1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_TYPE_HPP 26 #define SHARE_OPTO_TYPE_HPP 27 28 #include "opto/adlcVMDeps.hpp" 29 #include "opto/compile.hpp" 30 #include "opto/rangeinference.hpp" 31 #include "runtime/handles.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 // This class defines a Type lattice. The lattice is used in the constant 39 // propagation algorithms, and for some type-checking of the iloc code. 40 // Basic types include RSD's (lower bound, upper bound, stride for integers), 41 // float & double precision constants, sets of data-labels and code-labels. 42 // The complete lattice is described below. Subtypes have no relationship to 43 // up or down in the lattice; that is entirely determined by the behavior of 44 // the MEET/JOIN functions. 45 46 class Dict; 47 class Type; 48 class TypeD; 49 class TypeF; 50 class TypeH; 51 class TypeInteger; 52 class TypeInt; 53 class TypeLong; 54 class TypeNarrowPtr; 55 class TypeNarrowOop; 56 class TypeNarrowKlass; 57 class TypeAry; 58 class TypeTuple; 59 class TypeVect; 60 class TypeVectA; 61 class TypeVectS; 62 class TypeVectD; 63 class TypeVectX; 64 class TypeVectY; 65 class TypeVectZ; 66 class TypeVectMask; 67 class TypePtr; 68 class TypeRawPtr; 69 class TypeOopPtr; 70 class TypeInstPtr; 71 class TypeAryPtr; 72 class TypeKlassPtr; 73 class TypeInstKlassPtr; 74 class TypeAryKlassPtr; 75 class TypeMetadataPtr; 76 class VerifyMeet; 77 78 template <class T, class U> 79 class TypeIntPrototype; 80 81 //------------------------------Type------------------------------------------- 82 // Basic Type object, represents a set of primitive Values. 83 // Types are hash-cons'd into a private class dictionary, so only one of each 84 // different kind of Type exists. Types are never modified after creation, so 85 // all their interesting fields are constant. 86 class Type { 87 88 public: 89 enum TYPES { 90 Bad=0, // Type check 91 Control, // Control of code (not in lattice) 92 Top, // Top of the lattice 93 Int, // Integer range (lo-hi) 94 Long, // Long integer range (lo-hi) 95 Half, // Placeholder half of doubleword 96 NarrowOop, // Compressed oop pointer 97 NarrowKlass, // Compressed klass pointer 98 99 Tuple, // Method signature or object layout 100 Array, // Array types 101 102 Interfaces, // Set of implemented interfaces for oop types 103 104 VectorMask, // Vector predicate/mask type 105 VectorA, // (Scalable) Vector types for vector length agnostic 106 VectorS, // 32bit Vector types 107 VectorD, // 64bit Vector types 108 VectorX, // 128bit Vector types 109 VectorY, // 256bit Vector types 110 VectorZ, // 512bit Vector types 111 112 AnyPtr, // Any old raw, klass, inst, or array pointer 113 RawPtr, // Raw (non-oop) pointers 114 OopPtr, // Any and all Java heap entities 115 InstPtr, // Instance pointers (non-array objects) 116 AryPtr, // Array pointers 117 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) 118 119 MetadataPtr, // Generic metadata 120 KlassPtr, // Klass pointers 121 InstKlassPtr, 122 AryKlassPtr, 123 124 Function, // Function signature 125 Abio, // Abstract I/O 126 Return_Address, // Subroutine return address 127 Memory, // Abstract store 128 HalfFloatTop, // No float value 129 HalfFloatCon, // Floating point constant 130 HalfFloatBot, // Any float value 131 FloatTop, // No float value 132 FloatCon, // Floating point constant 133 FloatBot, // Any float value 134 DoubleTop, // No double value 135 DoubleCon, // Double precision constant 136 DoubleBot, // Any double value 137 Bottom, // Bottom of lattice 138 lastype // Bogus ending type (not in lattice) 139 }; 140 141 // Signal values for offsets from a base pointer 142 enum OFFSET_SIGNALS { 143 OffsetTop = -2000000000, // undefined offset 144 OffsetBot = -2000000001 // any possible offset 145 }; 146 147 // Min and max WIDEN values. 148 enum WIDEN { 149 WidenMin = 0, 150 WidenMax = 3 151 }; 152 153 private: 154 typedef struct { 155 TYPES dual_type; 156 BasicType basic_type; 157 const char* msg; 158 bool isa_oop; 159 uint ideal_reg; 160 relocInfo::relocType reloc; 161 } TypeInfo; 162 163 // Dictionary of types shared among compilations. 164 static Dict* _shared_type_dict; 165 static const TypeInfo _type_info[]; 166 167 static int uhash( const Type *const t ); 168 // Structural equality check. Assumes that equals() has already compared 169 // the _base types and thus knows it can cast 't' appropriately. 170 virtual bool eq( const Type *t ) const; 171 172 // Top-level hash-table of types 173 static Dict *type_dict() { 174 return Compile::current()->type_dict(); 175 } 176 177 // DUAL operation: reflect around lattice centerline. Used instead of 178 // join to ensure my lattice is symmetric up and down. Dual is computed 179 // lazily, on demand, and cached in _dual. 180 const Type *_dual; // Cached dual value 181 182 183 const Type *meet_helper(const Type *t, bool include_speculative) const; 184 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN; 185 186 protected: 187 // Each class of type is also identified by its base. 188 const TYPES _base; // Enum of Types type 189 190 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types 191 // ~Type(); // Use fast deallocation 192 const Type *hashcons(); // Hash-cons the type 193 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 194 const Type *join_helper(const Type *t, bool include_speculative) const { 195 assert_type_verify_empty(); 196 return dual()->meet_helper(t->dual(), include_speculative)->dual(); 197 } 198 199 void assert_type_verify_empty() const NOT_DEBUG_RETURN; 200 201 public: 202 203 inline void* operator new( size_t x ) throw() { 204 Compile* compile = Compile::current(); 205 compile->set_type_last_size(x); 206 return compile->type_arena()->AmallocWords(x); 207 } 208 inline void operator delete( void* ptr ) { 209 Compile* compile = Compile::current(); 210 compile->type_arena()->Afree(ptr,compile->type_last_size()); 211 } 212 213 // Initialize the type system for a particular compilation. 214 static void Initialize(Compile* compile); 215 216 // Initialize the types shared by all compilations. 217 static void Initialize_shared(Compile* compile); 218 219 TYPES base() const { 220 assert(_base > Bad && _base < lastype, "sanity"); 221 return _base; 222 } 223 224 // Create a new hash-consd type 225 static const Type *make(enum TYPES); 226 // Test for equivalence of types 227 static bool equals(const Type* t1, const Type* t2); 228 // Test for higher or equal in lattice 229 // Variant that drops the speculative part of the types 230 bool higher_equal(const Type* t) const { 231 return equals(meet(t), t->remove_speculative()); 232 } 233 // Variant that keeps the speculative part of the types 234 bool higher_equal_speculative(const Type* t) const { 235 return equals(meet_speculative(t), t); 236 } 237 238 // MEET operation; lower in lattice. 239 // Variant that drops the speculative part of the types 240 const Type *meet(const Type *t) const { 241 return meet_helper(t, false); 242 } 243 // Variant that keeps the speculative part of the types 244 const Type *meet_speculative(const Type *t) const { 245 return meet_helper(t, true)->cleanup_speculative(); 246 } 247 // WIDEN: 'widens' for Ints and other range types 248 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } 249 // NARROW: complement for widen, used by pessimistic phases 250 virtual const Type *narrow( const Type *old ) const { return this; } 251 252 // DUAL operation: reflect around lattice centerline. Used instead of 253 // join to ensure my lattice is symmetric up and down. 254 const Type *dual() const { return _dual; } 255 256 // Compute meet dependent on base type 257 virtual const Type *xmeet( const Type *t ) const; 258 virtual const Type *xdual() const; // Compute dual right now. 259 260 // JOIN operation; higher in lattice. Done by finding the dual of the 261 // meet of the dual of the 2 inputs. 262 // Variant that drops the speculative part of the types 263 const Type *join(const Type *t) const { 264 return join_helper(t, false); 265 } 266 // Variant that keeps the speculative part of the types 267 const Type *join_speculative(const Type *t) const { 268 return join_helper(t, true)->cleanup_speculative(); 269 } 270 271 // Modified version of JOIN adapted to the needs Node::Value. 272 // Normalizes all empty values to TOP. Does not kill _widen bits. 273 // Variant that drops the speculative part of the types 274 const Type *filter(const Type *kills) const { 275 return filter_helper(kills, false); 276 } 277 // Variant that keeps the speculative part of the types 278 const Type *filter_speculative(const Type *kills) const { 279 return filter_helper(kills, true)->cleanup_speculative(); 280 } 281 282 // Returns true if this pointer points at memory which contains a 283 // compressed oop references. 284 bool is_ptr_to_narrowoop() const; 285 bool is_ptr_to_narrowklass() const; 286 287 // Convenience access 288 short geth() const; 289 virtual float getf() const; 290 double getd() const; 291 292 // This has the same semantics as std::dynamic_cast<TypeClass*>(this) 293 template <typename TypeClass> 294 const TypeClass* try_cast() const; 295 296 const TypeInt *is_int() const; 297 const TypeInt *isa_int() const; // Returns null if not an Int 298 const TypeInteger* is_integer(BasicType bt) const; 299 const TypeInteger* isa_integer(BasicType bt) const; 300 const TypeLong *is_long() const; 301 const TypeLong *isa_long() const; // Returns null if not a Long 302 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot} 303 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon 304 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon 305 const TypeH *isa_half_float() const; // Returns null if not a HalfFloat{Top,Con,Bot} 306 const TypeH *is_half_float_constant() const; // Asserts it is a HalfFloatCon 307 const TypeH *isa_half_float_constant() const; // Returns null if not a HalfFloatCon 308 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot} 309 const TypeF *is_float_constant() const; // Asserts it is a FloatCon 310 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon 311 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer 312 const TypeAry *is_ary() const; // Array, NOT array pointer 313 const TypeAry *isa_ary() const; // Returns null of not ary 314 const TypeVect *is_vect() const; // Vector 315 const TypeVect *isa_vect() const; // Returns null if not a Vector 316 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector 317 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask 318 const TypePtr *is_ptr() const; // Asserts it is a ptr type 319 const TypePtr *isa_ptr() const; // Returns null if not ptr type 320 const TypeRawPtr *isa_rawptr() const; // NOT Java oop 321 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr 322 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer 323 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type 324 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer 325 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type 326 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type 327 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer 328 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr 329 const TypeInstPtr *is_instptr() const; // Instance 330 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr 331 const TypeAryPtr *is_aryptr() const; // Array oop 332 333 template <typename TypeClass> 334 const TypeClass* cast() const; 335 336 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type 337 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer 338 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr 339 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr 340 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr 341 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr 342 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr 343 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr 344 345 virtual bool is_finite() const; // Has a finite value 346 virtual bool is_nan() const; // Is not a number (NaN) 347 348 // Returns this ptr type or the equivalent ptr type for this compressed pointer. 