1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeInteger;
  51 class     TypeInt;
  52 class     TypeLong;
  53 class   TypeNarrowPtr;
  54 class     TypeNarrowOop;
  55 class     TypeNarrowKlass;
  56 class   TypeAry;
  57 class   TypeTuple;
  58 class   TypeVect;
  59 class     TypeVectA;
  60 class     TypeVectS;
  61 class     TypeVectD;
  62 class     TypeVectX;
  63 class     TypeVectY;
  64 class     TypeVectZ;
  65 class     TypeVectMask;
  66 class   TypePtr;
  67 class     TypeRawPtr;
  68 class     TypeOopPtr;
  69 class       TypeInstPtr;
  70 class       TypeAryPtr;
  71 class     TypeKlassPtr;
  72 class       TypeInstKlassPtr;
  73 class       TypeAryKlassPtr;
  74 class     TypeMetadataPtr;
  75 class VerifyMeet;
  76 
  77 //------------------------------Type-------------------------------------------
  78 // Basic Type object, represents a set of primitive Values.
  79 // Types are hash-cons'd into a private class dictionary, so only one of each
  80 // different kind of Type exists.  Types are never modified after creation, so
  81 // all their interesting fields are constant.
  82 class Type {
  83   friend class VMStructs;
  84 
  85 public:
  86   enum TYPES {
  87     Bad=0,                      // Type check
  88     Control,                    // Control of code (not in lattice)
  89     Top,                        // Top of the lattice
  90     Int,                        // Integer range (lo-hi)
  91     Long,                       // Long integer range (lo-hi)
  92     Half,                       // Placeholder half of doubleword
  93     NarrowOop,                  // Compressed oop pointer
  94     NarrowKlass,                // Compressed klass pointer
  95 
  96     Tuple,                      // Method signature or object layout
  97     Array,                      // Array types
  98 
  99     Interfaces,                 // Set of implemented interfaces for oop types
 100 
 101     VectorMask,                 // Vector predicate/mask type
 102     VectorA,                    // (Scalable) Vector types for vector length agnostic
 103     VectorS,                    //  32bit Vector types
 104     VectorD,                    //  64bit Vector types
 105     VectorX,                    // 128bit Vector types
 106     VectorY,                    // 256bit Vector types
 107     VectorZ,                    // 512bit Vector types
 108 
 109     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 110     RawPtr,                     // Raw (non-oop) pointers
 111     OopPtr,                     // Any and all Java heap entities
 112     InstPtr,                    // Instance pointers (non-array objects)
 113     AryPtr,                     // Array pointers
 114     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 115 
 116     MetadataPtr,                // Generic metadata
 117     KlassPtr,                   // Klass pointers
 118     InstKlassPtr,
 119     AryKlassPtr,
 120 
 121     Function,                   // Function signature
 122     Abio,                       // Abstract I/O
 123     Return_Address,             // Subroutine return address
 124     Memory,                     // Abstract store
 125     FloatTop,                   // No float value
 126     FloatCon,                   // Floating point constant
 127     FloatBot,                   // Any float value
 128     DoubleTop,                  // No double value
 129     DoubleCon,                  // Double precision constant
 130     DoubleBot,                  // Any double value
 131     Bottom,                     // Bottom of lattice
 132     lastype                     // Bogus ending type (not in lattice)
 133   };
 134 
 135   // Signal values for offsets from a base pointer
 136   enum OFFSET_SIGNALS {
 137     OffsetTop = -2000000000,    // undefined offset
 138     OffsetBot = -2000000001     // any possible offset
 139   };
 140 
 141   class Offset {
 142   private:
 143     int _offset;
 144 
 145   public:
 146     explicit Offset(int offset) : _offset(offset) {}
 147 
 148     const Offset meet(const Offset other) const;
 149     const Offset dual() const;
 150     const Offset add(intptr_t offset) const;
 151     bool operator==(const Offset& other) const {
 152       return _offset == other._offset;
 153     }
 154     bool operator!=(const Offset& other) const {
 155       return _offset != other._offset;
 156     }
 157     int get() const { return _offset; }
 158 
 159     void dump2(outputStream *st) const;
 160 
 161     static const Offset top;
 162     static const Offset bottom;
 163   };
 164 
 165   // Min and max WIDEN values.
 166   enum WIDEN {
 167     WidenMin = 0,
 168     WidenMax = 3
 169   };
 170 
 171 private:
 172   typedef struct {
 173     TYPES                dual_type;
 174     BasicType            basic_type;
 175     const char*          msg;
 176     bool                 isa_oop;
 177     uint                 ideal_reg;
 178     relocInfo::relocType reloc;
 179   } TypeInfo;
 180 
 181   // Dictionary of types shared among compilations.
 182   static Dict* _shared_type_dict;
 183   static const TypeInfo _type_info[];
 184 
 185   static int uhash( const Type *const t );
 186   // Structural equality check.  Assumes that equals() has already compared
 187   // the _base types and thus knows it can cast 't' appropriately.
 188   virtual bool eq( const Type *t ) const;
 189 
 190   // Top-level hash-table of types
 191   static Dict *type_dict() {
 192     return Compile::current()->type_dict();
 193   }
 194 
 195   // DUAL operation: reflect around lattice centerline.  Used instead of
 196   // join to ensure my lattice is symmetric up and down.  Dual is computed
 197   // lazily, on demand, and cached in _dual.
 198   const Type *_dual;            // Cached dual value
 199 
 200 
 201   const Type *meet_helper(const Type *t, bool include_speculative) const;
 202   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 203 
 204 protected:
 205   // Each class of type is also identified by its base.
 206   const TYPES _base;            // Enum of Types type
 207 
 208   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 209   // ~Type();                   // Use fast deallocation
 210   const Type *hashcons();       // Hash-cons the type
 211   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 212   const Type *join_helper(const Type *t, bool include_speculative) const {
 213     assert_type_verify_empty();
 214     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 215   }
 216 
 217   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 218 
 219 public:
 220 
 221   inline void* operator new( size_t x ) throw() {
 222     Compile* compile = Compile::current();
 223     compile->set_type_last_size(x);
 224     return compile->type_arena()->AmallocWords(x);
 225   }
 226   inline void operator delete( void* ptr ) {
 227     Compile* compile = Compile::current();
 228     compile->type_arena()->Afree(ptr,compile->type_last_size());
 229   }
 230 
 231   // Initialize the type system for a particular compilation.
 232   static void Initialize(Compile* compile);
 233 
 234   // Initialize the types shared by all compilations.
 235   static void Initialize_shared(Compile* compile);
 236 
 237   TYPES base() const {
 238     assert(_base > Bad && _base < lastype, "sanity");
 239     return _base;
 240   }
 241 
 242   // Create a new hash-consd type
 243   static const Type *make(enum TYPES);
 244   // Test for equivalence of types
 245   static bool equals(const Type* t1, const Type* t2);
 246   // Test for higher or equal in lattice
 247   // Variant that drops the speculative part of the types
 248   bool higher_equal(const Type* t) const {
 249     return equals(meet(t), t->remove_speculative());
 250   }
 251   // Variant that keeps the speculative part of the types
 252   bool higher_equal_speculative(const Type* t) const {
 253     return equals(meet_speculative(t), t);
 254   }
 255 
 256   // MEET operation; lower in lattice.
 257   // Variant that drops the speculative part of the types
 258   const Type *meet(const Type *t) const {
 259     return meet_helper(t, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *meet_speculative(const Type *t) const {
 263     return meet_helper(t, true)->cleanup_speculative();
 264   }
 265   // WIDEN: 'widens' for Ints and other range types
 266   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 267   // NARROW: complement for widen, used by pessimistic phases
 268   virtual const Type *narrow( const Type *old ) const { return this; }
 269 
 270   // DUAL operation: reflect around lattice centerline.  Used instead of
 271   // join to ensure my lattice is symmetric up and down.
 272   const Type *dual() const { return _dual; }
 273 
 274   // Compute meet dependent on base type
 275   virtual const Type *xmeet( const Type *t ) const;
 276   virtual const Type *xdual() const;    // Compute dual right now.
 277 
 278   // JOIN operation; higher in lattice.  Done by finding the dual of the
 279   // meet of the dual of the 2 inputs.
 280   // Variant that drops the speculative part of the types
 281   const Type *join(const Type *t) const {
 282     return join_helper(t, false);
 283   }
 284   // Variant that keeps the speculative part of the types
 285   const Type *join_speculative(const Type *t) const {
 286     return join_helper(t, true)->cleanup_speculative();
 287   }
 288 
 289   // Modified version of JOIN adapted to the needs Node::Value.
 290   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 291   // Variant that drops the speculative part of the types
 292   const Type *filter(const Type *kills) const {
 293     return filter_helper(kills, false);
 294   }
 295   // Variant that keeps the speculative part of the types
 296   const Type *filter_speculative(const Type *kills) const {
 297     return filter_helper(kills, true)->cleanup_speculative();
 298   }
 299 
 300   // Returns true if this pointer points at memory which contains a
 301   // compressed oop references.
