1 /*
  2  * Copyright (c) 2020, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "ci/ciSymbols.hpp"
 26 #include "gc/shared/barrierSet.hpp"
 27 #include "opto/castnode.hpp"
 28 #include "opto/graphKit.hpp"
 29 #include "opto/phaseX.hpp"
 30 #include "opto/rootnode.hpp"
 31 #include "opto/vector.hpp"
 32 #include "utilities/macros.hpp"
 33 
 34 static bool is_vector_mask(ciKlass* klass) {
 35   return klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass());
 36 }
 37 
 38 void PhaseVector::optimize_vector_boxes() {
 39   Compile::TracePhase tp(_t_vector_elimination);
 40 
 41   // Signal GraphKit it's post-parse phase.
 42   assert(C->inlining_incrementally() == false, "sanity");
 43   C->set_inlining_incrementally(true);
 44 
 45   C->igvn_worklist()->ensure_empty(); // should be done with igvn
 46 
 47   expand_vunbox_nodes();
 48   scalarize_vbox_nodes();
 49 
 50   C->inline_vector_reboxing_calls();
 51 
 52   expand_vbox_nodes();
 53   eliminate_vbox_alloc_nodes();
 54 
 55   C->set_inlining_incrementally(false);
 56 
 57   do_cleanup();
 58 }
 59 
 60 void PhaseVector::do_cleanup() {
 61   if (C->failing())  return;
 62   {
 63     Compile::TracePhase tp(_t_vector_pru);
 64     ResourceMark rm;
 65     PhaseRemoveUseless pru(C->initial_gvn(), *C->igvn_worklist());
 66     if (C->failing())  return;
 67   }
 68   {
 69     Compile::TracePhase tp(_t_vector_igvn);
 70     _igvn.reset_from_gvn(C->initial_gvn());
 71     _igvn.optimize();
 72     if (C->failing())  return;
 73   }
 74   C->print_method(PHASE_ITER_GVN_BEFORE_EA, 3);
 75 }
 76 
 77 void PhaseVector::scalarize_vbox_nodes() {
 78   if (C->failing())  return;
 79 
 80   if (!EnableVectorReboxing) {
 81     return; // don't scalarize vector boxes
 82   }
 83 
 84   int macro_idx = C->macro_count() - 1;
 85   while (macro_idx >= 0) {
 86     Node * n = C->macro_node(macro_idx);
 87     assert(n->is_macro(), "only macro nodes expected here");
 88     if (n->Opcode() == Op_VectorBox) {
 89       VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n);
 90       scalarize_vbox_node(vbox);
 91       if (C->failing())  return;
 92       C->print_method(PHASE_SCALARIZE_VBOX, 3, vbox);
 93     }
 94     if (C->failing())  return;
 95     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
 96   }
 97 }
 98 
 99 void PhaseVector::expand_vbox_nodes() {
100   if (C->failing())  return;
101 
102   int macro_idx = C->macro_count() - 1;
103   while (macro_idx >= 0) {
104     Node * n = C->macro_node(macro_idx);
105     assert(n->is_macro(), "only macro nodes expected here");
106     if (n->Opcode() == Op_VectorBox) {
107       VectorBoxNode* vbox = static_cast<VectorBoxNode*>(n);
108       expand_vbox_node(vbox);
109       if (C->failing())  return;
110     }
111     if (C->failing())  return;
112     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
113   }
114 }
115 
116 void PhaseVector::expand_vunbox_nodes() {
117   if (C->failing())  return;
118 
119   int macro_idx = C->macro_count() - 1;
120   while (macro_idx >= 0) {
121     Node * n = C->macro_node(macro_idx);
122     assert(n->is_macro(), "only macro nodes expected here");
123     if (n->Opcode() == Op_VectorUnbox) {
124       VectorUnboxNode* vec_unbox = static_cast<VectorUnboxNode*>(n);
125       expand_vunbox_node(vec_unbox);
126       if (C->failing())  return;
127       C->print_method(PHASE_EXPAND_VUNBOX, 3, vec_unbox);
128     }
129     if (C->failing())  return;
130     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
131   }
132 }
133 
134 void PhaseVector::eliminate_vbox_alloc_nodes() {
135   if (C->failing())  return;
136 
137   int macro_idx = C->macro_count() - 1;
138   while (macro_idx >= 0) {
139     Node * n = C->macro_node(macro_idx);
140     assert(n->is_macro(), "only macro nodes expected here");
141     if (n->Opcode() == Op_VectorBoxAllocate) {
142       VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(n);
143       eliminate_vbox_alloc_node(vbox_alloc);
144       if (C->failing())  return;
145       C->print_method(PHASE_ELIMINATE_VBOX_ALLOC, 3, vbox_alloc);
146     }
147     if (C->failing())  return;
148     macro_idx = MIN2(macro_idx - 1, C->macro_count() - 1);
149   }
150 }
151 
152 static JVMState* clone_jvms(Compile* C, SafePointNode* sfpt) {
153   JVMState* new_jvms = sfpt->jvms()->clone_shallow(C);
154   uint size = sfpt->req();
155   SafePointNode* map = new SafePointNode(size, new_jvms);
156   for (uint i = 0; i < size; i++) {
157     map->init_req(i, sfpt->in(i));
158   }
159   Node* mem = map->memory();
160   if (!mem->is_MergeMem()) {
161     // Since we are not in parsing, the SafePointNode does not guarantee that the memory
162     // input is necessarily a MergeMemNode. But we need to ensure that there is that
163     // MergeMemNode, since the GraphKit assumes the memory input of the map to be a
164     // MergeMemNode, so that it can directly access the memory slices.
