1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciInlineKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/rangeinference.hpp"
  32 #include "runtime/handles.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 // Optimization - Graph Style
  38 
  39 
  40 // This class defines a Type lattice.  The lattice is used in the constant
  41 // propagation algorithms, and for some type-checking of the iloc code.
  42 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  43 // float & double precision constants, sets of data-labels and code-labels.
  44 // The complete lattice is described below.  Subtypes have no relationship to
  45 // up or down in the lattice; that is entirely determined by the behavior of
  46 // the MEET/JOIN functions.
  47 
  48 class Dict;
  49 class Type;
  50 class   TypeD;
  51 class   TypeF;
  52 class   TypeH;
  53 class   TypeInteger;
  54 class     TypeInt;
  55 class     TypeLong;
  56 class   TypeNarrowPtr;
  57 class     TypeNarrowOop;
  58 class     TypeNarrowKlass;
  59 class   TypeAry;
  60 class   TypeTuple;
  61 class   TypeVect;
  62 class     TypeVectA;
  63 class     TypeVectS;
  64 class     TypeVectD;
  65 class     TypeVectX;
  66 class     TypeVectY;
  67 class     TypeVectZ;
  68 class     TypeVectMask;
  69 class   TypePtr;
  70 class     TypeRawPtr;
  71 class     TypeOopPtr;
  72 class       TypeInstPtr;
  73 class       TypeAryPtr;
  74 class     TypeKlassPtr;
  75 class       TypeInstKlassPtr;
  76 class       TypeAryKlassPtr;
  77 class     TypeMetadataPtr;
  78 class VerifyMeet;
  79 
  80 template <class T, class U>
  81 class TypeIntPrototype;
  82 
  83 //------------------------------Type-------------------------------------------
  84 // Basic Type object, represents a set of primitive Values.
  85 // Types are hash-cons'd into a private class dictionary, so only one of each
  86 // different kind of Type exists.  Types are never modified after creation, so
  87 // all their interesting fields are constant.
  88 class Type {
  89 
  90 public:
  91   enum TYPES {
  92     Bad=0,                      // Type check
  93     Control,                    // Control of code (not in lattice)
  94     Top,                        // Top of the lattice
  95     Int,                        // Integer range (lo-hi)
  96     Long,                       // Long integer range (lo-hi)
  97     Half,                       // Placeholder half of doubleword
  98     NarrowOop,                  // Compressed oop pointer
  99     NarrowKlass,                // Compressed klass pointer
 100 
 101     Tuple,                      // Method signature or object layout
 102     Array,                      // Array types
 103 
 104     Interfaces,                 // Set of implemented interfaces for oop types
 105 
 106     VectorMask,                 // Vector predicate/mask type
 107     VectorA,                    // (Scalable) Vector types for vector length agnostic
 108     VectorS,                    //  32bit Vector types
 109     VectorD,                    //  64bit Vector types
 110     VectorX,                    // 128bit Vector types
 111     VectorY,                    // 256bit Vector types
 112     VectorZ,                    // 512bit Vector types
 113 
 114     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 115     RawPtr,                     // Raw (non-oop) pointers
 116     OopPtr,                     // Any and all Java heap entities
 117     InstPtr,                    // Instance pointers (non-array objects)
 118     AryPtr,                     // Array pointers
 119     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 120 
 121     MetadataPtr,                // Generic metadata
 122     KlassPtr,                   // Klass pointers
 123     InstKlassPtr,
 124     AryKlassPtr,
 125 
 126     Function,                   // Function signature
 127     Abio,                       // Abstract I/O
 128     Return_Address,             // Subroutine return address
 129     Memory,                     // Abstract store
 130     HalfFloatTop,               // No float value
 131     HalfFloatCon,               // Floating point constant
 132     HalfFloatBot,               // Any float value
 133     FloatTop,                   // No float value
 134     FloatCon,                   // Floating point constant
 135     FloatBot,                   // Any float value
 136     DoubleTop,                  // No double value
 137     DoubleCon,                  // Double precision constant
 138     DoubleBot,                  // Any double value
 139     Bottom,                     // Bottom of lattice
 140     lastype                     // Bogus ending type (not in lattice)
 141   };
 142 
 143   // Signal values for offsets from a base pointer
 144   enum OFFSET_SIGNALS {
 145     OffsetTop = -2000000000,    // undefined offset
 146     OffsetBot = -2000000001     // any possible offset
 147   };
 148 
 149   class Offset {
 150   private:
 151     int _offset;
 152 
 153   public:
 154     explicit Offset(int offset) : _offset(offset) {}
 155 
 156     const Offset meet(const Offset other) const;
 157     const Offset dual() const;
 158     const Offset add(intptr_t offset) const;
 159     bool operator==(const Offset& other) const {
 160       return _offset == other._offset;
 161     }
 162     bool operator!=(const Offset& other) const {
 163       return _offset != other._offset;
 164     }
 165     int get() const { return _offset; }
 166 
 167     void dump2(outputStream *st) const;
 168 
 169     static const Offset top;
 170     static const Offset bottom;
 171   };
 172 
 173   // Min and max WIDEN values.
 174   enum WIDEN {
 175     WidenMin = 0,
 176     WidenMax = 3
 177   };
 178 
 179 private:
 180   typedef struct {
 181     TYPES                dual_type;
 182     BasicType            basic_type;
 183     const char*          msg;
 184     bool                 isa_oop;
 185     uint                 ideal_reg;
 186     relocInfo::relocType reloc;
 187   } TypeInfo;
 188 
 189   // Dictionary of types shared among compilations.
 190   static Dict* _shared_type_dict;
 191   static const TypeInfo _type_info[];
 192 
 193   static int uhash( const Type *const t );
 194   // Structural equality check.  Assumes that equals() has already compared
 195   // the _base types and thus knows it can cast 't' appropriately.
 196   virtual bool eq( const Type *t ) const;
 197 
 198   // Top-level hash-table of types
 199   static Dict *type_dict() {
 200     return Compile::current()->type_dict();
 201   }
 202 
 203   // DUAL operation: reflect around lattice centerline.  Used instead of
 204   // join to ensure my lattice is symmetric up and down.  Dual is computed
 205   // lazily, on demand, and cached in _dual.
 206   const Type *_dual;            // Cached dual value
 207 
 208 
 209   const Type *meet_helper(const Type *t, bool include_speculative) const;
 210   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 211 
 212 protected:
 213   // Each class of type is also identified by its base.
 214   const TYPES _base;            // Enum of Types type
 215 
 216   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 217   // ~Type();                   // Use fast deallocation
 218   const Type *hashcons();       // Hash-cons the type
 219   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 220   const Type *join_helper(const Type *t, bool include_speculative) const {
 221     assert_type_verify_empty();
 222     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 223   }
 224 
 225   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 226 
 227 public:
 228 
 229   inline void* operator new( size_t x ) throw() {
 230     Compile* compile = Compile::current();
 231     compile->set_type_last_size(x);
 232     return compile->type_arena()->AmallocWords(x);
 233   }
 234   inline void operator delete( void* ptr ) {
 235     Compile* compile = Compile::current();
 236     compile->type_arena()->Afree(ptr,compile->type_last_size());
 237   }
 238 
 239   // Initialize the type system for a particular compilation.
 240   static void Initialize(Compile* compile);
 241 
 242   // Initialize the types shared by all compilations.
 243   static void Initialize_shared(Compile* compile);
 244 
 245   TYPES base() const {
 246     assert(_base > Bad && _base < lastype, "sanity");
 247     return _base;
 248   }
 249 
 250   // Create a new hash-consd type
 251   static const Type *make(enum TYPES);
 252   // Test for equivalence of types
 253   static bool equals(const Type* t1, const Type* t2);
 254   // Test for higher or equal in lattice
 255   // Variant that drops the speculative part of the types
 256   bool higher_equal(const Type* t) const {
 257     return equals(meet(t), t->remove_speculative());
 258   }
 259   // Variant that keeps the speculative part of the types
 260   bool higher_equal_speculative(const Type* t) const {
 261     return equals(meet_speculative(t), t);
 262   }
 263 
 264   // MEET operation; lower in lattice.
 265   // Variant that drops the speculative part of the types
 266   const Type *meet(const Type *t) const {
 267     return meet_helper(t, false);
 268   }
 269   // Variant that keeps the speculative part of the types
 270   const Type *meet_speculative(const Type *t) const {
 271     return meet_helper(t, true)->cleanup_speculative();
 272   }
 273   // WIDEN: 'widens' for Ints and other range types
 274   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 275   // NARROW: complement for widen, used by pessimistic phases
 276   virtual const Type *narrow( const Type *old ) const { return this; }
 277 
 278   // DUAL operation: reflect around lattice centerline.  Used instead of
 279   // join to ensure my lattice is symmetric up and down.
 280   const Type *dual() const { return _dual; }
 281 
 282   // Compute meet dependent on base type
 283   virtual const Type *xmeet( const Type *t ) const;
 284   virtual const Type *xdual() const;    // Compute dual right now.
 285 
 286   // JOIN operation; higher in lattice.  Done by finding the dual of the
 287   // meet of the dual of the 2 inputs.
 288   // Variant that drops the speculative part of the types
 289   const Type *join(const Type *t) const {
 290     return join_helper(t, false);
 291   }
 292   // Variant that keeps the speculative part of the types
 293   const Type *join_speculative(const Type *t) const {
 294     return join_helper(t, true)->cleanup_speculative();
 295   }
 296 
 297   // Modified version of JOIN adapted to the needs Node::Value.
 298   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 299   // Variant that drops the speculative part of the types
 300   const Type *filter(const Type *kills) const {
 301     return filter_helper(kills, false);
 302   }
 303   // Variant that keeps the speculative part of the types
 304   const Type *filter_speculative(const Type *kills) const {
 305     return filter_helper(kills, true)->cleanup_speculative();
 306   }
 307 
 308   // Returns true if this pointer points at memory which contains a
 309   // compressed oop references.
 310   bool is_ptr_to_narrowoop() const;
 311   bool is_ptr_to_narrowklass() const;
 312 
 313   // Convenience access
 314   short geth() const;
 315   virtual float getf() const;
 316   double getd() const;
 317 
 318   // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
 319   template <typename TypeClass>
 320   const TypeClass* try_cast() const;
 321 
 322   const TypeInt    *is_int() const;
 323   const TypeInt    *isa_int() const;             // Returns null if not an Int
 324   const TypeInteger* is_integer(BasicType bt) const;
 325   const TypeInteger* isa_integer(BasicType bt) const;
 326   const TypeLong   *is_long() const;
 327   const TypeLong   *isa_long() const;            // Returns null if not a Long
 328   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 329   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 330   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 331   const TypeH      *isa_half_float() const;          // Returns null if not a HalfFloat{Top,Con,Bot}
 332   const TypeH      *is_half_float_constant() const;  // Asserts it is a HalfFloatCon
 333   const TypeH      *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
 334   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 335   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 336   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 337   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 338   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 339   const TypeAry    *isa_ary() const;             // Returns null of not ary
 340   const TypeVect   *is_vect() const;             // Vector
 341   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 342   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 343   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 344   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 345   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 346   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 347   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 348   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 349   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 350   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 351   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 352   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 353   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 354   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 355   const TypeInstPtr  *is_instptr() const;        // Instance
 356   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 357   const TypeAryPtr   *is_aryptr() const;         // Array oop
 358 
 359   template <typename TypeClass>
 360   const TypeClass* cast() const;
 361 
 362   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 363   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 364   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 365   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 366   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 367   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 368   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 369   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 370 
 371   virtual bool      is_finite() const;           // Has a finite value
 372   virtual bool      is_nan()    const;           // Is not a number (NaN)
 373 
 374   bool is_inlinetypeptr() const;
 375   virtual ciInlineKlass* inline_klass() const;
 376 
 377   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 378   const TypePtr* make_ptr() const;
 379 
 380   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 381   // Asserts if the underlying type is not an oopptr or narrowoop.
