1 /*
  2  * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciSymbols.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "opto/castnode.hpp"
 28 #include "opto/graphKit.hpp"
 29 #include "opto/phaseX.hpp"
 30 #include "opto/rootnode.hpp"
 31 #include "opto/vector.hpp"
 32 #include "utilities/macros.hpp"
 33 
 34 static bool is_vector_mask(ciKlass* klass) {
 35   return klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass());
 36 }
 37 
 38 void PhaseVector::optimize_vector_boxes() {
 39   Compile::TracePhase tp(_t_vector_elimination);
 40 
 41   // Signal GraphKit it's post-parse phase.
 42   assert(C->inlining_incrementally() == false, "sanity");
 43   C->set_inlining_incrementally(true);
 44 
 45   C->igvn_worklist()->ensure_empty(); // should be done with igvn
 46 
 47   if (StressMacroExpansion) {
 48     C->shuffle_macro_nodes();
 49   }
 50 
 51   expand_vunbox_nodes();
 52   scalarize_vbox_nodes();
 53 
 54   C->inline_vector_reboxing_calls();
 55 
 56   expand_vbox_nodes();
 57   eliminate_vbox_alloc_nodes();
 58 
 59   C->set_inlining_incrementally(false);
 60 
 61   do_cleanup();
 62 }
 63 
 64 void PhaseVector::do_cleanup() {
 65   if (C->failing())  return;
 66   {
 67     Compile::TracePhase tp(_t_vector_pru);
 68     ResourceMark rm;
 69     PhaseRemoveUseless pru(C->initial_gvn(), *C->igvn_worklist());
 70     if (C->failing())  return;
 71   }
 72   {
 73     Compile::TracePhase tp(_t_vector_igvn);
 74     _igvn.reset_from_gvn(C->initial_gvn());
 75     _igvn.optimize();
 76     if (C->failing())  return;
 77   }
 78   C->print_method(PHASE_ITER_GVN_BEFORE_EA, 3);
 79 }
 80 
 81 void PhaseVector::scalarize_vbox_nodes() {
 82   if (C->failing())  return;
 83 
 84   if (!EnableVectorReboxing) {
 85     return; // don't scalarize vector boxes
 86   }
 87 
 88   int macro_idx = C->macro_count() - 1;
 89   while (macro_idx >= 0) {
 90     Node * n = C->macro_node(macro_idx);
 91     assert(n->is_macro(), "only macro nodes expected here");
 92     if (n->Opcode() == Op_VectorBox) {
 93       VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n);
 94       scalarize_vbox_node(vbox);
 95       if (C->failing())  return;
 96       C->print_method(PHASE_SCALARIZE_VBOX, 3, vbox);
 97     }
 98     if (C->failing())  return;
 99     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
100   }
101 }
102 
103 void PhaseVector::expand_vbox_nodes() {
104   if (C->failing())  return;
105 
106   int macro_idx = C->macro_count() - 1;
107   while (macro_idx >= 0) {
108     Node * n = C->macro_node(macro_idx);
109     assert(n->is_macro(), "only macro nodes expected here");
110     if (n->Opcode() == Op_VectorBox) {
111       VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n);
112       expand_vbox_node(vbox);
113       if (C->failing())  return;
114     }
115     if (C->failing())  return;
116     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
117   }
118 }
119 
120 void PhaseVector::expand_vunbox_nodes() {
121   if (C->failing())  return;
122 
123   int macro_idx = C->macro_count() - 1;
124   while (macro_idx >= 0) {
125     Node * n = C->macro_node(macro_idx);
126     assert(n->is_macro(), "only macro nodes expected here");
127     if (n->Opcode() == Op_VectorUnbox) {
128       VectorUnboxNode* vec_unbox = static_cast<VectorUnboxNode*>(n);
129       expand_vunbox_node(vec_unbox);
130       if (C->failing())  return;
131       C->print_method(PHASE_EXPAND_VUNBOX, 3, vec_unbox);
132     }
133     if (C->failing())  return;
134     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
135   }
136 }
137 
138 void PhaseVector::eliminate_vbox_alloc_nodes() {
139   if (C->failing())  return;
140 
141   int macro_idx = C->macro_count() - 1;
142   while (macro_idx >= 0) {
143     Node * n = C->macro_node(macro_idx);
144     assert(n->is_macro(), "only macro nodes expected here");
145     if (n->Opcode() == Op_VectorBoxAllocate) {
146       VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(n);
147       eliminate_vbox_alloc_node(vbox_alloc);
148       if (C->failing())  return;
149       C->print_method(PHASE_ELIMINATE_VBOX_ALLOC, 3, vbox_alloc);
150     }
151     if (C->failing())  return;
152     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
153   }
154 }
155 
156 static JVMState* clone_jvms(Compile* C, SafePointNode* sfpt) {
157   JVMState* new_jvms = sfpt->jvms()->clone_shallow(C);
158   uint size = sfpt->req();
159   SafePointNode* map = new SafePointNode(size, new_jvms);
160   for (uint i = 0; i < size; i++) {
161     map->init_req(i, sfpt->in(i));
162   }
163   Node* mem = map->memory();
164   if (!mem->is_MergeMem()) {
165     // Since we are not in parsing, the SafePointNode does not guarantee that the memory
166     // input is necessarily a MergeMemNode. But we need to ensure that there is that
167     // MergeMemNode, since the GraphKit assumes the memory input of the map to be a
168     // MergeMemNode, so that it can directly access the memory slices.
