1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_PRIMS_JVMTIREDEFINECLASSES_HPP 26 #define SHARE_PRIMS_JVMTIREDEFINECLASSES_HPP 27 28 #include "jvmtifiles/jvmtiEnv.hpp" 29 #include "memory/oopFactory.hpp" 30 #include "memory/resourceArea.hpp" 31 #include "oops/objArrayKlass.hpp" 32 #include "oops/objArrayOop.hpp" 33 #include "runtime/vmOperation.hpp" 34 35 // Introduction: 36 // 37 // The RedefineClasses() API is used to change the definition of one or 38 // more classes. While the API supports redefining more than one class 39 // in a single call, in general, the API is discussed in the context of 40 // changing the definition of a single current class to a single new 41 // class. For clarity, the current class is will always be called 42 // "the_class" and the new class will always be called "scratch_class". 43 // 44 // The name "the_class" is used because there is only one structure 45 // that represents a specific class; redefinition does not replace the 46 // structure, but instead replaces parts of the structure. The name 47 // "scratch_class" is used because the structure that represents the 48 // new definition of a specific class is simply used to carry around 49 // the parts of the new definition until they are used to replace the 50 // appropriate parts in the_class. Once redefinition of a class is 51 // complete, scratch_class is thrown away. 52 // 53 // 54 // Implementation Overview: 55 // 56 // The RedefineClasses() API is mostly a wrapper around the VM op that 57 // does the real work. The work is split in varying degrees between 58 // doit_prologue(), doit() and doit_epilogue(). 59 // 60 // 1) doit_prologue() is called by the JavaThread on the way to a 61 // safepoint. It does parameter verification and loads scratch_class 62 // which involves: 63 // - parsing the incoming class definition using the_class' class 64 // loader and security context 65 // - linking scratch_class 66 // - merging constant pools and rewriting bytecodes as needed 67 // for the merged constant pool 68 // - verifying the bytecodes in scratch_class 69 // - setting up the constant pool cache and rewriting bytecodes 70 // as needed to use the cache 71 // - finally, scratch_class is compared to the_class to verify 72 // that it is a valid replacement class 73 // - if everything is good, then scratch_class is saved in an 74 // instance field in the VM operation for the doit() call 75 // 76 // Note: A JavaThread must do the above work. 77 // 78 // 2) doit() is called by the VMThread during a safepoint. It installs 79 // the new class definition(s) which involves: 80 // - retrieving the scratch_class from the instance field in the 81 // VM operation 82 // - house keeping (flushing breakpoints and caches, deoptimizing 83 // dependent compiled code) 84 // - replacing parts in the_class with parts from scratch_class 85 // - adding weak reference(s) to track the obsolete but interesting 86 // parts of the_class 87 // - adjusting constant pool caches and vtables in other classes 88 // that refer to methods in the_class. These adjustments use the 89 // ClassLoaderDataGraph::classes_do() facility which only allows 90 // a helper method to be specified. The interesting parameters 91 // that we would like to pass to the helper method are saved in 92 // static global fields in the VM operation. 93 // - telling the SystemDictionary to notice our changes 94 // 95 // Note: the above work must be done by the VMThread to be safe. 96 // 97 // 3) doit_epilogue() is called by the JavaThread after the VM op 98 // is finished and the safepoint is done. It simply cleans up 99 // memory allocated in doit_prologue() and used in doit(). 100 // 101 // 102 // Constant Pool Details: 103 // 104 // When the_class is redefined, we cannot just replace the constant 105 // pool in the_class with the constant pool from scratch_class because 106 // that could confuse obsolete methods that may still be running. 107 // Instead, the constant pool from the_class, old_cp, is merged with 108 // the constant pool from scratch_class, scratch_cp. The resulting 109 // constant pool, merge_cp, replaces old_cp in the_class. 