1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_TYPE_HPP 26 #define SHARE_OPTO_TYPE_HPP 27 28 #include "ci/ciInlineKlass.hpp" 29 #include "opto/adlcVMDeps.hpp" 30 #include "runtime/handles.hpp" 31 #include "runtime/sharedRuntime.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 // This class defines a Type lattice. The lattice is used in the constant 39 // propagation algorithms, and for some type-checking of the iloc code. 40 // Basic types include RSD's (lower bound, upper bound, stride for integers), 41 // float & double precision constants, sets of data-labels and code-labels. 42 // The complete lattice is described below. Subtypes have no relationship to 43 // up or down in the lattice; that is entirely determined by the behavior of 44 // the MEET/JOIN functions. 45 46 class Dict; 47 class Type; 48 class TypeD; 49 class TypeF; 50 class TypeInteger; 51 class TypeInt; 52 class TypeLong; 53 class TypeNarrowPtr; 54 class TypeNarrowOop; 55 class TypeNarrowKlass; 56 class TypeAry; 57 class TypeTuple; 58 class TypeVect; 59 class TypeVectA; 60 class TypeVectS; 61 class TypeVectD; 62 class TypeVectX; 63 class TypeVectY; 64 class TypeVectZ; 65 class TypeVectMask; 66 class TypePtr; 67 class TypeRawPtr; 68 class TypeOopPtr; 69 class TypeInstPtr; 70 class TypeAryPtr; 71 class TypeKlassPtr; 72 class TypeInstKlassPtr; 73 class TypeAryKlassPtr; 74 class TypeMetadataPtr; 75 class VerifyMeet; 76 77 //------------------------------Type------------------------------------------- 78 // Basic Type object, represents a set of primitive Values. 79 // Types are hash-cons'd into a private class dictionary, so only one of each 80 // different kind of Type exists. Types are never modified after creation, so 81 // all their interesting fields are constant. 82 class Type { 83 friend class VMStructs; 84 85 public: 86 enum TYPES { 87 Bad=0, // Type check 88 Control, // Control of code (not in lattice) 89 Top, // Top of the lattice 90 Int, // Integer range (lo-hi) 91 Long, // Long integer range (lo-hi) 92 Half, // Placeholder half of doubleword 93 NarrowOop, // Compressed oop pointer 94 NarrowKlass, // Compressed klass pointer 95 96 Tuple, // Method signature or object layout 97 Array, // Array types 98 99 Interfaces, // Set of implemented interfaces for oop types 100 101 VectorMask, // Vector predicate/mask type 102 VectorA, // (Scalable) Vector types for vector length agnostic 103 VectorS, // 32bit Vector types 104 VectorD, // 64bit Vector types 105 VectorX, // 128bit Vector types 106 VectorY, // 256bit Vector types 107 VectorZ, // 512bit Vector types 108 109 AnyPtr, // Any old raw, klass, inst, or array pointer 110 RawPtr, // Raw (non-oop) pointers 111 OopPtr, // Any and all Java heap entities 112 InstPtr, // Instance pointers (non-array objects) 113 AryPtr, // Array pointers 114 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) 115 116 MetadataPtr, // Generic metadata 117 KlassPtr, // Klass pointers 118 InstKlassPtr, 119 AryKlassPtr, 120 121 Function, // Function signature 122 Abio, // Abstract I/O 123 Return_Address, // Subroutine return address 124 Memory, // Abstract store 125 FloatTop, // No float value 126 FloatCon, // Floating point constant 127 FloatBot, // Any float value 128 DoubleTop, // No double value 129 DoubleCon, // Double precision constant 130 DoubleBot, // Any double value 131 Bottom, // Bottom of lattice 132 lastype // Bogus ending type (not in lattice) 133 }; 134 135 // Signal values for offsets from a base pointer 136 enum OFFSET_SIGNALS { 137 OffsetTop = -2000000000, // undefined offset 138 OffsetBot = -2000000001 // any possible offset 139 }; 140 141 class Offset { 142 private: 143 int _offset; 144 145 public: 146 explicit Offset(int offset) : _offset(offset) {} 147 148 const Offset meet(const Offset other) const; 149 const Offset dual() const; 150 const Offset add(intptr_t offset) const; 151 bool operator==(const Offset& other) const { 152 return _offset == other._offset; 153 } 154 bool operator!=(const Offset& other) const { 155 return _offset != other._offset; 156 } 157 int get() const { return _offset; } 158 159 void dump2(outputStream *st) const; 160 161 static const Offset top; 162 static const Offset bottom; 163 }; 164 165 // Min and max WIDEN values. 166 enum WIDEN { 167 WidenMin = 0, 168 WidenMax = 3 169 }; 170 171 private: 172 typedef struct { 173 TYPES dual_type; 174 BasicType basic_type; 175 const char* msg; 176 bool isa_oop; 177 uint ideal_reg; 178 relocInfo::relocType reloc; 179 } TypeInfo; 180 181 // Dictionary of types shared among compilations. 182 static Dict* _shared_type_dict; 183 static const TypeInfo _type_info[]; 184 185 static int uhash( const Type *const t ); 186 // Structural equality check. Assumes that equals() has already compared 187 // the _base types and thus knows it can cast 't' appropriately. 188 virtual bool eq( const Type *t ) const; 189 190 // Top-level hash-table of types 191 static Dict *type_dict() { 192 return Compile::current()->type_dict(); 193 } 194 195 // DUAL operation: reflect around lattice centerline. Used instead of 196 // join to ensure my lattice is symmetric up and down. Dual is computed 197 // lazily, on demand, and cached in _dual. 198 const Type *_dual; // Cached dual value 199 200 201 const Type *meet_helper(const Type *t, bool include_speculative) const; 202 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN; 203 204 protected: 205 // Each class of type is also identified by its base. 206 const TYPES _base; // Enum of Types type 207 208 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types 209 // ~Type(); // Use fast deallocation 210 const Type *hashcons(); // Hash-cons the type 211 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 212 const Type *join_helper(const Type *t, bool include_speculative) const { 213 assert_type_verify_empty(); 214 return dual()->meet_helper(t->dual(), include_speculative)->dual(); 215 } 216 217 void assert_type_verify_empty() const NOT_DEBUG_RETURN; 218 219 public: 220 221 inline void* operator new( size_t x ) throw() { 222 Compile* compile = Compile::current(); 223 compile->set_type_last_size(x); 224 return compile->type_arena()->AmallocWords(x); 225 } 226 inline void operator delete( void* ptr ) { 227 Compile* compile = Compile::current(); 228 compile->type_arena()->Afree(ptr,compile->type_last_size()); 229 } 230 231 // Initialize the type system for a particular compilation. 232 static void Initialize(Compile* compile); 233 234 // Initialize the types shared by all compilations. 235 static void Initialize_shared(Compile* compile); 236 237 TYPES base() const { 238 assert(_base > Bad && _base < lastype, "sanity"); 239 return _base; 240 } 241 242 // Create a new hash-consd type 243 static const Type *make(enum TYPES); 244 // Test for equivalence of types 245 static bool equals(const Type* t1, const Type* t2); 246 // Test for higher or equal in lattice 247 // Variant that drops the speculative part of the types 248 bool higher_equal(const Type* t) const { 249 return equals(meet(t), t->remove_speculative()); 250 } 251 // Variant that keeps the speculative part of the types 252 bool higher_equal_speculative(const Type* t) const { 253 return equals(meet_speculative(t), t); 254 } 255 256 // MEET operation; lower in lattice. 257 // Variant that drops the speculative part of the types 258 const Type *meet(const Type *t) const { 259 return meet_helper(t, false); 260 } 261 // Variant that keeps the speculative part of the types 262 const Type *meet_speculative(const Type *t) const { 263 return meet_helper(t, true)->cleanup_speculative(); 264 } 265 // WIDEN: 'widens' for Ints and other range types 266 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } 267 // NARROW: complement for widen, used by pessimistic phases 268 virtual const Type *narrow( const Type *old ) const { return this; } 269 270 // DUAL operation: reflect around lattice centerline. Used instead of 271 // join to ensure my lattice is symmetric up and down. 272 const Type *dual() const { return _dual; } 273 274 // Compute meet dependent on base type 275 virtual const Type *xmeet( const Type *t ) const; 276 virtual const Type *xdual() const; // Compute dual right now. 277 278 // JOIN operation; higher in lattice. Done by finding the dual of the 279 // meet of the dual of the 2 inputs. 280 // Variant that drops the speculative part of the types 281 const Type *join(const Type *t) const { 282 return join_helper(t, false); 283 } 284 // Variant that keeps the speculative part of the types 285 const Type *join_speculative(const Type *t) const { 286 return join_helper(t, true)->cleanup_speculative(); 287 } 288 289 // Modified version of JOIN adapted to the needs Node::Value. 290 // Normalizes all empty values to TOP. Does not kill _widen bits. 291 // Variant that drops the speculative part of the types 292 const Type *filter(const Type *kills) const { 293 return filter_helper(kills, false); 294 } 295 // Variant that keeps the speculative part of the types 296 const Type *filter_speculative(const Type *kills) const { 297 return filter_helper(kills, true)->cleanup_speculative(); 298 } 299 300 // Returns true if this pointer points at memory which contains a 301 // compressed oop references. 302 bool is_ptr_to_narrowoop() const; 303 bool is_ptr_to_narrowklass() const; 304 305 // Convenience access 306 float getf() const; 307 double getd() const; 308 309 const TypeInt *is_int() const; 310 const TypeInt *isa_int() const; // Returns null if not an Int 311 const TypeInteger* is_integer(BasicType bt) const; 312 const TypeInteger* isa_integer(BasicType bt) const; 313 const TypeLong *is_long() const; 314 const TypeLong *isa_long() const; // Returns null if not a Long 315 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot} 316 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon 317 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon 318 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot} 319 const TypeF *is_float_constant() const; // Asserts it is a FloatCon 320 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon 321 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer 322 const TypeAry *is_ary() const; // Array, NOT array pointer 323 const TypeAry *isa_ary() const; // Returns null of not ary 324 const TypeVect *is_vect() const; // Vector 325 const TypeVect *isa_vect() const; // Returns null if not a Vector 326 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector 327 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask 328 const TypePtr *is_ptr() const; // Asserts it is a ptr type 329 const TypePtr *isa_ptr() const; // Returns null if not ptr type 330 const TypeRawPtr *isa_rawptr() const; // NOT Java oop 331 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr 332 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer 333 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type 334 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer 335 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type 336 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type 337 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer 338 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr 339 const TypeInstPtr *is_instptr() const; // Instance 340 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr 341 const TypeAryPtr *is_aryptr() const; // Array oop 342 343 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type 344 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer 345 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr 346 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr 347 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr 348 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr 349 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr 350 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr 351 352 virtual bool is_finite() const; // Has a finite value 353 virtual bool is_nan() const; // Is not a number (NaN) 354 355 bool is_inlinetypeptr() const; 356 virtual ciInlineKlass* inline_klass() const; 357 358 // Returns this ptr type or the equivalent ptr type for this compressed pointer. 