 382   const TypeOopPtr* make_oopptr() const;
 383 
 384   // Returns this compressed pointer or the equivalent compressed version
 385   // of this pointer type.
 386   const TypeNarrowOop* make_narrowoop() const;
 387 
 388   // Returns this compressed klass pointer or the equivalent
 389   // compressed version of this pointer type.
 390   const TypeNarrowKlass* make_narrowklass() const;
 391 
 392   // Special test for register pressure heuristic
 393   bool is_floatingpoint() const;        // True if Float or Double base type
 394 
 395   // Do you have memory, directly or through a tuple?
 396   bool has_memory( ) const;
 397 
 398   // TRUE if type is a singleton
 399   virtual bool singleton(void) const;
 400 
 401   // TRUE if type is above the lattice centerline, and is therefore vacuous
 402   virtual bool empty(void) const;
 403 
 404   // Return a hash for this type.  The hash function is public so ConNode
 405   // (constants) can hash on their constant, which is represented by a Type.
 406   virtual uint hash() const;
 407 
 408   // Map ideal registers (machine types) to ideal types
 409   static const Type *mreg2type[];
 410 
 411   // Printing, statistics
 412 #ifndef PRODUCT
 413   void         dump_on(outputStream *st) const;
 414   void         dump() const {
 415     dump_on(tty);
 416   }
 417   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 418   static  void dump_stats();
 419   // Groups of types, for debugging and visualization only.
 420   enum class Category {
 421     Data,
 422     Memory,
 423     Mixed,   // Tuples with types of different categories.
 424     Control,
 425     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 426     Undef    // {Type::Bad, Type::lastype}, for completeness.
 427   };
 428   // Return the category of this type.
 429   Category category() const;
 430   // Check recursively in tuples.
 431   bool has_category(Category cat) const;
 432 
 433   static const char* str(const Type* t);
 434 #endif // !PRODUCT
 435   void typerr(const Type *t) const; // Mixing types error
 436 
 437   // Create basic type
 438   static const Type* get_const_basic_type(BasicType type) {
 439     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 440     return _const_basic_type[type];
 441   }
 442 
 443   // For two instance arrays of same dimension, return the base element types.
 444   // Otherwise or if the arrays have different dimensions, return null.
 445   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 446                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 447 
 448   // Mapping to the array element's basic type.
 449   BasicType array_element_basic_type() const;
 450 
 451   enum InterfaceHandling {
 452       trust_interfaces,
 453       ignore_interfaces
 454   };
 455   // Create standard type for a ciType:
 456   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 457 
 458   // Create standard zero value:
 459   static const Type* get_zero_type(BasicType type) {
 460     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 461     return _zero_type[type];
 462   }
 463 
 464   // Report if this is a zero value (not top).
 465   bool is_zero_type() const {
 466     BasicType type = basic_type();
 467     if (type == T_VOID || type >= T_CONFLICT)
 468       return false;
 469     else
 470       return (this == _zero_type[type]);
 471   }
 472 
 473   // Convenience common pre-built types.
 474   static const Type *ABIO;
 475   static const Type *BOTTOM;
 476   static const Type *CONTROL;
 477   static const Type *DOUBLE;
 478   static const Type *FLOAT;
 479   static const Type *HALF_FLOAT;
 480   static const Type *HALF;
 481   static const Type *MEMORY;
 482   static const Type *MULTI;
 483   static const Type *RETURN_ADDRESS;
 484   static const Type *TOP;
 485 
 486   // Mapping from compiler type to VM BasicType
 487   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 488   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 489   const char* msg() const            { return _type_info[_base].msg; }
 490   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 491   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 492 
 493   // Mapping from CI type system to compiler type:
 494   static const Type* get_typeflow_type(ciType* type);
 495 
 496   static const Type* make_from_constant(ciConstant constant,
 497                                         bool require_constant = false,
 498                                         int stable_dimension = 0,
 499                                         bool is_narrow = false,
 500                                         bool is_autobox_cache = false);
 501 
 502   static const Type* make_constant_from_field(ciInstance* holder,
 503                                               int off,
 504                                               bool is_unsigned_load,
 505                                               BasicType loadbt);
 506 
 507   static const Type* make_constant_from_field(ciField* field,
 508                                               ciInstance* holder,
 509                                               BasicType loadbt,
 510                                               bool is_unsigned_load);
 511 
 512   static const Type* make_constant_from_array_element(ciArray* array,
 513                                                       int off,
 514                                                       int stable_dimension,
 515                                                       BasicType loadbt,
 516                                                       bool is_unsigned_load);
 517 
 518   // Speculative type helper methods. See TypePtr.
 519   virtual const TypePtr* speculative() const                                  { return nullptr; }
 520   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 521   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 522   virtual bool speculative_maybe_null() const                                 { return true; }
 523   virtual bool speculative_always_null() const                                { return true; }
 524   virtual const Type* remove_speculative() const                              { return this; }
 525   virtual const Type* cleanup_speculative() const                             { return this; }
 526   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 527   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 528   const Type* maybe_remove_speculative(bool include_speculative) const;
 529 
 530   virtual bool maybe_null() const { return true; }
 531   virtual bool is_known_instance() const { return false; }
 532 
 533 private:
 534   // support arrays
 535   static const Type*        _zero_type[T_CONFLICT+1];
 536   static const Type* _const_basic_type[T_CONFLICT+1];
 537 };
 538 
 539 //------------------------------TypeF------------------------------------------
 540 // Class of Float-Constant Types.
 541 class TypeF : public Type {
 542   TypeF( float f ) : Type(FloatCon), _f(f) {};
 543 public:
 544   virtual bool eq( const Type *t ) const;
 545   virtual uint hash() const;             // Type specific hashing
 546   virtual bool singleton(void) const;    // TRUE if type is a singleton
 547   virtual bool empty(void) const;        // TRUE if type is vacuous
 548 public:
 549   const float _f;               // Float constant
 550 
 551   static const TypeF *make(float f);
 552 
 553   virtual bool        is_finite() const;  // Has a finite value
 554   virtual bool        is_nan()    const;  // Is not a number (NaN)
 555 
 556   virtual const Type *xmeet( const Type *t ) const;
 557   virtual const Type *xdual() const;    // Compute dual right now.
 558   // Convenience common pre-built types.
 559   static const TypeF *MAX;
 560   static const TypeF *MIN;
 561   static const TypeF *ZERO; // positive zero only
 562   static const TypeF *ONE;
 563   static const TypeF *POS_INF;
 564   static const TypeF *NEG_INF;
 565 #ifndef PRODUCT
 566   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 567 #endif
 568 };
 569 
 570 // Class of Half Float-Constant Types.
 571 class TypeH : public Type {
 572   TypeH(short f) : Type(HalfFloatCon), _f(f) {};
 573 public:
 574   virtual bool eq(const Type* t) const;
 575   virtual uint hash() const;             // Type specific hashing
 576   virtual bool singleton(void) const;    // TRUE if type is a singleton
 577   virtual bool empty(void) const;        // TRUE if type is vacuous
 578 public:
 579   const short _f;                        // Half Float constant
 580 
 581   static const TypeH* make(float f);
 582   static const TypeH* make(short f);
 583 
 584   virtual bool is_finite() const;  // Has a finite value
 585   virtual bool is_nan() const;     // Is not a number (NaN)
 586 
 587   virtual float getf() const;
 588   virtual const Type* xmeet(const Type* t) const;
 589   virtual const Type* xdual() const;    // Compute dual right now.
 590   // Convenience common pre-built types.
 591   static const TypeH* MAX;
 592   static const TypeH* MIN;
 593   static const TypeH* ZERO; // positive zero only
 594   static const TypeH* ONE;
 595   static const TypeH* POS_INF;
 596   static const TypeH* NEG_INF;
 597 #ifndef PRODUCT
 598   virtual void dump2(Dict &d, uint depth, outputStream* st) const;
 599 #endif
 600 };
 601 
 602 //------------------------------TypeD------------------------------------------
 603 // Class of Double-Constant Types.
 604 class TypeD : public Type {
 605   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 606 public:
 607   virtual bool eq( const Type *t ) const;
 608   virtual uint hash() const;             // Type specific hashing
 609   virtual bool singleton(void) const;    // TRUE if type is a singleton
 610   virtual bool empty(void) const;        // TRUE if type is vacuous
 611 public:
 612   const double _d;              // Double constant
 613 
 614   static const TypeD *make(double d);
 615 
 616   virtual bool        is_finite() const;  // Has a finite value
 617   virtual bool        is_nan()    const;  // Is not a number (NaN)
 618 
 619   virtual const Type *xmeet( const Type *t ) const;
 620   virtual const Type *xdual() const;    // Compute dual right now.
 621   // Convenience common pre-built types.
 622   static const TypeD *MAX;
 623   static const TypeD *MIN;
 624   static const TypeD *ZERO; // positive zero only
 625   static const TypeD *ONE;
 626   static const TypeD *POS_INF;
 627   static const TypeD *NEG_INF;
 628 #ifndef PRODUCT
 629   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 630 #endif
 631 };
 632 
 633 class TypeInteger : public Type {
 634 protected:
 635   TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
 636 
 637   // Denote that a set is a dual set.
 638   // Dual sets are only used to compute the join of 2 sets, and not used
 639   // outside.
 640   const bool _is_dual;
 641 
 642 public:
 643   const short _widen;           // Limit on times we widen this sucker
 644 
 645   virtual jlong hi_as_long() const = 0;
 646   virtual jlong lo_as_long() const = 0;
 647   jlong get_con_as_long(BasicType bt) const;
 648   bool is_con() const { return lo_as_long() == hi_as_long(); }
 649   virtual short widen_limit() const { return _widen; }
 650 
 651   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 652   static const TypeInteger* make(jlong con, BasicType bt);
 653 
 654   static const TypeInteger* bottom(BasicType type);
 655   static const TypeInteger* zero(BasicType type);
 656   static const TypeInteger* one(BasicType type);
 657   static const TypeInteger* minus_1(BasicType type);
 658 };
 659 
 660 /**
 661  * Definition:
 662  *
 663  * A TypeInt represents a set of non-empty jint values. A jint v is an element
 664  * of a TypeInt iff:
 665  *
 666  *   v >= _lo && v <= _hi &&
 667  *   juint(v) >= _ulo && juint(v) <= _uhi &&
 668  *   _bits.is_satisfied_by(v)
 669  *
 670  * Multiple sets of parameters can represent the same set.
 671  * E.g: consider 2 TypeInt t1, t2
 672  *
 673  * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
 674  * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
 675  *
 676  * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
 677  * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
 678  * which also represents {3, 5} such that any of these would be true:
 679  *
 680  *  1)  t3._lo  > t2._lo
 681  *  2)  t3._hi  < t2._hi
 682  *  3)  t3._ulo > t2._ulo
 683  *  4)  t3._uhi < t2._uhi
 684  *  5)  (t3._bits._zeros &~ t2._bis._zeros) != 0
 685  *  6)  (t3._bits._ones  &~ t2._bits._ones) != 0
 686  *
 687  * The 5-th condition mean that the subtraction of the bitsets represented by
 688  * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
 689  * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
 690  * same applies to _bits._ones
 691  *
 692  * To simplify reasoning about the types in optimizations, we canonicalize
 693  * every TypeInt to its tightest form, already at construction. E.g a TypeInt
 694  * t with t._lo < 0 will definitely contain negative values. It also makes it
 695  * trivial to determine if a TypeInt instance is a subset of another.
