1 /*
2 * Copyright (c) 1997, 2026, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_OPTO_TYPE_HPP
26 #define SHARE_OPTO_TYPE_HPP
27
28 #include "ci/ciInlineKlass.hpp"
29 #include "opto/adlcVMDeps.hpp"
30 #include "opto/compile.hpp"
31 #include "opto/rangeinference.hpp"
32
33 // Portions of code courtesy of Clifford Click
34
35 // Optimization - Graph Style
36
37
38 // This class defines a Type lattice. The lattice is used in the constant
39 // propagation algorithms, and for some type-checking of the iloc code.
40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
41 // float & double precision constants, sets of data-labels and code-labels.
42 // The complete lattice is described below. Subtypes have no relationship to
43 // up or down in the lattice; that is entirely determined by the behavior of
44 // the MEET/JOIN functions.
45
46 class Dict;
47 class Type;
48 class TypeD;
49 class TypeF;
50 class TypeH;
51 class TypeInteger;
52 class TypeInt;
53 class TypeLong;
54 class TypeNarrowPtr;
55 class TypeNarrowOop;
56 class TypeNarrowKlass;
57 class TypeAry;
58 class TypeTuple;
59 class TypeVect;
60 class TypeVectA;
61 class TypeVectS;
62 class TypeVectD;
63 class TypeVectX;
64 class TypeVectY;
65 class TypeVectZ;
66 class TypeVectMask;
67 class TypePtr;
68 class TypeRawPtr;
69 class TypeOopPtr;
70 class TypeInstPtr;
71 class TypeAryPtr;
72 class TypeKlassPtr;
73 class TypeInstKlassPtr;
74 class TypeAryKlassPtr;
75 class TypeMetadataPtr;
76 class VerifyMeet;
77
78 template <class T, class U>
79 class TypeIntPrototype;
80
81 //------------------------------Type-------------------------------------------
82 // Basic Type object, represents a set of primitive Values.
83 // Types are hash-cons'd into a private class dictionary, so only one of each
84 // different kind of Type exists. Types are never modified after creation, so
85 // all their interesting fields are constant.
86 class Type {
87
88 public:
89 enum TYPES {
90 Bad=0, // Type check
91 Control, // Control of code (not in lattice)
92 Top, // Top of the lattice
93 Int, // Integer range (lo-hi)
94 Long, // Long integer range (lo-hi)
95 Half, // Placeholder half of doubleword
96 NarrowOop, // Compressed oop pointer
97 NarrowKlass, // Compressed klass pointer
98
99 Tuple, // Method signature or object layout
100 Array, // Array types
101
102 Interfaces, // Set of implemented interfaces for oop types
103
104 VectorMask, // Vector predicate/mask type
105 VectorA, // (Scalable) Vector types for vector length agnostic
106 VectorS, // 32bit Vector types
107 VectorD, // 64bit Vector types
108 VectorX, // 128bit Vector types
109 VectorY, // 256bit Vector types
110 VectorZ, // 512bit Vector types
111
112 AnyPtr, // Any old raw, klass, inst, or array pointer
113 RawPtr, // Raw (non-oop) pointers
114 OopPtr, // Any and all Java heap entities
115 InstPtr, // Instance pointers (non-array objects)
116 AryPtr, // Array pointers
117 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
118
119 MetadataPtr, // Generic metadata
120 KlassPtr, // Klass pointers
121 InstKlassPtr,
122 AryKlassPtr,
123
124 Function, // Function signature
125 Abio, // Abstract I/O
126 Return_Address, // Subroutine return address
127 Memory, // Abstract store
128 HalfFloatTop, // No float value
129 HalfFloatCon, // Floating point constant
130 HalfFloatBot, // Any float value
131 FloatTop, // No float value
132 FloatCon, // Floating point constant
133 FloatBot, // Any float value
134 DoubleTop, // No double value
135 DoubleCon, // Double precision constant
136 DoubleBot, // Any double value
137 Bottom, // Bottom of lattice
138 lastype // Bogus ending type (not in lattice)
139 };
140
141 // Signal values for offsets from a base pointer
142 enum OFFSET_SIGNALS {
143 OffsetTop = -2000000000, // undefined offset
144 OffsetBot = -2000000001 // any possible offset
145 };
146
147 class Offset {
148 private:
149 int _offset;
150
151 public:
152 explicit Offset(int offset) : _offset(offset) {}
153
154 const Offset meet(const Offset other) const;
155 const Offset dual() const;
156 const Offset add(intptr_t offset) const;
157 bool operator==(const Offset& other) const {
158 return _offset == other._offset;
159 }
160 bool operator!=(const Offset& other) const {
161 return _offset != other._offset;
162 }
163 int get() const { return _offset; }
164
165 void dump2(outputStream *st) const;
166
167 static const Offset top;
168 static const Offset bottom;
169 };
170
171 // Min and max WIDEN values.
172 enum WIDEN {
173 WidenMin = 0,
174 WidenMax = 3
175 };
176
177 private:
178 typedef struct {
179 TYPES dual_type;
180 BasicType basic_type;
181 const char* msg;
182 bool isa_oop;
183 uint ideal_reg;
184 relocInfo::relocType reloc;
185 } TypeInfo;
186
187 // Dictionary of types shared among compilations.
188 static Dict* _shared_type_dict;
189 static const TypeInfo _type_info[];
190
191 static int uhash( const Type *const t );
192 // Structural equality check. Assumes that equals() has already compared
193 // the _base types and thus knows it can cast 't' appropriately.
194 virtual bool eq( const Type *t ) const;
195
196 // Top-level hash-table of types
197 static Dict *type_dict() {
198 return Compile::current()->type_dict();
199 }
200
201 // DUAL operation: reflect around lattice centerline. Used instead of
202 // join to ensure my lattice is symmetric up and down. Dual is computed
203 // lazily, on demand, and cached in _dual.
204 const Type *_dual; // Cached dual value
205
206
207 const Type *meet_helper(const Type *t, bool include_speculative) const;
208 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
209
210 protected:
211 // Each class of type is also identified by its base.
212 const TYPES _base; // Enum of Types type
213
214 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types
215 // ~Type(); // Use fast deallocation
216 const Type *hashcons(); // Hash-cons the type
217 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
218 const Type *join_helper(const Type *t, bool include_speculative) const {
219 assert_type_verify_empty();
220 return dual()->meet_helper(t->dual(), include_speculative)->dual();
221 }
222
223 void assert_type_verify_empty() const NOT_DEBUG_RETURN;
224
225 public:
226
227 inline void* operator new( size_t x ) throw() {
228 Compile* compile = Compile::current();
229 compile->set_type_last_size(x);
230 return compile->type_arena()->AmallocWords(x);
231 }
232 inline void operator delete( void* ptr ) {
233 Compile* compile = Compile::current();
234 compile->type_arena()->Afree(ptr,compile->type_last_size());
235 }
236
237 // Initialize the type system for a particular compilation.
238 static void Initialize(Compile* compile);
239
240 // Initialize the types shared by all compilations.
241 static void Initialize_shared(Compile* compile);
242
243 TYPES base() const {
244 assert(_base > Bad && _base < lastype, "sanity");
245 return _base;
246 }
247
248 // Create a new hash-consd type
249 static const Type *make(enum TYPES);
250 // Test for equivalence of types
251 static bool equals(const Type* t1, const Type* t2);
252 // Test for higher or equal in lattice
253 // Variant that drops the speculative part of the types
254 bool higher_equal(const Type* t) const {
255 return equals(meet(t), t->remove_speculative());
256 }
257 // Variant that keeps the speculative part of the types
258 bool higher_equal_speculative(const Type* t) const {
259 return equals(meet_speculative(t), t);
260 }
261
262 // MEET operation; lower in lattice.
263 // Variant that drops the speculative part of the types
264 const Type *meet(const Type *t) const {
265 return meet_helper(t, false);
266 }
267 // Variant that keeps the speculative part of the types
268 const Type *meet_speculative(const Type *t) const {
269 return meet_helper(t, true)->cleanup_speculative();
270 }
271 // WIDEN: 'widens' for Ints and other range types
272 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
273 // NARROW: complement for widen, used by pessimistic phases
274 virtual const Type *narrow( const Type *old ) const { return this; }
275
276 // DUAL operation: reflect around lattice centerline. Used instead of
277 // join to ensure my lattice is symmetric up and down.
278 const Type *dual() const { return _dual; }
279
280 // Compute meet dependent on base type
281 virtual const Type *xmeet( const Type *t ) const;
282 virtual const Type *xdual() const; // Compute dual right now.
283
284 // JOIN operation; higher in lattice. Done by finding the dual of the
285 // meet of the dual of the 2 inputs.
286 // Variant that drops the speculative part of the types
287 const Type *join(const Type *t) const {
288 return join_helper(t, false);
289 }
290 // Variant that keeps the speculative part of the types
291 const Type *join_speculative(const Type *t) const {
292 return join_helper(t, true)->cleanup_speculative();
293 }
294
295 // Modified version of JOIN adapted to the needs Node::Value.
296 // Normalizes all empty values to TOP. Does not kill _widen bits.
297 // Variant that drops the speculative part of the types
298 const Type *filter(const Type *kills) const {
299 return filter_helper(kills, false);
300 }
301 // Variant that keeps the speculative part of the types
302 const Type *filter_speculative(const Type *kills) const {
303 return filter_helper(kills, true)->cleanup_speculative();
304 }
305
306 // Returns true if this pointer points at memory which contains a
307 // compressed oop references.
308 bool is_ptr_to_narrowoop() const;
309 bool is_ptr_to_narrowklass() const;
310
311 // Convenience access
312 short geth() const;
313 virtual float getf() const;
314 double getd() const;
315
316 // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
317 template <typename TypeClass>
318 const TypeClass* try_cast() const;
319
320 const TypeInt *is_int() const;
321 const TypeInt *isa_int() const; // Returns null if not an Int
322 const TypeInteger* is_integer(BasicType bt) const;
323 const TypeInteger* isa_integer(BasicType bt) const;
324 const TypeLong *is_long() const;
325 const TypeLong *isa_long() const; // Returns null if not a Long
326 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot}
327 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
328 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon
329 const TypeH *isa_half_float() const; // Returns null if not a HalfFloat{Top,Con,Bot}
330 const TypeH *is_half_float_constant() const; // Asserts it is a HalfFloatCon
331 const TypeH *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
332 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot}
333 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
334 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon
335 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
336 const TypeAry *is_ary() const; // Array, NOT array pointer
337 const TypeAry *isa_ary() const; // Returns null of not ary
338 const TypeVect *is_vect() const; // Vector
339 const TypeVect *isa_vect() const; // Returns null if not a Vector
340 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector
341 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask
342 const TypePtr *is_ptr() const; // Asserts it is a ptr type
343 const TypePtr *isa_ptr() const; // Returns null if not ptr type
344 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
345 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
346 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
347 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type
348 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
349 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
350 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type
351 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
352 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr
353 const TypeInstPtr *is_instptr() const; // Instance
354 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr
355 const TypeAryPtr *is_aryptr() const; // Array oop
356
357 template <typename TypeClass>
358 const TypeClass* cast() const;
359
360 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type
361 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
362 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr
363 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
364 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr
365 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr
366 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr
367 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr
368
369 virtual bool is_finite() const; // Has a finite value
370 virtual bool is_nan() const; // Is not a number (NaN)
371
372 bool is_inlinetypeptr() const;
373 virtual ciInlineKlass* inline_klass() const;
374
375 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
376 const TypePtr* make_ptr() const;
377
378 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
379 // Asserts if the underlying type is not an oopptr or narrowoop.