359 const TypePtr* make_ptr() const; 360 361 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. 362 // Asserts if the underlying type is not an oopptr or narrowoop. 363 const TypeOopPtr* make_oopptr() const; 364 365 // Returns this compressed pointer or the equivalent compressed version 366 // of this pointer type. 367 const TypeNarrowOop* make_narrowoop() const; 368 369 // Returns this compressed klass pointer or the equivalent 370 // compressed version of this pointer type. 371 const TypeNarrowKlass* make_narrowklass() const; 372 373 // Special test for register pressure heuristic 374 bool is_floatingpoint() const; // True if Float or Double base type 375 376 // Do you have memory, directly or through a tuple? 377 bool has_memory( ) const; 378 379 // TRUE if type is a singleton 380 virtual bool singleton(void) const; 381 382 // TRUE if type is above the lattice centerline, and is therefore vacuous 383 virtual bool empty(void) const; 384 385 // Return a hash for this type. The hash function is public so ConNode 386 // (constants) can hash on their constant, which is represented by a Type. 387 virtual uint hash() const; 388 389 // Map ideal registers (machine types) to ideal types 390 static const Type *mreg2type[]; 391 392 // Printing, statistics 393 #ifndef PRODUCT 394 void dump_on(outputStream *st) const; 395 void dump() const { 396 dump_on(tty); 397 } 398 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 399 static void dump_stats(); 400 // Groups of types, for debugging and visualization only. 401 enum class Category { 402 Data, 403 Memory, 404 Mixed, // Tuples with types of different categories. 405 Control, 406 Other, // {Type::Top, Type::Abio, Type::Bottom}. 407 Undef // {Type::Bad, Type::lastype}, for completeness. 408 }; 409 // Return the category of this type. 410 Category category() const; 411 // Check recursively in tuples. 412 bool has_category(Category cat) const; 413 414 static const char* str(const Type* t); 415 #endif // !PRODUCT 416 void typerr(const Type *t) const; // Mixing types error 417 418 // Create basic type 419 static const Type* get_const_basic_type(BasicType type) { 420 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type"); 421 return _const_basic_type[type]; 422 } 423 424 // For two instance arrays of same dimension, return the base element types. 425 // Otherwise or if the arrays have different dimensions, return null. 426 static void get_arrays_base_elements(const Type *a1, const Type *a2, 427 const TypeInstPtr **e1, const TypeInstPtr **e2); 428 429 // Mapping to the array element's basic type. 430 BasicType array_element_basic_type() const; 431 432 enum InterfaceHandling { 433 trust_interfaces, 434 ignore_interfaces 435 }; 436 // Create standard type for a ciType: 437 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces); 438 439 // Create standard zero value: 440 static const Type* get_zero_type(BasicType type) { 441 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type"); 442 return _zero_type[type]; 443 } 444 445 // Report if this is a zero value (not top). 446 bool is_zero_type() const { 447 BasicType type = basic_type(); 448 if (type == T_VOID || type >= T_CONFLICT) 449 return false; 450 else 451 return (this == _zero_type[type]); 452 } 453 454 // Convenience common pre-built types. 455 static const Type *ABIO; 456 static const Type *BOTTOM; 457 static const Type *CONTROL; 458 static const Type *DOUBLE; 459 static const Type *FLOAT; 460 static const Type *HALF; 461 static const Type *MEMORY; 462 static const Type *MULTI; 463 static const Type *RETURN_ADDRESS; 464 static const Type *TOP; 465 466 // Mapping from compiler type to VM BasicType 467 BasicType basic_type() const { return _type_info[_base].basic_type; } 468 uint ideal_reg() const { return _type_info[_base].ideal_reg; } 469 const char* msg() const { return _type_info[_base].msg; } 470 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } 471 relocInfo::relocType reloc() const { return _type_info[_base].reloc; } 472 473 // Mapping from CI type system to compiler type: 474 static const Type* get_typeflow_type(ciType* type); 475 476 static const Type* make_from_constant(ciConstant constant, 477 bool require_constant = false, 478 int stable_dimension = 0, 479 bool is_narrow = false, 480 bool is_autobox_cache = false); 481 482 static const Type* make_constant_from_field(ciInstance* holder, 483 int off, 484 bool is_unsigned_load, 485 BasicType loadbt); 486 487 static const Type* make_constant_from_field(ciField* field, 488 ciInstance* holder, 489 BasicType loadbt, 490 bool is_unsigned_load); 491 492 static const Type* make_constant_from_array_element(ciArray* array, 493 int off, 494 int stable_dimension, 495 BasicType loadbt, 496 bool is_unsigned_load); 497 498 // Speculative type helper methods. See TypePtr. 499 virtual const TypePtr* speculative() const { return nullptr; } 500 virtual ciKlass* speculative_type() const { return nullptr; } 501 virtual ciKlass* speculative_type_not_null() const { return nullptr; } 502 virtual bool speculative_maybe_null() const { return true; } 503 virtual bool speculative_always_null() const { return true; } 504 virtual const Type* remove_speculative() const { return this; } 505 virtual const Type* cleanup_speculative() const { return this; } 506 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; } 507 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } 508 const Type* maybe_remove_speculative(bool include_speculative) const; 509 510 virtual bool maybe_null() const { return true; } 511 virtual bool is_known_instance() const { return false; } 512 513 private: 514 // support arrays 515 static const Type* _zero_type[T_CONFLICT+1]; 516 static const Type* _const_basic_type[T_CONFLICT+1]; 517 }; 518 519 //------------------------------TypeF------------------------------------------ 520 // Class of Float-Constant Types. 521 class TypeF : public Type { 522 TypeF( float f ) : Type(FloatCon), _f(f) {}; 523 public: 524 virtual bool eq( const Type *t ) const; 525 virtual uint hash() const; // Type specific hashing 526 virtual bool singleton(void) const; // TRUE if type is a singleton 527 virtual bool empty(void) const; // TRUE if type is vacuous 528 public: 529 const float _f; // Float constant 530 531 static const TypeF *make(float f); 532 533 virtual bool is_finite() const; // Has a finite value 534 virtual bool is_nan() const; // Is not a number (NaN) 535 536 virtual const Type *xmeet( const Type *t ) const; 537 virtual const Type *xdual() const; // Compute dual right now. 538 // Convenience common pre-built types. 539 static const TypeF *MAX; 540 static const TypeF *MIN; 541 static const TypeF *ZERO; // positive zero only 542 static const TypeF *ONE; 543 static const TypeF *POS_INF; 544 static const TypeF *NEG_INF; 545 #ifndef PRODUCT 546 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 547 #endif 548 }; 549 550 //------------------------------TypeD------------------------------------------ 551 // Class of Double-Constant Types. 552 class TypeD : public Type { 553 TypeD( double d ) : Type(DoubleCon), _d(d) {}; 554 public: 555 virtual bool eq( const Type *t ) const; 556 virtual uint hash() const; // Type specific hashing 557 virtual bool singleton(void) const; // TRUE if type is a singleton 558 virtual bool empty(void) const; // TRUE if type is vacuous 559 public: 560 const double _d; // Double constant 561 562 static const TypeD *make(double d); 563 564 virtual bool is_finite() const; // Has a finite value 565 virtual bool is_nan() const; // Is not a number (NaN) 566 567 virtual const Type *xmeet( const Type *t ) const; 568 virtual const Type *xdual() const; // Compute dual right now. 569 // Convenience common pre-built types. 570 static const TypeD *MAX; 571 static const TypeD *MIN; 572 static const TypeD *ZERO; // positive zero only 573 static const TypeD *ONE; 574 static const TypeD *POS_INF; 575 static const TypeD *NEG_INF; 576 #ifndef PRODUCT 577 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 578 #endif 579 }; 580 581 class TypeInteger : public Type { 582 protected: 583 TypeInteger(TYPES t, int w) : Type(t), _widen(w) {} 584 585 public: 586 const short _widen; // Limit on times we widen this sucker 587 588 virtual jlong hi_as_long() const = 0; 589 virtual jlong lo_as_long() const = 0; 590 jlong get_con_as_long(BasicType bt) const; 591 bool is_con() const { return lo_as_long() == hi_as_long(); } 592 virtual short widen_limit() const { return _widen; } 593 594 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt); 595 596 static const TypeInteger* bottom(BasicType type); 597 static const TypeInteger* zero(BasicType type); 598 static const TypeInteger* one(BasicType type); 599 static const TypeInteger* minus_1(BasicType type); 600 }; 601 602 603 604 //------------------------------TypeInt---------------------------------------- 605 // Class of integer ranges, the set of integers between a lower bound and an 606 // upper bound, inclusive. 607 class TypeInt : public TypeInteger { 608 TypeInt( jint lo, jint hi, int w ); 609 protected: 610 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 611 612 public: 613 typedef jint NativeType; 614 virtual bool eq( const Type *t ) const; 615 virtual uint hash() const; // Type specific hashing 616 virtual bool singleton(void) const; // TRUE if type is a singleton 617 virtual bool empty(void) const; // TRUE if type is vacuous 618 const jint _lo, _hi; // Lower bound, upper bound 619 620 static const TypeInt *make(jint lo); 621 // must always specify w 622 static const TypeInt *make(jint lo, jint hi, int w); 623 624 // Check for single integer 625 bool is_con() const { return _lo==_hi; } 626 bool is_con(jint i) const { return is_con() && _lo == i; } 627 jint get_con() const { assert(is_con(), "" ); return _lo; } 628 629 virtual bool is_finite() const; // Has a finite value 630 631 virtual const Type *xmeet( const Type *t ) const; 632 virtual const Type *xdual() const; // Compute dual right now. 633 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 634 virtual const Type *narrow( const Type *t ) const; 635 636 virtual jlong hi_as_long() const { return _hi; } 637 virtual jlong lo_as_long() const { return _lo; } 638 639 // Do not kill _widen bits. 640 // Convenience common pre-built types. 