi_as_long(); }
 586   virtual short widen_limit() const { return _widen; }
 587 
 588   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 589 
 590   static const TypeInteger* bottom(BasicType type);
 591   static const TypeInteger* zero(BasicType type);
 592   static const TypeInteger* one(BasicType type);
 593   static const TypeInteger* minus_1(BasicType type);
 594 };
 595 
 596 
 597 
 598 //------------------------------TypeInt----------------------------------------
 599 // Class of integer ranges, the set of integers between a lower bound and an
 600 // upper bound, inclusive.
 601 class TypeInt : public TypeInteger {
 602   TypeInt( jint lo, jint hi, int w );
 603 protected:
 604   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 605 
 606 public:
 607   typedef jint NativeType;
 608   virtual bool eq( const Type *t ) const;
 609   virtual int  hash() const;             // Type specific hashing
 610   virtual bool singleton(void) const;    // TRUE if type is a singleton
 611   virtual bool empty(void) const;        // TRUE if type is vacuous
 612   const jint _lo, _hi;          // Lower bound, upper bound
 613 
 614   static const TypeInt *make(jint lo);
 615   // must always specify w
 616   static const TypeInt *make(jint lo, jint hi, int w);
 617 
 618   // Check for single integer
 619   bool is_con() const { return _lo==_hi; }
 620   bool is_con(jint i) const { return is_con() && _lo == i; }
 621   jint get_con() const { assert(is_con(), "" );  return _lo; }
 622 
 623   virtual bool        is_finite() const;  // Has a finite value
 624 
 625   virtual const Type *xmeet( const Type *t ) const;
 626   virtual const Type *xdual() const;    // Compute dual right now.
 627   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 628   virtual const Type *narrow( const Type *t ) const;
 629 
 630   virtual jlong hi_as_long() const { return _hi; }
 631   virtual jlong lo_as_long() const { return _lo; }
 632 
 633   // Do not kill _widen bits.
 634   // Convenience common pre-built types.
 635   static const TypeInt *MAX;
 636   static const TypeInt *MIN;
 637   static const TypeInt *MINUS_1;
 638   static const TypeInt *ZERO;
 639   static const TypeInt *ONE;
 640   static const TypeInt *BOOL;
 641   static const TypeInt *CC;
 642   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 643   static const TypeInt *CC_GT;  // [1]   == ONE
 644   static const TypeInt *CC_EQ;  // [0]   == ZERO
 645   static const TypeInt *CC_LE;  // [-1,0]
 646   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 647   static const TypeInt *BYTE;
 648   static const TypeInt *UBYTE;
 649   static const TypeInt *CHAR;
 650   static const TypeInt *SHORT;
 651   static const TypeInt *POS;
 652   static const TypeInt *POS1;
 653   static const TypeInt *INT;
 654   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 655   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 656 
 657   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 658 #ifndef PRODUCT
 659   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 660 #endif
 661 };
 662 
 663 
 664 //------------------------------TypeLong---------------------------------------
 665 // Class of long integer ranges, the set of integers between a lower bound and
 666 // an upper bound, inclusive.
 667 class TypeLong : public TypeInteger {
 668   TypeLong( jlong lo, jlong hi, int w );
 669 protected:
 670   // Do not kill _widen bits.
 671   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 672 public:
 673   typedef jlong NativeType;
 674   virtual bool eq( const Type *t ) const;
 675   virtual int  hash() const;             // Type specific hashing
 676   virtual bool singleton(void) const;    // TRUE if type is a singleton
 677   virtual bool empty(void) const;        // TRUE if type is vacuous
 678 public:
 679   const jlong _lo, _hi;         // Lower bound, upper bound
 680 
 681   static const TypeLong *make(jlong lo);
 682   // must always specify w
 683   static const TypeLong *make(jlong lo, jlong hi, int w);
 684 
 685   // Check for single integer
 686   bool is_con() const { return _lo==_hi; }
 687   bool is_con(jlong i) const { return is_con() && _lo == i; }
 688   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 689 
 690   // Check for positive 32-bit value.
 691   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 692 
 693   virtual bool        is_finite() const;  // Has a finite value
 694 
 695   virtual jlong hi_as_long() const { return _hi; }
 696   virtual jlong lo_as_long() const { return _lo; }
 697 
 698   virtual const Type *xmeet( const Type *t ) const;
 699   virtual const Type *xdual() const;    // Compute dual right now.
 700   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 701   virtual const Type *narrow( const Type *t ) const;
 702   // Convenience common pre-built types.
 703   static const TypeLong *MAX;
 704   static const TypeLong *MIN;
 705   static const TypeLong *MINUS_1;
 706   static const TypeLong *ZERO;
 707   static const TypeLong *ONE;
 708   static const TypeLong *POS;
 709   static const TypeLong *LONG;
 710   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 711   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 712   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 713 
 714   // static convenience methods.
 715   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 716 
 717 #ifndef PRODUCT
 718   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 719 #endif
 720 };
 721 
 722 //------------------------------TypeTuple--------------------------------------
 723 // Class of Tuple Types, essentially type collections for function signatures
 724 // and class layouts.  It happens to also be a fast cache for the HotSpot
 725 // signature types.
 726 class TypeTuple : public Type {
 727   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 728 
 729   const uint          _cnt;              // Count of fields
 730   const Type ** const _fields;           // Array of field types
 731 
 732 public:
 733   virtual bool eq( const Type *t ) const;
 734   virtual int  hash() const;             // Type specific hashing
 735   virtual bool singleton(void) const;    // TRUE if type is a singleton
 736   virtual bool empty(void) const;        // TRUE if type is vacuous
 737 
 738   // Accessors:
 739   uint cnt() const { return _cnt; }
 740   const Type* field_at(uint i) const {
 741     assert(i < _cnt, "oob");
 742     return _fields[i];
 743   }
 744   void set_field_at(uint i, const Type* t) {
 745     assert(i < _cnt, "oob");
 746     _fields[i] = t;
 747   }
 748 
 749   static const TypeTuple *make( uint cnt, const Type **fields );
 750   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 751   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 752 
 753   // Subroutine call type with space allocated for argument types
 754   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 755   static const Type **fields( uint arg_cnt );
 756 
 757   virtual const Type *xmeet( const Type *t ) const;
 758   virtual const Type *xdual() const;    // Compute dual right now.
 759   // Convenience common pre-built types.
 760   static const TypeTuple *IFBOTH;
 761   static const TypeTuple *IFFALSE;
 762   static const TypeTuple *IFTRUE;
 763   static const TypeTuple *IFNEITHER;
 764   static const TypeTuple *LOOPBODY;
 765   static const TypeTuple *MEMBAR;
 766   static const TypeTuple *STORECONDITIONAL;
 767   static const TypeTuple *START_I2C;
 768   static const TypeTuple *INT_PAIR;
 769   static const TypeTuple *LONG_PAIR;
 770   static const TypeTuple *INT_CC_PAIR;
 771   static const TypeTuple *LONG_CC_PAIR;
 772 #ifndef PRODUCT
 773   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 774 #endif
 775 };
 776 
 777 //------------------------------TypeAry----------------------------------------
 778 // Class of Array Types
 779 class TypeAry : public Type {
 780   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free) : Type(Array),
 781       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free) {}
 782 public:
 783   virtual bool eq( const Type *t ) const;
 784   virtual int  hash() const;             // Type specific hashing
 785   virtual bool singleton(void) const;    // TRUE if type is a singleton
 786   virtual bool empty(void) const;        // TRUE if type is vacuous
 787 
 788 private:
 789   const Type *_elem;            // Element type of array
 790   const TypeInt *_size;         // Elements in array
 791   const bool _stable;           // Are elements @Stable?
