1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeInteger;
  51 class     TypeInt;
  52 class     TypeLong;
  53 class   TypeNarrowPtr;
  54 class     TypeNarrowOop;
  55 class     TypeNarrowKlass;
  56 class   TypeAry;
  57 class   TypeTuple;
  58 class   TypeInlineType;
  59 class   TypeVect;
  60 class     TypeVectA;
  61 class     TypeVectS;
  62 class     TypeVectD;
  63 class     TypeVectX;
  64 class     TypeVectY;
  65 class     TypeVectZ;
  66 class     TypeVectMask;
  67 class   TypePtr;
  68 class     TypeRawPtr;
  69 class     TypeOopPtr;
  70 class       TypeInstPtr;
  71 class       TypeAryPtr;
  72 class     TypeKlassPtr;
  73 class       TypeInstKlassPtr;
  74 class       TypeAryKlassPtr;
  75 class     TypeMetadataPtr;
  76 
  77 //------------------------------Type-------------------------------------------
  78 // Basic Type object, represents a set of primitive Values.
  79 // Types are hash-cons'd into a private class dictionary, so only one of each
  80 // different kind of Type exists.  Types are never modified after creation, so
  81 // all their interesting fields are constant.
  82 class Type {
  83   friend class VMStructs;
  84 
  85 public:
  86   enum TYPES {
  87     Bad=0,                      // Type check
  88     Control,                    // Control of code (not in lattice)
  89     Top,                        // Top of the lattice
  90     Int,                        // Integer range (lo-hi)
  91     Long,                       // Long integer range (lo-hi)
  92     Half,                       // Placeholder half of doubleword
  93     NarrowOop,                  // Compressed oop pointer
  94     NarrowKlass,                // Compressed klass pointer
  95 
  96     Tuple,                      // Method signature or object layout
  97     Array,                      // Array types
  98 
  99     VectorMask,                 // Vector predicate/mask type
 100     VectorA,                    // (Scalable) Vector types for vector length agnostic
 101     VectorS,                    //  32bit Vector types
 102     VectorD,                    //  64bit Vector types
 103     VectorX,                    // 128bit Vector types
 104     VectorY,                    // 256bit Vector types
 105     VectorZ,                    // 512bit Vector types
 106     InlineType,                 // Inline type
 107 
 108     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 109     RawPtr,                     // Raw (non-oop) pointers
 110     OopPtr,                     // Any and all Java heap entities
 111     InstPtr,                    // Instance pointers (non-array objects)
 112     AryPtr,                     // Array pointers
 113     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 114 
 115     MetadataPtr,                // Generic metadata
 116     KlassPtr,                   // Klass pointers
 117     InstKlassPtr,
 118     AryKlassPtr,
 119 
 120     Function,                   // Function signature
 121     Abio,                       // Abstract I/O
 122     Return_Address,             // Subroutine return address
 123     Memory,                     // Abstract store
 124     FloatTop,                   // No float value
 125     FloatCon,                   // Floating point constant
 126     FloatBot,                   // Any float value
 127     DoubleTop,                  // No double value
 128     DoubleCon,                  // Double precision constant
 129     DoubleBot,                  // Any double value
 130     Bottom,                     // Bottom of lattice
 131     lastype                     // Bogus ending type (not in lattice)
 132   };
 133 
 134   // Signal values for offsets from a base pointer
 135   enum OFFSET_SIGNALS {
 136     OffsetTop = -2000000000,    // undefined offset
 137     OffsetBot = -2000000001     // any possible offset
 138   };
 139 
 140   class Offset {
 141   private:
 142     int _offset;
 143 
 144   public:
 145     explicit Offset(int offset) : _offset(offset) {}
 146 
 147     const Offset meet(const Offset other) const;
 148     const Offset dual() const;
 149     const Offset add(intptr_t offset) const;
 150     bool operator==(const Offset& other) const {
 151       return _offset == other._offset;
 152     }
 153     bool operator!=(const Offset& other) const {
 154       return _offset != other._offset;
 155     }
 156     int get() const { return _offset; }
 157 
 158     void dump2(outputStream *st) const;
 159 
 160     static const Offset top;
 161     static const Offset bottom;
 162   };
 163 
 164   // Min and max WIDEN values.
 165   enum WIDEN {
 166     WidenMin = 0,
 167     WidenMax = 3
 168   };
 169 
 170 private:
 171   typedef struct {
 172     TYPES                dual_type;
 173     BasicType            basic_type;
 174     const char*          msg;
 175     bool                 isa_oop;
 176     uint                 ideal_reg;
 177     relocInfo::relocType reloc;
 178   } TypeInfo;
 179 
 180   // Dictionary of types shared among compilations.
 181   static Dict* _shared_type_dict;
 182   static const TypeInfo _type_info[];
 183 
 184   static int uhash( const Type *const t );
 185   // Structural equality check.  Assumes that cmp() has already compared
 186   // the _base types and thus knows it can cast 't' appropriately.
 187   virtual bool eq( const Type *t ) const;
 188 
 189   // Top-level hash-table of types
 190   static Dict *type_dict() {
 191     return Compile::current()->type_dict();
 192   }
 193 
 194   // DUAL operation: reflect around lattice centerline.  Used instead of
 195   // join to ensure my lattice is symmetric up and down.  Dual is computed
 196   // lazily, on demand, and cached in _dual.
 197   const Type *_dual;            // Cached dual value
 198 
 199 #ifdef ASSERT
 200   // One type is interface, the other is oop
 201   virtual bool interface_vs_oop_helper(const Type *t) const;
 202 #endif
 203 
 204   const Type *meet_helper(const Type *t, bool include_speculative) const;
 205   void check_symmetrical(const Type *t, const Type *mt) const;
 206 
 207 protected:
 208   // Each class of type is also identified by its base.
 209   const TYPES _base;            // Enum of Types type
 210 
 211   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 212   // ~Type();                   // Use fast deallocation
 213   const Type *hashcons();       // Hash-cons the type
 214   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 215   const Type *join_helper(const Type *t, bool include_speculative) const {
 216     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 217   }
 218 
 219 public:
 220 
 221   inline void* operator new( size_t x ) throw() {
 222     Compile* compile = Compile::current();
 223     compile->set_type_last_size(x);
 224     return compile->type_arena()->AmallocWords(x);
 225   }
 226   inline void operator delete( void* ptr ) {
 227     Compile* compile = Compile::current();
 228     compile->type_arena()->Afree(ptr,compile->type_last_size());
 229   }
 230 
 231   // Initialize the type system for a particular compilation.
 232   static void Initialize(Compile* compile);
 233 
 234   // Initialize the types shared by all compilations.
 235   static void Initialize_shared(Compile* compile);
 236 
 237   TYPES base() const {
 238     assert(_base > Bad && _base < lastype, "sanity");
 239     return _base;
 240   }
 241 
 242   // Create a new hash-consd type
 243   static const Type *make(enum TYPES);
 244   // Test for equivalence of types
 245   static int cmp( const Type *const t1, const Type *const t2 );
 246   // Test for higher or equal in lattice
 247   // Variant that drops the speculative part of the types
 248   bool higher_equal(const Type *t) const {
 249     return !cmp(meet(t),t->remove_speculative());
 250   }
 251   // Variant that keeps the speculative part of the types
 252   bool higher_equal_speculative(const Type *t) const {
 253     return !cmp(meet_speculative(t),t);
 254   }
 255 
 256   // MEET operation; lower in lattice.
 257   // Variant that drops the speculative part of the types
 258   const Type *meet(const Type *t) const {
 259     return meet_helper(t, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *meet_speculative(const Type *t) const {
 263     return meet_helper(t, true)->cleanup_speculative();
 264   }
 265   // WIDEN: 'widens' for Ints and other range types
 266   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 267   // NARROW: complement for widen, used by pessimistic phases
 268   virtual const Type *narrow( const Type *old ) const { return this; }
 269 
 270   // DUAL operation: reflect around lattice centerline.  Used instead of
 271   // join to ensure my lattice is symmetric up and down.
 272   const Type *dual() const { return _dual; }
 273 
 274   // Compute meet dependent on base type
 275   virtual const Type *xmeet( const Type *t ) const;
 276   virtual const Type *xdual() const;    // Compute dual right now.
 277 
 278   // JOIN operation; higher in lattice.  Done by finding the dual of the
 279   // meet of the dual of the 2 inputs.
 280   // Variant that drops the speculative part of the types
 281   const Type *join(const Type *t) const {
 282     return join_helper(t, false);
 283   }
 284   // Variant that keeps the speculative part of the types
 285   const Type *join_speculative(const Type *t) const {
 286     return join_helper(t, true)->cleanup_speculative();
 287   }
 288 
 289   // Modified version of JOIN adapted to the needs Node::Value.
 290   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 291   // Currently, it also works around limitations involving interface types.
 292   // Variant that drops the speculative part of the types
 293   const Type *filter(const Type *kills) const {
 294     return filter_helper(kills, false);
 295   }
 296   // Variant that keeps the speculative part of the types
 297   const Type *filter_speculative(const Type *kills) const {
 298     return filter_helper(kills, true)->cleanup_speculative();
 299   }
 300 
 301 #ifdef ASSERT
 302   // One type is interface, the other is oop
 303   virtual bool interface_vs_oop(const Type *t) const;
 304 #endif
 305 
 306   // Returns true if this pointer points at memory which contains a
 307   // compressed oop references.