165     PhaseGVN& gvn = *C->initial_gvn();
166     Node* mergemem = MergeMemNode::make(mem);
167     gvn.set_type_bottom(mergemem);
168     map->set_memory(mergemem);
169   }
170   new_jvms->set_map(map);
171   return new_jvms;
172 }
173 
174 void PhaseVector::scalarize_vbox_node(VectorBoxNode* vec_box) {
175   Node* vec_value = vec_box->in(VectorBoxNode::Value);
176   PhaseGVN& gvn = *C->initial_gvn();
177 
178   // Process merged VBAs
179 
180   if (EnableVectorAggressiveReboxing) {
181     Unique_Node_List calls;
182     for (DUIterator_Fast imax, i = vec_box->fast_outs(imax); i < imax; i++) {
183       Node* use = vec_box->fast_out(i);
184       if (use->is_CallJava()) {
185         CallJavaNode* call = use->as_CallJava();
186         if (call->has_non_debug_use(vec_box) && vec_box->in(VectorBoxNode::Box)->is_Phi()) {
187           calls.push(call);
188         }
189       }
190     }
191 
192     while (calls.size() > 0) {
193       CallJavaNode* call = calls.pop()->as_CallJava();
194       // Attach new VBA to the call and use it instead of Phi (VBA ... VBA).
195 
196       JVMState* jvms = clone_jvms(C, call);
197       GraphKit kit(jvms);
198       PhaseGVN& gvn = kit.gvn();
199 
200       // Adjust JVMS from post-call to pre-call state: put args on stack
201       uint nargs = call->method()->arg_size();
202       kit.ensure_stack(kit.sp() + nargs);
203       for (uint i = TypeFunc::Parms; i < call->tf()->domain()->cnt(); i++) {
204         kit.push(call->in(i));
205       }
206       jvms = kit.sync_jvms();
207 
208       Node* new_vbox = nullptr;
209       {
210         Node* vect = vec_box->in(VectorBoxNode::Value);
211         const TypeInstPtr* vbox_type = vec_box->box_type();
212         const TypeVect* vt = vec_box->vec_type();
213         BasicType elem_bt = vt->element_basic_type();
214         int num_elem = vt->length();
215 
216         new_vbox = kit.box_vector(vect, vbox_type, elem_bt, num_elem, /*deoptimize=*/true);
217 
218         kit.replace_in_map(vec_box, new_vbox);
219       }
220 
221       kit.dec_sp(nargs);
222       jvms = kit.sync_jvms();
223 
224       call->set_req(TypeFunc::Control , kit.control());
225       call->set_req(TypeFunc::I_O     , kit.i_o());
226       call->set_req(TypeFunc::Memory  , kit.reset_memory());
227       call->set_req(TypeFunc::FramePtr, kit.frameptr());
228       call->replace_edge(vec_box, new_vbox);
229 
230       C->record_for_igvn(call);
231     }
232   }
233 
234   // Process debug uses at safepoints
235   Unique_Node_List safepoints;
236 
237   Unique_Node_List worklist;
238   worklist.push(vec_box);
239   while (worklist.size() > 0) {
240     Node* n = worklist.pop();
241     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
242       Node* use = n->fast_out(i);
243       if (use->is_SafePoint()) {
244         SafePointNode* sfpt = use->as_SafePoint();
245         if (!sfpt->is_Call() || !sfpt->as_Call()->has_non_debug_use(n)) {
246           safepoints.push(sfpt);
247         }
248       } else if (use->is_ConstraintCast()) {
249         worklist.push(use); // reversed version of Node::uncast()
250       }
251     }
252   }
253 
254   ciInstanceKlass* iklass = vec_box->box_type()->instance_klass();
255   int n_fields = iklass->nof_nonstatic_fields();
256   assert(n_fields == 1, "sanity");
257 
258   // If a mask is feeding into safepoint[s], then its value should be
259   // packed into a boolean/byte vector first, this will simplify the
260   // re-materialization logic for both predicated and non-predicated
261   // targets.