110 // 111 // The key part of any merging algorithm is the entry comparison 112 // function so we have to know the types of entries in a constant pool 113 // in order to merge two of them together. Constant pools can contain 114 // up to 12 different kinds of entries; the JVM_CONSTANT_Unicode entry 115 // is not presently used so we only have to worry about the other 11 116 // entry types. For the purposes of constant pool merging, it is 117 // helpful to know that the 11 entry types fall into 3 different 118 // subtypes: "direct", "indirect" and "double-indirect". 119 // 120 // Direct CP entries contain data and do not contain references to 121 // other CP entries. The following are direct CP entries: 122 // JVM_CONSTANT_{Double,Float,Integer,Long,Utf8} 123 // 124 // Indirect CP entries contain 1 or 2 references to a direct CP entry 125 // and no other data. The following are indirect CP entries: 126 // JVM_CONSTANT_{Class,NameAndType,String} 127 // 128 // Double-indirect CP entries contain two references to indirect CP 129 // entries and no other data. The following are double-indirect CP 130 // entries: 131 // JVM_CONSTANT_{Fieldref,InterfaceMethodref,Methodref} 132 // 133 // When comparing entries between two constant pools, the entry types 134 // are compared first and if they match, then further comparisons are 135 // made depending on the entry subtype. Comparing direct CP entries is 136 // simply a matter of comparing the data associated with each entry. 137 // Comparing both indirect and double-indirect CP entries requires 138 // recursion. 139 // 140 // Fortunately, the recursive combinations are limited because indirect 141 // CP entries can only refer to direct CP entries and double-indirect 142 // CP entries can only refer to indirect CP entries. The following is 143 // an example illustration of the deepest set of indirections needed to 144 // access the data associated with a JVM_CONSTANT_Fieldref entry: 145 // 146 // JVM_CONSTANT_Fieldref { 147 // class_index => JVM_CONSTANT_Class { 148 // name_index => JVM_CONSTANT_Utf8 { 149 // <data-1> 150 // } 151 // } 152 // name_and_type_index => JVM_CONSTANT_NameAndType { 153 // name_index => JVM_CONSTANT_Utf8 { 154 // <data-2> 155 // } 156 // descriptor_index => JVM_CONSTANT_Utf8 { 157 // <data-3> 158 // } 159 // } 160 // } 161 // 162 // The above illustration is not a data structure definition for any 163 // computer language. The curly braces ('{' and '}') are meant to 164 // delimit the context of the "fields" in the CP entry types shown. 165 // Each indirection from the JVM_CONSTANT_Fieldref entry is shown via 166 // "=>", e.g., the class_index is used to indirectly reference a 167 // JVM_CONSTANT_Class entry where the name_index is used to indirectly 168 // reference a JVM_CONSTANT_Utf8 entry which contains the interesting 169 // <data-1>. In order to understand a JVM_CONSTANT_Fieldref entry, we 170 // have to do a total of 5 indirections just to get to the CP entries 171 // that contain the interesting pieces of data and then we have to 172 // fetch the three pieces of data. This means we have to do a total of 173 // (5 + 3) * 2 == 16 dereferences to compare two JVM_CONSTANT_Fieldref 174 // entries. 175 // 176 // Here is the indirection, data and dereference count for each entry 177 // type: 178 // 179 // JVM_CONSTANT_Class 1 indir, 1 data, 2 derefs 180 // JVM_CONSTANT_Double 0 indir, 1 data, 1 deref 181 // JVM_CONSTANT_Fieldref 2 indir, 3 data, 8 derefs 182 // JVM_CONSTANT_Float 0 indir, 1 data, 1 deref 183 // JVM_CONSTANT_Integer 0 indir, 1 data, 1 deref 184 // JVM_CONSTANT_InterfaceMethodref 2 indir, 3 data, 8 derefs 185 // JVM_CONSTANT_Long 0 indir, 1 data, 1 deref 186 // JVM_CONSTANT_Methodref 2 indir, 3 data, 8 derefs 187 // JVM_CONSTANT_NameAndType 1 indir, 2 data, 4 derefs 188 // JVM_CONSTANT_String 1 indir, 1 data, 2 derefs 189 // JVM_CONSTANT_Utf8 0 indir, 1 data, 1 deref 190 // 191 // So different subtypes of CP entries require different amounts of 192 // work for a proper comparison. 