 308   bool is_ptr_to_narrowoop() const;
 309   bool is_ptr_to_narrowklass() const;
 310 
 311   // Convenience access
 312   float getf() const;
 313   double getd() const;
 314 
 315   const TypeInt    *is_int() const;
 316   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 317   const TypeInteger* is_integer(BasicType bt) const;
 318   const TypeInteger* isa_integer(BasicType bt) const;
 319   const TypeLong   *is_long() const;
 320   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 321   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 322   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 323   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 324   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 325   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 326   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 327   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 328   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 329   const TypeAry    *isa_ary() const;             // Returns NULL of not ary
 330   const TypeVect   *is_vect() const;             // Vector
 331   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 332   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 333   const TypeVectMask *isa_vectmask() const;      // Returns NULL if not a Vector Predicate/Mask
 334   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 335   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 336   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 337   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 338   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 339   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 340   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 341   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 342   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 343   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 344   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 345   const TypeInstPtr  *is_instptr() const;        // Instance
 346   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 347   const TypeAryPtr   *is_aryptr() const;         // Array oop
 348   const TypeInlineType* isa_inlinetype() const;  // Returns NULL if not Inline Type
 349   const TypeInlineType* is_inlinetype() const;   // Inline Type
 350 
 351   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 352   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 353   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 354   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 355   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns NULL if not IntKlassPtr
 356   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 357   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns NULL if not AryKlassPtr
 358   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 359 
 360   virtual bool      is_finite() const;           // Has a finite value
 361   virtual bool      is_nan()    const;           // Is not a number (NaN)
 362 
 363   bool is_inlinetypeptr() const;
 364   virtual ciInlineKlass* inline_klass() const;
 365 
 366   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 367   const TypePtr* make_ptr() const;
 368 
 369   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 370   // Asserts if the underlying type is not an oopptr or narrowoop.
 371   const TypeOopPtr* make_oopptr() const;
 372 
 373   // Returns this compressed pointer or the equivalent compressed version
 374   // of this pointer type.
 375   const TypeNarrowOop* make_narrowoop() const;
 376 
 377   // Returns this compressed klass pointer or the equivalent
 378   // compressed version of this pointer type.
 379   const TypeNarrowKlass* make_narrowklass() const;
 380 
 381   // Special test for register pressure heuristic
 382   bool is_floatingpoint() const;        // True if Float or Double base type
 383 
 384   // Do you have memory, directly or through a tuple?
 385   bool has_memory( ) const;
 386 
 387   // TRUE if type is a singleton
 388   virtual bool singleton(void) const;
 389 
 390   // TRUE if type is above the lattice centerline, and is therefore vacuous
 391   virtual bool empty(void) const;
 392 
 393   // Return a hash for this type.  The hash function is public so ConNode
 394   // (constants) can hash on their constant, which is represented by a Type.
 395   virtual int hash() const;
 396 
 397   // Map ideal registers (machine types) to ideal types
 398   static const Type *mreg2type[];
 399 
 400   // Printing, statistics
 401 #ifndef PRODUCT
 402   void         dump_on(outputStream *st) const;
 403   void         dump() const {
 404     dump_on(tty);
 405   }
 406   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 407   static  void dump_stats();
 408   // Groups of types, for debugging and visualization only.
 409   enum class Category {
 410     Data,
 411     Memory,
 412     Mixed,   // Tuples with types of different categories.
 413     Control,
 414     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 415     Undef    // {Type::Bad, Type::lastype}, for completeness.
 416   };
 417   // Return the category of this type.
 418   Category category() const;
 419 
 420   static const char* str(const Type* t);
 421 #endif // !PRODUCT
 422   void typerr(const Type *t) const; // Mixing types error
 423 
 424   // Create basic type
 425   static const Type* get_const_basic_type(BasicType type) {
 426     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 427     return _const_basic_type[type];
 428   }
 429 
 430   // For two instance arrays of same dimension, return the base element types.
 431   // Otherwise or if the arrays have different dimensions, return NULL.
 432   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 433                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 434 
 435   // Mapping to the array element's basic type.
 436   BasicType array_element_basic_type() const;
 437 
 438   // Create standard type for a ciType:
 439   static const Type* get_const_type(ciType* type);
 440 
 441   // Create standard zero value:
 442   static const Type* get_zero_type(BasicType type) {
 443     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 444     return _zero_type[type];
 445   }
 446 
 447   // Report if this is a zero value (not top).
 448   bool is_zero_type() const {
 449     BasicType type = basic_type();
 450     if (type == T_VOID || type >= T_CONFLICT)
 451       return false;
 452     else
 453       return (this == _zero_type[type]);
 454   }
 455 
 456   // Convenience common pre-built types.
 457   static const Type *ABIO;
 458   static const Type *BOTTOM;
 459   static const Type *CONTROL;
 460   static const Type *DOUBLE;
 461   static const Type *FLOAT;
 462   static const Type *HALF;
 463   static const Type *MEMORY;
 464   static const Type *MULTI;
 465   static const Type *RETURN_ADDRESS;
 466   static const Type *TOP;
 467 
 468   // Mapping from compiler type to VM BasicType
 469   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 470   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 471   const char* msg() const            { return _type_info[_base].msg; }
 472   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 473   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 474 
 475   // Mapping from CI type system to compiler type:
 476   static const Type* get_typeflow_type(ciType* type);
 477 
 478   static const Type* make_from_constant(ciConstant constant,
 479                                         bool require_constant = false,
 480                                         int stable_dimension = 0,
 481                                         bool is_narrow = false,
 482                                         bool is_autobox_cache = false);
 483 
 484   static const Type* make_constant_from_field(ciInstance* holder,
 485                                               int off,
 486                                               bool is_unsigned_load,
 487                                               BasicType loadbt);
 488 
 489   static const Type* make_constant_from_field(ciField* field,
 490                                               ciInstance* holder,
 491                                               BasicType loadbt,
 492                                               bool is_unsigned_load);
 493 
 494   static const Type* make_constant_from_array_element(ciArray* array,
 495                                                       int off,
 496                                                       int stable_dimension,
 497                                                       BasicType loadbt,
 498                                                       bool is_unsigned_load);
 499 
 500   // Speculative type helper methods. See TypePtr.
 501   virtual const TypePtr* speculative() const                                  { return NULL; }
 502   virtual ciKlass* speculative_type() const                                   { return NULL; }
 503   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 504   virtual bool speculative_maybe_null() const                                 { return true; }
 505   virtual bool speculative_always_null() const                                { return true; }
 506   virtual const Type* remove_speculative() const                              { return this; }
 507   virtual const Type* cleanup_speculative() const                             { return this; }
 508   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 509   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 510   const Type* maybe_remove_speculative(bool include_speculative) const;
 511 
 512   virtual bool maybe_null() const { return true; }
 513   virtual bool is_known_instance() const { return false; }
 514 
 515 private:
 516   // support arrays
 517   static const Type*        _zero_type[T_CONFLICT+1];
 518   static const Type* _const_basic_type[T_CONFLICT+1];
 519 };
 520 
 521 //------------------------------TypeF------------------------------------------
 522 // Class of Float-Constant Types.
 523 class TypeF : public Type {
 524   TypeF( float f ) : Type(FloatCon), _f(f) {};
 525 public:
 526   virtual bool eq( const Type *t ) const;
 527   virtual int  hash() const;             // Type specific hashing
 528   virtual bool singleton(void) const;    // TRUE if type is a singleton
 529   virtual bool empty(void) const;        // TRUE if type is vacuous
 530 public:
 531   const float _f;               // Float constant
 532 
 533   static const TypeF *make(float f);
 534 
 535   virtual bool        is_finite() const;  // Has a finite value
 536   virtual bool        is_nan()    const;  // Is not a number (NaN)
 537 
 538   virtual const Type *xmeet( const Type *t ) const;
 539   virtual const Type *xdual() const;    // Compute dual right now.
 540   // Convenience common pre-built types.
 541   static const TypeF *MAX;
 542   static const TypeF *MIN;
 543   static const TypeF *ZERO; // positive zero only
 544   static const TypeF *ONE;
 545   static const TypeF *POS_INF;
 546   static const TypeF *NEG_INF;
 547 #ifndef PRODUCT
 548   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 549 #endif
 550 };
 551 
 552 //------------------------------TypeD------------------------------------------
 553 // Class of Double-Constant Types.
 554 class TypeD : public Type {
 555   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 556 public:
 557   virtual bool eq( const Type *t ) const;
 558   virtual int  hash() const;             // Type specific hashing
 559   virtual bool singleton(void) const;    // TRUE if type is a singleton
 560   virtual bool empty(void) const;        // TRUE if type is vacuous
 561 public:
 562   const double _d;              // Double constant
 563 
 564   static const TypeD *make(double d);
 565 
 566   virtual bool        is_finite() const;  // Has a finite value
 567   virtual bool        is_nan()    const;  // Is not a number (NaN)
 568 
 569   virtual const Type *xmeet( const Type *t ) const;
 570   virtual const Type *xdual() const;    // Compute dual right now.
 571   // Convenience common pre-built types.
 572   static const TypeD *MAX;
 573   static const TypeD *MIN;
 574   static const TypeD *ZERO; // positive zero only
 575   static const TypeD *ONE;
 576   static const TypeD *POS_INF;
 577   static const TypeD *NEG_INF;
 578 #ifndef PRODUCT
 579   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 580 #endif
 581 };
 582 
 583 class TypeInteger : public Type {
 584 protected:
 585   TypeInteger(TYPES t) : Type(t) {}
 586 
 587 public:
 588   virtual jlong hi_as_long() const = 0;
 589   virtual jlong lo_as_long() const = 0;
 590   jlong get_con_as_long(BasicType bt) const;
 591   bool is_con() const { return lo_as_long() == hi_as_long(); }
 592 
 593   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 594 
 595   static const TypeInteger* bottom(BasicType type);
 596   static const TypeInteger* zero(BasicType type);
 597   static const TypeInteger* one(BasicType type);
 598   static const TypeInteger* minus_1(BasicType type);
 599 };
 600 
 601 
 602 
 603 //------------------------------TypeInt----------------------------------------
 604 // Class of integer ranges, the set of integers between a lower bound and an
 605 // upper bound, inclusive.