349 const TypePtr* make_ptr() const; 350 351 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. 352 // Asserts if the underlying type is not an oopptr or narrowoop. 353 const TypeOopPtr* make_oopptr() const; 354 355 // Returns this compressed pointer or the equivalent compressed version 356 // of this pointer type. 357 const TypeNarrowOop* make_narrowoop() const; 358 359 // Returns this compressed klass pointer or the equivalent 360 // compressed version of this pointer type. 361 const TypeNarrowKlass* make_narrowklass() const; 362 363 // Special test for register pressure heuristic 364 bool is_floatingpoint() const; // True if Float or Double base type 365 366 // Do you have memory, directly or through a tuple? 367 bool has_memory( ) const; 368 369 // TRUE if type is a singleton 370 virtual bool singleton(void) const; 371 372 // TRUE if type is above the lattice centerline, and is therefore vacuous 373 virtual bool empty(void) const; 374 375 // Return a hash for this type. The hash function is public so ConNode 376 // (constants) can hash on their constant, which is represented by a Type. 377 virtual uint hash() const; 378 379 // Map ideal registers (machine types) to ideal types 380 static const Type *mreg2type[]; 381 382 // Printing, statistics 383 #ifndef PRODUCT 384 void dump_on(outputStream *st) const; 385 void dump() const { 386 dump_on(tty); 387 } 388 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 389 static void dump_stats(); 390 // Groups of types, for debugging and visualization only. 391 enum class Category { 392 Data, 393 Memory, 394 Mixed, // Tuples with types of different categories. 395 Control, 396 Other, // {Type::Top, Type::Abio, Type::Bottom}. 397 Undef // {Type::Bad, Type::lastype}, for completeness. 398 }; 399 // Return the category of this type. 400 Category category() const; 401 // Check recursively in tuples. 402 bool has_category(Category cat) const; 403 404 static const char* str(const Type* t); 405 #endif // !PRODUCT 406 void typerr(const Type *t) const; // Mixing types error 407 408 // Create basic type 409 static const Type* get_const_basic_type(BasicType type) { 410 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type"); 411 return _const_basic_type[type]; 412 } 413 414 // For two instance arrays of same dimension, return the base element types. 415 // Otherwise or if the arrays have different dimensions, return null. 416 static void get_arrays_base_elements(const Type *a1, const Type *a2, 417 const TypeInstPtr **e1, const TypeInstPtr **e2); 418 419 // Mapping to the array element's basic type. 420 BasicType array_element_basic_type() const; 421 422 enum InterfaceHandling { 423 trust_interfaces, 424 ignore_interfaces 425 }; 426 // Create standard type for a ciType: 427 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces); 428 429 // Create standard zero value: 430 static const Type* get_zero_type(BasicType type) { 431 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type"); 432 return _zero_type[type]; 433 } 434 435 // Report if this is a zero value (not top). 436 bool is_zero_type() const { 437 BasicType type = basic_type(); 438 if (type == T_VOID || type >= T_CONFLICT) 439 return false; 440 else 441 return (this == _zero_type[type]); 442 } 443 444 // Convenience common pre-built types. 445 static const Type *ABIO; 446 static const Type *BOTTOM; 447 static const Type *CONTROL; 448 static const Type *DOUBLE; 449 static const Type *FLOAT; 450 static const Type *HALF_FLOAT; 451 static const Type *HALF; 452 static const Type *MEMORY; 453 static const Type *MULTI; 454 static const Type *RETURN_ADDRESS; 455 static const Type *TOP; 456 457 // Mapping from compiler type to VM BasicType 458 BasicType basic_type() const { return _type_info[_base].basic_type; } 459 uint ideal_reg() const { return _type_info[_base].ideal_reg; } 460 const char* msg() const { return _type_info[_base].msg; } 461 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } 462 relocInfo::relocType reloc() const { return _type_info[_base].reloc; } 463 464 // Mapping from CI type system to compiler type: 465 static const Type* get_typeflow_type(ciType* type); 466 467 static const Type* make_from_constant(ciConstant constant, 468 bool require_constant = false, 469 int stable_dimension = 0, 470 bool is_narrow = false, 471 bool is_autobox_cache = false); 472 473 static const Type* make_constant_from_field(ciInstance* holder, 474 int off, 475 bool is_unsigned_load, 476 BasicType loadbt); 477 478 static const Type* make_constant_from_field(ciField* field, 479 ciInstance* holder, 480 BasicType loadbt, 481 bool is_unsigned_load); 482 483 static const Type* make_constant_from_array_element(ciArray* array, 484 int off, 485 int stable_dimension, 486 BasicType loadbt, 487 bool is_unsigned_load); 488 489 // Speculative type helper methods. See TypePtr. 490 virtual const TypePtr* speculative() const { return nullptr; } 491 virtual ciKlass* speculative_type() const { return nullptr; } 492 virtual ciKlass* speculative_type_not_null() const { return nullptr; } 493 virtual bool speculative_maybe_null() const { return true; } 494 virtual bool speculative_always_null() const { return true; } 495 virtual const Type* remove_speculative() const { return this; } 496 virtual const Type* cleanup_speculative() const { return this; } 497 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; } 498 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } 499 const Type* maybe_remove_speculative(bool include_speculative) const; 500 501 virtual bool maybe_null() const { return true; } 502 virtual bool is_known_instance() const { return false; } 503 504 private: 505 // support arrays 506 static const Type* _zero_type[T_CONFLICT+1]; 507 static const Type* _const_basic_type[T_CONFLICT+1]; 508 }; 509 510 //------------------------------TypeF------------------------------------------ 511 // Class of Float-Constant Types. 512 class TypeF : public Type { 513 TypeF( float f ) : Type(FloatCon), _f(f) {}; 514 public: 515 virtual bool eq( const Type *t ) const; 516 virtual uint hash() const; // Type specific hashing 517 virtual bool singleton(void) const; // TRUE if type is a singleton 518 virtual bool empty(void) const; // TRUE if type is vacuous 519 public: 520 const float _f; // Float constant 521 522 static const TypeF *make(float f); 523 524 virtual bool is_finite() const; // Has a finite value 525 virtual bool is_nan() const; // Is not a number (NaN) 526 527 virtual const Type *xmeet( const Type *t ) const; 528 virtual const Type *xdual() const; // Compute dual right now. 529 // Convenience common pre-built types. 530 static const TypeF *MAX; 531 static const TypeF *MIN; 532 static const TypeF *ZERO; // positive zero only 533 static const TypeF *ONE; 534 static const TypeF *POS_INF; 535 static const TypeF *NEG_INF; 536 #ifndef PRODUCT 537 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 538 #endif 539 }; 540 541 // Class of Half Float-Constant Types. 542 class TypeH : public Type { 543 TypeH(short f) : Type(HalfFloatCon), _f(f) {}; 544 public: 545 virtual bool eq(const Type* t) const; 546 virtual uint hash() const; // Type specific hashing 547 virtual bool singleton(void) const; // TRUE if type is a singleton 548 virtual bool empty(void) const; // TRUE if type is vacuous 549 public: 550 const short _f; // Half Float constant 551 552 static const TypeH* make(float f); 553 static const TypeH* make(short f); 554 555 virtual bool is_finite() const; // Has a finite value 556 virtual bool is_nan() const; // Is not a number (NaN) 557 558 virtual float getf() const; 559 virtual const Type* xmeet(const Type* t) const; 560 virtual const Type* xdual() const; // Compute dual right now. 561 // Convenience common pre-built types. 562 static const TypeH* MAX; 563 static const TypeH* MIN; 564 static const TypeH* ZERO; // positive zero only 565 static const TypeH* ONE; 566 static const TypeH* POS_INF; 567 static const TypeH* NEG_INF; 568 #ifndef PRODUCT 569 virtual void dump2(Dict &d, uint depth, outputStream* st) const; 570 #endif 571 }; 572 573 //------------------------------TypeD------------------------------------------ 574 // Class of Double-Constant Types. 575 class TypeD : public Type { 576 TypeD( double d ) : Type(DoubleCon), _d(d) {}; 577 public: 578 virtual bool eq( const Type *t ) const; 579 virtual uint hash() const; // Type specific hashing 580 virtual bool singleton(void) const; // TRUE if type is a singleton 581 virtual bool empty(void) const; // TRUE if type is vacuous 582 public: 583 const double _d; // Double constant 584 585 static const TypeD *make(double d); 586 587 virtual bool is_finite() const; // Has a finite value 588 virtual bool is_nan() const; // Is not a number (NaN) 589 590 virtual const Type *xmeet( const Type *t ) const; 591 virtual const Type *xdual() const; // Compute dual right now. 592 // Convenience common pre-built types. 593 static const TypeD *MAX; 594 static const TypeD *MIN; 595 static const TypeD *ZERO; // positive zero only 596 static const TypeD *ONE; 597 static const TypeD *POS_INF; 598 static const TypeD *NEG_INF; 599 #ifndef PRODUCT 600 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 601 #endif 602 }; 603 604 class TypeInteger : public Type { 605 protected: 606 TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {} 607 608 // Denote that a set is a dual set. 609 // Dual sets are only used to compute the join of 2 sets, and not used 610 // outside. 611 const bool _is_dual; 612 613 public: 614 const short _widen; // Limit on times we widen this sucker 615 616 virtual jlong hi_as_long() const = 0; 617 virtual jlong lo_as_long() const = 0; 618 jlong get_con_as_long(BasicType bt) const; 619 bool is_con() const { return lo_as_long() == hi_as_long(); } 620 virtual short widen_limit() const { return _widen; } 621 622 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt); 623 static const TypeInteger* make(jlong con, BasicType bt); 624 625 static const TypeInteger* bottom(BasicType type); 626 static const TypeInteger* zero(BasicType type); 627 static const TypeInteger* one(BasicType type); 628 static const TypeInteger* minus_1(BasicType type); 629 }; 630 631 /** 632 * Definition: 633 * 634 * A TypeInt represents a set of non-empty jint values. A jint v is an element 635 * of a TypeInt iff: 636 * 637 * v >= _lo && v <= _hi && 638 * juint(v) >= _ulo && juint(v) <= _uhi && 639 * _bits.is_satisfied_by(v) 640 * 641 * Multiple sets of parameters can represent the same set. 642 * E.g: consider 2 TypeInt t1, t2 643 * 644 * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1 645 * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1 646 * 647 * Then, t1 and t2 both represent the set {3, 5}. We can also see that the 648 * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3 649 * which also represents {3, 5} such that any of these would be true: 650 * 651 * 1) t3._lo > t2._lo 652 * 2) t3._hi < t2._hi 653 * 3) t3._ulo > t2._ulo 654 * 4) t3._uhi < t2._uhi 655 * 5) (t3._bits._zeros &~ t2._bis._zeros) != 0 656 * 6) (t3._bits._ones &~ t2._bits._ones) != 0 657 * 658 * The 5-th condition mean that the subtraction of the bitsets represented by 659 * t3._bits._zeros and t2._bits._zeros is not empty, which means that the 660 * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the 661 * same applies to _bits._ones 662 * 663 * To simplify reasoning about the types in optimizations, we canonicalize 664 * every TypeInt to its tightest form, already at construction. E.g a TypeInt 665 * t with t._lo < 0 will definitely contain negative values. It also makes it 666 * trivial to determine if a TypeInt instance is a subset of another. 