193 // 194 // Now that we've talked about the different entry types and how to 195 // compare them we need to get back to merging. This is not a merge in 196 // the "sort -u" sense or even in the "sort" sense. When we merge two 197 // constant pools, we copy all the entries from old_cp to merge_cp, 198 // preserving entry order. Next we append all the unique entries from 199 // scratch_cp to merge_cp and we track the index changes from the 200 // location in scratch_cp to the possibly new location in merge_cp. 201 // When we are done, any obsolete code that is still running that 202 // uses old_cp should not be able to observe any difference if it 203 // were to use merge_cp. As for the new code in scratch_class, it is 204 // modified to use the appropriate index values in merge_cp before it 205 // is used to replace the code in the_class. 206 // 207 // There is one small complication in copying the entries from old_cp 208 // to merge_cp. Two of the CP entry types are special in that they are 209 // lazily resolved. Before explaining the copying complication, we need 210 // to digress into CP entry resolution. 211 // 212 // JVM_CONSTANT_Class entries are present in the class file, but are not 213 // stored in memory as such until they are resolved. The entries are not 214 // resolved unless they are used because resolution is expensive. During class 215 // file parsing the entries are initially stored in memory as 216 // JVM_CONSTANT_ClassIndex and JVM_CONSTANT_StringIndex entries. These special 217 // CP entry types indicate that the JVM_CONSTANT_Class and JVM_CONSTANT_String 218 // entries have been parsed, but the index values in the entries have not been 219 // validated. After the entire constant pool has been parsed, the index 220 // values can be validated and then the entries are converted into 221 // JVM_CONSTANT_UnresolvedClass and JVM_CONSTANT_String 222 // entries. During this conversion process, the UTF8 values that are 223 // indirectly referenced by the JVM_CONSTANT_ClassIndex and 224 // JVM_CONSTANT_StringIndex entries are changed into Symbol*s and the 225 // entries are modified to refer to the Symbol*s. This optimization 226 // eliminates one level of indirection for those two CP entry types and 227 // gets the entries ready for verification. Verification expects to 228 // find JVM_CONSTANT_UnresolvedClass but not JVM_CONSTANT_Class entries. 229 // 230 // Now we can get back to the copying complication. When we copy 231 // entries from old_cp to merge_cp, we have to revert any 232 // JVM_CONSTANT_Class entries to JVM_CONSTANT_UnresolvedClass entries 233 // or verification will fail. 234 // 235 // It is important to explicitly state that the merging algorithm 236 // effectively unresolves JVM_CONSTANT_Class entries that were in the 237 // old_cp when they are changed into JVM_CONSTANT_UnresolvedClass 238 // entries in the merge_cp. This is done both to make verification 239 // happy and to avoid adding more brittleness between RedefineClasses 240 // and the constant pool cache. By allowing the constant pool cache 241 // implementation to (re)resolve JVM_CONSTANT_UnresolvedClass entries 242 // into JVM_CONSTANT_Class entries, we avoid having to embed knowledge 243 // about those algorithms in RedefineClasses. 244 // 245 // Appending unique entries from scratch_cp to merge_cp is straight 246 // forward for direct CP entries and most indirect CP entries. For the 247 // indirect CP entry type JVM_CONSTANT_NameAndType and for the double- 248 // indirect CP entry types, the presence of more than one piece of 249 // interesting data makes appending the entries more complicated. 250 // 251 // For the JVM_CONSTANT_{Double,Float,Integer,Long,Utf8} entry types, 252 // the entry is simply copied from scratch_cp to the end of merge_cp. 253 // If the index in scratch_cp is different than the destination index 254 // in merge_cp, then the change in index value is tracked. 255 // 256 // Note: the above discussion for the direct CP entries also applies 257 // to the JVM_CONSTANT_UnresolvedClass entry types. 258 // 259 // For the JVM_CONSTANT_Class entry types, since there is only 260 // one data element at the end of the recursion, we know that we have 261 // either one or two unique entries. If the JVM_CONSTANT_Utf8 entry is 262 // unique then it is appended to merge_cp before the current entry. 263 // If the JVM_CONSTANT_Utf8 entry is not unique, then the current entry 264 // is updated to refer to the duplicate entry in merge_cp before it is 265 // appended to merge_cp. Again, any changes in index values are tracked 266 // as needed. 