 606 class TypeInt : public TypeInteger {
 607   TypeInt( jint lo, jint hi, int w );
 608 protected:
 609   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 610 
 611 public:
 612   typedef jint NativeType;
 613   virtual bool eq( const Type *t ) const;
 614   virtual int  hash() const;             // Type specific hashing
 615   virtual bool singleton(void) const;    // TRUE if type is a singleton
 616   virtual bool empty(void) const;        // TRUE if type is vacuous
 617   const jint _lo, _hi;          // Lower bound, upper bound
 618   const short _widen;           // Limit on times we widen this sucker
 619 
 620   static const TypeInt *make(jint lo);
 621   // must always specify w
 622   static const TypeInt *make(jint lo, jint hi, int w);
 623 
 624   // Check for single integer
 625   bool is_con() const { return _lo==_hi; }
 626   bool is_con(jint i) const { return is_con() && _lo == i; }
 627   jint get_con() const { assert(is_con(), "" );  return _lo; }
 628 
 629   virtual bool        is_finite() const;  // Has a finite value
 630 
 631   virtual const Type *xmeet( const Type *t ) const;
 632   virtual const Type *xdual() const;    // Compute dual right now.
 633   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 634   virtual const Type *narrow( const Type *t ) const;
 635 
 636   virtual jlong hi_as_long() const { return _hi; }
 637   virtual jlong lo_as_long() const { return _lo; }
 638 
 639   // Do not kill _widen bits.
 640   // Convenience common pre-built types.
 641   static const TypeInt *MAX;
 642   static const TypeInt *MIN;
 643   static const TypeInt *MINUS_1;
 644   static const TypeInt *ZERO;
 645   static const TypeInt *ONE;
 646   static const TypeInt *BOOL;
 647   static const TypeInt *CC;
 648   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 649   static const TypeInt *CC_GT;  // [1]   == ONE
 650   static const TypeInt *CC_EQ;  // [0]   == ZERO
 651   static const TypeInt *CC_LE;  // [-1,0]
 652   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 653   static const TypeInt *BYTE;
 654   static const TypeInt *UBYTE;
 655   static const TypeInt *CHAR;
 656   static const TypeInt *SHORT;
 657   static const TypeInt *POS;
 658   static const TypeInt *POS1;
 659   static const TypeInt *INT;
 660   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 661   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 662 
 663   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 664 #ifndef PRODUCT
 665   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 666 #endif
 667 };
 668 
 669 
 670 //------------------------------TypeLong---------------------------------------
 671 // Class of long integer ranges, the set of integers between a lower bound and
 672 // an upper bound, inclusive.
 673 class TypeLong : public TypeInteger {
 674   TypeLong( jlong lo, jlong hi, int w );
 675 protected:
 676   // Do not kill _widen bits.
 677   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 678 public:
 679   typedef jlong NativeType;
 680   virtual bool eq( const Type *t ) const;
 681   virtual int  hash() const;             // Type specific hashing
 682   virtual bool singleton(void) const;    // TRUE if type is a singleton
 683   virtual bool empty(void) const;        // TRUE if type is vacuous
 684 public:
 685   const jlong _lo, _hi;         // Lower bound, upper bound
 686   const short _widen;           // Limit on times we widen this sucker
 687 
 688   static const TypeLong *make(jlong lo);
 689   // must always specify w
 690   static const TypeLong *make(jlong lo, jlong hi, int w);
 691 
 692   // Check for single integer
 693   bool is_con() const { return _lo==_hi; }
 694   bool is_con(jlong i) const { return is_con() && _lo == i; }
 695   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 696 
 697   // Check for positive 32-bit value.
 698   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 699 
 700   virtual bool        is_finite() const;  // Has a finite value
 701 
 702   virtual jlong hi_as_long() const { return _hi; }
 703   virtual jlong lo_as_long() const { return _lo; }
 704 
 705   virtual const Type *xmeet( const Type *t ) const;
 706   virtual const Type *xdual() const;    // Compute dual right now.
 707   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 708   virtual const Type *narrow( const Type *t ) const;
 709   // Convenience common pre-built types.
 710   static const TypeLong *MAX;
 711   static const TypeLong *MIN;
 712   static const TypeLong *MINUS_1;
 713   static const TypeLong *ZERO;
 714   static const TypeLong *ONE;
 715   static const TypeLong *POS;
 716   static const TypeLong *LONG;
 717   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 718   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 719   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 720 
 721   // static convenience methods.
 722   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 723 
 724 #ifndef PRODUCT
 725   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 726 #endif
 727 };
 728 
 729 //------------------------------TypeTuple--------------------------------------
 730 // Class of Tuple Types, essentially type collections for function signatures
 731 // and class layouts.  It happens to also be a fast cache for the HotSpot
 732 // signature types.
 733 class TypeTuple : public Type {
 734   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 735 
 736   const uint          _cnt;              // Count of fields
 737   const Type ** const _fields;           // Array of field types
 738 
 739 public:
 740   virtual bool eq( const Type *t ) const;
 741   virtual int  hash() const;             // Type specific hashing
 742   virtual bool singleton(void) const;    // TRUE if type is a singleton
 743   virtual bool empty(void) const;        // TRUE if type is vacuous
 744 
 745   // Accessors:
 746   uint cnt() const { return _cnt; }
 747   const Type* field_at(uint i) const {
 748     assert(i < _cnt, "oob");
 749     return _fields[i];
 750   }
 751   void set_field_at(uint i, const Type* t) {
 752     assert(i < _cnt, "oob");
 753     _fields[i] = t;
 754   }
 755 
 756   static const TypeTuple *make( uint cnt, const Type **fields );
 757   static const TypeTuple *make_range(ciSignature* sig, bool ret_vt_fields = false);
 758   static const TypeTuple *make_domain(ciMethod* method, bool vt_fields_as_args = false);
 759 
 760   // Subroutine call type with space allocated for argument types
 761   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 762   static const Type **fields( uint arg_cnt );
 763 
 764   virtual const Type *xmeet( const Type *t ) const;
 765   virtual const Type *xdual() const;    // Compute dual right now.
 766   // Convenience common pre-built types.
 767   static const TypeTuple *IFBOTH;
 768   static const TypeTuple *IFFALSE;
 769   static const TypeTuple *IFTRUE;
 770   static const TypeTuple *IFNEITHER;
 771   static const TypeTuple *LOOPBODY;
 772   static const TypeTuple *MEMBAR;
 773   static const TypeTuple *STORECONDITIONAL;
 774   static const TypeTuple *START_I2C;
 775   static const TypeTuple *INT_PAIR;
 776   static const TypeTuple *LONG_PAIR;
 777   static const TypeTuple *INT_CC_PAIR;
 778   static const TypeTuple *LONG_CC_PAIR;
 779 #ifndef PRODUCT
 780   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 781 #endif
 782 };
 783 
 784 //------------------------------TypeAry----------------------------------------
 785 // Class of Array Types
 786 class TypeAry : public Type {
 787   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool not_flat, bool not_null_free) : Type(Array),
 788       _elem(elem), _size(size), _stable(stable), _not_flat(not_flat), _not_null_free(not_null_free) {}
 789 public:
 790   virtual bool eq( const Type *t ) const;
 791   virtual int  hash() const;             // Type specific hashing
 792   virtual bool singleton(void) const;    // TRUE if type is a singleton
 793   virtual bool empty(void) const;        // TRUE if type is vacuous
 794 
 795 private:
 796   const Type *_elem;            // Element type of array
 797   const TypeInt *_size;         // Elements in array
 798   const bool _stable;           // Are elements @Stable?
 799 
 800   // Inline type array properties
 801   const bool _not_flat;         // Array is never flattened
 802   const bool _not_null_free;    // Array is never null-free
 803 
 804   friend class TypeAryPtr;
 805 
 806 public:
 807   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
 808                              bool not_flat = false, bool not_null_free = false);
 809 
 810   virtual const Type *xmeet( const Type *t ) const;
 811   virtual const Type *xdual() const;    // Compute dual right now.
 812   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 813   virtual const Type* remove_speculative() const;
 814   virtual const Type* cleanup_speculative() const;
 815 
 816 #ifdef ASSERT
 817   // One type is interface, the other is oop
 818   virtual bool interface_vs_oop(const Type *t) const;
 819 #endif
 820 #ifndef PRODUCT
 821   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 822 #endif
 823 };
 824 
 825 
 826 //------------------------------TypeValue---------------------------------------
 827 // Class of Inline Type Types
 828 class TypeInlineType : public Type {
 829 private:
 830   ciInlineKlass* _vk;
 831   bool _larval;
 832 
 833 protected:
 834   TypeInlineType(ciInlineKlass* vk, bool larval)
 835     : Type(InlineType),
 836       _vk(vk), _larval(larval) {
 837   }
 838 
 839 public:
 840   static const TypeInlineType* make(ciInlineKlass* vk, bool larval = false);
 841   virtual ciInlineKlass* inline_klass() const { return _vk; }
 842   bool larval() const { return _larval; }
 843 
 844   virtual bool eq(const Type* t) const;
 845   virtual int  hash() const;             // Type specific hashing
 846   virtual bool singleton(void) const;    // TRUE if type is a singleton
 847   virtual bool empty(void) const;        // TRUE if type is vacuous
 848 
 849   virtual const Type* xmeet(const Type* t) const;
 850   virtual const Type* xdual() const;     // Compute dual right now.