 792 
 793   // Inline type array properties
 794   const bool _flat;             // Array is flattened
 795   const bool _not_flat;         // Array is never flattened
 796   const bool _not_null_free;    // Array is never null-free
 797 
 798   friend class TypeAryPtr;
 799 
 800 public:
 801   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
 802                              bool flat = false, bool not_flat = false, bool not_null_free = false);
 803 
 804   virtual const Type *xmeet( const Type *t ) const;
 805   virtual const Type *xdual() const;    // Compute dual right now.
 806   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 807   virtual const TypeAry* remove_speculative() const;
 808   virtual const Type* cleanup_speculative() const;
 809 #ifndef PRODUCT
 810   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 811 #endif
 812 };
 813 
 814 //------------------------------TypeVect---------------------------------------
 815 // Class of Vector Types
 816 class TypeVect : public Type {
 817   const Type*   _elem;  // Vector's element type
 818   const uint  _length;  // Elements in vector (power of 2)
 819 
 820 protected:
 821   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 822     _elem(elem), _length(length) {}
 823 
 824 public:
 825   const Type* element_type() const { return _elem; }
 826   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 827   uint length() const { return _length; }
 828   uint length_in_bytes() const {
 829    return _length * type2aelembytes(element_basic_type());
 830   }
 831 
 832   virtual bool eq(const Type *t) const;
 833   virtual int  hash() const;             // Type specific hashing
 834   virtual bool singleton(void) const;    // TRUE if type is a singleton
 835   virtual bool empty(void) const;        // TRUE if type is vacuous
 836 
 837   static const TypeVect *make(const BasicType elem_bt, uint length, bool is_mask = false) {
 838     // Use bottom primitive type.
 839     return make(get_const_basic_type(elem_bt), length, is_mask);
 840   }
 841   // Used directly by Replicate nodes to construct singleton vector.
 842   static const TypeVect *make(const Type* elem, uint length, bool is_mask = false);
 843 
 844   static const TypeVect *makemask(const BasicType elem_bt, uint length) {
 845     // Use bottom primitive type.
 846     return makemask(get_const_basic_type(elem_bt), length);
 847   }
 848   static const TypeVect *makemask(const Type* elem, uint length);
 849 
 850 
 851   virtual const Type *xmeet( const Type *t) const;
 852   virtual const Type *xdual() const;     // Compute dual right now.
 853 
 854   static const TypeVect *VECTA;
 855   static const TypeVect *VECTS;
 856   static const TypeVect *VECTD;
 857   static const TypeVect *VECTX;
 858   static const TypeVect *VECTY;
 859   static const TypeVect *VECTZ;
 860   static const TypeVect *VECTMASK;
 861 
 862 #ifndef PRODUCT
 863   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 864 #endif
 865 };
 866 
 867 class TypeVectA : public TypeVect {
 868   friend class TypeVect;
 869   TypeVectA(const Type* elem, uint length) : TypeVect(VectorA, elem, length) {}
 870 };
 871 
 872 class TypeVectS : public TypeVect {
 873   friend class TypeVect;
 874   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 875 };
 876 
 877 class TypeVectD : public TypeVect {
 878   friend class TypeVect;
 879   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 880 };
 881 
 882 class TypeVectX : public TypeVect {
 883   friend class TypeVect;
 884   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 885 };
 886 
 887 class TypeVectY : public TypeVect {
 888   friend class TypeVect;
 889   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 890 };
 891 
 892 class TypeVectZ : public TypeVect {
 893   friend class TypeVect;
 894   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 895 };
 896 
 897 class TypeVectMask : public TypeVect {
 898 public:
 899   friend class TypeVect;
 900   TypeVectMask(const Type* elem, uint length) : TypeVect(VectorMask, elem, length) {}
 901   virtual bool eq(const Type *t) const;
 902   virtual const Type *xdual() const;
 903   static const TypeVectMask* make(const BasicType elem_bt, uint length);
 904   static const TypeVectMask* make(const Type* elem, uint length);
 905 };
 906 
 907 //------------------------------TypePtr----------------------------------------
 908 // Class of machine Pointer Types: raw data, instances or arrays.
 909 // If the _base enum is AnyPtr, then this refers to all of the above.
 910 // Otherwise the _base will indicate which subset of pointers is affected,
 911 // and the class will be inherited from.
 912 class TypePtr : public Type {
 913   friend class TypeNarrowPtr;
 914   friend class Type;
 915 protected:
 916   class InterfaceSet {
 917   private:
 918     GrowableArray<ciKlass*> _list;
 919     void raw_add(ciKlass* interface);
 920     void add(ciKlass* interface);
 921     void verify() const;
 922     int _hash_computed:1;
 923     int _exact_klass_computed:1;
 924     int _is_loaded_computed:1;
 925     int _hash;
 926     ciKlass* _exact_klass;
 927     bool _is_loaded;
 928     void compute_hash();
 929     void compute_exact_klass();
 930   public:
 931     InterfaceSet();
 932     InterfaceSet(GrowableArray<ciInstanceKlass*>* interfaces);
 933     bool eq(const InterfaceSet& other) const;
 934     int hash() const;
 935     void dump(outputStream *st) const;
 936     InterfaceSet union_with(const InterfaceSet& other) const;
 937     InterfaceSet intersection_with(const InterfaceSet& other) const;
 938     bool contains(const InterfaceSet& other) const {
 939       return intersection_with(other).eq(other);
 940     }
 941     bool empty() const { return _list.length() == 0; }
 942 
 943     inline void* operator new(size_t x) throw() {
 944       Compile* compile = Compile::current();
 945       return compile->type_arena()->AmallocWords(x);
 946     }
 947     inline void operator delete( void* ptr ) {
 948       ShouldNotReachHere();
 949     }
 950     ciKlass* exact_klass() const;
 951     bool is_loaded() const;
 952 
 953     static int compare(ciKlass* const &, ciKlass* const & k2);
 954 
 955     void compute_is_loaded();
 956   };
 957 
 958   static InterfaceSet interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 959 
 960 public:
 961   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 962 protected:
 963   TypePtr(TYPES t, PTR ptr, Offset offset,
 964           const TypePtr* speculative = NULL,
 965           int inline_depth = InlineDepthBottom) :
 966     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 967     _ptr(ptr) {}
 968   static const PTR ptr_meet[lastPTR][lastPTR];
 969   static const PTR ptr_dual[lastPTR];
 970   static const char * const ptr_msg[lastPTR];
 971 
 972   enum {
 973     InlineDepthBottom = INT_MAX,
 974     InlineDepthTop = -InlineDepthBottom
 975   };
 976 
 977   // Extra type information profiling gave us. We propagate it the
 978   // same way the rest of the type info is propagated. If we want to
 979   // use it, then we have to emit a guard: this part of the type is
 980   // not something we know but something we speculate about the type.
 981   const TypePtr*   _speculative;
 982   // For speculative types, we record at what inlining depth the
 983   // profiling point that provided the data is. We want to favor
 984   // profile data coming from outer scopes which are likely better for
 985   // the current compilation.