 696  *
 697  * Lemmas:
 698  *
 699  * 1. Since every TypeInt instance is non-empty and canonicalized, all the
 700  *   bounds must also be elements of such TypeInt. Or else, we can tighten the
 701  *   bounds by narrowing it by one, which contradicts the assumption of the
 702  *   TypeInt being canonical.
 703  *
 704  * 2.
 705  *   2.1.  _lo <= jint(_ulo)
 706  *   2.2.  _lo <= _hi
 707  *   2.3.  _lo <= jint(_uhi)
 708  *   2.4.  _ulo <= juint(_lo)
 709  *   2.5.  _ulo <= juint(_hi)
 710  *   2.6.  _ulo <= _uhi
 711  *   2.7.  _hi >= _lo
 712  *   2.8.  _hi >= jint(_ulo)
 713  *   2.9.  _hi >= jint(_uhi)
 714  *   2.10. _uhi >= juint(_lo)
 715  *   2.11. _uhi >= _ulo
 716  *   2.12. _uhi >= juint(_hi)
 717  *
 718  *   Proof of lemma 2:
 719  *
 720  *   2.1. _lo <= jint(_ulo):
 721  *     According the lemma 1, _ulo is an element of the TypeInt, so in the
 722  *     signed domain, it must not be less than the smallest element of that
 723  *     TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
 724  *     domain, or in a more programmatical way, _lo <= jint(_ulo).
 725  *   2.2. _lo <= _hi:
 726  *     According the lemma 1, _hi is an element of the TypeInt, so in the
 727  *     signed domain, it must not be less than the smallest element of that
 728  *     TypeInt, which is _lo. Which means that _lo <= _hi.
 729  *
 730  *   The other inequalities can be proved in a similar manner.
 731  *
 732  * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
 733  *
 734  *   x <= y iff juint(x) <= juint(y)
 735  *   I.e. x <= y in the signed domain iff x <= y in the unsigned domain
 736  *
 737  * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
 738  *   TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
 739  *   (note that these intervals are disjoint in this case).
 740  *
 741  *   Proof of lemma 4:
 742  *
 743  *   For a TypeInt t, there are 3 possible cases:
 744  *
 745  *   a. t._lo >= 0, we have:
 746  *
 747  *     0 <= t_lo <= jint(t._ulo)           (lemma 2.1)
 748  *     juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
 749  *                  == t._ulo              (juint(jint(v)) == v with juint v)
 750  *                  <= juint(t._lo)        (lemma 2.4)
 751  *
 752  *     Which means that t._lo == jint(t._ulo).
 753  *
 754  *     Furthermore,
 755  *
 756  *     0 <= t._lo <= t._hi                 (lemma 2.2)
 757  *     0 <= t._lo <= jint(t._uhi)          (lemma 2.3)
 758  *     t._hi >= jint(t._uhi)               (lemma 2.9)
 759  *
 760  *     juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
 761  *                  == t._uhi              (juint(jint(v)) == v with juint v)
 762  *                  >= juint(t._hi)        (lemma 2.12)
 763  *
 764  *     Which means that t._hi == jint(t._uhi).
 765  *     In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 766  *
 767  *   b. t._hi < 0. Similarly, we can conclude that:
 768  *     t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 769  *
 770  *   c. t._lo < 0, t._hi >= 0.
 771  *
 772  *     Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
 773  *     because all negative values is larger than all non-negative values in the
 774  *     unsigned domain.
 775  *
 776  *     Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
 777  *     similar to the reasoning above.
 778  *
 779  *     In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
 780  *     [jint(t._ulo), t._hi].
 781  *
 782  *     Below is an illustration of the TypeInt in this case, the intervals that
 783  *     the elements can be in are marked using the = symbol. Note how the
 784  *     negative range in the signed domain wrap around in the unsigned domain.
 785  *
 786  *     Signed:
 787  *     -----lo=========uhi---------0--------ulo==========hi-----
 788  *     Unsigned:
 789  *                                 0--------ulo==========hi----------lo=========uhi---------
 790  *
 791  *   This property is useful for our analysis of TypeInt values. Additionally,
 792  *   it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
 793  *   same applies to jint(_ulo) and _hi.
 794  *
 795  *   We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
 796  *   a TypeInt consists of 2 simple intervals, each of which has its bounds
 797  *   being both >= 0 or both < 0. If both simple intervals lie in the same half
 798  *   of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
 799  *   _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
 800  *   half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
 801  *   domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
 802  *   [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
 803  */
 804 class TypeInt : public TypeInteger {
 805 private:
 806   TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
 807   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
 808 
 809   friend class TypeIntHelper;
 810 
 811 protected:
 812   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 813 
 814 public:
 815   typedef jint NativeType;
 816   virtual bool eq(const Type* t) const;
 817   virtual uint hash() const;             // Type specific hashing
 818   virtual bool singleton(void) const;    // TRUE if type is a singleton
 819   virtual bool empty(void) const;        // TRUE if type is vacuous
 820   // A value is in the set represented by this TypeInt if it satisfies all
 821   // the below constraints, see contains(jint)
 822   const jint _lo, _hi;       // Lower bound, upper bound in the signed domain
 823   const juint _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 824   const KnownBits<juint> _bits;
 825 
 826   static const TypeInt* make(jint con);
 827   // must always specify w
 828   static const TypeInt* make(jint lo, jint hi, int widen);
 829   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
 830 
 831   // Check for single integer
 832   bool is_con() const { return _lo == _hi; }
 833   bool is_con(jint i) const { return is_con() && _lo == i; }
 834   jint get_con() const { assert(is_con(), "");  return _lo; }
 835   // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
 836   // argument are also elements of this type)
 837   bool contains(jint i) const;
 838   bool contains(const TypeInt* t) const;
 839 
 840   virtual bool is_finite() const;  // Has a finite value
 841 
 842   virtual const Type* xmeet(const Type* t) const;
 843   virtual const Type* xdual() const;    // Compute dual right now.
 844   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 845   virtual const Type* narrow(const Type* t) const;
 846 
 847   virtual jlong hi_as_long() const { return _hi; }
 848   virtual jlong lo_as_long() const { return _lo; }
 849 
 850   // Do not kill _widen bits.
 851   // Convenience common pre-built types.
 852   static const TypeInt* MAX;
 853   static const TypeInt* MIN;
 854   static const TypeInt* MINUS_1;
 855   static const TypeInt* ZERO;
 856   static const TypeInt* ONE;
 857   static const TypeInt* BOOL;
 858   static const TypeInt* CC;
 859   static const TypeInt* CC_LT;  // [-1]  == MINUS_1
 860   static const TypeInt* CC_GT;  // [1]   == ONE
 861   static const TypeInt* CC_EQ;  // [0]   == ZERO
 862   static const TypeInt* CC_NE;  // [-1, 1]
 863   static const TypeInt* CC_LE;  // [-1,0]
 864   static const TypeInt* CC_GE;  // [0,1] == BOOL (!)
 865   static const TypeInt* BYTE;
 866   static const TypeInt* UBYTE;
 867   static const TypeInt* CHAR;
 868   static const TypeInt* SHORT;
 869   static const TypeInt* NON_ZERO;
 870   static const TypeInt* POS;
 871   static const TypeInt* POS1;
 872   static const TypeInt* INT;
 873   static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
 874   static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
 875 
 876   static const TypeInt* as_self(const Type* t) { return t->is_int(); }
 877 #ifndef PRODUCT
 878   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
 879   void dump_verbose() const;
 880 #endif
 881 };
 882 
 883 // Similar to TypeInt
 884 class TypeLong : public TypeInteger {
 885 private:
 886   TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
 887   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
 888 
 889   friend class TypeIntHelper;
 890 
 891 protected:
 892   // Do not kill _widen bits.
 893   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 894 public:
 895   typedef jlong NativeType;
 896   virtual bool eq( const Type *t ) const;
 897   virtual uint hash() const;             // Type specific hashing
 898   virtual bool singleton(void) const;    // TRUE if type is a singleton
 899   virtual bool empty(void) const;        // TRUE if type is vacuous
 900 public:
 901   // A value is in the set represented by this TypeLong if it satisfies all
 902   // the below constraints, see contains(jlong)
 903   const jlong _lo, _hi;       // Lower bound, upper bound in the signed domain
 904   const julong _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 905   const KnownBits<julong> _bits;
 906 
 907   static const TypeLong* make(jlong con);
 908   // must always specify w
 909   static const TypeLong* make(jlong lo, jlong hi, int widen);
 910   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
 911 
 912   // Check for single integer
 913   bool is_con() const { return _lo == _hi; }
 914   bool is_con(jlong i) const { return is_con() && _lo == i; }
 915   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 916   // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
 917   // argument are also elements of this type)
 918   bool contains(jlong i) const;
 919   bool contains(const TypeLong* t) const;
 920 
 921   // Check for positive 32-bit value.
 922   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 923 
 924   virtual bool        is_finite() const;  // Has a finite value
 925 
 926   virtual jlong hi_as_long() const { return _hi; }
 927   virtual jlong lo_as_long() const { return _lo; }
 928 
 929   virtual const Type* xmeet(const Type* t) const;
 930   virtual const Type* xdual() const;    // Compute dual right now.
 931   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 932   virtual const Type* narrow(const Type* t) const;
 933   // Convenience common pre-built types.
 934   static const TypeLong* MAX;
 935   static const TypeLong* MIN;
 936   static const TypeLong* MINUS_1;
 937   static const TypeLong* ZERO;
 938   static const TypeLong* ONE;
 939   static const TypeLong* NON_ZERO;
 940   static const TypeLong* POS;
 941   static const TypeLong* NEG;
 942   static const TypeLong* LONG;
 943   static const TypeLong* INT;    // 32-bit subrange [min_jint..max_jint]
 944   static const TypeLong* UINT;   // 32-bit unsigned [0..max_juint]
 945   static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
 946 
 947   // static convenience methods.
 948   static const TypeLong* as_self(const Type* t) { return t->is_long(); }
 949 
 950 #ifndef PRODUCT
 951   virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
 952   void dump_verbose() const;
 953 #endif
 954 };
 955 
 956 //------------------------------TypeTuple--------------------------------------
 957 // Class of Tuple Types, essentially type collections for function signatures
 958 // and class layouts.  It happens to also be a fast cache for the HotSpot
 959 // signature types.
 960 class TypeTuple : public Type {
 961   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 962 
 963   const uint          _cnt;              // Count of fields
 964   const Type ** const _fields;           // Array of field types
 965 
 966 public:
 967   virtual bool eq( const Type *t ) const;
 968   virtual uint hash() const;             // Type specific hashing
 969   virtual bool singleton(void) const;    // TRUE if type is a singleton
 970   virtual bool empty(void) const;        // TRUE if type is vacuous
 971 
 972   // Accessors:
 973   uint cnt() const { return _cnt; }
 974   const Type* field_at(uint i) const {
 975     assert(i < _cnt, "oob");
 976     return _fields[i];
 977   }
 978   void set_field_at(uint i, const Type* t) {
 979     assert(i < _cnt, "oob");
 980     _fields[i] = t;
 981   }
 982 
 983   static const TypeTuple *make( uint cnt, const Type **fields );
 984   static const TypeTuple *make_range(ciSignature* sig, InterfaceHandling interface_handling = ignore_interfaces, bool ret_vt_fields = false);
 985   static const TypeTuple *make_domain(ciMethod* method, InterfaceHandling interface_handling, bool vt_fields_as_args = false);
 986 
 987   // Subroutine call type with space allocated for argument types
 988   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 989   static const Type **fields( uint arg_cnt );
 990 
 991   virtual const Type *xmeet( const Type *t ) const;
 992   virtual const Type *xdual() const;    // Compute dual right now.