 851 
 852   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return false; }
 853   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return false; }
 854 
 855   virtual bool maybe_null() const { return false; }
 856 
 857   static const TypeInlineType* BOTTOM;
 858 
 859 #ifndef PRODUCT
 860   virtual void dump2(Dict &d, uint, outputStream* st) const; // Specialized per-Type dumping
 861 #endif
 862 };
 863 
 864 //------------------------------TypeVect---------------------------------------
 865 // Class of Vector Types
 866 class TypeVect : public Type {
 867   const Type*   _elem;  // Vector's element type
 868   const uint  _length;  // Elements in vector (power of 2)
 869 
 870 protected:
 871   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 872     _elem(elem), _length(length) {}
 873 
 874 public:
 875   const Type* element_type() const { return _elem; }
 876   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 877   uint length() const { return _length; }
 878   uint length_in_bytes() const {
 879    return _length * type2aelembytes(element_basic_type());
 880   }
 881 
 882   virtual bool eq(const Type *t) const;
 883   virtual int  hash() const;             // Type specific hashing
 884   virtual bool singleton(void) const;    // TRUE if type is a singleton
 885   virtual bool empty(void) const;        // TRUE if type is vacuous
 886 
 887   static const TypeVect *make(const BasicType elem_bt, uint length, bool is_mask = false) {
 888     // Use bottom primitive type.
 889     return make(get_const_basic_type(elem_bt), length, is_mask);
 890   }
 891   // Used directly by Replicate nodes to construct singleton vector.
 892   static const TypeVect *make(const Type* elem, uint length, bool is_mask = false);
 893 
 894   static const TypeVect *makemask(const BasicType elem_bt, uint length) {
 895     // Use bottom primitive type.
 896     return makemask(get_const_basic_type(elem_bt), length);
 897   }
 898   static const TypeVect *makemask(const Type* elem, uint length);
 899 
 900 
 901   virtual const Type *xmeet( const Type *t) const;
 902   virtual const Type *xdual() const;     // Compute dual right now.
 903 
 904   static const TypeVect *VECTA;
 905   static const TypeVect *VECTS;
 906   static const TypeVect *VECTD;
 907   static const TypeVect *VECTX;
 908   static const TypeVect *VECTY;
 909   static const TypeVect *VECTZ;
 910   static const TypeVect *VECTMASK;
 911 
 912 #ifndef PRODUCT
 913   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 914 #endif
 915 };
 916 
 917 class TypeVectA : public TypeVect {
 918   friend class TypeVect;
 919   TypeVectA(const Type* elem, uint length) : TypeVect(VectorA, elem, length) {}
 920 };
 921 
 922 class TypeVectS : public TypeVect {
 923   friend class TypeVect;
 924   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 925 };
 926 
 927 class TypeVectD : public TypeVect {
 928   friend class TypeVect;
 929   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 930 };
 931 
 932 class TypeVectX : public TypeVect {
 933   friend class TypeVect;
 934   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 935 };
 936 
 937 class TypeVectY : public TypeVect {
 938   friend class TypeVect;
 939   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 940 };
 941 
 942 class TypeVectZ : public TypeVect {
 943   friend class TypeVect;
 944   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 945 };
 946 
 947 class TypeVectMask : public TypeVect {
 948 public:
 949   friend class TypeVect;
 950   TypeVectMask(const Type* elem, uint length) : TypeVect(VectorMask, elem, length) {}
 951   virtual bool eq(const Type *t) const;
 952   virtual const Type *xdual() const;
 953   static const TypeVectMask* make(const BasicType elem_bt, uint length);
 954   static const TypeVectMask* make(const Type* elem, uint length);
 955 };
 956 
 957 //------------------------------TypePtr----------------------------------------
 958 // Class of machine Pointer Types: raw data, instances or arrays.
 959 // If the _base enum is AnyPtr, then this refers to all of the above.
 960 // Otherwise the _base will indicate which subset of pointers is affected,
 961 // and the class will be inherited from.
 962 class TypePtr : public Type {
 963   friend class TypeNarrowPtr;
 964 public:
 965   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 966 protected:
 967   TypePtr(TYPES t, PTR ptr, Offset offset,
 968           const TypePtr* speculative = NULL,
 969           int inline_depth = InlineDepthBottom) :
 970     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 971     _ptr(ptr) {}
 972   static const PTR ptr_meet[lastPTR][lastPTR];
 973   static const PTR ptr_dual[lastPTR];
 974   static const char * const ptr_msg[lastPTR];
 975 
 976   enum {
 977     InlineDepthBottom = INT_MAX,
 978     InlineDepthTop = -InlineDepthBottom
 979   };
 980 
 981   // Extra type information profiling gave us. We propagate it the
 982   // same way the rest of the type info is propagated. If we want to
 983   // use it, then we have to emit a guard: this part of the type is
 984   // not something we know but something we speculate about the type.
 985   const TypePtr*   _speculative;
 986   // For speculative types, we record at what inlining depth the
 987   // profiling point that provided the data is. We want to favor
 988   // profile data coming from outer scopes which are likely better for
 989   // the current compilation.
 990   int _inline_depth;
 991 
 992   // utility methods to work on the speculative part of the type
 993   const TypePtr* dual_speculative() const;
 994   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 995   bool eq_speculative(const TypePtr* other) const;
 996   int hash_speculative() const;
 997   const TypePtr* add_offset_speculative(intptr_t offset) const;
 998 #ifndef PRODUCT
 999   void dump_speculative(outputStream *st) const;
1000 #endif
1001 
1002   // utility methods to work on the inline depth of the type
1003   int dual_inline_depth() const;
1004   int meet_inline_depth(int depth) const;
1005 #ifndef PRODUCT
1006   void dump_inline_depth(outputStream *st) const;
1007 #endif
1008 
1009   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1010   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1011   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1012   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1013   // encountered so the right logic specific to klasses or oops can be executed.,
1014   enum MeetResult {
1015     QUICK,
1016     UNLOADED,
1017     SUBTYPE,
1018     NOT_SUBTYPE,
1019     LCA
1020   };
1021   static MeetResult
1022   meet_instptr(PTR &ptr, ciKlass* this_klass, ciKlass* tinst_klass, bool this_xk, bool tinst_xk, PTR this_ptr,
1023                PTR tinst_ptr, bool this_flatten_array, bool tinst_flatten_array, ciKlass*&res_klass, bool &res_xk,
1024                bool& res_flatten_array);
1025 
1026   static MeetResult meet_aryptr(PTR &ptr, const Type* this_elem, const Type* tap_elem, ciKlass* this_klass, ciKlass* tap_klass,
1027                                 bool this_xk, bool tap_xk, PTR this_ptr, PTR tap_ptr, bool this_not_flat, bool tap_not_flat,
1028                                 bool this_not_null_free, bool tap_not_null_free, const Type*& res_elem, ciKlass*&res_klass,
1029                                 bool &res_xk, bool &res_not_flat, bool &res_not_null_free);
1030 
1031 public:
1032   const Offset _offset;         // Offset into oop, with TOP & BOT
1033   const PTR _ptr;               // Pointer equivalence class
1034 
1035   const int offset() const { return _offset.get(); }
1036   const PTR ptr()    const { return _ptr; }
1037 
1038   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1039                              const TypePtr* speculative = NULL,
1040                              int inline_depth = InlineDepthBottom);
1041 
1042   // Return a 'ptr' version of this type
1043   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1044 
1045   virtual intptr_t get_con() const;
1046 
1047   Offset xadd_offset(intptr_t offset) const;
1048   virtual const TypePtr *add_offset( intptr_t offset ) const;
1049   virtual const int flattened_offset() const { return offset(); }
1050 
1051   virtual bool eq(const Type *t) const;
1052   virtual int  hash() const;             // Type specific hashing
1053 
1054   virtual bool singleton(void) const;    // TRUE if type is a singleton
1055   virtual bool empty(void) const;        // TRUE if type is vacuous
1056   virtual const Type *xmeet( const Type *t ) const;
1057   virtual const Type *xmeet_helper( const Type *t ) const;
1058   Offset meet_offset(int offset) const;
1059   Offset dual_offset() const;
1060   virtual const Type *xdual() const;    // Compute dual right now.
1061 
1062   // meet, dual and join over pointer equivalence sets
1063   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1064   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1065 
1066   // This is textually confusing unless one recalls that
1067   // join(t) == dual()->meet(t->dual())->dual().
1068   PTR join_ptr( const PTR in_ptr ) const {
1069     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1070   }
1071 
1072   // Speculative type helper methods.
1073   virtual const TypePtr* speculative() const { return _speculative; }
1074   int inline_depth() const                   { return _inline_depth; }
1075   virtual ciKlass* speculative_type() const;
1076   virtual ciKlass* speculative_type_not_null() const;
1077   virtual bool speculative_maybe_null() const;
1078   virtual bool speculative_always_null() const;
1079   virtual const Type* remove_speculative() const;
1080   virtual const Type* cleanup_speculative() const;
1081   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1082   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1083   virtual const TypePtr* with_inline_depth(int depth) const;
1084 
1085   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1086 
1087   virtual bool can_be_inline_type() const { return false; }
1088   virtual bool flatten_array()      const { return false; }
1089   virtual bool is_flat()            const { return false; }
1090   virtual bool is_not_flat()        const { return false; }
1091   virtual bool is_null_free()       const { return false; }
1092   virtual bool is_not_null_free()   const { return false; }
1093 
1094   // Tests for relation to centerline of type lattice:
1095   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1096   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1097   // Convenience common pre-built types.