 986   int _inline_depth;
 987 
 988   // utility methods to work on the speculative part of the type
 989   const TypePtr* dual_speculative() const;
 990   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 991   bool eq_speculative(const TypePtr* other) const;
 992   int hash_speculative() const;
 993   const TypePtr* add_offset_speculative(intptr_t offset) const;
 994   const TypePtr* with_offset_speculative(intptr_t offset) const;
 995 #ifndef PRODUCT
 996   void dump_speculative(outputStream *st) const;
 997 #endif
 998 
 999   // utility methods to work on the inline depth of the type
1000   int dual_inline_depth() const;
1001   int meet_inline_depth(int depth) const;
1002 #ifndef PRODUCT
1003   void dump_inline_depth(outputStream *st) const;
1004 #endif
1005 
1006   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1007   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1008   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1009   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1010   // encountered so the right logic specific to klasses or oops can be executed.,
1011   enum MeetResult {
1012     QUICK,
1013     UNLOADED,
1014     SUBTYPE,
1015     NOT_SUBTYPE,
1016     LCA
1017   };
1018   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, InterfaceSet& interfaces, const T* this_type, const T* other_type,
1019                                                             ciKlass*& res_klass, bool& res_xk, bool& res_flatten_array);
1020 
1021   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1022                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free);
1023 
1024   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1025   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1026   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1027   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1028   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1029   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1030   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1031   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1032 public:
1033   const Offset _offset;         // Offset into oop, with TOP & BOT
1034   const PTR _ptr;               // Pointer equivalence class
1035 
1036   const int offset() const { return _offset.get(); }
1037   const PTR ptr()    const { return _ptr; }
1038 
1039   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1040                              const TypePtr* speculative = NULL,
1041                              int inline_depth = InlineDepthBottom);
1042 
1043   // Return a 'ptr' version of this type
1044   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1045 
1046   virtual intptr_t get_con() const;
1047 
1048   Type::Offset xadd_offset(intptr_t offset) const;
1049   virtual const TypePtr* add_offset(intptr_t offset) const;
1050   virtual const TypePtr* with_offset(intptr_t offset) const;
1051   virtual const int flattened_offset() const { return offset(); }
1052   virtual bool eq(const Type *t) const;
1053   virtual int  hash() const;             // Type specific hashing
1054 
1055   virtual bool singleton(void) const;    // TRUE if type is a singleton
1056   virtual bool empty(void) const;        // TRUE if type is vacuous
1057   virtual const Type *xmeet( const Type *t ) const;
1058   virtual const Type *xmeet_helper( const Type *t ) const;
1059   Offset meet_offset(int offset) const;
1060   Offset dual_offset() const;
1061   virtual const Type *xdual() const;    // Compute dual right now.
1062 
1063   // meet, dual and join over pointer equivalence sets
1064   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1065   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1066 
1067   // This is textually confusing unless one recalls that
1068   // join(t) == dual()->meet(t->dual())->dual().
1069   PTR join_ptr( const PTR in_ptr ) const {
1070     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1071   }
1072 
1073   // Speculative type helper methods.
1074   virtual const TypePtr* speculative() const { return _speculative; }
1075   int inline_depth() const                   { return _inline_depth; }
1076   virtual ciKlass* speculative_type() const;
1077   virtual ciKlass* speculative_type_not_null() const;
1078   virtual bool speculative_maybe_null() const;
1079   virtual bool speculative_always_null() const;
1080   virtual const TypePtr* remove_speculative() const;
1081   virtual const Type* cleanup_speculative() const;
1082   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1083   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1084   virtual const TypePtr* with_inline_depth(int depth) const;
1085 
1086   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1087 
1088   virtual bool can_be_inline_type() const { return false; }
1089   virtual bool flatten_array()      const { return false; }
1090   virtual bool not_flatten_array()  const { return false; }
1091   virtual bool is_flat()            const { return false; }
1092   virtual bool is_not_flat()        const { return false; }
1093   virtual bool is_null_free()       const { return false; }
1094   virtual bool is_not_null_free()   const { return false; }
1095 
1096   // Tests for relation to centerline of type lattice:
1097   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1098   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1099   // Convenience common pre-built types.
1100   static const TypePtr *NULL_PTR;
1101   static const TypePtr *NOTNULL;
1102   static const TypePtr *BOTTOM;
1103 #ifndef PRODUCT
1104   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1105 #endif
1106 };
1107 
1108 //------------------------------TypeRawPtr-------------------------------------
1109 // Class of raw pointers, pointers to things other than Oops.  Examples
1110 // include the stack pointer, top of heap, card-marking area, handles, etc.
1111 class TypeRawPtr : public TypePtr {
1112 protected:
1113   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1114 public:
1115   virtual bool eq( const Type *t ) const;
1116   virtual int  hash() const;     // Type specific hashing
1117 
1118   const address _bits;          // Constant value, if applicable
1119 
1120   static const TypeRawPtr *make( PTR ptr );
1121   static const TypeRawPtr *make( address bits );
1122 
1123   // Return a 'ptr' version of this type
1124   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1125 
1126   virtual intptr_t get_con() const;
1127 
1128   virtual const TypePtr* add_offset(intptr_t offset) const;
1129   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return NULL;}
1130 
1131   virtual const Type *xmeet( const Type *t ) const;
1132   virtual const Type *xdual() const;    // Compute dual right now.
1133   // Convenience common pre-built types.
1134   static const TypeRawPtr *BOTTOM;
1135   static const TypeRawPtr *NOTNULL;
1136 #ifndef PRODUCT
1137   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1138 #endif
1139 };
1140 
1141 //------------------------------TypeOopPtr-------------------------------------
1142 // Some kind of oop (Java pointer), either instance or array.
1143 class TypeOopPtr : public TypePtr {
1144   friend class TypeAry;
1145   friend class TypePtr;
1146   friend class TypeInstPtr;
1147   friend class TypeAryPtr;
1148 protected:
1149   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const InterfaceSet& interfaces,bool xk, ciObject* o, Offset offset, Offset field_offset,
1150              int instance_id, const TypePtr* speculative, int inline_depth);
1151 public:
1152   virtual bool eq( const Type *t ) const;
1153   virtual int  hash() const;             // Type specific hashing
1154   virtual bool singleton(void) const;    // TRUE if type is a singleton
1155   enum {
1156    InstanceTop = -1,   // undefined instance
1157    InstanceBot = 0     // any possible instance
1158   };
1159 protected:
1160 
1161   // Oop is NULL, unless this is a constant oop.
1162   ciObject*     _const_oop;   // Constant oop
1163   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
1164   ciKlass*      _klass;       // Klass object
1165 
1166   const InterfaceSet _interfaces;
1167 
1168   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1169   bool          _klass_is_exact;
1170   bool          _is_ptr_to_narrowoop;
1171   bool          _is_ptr_to_narrowklass;
1172   bool          _is_ptr_to_boxed_value;
1173 
1174   // If not InstanceTop or InstanceBot, indicates that this is
1175   // a particular instance of this type which is distinct.
1176   // This is the node index of the allocation node creating this instance.
1177   int           _instance_id;
1178 
1179   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1180 
1181   int dual_instance_id() const;
1182   int meet_instance_id(int uid) const;
1183 
1184   InterfaceSet meet_interfaces(const TypeOopPtr* other) const;
1185 
1186   // Do not allow interface-vs.-noninterface joins to collapse to top.
1187   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1188 
1189   virtual ciKlass* exact_klass_helper() const { return NULL; }
1190   virtual ciKlass* klass() const { return _klass; }
1191 
1192 public:
1193 
1194   bool is_java_subtype_of(const TypeOopPtr* other) const {
1195     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1196   }
1197 
1198   bool is_same_java_type_as(const TypePtr* other) const {
1199     return is_same_java_type_as_helper(other->is_oopptr());
1200   }
1201 
1202   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1203     ShouldNotReachHere(); return false;
1204   }
1205 
1206   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1207     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1208   }
1209   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1210   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1211 
1212 
1213   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1214   // Respects UseUniqueSubclasses.
1215   // If the klass is final, the resulting type will be exact.
1216   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1217     return make_from_klass_common(klass, true, false, interface_handling);
1218   }
1219   // Same as before, but will produce an exact type, even if
1220   // the klass is not final, as long as it has exactly one implementation.