380 const TypeOopPtr* make_oopptr() const;
381
382 // Returns this compressed pointer or the equivalent compressed version
383 // of this pointer type.
384 const TypeNarrowOop* make_narrowoop() const;
385
386 // Returns this compressed klass pointer or the equivalent
387 // compressed version of this pointer type.
388 const TypeNarrowKlass* make_narrowklass() const;
389
390 // Special test for register pressure heuristic
391 bool is_floatingpoint() const; // True if Float or Double base type
392
393 // Do you have memory, directly or through a tuple?
394 bool has_memory( ) const;
395
396 // TRUE if type is a singleton
397 virtual bool singleton(void) const;
398
399 // TRUE if type is above the lattice centerline, and is therefore vacuous
400 virtual bool empty(void) const;
401
402 // Return a hash for this type. The hash function is public so ConNode
403 // (constants) can hash on their constant, which is represented by a Type.
404 virtual uint hash() const;
405
406 // Map ideal registers (machine types) to ideal types
407 static const Type *mreg2type[];
408
409 // Printing, statistics
410 #ifndef PRODUCT
411 void dump_on(outputStream *st) const;
412 void dump() const {
413 dump_on(tty);
414 }
415 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
416 static void dump_stats();
417 // Groups of types, for debugging and visualization only.
418 enum class Category {
419 Data,
420 Memory,
421 Mixed, // Tuples with types of different categories.
422 Control,
423 Other, // {Type::Top, Type::Abio, Type::Bottom}.
424 Undef // {Type::Bad, Type::lastype}, for completeness.
425 };
426 // Return the category of this type.
427 Category category() const;
428 // Check recursively in tuples.
429 bool has_category(Category cat) const;
430
431 static const char* str(const Type* t);
432 #endif // !PRODUCT
433 void typerr(const Type *t) const; // Mixing types error
434
435 // Create basic type
436 static const Type* get_const_basic_type(BasicType type) {
437 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
438 return _const_basic_type[type];
439 }
440
441 // For two instance arrays of same dimension, return the base element types.
442 // Otherwise or if the arrays have different dimensions, return null.
443 static void get_arrays_base_elements(const Type *a1, const Type *a2,
444 const TypeInstPtr **e1, const TypeInstPtr **e2);
445
446 // Mapping to the array element's basic type.
447 BasicType array_element_basic_type() const;
448
449 enum InterfaceHandling {
450 trust_interfaces,
451 ignore_interfaces
452 };
453 // Create standard type for a ciType:
454 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
455
456 // Create standard zero value:
457 static const Type* get_zero_type(BasicType type) {
458 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
459 return _zero_type[type];
460 }
461
462 // Report if this is a zero value (not top).
463 bool is_zero_type() const {
464 BasicType type = basic_type();
465 if (type == T_VOID || type >= T_CONFLICT)
466 return false;
467 else
468 return (this == _zero_type[type]);
469 }
470
471 // Convenience common pre-built types.
472 static const Type *ABIO;
473 static const Type *BOTTOM;
474 static const Type *CONTROL;
475 static const Type *DOUBLE;
476 static const Type *FLOAT;
477 static const Type *HALF_FLOAT;
478 static const Type *HALF;
479 static const Type *MEMORY;
480 static const Type *MULTI;
481 static const Type *RETURN_ADDRESS;
482 static const Type *TOP;
483
484 // Mapping from compiler type to VM BasicType
485 BasicType basic_type() const { return _type_info[_base].basic_type; }
486 uint ideal_reg() const { return _type_info[_base].ideal_reg; }
487 const char* msg() const { return _type_info[_base].msg; }
488 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
489 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
490
491 // Mapping from CI type system to compiler type:
492 static const Type* get_typeflow_type(ciType* type);
493
494 static const Type* make_from_constant(ciConstant constant,
495 bool require_constant = false,
496 int stable_dimension = 0,
497 bool is_narrow = false,
498 bool is_autobox_cache = false);
499
500 static const Type* make_constant_from_field(ciInstance* holder,
501 int off,
502 bool is_unsigned_load,
503 BasicType loadbt);
504
505 static const Type* make_constant_from_field(ciField* field,
506 ciInstance* holder,
507 BasicType loadbt,
508 bool is_unsigned_load);
509
510 static const Type* make_constant_from_array_element(ciArray* array,
511 int off,
512 int field_offset,
513 int stable_dimension,
514 BasicType loadbt,
515 bool is_unsigned_load);
516
517 // Speculative type helper methods. See TypePtr.
518 virtual const TypePtr* speculative() const { return nullptr; }
519 virtual ciKlass* speculative_type() const { return nullptr; }
520 virtual ciKlass* speculative_type_not_null() const { return nullptr; }
521 virtual bool speculative_maybe_null() const { return true; }
522 virtual bool speculative_always_null() const { return true; }
523 virtual const Type* remove_speculative() const { return this; }
524 virtual const Type* cleanup_speculative() const { return this; }
525 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
526 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
527 const Type* maybe_remove_speculative(bool include_speculative) const;
528
529 virtual bool maybe_null() const { return true; }
530 virtual bool is_known_instance() const { return false; }
531
532 private:
533 // support arrays
534 static const Type* _zero_type[T_CONFLICT+1];
535 static const Type* _const_basic_type[T_CONFLICT+1];
536 };
537
538 //------------------------------TypeF------------------------------------------
539 // Class of Float-Constant Types.
540 class TypeF : public Type {
541 TypeF( float f ) : Type(FloatCon), _f(f) {};
542 public:
543 virtual bool eq( const Type *t ) const;
544 virtual uint hash() const; // Type specific hashing
545 virtual bool singleton(void) const; // TRUE if type is a singleton
546 virtual bool empty(void) const; // TRUE if type is vacuous
547 public:
548 const float _f; // Float constant
549
550 static const TypeF *make(float f);
551
552 virtual bool is_finite() const; // Has a finite value
553 virtual bool is_nan() const; // Is not a number (NaN)
554
555 virtual const Type *xmeet( const Type *t ) const;
556 virtual const Type *xdual() const; // Compute dual right now.
557 // Convenience common pre-built types.
558 static const TypeF *MAX;
559 static const TypeF *MIN;
560 static const TypeF *ZERO; // positive zero only
561 static const TypeF *ONE;
562 static const TypeF *POS_INF;
563 static const TypeF *NEG_INF;
564 #ifndef PRODUCT
565 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
566 #endif
567 };
568
569 // Class of Half Float-Constant Types.
570 class TypeH : public Type {
571 TypeH(short f) : Type(HalfFloatCon), _f(f) {};
572 public:
573 virtual bool eq(const Type* t) const;
574 virtual uint hash() const; // Type specific hashing
575 virtual bool singleton(void) const; // TRUE if type is a singleton
576 virtual bool empty(void) const; // TRUE if type is vacuous
577 public:
578 const short _f; // Half Float constant
579
580 static const TypeH* make(float f);
581 static const TypeH* make(short f);
582
583 virtual bool is_finite() const; // Has a finite value
584 virtual bool is_nan() const; // Is not a number (NaN)
585
586 virtual float getf() const;
587 virtual const Type* xmeet(const Type* t) const;
588 virtual const Type* xdual() const; // Compute dual right now.
589 // Convenience common pre-built types.
590 static const TypeH* MAX;
591 static const TypeH* MIN;
592 static const TypeH* ZERO; // positive zero only
593 static const TypeH* ONE;
594 static const TypeH* POS_INF;
595 static const TypeH* NEG_INF;
596 #ifndef PRODUCT
597 virtual void dump2(Dict &d, uint depth, outputStream* st) const;
598 #endif
599 };
600
601 //------------------------------TypeD------------------------------------------
602 // Class of Double-Constant Types.
603 class TypeD : public Type {
604 TypeD( double d ) : Type(DoubleCon), _d(d) {};
605 public:
606 virtual bool eq( const Type *t ) const;
607 virtual uint hash() const; // Type specific hashing
608 virtual bool singleton(void) const; // TRUE if type is a singleton
609 virtual bool empty(void) const; // TRUE if type is vacuous
610 public:
611 const double _d; // Double constant
612
613 static const TypeD *make(double d);
614
615 virtual bool is_finite() const; // Has a finite value
616 virtual bool is_nan() const; // Is not a number (NaN)
617
618 virtual const Type *xmeet( const Type *t ) const;
619 virtual const Type *xdual() const; // Compute dual right now.
620 // Convenience common pre-built types.
621 static const TypeD *MAX;
622 static const TypeD *MIN;
623 static const TypeD *ZERO; // positive zero only
624 static const TypeD *ONE;
625 static const TypeD *POS_INF;
626 static const TypeD *NEG_INF;
627 #ifndef PRODUCT
628 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
629 #endif
630 };
631
632 class TypeInteger : public Type {
633 protected:
634 TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
635
636 // Denote that a set is a dual set.
637 // Dual sets are only used to compute the join of 2 sets, and not used
638 // outside.
639 const bool _is_dual;
640
641 public:
642 const short _widen; // Limit on times we widen this sucker
643
644 virtual jlong hi_as_long() const = 0;
645 virtual jlong lo_as_long() const = 0;
646 jlong get_con_as_long(BasicType bt) const;
647 bool is_con() const { return lo_as_long() == hi_as_long(); }
648 virtual short widen_limit() const { return _widen; }
649
650 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
651 static const TypeInteger* make(jlong con, BasicType bt);
652
653 static const TypeInteger* bottom(BasicType type);
654 static const TypeInteger* zero(BasicType type);
655 static const TypeInteger* one(BasicType type);
656 static const TypeInteger* minus_1(BasicType type);
657 };
658
659 /**
660 * Definition:
661 *
662 * A TypeInt represents a set of non-empty jint values. A jint v is an element
663 * of a TypeInt iff:
664 *
665 * v >= _lo && v <= _hi &&
666 * juint(v) >= _ulo && juint(v) <= _uhi &&
667 * _bits.is_satisfied_by(v)
668 *
669 * Multiple sets of parameters can represent the same set.
670 * E.g: consider 2 TypeInt t1, t2
671 *
672 * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
673 * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
674 *
675 * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
676 * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
677 * which also represents {3, 5} such that any of these would be true:
678 *
679 * 1) t3._lo > t2._lo
680 * 2) t3._hi < t2._hi
681 * 3) t3._ulo > t2._ulo
682 * 4) t3._uhi < t2._uhi
683 * 5) (t3._bits._zeros &~ t2._bis._zeros) != 0
684 * 6) (t3._bits._ones &~ t2._bits._ones) != 0
685 *
686 * The 5-th condition mean that the subtraction of the bitsets represented by
687 * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
688 * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
689 * same applies to _bits._ones
690 *
691 * To simplify reasoning about the types in optimizations, we canonicalize
692 * every TypeInt to its tightest form, already at construction. E.g a TypeInt
693 * t with t._lo < 0 will definitely contain negative values. It also makes it
694 * trivial to determine if a TypeInt instance is a subset of another.