 993   // Convenience common pre-built types.
 994   static const TypeTuple *IFBOTH;
 995   static const TypeTuple *IFFALSE;
 996   static const TypeTuple *IFTRUE;
 997   static const TypeTuple *IFNEITHER;
 998   static const TypeTuple *LOOPBODY;
 999   static const TypeTuple *MEMBAR;
1000   static const TypeTuple *STORECONDITIONAL;
1001   static const TypeTuple *START_I2C;
1002   static const TypeTuple *INT_PAIR;
1003   static const TypeTuple *LONG_PAIR;
1004   static const TypeTuple *INT_CC_PAIR;
1005   static const TypeTuple *LONG_CC_PAIR;
1006 #ifndef PRODUCT
1007   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1008 #endif
1009 };
1010 
1011 //------------------------------TypeAry----------------------------------------
1012 // Class of Array Types
1013 class TypeAry : public Type {
1014   TypeAry(const Type* elem, const TypeInt* size, bool stable, bool flat, bool not_flat, bool not_null_free, bool atomic) : Type(Array),
1015       _elem(elem), _size(size), _stable(stable), _flat(flat), _not_flat(not_flat), _not_null_free(not_null_free), _atomic(atomic) {}
1016 public:
1017   virtual bool eq( const Type *t ) const;
1018   virtual uint hash() const;             // Type specific hashing
1019   virtual bool singleton(void) const;    // TRUE if type is a singleton
1020   virtual bool empty(void) const;        // TRUE if type is vacuous
1021 
1022 private:
1023   const Type *_elem;            // Element type of array
1024   const TypeInt *_size;         // Elements in array
1025   const bool _stable;           // Are elements @Stable?
1026 
1027   // Inline type array properties
1028   const bool _flat;             // Array is flat
1029   const bool _not_flat;         // Array is never flat
1030   const bool _not_null_free;    // Array is never null-free
1031   const bool _atomic;           // Array is atomic
1032 
1033   friend class TypeAryPtr;
1034 
1035 public:
1036   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false,
1037                              bool flat = false, bool not_flat = false, bool not_null_free = false, bool atomic = false);
1038 
1039   virtual const Type *xmeet( const Type *t ) const;
1040   virtual const Type *xdual() const;    // Compute dual right now.
1041   bool ary_must_be_exact() const;  // true if arrays of such are never generic
1042   virtual const TypeAry* remove_speculative() const;
1043   virtual const Type* cleanup_speculative() const;
1044 #ifndef PRODUCT
1045   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1046 #endif
1047 };
1048 
1049 //------------------------------TypeVect---------------------------------------
1050 // Class of Vector Types
1051 class TypeVect : public Type {
1052   const BasicType _elem_bt;  // Vector's element type
1053   const uint _length;  // Elements in vector (power of 2)
1054 
1055 protected:
1056   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1057     _elem_bt(elem_bt), _length(length) {}
1058 
1059 public:
1060   BasicType element_basic_type() const { return _elem_bt; }
1061   uint length() const { return _length; }
1062   uint length_in_bytes() const {
1063     return _length * type2aelembytes(element_basic_type());
1064   }
1065 
1066   virtual bool eq(const Type* t) const;
1067   virtual uint hash() const;             // Type specific hashing
1068   virtual bool singleton(void) const;    // TRUE if type is a singleton
1069   virtual bool empty(void) const;        // TRUE if type is vacuous
1070 
1071   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1072   static const TypeVect* makemask(const BasicType elem_bt, uint length);
1073 
1074   virtual const Type* xmeet( const Type *t) const;
1075   virtual const Type* xdual() const;     // Compute dual right now.
1076 
1077   static const TypeVect* VECTA;
1078   static const TypeVect* VECTS;
1079   static const TypeVect* VECTD;
1080   static const TypeVect* VECTX;
1081   static const TypeVect* VECTY;
1082   static const TypeVect* VECTZ;
1083   static const TypeVect* VECTMASK;
1084 
1085 #ifndef PRODUCT
1086   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1087 #endif
1088 };
1089 
1090 class TypeVectA : public TypeVect {
1091   friend class TypeVect;
1092   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1093 };
1094 
1095 class TypeVectS : public TypeVect {
1096   friend class TypeVect;
1097   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1098 };
1099 
1100 class TypeVectD : public TypeVect {
1101   friend class TypeVect;
1102   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1103 };
1104 
1105 class TypeVectX : public TypeVect {
1106   friend class TypeVect;
1107   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1108 };
1109 
1110 class TypeVectY : public TypeVect {
1111   friend class TypeVect;
1112   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1113 };
1114 
1115 class TypeVectZ : public TypeVect {
1116   friend class TypeVect;
1117   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1118 };
1119 
1120 class TypeVectMask : public TypeVect {
1121 public:
1122   friend class TypeVect;
1123   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1124   static const TypeVectMask* make(const BasicType elem_bt, uint length);
1125 };
1126 
1127 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1128 class TypeInterfaces : public Type {
1129 private:
1130   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1131   uint _hash;
1132   ciInstanceKlass* _exact_klass;
1133   DEBUG_ONLY(bool _initialized;)
1134 
1135   void initialize();
1136 
1137   void verify() const NOT_DEBUG_RETURN;
1138   void compute_hash();
1139   void compute_exact_klass();
1140 
1141   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1142 
1143   NONCOPYABLE(TypeInterfaces);
1144 public:
1145   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1146   bool eq(const Type* other) const;
1147   bool eq(ciInstanceKlass* k) const;
1148   uint hash() const;
1149   const Type *xdual() const;
1150   void dump(outputStream* st) const;
1151   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1152   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1153   bool contains(const TypeInterfaces* other) const {
1154     return intersection_with(other)->eq(other);
1155   }
1156   bool empty() const { return _interfaces.length() == 0; }
1157 
1158   ciInstanceKlass* exact_klass() const;
1159   void verify_is_loaded() const NOT_DEBUG_RETURN;
1160 
1161   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1162   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1163 
1164   const Type* xmeet(const Type* t) const;
1165 
1166   bool singleton(void) const;
1167   bool has_non_array_interface() const;
1168 };
1169 
1170 //------------------------------TypePtr----------------------------------------
1171 // Class of machine Pointer Types: raw data, instances or arrays.
1172 // If the _base enum is AnyPtr, then this refers to all of the above.
1173 // Otherwise the _base will indicate which subset of pointers is affected,
1174 // and the class will be inherited from.
1175 class TypePtr : public Type {
1176   friend class TypeNarrowPtr;
1177   friend class Type;
1178 protected:
1179   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1180 
1181 public:
1182   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1183 protected:
1184   TypePtr(TYPES t, PTR ptr, Offset offset,
1185           const TypePtr* speculative = nullptr,
1186           int inline_depth = InlineDepthBottom) :
1187     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1188     _ptr(ptr) {}
1189   static const PTR ptr_meet[lastPTR][lastPTR];
1190   static const PTR ptr_dual[lastPTR];
1191   static const char * const ptr_msg[lastPTR];
1192 
1193   enum {
1194     InlineDepthBottom = INT_MAX,
1195     InlineDepthTop = -InlineDepthBottom
1196   };
1197 
1198   // Extra type information profiling gave us. We propagate it the
1199   // same way the rest of the type info is propagated. If we want to
1200   // use it, then we have to emit a guard: this part of the type is
1201   // not something we know but something we speculate about the type.
1202   const TypePtr*   _speculative;
1203   // For speculative types, we record at what inlining depth the
1204   // profiling point that provided the data is. We want to favor
1205   // profile data coming from outer scopes which are likely better for
1206   // the current compilation.
1207   int _inline_depth;
1208 
1209   // utility methods to work on the speculative part of the type
1210   const TypePtr* dual_speculative() const;
1211   const TypePtr* xmeet_speculative(const TypePtr* other) const;
1212   bool eq_speculative(const TypePtr* other) const;
1213   int hash_speculative() const;
1214   const TypePtr* add_offset_speculative(intptr_t offset) const;
1215   const TypePtr* with_offset_speculative(intptr_t offset) const;
1216 #ifndef PRODUCT
1217   void dump_speculative(outputStream *st) const;
1218 #endif
1219 
1220   // utility methods to work on the inline depth of the type
1221   int dual_inline_depth() const;
1222   int meet_inline_depth(int depth) const;
1223 #ifndef PRODUCT
1224   void dump_inline_depth(outputStream *st) const;
1225 #endif
1226 
1227   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1228   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1229   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1230   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1231   // encountered so the right logic specific to klasses or oops can be executed.,
1232   enum MeetResult {
1233     QUICK,
1234     UNLOADED,
1235     SUBTYPE,
1236     NOT_SUBTYPE,
1237     LCA
1238   };
1239   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1240                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk, bool& res_flat_array);
1241  private:
1242   template<class T> static bool is_meet_subtype_of(const T* sub_type, const T* super_type);
1243  protected:
1244 
1245   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1246                                                   ciKlass*& res_klass, bool& res_xk, bool &res_flat, bool &res_not_flat, bool &res_not_null_free, bool &res_atomic);
1247 
1248   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1249   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1250   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1251   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1252   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1253   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1254   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1255   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1256 public:
1257   const Offset _offset;         // Offset into oop, with TOP & BOT
1258   const PTR _ptr;               // Pointer equivalence class
1259 
1260   int offset() const { return _offset.get(); }
1261   PTR ptr()    const { return _ptr; }
1262 
1263   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
1264                              const TypePtr* speculative = nullptr,
1265                              int inline_depth = InlineDepthBottom);
1266 
1267   // Return a 'ptr' version of this type
1268   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1269 
1270   virtual intptr_t get_con() const;
1271 
1272   Type::Offset xadd_offset(intptr_t offset) const;
1273   virtual const TypePtr* add_offset(intptr_t offset) const;
1274   virtual const TypePtr* with_offset(intptr_t offset) const;
1275   virtual int flat_offset() const { return offset(); }
1276   virtual bool eq(const Type *t) const;
1277   virtual uint hash() const;             // Type specific hashing
1278 
1279   virtual bool singleton(void) const;    // TRUE if type is a singleton
1280   virtual bool empty(void) const;        // TRUE if type is vacuous
1281   virtual const Type *xmeet( const Type *t ) const;
1282   virtual const Type *xmeet_helper( const Type *t ) const;
1283   Offset meet_offset(int offset) const;
1284   Offset dual_offset() const;
1285   virtual const Type *xdual() const;    // Compute dual right now.
1286 
1287   // meet, dual and join over pointer equivalence sets
1288   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1289   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1290 
1291   // This is textually confusing unless one recalls that
1292   // join(t) == dual()->meet(t->dual())->dual().
1293   PTR join_ptr( const PTR in_ptr ) const {
1294     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1295   }
1296 
1297   // Speculative type helper methods.