667 * 668 * Lemmas: 669 * 670 * 1. Since every TypeInt instance is non-empty and canonicalized, all the 671 * bounds must also be elements of such TypeInt. Or else, we can tighten the 672 * bounds by narrowing it by one, which contradicts the assumption of the 673 * TypeInt being canonical. 674 * 675 * 2. 676 * 2.1. _lo <= jint(_ulo) 677 * 2.2. _lo <= _hi 678 * 2.3. _lo <= jint(_uhi) 679 * 2.4. _ulo <= juint(_lo) 680 * 2.5. _ulo <= juint(_hi) 681 * 2.6. _ulo <= _uhi 682 * 2.7. _hi >= _lo 683 * 2.8. _hi >= jint(_ulo) 684 * 2.9. _hi >= jint(_uhi) 685 * 2.10. _uhi >= juint(_lo) 686 * 2.11. _uhi >= _ulo 687 * 2.12. _uhi >= juint(_hi) 688 * 689 * Proof of lemma 2: 690 * 691 * 2.1. _lo <= jint(_ulo): 692 * According the lemma 1, _ulo is an element of the TypeInt, so in the 693 * signed domain, it must not be less than the smallest element of that 694 * TypeInt, which is _lo. Which means that _lo <= _ulo in the signed 695 * domain, or in a more programmatical way, _lo <= jint(_ulo). 696 * 2.2. _lo <= _hi: 697 * According the lemma 1, _hi is an element of the TypeInt, so in the 698 * signed domain, it must not be less than the smallest element of that 699 * TypeInt, which is _lo. Which means that _lo <= _hi. 700 * 701 * The other inequalities can be proved in a similar manner. 702 * 703 * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then: 704 * 705 * x <= y iff juint(x) <= juint(y) 706 * I.e. x <= y in the signed domain iff x <= y in the unsigned domain 707 * 708 * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a 709 * TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi] 710 * (note that these intervals are disjoint in this case). 711 * 712 * Proof of lemma 4: 713 * 714 * For a TypeInt t, there are 3 possible cases: 715 * 716 * a. t._lo >= 0, we have: 717 * 718 * 0 <= t_lo <= jint(t._ulo) (lemma 2.1) 719 * juint(t._lo) <= juint(jint(t._ulo)) (lemma 3) 720 * == t._ulo (juint(jint(v)) == v with juint v) 721 * <= juint(t._lo) (lemma 2.4) 722 * 723 * Which means that t._lo == jint(t._ulo). 724 * 725 * Furthermore, 726 * 727 * 0 <= t._lo <= t._hi (lemma 2.2) 728 * 0 <= t._lo <= jint(t._uhi) (lemma 2.3) 729 * t._hi >= jint(t._uhi) (lemma 2.9) 730 * 731 * juint(t._hi) >= juint(jint(t._uhi)) (lemma 3) 732 * == t._uhi (juint(jint(v)) == v with juint v) 733 * >= juint(t._hi) (lemma 2.12) 734 * 735 * Which means that t._hi == jint(t._uhi). 736 * In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi) 737 * 738 * b. t._hi < 0. Similarly, we can conclude that: 739 * t._lo == jint(t._ulo) and t._hi == jint(t._uhi) 740 * 741 * c. t._lo < 0, t._hi >= 0. 742 * 743 * Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0 744 * because all negative values is larger than all non-negative values in the 745 * unsigned domain. 746 * 747 * Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0 748 * similar to the reasoning above. 749 * 750 * In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or 751 * [jint(t._ulo), t._hi]. 752 * 753 * Below is an illustration of the TypeInt in this case, the intervals that 754 * the elements can be in are marked using the = symbol. Note how the 755 * negative range in the signed domain wrap around in the unsigned domain. 756 * 757 * Signed: 758 * -----lo=========uhi---------0--------ulo==========hi----- 759 * Unsigned: 760 * 0--------ulo==========hi----------lo=========uhi--------- 761 * 762 * This property is useful for our analysis of TypeInt values. Additionally, 763 * it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the 764 * same applies to jint(_ulo) and _hi. 765 * 766 * We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then, 767 * a TypeInt consists of 2 simple intervals, each of which has its bounds 768 * being both >= 0 or both < 0. If both simple intervals lie in the same half 769 * of the integer domain, they must be the same (i.e _lo == jint(_ulo) and 770 * _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative 771 * half and [jint(_ulo), _hi] must lie in the non-negative half of the signed 772 * domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and 773 * [jint(_ulo), _hi] must lie in the lower half of the unsigned domain). 774 */ 775 class TypeInt : public TypeInteger { 776 private: 777 TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual); 778 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual); 779 780 friend class TypeIntHelper; 781 782 protected: 783 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const; 784 785 public: 786 typedef jint NativeType; 787 virtual bool eq(const Type* t) const; 788 virtual uint hash() const; // Type specific hashing 789 virtual bool singleton(void) const; // TRUE if type is a singleton 790 virtual bool empty(void) const; // TRUE if type is vacuous 791 // A value is in the set represented by this TypeInt if it satisfies all 792 // the below constraints, see contains(jint) 793 const jint _lo, _hi; // Lower bound, upper bound in the signed domain 794 const juint _ulo, _uhi; // Lower bound, upper bound in the unsigned domain 795 const KnownBits<juint> _bits; 796 797 static const TypeInt* make(jint con); 798 // must always specify w 799 static const TypeInt* make(jint lo, jint hi, int widen); 800 static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen); 801 static const TypeInt* make(const TypeIntPrototype<jint, juint>& t, int widen) { return make_or_top(t, widen)->is_int(); } 802 803 // Check for single integer 804 bool is_con() const { return _lo == _hi; } 805 bool is_con(jint i) const { return is_con() && _lo == i; } 806 jint get_con() const { assert(is_con(), ""); return _lo; } 807 // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the 808 // argument are also elements of this type) 809 bool contains(jint i) const; 810 bool contains(const TypeInt* t) const; 811 812 virtual bool is_finite() const; // Has a finite value 813 814 virtual const Type* xmeet(const Type* t) const; 815 virtual const Type* xdual() const; // Compute dual right now. 816 virtual const Type* widen(const Type* t, const Type* limit_type) const; 817 virtual const Type* narrow(const Type* t) const; 818 819 virtual jlong hi_as_long() const { return _hi; } 820 virtual jlong lo_as_long() const { return _lo; } 821 822 // Do not kill _widen bits. 823 // Convenience common pre-built types. 824 static const TypeInt* MAX; 825 static const TypeInt* MIN; 826 static const TypeInt* MINUS_1; 827 static const TypeInt* ZERO; 828 static const TypeInt* ONE; 829 static const TypeInt* BOOL; 830 static const TypeInt* CC; 831 static const TypeInt* CC_LT; // [-1] == MINUS_1 832 static const TypeInt* CC_GT; // [1] == ONE 833 static const TypeInt* CC_EQ; // [0] == ZERO 834 static const TypeInt* CC_NE; // [-1, 1] 835 static const TypeInt* CC_LE; // [-1,0] 836 static const TypeInt* CC_GE; // [0,1] == BOOL (!) 837 static const TypeInt* BYTE; 838 static const TypeInt* UBYTE; 839 static const TypeInt* CHAR; 840 static const TypeInt* SHORT; 841 static const TypeInt* NON_ZERO; 842 static const TypeInt* POS; 843 static const TypeInt* POS1; 844 static const TypeInt* INT; 845 static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint] 846 static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT 847 848 static const TypeInt* as_self(const Type* t) { return t->is_int(); } 849 #ifndef PRODUCT 850 virtual void dump2(Dict& d, uint depth, outputStream* st) const; 851 void dump_verbose() const; 852 #endif 853 }; 854 855 // Similar to TypeInt 856 class TypeLong : public TypeInteger { 857 private: 858 TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual); 859 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual); 860 861 friend class TypeIntHelper; 862 863 protected: 864 // Do not kill _widen bits. 865 virtual const Type* filter_helper(const Type* kills, bool include_speculative) const; 866 public: 867 typedef jlong NativeType; 868 virtual bool eq( const Type *t ) const; 869 virtual uint hash() const; // Type specific hashing 870 virtual bool singleton(void) const; // TRUE if type is a singleton 871 virtual bool empty(void) const; // TRUE if type is vacuous 872 public: 873 // A value is in the set represented by this TypeLong if it satisfies all 874 // the below constraints, see contains(jlong) 875 const jlong _lo, _hi; // Lower bound, upper bound in the signed domain 876 const julong _ulo, _uhi; // Lower bound, upper bound in the unsigned domain 877 const KnownBits<julong> _bits; 878 879 static const TypeLong* make(jlong con); 880 // must always specify w 881 static const TypeLong* make(jlong lo, jlong hi, int widen); 882 static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen); 883 static const TypeLong* make(const TypeIntPrototype<jlong, julong>& t, int widen) { return make_or_top(t, widen)->is_long(); } 884 885 // Check for single integer 886 bool is_con() const { return _lo == _hi; } 887 bool is_con(jlong i) const { return is_con() && _lo == i; } 888 jlong get_con() const { assert(is_con(), "" ); return _lo; } 889 // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the 890 // argument are also elements of this type) 891 bool contains(jlong i) const; 892 bool contains(const TypeLong* t) const; 893 894 // Check for positive 32-bit value. 895 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } 896 897 virtual bool is_finite() const; // Has a finite value 898 899 virtual jlong hi_as_long() const { return _hi; } 900 virtual jlong lo_as_long() const { return _lo; } 901 902 virtual const Type* xmeet(const Type* t) const; 903 virtual const Type* xdual() const; // Compute dual right now. 904 virtual const Type* widen(const Type* t, const Type* limit_type) const; 905 virtual const Type* narrow(const Type* t) const; 906 // Convenience common pre-built types. 907 static const TypeLong* MAX; 908 static const TypeLong* MIN; 909 static const TypeLong* MINUS_1; 910 static const TypeLong* ZERO; 911 static const TypeLong* ONE; 912 static const TypeLong* NON_ZERO; 913 static const TypeLong* POS; 914 static const TypeLong* NEG; 915 static const TypeLong* LONG; 916 static const TypeLong* INT; // 32-bit subrange [min_jint..max_jint] 917 static const TypeLong* UINT; // 32-bit unsigned [0..max_juint] 918 static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG 919 920 // static convenience methods. 921 static const TypeLong* as_self(const Type* t) { return t->is_long(); } 922 923 #ifndef PRODUCT 924 virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping 925 void dump_verbose() const; 926 #endif 927 }; 928 929 //------------------------------TypeTuple-------------------------------------- 930 // Class of Tuple Types, essentially type collections for function signatures 931 // and class layouts. It happens to also be a fast cache for the HotSpot 932 // signature types. 