1221   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1222     return make_from_klass_common(klass, true, true, interface_handling);
1223   }
1224   // Same as before, but does not respects UseUniqueSubclasses.
1225   // Use this only for creating array element types.
1226   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1227     return make_from_klass_common(klass, false, false, interface_handling);
1228   }
1229   // Creates a singleton type given an object.
1230   // If the object cannot be rendered as a constant,
1231   // may return a non-singleton type.
1232   // If require_constant, produce a NULL if a singleton is not possible.
1233   static const TypeOopPtr* make_from_constant(ciObject* o,
1234                                               bool require_constant = false);
1235 
1236   // Make a generic (unclassed) pointer to an oop.
1237   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1238                                 const TypePtr* speculative = NULL,
1239                                 int inline_depth = InlineDepthBottom);
1240 
1241   ciObject* const_oop()    const { return _const_oop; }
1242   // Exact klass, possibly an interface or an array of interface
1243   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != NULL || maybe_null, ""); return k;  }
1244   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1245 
1246   virtual bool  is_loaded() const { return klass()->is_loaded() && _interfaces.is_loaded(); }
1247   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1248 
1249   // Returns true if this pointer points at memory which contains a
1250   // compressed oop references.
1251   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1252   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1253   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1254   bool is_known_instance()       const { return _instance_id > 0; }
1255   int  instance_id()             const { return _instance_id; }
1256   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1257 
1258   virtual bool can_be_inline_type() const { return (_klass == NULL || _klass->can_be_inline_klass(_klass_is_exact)); }
1259   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1260 
1261   virtual intptr_t get_con() const;
1262 
1263   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1264 
1265   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1266 
1267   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1268 
1269   // corresponding pointer to klass, for a given instance
1270   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1271 
1272   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1273   virtual const TypePtr* add_offset(intptr_t offset) const;
1274 
1275   // Speculative type helper methods.
1276   virtual const TypeOopPtr* remove_speculative() const;
1277   virtual const Type* cleanup_speculative() const;
1278   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1279   virtual const TypePtr* with_inline_depth(int depth) const;
1280 
1281   virtual const TypePtr* with_instance_id(int instance_id) const;
1282 
1283   virtual const Type *xdual() const;    // Compute dual right now.
1284   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1285   virtual const Type *xmeet_helper(const Type *t) const;
1286 
1287   // Convenience common pre-built type.
1288   static const TypeOopPtr *BOTTOM;
1289 #ifndef PRODUCT
1290   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1291 #endif
1292 private:
1293   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1294     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1295   }
1296 
1297   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1298     ShouldNotReachHere(); return false;
1299   }
1300 
1301   virtual const InterfaceSet interfaces() const {
1302     return _interfaces;
1303   };
1304 
1305   const TypeOopPtr* is_reference_type(const Type* other) const {
1306     return other->isa_oopptr();
1307   }
1308 
1309   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1310     return other->isa_aryptr();
1311   }
1312 
1313   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1314     return other->isa_instptr();
1315   }
1316 };
1317 
1318 //------------------------------TypeInstPtr------------------------------------
1319 // Class of Java object pointers, pointing either to non-array Java instances
1320 // or to a Klass* (including array klasses).
1321 class TypeInstPtr : public TypeOopPtr {
1322   TypeInstPtr(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, Offset offset,
1323               bool flatten_array, int instance_id, const TypePtr* speculative,
1324               int inline_depth);
1325   virtual bool eq( const Type *t ) const;
1326   virtual int  hash() const;             // Type specific hashing
1327 
1328   bool _flatten_array;     // Type is flat in arrays
1329   ciKlass* exact_klass_helper() const;
1330 
1331 public:
1332 
1333   // Instance klass, ignoring any interface
1334   ciInstanceKlass* instance_klass() const {
1335     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1336     return klass()->as_instance_klass();
1337   }
1338 
1339   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1340   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1341   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1342 
1343   // Make a pointer to a constant oop.
1344   static const TypeInstPtr *make(ciObject* o) {
1345     ciKlass* k = o->klass();
1346     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1347     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1348   }
1349   // Make a pointer to a constant oop with offset.
1350   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1351     ciKlass* k = o->klass();
1352     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1353     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1354   }
1355 
1356   // Make a pointer to some value of type klass.
1357   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1358     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1359     return make(ptr, klass, interfaces, false, NULL, Offset(0));
1360   }
1361 
1362   // Make a pointer to some non-polymorphic value of exactly type klass.
1363   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1364     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1365     return make(ptr, klass, interfaces, true, NULL, Offset(0));
1366   }
1367 
1368   // Make a pointer to some value of type klass with offset.
1369   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1370     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1371     return make(ptr, klass, interfaces, false, NULL, offset);
1372   }
1373 
1374   // Make a pointer to an oop.
1375   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, Offset offset,
1376                                  bool flatten_array = false,
1377                                  int instance_id = InstanceBot,
1378                                  const TypePtr* speculative = NULL,
1379                                  int inline_depth = InlineDepthBottom);
1380 
1381   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) {
1382     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1383     return make(ptr, k, interfaces, xk, o, offset, false, instance_id);
1384   }
1385 
1386   /** Create constant type for a constant boxed value */
1387   const Type* get_const_boxed_value() const;
1388 
1389   // If this is a java.lang.Class constant, return the type for it or NULL.
1390   // Pass to Type::get_const_type to turn it to a type, which will usually
1391   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1392   ciType* java_mirror_type(bool* is_val_mirror = NULL) const;
1393 
1394   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1395 
1396   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1397 
1398   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1399 
1400   virtual const TypePtr* add_offset(intptr_t offset) const;
1401   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1402 
1403   // Speculative type helper methods.
1404   virtual const TypeInstPtr* remove_speculative() const;
1405   virtual const TypePtr* with_inline_depth(int depth) const;
1406   virtual const TypePtr* with_instance_id(int instance_id) const;
1407 
1408   virtual const TypeInstPtr* cast_to_flatten_array() const;
1409   virtual bool flatten_array() const { return _flatten_array; }
1410   virtual bool not_flatten_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flatten_array()); }
1411 
1412   // the core of the computation of the meet of 2 types
1413   virtual const Type *xmeet_helper(const Type *t) const;
1414   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *t, const InterfaceSet& interfaces) const;
1415   virtual const Type *xdual() const;    // Compute dual right now.
1416 
1417   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1418 
1419   virtual bool can_be_inline_array() const;
1420 
1421   // Convenience common pre-built types.