1298   virtual const TypePtr* speculative() const { return _speculative; }
1299   int inline_depth() const                   { return _inline_depth; }
1300   virtual ciKlass* speculative_type() const;
1301   virtual ciKlass* speculative_type_not_null() const;
1302   virtual bool speculative_maybe_null() const;
1303   virtual bool speculative_always_null() const;
1304   virtual const TypePtr* remove_speculative() const;
1305   virtual const Type* cleanup_speculative() const;
1306   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1307   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1308   virtual const TypePtr* with_inline_depth(int depth) const;
1309 
1310   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1311 
1312   virtual bool can_be_inline_type() const { return false; }
1313   virtual bool flat_in_array()      const { return false; }
1314   virtual bool not_flat_in_array()  const { return true; }
1315   virtual bool is_flat()            const { return false; }
1316   virtual bool is_not_flat()        const { return false; }
1317   virtual bool is_null_free()       const { return false; }
1318   virtual bool is_not_null_free()   const { return false; }
1319   virtual bool is_atomic()          const { return false; }
1320 
1321   // Tests for relation to centerline of type lattice:
1322   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1323   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1324   // Convenience common pre-built types.
1325   static const TypePtr *NULL_PTR;
1326   static const TypePtr *NOTNULL;
1327   static const TypePtr *BOTTOM;
1328 #ifndef PRODUCT
1329   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1330 #endif
1331 };
1332 
1333 //------------------------------TypeRawPtr-------------------------------------
1334 // Class of raw pointers, pointers to things other than Oops.  Examples
1335 // include the stack pointer, top of heap, card-marking area, handles, etc.
1336 class TypeRawPtr : public TypePtr {
1337 protected:
1338   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
1339 public:
1340   virtual bool eq( const Type *t ) const;
1341   virtual uint hash() const;    // Type specific hashing
1342 
1343   const address _bits;          // Constant value, if applicable
1344 
1345   static const TypeRawPtr *make( PTR ptr );
1346   static const TypeRawPtr *make( address bits );
1347 
1348   // Return a 'ptr' version of this type
1349   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1350 
1351   virtual intptr_t get_con() const;
1352 
1353   virtual const TypePtr* add_offset(intptr_t offset) const;
1354   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1355 
1356   virtual const Type *xmeet( const Type *t ) const;
1357   virtual const Type *xdual() const;    // Compute dual right now.
1358   // Convenience common pre-built types.
1359   static const TypeRawPtr *BOTTOM;
1360   static const TypeRawPtr *NOTNULL;
1361 #ifndef PRODUCT
1362   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1363 #endif
1364 };
1365 
1366 //------------------------------TypeOopPtr-------------------------------------
1367 // Some kind of oop (Java pointer), either instance or array.
1368 class TypeOopPtr : public TypePtr {
1369   friend class TypeAry;
1370   friend class TypePtr;
1371   friend class TypeInstPtr;
1372   friend class TypeAryPtr;
1373 protected:
1374  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset, Offset field_offset, int instance_id,
1375             const TypePtr* speculative, int inline_depth);
1376 public:
1377   virtual bool eq( const Type *t ) const;
1378   virtual uint hash() const;             // Type specific hashing
1379   virtual bool singleton(void) const;    // TRUE if type is a singleton
1380   enum {
1381    InstanceTop = -1,   // undefined instance
1382    InstanceBot = 0     // any possible instance
1383   };
1384 protected:
1385 
1386   // Oop is null, unless this is a constant oop.
1387   ciObject*     _const_oop;   // Constant oop
1388   // If _klass is null, then so is _sig.  This is an unloaded klass.
1389   ciKlass*      _klass;       // Klass object
1390 
1391   const TypeInterfaces* _interfaces;
1392 
1393   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1394   bool          _klass_is_exact;
1395   bool          _is_ptr_to_narrowoop;
1396   bool          _is_ptr_to_narrowklass;
1397   bool          _is_ptr_to_boxed_value;
1398 
1399   // If not InstanceTop or InstanceBot, indicates that this is
1400   // a particular instance of this type which is distinct.
1401   // This is the node index of the allocation node creating this instance.
1402   int           _instance_id;
1403 
1404   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1405 
1406   int dual_instance_id() const;
1407   int meet_instance_id(int uid) const;
1408 
1409   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1410 
1411   // Do not allow interface-vs.-noninterface joins to collapse to top.
1412   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1413 
1414   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1415   virtual ciKlass* klass() const { return _klass; }
1416 
1417 public:
1418 
1419   bool is_java_subtype_of(const TypeOopPtr* other) const {
1420     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1421   }
1422 
1423   bool is_same_java_type_as(const TypePtr* other) const {
1424     return is_same_java_type_as_helper(other->is_oopptr());
1425   }
1426 
1427   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1428     ShouldNotReachHere(); return false;
1429   }
1430 
1431   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1432     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1433   }
1434   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1435   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1436 
1437 
1438   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1439   // Respects UseUniqueSubclasses.
1440   // If the klass is final, the resulting type will be exact.
1441   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1442     return make_from_klass_common(klass, true, false, interface_handling);
1443   }
1444   // Same as before, but will produce an exact type, even if
1445   // the klass is not final, as long as it has exactly one implementation.
1446   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1447     return make_from_klass_common(klass, true, true, interface_handling);
1448   }
1449   // Same as before, but does not respects UseUniqueSubclasses.
1450   // Use this only for creating array element types.
1451   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1452     return make_from_klass_common(klass, false, false, interface_handling);
1453   }
1454   // Creates a singleton type given an object.
1455   // If the object cannot be rendered as a constant,
1456   // may return a non-singleton type.
1457   // If require_constant, produce a null if a singleton is not possible.
1458   static const TypeOopPtr* make_from_constant(ciObject* o,
1459                                               bool require_constant = false);
1460 
1461   // Make a generic (unclassed) pointer to an oop.
1462   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1463                                 const TypePtr* speculative = nullptr,
1464                                 int inline_depth = InlineDepthBottom);
1465 
1466   ciObject* const_oop()    const { return _const_oop; }
1467   // Exact klass, possibly an interface or an array of interface
1468   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1469   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1470 
1471   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1472   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1473 
1474   // Returns true if this pointer points at memory which contains a
1475   // compressed oop references.
1476   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1477   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1478   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1479   bool is_known_instance()       const { return _instance_id > 0; }
1480   int  instance_id()             const { return _instance_id; }
1481   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1482 
1483   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(_klass_is_exact)); }
1484   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1485 
1486   virtual intptr_t get_con() const;
1487 
1488   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1489 
1490   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1491 
1492   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1493 
1494   // corresponding pointer to klass, for a given instance
1495   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1496 
1497   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1498   virtual const TypePtr* add_offset(intptr_t offset) const;
1499 
1500   // Speculative type helper methods.
1501   virtual const TypeOopPtr* remove_speculative() const;
1502   virtual const Type* cleanup_speculative() const;
1503   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1504   virtual const TypePtr* with_inline_depth(int depth) const;
1505 
1506   virtual const TypePtr* with_instance_id(int instance_id) const;
1507 
1508   virtual const Type *xdual() const;    // Compute dual right now.
1509   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1510   virtual const Type *xmeet_helper(const Type *t) const;
1511 
1512   // Convenience common pre-built type.
1513   static const TypeOopPtr *BOTTOM;
1514 #ifndef PRODUCT
1515   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1516 #endif
1517 private:
1518   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1519     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1520   }
1521 
1522   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1523     ShouldNotReachHere(); return false;
1524   }
1525 
1526   virtual const TypeInterfaces* interfaces() const {
1527     return _interfaces;
1528   };
1529 
1530   const TypeOopPtr* is_reference_type(const Type* other) const {
1531     return other->isa_oopptr();
1532   }
1533 
1534   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1535     return other->isa_aryptr();
1536   }
1537 
1538   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1539     return other->isa_instptr();
1540   }
1541 };
1542 
1543 //------------------------------TypeInstPtr------------------------------------
1544 // Class of Java object pointers, pointing either to non-array Java instances
1545 // or to a Klass* (including array klasses).
1546 class TypeInstPtr : public TypeOopPtr {
1547   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1548               bool flat_in_array, int instance_id, const TypePtr* speculative,
1549               int inline_depth);
1550   virtual bool eq( const Type *t ) const;
1551   virtual uint hash() const;             // Type specific hashing
1552   bool _flat_in_array; // Type is flat in arrays
1553   ciKlass* exact_klass_helper() const;
1554 
1555 public:
1556 
1557   // Instance klass, ignoring any interface
1558   ciInstanceKlass* instance_klass() const {
1559     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1560     return klass()->as_instance_klass();
1561   }
1562 
1563   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1564   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1565   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1566 
1567   // Make a pointer to a constant oop.
1568   static const TypeInstPtr *make(ciObject* o) {
1569     ciKlass* k = o->klass();
1570     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1571     return make(TypePtr::Constant, k, interfaces, true, o, Offset(0));
1572   }
1573   // Make a pointer to a constant oop with offset.
1574   static const TypeInstPtr *make(ciObject* o, Offset offset) {
1575     ciKlass* k = o->klass();
1576     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1577     return make(TypePtr::Constant, k, interfaces, true, o, offset);
1578   }
1579 
1580   // Make a pointer to some value of type klass.
1581   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1582     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1583     return make(ptr, klass, interfaces, false, nullptr, Offset(0));
1584   }
1585 
1586   // Make a pointer to some non-polymorphic value of exactly type klass.
1587   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1588     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1589     return make(ptr, klass, interfaces, true, nullptr, Offset(0));
1590   }
1591 
1592   // Make a pointer to some value of type klass with offset.
1593   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1594     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1595     return make(ptr, klass, interfaces, false, nullptr, offset);
1596   }
1597 
1598   // Make a pointer to an oop.
1599   static const TypeInstPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, Offset offset,
1600                                  bool flat_in_array = false,
1601                                  int instance_id = InstanceBot,
1602                                  const TypePtr* speculative = nullptr,
1603                                  int inline_depth = InlineDepthBottom);
1604 
1605   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id = InstanceBot) {
1606     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1607     return make(ptr, k, interfaces, xk, o, offset, false, instance_id);
1608   }
1609 
1610   /** Create constant type for a constant boxed value */
1611   const Type* get_const_boxed_value() const;
1612 
1613   // If this is a java.lang.Class constant, return the type for it or null.
1614   // Pass to Type::get_const_type to turn it to a type, which will usually
1615   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1616   ciType* java_mirror_type() const;
1617 
1618   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1619 
1620   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1621 
1622   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1623 
1624   virtual const TypePtr* add_offset(intptr_t offset) const;
1625   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1626 
1627   // Speculative type helper methods.
1628   virtual const TypeInstPtr* remove_speculative() const;
1629   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1630   virtual const TypePtr* with_inline_depth(int depth) const;
1631   virtual const TypePtr* with_instance_id(int instance_id) const;
1632 
1633   virtual const TypeInstPtr* cast_to_flat_in_array() const;
1634   virtual bool flat_in_array() const { return _flat_in_array; }
1635   virtual bool not_flat_in_array() const { return !can_be_inline_type() || (_klass->is_inlinetype() && !flat_in_array()); }
1636 
1637   // the core of the computation of the meet of 2 types
1638   virtual const Type *xmeet_helper(const Type *t) const;
1639   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1640   virtual const Type *xdual() const;    // Compute dual right now.
1641 
1642   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1643 
1644   virtual bool can_be_inline_array() const;
1645 
1646   // Convenience common pre-built types.