169     PhaseGVN& gvn = *C->initial_gvn();
170     Node* mergemem = MergeMemNode::make(mem);
171     gvn.set_type_bottom(mergemem);
172     map->set_memory(mergemem);
173   }
174   new_jvms->set_map(map);
175   return new_jvms;
176 }
177 
178 void PhaseVector::scalarize_vbox_node(VectorBoxNode* vec_box) {
179   Node* vec_value = vec_box->in(VectorBoxNode::Value);
180   PhaseGVN& gvn = *C->initial_gvn();
181 
182   // Process merged VBAs
183 
184   if (EnableVectorAggressiveReboxing) {
185     Unique_Node_List calls;
186     for (DUIterator_Fast imax, i = vec_box->fast_outs(imax); i < imax; i++) {
187       Node* use = vec_box->fast_out(i);
188       if (use->is_CallJava()) {
189         CallJavaNode* call = use->as_CallJava();
190         if (call->has_non_debug_use(vec_box) && vec_box->in(VectorBoxNode::Box)->is_Phi()) {
191           calls.push(call);
192         }
193       }
194     }
195 
196     while (calls.size() > 0) {
197       CallJavaNode* call = calls.pop()->as_CallJava();
198       // Attach new VBA to the call and use it instead of Phi (VBA ... VBA).
199 
200       JVMState* jvms = clone_jvms(C, call);
201       GraphKit kit(jvms);
202       PhaseGVN& gvn = kit.gvn();
203 
204       // Adjust JVMS from post-call to pre-call state: put args on stack
205       uint nargs = call->method()->arg_size();
206       kit.ensure_stack(kit.sp() + nargs);
207       for (uint i = TypeFunc::Parms; i < call->tf()->domain()->cnt(); i++) {
208         kit.push(call->in(i));
209       }
210       jvms = kit.sync_jvms();
211 
212       Node* new_vbox = nullptr;
213       {
214         Node* vect = vec_box->in(VectorBoxNode::Value);
215         const TypeInstPtr* vbox_type = vec_box->box_type();
216         const TypeVect* vt = vec_box->vec_type();
217         BasicType elem_bt = vt->element_basic_type();
218         int num_elem = vt->length();
219 
220         new_vbox = kit.box_vector(vect, vbox_type, elem_bt, num_elem, /*deoptimize=*/true);
221 
222         kit.replace_in_map(vec_box, new_vbox);
223       }
224 
225       kit.dec_sp(nargs);
226       jvms = kit.sync_jvms();
227 
228       call->set_req(TypeFunc::Control , kit.control());
229       call->set_req(TypeFunc::I_O     , kit.i_o());
230       call->set_req(TypeFunc::Memory  , kit.reset_memory());
231       call->set_req(TypeFunc::FramePtr, kit.frameptr());
232       call->replace_edge(vec_box, new_vbox);
233 
234       C->record_for_igvn(call);
235     }
236   }
237 
238   // Process debug uses at safepoints
239   Unique_Node_List safepoints;
240 
241   Unique_Node_List worklist;
242   worklist.push(vec_box);
243   while (worklist.size() > 0) {
244     Node* n = worklist.pop();
245     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
246       Node* use = n->fast_out(i);
247       if (use->is_SafePoint()) {
248         SafePointNode* sfpt = use->as_SafePoint();
249         if (!sfpt->is_Call() || !sfpt->as_Call()->has_non_debug_use(n)) {
250           safepoints.push(sfpt);
251         }
252       } else if (use->is_ConstraintCast()) {
253         worklist.push(use); // reversed version of Node::uncast()
254       }
255     }
256   }
257 
258   ciInstanceKlass* iklass = vec_box->box_type()->instance_klass();
259   int n_fields = iklass->nof_nonstatic_fields();
260   assert(n_fields == 1, "sanity");
261 
262   // If a mask is feeding into safepoint[s], then its value should be
263   // packed into a boolean/byte vector first, this will simplify the
264   // re-materialization logic for both predicated and non-predicated
265   // targets.