1098   static const TypePtr *NULL_PTR;
1099   static const TypePtr *NOTNULL;
1100   static const TypePtr *BOTTOM;
1101 #ifndef PRODUCT
1102   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1103 #endif
1104 };
1105 
1106 //------------------------------TypeRawPtr-------------------------------------
1107 // Class of raw pointers, pointers to things other than Oops.  Examples
1108 // include the stack pointer, top of heap, card-marking area, handles, etc.
1109 class TypeRawPtr : public TypePtr {
1110 protected:
1111   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1112 public:
1113   virtual bool eq( const Type *t ) const;
1114   virtual int  hash() const;     // Type specific hashing
1115 
1116   const address _bits;          // Constant value, if applicable
1117 
1118   static const TypeRawPtr *make( PTR ptr );
1119   static const TypeRawPtr *make( address bits );
1120 
1121   // Return a 'ptr' version of this type
1122   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1123 
1124   virtual intptr_t get_con() const;
1125 
1126   virtual const TypePtr *add_offset( intptr_t offset ) const;
1127 
1128   virtual const Type *xmeet( const Type *t ) const;
1129   virtual const Type *xdual() const;    // Compute dual right now.
1130   // Convenience common pre-built types.
1131   static const TypeRawPtr *BOTTOM;
1132   static const TypeRawPtr *NOTNULL;
1133 #ifndef PRODUCT
1134   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1135 #endif
1136 };
1137 
1138 //------------------------------TypeOopPtr-------------------------------------
1139 // Some kind of oop (Java pointer), either instance or array.
1140 class TypeOopPtr : public TypePtr {
1141 protected:
1142   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
1143              int instance_id, const TypePtr* speculative, int inline_depth);
1144 public:
1145   virtual bool eq( const Type *t ) const;
1146   virtual int  hash() const;             // Type specific hashing
1147   virtual bool singleton(void) const;    // TRUE if type is a singleton
1148   enum {
1149    InstanceTop = -1,   // undefined instance
1150    InstanceBot = 0     // any possible instance
1151   };
1152 protected:
1153 
1154   // Oop is NULL, unless this is a constant oop.
1155   ciObject*     _const_oop;   // Constant oop
1156   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
1157   ciKlass*      _klass;       // Klass object
1158   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1159   bool          _klass_is_exact;
1160   bool          _is_ptr_to_narrowoop;
1161   bool          _is_ptr_to_narrowklass;
1162   bool          _is_ptr_to_boxed_value;
1163 
1164   // If not InstanceTop or InstanceBot, indicates that this is
1165   // a particular instance of this type which is distinct.
1166   // This is the node index of the allocation node creating this instance.
1167   int           _instance_id;
1168 
1169   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1170 
1171   int dual_instance_id() const;
1172   int meet_instance_id(int uid) const;
1173 
1174   // Do not allow interface-vs.-noninterface joins to collapse to top.
1175   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1176 
1177 public:
1178   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1179   // Respects UseUniqueSubclasses.
1180   // If the klass is final, the resulting type will be exact.
1181   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
1182     return make_from_klass_common(klass, true, false);
1183   }
1184   // Same as before, but will produce an exact type, even if
1185   // the klass is not final, as long as it has exactly one implementation.
1186   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
1187     return make_from_klass_common(klass, true, true);
1188   }
1189   // Same as before, but does not respects UseUniqueSubclasses.
1190   // Use this only for creating array element types.
1191   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1192     return make_from_klass_common(klass, false, false);
1193   }
1194   // Creates a singleton type given an object.
1195   // If the object cannot be rendered as a constant,
1196   // may return a non-singleton type.
1197   // If require_constant, produce a NULL if a singleton is not possible.
1198   static const TypeOopPtr* make_from_constant(ciObject* o,
1199                                               bool require_constant = false);
1200 
1201   // Make a generic (unclassed) pointer to an oop.
1202   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1203                                 const TypePtr* speculative = NULL,
1204                                 int inline_depth = InlineDepthBottom);
1205 
1206   ciObject* const_oop()    const { return _const_oop; }
1207   virtual ciKlass* klass() const { return _klass;     }
1208   bool klass_is_exact()    const { return _klass_is_exact; }
1209 
1210   // Returns true if this pointer points at memory which contains a
1211   // compressed oop references.
1212   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1213   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1214   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1215   bool is_known_instance()       const { return _instance_id > 0; }
1216   int  instance_id()             const { return _instance_id; }
1217   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1218 
1219   virtual bool can_be_inline_type() const { return EnableValhalla && (_klass == NULL || _klass->can_be_inline_klass(_klass_is_exact)); }
1220 
1221   virtual intptr_t get_con() const;
1222 
1223   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1224 
1225   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1226 
1227   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1228 
1229   // corresponding pointer to klass, for a given instance
1230   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1231 
1232   virtual const TypePtr *add_offset( intptr_t offset ) const;
1233 
1234   // Speculative type helper methods.
1235   virtual const Type* remove_speculative() const;
1236   virtual const Type* cleanup_speculative() const;
1237   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1238   virtual const TypePtr* with_inline_depth(int depth) const;
1239 
1240   virtual const TypePtr* with_instance_id(int instance_id) const;
1241 
1242   virtual const Type *xdual() const;    // Compute dual right now.
1243   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1244   virtual const Type *xmeet_helper(const Type *t) const;
1245 
1246   // Convenience common pre-built type.
1247   static const TypeOopPtr *BOTTOM;
1248 #ifndef PRODUCT
1249   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1250 #endif
1251 };
1252 
1253 //------------------------------TypeInstPtr------------------------------------
1254 // Class of Java object pointers, pointing either to non-array Java instances
1255 // or to a Klass* (including array klasses).
1256 class TypeInstPtr : public TypeOopPtr {
1257   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
1258               bool flatten_array, int instance_id, const TypePtr* speculative,
1259               int inline_depth);
1260   virtual bool eq( const Type *t ) const;
1261   virtual int  hash() const;             // Type specific hashing
1262 
1263   ciSymbol*  _name;        // class name
1264   bool _flatten_array;     // Type is flat in arrays
1265 
1266  public:
1267   ciSymbol* name()         const { return _name; }
1268 
1269   bool  is_loaded() const { return _klass->is_loaded(); }
1270 
1271   // Make a pointer to a constant oop.
1272   static const TypeInstPtr *make(ciObject* o) {
1273     return make(TypePtr::Constant, o->klass(), true, o, Offset(0));
1274   }
1275   // Make a pointer to a constant oop with offset.
1276   static const TypeInstPtr* make(ciObject* o, Offset offset) {
1277     return make(TypePtr::Constant, o->klass(), true, o, offset);
1278   }
1279 
1280   // Make a pointer to some value of type klass.
1281   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1282     return make(ptr, klass, false, NULL, Offset(0));
1283   }
1284 
1285   // Make a pointer to some non-polymorphic value of exactly type klass.
1286   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1287     return make(ptr, klass, true, NULL, Offset(0));
1288   }
1289 
1290   // Make a pointer to some value of type klass with offset.
1291   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1292     return make(ptr, klass, false, NULL, offset);
1293   }
1294 
1295   // Make a pointer to an oop.
1296   static const TypeInstPtr* make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
1297                                  bool flatten_array = false,
1298                                  int instance_id = InstanceBot,
1299                                  const TypePtr* speculative = NULL,
1300                                  int inline_depth = InlineDepthBottom);
1301 
1302   /** Create constant type for a constant boxed value */
1303   const Type* get_const_boxed_value() const;
1304 
1305   // If this is a java.lang.Class constant, return the type for it or NULL.
1306   // Pass to Type::get_const_type to turn it to a type, which will usually
1307   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1308   ciType* java_mirror_type(bool* is_val_mirror = NULL) const;
1309 
1310   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1311 
1312   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1313 
1314   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1315 
1316   virtual const TypePtr *add_offset( intptr_t offset ) const;
1317 
1318   // Speculative type helper methods.
1319   virtual const Type* remove_speculative() const;
1320   virtual const TypePtr* with_inline_depth(int depth) const;
1321   virtual const TypePtr* with_instance_id(int instance_id) const;
1322 
1323   virtual const TypeInstPtr* cast_to_flatten_array() const;
1324   virtual bool flatten_array() const { return _flatten_array; }
1325 
1326   // the core of the computation of the meet of 2 types
1327   virtual const Type *xmeet_helper(const Type *t) const;
1328   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1329   virtual const Type *xdual() const;    // Compute dual right now.
1330 
1331   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1332 
1333   // Convenience common pre-built types.