1647   static const TypeInstPtr *NOTNULL;
1648   static const TypeInstPtr *BOTTOM;
1649   static const TypeInstPtr *MIRROR;
1650   static const TypeInstPtr *MARK;
1651   static const TypeInstPtr *KLASS;
1652 #ifndef PRODUCT
1653   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1654 #endif
1655 
1656 private:
1657   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1658 
1659   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1660     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1661   }
1662 
1663 };
1664 
1665 //------------------------------TypeAryPtr-------------------------------------
1666 // Class of Java array pointers
1667 class TypeAryPtr : public TypeOopPtr {
1668   friend class Type;
1669   friend class TypePtr;
1670   friend class TypeInstPtr;
1671   friend class TypeInterfaces;
1672 
1673   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1674              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1675              const TypePtr* speculative, int inline_depth)
1676     : TypeOopPtr(AryPtr, ptr, k, _array_interfaces, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1677     _ary(ary),
1678     _is_autobox_cache(is_autobox_cache),
1679     _field_offset(field_offset)
1680  {
1681     int dummy;
1682     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1683 
1684     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1685         _offset.get() != 0 && _offset.get() != arrayOopDesc::length_offset_in_bytes() &&
1686         _offset.get() != arrayOopDesc::klass_offset_in_bytes()) {
1687       _is_ptr_to_narrowoop = true;
1688     }
1689 
1690   }
1691   virtual bool eq( const Type *t ) const;
1692   virtual uint hash() const;    // Type specific hashing
1693   const TypeAry *_ary;          // Array we point into
1694   const bool     _is_autobox_cache;
1695   // For flat inline type arrays, each field of the inline type in
1696   // the array has its own memory slice so we need to keep track of
1697   // which field is accessed
1698   const Offset _field_offset;
1699   Offset meet_field_offset(const Type::Offset offset) const;
1700   Offset dual_field_offset() const;
1701 
1702   ciKlass* compute_klass() const;
1703 
1704   // A pointer to delay allocation to Type::Initialize_shared()
1705 
1706   static const TypeInterfaces* _array_interfaces;
1707   ciKlass* exact_klass_helper() const;
1708   // Only guaranteed non null for array of basic types
1709   ciKlass* klass() const;
1710 
1711 public:
1712 
1713   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1714   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1715   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1716 
1717   // returns base element type, an instance klass (and not interface) for object arrays
1718   const Type* base_element_type(int& dims) const;
1719 
1720   // Accessors
1721   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1722 
1723   const TypeAry* ary() const  { return _ary; }
1724   const Type*    elem() const { return _ary->_elem; }
1725   const TypeInt* size() const { return _ary->_size; }
1726   bool      is_stable() const { return _ary->_stable; }
1727 
1728   // Inline type array properties
1729   bool is_flat()          const { return _ary->_flat; }
1730   bool is_not_flat()      const { return _ary->_not_flat; }
1731   bool is_null_free()     const { return _ary->_elem->make_ptr() != nullptr && (_ary->_elem->make_ptr()->ptr() == NotNull || _ary->_elem->make_ptr()->ptr() == AnyNull); }
1732   bool is_not_null_free() const { return _ary->_not_null_free; }
1733   bool is_atomic()        const { return _ary->_atomic; }
1734 
1735   bool is_autobox_cache() const { return _is_autobox_cache; }
1736 
1737   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1738                                 Offset field_offset = Offset::bottom,
1739                                 int instance_id = InstanceBot,
1740                                 const TypePtr* speculative = nullptr,
1741                                 int inline_depth = InlineDepthBottom);
1742   // Constant pointer to array
1743   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1744                                 Offset field_offset = Offset::bottom,
1745                                 int instance_id = InstanceBot,
1746                                 const TypePtr* speculative = nullptr,
1747                                 int inline_depth = InlineDepthBottom,
1748                                 bool is_autobox_cache = false);
1749 
1750   // Return a 'ptr' version of this type
1751   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1752 
1753   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1754 
1755   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1756 
1757   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1758   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1759 
1760   virtual bool empty(void) const;        // TRUE if type is vacuous
1761   virtual const TypePtr *add_offset( intptr_t offset ) const;
1762   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1763   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1764 
1765   // Speculative type helper methods.
1766   virtual const TypeAryPtr* remove_speculative() const;
1767   virtual const Type* cleanup_speculative() const;
1768   virtual const TypePtr* with_inline_depth(int depth) const;
1769   virtual const TypePtr* with_instance_id(int instance_id) const;
1770 
1771   // the core of the computation of the meet of 2 types
1772   virtual const Type *xmeet_helper(const Type *t) const;
1773   virtual const Type *xdual() const;    // Compute dual right now.
1774 
1775   // Inline type array properties
1776   const TypeAryPtr* cast_to_not_flat(bool not_flat = true) const;
1777   const TypeAryPtr* cast_to_not_null_free(bool not_null_free = true) const;
1778   const TypeAryPtr* update_properties(const TypeAryPtr* new_type) const;
1779   jint flat_layout_helper() const;
1780   int flat_elem_size() const;
1781   int flat_log_elem_size() const;
1782 
1783   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1784   int stable_dimension() const;
1785 
1786   const TypeAryPtr* cast_to_autobox_cache() const;
1787 
1788   static jint max_array_length(BasicType etype);
1789 
1790   int flat_offset() const;
1791   const Offset field_offset() const { return _field_offset; }
1792   const TypeAryPtr* with_field_offset(int offset) const;
1793   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1794 
1795   virtual bool can_be_inline_type() const { return false; }
1796   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1797 
1798   virtual bool can_be_inline_array() const;
1799 
1800   // Convenience common pre-built types.
1801   static const TypeAryPtr* BOTTOM;
1802   static const TypeAryPtr *RANGE;
1803   static const TypeAryPtr *OOPS;
1804   static const TypeAryPtr *NARROWOOPS;
1805   static const TypeAryPtr *BYTES;
1806   static const TypeAryPtr *SHORTS;
1807   static const TypeAryPtr *CHARS;
1808   static const TypeAryPtr *INTS;
1809   static const TypeAryPtr *LONGS;
1810   static const TypeAryPtr *FLOATS;
1811   static const TypeAryPtr *DOUBLES;
1812   static const TypeAryPtr *INLINES;
1813   // selects one of the above:
1814   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1815     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1816     return _array_body_type[elem];
1817   }
1818   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1819   // sharpen the type of an int which is used as an array size
1820 #ifndef PRODUCT
1821   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1822 #endif
1823 private:
1824   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1825 };
1826 
1827 //------------------------------TypeMetadataPtr-------------------------------------
1828 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1829 class TypeMetadataPtr : public TypePtr {
1830 protected:
1831   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1832   // Do not allow interface-vs.-noninterface joins to collapse to top.
1833   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1834 public:
1835   virtual bool eq( const Type *t ) const;
1836   virtual uint hash() const;             // Type specific hashing
1837   virtual bool singleton(void) const;    // TRUE if type is a singleton
1838 
1839 private:
1840   ciMetadata*   _metadata;
1841 
1842 public:
1843   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1844 
1845   static const TypeMetadataPtr* make(ciMethod* m);
1846   static const TypeMetadataPtr* make(ciMethodData* m);
1847 
1848   ciMetadata* metadata() const { return _metadata; }
1849 
1850   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1851 
1852   virtual const TypePtr *add_offset( intptr_t offset ) const;
1853 
1854   virtual const Type *xmeet( const Type *t ) const;
1855   virtual const Type *xdual() const;    // Compute dual right now.
1856 
1857   virtual intptr_t get_con() const;
1858 
1859   // Convenience common pre-built types.
1860   static const TypeMetadataPtr *BOTTOM;
1861 
1862 #ifndef PRODUCT
1863   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1864 #endif
1865 };
1866 
1867 //------------------------------TypeKlassPtr-----------------------------------
1868 // Class of Java Klass pointers
1869 class TypeKlassPtr : public TypePtr {
1870   friend class TypeInstKlassPtr;
1871   friend class TypeAryKlassPtr;
1872   friend class TypePtr;
1873 protected:
1874   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset);
1875 
1876   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1877 
1878 public:
1879   virtual bool eq( const Type *t ) const;
1880   virtual uint hash() const;
1881   virtual bool singleton(void) const;    // TRUE if type is a singleton
1882 
1883 protected:
1884 
1885   ciKlass* _klass;
1886   const TypeInterfaces* _interfaces;
1887   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1888   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1889   virtual ciKlass* exact_klass_helper() const;
1890   virtual ciKlass* klass() const { return  _klass; }
1891 
1892 public:
1893 
1894   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1895     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1896   }
1897   bool is_same_java_type_as(const TypePtr* other) const {
1898     return is_same_java_type_as_helper(other->is_klassptr());
1899   }
1900 
1901   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1902     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1903   }
1904   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1905   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1906   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1907 
1908   // Exact klass, possibly an interface or an array of interface
1909   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1910   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1911 
1912   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1913   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, Offset offset, InterfaceHandling interface_handling = ignore_interfaces);
1914 
1915   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1916 
1917   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1918 
1919   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1920 
1921   // corresponding pointer to instance, for a given class
1922   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1923 
1924   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1925   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1926   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1927 
1928   virtual intptr_t get_con() const;
1929 
1930   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1931 
1932   virtual bool can_be_inline_array() const { ShouldNotReachHere(); return false; }
1933 
1934   virtual bool not_flat_in_array_inexact() const {
1935     return true;
1936   }
1937 
1938   virtual const TypeKlassPtr* try_improve() const { return this; }
1939 
1940 #ifndef PRODUCT
1941   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1942 #endif
1943 private:
1944   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1945     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1946   }
1947 
1948   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1949     ShouldNotReachHere(); return false;
1950   }
1951 
1952   virtual const TypeInterfaces* interfaces() const {
1953     return _interfaces;
1954   };
1955 
1956   const TypeKlassPtr* is_reference_type(const Type* other) const {
1957     return other->isa_klassptr();
1958   }
1959 
1960   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1961     return other->isa_aryklassptr();
1962   }
1963 
1964   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1965     return other->isa_instklassptr();
1966   }
1967 };
1968 
1969 // Instance klass pointer, mirrors TypeInstPtr
1970 class TypeInstKlassPtr : public TypeKlassPtr {
1971 
1972   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array)
1973     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset), _flat_in_array(flat_in_array) {
1974     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1975   }
1976 
1977   virtual bool must_be_exact() const;
1978 
1979   const bool _flat_in_array; // Type is flat in arrays
1980 
1981 public:
1982   // Instance klass ignoring any interface
1983   ciInstanceKlass* instance_klass() const {
1984     assert(!klass()->is_interface(), "");
1985     return klass()->as_instance_klass();
1986   }
1987 
1988   bool might_be_an_array() const;
1989 
1990   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1991   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1992   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1993 
1994   virtual bool can_be_inline_type() const { return (_klass == nullptr || _klass->can_be_inline_klass(klass_is_exact())); }
1995 
1996   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1997     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1998     return make(TypePtr::Constant, k, interfaces, Offset(0));
1999   }
2000   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, Offset offset, bool flat_in_array = false);
2001 
2002   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, Offset offset) {
2003     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
2004     return make(ptr, k, interfaces, offset);
2005   }
2006 
2007   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
2008 
2009   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2010 
2011   // corresponding pointer to instance, for a given class
2012   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2013   virtual uint hash() const;
2014   virtual bool eq(const Type *t) const;
2015 
2016   virtual const TypePtr *add_offset( intptr_t offset ) const;
2017   virtual const Type    *xmeet( const Type *t ) const;
2018   virtual const Type    *xdual() const;
2019   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
2020 
2021   virtual const TypeKlassPtr* try_improve() const;
2022 
2023   virtual bool flat_in_array() const { return _flat_in_array; }
2024 
2025   // Checks if this klass pointer is not flat in array by also considering exactness information.