266   bool is_mask = is_vector_mask(iklass);
267   if (is_mask && vec_value->Opcode() != Op_VectorStoreMask) {
268     const TypeVect* vt = vec_value->bottom_type()->is_vect();
269     BasicType bt = vt->element_basic_type();
270     vec_value = gvn.transform(VectorStoreMaskNode::make(gvn, vec_value, bt, vt->length()));
271   }
272 
273   while (safepoints.size() > 0) {
274     SafePointNode* sfpt = safepoints.pop()->as_SafePoint();
275 
276     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
277     Node* sobj = new SafePointScalarObjectNode(vec_box->box_type(), vec_box, first_ind, sfpt->jvms()->depth(), n_fields);
278     sobj->init_req(0, C->root());
279     sfpt->add_req(vec_value);
280 
281     sobj = gvn.transform(sobj);
282 
283     JVMState *jvms = sfpt->jvms();
284 
285     jvms->set_endoff(sfpt->req());
286     // Now make a pass over the debug information replacing any references
287     // to the allocated object with vector value.
288     for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
289       Node* debug = sfpt->in(i);
290       if (debug != nullptr && debug->uncast(/*keep_deps*/false) == vec_box) {
291         sfpt->set_req(i, sobj);
292       }
293     }
294     C->record_for_igvn(sfpt);
295   }
296 }
297 
298 void PhaseVector::expand_vbox_node(VectorBoxNode* vec_box) {
299   if (vec_box->outcnt() > 0) {
300     VectorSet visited;
301     Node* vbox = vec_box->in(VectorBoxNode::Box);
302     Node* vect = vec_box->in(VectorBoxNode::Value);
303     Node* result = expand_vbox_node_helper(vbox, vect, vec_box->box_type(),
304                                            vec_box->vec_type(), visited);
305     C->gvn_replace_by(vec_box, result);
306     C->print_method(PHASE_EXPAND_VBOX, 3, vec_box);
307   }
308   C->remove_macro_node(vec_box);
309 }
310 
311 Node* PhaseVector::expand_vbox_node_helper(Node* vbox,
312                                            Node* vect,
313                                            const TypeInstPtr* box_type,
314                                            const TypeVect* vect_type,
315                                            VectorSet &visited) {
316   // JDK-8304948 shows an example that there may be a cycle in the graph.
317   if (visited.test_set(vbox->_idx)) {
318     assert(vbox->is_Phi() || vbox->is_CheckCastPP(), "either phi or expanded");
319     return vbox; // already visited
320   }
321 
322   // Handle the case when the allocation input to VectorBoxNode is a Proj.
323   // This is the normal case before expanding.
324   if (vbox->is_Proj() && vbox->in(0)->Opcode() == Op_VectorBoxAllocate) {
325     VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(vbox->in(0));
326     return expand_vbox_alloc_node(vbox_alloc, vect, box_type, vect_type);
327   }
328 
329   // Handle the case when both the allocation input and vector input to
330   // VectorBoxNode are Phi. This case is generated after the transformation of
331   // Phi: Phi (VectorBox1 VectorBox2) => VectorBox (Phi1 Phi2).
332   // With this optimization, the relative two allocation inputs of VectorBox1 and
333   // VectorBox2 are gathered into Phi1 now. Similarly, the original vector
334   // inputs of two VectorBox nodes are in Phi2.
335   //
336   // See PhiNode::merge_through_phi in cfg.cpp for more details.