695 *
696 * Lemmas:
697 *
698 * 1. Since every TypeInt instance is non-empty and canonicalized, all the
699 * bounds must also be elements of such TypeInt. Or else, we can tighten the
700 * bounds by narrowing it by one, which contradicts the assumption of the
701 * TypeInt being canonical.
702 *
703 * 2.
704 * 2.1. _lo <= jint(_ulo)
705 * 2.2. _lo <= _hi
706 * 2.3. _lo <= jint(_uhi)
707 * 2.4. _ulo <= juint(_lo)
708 * 2.5. _ulo <= juint(_hi)
709 * 2.6. _ulo <= _uhi
710 * 2.7. _hi >= _lo
711 * 2.8. _hi >= jint(_ulo)
712 * 2.9. _hi >= jint(_uhi)
713 * 2.10. _uhi >= juint(_lo)
714 * 2.11. _uhi >= _ulo
715 * 2.12. _uhi >= juint(_hi)
716 *
717 * Proof of lemma 2:
718 *
719 * 2.1. _lo <= jint(_ulo):
720 * According the lemma 1, _ulo is an element of the TypeInt, so in the
721 * signed domain, it must not be less than the smallest element of that
722 * TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
723 * domain, or in a more programmatical way, _lo <= jint(_ulo).
724 * 2.2. _lo <= _hi:
725 * According the lemma 1, _hi is an element of the TypeInt, so in the
726 * signed domain, it must not be less than the smallest element of that
727 * TypeInt, which is _lo. Which means that _lo <= _hi.
728 *
729 * The other inequalities can be proved in a similar manner.
730 *
731 * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
732 *
733 * x <= y iff juint(x) <= juint(y)
734 * I.e. x <= y in the signed domain iff x <= y in the unsigned domain
735 *
736 * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
737 * TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
738 * (note that these intervals are disjoint in this case).
739 *
740 * Proof of lemma 4:
741 *
742 * For a TypeInt t, there are 3 possible cases:
743 *
744 * a. t._lo >= 0, we have:
745 *
746 * 0 <= t_lo <= jint(t._ulo) (lemma 2.1)
747 * juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
748 * == t._ulo (juint(jint(v)) == v with juint v)
749 * <= juint(t._lo) (lemma 2.4)
750 *
751 * Which means that t._lo == jint(t._ulo).
752 *
753 * Furthermore,
754 *
755 * 0 <= t._lo <= t._hi (lemma 2.2)
756 * 0 <= t._lo <= jint(t._uhi) (lemma 2.3)
757 * t._hi >= jint(t._uhi) (lemma 2.9)
758 *
759 * juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
760 * == t._uhi (juint(jint(v)) == v with juint v)
761 * >= juint(t._hi) (lemma 2.12)
762 *
763 * Which means that t._hi == jint(t._uhi).
764 * In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
765 *
766 * b. t._hi < 0. Similarly, we can conclude that:
767 * t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
768 *
769 * c. t._lo < 0, t._hi >= 0.
770 *
771 * Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
772 * because all negative values is larger than all non-negative values in the
773 * unsigned domain.
774 *
775 * Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
776 * similar to the reasoning above.
777 *
778 * In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
779 * [jint(t._ulo), t._hi].
780 *
781 * Below is an illustration of the TypeInt in this case, the intervals that
782 * the elements can be in are marked using the = symbol. Note how the
783 * negative range in the signed domain wrap around in the unsigned domain.
784 *
785 * Signed:
786 * -----lo=========uhi---------0--------ulo==========hi-----
787 * Unsigned:
788 * 0--------ulo==========hi----------lo=========uhi---------
789 *
790 * This property is useful for our analysis of TypeInt values. Additionally,
791 * it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
792 * same applies to jint(_ulo) and _hi.
793 *
794 * We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
795 * a TypeInt consists of 2 simple intervals, each of which has its bounds
796 * being both >= 0 or both < 0. If both simple intervals lie in the same half
797 * of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
798 * _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
799 * half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
800 * domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
801 * [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
802 */
803 class TypeInt : public TypeInteger {
804 private:
805 TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
806 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
807
808 friend class TypeIntHelper;
809
810 protected:
811 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
812
813 public:
814 typedef jint NativeType;
815 virtual bool eq(const Type* t) const;
816 virtual uint hash() const; // Type specific hashing
817 virtual bool singleton(void) const; // TRUE if type is a singleton
818 virtual bool empty(void) const; // TRUE if type is vacuous
819 // A value is in the set represented by this TypeInt if it satisfies all
820 // the below constraints, see contains(jint)
821 const jint _lo, _hi; // Lower bound, upper bound in the signed domain
822 const juint _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
823 const KnownBits<juint> _bits;
824
825 static const TypeInt* make(jint con);
826 // must always specify w
827 static const TypeInt* make(jint lo, jint hi, int widen);
828 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
829 static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); }
830
831 // Check for single integer
832 bool is_con() const { return _lo == _hi; }
833 bool is_con(jint i) const { return is_con() && _lo == i; }
834 jint get_con() const { assert(is_con(), ""); return _lo; }
835 // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
836 // argument are also elements of this type)
837 bool contains(jint i) const;
838 bool contains(const TypeInt* t) const;
839
840 virtual bool is_finite() const; // Has a finite value
841
842 virtual const Type* xmeet(const Type* t) const;
843 virtual const Type* xdual() const; // Compute dual right now.
844 virtual const Type* widen(const Type* t, const Type* limit_type) const;
845 virtual const Type* narrow(const Type* t) const;
846
847 virtual jlong hi_as_long() const { return _hi; }
848 virtual jlong lo_as_long() const { return _lo; }
849
850 // Do not kill _widen bits.
851 // Convenience common pre-built types.
852 static const TypeInt* MAX;
853 static const TypeInt* MIN;
854 static const TypeInt* MINUS_1;
855 static const TypeInt* ZERO;
856 static const TypeInt* ONE;
857 static const TypeInt* BOOL;
858 static const TypeInt* CC;
859 static const TypeInt* CC_LT; // [-1] == MINUS_1
860 static const TypeInt* CC_GT; // [1] == ONE
861 static const TypeInt* CC_EQ; // [0] == ZERO
862 static const TypeInt* CC_NE; // [-1, 1]
863 static const TypeInt* CC_LE; // [-1,0]
864 static const TypeInt* CC_GE; // [0,1] == BOOL (!)
865 static const TypeInt* BYTE;
866 static const TypeInt* UBYTE;
867 static const TypeInt* CHAR;
868 static const TypeInt* SHORT;
869 static const TypeInt* NON_ZERO;
870 static const TypeInt* POS;
871 static const TypeInt* POS1;
872 static const TypeInt* INT;
873 static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
874 static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
875
876 static const TypeInt* as_self(const Type* t) { return t->is_int(); }
877 #ifndef PRODUCT
878 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
879 void dump_verbose() const;
880 #endif
881 };
882
883 // Similar to TypeInt
884 class TypeLong : public TypeInteger {
885 private:
886 TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
887 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
888
889 friend class TypeIntHelper;
890
891 protected:
892 // Do not kill _widen bits.
893 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
894 public:
895 typedef jlong NativeType;
896 virtual bool eq( const Type *t ) const;
897 virtual uint hash() const; // Type specific hashing
898 virtual bool singleton(void) const; // TRUE if type is a singleton
899 virtual bool empty(void) const; // TRUE if type is vacuous
900 public:
901 // A value is in the set represented by this TypeLong if it satisfies all
902 // the below constraints, see contains(jlong)
903 const jlong _lo, _hi; // Lower bound, upper bound in the signed domain
904 const julong _ulo, _uhi; // Lower bound, upper bound in the unsigned domain
905 const KnownBits<julong> _bits;
906
907 static const TypeLong* make(jlong con);
908 // must always specify w
909 static const TypeLong* make(jlong lo, jlong hi, int widen);
910 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
911 static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); }
912
913 // Check for single integer
914 bool is_con() const { return _lo == _hi; }
915 bool is_con(jlong i) const { return is_con() && _lo == i; }
916 jlong get_con() const { assert(is_con(), "" ); return _lo; }
917 // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
918 // argument are also elements of this type)
919 bool contains(jlong i) const;
920 bool contains(const TypeLong* t) const;
921
922 // Check for positive 32-bit value.
923 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
924
925 virtual bool is_finite() const; // Has a finite value
926
927 virtual jlong hi_as_long() const { return _hi; }
928 virtual jlong lo_as_long() const { return _lo; }
929
930 virtual const Type* xmeet(const Type* t) const;
931 virtual const Type* xdual() const; // Compute dual right now.
932 virtual const Type* widen(const Type* t, const Type* limit_type) const;
933 virtual const Type* narrow(const Type* t) const;
934 // Convenience common pre-built types.
935 static const TypeLong* MAX;
936 static const TypeLong* MIN;
937 static const TypeLong* MINUS_1;
938 static const TypeLong* ZERO;
939 static const TypeLong* ONE;
940 static const TypeLong* NON_ZERO;
941 static const TypeLong* POS;
942 static const TypeLong* NEG;
943 static const TypeLong* LONG;
944 static const TypeLong* INT; // 32-bit subrange [min_jint..max_jint]
945 static const TypeLong* UINT; // 32-bit unsigned [0..max_juint]
946 static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
947
948 // static convenience methods.
949 static const TypeLong* as_self(const Type* t) { return t->is_long(); }
950
951 #ifndef PRODUCT
952 virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
953 void dump_verbose() const;
954 #endif
955 };
956
957 //------------------------------TypeTuple--------------------------------------
958 // Class of Tuple Types, essentially type collections for function signatures
959 // and class layouts. It happens to also be a fast cache for the HotSpot
960 // signature types.
961 class TypeTuple : public Type {
962 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
963
964 const uint _cnt; // Count of fields
965 const Type ** const _fields; // Array of field types
966
967 public:
968 virtual bool eq( const Type *t ) const;
969 virtual uint hash() const; // Type specific hashing
970 virtual bool singleton(void) const; // TRUE if type is a singleton
971 virtual bool empty(void) const; // TRUE if type is vacuous
972
973 // Accessors:
974 uint cnt() const { return _cnt; }
975 const Type* field_at(uint i) const {
976 assert(i < _cnt, "oob");
977 return _fields[i];
978 }
979 void set_field_at(uint i, const Type* t) {
980 assert(i < _cnt, "oob");
981 _fields[i] = t;
982 }
983
984 static const TypeTuple *make( uint cnt, const Type **fields );
985 static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
986 static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
987
988 // Subroutine call type with space allocated for argument types
989 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
990 static const Type **fields( uint arg_cnt );
991
992 virtual const Type *xmeet( const Type *t ) const;
993 virtual const Type *xdual() const; // Compute dual right now.
994 // Convenience common pre-built types.