2026   virtual bool not_flat_in_array() const {
2027     return !_klass->can_be_inline_klass(klass_is_exact()) || (_klass->is_inlinetype() && !flat_in_array());
2028   }
2029 
2030   // not_flat_in_array() version that assumes that the klass is inexact. This is used for sub type checks where the
2031   // super klass is always an exact klass constant (and thus possibly known to be not flat in array), while a sub
2032   // klass could very well be flat in array:
2033   //
2034   //           MyValue       <:       Object
2035   //        flat in array       not flat in array
2036   //
2037   // Thus, this version checks if we know that the klass is not flat in array even if it's not exact.
2038   virtual bool not_flat_in_array_inexact() const {
2039     return !_klass->can_be_inline_klass() || (_klass->is_inlinetype() && !flat_in_array());
2040   }
2041 
2042   virtual bool can_be_inline_array() const;
2043 
2044   // Convenience common pre-built types.
2045   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
2046   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
2047 private:
2048   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2049 };
2050 
2051 // Array klass pointer, mirrors TypeAryPtr
2052 class TypeAryKlassPtr : public TypeKlassPtr {
2053   friend class TypeInstKlassPtr;
2054   friend class Type;
2055   friend class TypePtr;
2056 
2057   const Type *_elem;
2058   const bool _not_flat;      // Array is never flat
2059   const bool _not_null_free; // Array is never null-free
2060   const bool _flat;
2061   const bool _null_free;
2062   const bool _atomic;
2063   const bool _vm_type;
2064 
2065   static const TypeInterfaces* _array_interfaces;
2066   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, Offset offset, bool not_flat, int not_null_free, bool flat, bool null_free, bool atomic, bool vm_type)
2067     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem), _not_flat(not_flat), _not_null_free(not_null_free), _flat(flat), _null_free(null_free), _atomic(atomic), _vm_type(vm_type) {
2068     assert(klass == nullptr || klass->is_type_array_klass() || klass->is_flat_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
2069   }
2070 
2071   virtual ciKlass* exact_klass_helper() const;
2072   // Only guaranteed non null for array of basic types
2073   virtual ciKlass* klass() const;
2074 
2075   virtual bool must_be_exact() const;
2076 
2077   bool dual_flat() const {
2078     return _flat;
2079   }
2080 
2081   bool meet_flat(bool other) const {
2082     return _flat && other;
2083   }
2084 
2085   bool dual_null_free() const {
2086     return _null_free;
2087   }
2088 
2089   bool meet_null_free(bool other) const {
2090     return _null_free && other;
2091   }
2092 
2093   bool dual_atomic() const {
2094     return _atomic;
2095   }
2096 
2097   bool meet_atomic(bool other) const {
2098     return _atomic && other;
2099   }
2100 
2101 public:
2102 
2103   // returns base element type, an instance klass (and not interface) for object arrays
2104   const Type* base_element_type(int& dims) const;
2105 
2106   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool vm_type = false);
2107 
2108   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
2109   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2110   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
2111 
2112   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
2113 
2114   static const TypeAryKlassPtr* make(PTR ptr, const Type* elem, ciKlass* k, Offset offset, bool not_flat, bool not_null_free, bool flat, bool null_free, bool atomic, bool vm_type = false);
2115   static const TypeAryKlassPtr* make(PTR ptr, ciKlass* k, Offset offset, InterfaceHandling interface_handling, bool vm_type = false);
2116   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling, bool vm_type = false);
2117 
2118   const TypeAryKlassPtr* get_vm_type(bool vm_type = true) const;
2119 
2120   const Type *elem() const { return _elem; }
2121 
2122   virtual bool eq(const Type *t) const;
2123   virtual uint hash() const;             // Type specific hashing
2124 
2125   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
2126 
2127   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
2128 
2129   // corresponding pointer to instance, for a given class
2130   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
2131 
2132   virtual const TypePtr *add_offset( intptr_t offset ) const;
2133   virtual const Type    *xmeet( const Type *t ) const;
2134   virtual const Type    *xdual() const;      // Compute dual right now.
2135 
2136   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
2137 
2138   virtual bool empty(void) const {
2139     return TypeKlassPtr::empty() || _elem->empty();
2140   }
2141 
2142   bool is_flat()          const { return _flat; }
2143   bool is_not_flat()      const { return _not_flat; }
2144   bool is_null_free()     const { return _null_free; }
2145   bool is_not_null_free() const { return _not_null_free; }
2146   bool is_atomic()        const { return _atomic; }
2147   bool is_vm_type()       const { return _vm_type; }
2148   virtual bool can_be_inline_array() const;
2149 
2150 #ifndef PRODUCT
2151   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2152 #endif
2153 private:
2154   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
2155 };
2156 
2157 class TypeNarrowPtr : public Type {
2158 protected:
2159   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
2160 
2161   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
2162                                                   _ptrtype(ptrtype) {
2163     assert(ptrtype->offset() == 0 ||
2164            ptrtype->offset() == OffsetBot ||
2165            ptrtype->offset() == OffsetTop, "no real offsets");
2166   }
2167 
2168   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
2169   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
2170   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2171   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2172   // Do not allow interface-vs.-noninterface joins to collapse to top.
2173   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2174 public:
2175   virtual bool eq( const Type *t ) const;
2176   virtual uint hash() const;             // Type specific hashing
2177   virtual bool singleton(void) const;    // TRUE if type is a singleton
2178 
2179   virtual const Type *xmeet( const Type *t ) const;
2180   virtual const Type *xdual() const;    // Compute dual right now.
2181 
2182   virtual intptr_t get_con() const;
2183 
2184   virtual bool empty(void) const;        // TRUE if type is vacuous
2185 
2186   // returns the equivalent ptr type for this compressed pointer
2187   const TypePtr *get_ptrtype() const {
2188     return _ptrtype;
2189   }
2190 
2191   bool is_known_instance() const {
2192     return _ptrtype->is_known_instance();
2193   }
2194 
2195 #ifndef PRODUCT
2196   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2197 #endif
2198 };
2199 
2200 //------------------------------TypeNarrowOop----------------------------------
2201 // A compressed reference to some kind of Oop.  This type wraps around
2202 // a preexisting TypeOopPtr and forwards most of it's operations to
2203 // the underlying type.  It's only real purpose is to track the
2204 // oopness of the compressed oop value when we expose the conversion
2205 // between the normal and the compressed form.
2206 class TypeNarrowOop : public TypeNarrowPtr {
2207 protected:
2208   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2209   }
2210 
2211   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2212     return t->isa_narrowoop();
2213   }
2214 
2215   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2216     return t->is_narrowoop();
2217   }
2218 
2219   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2220     return new TypeNarrowOop(t);
2221   }
2222 
2223   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2224     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2225   }
2226 
2227 public:
2228 
2229   static const TypeNarrowOop *make( const TypePtr* type);
2230 
2231   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2232     return make(TypeOopPtr::make_from_constant(con, require_constant));
2233   }
2234 
2235   static const TypeNarrowOop *BOTTOM;
2236   static const TypeNarrowOop *NULL_PTR;
2237 
2238   virtual const TypeNarrowOop* remove_speculative() const;
2239   virtual const Type* cleanup_speculative() const;
2240 
2241 #ifndef PRODUCT
2242   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2243 #endif
2244 };
2245 
2246 //------------------------------TypeNarrowKlass----------------------------------
2247 // A compressed reference to klass pointer.  This type wraps around a
2248 // preexisting TypeKlassPtr and forwards most of it's operations to
2249 // the underlying type.
2250 class TypeNarrowKlass : public TypeNarrowPtr {
2251 protected:
2252   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2253   }
2254 
2255   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2256     return t->isa_narrowklass();
2257   }
2258 
2259   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2260     return t->is_narrowklass();
2261   }
2262 
2263   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2264     return new TypeNarrowKlass(t);
2265   }
2266 
2267   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2268     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2269   }
2270 
2271 public:
2272   static const TypeNarrowKlass *make( const TypePtr* type);
2273 
2274   // static const TypeNarrowKlass *BOTTOM;
2275   static const TypeNarrowKlass *NULL_PTR;
2276 
2277 #ifndef PRODUCT
2278   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2279 #endif
2280 };
2281 
2282 //------------------------------TypeFunc---------------------------------------
2283 // Class of Array Types
2284 class TypeFunc : public Type {
2285   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
2286     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
2287   virtual bool eq( const Type *t ) const;
2288   virtual uint hash() const;             // Type specific hashing
2289   virtual bool singleton(void) const;    // TRUE if type is a singleton
2290   virtual bool empty(void) const;        // TRUE if type is vacuous
2291 
2292   // Domains of inputs: inline type arguments are not passed by
2293   // reference, instead each field of the inline type is passed as an
2294   // argument. We maintain 2 views of the argument list here: one
2295   // based on the signature (with an inline type argument as a single
2296   // slot), one based on the actual calling convention (with a value
2297   // type argument as a list of its fields).
2298   const TypeTuple* const _domain_sig;
2299   const TypeTuple* const _domain_cc;
2300   // Range of results. Similar to domains: an inline type result can be
2301   // returned in registers in which case range_cc lists all fields and
2302   // is the actual calling convention.
2303   const TypeTuple* const _range_sig;
2304   const TypeTuple* const _range_cc;
2305 
2306 public:
2307   // Constants are shared among ADLC and VM
2308   enum { Control    = AdlcVMDeps::Control,
2309          I_O        = AdlcVMDeps::I_O,
2310          Memory     = AdlcVMDeps::Memory,
2311          FramePtr   = AdlcVMDeps::FramePtr,
2312          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2313          Parms      = AdlcVMDeps::Parms
2314   };
2315 
2316 
2317   // Accessors:
2318   const TypeTuple* domain_sig() const { return _domain_sig; }
2319   const TypeTuple* domain_cc()  const { return _domain_cc; }
2320   const TypeTuple* range_sig()  const { return _range_sig; }
2321   const TypeTuple* range_cc()   const { return _range_cc; }
2322 
2323   static const TypeFunc* make(ciMethod* method, bool is_osr_compilation = false);
2324   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
2325                               const TypeTuple* range_sig, const TypeTuple* range_cc);
2326   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2327 
2328   virtual const Type *xmeet( const Type *t ) const;
2329   virtual const Type *xdual() const;    // Compute dual right now.
2330 
2331   BasicType return_type() const;
2332 
2333   bool returns_inline_type_as_fields() const { return range_sig() != range_cc(); }
2334 
2335 #ifndef PRODUCT
2336   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2337 #endif
2338   // Convenience common pre-built types.