 302   bool is_ptr_to_narrowoop() const;
 303   bool is_ptr_to_narrowklass() const;
 304 
 305   // Convenience access
 306   float getf() const;
 307   double getd() const;
 308 
 309   const TypeInt    *is_int() const;
 310   const TypeInt    *isa_int() const;             // Returns null if not an Int
 311   const TypeInteger* is_integer(BasicType bt) const;
 312   const TypeInteger* isa_integer(BasicType bt) const;
 313   const TypeLong   *is_long() const;
 314   const TypeLong   *isa_long() const;            // Returns null if not a Long
 315   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 316   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 317   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 318   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 319   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 320   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 321   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 322   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 323   const TypeAry    *isa_ary() const;             // Returns null of not ary
 324   const TypeVect   *is_vect() const;             // Vector
 325   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 326   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 327   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 328   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 329   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 330   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 331   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 332   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 333   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 334   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 335   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 336   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 337   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 338   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 339   const TypeInstPtr  *is_instptr() const;        // Instance
 340   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 341   const TypeAryPtr   *is_aryptr() const;         // Array oop
 342 
 343   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 344   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 345   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 346   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 347   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 348   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 349   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 350   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 351 
 352   virtual bool      is_finite() const;           // Has a finite value
 353   virtual bool      is_nan()    const;           // Is not a number (NaN)
 354 
 355   bool is_inlinetypeptr() const;
 356   virtual ciInlineKlass* inline_klass() const;
 357 
 358   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 359   const TypePtr* make_ptr() const;
 360 
 361   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 362   // Asserts if the underlying type is not an oopptr or narrowoop.
 363   const TypeOopPtr* make_oopptr() const;
 364 
 365   // Returns this compressed pointer or the equivalent compressed version
 366   // of this pointer type.
 367   const TypeNarrowOop* make_narrowoop() const;
 368 
 369   // Returns this compressed klass pointer or the equivalent
 370   // compressed version of this pointer type.
 371   const TypeNarrowKlass* make_narrowklass() const;
 372 
 373   // Special test for register pressure heuristic
 374   bool is_floatingpoint() const;        // True if Float or Double base type
 375 
 376   // Do you have memory, directly or through a tuple?
 377   bool has_memory( ) const;
 378 
 379   // TRUE if type is a singleton
 380   virtual bool singleton(void) const;
 381 
 382   // TRUE if type is above the lattice centerline, and is therefore vacuous
 383   virtual bool empty(void) const;
 384 
 385   // Return a hash for this type.  The hash function is public so ConNode
 386   // (constants) can hash on their constant, which is represented by a Type.
 387   virtual uint hash() const;
 388 
 389   // Map ideal registers (machine types) to ideal types
 390   static const Type *mreg2type[];
 391 
 392   // Printing, statistics
 393 #ifndef PRODUCT
 394   void         dump_on(outputStream *st) const;
 395   void         dump() const {
 396     dump_on(tty);
 397   }
 398   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 399   static  void dump_stats();
 400   // Groups of types, for debugging and visualization only.
 401   enum class Category {
 402     Data,
 403     Memory,
 404     Mixed,   // Tuples with types of different categories.
 405     Control,
 406     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 407     Undef    // {Type::Bad, Type::lastype}, for completeness.
 408   };
 409   // Return the category of this type.
 410   Category category() const;
 411   // Check recursively in tuples.
 412   bool has_category(Category cat) const;
 413 
 414   static const char* str(const Type* t);
 415 #endif // !PRODUCT
 416   void typerr(const Type *t) const; // Mixing types error
 417 
 418   // Create basic type
 419   static const Type* get_const_basic_type(BasicType type) {
 420     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 421     return _const_basic_type[type];
 422   }
 423 
 424   // For two instance arrays of same dimension, return the base element types.
 425   // Otherwise or if the arrays have different dimensions, return null.
 426   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 427                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 428 
 429   // Mapping to the array element's basic type.
 430   BasicType array_element_basic_type() const;
 431 
 432   enum InterfaceHandling {
 433       trust_interfaces,
 434       ignore_interfaces
 435   };
 436   // Create standard type for a ciType:
 437   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 438 
 439   // Create standard zero value:
 440   static const Type* get_zero_type(BasicType type) {
 441     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 442     return _zero_type[type];
 443   }
 444 
 445   // Report if this is a zero value (not top).
 446   bool is_zero_type() const {
 447     BasicType type = basic_type();
 448     if (type == T_VOID || type >= T_CONFLICT)
 449       return false;
 450     else
 451       return (this == _zero_type[type]);
 452   }
 453 
 454   // Convenience common pre-built types.
 455   static const Type *ABIO;
 456   static const Type *BOTTOM;
 457   static const Type *CONTROL;
 458   static const Type *DOUBLE;
 459   static const Type *FLOAT;
 460   static const Type *HALF;
 461   static const Type *MEMORY;
 462   static const Type *MULTI;
 463   static const Type *RETURN_ADDRESS;
 464   static const Type *TOP;
 465 
 466   // Mapping from compiler type to VM BasicType
 467   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 468   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 469   const char* msg() const            { return _type_info[_base].msg; }
 470   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 471   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 472 
 473   // Mapping from CI type system to compiler type:
 474   static const Type* get_typeflow_type(ciType* type);
 475 
 476   static const Type* make_from_constant(ciConstant constant,
 477                                         bool require_constant = false,
 478                                         int stable_dimension = 0,
 479                                         bool is_narrow = false,
 480                                         bool is_autobox_cache = false);
 481 
 482   static const Type* make_constant_from_field(ciInstance* holder,
 483                                               int off,
 484                                               bool is_unsigned_load,
 485                                               BasicType loadbt);
 486 
 487   static const Type* make_constant_from_field(ciField* field,
 488                                               ciInstance* holder,
 489                                               BasicType loadbt,
 490                                               bool is_unsigned_load);
 491 
 492   static const Type* make_constant_from_array_element(ciArray* array,
 493                                                       int off,
 494                                                       int stable_dimension,
 495                                                       BasicType loadbt,
 496                                                       bool is_unsigned_load);
 497 
 498   // Speculative type helper methods. See TypePtr.
 499   virtual const TypePtr* speculative() const                                  { return nullptr; }
 500   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 501   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 502   virtual bool speculative_maybe_null() const                                 { return true; }
 503   virtual bool speculative_always_null() const                                { return true; }
 504   virtual const Type* remove_speculative() const                              { return this; }
 505   virtual const Type* cleanup_speculative() const                             { return this; }
 506   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 507   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 508   const Type* maybe_remove_speculative(bool include_speculative) const;
 509 
 510   virtual bool maybe_null() const { return true; }
 511   virtual bool is_known_instance() const { return false; }
 512 
 513 private:
 514   // support arrays
 515   static const Type*        _zero_type[T_CONFLICT+1];
 516   static const Type* _const_basic_type[T_CONFLICT+1];
 517 };
 518 
 519 //------------------------------TypeF------------------------------------------
 520 // Class of Float-Constant Types.
 521 class TypeF : public Type {
 522   TypeF( float f ) : Type(FloatCon), _f(f) {};
 523 public:
 524   virtual bool eq( const Type *t ) const;
 525   virtual uint hash() const;             // Type specific hashing
 526   virtual bool singleton(void) const;    // TRUE if type is a singleton
 527   virtual bool empty(void) const;        // TRUE if type is vacuous
 528 public:
 529   const float _f;               // Float constant
 530 
 531   static const TypeF *make(float f);
 532 
 533   virtual bool        is_finite() const;  // Has a finite value
 534   virtual bool        is_nan()    const;  // Is not a number (NaN)
 535 
 536   virtual const Type *xmeet( const Type *t ) const;
 537   virtual const Type *xdual() const;    // Compute dual right now.
 538   // Convenience common pre-built types.
 539   static const TypeF *MAX;
 540   static const TypeF *MIN;
 541   static const TypeF *ZERO; // positive zero only
 542   static const TypeF *ONE;
 543   static const TypeF *POS_INF;
 544   static const TypeF *NEG_INF;
 545 #ifndef PRODUCT
 546   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 547 #endif
 548 };
 549 
 550 //------------------------------TypeD------------------------------------------
 551 // Class of Double-Constant Types.
 552 class TypeD : public Type {
 553   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 554 public:
 555   virtual bool eq( const Type *t ) const;
 556   virtual uint hash() const;             // Type specific hashing
 557   virtual bool singleton(void) const;    // TRUE if type is a singleton
 558   virtual bool empty(void) const;        // TRUE if type is vacuous
 559 public:
 560   const double _d;              // Double constant
 561 
 562   static const TypeD *make(double d);
 563 
 564   virtual bool        is_finite() const;  // Has a finite value
 565   virtual bool        is_nan()    const;  // Is not a number (NaN)
 566 
 567   virtual const Type *xmeet( const Type *t ) const;
 568   virtual const Type *xdual() const;    // Compute dual right now.
 569   // Convenience common pre-built types.
 570   static const TypeD *MAX;
 571   static const TypeD *MIN;
 572   static const TypeD *ZERO; // positive zero only
 573   static const TypeD *ONE;
 574   static const TypeD *POS_INF;
 575   static const TypeD *NEG_INF;
 576 #ifndef PRODUCT
 577   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 578 #endif
 579 };
 580 
 581 class TypeInteger : public Type {
 582 protected:
 583   TypeInteger(TYPES t, int w) : Type(t), _widen(w) {}
 584 
 585 public:
 586   const short _widen;           // Limit on times we widen this sucker
 587 
 588   virtual jlong hi_as_long() const = 0;
 589   virtual jlong lo_as_long() const = 0;
 590   jlong get_con_as_long(BasicType bt) const;
 591   bool is_con() const { return lo_as_long() == hi_as_long(); }
 592   virtual short widen_limit() const { return _widen; }
 593 
 594   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 595 
 596   static const TypeInteger* bottom(BasicType type);
 597   static const TypeInteger* zero(BasicType type);
 598   static const TypeInteger* one(BasicType type);
 599   static const TypeInteger* minus_1(BasicType type);
 600 };
 601 
 602 
 603 
 604 //------------------------------TypeInt----------------------------------------
 605 // Class of integer ranges, the set of integers between a lower bound and an
 606 // upper bound, inclusive.