995 static const TypeTuple *IFBOTH;
996 static const TypeTuple *IFFALSE;
997 static const TypeTuple *IFTRUE;
998 static const TypeTuple *IFNEITHER;
999 static const TypeTuple *LOOPBODY;
1000 static const TypeTuple *MEMBAR;
1001 static const TypeTuple *STORECONDITIONAL;
1002 static const TypeTuple *START_I2C;
1003 static const TypeTuple *INT_PAIR;
1004 static const TypeTuple *LONG_PAIR;
1005 static const TypeTuple *INT_CC_PAIR;
1006 static const TypeTuple *LONG_CC_PAIR;
1007 #ifndef PRODUCT
1008 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1009 #endif
1010 };
1011
1012 //------------------------------TypeAry----------------------------------------
1013 // Class of Array Types
1014 class TypeAry : public Type {
1015 TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1016 _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1017 public:
1018 virtual bool eq( const Type *t ) const;
1019 virtual uint hash() const; // Type specific hashing
1020 virtual bool singleton(void) const; // TRUE if type is a singleton
1021 virtual bool empty(void) const; // TRUE if type is vacuous
1022
1023 private:
1024 const Type *_elem; // Element type of array
1025 const TypeInt *_size; // Elements in array
1026 const bool _stable; // Are elements @Stable?
1027
1028 // Inline type array properties
1029 const bool _flat; // Array is flat
1030 const bool _not_flat; // Array is never flat
1031 const bool _not_null_free; // Array is never null-free
1032 const bool _atomic; // Array is atomic
1033
1034 friend class TypeAryPtr;
1035
1036 public:
1037 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable,
1038 bool flat, bool not_flat, bool not_null_free, bool atomic);
1039
1040 virtual const Type *xmeet( const Type *t ) const;
1041 virtual const Type *xdual() const; // Compute dual right now.
1042 bool ary_must_be_exact() const; // true if arrays of such are never generic
1043 virtual const TypeAry* remove_speculative() const;
1044 virtual const Type* cleanup_speculative() const;
1045 #ifndef PRODUCT
1046 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
1047 #endif
1048 };
1049
1050 //------------------------------TypeVect---------------------------------------
1051 // Class of Vector Types
1052 class TypeVect : public Type {
1053 const BasicType _elem_bt; // Vector's element type
1054 const uint _length; // Elements in vector (power of 2)
1055
1056 protected:
1057 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1058 _elem_bt(elem_bt), _length(length) {}
1059
1060 public:
1061 BasicType element_basic_type() const { return _elem_bt; }
1062 uint length() const { return _length; }
1063 uint length_in_bytes() const {
1064 return _length * type2aelembytes(element_basic_type());
1065 }
1066
1067 virtual bool eq(const Type* t) const;
1068 virtual uint hash() const; // Type specific hashing
1069 virtual bool singleton(void) const; // TRUE if type is a singleton
1070 virtual bool empty(void) const; // TRUE if type is vacuous
1071
1072 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1073 static const TypeVect* makemask(const BasicType elem_bt, uint length);
1074
1075 virtual const Type* xmeet( const Type *t) const;
1076 virtual const Type* xdual() const; // Compute dual right now.
1077
1078 static const TypeVect* VECTA;
1079 static const TypeVect* VECTS;
1080 static const TypeVect* VECTD;
1081 static const TypeVect* VECTX;
1082 static const TypeVect* VECTY;
1083 static const TypeVect* VECTZ;
1084 static const TypeVect* VECTMASK;
1085
1086 #ifndef PRODUCT
1087 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1088 #endif
1089 };
1090
1091 class TypeVectA : public TypeVect {
1092 friend class TypeVect;
1093 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1094 };
1095
1096 class TypeVectS : public TypeVect {
1097 friend class TypeVect;
1098 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1099 };
1100
1101 class TypeVectD : public TypeVect {
1102 friend class TypeVect;
1103 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1104 };
1105
1106 class TypeVectX : public TypeVect {
1107 friend class TypeVect;
1108 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1109 };
1110
1111 class TypeVectY : public TypeVect {
1112 friend class TypeVect;
1113 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1114 };
1115
1116 class TypeVectZ : public TypeVect {
1117 friend class TypeVect;
1118 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1119 };
1120
1121 class TypeVectMask : public TypeVect {
1122 public:
1123 friend class TypeVect;
1124 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1125 static const TypeVectMask* make(const BasicType elem_bt, uint length);
1126 };
1127
1128 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1129 class TypeInterfaces : public Type {
1130 private:
1131 GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1132 uint _hash;
1133 ciInstanceKlass* _exact_klass;
1134 DEBUG_ONLY(bool _initialized;)
1135
1136 void initialize();
1137
1138 void verify() const NOT_DEBUG_RETURN;
1139 void compute_hash();
1140 void compute_exact_klass();
1141
1142 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1143
1144 NONCOPYABLE(TypeInterfaces);
1145 public:
1146 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1147 bool eq(const Type* other) const;
1148 bool eq(ciInstanceKlass* k) const;
1149 uint hash() const;
1150 const Type *xdual() const;
1151 void dump(outputStream* st) const;
1152 const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1153 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1154 bool contains(const TypeInterfaces* other) const {
1155 return intersection_with(other)->eq(other);
1156 }
1157 bool empty() const { return _interfaces.length() == 0; }
1158
1159 ciInstanceKlass* exact_klass() const;
1160 void verify_is_loaded() const NOT_DEBUG_RETURN;
1161
1162 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1163 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1164
1165 const Type* xmeet(const Type* t) const;
1166
1167 bool singleton(void) const;
1168 bool has_non_array_interface() const;
1169 };
1170
1171 //------------------------------TypePtr----------------------------------------
1172 // Class of machine Pointer Types: raw data, instances or arrays.
1173 // If the _base enum is AnyPtr, then this refers to all of the above.
1174 // Otherwise the _base will indicate which subset of pointers is affected,
1175 // and the class will be inherited from.
1176 class TypePtr : public Type {
1177 friend class TypeNarrowPtr;
1178 friend class Type;
1179 protected:
1180 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1181
1182 public:
1183 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1184
1185 // Only applies to TypeInstPtr and TypeInstKlassPtr. Since the common super class is TypePtr, it is defined here.
1186 //
1187 // FlatInArray defines the following Boolean Lattice structure
1188 //
1189 // TopFlat
1190 // / \
1191 // Flat NotFlat
1192 // \ /
1193 // MaybeFlat
1194 //
1195 // with meet (see TypePtr::meet_flat_in_array()) and join (implemented over dual, see TypePtr::flat_in_array_dual)
1196 enum FlatInArray {
1197 TopFlat, // Dedicated top element and dual of MaybeFlat. Result when joining Flat and NotFlat.
1198 Flat, // An instance is always flat in an array.
1199 NotFlat, // An instance is never flat in an array.
1200 MaybeFlat, // We don't know whether an instance is flat in an array.
1201 Uninitialized // Used when the flat in array property was not computed, yet - should never actually end up in a type.
1202 };
1203 protected:
1204 TypePtr(TYPES t, PTR ptr, Offset offset,
1205 const TypePtr* speculative = nullptr,
1206 int inline_depth = InlineDepthBottom) :
1207 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1208 _ptr(ptr) {}
1209 static const PTR ptr_meet[lastPTR][lastPTR];
1210 static const PTR ptr_dual[lastPTR];
1211 static const char * const ptr_msg[lastPTR];
1212
1213 static const FlatInArray flat_in_array_dual[Uninitialized];
1214 static const char* const flat_in_array_msg[Uninitialized];
1215
1216 enum {
1217 InlineDepthBottom = INT_MAX,
1218 InlineDepthTop = -InlineDepthBottom
1219 };
1220
1221 // Extra type information profiling gave us. We propagate it the
1222 // same way the rest of the type info is propagated. If we want to
1223 // use it, then we have to emit a guard: this part of the type is
1224 // not something we know but something we speculate about the type.
1225 const TypePtr* _speculative;
1226 // For speculative types, we record at what inlining depth the
1227 // profiling point that provided the data is. We want to favor
1228 // profile data coming from outer scopes which are likely better for
1229 // the current compilation.
1230 int _inline_depth;
1231
1232 // utility methods to work on the speculative part of the type
1233 const TypePtr* dual_speculative() const;
1234 const TypePtr* xmeet_speculative(const TypePtr* other) const;
1235 bool eq_speculative(const TypePtr* other) const;
1236 int hash_speculative() const;
1237 const TypePtr* add_offset_speculative(intptr_t offset) const;
1238 const TypePtr* with_offset_speculative(intptr_t offset) const;
1239
1240 // utility methods to work on the inline depth of the type
1241 int dual_inline_depth() const;
1242 int meet_inline_depth(int depth) const;
1243
1244 #ifndef PRODUCT
1245 void dump_speculative(outputStream* st) const;
1246 void dump_inline_depth(outputStream* st) const;
1247 void dump_offset(outputStream* st) const;
1248 #endif
1249
1250 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1251 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1252 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1253 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1254 // encountered so the right logic specific to klasses or oops can be executed.,
1255 enum MeetResult {
1256 QUICK,
1257 UNLOADED,
1258 SUBTYPE,
1259 NOT_SUBTYPE,
1260 LCA
1261 };
1262 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1263 const T* other_type, ciKlass*& res_klass, bool& res_xk);
1264 protected:
1265 static FlatInArray meet_flat_in_array(FlatInArray left, FlatInArray other);
1266
1267 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1268 ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1269
1270 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1271 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1272 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1273 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1274 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1275 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1276 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1277 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1278 public:
1279 const Offset _offset; // Offset into oop, with TOP & BOT
1280 const PTR _ptr; // Pointer equivalence class
1281
1282 int offset() const { return _offset.get(); }
1283 PTR ptr() const { return _ptr; }
1284
1285 static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1286 const TypePtr* speculative = nullptr,
1287 int inline_depth = InlineDepthBottom);
1288
1289 // Return a 'ptr' version of this type
1290 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1291
1292 virtual intptr_t get_con() const;
1293
1294 Type::Offset xadd_offset(intptr_t offset) const;
1295 virtual const TypePtr* add_offset(intptr_t offset) const;
1296 virtual const TypePtr* with_offset(intptr_t offset) const;
1297 virtual int flat_offset() const { return offset(); }
1298 virtual bool eq(const Type *t) const;
1299 virtual uint hash() const; // Type specific hashing
1300
1301 virtual bool singleton(void) const; // TRUE if type is a singleton
1302 virtual bool empty(void) const; // TRUE if type is vacuous
1303 virtual const Type *xmeet( const Type *t ) const;
1304 virtual const Type *xmeet_helper( const Type *t ) const;
1305 Offset meet_offset(int offset) const;
1306 Offset dual_offset() const;
1307 virtual const Type *xdual() const; // Compute dual right now.
1308
1309 // meet, dual and join over pointer equivalence sets
1310 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1311 PTR dual_ptr() const { return ptr_dual[ptr()]; }
1312
1313 // This is textually confusing unless one recalls that
1314 // join(t) == dual()->meet(t->dual())->dual().
1315 PTR join_ptr( const PTR in_ptr ) const {
1316 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1317 }
1318
1319 // Speculative type helper methods.