933 class TypeTuple : public Type { 934 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } 935 936 const uint _cnt; // Count of fields 937 const Type ** const _fields; // Array of field types 938 939 public: 940 virtual bool eq( const Type *t ) const; 941 virtual uint hash() const; // Type specific hashing 942 virtual bool singleton(void) const; // TRUE if type is a singleton 943 virtual bool empty(void) const; // TRUE if type is vacuous 944 945 // Accessors: 946 uint cnt() const { return _cnt; } 947 const Type* field_at(uint i) const { 948 assert(i < _cnt, "oob"); 949 return _fields[i]; 950 } 951 void set_field_at(uint i, const Type* t) { 952 assert(i < _cnt, "oob"); 953 _fields[i] = t; 954 } 955 956 static const TypeTuple *make( uint cnt, const Type **fields ); 957 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces); 958 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling); 959 960 // Subroutine call type with space allocated for argument types 961 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 962 static const Type **fields( uint arg_cnt ); 963 964 virtual const Type *xmeet( const Type *t ) const; 965 virtual const Type *xdual() const; // Compute dual right now. 966 // Convenience common pre-built types. 967 static const TypeTuple *IFBOTH; 968 static const TypeTuple *IFFALSE; 969 static const TypeTuple *IFTRUE; 970 static const TypeTuple *IFNEITHER; 971 static const TypeTuple *LOOPBODY; 972 static const TypeTuple *MEMBAR; 973 static const TypeTuple *STORECONDITIONAL; 974 static const TypeTuple *START_I2C; 975 static const TypeTuple *INT_PAIR; 976 static const TypeTuple *LONG_PAIR; 977 static const TypeTuple *INT_CC_PAIR; 978 static const TypeTuple *LONG_CC_PAIR; 979 #ifndef PRODUCT 980 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 981 #endif 982 }; 983 984 //------------------------------TypeAry---------------------------------------- 985 // Class of Array Types 986 class TypeAry : public Type { 987 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array), 988 _elem(elem), _size(size), _stable(stable) {} 989 public: 990 virtual bool eq( const Type *t ) const; 991 virtual uint hash() const; // Type specific hashing 992 virtual bool singleton(void) const; // TRUE if type is a singleton 993 virtual bool empty(void) const; // TRUE if type is vacuous 994 995 private: 996 const Type *_elem; // Element type of array 997 const TypeInt *_size; // Elements in array 998 const bool _stable; // Are elements @Stable? 999 friend class TypeAryPtr; 1000 1001 public: 1002 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false); 1003 1004 virtual const Type *xmeet( const Type *t ) const; 1005 virtual const Type *xdual() const; // Compute dual right now. 1006 bool ary_must_be_exact() const; // true if arrays of such are never generic 1007 virtual const TypeAry* remove_speculative() const; 1008 virtual const Type* cleanup_speculative() const; 1009 #ifndef PRODUCT 1010 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 1011 #endif 1012 }; 1013 1014 //------------------------------TypeVect--------------------------------------- 1015 // Class of Vector Types 1016 class TypeVect : public Type { 1017 const BasicType _elem_bt; // Vector's element type 1018 const uint _length; // Elements in vector (power of 2) 1019 1020 protected: 1021 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t), 1022 _elem_bt(elem_bt), _length(length) {} 1023 1024 public: 1025 BasicType element_basic_type() const { return _elem_bt; } 1026 uint length() const { return _length; } 1027 uint length_in_bytes() const { 1028 return _length * type2aelembytes(element_basic_type()); 1029 } 1030 1031 virtual bool eq(const Type* t) const; 1032 virtual uint hash() const; // Type specific hashing 1033 virtual bool singleton(void) const; // TRUE if type is a singleton 1034 virtual bool empty(void) const; // TRUE if type is vacuous 1035 1036 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false); 1037 static const TypeVect* makemask(const BasicType elem_bt, uint length); 1038 1039 virtual const Type* xmeet( const Type *t) const; 1040 virtual const Type* xdual() const; // Compute dual right now. 1041 1042 static const TypeVect* VECTA; 1043 static const TypeVect* VECTS; 1044 static const TypeVect* VECTD; 1045 static const TypeVect* VECTX; 1046 static const TypeVect* VECTY; 1047 static const TypeVect* VECTZ; 1048 static const TypeVect* VECTMASK; 1049 1050 #ifndef PRODUCT 1051 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping 1052 #endif 1053 }; 1054 1055 class TypeVectA : public TypeVect { 1056 friend class TypeVect; 1057 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {} 1058 }; 1059 1060 class TypeVectS : public TypeVect { 1061 friend class TypeVect; 1062 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {} 1063 }; 1064 1065 class TypeVectD : public TypeVect { 1066 friend class TypeVect; 1067 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {} 1068 }; 1069 1070 class TypeVectX : public TypeVect { 1071 friend class TypeVect; 1072 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {} 1073 }; 1074 1075 class TypeVectY : public TypeVect { 1076 friend class TypeVect; 1077 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {} 1078 }; 1079 1080 class TypeVectZ : public TypeVect { 1081 friend class TypeVect; 1082 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {} 1083 }; 1084 1085 class TypeVectMask : public TypeVect { 1086 public: 1087 friend class TypeVect; 1088 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {} 1089 static const TypeVectMask* make(const BasicType elem_bt, uint length); 1090 }; 1091 1092 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr. 1093 class TypeInterfaces : public Type { 1094 private: 1095 GrowableArrayFromArray<ciInstanceKlass*> _interfaces; 1096 uint _hash; 1097 ciInstanceKlass* _exact_klass; 1098 DEBUG_ONLY(bool _initialized;) 1099 1100 void initialize(); 1101 1102 void verify() const NOT_DEBUG_RETURN; 1103 void compute_hash(); 1104 void compute_exact_klass(); 1105 1106 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces); 1107 1108 NONCOPYABLE(TypeInterfaces); 1109 public: 1110 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr); 1111 bool eq(const Type* other) const; 1112 bool eq(ciInstanceKlass* k) const; 1113 uint hash() const; 1114 const Type *xdual() const; 1115 void dump(outputStream* st) const; 1116 const TypeInterfaces* union_with(const TypeInterfaces* other) const; 1117 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const; 1118 bool contains(const TypeInterfaces* other) const { 1119 return intersection_with(other)->eq(other); 1120 } 1121 bool empty() const { return _interfaces.length() == 0; } 1122 1123 ciInstanceKlass* exact_klass() const; 1124 void verify_is_loaded() const NOT_DEBUG_RETURN; 1125 1126 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2); 1127 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2); 1128 1129 const Type* xmeet(const Type* t) const; 1130 1131 bool singleton(void) const; 1132 bool has_non_array_interface() const; 1133 }; 1134 1135 //------------------------------TypePtr---------------------------------------- 1136 // Class of machine Pointer Types: raw data, instances or arrays. 1137 // If the _base enum is AnyPtr, then this refers to all of the above. 1138 // Otherwise the _base will indicate which subset of pointers is affected, 1139 // and the class will be inherited from. 1140 class TypePtr : public Type { 1141 friend class TypeNarrowPtr; 1142 friend class Type; 1143 protected: 1144 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling); 1145 1146 public: 1147 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; 1148 protected: 1149 TypePtr(TYPES t, PTR ptr, int offset, 1150 const TypePtr* speculative = nullptr, 1151 int inline_depth = InlineDepthBottom) : 1152 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), 1153 _ptr(ptr) {} 1154 static const PTR ptr_meet[lastPTR][lastPTR]; 1155 static const PTR ptr_dual[lastPTR]; 1156 static const char * const ptr_msg[lastPTR]; 1157 1158 enum { 1159 InlineDepthBottom = INT_MAX, 1160 InlineDepthTop = -InlineDepthBottom 1161 }; 1162 1163 // Extra type information profiling gave us. We propagate it the 1164 // same way the rest of the type info is propagated. If we want to 1165 // use it, then we have to emit a guard: this part of the type is 1166 // not something we know but something we speculate about the type. 1167 const TypePtr* _speculative; 1168 // For speculative types, we record at what inlining depth the 1169 // profiling point that provided the data is. We want to favor 1170 // profile data coming from outer scopes which are likely better for 1171 // the current compilation. 1172 int _inline_depth; 1173 1174 // utility methods to work on the speculative part of the type 1175 const TypePtr* dual_speculative() const; 1176 const TypePtr* xmeet_speculative(const TypePtr* other) const; 1177 bool eq_speculative(const TypePtr* other) const; 1178 int hash_speculative() const; 1179 const TypePtr* add_offset_speculative(intptr_t offset) const; 1180 const TypePtr* with_offset_speculative(intptr_t offset) const; 1181 1182 // utility methods to work on the inline depth of the type 1183 int dual_inline_depth() const; 1184 int meet_inline_depth(int depth) const; 1185 1186 #ifndef PRODUCT 1187 void dump_speculative(outputStream* st) const; 1188 void dump_inline_depth(outputStream* st) const; 1189 void dump_offset(outputStream* st) const; 1190 #endif 1191 1192 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic. 1193 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for 1194 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what 1195 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was 1196 // encountered so the right logic specific to klasses or oops can be executed., 1197 enum MeetResult { 1198 QUICK, 1199 UNLOADED, 1200 SUBTYPE, 1201 NOT_SUBTYPE, 1202 LCA 1203 }; 1204 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, 1205 const T* other_type, ciKlass*& res_klass, bool& res_xk); 1206 1207 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 1208 ciKlass*& res_klass, bool& res_xk); 1209 1210 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1211 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other); 1212 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1213 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1214 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other); 1215 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 1216 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1217 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 1218 public: 1219 const int _offset; // Offset into oop, with TOP & BOT 1220 const PTR _ptr; // Pointer equivalence class 1221 1222 int offset() const { return _offset; } 1223 PTR ptr() const { return _ptr; } 1224 1225 static const TypePtr *make(TYPES t, PTR ptr, int offset, 1226 const TypePtr* speculative = nullptr, 1227 int inline_depth = InlineDepthBottom); 1228 1229 // Return a 'ptr' version of this type 1230 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; 1231 1232 virtual intptr_t get_con() const; 1233 1234 int xadd_offset( intptr_t offset ) const; 1235 virtual const TypePtr* add_offset(intptr_t offset) const; 1236 virtual const TypePtr* with_offset(intptr_t offset) const; 1237 virtual bool eq(const Type *t) const; 1238 virtual uint hash() const; // Type specific hashing 1239 1240 virtual bool singleton(void) const; // TRUE if type is a singleton 1241 virtual bool empty(void) const; // TRUE if type is vacuous 1242 virtual const Type *xmeet( const Type *t ) const; 1243 virtual const Type *xmeet_helper( const Type *t ) const; 1244 int meet_offset( int offset ) const; 1245 int dual_offset( ) const; 1246 virtual const Type *xdual() const; // Compute dual right now. 1247 1248 // meet, dual and join over pointer equivalence sets 1249 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } 1250 PTR dual_ptr() const { return ptr_dual[ptr()]; } 1251 1252 // This is textually confusing unless one recalls that 1253 // join(t) == dual()->meet(t->dual())->dual(). 