 607 class TypeInt : public TypeInteger {
 608   TypeInt( jint lo, jint hi, int w );
 609 protected:
 610   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 611 
 612 public:
 613   typedef jint NativeType;
 614   virtual bool eq( const Type *t ) const;
 615   virtual uint hash() const;             // Type specific hashing
 616   virtual bool singleton(void) const;    // TRUE if type is a singleton
 617   virtual bool empty(void) const;        // TRUE if type is vacuous
 618   const jint _lo, _hi;          // Lower bound, upper bound
 619 
 620   static const TypeInt *make(jint lo);
 621   // must always specify w
 622   static const TypeInt *make(jint lo, jint hi, int w);
 623 
 624   // Check for single integer
 625   bool is_con() const { return _lo==_hi; }
 626   bool is_con(jint i) const { return is_con() && _lo == i; }
 627   jint get_con() const { assert(is_con(), "" );  return _lo; }
 628 
 629   virtual bool        is_finite() const;  // Has a finite value
 630 
 631   virtual const Type *xmeet( const Type *t ) const;
 632   virtual const Type *xdual() const;    // Compute dual right now.
 633   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 634   virtual const Type *narrow( const Type *t ) const;
 635 
 636   virtual jlong hi_as_long() const { return _hi; }
 637   virtual jlong lo_as_long() const { return _lo; }
 638 
 639   // Do not kill _widen bits.
 640   // Convenience common pre-built types.
 641   static const TypeInt *MAX;
 642   static const TypeInt *MIN;
 643   static const TypeInt *MINUS_1;
 644   static const TypeInt *ZERO;
 645   static const TypeInt *ONE;
 646   static const TypeInt *BOOL;
 647   static const TypeInt *CC;
 648   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 649   static const TypeInt *CC_GT;  // [1]   == ONE
 650   static const TypeInt *CC_EQ;  // [0]   == ZERO
 651   static const TypeInt *CC_LE;  // [-1,0]
 652   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 653   static const TypeInt *BYTE;
 654   static const TypeInt *UBYTE;
 655   static const TypeInt *CHAR;
 656   static const TypeInt *SHORT;
 657   static const TypeInt *POS;
 658   static const TypeInt *POS1;
 659   static const TypeInt *INT;
 660   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 661   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 662 
 663   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 664 #ifndef PRODUCT
 665   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 666 #endif
 667 };
 668 
 669 
 670 //------------------------------TypeLong---------------------------------------
 671 // Class of long integer ranges, the set of integers between a lower bound and
 672 // an upper bound, inclusive.
 673 class TypeLong : public TypeInteger {
 674   TypeLong( jlong lo, jlong hi, int w );
 675 protected:
 676   // Do not kill _widen bits.
 677   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 678 public:
 679   typedef jlong NativeType;
 680   virtual bool eq( const Type *t ) const;
 681   virtual uint hash() const;             // Type specific hashing
 682   virtual bool singleton(void) const;    // TRUE if type is a singleton
 683   virtual bool empty(void) const;        // TRUE if type is vacuous
 684 public:
 685   const jlong _lo, _hi;         // Lower bound, upper bound
 686 
 687   static const TypeLong *make(jlong lo);
 688   // must always specify w
 689   static const TypeLong *make(jlong lo, jlong hi, int w);
 690 
 691   // Check for single integer
 692   bool is_con() const { return _lo==_hi; }
 693   bool is_con(jlong i) const { return is_con() && _lo == i; }
 694   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 695 
 696   // Check for positive 32-bit value.
 697   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 698 
 699   virtual bool        is_finite() const;  // Has a finite value
 700 
 701   virtual jlong hi_as_long() const { return _hi; }
 702   virtual jlong lo_as_long() const { return _lo; }
 703 
 704   virtual const Type *xmeet( const Type *t ) const;
 705   virtual const Type *xdual() const;    // Compute dual right now.
 706   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 707   virtual const Type *narrow( const Type *t ) const;
 708   // Convenience common pre-built types.
 709   static const TypeLong *MAX;
 710   static const TypeLong *MIN;
 711   static const TypeLong *MINUS_1;
 712   static const TypeLong *ZERO;
 713   static const TypeLong *ONE;
 714   static const TypeLong *POS;
 715   static const TypeLong *LONG;
 716   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 717   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 718   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 719 
 720   // static convenience methods.
 721   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 722 
 723 #ifndef PRODUCT
 724   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 725 #endif
 726 };
 727 
 728 //------------------------------TypeTuple--------------------------------------
 729 // Class of Tuple Types, essentially type collections for function signatures
 730 // and class layouts.  It happens to also be a fast cache for the HotSpot
 731 // signature types.
 732 class TypeTuple : public Type {
 733   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 734 
 735   const uint          _cnt;              // Count of fields
 736   const Type ** const _fields;           // Array of field types
 737 
 738 public:
 739   virtual bool eq( const Type *t ) const;
 740   virtual uint hash() const;             // Type specific hashing
 741   virtual bool singleton(void) const;    // TRUE if type is a singleton
 742   virtual bool empty(void) const;        // TRUE if type is vacuous
 743 
 744   // Accessors:
 745   uint cnt() const { return _cnt; }
 746   const Type* field_at(uint i) const {
 747     assert(i < _cnt, "oob");
 748     return _fields[i];
 749   }
 750   void set_field_at(uint i, const Type* t) {
 751     assert(i < _cnt, "oob");
 752     _fields[i] = t;
 753   }
 754 
 755   static const TypeTuple *make( uint cnt, const Type **fields );
 756   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 757   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 758 
 759   // Subroutine call type with space allocated for argument types
 760   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 761   static const Type **fields( uint arg_cnt );
 762 
 763   virtual const Type *xmeet( const Type *t ) const;
 764   virtual const Type *xdual() const;    // Compute dual right now.
 765   // Convenience common pre-built types.
 766   static const TypeTuple *IFBOTH;
 767   static const TypeTuple *IFFALSE;
 768   static const TypeTuple *IFTRUE;
 769   static const TypeTuple *IFNEITHER;
 770   static const TypeTuple *LOOPBODY;
 771   static const TypeTuple *MEMBAR;
 772   static const TypeTuple *STORECONDITIONAL;
 773   static const TypeTuple *START_I2C;
 774   static const TypeTuple *INT_PAIR;
 775   static const TypeTuple *LONG_PAIR;
 776   static const TypeTuple *INT_CC_PAIR;
 777   static const TypeTuple *LONG_CC_PAIR;
 778 #ifndef PRODUCT
 779   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 780 #endif
 781 };
 782 
 783 //------------------------------TypeAry----------------------------------------
 784 // Class of Array Types
 785 class TypeAry : public Type {
 786   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free) : Type(Array),
 787       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free) {}
 788 public:
 789   virtual bool eq( const Type *t ) const;
 790   virtual uint hash() const;             // Type specific hashing
 791   virtual bool singleton(void) const;    // TRUE if type is a singleton
 792   virtual bool empty(void) const;        // TRUE if type is vacuous
 793 
 794 private:
 795   const Type *_elem;            // Element type of array
 796   const TypeInt *_size;         // Elements in array
 797   const bool _stable;           // Are elements @Stable?
 798 
 799   // Inline type array properties
 800   const bool _flat;             // Array is flat
 801   const bool _not_flat;         // Array is never flat
 802   const bool _not_null_free;    // Array is never null-free
 803 
 804   friend class TypeAryPtr;
 805 
 806 public:
 807   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
 808                              bool flat = false, bool not_flat = false, bool not_null_free = false);
 809 
 810   virtual const Type *xmeet( const Type *t ) const;
 811   virtual const Type *xdual() const;    // Compute dual right now.
 812   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 813   virtual const TypeAry* remove_speculative() const;
 814   virtual const Type* cleanup_speculative() const;
 815 #ifndef PRODUCT
 816   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 817 #endif
 818 };
 819 
 820 //------------------------------TypeVect---------------------------------------
 821 // Class of Vector Types
 822 class TypeVect : public Type {
 823   const BasicType _elem_bt;  // Vector's element type
 824   const uint _length;  // Elements in vector (power of 2)
 825 
 826 protected:
 827   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
 828     _elem_bt(elem_bt), _length(length) {}
 829 
 830 public:
 831   BasicType element_basic_type() const { return _elem_bt; }
 832   uint length() const { return _length; }
 833   uint length_in_bytes() const {
 834     return _length * type2aelembytes(element_basic_type());
 835   }
 836 
 837   virtual bool eq(const Type* t) const;
 838   virtual uint hash() const;             // Type specific hashing
 839   virtual bool singleton(void) const;    // TRUE if type is a singleton
 840   virtual bool empty(void) const;        // TRUE if type is vacuous
 841 
 842   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
 843   static const TypeVect* makemask(const BasicType elem_bt, uint length);
 844 
 845   virtual const Type* xmeet( const Type *t) const;
 846   virtual const Type* xdual() const;     // Compute dual right now.