641 static const TypeInt *MAX; 642 static const TypeInt *MIN; 643 static const TypeInt *MINUS_1; 644 static const TypeInt *ZERO; 645 static const TypeInt *ONE; 646 static const TypeInt *BOOL; 647 static const TypeInt *CC; 648 static const TypeInt *CC_LT; // [-1] == MINUS_1 649 static const TypeInt *CC_GT; // [1] == ONE 650 static const TypeInt *CC_EQ; // [0] == ZERO 651 static const TypeInt *CC_LE; // [-1,0] 652 static const TypeInt *CC_GE; // [0,1] == BOOL (!) 653 static const TypeInt *BYTE; 654 static const TypeInt *UBYTE; 655 static const TypeInt *CHAR; 656 static const TypeInt *SHORT; 657 static const TypeInt *POS; 658 static const TypeInt *POS1; 659 static const TypeInt *INT; 660 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint] 661 static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT 662 663 static const TypeInt *as_self(const Type *t) { return t->is_int(); } 664 #ifndef PRODUCT 665 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 666 #endif 667 }; 668 669 670 //------------------------------TypeLong--------------------------------------- 671 // Class of long integer ranges, the set of integers between a lower bound and 672 // an upper bound, inclusive. 673 class TypeLong : public TypeInteger { 674 TypeLong( jlong lo, jlong hi, int w ); 675 protected: 676 // Do not kill _widen bits. 677 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 678 public: 679 typedef jlong NativeType; 680 virtual bool eq( const Type *t ) const; 681 virtual uint hash() const; // Type specific hashing 682 virtual bool singleton(void) const; // TRUE if type is a singleton 683 virtual bool empty(void) const; // TRUE if type is vacuous 684 public: 685 const jlong _lo, _hi; // Lower bound, upper bound 686 687 static const TypeLong *make(jlong lo); 688 // must always specify w 689 static const TypeLong *make(jlong lo, jlong hi, int w); 690 691 // Check for single integer 692 bool is_con() const { return _lo==_hi; } 693 bool is_con(jlong i) const { return is_con() && _lo == i; } 694 jlong get_con() const { assert(is_con(), "" ); return _lo; } 695 696 // Check for positive 32-bit value. 697 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } 698 699 virtual bool is_finite() const; // Has a finite value 700 701 virtual jlong hi_as_long() const { return _hi; } 702 virtual jlong lo_as_long() const { return _lo; } 703 704 virtual const Type *xmeet( const Type *t ) const; 705 virtual const Type *xdual() const; // Compute dual right now. 706 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 707 virtual const Type *narrow( const Type *t ) const; 708 // Convenience common pre-built types. 709 static const TypeLong *MAX; 710 static const TypeLong *MIN; 711 static const TypeLong *MINUS_1; 712 static const TypeLong *ZERO; 713 static const TypeLong *ONE; 714 static const TypeLong *POS; 715 static const TypeLong *LONG; 716 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint] 717 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint] 718 static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG 719 720 // static convenience methods. 721 static const TypeLong *as_self(const Type *t) { return t->is_long(); } 722 723 #ifndef PRODUCT 724 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping 725 #endif 726 }; 727 728 //------------------------------TypeTuple-------------------------------------- 729 // Class of Tuple Types, essentially type collections for function signatures 730 // and class layouts. It happens to also be a fast cache for the HotSpot 731 // signature types. 732 class TypeTuple : public Type { 733 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } 734 735 const uint _cnt; // Count of fields 736 const Type ** const _fields; // Array of field types 737 738 public: 739 virtual bool eq( const Type *t ) const; 740 virtual uint hash() const; // Type specific hashing 741 virtual bool singleton(void) const; // TRUE if type is a singleton 742 virtual bool empty(void) const; // TRUE if type is vacuous 743 744 // Accessors: 745 uint cnt() const { return _cnt; } 746 const Type* field_at(uint i) const { 747 assert(i < _cnt, "oob"); 748 return _fields[i]; 749 } 750 void set_field_at(uint i, const Type* t) { 751 assert(i < _cnt, "oob"); 752 _fields[i] = t; 753 } 754 755 static const TypeTuple *make( uint cnt, const Type **fields ); 756 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false); 757 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false); 758 759 // Subroutine call type with space allocated for argument types 760 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 761 static const Type **fields( uint arg_cnt ); 762 763 virtual const Type *xmeet( const Type *t ) const; 764 virtual const Type *xdual() const; // Compute dual right now. 765 // Convenience common pre-built types. 766 static const TypeTuple *IFBOTH; 767 static const TypeTuple *IFFALSE; 768 static const TypeTuple *IFTRUE; 769 static const TypeTuple *IFNEITHER; 770 static const TypeTuple *LOOPBODY; 771 static const TypeTuple *MEMBAR; 772 static const TypeTuple *STORECONDITIONAL; 773 static const TypeTuple *START_I2C; 774 static const TypeTuple *INT_PAIR; 775 static const TypeTuple *LONG_PAIR; 776 static const TypeTuple *INT_CC_PAIR; 777 static const TypeTuple *LONG_CC_PAIR; 778 #ifndef PRODUCT 779 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 780 #endif 781 }; 782 783 //------------------------------TypeAry---------------------------------------- 784 // Class of Array Types 785 class TypeAry : public Type { 786 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free) : Type(Array), 787 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free) {} 788 public: 789 virtual bool eq( const Type *t ) const; 790 virtual uint hash() const; // Type specific hashing 791 virtual bool singleton(void) const; // TRUE if type is a singleton 792 virtual bool empty(void) const; // TRUE if type is vacuous 793 794 private: 795 const Type *_elem; // Element type of array 796 const TypeInt *_size; // Elements in array 797 const bool _stable; // Are elements @Stable? 798 799 // Inline type array properties 800 const bool _flat; // Array is flat 801 const bool _not_flat; // Array is never flat 802 const bool _not_null_free; // Array is never null-free 803 804 friend class TypeAryPtr; 805 806 public: 807 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false, 808 bool flat = false, bool not_flat = false, bool not_null_free = false); 809 810 virtual const Type *xmeet( const Type *t ) const; 811 virtual const Type *xdual() const; // Compute dual right now. 812 bool ary_must_be_exact() const; // true if arrays of such are never generic 813 virtual const TypeAry* remove_speculative() const; 814 virtual const Type* cleanup_speculative() const; 815 #ifndef PRODUCT 816 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 817 #endif 818 }; 819 820 //------------------------------TypeVect--------------------------------------- 821 // Class of Vector Types 822 class TypeVect : public Type { 823 const BasicType _elem_bt; // Vector's element type 824 const uint _length; // Elements in vector (power of 2) 825 826 protected: 827 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t), 828 _elem_bt(elem_bt), _length(length) {} 829 830 public: 831 BasicType element_basic_type() const { return _elem_bt; } 832 uint length() const { return _length; } 833 uint length_in_bytes() const { 834 return _length * type2aelembytes(element_basic_type()); 835 } 836 837 virtual bool eq(const Type* t) const; 838 virtual uint hash() const; // Type specific hashing 839 virtual bool singleton(void) const; // TRUE if type is a singleton 840 virtual bool empty(void) const; // TRUE if type is vacuous 841 842 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false); 843 static const TypeVect* makemask(const BasicType elem_bt, uint length); 844 845 virtual const Type* xmeet( const Type *t) const; 846 virtual const Type* xdual() const; // Compute dual right now. 847 848 static const TypeVect* VECTA; 849 static const TypeVect* VECTS; 850 static const TypeVect* VECTD; 851 static const TypeVect* VECTX; 852 static const TypeVect* VECTY; 853 static const TypeVect* VECTZ; 854 static const TypeVect* VECTMASK; 855 856 #ifndef PRODUCT 857 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping 858 #endif 859 }; 860 861 class TypeVectA : public TypeVect { 862 friend class TypeVect; 863 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {} 864 }; 865 866 class TypeVectS : public TypeVect { 867 friend class TypeVect; 868 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {} 869 }; 870 871 class TypeVectD : public TypeVect { 872 friend class TypeVect; 873 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {} 874 }; 875 876 class TypeVectX : public TypeVect { 877 friend class TypeVect; 878 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {} 879 }; 880 881 class TypeVectY : public TypeVect { 882 friend class TypeVect; 883 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {} 884 }; 885 886 class TypeVectZ : public TypeVect { 887 friend class TypeVect; 888 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {} 889 }; 890 891 class TypeVectMask : public TypeVect { 892 public: 893 friend class TypeVect; 894 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {} 895 static const TypeVectMask* make(const BasicType elem_bt, uint length); 896 }; 897 898 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr. 899 class TypeInterfaces : public Type { 900 private: 901 GrowableArrayFromArray<ciInstanceKlass*> _interfaces; 902 uint _hash; 903 ciInstanceKlass* _exact_klass; 904 DEBUG_ONLY(bool _initialized;) 905 906 void initialize(); 907 908 void verify() const NOT_DEBUG_RETURN; 909 void compute_hash(); 910 void compute_exact_klass(); 911 912 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces); 913 914 NONCOPYABLE(TypeInterfaces); 915 public: 916 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr); 917 bool eq(const Type* other) const; 918 bool eq(ciInstanceKlass* k) const; 919 uint hash() const; 920 const Type *xdual() const; 921 void dump(outputStream* st) const; 922 const TypeInterfaces* union_with(const TypeInterfaces* other) const; 923 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const; 924 bool contains(const TypeInterfaces* other) const { 925 return intersection_with(other)->eq(other); 926 } 927 bool empty() const { return _interfaces.length() == 0; } 928 929 ciInstanceKlass* exact_klass() const; 930 void verify_is_loaded() const NOT_DEBUG_RETURN; 931 932 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2); 933 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2); 934 935 const Type* xmeet(const Type* t) const; 936 937 bool singleton(void) const; 938 }; 939 940 //------------------------------TypePtr---------------------------------------- 941 // Class of machine Pointer Types: raw data, instances or arrays. 