1422   static const TypeInstPtr *NOTNULL;
1423   static const TypeInstPtr *BOTTOM;
1424   static const TypeInstPtr *MIRROR;
1425   static const TypeInstPtr *MARK;
1426   static const TypeInstPtr *KLASS;
1427 #ifndef PRODUCT
1428   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1429 #endif
1430 
1431 private:
1432   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1433 
1434   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1435     return _klass->equals(other->is_instptr()->_klass) && _interfaces.eq(other->is_instptr()->_interfaces);
1436   }
1437 
1438 };
1439 
1440 //------------------------------TypeAryPtr-------------------------------------
1441 // Class of Java array pointers
1442 class TypeAryPtr : public TypeOopPtr {
1443   friend class Type;
1444   friend class TypePtr;
1445   friend class TypeInstPtr;
1446 
1447   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1448              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1449              const TypePtr* speculative, int inline_depth)
1450     : TypeOopPtr(AryPtr, ptr, k, *_array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1451     _ary(ary),
1452     _is_autobox_cache(is_autobox_cache),
1453     _field_offset(field_offset)
1454  {
1455     int dummy;
1456     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1457 
1458     if (UseCompressedOops && (elem()->make_oopptr() != NULL && !top_or_bottom) &&
1459         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1460         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1461       _is_ptr_to_narrowoop = true;
1462     }
1463 
1464   }
1465   virtual bool eq( const Type *t ) const;
1466   virtual int hash() const;     // Type specific hashing
1467   const TypeAry *_ary;          // Array we point into
1468   const bool     _is_autobox_cache;
1469   // For flattened inline type arrays, each field of the inline type in
1470   // the array has its own memory slice so we need to keep track of
1471   // which field is accessed
1472   const Offset _field_offset;
1473   Offset meet_field_offset(const Type::Offset offset) const;
1474   Offset dual_field_offset() const;
1475 
1476   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1477 
1478   // A pointer to delay allocation to Type::Initialize_shared()
1479 
1480   static const InterfaceSet* _array_interfaces;
1481   ciKlass* exact_klass_helper() const;
1482   // Only guaranteed non null for array of basic types
1483   ciKlass* klass() const;
1484 
1485 public:
1486 
1487   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1488   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1489   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1490 
1491   // returns base element type, an instance klass (and not interface) for object arrays
1492   const Type* base_element_type(int& dims) const;
1493 
1494   // Accessors
1495   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1496 
1497   const TypeAry* ary() const  { return _ary; }
1498   const Type*    elem() const { return _ary->_elem; }
1499   const TypeInt* size() const { return _ary->_size; }
1500   bool      is_stable() const { return _ary->_stable; }
1501 
1502   // Inline type array properties
1503   bool is_flat()          const { return _ary->_flat; }
1504   bool is_not_flat()      const { return _ary->_not_flat; }
1505   bool is_null_free()     const { return is_flat() || (_ary->_elem->make_ptr() != NULL && _ary->_elem->make_ptr()->is_inlinetypeptr() && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull)); }
1506   bool is_not_null_free() const { return _ary->_not_null_free; }
1507 
1508   bool is_autobox_cache() const { return _is_autobox_cache; }
1509 
1510   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1511                                 Offset field_offset = Offset::bottom,
1512                                 int instance_id = InstanceBot,
1513                                 const TypePtr* speculative = NULL,
1514                                 int inline_depth = InlineDepthBottom);
1515   // Constant pointer to array
1516   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1517                                 Offset field_offset = Offset::bottom,
1518                                 int instance_id = InstanceBot,
1519                                 const TypePtr* speculative = NULL,
1520                                 int inline_depth = InlineDepthBottom,
1521                                 bool is_autobox_cache = false);
1522 
1523   // Return a 'ptr' version of this type
1524   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1525 
1526   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1527 
1528   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1529 
1530   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1531   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1532 
1533   virtual bool empty(void) const;        // TRUE if type is vacuous
1534   virtual const TypePtr *add_offset( intptr_t offset ) const;
1535   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1536   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1537 
1538   // Speculative type helper methods.
1539   virtual const TypeAryPtr* remove_speculative() const;
1540   virtual const Type* cleanup_speculative() const;
1541   virtual const TypePtr* with_inline_depth(int depth) const;
1542   virtual const TypePtr* with_instance_id(int instance_id) const;
1543 
1544   // the core of the computation of the meet of 2 types
1545   virtual const Type *xmeet_helper(const Type *t) const;
1546   virtual const Type *xdual() const;    // Compute dual right now.
1547 
1548   // Inline type array properties
1549   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1550   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1551   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1552   jint flat_layout_helper() const;
1553   int flat_elem_size() const;
1554   int flat_log_elem_size() const;
1555 
1556   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1557   int stable_dimension() const;
1558 
1559   const TypeAryPtr* cast_to_autobox_cache() const;
1560 
1561   static jint max_array_length(BasicType etype);
1562 
1563   const int flattened_offset() const;
1564   const Offset field_offset() const { return _field_offset; }
1565   const TypeAryPtr* with_field_offset(int offset) const;
1566   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1567 
1568   virtual bool can_be_inline_type() const { return false; }
1569   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1570 
1571   virtual bool can_be_inline_array() const;
1572 
1573   // Convenience common pre-built types.
1574   static const TypeAryPtr *RANGE;
1575   static const TypeAryPtr *OOPS;
1576   static const TypeAryPtr *NARROWOOPS;
1577   static const TypeAryPtr *BYTES;
1578   static const TypeAryPtr *SHORTS;
1579   static const TypeAryPtr *CHARS;
1580   static const TypeAryPtr *INTS;
1581   static const TypeAryPtr *LONGS;
1582   static const TypeAryPtr *FLOATS;
1583   static const TypeAryPtr *DOUBLES;
1584   static const TypeAryPtr *INLINES;
1585   // selects one of the above:
1586   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1587     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1588     return _array_body_type[elem];
1589   }
1590   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1591   // sharpen the type of an int which is used as an array size
1592 #ifndef PRODUCT
1593   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1594 #endif
1595 private:
1596   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1597 };
1598 
1599 //------------------------------TypeMetadataPtr-------------------------------------
1600 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1601 class TypeMetadataPtr : public TypePtr {
1602 protected:
1603   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1604   // Do not allow interface-vs.-noninterface joins to collapse to top.
1605   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1606 public:
1607   virtual bool eq( const Type *t ) const;
1608   virtual int  hash() const;             // Type specific hashing
1609   virtual bool singleton(void) const;    // TRUE if type is a singleton
1610 
1611 private:
1612   ciMetadata*   _metadata;
1613 
1614 public:
1615   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1616 
1617   static const TypeMetadataPtr* make(ciMethod* m);
1618   static const TypeMetadataPtr* make(ciMethodData* m);
1619 
1620   ciMetadata* metadata() const { return _metadata; }
1621 
1622   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1623 
1624   virtual const TypePtr *add_offset( intptr_t offset ) const;
1625 
1626   virtual const Type *xmeet( const Type *t ) const;
1627   virtual const Type *xdual() const;    // Compute dual right now.
1628 
1629   virtual intptr_t get_con() const;
1630 
1631   // Convenience common pre-built types.