1320 virtual const TypePtr* speculative() const { return _speculative; }
1321 int inline_depth() const { return _inline_depth; }
1322 virtual ciKlass* speculative_type() const;
1323 virtual ciKlass* speculative_type_not_null() const;
1324 virtual bool speculative_maybe_null() const;
1325 virtual bool speculative_always_null() const;
1326 virtual const TypePtr* remove_speculative() const;
1327 virtual const Type* cleanup_speculative() const;
1328 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1329 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1330 virtual const TypePtr* with_inline_depth(int depth) const;
1331
1332 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1333
1334 NOT_PRODUCT(static void dump_flat_in_array(FlatInArray flat_in_array, outputStream* st);)
1335
1336 static FlatInArray compute_flat_in_array(ciInstanceKlass* instance_klass, bool is_exact);
1337 FlatInArray compute_flat_in_array_if_unknown(ciInstanceKlass* instance_klass, bool is_exact,
1338 FlatInArray old_flat_in_array) const;
1339
1340 virtual bool can_be_inline_type() const { return false; }
1341 virtual bool is_flat_in_array() const { return flat_in_array() == Flat; }
1342 virtual bool is_not_flat_in_array() const { return flat_in_array() == NotFlat; }
1343 virtual FlatInArray flat_in_array() const { return NotFlat; }
1344 virtual bool is_flat() const { return false; }
1345 virtual bool is_not_flat() const { return false; }
1346 virtual bool is_null_free() const { return false; }
1347 virtual bool is_not_null_free() const { return false; }
1348 virtual bool is_atomic() const { return false; }
1349
1350 // Tests for relation to centerline of type lattice:
1351 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1352 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1353 // Convenience common pre-built types.
1354 static const TypePtr *NULL_PTR;
1355 static const TypePtr *NOTNULL;
1356 static const TypePtr *BOTTOM;
1357 #ifndef PRODUCT
1358 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1359 #endif
1360 };
1361
1362 //------------------------------TypeRawPtr-------------------------------------
1363 // Class of raw pointers, pointers to things other than Oops. Examples
1364 // include the stack pointer, top of heap, card-marking area, handles, etc.
1365 class TypeRawPtr : public TypePtr {
1366 protected:
1367 TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1368 public:
1369 virtual bool eq( const Type *t ) const;
1370 virtual uint hash() const; // Type specific hashing
1371
1372 const address _bits; // Constant value, if applicable
1373
1374 static const TypeRawPtr *make( PTR ptr );
1375 static const TypeRawPtr *make( address bits );
1376
1377 // Return a 'ptr' version of this type
1378 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1379
1380 virtual intptr_t get_con() const;
1381
1382 virtual const TypePtr* add_offset(intptr_t offset) const;
1383 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1384
1385 virtual const Type *xmeet( const Type *t ) const;
1386 virtual const Type *xdual() const; // Compute dual right now.
1387 // Convenience common pre-built types.
1388 static const TypeRawPtr *BOTTOM;
1389 static const TypeRawPtr *NOTNULL;
1390 #ifndef PRODUCT
1391 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1392 #endif
1393 };
1394
1395 //------------------------------TypeOopPtr-------------------------------------
1396 // Some kind of oop (Java pointer), either instance or array.
1397 class TypeOopPtr : public TypePtr {
1398 friend class TypeAry;
1399 friend class TypePtr;
1400 friend class TypeInstPtr;
1401 friend class TypeAryPtr;
1402 protected:
1403 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1404 const TypePtr* speculative, int inline_depth);
1405 public:
1406 virtual bool eq( const Type *t ) const;
1407 virtual uint hash() const; // Type specific hashing
1408 virtual bool singleton(void) const; // TRUE if type is a singleton
1409 enum {
1410 InstanceTop = -1, // undefined instance
1411 InstanceBot = 0 // any possible instance
1412 };
1413 protected:
1414
1415 // Oop is null, unless this is a constant oop.
1416 ciObject* _const_oop; // Constant oop
1417 // If _klass is null, then so is _sig. This is an unloaded klass.
1418 ciKlass* _klass; // Klass object
1419
1420 const TypeInterfaces* _interfaces;
1421
1422 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1423 bool _klass_is_exact;
1424 bool _is_ptr_to_narrowoop;
1425 bool _is_ptr_to_narrowklass;
1426 bool _is_ptr_to_boxed_value;
1427 bool _is_ptr_to_strict_final_field;
1428
1429 // If not InstanceTop or InstanceBot, indicates that this is
1430 // a particular instance of this type which is distinct.
1431 // This is the node index of the allocation node creating this instance.
1432 int _instance_id;
1433
1434 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1435
1436 int dual_instance_id() const;
1437 int meet_instance_id(int uid) const;
1438
1439 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1440
1441 // Do not allow interface-vs.-noninterface joins to collapse to top.
1442 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1443
1444 virtual ciKlass* exact_klass_helper() const { return nullptr; }
1445 virtual ciKlass* klass() const { return _klass; }
1446
1447 #ifndef PRODUCT
1448 void dump_instance_id(outputStream* st) const;
1449 #endif // PRODUCT
1450
1451 public:
1452
1453 bool is_java_subtype_of(const TypeOopPtr* other) const {
1454 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1455 }
1456
1457 bool is_same_java_type_as(const TypePtr* other) const {
1458 return is_same_java_type_as_helper(other->is_oopptr());
1459 }
1460
1461 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1462 ShouldNotReachHere(); return false;
1463 }
1464
1465 bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1466 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1467 }
1468 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1469 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1470
1471
1472 // Creates a type given a klass. Correctly handles multi-dimensional arrays
1473 // Respects UseUniqueSubclasses.
1474 // If the klass is final, the resulting type will be exact.
1475 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1476 return make_from_klass_common(klass, true, false, interface_handling);
1477 }
1478 // Same as before, but will produce an exact type, even if
1479 // the klass is not final, as long as it has exactly one implementation.
1480 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1481 return make_from_klass_common(klass, true, true, interface_handling);
1482 }
1483 // Same as before, but does not respects UseUniqueSubclasses.
1484 // Use this only for creating array element types.
1485 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1486 return make_from_klass_common(klass, false, false, interface_handling);
1487 }
1488 // Creates a singleton type given an object.
1489 // If the object cannot be rendered as a constant,
1490 // may return a non-singleton type.
1491 // If require_constant, produce a null if a singleton is not possible.
1492 static const TypeOopPtr* make_from_constant(ciObject* o,
1493 bool require_constant = false);
1494
1495 // Make a generic (unclassed) pointer to an oop.
1496 static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1497 const TypePtr* speculative = nullptr,
1498 int inline_depth = InlineDepthBottom);
1499
1500 ciObject* const_oop() const { return _const_oop; }
1501 // Exact klass, possibly an interface or an array of interface
1502 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1503 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1504
1505 virtual bool is_loaded() const { return klass()->is_loaded(); }
1506 virtual bool klass_is_exact() const { return _klass_is_exact; }
1507
1508 // Returns true if this pointer points at memory which contains a
1509 // compressed oop references.
1510 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1511 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1512 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1513 bool is_ptr_to_strict_final_field() const { return _is_ptr_to_strict_final_field; }
1514 bool is_known_instance() const { return _instance_id > 0; }
1515 int instance_id() const { return _instance_id; }
1516 bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1517
1518 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1519 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1520
1521 virtual intptr_t get_con() const;
1522
1523 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1524
1525 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1526
1527 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1528
1529 // corresponding pointer to klass, for a given instance
1530 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1531
1532 virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1533 virtual const TypePtr* add_offset(intptr_t offset) const;
1534
1535 // Speculative type helper methods.
1536 virtual const TypeOopPtr* remove_speculative() const;
1537 virtual const Type* cleanup_speculative() const;
1538 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1539 virtual const TypePtr* with_inline_depth(int depth) const;
1540
1541 virtual const TypePtr* with_instance_id(int instance_id) const;
1542
1543 virtual const Type *xdual() const; // Compute dual right now.
1544 // the core of the computation of the meet for TypeOopPtr and for its subclasses
1545 virtual const Type *xmeet_helper(const Type *t) const;
1546
1547 // Convenience common pre-built type.
1548 static const TypeOopPtr *BOTTOM;
1549 #ifndef PRODUCT
1550 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1551 #endif
1552 private:
1553 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1554 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1555 }
1556
1557 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1558 ShouldNotReachHere(); return false;
1559 }
1560
1561 virtual const TypeInterfaces* interfaces() const {
1562 return _interfaces;
1563 };
1564
1565 const TypeOopPtr* is_reference_type(const Type* other) const {
1566 return other->isa_oopptr();
1567 }
1568
1569 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1570 return other->isa_aryptr();
1571 }
1572
1573 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1574 return other->isa_instptr();
1575 }
1576 };
1577
1578 //------------------------------TypeInstPtr------------------------------------
1579 // Class of Java object pointers, pointing either to non-array Java instances
1580 // or to a Klass* (including array klasses).
1581 class TypeInstPtr : public TypeOopPtr {
1582 // Can this instance be in a flat array?
1583 FlatInArray _flat_in_array;
1584
1585 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1586 FlatInArray flat_in_array, int instance_id, const TypePtr* speculative,
1587 int inline_depth);
1588 virtual bool eq( const Type *t ) const;
1589 virtual uint hash() const; // Type specific hashing
1590 ciKlass* exact_klass_helper() const;
1591
1592 public:
1593
1594 // Instance klass, ignoring any interface
1595 ciInstanceKlass* instance_klass() const {
1596 assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1597 return klass()->as_instance_klass();
1598 }
1599
1600 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1601 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1602 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1603
1604 // Make a pointer to a constant oop.
1605 static const TypeInstPtr *make(ciObject* o) {
1606 ciKlass* k = o->klass();
1607 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1608 return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1609 }
1610 // Make a pointer to a constant oop with offset.
1611 static const TypeInstPtr *make(ciObject* o, Offset offset) {
1612 ciKlass* k = o->klass();
1613 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1614 return make(TypePtr::Constant, k, interfaces, true, o, offset);
1615 }
1616
1617 // Make a pointer to some value of type klass.
1618 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1619 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1620 return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1621 }
1622
1623 // Make a pointer to some non-polymorphic value of exactly type klass.
1624 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1625 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1626 return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1627 }
1628
1629 // Make a pointer to some value of type klass with offset.
1630 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1631 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1632 return make(ptr, klass, interfaces, false, nullptr, offset);
1633 }
1634
1635 // Make a pointer to an oop.
1636 static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1637 FlatInArray flat_in_array = Uninitialized,
1638 int instance_id = InstanceBot,
1639 const TypePtr* speculative = nullptr,
1640 int inline_depth = InlineDepthBottom);
1641
1642 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot,
1643 FlatInArray flat_in_array = Uninitialized) {
1644 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1645 return make(ptr, k, interfaces, xk, o, offset, flat_in_array, instance_id);
1646 }
1647
1648 /** Create constant type for a constant boxed value */
1649 const Type* get_const_boxed_value() const;
1650
1651 // If this is a java.lang.Class constant, return the type for it or null.
1652 // Pass to Type::get_const_type to turn it to a type, which will usually
1653 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1654 ciType* java_mirror_type() const;
1655
1656 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1657
1658 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1659
1660 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1661
1662 virtual bool empty() const;
1663 virtual const TypePtr* add_offset(intptr_t offset) const;
1664 virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1665
1666 // Speculative type helper methods.