942 // If the _base enum is AnyPtr, then this refers to all of the above. 943 // Otherwise the _base will indicate which subset of pointers is affected, 944 // and the class will be inherited from. 945 class TypePtr : public Type { 946 friend class TypeNarrowPtr; 947 friend class Type; 948 protected: 949 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling); 950 951 public: 952 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; 953 protected: 954 TypePtr(TYPES t, PTR ptr, Offset offset, 955 const TypePtr* speculative = nullptr, 956 int inline_depth = InlineDepthBottom) : 957 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), 958 _ptr(ptr) {} 959 static const PTR ptr_meet[lastPTR][lastPTR]; 960 static const PTR ptr_dual[lastPTR]; 961 static const char * const ptr_msg[lastPTR]; 962 963 enum { 964 InlineDepthBottom = INT_MAX, 965 InlineDepthTop = -InlineDepthBottom 966 }; 967 968 // Extra type information profiling gave us. We propagate it the 969 // same way the rest of the type info is propagated. If we want to 970 // use it, then we have to emit a guard: this part of the type is 971 // not something we know but something we speculate about the type. 972 const TypePtr* _speculative; 973 // For speculative types, we record at what inlining depth the 974 // profiling point that provided the data is. We want to favor 975 // profile data coming from outer scopes which are likely better for 976 // the current compilation. 977 int _inline_depth; 978 979 // utility methods to work on the speculative part of the type 980 const TypePtr* dual_speculative() const; 981 const TypePtr* xmeet_speculative(const TypePtr* other) const; 982 bool eq_speculative(const TypePtr* other) const; 983 int hash_speculative() const; 984 const TypePtr* add_offset_speculative(intptr_t offset) const; 985 const TypePtr* with_offset_speculative(intptr_t offset) const; 986 #ifndef PRODUCT 987 void dump_speculative(outputStream *st) const; 988 #endif 989 990 // utility methods to work on the inline depth of the type 991 int dual_inline_depth() const; 992 int meet_inline_depth(int depth) const; 993 #ifndef PRODUCT 994 void dump_inline_depth(outputStream *st) const; 995 #endif 996 997 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic. 998 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for 999 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what 1000 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was 1001 // encountered so the right logic specific to klasses or oops can be executed., 1002 enum MeetResult { 1003 QUICK, 1004 UNLOADED, 1005 SUBTYPE, 1006 NOT_SUBTYPE, 1007 LCA 1008 }; 1009 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, 1010 const T* other_type, ciKlass*& res_klass, bool& res_xk, bool& res_flat_array); 1011 private: 1012 template<class T> static bool is_meet_subtype_of(const T* sub_type, const T* super_type); 1013 protected: 1014 1015 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 1016 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free); 1017 1018 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1019 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other); 1020 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1021 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1022 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other); 1023 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1024 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1025 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1026 public: 1027 const Offset _offset; // Offset into oop, with TOP & BOT 1028 const PTR _ptr; // Pointer equivalence class 1029 1030 int offset() const { return _offset.get(); } 1031 PTR ptr() const { return _ptr; } 1032 1033 static const TypePtr* make(TYPES t, PTR ptr, Offset offset, 1034 const TypePtr* speculative = nullptr, 1035 int inline_depth = InlineDepthBottom); 1036 1037 // Return a 'ptr' version of this type 1038 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; 1039 1040 virtual intptr_t get_con() const; 1041 1042 Type::Offset xadd_offset(intptr_t offset) const; 1043 virtual const TypePtr* add_offset(intptr_t offset) const; 1044 virtual const TypePtr* with_offset(intptr_t offset) const; 1045 virtual int flat_offset() const { return offset(); } 1046 virtual bool eq(const Type *t) const; 1047 virtual uint hash() const; // Type specific hashing 1048 1049 virtual bool singleton(void) const; // TRUE if type is a singleton 1050 virtual bool empty(void) const; // TRUE if type is vacuous 1051 virtual const Type *xmeet( const Type *t ) const; 1052 virtual const Type *xmeet_helper( const Type *t ) const; 1053 Offset meet_offset(int offset) const; 1054 Offset dual_offset() const; 1055 virtual const Type *xdual() const; // Compute dual right now. 1056 1057 // meet, dual and join over pointer equivalence sets 1058 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } 1059 PTR dual_ptr() const { return ptr_dual[ptr()]; } 1060 1061 // This is textually confusing unless one recalls that 1062 // join(t) == dual()->meet(t->dual())->dual(). 1063 PTR join_ptr( const PTR in_ptr ) const { 1064 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; 1065 } 1066 1067 // Speculative type helper methods. 1068 virtual const TypePtr* speculative() const { return _speculative; } 1069 int inline_depth() const { return _inline_depth; } 1070 virtual ciKlass* speculative_type() const; 1071 virtual ciKlass* speculative_type_not_null() const; 1072 virtual bool speculative_maybe_null() const; 1073 virtual bool speculative_always_null() const; 1074 virtual const TypePtr* remove_speculative() const; 1075 virtual const Type* cleanup_speculative() const; 1076 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1077 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; 1078 virtual const TypePtr* with_inline_depth(int depth) const; 1079 1080 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } 1081 1082 virtual bool can_be_inline_type() const { return false; } 1083 virtual bool flat_in_array() const { return false; } 1084 virtual bool not_flat_in_array() const { return true; } 1085 virtual bool is_flat() const { return false; } 1086 virtual bool is_not_flat() const { return false; } 1087 virtual bool is_null_free() const { return false; } 1088 virtual bool is_not_null_free() const { return false; } 1089 1090 // Tests for relation to centerline of type lattice: 1091 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } 1092 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } 1093 // Convenience common pre-built types. 1094 static const TypePtr *NULL_PTR; 1095 static const TypePtr *NOTNULL; 1096 static const TypePtr *BOTTOM; 1097 #ifndef PRODUCT 1098 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1099 #endif 1100 }; 1101 1102 //------------------------------TypeRawPtr------------------------------------- 1103 // Class of raw pointers, pointers to things other than Oops. Examples 1104 // include the stack pointer, top of heap, card-marking area, handles, etc. 1105 class TypeRawPtr : public TypePtr { 1106 protected: 1107 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){} 1108 public: 1109 virtual bool eq( const Type *t ) const; 1110 virtual uint hash() const; // Type specific hashing 1111 1112 const address _bits; // Constant value, if applicable 1113 1114 static const TypeRawPtr *make( PTR ptr ); 1115 static const TypeRawPtr *make( address bits ); 1116 1117 // Return a 'ptr' version of this type 1118 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const; 1119 1120 virtual intptr_t get_con() const; 1121 1122 virtual const TypePtr* add_offset(intptr_t offset) const; 1123 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;} 1124 1125 virtual const Type *xmeet( const Type *t ) const; 1126 virtual const Type *xdual() const; // Compute dual right now. 1127 // Convenience common pre-built types. 1128 static const TypeRawPtr *BOTTOM; 1129 static const TypeRawPtr *NOTNULL; 1130 #ifndef PRODUCT 1131 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1132 #endif 1133 }; 1134 1135 //------------------------------TypeOopPtr------------------------------------- 1136 // Some kind of oop (Java pointer), either instance or array. 1137 class TypeOopPtr : public TypePtr { 1138 friend class TypeAry; 1139 friend class TypePtr; 1140 friend class TypeInstPtr; 1141 friend class TypeAryPtr; 1142 protected: 1143 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id, 1144 const TypePtr* speculative, int inline_depth); 1145 public: 1146 virtual bool eq( const Type *t ) const; 1147 virtual uint hash() const; // Type specific hashing 1148 virtual bool singleton(void) const; // TRUE if type is a singleton 1149 enum { 1150 InstanceTop = -1, // undefined instance 1151 InstanceBot = 0 // any possible instance 1152 }; 1153 protected: 1154 1155 // Oop is null, unless this is a constant oop. 1156 ciObject* _const_oop; // Constant oop 1157 // If _klass is null, then so is _sig. This is an unloaded klass. 1158 ciKlass* _klass; // Klass object 1159 1160 const TypeInterfaces* _interfaces; 1161 1162 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) 1163 bool _klass_is_exact; 1164 bool _is_ptr_to_narrowoop; 1165 bool _is_ptr_to_narrowklass; 1166 bool _is_ptr_to_boxed_value; 1167 1168 // If not InstanceTop or InstanceBot, indicates that this is 1169 // a particular instance of this type which is distinct. 1170 // This is the node index of the allocation node creating this instance. 1171 int _instance_id; 1172 1173 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling); 1174 1175 int dual_instance_id() const; 1176 int meet_instance_id(int uid) const; 1177 1178 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const; 1179 1180 // Do not allow interface-vs.-noninterface joins to collapse to top. 1181 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1182 1183 virtual ciKlass* exact_klass_helper() const { return nullptr; } 1184 virtual ciKlass* klass() const { return _klass; } 1185 1186 public: 1187 1188 bool is_java_subtype_of(const TypeOopPtr* other) const { 1189 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1190 } 1191 1192 bool is_same_java_type_as(const TypePtr* other) const { 1193 return is_same_java_type_as_helper(other->is_oopptr()); 1194 } 1195 1196 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const { 1197 ShouldNotReachHere(); return false; 1198 } 1199 1200 bool maybe_java_subtype_of(const TypeOopPtr* other) const { 1201 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1202 } 1203 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1204 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1205 1206 1207 // Creates a type given a klass. Correctly handles multi-dimensional arrays 1208 // Respects UseUniqueSubclasses. 1209 // If the klass is final, the resulting type will be exact. 