1632   static const TypeMetadataPtr *BOTTOM;
1633 
1634 #ifndef PRODUCT
1635   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1636 #endif
1637 };
1638 
1639 //------------------------------TypeKlassPtr-----------------------------------
1640 // Class of Java Klass pointers
1641 class TypeKlassPtr : public TypePtr {
1642   friend class TypeInstKlassPtr;
1643   friend class TypeAryKlassPtr;
1644   friend class TypePtr;
1645 protected:
1646   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, Offset offset);
1647 
1648   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1649 
1650 public:
1651   virtual bool eq( const Type *t ) const;
1652   virtual int hash() const;
1653   virtual bool singleton(void) const;    // TRUE if type is a singleton
1654 
1655 protected:
1656 
1657   ciKlass* _klass;
1658   const InterfaceSet _interfaces;
1659   InterfaceSet meet_interfaces(const TypeKlassPtr* other) const;
1660   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1661   virtual ciKlass* exact_klass_helper() const;
1662   virtual ciKlass* klass() const { return  _klass; }
1663 
1664 public:
1665 
1666   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1667     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1668   }
1669   bool is_same_java_type_as(const TypePtr* other) const {
1670     return is_same_java_type_as_helper(other->is_klassptr());
1671   }
1672 
1673   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1674     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1675   }
1676   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1677   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1678   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1679 
1680   // Exact klass, possibly an interface or an array of interface
1681   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != NULL || maybe_null, ""); return k;  }
1682   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1683 
1684   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1685   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces);
1686 
1687   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1688 
1689   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return NULL; }
1690 
1691   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return NULL; }
1692 
1693   // corresponding pointer to instance, for a given class
1694   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return NULL; }
1695 
1696   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return NULL; }
1697   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return NULL; }
1698   virtual const Type    *xdual() const { ShouldNotReachHere(); return NULL; }
1699 
1700   virtual intptr_t get_con() const;
1701 
1702   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return NULL; }
1703 
1704   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1705   virtual const TypeKlassPtr* try_improve() const { return this; }
1706 
1707 #ifndef PRODUCT
1708   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1709 #endif
1710 private:
1711   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1712     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1713   }
1714 
1715   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1716     ShouldNotReachHere(); return false;
1717   }
1718 
1719   virtual const InterfaceSet interfaces() const {
1720     return _interfaces;
1721   };
1722 
1723   const TypeKlassPtr* is_reference_type(const Type* other) const {
1724     return other->isa_klassptr();
1725   }
1726 
1727   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1728     return other->isa_aryklassptr();
1729   }
1730 
1731   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1732     return other->isa_instklassptr();
1733   }
1734 };
1735 
1736 // Instance klass pointer, mirrors TypeInstPtr
1737 class TypeInstKlassPtr : public TypeKlassPtr {
1738 
1739   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, Offset offset, bool flatten_array)
1740     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flatten_array(flatten_array) {
1741     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1742   }
1743 
1744   virtual bool must_be_exact() const;
1745 
1746   const bool _flatten_array; // Type is flat in arrays
1747 
1748 public:
1749   // Instance klass ignoring any interface
1750   ciInstanceKlass* instance_klass() const {
1751     assert(!klass()->is_interface(), "");
1752     return klass()->as_instance_klass();
1753   }
1754 
1755   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1756   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1757   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1758 
1759   virtual bool can_be_inline_type() const { return (_klass == NULL || _klass->can_be_inline_klass(klass_is_exact())); }
1760 
1761   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1762     InterfaceSet interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1763     return make(TypePtr::Constant, k, interfaces, Offset(0));
1764   }
1765   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, Offset offset, bool flatten_array = false);
1766 
1767   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) {
1768     const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1769     return make(ptr, k, interfaces, offset);
1770   }
1771 
1772   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1773 
1774   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1775 
1776   // corresponding pointer to instance, for a given class
1777   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1778   virtual int hash() const;
1779   virtual bool eq(const Type *t) const;
1780 
1781   virtual const TypePtr *add_offset( intptr_t offset ) const;
1782   virtual const Type    *xmeet( const Type *t ) const;
1783   virtual const Type    *xdual() const;
1784   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1785 
1786   virtual const TypeKlassPtr* try_improve() const;
1787 
1788   virtual bool flatten_array() const { return _flatten_array; }
1789   virtual bool not_flatten_array() const { return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flatten_array()); }
1790 
1791   virtual bool can_be_inline_array() const;
1792 
1793   // Convenience common pre-built types.
1794   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1795   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1796 private:
1797   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1798 };
1799 
1800 // Array klass pointer, mirrors TypeAryPtr
1801 class TypeAryKlassPtr : public TypeKlassPtr {
1802   friend class TypeInstKlassPtr;
1803   friend class Type;
1804   friend class TypePtr;
1805 
1806   const Type *_elem;
1807   const bool _not_flat;      // Array is never flattened
1808   const bool _not_null_free; // Array is never null-free
1809   const bool _null_free;
1810 
1811   static const InterfaceSet* _array_interfaces;
1812   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool null_free)
1813     : TypeKlassPtr(AryKlassPtr, ptr, klass, *_array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _null_free(null_free) {
1814     assert(klass == NULL || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1815   }
1816 
1817   virtual ciKlass* exact_klass_helper() const;
1818   // Only guaranteed non null for array of basic types
1819   virtual ciKlass* klass() const;
1820 
1821   virtual bool must_be_exact() const;
1822 
1823   bool dual_null_free() const {
1824     return _null_free;
1825   }
1826 
1827   bool meet_null_free(bool other) const {
1828     return _null_free && other;
1829   }
1830 
1831 public:
1832 
1833   // returns base element type, an instance klass (and not interface) for object arrays
1834   const Type* base_element_type(int& dims) const;
1835 
1836   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free);
1837 
1838   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1839   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1840   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1841 
1842   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1843 
1844   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free);
1845   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling);
1846   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1847 
1848   const Type *elem() const { return _elem; }
1849 
1850   virtual bool eq(const Type *t) const;
1851   virtual int hash() const;             // Type specific hashing
1852 
1853   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1854 
1855   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1856 
1857   // corresponding pointer to instance, for a given class
1858   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1859 
1860   virtual const TypePtr *add_offset( intptr_t offset ) const;
1861   virtual const Type    *xmeet( const Type *t ) const;
1862   virtual const Type    *xdual() const;      // Compute dual right now.
1863 
1864   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1865 
1866   virtual bool empty(void) const {
1867     return TypeKlassPtr::empty() || _elem->empty();
1868   }
1869 
1870   bool is_flat()          const { return klass() != NULL && klass()->is_flat_array_klass(); }
1871   bool is_not_flat()      const { return _not_flat; }
1872   bool is_null_free()     const { return _null_free; }
1873   bool is_not_null_free() const { return _not_null_free; }
1874   virtual bool can_be_inline_array() const;
1875 
1876 #ifndef PRODUCT
1877   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1878 #endif
1879 private:
1880   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1881 };
1882 
1883 class TypeNarrowPtr : public Type {
1884 protected:
1885   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1886 
1887   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1888                                                   _ptrtype(ptrtype) {
1889     assert(ptrtype->offset() == 0 ||
1890            ptrtype->offset() == OffsetBot ||
1891            ptrtype->offset() == OffsetTop, "no real offsets");
1892   }
1893 
1894   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1895   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1896   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1897   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1898   // Do not allow interface-vs.-noninterface joins to collapse to top.
1899   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1900 public:
1901   virtual bool eq( const Type *t ) const;
1902   virtual int  hash() const;             // Type specific hashing
1903   virtual bool singleton(void) const;    // TRUE if type is a singleton
1904 
1905   virtual const Type *xmeet( const Type *t ) const;
1906   virtual const Type *xdual() const;    // Compute dual right now.
1907 
1908   virtual intptr_t get_con() const;
1909 
1910   virtual bool empty(void) const;        // TRUE if type is vacuous
1911 
1912   // returns the equivalent ptr type for this compressed pointer
1913   const TypePtr *get_ptrtype() const {
1914     return _ptrtype;
1915   }
1916 
1917   bool is_known_instance() const {
1918     return _ptrtype->is_known_instance();
1919   }
1920 
1921 #ifndef PRODUCT
1922   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1923 #endif
1924 };
1925 
1926 //------------------------------TypeNarrowOop----------------------------------
1927 // A compressed reference to some kind of Oop.  This type wraps around
1928 // a preexisting TypeOopPtr and forwards most of it's operations to
1929 // the underlying type.  It's only real purpose is to track the
1930 // oopness of the compressed oop value when we expose the conversion
1931 // between the normal and the compressed form.
1932 class TypeNarrowOop : public TypeNarrowPtr {
1933 protected:
1934   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1935   }
1936 
1937   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1938     return t->isa_narrowoop();
1939   }
1940 
1941   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1942     return t->is_narrowoop();
1943   }
1944 
1945   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1946     return new TypeNarrowOop(t);
1947   }
1948 
1949   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1950     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1951   }
1952 
1953 public:
1954 
1955   static const TypeNarrowOop *make( const TypePtr* type);
1956 
1957   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1958     return make(TypeOopPtr::make_from_constant(con, require_constant));
1959   }
1960 
1961   static const TypeNarrowOop *BOTTOM;
1962   static const TypeNarrowOop *NULL_PTR;
1963 
1964   virtual const TypeNarrowOop* remove_speculative() const;
1965   virtual const Type* cleanup_speculative() const;
1966 
1967 #ifndef PRODUCT
1968   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1969 #endif
1970 };
1971 
1972 //------------------------------TypeNarrowKlass----------------------------------
1973 // A compressed reference to klass pointer.  This type wraps around a
1974 // preexisting TypeKlassPtr and forwards most of it's operations to
1975 // the underlying type.