267 // 268 // Note: the above discussion for JVM_CONSTANT_Class entry 269 // types is theoretical. Since those entry types have already been 270 // optimized into JVM_CONSTANT_UnresolvedClass entry types, 271 // they are handled as direct CP entries. 272 // 273 // For the JVM_CONSTANT_NameAndType entry type, since there are two 274 // data elements at the end of the recursions, we know that we have 275 // between one and three unique entries. Any unique JVM_CONSTANT_Utf8 276 // entries are appended to merge_cp before the current entry. For any 277 // JVM_CONSTANT_Utf8 entries that are not unique, the current entry is 278 // updated to refer to the duplicate entry in merge_cp before it is 279 // appended to merge_cp. Again, any changes in index values are tracked 280 // as needed. 281 // 282 // For the JVM_CONSTANT_{Fieldref,InterfaceMethodref,Methodref} entry 283 // types, since there are two indirect CP entries and three data 284 // elements at the end of the recursions, we know that we have between 285 // one and six unique entries. See the JVM_CONSTANT_Fieldref diagram 286 // above for an example of all six entries. The uniqueness algorithm 287 // for the JVM_CONSTANT_Class and JVM_CONSTANT_NameAndType entries is 288 // covered above. Any unique entries are appended to merge_cp before 289 // the current entry. For any entries that are not unique, the current 290 // entry is updated to refer to the duplicate entry in merge_cp before 291 // it is appended to merge_cp. Again, any changes in index values are 292 // tracked as needed. 293 // 294 // 295 // Other Details: 296 // 297 // Details for other parts of RedefineClasses need to be written. 298 // This is a placeholder section. 299 // 300 // 301 // Open Issues (in no particular order): 302 // 303 // - How do we serialize the RedefineClasses() API without deadlocking? 304 // 305 // - GenerateOopMap::rewrite_load_or_store() has a comment in its 306 // (indirect) use of the Relocator class that the max instruction 307 // size is 4 bytes. goto_w and jsr_w are 5 bytes and wide/iinc is 308 // 6 bytes. Perhaps Relocator only needs a 4 byte buffer to do 309 // what it does to the bytecodes. More investigation is needed. 310 // 311 // - How do we know if redefine_single_class() and the guts of 312 // InstanceKlass are out of sync? I don't think this can be 313 // automated, but we should probably order the work in 314 // redefine_single_class() to match the order of field 315 // definitions in InstanceKlass. We also need to add some 316 // comments about keeping things in sync. 317 // 318 // - set_new_constant_pool() is huge and we should consider refactoring 319 // it into smaller chunks of work. 320 // 321 // - The exception table update code in set_new_constant_pool() defines 322 // const values that are also defined in a local context elsewhere. 323 // The same literal values are also used in elsewhere. We need to 324 // coordinate a cleanup of these constants with Runtime. 325 // 326 327 struct JvmtiCachedClassFileData { 328 jint length; 329 unsigned char data[1]; 330 }; 331 332 class VM_RedefineClasses: public VM_Operation { 333 private: 334 // These static fields are needed by ClassLoaderDataGraph::classes_do() 335 // facility and the CheckClass and AdjustAndCleanMetadata helpers. 336 static Array<Method*>* _old_methods; 337 static Array<Method*>* _new_methods; 338 static Method** _matching_old_methods; 339 static Method** _matching_new_methods; 340 static Method** _deleted_methods; 341 static Method** _added_methods; 342 static int _matching_methods_length; 343 static int _deleted_methods_length; 344 static int _added_methods_length; 345 static bool _has_redefined_Object; 346 static bool _has_null_class_loader; 347 348 // Used by JFR to group class redefininition events together. 349 static u8 _id_counter; 350 351 // The instance fields are used to pass information from 352 // doit_prologue() to doit() and doit_epilogue(). 353 Klass* _the_class; 354 jint _class_count; 355 const jvmtiClassDefinition *_class_defs; // ptr to _class_count defs 356 357 // This operation is used by both RedefineClasses and 358 // RetransformClasses. Indicate which. 