1667 virtual const TypeInstPtr* remove_speculative() const;
1668 const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1669 virtual const TypePtr* with_inline_depth(int depth) const;
1670 virtual const TypePtr* with_instance_id(int instance_id) const;
1671
1672 virtual const TypeInstPtr* cast_to_flat_in_array() const;
1673 virtual const TypeInstPtr* cast_to_maybe_flat_in_array() const;
1674 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
1675
1676 FlatInArray dual_flat_in_array() const {
1677 return flat_in_array_dual[_flat_in_array];
1678 }
1679
1680 // the core of the computation of the meet of 2 types
1681 virtual const Type *xmeet_helper(const Type *t) const;
1682 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1683 virtual const Type *xdual() const; // Compute dual right now.
1684
1685 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1686
1687 virtual bool can_be_inline_array() const;
1688
1689 // Convenience common pre-built types.
1690 static const TypeInstPtr *NOTNULL;
1691 static const TypeInstPtr *BOTTOM;
1692 static const TypeInstPtr *MIRROR;
1693 static const TypeInstPtr *MARK;
1694 static const TypeInstPtr *KLASS;
1695 #ifndef PRODUCT
1696 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1697 #endif
1698
1699 private:
1700 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1701
1702 virtual bool is_meet_same_type_as(const TypePtr* other) const {
1703 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1704 }
1705
1706 };
1707
1708 //------------------------------TypeAryPtr-------------------------------------
1709 // Class of Java array pointers
1710 class TypeAryPtr : public TypeOopPtr {
1711 friend class Type;
1712 friend class TypePtr;
1713 friend class TypeInstPtr;
1714 friend class TypeInterfaces;
1715
1716 TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1717 Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1718 const TypePtr* speculative, int inline_depth)
1719 : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1720 _ary(ary),
1721 _is_autobox_cache(is_autobox_cache),
1722 _field_offset(field_offset)
1723 {
1724 int dummy;
1725 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1726
1727 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1728 _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1729 _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1730 _is_ptr_to_narrowoop = true;
1731 }
1732
1733 }
1734 virtual bool eq( const Type *t ) const;
1735 virtual uint hash() const; // Type specific hashing
1736 const TypeAry *_ary; // Array we point into
1737 const bool _is_autobox_cache;
1738 // For flat inline type arrays, each field of the inline type in
1739 // the array has its own memory slice so we need to keep track of
1740 // which field is accessed
1741 const Offset _field_offset;
1742 Offset meet_field_offset(const Type::Offset offset) const;
1743 Offset dual_field_offset() const;
1744
1745 ciKlass* compute_klass() const;
1746
1747 // A pointer to delay allocation to Type::Initialize_shared()
1748
1749 static const TypeInterfaces* _array_interfaces;
1750 ciKlass* exact_klass_helper() const;
1751 // Only guaranteed non null for array of basic types
1752 ciKlass* klass() const;
1753
1754 public:
1755
1756 bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1757 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1758 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1759
1760 // returns base element type, an instance klass (and not interface) for object arrays
1761 const Type* base_element_type(int& dims) const;
1762
1763 // Accessors
1764 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1765
1766 const TypeAry* ary() const { return _ary; }
1767 const Type* elem() const { return _ary->_elem; }
1768 const TypeInt* size() const { return _ary->_size; }
1769 bool is_stable() const { return _ary->_stable; }
1770
1771 // Inline type array properties
1772 bool is_flat() const { return _ary->_flat; }
1773 bool is_not_flat() const { return _ary->_not_flat; }
1774 bool is_null_free() const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1775 bool is_not_null_free() const { return _ary->_not_null_free; }
1776 bool is_atomic() const { return _ary->_atomic; }
1777
1778 bool is_autobox_cache() const { return _is_autobox_cache; }
1779
1780 static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1781 Offset field_offset = Offset::bottom,
1782 int instance_id = InstanceBot,
1783 const TypePtr* speculative = nullptr,
1784 int inline_depth = InlineDepthBottom);
1785 // Constant pointer to array
1786 static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1787 Offset field_offset = Offset::bottom,
1788 int instance_id = InstanceBot,
1789 const TypePtr* speculative = nullptr,
1790 int inline_depth = InlineDepthBottom,
1791 bool is_autobox_cache = false);
1792
1793 // Return a 'ptr' version of this type
1794 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1795
1796 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1797
1798 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1799
1800 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1801 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1802
1803 virtual bool empty(void) const; // TRUE if type is vacuous
1804 virtual const TypePtr *add_offset( intptr_t offset ) const;
1805 virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1806 const TypeAryPtr* with_ary(const TypeAry* ary) const;
1807
1808 // Speculative type helper methods.
1809 virtual const TypeAryPtr* remove_speculative() const;
1810 virtual const Type* cleanup_speculative() const;
1811 virtual const TypePtr* with_inline_depth(int depth) const;
1812 virtual const TypePtr* with_instance_id(int instance_id) const;
1813
1814 // the core of the computation of the meet of 2 types
1815 virtual const Type *xmeet_helper(const Type *t) const;
1816 virtual const Type *xdual() const; // Compute dual right now.
1817
1818 // Inline type array properties
1819 const TypeAryPtr* cast_to_flat(bool flat) const;
1820 const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1821 const TypeAryPtr* cast_to_null_free(bool null_free) const;
1822 const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1823 const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1824 jint flat_layout_helper() const;
1825 int flat_elem_size() const;
1826 int flat_log_elem_size() const;
1827
1828 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1829 int stable_dimension() const;
1830
1831 const TypeAryPtr* cast_to_autobox_cache() const;
1832
1833 static jint max_array_length(BasicType etype);
1834
1835 int flat_offset() const;
1836 const Offset field_offset() const { return _field_offset; }
1837 const TypeAryPtr* with_field_offset(int offset) const;
1838 const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1839
1840 virtual bool can_be_inline_type() const { return false; }
1841 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1842
1843 virtual bool can_be_inline_array() const;
1844
1845 // Convenience common pre-built types.
1846 static const TypeAryPtr* BOTTOM;
1847 static const TypeAryPtr *RANGE;
1848 static const TypeAryPtr *OOPS;
1849 static const TypeAryPtr *NARROWOOPS;
1850 static const TypeAryPtr *BYTES;
1851 static const TypeAryPtr *SHORTS;
1852 static const TypeAryPtr *CHARS;
1853 static const TypeAryPtr *INTS;
1854 static const TypeAryPtr *LONGS;
1855 static const TypeAryPtr *FLOATS;
1856 static const TypeAryPtr *DOUBLES;
1857 static const TypeAryPtr *INLINES;
1858 // selects one of the above:
1859 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1860 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1861 return _array_body_type[elem];
1862 }
1863 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1864 // sharpen the type of an int which is used as an array size
1865 #ifndef PRODUCT
1866 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1867 #endif
1868 private:
1869 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1870 };
1871
1872 //------------------------------TypeMetadataPtr-------------------------------------
1873 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1874 class TypeMetadataPtr : public TypePtr {
1875 protected:
1876 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1877 // Do not allow interface-vs.-noninterface joins to collapse to top.
1878 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1879 public:
1880 virtual bool eq( const Type *t ) const;
1881 virtual uint hash() const; // Type specific hashing
1882 virtual bool singleton(void) const; // TRUE if type is a singleton
1883
1884 private:
1885 ciMetadata* _metadata;
1886
1887 public:
1888 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1889
1890 static const TypeMetadataPtr* make(ciMethod* m);
1891 static const TypeMetadataPtr* make(ciMethodData* m);
1892
1893 ciMetadata* metadata() const { return _metadata; }
1894
1895 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1896
1897 virtual const TypePtr *add_offset( intptr_t offset ) const;
1898
1899 virtual const Type *xmeet( const Type *t ) const;
1900 virtual const Type *xdual() const; // Compute dual right now.
1901
1902 virtual intptr_t get_con() const;
1903
1904 // Convenience common pre-built types.
1905 static const TypeMetadataPtr *BOTTOM;
1906
1907 #ifndef PRODUCT
1908 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1909 #endif
1910 };
1911
1912 //------------------------------TypeKlassPtr-----------------------------------
1913 // Class of Java Klass pointers
1914 class TypeKlassPtr : public TypePtr {
1915 friend class TypeInstKlassPtr;
1916 friend class TypeAryKlassPtr;
1917 friend class TypePtr;
1918 protected:
1919 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1920
1921 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1922
1923 public:
1924 virtual bool eq( const Type *t ) const;
1925 virtual uint hash() const;
1926 virtual bool singleton(void) const; // TRUE if type is a singleton
1927
1928 protected:
1929
1930 ciKlass* _klass;
1931 const TypeInterfaces* _interfaces;
1932 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1933 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1934 virtual ciKlass* exact_klass_helper() const;
1935 virtual ciKlass* klass() const { return _klass; }
1936
1937 public:
1938
1939 bool is_java_subtype_of(const TypeKlassPtr* other) const {
1940 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1941 }
1942 bool is_same_java_type_as(const TypePtr* other) const {
1943 return is_same_java_type_as_helper(other->is_klassptr());
1944 }
1945
1946 bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1947 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1948 }
1949 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1950 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1951 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1952
1953 // Exact klass, possibly an interface or an array of interface
1954 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; }
1955 virtual bool klass_is_exact() const { return _ptr == Constant; }
1956
1957 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1958
1959 virtual bool is_loaded() const { return _klass->is_loaded(); }
1960
1961 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1962
1963 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1964
1965 // corresponding pointer to instance, for a given class
1966 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1967
1968 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1969 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1970 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; }
1971
1972 virtual intptr_t get_con() const;
1973
1974 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1975
1976 virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1977
1978 virtual const TypeKlassPtr* try_improve() const { return this; }
1979
1980 private:
1981 virtual bool is_meet_subtype_of(const TypePtr* other) const {
1982 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1983 }
1984
1985 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1986 ShouldNotReachHere(); return false;
1987 }
1988
1989 virtual const TypeInterfaces* interfaces() const {
1990 return _interfaces;
1991 };
1992
1993 const TypeKlassPtr* is_reference_type(const Type* other) const {
1994 return other->isa_klassptr();
1995 }
1996
1997 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1998 return other->isa_aryklassptr();
1999 }
2000
2001 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
2002 return other->isa_instklassptr();
2003 }
2004 };
2005
2006 // Instance klass pointer, mirrors TypeInstPtr
2007 class TypeInstKlassPtr : public TypeKlassPtr {
2008 // Can an instance of this class be in a flat array?