337   if (vbox->is_Phi() && vect->is_Phi()) {
338     assert(vbox->as_Phi()->region() == vect->as_Phi()->region(), "");
339     for (uint i = 1; i < vbox->req(); i++) {
340       Node* new_box = expand_vbox_node_helper(vbox->in(i), vect->in(i),
341                                               box_type, vect_type, visited);
342       if (!new_box->is_Phi()) {
343         C->initial_gvn()->hash_delete(vbox);
344         vbox->set_req(i, new_box);
345       }
346     }
347     return C->initial_gvn()->transform(vbox);
348   }
349 
350   // Handle the case when the allocation input to VectorBoxNode is a phi
351   // but the vector input is not, which can definitely be the case if the
352   // vector input has been value-numbered. It seems to be safe to do by
353   // construction because VectorBoxNode and VectorBoxAllocate come in a
354   // specific order as a result of expanding an intrinsic call. After that, if
355   // any of the inputs to VectorBoxNode are value-numbered they can only
356   // move up and are guaranteed to dominate.
357   if (vbox->is_Phi() && (vect->is_Vector() || vect->is_LoadVector())) {
358     for (uint i = 1; i < vbox->req(); i++) {
359       Node* new_box = expand_vbox_node_helper(vbox->in(i), vect,
360                                               box_type, vect_type, visited);
361       if (!new_box->is_Phi()) {
362         C->initial_gvn()->hash_delete(vbox);
363         vbox->set_req(i, new_box);
364       }
365     }
366     return C->initial_gvn()->transform(vbox);
367   }
368 
369   assert(vbox->is_CheckCastPP(), "should be expanded");
370   // TODO: assert that expanded vbox is initialized with the same value (vect).
371   return vbox; // already expanded
372 }
373 
374 Node* PhaseVector::expand_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc,
375                                           Node* value,
376                                           const TypeInstPtr* box_type,
377                                           const TypeVect* vect_type) {
378   JVMState* jvms = clone_jvms(C, vbox_alloc);
379   GraphKit kit(jvms);
380   PhaseGVN& gvn = kit.gvn();
381 
382   ciInstanceKlass* box_klass = box_type->instance_klass();
383   BasicType bt = vect_type->element_basic_type();
384   int num_elem = vect_type->length();
385 
386   bool is_mask = is_vector_mask(box_klass);
387   // If boxed mask value is present in a predicate register, it must be
388   // spilled to a vector though a VectorStoreMaskOperation before actual StoreVector
389   // operation to vector payload field.
390   if (is_mask && (value->bottom_type()->isa_vectmask() || bt != T_BOOLEAN)) {
391     value = gvn.transform(VectorStoreMaskNode::make(gvn, value, bt, num_elem));
392     // Although type of mask depends on its definition, in terms of storage everything is stored in boolean array.
393     bt = T_BOOLEAN;
394     assert(value->bottom_type()->is_vect()->element_basic_type() == bt,
395            "must be consistent with mask representation");
396   }
397 
398   // Generate array allocation for the field which holds the values.
399   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(bt));
400   Node* arr = kit.new_array(kit.makecon(array_klass), kit.intcon(num_elem), 1);
401 
402   // Store the vector value into the array.
403   // (The store should be captured by InitializeNode and turned into initialized store later.)
404   Node* arr_adr = kit.array_element_address(arr, kit.intcon(0), bt);
405   const TypePtr* arr_adr_type = arr_adr->bottom_type()->is_ptr();
406   Node* arr_mem = kit.memory(arr_adr);
407   Node* vstore = gvn.transform(StoreVectorNode::make(0,
408                                                      kit.control(),
409                                                      arr_mem,
410                                                      arr_adr,
411                                                      arr_adr_type,
412                                                      value,
413                                                      num_elem));
414   kit.set_memory(vstore, arr_adr_type);
415 
416   C->set_max_vector_size(MAX2(C->max_vector_size(), vect_type->length_in_bytes()));
417 
418   // Generate the allocate for the Vector object.
419   const TypeKlassPtr* klass_type = box_type->as_klass_type();
420   Node* klass_node = kit.makecon(klass_type);
421   Node* vec_obj = kit.new_instance(klass_node);
422 
423   // Store the allocated array into object.
424   ciField* field = ciEnv::current()->vector_VectorPayload_klass()->get_field_by_name(ciSymbols::payload_name(),
425                                                                                      ciSymbols::object_signature(),
426                                                                                      false);
427   assert(field != nullptr, "");
428   Node* vec_field = kit.basic_plus_adr(vec_obj, field->offset_in_bytes());
429   const TypePtr* vec_adr_type = vec_field->bottom_type()->is_ptr();
430 
431   // The store should be captured by InitializeNode and turned into initialized store later.