1976 class TypeNarrowKlass : public TypeNarrowPtr {
1977 protected:
1978   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1979   }
1980 
1981   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1982     return t->isa_narrowklass();
1983   }
1984 
1985   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1986     return t->is_narrowklass();
1987   }
1988 
1989   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1990     return new TypeNarrowKlass(t);
1991   }
1992 
1993   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1994     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1995   }
1996 
1997 public:
1998   static const TypeNarrowKlass *make( const TypePtr* type);
1999 
2000   // static const TypeNarrowKlass *BOTTOM;
2001   static const TypeNarrowKlass *NULL_PTR;
2002 
2003 #ifndef PRODUCT
2004   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2005 #endif
2006 };
2007 
2008 //------------------------------TypeFunc---------------------------------------
2009 // Class of Array Types
2010 class TypeFunc : public Type {
2011   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2012     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2013   virtual bool eq( const Type *t ) const;
2014   virtual int  hash() const;             // Type specific hashing
2015   virtual bool singleton(void) const;    // TRUE if type is a singleton
2016   virtual bool empty(void) const;        // TRUE if type is vacuous
2017 
2018   // Domains of inputs: inline type arguments are not passed by
2019   // reference, instead each field of the inline type is passed as an
2020   // argument. We maintain 2 views of the argument list here: one
2021   // based on the signature (with an inline type argument as a single
2022   // slot), one based on the actual calling convention (with a value
2023   // type argument as a list of its fields).
2024   const TypeTuple* const _domain_sig;
2025   const TypeTuple* const _domain_cc;
2026   // Range of results. Similar to domains: an inline type result can be
2027   // returned in registers in which case range_cc lists all fields and
2028   // is the actual calling convention.
2029   const TypeTuple* const _range_sig;
2030   const TypeTuple* const _range_cc;
2031 
2032 public:
2033   // Constants are shared among ADLC and VM
2034   enum { Control    = AdlcVMDeps::Control,
2035          I_O        = AdlcVMDeps::I_O,
2036          Memory     = AdlcVMDeps::Memory,
2037          FramePtr   = AdlcVMDeps::FramePtr,
2038          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2039          Parms      = AdlcVMDeps::Parms
2040   };
2041 
2042 
2043   // Accessors:
2044   const TypeTuple* domain_sig() const { return _domain_sig; }
2045   const TypeTuple* domain_cc()  const { return _domain_cc; }
2046   const TypeTuple* range_sig()  const { return _range_sig; }
2047   const TypeTuple* range_cc()   const { return _range_cc; }
2048 
2049   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2050   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2051                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2052   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2053 
2054   virtual const Type *xmeet( const Type *t ) const;
2055   virtual const Type *xdual() const;    // Compute dual right now.
2056 
2057   BasicType return_type() const;
2058 
2059   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2060 
2061 #ifndef PRODUCT
2062   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2063 #endif
2064   // Convenience common pre-built types.
2065 };
2066 
2067 //------------------------------accessors--------------------------------------
2068 inline bool Type::is_ptr_to_narrowoop() const {
2069 #ifdef _LP64
2070   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
2071 #else
2072   return false;
2073 #endif
2074 }
2075 
2076 inline bool Type::is_ptr_to_narrowklass() const {
2077 #ifdef _LP64
2078   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
2079 #else
2080   return false;
2081 #endif
2082 }
2083 
2084 inline float Type::getf() const {
2085   assert( _base == FloatCon, "Not a FloatCon" );
2086   return ((TypeF*)this)->_f;
2087 }
2088 
2089 inline double Type::getd() const {
2090   assert( _base == DoubleCon, "Not a DoubleCon" );
2091   return ((TypeD*)this)->_d;
2092 }
2093 
2094 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2095   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2096   return (TypeInteger*)this;
2097 }
2098 
2099 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2100   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : NULL);
2101 }
2102 
2103 inline const TypeInt *Type::is_int() const {
2104   assert( _base == Int, "Not an Int" );
2105   return (TypeInt*)this;
2106 }
2107 
2108 inline const TypeInt *Type::isa_int() const {
2109   return ( _base == Int ? (TypeInt*)this : NULL);
2110 }
2111 
2112 inline const TypeLong *Type::is_long() const {
2113   assert( _base == Long, "Not a Long" );
2114   return (TypeLong*)this;
2115 }
2116 
2117 inline const TypeLong *Type::isa_long() const {
2118   return ( _base == Long ? (TypeLong*)this : NULL);
2119 }
2120 
2121 inline const TypeF *Type::isa_float() const {
2122   return ((_base == FloatTop ||
2123            _base == FloatCon ||
2124            _base == FloatBot) ? (TypeF*)this : NULL);
2125 }
2126 
2127 inline const TypeF *Type::is_float_constant() const {
2128   assert( _base == FloatCon, "Not a Float" );
2129   return (TypeF*)this;
2130 }
2131 
2132 inline const TypeF *Type::isa_float_constant() const {
2133   return ( _base == FloatCon ? (TypeF*)this : NULL);
2134 }
2135 
2136 inline const TypeD *Type::isa_double() const {
2137   return ((_base == DoubleTop ||
2138            _base == DoubleCon ||
2139            _base == DoubleBot) ? (TypeD*)this : NULL);
2140 }
2141 
2142 inline const TypeD *Type::is_double_constant() const {
2143   assert( _base == DoubleCon, "Not a Double" );
2144   return (TypeD*)this;
2145 }
2146 
2147 inline const TypeD *Type::isa_double_constant() const {
2148   return ( _base == DoubleCon ? (TypeD*)this : NULL);
2149 }
2150 
2151 inline const TypeTuple *Type::is_tuple() const {
2152   assert( _base == Tuple, "Not a Tuple" );
2153   return (TypeTuple*)this;
2154 }
2155 
2156 inline const TypeAry *Type::is_ary() const {
2157   assert( _base == Array , "Not an Array" );
2158   return (TypeAry*)this;
2159 }
2160 
2161 inline const TypeAry *Type::isa_ary() const {
2162   return ((_base == Array) ? (TypeAry*)this : NULL);
2163 }
2164 
2165 inline const TypeVectMask *Type::is_vectmask() const {
2166   assert( _base == VectorMask, "Not a Vector Mask" );
2167   return (TypeVectMask*)this;
2168 }
2169 
2170 inline const TypeVectMask *Type::isa_vectmask() const {
2171   return (_base == VectorMask) ? (TypeVectMask*)this : NULL;
2172 }
2173 
2174 inline const TypeVect *Type::is_vect() const {
2175   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2176   return (TypeVect*)this;
2177 }
2178 
2179 inline const TypeVect *Type::isa_vect() const {
2180   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : NULL;
2181 }
2182 
2183 inline const TypePtr *Type::is_ptr() const {
2184   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2185   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2186   return (TypePtr*)this;
2187 }
2188 
2189 inline const TypePtr *Type::isa_ptr() const {
2190   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2191   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : NULL;
2192 }
2193 
2194 inline const TypeOopPtr *Type::is_oopptr() const {
2195   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2196   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2197   return (TypeOopPtr*)this;
2198 }
2199 
2200 inline const TypeOopPtr *Type::isa_oopptr() const {