359 JvmtiClassLoadKind _class_load_kind; 360 361 // _index_map_count is just an optimization for knowing if 362 // _index_map_p contains any entries. 363 int _index_map_count; 364 intArray * _index_map_p; 365 366 // _operands_index_map_count is just an optimization for knowing if 367 // _operands_index_map_p contains any entries. 368 int _operands_cur_length; 369 int _operands_index_map_count; 370 intArray * _operands_index_map_p; 371 372 // ptr to _class_count scratch_classes 373 InstanceKlass** _scratch_classes; 374 jvmtiError _res; 375 376 // Set if any of the InstanceKlasses have entries in the ResolvedMethodTable 377 // to avoid walking after redefinition if the redefined classes do not 378 // have any entries. 379 bool _any_class_has_resolved_methods; 380 381 // Performance measurement support. These timers do not cover all 382 // the work done for JVM/TI RedefineClasses() but they do cover 383 // the heavy lifting. 384 elapsedTimer _timer_rsc_phase1; 385 elapsedTimer _timer_rsc_phase2; 386 elapsedTimer _timer_vm_op_doit; 387 elapsedTimer _timer_vm_op_prologue; 388 389 // Redefinition id used by JFR 390 u8 _id; 391 392 // These routines are roughly in call order unless otherwise noted. 393 394 // Load the caller's new class definition(s) into _scratch_classes. 395 // Constant pool merging work is done here as needed. Also calls 396 // compare_and_normalize_class_versions() to verify the class 397 // definition(s). 398 jvmtiError load_new_class_versions(); 399 400 // Verify that the caller provided class definition(s) that meet 401 // the restrictions of RedefineClasses. Normalize the order of 402 // overloaded methods as needed. 403 jvmtiError compare_and_normalize_class_versions( 404 InstanceKlass* the_class, InstanceKlass* scratch_class); 405 406 // Figure out which new methods match old methods in name and signature, 407 // which methods have been added, and which are no longer present 408 void compute_added_deleted_matching_methods(); 409 410 // Change jmethodIDs to point to the new methods 411 void update_jmethod_ids(); 412 413 // In addition to marking methods as old and/or obsolete, this routine 414 // counts the number of methods that are EMCP (Equivalent Module Constant Pool). 415 int check_methods_and_mark_as_obsolete(); 416 void transfer_old_native_function_registrations(InstanceKlass* the_class); 417 418 // Install the redefinition of a class 419 void redefine_single_class(Thread* current, jclass the_jclass, 420 InstanceKlass* scratch_class_oop); 421 422 void swap_annotations(InstanceKlass* new_class, 423 InstanceKlass* scratch_class); 424 425 // Increment the classRedefinedCount field in the specific InstanceKlass 426 // and in all direct and indirect subclasses. 427 void increment_class_counter(InstanceKlass* ik); 428 429 // Support for constant pool merging (these routines are in alpha order): 430 void append_entry(const constantPoolHandle& scratch_cp, int scratch_i, 431 constantPoolHandle *merge_cp_p, int *merge_cp_length_p); 432 void append_operand(const constantPoolHandle& scratch_cp, int scratch_bootstrap_spec_index, 433 constantPoolHandle *merge_cp_p, int *merge_cp_length_p); 434 void finalize_operands_merge(const constantPoolHandle& merge_cp, TRAPS); 435 u2 find_or_append_indirect_entry(const constantPoolHandle& scratch_cp, int scratch_i, 436 constantPoolHandle *merge_cp_p, int *merge_cp_length_p); 437 int find_or_append_operand(const constantPoolHandle& scratch_cp, int scratch_bootstrap_spec_index, 438 constantPoolHandle *merge_cp_p, int *merge_cp_length_p); 439 u2 find_new_index(int old_index); 440 int find_new_operand_index(int old_bootstrap_spec_index); 441 void map_index(const constantPoolHandle& scratch_cp, int old_index, int new_index); 442 void map_operand_index(int old_bootstrap_spec_index, int new_bootstrap_spec_index); 443 bool merge_constant_pools(const constantPoolHandle& old_cp, 444 const constantPoolHandle& scratch_cp, constantPoolHandle *merge_cp_p, 445 int *merge_cp_length_p, TRAPS); 446 jvmtiError merge_cp_and_rewrite(InstanceKlass* the_class, 447 InstanceKlass* scratch_class, TRAPS); 448 u2 rewrite_cp_ref_in_annotation_data( 449 AnnotationArray* annotations_typeArray, int &byte_i_ref, 450 const char * trace_mesg); 451 bool