1254 PTR join_ptr( const PTR in_ptr ) const { 1255 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; 1256 } 1257 1258 // Speculative type helper methods. 1259 virtual const TypePtr* speculative() const { return _speculative; } 1260 int inline_depth() const { return _inline_depth; } 1261 virtual ciKlass* speculative_type() const; 1262 virtual ciKlass* speculative_type_not_null() const; 1263 virtual bool speculative_maybe_null() const; 1264 virtual bool speculative_always_null() const; 1265 virtual const TypePtr* remove_speculative() const; 1266 virtual const Type* cleanup_speculative() const; 1267 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1268 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; 1269 virtual const TypePtr* with_inline_depth(int depth) const; 1270 1271 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } 1272 1273 // Tests for relation to centerline of type lattice: 1274 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } 1275 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } 1276 // Convenience common pre-built types. 1277 static const TypePtr *NULL_PTR; 1278 static const TypePtr *NOTNULL; 1279 static const TypePtr *BOTTOM; 1280 #ifndef PRODUCT 1281 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1282 #endif 1283 }; 1284 1285 //------------------------------TypeRawPtr------------------------------------- 1286 // Class of raw pointers, pointers to things other than Oops. Examples 1287 // include the stack pointer, top of heap, card-marking area, handles, etc. 1288 class TypeRawPtr : public TypePtr { 1289 protected: 1290 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){} 1291 public: 1292 virtual bool eq( const Type *t ) const; 1293 virtual uint hash() const; // Type specific hashing 1294 1295 const address _bits; // Constant value, if applicable 1296 1297 static const TypeRawPtr *make( PTR ptr ); 1298 static const TypeRawPtr *make( address bits ); 1299 1300 // Return a 'ptr' version of this type 1301 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const; 1302 1303 virtual intptr_t get_con() const; 1304 1305 virtual const TypePtr* add_offset(intptr_t offset) const; 1306 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;} 1307 1308 virtual const Type *xmeet( const Type *t ) const; 1309 virtual const Type *xdual() const; // Compute dual right now. 1310 // Convenience common pre-built types. 1311 static const TypeRawPtr *BOTTOM; 1312 static const TypeRawPtr *NOTNULL; 1313 #ifndef PRODUCT 1314 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1315 #endif 1316 }; 1317 1318 //------------------------------TypeOopPtr------------------------------------- 1319 // Some kind of oop (Java pointer), either instance or array. 1320 class TypeOopPtr : public TypePtr { 1321 friend class TypeAry; 1322 friend class TypePtr; 1323 friend class TypeInstPtr; 1324 friend class TypeAryPtr; 1325 protected: 1326 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id, 1327 const TypePtr* speculative, int inline_depth); 1328 public: 1329 virtual bool eq( const Type *t ) const; 1330 virtual uint hash() const; // Type specific hashing 1331 virtual bool singleton(void) const; // TRUE if type is a singleton 1332 enum { 1333 InstanceTop = -1, // undefined instance 1334 InstanceBot = 0 // any possible instance 1335 }; 1336 protected: 1337 1338 // Oop is null, unless this is a constant oop. 1339 ciObject* _const_oop; // Constant oop 1340 // If _klass is null, then so is _sig. This is an unloaded klass. 1341 ciKlass* _klass; // Klass object 1342 1343 const TypeInterfaces* _interfaces; 1344 1345 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) 1346 bool _klass_is_exact; 1347 bool _is_ptr_to_narrowoop; 1348 bool _is_ptr_to_narrowklass; 1349 bool _is_ptr_to_boxed_value; 1350 1351 // If not InstanceTop or InstanceBot, indicates that this is 1352 // a particular instance of this type which is distinct. 1353 // This is the node index of the allocation node creating this instance. 1354 int _instance_id; 1355 1356 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling); 1357 1358 int dual_instance_id() const; 1359 int meet_instance_id(int uid) const; 1360 1361 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const; 1362 1363 // Do not allow interface-vs.-noninterface joins to collapse to top. 1364 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1365 1366 virtual ciKlass* exact_klass_helper() const { return nullptr; } 1367 virtual ciKlass* klass() const { return _klass; } 1368 1369 #ifndef PRODUCT 1370 void dump_instance_id(outputStream* st) const; 1371 #endif // PRODUCT 1372 1373 public: 1374 1375 bool is_java_subtype_of(const TypeOopPtr* other) const { 1376 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1377 } 1378 1379 bool is_same_java_type_as(const TypePtr* other) const { 1380 return is_same_java_type_as_helper(other->is_oopptr()); 1381 } 1382 1383 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const { 1384 ShouldNotReachHere(); return false; 1385 } 1386 1387 bool maybe_java_subtype_of(const TypeOopPtr* other) const { 1388 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1389 } 1390 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1391 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1392 1393 1394 // Creates a type given a klass. Correctly handles multi-dimensional arrays 1395 // Respects UseUniqueSubclasses. 1396 // If the klass is final, the resulting type will be exact. 1397 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1398 return make_from_klass_common(klass, true, false, interface_handling); 1399 } 1400 // Same as before, but will produce an exact type, even if 1401 // the klass is not final, as long as it has exactly one implementation. 1402 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) { 1403 return make_from_klass_common(klass, true, true, interface_handling); 1404 } 1405 // Same as before, but does not respects UseUniqueSubclasses. 1406 // Use this only for creating array element types. 1407 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1408 return make_from_klass_common(klass, false, false, interface_handling); 1409 } 1410 // Creates a singleton type given an object. 1411 // If the object cannot be rendered as a constant, 1412 // may return a non-singleton type. 1413 // If require_constant, produce a null if a singleton is not possible. 1414 static const TypeOopPtr* make_from_constant(ciObject* o, 1415 bool require_constant = false); 1416 1417 // Make a generic (unclassed) pointer to an oop. 1418 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, 1419 const TypePtr* speculative = nullptr, 1420 int inline_depth = InlineDepthBottom); 1421 1422 ciObject* const_oop() const { return _const_oop; } 1423 // Exact klass, possibly an interface or an array of interface 1424 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1425 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); } 1426 1427 virtual bool is_loaded() const { return klass()->is_loaded(); } 1428 virtual bool klass_is_exact() const { return _klass_is_exact; } 1429 1430 // Returns true if this pointer points at memory which contains a 1431 // compressed oop references. 1432 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } 1433 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } 1434 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } 1435 bool is_known_instance() const { return _instance_id > 0; } 1436 int instance_id() const { return _instance_id; } 1437 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } 1438 1439 virtual intptr_t get_con() const; 1440 1441 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const; 1442 1443 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const; 1444 1445 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; 1446 1447 // corresponding pointer to klass, for a given instance 1448 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1449 1450 virtual const TypeOopPtr* with_offset(intptr_t offset) const; 1451 virtual const TypePtr* add_offset(intptr_t offset) const; 1452 1453 // Speculative type helper methods. 1454 virtual const TypeOopPtr* remove_speculative() const; 1455 virtual const Type* cleanup_speculative() const; 1456 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1457 virtual const TypePtr* with_inline_depth(int depth) const; 1458 1459 virtual const TypePtr* with_instance_id(int instance_id) const; 1460 1461 virtual const Type *xdual() const; // Compute dual right now. 1462 // the core of the computation of the meet for TypeOopPtr and for its subclasses 1463 virtual const Type *xmeet_helper(const Type *t) const; 1464 1465 // Convenience common pre-built type. 1466 static const TypeOopPtr *BOTTOM; 1467 #ifndef PRODUCT 1468 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1469 #endif 1470 private: 1471 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1472 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact()); 1473 } 1474 1475 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const { 1476 ShouldNotReachHere(); return false; 1477 } 1478 1479 virtual const TypeInterfaces* interfaces() const { 1480 return _interfaces; 1481 }; 1482 1483 const TypeOopPtr* is_reference_type(const Type* other) const { 1484 return other->isa_oopptr(); 1485 } 1486 1487 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const { 1488 return other->isa_aryptr(); 1489 } 1490 1491 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const { 1492 return other->isa_instptr(); 1493 } 1494 }; 1495 1496 //------------------------------TypeInstPtr------------------------------------ 1497 // Class of Java object pointers, pointing either to non-array Java instances 1498 // or to a Klass* (including array klasses). 1499 class TypeInstPtr : public TypeOopPtr { 1500 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id, 1501 const TypePtr* speculative, int inline_depth); 1502 virtual bool eq( const Type *t ) const; 1503 virtual uint hash() const; // Type specific hashing 1504 1505 ciKlass* exact_klass_helper() const; 1506 1507 public: 1508 1509 // Instance klass, ignoring any interface 1510 ciInstanceKlass* instance_klass() const { 1511 assert(!(klass()->is_loaded() && klass()->is_interface()), ""); 1512 return klass()->as_instance_klass(); 1513 } 1514 1515 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1516 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1517 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1518 1519 // Make a pointer to a constant oop. 1520 static const TypeInstPtr *make(ciObject* o) { 1521 ciKlass* k = o->klass(); 1522 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1523 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot); 1524 } 1525 // Make a pointer to a constant oop with offset. 1526 static const TypeInstPtr *make(ciObject* o, int offset) { 1527 ciKlass* k = o->klass(); 1528 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1529 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot); 1530 } 1531 1532 // Make a pointer to some value of type klass. 1533 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1534 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 1535 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot); 1536 } 1537 1538 // Make a pointer to some non-polymorphic value of exactly type klass. 