2009 const FlatInArray _flat_in_array;
2010
2011 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, FlatInArray flat_in_array)
2012 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
2013 assert(flat_in_array != Uninitialized, "must be set now");
2014 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
2015 }
2016
2017 virtual bool must_be_exact() const;
2018
2019 public:
2020 // Instance klass ignoring any interface
2021 ciInstanceKlass* instance_klass() const {
2022 assert(!klass()->is_interface(), "");
2023 return klass()->as_instance_klass();
2024 }
2025
2026 bool might_be_an_array() const;
2027
2028 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2029 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2030 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2031
2032 virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
2033
2034 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
2035 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
2036 return make(TypePtr::Constant, k, interfaces, Offset(0));
2037 }
2038
2039 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset,
2040 FlatInArray flat_in_array = Uninitialized);
2041
2042 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, FlatInArray flat_in_array = Uninitialized) {
2043 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2044 return make(ptr, k, interfaces, offset, flat_in_array);
2045 }
2046
2047 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2048
2049 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2050
2051 // corresponding pointer to instance, for a given class
2052 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2053 virtual uint hash() const;
2054 virtual bool eq(const Type *t) const;
2055
2056
2057 virtual bool empty() const;
2058 virtual const TypePtr *add_offset( intptr_t offset ) const;
2059 virtual const Type *xmeet( const Type *t ) const;
2060 virtual const Type *xdual() const;
2061 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2062
2063 virtual const TypeKlassPtr* try_improve() const;
2064
2065 virtual FlatInArray flat_in_array() const { return _flat_in_array; }
2066
2067 FlatInArray dual_flat_in_array() const {
2068 return flat_in_array_dual[_flat_in_array];
2069 }
2070
2071 virtual bool can_be_inline_array() const;
2072
2073 // Convenience common pre-built types.
2074 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2075 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2076
2077 #ifndef PRODUCT
2078 virtual void dump2(Dict& d, uint depth, outputStream* st) const;
2079 #endif // PRODUCT
2080
2081 private:
2082 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2083 };
2084
2085 // Array klass pointer, mirrors TypeAryPtr
2086 class TypeAryKlassPtr : public TypeKlassPtr {
2087 friend class TypeInstKlassPtr;
2088 friend class Type;
2089 friend class TypePtr;
2090
2091 const Type *_elem;
2092 const bool _not_flat; // Array is never flat
2093 const bool _not_null_free; // Array is never null-free
2094 const bool _flat;
2095 const bool _null_free;
2096 const bool _atomic;
2097 const bool _refined_type;
2098
2099 static const TypeInterfaces* _array_interfaces;
2100 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool refined_type)
2101 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _refined_type(refined_type) {
2102 assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2103 }
2104
2105 virtual ciKlass* exact_klass_helper() const;
2106 // Only guaranteed non null for array of basic types
2107 virtual ciKlass* klass() const;
2108
2109 virtual bool must_be_exact() const;
2110
2111 bool dual_flat() const {
2112 return _flat;
2113 }
2114
2115 bool meet_flat(bool other) const {
2116 return _flat && other;
2117 }
2118
2119 bool dual_null_free() const {
2120 return _null_free;
2121 }
2122
2123 bool meet_null_free(bool other) const {
2124 return _null_free && other;
2125 }
2126
2127 bool dual_atomic() const {
2128 return _atomic;
2129 }
2130
2131 bool meet_atomic(bool other) const {
2132 return _atomic && other;
2133 }
2134
2135 public:
2136
2137 // returns base element type, an instance klass (and not interface) for object arrays
2138 const Type* base_element_type(int& dims) const;
2139
2140 static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2141
2142 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2143 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2144 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2145
2146 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2147
2148 static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool refined_type);
2149 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
2150
2151 const TypeAryKlassPtr* cast_to_non_refined() const;
2152 const TypeAryKlassPtr* cast_to_refined_array_klass_ptr(bool refined = true) const;
2153
2154 const Type *elem() const { return _elem; }
2155
2156 virtual bool eq(const Type *t) const;
2157 virtual uint hash() const; // Type specific hashing
2158
2159 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2160
2161 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2162
2163 // corresponding pointer to instance, for a given class
2164 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2165
2166 virtual const TypePtr *add_offset( intptr_t offset ) const;
2167 virtual const Type *xmeet( const Type *t ) const;
2168 virtual const Type *xdual() const; // Compute dual right now.
2169
2170 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2171
2172 virtual bool empty(void) const {
2173 return TypeKlassPtr::empty() || _elem->empty();
2174 }
2175
2176 bool is_flat() const { return _flat; }
2177 bool is_not_flat() const { return _not_flat; }
2178 bool is_null_free() const { return _null_free; }
2179 bool is_not_null_free() const { return _not_null_free; }
2180 bool is_atomic() const { return _atomic; }
2181 bool is_refined_type() const { return _refined_type; }
2182 virtual bool can_be_inline_array() const;
2183
2184 #ifndef PRODUCT
2185 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2186 #endif
2187 private:
2188 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2189 };
2190
2191 class TypeNarrowPtr : public Type {
2192 protected:
2193 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2194
2195 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2196 _ptrtype(ptrtype) {
2197 assert(ptrtype->offset() == 0 ||
2198 ptrtype->offset() == OffsetBot ||
2199 ptrtype->offset() == OffsetTop, "no real offsets");
2200 }
2201
2202 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2203 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2204 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2205 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2206 // Do not allow interface-vs.-noninterface joins to collapse to top.
2207 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2208 public:
2209 virtual bool eq( const Type *t ) const;
2210 virtual uint hash() const; // Type specific hashing
2211 virtual bool singleton(void) const; // TRUE if type is a singleton
2212
2213 virtual const Type *xmeet( const Type *t ) const;
2214 virtual const Type *xdual() const; // Compute dual right now.
2215
2216 virtual intptr_t get_con() const;
2217
2218 virtual bool empty(void) const; // TRUE if type is vacuous
2219
2220 // returns the equivalent ptr type for this compressed pointer
2221 const TypePtr *get_ptrtype() const {
2222 return _ptrtype;
2223 }
2224
2225 bool is_known_instance() const {
2226 return _ptrtype->is_known_instance();
2227 }
2228
2229 #ifndef PRODUCT
2230 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2231 #endif
2232 };
2233
2234 //------------------------------TypeNarrowOop----------------------------------
2235 // A compressed reference to some kind of Oop. This type wraps around
2236 // a preexisting TypeOopPtr and forwards most of it's operations to
2237 // the underlying type. It's only real purpose is to track the
2238 // oopness of the compressed oop value when we expose the conversion
2239 // between the normal and the compressed form.
2240 class TypeNarrowOop : public TypeNarrowPtr {
2241 protected:
2242 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2243 }
2244
2245 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2246 return t->isa_narrowoop();
2247 }
2248
2249 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2250 return t->is_narrowoop();
2251 }
2252
2253 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2254 return new TypeNarrowOop(t);
2255 }
2256
2257 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2258 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2259 }
2260
2261 public:
2262
2263 static const TypeNarrowOop *make( const TypePtr* type);
2264
2265 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2266 return make(TypeOopPtr::make_from_constant(con, require_constant));
2267 }
2268
2269 static const TypeNarrowOop *BOTTOM;
2270 static const TypeNarrowOop *NULL_PTR;
2271
2272 virtual const TypeNarrowOop* remove_speculative() const;
2273 virtual const Type* cleanup_speculative() const;
2274
2275 #ifndef PRODUCT
2276 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2277 #endif
2278 };
2279
2280 //------------------------------TypeNarrowKlass----------------------------------
2281 // A compressed reference to klass pointer. This type wraps around a
2282 // preexisting TypeKlassPtr and forwards most of it's operations to
2283 // the underlying type.
2284 class TypeNarrowKlass : public TypeNarrowPtr {
2285 protected:
2286 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2287 }
2288
2289 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2290 return t->isa_narrowklass();
2291 }
2292
2293 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2294 return t->is_narrowklass();
2295 }
2296
2297 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2298 return new TypeNarrowKlass(t);
2299 }
2300
2301 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2302 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2303 }
2304
2305 public:
2306 static const TypeNarrowKlass *make( const TypePtr* type);
2307
2308 // static const TypeNarrowKlass *BOTTOM;
2309 static const TypeNarrowKlass *NULL_PTR;
2310
2311 #ifndef PRODUCT
2312 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2313 #endif
2314 };
2315
2316 //------------------------------TypeFunc---------------------------------------
2317 // Class of Array Types
2318 class TypeFunc : public Type {
2319 TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2320 : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2321 virtual bool eq( const Type *t ) const;
2322 virtual uint hash() const; // Type specific hashing
2323 virtual bool singleton(void) const; // TRUE if type is a singleton
2324 virtual bool empty(void) const; // TRUE if type is vacuous
2325
2326 // Domains of inputs: inline type arguments are not passed by
2327 // reference, instead each field of the inline type is passed as an
2328 // argument. We maintain 2 views of the argument list here: one
2329 // based on the signature (with an inline type argument as a single
2330 // slot), one based on the actual calling convention (with a value
2331 // type argument as a list of its fields).
2332 const TypeTuple* const _domain_sig;
2333 const TypeTuple* const _domain_cc;
2334 // Range of results. Similar to domains: an inline type result can be
2335 // returned in registers in which case range_cc lists all fields and
2336 // is the actual calling convention.
2337 const TypeTuple* const _range_sig;
2338 const TypeTuple* const _range_cc;
2339
2340 public:
2341 // Constants are shared among ADLC and VM
2342 enum { Control = AdlcVMDeps::Control,
2343 I_O = AdlcVMDeps::I_O,
2344 Memory = AdlcVMDeps::Memory,
2345 FramePtr = AdlcVMDeps::FramePtr,
2346 ReturnAdr = AdlcVMDeps::ReturnAdr,
2347 Parms = AdlcVMDeps::Parms
2348 };
2349
2350
2351 // Accessors:
2352 const TypeTuple* domain_sig() const { return _domain_sig; }
2353 const TypeTuple* domain_cc() const { return _domain_cc; }
2354 const TypeTuple* range_sig() const { return _range_sig; }
2355 const TypeTuple* range_cc() const { return _range_cc; }
2356
2357 static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2358 static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2359 const TypeTuple* range_sig, const TypeTuple* range_cc);
2360 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2361
2362 virtual const Type *xmeet( const Type *t ) const;
2363 virtual const Type *xdual() const; // Compute dual right now.
2364
2365 BasicType return_type() const;
2366
2367 bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2368
2369 #ifndef PRODUCT
2370 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2371 #endif
2372 // Convenience common pre-built types.