1210 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1211 return make_from_klass_common(klass, true, false, interface_handling); 1212 } 1213 // Same as before, but will produce an exact type, even if 1214 // the klass is not final, as long as it has exactly one implementation. 1215 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) { 1216 return make_from_klass_common(klass, true, true, interface_handling); 1217 } 1218 // Same as before, but does not respects UseUniqueSubclasses. 1219 // Use this only for creating array element types. 1220 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1221 return make_from_klass_common(klass, false, false, interface_handling); 1222 } 1223 // Creates a singleton type given an object. 1224 // If the object cannot be rendered as a constant, 1225 // may return a non-singleton type. 1226 // If require_constant, produce a null if a singleton is not possible. 1227 static const TypeOopPtr* make_from_constant(ciObject* o, 1228 bool require_constant = false); 1229 1230 // Make a generic (unclassed) pointer to an oop. 1231 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id, 1232 const TypePtr* speculative = nullptr, 1233 int inline_depth = InlineDepthBottom); 1234 1235 ciObject* const_oop() const { return _const_oop; } 1236 // Exact klass, possibly an interface or an array of interface 1237 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1238 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); } 1239 1240 virtual bool is_loaded() const { return klass()->is_loaded(); } 1241 virtual bool klass_is_exact() const { return _klass_is_exact; } 1242 1243 // Returns true if this pointer points at memory which contains a 1244 // compressed oop references. 1245 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } 1246 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } 1247 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } 1248 bool is_known_instance() const { return _instance_id > 0; } 1249 int instance_id() const { return _instance_id; } 1250 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; } 1251 1252 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); } 1253 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; } 1254 1255 virtual intptr_t get_con() const; 1256 1257 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const; 1258 1259 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const; 1260 1261 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; 1262 1263 // corresponding pointer to klass, for a given instance 1264 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1265 1266 virtual const TypeOopPtr* with_offset(intptr_t offset) const; 1267 virtual const TypePtr* add_offset(intptr_t offset) const; 1268 1269 // Speculative type helper methods. 1270 virtual const TypeOopPtr* remove_speculative() const; 1271 virtual const Type* cleanup_speculative() const; 1272 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1273 virtual const TypePtr* with_inline_depth(int depth) const; 1274 1275 virtual const TypePtr* with_instance_id(int instance_id) const; 1276 1277 virtual const Type *xdual() const; // Compute dual right now. 1278 // the core of the computation of the meet for TypeOopPtr and for its subclasses 1279 virtual const Type *xmeet_helper(const Type *t) const; 1280 1281 // Convenience common pre-built type. 1282 static const TypeOopPtr *BOTTOM; 1283 #ifndef PRODUCT 1284 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1285 #endif 1286 private: 1287 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1288 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact()); 1289 } 1290 1291 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const { 1292 ShouldNotReachHere(); return false; 1293 } 1294 1295 virtual const TypeInterfaces* interfaces() const { 1296 return _interfaces; 1297 }; 1298 1299 const TypeOopPtr* is_reference_type(const Type* other) const { 1300 return other->isa_oopptr(); 1301 } 1302 1303 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const { 1304 return other->isa_aryptr(); 1305 } 1306 1307 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const { 1308 return other->isa_instptr(); 1309 } 1310 }; 1311 1312 //------------------------------TypeInstPtr------------------------------------ 1313 // Class of Java object pointers, pointing either to non-array Java instances 1314 // or to a Klass* (including array klasses). 1315 class TypeInstPtr : public TypeOopPtr { 1316 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, 1317 bool flat_in_array, int instance_id, const TypePtr* speculative, 1318 int inline_depth); 1319 virtual bool eq( const Type *t ) const; 1320 virtual uint hash() const; // Type specific hashing 1321 bool _flat_in_array; // Type is flat in arrays 1322 ciKlass* exact_klass_helper() const; 1323 1324 public: 1325 1326 // Instance klass, ignoring any interface 1327 ciInstanceKlass* instance_klass() const { 1328 assert(!(klass()->is_loaded() && klass()->is_interface()), ""); 1329 return klass()->as_instance_klass(); 1330 } 1331 1332 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1333 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1334 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1335 1336 // Make a pointer to a constant oop. 1337 static const TypeInstPtr *make(ciObject* o) { 1338 ciKlass* k = o->klass(); 1339 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1340 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0)); 1341 } 1342 // Make a pointer to a constant oop with offset. 1343 static const TypeInstPtr *make(ciObject* o, Offset offset) { 1344 ciKlass* k = o->klass(); 1345 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1346 return make(TypePtr::Constant, k, interfaces, true, o, offset); 1347 } 1348 1349 // Make a pointer to some value of type klass. 1350 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1351 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 1352 return make(ptr, klass, interfaces, false, nullptr, Offset(0)); 1353 } 1354 1355 // Make a pointer to some non-polymorphic value of exactly type klass. 1356 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { 1357 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1358 return make(ptr, klass, interfaces, true, nullptr, Offset(0)); 1359 } 1360 1361 // Make a pointer to some value of type klass with offset. 1362 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) { 1363 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1364 return make(ptr, klass, interfaces, false, nullptr, offset); 1365 } 1366 1367 // Make a pointer to an oop. 1368 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, 1369 bool flat_in_array = false, 1370 int instance_id = InstanceBot, 1371 const TypePtr* speculative = nullptr, 1372 int inline_depth = InlineDepthBottom); 1373 1374 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) { 1375 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1376 return make(ptr, k, interfaces, xk, o, offset, false, instance_id); 1377 } 1378 1379 /** Create constant type for a constant boxed value */ 1380 const Type* get_const_boxed_value() const; 1381 1382 // If this is a java.lang.Class constant, return the type for it or null. 1383 // Pass to Type::get_const_type to turn it to a type, which will usually 1384 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. 1385 ciType* java_mirror_type(bool* is_null_free_array = nullptr) const; 1386 1387 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const; 1388 1389 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const; 1390 1391 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const; 1392 1393 virtual const TypePtr* add_offset(intptr_t offset) const; 1394 virtual const TypeInstPtr* with_offset(intptr_t offset) const; 1395 1396 // Speculative type helper methods. 1397 virtual const TypeInstPtr* remove_speculative() const; 1398 const TypeInstPtr* with_speculative(const TypePtr* speculative) const; 1399 virtual const TypePtr* with_inline_depth(int depth) const; 1400 virtual const TypePtr* with_instance_id(int instance_id) const; 1401 1402 virtual const TypeInstPtr* cast_to_flat_in_array() const; 1403 virtual bool flat_in_array() const { return _flat_in_array; } 1404 virtual bool not_flat_in_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flat_in_array()); } 1405 1406 // the core of the computation of the meet of 2 types 1407 virtual const Type *xmeet_helper(const Type *t) const; 1408 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const; 1409 virtual const Type *xdual() const; // Compute dual right now. 1410 1411 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1412 1413 virtual bool can_be_inline_array() const; 1414 1415 // Convenience common pre-built types. 1416 static const TypeInstPtr *NOTNULL; 1417 static const TypeInstPtr *BOTTOM; 1418 static const TypeInstPtr *MIRROR; 1419 static const TypeInstPtr *MARK; 1420 static const TypeInstPtr *KLASS; 1421 #ifndef PRODUCT 1422 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1423 #endif 1424 1425 private: 1426 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1427 1428 virtual bool is_meet_same_type_as(const TypePtr* other) const { 1429 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces); 1430 } 1431 1432 }; 1433 1434 //------------------------------TypeAryPtr------------------------------------- 1435 // Class of Java array pointers 1436 class TypeAryPtr : public TypeOopPtr { 1437 friend class Type; 1438 friend class TypePtr; 1439 friend class TypeInstPtr; 1440 1441 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, 1442 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache, 1443 const TypePtr* speculative, int inline_depth) 1444 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth), 1445 _ary(ary), 1446 _is_autobox_cache(is_autobox_cache), 1447 _field_offset(field_offset) 1448 { 1449 int dummy; 1450 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM); 1451 1452 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) && 1453 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() && 1454 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) { 1455 _is_ptr_to_narrowoop = true; 1456 } 1457 1458 } 1459 virtual bool eq( const Type *t ) const; 1460 virtual uint hash() const; // Type specific hashing 1461 const TypeAry *_ary; // Array we point into 1462 const bool _is_autobox_cache; 1463 // For flat inline type arrays, each field of the inline type in 1464 // the array has its own memory slice so we need to keep track of 1465 // which field is accessed 1466 const Offset _field_offset; 1467 Offset meet_field_offset(const Type::Offset offset) const; 1468 Offset dual_field_offset() const; 1469 1470 ciKlass* compute_klass() const; 1471 1472 // A pointer to delay allocation to Type::Initialize_shared() 1473 1474 static const TypeInterfaces* _array_interfaces; 1475 ciKlass* exact_klass_helper() const; 1476 // Only guaranteed non null for array of basic types 1477 ciKlass* klass() const; 1478 1479 public: 1480 1481 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1482 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1483 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1484 