rewrite_cp_refs(InstanceKlass* scratch_class); 452 bool rewrite_cp_refs_in_annotation_struct( 453 AnnotationArray* class_annotations, int &byte_i_ref); 454 bool rewrite_cp_refs_in_annotations_typeArray( 455 AnnotationArray* annotations_typeArray, int &byte_i_ref); 456 bool rewrite_cp_refs_in_class_annotations(InstanceKlass* scratch_class); 457 bool rewrite_cp_refs_in_element_value( 458 AnnotationArray* class_annotations, int &byte_i_ref); 459 bool rewrite_cp_refs_in_type_annotations_typeArray( 460 AnnotationArray* type_annotations_typeArray, int &byte_i_ref, 461 const char * location_mesg); 462 bool rewrite_cp_refs_in_type_annotation_struct( 463 AnnotationArray* type_annotations_typeArray, int &byte_i_ref, 464 const char * location_mesg); 465 bool skip_type_annotation_target( 466 AnnotationArray* type_annotations_typeArray, int &byte_i_ref, 467 const char * location_mesg); 468 bool skip_type_annotation_type_path( 469 AnnotationArray* type_annotations_typeArray, int &byte_i_ref); 470 bool rewrite_cp_refs_in_fields_annotations(InstanceKlass* scratch_class); 471 bool rewrite_cp_refs_in_nest_attributes(InstanceKlass* scratch_class); 472 bool rewrite_cp_refs_in_record_attribute(InstanceKlass* scratch_class); 473 bool rewrite_cp_refs_in_permitted_subclasses_attribute(InstanceKlass* scratch_class); 474 475 void rewrite_cp_refs_in_method(methodHandle method, 476 methodHandle * new_method_p, TRAPS); 477 bool rewrite_cp_refs_in_methods(InstanceKlass* scratch_class); 478 479 bool rewrite_cp_refs_in_methods_annotations(InstanceKlass* scratch_class); 480 bool rewrite_cp_refs_in_methods_default_annotations(InstanceKlass* scratch_class); 481 bool rewrite_cp_refs_in_methods_parameter_annotations(InstanceKlass* scratch_class); 482 bool rewrite_cp_refs_in_class_type_annotations(InstanceKlass* scratch_class); 483 bool rewrite_cp_refs_in_fields_type_annotations(InstanceKlass* scratch_class); 484 bool rewrite_cp_refs_in_methods_type_annotations(InstanceKlass* scratch_class); 485 486 void rewrite_cp_refs_in_stack_map_table(const methodHandle& method); 487 void rewrite_cp_refs_in_verification_type_info( 488 address& stackmap_addr_ref, address stackmap_end, u2 frame_i, 489 u1 frame_size); 490 void set_new_constant_pool(ClassLoaderData* loader_data, 491 InstanceKlass* scratch_class, 492 constantPoolHandle scratch_cp, int scratch_cp_length, TRAPS); 493 494 void flush_dependent_code(); 495 496 // lock classes to redefine since constant pool merging isn't thread safe. 497 void lock_classes(); 498 void unlock_classes(); 499 500 u8 next_id(); 501 502 static void dump_methods(); 503 504 // Check that there are no old or obsolete methods 505 class CheckClass : public KlassClosure { 506 Thread* _thread; 507 public: 508 CheckClass(Thread* t) : _thread(t) {} 509 void do_klass(Klass* k); 510 }; 511 512 // Unevolving classes may point to methods of the_class directly 513 // from their constant pool caches, itables, and/or vtables. We 514 // use the ClassLoaderDataGraph::classes_do() facility and this helper 515 // to fix up these pointers and clean MethodData out. 516 class AdjustAndCleanMetadata : public KlassClosure { 517 Thread* _thread; 518 public: 519 AdjustAndCleanMetadata(Thread* t) : _thread(t) {} 520 void do_klass(Klass* k); 521 }; 522 523 public: 524 VM_RedefineClasses(jint class_count, 525 const jvmtiClassDefinition *class_defs, 526 JvmtiClassLoadKind class_load_kind); 527 VMOp_Type type() const { return VMOp_RedefineClasses; } 528 bool doit_prologue(); 529 void doit(); 530 void doit_epilogue(); 531 532 bool allow_nested_vm_operations() const { return true; } 533 jvmtiError check_error() { return _res; } 534 u8 id() { return _id; } 535 536 // Modifiable test must be shared between IsModifiableClass query 537 // and redefine implementation 538 static bool is_modifiable_class(oop klass_mirror); 539 540 static jint get_cached_class_file_len(JvmtiCachedClassFileData *cache) { 541 return cache == nullptr ? 0 : cache->length; 542 } 543 static unsigned char * get_cached_class_file_bytes(JvmtiCachedClassFileData *cache) { 544 return cache == nullptr ? nullptr : cache->data; 545 } 546 547 // Error printing 548 void print_on_error(outputStream* st) const; 549 }; 550 #endif // SHARE_PRIMS_JVMTIREDEFINECLASSES_HPP