 847 
 848   static const TypeVect* VECTA;
 849   static const TypeVect* VECTS;
 850   static const TypeVect* VECTD;
 851   static const TypeVect* VECTX;
 852   static const TypeVect* VECTY;
 853   static const TypeVect* VECTZ;
 854   static const TypeVect* VECTMASK;
 855 
 856 #ifndef PRODUCT
 857   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
 858 #endif
 859 };
 860 
 861 class TypeVectA : public TypeVect {
 862   friend class TypeVect;
 863   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
 864 };
 865 
 866 class TypeVectS : public TypeVect {
 867   friend class TypeVect;
 868   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
 869 };
 870 
 871 class TypeVectD : public TypeVect {
 872   friend class TypeVect;
 873   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
 874 };
 875 
 876 class TypeVectX : public TypeVect {
 877   friend class TypeVect;
 878   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
 879 };
 880 
 881 class TypeVectY : public TypeVect {
 882   friend class TypeVect;
 883   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
 884 };
 885 
 886 class TypeVectZ : public TypeVect {
 887   friend class TypeVect;
 888   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
 889 };
 890 
 891 class TypeVectMask : public TypeVect {
 892 public:
 893   friend class TypeVect;
 894   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
 895   static const TypeVectMask* make(const BasicType elem_bt, uint length);
 896 };
 897 
 898 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
 899 class TypeInterfaces : public Type {
 900 private:
 901   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
 902   uint _hash;
 903   ciInstanceKlass* _exact_klass;
 904   DEBUG_ONLY(bool _initialized;)
 905 
 906   void initialize();
 907 
 908   void verify() const NOT_DEBUG_RETURN;
 909   void compute_hash();
 910   void compute_exact_klass();
 911 
 912   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
 913 
 914   NONCOPYABLE(TypeInterfaces);
 915 public:
 916   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
 917   bool eq(const Type* other) const;
 918   bool eq(ciInstanceKlass* k) const;
 919   uint hash() const;
 920   const Type *xdual() const;
 921   void dump(outputStream* st) const;
 922   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
 923   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
 924   bool contains(const TypeInterfaces* other) const {
 925     return intersection_with(other)->eq(other);
 926   }
 927   bool empty() const { return _interfaces.length() == 0; }
 928 
 929   ciInstanceKlass* exact_klass() const;
 930   void verify_is_loaded() const NOT_DEBUG_RETURN;
 931 
 932   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
 933   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
 934 
 935   const Type* xmeet(const Type* t) const;
 936 
 937   bool singleton(void) const;
 938 };
 939 
 940 //------------------------------TypePtr----------------------------------------
 941 // Class of machine Pointer Types: raw data, instances or arrays.
 942 // If the _base enum is AnyPtr, then this refers to all of the above.
 943 // Otherwise the _base will indicate which subset of pointers is affected,
 944 // and the class will be inherited from.
 945 class TypePtr : public Type {
 946   friend class TypeNarrowPtr;
 947   friend class Type;
 948 protected:
 949   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 950 
 951 public:
 952   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 953 protected:
 954   TypePtr(TYPES t, PTR ptr, Offset offset,
 955           const TypePtr* speculative = nullptr,
 956           int inline_depth = InlineDepthBottom) :
 957     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 958     _ptr(ptr) {}
 959   static const PTR ptr_meet[lastPTR][lastPTR];
 960   static const PTR ptr_dual[lastPTR];
 961   static const char * const ptr_msg[lastPTR];
 962 
 963   enum {
 964     InlineDepthBottom = INT_MAX,
 965     InlineDepthTop = -InlineDepthBottom
 966   };
 967 
 968   // Extra type information profiling gave us. We propagate it the
 969   // same way the rest of the type info is propagated. If we want to
 970   // use it, then we have to emit a guard: this part of the type is
 971   // not something we know but something we speculate about the type.
 972   const TypePtr*   _speculative;
 973   // For speculative types, we record at what inlining depth the
 974   // profiling point that provided the data is. We want to favor
 975   // profile data coming from outer scopes which are likely better for
 976   // the current compilation.
 977   int _inline_depth;
 978 
 979   // utility methods to work on the speculative part of the type
 980   const TypePtr* dual_speculative() const;
 981   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 982   bool eq_speculative(const TypePtr* other) const;
 983   int hash_speculative() const;
 984   const TypePtr* add_offset_speculative(intptr_t offset) const;
 985   const TypePtr* with_offset_speculative(intptr_t offset) const;
 986 #ifndef PRODUCT
 987   void dump_speculative(outputStream *st) const;
 988 #endif
 989 
 990   // utility methods to work on the inline depth of the type
 991   int dual_inline_depth() const;
 992   int meet_inline_depth(int depth) const;
 993 #ifndef PRODUCT
 994   void dump_inline_depth(outputStream *st) const;
 995 #endif
 996 
 997   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
 998   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
 999   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1000   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1001   // encountered so the right logic specific to klasses or oops can be executed.,
1002   enum MeetResult {
1003     QUICK,
1004     UNLOADED,
1005     SUBTYPE,
1006     NOT_SUBTYPE,
1007     LCA
1008   };
1009   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1010                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk, bool& res_flat_array);
1011  private:
1012   template<class T> static bool is_meet_subtype_of(const T* sub_type, const T* super_type);
1013  protected:
1014 
1015   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1016                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free);
1017 
1018   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1019   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1020   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1021   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1022   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1023   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1024   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1025   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1026 public:
1027   const Offset _offset;         // Offset into oop, with TOP & BOT
1028   const PTR _ptr;               // Pointer equivalence class
1029 
1030   int offset() const { return _offset.get(); }
1031   PTR ptr()    const { return _ptr; }
1032 
1033   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1034                              const TypePtr* speculative = nullptr,
1035                              int inline_depth = InlineDepthBottom);
1036 
1037   // Return a 'ptr' version of this type
1038   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1039 
1040   virtual intptr_t get_con() const;
1041 
1042   Type::Offset xadd_offset(intptr_t offset) const;
1043   virtual const TypePtr* add_offset(intptr_t offset) const;
1044   virtual const TypePtr* with_offset(intptr_t offset) const;
1045   virtual int flat_offset() const { return offset(); }
1046   virtual bool eq(const Type *t) const;
1047   virtual uint hash() const;             // Type specific hashing
1048 
1049   virtual bool singleton(void) const;    // TRUE if type is a singleton
1050   virtual bool empty(void) const;        // TRUE if type is vacuous
1051   virtual const Type *xmeet( const Type *t ) const;
1052   virtual const Type *xmeet_helper( const Type *t ) const;
1053   Offset meet_offset(int offset) const;
1054   Offset dual_offset() const;
1055   virtual const Type *xdual() const;    // Compute dual right now.
1056 
1057   // meet, dual and join over pointer equivalence sets
1058   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1059   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1060 
1061   // This is textually confusing unless one recalls that
1062   // join(t) == dual()->meet(t->dual())->dual().
1063   PTR join_ptr( const PTR in_ptr ) const {
1064     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1065   }
1066 
1067   // Speculative type helper methods.
1068   virtual const TypePtr* speculative() const { return _speculative; }
1069   int inline_depth() const                   { return _inline_depth; }
1070   virtual ciKlass* speculative_type() const;
1071   virtual ciKlass* speculative_type_not_null() const;
1072   virtual bool speculative_maybe_null() const;
1073   virtual bool speculative_always_null() const;
1074   virtual const TypePtr* remove_speculative() const;
1075   virtual const Type* cleanup_speculative() const;
1076   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1077   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1078   virtual const TypePtr* with_inline_depth(int depth) const;
1079 
1080   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1081 
1082   virtual bool can_be_inline_type() const { return false; }
1083   virtual bool flat_in_array()      const { return false; }
1084   virtual bool not_flat_in_array()  const { return true; }
1085   virtual bool is_flat()            const { return false; }
1086   virtual bool is_not_flat()        const { return false; }
1087   virtual bool is_null_free()       const { return false; }
1088   virtual bool is_not_null_free()   const { return false; }
1089 
1090   // Tests for relation to centerline of type lattice:
1091   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1092   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1093   // Convenience common pre-built types.
1094   static const TypePtr *NULL_PTR;
1095   static const TypePtr *NOTNULL;
1096   static const TypePtr *BOTTOM;
1097 #ifndef PRODUCT
1098   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1099 #endif
1100 };
1101 
1102 //------------------------------TypeRawPtr-------------------------------------
1103 // Class of raw pointers, pointers to things other than Oops.  Examples
1104 // include the stack pointer, top of heap, card-marking area, handles, etc.
1105 class TypeRawPtr : public TypePtr {
1106 protected:
1107   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1108 public:
1109   virtual bool eq( const Type *t ) const;
1110   virtual uint hash() const;    // Type specific hashing
1111 
1112   const address _bits;          // Constant value, if applicable
1113 
1114   static const TypeRawPtr *make( PTR ptr );
1115   static const TypeRawPtr *make( address bits );
1116 
1117   // Return a 'ptr' version of this type
1118   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1119 
1120   virtual intptr_t get_con() const;
1121 
1122   virtual const TypePtr* add_offset(intptr_t offset) const;
1123   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1124 
1125   virtual const Type *xmeet( const Type *t ) const;
1126   virtual const Type *xdual() const;    // Compute dual right now.
1127   // Convenience common pre-built types.
1128   static const TypeRawPtr *BOTTOM;
1129   static const TypeRawPtr *NOTNULL;
1130 #ifndef PRODUCT
1131   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1132 #endif
1133 };
1134 
1135 //------------------------------TypeOopPtr-------------------------------------
1136 // Some kind of oop (Java pointer), either instance or array.
1137 class TypeOopPtr : public TypePtr {
1138   friend class TypeAry;
1139   friend class TypePtr;
1140   friend class TypeInstPtr;
1141   friend class TypeAryPtr;
1142 protected:
1143  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1144             const TypePtr* speculative, int inline_depth);
1145 public:
1146   virtual bool eq( const Type *t ) const;
1147   virtual uint hash() const;             // Type specific hashing
1148   virtual bool singleton(void) const;    // TRUE if type is a singleton
1149   enum {
1150    InstanceTop = -1,   // undefined instance
1151    InstanceBot = 0     // any possible instance
1152   };
1153 protected:
1154 
1155   // Oop is null, unless this is a constant oop.