1485 // returns base element type, an instance klass (and not interface) for object arrays 1486 const Type* base_element_type(int& dims) const; 1487 1488 // Accessors 1489 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); } 1490 1491 const TypeAry* ary() const { return _ary; } 1492 const Type* elem() const { return _ary->_elem; } 1493 const TypeInt* size() const { return _ary->_size; } 1494 bool is_stable() const { return _ary->_stable; } 1495 1496 // Inline type array properties 1497 bool is_flat() const { return _ary->_flat; } 1498 bool is_not_flat() const { return _ary->_not_flat; } 1499 bool is_null_free() const { return is_flat() || (_ary->_elem->make_ptr() != nullptr && _ary->_elem->make_ptr()->is_inlinetypeptr() && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull)); } 1500 bool is_not_null_free() const { return _ary->_not_null_free; } 1501 1502 bool is_autobox_cache() const { return _is_autobox_cache; } 1503 1504 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, 1505 Offset field_offset = Offset::bottom, 1506 int instance_id = InstanceBot, 1507 const TypePtr* speculative = nullptr, 1508 int inline_depth = InlineDepthBottom); 1509 // Constant pointer to array 1510 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, 1511 Offset field_offset = Offset::bottom, 1512 int instance_id = InstanceBot, 1513 const TypePtr* speculative = nullptr, 1514 int inline_depth = InlineDepthBottom, 1515 bool is_autobox_cache = false); 1516 1517 // Return a 'ptr' version of this type 1518 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const; 1519 1520 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const; 1521 1522 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const; 1523 1524 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; 1525 virtual const TypeInt* narrow_size_type(const TypeInt* size) const; 1526 1527 virtual bool empty(void) const; // TRUE if type is vacuous 1528 virtual const TypePtr *add_offset( intptr_t offset ) const; 1529 virtual const TypeAryPtr *with_offset( intptr_t offset ) const; 1530 const TypeAryPtr* with_ary(const TypeAry* ary) const; 1531 1532 // Speculative type helper methods. 1533 virtual const TypeAryPtr* remove_speculative() const; 1534 virtual const Type* cleanup_speculative() const; 1535 virtual const TypePtr* with_inline_depth(int depth) const; 1536 virtual const TypePtr* with_instance_id(int instance_id) const; 1537 1538 // the core of the computation of the meet of 2 types 1539 virtual const Type *xmeet_helper(const Type *t) const; 1540 virtual const Type *xdual() const; // Compute dual right now. 1541 1542 // Inline type array properties 1543 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const; 1544 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const; 1545 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const; 1546 jint flat_layout_helper() const; 1547 int flat_elem_size() const; 1548 int flat_log_elem_size() const; 1549 1550 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; 1551 int stable_dimension() const; 1552 1553 const TypeAryPtr* cast_to_autobox_cache() const; 1554 1555 static jint max_array_length(BasicType etype); 1556 1557 int flat_offset() const; 1558 const Offset field_offset() const { return _field_offset; } 1559 const TypeAryPtr* with_field_offset(int offset) const; 1560 const TypePtr* add_field_offset_and_offset(intptr_t offset) const; 1561 1562 virtual bool can_be_inline_type() const { return false; } 1563 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1564 1565 virtual bool can_be_inline_array() const; 1566 1567 // Convenience common pre-built types. 1568 static const TypeAryPtr *RANGE; 1569 static const TypeAryPtr *OOPS; 1570 static const TypeAryPtr *NARROWOOPS; 1571 static const TypeAryPtr *BYTES; 1572 static const TypeAryPtr *SHORTS; 1573 static const TypeAryPtr *CHARS; 1574 static const TypeAryPtr *INTS; 1575 static const TypeAryPtr *LONGS; 1576 static const TypeAryPtr *FLOATS; 1577 static const TypeAryPtr *DOUBLES; 1578 static const TypeAryPtr *INLINES; 1579 // selects one of the above: 1580 static const TypeAryPtr *get_array_body_type(BasicType elem) { 1581 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type"); 1582 return _array_body_type[elem]; 1583 } 1584 static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; 1585 // sharpen the type of an int which is used as an array size 1586 #ifndef PRODUCT 1587 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1588 #endif 1589 private: 1590 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1591 }; 1592 1593 //------------------------------TypeMetadataPtr------------------------------------- 1594 // Some kind of metadata, either Method*, MethodData* or CPCacheOop 1595 class TypeMetadataPtr : public TypePtr { 1596 protected: 1597 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset); 1598 // Do not allow interface-vs.-noninterface joins to collapse to top. 1599 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1600 public: 1601 virtual bool eq( const Type *t ) const; 1602 virtual uint hash() const; // Type specific hashing 1603 virtual bool singleton(void) const; // TRUE if type is a singleton 1604 1605 private: 1606 ciMetadata* _metadata; 1607 1608 public: 1609 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset); 1610 1611 static const TypeMetadataPtr* make(ciMethod* m); 1612 static const TypeMetadataPtr* make(ciMethodData* m); 1613 1614 ciMetadata* metadata() const { return _metadata; } 1615 1616 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const; 1617 1618 virtual const TypePtr *add_offset( intptr_t offset ) const; 1619 1620 virtual const Type *xmeet( const Type *t ) const; 1621 virtual const Type *xdual() const; // Compute dual right now. 1622 1623 virtual intptr_t get_con() const; 1624 1625 // Convenience common pre-built types. 1626 static const TypeMetadataPtr *BOTTOM; 1627 1628 #ifndef PRODUCT 1629 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1630 #endif 1631 }; 1632 1633 //------------------------------TypeKlassPtr----------------------------------- 1634 // Class of Java Klass pointers 1635 class TypeKlassPtr : public TypePtr { 1636 friend class TypeInstKlassPtr; 1637 friend class TypeAryKlassPtr; 1638 friend class TypePtr; 1639 protected: 1640 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset); 1641 1642 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1643 1644 public: 1645 virtual bool eq( const Type *t ) const; 1646 virtual uint hash() const; 1647 virtual bool singleton(void) const; // TRUE if type is a singleton 1648 1649 protected: 1650 1651 ciKlass* _klass; 1652 const TypeInterfaces* _interfaces; 1653 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const; 1654 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; } 1655 virtual ciKlass* exact_klass_helper() const; 1656 virtual ciKlass* klass() const { return _klass; } 1657 1658 public: 1659 1660 bool is_java_subtype_of(const TypeKlassPtr* other) const { 1661 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1662 } 1663 bool is_same_java_type_as(const TypePtr* other) const { 1664 return is_same_java_type_as_helper(other->is_klassptr()); 1665 } 1666 1667 bool maybe_java_subtype_of(const TypeKlassPtr* other) const { 1668 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1669 } 1670 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; } 1671 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1672 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1673 1674 // Exact klass, possibly an interface or an array of interface 1675 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1676 virtual bool klass_is_exact() const { return _ptr == Constant; } 1677 1678 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces); 1679 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces); 1680 1681 virtual bool is_loaded() const { return _klass->is_loaded(); } 1682 1683 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; } 1684 1685 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; } 1686 1687 // corresponding pointer to instance, for a given class 1688 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; } 1689 1690 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; } 1691 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; } 1692 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; } 1693 1694 virtual intptr_t get_con() const; 1695 1696 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; } 1697 1698 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; } 1699 virtual const TypeKlassPtr* try_improve() const { return this; } 1700 1701 #ifndef PRODUCT 1702 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1703 #endif 1704 private: 1705 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1706 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact()); 1707 } 1708 1709 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const { 1710 ShouldNotReachHere(); return false; 1711 } 1712 1713 virtual const TypeInterfaces* interfaces() const { 1714 return _interfaces; 1715 }; 1716 1717 const TypeKlassPtr* is_reference_type(const Type* other) const { 1718 return other->isa_klassptr(); 1719 } 1720 1721 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const { 1722 return other->isa_aryklassptr(); 1723 } 1724 1725 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const { 1726 return other->isa_instklassptr(); 1727 } 1728 }; 1729 1730 // Instance klass pointer, mirrors TypeInstPtr 1731 class TypeInstKlassPtr : public TypeKlassPtr { 1732 1733 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array) 1734 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) { 1735 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), ""); 1736 } 1737 1738 virtual bool must_be_exact() const; 1739 1740 const bool _flat_in_array; // Type is flat in arrays 1741 1742 public: 1743 // Instance klass ignoring any interface 1744 ciInstanceKlass* instance_klass() const { 1745 assert(!klass()->is_interface(), ""); 1746 return klass()->as_instance_klass(); 1747 } 1748 1749 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1750 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1751 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1752 1753 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); } 1754 1755 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) { 1756 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling); 1757 return make(TypePtr::Constant, k, interfaces, Offset(0)); 1758 } 1759 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array = false); 1760 1761 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) { 1762 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1763 return make(ptr, k, interfaces, offset); 1764 } 1765 1766 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const; 1767 1768 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1769 1770 // corresponding pointer to instance, for a given class 1771 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1772 virtual uint hash() const; 1773 virtual bool eq(const Type *t) const; 1774 1775 virtual const TypePtr *add_offset( intptr_t offset ) const; 1776 virtual const Type *xmeet( const Type *t ) const; 1777 virtual const Type *xdual() const; 1778 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const; 1779 1780 virtual const TypeKlassPtr* try_improve() const; 1781 1782 virtual bool flat_in_array() const { return _flat_in_array; } 1783 virtual bool not_flat_in_array() const { return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flat_in_array()); } 1784 1785 virtual bool can_be_inline_array() const; 1786 1787 // Convenience common pre-built types. 