1334   static const TypeInstPtr *NOTNULL;
1335   static const TypeInstPtr *BOTTOM;
1336   static const TypeInstPtr *MIRROR;
1337   static const TypeInstPtr *MARK;
1338   static const TypeInstPtr *KLASS;
1339 #ifndef PRODUCT
1340   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1341 #endif
1342 };
1343 
1344 //------------------------------TypeAryPtr-------------------------------------
1345 // Class of Java array pointers
1346 class TypeAryPtr : public TypeOopPtr {
1347   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1348              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1349              const TypePtr* speculative, int inline_depth)
1350     : TypeOopPtr(AryPtr, ptr, k, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1351     _ary(ary),
1352     _is_autobox_cache(is_autobox_cache),
1353     _field_offset(field_offset)
1354  {
1355 #ifdef ASSERT
1356     if (k != NULL) {
1357       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1358       ciKlass* ck = compute_klass(true);
1359       if (k != ck) {
1360         this->dump(); tty->cr();
1361         tty->print(" k: ");
1362         k->print(); tty->cr();
1363         tty->print("ck: ");
1364         if (ck != NULL) ck->print();
1365         else tty->print("<NULL>");
1366         tty->cr();
1367         assert(false, "unexpected TypeAryPtr::_klass");
1368       }
1369     }
1370 #endif
1371   }
1372   virtual bool eq( const Type *t ) const;
1373   virtual int hash() const;     // Type specific hashing
1374   const TypeAry *_ary;          // Array we point into
1375   const bool     _is_autobox_cache;
1376   // For flattened inline type arrays, each field of the inline type in
1377   // the array has its own memory slice so we need to keep track of
1378   // which field is accessed
1379   const Offset _field_offset;
1380   Offset meet_field_offset(const Type::Offset offset) const;
1381   Offset dual_field_offset() const;
1382 
1383   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1384 
1385 public:
1386   // Accessors
1387   ciKlass* klass() const;
1388   const TypeAry* ary() const  { return _ary; }
1389   const Type*    elem() const { return _ary->_elem; }
1390   const TypeInt* size() const { return _ary->_size; }
1391   bool      is_stable() const { return _ary->_stable; }
1392 
1393   // Inline type array properties
1394   bool is_flat()          const { return _ary->_elem->isa_inlinetype() != NULL; }
1395   bool is_not_flat()      const { return _ary->_not_flat; }
1396   bool is_null_free()     const { return is_flat() || (_ary->_elem->make_ptr() != NULL && _ary->_elem->make_ptr()->is_inlinetypeptr() && !_ary->_elem->make_ptr()->maybe_null()); }
1397   bool is_not_null_free() const { return _ary->_not_null_free; }
1398 
1399   bool is_autobox_cache() const { return _is_autobox_cache; }
1400 
1401   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1402                                 Offset field_offset = Offset::bottom,
1403                                 int instance_id = InstanceBot,
1404                                 const TypePtr* speculative = NULL,
1405                                 int inline_depth = InlineDepthBottom);
1406   // Constant pointer to array
1407   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1408                                 Offset field_offset = Offset::bottom,
1409                                 int instance_id = InstanceBot,
1410                                 const TypePtr* speculative = NULL,
1411                                 int inline_depth = InlineDepthBottom,
1412                                 bool is_autobox_cache = false);
1413 
1414   // Return a 'ptr' version of this type
1415   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1416 
1417   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1418 
1419   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1420 
1421   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1422   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1423 
1424   virtual bool empty(void) const;        // TRUE if type is vacuous
1425   virtual const TypePtr *add_offset( intptr_t offset ) const;
1426 
1427   // Speculative type helper methods.
1428   virtual const Type* remove_speculative() const;
1429   virtual const Type* cleanup_speculative() const;
1430   virtual const TypePtr* with_inline_depth(int depth) const;
1431   virtual const TypePtr* with_instance_id(int instance_id) const;
1432 
1433   // the core of the computation of the meet of 2 types
1434   virtual const Type *xmeet_helper(const Type *t) const;
1435   virtual const Type *xdual() const;    // Compute dual right now.
1436 
1437   // Inline type array properties
1438   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1439   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1440   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1441 
1442   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1443   int stable_dimension() const;
1444 
1445   const TypeAryPtr* cast_to_autobox_cache() const;
1446 
1447   static jint max_array_length(BasicType etype);
1448 
1449   const int flattened_offset() const;
1450   const Offset field_offset() const { return _field_offset; }
1451   const TypeAryPtr* with_field_offset(int offset) const;
1452   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1453 
1454   virtual bool can_be_inline_type() const { return false; }
1455   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1456 
1457   // Convenience common pre-built types.
1458   static const TypeAryPtr *RANGE;
1459   static const TypeAryPtr *OOPS;
1460   static const TypeAryPtr *NARROWOOPS;
1461   static const TypeAryPtr *BYTES;
1462   static const TypeAryPtr *SHORTS;
1463   static const TypeAryPtr *CHARS;
1464   static const TypeAryPtr *INTS;
1465   static const TypeAryPtr *LONGS;
1466   static const TypeAryPtr *FLOATS;
1467   static const TypeAryPtr *DOUBLES;
1468   static const TypeAryPtr *INLINES;
1469   // selects one of the above:
1470   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1471     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1472     return _array_body_type[elem];
1473   }
1474   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1475   // sharpen the type of an int which is used as an array size
1476 #ifdef ASSERT
1477   // One type is interface, the other is oop
1478   virtual bool interface_vs_oop(const Type *t) const;
1479 #endif
1480 #ifndef PRODUCT
1481   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1482 #endif
1483 };
1484 
1485 //------------------------------TypeMetadataPtr-------------------------------------
1486 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1487 class TypeMetadataPtr : public TypePtr {
1488 protected:
1489   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1490   // Do not allow interface-vs.-noninterface joins to collapse to top.
1491   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1492 public:
1493   virtual bool eq( const Type *t ) const;
1494   virtual int  hash() const;             // Type specific hashing
1495   virtual bool singleton(void) const;    // TRUE if type is a singleton
1496 
1497 private:
1498   ciMetadata*   _metadata;
1499 
1500 public:
1501   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1502 
1503   static const TypeMetadataPtr* make(ciMethod* m);
1504   static const TypeMetadataPtr* make(ciMethodData* m);
1505 
1506   ciMetadata* metadata() const { return _metadata; }
1507 
1508   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1509 
1510   virtual const TypePtr *add_offset( intptr_t offset ) const;
1511 
1512   virtual const Type *xmeet( const Type *t ) const;
1513   virtual const Type *xdual() const;    // Compute dual right now.
1514 
1515   virtual intptr_t get_con() const;
1516 
1517   // Convenience common pre-built types.
1518   static const TypeMetadataPtr *BOTTOM;
1519 
1520 #ifndef PRODUCT
1521   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1522 #endif
1523 };
1524 
1525 //------------------------------TypeKlassPtr-----------------------------------
1526 // Class of Java Klass pointers
1527 class TypeKlassPtr : public TypePtr {
1528 protected:
1529   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, Offset offset);
1530 
1531   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1532 
1533 public:
1534   virtual bool eq( const Type *t ) const;
1535   virtual int hash() const;
1536   virtual bool singleton(void) const;    // TRUE if type is a singleton
1537   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1538 
1539 protected:
1540 
1541   ciKlass* _klass;
1542 
1543 public:
1544 
1545   virtual ciKlass* klass() const { return  _klass; }
1546   bool klass_is_exact()    const { return _ptr == Constant; }
1547   bool  is_loaded() const { return klass()->is_loaded(); }
1548 
1549   static const TypeKlassPtr* make(ciKlass* klass);
1550   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset);
1551 
1552 
1553   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return NULL; }
1554 
1555   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return NULL; }
1556 
1557   // corresponding pointer to instance, for a given class
1558   virtual const TypeOopPtr* as_instance_type() const { ShouldNotReachHere(); return NULL; }
1559 
1560   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return NULL; }
1561   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return NULL; }
1562   virtual const Type    *xdual() const { ShouldNotReachHere(); return NULL; }
1563 
1564   virtual intptr_t get_con() const;
1565 
1566   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return NULL; }
1567 };
1568 
1569 // Instance klass pointer, mirrors TypeInstPtr
1570 class TypeInstKlassPtr : public TypeKlassPtr {
1571 
1572   TypeInstKlassPtr(PTR ptr, ciKlass* klass, Offset offset, bool flatten_array)
1573     : TypeKlassPtr(InstKlassPtr, ptr, klass, offset), _flatten_array(flatten_array) {
1574   }
1575 
1576   virtual bool must_be_exact() const;
1577 
1578   const bool _flatten_array; // Type is flat in arrays
1579 
1580 public:
1581   // Instance klass ignoring any interface
1582   ciInstanceKlass* instance_klass() const { return klass()->as_instance_klass();     }
1583 
1584   virtual bool can_be_inline_type() const { return EnableValhalla && (_klass == NULL || _klass->can_be_inline_klass(klass_is_exact())); }
1585 
1586   static const TypeInstKlassPtr *make(ciKlass* k) {
1587     return make(TypePtr::Constant, k, Offset(0), false);
1588   }
1589   static const TypeInstKlassPtr *make(PTR ptr, ciKlass* k, Offset offset, bool flatten_array = false);
1590 
1591   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1592 
1593   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1594 
1595   // corresponding pointer to instance, for a given class
1596   virtual const TypeOopPtr* as_instance_type() const;
1597   virtual int hash() const;
1598   virtual bool eq(const Type *t) const;
1599 
1600   virtual const TypePtr *add_offset( intptr_t offset ) const;
1601   virtual const Type    *xmeet( const Type *t ) const;
1602   virtual const Type    *xdual() const;
1603   virtual const TypeKlassPtr* with_offset(intptr_t offset) const;
1604 
1605   virtual bool flatten_array() const { return _flatten_array; }
1606 
1607   // Convenience common pre-built types.
1608   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1609   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1610 
1611 #ifndef PRODUCT
1612   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1613 #endif
1614 };
1615 
1616 // Array klass pointer, mirrors TypeAryPtr
1617 class TypeAryKlassPtr : public TypeKlassPtr {
1618   const Type *_elem;
1619   const bool _not_flat;      // Array is never flattened
1620   const bool _not_null_free; // Array is never null-free
1621   const bool _null_free;
1622 
1623   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool null_free)
1624     : TypeKlassPtr(AryKlassPtr, ptr, klass, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _null_free(null_free) {
1625   }
1626 
1627   virtual bool must_be_exact() const;
1628 
1629   bool dual_null_free() const {
1630     return _null_free;
1631   }
1632 
1633   bool meet_null_free(bool other) const {
1634     return _null_free && other;
1635   }
1636 
1637 public:
1638   virtual ciKlass* klass() const;
1639 
1640   // returns base element type, an instance klass (and not interface) for object arrays
1641   const Type* base_element_type(int& dims) const;
1642 
1643   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free);
1644   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool null_free);
1645   static const TypeAryKlassPtr* make(ciKlass* klass, PTR ptr = Constant, Offset offset= Offset(0));
1646 
1647   const Type *elem() const { return _elem; }
1648 
1649   virtual bool eq(const Type *t) const;
1650   virtual int hash() const;             // Type specific hashing
1651 
1652   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1653 
1654   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1655 
1656   // corresponding pointer to instance, for a given class
1657   virtual const TypeOopPtr* as_instance_type() const;
1658 
1659   virtual const TypePtr *add_offset( intptr_t offset ) const;
1660   virtual const Type    *xmeet( const Type *t ) const;
1661   virtual const Type    *xdual() const;      // Compute dual right now.