1156   ciObject*     _const_oop;   // Constant oop
1157   // If _klass is null, then so is _sig.  This is an unloaded klass.
1158   ciKlass*      _klass;       // Klass object
1159 
1160   const TypeInterfaces* _interfaces;
1161 
1162   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1163   bool          _klass_is_exact;
1164   bool          _is_ptr_to_narrowoop;
1165   bool          _is_ptr_to_narrowklass;
1166   bool          _is_ptr_to_boxed_value;
1167 
1168   // If not InstanceTop or InstanceBot, indicates that this is
1169   // a particular instance of this type which is distinct.
1170   // This is the node index of the allocation node creating this instance.
1171   int           _instance_id;
1172 
1173   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1174 
1175   int dual_instance_id() const;
1176   int meet_instance_id(int uid) const;
1177 
1178   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1179 
1180   // Do not allow interface-vs.-noninterface joins to collapse to top.
1181   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1182 
1183   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1184   virtual ciKlass* klass() const { return _klass; }
1185 
1186 public:
1187 
1188   bool is_java_subtype_of(const TypeOopPtr* other) const {
1189     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1190   }
1191 
1192   bool is_same_java_type_as(const TypePtr* other) const {
1193     return is_same_java_type_as_helper(other->is_oopptr());
1194   }
1195 
1196   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1197     ShouldNotReachHere(); return false;
1198   }
1199 
1200   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1201     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1202   }
1203   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1204   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1205 
1206 
1207   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1208   // Respects UseUniqueSubclasses.
1209   // If the klass is final, the resulting type will be exact.
1210   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1211     return make_from_klass_common(klass, true, false, interface_handling);
1212   }
1213   // Same as before, but will produce an exact type, even if
1214   // the klass is not final, as long as it has exactly one implementation.
1215   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1216     return make_from_klass_common(klass, true, true, interface_handling);
1217   }
1218   // Same as before, but does not respects UseUniqueSubclasses.
1219   // Use this only for creating array element types.
1220   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1221     return make_from_klass_common(klass, false, false, interface_handling);
1222   }
1223   // Creates a singleton type given an object.
1224   // If the object cannot be rendered as a constant,
1225   // may return a non-singleton type.
1226   // If require_constant, produce a null if a singleton is not possible.
1227   static const TypeOopPtr* make_from_constant(ciObject* o,
1228                                               bool require_constant = false);
1229 
1230   // Make a generic (unclassed) pointer to an oop.
1231   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1232                                 const TypePtr* speculative = nullptr,
1233                                 int inline_depth = InlineDepthBottom);
1234 
1235   ciObject* const_oop()    const { return _const_oop; }
1236   // Exact klass, possibly an interface or an array of interface
1237   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1238   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1239 
1240   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1241   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1242 
1243   // Returns true if this pointer points at memory which contains a
1244   // compressed oop references.
1245   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1246   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1247   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1248   bool is_known_instance()       const { return _instance_id > 0; }
1249   int  instance_id()             const { return _instance_id; }
1250   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1251 
1252   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1253   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1254 
1255   virtual intptr_t get_con() const;
1256 
1257   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1258 
1259   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1260 
1261   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1262 
1263   // corresponding pointer to klass, for a given instance
1264   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1265 
1266   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1267   virtual const TypePtr* add_offset(intptr_t offset) const;
1268 
1269   // Speculative type helper methods.
1270   virtual const TypeOopPtr* remove_speculative() const;
1271   virtual const Type* cleanup_speculative() const;
1272   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1273   virtual const TypePtr* with_inline_depth(int depth) const;
1274 
1275   virtual const TypePtr* with_instance_id(int instance_id) const;
1276 
1277   virtual const Type *xdual() const;    // Compute dual right now.
1278   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1279   virtual const Type *xmeet_helper(const Type *t) const;
1280 
1281   // Convenience common pre-built type.
1282   static const TypeOopPtr *BOTTOM;
1283 #ifndef PRODUCT
1284   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1285 #endif
1286 private:
1287   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1288     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1289   }
1290 
1291   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1292     ShouldNotReachHere(); return false;
1293   }
1294 
1295   virtual const TypeInterfaces* interfaces() const {
1296     return _interfaces;
1297   };
1298 
1299   const TypeOopPtr* is_reference_type(const Type* other) const {
1300     return other->isa_oopptr();
1301   }
1302 
1303   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1304     return other->isa_aryptr();
1305   }
1306 
1307   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1308     return other->isa_instptr();
1309   }
1310 };
1311 
1312 //------------------------------TypeInstPtr------------------------------------
1313 // Class of Java object pointers, pointing either to non-array Java instances
1314 // or to a Klass* (including array klasses).
1315 class TypeInstPtr : public TypeOopPtr {
1316   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1317               bool flat_in_array, int instance_id, const TypePtr* speculative,
1318               int inline_depth);
1319   virtual bool eq( const Type *t ) const;
1320   virtual uint hash() const;             // Type specific hashing
1321   bool _flat_in_array; // Type is flat in arrays
1322   ciKlass* exact_klass_helper() const;
1323 
1324 public:
1325 
1326   // Instance klass, ignoring any interface
1327   ciInstanceKlass* instance_klass() const {
1328     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1329     return klass()->as_instance_klass();
1330   }
1331 
1332   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1333   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1334   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1335 
1336   // Make a pointer to a constant oop.
1337   static const TypeInstPtr *make(ciObject* o) {
1338     ciKlass* k = o->klass();
1339     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1340     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1341   }
1342   // Make a pointer to a constant oop with offset.
1343   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1344     ciKlass* k = o->klass();
1345     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1346     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1347   }
1348 
1349   // Make a pointer to some value of type klass.
1350   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1351     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1352     return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1353   }
1354 
1355   // Make a pointer to some non-polymorphic value of exactly type klass.
1356   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1357     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1358     return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1359   }
1360 
1361   // Make a pointer to some value of type klass with offset.
1362   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1363     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1364     return make(ptr, klass, interfaces, false, nullptr, offset);
1365   }
1366 
1367   // Make a pointer to an oop.
1368   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1369                                  bool flat_in_array = false,
1370                                  int instance_id = InstanceBot,
1371                                  const TypePtr* speculative = nullptr,
1372                                  int inline_depth = InlineDepthBottom);
1373 
1374   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) {
1375     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1376     return make(ptr, k, interfaces, xk, o, offset, false, instance_id);
1377   }
1378 
1379   /** Create constant type for a constant boxed value */
1380   const Type* get_const_boxed_value() const;
1381 
1382   // If this is a java.lang.Class constant, return the type for it or null.
1383   // Pass to Type::get_const_type to turn it to a type, which will usually
1384   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1385   ciType* java_mirror_type(bool* is_null_free_array = nullptr) const;
1386 
1387   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1388 
1389   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1390 
1391   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1392 
1393   virtual const TypePtr* add_offset(intptr_t offset) const;
1394   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1395 
1396   // Speculative type helper methods.
1397   virtual const TypeInstPtr* remove_speculative() const;
1398   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1399   virtual const TypePtr* with_inline_depth(int depth) const;
1400   virtual const TypePtr* with_instance_id(int instance_id) const;
1401 
1402   virtual const TypeInstPtr* cast_to_flat_in_array() const;
1403   virtual bool flat_in_array() const { return _flat_in_array; }
1404   virtual bool not_flat_in_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flat_in_array()); }
1405 
1406   // the core of the computation of the meet of 2 types
1407   virtual const Type *xmeet_helper(const Type *t) const;
1408   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1409   virtual const Type *xdual() const;    // Compute dual right now.
1410 
1411   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1412 
1413   virtual bool can_be_inline_array() const;
1414 
1415   // Convenience common pre-built types.