2373 };
2374
2375 //------------------------------accessors--------------------------------------
2376 inline bool Type::is_ptr_to_narrowoop() const {
2377 #ifdef _LP64
2378 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2379 #else
2380 return false;
2381 #endif
2382 }
2383
2384 inline bool Type::is_ptr_to_narrowklass() const {
2385 #ifdef _LP64
2386 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2387 #else
2388 return false;
2389 #endif
2390 }
2391
2392 inline float Type::getf() const {
2393 assert( _base == FloatCon, "Not a FloatCon" );
2394 return ((TypeF*)this)->_f;
2395 }
2396
2397 inline short Type::geth() const {
2398 assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2399 return ((TypeH*)this)->_f;
2400 }
2401
2402 inline double Type::getd() const {
2403 assert( _base == DoubleCon, "Not a DoubleCon" );
2404 return ((TypeD*)this)->_d;
2405 }
2406
2407 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2408 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2409 return (TypeInteger*)this;
2410 }
2411
2412 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2413 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2414 }
2415
2416 inline const TypeInt *Type::is_int() const {
2417 assert( _base == Int, "Not an Int" );
2418 return (TypeInt*)this;
2419 }
2420
2421 inline const TypeInt *Type::isa_int() const {
2422 return ( _base == Int ? (TypeInt*)this : nullptr);
2423 }
2424
2425 inline const TypeLong *Type::is_long() const {
2426 assert( _base == Long, "Not a Long" );
2427 return (TypeLong*)this;
2428 }
2429
2430 inline const TypeLong *Type::isa_long() const {
2431 return ( _base == Long ? (TypeLong*)this : nullptr);
2432 }
2433
2434 inline const TypeH* Type::isa_half_float() const {
2435 return ((_base == HalfFloatTop ||
2436 _base == HalfFloatCon ||
2437 _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2438 }
2439
2440 inline const TypeH* Type::is_half_float_constant() const {
2441 assert( _base == HalfFloatCon, "Not a HalfFloat" );
2442 return (TypeH*)this;
2443 }
2444
2445 inline const TypeH* Type::isa_half_float_constant() const {
2446 return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2447 }
2448
2449 inline const TypeF *Type::isa_float() const {
2450 return ((_base == FloatTop ||
2451 _base == FloatCon ||
2452 _base == FloatBot) ? (TypeF*)this : nullptr);
2453 }
2454
2455 inline const TypeF *Type::is_float_constant() const {
2456 assert( _base == FloatCon, "Not a Float" );
2457 return (TypeF*)this;
2458 }
2459
2460 inline const TypeF *Type::isa_float_constant() const {
2461 return ( _base == FloatCon ? (TypeF*)this : nullptr);
2462 }
2463
2464 inline const TypeD *Type::isa_double() const {
2465 return ((_base == DoubleTop ||
2466 _base == DoubleCon ||
2467 _base == DoubleBot) ? (TypeD*)this : nullptr);
2468 }
2469
2470 inline const TypeD *Type::is_double_constant() const {
2471 assert( _base == DoubleCon, "Not a Double" );
2472 return (TypeD*)this;
2473 }
2474
2475 inline const TypeD *Type::isa_double_constant() const {
2476 return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2477 }
2478
2479 inline const TypeTuple *Type::is_tuple() const {
2480 assert( _base == Tuple, "Not a Tuple" );
2481 return (TypeTuple*)this;
2482 }
2483
2484 inline const TypeAry *Type::is_ary() const {
2485 assert( _base == Array , "Not an Array" );
2486 return (TypeAry*)this;
2487 }
2488
2489 inline const TypeAry *Type::isa_ary() const {
2490 return ((_base == Array) ? (TypeAry*)this : nullptr);
2491 }
2492
2493 inline const TypeVectMask *Type::is_vectmask() const {
2494 assert( _base == VectorMask, "Not a Vector Mask" );
2495 return (TypeVectMask*)this;
2496 }
2497
2498 inline const TypeVectMask *Type::isa_vectmask() const {
2499 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2500 }
2501
2502 inline const TypeVect *Type::is_vect() const {
2503 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2504 return (TypeVect*)this;
2505 }
2506
2507 inline const TypeVect *Type::isa_vect() const {
2508 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2509 }
2510
2511 inline const TypePtr *Type::is_ptr() const {
2512 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2513 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2514 return (TypePtr*)this;
2515 }
2516
2517 inline const TypePtr *Type::isa_ptr() const {
2518 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2519 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2520 }
2521
2522 inline const TypeOopPtr *Type::is_oopptr() const {
2523 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2524 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2525 return (TypeOopPtr*)this;
2526 }
2527
2528 inline const TypeOopPtr *Type::isa_oopptr() const {
2529 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2530 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2531 }
2532
2533 inline const TypeRawPtr *Type::isa_rawptr() const {
2534 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2535 }
2536
2537 inline const TypeRawPtr *Type::is_rawptr() const {
2538 assert( _base == RawPtr, "Not a raw pointer" );
2539 return (TypeRawPtr*)this;
2540 }
2541
2542 inline const TypeInstPtr *Type::isa_instptr() const {
2543 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2544 }
2545
2546 inline const TypeInstPtr *Type::is_instptr() const {
2547 assert( _base == InstPtr, "Not an object pointer" );
2548 return (TypeInstPtr*)this;
2549 }
2550
2551 inline const TypeAryPtr *Type::isa_aryptr() const {
2552 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2553 }
2554
2555 inline const TypeAryPtr *Type::is_aryptr() const {
2556 assert( _base == AryPtr, "Not an array pointer" );
2557 return (TypeAryPtr*)this;
2558 }
2559
2560 inline const TypeNarrowOop *Type::is_narrowoop() const {
2561 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2562 assert(_base == NarrowOop, "Not a narrow oop" ) ;
2563 return (TypeNarrowOop*)this;
2564 }
2565
2566 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2567 // OopPtr is the first and KlassPtr the last, with no non-oops between.
2568 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2569 }
2570
2571 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2572 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2573 return (TypeNarrowKlass*)this;
2574 }
2575
2576 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2577 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2578 }
2579
2580 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2581 // MetadataPtr is the first and CPCachePtr the last
2582 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2583 return (TypeMetadataPtr*)this;
2584 }
2585
2586 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2587 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2588 }
2589
2590 inline const TypeKlassPtr *Type::isa_klassptr() const {
2591 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2592 }
2593
2594 inline const TypeKlassPtr *Type::is_klassptr() const {
2595 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2596 return (TypeKlassPtr*)this;
2597 }
2598
2599 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2600 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2601 }
2602
2603 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2604 assert(_base == InstKlassPtr, "Not a klass pointer");
2605 return (TypeInstKlassPtr*)this;
2606 }
2607
2608 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2609 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2610 }
2611
2612 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2613 assert(_base == AryKlassPtr, "Not a klass pointer");
2614 return (TypeAryKlassPtr*)this;
2615 }
2616
2617 inline const TypePtr* Type::make_ptr() const {
2618 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2619 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2620 isa_ptr());
2621 }
2622
2623 inline const TypeOopPtr* Type::make_oopptr() const {
2624 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2625 }
2626
2627 inline const TypeNarrowOop* Type::make_narrowoop() const {
2628 return (_base == NarrowOop) ? is_narrowoop() :
2629 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2630 }
2631
2632 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2633 return (_base == NarrowKlass) ? is_narrowklass() :
2634 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2635 }
2636
2637 inline bool Type::is_floatingpoint() const {
2638 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) ||
2639 (_base == FloatCon) || (_base == FloatBot) ||
2640 (_base == DoubleCon) || (_base == DoubleBot) )
2641 return true;
2642 return false;
2643 }
2644
2645 inline bool Type::is_inlinetypeptr() const {
2646 return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2647 }
2648
2649 inline ciInlineKlass* Type::inline_klass() const {
2650 return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2651 }
2652
2653 template <>
2654 inline const TypeInt* Type::cast<TypeInt>() const {
2655 return is_int();
2656 }
2657
2658 template <>
2659 inline const TypeLong* Type::cast<TypeLong>() const {
2660 return is_long();
2661 }
2662
2663 template <>
2664 inline const TypeInt* Type::try_cast<TypeInt>() const {
2665 return isa_int();
2666 }
2667
2668 template <>
2669 inline const TypeLong* Type::try_cast<TypeLong>() const {
2670 return isa_long();
2671 }
2672
2673 // ===============================================================
2674 // Things that need to be 64-bits in the 64-bit build but
2675 // 32-bits in the 32-bit build. Done this way to get full
2676 // optimization AND strong typing.
2677 #ifdef _LP64
2678
2679 // For type queries and asserts
2680 #define is_intptr_t is_long
2681 #define isa_intptr_t isa_long
2682 #define find_intptr_t_type find_long_type
2683 #define find_intptr_t_con find_long_con
2684 #define TypeX TypeLong
2685 #define Type_X Type::Long
2686 #define TypeX_X TypeLong::LONG
2687 #define TypeX_ZERO TypeLong::ZERO
2688 // For 'ideal_reg' machine registers
2689 #define Op_RegX Op_RegL
2690 // For phase->intcon variants
2691 #define MakeConX longcon
2692 #define ConXNode ConLNode
2693 // For array index arithmetic
2694 #define MulXNode MulLNode
2695 #define AndXNode AndLNode
2696 #define OrXNode OrLNode
2697 #define CmpXNode CmpLNode
2698 #define CmpUXNode CmpULNode
2699 #define SubXNode SubLNode
2700 #define LShiftXNode LShiftLNode
2701 // For object size computation:
2702 #define AddXNode AddLNode
2703 #define RShiftXNode RShiftLNode
2704 // For card marks and hashcodes
2705 #define URShiftXNode URShiftLNode
2706 // For shenandoahSupport
2707 #define LoadXNode LoadLNode
2708 #define StoreXNode StoreLNode
2709 // Opcodes
2710 #define Op_LShiftX Op_LShiftL
2711 #define Op_AndX Op_AndL
2712 #define Op_AddX Op_AddL
2713 #define Op_SubX Op_SubL
2714 #define Op_XorX Op_XorL
2715 #define Op_URShiftX Op_URShiftL
2716 #define Op_LoadX Op_LoadL
2717 #define Op_StoreX Op_StoreL
2718 // conversions
2719 #define ConvI2X(x) ConvI2L(x)
2720 #define ConvL2X(x) (x)
2721 #define ConvX2I(x) ConvL2I(x)
2722 #define ConvX2L(x) (x)
2723 #define ConvX2UL(x) (x)
2724
2725 #else
2726
2727 // For type queries and asserts
2728 #define is_intptr_t is_int
2729 #define isa_intptr_t isa_int
2730 #define find_intptr_t_type find_int_type
2731 #define find_intptr_t_con find_int_con
2732 #define TypeX TypeInt
2733 #define Type_X Type::Int
2734 #define TypeX_X TypeInt::INT
2735 #define TypeX_ZERO TypeInt::ZERO
2736 // For 'ideal_reg' machine registers
2737 #define Op_RegX Op_RegI
2738 // For phase->intcon variants
2739 #define MakeConX intcon
2740 #define ConXNode ConINode
2741 // For array index arithmetic
2742 #define MulXNode MulINode
2743 #define AndXNode AndINode
2744 #define OrXNode OrINode
2745 #define CmpXNode CmpINode
2746 #define CmpUXNode CmpUNode
2747 #define SubXNode SubINode
2748 #define LShiftXNode LShiftINode
2749 // For object size computation:
2750 #define AddXNode AddINode
2751 #define RShiftXNode RShiftINode
2752 // For card marks and hashcodes
2753 #define URShiftXNode URShiftINode
2754 // For shenandoahSupport
2755 #define LoadXNode LoadINode
2756 #define StoreXNode StoreINode
2757 // Opcodes
2758 #define Op_LShiftX Op_LShiftI
2759 #define Op_AndX Op_AndI
2760 #define Op_AddX Op_AddI
2761 #define Op_SubX Op_SubI
2762 #define Op_XorX Op_XorI
2763 #define Op_URShiftX Op_URShiftI
2764 #define Op_LoadX Op_LoadI
2765 #define Op_StoreX Op_StoreI
2766 // conversions
2767 #define ConvI2X(x) (x)
2768 #define ConvL2X(x) ConvL2I(x)
2769 #define ConvX2I(x) (x)
2770 #define ConvX2L(x) ConvI2L(x)
2771 #define ConvX2UL(x) ConvI2UL(x)
2772
2773 #endif
2774
2775 #endif // SHARE_OPTO_TYPE_HPP