1662 
1663   virtual const TypeKlassPtr* with_offset(intptr_t offset) const;
1664 
1665   virtual bool empty(void) const {
1666     return TypeKlassPtr::empty() || _elem->empty();
1667   }
1668 
1669   bool is_flat()          const { return klass()->is_flat_array_klass(); }
1670   bool is_not_flat()      const { return _not_flat; }
1671   bool is_null_free()     const { return _null_free; }
1672   bool is_not_null_free() const { return _not_null_free; }
1673 
1674 #ifndef PRODUCT
1675   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1676 #endif
1677 };
1678 
1679 class TypeNarrowPtr : public Type {
1680 protected:
1681   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1682 
1683   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1684                                                   _ptrtype(ptrtype) {
1685     assert(ptrtype->offset() == 0 ||
1686            ptrtype->offset() == OffsetBot ||
1687            ptrtype->offset() == OffsetTop, "no real offsets");
1688   }
1689 
1690   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1691   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1692   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1693   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1694   // Do not allow interface-vs.-noninterface joins to collapse to top.
1695   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1696 public:
1697   virtual bool eq( const Type *t ) const;
1698   virtual int  hash() const;             // Type specific hashing
1699   virtual bool singleton(void) const;    // TRUE if type is a singleton
1700 
1701   virtual const Type *xmeet( const Type *t ) const;
1702   virtual const Type *xdual() const;    // Compute dual right now.
1703 
1704   virtual intptr_t get_con() const;
1705 
1706   virtual bool empty(void) const;        // TRUE if type is vacuous
1707 
1708   // returns the equivalent ptr type for this compressed pointer
1709   const TypePtr *get_ptrtype() const {
1710     return _ptrtype;
1711   }
1712 
1713   bool is_known_instance() const {
1714     return _ptrtype->is_known_instance();
1715   }
1716 
1717 #ifndef PRODUCT
1718   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1719 #endif
1720 };
1721 
1722 //------------------------------TypeNarrowOop----------------------------------
1723 // A compressed reference to some kind of Oop.  This type wraps around
1724 // a preexisting TypeOopPtr and forwards most of it's operations to
1725 // the underlying type.  It's only real purpose is to track the
1726 // oopness of the compressed oop value when we expose the conversion
1727 // between the normal and the compressed form.
1728 class TypeNarrowOop : public TypeNarrowPtr {
1729 protected:
1730   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1731   }
1732 
1733   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1734     return t->isa_narrowoop();
1735   }
1736 
1737   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1738     return t->is_narrowoop();
1739   }
1740 
1741   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1742     return new TypeNarrowOop(t);
1743   }
1744 
1745   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1746     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1747   }
1748 
1749 public:
1750 
1751   static const TypeNarrowOop *make( const TypePtr* type);
1752 
1753   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1754     return make(TypeOopPtr::make_from_constant(con, require_constant));
1755   }
1756 
1757   static const TypeNarrowOop *BOTTOM;
1758   static const TypeNarrowOop *NULL_PTR;
1759 
1760   virtual const Type* remove_speculative() const;
1761   virtual const Type* cleanup_speculative() const;
1762 
1763 #ifndef PRODUCT
1764   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1765 #endif
1766 };
1767 
1768 //------------------------------TypeNarrowKlass----------------------------------
1769 // A compressed reference to klass pointer.  This type wraps around a
1770 // preexisting TypeKlassPtr and forwards most of it's operations to
1771 // the underlying type.
1772 class TypeNarrowKlass : public TypeNarrowPtr {
1773 protected:
1774   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1775   }
1776 
1777   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1778     return t->isa_narrowklass();
1779   }
1780 
1781   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1782     return t->is_narrowklass();
1783   }
1784 
1785   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1786     return new TypeNarrowKlass(t);
1787   }
1788 
1789   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1790     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1791   }
1792 
1793 public:
1794   static const TypeNarrowKlass *make( const TypePtr* type);
1795 
1796   // static const TypeNarrowKlass *BOTTOM;
1797   static const TypeNarrowKlass *NULL_PTR;
1798 
1799 #ifndef PRODUCT
1800   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1801 #endif
1802 };
1803 
1804 //------------------------------TypeFunc---------------------------------------
1805 // Class of Array Types
1806 class TypeFunc : public Type {
1807   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
1808     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
1809   virtual bool eq( const Type *t ) const;
1810   virtual int  hash() const;             // Type specific hashing
1811   virtual bool singleton(void) const;    // TRUE if type is a singleton
1812   virtual bool empty(void) const;        // TRUE if type is vacuous
1813 
1814   // Domains of inputs: inline type arguments are not passed by
1815   // reference, instead each field of the inline type is passed as an
1816   // argument. We maintain 2 views of the argument list here: one
1817   // based on the signature (with an inline type argument as a single
1818   // slot), one based on the actual calling convention (with a value
1819   // type argument as a list of its fields).
1820   const TypeTuple* const _domain_sig;
1821   const TypeTuple* const _domain_cc;
1822   // Range of results. Similar to domains: an inline type result can be
1823   // returned in registers in which case range_cc lists all fields and
1824   // is the actual calling convention.
1825   const TypeTuple* const _range_sig;
1826   const TypeTuple* const _range_cc;
1827 
1828 public:
1829   // Constants are shared among ADLC and VM
1830   enum { Control    = AdlcVMDeps::Control,
1831          I_O        = AdlcVMDeps::I_O,
1832          Memory     = AdlcVMDeps::Memory,
1833          FramePtr   = AdlcVMDeps::FramePtr,
1834          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1835          Parms      = AdlcVMDeps::Parms
1836   };
1837 
1838 
1839   // Accessors:
1840   const TypeTuple* domain_sig() const { return _domain_sig; }
1841   const TypeTuple* domain_cc()  const { return _domain_cc; }
1842   const TypeTuple* range_sig()  const { return _range_sig; }
1843   const TypeTuple* range_cc()   const { return _range_cc; }
1844 
1845   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
1846   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
1847                               const TypeTuple* range_sig, const TypeTuple* range_cc);
1848   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1849 
1850   virtual const Type *xmeet( const Type *t ) const;
1851   virtual const Type *xdual() const;    // Compute dual right now.
1852 
1853   BasicType return_type() const;
1854 
1855   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
1856 
1857 #ifndef PRODUCT
1858   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1859 #endif
1860   // Convenience common pre-built types.