2201   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2202   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
2203 }
2204 
2205 inline const TypeRawPtr *Type::isa_rawptr() const {
2206   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
2207 }
2208 
2209 inline const TypeRawPtr *Type::is_rawptr() const {
2210   assert( _base == RawPtr, "Not a raw pointer" );
2211   return (TypeRawPtr*)this;
2212 }
2213 
2214 inline const TypeInstPtr *Type::isa_instptr() const {
2215   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
2216 }
2217 
2218 inline const TypeInstPtr *Type::is_instptr() const {
2219   assert( _base == InstPtr, "Not an object pointer" );
2220   return (TypeInstPtr*)this;
2221 }
2222 
2223 inline const TypeAryPtr *Type::isa_aryptr() const {
2224   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
2225 }
2226 
2227 inline const TypeAryPtr *Type::is_aryptr() const {
2228   assert( _base == AryPtr, "Not an array pointer" );
2229   return (TypeAryPtr*)this;
2230 }
2231 
2232 inline const TypeNarrowOop *Type::is_narrowoop() const {
2233   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2234   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2235   return (TypeNarrowOop*)this;
2236 }
2237 
2238 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2239   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2240   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
2241 }
2242 
2243 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2244   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2245   return (TypeNarrowKlass*)this;
2246 }
2247 
2248 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2249   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
2250 }
2251 
2252 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2253   // MetadataPtr is the first and CPCachePtr the last
2254   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2255   return (TypeMetadataPtr*)this;
2256 }
2257 
2258 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2259   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
2260 }
2261 
2262 inline const TypeKlassPtr *Type::isa_klassptr() const {
2263   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : NULL;
2264 }
2265 
2266 inline const TypeKlassPtr *Type::is_klassptr() const {
2267   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2268   return (TypeKlassPtr*)this;
2269 }
2270 
2271 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2272   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : NULL;
2273 }
2274 
2275 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2276   assert(_base == InstKlassPtr, "Not a klass pointer");
2277   return (TypeInstKlassPtr*)this;
2278 }
2279 
2280 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2281   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : NULL;
2282 }
2283 
2284 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2285   assert(_base == AryKlassPtr, "Not a klass pointer");
2286   return (TypeAryKlassPtr*)this;
2287 }
2288 
2289 inline const TypePtr* Type::make_ptr() const {
2290   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2291                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2292                                                        isa_ptr());
2293 }
2294 
2295 inline const TypeOopPtr* Type::make_oopptr() const {
2296   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2297 }
2298 
2299 inline const TypeNarrowOop* Type::make_narrowoop() const {
2300   return (_base == NarrowOop) ? is_narrowoop() :
2301                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
2302 }
2303 
2304 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2305   return (_base == NarrowKlass) ? is_narrowklass() :
2306                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
2307 }
2308 
2309 inline bool Type::is_floatingpoint() const {
2310   if( (_base == FloatCon)  || (_base == FloatBot) ||
2311       (_base == DoubleCon) || (_base == DoubleBot) )
2312     return true;
2313   return false;
2314 }
2315 
2316 inline bool Type::is_inlinetypeptr() const {
2317   return isa_instptr() != NULL && is_instptr()->instance_klass()->is_inlinetype();
2318 }
2319 
2320 inline ciInlineKlass* Type::inline_klass() const {
2321   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2322 }
2323 
2324 
2325 // ===============================================================
2326 // Things that need to be 64-bits in the 64-bit build but
2327 // 32-bits in the 32-bit build.  Done this way to get full
2328 // optimization AND strong typing.
2329 #ifdef _LP64
2330 
2331 // For type queries and asserts
2332 #define is_intptr_t  is_long
2333 #define isa_intptr_t isa_long
2334 #define find_intptr_t_type find_long_type
2335 #define find_intptr_t_con  find_long_con
2336 #define TypeX        TypeLong
2337 #define Type_X       Type::Long
2338 #define TypeX_X      TypeLong::LONG
2339 #define TypeX_ZERO   TypeLong::ZERO
2340 // For 'ideal_reg' machine registers
2341 #define Op_RegX      Op_RegL
2342 // For phase->intcon variants
2343 #define MakeConX     longcon
2344 #define ConXNode     ConLNode
2345 // For array index arithmetic
2346 #define MulXNode     MulLNode
2347 #define AndXNode     AndLNode
2348 #define OrXNode      OrLNode
2349 #define CmpXNode     CmpLNode
2350 #define CmpUXNode    CmpULNode
2351 #define SubXNode     SubLNode
2352 #define LShiftXNode  LShiftLNode
2353 // For object size computation:
2354 #define AddXNode     AddLNode
2355 #define RShiftXNode  RShiftLNode
2356 // For card marks and hashcodes
2357 #define URShiftXNode URShiftLNode
2358 // For shenandoahSupport
2359 #define LoadXNode    LoadLNode
2360 #define StoreXNode   StoreLNode
2361 // Opcodes
2362 #define Op_LShiftX   Op_LShiftL
2363 #define Op_AndX      Op_AndL
2364 #define Op_AddX      Op_AddL
2365 #define Op_SubX      Op_SubL
2366 #define Op_XorX      Op_XorL
2367 #define Op_URShiftX  Op_URShiftL
2368 #define Op_LoadX     Op_LoadL
2369 #define Op_StoreX    Op_StoreL
2370 // conversions
2371 #define ConvI2X(x)   ConvI2L(x)
2372 #define ConvL2X(x)   (x)
2373 #define ConvX2I(x)   ConvL2I(x)
2374 #define ConvX2L(x)   (x)
2375 #define ConvX2UL(x)  (x)
2376 
2377 #else
2378 
2379 // For type queries and asserts
2380 #define is_intptr_t  is_int
2381 #define isa_intptr_t isa_int
2382 #define find_intptr_t_type find_int_type
2383 #define find_intptr_t_con  find_int_con
2384 #define TypeX        TypeInt
2385 #define Type_X       Type::Int
2386 #define TypeX_X      TypeInt::INT
2387 #define TypeX_ZERO   TypeInt::ZERO
2388 // For 'ideal_reg' machine registers
2389 #define Op_RegX      Op_RegI
2390 // For phase->intcon variants
2391 #define MakeConX     intcon
2392 #define ConXNode     ConINode
2393 // For array index arithmetic
2394 #define MulXNode     MulINode
2395 #define AndXNode     AndINode
2396 #define OrXNode      OrINode
2397 #define CmpXNode     CmpINode
2398 #define CmpUXNode    CmpUNode
2399 #define SubXNode     SubINode
2400 #define LShiftXNode  LShiftINode
2401 // For object size computation:
2402 #define AddXNode     AddINode
2403 #define RShiftXNode  RShiftINode
2404 // For card marks and hashcodes
2405 #define URShiftXNode URShiftINode
2406 // For shenandoahSupport
2407 #define LoadXNode    LoadINode
2408 #define StoreXNode   StoreINode
2409 // Opcodes
2410 #define Op_LShiftX   Op_LShiftI
2411 #define Op_AndX      Op_AndI
2412 #define Op_AddX      Op_AddI
2413 #define Op_SubX      Op_SubI
2414 #define Op_XorX      Op_XorI
2415 #define Op_URShiftX  Op_URShiftI
2416 #define Op_LoadX     Op_LoadI
2417 #define Op_StoreX    Op_StoreI
2418 // conversions
2419 #define ConvI2X(x)   (x)
2420 #define ConvL2X(x)   ConvL2I(x)
2421 #define ConvX2I(x)   (x)
2422 #define ConvX2L(x)   ConvI2L(x)
2423 #define ConvX2UL(x)  ConvI2UL(x)
2424 
2425 #endif
2426 
2427 #endif // SHARE_OPTO_TYPE_HPP