262   bool is_mask = is_vector_mask(iklass);
263   if (is_mask && vec_value->Opcode() != Op_VectorStoreMask) {
264     const TypeVect* vt = vec_value->bottom_type()->is_vect();
265     BasicType bt = vt->element_basic_type();
266     vec_value = gvn.transform(VectorStoreMaskNode::make(gvn, vec_value, bt, vt->length()));
267   }
268 
269   while (safepoints.size() > 0) {
270     SafePointNode* sfpt = safepoints.pop()->as_SafePoint();
271 
272     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
273     Node* sobj = new SafePointScalarObjectNode(vec_box->box_type(), vec_box, first_ind, sfpt->jvms()->depth(), n_fields);
274     sobj->init_req(0, C->root());
275     sfpt->add_req(vec_value);
276 
277     sobj = gvn.transform(sobj);
278 
279     JVMState *jvms = sfpt->jvms();
280 
281     jvms->set_endoff(sfpt->req());
282     // Now make a pass over the debug information replacing any references
283     // to the allocated object with vector value.
284     for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
285       Node* debug = sfpt->in(i);
286       if (debug != nullptr && debug->uncast(/*keep_deps*/false) == vec_box) {
287         sfpt->set_req(i, sobj);
288       }
289     }
290     C->record_for_igvn(sfpt);
291   }
292 }
293 
294 void PhaseVector::expand_vbox_node(VectorBoxNode* vec_box) {
295   if (vec_box->outcnt() > 0) {
296     VectorSet visited;
297     Node* vbox = vec_box->in(VectorBoxNode::Box);
298     Node* vect = vec_box->in(VectorBoxNode::Value);
299     Node* result = expand_vbox_node_helper(vbox, vect, vec_box->box_type(),
300                                            vec_box->vec_type(), visited);
301     C->gvn_replace_by(vec_box, result);
302     C->print_method(PHASE_EXPAND_VBOX, 3, vec_box);
303   }
304   C->remove_macro_node(vec_box);
305 }
306 
307 Node* PhaseVector::expand_vbox_node_helper(Node* vbox,
308                                            Node* vect,
309                                            const TypeInstPtr* box_type,
310                                            const TypeVect* vect_type,
311                                            VectorSet &visited) {
312   // JDK-8304948 shows an example that there may be a cycle in the graph.
313   if (visited.test_set(vbox->_idx)) {
314     assert(vbox->is_Phi(), "should be phi");
315     return vbox; // already visited
316   }
317 
318   // Handle the case when the allocation input to VectorBoxNode is a Proj.
319   // This is the normal case before expanding.
320   if (vbox->is_Proj() && vbox->in(0)->Opcode() == Op_VectorBoxAllocate) {
321     VectorBoxAllocateNode* vbox_alloc = static_cast<VectorBoxAllocateNode*>(vbox->in(0));
322     return expand_vbox_alloc_node(vbox_alloc, vect, box_type, vect_type);
323   }
324 
325   // Handle the case when both the allocation input and vector input to
326   // VectorBoxNode are Phi. This case is generated after the transformation of
327   // Phi: Phi (VectorBox1 VectorBox2) => VectorBox (Phi1 Phi2).
328   // With this optimization, the relative two allocation inputs of VectorBox1 and
329   // VectorBox2 are gathered into Phi1 now. Similarly, the original vector
330   // inputs of two VectorBox nodes are in Phi2.
331   //
332   // See PhiNode::merge_through_phi in cfg.cpp for more details.