1788 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below 1789 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same 1790 private: 1791 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1792 }; 1793 1794 // Array klass pointer, mirrors TypeAryPtr 1795 class TypeAryKlassPtr : public TypeKlassPtr { 1796 friend class TypeInstKlassPtr; 1797 friend class Type; 1798 friend class TypePtr; 1799 1800 const Type *_elem; 1801 const bool _not_flat; // Array is never flat 1802 const bool _not_null_free; // Array is never null-free 1803 const bool _null_free; 1804 1805 static const TypeInterfaces* _array_interfaces; 1806 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool null_free) 1807 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _null_free(null_free) { 1808 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), ""); 1809 } 1810 1811 virtual ciKlass* exact_klass_helper() const; 1812 // Only guaranteed non null for array of basic types 1813 virtual ciKlass* klass() const; 1814 1815 virtual bool must_be_exact() const; 1816 1817 bool dual_null_free() const { 1818 return _null_free; 1819 } 1820 1821 bool meet_null_free(bool other) const { 1822 return _null_free && other; 1823 } 1824 1825 public: 1826 1827 // returns base element type, an instance klass (and not interface) for object arrays 1828 const Type* base_element_type(int& dims) const; 1829 1830 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free); 1831 1832 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1833 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1834 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1835 1836 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); } 1837 1838 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free); 1839 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling); 1840 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling); 1841 1842 const Type *elem() const { return _elem; } 1843 1844 virtual bool eq(const Type *t) const; 1845 virtual uint hash() const; // Type specific hashing 1846 1847 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const; 1848 1849 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1850 1851 const TypeAryKlassPtr* cast_to_null_free() const; 1852 1853 // corresponding pointer to instance, for a given class 1854 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1855 1856 virtual const TypePtr *add_offset( intptr_t offset ) const; 1857 virtual const Type *xmeet( const Type *t ) const; 1858 virtual const Type *xdual() const; // Compute dual right now. 1859 1860 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const; 1861 1862 virtual bool empty(void) const { 1863 return TypeKlassPtr::empty() || _elem->empty(); 1864 } 1865 1866 bool is_flat() const { return klass() != nullptr && klass()->is_flat_array_klass(); } 1867 bool is_not_flat() const { return _not_flat; } 1868 bool is_null_free() const { return _null_free; } 1869 bool is_not_null_free() const { return _not_null_free; } 1870 virtual bool can_be_inline_array() const; 1871 1872 #ifndef PRODUCT 1873 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1874 #endif 1875 private: 1876 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1877 }; 1878 1879 class TypeNarrowPtr : public Type { 1880 protected: 1881 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR 1882 1883 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), 1884 _ptrtype(ptrtype) { 1885 assert(ptrtype->offset() == 0 || 1886 ptrtype->offset() == OffsetBot || 1887 ptrtype->offset() == OffsetTop, "no real offsets"); 1888 } 1889 1890 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; 1891 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; 1892 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; 1893 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; 1894 // Do not allow interface-vs.-noninterface joins to collapse to top. 1895 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1896 public: 1897 virtual bool eq( const Type *t ) const; 1898 virtual uint hash() const; // Type specific hashing 1899 virtual bool singleton(void) const; // TRUE if type is a singleton 1900 1901 virtual const Type *xmeet( const Type *t ) const; 1902 virtual const Type *xdual() const; // Compute dual right now. 1903 1904 virtual intptr_t get_con() const; 1905 1906 virtual bool empty(void) const; // TRUE if type is vacuous 1907 1908 // returns the equivalent ptr type for this compressed pointer 1909 const TypePtr *get_ptrtype() const { 1910 return _ptrtype; 1911 } 1912 1913 bool is_known_instance() const { 1914 return _ptrtype->is_known_instance(); 1915 } 1916 1917 #ifndef PRODUCT 1918 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1919 #endif 1920 }; 1921 1922 //------------------------------TypeNarrowOop---------------------------------- 1923 // A compressed reference to some kind of Oop. This type wraps around 1924 // a preexisting TypeOopPtr and forwards most of it's operations to 1925 // the underlying type. It's only real purpose is to track the 1926 // oopness of the compressed oop value when we expose the conversion 1927 // between the normal and the compressed form. 1928 class TypeNarrowOop : public TypeNarrowPtr { 1929 protected: 1930 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { 1931 } 1932 1933 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1934 return t->isa_narrowoop(); 1935 } 1936 1937 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1938 return t->is_narrowoop(); 1939 } 1940 1941 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1942 return new TypeNarrowOop(t); 1943 } 1944 1945 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1946 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); 1947 } 1948 1949 public: 1950 1951 static const TypeNarrowOop *make( const TypePtr* type); 1952 1953 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { 1954 return make(TypeOopPtr::make_from_constant(con, require_constant)); 1955 } 1956 1957 static const TypeNarrowOop *BOTTOM; 1958 static const TypeNarrowOop *NULL_PTR; 1959 1960 virtual const TypeNarrowOop* remove_speculative() const; 1961 virtual const Type* cleanup_speculative() const; 1962 1963 #ifndef PRODUCT 1964 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1965 #endif 1966 }; 1967 1968 //------------------------------TypeNarrowKlass---------------------------------- 1969 // A compressed reference to klass pointer. This type wraps around a 1970 // preexisting TypeKlassPtr and forwards most of it's operations to 1971 // the underlying type. 1972 class TypeNarrowKlass : public TypeNarrowPtr { 1973 protected: 1974 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { 1975 } 1976 1977 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1978 return t->isa_narrowklass(); 1979 } 1980 1981 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1982 return t->is_narrowklass(); 1983 } 1984 1985 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1986 return new TypeNarrowKlass(t); 1987 } 1988 1989 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1990 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); 1991 } 1992 1993 public: 1994 static const TypeNarrowKlass *make( const TypePtr* type); 1995 1996 // static const TypeNarrowKlass *BOTTOM; 1997 static const TypeNarrowKlass *NULL_PTR; 1998 1999 #ifndef PRODUCT 2000 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 2001 #endif 2002 }; 2003 2004 //------------------------------TypeFunc--------------------------------------- 2005 // Class of Array Types 2006 class TypeFunc : public Type { 2007 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc) 2008 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {} 2009 virtual bool eq( const Type *t ) const; 2010 virtual uint hash() const; // Type specific hashing 2011 virtual bool singleton(void) const; // TRUE if type is a singleton 2012 virtual bool empty(void) const; // TRUE if type is vacuous 2013 2014 // Domains of inputs: inline type arguments are not passed by 2015 // reference, instead each field of the inline type is passed as an 2016 // argument. We maintain 2 views of the argument list here: one 2017 // based on the signature (with an inline type argument as a single 2018 // slot), one based on the actual calling convention (with a value 2019 // type argument as a list of its fields). 2020 const TypeTuple* const _domain_sig; 2021 const TypeTuple* const _domain_cc; 2022 // Range of results. Similar to domains: an inline type result can be 2023 // returned in registers in which case range_cc lists all fields and 2024 // is the actual calling convention. 2025 const TypeTuple* const _range_sig; 2026 const TypeTuple* const _range_cc; 2027 2028 public: 2029 // Constants are shared among ADLC and VM 2030 enum { Control = AdlcVMDeps::Control, 2031 I_O = AdlcVMDeps::I_O, 2032 Memory = AdlcVMDeps::Memory, 2033 FramePtr = AdlcVMDeps::FramePtr, 2034 ReturnAdr = AdlcVMDeps::ReturnAdr, 2035 Parms = AdlcVMDeps::Parms 2036 }; 2037 2038 2039 // Accessors: 2040 const TypeTuple* domain_sig() const { return _domain_sig; } 2041 const TypeTuple* domain_cc() const { return _domain_cc; } 2042 const TypeTuple* range_sig() const { return _range_sig; } 2043 const TypeTuple* range_cc() const { return _range_cc; } 2044 2045 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false); 2046 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc, 2047 const TypeTuple* range_sig, const TypeTuple* range_cc); 2048 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); 2049 2050 virtual const Type *xmeet( const Type *t ) const; 2051 virtual const Type *xdual() const; // Compute dual right now. 2052 2053 BasicType return_type() const; 2054 2055 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); } 2056 2057 #ifndef PRODUCT 2058 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 2059 #endif 2060 // Convenience common pre-built types. 