1416   static const TypeInstPtr *NOTNULL;
1417   static const TypeInstPtr *BOTTOM;
1418   static const TypeInstPtr *MIRROR;
1419   static const TypeInstPtr *MARK;
1420   static const TypeInstPtr *KLASS;
1421 #ifndef PRODUCT
1422   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1423 #endif
1424 
1425 private:
1426   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1427 
1428   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1429     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1430   }
1431 
1432 };
1433 
1434 //------------------------------TypeAryPtr-------------------------------------
1435 // Class of Java array pointers
1436 class TypeAryPtr : public TypeOopPtr {
1437   friend class Type;
1438   friend class TypePtr;
1439   friend class TypeInstPtr;
1440 
1441   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1442              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1443              const TypePtr* speculative, int inline_depth)
1444     : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1445     _ary(ary),
1446     _is_autobox_cache(is_autobox_cache),
1447     _field_offset(field_offset)
1448  {
1449     int dummy;
1450     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1451 
1452     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1453         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1454         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1455       _is_ptr_to_narrowoop = true;
1456     }
1457 
1458   }
1459   virtual bool eq( const Type *t ) const;
1460   virtual uint hash() const;    // Type specific hashing
1461   const TypeAry *_ary;          // Array we point into
1462   const bool     _is_autobox_cache;
1463   // For flat inline type arrays, each field of the inline type in
1464   // the array has its own memory slice so we need to keep track of
1465   // which field is accessed
1466   const Offset _field_offset;
1467   Offset meet_field_offset(const Type::Offset offset) const;
1468   Offset dual_field_offset() const;
1469 
1470   ciKlass* compute_klass() const;
1471 
1472   // A pointer to delay allocation to Type::Initialize_shared()
1473 
1474   static const TypeInterfaces* _array_interfaces;
1475   ciKlass* exact_klass_helper() const;
1476   // Only guaranteed non null for array of basic types
1477   ciKlass* klass() const;
1478 
1479 public:
1480 
1481   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1482   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1483   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1484 
1485   // returns base element type, an instance klass (and not interface) for object arrays
1486   const Type* base_element_type(int& dims) const;
1487 
1488   // Accessors
1489   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1490 
1491   const TypeAry* ary() const  { return _ary; }
1492   const Type*    elem() const { return _ary->_elem; }
1493   const TypeInt* size() const { return _ary->_size; }
1494   bool      is_stable() const { return _ary->_stable; }
1495 
1496   // Inline type array properties
1497   bool is_flat()          const { return _ary->_flat; }
1498   bool is_not_flat()      const { return _ary->_not_flat; }
1499   bool is_null_free()     const { return is_flat() || (_ary->_elem->make_ptr() != nullptr && _ary->_elem->make_ptr()->is_inlinetypeptr() && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull)); }
1500   bool is_not_null_free() const { return _ary->_not_null_free; }
1501 
1502   bool is_autobox_cache() const { return _is_autobox_cache; }
1503 
1504   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1505                                 Offset field_offset = Offset::bottom,
1506                                 int instance_id = InstanceBot,
1507                                 const TypePtr* speculative = nullptr,
1508                                 int inline_depth = InlineDepthBottom);
1509   // Constant pointer to array
1510   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1511                                 Offset field_offset = Offset::bottom,
1512                                 int instance_id = InstanceBot,
1513                                 const TypePtr* speculative = nullptr,
1514                                 int inline_depth = InlineDepthBottom,
1515                                 bool is_autobox_cache = false);
1516 
1517   // Return a 'ptr' version of this type
1518   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1519 
1520   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1521 
1522   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1523 
1524   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1525   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1526 
1527   virtual bool empty(void) const;        // TRUE if type is vacuous
1528   virtual const TypePtr *add_offset( intptr_t offset ) const;
1529   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1530   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1531 
1532   // Speculative type helper methods.
1533   virtual const TypeAryPtr* remove_speculative() const;
1534   virtual const Type* cleanup_speculative() const;
1535   virtual const TypePtr* with_inline_depth(int depth) const;
1536   virtual const TypePtr* with_instance_id(int instance_id) const;
1537 
1538   // the core of the computation of the meet of 2 types
1539   virtual const Type *xmeet_helper(const Type *t) const;
1540   virtual const Type *xdual() const;    // Compute dual right now.
1541 
1542   // Inline type array properties
1543   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1544   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1545   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1546   jint flat_layout_helper() const;
1547   int flat_elem_size() const;
1548   int flat_log_elem_size() const;
1549 
1550   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1551   int stable_dimension() const;
1552 
1553   const TypeAryPtr* cast_to_autobox_cache() const;
1554 
1555   static jint max_array_length(BasicType etype);
1556 
1557   int flat_offset() const;
1558   const Offset field_offset() const { return _field_offset; }
1559   const TypeAryPtr* with_field_offset(int offset) const;
1560   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1561 
1562   virtual bool can_be_inline_type() const { return false; }
1563   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1564 
1565   virtual bool can_be_inline_array() const;
1566 
1567   // Convenience common pre-built types.
1568   static const TypeAryPtr *RANGE;
1569   static const TypeAryPtr *OOPS;
1570   static const TypeAryPtr *NARROWOOPS;
1571   static const TypeAryPtr *BYTES;
1572   static const TypeAryPtr *SHORTS;
1573   static const TypeAryPtr *CHARS;
1574   static const TypeAryPtr *INTS;
1575   static const TypeAryPtr *LONGS;
1576   static const TypeAryPtr *FLOATS;
1577   static const TypeAryPtr *DOUBLES;
1578   static const TypeAryPtr *INLINES;
1579   // selects one of the above:
1580   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1581     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1582     return _array_body_type[elem];
1583   }
1584   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1585   // sharpen the type of an int which is used as an array size
1586 #ifndef PRODUCT
1587   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1588 #endif
1589 private:
1590   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1591 };
1592 
1593 //------------------------------TypeMetadataPtr-------------------------------------
1594 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1595 class TypeMetadataPtr : public TypePtr {
1596 protected:
1597   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1598   // Do not allow interface-vs.-noninterface joins to collapse to top.
1599   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1600 public:
1601   virtual bool eq( const Type *t ) const;
1602   virtual uint hash() const;             // Type specific hashing
1603   virtual bool singleton(void) const;    // TRUE if type is a singleton
1604 
1605 private:
1606   ciMetadata*   _metadata;
1607 
1608 public:
1609   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1610 
1611   static const TypeMetadataPtr* make(ciMethod* m);
1612   static const TypeMetadataPtr* make(ciMethodData* m);
1613 
1614   ciMetadata* metadata() const { return _metadata; }
1615 
1616   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1617 
1618   virtual const TypePtr *add_offset( intptr_t offset ) const;
1619 
1620   virtual const Type *xmeet( const Type *t ) const;
1621   virtual const Type *xdual() const;    // Compute dual right now.
1622 
1623   virtual intptr_t get_con() const;
1624 
1625   // Convenience common pre-built types.
1626   static const TypeMetadataPtr *BOTTOM;
1627 
1628 #ifndef PRODUCT
1629   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1630 #endif
1631 };
1632 
1633 //------------------------------TypeKlassPtr-----------------------------------
1634 // Class of Java Klass pointers
1635 class TypeKlassPtr : public TypePtr {
1636   friend class TypeInstKlassPtr;
1637   friend class TypeAryKlassPtr;
1638   friend class TypePtr;
1639 protected:
1640   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1641 
1642   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1643 
1644 public:
1645   virtual bool eq( const Type *t ) const;
1646   virtual uint hash() const;
1647   virtual bool singleton(void) const;    // TRUE if type is a singleton
1648 
1649 protected:
1650 
1651   ciKlass* _klass;
1652   const TypeInterfaces* _interfaces;
1653   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1654   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1655   virtual ciKlass* exact_klass_helper() const;
1656   virtual ciKlass* klass() const { return  _klass; }
1657 
1658 public:
1659 
1660   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1661     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1662   }
1663   bool is_same_java_type_as(const TypePtr* other) const {
1664     return is_same_java_type_as_helper(other->is_klassptr());
1665   }
1666 
1667   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1668     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1669   }
1670   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1671   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1672   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1673 
1674   // Exact klass, possibly an interface or an array of interface
1675   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1676   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1677 
1678   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1679   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces);
1680 
1681   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1682 
1683   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1684 
1685   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1686 
1687   // corresponding pointer to instance, for a given class
1688   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1689 
1690   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1691   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1692   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1693 
1694   virtual intptr_t get_con() const;
1695 
1696   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1697 
1698   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1699   virtual const TypeKlassPtr* try_improve() const { return this; }
1700 
1701 #ifndef PRODUCT
1702   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1703 #endif
1704 private:
1705   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1706     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1707   }
1708 
1709   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1710     ShouldNotReachHere(); return false;
1711   }
1712 
1713   virtual const TypeInterfaces* interfaces() const {
1714     return _interfaces;
1715   };
1716 
1717   const TypeKlassPtr* is_reference_type(const Type* other) const {
1718     return other->isa_klassptr();
1719   }
1720 
1721   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1722     return other->isa_aryklassptr();
1723   }
1724 
1725   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1726     return other->isa_instklassptr();
1727   }
1728 };
1729 
1730 // Instance klass pointer, mirrors TypeInstPtr
1731 class TypeInstKlassPtr : public TypeKlassPtr {
1732 
1733   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array)
1734     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
1735     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1736   }
1737 
1738   virtual bool must_be_exact() const;
1739 
1740   const bool _flat_in_array; // Type is flat in arrays
1741 
1742 public:
1743   // Instance klass ignoring any interface
1744   ciInstanceKlass* instance_klass() const {
1745     assert(!klass()->is_interface(), "");
1746     return klass()->as_instance_klass();
1747   }
1748 
1749   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1750   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1751   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1752 
1753   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
1754 
1755   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1756     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1757     return make(TypePtr::Constant, k, interfaces, Offset(0));
1758   }
1759   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array = false);
1760 
1761   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) {
1762     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1763     return make(ptr, k, interfaces, offset);
1764   }
1765 
1766   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1767 
1768   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1769 
1770   // corresponding pointer to instance, for a given class
1771   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1772   virtual uint hash() const;
1773   virtual bool eq(const Type *t) const;
1774 
1775   virtual const TypePtr *add_offset( intptr_t offset ) const;
1776   virtual const Type    *xmeet( const Type *t ) const;
1777   virtual const Type    *xdual() const;
1778   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1779 
1780   virtual const TypeKlassPtr* try_improve() const;
1781 
1782   virtual bool flat_in_array() const { return _flat_in_array; }
1783   virtual bool not_flat_in_array() const { return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flat_in_array()); }
1784 
1785   virtual bool can_be_inline_array() const;
1786 
1787   // Convenience common pre-built types.