333   if (vbox->is_Phi() && vect->is_Phi()) {
334     assert(vbox->as_Phi()->region() == vect->as_Phi()->region(), "");
335     for (uint i = 1; i < vbox->req(); i++) {
336       Node* new_box = expand_vbox_node_helper(vbox->in(i), vect->in(i),
337                                               box_type, vect_type, visited);
338       if (!new_box->is_Phi()) {
339         C->initial_gvn()->hash_delete(vbox);
340         vbox->set_req(i, new_box);
341       }
342     }
343     return C->initial_gvn()->transform(vbox);
344   }
345 
346   // Handle the case when the allocation input to VectorBoxNode is a phi
347   // but the vector input is not, which can definitely be the case if the
348   // vector input has been value-numbered. It seems to be safe to do by
349   // construction because VectorBoxNode and VectorBoxAllocate come in a
350   // specific order as a result of expanding an intrinsic call. After that, if
351   // any of the inputs to VectorBoxNode are value-numbered they can only
352   // move up and are guaranteed to dominate.
353   if (vbox->is_Phi() && (vect->is_Vector() || vect->is_LoadVector())) {
354     for (uint i = 1; i < vbox->req(); i++) {
355       Node* new_box = expand_vbox_node_helper(vbox->in(i), vect,
356                                               box_type, vect_type, visited);
357       if (!new_box->is_Phi()) {
358         C->initial_gvn()->hash_delete(vbox);
359         vbox->set_req(i, new_box);
360       }
361     }
362     return C->initial_gvn()->transform(vbox);
363   }
364 
365   assert(!vbox->is_Phi(), "should be expanded");
366   // TODO: assert that expanded vbox is initialized with the same value (vect).
367   return vbox; // already expanded
368 }
369 
370 Node* PhaseVector::expand_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc,
371                                           Node* value,
372                                           const TypeInstPtr* box_type,
373                                           const TypeVect* vect_type) {
374   JVMState* jvms = clone_jvms(C, vbox_alloc);
375   GraphKit kit(jvms);
376   PhaseGVN& gvn = kit.gvn();
377 
378   ciInstanceKlass* box_klass = box_type->instance_klass();
379   BasicType bt = vect_type->element_basic_type();
380   int num_elem = vect_type->length();
381 
382   bool is_mask = is_vector_mask(box_klass);
383   // If boxed mask value is present in a predicate register, it must be
384   // spilled to a vector though a VectorStoreMaskOperation before actual StoreVector
385   // operation to vector payload field.
386   if (is_mask && (value->bottom_type()->isa_vectmask() || bt != T_BOOLEAN)) {
387     value = gvn.transform(VectorStoreMaskNode::make(gvn, value, bt, num_elem));
388     // Although type of mask depends on its definition, in terms of storage everything is stored in boolean array.
389     bt = T_BOOLEAN;
390     assert(value->bottom_type()->is_vect()->element_basic_type() == bt,
391            "must be consistent with mask representation");
392   }
393 
394   // Generate array allocation for the field which holds the values.
395   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(bt));
396   Node* arr = kit.new_array(kit.makecon(array_klass), kit.intcon(num_elem), 1);
397 
398   // Store the vector value into the array.
399   // (The store should be captured by InitializeNode and turned into initialized store later.)
400   Node* arr_adr = kit.array_element_address(arr, kit.intcon(0), bt);
401   const TypePtr* arr_adr_type = arr_adr->bottom_type()->is_ptr();
402   Node* arr_mem = kit.memory(arr_adr);
403   Node* vstore = gvn.transform(StoreVectorNode::make(0,
404                                                      kit.control(),
405                                                      arr_mem,
406                                                      arr_adr,
407                                                      arr_adr_type,
408                                                      value,
409                                                      num_elem));
410   kit.set_memory(vstore, arr_adr_type);
411 
412   C->set_max_vector_size(MAX2(C->max_vector_size(), vect_type->length_in_bytes()));
413 
414   // Generate the allocate for the Vector object.
415   const TypeKlassPtr* klass_type = box_type->as_klass_type();
416   Node* klass_node = kit.makecon(klass_type);
417   Node* vec_obj = kit.new_instance(klass_node);
418 
419   // Store the allocated array into object.
420   ciField* field = ciEnv::current()->vector_VectorPayload_klass()->get_field_by_name(ciSymbols::payload_name(),
421                                                                                      ciSymbols::object_signature(),
422                                                                                      false);
423   assert(field != nullptr, "");
424   Node* vec_field = kit.basic_plus_adr(vec_obj, field->offset_in_bytes());
425   const TypePtr* vec_adr_type = vec_field->bottom_type()->is_ptr();
426 
427   // The store should be captured by InitializeNode and turned into initialized store later.