1539 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { 1540 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1541 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot); 1542 } 1543 1544 // Make a pointer to some value of type klass with offset. 1545 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) { 1546 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1547 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot); 1548 } 1549 1550 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 1551 int instance_id = InstanceBot, 1552 const TypePtr* speculative = nullptr, 1553 int inline_depth = InlineDepthBottom); 1554 1555 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) { 1556 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1557 return make(ptr, k, interfaces, xk, o, offset, instance_id); 1558 } 1559 1560 /** Create constant type for a constant boxed value */ 1561 const Type* get_const_boxed_value() const; 1562 1563 // If this is a java.lang.Class constant, return the type for it or null. 1564 // Pass to Type::get_const_type to turn it to a type, which will usually 1565 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. 1566 ciType* java_mirror_type() const; 1567 1568 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const; 1569 1570 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const; 1571 1572 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const; 1573 1574 virtual const TypePtr* add_offset(intptr_t offset) const; 1575 virtual const TypeInstPtr* with_offset(intptr_t offset) const; 1576 1577 // Speculative type helper methods. 1578 virtual const TypeInstPtr* remove_speculative() const; 1579 const TypeInstPtr* with_speculative(const TypePtr* speculative) const; 1580 virtual const TypePtr* with_inline_depth(int depth) const; 1581 virtual const TypePtr* with_instance_id(int instance_id) const; 1582 1583 // the core of the computation of the meet of 2 types 1584 virtual const Type *xmeet_helper(const Type *t) const; 1585 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const; 1586 virtual const Type *xdual() const; // Compute dual right now. 1587 1588 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1589 1590 // Convenience common pre-built types. 1591 static const TypeInstPtr *NOTNULL; 1592 static const TypeInstPtr *BOTTOM; 1593 static const TypeInstPtr *MIRROR; 1594 static const TypeInstPtr *MARK; 1595 static const TypeInstPtr *KLASS; 1596 #ifndef PRODUCT 1597 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1598 #endif 1599 1600 private: 1601 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1602 1603 virtual bool is_meet_same_type_as(const TypePtr* other) const { 1604 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces); 1605 } 1606 1607 }; 1608 1609 //------------------------------TypeAryPtr------------------------------------- 1610 // Class of Java array pointers 1611 class TypeAryPtr : public TypeOopPtr { 1612 friend class Type; 1613 friend class TypePtr; 1614 friend class TypeInterfaces; 1615 1616 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, 1617 int offset, int instance_id, bool is_autobox_cache, 1618 const TypePtr* speculative, int inline_depth) 1619 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth), 1620 _ary(ary), 1621 _is_autobox_cache(is_autobox_cache) 1622 { 1623 int dummy; 1624 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM); 1625 1626 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) && 1627 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() && 1628 _offset != arrayOopDesc::klass_offset_in_bytes()) { 1629 _is_ptr_to_narrowoop = true; 1630 } 1631 1632 } 1633 virtual bool eq( const Type *t ) const; 1634 virtual uint hash() const; // Type specific hashing 1635 const TypeAry *_ary; // Array we point into 1636 const bool _is_autobox_cache; 1637 1638 ciKlass* compute_klass() const; 1639 1640 // A pointer to delay allocation to Type::Initialize_shared() 1641 1642 static const TypeInterfaces* _array_interfaces; 1643 ciKlass* exact_klass_helper() const; 1644 // Only guaranteed non null for array of basic types 1645 ciKlass* klass() const; 1646 1647 public: 1648 1649 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1650 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1651 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1652 1653 // returns base element type, an instance klass (and not interface) for object arrays 1654 const Type* base_element_type(int& dims) const; 1655 1656 // Accessors 1657 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); } 1658 1659 const TypeAry* ary() const { return _ary; } 1660 const Type* elem() const { return _ary->_elem; } 1661 const TypeInt* size() const { return _ary->_size; } 1662 bool is_stable() const { return _ary->_stable; } 1663 1664 bool is_autobox_cache() const { return _is_autobox_cache; } 1665 1666 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1667 int instance_id = InstanceBot, 1668 const TypePtr* speculative = nullptr, 1669 int inline_depth = InlineDepthBottom); 1670 // Constant pointer to array 1671 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1672 int instance_id = InstanceBot, 1673 const TypePtr* speculative = nullptr, 1674 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false); 1675 1676 // Return a 'ptr' version of this type 1677 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const; 1678 1679 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const; 1680 1681 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const; 1682 1683 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; 1684 virtual const TypeInt* narrow_size_type(const TypeInt* size) const; 1685 1686 virtual bool empty(void) const; // TRUE if type is vacuous 1687 virtual const TypePtr *add_offset( intptr_t offset ) const; 1688 virtual const TypeAryPtr *with_offset( intptr_t offset ) const; 1689 const TypeAryPtr* with_ary(const TypeAry* ary) const; 1690 1691 // Speculative type helper methods. 1692 virtual const TypeAryPtr* remove_speculative() const; 1693 virtual const TypePtr* with_inline_depth(int depth) const; 1694 virtual const TypePtr* with_instance_id(int instance_id) const; 1695 1696 // the core of the computation of the meet of 2 types 1697 virtual const Type *xmeet_helper(const Type *t) const; 1698 virtual const Type *xdual() const; // Compute dual right now. 1699 1700 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; 1701 int stable_dimension() const; 1702 1703 const TypeAryPtr* cast_to_autobox_cache() const; 1704 1705 static jint max_array_length(BasicType etype) ; 1706 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1707 1708 // Convenience common pre-built types. 1709 static const TypeAryPtr* BOTTOM; 1710 static const TypeAryPtr* RANGE; 1711 static const TypeAryPtr* OOPS; 1712 static const TypeAryPtr* NARROWOOPS; 1713 static const TypeAryPtr* BYTES; 1714 static const TypeAryPtr* SHORTS; 1715 static const TypeAryPtr* CHARS; 1716 static const TypeAryPtr* INTS; 1717 static const TypeAryPtr* LONGS; 1718 static const TypeAryPtr* FLOATS; 1719 static const TypeAryPtr* DOUBLES; 1720 // selects one of the above: 1721 static const TypeAryPtr *get_array_body_type(BasicType elem) { 1722 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type"); 1723 return _array_body_type[elem]; 1724 } 1725 static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; 1726 // sharpen the type of an int which is used as an array size 1727 #ifndef PRODUCT 1728 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1729 #endif 1730 private: 1731 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1732 }; 1733 1734 //------------------------------TypeMetadataPtr------------------------------------- 1735 // Some kind of metadata, either Method*, MethodData* or CPCacheOop 1736 class TypeMetadataPtr : public TypePtr { 1737 protected: 1738 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset); 1739 // Do not allow interface-vs.-noninterface joins to collapse to top. 1740 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1741 public: 1742 virtual bool eq( const Type *t ) const; 1743 virtual uint hash() const; // Type specific hashing 1744 virtual bool singleton(void) const; // TRUE if type is a singleton 1745 1746 private: 1747 ciMetadata* _metadata; 1748 1749 public: 1750 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset); 1751 1752 static const TypeMetadataPtr* make(ciMethod* m); 1753 static const TypeMetadataPtr* make(ciMethodData* m); 1754 1755 ciMetadata* metadata() const { return _metadata; } 1756 1757 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const; 1758 1759 virtual const TypePtr *add_offset( intptr_t offset ) const; 1760 1761 virtual const Type *xmeet( const Type *t ) const; 1762 virtual const Type *xdual() const; // Compute dual right now. 1763 1764 virtual intptr_t get_con() const; 1765 1766 // Convenience common pre-built types. 1767 static const TypeMetadataPtr *BOTTOM; 1768 1769 #ifndef PRODUCT 1770 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1771 #endif 1772 }; 1773 1774 //------------------------------TypeKlassPtr----------------------------------- 1775 // Class of Java Klass pointers 1776 class TypeKlassPtr : public TypePtr { 1777 friend class TypeInstKlassPtr; 1778 friend class TypeAryKlassPtr; 1779 friend class TypePtr; 1780 protected: 1781 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset); 1782 1783 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1784 1785 public: 1786 virtual bool eq( const Type *t ) const; 1787 virtual uint hash() const; 1788 virtual bool singleton(void) const; // TRUE if type is a singleton 1789 1790 protected: 1791 1792 ciKlass* _klass; 1793 const TypeInterfaces* _interfaces; 1794 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const; 1795 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; } 1796 virtual ciKlass* exact_klass_helper() const; 1797 virtual ciKlass* klass() const { return _klass; } 1798 1799 public: 1800 1801 bool is_java_subtype_of(const TypeKlassPtr* other) const { 1802 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1803 } 1804 bool is_same_java_type_as(const TypePtr* other) const { 1805 return is_same_java_type_as_helper(other->is_klassptr()); 1806 } 1807 1808 bool maybe_java_subtype_of(const TypeKlassPtr* other) const { 1809 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1810 } 1811 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; } 1812 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1813 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1814 1815 // Exact klass, possibly an interface or an array of interface 1816 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1817 virtual bool klass_is_exact() const { return _ptr == Constant; } 1818 1819 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces); 1820 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces); 1821 1822 virtual bool is_loaded() const { return _klass->is_loaded(); } 1823 1824 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; } 1825 1826 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; } 1827 1828 // corresponding pointer to instance, for a given class 1829 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; } 1830 1831 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; } 1832 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; } 1833 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; } 1834 1835 virtual intptr_t get_con() const; 1836 1837 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; } 1838 1839 virtual const TypeKlassPtr* try_improve() const { return this; } 1840 1841 private: 1842 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1843 