432   Node* field_store = gvn.transform(kit.access_store_at(vec_obj,
433                                                         vec_field,
434                                                         vec_adr_type,
435                                                         arr,
436                                                         TypeOopPtr::make_from_klass(field->type()->as_klass()),
437                                                         T_OBJECT,
438                                                         IN_HEAP));
439   kit.set_memory(field_store, vec_adr_type);
440 
441   kit.replace_call(vbox_alloc, vec_obj, true);
442   C->remove_macro_node(vbox_alloc);
443 
444   return vec_obj;
445 }
446 
447 void PhaseVector::expand_vunbox_node(VectorUnboxNode* vec_unbox) {
448   if (vec_unbox->outcnt() > 0) {
449     GraphKit kit;
450     PhaseGVN& gvn = kit.gvn();
451 
452     Node* obj = vec_unbox->obj();
453     const TypeInstPtr* tinst = gvn.type(obj)->isa_instptr();
454     ciInstanceKlass* from_kls = tinst->instance_klass();
455     const TypeVect* vt = vec_unbox->bottom_type()->is_vect();
456     BasicType bt = vt->element_basic_type();
457     BasicType masktype = bt;
458 
459     if (is_vector_mask(from_kls)) {
460       bt = T_BOOLEAN;
461     }
462 
463     ciField* field = ciEnv::current()->vector_VectorPayload_klass()->get_field_by_name(ciSymbols::payload_name(),
464                                                                                        ciSymbols::object_signature(),
465                                                                                        false);
466     assert(field != nullptr, "");
467     int offset = field->offset_in_bytes();
468     Node* vec_adr = kit.basic_plus_adr(obj, offset);
469 
470     Node* mem = vec_unbox->mem();
471     Node* ctrl = vec_unbox->in(0);
472     Node* vec_field_ld;
473     {
474       DecoratorSet decorators = MO_UNORDERED | IN_HEAP;
475       C2AccessValuePtr addr(vec_adr, vec_adr->bottom_type()->is_ptr());
476       MergeMemNode* local_mem = MergeMemNode::make(mem);
477       gvn.record_for_igvn(local_mem);
478       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
479       C2OptAccess access(gvn, ctrl, local_mem, decorators, T_OBJECT, obj, addr);
480       const Type* type = TypeOopPtr::make_from_klass(field->type()->as_klass());
481       vec_field_ld = bs->load_at(access, type);
482     }
483 
484     // For proper aliasing, attach concrete payload type.
485     ciKlass* payload_klass = ciTypeArrayKlass::make(bt);
486     const Type* payload_type = TypeAryPtr::make_from_klass(payload_klass)->cast_to_ptr_type(TypePtr::NotNull);
487     vec_field_ld = gvn.transform(new CastPPNode(nullptr, vec_field_ld, payload_type));
488 
489     Node* adr = kit.array_element_address(vec_field_ld, gvn.intcon(0), bt);
490     const TypePtr* adr_type = adr->bottom_type()->is_ptr();
491     int num_elem = vt->length();
492     Node* vec_val_load = LoadVectorNode::make(0,
493                                               ctrl,
494                                               mem,
495                                               adr,
496                                               adr_type,
497                                               num_elem,
498                                               bt);
499     vec_val_load = gvn.transform(vec_val_load);
500 
501     C->set_max_vector_size(MAX2(C->max_vector_size(), vt->length_in_bytes()));
502 
503     if (is_vector_mask(from_kls)) {
504       vec_val_load = gvn.transform(new VectorLoadMaskNode(vec_val_load, TypeVect::makemask(masktype, num_elem)));
505     }
506 
507     gvn.hash_delete(vec_unbox);
508     vec_unbox->disconnect_inputs(C);
509     C->gvn_replace_by(vec_unbox, vec_val_load);
510   }
511   C->remove_macro_node(vec_unbox);
512 }
513 
514 void PhaseVector::eliminate_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc) {
515   JVMState* jvms = clone_jvms(C, vbox_alloc);
516   GraphKit kit(jvms);
517   // Remove VBA, but leave a safepoint behind.
518   // Otherwise, it may end up with a loop without any safepoint polls.
519   kit.replace_call(vbox_alloc, kit.map(), true);
520   C->remove_macro_node(vbox_alloc);
521 }