1861 };
1862 
1863 //------------------------------accessors--------------------------------------
1864 inline bool Type::is_ptr_to_narrowoop() const {
1865 #ifdef _LP64
1866   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1867 #else
1868   return false;
1869 #endif
1870 }
1871 
1872 inline bool Type::is_ptr_to_narrowklass() const {
1873 #ifdef _LP64
1874   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1875 #else
1876   return false;
1877 #endif
1878 }
1879 
1880 inline float Type::getf() const {
1881   assert( _base == FloatCon, "Not a FloatCon" );
1882   return ((TypeF*)this)->_f;
1883 }
1884 
1885 inline double Type::getd() const {
1886   assert( _base == DoubleCon, "Not a DoubleCon" );
1887   return ((TypeD*)this)->_d;
1888 }
1889 
1890 inline const TypeInteger *Type::is_integer(BasicType bt) const {
1891   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
1892   return (TypeInteger*)this;
1893 }
1894 
1895 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
1896   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : NULL);
1897 }
1898 
1899 inline const TypeInt *Type::is_int() const {
1900   assert( _base == Int, "Not an Int" );
1901   return (TypeInt*)this;
1902 }
1903 
1904 inline const TypeInt *Type::isa_int() const {
1905   return ( _base == Int ? (TypeInt*)this : NULL);
1906 }
1907 
1908 inline const TypeLong *Type::is_long() const {
1909   assert( _base == Long, "Not a Long" );
1910   return (TypeLong*)this;
1911 }
1912 
1913 inline const TypeLong *Type::isa_long() const {
1914   return ( _base == Long ? (TypeLong*)this : NULL);
1915 }
1916 
1917 inline const TypeF *Type::isa_float() const {
1918   return ((_base == FloatTop ||
1919            _base == FloatCon ||
1920            _base == FloatBot) ? (TypeF*)this : NULL);
1921 }
1922 
1923 inline const TypeF *Type::is_float_constant() const {
1924   assert( _base == FloatCon, "Not a Float" );
1925   return (TypeF*)this;
1926 }
1927 
1928 inline const TypeF *Type::isa_float_constant() const {
1929   return ( _base == FloatCon ? (TypeF*)this : NULL);
1930 }
1931 
1932 inline const TypeD *Type::isa_double() const {
1933   return ((_base == DoubleTop ||
1934            _base == DoubleCon ||
1935            _base == DoubleBot) ? (TypeD*)this : NULL);
1936 }
1937 
1938 inline const TypeD *Type::is_double_constant() const {
1939   assert( _base == DoubleCon, "Not a Double" );
1940   return (TypeD*)this;
1941 }
1942 
1943 inline const TypeD *Type::isa_double_constant() const {
1944   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1945 }
1946 
1947 inline const TypeTuple *Type::is_tuple() const {
1948   assert( _base == Tuple, "Not a Tuple" );
1949   return (TypeTuple*)this;
1950 }
1951 
1952 inline const TypeAry *Type::is_ary() const {
1953   assert( _base == Array , "Not an Array" );
1954   return (TypeAry*)this;
1955 }
1956 
1957 inline const TypeAry *Type::isa_ary() const {
1958   return ((_base == Array) ? (TypeAry*)this : NULL);
1959 }
1960 
1961 inline const TypeVectMask *Type::is_vectmask() const {
1962   assert( _base == VectorMask, "Not a Vector Mask" );
1963   return (TypeVectMask*)this;
1964 }
1965 
1966 inline const TypeVectMask *Type::isa_vectmask() const {
1967   return (_base == VectorMask) ? (TypeVectMask*)this : NULL;
1968 }
1969 
1970 inline const TypeVect *Type::is_vect() const {
1971   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
1972   return (TypeVect*)this;
1973 }
1974 
1975 inline const TypeVect *Type::isa_vect() const {
1976   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : NULL;
1977 }
1978 
1979 inline const TypePtr *Type::is_ptr() const {
1980   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1981   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
1982   return (TypePtr*)this;
1983 }
1984 
1985 inline const TypePtr *Type::isa_ptr() const {
1986   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1987   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : NULL;
1988 }
1989 
1990 inline const TypeOopPtr *Type::is_oopptr() const {
1991   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1992   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1993   return (TypeOopPtr*)this;
1994 }
1995 
1996 inline const TypeOopPtr *Type::isa_oopptr() const {
1997   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1998   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1999 }
2000 
2001 inline const TypeRawPtr *Type::isa_rawptr() const {
2002   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
2003 }
2004 
2005 inline const TypeRawPtr *Type::is_rawptr() const {
2006   assert( _base == RawPtr, "Not a raw pointer" );
2007   return (TypeRawPtr*)this;
2008 }
2009 
2010 inline const TypeInstPtr *Type::isa_instptr() const {
2011   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
2012 }
2013 
2014 inline const TypeInstPtr *Type::is_instptr() const {
2015   assert( _base == InstPtr, "Not an object pointer" );
2016   return (TypeInstPtr*)this;
2017 }
2018 
2019 inline const TypeAryPtr *Type::isa_aryptr() const {
2020   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
2021 }
2022 
2023 inline const TypeAryPtr *Type::is_aryptr() const {
2024   assert( _base == AryPtr, "Not an array pointer" );
2025   return (TypeAryPtr*)this;
2026 }
2027 
2028 inline const TypeInlineType* Type::isa_inlinetype() const {
2029   return (_base == InlineType) ? (TypeInlineType*)this : NULL;
2030 }
2031 
2032 inline const TypeInlineType* Type::is_inlinetype() const {
2033   assert(_base == InlineType, "Not an inline type");
2034   return (TypeInlineType*)this;
2035 }
2036 
2037 inline const TypeNarrowOop *Type::is_narrowoop() const {
2038   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2039   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2040   return (TypeNarrowOop*)this;
2041 }
2042 
2043 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2044   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2045   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
2046 }
2047 
2048 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2049   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2050   return (TypeNarrowKlass*)this;
2051 }
2052 
2053 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2054   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
2055 }
2056 
2057 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2058   // MetadataPtr is the first and CPCachePtr the last
2059   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2060   return (TypeMetadataPtr*)this;
2061 }
2062 
2063 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2064   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
2065 }
2066 
2067 inline const TypeKlassPtr *Type::isa_klassptr() const {
2068   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : NULL;
2069 }
2070 
2071 inline const TypeKlassPtr *Type::is_klassptr() const {
2072   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2073   return (TypeKlassPtr*)this;
2074 }
2075 
2076 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2077   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : NULL;
2078 }
2079 
2080 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2081   assert(_base == InstKlassPtr, "Not a klass pointer");
2082   return (TypeInstKlassPtr*)this;
2083 }
2084 
2085 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2086   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : NULL;
2087 }
2088 
2089 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2090   assert(_base == AryKlassPtr, "Not a klass pointer");
2091   return (TypeAryKlassPtr*)this;
2092 }
2093 
2094 inline const TypePtr* Type::make_ptr() const {
2095   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2096                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2097                                                        isa_ptr());
2098 }
2099 
2100 inline const TypeOopPtr* Type::make_oopptr() const {
2101   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2102 }
2103 
2104 inline const TypeNarrowOop* Type::make_narrowoop() const {
2105   return (_base == NarrowOop) ? is_narrowoop() :
2106                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
2107 }
2108 
2109 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2110   return (_base == NarrowKlass) ? is_narrowklass() :
2111                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
2112 }
2113 
2114 inline bool Type::is_floatingpoint() const {
2115   if( (_base == FloatCon)  || (_base == FloatBot) ||
2116       (_base == DoubleCon) || (_base == DoubleBot) )
2117     return true;
2118   return false;
2119 }
2120 
2121 inline bool Type::is_inlinetypeptr() const {
2122   return isa_instptr() != NULL && is_instptr()->klass()->is_inlinetype();
2123 }
2124 
2125 
2126 inline ciInlineKlass* Type::inline_klass() const {
2127   assert(is_inlinetypeptr(), "must be an inline type ptr");
2128   return is_instptr()->klass()->as_inline_klass();
2129 }
2130 
2131 
2132 // ===============================================================
2133 // Things that need to be 64-bits in the 64-bit build but
2134 // 32-bits in the 32-bit build.  Done this way to get full
2135 // optimization AND strong typing.
2136 #ifdef _LP64
2137 
2138 // For type queries and asserts
2139 #define is_intptr_t  is_long
2140 #define isa_intptr_t isa_long
2141 #define find_intptr_t_type find_long_type
2142 #define find_intptr_t_con  find_long_con
2143 #define TypeX        TypeLong
2144 #define Type_X       Type::Long
2145 #define TypeX_X      TypeLong::LONG
2146 #define TypeX_ZERO   TypeLong::ZERO
2147 // For 'ideal_reg' machine registers
2148 #define Op_RegX      Op_RegL
2149 // For phase->intcon variants
2150 #define MakeConX     longcon
2151 #define ConXNode     ConLNode
2152 // For array index arithmetic
2153 #define MulXNode     MulLNode
2154 #define AndXNode     AndLNode
2155 #define OrXNode      OrLNode
2156 #define CmpXNode     CmpLNode
2157 #define CmpUXNode    CmpULNode
2158 #define SubXNode     SubLNode
2159 #define LShiftXNode  LShiftLNode
2160 // For object size computation:
2161 #define AddXNode     AddLNode
2162 #define RShiftXNode  RShiftLNode
2163 // For card marks and hashcodes
2164 #define URShiftXNode URShiftLNode
2165 // For shenandoahSupport
2166 #define LoadXNode    LoadLNode
2167 #define StoreXNode   StoreLNode
2168 // Opcodes
2169 #define Op_LShiftX   Op_LShiftL
2170 #define Op_AndX      Op_AndL
2171 #define Op_AddX      Op_AddL
2172 #define Op_SubX      Op_SubL
2173 #define Op_XorX      Op_XorL
2174 #define Op_URShiftX  Op_URShiftL
2175 #define Op_LoadX     Op_LoadL
2176 #define Op_StoreX    Op_StoreL
2177 // conversions
2178 #define ConvI2X(x)   ConvI2L(x)
2179 #define ConvL2X(x)   (x)
2180 #define ConvX2I(x)   ConvL2I(x)
2181 #define ConvX2L(x)   (x)
2182 #define ConvX2UL(x)  (x)
2183 
2184 #else
2185 
2186 // For type queries and asserts
2187 #define is_intptr_t  is_int
2188 #define isa_intptr_t isa_int
2189 #define find_intptr_t_type find_int_type
2190 #define find_intptr_t_con  find_int_con
2191 #define TypeX        TypeInt
2192 #define Type_X       Type::Int
2193 #define TypeX_X      TypeInt::INT
2194 #define TypeX_ZERO   TypeInt::ZERO
2195 // For 'ideal_reg' machine registers
2196 #define Op_RegX      Op_RegI
2197 // For phase->intcon variants
2198 #define MakeConX     intcon
2199 #define ConXNode     ConINode
2200 // For array index arithmetic
2201 #define MulXNode     MulINode
2202 #define AndXNode     AndINode
2203 #define OrXNode      OrINode
2204 #define CmpXNode     CmpINode
2205 #define CmpUXNode    CmpUNode
2206 #define SubXNode     SubINode
2207 #define LShiftXNode  LShiftINode
2208 // For object size computation:
2209 #define AddXNode     AddINode
2210 #define RShiftXNode  RShiftINode
2211 // For card marks and hashcodes
2212 #define URShiftXNode URShiftINode
2213 // For shenandoahSupport
2214 #define LoadXNode    LoadINode
2215 #define StoreXNode   StoreINode
2216 // Opcodes
2217 #define Op_LShiftX   Op_LShiftI
2218 #define Op_AndX      Op_AndI
2219 #define Op_AddX      Op_AddI
2220 #define Op_SubX      Op_SubI
2221 #define Op_XorX      Op_XorI
2222 #define Op_URShiftX  Op_URShiftI
2223 #define Op_LoadX     Op_LoadI
2224 #define Op_StoreX    Op_StoreI
2225 // conversions
2226 #define ConvI2X(x)   (x)
2227 #define ConvL2X(x)   ConvL2I(x)
2228 #define ConvX2I(x)   (x)
2229 #define ConvX2L(x)   ConvI2L(x)
2230 #define ConvX2UL(x)  ConvI2UL(x)
2231 
2232 #endif
2233 
2234 #endif // SHARE_OPTO_TYPE_HPP