2339 };
2340 
2341 //------------------------------accessors--------------------------------------
2342 inline bool Type::is_ptr_to_narrowoop() const {
2343 #ifdef _LP64
2344   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2345 #else
2346   return false;
2347 #endif
2348 }
2349 
2350 inline bool Type::is_ptr_to_narrowklass() const {
2351 #ifdef _LP64
2352   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2353 #else
2354   return false;
2355 #endif
2356 }
2357 
2358 inline float Type::getf() const {
2359   assert( _base == FloatCon, "Not a FloatCon" );
2360   return ((TypeF*)this)->_f;
2361 }
2362 
2363 inline short Type::geth() const {
2364   assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2365   return ((TypeH*)this)->_f;
2366 }
2367 
2368 inline double Type::getd() const {
2369   assert( _base == DoubleCon, "Not a DoubleCon" );
2370   return ((TypeD*)this)->_d;
2371 }
2372 
2373 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2374   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2375   return (TypeInteger*)this;
2376 }
2377 
2378 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2379   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2380 }
2381 
2382 inline const TypeInt *Type::is_int() const {
2383   assert( _base == Int, "Not an Int" );
2384   return (TypeInt*)this;
2385 }
2386 
2387 inline const TypeInt *Type::isa_int() const {
2388   return ( _base == Int ? (TypeInt*)this : nullptr);
2389 }
2390 
2391 inline const TypeLong *Type::is_long() const {
2392   assert( _base == Long, "Not a Long" );
2393   return (TypeLong*)this;
2394 }
2395 
2396 inline const TypeLong *Type::isa_long() const {
2397   return ( _base == Long ? (TypeLong*)this : nullptr);
2398 }
2399 
2400 inline const TypeH* Type::isa_half_float() const {
2401   return ((_base == HalfFloatTop ||
2402            _base == HalfFloatCon ||
2403            _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2404 }
2405 
2406 inline const TypeH* Type::is_half_float_constant() const {
2407   assert( _base == HalfFloatCon, "Not a HalfFloat" );
2408   return (TypeH*)this;
2409 }
2410 
2411 inline const TypeH* Type::isa_half_float_constant() const {
2412   return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2413 }
2414 
2415 inline const TypeF *Type::isa_float() const {
2416   return ((_base == FloatTop ||
2417            _base == FloatCon ||
2418            _base == FloatBot) ? (TypeF*)this : nullptr);
2419 }
2420 
2421 inline const TypeF *Type::is_float_constant() const {
2422   assert( _base == FloatCon, "Not a Float" );
2423   return (TypeF*)this;
2424 }
2425 
2426 inline const TypeF *Type::isa_float_constant() const {
2427   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2428 }
2429 
2430 inline const TypeD *Type::isa_double() const {
2431   return ((_base == DoubleTop ||
2432            _base == DoubleCon ||
2433            _base == DoubleBot) ? (TypeD*)this : nullptr);
2434 }
2435 
2436 inline const TypeD *Type::is_double_constant() const {
2437   assert( _base == DoubleCon, "Not a Double" );
2438   return (TypeD*)this;
2439 }
2440 
2441 inline const TypeD *Type::isa_double_constant() const {
2442   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2443 }
2444 
2445 inline const TypeTuple *Type::is_tuple() const {
2446   assert( _base == Tuple, "Not a Tuple" );
2447   return (TypeTuple*)this;
2448 }
2449 
2450 inline const TypeAry *Type::is_ary() const {
2451   assert( _base == Array , "Not an Array" );
2452   return (TypeAry*)this;
2453 }
2454 
2455 inline const TypeAry *Type::isa_ary() const {
2456   return ((_base == Array) ? (TypeAry*)this : nullptr);
2457 }
2458 
2459 inline const TypeVectMask *Type::is_vectmask() const {
2460   assert( _base == VectorMask, "Not a Vector Mask" );
2461   return (TypeVectMask*)this;
2462 }
2463 
2464 inline const TypeVectMask *Type::isa_vectmask() const {
2465   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2466 }
2467 
2468 inline const TypeVect *Type::is_vect() const {
2469   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2470   return (TypeVect*)this;
2471 }
2472 
2473 inline const TypeVect *Type::isa_vect() const {
2474   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2475 }
2476 
2477 inline const TypePtr *Type::is_ptr() const {
2478   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2479   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2480   return (TypePtr*)this;
2481 }
2482 
2483 inline const TypePtr *Type::isa_ptr() const {
2484   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2485   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2486 }
2487 
2488 inline const TypeOopPtr *Type::is_oopptr() const {
2489   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2490   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2491   return (TypeOopPtr*)this;
2492 }
2493 
2494 inline const TypeOopPtr *Type::isa_oopptr() const {
2495   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2496   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2497 }
2498 
2499 inline const TypeRawPtr *Type::isa_rawptr() const {
2500   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2501 }
2502 
2503 inline const TypeRawPtr *Type::is_rawptr() const {
2504   assert( _base == RawPtr, "Not a raw pointer" );
2505   return (TypeRawPtr*)this;
2506 }
2507 
2508 inline const TypeInstPtr *Type::isa_instptr() const {
2509   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2510 }
2511 
2512 inline const TypeInstPtr *Type::is_instptr() const {
2513   assert( _base == InstPtr, "Not an object pointer" );
2514   return (TypeInstPtr*)this;
2515 }
2516 
2517 inline const TypeAryPtr *Type::isa_aryptr() const {
2518   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2519 }
2520 
2521 inline const TypeAryPtr *Type::is_aryptr() const {
2522   assert( _base == AryPtr, "Not an array pointer" );
2523   return (TypeAryPtr*)this;
2524 }
2525 
2526 inline const TypeNarrowOop *Type::is_narrowoop() const {
2527   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2528   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2529   return (TypeNarrowOop*)this;
2530 }
2531 
2532 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2533   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2534   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2535 }
2536 
2537 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2538   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2539   return (TypeNarrowKlass*)this;
2540 }
2541 
2542 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2543   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2544 }
2545 
2546 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2547   // MetadataPtr is the first and CPCachePtr the last
2548   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2549   return (TypeMetadataPtr*)this;
2550 }
2551 
2552 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2553   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2554 }
2555 
2556 inline const TypeKlassPtr *Type::isa_klassptr() const {
2557   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2558 }
2559 
2560 inline const TypeKlassPtr *Type::is_klassptr() const {
2561   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2562   return (TypeKlassPtr*)this;
2563 }
2564 
2565 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2566   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2567 }
2568 
2569 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2570   assert(_base == InstKlassPtr, "Not a klass pointer");
2571   return (TypeInstKlassPtr*)this;
2572 }
2573 
2574 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2575   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2576 }
2577 
2578 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2579   assert(_base == AryKlassPtr, "Not a klass pointer");
2580   return (TypeAryKlassPtr*)this;
2581 }
2582 
2583 inline const TypePtr* Type::make_ptr() const {
2584   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2585                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2586                                                        isa_ptr());
2587 }
2588 
2589 inline const TypeOopPtr* Type::make_oopptr() const {
2590   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2591 }
2592 
2593 inline const TypeNarrowOop* Type::make_narrowoop() const {
2594   return (_base == NarrowOop) ? is_narrowoop() :
2595                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2596 }
2597 
2598 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2599   return (_base == NarrowKlass) ? is_narrowklass() :
2600                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2601 }
2602 
2603 inline bool Type::is_floatingpoint() const {
2604   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2605       (_base == FloatCon)  || (_base == FloatBot) ||
2606       (_base == DoubleCon) || (_base == DoubleBot) )
2607     return true;
2608   return false;
2609 }
2610 
2611 inline bool Type::is_inlinetypeptr() const {
2612   return isa_instptr() != nullptr && is_instptr()->instance_klass()->is_inlinetype();
2613 }
2614 
2615 inline ciInlineKlass* Type::inline_klass() const {
2616   return make_ptr()->is_instptr()->instance_klass()->as_inline_klass();
2617 }
2618 
2619 template <>
2620 inline const TypeInt* Type::cast<TypeInt>() const {
2621   return is_int();
2622 }
2623 
2624 template <>
2625 inline const TypeLong* Type::cast<TypeLong>() const {
2626   return is_long();
2627 }
2628 
2629 template <>
2630 inline const TypeInt* Type::try_cast<TypeInt>() const {
2631   return isa_int();
2632 }
2633 
2634 template <>
2635 inline const TypeLong* Type::try_cast<TypeLong>() const {
2636   return isa_long();
2637 }
2638 
2639 // ===============================================================
2640 // Things that need to be 64-bits in the 64-bit build but
2641 // 32-bits in the 32-bit build.  Done this way to get full
2642 // optimization AND strong typing.
2643 #ifdef _LP64
2644 
2645 // For type queries and asserts
2646 #define is_intptr_t  is_long
2647 #define isa_intptr_t isa_long
2648 #define find_intptr_t_type find_long_type
2649 #define find_intptr_t_con  find_long_con
2650 #define TypeX        TypeLong
2651 #define Type_X       Type::Long
2652 #define TypeX_X      TypeLong::LONG
2653 #define TypeX_ZERO   TypeLong::ZERO
2654 // For 'ideal_reg' machine registers
2655 #define Op_RegX      Op_RegL
2656 // For phase->intcon variants
2657 #define MakeConX     longcon
2658 #define ConXNode     ConLNode
2659 // For array index arithmetic
2660 #define MulXNode     MulLNode
2661 #define AndXNode     AndLNode
2662 #define OrXNode      OrLNode
2663 #define CmpXNode     CmpLNode
2664 #define CmpUXNode    CmpULNode
2665 #define SubXNode     SubLNode
2666 #define LShiftXNode  LShiftLNode
2667 // For object size computation:
2668 #define AddXNode     AddLNode
2669 #define RShiftXNode  RShiftLNode
2670 // For card marks and hashcodes
2671 #define URShiftXNode URShiftLNode
2672 // For shenandoahSupport
2673 #define LoadXNode    LoadLNode
2674 #define StoreXNode   StoreLNode
2675 // Opcodes
2676 #define Op_LShiftX   Op_LShiftL
2677 #define Op_AndX      Op_AndL
2678 #define Op_AddX      Op_AddL
2679 #define Op_SubX      Op_SubL
2680 #define Op_XorX      Op_XorL
2681 #define Op_URShiftX  Op_URShiftL
2682 #define Op_LoadX     Op_LoadL
2683 #define Op_StoreX    Op_StoreL
2684 // conversions
2685 #define ConvI2X(x)   ConvI2L(x)
2686 #define ConvL2X(x)   (x)
2687 #define ConvX2I(x)   ConvL2I(x)
2688 #define ConvX2L(x)   (x)
2689 #define ConvX2UL(x)  (x)
2690 
2691 #else
2692 
2693 // For type queries and asserts
2694 #define is_intptr_t  is_int
2695 #define isa_intptr_t isa_int
2696 #define find_intptr_t_type find_int_type
2697 #define find_intptr_t_con  find_int_con
2698 #define TypeX        TypeInt
2699 #define Type_X       Type::Int
2700 #define TypeX_X      TypeInt::INT
2701 #define TypeX_ZERO   TypeInt::ZERO
2702 // For 'ideal_reg' machine registers
2703 #define Op_RegX      Op_RegI
2704 // For phase->intcon variants
2705 #define MakeConX     intcon
2706 #define ConXNode     ConINode
2707 // For array index arithmetic
2708 #define MulXNode     MulINode
2709 #define AndXNode     AndINode
2710 #define OrXNode      OrINode
2711 #define CmpXNode     CmpINode
2712 #define CmpUXNode    CmpUNode
2713 #define SubXNode     SubINode
2714 #define LShiftXNode  LShiftINode
2715 // For object size computation:
2716 #define AddXNode     AddINode
2717 #define RShiftXNode  RShiftINode
2718 // For card marks and hashcodes
2719 #define URShiftXNode URShiftINode
2720 // For shenandoahSupport
2721 #define LoadXNode    LoadINode
2722 #define StoreXNode   StoreINode
2723 // Opcodes
2724 #define Op_LShiftX   Op_LShiftI
2725 #define Op_AndX      Op_AndI
2726 #define Op_AddX      Op_AddI
2727 #define Op_SubX      Op_SubI
2728 #define Op_XorX      Op_XorI
2729 #define Op_URShiftX  Op_URShiftI
2730 #define Op_LoadX     Op_LoadI
2731 #define Op_StoreX    Op_StoreI
2732 // conversions
2733 #define ConvI2X(x)   (x)
2734 #define ConvL2X(x)   ConvL2I(x)
2735 #define ConvX2I(x)   (x)
2736 #define ConvX2L(x)   ConvI2L(x)
2737 #define ConvX2UL(x)  ConvI2UL(x)
2738 
2739 #endif
2740 
2741 #endif // SHARE_OPTO_TYPE_HPP