1788   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1789   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1790 private:
1791   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1792 };
1793 
1794 // Array klass pointer, mirrors TypeAryPtr
1795 class TypeAryKlassPtr : public TypeKlassPtr {
1796   friend class TypeInstKlassPtr;
1797   friend class Type;
1798   friend class TypePtr;
1799 
1800   const Type *_elem;
1801   const bool _not_flat;      // Array is never flat
1802   const bool _not_null_free; // Array is never null-free
1803   const bool _null_free;
1804 
1805   static const TypeInterfaces* _array_interfaces;
1806   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool null_free)
1807     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _null_free(null_free) {
1808     assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1809   }
1810 
1811   virtual ciKlass* exact_klass_helper() const;
1812   // Only guaranteed non null for array of basic types
1813   virtual ciKlass* klass() const;
1814 
1815   virtual bool must_be_exact() const;
1816 
1817   bool dual_null_free() const {
1818     return _null_free;
1819   }
1820 
1821   bool meet_null_free(bool other) const {
1822     return _null_free && other;
1823   }
1824 
1825 public:
1826 
1827   // returns base element type, an instance klass (and not interface) for object arrays
1828   const Type* base_element_type(int& dims) const;
1829 
1830   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool null_free);
1831 
1832   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1833   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1834   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1835 
1836   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1837 
1838   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free);
1839   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling);
1840   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1841 
1842   const Type *elem() const { return _elem; }
1843 
1844   virtual bool eq(const Type *t) const;
1845   virtual uint hash() const;             // Type specific hashing
1846 
1847   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1848 
1849   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1850 
1851   const TypeAryKlassPtr* cast_to_null_free() const;
1852 
1853   // corresponding pointer to instance, for a given class
1854   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1855 
1856   virtual const TypePtr *add_offset( intptr_t offset ) const;
1857   virtual const Type    *xmeet( const Type *t ) const;
1858   virtual const Type    *xdual() const;      // Compute dual right now.
1859 
1860   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1861 
1862   virtual bool empty(void) const {
1863     return TypeKlassPtr::empty() || _elem->empty();
1864   }
1865 
1866   bool is_flat()          const { return klass() != nullptr && klass()->is_flat_array_klass(); }
1867   bool is_not_flat()      const { return _not_flat; }
1868   bool is_null_free()     const { return _null_free; }
1869   bool is_not_null_free() const { return _not_null_free; }
1870   virtual bool can_be_inline_array() const;
1871 
1872 #ifndef PRODUCT
1873   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1874 #endif
1875 private:
1876   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1877 };
1878 
1879 class TypeNarrowPtr : public Type {
1880 protected:
1881   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1882 
1883   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1884                                                   _ptrtype(ptrtype) {
1885     assert(ptrtype->offset() == 0 ||
1886            ptrtype->offset() == OffsetBot ||
1887            ptrtype->offset() == OffsetTop, "no real offsets");
1888   }
1889 
1890   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1891   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1892   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1893   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1894   // Do not allow interface-vs.-noninterface joins to collapse to top.
1895   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1896 public:
1897   virtual bool eq( const Type *t ) const;
1898   virtual uint hash() const;             // Type specific hashing
1899   virtual bool singleton(void) const;    // TRUE if type is a singleton
1900 
1901   virtual const Type *xmeet( const Type *t ) const;
1902   virtual const Type *xdual() const;    // Compute dual right now.
1903 
1904   virtual intptr_t get_con() const;
1905 
1906   virtual bool empty(void) const;        // TRUE if type is vacuous
1907 
1908   // returns the equivalent ptr type for this compressed pointer
1909   const TypePtr *get_ptrtype() const {
1910     return _ptrtype;
1911   }
1912 
1913   bool is_known_instance() const {
1914     return _ptrtype->is_known_instance();
1915   }
1916 
1917 #ifndef PRODUCT
1918   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1919 #endif
1920 };
1921 
1922 //------------------------------TypeNarrowOop----------------------------------
1923 // A compressed reference to some kind of Oop.  This type wraps around
1924 // a preexisting TypeOopPtr and forwards most of it's operations to
1925 // the underlying type.  It's only real purpose is to track the
1926 // oopness of the compressed oop value when we expose the conversion
1927 // between the normal and the compressed form.
1928 class TypeNarrowOop : public TypeNarrowPtr {
1929 protected:
1930   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1931   }
1932 
1933   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1934     return t->isa_narrowoop();
1935   }
1936 
1937   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1938     return t->is_narrowoop();
1939   }
1940 
1941   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1942     return new TypeNarrowOop(t);
1943   }
1944 
1945   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1946     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1947   }
1948 
1949 public:
1950 
1951   static const TypeNarrowOop *make( const TypePtr* type);
1952 
1953   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1954     return make(TypeOopPtr::make_from_constant(con, require_constant));
1955   }
1956 
1957   static const TypeNarrowOop *BOTTOM;
1958   static const TypeNarrowOop *NULL_PTR;
1959 
1960   virtual const TypeNarrowOop* remove_speculative() const;
1961   virtual const Type* cleanup_speculative() const;
1962 
1963 #ifndef PRODUCT
1964   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1965 #endif
1966 };
1967 
1968 //------------------------------TypeNarrowKlass----------------------------------
1969 // A compressed reference to klass pointer.  This type wraps around a
1970 // preexisting TypeKlassPtr and forwards most of it's operations to
1971 // the underlying type.
1972 class TypeNarrowKlass : public TypeNarrowPtr {
1973 protected:
1974   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1975   }
1976 
1977   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1978     return t->isa_narrowklass();
1979   }
1980 
1981   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1982     return t->is_narrowklass();
1983   }
1984 
1985   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1986     return new TypeNarrowKlass(t);
1987   }
1988 
1989   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1990     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1991   }
1992 
1993 public:
1994   static const TypeNarrowKlass *make( const TypePtr* type);
1995 
1996   // static const TypeNarrowKlass *BOTTOM;
1997   static const TypeNarrowKlass *NULL_PTR;
1998 
1999 #ifndef PRODUCT
2000   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2001 #endif
2002 };
2003 
2004 //------------------------------TypeFunc---------------------------------------
2005 // Class of Array Types
2006 class TypeFunc : public Type {
2007   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2008     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2009   virtual bool eq( const Type *t ) const;
2010   virtual uint hash() const;             // Type specific hashing
2011   virtual bool singleton(void) const;    // TRUE if type is a singleton
2012   virtual bool empty(void) const;        // TRUE if type is vacuous
2013 
2014   // Domains of inputs: inline type arguments are not passed by
2015   // reference, instead each field of the inline type is passed as an
2016   // argument. We maintain 2 views of the argument list here: one
2017   // based on the signature (with an inline type argument as a single
2018   // slot), one based on the actual calling convention (with a value
2019   // type argument as a list of its fields).
2020   const TypeTuple* const _domain_sig;
2021   const TypeTuple* const _domain_cc;
2022   // Range of results. Similar to domains: an inline type result can be
2023   // returned in registers in which case range_cc lists all fields and
2024   // is the actual calling convention.
2025   const TypeTuple* const _range_sig;
2026   const TypeTuple* const _range_cc;
2027 
2028 public:
2029   // Constants are shared among ADLC and VM
2030   enum { Control    = AdlcVMDeps::Control,
2031          I_O        = AdlcVMDeps::I_O,
2032          Memory     = AdlcVMDeps::Memory,
2033          FramePtr   = AdlcVMDeps::FramePtr,
2034          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2035          Parms      = AdlcVMDeps::Parms
2036   };
2037 
2038 
2039   // Accessors:
2040   const TypeTuple* domain_sig() const { return _domain_sig; }
2041   const TypeTuple* domain_cc()  const { return _domain_cc; }
2042   const TypeTuple* range_sig()  const { return _range_sig; }
2043   const TypeTuple* range_cc()   const { return _range_cc; }
2044 
2045   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2046   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2047                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2048   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2049 
2050   virtual const Type *xmeet( const Type *t ) const;
2051   virtual const Type *xdual() const;    // Compute dual right now.
2052 
2053   BasicType return_type() const;
2054 
2055   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2056 
2057 #ifndef PRODUCT
2058   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2059 #endif
2060   // Convenience common pre-built types.