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact()); 1844 } 1845 1846 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const { 1847 ShouldNotReachHere(); return false; 1848 } 1849 1850 virtual const TypeInterfaces* interfaces() const { 1851 return _interfaces; 1852 }; 1853 1854 const TypeKlassPtr* is_reference_type(const Type* other) const { 1855 return other->isa_klassptr(); 1856 } 1857 1858 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const { 1859 return other->isa_aryklassptr(); 1860 } 1861 1862 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const { 1863 return other->isa_instklassptr(); 1864 } 1865 }; 1866 1867 // Instance klass pointer, mirrors TypeInstPtr 1868 class TypeInstKlassPtr : public TypeKlassPtr { 1869 1870 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 1871 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) { 1872 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), ""); 1873 } 1874 1875 virtual bool must_be_exact() const; 1876 1877 public: 1878 // Instance klass ignoring any interface 1879 ciInstanceKlass* instance_klass() const { 1880 assert(!klass()->is_interface(), ""); 1881 return klass()->as_instance_klass(); 1882 } 1883 1884 bool might_be_an_array() const; 1885 1886 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1887 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1888 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1889 1890 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) { 1891 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling); 1892 return make(TypePtr::Constant, k, interfaces, 0); 1893 } 1894 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset); 1895 1896 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) { 1897 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1898 return make(ptr, k, interfaces, offset); 1899 } 1900 1901 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const; 1902 1903 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1904 1905 // corresponding pointer to instance, for a given class 1906 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1907 virtual uint hash() const; 1908 virtual bool eq(const Type *t) const; 1909 1910 virtual const TypePtr *add_offset( intptr_t offset ) const; 1911 virtual const Type *xmeet( const Type *t ) const; 1912 virtual const Type *xdual() const; 1913 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const; 1914 1915 virtual const TypeKlassPtr* try_improve() const; 1916 1917 // Convenience common pre-built types. 1918 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below 1919 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same 1920 1921 #ifndef PRODUCT 1922 virtual void dump2(Dict& d, uint depth, outputStream* st) const; 1923 #endif // PRODUCT 1924 1925 private: 1926 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1927 }; 1928 1929 // Array klass pointer, mirrors TypeAryPtr 1930 class TypeAryKlassPtr : public TypeKlassPtr { 1931 friend class TypeInstKlassPtr; 1932 friend class Type; 1933 friend class TypePtr; 1934 1935 const Type *_elem; 1936 1937 static const TypeInterfaces* _array_interfaces; 1938 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset) 1939 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) { 1940 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), ""); 1941 } 1942 1943 virtual ciKlass* exact_klass_helper() const; 1944 // Only guaranteed non null for array of basic types 1945 virtual ciKlass* klass() const; 1946 1947 virtual bool must_be_exact() const; 1948 1949 public: 1950 1951 // returns base element type, an instance klass (and not interface) for object arrays 1952 const Type* base_element_type(int& dims) const; 1953 1954 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling); 1955 1956 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1957 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1958 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1959 1960 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); } 1961 1962 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset); 1963 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling); 1964 1965 const Type *elem() const { return _elem; } 1966 1967 virtual bool eq(const Type *t) const; 1968 virtual uint hash() const; // Type specific hashing 1969 1970 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const; 1971 1972 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1973 1974 // corresponding pointer to instance, for a given class 1975 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1976 1977 virtual const TypePtr *add_offset( intptr_t offset ) const; 1978 virtual const Type *xmeet( const Type *t ) const; 1979 virtual const Type *xdual() const; // Compute dual right now. 1980 1981 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const; 1982 1983 virtual bool empty(void) const { 1984 return TypeKlassPtr::empty() || _elem->empty(); 1985 } 1986 1987 #ifndef PRODUCT 1988 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1989 #endif 1990 private: 1991 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1992 }; 1993 1994 class TypeNarrowPtr : public Type { 1995 protected: 1996 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR 1997 1998 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), 1999 _ptrtype(ptrtype) { 2000 assert(ptrtype->offset() == 0 || 2001 ptrtype->offset() == OffsetBot || 2002 ptrtype->offset() == OffsetTop, "no real offsets"); 2003 } 2004 2005 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; 2006 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; 2007 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; 2008 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; 2009 // Do not allow interface-vs.-noninterface joins to collapse to top. 2010 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 2011 public: 2012 virtual bool eq( const Type *t ) const; 2013 virtual uint hash() const; // Type specific hashing 2014 virtual bool singleton(void) const; // TRUE if type is a singleton 2015 2016 virtual const Type *xmeet( const Type *t ) const; 2017 virtual const Type *xdual() const; // Compute dual right now. 2018 2019 virtual intptr_t get_con() const; 2020 2021 virtual bool empty(void) const; // TRUE if type is vacuous 2022 2023 // returns the equivalent ptr type for this compressed pointer 2024 const TypePtr *get_ptrtype() const { 2025 return _ptrtype; 2026 } 2027 2028 bool is_known_instance() const { 2029 return _ptrtype->is_known_instance(); 2030 } 2031 2032 #ifndef PRODUCT 2033 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 2034 #endif 2035 }; 2036 2037 //------------------------------TypeNarrowOop---------------------------------- 2038 // A compressed reference to some kind of Oop. This type wraps around 2039 // a preexisting TypeOopPtr and forwards most of it's operations to 2040 // the underlying type. It's only real purpose is to track the 2041 // oopness of the compressed oop value when we expose the conversion 2042 // between the normal and the compressed form. 2043 class TypeNarrowOop : public TypeNarrowPtr { 2044 protected: 2045 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { 2046 } 2047 2048 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 2049 return t->isa_narrowoop(); 2050 } 2051 2052 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 2053 return t->is_narrowoop(); 2054 } 2055 2056 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 2057 return new TypeNarrowOop(t); 2058 } 2059 2060 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 2061 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); 2062 } 2063 2064 public: 2065 2066 static const TypeNarrowOop *make( const TypePtr* type); 2067 2068 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { 2069 return make(TypeOopPtr::make_from_constant(con, require_constant)); 2070 } 2071 2072 static const TypeNarrowOop *BOTTOM; 2073 static const TypeNarrowOop *NULL_PTR; 2074 2075 virtual const TypeNarrowOop* remove_speculative() const; 2076 virtual const Type* cleanup_speculative() const; 2077 2078 #ifndef PRODUCT 2079 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 2080 #endif 2081 }; 2082 2083 //------------------------------TypeNarrowKlass---------------------------------- 2084 // A compressed reference to klass pointer. This type wraps around a 2085 // preexisting TypeKlassPtr and forwards most of it's operations to 2086 // the underlying type. 2087 class TypeNarrowKlass : public TypeNarrowPtr { 2088 protected: 2089 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { 2090 } 2091 2092 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 2093 return t->isa_narrowklass(); 2094 } 2095 2096 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 2097 return t->is_narrowklass(); 2098 } 2099 2100 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 2101 return new TypeNarrowKlass(t); 2102 } 2103 2104 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 2105 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); 2106 } 2107 2108 public: 2109 static const TypeNarrowKlass *make( const TypePtr* type); 2110 2111 // static const TypeNarrowKlass *BOTTOM; 2112 static const TypeNarrowKlass *NULL_PTR; 2113 2114 #ifndef PRODUCT 2115 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 2116 #endif 2117 }; 2118 2119 //------------------------------TypeFunc--------------------------------------- 2120 // Class of Array Types 2121 class TypeFunc : public Type { 2122 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {} 2123 virtual bool eq( const Type *t ) const; 2124 virtual uint hash() const; // Type specific hashing 2125 virtual bool singleton(void) const; // TRUE if type is a singleton 2126 virtual bool empty(void) const; // TRUE if type is vacuous 2127 2128 const TypeTuple* const _domain; // Domain of inputs 2129 const TypeTuple* const _range; // Range of results 2130 2131 public: 2132 // Constants are shared among ADLC and VM 2133 enum { Control = AdlcVMDeps::Control, 2134 I_O = AdlcVMDeps::I_O, 2135 Memory = AdlcVMDeps::Memory, 2136 FramePtr = AdlcVMDeps::FramePtr, 2137 ReturnAdr = AdlcVMDeps::ReturnAdr, 2138 Parms = AdlcVMDeps::Parms 2139 }; 2140 2141 2142 // Accessors: 2143 const TypeTuple* domain() const { return _domain; } 2144 const TypeTuple* range() const { return _range; } 2145 2146 static const TypeFunc *make(ciMethod* method); 2147 static const TypeFunc *make(ciSignature signature, const Type* extra); 2148 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); 2149 2150 virtual const Type *xmeet( const Type *t ) const; 2151 virtual const Type *xdual() const; // Compute dual right now. 2152 2153 BasicType return_type() const; 2154 2155 #ifndef PRODUCT 2156 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 2157 #endif 2158 // Convenience common pre-built types. 