2061 }; 2062 2063 //------------------------------accessors-------------------------------------- 2064 inline bool Type::is_ptr_to_narrowoop() const { 2065 #ifdef _LP64 2066 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv()); 2067 #else 2068 return false; 2069 #endif 2070 } 2071 2072 inline bool Type::is_ptr_to_narrowklass() const { 2073 #ifdef _LP64 2074 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv()); 2075 #else 2076 return false; 2077 #endif 2078 } 2079 2080 inline float Type::getf() const { 2081 assert( _base == FloatCon, "Not a FloatCon" ); 2082 return ((TypeF*)this)->_f; 2083 } 2084 2085 inline double Type::getd() const { 2086 assert( _base == DoubleCon, "Not a DoubleCon" ); 2087 return ((TypeD*)this)->_d; 2088 } 2089 2090 inline const TypeInteger *Type::is_integer(BasicType bt) const { 2091 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int"); 2092 return (TypeInteger*)this; 2093 } 2094 2095 inline const TypeInteger *Type::isa_integer(BasicType bt) const { 2096 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr); 2097 } 2098 2099 inline const TypeInt *Type::is_int() const { 2100 assert( _base == Int, "Not an Int" ); 2101 return (TypeInt*)this; 2102 } 2103 2104 inline const TypeInt *Type::isa_int() const { 2105 return ( _base == Int ? (TypeInt*)this : nullptr); 2106 } 2107 2108 inline const TypeLong *Type::is_long() const { 2109 assert( _base == Long, "Not a Long" ); 2110 return (TypeLong*)this; 2111 } 2112 2113 inline const TypeLong *Type::isa_long() const { 2114 return ( _base == Long ? (TypeLong*)this : nullptr); 2115 } 2116 2117 inline const TypeF *Type::isa_float() const { 2118 return ((_base == FloatTop || 2119 _base == FloatCon || 2120 _base == FloatBot) ? (TypeF*)this : nullptr); 2121 } 2122 2123 inline const TypeF *Type::is_float_constant() const { 2124 assert( _base == FloatCon, "Not a Float" ); 2125 return (TypeF*)this; 2126 } 2127 2128 inline const TypeF *Type::isa_float_constant() const { 2129 return ( _base == FloatCon ? (TypeF*)this : nullptr); 2130 } 2131 2132 inline const TypeD *Type::isa_double() const { 2133 return ((_base == DoubleTop || 2134 _base == DoubleCon || 2135 _base == DoubleBot) ? (TypeD*)this : nullptr); 2136 } 2137 2138 inline const TypeD *Type::is_double_constant() const { 2139 assert( _base == DoubleCon, "Not a Double" ); 2140 return (TypeD*)this; 2141 } 2142 2143 inline const TypeD *Type::isa_double_constant() const { 2144 return ( _base == DoubleCon ? (TypeD*)this : nullptr); 2145 } 2146 2147 inline const TypeTuple *Type::is_tuple() const { 2148 assert( _base == Tuple, "Not a Tuple" ); 2149 return (TypeTuple*)this; 2150 } 2151 2152 inline const TypeAry *Type::is_ary() const { 2153 assert( _base == Array , "Not an Array" ); 2154 return (TypeAry*)this; 2155 } 2156 2157 inline const TypeAry *Type::isa_ary() const { 2158 return ((_base == Array) ? (TypeAry*)this : nullptr); 2159 } 2160 2161 inline const TypeVectMask *Type::is_vectmask() const { 2162 assert( _base == VectorMask, "Not a Vector Mask" ); 2163 return (TypeVectMask*)this; 2164 } 2165 2166 inline const TypeVectMask *Type::isa_vectmask() const { 2167 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr; 2168 } 2169 2170 inline const TypeVect *Type::is_vect() const { 2171 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" ); 2172 return (TypeVect*)this; 2173 } 2174 2175 inline const TypeVect *Type::isa_vect() const { 2176 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr; 2177 } 2178 2179 inline const TypePtr *Type::is_ptr() const { 2180 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2181 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer"); 2182 return (TypePtr*)this; 2183 } 2184 2185 inline const TypePtr *Type::isa_ptr() const { 2186 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2187 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr; 2188 } 2189 2190 inline const TypeOopPtr *Type::is_oopptr() const { 2191 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2192 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ; 2193 return (TypeOopPtr*)this; 2194 } 2195 2196 inline const TypeOopPtr *Type::isa_oopptr() const { 2197 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2198 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr; 2199 } 2200 2201 inline const TypeRawPtr *Type::isa_rawptr() const { 2202 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr; 2203 } 2204 2205 inline const TypeRawPtr *Type::is_rawptr() const { 2206 assert( _base == RawPtr, "Not a raw pointer" ); 2207 return (TypeRawPtr*)this; 2208 } 2209 2210 inline const TypeInstPtr *Type::isa_instptr() const { 2211 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr; 2212 } 2213 2214 inline const TypeInstPtr *Type::is_instptr() const { 2215 assert( _base == InstPtr, "Not an object pointer" ); 2216 return (TypeInstPtr*)this; 2217 } 2218 2219 inline const TypeAryPtr *Type::isa_aryptr() const { 2220 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr; 2221 } 2222 2223 inline const TypeAryPtr *Type::is_aryptr() const { 2224 assert( _base == AryPtr, "Not an array pointer" ); 2225 return (TypeAryPtr*)this; 2226 } 2227 2228 inline const TypeNarrowOop *Type::is_narrowoop() const { 2229 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2230 assert(_base == NarrowOop, "Not a narrow oop" ) ; 2231 return (TypeNarrowOop*)this; 2232 } 2233 2234 inline const TypeNarrowOop *Type::isa_narrowoop() const { 2235 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2236 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr; 2237 } 2238 2239 inline const TypeNarrowKlass *Type::is_narrowklass() const { 2240 assert(_base == NarrowKlass, "Not a narrow oop" ) ; 2241 return (TypeNarrowKlass*)this; 2242 } 2243 2244 inline const TypeNarrowKlass *Type::isa_narrowklass() const { 2245 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr; 2246 } 2247 2248 inline const TypeMetadataPtr *Type::is_metadataptr() const { 2249 // MetadataPtr is the first and CPCachePtr the last 2250 assert(_base == MetadataPtr, "Not a metadata pointer" ) ; 2251 return (TypeMetadataPtr*)this; 2252 } 2253 2254 inline const TypeMetadataPtr *Type::isa_metadataptr() const { 2255 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr; 2256 } 2257 2258 inline const TypeKlassPtr *Type::isa_klassptr() const { 2259 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr; 2260 } 2261 2262 inline const TypeKlassPtr *Type::is_klassptr() const { 2263 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer"); 2264 return (TypeKlassPtr*)this; 2265 } 2266 2267 inline const TypeInstKlassPtr *Type::isa_instklassptr() const { 2268 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr; 2269 } 2270 2271 inline const TypeInstKlassPtr *Type::is_instklassptr() const { 2272 assert(_base == InstKlassPtr, "Not a klass pointer"); 2273 return (TypeInstKlassPtr*)this; 2274 } 2275 2276 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const { 2277 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr; 2278 } 2279 2280 inline const TypeAryKlassPtr *Type::is_aryklassptr() const { 2281 assert(_base == AryKlassPtr, "Not a klass pointer"); 2282 return (TypeAryKlassPtr*)this; 2283 } 2284 2285 inline const TypePtr* Type::make_ptr() const { 2286 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : 2287 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : 2288 isa_ptr()); 2289 } 2290 2291 inline const TypeOopPtr* Type::make_oopptr() const { 2292 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); 2293 } 2294 2295 inline const TypeNarrowOop* Type::make_narrowoop() const { 2296 return (_base == NarrowOop) ? is_narrowoop() : 2297 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr); 2298 } 2299 2300 inline const TypeNarrowKlass* Type::make_narrowklass() const { 2301 return (_base == NarrowKlass) ? is_narrowklass() : 2302 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr); 2303 } 2304 2305 inline bool Type::is_floatingpoint() const { 2306 if( (_base == FloatCon) || (_base == FloatBot) || 2307 (_base == DoubleCon) || (_base == DoubleBot) ) 2308 return true; 2309 return false; 2310 } 2311 2312 inline bool Type::is_inlinetypeptr() const { 2313 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype(); 2314 } 2315 2316 inline ciInlineKlass* Type::inline_klass() const { 2317 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass(); 2318 } 2319 2320 2321 // =============================================================== 2322 // Things that need to be 64-bits in the 64-bit build but 2323 // 32-bits in the 32-bit build. Done this way to get full 2324 // optimization AND strong typing. 2325 #ifdef _LP64 2326 2327 // For type queries and asserts 2328 #define is_intptr_t is_long 2329 #define isa_intptr_t isa_long 2330 #define find_intptr_t_type find_long_type 2331 #define find_intptr_t_con find_long_con 2332 #define TypeX TypeLong 2333 #define Type_X Type::Long 2334 #define TypeX_X TypeLong::LONG 2335 #define TypeX_ZERO TypeLong::ZERO 2336 // For 'ideal_reg' machine registers 2337 #define Op_RegX Op_RegL 2338 // For phase->intcon variants 2339 #define MakeConX longcon 2340 #define ConXNode ConLNode 2341 // For array index arithmetic 2342 #define MulXNode MulLNode 2343 #define AndXNode AndLNode 2344 #define OrXNode OrLNode 2345 #define CmpXNode CmpLNode 2346 #define CmpUXNode CmpULNode 2347 #define SubXNode SubLNode 2348 #define LShiftXNode LShiftLNode 2349 // For object size computation: 2350 #define AddXNode AddLNode 2351 #define RShiftXNode RShiftLNode 2352 // For card marks and hashcodes 2353 #define URShiftXNode URShiftLNode 2354 // For shenandoahSupport 2355 #define LoadXNode LoadLNode 2356 #define StoreXNode StoreLNode 2357 // Opcodes 2358 #define Op_LShiftX Op_LShiftL 2359 #define Op_AndX Op_AndL 2360 #define Op_AddX Op_AddL 2361 #define Op_SubX Op_SubL 2362 #define Op_XorX Op_XorL 2363 #define Op_URShiftX Op_URShiftL 2364 #define Op_LoadX Op_LoadL 2365 #define Op_StoreX Op_StoreL 2366 // conversions 2367 #define ConvI2X(x) ConvI2L(x) 2368 #define ConvL2X(x) (x) 2369 #define ConvX2I(x) ConvL2I(x) 2370 #define ConvX2L(x) (x) 2371 #define ConvX2UL(x) (x) 2372 2373 #else 2374 2375 // For type queries and asserts 2376 #define is_intptr_t is_int 2377 #define isa_intptr_t isa_int 2378 #define find_intptr_t_type find_int_type 2379 #define find_intptr_t_con find_int_con 2380 #define TypeX TypeInt 2381 #define Type_X Type::Int 2382 #define TypeX_X TypeInt::INT 2383 #define TypeX_ZERO TypeInt::ZERO 2384 // For 'ideal_reg' machine registers 2385 #define Op_RegX Op_RegI 2386 // For phase->intcon variants 2387 #define MakeConX intcon 2388 #define ConXNode ConINode 2389 // For array index arithmetic 2390 #define MulXNode MulINode 2391 #define AndXNode AndINode 2392 #define OrXNode OrINode 2393 #define CmpXNode CmpINode 2394 #define CmpUXNode CmpUNode 2395 #define SubXNode SubINode 2396 #define LShiftXNode LShiftINode 2397 // For object size computation: 2398 #define AddXNode AddINode 2399 #define RShiftXNode RShiftINode 2400 // For card marks and hashcodes 2401 #define URShiftXNode URShiftINode 2402 // For shenandoahSupport 2403 #define LoadXNode LoadINode 2404 #define StoreXNode StoreINode 2405 // Opcodes 2406 #define Op_LShiftX Op_LShiftI 2407 #define Op_AndX Op_AndI 2408 #define Op_AddX Op_AddI 2409 #define Op_SubX Op_SubI 2410 #define Op_XorX Op_XorI 2411 #define Op_URShiftX Op_URShiftI 2412 #define Op_LoadX Op_LoadI 2413 #define Op_StoreX Op_StoreI 2414 // conversions 2415 #define ConvI2X(x) (x) 2416 #define ConvL2X(x) ConvL2I(x) 2417 #define ConvX2I(x) (x) 2418 #define ConvX2L(x) ConvI2L(x) 2419 #define ConvX2UL(x) ConvI2UL(x) 2420 2421 #endif 2422 2423 #endif // SHARE_OPTO_TYPE_HPP