2061 };
2062 
2063 //------------------------------accessors--------------------------------------
2064 inline bool Type::is_ptr_to_narrowoop() const {
2065 #ifdef _LP64
2066   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2067 #else
2068   return false;
2069 #endif
2070 }
2071 
2072 inline bool Type::is_ptr_to_narrowklass() const {
2073 #ifdef _LP64
2074   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2075 #else
2076   return false;
2077 #endif
2078 }
2079 
2080 inline float Type::getf() const {
2081   assert( _base == FloatCon, "Not a FloatCon" );
2082   return ((TypeF*)this)->_f;
2083 }
2084 
2085 inline double Type::getd() const {
2086   assert( _base == DoubleCon, "Not a DoubleCon" );
2087   return ((TypeD*)this)->_d;
2088 }
2089 
2090 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2091   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2092   return (TypeInteger*)this;
2093 }
2094 
2095 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2096   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2097 }
2098 
2099 inline const TypeInt *Type::is_int() const {
2100   assert( _base == Int, "Not an Int" );
2101   return (TypeInt*)this;
2102 }
2103 
2104 inline const TypeInt *Type::isa_int() const {
2105   return ( _base == Int ? (TypeInt*)this : nullptr);
2106 }
2107 
2108 inline const TypeLong *Type::is_long() const {
2109   assert( _base == Long, "Not a Long" );
2110   return (TypeLong*)this;
2111 }
2112 
2113 inline const TypeLong *Type::isa_long() const {
2114   return ( _base == Long ? (TypeLong*)this : nullptr);
2115 }
2116 
2117 inline const TypeF *Type::isa_float() const {
2118   return ((_base == FloatTop ||
2119            _base == FloatCon ||
2120            _base == FloatBot) ? (TypeF*)this : nullptr);
2121 }
2122 
2123 inline const TypeF *Type::is_float_constant() const {
2124   assert( _base == FloatCon, "Not a Float" );
2125   return (TypeF*)this;
2126 }
2127 
2128 inline const TypeF *Type::isa_float_constant() const {
2129   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2130 }
2131 
2132 inline const TypeD *Type::isa_double() const {
2133   return ((_base == DoubleTop ||
2134            _base == DoubleCon ||
2135            _base == DoubleBot) ? (TypeD*)this : nullptr);
2136 }
2137 
2138 inline const TypeD *Type::is_double_constant() const {
2139   assert( _base == DoubleCon, "Not a Double" );
2140   return (TypeD*)this;
2141 }
2142 
2143 inline const TypeD *Type::isa_double_constant() const {
2144   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2145 }
2146 
2147 inline const TypeTuple *Type::is_tuple() const {
2148   assert( _base == Tuple, "Not a Tuple" );
2149   return (TypeTuple*)this;
2150 }
2151 
2152 inline const TypeAry *Type::is_ary() const {
2153   assert( _base == Array , "Not an Array" );
2154   return (TypeAry*)this;
2155 }
2156 
2157 inline const TypeAry *Type::isa_ary() const {
2158   return ((_base == Array) ? (TypeAry*)this : nullptr);
2159 }
2160 
2161 inline const TypeVectMask *Type::is_vectmask() const {
2162   assert( _base == VectorMask, "Not a Vector Mask" );
2163   return (TypeVectMask*)this;
2164 }
2165 
2166 inline const TypeVectMask *Type::isa_vectmask() const {
2167   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2168 }
2169 
2170 inline const TypeVect *Type::is_vect() const {
2171   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2172   return (TypeVect*)this;
2173 }
2174 
2175 inline const TypeVect *Type::isa_vect() const {
2176   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2177 }
2178 
2179 inline const TypePtr *Type::is_ptr() const {
2180   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2181   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2182   return (TypePtr*)this;
2183 }
2184 
2185 inline const TypePtr *Type::isa_ptr() const {
2186   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2187   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2188 }
2189 
2190 inline const TypeOopPtr *Type::is_oopptr() const {
2191   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2192   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2193   return (TypeOopPtr*)this;
2194 }
2195 
2196 inline const TypeOopPtr *Type::isa_oopptr() const {
2197   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2198   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2199 }
2200 
2201 inline const TypeRawPtr *Type::isa_rawptr() const {
2202   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2203 }
2204 
2205 inline const TypeRawPtr *Type::is_rawptr() const {
2206   assert( _base == RawPtr, "Not a raw pointer" );
2207   return (TypeRawPtr*)this;
2208 }
2209 
2210 inline const TypeInstPtr *Type::isa_instptr() const {
2211   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2212 }
2213 
2214 inline const TypeInstPtr *Type::is_instptr() const {
2215   assert( _base == InstPtr, "Not an object pointer" );
2216   return (TypeInstPtr*)this;
2217 }
2218 
2219 inline const TypeAryPtr *Type::isa_aryptr() const {
2220   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2221 }
2222 
2223 inline const TypeAryPtr *Type::is_aryptr() const {
2224   assert( _base == AryPtr, "Not an array pointer" );
2225   return (TypeAryPtr*)this;
2226 }
2227 
2228 inline const TypeNarrowOop *Type::is_narrowoop() const {
2229   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2230   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2231   return (TypeNarrowOop*)this;
2232 }
2233 
2234 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2235   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2236   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2237 }
2238 
2239 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2240   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2241   return (TypeNarrowKlass*)this;
2242 }
2243 
2244 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2245   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2246 }
2247 
2248 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2249   // MetadataPtr is the first and CPCachePtr the last
2250   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2251   return (TypeMetadataPtr*)this;
2252 }
2253 
2254 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2255   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2256 }
2257 
2258 inline const TypeKlassPtr *Type::isa_klassptr() const {
2259   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2260 }
2261 
2262 inline const TypeKlassPtr *Type::is_klassptr() const {
2263   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2264   return (TypeKlassPtr*)this;
2265 }
2266 
2267 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2268   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2269 }
2270 
2271 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2272   assert(_base == InstKlassPtr, "Not a klass pointer");
2273   return (TypeInstKlassPtr*)this;
2274 }
2275 
2276 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2277   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2278 }
2279 
2280 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2281   assert(_base == AryKlassPtr, "Not a klass pointer");
2282   return (TypeAryKlassPtr*)this;
2283 }
2284 
2285 inline const TypePtr* Type::make_ptr() const {
2286   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2287                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2288                                                        isa_ptr());
2289 }
2290 
2291 inline const TypeOopPtr* Type::make_oopptr() const {
2292   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2293 }
2294 
2295 inline const TypeNarrowOop* Type::make_narrowoop() const {
2296   return (_base == NarrowOop) ? is_narrowoop() :
2297                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2298 }
2299 
2300 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2301   return (_base == NarrowKlass) ? is_narrowklass() :
2302                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2303 }
2304 
2305 inline bool Type::is_floatingpoint() const {
2306   if( (_base == FloatCon)  || (_base == FloatBot) ||
2307       (_base == DoubleCon) || (_base == DoubleBot) )
2308     return true;
2309   return false;
2310 }
2311 
2312 inline bool Type::is_inlinetypeptr() const {
2313   return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2314 }
2315 
2316 inline ciInlineKlass* Type::inline_klass() const {
2317   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2318 }
2319 
2320 
2321 // ===============================================================
2322 // Things that need to be 64-bits in the 64-bit build but
2323 // 32-bits in the 32-bit build.  Done this way to get full
2324 // optimization AND strong typing.
2325 #ifdef _LP64
2326 
2327 // For type queries and asserts
2328 #define is_intptr_t  is_long
2329 #define isa_intptr_t isa_long
2330 #define find_intptr_t_type find_long_type
2331 #define find_intptr_t_con  find_long_con
2332 #define TypeX        TypeLong
2333 #define Type_X       Type::Long
2334 #define TypeX_X      TypeLong::LONG
2335 #define TypeX_ZERO   TypeLong::ZERO
2336 // For 'ideal_reg' machine registers
2337 #define Op_RegX      Op_RegL
2338 // For phase->intcon variants
2339 #define MakeConX     longcon
2340 #define ConXNode     ConLNode
2341 // For array index arithmetic
2342 #define MulXNode     MulLNode
2343 #define AndXNode     AndLNode
2344 #define OrXNode      OrLNode
2345 #define CmpXNode     CmpLNode
2346 #define CmpUXNode    CmpULNode
2347 #define SubXNode     SubLNode
2348 #define LShiftXNode  LShiftLNode
2349 // For object size computation:
2350 #define AddXNode     AddLNode
2351 #define RShiftXNode  RShiftLNode
2352 // For card marks and hashcodes
2353 #define URShiftXNode URShiftLNode
2354 // For shenandoahSupport
2355 #define LoadXNode    LoadLNode
2356 #define StoreXNode   StoreLNode
2357 // Opcodes
2358 #define Op_LShiftX   Op_LShiftL
2359 #define Op_AndX      Op_AndL
2360 #define Op_AddX      Op_AddL
2361 #define Op_SubX      Op_SubL
2362 #define Op_XorX      Op_XorL
2363 #define Op_URShiftX  Op_URShiftL
2364 #define Op_LoadX     Op_LoadL
2365 #define Op_StoreX    Op_StoreL
2366 // conversions
2367 #define ConvI2X(x)   ConvI2L(x)
2368 #define ConvL2X(x)   (x)
2369 #define ConvX2I(x)   ConvL2I(x)
2370 #define ConvX2L(x)   (x)
2371 #define ConvX2UL(x)  (x)
2372 
2373 #else
2374 
2375 // For type queries and asserts
2376 #define is_intptr_t  is_int
2377 #define isa_intptr_t isa_int
2378 #define find_intptr_t_type find_int_type
2379 #define find_intptr_t_con  find_int_con
2380 #define TypeX        TypeInt
2381 #define Type_X       Type::Int
2382 #define TypeX_X      TypeInt::INT
2383 #define TypeX_ZERO   TypeInt::ZERO
2384 // For 'ideal_reg' machine registers
2385 #define Op_RegX      Op_RegI
2386 // For phase->intcon variants
2387 #define MakeConX     intcon
2388 #define ConXNode     ConINode
2389 // For array index arithmetic
2390 #define MulXNode     MulINode
2391 #define AndXNode     AndINode
2392 #define OrXNode      OrINode
2393 #define CmpXNode     CmpINode
2394 #define CmpUXNode    CmpUNode
2395 #define SubXNode     SubINode
2396 #define LShiftXNode  LShiftINode
2397 // For object size computation:
2398 #define AddXNode     AddINode
2399 #define RShiftXNode  RShiftINode
2400 // For card marks and hashcodes
2401 #define URShiftXNode URShiftINode
2402 // For shenandoahSupport
2403 #define LoadXNode    LoadINode
2404 #define StoreXNode   StoreINode
2405 // Opcodes
2406 #define Op_LShiftX   Op_LShiftI
2407 #define Op_AndX      Op_AndI
2408 #define Op_AddX      Op_AddI
2409 #define Op_SubX      Op_SubI
2410 #define Op_XorX      Op_XorI
2411 #define Op_URShiftX  Op_URShiftI
2412 #define Op_LoadX     Op_LoadI
2413 #define Op_StoreX    Op_StoreI
2414 // conversions
2415 #define ConvI2X(x)   (x)
2416 #define ConvL2X(x)   ConvL2I(x)
2417 #define ConvX2I(x)   (x)
2418 #define ConvX2L(x)   ConvI2L(x)
2419 #define ConvX2UL(x)  ConvI2UL(x)
2420 
2421 #endif
2422 
2423 #endif // SHARE_OPTO_TYPE_HPP