2159 }; 2160 2161 //------------------------------accessors-------------------------------------- 2162 inline bool Type::is_ptr_to_narrowoop() const { 2163 #ifdef _LP64 2164 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv()); 2165 #else 2166 return false; 2167 #endif 2168 } 2169 2170 inline bool Type::is_ptr_to_narrowklass() const { 2171 #ifdef _LP64 2172 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv()); 2173 #else 2174 return false; 2175 #endif 2176 } 2177 2178 inline float Type::getf() const { 2179 assert( _base == FloatCon, "Not a FloatCon" ); 2180 return ((TypeF*)this)->_f; 2181 } 2182 2183 inline short Type::geth() const { 2184 assert(_base == HalfFloatCon, "Not a HalfFloatCon"); 2185 return ((TypeH*)this)->_f; 2186 } 2187 2188 inline double Type::getd() const { 2189 assert( _base == DoubleCon, "Not a DoubleCon" ); 2190 return ((TypeD*)this)->_d; 2191 } 2192 2193 inline const TypeInteger *Type::is_integer(BasicType bt) const { 2194 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int"); 2195 return (TypeInteger*)this; 2196 } 2197 2198 inline const TypeInteger *Type::isa_integer(BasicType bt) const { 2199 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr); 2200 } 2201 2202 inline const TypeInt *Type::is_int() const { 2203 assert( _base == Int, "Not an Int" ); 2204 return (TypeInt*)this; 2205 } 2206 2207 inline const TypeInt *Type::isa_int() const { 2208 return ( _base == Int ? (TypeInt*)this : nullptr); 2209 } 2210 2211 inline const TypeLong *Type::is_long() const { 2212 assert( _base == Long, "Not a Long" ); 2213 return (TypeLong*)this; 2214 } 2215 2216 inline const TypeLong *Type::isa_long() const { 2217 return ( _base == Long ? (TypeLong*)this : nullptr); 2218 } 2219 2220 inline const TypeH* Type::isa_half_float() const { 2221 return ((_base == HalfFloatTop || 2222 _base == HalfFloatCon || 2223 _base == HalfFloatBot) ? (TypeH*)this : nullptr); 2224 } 2225 2226 inline const TypeH* Type::is_half_float_constant() const { 2227 assert( _base == HalfFloatCon, "Not a HalfFloat" ); 2228 return (TypeH*)this; 2229 } 2230 2231 inline const TypeH* Type::isa_half_float_constant() const { 2232 return (_base == HalfFloatCon ? (TypeH*)this : nullptr); 2233 } 2234 2235 inline const TypeF *Type::isa_float() const { 2236 return ((_base == FloatTop || 2237 _base == FloatCon || 2238 _base == FloatBot) ? (TypeF*)this : nullptr); 2239 } 2240 2241 inline const TypeF *Type::is_float_constant() const { 2242 assert( _base == FloatCon, "Not a Float" ); 2243 return (TypeF*)this; 2244 } 2245 2246 inline const TypeF *Type::isa_float_constant() const { 2247 return ( _base == FloatCon ? (TypeF*)this : nullptr); 2248 } 2249 2250 inline const TypeD *Type::isa_double() const { 2251 return ((_base == DoubleTop || 2252 _base == DoubleCon || 2253 _base == DoubleBot) ? (TypeD*)this : nullptr); 2254 } 2255 2256 inline const TypeD *Type::is_double_constant() const { 2257 assert( _base == DoubleCon, "Not a Double" ); 2258 return (TypeD*)this; 2259 } 2260 2261 inline const TypeD *Type::isa_double_constant() const { 2262 return ( _base == DoubleCon ? (TypeD*)this : nullptr); 2263 } 2264 2265 inline const TypeTuple *Type::is_tuple() const { 2266 assert( _base == Tuple, "Not a Tuple" ); 2267 return (TypeTuple*)this; 2268 } 2269 2270 inline const TypeAry *Type::is_ary() const { 2271 assert( _base == Array , "Not an Array" ); 2272 return (TypeAry*)this; 2273 } 2274 2275 inline const TypeAry *Type::isa_ary() const { 2276 return ((_base == Array) ? (TypeAry*)this : nullptr); 2277 } 2278 2279 inline const TypeVectMask *Type::is_vectmask() const { 2280 assert( _base == VectorMask, "Not a Vector Mask" ); 2281 return (TypeVectMask*)this; 2282 } 2283 2284 inline const TypeVectMask *Type::isa_vectmask() const { 2285 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr; 2286 } 2287 2288 inline const TypeVect *Type::is_vect() const { 2289 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" ); 2290 return (TypeVect*)this; 2291 } 2292 2293 inline const TypeVect *Type::isa_vect() const { 2294 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr; 2295 } 2296 2297 inline const TypePtr *Type::is_ptr() const { 2298 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2299 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer"); 2300 return (TypePtr*)this; 2301 } 2302 2303 inline const TypePtr *Type::isa_ptr() const { 2304 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2305 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr; 2306 } 2307 2308 inline const TypeOopPtr *Type::is_oopptr() const { 2309 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2310 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ; 2311 return (TypeOopPtr*)this; 2312 } 2313 2314 inline const TypeOopPtr *Type::isa_oopptr() const { 2315 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2316 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr; 2317 } 2318 2319 inline const TypeRawPtr *Type::isa_rawptr() const { 2320 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr; 2321 } 2322 2323 inline const TypeRawPtr *Type::is_rawptr() const { 2324 assert( _base == RawPtr, "Not a raw pointer" ); 2325 return (TypeRawPtr*)this; 2326 } 2327 2328 inline const TypeInstPtr *Type::isa_instptr() const { 2329 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr; 2330 } 2331 2332 inline const TypeInstPtr *Type::is_instptr() const { 2333 assert( _base == InstPtr, "Not an object pointer" ); 2334 return (TypeInstPtr*)this; 2335 } 2336 2337 inline const TypeAryPtr *Type::isa_aryptr() const { 2338 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr; 2339 } 2340 2341 inline const TypeAryPtr *Type::is_aryptr() const { 2342 assert( _base == AryPtr, "Not an array pointer" ); 2343 return (TypeAryPtr*)this; 2344 } 2345 2346 inline const TypeNarrowOop *Type::is_narrowoop() const { 2347 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2348 assert(_base == NarrowOop, "Not a narrow oop" ) ; 2349 return (TypeNarrowOop*)this; 2350 } 2351 2352 inline const TypeNarrowOop *Type::isa_narrowoop() const { 2353 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2354 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr; 2355 } 2356 2357 inline const TypeNarrowKlass *Type::is_narrowklass() const { 2358 assert(_base == NarrowKlass, "Not a narrow oop" ) ; 2359 return (TypeNarrowKlass*)this; 2360 } 2361 2362 inline const TypeNarrowKlass *Type::isa_narrowklass() const { 2363 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr; 2364 } 2365 2366 inline const TypeMetadataPtr *Type::is_metadataptr() const { 2367 // MetadataPtr is the first and CPCachePtr the last 2368 assert(_base == MetadataPtr, "Not a metadata pointer" ) ; 2369 return (TypeMetadataPtr*)this; 2370 } 2371 2372 inline const TypeMetadataPtr *Type::isa_metadataptr() const { 2373 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr; 2374 } 2375 2376 inline const TypeKlassPtr *Type::isa_klassptr() const { 2377 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr; 2378 } 2379 2380 inline const TypeKlassPtr *Type::is_klassptr() const { 2381 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer"); 2382 return (TypeKlassPtr*)this; 2383 } 2384 2385 inline const TypeInstKlassPtr *Type::isa_instklassptr() const { 2386 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr; 2387 } 2388 2389 inline const TypeInstKlassPtr *Type::is_instklassptr() const { 2390 assert(_base == InstKlassPtr, "Not a klass pointer"); 2391 return (TypeInstKlassPtr*)this; 2392 } 2393 2394 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const { 2395 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr; 2396 } 2397 2398 inline const TypeAryKlassPtr *Type::is_aryklassptr() const { 2399 assert(_base == AryKlassPtr, "Not a klass pointer"); 2400 return (TypeAryKlassPtr*)this; 2401 } 2402 2403 inline const TypePtr* Type::make_ptr() const { 2404 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : 2405 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : 2406 isa_ptr()); 2407 } 2408 2409 inline const TypeOopPtr* Type::make_oopptr() const { 2410 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); 2411 } 2412 2413 inline const TypeNarrowOop* Type::make_narrowoop() const { 2414 return (_base == NarrowOop) ? is_narrowoop() : 2415 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr); 2416 } 2417 2418 inline const TypeNarrowKlass* Type::make_narrowklass() const { 2419 return (_base == NarrowKlass) ? is_narrowklass() : 2420 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr); 2421 } 2422 2423 inline bool Type::is_floatingpoint() const { 2424 if( (_base == HalfFloatCon) || (_base == HalfFloatBot) || 2425 (_base == FloatCon) || (_base == FloatBot) || 2426 (_base == DoubleCon) || (_base == DoubleBot) ) 2427 return true; 2428 return false; 2429 } 2430 2431 template <> 2432 inline const TypeInt* Type::cast<TypeInt>() const { 2433 return is_int(); 2434 } 2435 2436 template <> 2437 inline const TypeLong* Type::cast<TypeLong>() const { 2438 return is_long(); 2439 } 2440 2441 template <> 2442 inline const TypeInt* Type::try_cast<TypeInt>() const { 2443 return isa_int(); 2444 } 2445 2446 template <> 2447 inline const TypeLong* Type::try_cast<TypeLong>() const { 2448 return isa_long(); 2449 } 2450 2451 // =============================================================== 2452 // Things that need to be 64-bits in the 64-bit build but 2453 // 32-bits in the 32-bit build. Done this way to get full 2454 // optimization AND strong typing. 2455 #ifdef _LP64 2456 2457 // For type queries and asserts 2458 #define is_intptr_t is_long 2459 #define isa_intptr_t isa_long 2460 #define find_intptr_t_type find_long_type 2461 #define find_intptr_t_con find_long_con 2462 #define TypeX TypeLong 2463 #define Type_X Type::Long 2464 #define TypeX_X TypeLong::LONG 2465 #define TypeX_ZERO TypeLong::ZERO 2466 // For 'ideal_reg' machine registers 2467 #define Op_RegX Op_RegL 2468 // For phase->intcon variants 2469 #define MakeConX longcon 2470 #define ConXNode ConLNode 2471 // For array index arithmetic 2472 #define MulXNode MulLNode 2473 #define AndXNode AndLNode 2474 #define OrXNode OrLNode 2475 #define CmpXNode CmpLNode 2476 #define SubXNode SubLNode 2477 #define LShiftXNode LShiftLNode 2478 // For object size computation: 2479 #define AddXNode AddLNode 2480 #define RShiftXNode RShiftLNode 2481 // For card marks and hashcodes 2482 #define URShiftXNode URShiftLNode 2483 // For shenandoahSupport 2484 #define LoadXNode LoadLNode 2485 #define StoreXNode StoreLNode 2486 // Opcodes 2487 #define Op_LShiftX Op_LShiftL 2488 #define Op_AndX Op_AndL 2489 #define Op_AddX Op_AddL 2490 #define Op_SubX Op_SubL 2491 #define Op_XorX Op_XorL 2492 #define Op_URShiftX Op_URShiftL 2493 #define Op_LoadX Op_LoadL 2494 // conversions 2495 #define ConvI2X(x) ConvI2L(x) 2496 #define ConvL2X(x) (x) 2497 #define ConvX2I(x) ConvL2I(x) 2498 #define ConvX2L(x) (x) 2499 #define ConvX2UL(x) (x) 2500 2501 #else 2502 2503 // For type queries and asserts 2504 #define is_intptr_t is_int 2505 #define isa_intptr_t isa_int 2506 #define find_intptr_t_type find_int_type 2507 #define find_intptr_t_con find_int_con 2508 #define TypeX TypeInt 2509 #define Type_X Type::Int 2510 #define TypeX_X TypeInt::INT 2511 #define TypeX_ZERO TypeInt::ZERO 2512 // For 'ideal_reg' machine registers 2513 #define Op_RegX Op_RegI 2514 // For phase->intcon variants 2515 #define MakeConX intcon 2516 #define ConXNode ConINode 2517 // For array index arithmetic 2518 #define MulXNode MulINode 2519 #define AndXNode AndINode 2520 #define OrXNode OrINode 2521 #define CmpXNode CmpINode 2522 #define SubXNode SubINode 2523 #define LShiftXNode LShiftINode 2524 // For object size computation: 2525 #define AddXNode AddINode 2526 #define RShiftXNode RShiftINode 2527 // For card marks and hashcodes 2528 #define URShiftXNode URShiftINode 2529 // For shenandoahSupport 2530 #define LoadXNode LoadINode 2531 #define StoreXNode StoreINode 2532 // Opcodes 2533 #define Op_LShiftX Op_LShiftI 2534 #define Op_AndX Op_AndI 2535 #define Op_AddX Op_AddI 2536 #define Op_SubX Op_SubI 2537 #define Op_XorX Op_XorI 2538 #define Op_URShiftX Op_URShiftI 2539 #define Op_LoadX Op_LoadI 2540 // conversions 2541 #define ConvI2X(x) (x) 2542 #define ConvL2X(x) ConvL2I(x) 2543 #define ConvX2I(x) (x) 2544 #define ConvX2L(x) ConvI2L(x) 2545 #define ConvX2UL(x) ConvI2UL(x) 2546 2547 #endif 2548 2549 #endif // SHARE_OPTO_TYPE_HPP --- EOF ---