428   Node* field_store = gvn.transform(kit.access_store_at(vec_obj,
429                                                         vec_field,
430                                                         vec_adr_type,
431                                                         arr,
432                                                         TypeOopPtr::make_from_klass(field->type()->as_klass()),
433                                                         T_OBJECT,
434                                                         IN_HEAP));
435   kit.set_memory(field_store, vec_adr_type);
436 
437   kit.replace_call(vbox_alloc, vec_obj, true);
438   C->remove_macro_node(vbox_alloc);
439 
440   return vec_obj;
441 }
442 
443 void PhaseVector::expand_vunbox_node(VectorUnboxNode* vec_unbox) {
444   if (vec_unbox->outcnt() > 0) {
445     GraphKit kit;
446     PhaseGVN& gvn = kit.gvn();
447 
448     Node* obj = vec_unbox->obj();
449     const TypeInstPtr* tinst = gvn.type(obj)->isa_instptr();
450     ciInstanceKlass* from_kls = tinst->instance_klass();
451     const TypeVect* vt = vec_unbox->bottom_type()->is_vect();
452     BasicType bt = vt->element_basic_type();
453     BasicType masktype = bt;
454 
455     if (is_vector_mask(from_kls)) {
456       bt = T_BOOLEAN;
457     }
458 
459     ciField* field = ciEnv::current()->vector_VectorPayload_klass()->get_field_by_name(ciSymbols::payload_name(),
460                                                                                        ciSymbols::object_signature(),
461                                                                                        false);
462     assert(field != nullptr, "");
463     int offset = field->offset_in_bytes();
464     Node* vec_adr = kit.basic_plus_adr(obj, offset);
465 
466     Node* mem = vec_unbox->mem();
467     Node* ctrl = vec_unbox->in(0);
468     Node* vec_field_ld;
469     {
470       DecoratorSet decorators = MO_UNORDERED | IN_HEAP;
471       C2AccessValuePtr addr(vec_adr, vec_adr->bottom_type()->is_ptr());
472       MergeMemNode* local_mem = MergeMemNode::make(mem);
473       gvn.record_for_igvn(local_mem);
474       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
475       C2OptAccess access(gvn, ctrl, local_mem, decorators, T_OBJECT, obj, addr);
476       const Type* type = TypeOopPtr::make_from_klass(field->type()->as_klass());
477       vec_field_ld = bs->load_at(access, type);
478     }
479 
480     // For proper aliasing, attach concrete payload type.
481     ciKlass* payload_klass = ciTypeArrayKlass::make(bt);
482     const Type* payload_type = TypeAryPtr::make_from_klass(payload_klass)->cast_to_ptr_type(TypePtr::NotNull);
483     vec_field_ld = gvn.transform(new CastPPNode(nullptr, vec_field_ld, payload_type));
484 
485     Node* adr = kit.array_element_address(vec_field_ld, gvn.intcon(0), bt);
486     const TypePtr* adr_type = adr->bottom_type()->is_ptr();
487     int num_elem = vt->length();
488     Node* vec_val_load = LoadVectorNode::make(0,
489                                               ctrl,
490                                               mem,
491                                               adr,
492                                               adr_type,
493                                               num_elem,
494                                               bt);
495     vec_val_load = gvn.transform(vec_val_load);
496 
497     C->set_max_vector_size(MAX2(C->max_vector_size(), vt->length_in_bytes()));
498 
499     if (is_vector_mask(from_kls)) {
500       vec_val_load = gvn.transform(new VectorLoadMaskNode(vec_val_load, TypeVect::makemask(masktype, num_elem)));
501     }
502 
503     gvn.hash_delete(vec_unbox);
504     vec_unbox->disconnect_inputs(C);
505     C->gvn_replace_by(vec_unbox, vec_val_load);
506   }
507   C->remove_macro_node(vec_unbox);
508 }
509 
510 void PhaseVector::eliminate_vbox_alloc_node(VectorBoxAllocateNode* vbox_alloc) {
511   JVMState* jvms = clone_jvms(C, vbox_alloc);
512   GraphKit kit(jvms);
513   // Remove VBA, but leave a safepoint behind.
514   // Otherwise, it may end up with a loop without any safepoint polls.
515   kit.replace_call(vbox_alloc, kit.map(), true);
516   C->remove_macro_node(vbox_alloc);
517 }